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Lora T. Likova, Smith-Kettlewell Eye Research Institute, USA

The ultimate goal of functional brain imaging is to provide optimal estimates of the neural signals 
flowing through the long-range and local pathways mediating all behavioral performance and 
conscious experience. In functional Magnetic Resonance Imaging (fMRI), despite its impressive 
spatial resolution, this goal has been somewhat undermined by the fact that the fMRI response 
is essentially a blood-oxygenation level dependent (BOLD) signal that only indirectly reflects the 
nearby neural activity. The vast majority of fMRI studies restrict themselves to describing the 
details of these BOLD signals and deriving non-quantitative inferences about their implications 
for the underlying neural activity. 

This Frontiers Research Topic welcomed empirical and theoretical contributions that focus on 
the explicit relationship of non-invasive brain imaging signals to the causative neural activity.
The articles presented within this resulting eBook aim to both highlight the importance and 
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improve the non-invasive estimation of neural signals in the human brain. To achieve this aim, 
the following issues are targeted:

(1) The spatial limitations of source localization when using MEG/EEG.

(2) The coupling of the BOLD signal to neural activity. Articles discuss how animal studies are 
fundamental in increasing our understanding of BOLD fMRI signals, analyze how non-neuronal 
cell types may contribute to the modulation of cerebral blood flow, and use modeling to improve 
our understanding of how local field potentials are linked to the BOLD signal.

(3) The contribution of excitatory and inhibitory neuronal activity to the BOLD signal.

(4) Assessment of neural connectivity through the use of resting state data, computational 
modeling and functional Diffusion Tensor Imaging (fDTI) approaches.
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The Editorial on the Research Topic

Neural Signal Estimation in the Human Brain

The ultimate goal of functional brain imaging is to estimate the neural signals that flow through the
brain, mediating behavior, and conscious experience during the spectrum of activities controlled
by the nervous system. Although, various brain imaging techniques are in routine use, determining
the underlying neural activity remains a challenge (Lopez da Silva, 2010). Despite its impressive
spatial resolution, functional Magnetic Resonance Imaging (fMRI) measures a blood-oxygenation-
level-dependent (BOLD) signal and, hence, only indirectly reflects the nearby neural activity. The
interpretation of these signals is further complicated as it is sometimes unclear what aspects of
“neural activity” BOLD represents. “Neural activity” could refer to spiking activity, subthreshold
activation, or synaptic currents, each of both excitatory and inhibitory neurons, to name a few.
Although, early findings suggested that BOLD was directly proportional to average neuronal firing
rates (Heeger et al., 2000; Rees et al., 2000), in the cortex BOLD fMRI signals are marginally
better correlated with LFPs (reflecting slow waveforms of neural activity) than with MUAs
(reflecting spiking; Logothetis et al., 2001), suggesting that they may preferentially reflect inputs
and intracortical processing (Viswanathan and Freeman, 2007; Rauch et al., 2008). Further work
is needed to better understand what aspect of neural activity is reflected by BOLD signals in cases
where there is dissociation between LFPs and the BOLD signal, as occurs in the hippocampus (as
discussed in Ekstrom, 2010).

The vast majority of fMRI studies describe only the properties of BOLD signals and make
only qualitative inferences of their implications for the underlying neural activity. Conversely, in
electrical and magnetic forms of non-invasive brain imaging the recorded signal derives directly
from the functional activity of neurons (though with varying degrees of transmission from the
neural origin to the scalp recording sites), but the ability to localize these signals with any degree
of accuracy remains remarkably elusive as the complexity of brain activation for even the simplest
of tasks tends to confound attempts to resolve the local neural components contributing to the
recorded scalp responses. To improve our estimates of neural signals using non-invasive brain
imaging techniques, this Frontiers Research Topic invited empirical and theoretical contributions
focusing on the explicit relationship of brain imaging signals to causative neural activity.

The submitted contributions responded to the challenge of neural signal estimation in a variety
of ways including: advanced analyses of the neural implications of magnetoencephalographic
(MEG) and electroencephalographic (EEG) signals, derivations of the pathway for BOLD signal
generation from the underlying neural activation signals through animal recording, human BOLD
modeling studies, detailed assessment of local BOLD response components and resting-state
activation, and interpretation of the new field of functional diffusion tensor imaging in terms of
neural activation.
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Although the EEG and MEG commonly used to measure
human neural activity have high temporal resolution, spatial
localization of the signal source is difficult to achieve. Cicmil
et al. highlighted the limits on localizing MEG signal sources
by testing the ability of several reconstruction approaches to
localize the source of retinotopic MEG signals in the human
brain and found that none of the approaches for assessing
angular position were suitable for resolving annular stimuli
spanning different retinal eccentricities (unless restricted in
angular position). A second contribution to such electrical
signal analysis is the time-frequency approach to the source
localization and functional connectivity from simultaneous
MEG/EEG signals proposed by Zerouali et al. Although, this
analysis specifically targeted sleep spindles, the work has broader
implications for the functional integration of MEG and EEG
signals and their source localization within the brain. This
analysis revealed that functional connectivity across the cortex
evolved during the spindles from short-range intra-hemispheric
connections to longer range inter-hemispheric connections,
suggesting an integrative role for these dynamic features of neural
activity.

Several contributions focused on estimating the properties of
the underlying neural sources that generate BOLD fMRI signals.
Martin reviews the need for accurate neurovascular models
of the coupling between neural activity and the local BOLD
signal from animal studies. Animal studies have the striking
advantage of allowing a wide variety of technical approaches
to the analysis of neurovascular coupling. Martin evaluates 16
of these, from single-neuron electrophysiology to tissue oxygen
voltammetry, considering both their advantages and limitations
and highlighting the key areas in which our understanding
of fMRI signals has been improved through the use of
animal models. Howarth takes up the issue of whether cortical
astrocytes (glial cells), and calcium transients within them, are
involved in the vascular response to neuronal activity based
on the recent debate regarding whether evoked glial calcium
signals occur quickly enough to account for the dynamics
of neurovascular coupling. Indeed, the exact mechanisms by
which astrocytes respond to changes in neuronal activity and
trigger the intracellular events regulating the resulting vascular
response underlying the fMRI BOLD signal remain unclear.
To take an analytic approach to this question, Tyler et al.
evaluate four models for the neurovascular coupling between
local field potentials recorded in cortex and BOLD signals
recorded simultaneously in an adjacent location, for a range of
stimulus durations. The results imply that the BOLD response
is most closely coupled with metabolic demand derived from the
neuronal input waveform, suggesting that the astrocytic signaling
is responsive to the neurotransmitter metabolism of the dendritic
arborization rather than to the neuron’s spiking activity.

Further studies focus on contributions to the positive and
negative components of the neurovascular relationships. Buxton
et al. assess the coupling ratio of blood flow and oxygen
metabolism to different kinds of neural activation, finding
that blood flow variations are more closely coupled with
stimulus-driven variations than with endogenous variations in
neural activity (e.g., those driven by attention, adaptation, and

generalized excitability). Variations in oxygen metabolism, on
the other hand, are more closely coupled with endogenous
neural variations. The authors suggest that these differences in
coupling ratio reflect differential proportions of excitatory and
inhibitory contributions of the neural signal to cortical BOLD
signals, and hence provide a new window into the assessment of
neural activity. A related topic is addressed by Chen, who uses
stimulus-driven manipulations of activation and suppression to
assess the excitatory and inhibitory contributions to the evoked
BOLD signal. The stimuli were designed to have invariant
local effects, but differential long-range interactions were found
according to configural relationships of local orientations, which
should produce no differences in BOLD signal in the absence of
neural interactions. One component of the BOLD suppression
was dependent on the orientation-specific inhibitory effect of
the long-range interactions, while a second appeared to be a
general negative BOLD response to adjacent contrast stimulation
independent of the stimulus configuration. Thus, BOLD response
properties can be used to identify targeted aspects of the
underlying neural organization.

Three papers focus on advanced methods of decomposing
the neural connectivity and reorganization in the brain from
the distribution of BOLD signals. Gonzalez-Castillo et al. take
the novel approach of analyzing the time-course of resting-
state BOLD signals across the cortex to assess the stability of
neural connectivity. The most stable connections were between
homologous (symmetric) interhemispheric local regions, with
stability persisting for several minutes. The more variable
connections were found to correspond primarily to occipito-
frontal connections across the traditional resting-state networks,
which can be interpreted as corresponding to transient visual
imagery. Gravel et al. take resting-state analysis a step further
to develop the concept of local cortical connective fields. These
are neural organizations analogous to neuronal receptive fields,
but defined in terms of connectivity among cortical regions,
rather than connectivity of the neuron to a sensory surface. In
combination with the population receptive mapping developed
by this group for the analysis of the visual cortex, resting-
state BOLD connectivity can be interpreted in visual space.
This approach allows visuotopic maps to be reconstructed using
resting state data recorded in the visual cortex, enabling these
authors to show that the local resting-state connectivity from
visual area V1 to both V2 and V3 was invariant with eccentricity
with a scale of ∼2mm, substantially smaller than the population
receptive fields for visual input in these cortical areas. This work
suggests that it is possible to obtain some neural properties from
resting-state fMRI data.

Concentrating on the example of motor learning, Yang et al.
extend the analysis of BOLD activation maps. Learning may
generate not only changes in the strength of activation in
predefined regions of interest, but also changes in the spatial
distribution of the activation across the cortex. To address this
issue, the authors measure the changes in spatial distribution of
activation following a simple motor learning task. Dimension
reduction via singular-value decomposition was able to capture
aspects of the neural reorganization produced by this form
of motor learning. These findings validate the capability of
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computational modeling to determine properties of neural
connectivity and reorganization from BOLD signal analysis.

The final two papers are concerned with a new functional form
of Diffusion Tensor Imaging (DTI). DTI is a well-established
technique for assessing the anatomical organization of the fiber
pathways in vivo from the local anisotropy of the diffusion
directions of water molecules within brain tissue. Functional
DTI, on the other hand, assesses changes in this kind of
anisotropy as a result of some functional manipulation of the
state of the brain. Autio and Roberts raise concerns about
contamination of this form of functional analysis by leakage
of BOLD signal activation from adjacent gray matter into the
voxels designated as fiber pathways. Mandl et al., whose previous
paper on functional changes in fractional anisotropy in the optic
radiations during visual stimulation was the subject of the Autio
and Roberts critique, argue that such partial voluming would only
occur at the ends of fiber tracts where they meet with the cortical
regions that they are connecting, whereas the reported changes in
fractional anisotropy occurred throughout the tracts.

In summary, functional imaging techniques are increasingly
used to infer neural activity within the human brain. This special
issue improves our ability to estimate these neural signals non-
invasively and points us in the direction of the remaining issues
that must be addressed before we can fully understand functional
imaging signals.

AUTHOR CONTRIBUTIONS

All authors listed, have made substantial, direct, and
intellectual contribution to the work, and approved it for
publication.

FUNDING

CH was a Vice Chancellor’s Advanced Fellow at the University of
Sheffield and currently holds a Sir Henry Dale Fellowship jointly
funded by the Wellcome Trust and the Royal Society (grant
number:105586/Z/14/Z).

REFERENCES

Ekstrom, A. (2010). How and when the fMRI BOLD signal relates to underlying

neural activity: the danger in dissociation. Brain Res. Rev. 62, 233–244. doi:

10.1016/j.brainresrev.2009.12.004

Heeger, D. J., Huk, A. C., Geisler, W. S., and Albrecht, D. G. (2000). Spikes versus

BOLD: what does neuroimaging tell us about neuronal activity? Nat. Neurosci.

3, 631–633. doi: 10.1038/76572

Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., and Oeltermann, A. (2001).

Neurophysiological investigation of the basis of the fMRI signal. Nature 412,

150–157. doi: 10.1038/35084005

Lopez da Silva, F. H. (2010). “EEG origin and measurement,” in EEG - fMRI:

Physiological Basis, Technique, and Applications, eds C. Mulert and L. Lemieux

(Berlin; Heidelberg:Springer Verlag), 19–38.

Rauch, A., Rainer, G., and Logothetis, N. K. (2008). The effect of a

serotonin-induced dissociation between spiking and perisynaptic activity on

BOLD functional MRI. Proc. Natl. Acad. Sci. U.S.A. 105, 6759–6764. doi:

10.1073/pnas.0800312105

Rees, G., Friston, K., and Koch, C. (2000). A direct quantitative relationship

between the functional properties of human and macaque V5. Nat. Neurosci.

3, 716–723. doi: 10.1038/76673

Viswanathan, A., and Freeman, R. D. (2007). Neurometabolic coupling in

cerebral cortex reflects synaptic more than spiking activity. Nat. Neurosci. 10,

1308–1312. doi: 10.1038/nn1977

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Tyler, Howarth and Likova. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) or licensor are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No

use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org April 2016 | Volume 10 | Article 185 | 8

http://dx.doi.org/10.3389/fnins.2014.00068
http://dx.doi.org/10.3389/fnins.2014.00126
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


ORIGINAL RESEARCH ARTICLE
published: 27 May 2014

doi: 10.3389/fnins.2014.00127

Localization of MEG human brain responses to retinotopic
visual stimuli with contrasting source reconstruction
approaches
Nela Cicmil1*, Holly Bridge2, Andrew J. Parker1, Mark W. Woolrich2,3 and Kristine Krug1

1 Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
2 Nuffield Department of Clinical Neuroscience, FMRIB Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
3 Department of Psychiatry, Oxford Centre for Human Brain Activity, Warneford Hospital, University of Oxford, Oxford, UK

Edited by:

Christopher W. Tyler,
Smith-Kettlewell Institute, USA

Reviewed by:

Xi-Nian Zuo, Chinese Academy of
Sciences, China
Kevin C. Chan, University of
Pittsburgh, USA

*Correspondence:

Nela Cicmil, Department Physiology,
Anatomy and Genetics, University
of Oxford, Sherrington Building,
Parks Road, Oxford, OX1 3PT, UK
e-mail: nela.cicmil@live.com

Magnetoencephalography (MEG) allows the physiological recording of human brain
activity at high temporal resolution. However, spatial localization of the source of the
MEG signal is an ill-posed problem as the signal alone cannot constrain a unique solution
and additional prior assumptions must be enforced. An adequate source reconstruction
method for investigating the human visual system should place the sources of early visual
activity in known locations in the occipital cortex. We localized sources of retinotopic MEG
signals from the human brain with contrasting reconstruction approaches (minimum norm,
multiple sparse priors, and beamformer) and compared these to the visual retinotopic map
obtained with fMRI in the same individuals. When reconstructing brain responses to visual
stimuli that differed by angular position, we found reliable localization to the appropriate
retinotopic visual field quadrant by a minimum norm approach and by beamforming.
Retinotopic map eccentricity in accordance with the fMRI map could not consistently
be localized using an annular stimulus with any reconstruction method, but confining
eccentricity stimuli to one visual field quadrant resulted in significant improvement with
the minimum norm. These results inform the application of source analysis approaches for
future MEG studies of the visual system, and indicate some current limits on localization
accuracy of MEG signals.

Keywords: magnetoencephalography (MEG), brain imaging, source localization, retinotopy, vision (ocular), fMRI

INTRODUCTION
Magnetoencephalography (MEG) measures magnetic fields emit-
ted by neuronal electrical activity and thus allows the non-
invasive recording of neuronal signals with millisecond temporal
resolution (Hämäläinen et al., 1993). MEG has the potential to
extend findings from electrophysiological studies in the visual sys-
tems of animals by recording neuronal activity across the whole
brain in human viewers as they respond to visual stimuli. The
high temporal resolution of MEG can complement results from
functional MRI (fMRI), a human neuroimaging method that has
good spatial resolution (approximately 1 mm) but provides an
indirect measure of neuronal function with low temporal resolu-
tion relative to neuronal spiking activity (Logothetis et al., 2001;
Logothetis and Wandell, 2004).

Although the magnetic fields measured by MEG pass through
brain, skull and skin with minimal smearing [in contrast to the
electrical potentials measured by electroencephalography (EEG)],
localization of brain sources of MEG signals remains an ill-posed
problem. The number of independent measurements of the signal
is on the order of a few hundred sensors, whilst the possible spa-
tial configurations of cortical sources giving rise to that signal is
several orders of magnitude greater; hence, MEG measurements
alone cannot constrain a unique solution to the inverse problem
of source reconstruction (Hämäläinen et al., 1993).

A current approach to overcome this limitation is to impose
prior constraints on the source solution, informed by assump-
tions about the brain activity patterns that give rise to the MEG
signal. Different approaches to source reconstruction have been
developed, incorporating different prior assumptions. The mini-
mum norm estimate constrains the source solution by requiring
that absolute activity amplitudes across the brain be as small as
possible on average (Dale and Sereno, 1993; Hämäläinen and
Ilmoniemi, 1994). Additionally, sources can be limited to the cor-
tical mantle and a depth-weighting parameter used to counter
the implicit bias of these assumptions toward superficial, spatially
spread currents (Lin et al., 2006). On the other hand, brain activ-
ity can be assumed to be sparse, i.e., occurring in discrete cortical
“patches”, which in certain tasks may have a bilaterally correlated
response (Pascual-Marqui et al., 1994). These sparseness and cor-
relation parameters can be inferred from the data using Bayesian
techniques, for example in the multiple sparse priors approach
(Mattout et al., 2007; Friston et al., 2008; Henson et al., 2009).
Related algorithms have been the basis of other source reconstruc-
tion approaches (Moradi et al., 2003; Poghosyan and Ioannides,
2007; Cottereau et al., 2011).

Alternatively, a spatial filtering algorithm known as beam-
forming can be employed to estimate the time-course of activity at
each source location, independently of all other sources, and can
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be extended to evaluate signals within a frequency band of inter-
est (van Veen et al., 1997; Robinson and Vrba, 1999; Barnes et al.,
2006; Hillebrand and Barnes, 2011). Neuronal responses may
oscillate at a particular frequency due to the internal properties
of the processing networks involved (Wang, 2010), or a rhythmic
change in the presented stimulus can evoke brain responses in a
particular frequency band (Cottereau et al., 2011). In both cases,
such frequency-related information can be used to focus source
analysis onto a subspace of the measured MEG signal.

For visual neuroscience research, MEG source reconstruc-
tion methods should assign sources of early visual responses to
occipital cortex and resolve activity arising from different occip-
ital locations. However, with many contrasting reconstruction
approaches available, it is not yet clear which prior assumptions
are most appropriate for localizing MEG signals arising from the
human visual system, specifically those from early cortical visual
areas V1, V2, and V3.

The current gold standard for high spatial resolution of human
visual brain activity is fMRI, which has been used to identify the
retinotopic boundaries between visual areas, allowing compari-
son of responses along the visual hierarchy (Engel et al., 1994;
Sereno et al., 1995; DeYoe et al., 1996; Wandell et al., 2005).
Retinotopic mapping in early visual cortical areas of the human
brain follows well-established patterns. In angular retinotopy,
upper visual field locations are represented in ventral subre-
gions of early visual areas, whilst lower visual field locations
are represented in dorsal subregions. Left and right visual field
locations are represented in the respective contralateral cortical
hemispheres. For visual field eccentricity, the foveal region is rep-
resented at the occipital pole and representations of increasingly
peripheral locations radiate anteriorly (Engel et al., 1994; DeYoe
et al., 1996; Wandell et al., 2005). Comparison of the sources of
the MEG signals of visual brain responses, as reconstructed by
different reconstruction approaches, to fMRI retinotopic maps or
regions of interest (ROIs) in the same individual should reveal
which approaches can accurately localize signals arising from the
visual system.

A number of studies that have evaluated MEG source recon-
struction methods have compared the reconstruction of simu-
lated electromagnetic data to their assumed sources (Hämäläinen
and Ilmoniemi, 1994; Hauk, 2004; Lin et al., 2006; Trujillo-
Barreto et al., 2008; Hillebrand and Barnes, 2011) and/or quan-
tified goodness of reconstruction with a fitness measure such as
model evidence rather than source localization accuracy (Mattout
et al., 2007; Friston et al., 2008; Henson et al., 2009). A few studies
have evaluated localization accuracy of one specific MEG source
reconstruction method for real recorded visual responses, by
comparing the source locations either to individuals’ fMRI maps
(Moradi et al., 2003; Poghosyan and Ioannides, 2007; Sharon
et al., 2007; Cottereau et al., 2011) or to indirect indicators of
retinotopic mapping, such as anatomical landmarks (Brookes
et al., 2010; Perry et al., 2011).

We further this approach by reconstructing, for the first time,
the sources of real recorded MEG signals from human view-
ers with three contrasting localization approaches and evaluating
these reconstructions against fMRI retinotopic maps from the
same individuals. Source localizations of responses to stimuli

that differed either in angular retinotopy or eccentricity were
compared to their independently established cortical locations
in early visual areas V1, V2, V3, and V3A, defined for the indi-
vidual participants by fMRI. We used large stimuli and assessed
the accuracy of the extent of cortical activations rather than
just one focal point in early visual areas. We focused on three
methods included in freely available software packages: minimum
norm (Minimum Norm Estimate, MGH/MIT Martinos Centre
for Biomedical Imaging; Dale et al., 2000; Gramfort et al., 2014),
multiple sparse priors (MSP in SPM8 software, FIL Methods
Group, UCL; Litvak et al., 2011), and beamforming (adapted
from SPM8 to work with Elekta Neuromag data; Woolrich et al.,
2011). The beamformer was applied separately to early visual
evoked responses and to ongoing oscillatory responses related to
the stimulus flicker rate; minimum norm and multiple sparse
priors were used to reconstruct early evoked responses only. A
number of recent studies have incorporated information from
fMRI retinotopic mapping to aid the localization of the MEG sig-
nal by placing spatial priors on the source solutions (Yoshioka
et al., 2008; Hagler et al., 2009; Cottereau et al., 2012; Hagler and
Dale, 2013). In contrast, our investigation focused on the recon-
struction of sources from MEG signals alone, so the individual
fMRI map provided an independent localization comparison.

Any justification for a combination of MEG and fMRI data
needs to be based on a clear understanding of the contribution
of each signal to the combined estimate. Our contribution here
is based upon analyzing the quality of spatial localization of the
MEG signal, using current standard methods.

MATERIALS AND METHODS
PARTICIPANTS
Eight participants (6 female, 2 male; mean age 31.4 ± 12.6
years, range 22–58 years) took part in the experiment, although
not all participants completed all measurements. Further details
are given later. All participants had normal, or corrected to
normal, visual acuity. The participants had no neurological or
psychiatric illness, no brain injury, and were not taking any
medications that might affect the nervous system. The research
was approved by the University of Oxford’s Central University
Research Ethics Committee (CUREC), in accordance with the
regulatory standards of the Code of Ethics of the World Medical
Association (Declaration of Helsinki). Written informed consent
was obtained from all participants who were not investigators of
the project.

MEG RETINOTOPY
Data collection and pre-processing
Stimuli. Visual stimuli were projected onto a back-projection
screen in the MEG scanner in front of the participant with
a Panasonic® DLP (Digital Light Processing) based projector
(PT-D7700E). Refresh rate was 60 Hz (all MEG data were low-
pass filtered at 40 Hz prior to source reconstruction, see below).
Distance between viewers’ eyes and screen was 1500 mm and pro-
jected screen size was 390 × 290 mm, corresponding to 14.8 ×
11.0◦ of visual angle. Accurate stimulus onset times were recorded
with a photodiode (sampling rate 1000 Hz) placed over a small
black square (8 × 8 mm) located in the bottom-left corner of the
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stimulus screen; this square flashed to white for 100 ms on the first
frame of each stimulus onset (the photodiode blocked this flash
from being seen by the participant). Participants passively viewed
stimuli whilst maintaining central fixation.

Black-and-white checkerboard quadrant stimuli were pre-
sented to 6 participants with a Cambridge Research Systems
VSG 2/5 graphics generator run with a Dell laptop (Subjects
1–4), or with Presentation® (Neurobehavioral Systems, Inc.)
running on a Samsung R710 laptop (Centrino 2 P7450 proces-
sor, nVIDIA GeForce 9300M graphics card) (Subjects 5 and 6).
Stimulus parameters were identical in both set-ups. Each quad-
rant extended 0–5.4◦ eccentricity, presented either in the upper
left (UL), upper right (UR), lower left (LL) or lower right (LR)
visual field. Quadrants contained 6 checks along the radius and
the arc, decreasing in size by a factor of 1/d, where d is distance to
apex. A black fixation point (radius 0.25◦) was present at the apex.
Each stimulus was presented for 1000 ms with no inter-stimulus
interval. Each block of quadrant stimuli consisted of 25 full-cycle
rotations (UR, UL, LL, LR positions). 6 blocks were collected per
participant.

Black-and-white checkerboard concentric ring and quarter-
ring stimuli were presented with Presentation® software, as above,
for all participants. Rings had 12 checks around the circumfer-
ence and 3 checks along the radius, and were presented at three
eccentricities: ECC 1 (0–0.75◦), ECC 2 (1.0–2.0◦), and ECC 3
(3.0–5.4◦). These eccentricity bands were selected to activate areas
of similar size across cortex according to foveal magnification
ratios, and extend approximately 3 cm into the calcarine sulcus;
doubling maximum ring size would have further increased this
extent by approximately 1 cm only (Wandell et al., 2005; Horton,
2006). Quarter-rings were formed from rings by masking out all
but either the upper right or lower right quadrant of the visual
field, resulting in 6 quarter-ring stimuli (upper right: U-ECC 1,
U-ECC 2, and U-ECC 3; lower right: L-ECC 1, L-ECC 2, and L-
ECC 3). Ring and quarter-ring stimuli were presented for 1000 ms
in a pseudo-randomized order with a variable inter-stimulus
interval of 600, 800, or 1000 ms (selected pseudo-randomly).
Datasets for rings were recorded for 7 participants (Subjects 1–
3 and 5–8) with 4 blocks of 150 stimuli per participant. Datasets
for quarter-rings were recorded for 5 participants (Subjects 1–2
and 6–8) with 5 blocks of 180 stimuli per participant.

All stimuli cycled through complete black-to-white-to-black
or white-to-black-to-white contrast reversal at a rate of 4 Hz, i.e.,
the presented checkerboard pattern changed every 125 ms. This
induces oscillatory brain responses at the second harmonic, a rate
of 8 Hz. Stimuli were presented on a mid-gray background (mean
luminance, 25 cd/m2); Michelson contrast was 99%.

MEG scanner and data acquisition. MEG data were collected
with an Elekta Neuromag VectorView® MEG scanner at the
Oxford Centre for Human Brain Activity (OHBA), Department
of Psychiatry, University of Oxford, Warneford Hospital, Oxford,
U.K. The scanner comprises 306 MEG-channel sensors (102
magnetometers, 204 planar gradiometers). Sensors were tuned
prior to each MEG recording session to limit noise levels to
approximately 2.5 fT/cm. Sensors that became very noisy dur-
ing a recording block would be individually re-tuned at the next

inter-block break, using the Neuromag automatized heating pro-
cess or by eye, as necessary. Continuous MEG data were recorded
at 1000 Hz sampling rate (0.3–330 Hz bandpass filter). Prior to
data acquisition, all metal and other potential sources of electro-
magnetic interference were removed from participants. Quality of
recording was confirmed by visual inspection of 1–2 min of MEG
recording during quiet sitting prior to the start of the experiment.
Electro-oculogram (EOG) and electrocardiogram (ECG) time-
series were recorded simultaneously with MEG to track potential
noise sources and artifacts. Four head position indicator (HPI)
coils were attached to the participant’s head and a Polhemus stylus
and digitizer device were used to record the locations of fidu-
cial points (right and left pre-auricular points (RPA, LPA) and
nasion), the HPI coils, and between 40 and 80 extra digitizer
points on the head surface. Prior to the recording of each stimulus
block, head location in the scanner was measured with an auto-
matic process that detected the coils. Continuous HPI recorded
any head movements during data acquisition.

Preprocessing and HPI correction. Data were preprocessed with
Elekta Neuromag® MaxFilter software (version 2.1, May 2009).
MaxFilter software reduces noise in the data by suppressing mag-
netic interference coming from outside and inside the sensory
array, using signal-space separation (SSS). The MaxMove sub-
command was used to spatially co-register MEG recordings across
blocks to the median head position for each individual. MaxMove
continuous HPI movement compensation was also applied. Data
were then epoched according to the onset of each visual stimulus
(−500 to 1000 ms peri-onset).

Artifact removal. MEG channels with constant high noise lev-
els as identified by visual inspection were rejected from further
analysis. A maximum of two such channels was removed per
participant and scan. Eye-related artifacts such as blinks were
identified as deviations in the EOG recording trace. Epochs con-
taining artifacts arising from the eyes or intermittent sensor noise
were removed from further analysis. Peak-to-peak threshold for
removal of eye blinks and overt eye movements was within the
range 100–200 × 10−6 V. Maximum noise level threshold for
magnetometer and gradiometer activity was within range 2–3 ×
10−12 T and 1.5–2 × 10−10 T/m, respectively. In both cases, the
specific threshold depended on the artifact amplitudes recorded
for each individual. After artifact removal, in all cases there
remained at least 95 trials per stimulus per participant.

Source reconstruction of MEG signals
Brain sources of MEG signals were localized using three differ-
ent reconstruction approaches. The following sections detail the
source space configurations, reconstruction approaches, and sta-
tistical methods used. Table 1 provides a summary of these details
along with the resultant localization accuracies for responses to
quadrant stimuli.

Anatomical MRI data collection. Anatomical magnetic res-
onance imaging (aMRI) data were collected with a 3.0
Tesla TIM Trio scanner, located at the University of Oxford
Centre for Clinical Magnetic Resonance Research (OCMR).
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Table 1 | Source reconstruction method details for all localization accuracy comparisons.

Software

package

MEG

signal

Source space

configuration

(vertex spacing)

HPI-MRI

co-registration

algorithm

MEG

reconstruction

algorithm

Time window Statistical comparison Mean V1, V2, and

V3 localization

accuracy %

(quadrants)

MNE Early
evoked
response

Individual’s cortical
surface mesh
(3.1–4.9 mm)

Iterative
closest point
(ICP)

MNE 20 ms, centered
on FRP

dSPM F statistic, 500 ms
baseline (previous
stimulus)

77.9 (mean SD: 24.7)

OSL Early
evoked
response

Brain volume
(4 mm)

Iterative
closest point
(ICP)

Beamformer
(1–40 Hz)

20 ms, centered
on FRP

t-test of trial-wise
difference between
stimuli

69.1 (mean SD: 36.5)

OSL Stimulus
frequency
tag (8 Hz)

Brain volume
(4 mm)

Iterative
closest point
(ICP)

Beamformer
(7–9 Hz)

200–1000 ms
post stimulus
onset

t-test of trial-wise
difference between
stimuli

66.0 (mean SD: 39.3)

SPM8 Early
evoked
response

Inverse-normalized
cortical surface
mesh (4.9 mm)

Iterative
closest point
(ICP)

MSP 40 ms*,
centered on FRP

t-test of trial-wise
difference between
stimuli

54.9 (mean SD: 33.8)

SPM8 Early
evoked
response

Inverse-normalized
cortical surface
mesh (4.9 mm)

Iterative
closest point
(ICP)

IID 40 ms*,
centered on FRP

t-test of trial-wise
difference between
stimuli

57.3 (mean SD: 28.5)

SPM8 Early
evoked
response

Inverse-normalized
cortical surface
mesh (4.9 mm)

Iterative
closest point
(ICP)

MSP 50–200* ms
post stimulus
onset

t-test of trial-wise
difference between
stimuli

36.9 (mean SD: 25.6)

SPM8 Early
evoked
response

Inverse-normalized
cortical surface
mesh (4.9 mm)

Iterative
closest point
(ICP)

IID 50–200* ms
post stimulus
onset

t-test of trial-wise
difference between
stimuli

54.8 (mean SD: 38.5)

*Gaussian-weighted average over the time period.

One T1 scan was taken for each participant using a stan-
dard structural magnetization-prepared rapid gradient echo
(MPRAGE) sequence (130 Hz/pixel, flip angle = 8◦, TR/TE/
TI = 2040 ms/4.7 ms/900 ms). Orientation of scan acquisition
was transverse (192 × 1 mm slices) with an inplane resolution
of 1 × 1 mm.

Source space modeling and HPI-MRI alignment. Individuals’
anatomical surfaces, to which MEG data were co-registered,
were created from the aMRI data with Freesurfer software
recon-all process (default parameters) (http://surfer.nmr.mgh.

harvard.edu; Dale et al., 1999; Fischl et al., 1999). Correct seg-
mentation of white/gray matter for cortical surfaces was con-
firmed by eye. FreeSurfer’s watershed algorithm was used to
reconstruct the inner skull, outer skull and outer skin sur-
faces from the individuals’ aMRI data and to estimate the
boundary element model (BEM) compartments. BEM compart-
ments are used to specify the model for the electrical conduc-
tivity geometry of the head. A “single shell” forward model
based upon this BEM was used in all source reconstruction
methods.

Minimum norm reconstructions were implemented with
MNE software (see Minimum norm estimate (MNE) recon-
struction), which creates each individual’s source space based

upon each individual’s cortical surface. Individuals’ source spaces
contained 10242 sources per hemisphere (corresponding to
3.1 mm source spacing) for all participants except Subjects 2,
3, and 4, for whom the anatomical scan and cortical sur-
face reconstructions permitted a maximum of 4098 sources
per hemisphere (corresponding to 4.9 mm source spacing).
The specific resolution for each individual was limited by the
mne_setup_source_space command, which constructs the triangu-
lated dipole grid from the reconstructed white matter surface, in
the MNE analysis pipeline. Source reconstruction with multiple
sparse priors assumptions was implemented with SPM8 software
(see Multiple sparse priors (MSP) reconstruction). This software
constructs the cortical surface meshes for the source space by
inverse normalization of the canonical mesh derived from the
MNI152 template brain (Mattout et al., 2007; Henson et al.,
2009). These source spaces contain 4098 sources per hemisphere
(corresponding to source spacing of approximately 4.9 mm (as
advised by SPM8 Manual, Section 14.3, Source space model-
ing, p. 121). Beamformer source reconstruction did not confine
activity to the cortical mesh but estimated it within the cranial
volume. A source spacing of 4 mm was selected to lie reasonably
within the range of resolutions utilized within the other recon-
struction approaches. Table 1 lists the source space used for each
reconstruction approach.
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Digitized fiducial points, HPI coils and remaining digitizer
points were used to align the coordinate frame of the MEG
data and the structural MRI data. Locations of fiducial points
were first specified on the aMRI volume and an automatic
alignment procedure, using an iterative closest point algorithm
(ICP), non-linearly converged the frames to optimal alignment.
The beamformer utilized the same co-registration as created in
the SPM8 software for the multiple sparse priors method. Co-
registration for the minimum norm reconstruction was run in
the MNE software package using identical positional information
and equivalent ICP alignment.

First response peak (FRP). The time window for all source recon-
structions of the early evoked response was centered on 83 ms,
representing the ascension of the FRP, which was qualitatively
determined by eye. This FRP was used for all participants except
for Subject 7, for whom 93 ms was used, as evoked responses for
this participant were 10 ms slower to rise.

Minimum norm estimate (MNE) reconstruction. Data were ana-
lyzed with MNE software (Minimum Norm Estimate, MGH/MIT
Martinos Centre for BioMedical Imaging; Hämäläinen and
Ilmoniemi, 1994; Dale et al., 2000; Gramfort et al., 2014),
time-locked to stimulus onset and averaged. A noise covari-
ance matrix (NCM) was calculated from -500 to 0 ms prior to
each stimulus onset; for quadrant stimuli, this necessarily com-
prised the final 500 ms of the previous stimulus presentation.
Source reconstructions were performed on data bandpass filtered
1–40 Hz for 0–1000 ms post-stimulus, combining magnetome-
ter and gradiometer measurements. Anatomically constrained
dynamic statistical parametric mapping (dSPM) inverse solutions
(based upon F-statistics calculated using baseline variance esti-
mates) were generated at each cortical vertex (Dale et al., 2000).
These dSPM source estimates were averaged across a 20 ms time
window, centered on the FRP.

Beamformer (early evoked response). Data were analyzed with
an LCMV (linearly constrained minimum variance) beam-
former (adapted from SPM8 to work with SSS MaxFiltered
Elekta Neuromag data; Woolrich et al., 2011), using lead
fields calculated from the SPM8 neuroimaging analysis pack-
age (FIL Methods Group, UCL; Friston et al., 2008; Litvak
et al., 2011). The beamformer data covariance matrix and
weights were averaged over all trials, and used to produce
separate reconstructed sources for each trial. These were then
combined in a trial-wise General Linear Model to produce a
t-statistic for each source location. For quadrant stimuli, the
t-statistic described the trial-wise difference between responses
to a particular quadrant compared to the other quadrants, as
no inter-stimulus interval baseline was available. For rings and
quarter-rings, the t-statistic described the difference between
responses to the stimulus vs. average baseline activity −250 to
0 ms prior to stimulus onset. Sources were reconstructed for
0–1000 ms post-stimulus, bandpass filtered at 1–40 Hz, combin-
ing magnetometers and gradiometers. Resultant t-statistic images
were averaged across a time window of 20 ms, centered on
the FRP.

Beamformer (time-frequency). Time-frequency decomposition
source analysis was performed within the 7–9 Hz frequency band,
centered on 8 Hz, i.e., the 2nd harmonic of the stimulus contrast-
reversal frequency. The 2nd harmonic is used because each con-
trast reversal of the stimulus involves two contrast changes (from
black to white then white to black) and visual brain areas respond
to each such change (Campbell and Kulikowski, 1972; Cottereau
et al., 2011). A pilot frequency decomposition analysis on sensor
activity confirmed this band contained the greatest power. A time
window of 200–1000 ms was selected for source reconstruction to
avoid the FRP yet utilize maximum available data for reconstruc-
tion. Resultant t-statistic images were averaged across the time
window. All other parameters were identical to the initial evoked
response beamformer analysis above.

Multiple sparse priors (MSP) reconstruction. Data were analyzed
with the MSP analysis algorithm available in the SPM8 M/EEG
analysis package (FIL Methods Group, UCL; Friston et al., 2008;
Litvak et al., 2011). MSP contains bilaterally symmetrical a priori
assumptions based upon functional anatomy, which are selected
or deselected by the reconstruction algorithm according to the
presence or absence of bilateral correlation components in the
data (Friston et al., 2008). Sources were reconstructed separately
for each trial and a t-statistic was calculated across trials to indi-
cate significance of source activity, as for the beamformer. Time
window of source reconstruction was 40 ms wide, centered on the
FRP, combining magnetometers and gradiometers. Source activ-
ity results were averaged over this time window, weighted by a
Gaussian centered on the FRP.

The SPM8 analysis package was also used to run reconstruc-
tions with the IID (independently and identically distributed pri-
ors) reconstruction option, which corresponds to the minimum
norm approach but does not incorporate the same depth weight-
ing and anatomical constraints as the MNE software. All other
factors were identical between IID and MSP reconstructions.
Since the SPM8 source reconstruction procedure reconstructs
variance around the mean signal, MSP and IID reconstructions
were also run using a 150 ms time window (50–200 ms post-
stimulus), to encompass a greater amount of the response to stim-
ulus onset. This wider time window did not result in improved
source localization accuracy (Table 1). Therefore the shorter time
window was used for the main comparisons in the present study.

Morphing 3D source images to the individual’s cortical surface.
The beamformer and MSP methods output source reconstruc-
tions in MNI152 volumetric standard space. These were con-
verted to individuals’ cortical surface format (Freesurfer) to
enable comparison with individuals’ fMRI retinotopic maps. The
flirt command from FSL (FMRIB, Oxford; Jenkinson et al., 2012)
generated a transformation matrix from MNI152 volumetric
space to Freesurfer volumetric space and then transformed the 3D
source images to Freesurfer space. Freesurfer volume images were
then converted to cortical surface format mri_vol2surf command
(Freesurfer). These surface files were then morphed onto the cor-
tical anatomy of the individual participant with mri_surf2surf
(Freesurfer). The correspondence between the volumetric stan-
dard space results and the native space output of the morphing
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procedure was carefully checked and confirmed by eye at every
stage for each individual subject.

FUNCTIONAL MRI RETINOTOPY
Stimuli
Retinotopic quadrant and ring stimuli used for fMRI data col-
lection were presented with the Cambridge Research Systems
VSG 2/5 graphics generator with a Dell laptop. Visual stimulus
parameters were identical to those used for MEG unless otherwise
stated below. The quadrant stimulus rotated through 30◦ every
TR (4000 ms) to producing traveling wave brain signals necessary
for analysis with standard fMRI retinotopy software (Wandell,
1999). Similarly, concentric rings expanded every TR (4000 ms),
taking 8 steps to cover the visual field 0–11.5◦. Hence, although
the timing of visual stimulus presentation differed between fMRI
and MEG data acquisitions, identical spatial points of the stimuli
in the two cases could be selected, enabling direct comparisons
between the brain source locations.

fMRI data acquisition
Retinotopic fMRI data were acquired according to standard
methods with a 3T Tesla whole-body Siemens TIM Trio scan-
ner and a 12-channel receive-only head coil, located at the
University of Oxford Centre for Clinical Magnetic Resonance
Research (OCMR). EPI sequence parameters were: TE = 30 ms;
TR = 4000 ms; 40 2-mm slices; 2 × 2 mm in-plane resolution;
matrix = 64 × 64. For angular mapping, each run consisted of
6 cycles through 12 angular locations, corresponding to 72 vol-
umes acquired continuously (288 s); 4 runs were collected. For
eccentricity mapping, each run consisted of 6 cycles through 8
eccentricities, corresponding to 48 volumes (192 s); 3–4 runs were
collected. A reduced (40 2-mm slices) T1-weighted image (3D
FLASH) was also included in each functional session, acquired
coronally at an in-plane resolution of 1 × 1 mm. These slices were
in the same planes as the retinotopic functional images, and were
used to register functional retinotopy data to the whole brain
structural MRI.

fMRI retinotopy mapping
The fMRI retinotopic maps were generated for individ-
ual participants according to standard procedures, using
either mrTools software (HeegerLab; http://www.cns.nyu.edu/
heegerlab/wiki/) or mrVista software (Stanford; http://white.
stanford.edu/software). Retinotopic BOLD activity maps were
displayed on flat renderings of the occipito-temporal-parietal
region, allowing borders between visual areas to be identified and
traced. For angular retinotopy, dorsal (lower visual field) and ven-
tral (upper visual field) subregions were defined on the left and
right hemisphere for areas V1, V2, and V3. Area V3A was also
defined on each hemisphere. For eccentricity, regions of inter-
est (ROIs) representing the eccentricity bands for ECC 1, ECC
2, and ECC 3 stimuli were delineated across areas V1, V2, and
V3. This fMRI retinotopic mapping procedure and combination
of parameters have been used to map retinotopic visual areas
across a significant number of individual subjects (Bridge and
Parker, 2007; Minini et al., 2010). The definitions of areas V1-
V3A according to this procedure are reliable insofar as—when

combined with additional subjects—they result in a plausible
probabilistic map for the location of each visual area (Bridge,
2011). On qualitative assessment, this localization of areas V1,
V2, and V3 (ventral) also overlaps almost completely with proba-
bilistic maps constructed using cytoarchitectonic, post-mortem
definitions (Rottschy et al., 2007). Therefore we are confident
that this mapping approach provides “ground truth” to the same
extent as any currently available retinotopic mapping procedure
in MRI.

MEG-fMRI COMPARISONS
Source localization accuracy
To evaluate MEG source localization accuracy relative to fMRI,
we calculated the percentage of active vertices inside a particu-
lar visual cortical area that were localized to the retinotopically
expected subregion of that area. The retinotopically expected sub-
region was defined in each individual, according to their fMRI-
defined retinotopic map, and was evaluated for each stimulus.
For example, to evaluate localization accuracy for an upper right
(UR) quadrant in area V1, we calculated the percentage of active
vertices within V1 that were localized into the left ventral subre-
gion, which is the retinotopically expected location for that visual
field stimulus. Localization accuracies for quadrant stimuli were
averaged across stimuli and participants for each ROI. For rings,
eccentricity band ROIs corresponding to stimulus eccentricities
were defined across areas V1, V2, and V3 combined. Of the active
vertices located across all the eccentricity bands, we calculated the
percentage that localized into the retinotopically-expected band,
separately for each cortical hemisphere, for each participant. The
same procedure was used for quarter-rings, where retinotopic
subregions were defined by both the angular visual field location
and stimulus eccentricity.

As many of the resultant localization accuracy values were
not normally distributed (MATLAB’s Lillifors test, p < 0.05),
non-parametric Wilcoxon signrank tests were used to calculate
whether the sources were significantly localized into the retino-
topically expected subregions (p < 0.05). For quadrants, chance
level was 25% for visual areas V1, V2, and V3, for which we
defined four angular subregions each (dorsal and ventral sub-
regions in the left and right hemisphere), and 50% for V3A
for which we defined two subregions only (left and right hemi-
sphere). For rings, chance level was 33% as three eccentricity
bands were defined. For quarter-rings, chance level for angular
localization into the retinotopic quadrant was 25% and chance
level for eccentricity localization into the eccentricity band within
the quadrant was 33%.

Within each stimulus set, a Bonferroni multiple-comparison
correction was applied to the statistical tests across visual areas
and MEG reconstruction methods. A Kruskal-Wallis test was used
to ascertain whether localization accuracy was different between
source reconstruction methods.

If a source reconstruction approach resulted in no active ver-
tices in the relevant early visual area for a particular stimulus and
individual, this was excluded from the accuracy analyses. Aside
from area V3A for quadrants (MNE: 16 rejections; beamformer:
12; MSP: 10; IID: 5; time-frequency beamformer: 14) and eccen-
tricity reconstructions for lower-field quarter-rings (beamformer:
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5 rejections), there were on average only 1 or 2 such failed
localization per participant in each stimulus set for each source
reconstruction method. We recalculated all results with the failed
reconstructions included (data not shown); this slightly reduced
overall localization accuracy rates, as expected, but did not affect
the overall conclusions of the study.

Threshold for active vertices
The MEG source reconstruction methods output a statistical
activity value, either F (MNE) or t (beamformer, MSP), for each
point in the source space. This reflects that, in the context of
source reconstruction algorithms, each potential source location
has a probabilistic contribution to the MEG sensor signal because
both noise in the data and the ill-posedness of the inverse prob-
lem preclude a unique, determined solution. A cut-off threshold
must therefore be designated, which controls whether or not a
particular cortical vertex is considered “active” in any given source
reconstruction result. A non-systematic designation may affect
the retinotopic MEG-fMRI comparisons in unexpected ways and
thereby render unfair the comparison between reconstruction
methods.

We defined the cut-off threshold in terms of the percentage of
highest-responding vertices, across the cortex, that are designated
“active”. For example, a threshold of 1% indicates that only ver-
tices with activity values in the top 1% are designated “active”.
We systematically calculated localization accuracy (as described
above) as a function of cut-off threshold for each reconstruc-
tion method and visual stimulus, across visual areas V1, V2,
and V3, individually for each participant. For a given thresh-
old, if a stimulus resulted in zero “active” vertices in early visual
areas for a particular participant, the accuracy result was set to
zero. The optimal threshold was defined as the cut-off thresh-
old which produced the most accurate source reconstructions
for a given reconstruction approach. We then used this optimal
threshold, set independently for each participant and for each
reconstruction approach, in the localization accuracy evaluations
and comparisons presented in the study. Optimal thresholds,
converted to statistical values, for quadrant stimuli (averaged
across participants) were F = 27.8 (MNE), t = 9.7 (beamformer
for evoked response), t = 10.9 (beamformer for 7–9 Hz time-
frequency window), t = 4.2 (MSP) and t = 2.1 (IID). For ring
stimuli these were F = 17.5 (MNE), t = 10.8 (beamformer for
evoked response) and t = 6.85 (MSP). For quarter-rings, aver-
age optimum thresholds across participants were F = 9.0 (MNE)
and t = 8.3 (beamformer) for angular retinotopy, and F = 7.2
(MNE) and t = 7.7 (beamformer) for eccentricity mapping.

RESULTS
LOCALIZATION OF VISUALLY EVOKED RESPONSES TO ANGULAR
RETINOTOPIC STIMULI
Contrast-reversing checkerboard quadrant stimuli were pre-
sented to six human observers and the evoked brain responses
were measured with MEG. Quadrants of visual stimulation were
located in the upper left (UL), upper right (UR), lower right
(LR) or lower left (LL) visual field. In response to stimulus onset,
occipital and parietal MEG sensors showed large deflections at
60–100 ms. Subsequent responses to the contrast reversals of the

stimulus are seen throughout the stimulus duration (Figure 1A).
Scalp topography of MEG gradiometer sensor activity shows how
responses vary by stimulus location, roughly according to the
expected retinotopic pattern (Figure 1B).

Cortical sources of the first response peak (FRP) of the visu-
ally evoked response were localized with three reconstruction
approaches: minimum norm estimate (MNE), beamformer (BF),

FIGURE 1 | (A) Measured responses to upper and lower right quadrant
stimuli, from a MEG channel located over the occipital cortex (gradiometer
channel 1922), for Subject 1. Traces were time-locked to the onset of the
visual stimulus (time = 0) and averaged. Changes to the stimulus contrast
occurred every 125 ms following the onset of the visual stimulus (vertical
black lines). Deflections of evoked responses to the upper and lower
quadrants show opposite polarities, as might be expected from oppositely
oriented current sources in the lower and upper calcarine banks
respectively (Wandell et al., 2005). Source reconstructions were performed
either on the visually evoked response (first response peak (FRP): centred
at 83 ms) or upon the ongoing stimulus-induced oscillations at 8 Hz
(200–1000 ms). (B) Gradiometer topographic maps (T/m) of averaged
evoked responses at 83 ms post-stimulus for Subject 1 (S1) and Subject 4
(S4). Insets indicate stimulus locations. Black vertical and horizontal lines
are presented to aid visualization. Peak responses tended to be over the
hemisphere contralateral to the visual stimulus. Upper visual field stimuli
evoked activation further back over the occipital pole than lower field
stimuli.
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FIGURE 2 | Locations of the fMRI- and MEG-measured brain responses to

quadrant stimuli. (A,E) Individual fMRI-defined ventral and dorsal subregions
of early visual areas, which respectively represent upper field and lower field
quadrant stimuli, for Subject 1 (S1) and Subject 4 (S4). Blue = area V1; Red =
area V2; Yellow = area V3; Green = area V3A. Insets indicate stimulus
locations. (B–D) Retinotopic source reconstructions of MEG responses to
quadrant stimuli around the first response peak (FRP) for Subject 1.

(F–H) Retinotopic Source reconstructions of MEG responses to quadrant
stimuli around the first response peak (FRP) for Subject 4. F-statistic results for
the minimum norm estimate approach (MNE), calculated using pre-stimulus
variance estimates, are plotted on the individuals’ inflated cortical surface
(B,F). The t-statistic results for the multiple sparse priors (MSP) approach
(C,G) and beamformer (D,H), calculated with a contrast of responses across
stimuli, are displayed volumetrically on the MNI152 template brain.

and multiple sparse priors (MSP). Each of these approaches
incorporates a different set of prior assumptions to solve the
inverse problem of source reconstruction. We found that the
MNE approach consistently localized sources of the MEG signals
to the hemisphere contralateral to the quadrant location. A con-
sistent dorsal-ventral distinction for lower and upper field stimuli
was also present, in line with the pattern expected from the indi-
viduals’ fMRI-defined retinotopic maps (Figures 2A,B,E,F). The

multiple sparse priors (MSP) and beamformer approaches both
resulted in localizations that generally followed this retinotopic
pattern with some deviations (Figures 2C,D,G,H). For exam-
ple, the MSP reconstruction of responses to the UR quadrant
of Subject 1 (Figure 2C) localized sources to the dorsal occipital
lobes, instead of the ventral left lobe.

Localization accuracy of each reconstruction approach was
evaluated by assuming that the fMRI retinotopic map is a

Frontiers in Neuroscience | Brain Imaging Methods May 2014 | Volume 8 | Article 127 | 16

http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Cicmil et al. MEG retinotopic source localization

FIGURE 3 | Source localization accuracy of evoked responses to

quadrant stimuli, reconstructed with minimum norm estimate (MNE,

black), beamformer (BF, gray), and multiple sparse priors (MSP, white).

Bars show percentage of active vertices localized to the fMRI-defined
subregion of each of four early visual areas (V1, V2, V3, and V3A). Error bars
show s.e.m. Black lines indicate chance accuracy level for each early visual
area ROI. ∗ indicates pm < 0.0031 for Wilcoxon signrank test of localization
accuracy compared to chance (pi < 0.05 with Bonferroni correction for 16
multiple comparisons).

gold-standard, and by calculating the percentage of active cor-
tical vertices localized into the retinotopically-defined subregion
of each early visual area (V1, V2, V3, V3A) for each participant.
These percentages were calculated for each participant based on
their own fMRI-defined map and were then averaged over stim-
uli and participants. We systematically calculated the localization
accuracy as a function of the cut-off threshold for including active
vertices into the analysis for each reconstruction method and
visual stimulus, across visual areas V1, V2, and V3, individually
for each participant (see Methods, Threshold for active vertices).
The optimal threshold that produced the most accurate source
reconstructions for a given participants and method was used.

Angular retinotopic localization accuracy measured in this way
was significant for all four early visual areas for MNE, for 3 of 4
visual areas with beamforming, and for 2 of 4 visual areas with
MSP (Wilcoxon signrank tests: p < 0.05 Bonferroni corrected
for multiple comparisons; Figure 3, Table 2). On average, MNE
was most successful in localizing the highest percentage of active
vertices to the expected retinotopic subregions (mean areas V1–
V3 combined: 77.9%; V3A: 100%), followed by the beamformer
(mean areas V1–V3 combined: 69.1%; V3A: 97.4%), followed by
MSP (mean V1–V3: 54.9%; V3A: 64.9%). Localization accuracies
of the three reconstruction methods were significantly different
(Kruskal-Wallis tests: areas V1–V3 combined: chi2 = 18.4, p <

0.001; V3A, chi2 = 14.9, p < 0.001).
To further investigate the factors contributing to the differ-

ent localization accuracy values for minimum norm vs. multiple
sparse priors, source reconstruction was carried out in the SPM8
software using the IID (independently and identically distributed
priors) source reconstruction. The IID algorithm corresponds to
a minimum norm assumption, but does not incorporate the same

Table 2 | Localization accuracy for angular mapping.

ROI MNE Beamformer Beamformer MSP

(chance (evoked (time-

(level) response) frequency)

V1 (25%) 66.4 ( ± 20.8) 52.3 ( ± 39.6) 68.6 ( ± 33.6) 48.7 ( ± 29.9)

V2 (25%) 75.5 ( ± 29.1) 73.5 ( ± 36.3) 68.2 ( ± 39.9) 57.2 ( ± 32.5)

V3 (25%) 91.7 ( ± 24.2) 81.6 ( ± 33.5) 61.3 ( ± 44.3) 58.9 ( ± 39.1)

mean (V1,
V2, V3)

77.9 69.1 66.0 54.9

V3A (50%) 100.0 ( ± 0) 97.4 ( ± 8.6) 83.2 ( ± 36.2) 64.9 ( ± 34.8)

Percentage of active vertices that localized to the fMRI-defined subregion of

individuals’ retinotopic maps for each early visual area, for quadrant stimuli.

Results, averaged across stimuli and participants (±SD), are shown for MNE,

beamformer (evoked and time-frequency approaches) and MSP reconstruction

methods.

depth weighting and anatomical constraints as the MNE software.
IID localization accuracy was better than chance for all 4 visual
areas tested and the mean accuracy values were slightly higher for
IID than MSP (IID: mean areas V1–V3 combined: 57.3%; V3A:
84.8%). However, this difference was not significant (Kruskall-
Wallis: areas V1–V3: chi2 = 0.1, p = 0.75, area V3A: chi2 = 3.58;
p = 0.058). This suggests that the depth weighting and anatomi-
cal constraints of the MNE implementation convey some advan-
tage for retinotopic mapping. Increasing the time window to
capture a wider section of the visually evoked response did not
improve the MSP localization accuracy for angular retinotopy
(see Table 1).

BEAMFORMING SOURCE RECONSTRUCTION OF STIMULUS-INDUCED
OSCILLATIONS
Visual stimuli underwent contrast reversal at a rate of 4 Hz, evok-
ing ongoing oscillations in brain responses at a rate of 8 Hz
(Figure 1A). A time-frequency (TF) beamformer was focused on
the 7–9 Hz frequency band of measured brain responses, 200–
1000 ms post-stimulus onset. This excluded the first response
peak (FRP) of the MEG response. Beamformer localization accu-
racy was similar regardless of whether the FRP (described in
Localization of visually evoked responses to angular retinotopic
stimuli) or the 7–9 Hz frequency band signals were used (time-
frequency beamformer: mean areas V1–V3 combined: 66.0%;
V3A: 83.2%; Kruskall-Wallis: areas V1–V3: chi2 = 0.18, p =
0.67, area V3A: chi2 = 0.15; p = 0.70; Table 2). Both approaches
resulted in localization at a level significantly better than chance
for 3 of the 4 early visual areas tested, although the regions that
failed to reach significance were different for the two approaches.
The use of the stimulus frequency tag therefore resulted in source
localizations that were as good as, but not significantly better
than, the application of the beamformer to the FRP.

LOCALIZATION OF VISUALLY EVOKED RESPONSES TO
ECCENTRICITY-VARYING STIMULI
To investigate whether retinotopic localizations could be obtained
for eccentricity-varying stimuli as well as for angular stimuli,
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FIGURE 4 | Gradiometer topography maps (T/m) of the averaged

evoked responses to concentric ring stimuli at 83 ms post-stimulus, for

Subjects 1 (A) and 4 (B). Eccentricities ECC 1, ECC 2, and ECC 3 are
presented at the top, middle, and bottom, respectively. Insets indicate
stimulus locations.

brain responses to contrast-reversing concentric rings were mea-
sured with MEG in seven participants. Three ring eccentricities
were used: ECC 1 (0–0.75◦), ECC 2 (1.0–2.0◦), and ECC 3
(3.0–5.4◦).

Unlike quadrants, rings were bilateral stimuli, extending over
both halves of the visual field and were expected to activate both
cortical hemispheres simultaneously. At the level of MEG sensor
topography, evoked responses to rings did not show a clear spa-
tial pattern according to stimulus eccentricity and some responses
appeared unilaterally biased (Figure 4).

The three MEG source reconstruction approaches were used
to reconstruct sources of the visually evoked responses to ring
stimuli. Localization accuracy of responses to each type of ring
stimulus into the individual participant’s fMRI-defined eccen-
tricity band was evaluated across visual areas V1, V2, and V3
combined, then averaged across participants. For Subject 6, the
minimum norm estimate (MNE) reconstruction of sources to
concentric rings followed the expected posterior-anterior pro-
gression in the early visual areas of the calcarine region as
stimulus eccentricity increased (Figure 5). However, this result
was the exception; retinotopic sources for responses to rings
were not consistently obtained across the other six partici-
pants with any reconstruction approach. Localization accuracy
was not significantly better than chance for ECC 2 stimu-
lus responses for any source reconstruction method (Figure 6,
Table 3). The minimum norm approach (MNE) localized sources
accurately to the expected eccentricity band for ECC 3 stim-
uli and the beamformer for ECC 1 stimuli (Figure 6). The
accuracies of the three reconstruction methods were signifi-
cantly different from each other (Kruskal-Wallis: chi2 = 10.7,
p < 0.01).

FIGURE 5 | Spatial patterns of MNE source reconstructions of

responses to ring stimuli for Subject 6. These reconstructions followed
the expected retinotopic posterior-anterior progression with increasing
stimulus eccentricity. F-statistic results are presented for left and right
inflated cortical surfaces (see Figure 1). Insets show the corresponding
stimulus locations. Sup., superior; post., posterior; ant., anterior; inf.,
inferior.

EFFECT OF CONFINING ECCENTRICITY-VARYING STIMULI TO A VISUAL
FIELD QUADRANT
To investigate the discrepancy in the success of retinotopic local-
ization of visual responses to quadrants vs. concentric rings, five
of the seven participants who were scanned with eccentricity-
varying stimuli were re-scanned with an amended stimulus set
(quarter-rings), which consisted of the checkerboard ring stimuli
confined to either the upper or lower quadrant of the right visual
hemifield. Quarter-rings were located within the same eccen-
tricity bands (and hence retinotopic brain representations) as
the corresponding ring stimuli. Therefore, there were 6 quarter-
ring stimuli: three presented in the upper right visual field
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FIGURE 6 | Source localization accuracy of evoked responses to ring

stimuli, reconstructed with MNE (black), beamformer (BF, gray), and

MSP (white). Bars show percentage of active vertices localized to the
fMRI-defined eccentricity band across visual areas V1, V2, and V3 for each
stimulus eccentricity (ECC 1, ECC 2, ECC 3). Error bars show s.e.m. Black
line indicates chance accuracy level (33%). ∗ indicates pm < 0.0056 for
Wilcoxon signrank test of localization accuracy compared to chance
(pi < 0.05 with Bonferroni correction for 9 multiple comparisons).

Table 3 | Localization accuracy for eccentricity mapping.

Ring eccentricity MNE Beamformer MSP

(chance level) (evoked response)

ECC 1 (33%) 40.5 ( ± 31.6) 74.5 ( ± 31.7) 38.4 ( ± 37.7)

ECC 2 (33%) 40.1 ( ± 41.1) 54.2 ( ± 34.6) 24.6 ( ± 26.5)

ECC 3 (33%) 76.9 ( ± 25.2) 34.3 ( ± 24.4) 33.0 ( ± 24.4)

Mean 52.5 54.3 32.0

Percentage of active vertices that localized into the fMRI-defined subregion of

individuals’ retinotopic maps across early visual areas V1, V2, and V3, for ring

stimuli. Results, averaged across stimuli and participants (±SD), are shown for

MNE, beamformer, and MSP reconstruction methods.

quadrant (U-ECC 1, U-ECC 2, U-ECC 3) and three presented
in the lower right visual field quadrant (L-ECC 1, L-ECC 2, L-
ECC 3). MEG sensor topographies show that activations tend to
lie over the left cortical hemisphere, as expected from angular
retinotopy, but again no clear topography by eccentricity is dis-
cernible (Figure 7). We evaluated localization accuracy of sources
of brain responses to quarter-rings reconstructed by minimum
norm estimates and the beamformer for evoked responses. MSP
reconstructions did not consistently localize activity into the early
visual areas for any participant (data not shown), so we focus on
MNE and the beamformer in the present analysis.

Angular retinotopy with quarter-rings
We first confirmed that brain responses to quarter-rings were
adequately mapped according to angular retinotopy, by calculat-
ing the percentage of active vertices localized into the expected
subregion of early visual areas V1, V2, and V3, combined
together. For example, brain sources of responses to upper field
quarter-ring stimuli are expected to localize to the left ventral

FIGURE 7 | Gradiometer topography maps (T/m) of the averaged

evoked response to quarter-ring stimuli at 83 ms post-stimulus

(Subject 2). Left panels: show the responses to upper field quarter-ring
stimuli. Quarter-ring eccentricities U-ECC 1, U-ECC 2, and U-ECC 3 are
presented at the top, middle, and bottom, respectively. Right panels: show
the responses to lower field quarter-ring stimuli. Quarter-ring eccentricities
L-ECC1, L-ECC2, and L-ECC3 are presented at the top, middle, and bottom,
respectively. Insets indicate stimulus locations.

subregion, whilst lower field quarter-ring stimuli to the left
dorsal subregion. Results are presented separately for upper or
lower visual field locations, averaged over stimuli and partici-
pants (Figure 8A). Reconstructing sources with the minimum
norm approach (MNE) resulted in both upper and lower field
stimuli sources localized into the fMRI-defined quadrant subre-
gion at levels better than chance (Wilcoxon signrank: p < 0.001).
Localization accuracy was comparable to that of quadrant stimuli
reported with the MNE method above (mean over all stim-
uli: 73.3%, Table 4). For the beamformer, responses to upper
field stimuli were well localized according to angular retinotopy
(p < 0.001; mean: 75.4%) whilst responses to lower field stim-
uli were not localized better than chance level to the expected
dorsal subregions (mean: 42.9%, p = 0.090, n = 15; Table 4).
Beamformer reconstructions were however mapped according to
angular retinotopy at a level better than chance when considered
over all stimuli (mean over all stimuli: 59.0%, p < 0.001, n = 30).

Eccentricity localization with quarter-rings
We then evaluated the localization accuracy of responses to
quarter-ring stimuli into the expected eccentricity band (within
the expected angular retinotopic cortical subregion). Although
mean localization accuracy values were numerically similar for
both reconstruction methods, accuracy was significantly better
than chance for the MNE method (mean across all stimuli: 51.4%;
Wilcoxon signrank test: p < 0.01, n = 14) but did not reach sig-
nificance for the beamformer (mean across all stimuli: 49.0%;
Wilcoxon signrank test: p = 0.065, n = 10). On average, local-
ization accuracy values were higher for lower visual field stimuli
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FIGURE 8 | (A) Source localization accuracy, according to angular
retinotopy, of evoked responses to quarter-ring stimuli with MNE (black)
and beamformer (BF, gray) methods. Bars show percentage of active
vertices localized to the fMRI-defined retinotopic subregion across early
visual areas V1, V2, and V3. Error bars show s.e.m. Black dashed line
indicates chance accuracy level for each early visual area ROI. ∗ indicates
pm < 0.0125 for Wilcoxon signrank test of localization accuracy compared

to chance (pi < 0.05 with Bonferroni correction for 4 multiple
comparisons). (B) Source localization accuracy, according to eccentricity,
of evoked responses to quarter-ring stimuli, with MNE (black) and
beamformer (BF, gray). Bars show the percentage of active vertices
localized to the corresponding fMRI-defined eccentricity band, considered
within the corresponding angular subregion of early visual areas V1, V2,
and V3. Error bars and statistical comparisons as for (A).

Table 4 | Localization accuracy for quarter-ring stimuli.

MNE Beamformer

ANGULAR LOCALIZATION (CHANCE LEVEL 25%)

Upper field stimuli 74.3 ( ± 30.1) 75.4 ( ±29.3)

Lower field stimuli 72.4 ( ± 33.4) 42.9 ( ± 37.9)

Combined mean 73.3 59.0

ECCENTRICITY LOCALIZATION (CHANCE LEVEL 33%)

Upper field stimuli 45.7 ( ± 34.4) 40.4 ( ± 41.0)

Lower field stimuli 56.8 ( ± 33.5) 58.2 ( ± 40.5)

Combined mean 51.4 49.0

Percentage of active vertices in early visual cortex that localized into the

fMRI-defined subregion of individuals’ retinotopic maps, for quarter-ring stim-

uli. Results are reported for upper or lower visual field and averaged across

stimuli and participants (±SD) according to either angular (expected quadrant)

or eccentricity retinotopy (expected eccentricity band).

(mean across methods: 57.5%) than for upper visual field stimuli
(mean across methods: 43.1%), but this difference did not reach
significance (Kruskal-Wallis: chi2 = 3.42, p = 0.064; Table 4).
Only MNE reconstructions of brain responses to lower field stim-
uli were significantly better than chance when considered on their
own (Figure 8B). Average accuracy values were close to those
obtained for ring stimuli but not as high as those for angu-
lar retinotopy (quadrant stimuli) for the same reconstruction
approaches (Table 4).

DISCUSSION
SOURCE LOCALIZATION ACCURACY OF VISUAL RESPONSES TO
STIMULI VARYING BY ANGULAR LOCATION
Minimum norm estimate (MNE), beamformer, and multiple
sparse priors (MSP) source reconstruction methods were used

to reconstruct sources of visual brain responses to angular
retinotopic stimuli (quadrants). Source localization accuracy was
defined by how accurately the different MEG reconstruction
methods could match fMRI retinotopic maps for each indi-
vidual. On average, localization accuracy was higher for MNE
source reconstructions than for the beamformer, which in turn
was higher than MSP. The MNE approach assumes that source
amplitudes are minimal whilst brain sources are many and inde-
pendently distributed (Dale et al., 2000; Gramfort et al., 2014).
Our results show that this approach produces—in conjunc-
tion with specific depth-weighting and anatomical constraints—
reliable source reconstructions of retinotopic activity in early
visual cortex.

The beamformer, on the other hand, uses a spatial filtering
algorithm to estimate the time course of activity at each brain
source independently (van Veen et al., 1997; Hillebrand and
Barnes, 2011). The difference in localization accuracy between
MNE and beamformer may be due to the different reconstruc-
tion algorithm. However, the MNE and beamformer methods
implemented in the analysis packages used here additionally dif-
fer in their utilization of anatomical information; MNE uses the
individual’s cortical surface as the source space for reconstruc-
tion and hence imposes an additional constraint on the solution
of the inverse problem, whilst the beamformer evaluates signals
independently throughout the cranial volume (see Table 1). Lack
of a cortical anatomical prior may have contributed to the lower
spatial resolution of the beamformer compared to MNE.

The multiple sparse priors (MSP) approach showed a trend
of localizing sources to the expected angular subregions of early
visual areas, but this reached significance only in areas V2 and
V3. On average, localization accuracy was lower for MSP than
for MNE and the beamformer. This was surprising, as a previ-
ous study had shown adequate source localizations of responses
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to visual face stimuli with the MSP assumptions, with results
superior to those of SPM8’s minimum norm implementation
(IID) when goodness of reconstruction was evaluated by Bayesian
model evidence (Henson et al., 2009). The MSP assumptions
may have worked well when applied to brain responses to faces
because the expected responding regions (fusiform face areas)
are large, bilateral clusters, matching the MSP prior assumptions
of sparseness and bilateral components, based upon functional
anatomy, which are selected by the algorithm according to the
correlations present in the data (Friston et al., 2008). However,
this pattern may not adequately reconstruct brain activity pat-
terns for the angular retinotopy stimuli used in this study, which
are biased unilaterally and spread irregularly over occipital areas
in different individuals. Our finding is in line with a recent result
of Cottereau et al. (2012) in their evaluation of the use of fMRI
maps as spatial priors for source reconstruction of simulated MEG
data arising from early visual sources. Cottereau et al. evaluated
source reconstructions by calculating both the focalization error
(the ratio between the estimated and theoretical energies of the
current at the simulated sources) and the relative energy (the ratio
between the normalized energies contained in the estimation of
the active sources and the global distribution). They report that
although the MSP approach had slightly better relative energy
estimates, it also had higher focalization errors when compared
to the minimum norm (MNE equivalent).

The source space used for MSP reconstruction in the SPM8
software was the inverse-normalized template cortical mesh
(Mattout et al., 2007; Henson et al., 2009; Litvak et al., 2011),
rather than the individual’s cortical template, which was used for
MNE (see Table 1). A key advantage of this approach is it that it
facilitates group level analysis and also facilitates the inclusion of
fMRI priors for MEG analysis, which are typically defined in the
template space. Previous studies have demonstrated that source
reconstruction of evoked responses is not impaired by the use
of the inverse-normalized template rather than the individual’s
cortical mesh (Mattout et al., 2007; Henson et al., 2009). This
suggests that it is the assumptions of multiple sparse priors that
underlie the difference in source localization accuracy between
the MSP and the MNE methods. An alternative approach within
the SPM8 software is IID (independent and identically distributed
sources), which corresponds to minimum norm assumptions.
Implementation of IID on the same MEG data in SPM8 software
gives localization accuracy better than chance for all four early
visual areas, compared to just two early visual areas for MSP.

However, mean localization accuracy values were not signifi-
cantly different between IID and MSP and were generally lower
for IID than for the MNE approach. This may be due to further
differences between IID and MNE implementations, such as the
use of depth-weighting in MNE to counteract the superficial bias
of minimum norm assumptions (Lin et al., 2006). It could also be
due to the differences in use of anatomical data for source space
specification. Variability in individuals’ cortical surface geometry
around the tightly folded early visual areas may mean that the
use of the individual’s mesh rather than the inverse-normalized
cortical template mesh makes a significant contribution to accu-
rate localization of responses in experiments investigating the
visual system. This could also apply to other tightly folded brain

regions. Future updates to the IID and MSP reconstruction algo-
rithms could include the option to utilize the individual’s cortical
surface, rather than the inverse-normalized template, for source
space modeling.

Cottereau et al. (2011) reconstructed retinotopic sources accu-
rately into early visual areas V1, V2, and V3, by using a stim-
ulus contrast reversal frequency tag. We tested whether use of
an ongoing frequency tag may be an improvement on using
the first response peak (FRP). With the beamformer, we found
similar retinotopic localization accuracy when analyzing source
power at the second harmonic of the stimulus contrast rever-
sal frequency as compared to the reconstruction of FRP. In both
cases, the accuracy localizations were significantly better than
chance for 3 of the 4 early visual areas. Cottereau et al. (2011)
used a faster stimulus contrast-reversal rate (7.5 Hz; second har-
monic: 15 Hz) and a wider time window for source reconstruction
(5600 ms), such that they focused on localizing a “steady state”
visual response. In the current study, stimulus contrast-reversal
rate was 4 Hz (second harmonic: 8 Hz) and the time window was
800 ms long, perhaps resulting in a noisier power estimate that
might have limited the localization accuracy. Therefore, a steady-
state response longer than the one utilized in the present study
may be necessary for the frequency-tag information to improve
source reconstruction.

SOURCE LOCALIZATION ACCURACY OF VISUAL RESPONSES TO
STIMULI VARYING BY ECCENTRICITY
Concentric rings are commonly used to map eccentricity in early
visual areas with fMRI (DeYoe et al., 1994; Engel et al., 1994;
Wandell, 1999). None of the reconstruction methods consistently
localized responses to the appropriate eccentricity bands in early
visual areas at a level better than chance. This was unexpected,
especially for MNE and beamformer approaches, which had reli-
ably localized visual responses to angular retinotopy. Bilateral,
eccentricity-varying visual stimuli may present a unique set of
challenges to MEG source reconstruction. Concentric rings are
full-field visual stimuli and so are expected to synchronously acti-
vate both upper and lower calcarine banks in both the left and
the right cortical hemispheres, which may result in some interfer-
ence or cancelation of equal and opposite magnetic fields arising
from opposing cortical surfaces. Moreover, spatially extended and
correlated source activity cannot be spatially filtered by the beam-
former as easily (Hansen et al., 2010). Assumptions of multiple
sparse priors (MSP) might have been expected to be more appro-
priate for localizing ring stimuli as they incorporate priors of
bilaterality; however, this was not found to be the case.

To evaluate whether the bilateral extent of the ring stimuli
limited the retinotopic localization by eccentricity, MEG signals
were recorded with “quarter-rings” stimuli, which were con-
fined to either the upper or lower quadrant of the right visual
field. With MNE and beamformer approaches, the corresponding
brain sources were generally well localized according to angular
retinotopy. But with regard to localization to the expected eccen-
tricity band, average accuracy values remained low, close to those
obtained for whole rings. The MNE reconstruction method local-
ized sources at a level better than chance when considered overall
quarter-ring stimuli and for lower field stimuli alone.
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There are a number of reasons that may explain the limi-
tations of MEG source localizations to eccentricity stimuli of
varying sizes. The representation of eccentricity in early visual
areas varies along the lateral-medial and posterior-anterior axes of
the brain, such that foveal stimuli are represented at the occipital
pole and the representation of more peripheral locations pro-
gresses medially and anteriorly along the banks of the calcarine
sulcus (Wandell et al., 2005). As a result, the greatest changes
in MEG signal amplitude by stimulus eccentricity may occur in
the same sensors due to nearer vs. deeper sources. By contrast,
quadrant stimuli are represented in different hemispheres and
may be expected to activate quite different sets of sensors. Indeed,
when inspecting sensor topography, no consistent pattern could
be seen by stimulus eccentricity, although this could be seen for
angular stimuli. In MEG source reconstruction, there is inherent
ambiguity in discerning low-amplitude superficial activity from
higher-amplitude deep activity, which might explain the poor
eccentricity results found here.

Sharon et al. (2007) used the MNE reconstruction approach
to localize MEG responses to visual stimuli according to both
angular and eccentric retinotopic position in occipital cortex.
Their visual stimuli were small Gabor patches constructed from
Gaussians of 1.2 or 1.7◦ full-width at half-maximum, thereby
similar in extent to our quarter-ring stimuli U-ECC 1/L-ECC 1
(radius 0.75◦) and U-ECC 2/L-ECC 2 (radius 1.0◦). Sharon et al.
defined localization error as the mean distance in the 3D volume
between the centers-of-mass of the MEG and fMRI activity clus-
ters. For the reconstruction of MEG signals alone, the localization
error over six participants was found to be approximately 10 mm.
While in their Figures 2, 3, the localization of MEG responses
alone are mostly associated with the correct bank of the calcarine,
the example MEG sources in Figure 2 do not unambiguously
show the expected progression anteriorly or medially according
to eccentricity. Only analysis of the centers of gravity of the source
localizations show a slight trend to vary with stimulus eccentricity
in the expected retinotopic pattern. As the radii of our quarter-
ring stimuli were of similar magnitude to those of Sharon et al.
(2007), it seems unlikely that size alone can account for any dis-
crepancy in localization between the two studies. On the other
hand, Sharon et al. (2007) presented each stimulus to viewers in
a total of 500 trials, rather than the 95–125 trials in the present
study. It may be therefore be that a much greater signal to noise
ratio obtained by averaging over a much larger number of trials
is necessary to successfully localize MEG signals by eccentricity,
compared with angular retinotopy.

LIMITATIONS
Localization accuracy of the different MEG analysis methods was
evaluated by calculating what percentage of the active vertices
in early visual areas V1, V2, V3, and V3A were located in the
expected subregion according to fMRI retinotopy in the same
individuals (see also Cottereau et al., 2011; Supplementary Data).
We ignored the incidence of active vertices in areas such as LO, V4,
V3B, hMT+, which were outside the areas studied here. An alter-
native way to test localization accuracy would be to calculate the
percentage of cortical vertices, in a retinotopically expected subre-
gion, that are “active” in response to the corresponding stimulus,

relative to the total number of vertices in that subregion. However,
this value would be difficult to interpret even with perfect MEG
source reconstruction, because MEG sensors are blind to sources
located at certain parts of the cortex, such as the crests of gyri, due
to the geometry of magnetic fields of the brain relative to the ori-
entation of the sensor array (Hansen et al., 2010). Nevertheless,
future attempts at an anatomically corrected analysis of this type
would be interesting. Alternatively, it would be possible to com-
pare MEG and fMRI source localizations in the 3D volume, for
example by computing the distance between the center of mass of
the fMRI and the active vertices in the MEG source result (e.g.,
Sharon et al., 2007). We decided against this method because, for
the large visual stimuli used here, this approach would not uti-
lize all of the information available from the fMRI maps and a
few peak responding vertices would not be indicative of the entire
reconstruction result. Additionally, this measure of localization
can be misleading for anything other than point stimuli.

An important assumption of this study was that fMRI retino-
topy correctly localizes the true sources of brain responses in
individual participants. Although there is a wealth of histological
and lesion evidence to suggest that retinotopic mapping mea-
sured by fMRI corresponds to the true patterns (Holmes, 1918,
1945; Horton and Hoyt, 1991; Bridge et al., 2005; Bridge and
Clare, 2006), there may be unknown differences between the exact
locations of the sources of brain activity measured by MEG and
fMRI. These methods detect different underlying processes (elec-
trophysiological vs. metabolic) and the time-scale on which these
processes change is different (milliseconds vs. seconds). MEG
signals most likely arise from synchronous synaptic current in
cortical pyramidal cells (Hämäläinen et al., 1993). There is ongo-
ing research into the electrophysiological correlates of the fMRI
BOLD signal but it seems to be linked to the local field poten-
tial (LFP), which is also a measure of total of synaptic activity in
cortical cells (Logothetis et al., 2001). However, early visual cor-
tex, especially striate cortex, is well perfused and blood vessels
are likely to be spatially close to their neuronal sources (Engel
et al., 1997). In all, these arguments indicate that an fMRI-
MEG comparison is appropriate for evaluating MEG localization
accuracy.

Some localization error must necessarily arise from inaccura-
cies in the source space specification from the anatomical MRI
and its co-registration to the MEG coordinate space (Hillebrand
and Barnes, 2011; Perry et al., 2011). Fully evaluating the effects of
this was out of the scope of the present study. We argue that these
effects are not expected to underlie the main results of the cross-
method comparisons reported here. For example, the identical
MEG-fMRI co-registration method and forward model specifi-
cation was used for the beamformer and MSP approaches within
the SPM8 software package, and a near-identical method was also
used for MNE. The same anatomical surfaces and digitizer points
were used for all reconstructions.

CONCLUSIONS
MEG source reconstructions with prior assumptions of many
independent, distributed sources of small amplitude (in con-
nection with individual anatomical mesh data), or with prior
assumptions of a spatial filtering (beamformer) approach, seem
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well matched to localize the irregularly patterned, unilateral
responses of retinotopic subregions of the early visual areas. On
the other hand, the sparse priors of the MSP method may be
better matched for large, cluster-like source distributions that
are bilateral, such as responses to face stimuli in the fusiform
gyrus (Henson et al., 2009). Sources in early visual areas are more
accurately localized according to angular retinotopy rather than
eccentricity. Stimuli should be confined to a visual field quad-
rant (i.e., not bilateral). Further work is necessary to tease out
the quantitative contributions of different prior assumptions and
source space constructions. However, researchers aiming to local-
ize brain activity arising from the early visual regions should
take spatial extent into account when designing the stimulus and
should carefully match the analysis method and software package
used to the expected distribution of the signal.
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Sleep spindles are a hallmark of NREM sleep. They result from a widespread
thalamo-cortical loop and involve synchronous cortical networks that are still poorly
understood. We investigated whether brain activity during spindles can be characterized
by specific patterns of functional connectivity among cortical generators. For that purpose,
we developed a wavelet-based approach aimed at imaging the synchronous oscillatory
cortical networks from simultaneous MEG-EEG recordings. First, we detected spindles
on the EEG and extracted the corresponding frequency-locked MEG activity under the
form of an analytic ridge signal in the time-frequency plane (Zerouali et al., 2013).
Secondly, we performed source reconstruction of the ridge signal within the Maximum
Entropy on the Mean framework (Amblard et al., 2004), yielding a robust estimate of
the cortical sources producing observed oscillations. Lastly, we quantified functional
connectivity among cortical sources using phase-locking values. The main innovations of
this methodology are (1) to reveal the dynamic behavior of functional networks resolved
in the time-frequency plane and (2) to characterize functional connectivity among MEG
sources through phase interactions. We showed, for the first time, that the switch from
fast to slow oscillatory mode during sleep spindles is required for the emergence of
specific patterns of connectivity. Moreover, we show that earlier synchrony during spindles
was associated with mainly intra-hemispheric connectivity whereas later synchrony was
associated with global long-range connectivity. We propose that our methodology can be
a valuable tool for studying the connectivity underlying neural processes involving sleep
spindles, such as memory, plasticity or aging.
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INTRODUCTION
It is believed that the characteristic patterns of spontaneous bio-
electrical activity that occur during sleep, originating either from
focal cortical regions or large-scale networks, reflect essential neu-
ral processes that modify the long-term functionality of the awake
brain (e.g., brain plasticity, memory enhancement, see Walker
and Stickgold, 2006). Among them, sleep spindles constitute a
hallmark of non-rapid-eye movement (NREM) sleep. A spindle
is a transient high-amplitude oscillation seen in the electroen-
cephalogram (EEG), typically lasting approximately 500–1500 ms
within the sigma band (10–16 Hz). Sleep spindles reflect the
sequential activation of the reticular and dorsal thalamic nuclei,
followed by neocortical targets (Steriade et al., 1985, 1987). Early
animal research pointed at hyperpolarizing potentials in thalamic
reticular (RE) nucleus as the neurophysiological trigger of spindle
sequences (Steriade et al., 1987). Subsequently, it was demon-
strated that cortico-thalamic feedback is also crucial to initiate
and terminate spindle oscillations (Destexhe et al., 1998; Golshani

et al., 2001; Timofeev et al., 2001; Timofeev and Bazhenov, 2005;
Bonjean et al., 2011).

Cortical synchrony is a key factor involved in sustaining spin-
dle oscillations (Timofeev and Bazhenov, 2005). Neural modeling
first suggested that cortical feedback on RE cells could result in
a large-scale synchronous network of spindle oscillations over
the cortex (Destexhe et al., 1998). Thalamo-cortical synchronous
oscillations (12–14 Hz) were subsequently measured in situ in
cats (Timofeev and Bazhenov, 2005). It was observed that ter-
mination of a spindle is characterized by desynchronization of
responses between cortical and thalamocortical neurons (Steriade
et al., 1998; Timofeev et al., 2001).

In EEG recordings, the mean frequency of spindles varies
across the scalp. Spindles are usually slower at more ante-
rior sites (“slower” spindles: 11–13 Hz) and typically faster at
more posterior sites (“faster” spindles: 14–16 Hz; Jankel and
Niedermeyer, 1985; Jobert et al., 1992). Interestingly, Andrillon
et al. (2011) showed that faster spindles observed at electrode Cz

www.frontiersin.org October 2014 | Volume 8 | Article 310 | 25

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/journal/10.3389/fnins.2014.00310/abstract
http://community.frontiersin.org/people/u/132875
http://community.frontiersin.org/people/u/101692
http://community.frontiersin.org/people/u/187349
http://community.frontiersin.org/people/u/187286
http://community.frontiersin.org/people/u/172072
http://community.frontiersin.org/people/u/18978
http://community.frontiersin.org/people/u/9487
mailto:youness.zerouali-boukhal.1@ens.etsmtl.ca
mailto:youness.zerouali-boukhal.1@ens.etsmtl.ca
http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Zerouali et al. Dynamics of cortical networks of sleep spindles

emerge usually around 500 ms before the onset of slower spin-
dles at frontal sites. The scalp topography of spindle frequency
may reflect distinct neurophysiological processes (Timofeev
and Chauvette, 2013). According to this suggestion, higher-
frequency and earlier spindles would reflect initial thalamocotical
interactions, predominant in central regions; whereas lower-
frequency and later spindles would reflect secondary cortico-
cortical interactions, spreading over frontal regions.

Recent studies also reported that intra-spindle frequency is not
stable in time. For most spindles, the dynamics is characterized
by a progressive frequency slowing, even at posterior EEG elec-
trode sites (Schonwald et al., 2011). When analyzing separately
spindles with high and low frequency, Urakami (2008) showed
the shift in frequency over time is well explained with two dipo-
lar sources located deep in the postcentral and in the precentral
regions, bilaterally. However, the synchronous neural networks
involved in sleep spindles, and the dynamics of their deployment
over time, have never been characterized.

This article presents a new methodology to characterize the
neural generators of EEG spindles from the perspective of cortical
synchrony as measured on MEG. Thus, we considered frequency-
locking among MEG sensors within a time window around
spindles marked on the simultaneous EEG. MEG frequency-
locking consists in transient synchronous events (SEs) during
which activity recorded by a subset of sensors oscillate at the
same frequency. There are two main reasons to consider MEG
frequency-locking to understand cortical activity during EEG
spindles. First, MEG recordings are spatially less corrupted with
spurious correlations than EEG (absence of reference electrode,
no spatial blurring from conduction on the scalp). Second, the
source localization of oscillatory patterns is more tractable in
MEG, where an adequate model of data generation does not
involve current propagation through inhomogeneous tissues.

In the present work, we localized the cortical generators of
the frequency-locked MEG events during EEG spindles. In addi-
tion we characterized for these events the cortical distribution of
power and the cortico-cortical functional connectivity networks.
To do such analyses in a unified framework, dedicated to transient
oscillatory patterns like spindles, we developed a novel approach
based on analytical (i.e., complex) time-frequency representa-
tions of the data from which the information related to synchrony
was extracted. We identified the neural generators related to this
information extracted from the MEG recordings for each spindle.
The complex signal thus inferred on the sources has both infor-
mation about power (amplitude) and phase, from which coupling
between sources could be estimated. In addition, the frequency at
which frequency-locking occurred allowed us to distinguish fast
and slow rhythmic components within spindles.

Using this approach, our main results are: (1) Eighty percent
of EEG spindles showed at least one significant MEG frequency-
locked event; (2) within spindles, the central frequency of early
frequency-locked activity was mainly distributed around 14 Hz
(fast) whereas it is distributed around 12 Hz (slow) for late
frequency-locked activity; (3) early frequency-locking, no mat-
ter its frequency, emerges mainly from parietal regions whereas
late frequency-locking emerges from a much broader set of
regions, localized mainly in frontal, parietal, and occipital areas;

(4) overall long-range synchronization is lower for early than
for late frequency-locking wheareas short-range synchroniza-
tion is higher for early than for late frequency-locking; (5) the
cortical network for late frequency-locking involved larger num-
bers of connections (particularly interhemispheric) than for early
frequency-locking.

MATERIALS AND METHODS
PROTOCOL, MEG RECORDINGS, AND ANATOMICAL MRI
Brain activity of 8 healthy subjects was recorded during sleep,
using simultaneous MEG and EEG for a maximum period of
90 min following a period of 26 h of sleep deprivation (to insure
a good probability of sleeping in the MEG laboratory). From
this group, 5 young subjects were kept in the present study (see
Table 1). Recordings were conducted at the Centre de Recherche
en Neuropsychologie et en Cognition (CERNEC) of Université
de Montréal using a 275 channel CTF-VMS whole-head magne-
tometer. Subjects arrived 1 h prior to their habitual bedtime and
stayed awake until 2 h after their habitual wake time. During this
sleep deprivation (under a research assistant supervision) activity
was limited to reading or surfing on the Internet. The proto-
col was approved by the ETS ethics board and by the Comité
d’Ethique de la Recherche of IUGM. Written informed consent
was obtained from all subjects.

The MEG recordings were split into consecutive runs of
18 min. Sleep EEG was recorded simultaneously using 56 scalp
electrodes referenced to the left mastoid with a CTF EEG sys-
tem integrated with the MEG system. Electrodes were positioned
using the 10–10 system. In addition, the horizontal (HEOG) and
the vertical (VEOG) components of the electro-oculogram were
recorded using two pairs of electrodes, one pair at the outer
canthi and one pair above and below the left eye, respectively.
MEG and EEG were digitized at 1200 Hz with an antialiasing
low-pass filter at 300 Hz (30 dB/Octave) and a high pass filter
of about 0.02 Hz. MEG signals were de-noised using the CTF
[CTF MEG, Coquitlam (BC), Canada] third-order synthetic gra-
diometer algorithm. The EEG was manually scored for sleep
stages according to standard criteria (American Academy of Sleep
Medicine manual, Iber, 2007). EEG spindle detection was per-
formed visually on Cz by an experienced sleep technician. A sleep

Table 1 | Subjects’ information.

Subject Age Duration Nbr. of EEG Nbr. of Comments

(y) (mn) spindles (Cz) MEG SEs

1 25 2 × 18 28 42

2 23 4 × 18 228 N/A Strong dental artifact
(excluded)

3 26 3 × 18 109 195

4 24 5 × 18 13 N/A Too few spindles
(excluded)

5 54 N/A Older subject
(excluded)

6 21 4 × 18 98 190

7 24 3 × 18 37 210

8 22 3 × 18 85 153
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spindle was detected when a burst of oscillatory brain activity
(12–14 Hz) was visible on NREM EEG for at least 0.5 using band-
passed filter (1–30 Hz) (Rechtschaffen and Kales, 1968). A high
resolution anatomical T1-weighted MRI scan was acquired at the
Unité de Neuroimagerie fonctionelle de l’Institut Universitaire
de Gériatrie de Montréal using a T1-weighted 3D MPRAGE
Fast sequence (slab: 160, voxel size: 1.0 ×1.0 × 1.2 mm, TR/TE:
2300/2.94 ms, TI: 900, FOV: 256) acquired in a 3T Siemens
MAGNETOM Trio scanner (Siemens Medical Solutions, Malvern
(PA), USA). A mesh representation of the white/gray matter inter-
face with 8000 vertices (sources) was extracted from the MRI scan
for each subject using Brainvisa (Cointepas et al., 2001). The spa-
tial resolution of the mesh was 5.5 ± 2.8 mm and the orientation
of the sources was constrained to be normal to the surface. The
forward model G (see Section Imaging Cortical Synchrony) that
was used for the source localization was obtained from a spherical
head model computed using Brainstorm (Tadel et al., 2011).

WAVELET ANALYSIS
We consider the continuous wavelet representation of the
multivariate data M (t),

w(m) (a, b) =
∫ +∞

−∞
M (t) �ab (t) dt (1)

with the wavelet defined as usual as

�ab (t) = 1√
a
�

(
t − b

a

)
(2)

where �(t) is a complex valued analytical wavelet of the Morse
type (see Appendix II). �ab (t) is a short time oscillatory func-
tion scaled by factor a and translated in time by b samples.
Each wavelet coefficient w(m) (a, b), where m refers to the data
space, thus describes the oscillatory behavior of the signals M(t)
at scale a and around time sample b. The scaling factor a
was spaced along 256 scales, thus yielding a spectral resolution
of ≈0.4 Hz in the sigma band. It is noteworthy that this signal
representation is highly redundant and neighboring wavelet coef-
ficients are correlated. The next section describes how we can
retrieve frequency-locking information from such a redundant
representation.

FREQUENCY-LOCKING IN THE SENSORS SPACE
From a signal representation in the time-frequency (t-f) plane,
one can extract the instantaneous frequency by computing
wavelet ridges (Mallat, 2008). The procedure for a univariate
signal is illustrated in Figure 1. At each time sample b, we
locate on the wavelet scalogram (Figure 1A) the local maxima
in amplitude (i.e., the energy). The frequency of such maxima
defines the instantaneous frequency of one oscillator present
in the signal. Contiguous maxima along time are then chained
into “ridge lines” a = r (b). The location of all ridge lines in

FIGURE 1 | Example of a wavelet ridge on a simulated spindle.

(A) Time-frequency plot showing the power estimated from the
output of the wavelet transform of the spindle in (C). (B)

Ridges extracted from the time-frequency plot in (A). (C)

Simulated spindle oscillation. (D) Reconstructed real (blue) and
imaginary (red) signal based on the ridge information in (B). The
real part of extracted ridge signal closely approximates the
original signal shown in (C).
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the t-f plane is called a “ridge map” (Figure 1B) which is a
binary representation of the oscillatory modes present in the
signal (Delprat et al., 1994). As illustrated in Figure 1 with
a simulated spindle, the complex wavelet signal (Figure 1D)
along the ridge line (Figure 1B) mostly reproduces (real part
shown on Supplementary Figure 1), the original oscillatory
signal (Figure 1C).

We extend this approach to multivariate (i.e., multichannel)
MEG signals as illustrated in Figure 2. We first compute the ridge
map of each sensor (Figure 2A), then we sum them to obtain a
“multivariate ridge map” (Figure 2B), the values of which reflect
the number of sensors sharing common local maxima, i.e., instan-
taneous frequencies. On the multivariate ridge map, we track
common oscillatory modes as multivariate ridge curves a =
r(m) (t). Each curve may vary in frequency over time and reflects
an episode of frequency locking among sensors. From now on, the
term ‘ridge’ refers to a multivariate ridge curve a = r(m) (t).

STATISTICALLY SIGNIFICANT FREQUENCY-LOCKING
We now define the strength of a ridge as the time average of the
number of frequency-locked sensors at each time sample of the
ridge. To define the minimal strength for a ridge to be considered
as a spindle specific synchronous event, we define a thresholding
procedure based on the rationale that synchrony must be stronger
during a spindle than during baseline activity. We thus detect
ridges (r(b) (t)) during a baseline window preceding a spindle

(−1.5 to −0.5 s with respect to the marker) and compute their
strength. Using a FDR approach, we build a cumulative distribu-
tion of ridge strength during baseline and set the cutoff such that
p ≤ 0.05. Ridge strength cutoff is determined for each spindle,
and only ridges above the cutoff are considered as “synchronous
events” (SE).

NON-LINEAR FILTERING OF MEG SIGNALS
Spindles typically exhibit a succession of synchronous events SEs,
the first and last of which are termed respectively early and
late SE (see Figure 2C). For each of these events—indexed by

r, we construct an analytic ridge signal w(m)
r (t)- m stands for

multivariate—that consists in the complex wavelet coefficients of
all Ns sensors at frequencies along the line a = r(m)(t):

w(m)
r (t) = w(m)(t, r(m) (t) ) (3)

This ridge signal over the whole set of sensors is complex-valued
and only exists during periods of frequency-locking between a

subset of sensors. w(m)
r (t) is an oscillatory component of M(t)

of the form w(m)
r (t) = A (t) ei φ (t), where φ(t) is the instanta-

neous phase (Zerouali et al., 2013). This approach is analogous
to the Hilbert-Huang Transform (HHT), which computes the
instantaneous phase of empirical modes of the data. However,
although it can successfully separate brain rhythms from EEG
recordings (Bajaj and Pachori, 2012), the HHT is not readily

FIGURE 2 | Real spindle: (A) average wavelet power over all MEG

sensors. The EEG onset is at time equal to 0. For the same spindle, (B) is the
multivariate ridge map obtained by summing the individual ridge maps over
all MEG sensors. The colors indicate the number of sensors frequency-locked
at a particular time-frequency point. (C) Displays multivariate ridge mask
produced after data-driven thresholding of the multivariate ridge plane (B).

The mean power of this spindle is 12 Hz but the multivariate ridges (B) show
synchrony above this value and even before the EEG onset (t = 0). In this
particular case, we observe 3 multivariate ridge lines during the spindle (the
discontinuity along the frequency axis reflects the limit in spectral resolution
of the decomposition), with frequency starting around 12.6 Hz (early event)
and ending at 11.13 Hz (late event).
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usable for extracting synchronous components. It is notewor-
thy that the number of SEs that can be extracted from M(t)
can vary and even be null if underlying neural generators are
all asynchronous. We treat each spindle as a distinct event and
quantify 4 characteristics of the SEs on a spindle-by-spindle basis:
(1) the presence or absence of SEs, (2) the number of SEs, (3)
the summed duration of the SEs, and (4) the onset time of the
first SE.

IMAGING CORTICAL SYNCHRONY
Given a ridge signal w(m)

r (t) of length Tr , we localize its corti-
cal generators by solving the inverse problem associated with the
following linear but ill-posed generative model:

w(m)
r (t) = G w

(q)
r (t) + εr(t) (4)

where w
(q)
r (t) is the Nq × Tr analytic source signal to be esti-

mated, εr(t) is noise and G is the Ns × Nq forward operator
projecting source activity onto the sensors space. We emphasize
here that although the ridge line is a non-linear filter, the ridge

signal w(m)
r (t) itself is linear with respect to data M (t) since the

wavelet transform is a Iinear operation. The linear operator G is
thus valid for ridge signals. In the present work, the estimation of

the Nq-dimensional w
(q)
r (t) is obtained through the Maximum

Entropy on the Mean as developed (Amblard et al., 2004) and

validated in (Grova et al., 2006). It is noteworthy that w
(q)
r (t)

is an analytic source signal, which provides access to the true
phase of the sources. All routines used for this article are coded
in Matlab [The MathWorks Inc., Natick (MA), USA] is inter-
faced with Brainstorm and distributed as an open-access toolbox
(http://neuroimage.usc.edu/brainstorm).

GROUP-LEVEL SYNCHRONOUS NETWORKS
In order to perform group analyses, we first projected the time

courses w
(q)
r (t) from the individual anatomy space onto the MNI

brain template using routines implemented in Brainstorm (Tadel
et al., 2011). On this common template, we characterized source
activity inferred from the SEs under two different perspectives:
(1) the power, proportional to the square of the amplitude of
source activity during a SE, and (2) the connectivity, to infer func-
tional networks emerging through phase synchrony. These two
properties on the sources are complementary by definition, since
phase synchrony and power are theoretically independent (but see
Ghuman et al., 2010 for a link between source SNR and synchrony
detectability). We note here that while power during SEs was com-
puted at the source level, phase synchrony addressed connectivity
within and among 88 parcels, each including around 200 sources
(227 ± 136). For that purpose, we performed an initial clustering
of cortical sources into 88 parcels derived from the Tzourio–
Mazoyer anatomical atlas (Supplementary Figure 5). We com-
puted both short-range and long-range connectivity based on
these parcels. Short-range connectivity was computed as pair-
wise source connectivity within each parcel, whereas long-range
connectivity was computed using local average signals within
parcels.

POWER OF SYNCHRONOUS SOURCES
For each source n on the template, we quantified the source power
underlying the SEs r detected for a subject s (hence the notation
n,r;s in next Equation). First, we computed the mean energy E(q):

E
(q)
n,r;s = 1

Tr

Tr∑
t = 1

|w(q)
n,r;s(t)|2 (5)

where Tr is the number of time samples in the SE r. Given that

wavelet coefficients w
(q)
n,r;s(t) are approximately 0-mean fluctua-

tions, E
(q)
n,r;s can be seen as a measure of source variance. We also

compute the mean energy E
(q)
n,b;s of the sources along ridges b

located during a baseline period (−1.5 to −0.5 s before EEG spin-
dle marker). The null hypothesis (H0) in our statistical test was
that source variance has the same distribution during SEs than
during baseline. We assessed this hypothesis using Fischer’s test
on a group statistic F. For each subject s, we ran 100 iterations
where we selected a subset Ri,s of 12 SEs, and a subset Bi,s of 12
ridges in the baseline periods to compute the F-statistic as follows,

Fn,i,s =
∑

r ∈ Ri,s
E

(q)
n,r∑

r ∈ Bi,s
E

(q)
n,r

, i = 1, . . . 100 (6)

Given that our subjects displayed at least 42 SEs (see Table 1),
we could generate at least 2.9 × 105 unique subsets Ri,s and Bi,s

(21 SEs for each onset—late/early, 12 choices per combination).
The average F-statistic over the 100 iterations, for each subject
Fn,s was then computed. Finally, we averaged the statistics Fn,s

over subjects in order to obtain the group-level average statis-
tic Fn We then derived the threshold FT

(12, 12) = 21.02 such that

any sources n with Fn > FT
(12, 12) is significantly activated at a

Bonferroni-corrected 5% level (p = 0.05/15028).

SYNCHRONY AMONG SOURCES
At this point, source signals wr

(q) (t) are in a common anatom-
ical space, thus we discard subject index. For each ridge signal
r [we remind here that this signal is multivariate with dimen-
sions (Nsources × Nbins)], we then computed pairwise synchrony
ξ between parcels i and j using:

ξ
(r)
i,j =

∣∣∣∣∣∣∣
1

Tr

Tr∑
t = 1

w
(q)
r,i (t)w

(q)∗
r,j (t)∣∣∣w(q)

r,i (t)
∣∣∣ ∣∣∣w(q)

r,j (t)
∣∣∣

∣∣∣∣∣∣∣
(7)

where Tr is the length of ridge r and w
(q)∗
r,j (t) denotes the complex

conjugation of w
(q)
r,j (t). This definition of synchrony is equivalent

to the phase-locking value (PLV, Lachaux et al., 1999) and pro-
vides added robustness to round-off error. For each pair (i,j), we
thus computed R synchrony values, where R was the total number
of ridges for a particular condition, then we averaged those val-
ues to obtain mean pairwise synchrony. For simplicity, we explain
the synchrony computation and thresholding for a single pair of
regions, but the same computations were performed for all pairs.
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We assessed the statistical significance of synchrony strength
using a non-parametric approach aimed at estimating the dis-
tribution of estimated synchrony under the Null Hypothesis, for
each pair of parcels (i,j). To do this we used a shuffling approach
by randomly permuting the identity of ridges, thus yielding:

ξ
(r,u)
i,j =

∣∣∣∣∣∣∣
1

T

T∑
t=1

w
(q)
r,i (t)w

(q)∗
u,j (t)∣∣∣w(q)

r,i (t)
∣∣∣
∣∣∣w(q)

u,j (t)
∣∣∣

∣∣∣∣∣∣∣
(8)

where r �= u and T = min(Tr, Tu). By permuting all ridges for a

particular condition, we constructed R shuffled values onξ
(r,u)
i,j .

We repeated this operation 100 times in order to ensure statis-
tical robustness of our null hypothesis. The null hypothesis was
that the distribution of phase-synchrony within a given ridge was
equivalent to that generated from random combinations of the

signals across ridges. The distribution of ξ
(r)
i,j was then compared

to the distribution under the null hypothesis and we derived
a statistical threshold using the false discovery rate technique
(see Supplementary Figure 2 for an illustration). This technique
consists in finding the synchrony value ξT

i,j that ensures an arbi-
trary false positive rate (herein set to 5%). First, PLV scores
ξr,i,j were transformed to zr,i,j using Fischer’s transform zr,i,j =
0.5 [ln (

1 + ξr,i,j
) − ln (1 − ξr,i,j)]. Then we computed the aver-

age z-scores zi,j, that were then inverse z-transformed to ξi,j =
exp

(
2zi,j − 1

)
/ exp

(
2zi,j + 1

)
. Finally, we consider regions pair

(i,j) as being significantly synchronous if the average across SEs in
each classes of ξr,i,j is at least ξT

i,j. It is important to note here that
the average PLV values and the PLV thresholds, derived respec-
tively with equations (7) and (8), are computed specifically for
each condition [(early, late) × (slow, fast)].

RESULTS
MEG FREQUENCY-LOCKING DURING SPINDLES (SEs)
Figure 3 shows a number of descriptive statistics for the SEs
observed at the MEG sensor level. More than 80% of EEG spin-
dles for each subject had at least one significant MEG SE and the

average was 92% (see Figure 3A). We note that frequency-locking
was mostly sampled with 2 ridges per spindle for subjects 1, 3, 6,
and 8 (Mean = 1.7 ± 1.1), while subject 7 had an average of about
5 ridges per spindle (Mean = 4.9 ± 3.0) (see Figure 3B). Ridges
had a median duration of about 500 ms, which did not vary much
across subjects, as shown in Figure 3C.

TIMING OF MEG SEs DURING SPINDLES
We examined when MEG ridges were first observed within spin-
dles. Figure 4 shows the relative frequency of onset times. First
SE from all spindles were pooled and using a probability density
function, we computed their onset time with respect to EEG spin-
dle marker at Cz. We observed that frequency-locking is initiated
roughly between 250 ms before and 400 ms after EEG marker,
with a main peak on the distribution at 110 ms after.

CENTRAL FREQUENCY OF SEs IN SPINDLES
Figure 5 shows the distribution of central frequencies of all MEG
SEs within EEG spindles (dashed line). The central frequency is
here defined as the average instantaneous frequency along a SE.
The distribution is bimodal with a main peak centered at 13.9 Hz
and a lower peak around 11.5 Hz. Note that the spectral resolu-
tion of this analysis was limited to ∼0.4 Hz due to the discrete
and inhomogenous (i.e., with exponentially-spaced spectral bins)
wavelet scaling. Taking into the spectral resolution of the analysis,
we can state that the main frequency mode for MEG synchrony
is between 13.4 and 14.3 Hz, and the lower mode is between 11.1
and 11.9 Hz.

Among all SEs, we select subsests of early and late events.
Interestingly, the central frequency of early SEs, which are the
first detected ridges relative to spindle onset, is mainly distributed
around 14 Hz (blue curve). On the other hand, the central fre-
quency of late SEs, which are the last detected ridge, is mainly
distributed around 12 Hz (red curve).

ACTIVATION MAPS
Supplementary Figure 3 illustrates cortical activations associated
with SEs that take place either early, or late relative to spindle

FIGURE 3 | Results for Synchrony Events (SE) in MEG sensor data

during spindles. (A) Percentage of spindles with at least one synchrony
event (SE) for each subject. The horizontal red dashed line is the mean
percentage over all subjects. (B) Number of SEs per spindle, for each
subject. The box plots show the median number of SEs per ridge, in

red, the 25th and 75th percentiles at the end of the box, and the
“whiskers” indicate the minimum and maximum scores in the sample.
The + in (B) indicate outliers. (C) Median total duration of SEs per
spindle for each subject, along with the 25th and 75th percentiles. The
+ in (C) indicate outliers.
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FIGURE 4 | Probability density plot of the onset time of the first

synchrony event (SE) in MEG relative to the spindle onset time at Cz in

the EEG, for each participant. Each point on the graph shows the density
of early SEs for a given onset time and subject. The black line is the spline
interpolation of the empirical probability distribution. The blue dashed line
indicates the first “plateau” and the red dashed line marks the mode of the
distribution.

FIGURE 5 | Distribution of the central frequency of all SEs (dashed

line), early SEs (blue line), and late SEs (red line). The distributions of
frequencies of early and late SEs peak respectively at 13.9 and 12.4 Hz;
these two distributions intersect at 13.1 Hz, which can be seen as an
empirical frontier between slow (red) and fast (blue) SEs.

onset. These maps are displayed using Otsu’s visualization thresh-
old and allow a qualitative description of cortical activity linked to
synchrony (Otsu, 1979). We can see that cortical energy is mainly
distributed over the perirolandic cortex, bilaterally, for early syn-
chrony. On the other hand, cortical energy is more broadly
distributed for late synchrony and spans frontal, perirolandic,
temporal, and occipital regions. It thus seems that cortical syn-
chrony during spindles is initiated in fairly focal perirolandic
regions and extends progressively to further regions.

As was shown in Figure 5, the central frequency of early SEs
is mainly high but it can be low, and the reverse is true for late
synchrony (mainly low, but can be high). Thus, the observed dif-
ferences in cortical activation could either be due to the timing
(early vs. late) or the frequency of synchrony (low vs. high) of
synchrony. In order to disentangle the effects of these two fac-
tors, we pooled SEs with respect to each combination of timing
and frequency. We first verify that, based only on the chronol-
ogy of the synchronous events for each spindle, the distribution
of the early and late events will sample unambiguously the early
and late part of the spindles. This is shown in Figure 6. Using
this approach, results in Figure 7 suggest that early SEs, no mat-
ter their frequency, emerge mainly from perirolandic regions. In
addition, late synchrony emerges from a much broader set of
regions, localized mainly in frontal, parietal, and occipital areas.

SIGNIFICANT REGIONS OF CORTICAL SYNCHRONY DURING SLEEP
SPINDLES
Figure 8 displays regions of significant projected power on corti-
cal sources during SEs when the results were corrected for mul-
tiple comparisons using non-parametric statistical thresholding
to Bonferroni-corrected p < 0.05. For early fast SEs, significant
activations were found bilaterally, although stronger over the left
hemisphere, in the postcentral gyrus, extending to the caudal part
of the superior frontal gyrus, and in the left superior parietal lob-
ule. In turn, for late slow SEs, activations were found, bilaterally,
in the medial frontal gyrus, in the superior frontal gyrus, in the
inferior parietal lobule and in the precuneus.

SHORT- AND LONG-RANGE SYNCHRONY DURING SLEEP SPINDLES
We examined separately short- and long-range synchronization
during the early and late parts of spindles using measures of
phase-locking value. Descriptive statistics for this analysis are dis-
played in Figure 6B. Overall short range synchronization, that
is the averaged phase-locking values between pairs of sources
within the same region, was significantly lower for late (0.63)
than for early (0.77) synchrony [two-sample t-test, t(3009) = 7.64,
p < 0.0001]. On the other hand, long-range synchronization,
that is the mean phase-locking value between all pairs of sources
across distinct regions, was significantly higher for late (0.48) than
for early (0.41) synchrony [two-sample t-test, t(7654) = −38.87,
p < 0.0001]. In particular, interhemispheric connections were
denser in late synchrony, as the median PLV was increased by
0.085 in the latter condition [two-sample t-test, t(3870) = 17.42,
p < 0.0001, data not plotted]. Also, intrahemispheric increase of
median long-range PLV value was much more marked in the
right [�PLV = 0.12, t(1890) = 14.17, p < 0.0001, data not plot-
ted] than in the left [�PLV = 0.01, t(1890) = 4.61, p < 0.0001,
data not plotted] hemisphere.

SYNCHRONOUS NETWORKS DURING SPINDLES
Recall from Section Group-Level Synchronous Network that we
divided cortical regions into 88 distinct parcels. Phase-locking
values (PLVs) were computed between all possible pairs of
sources within each parcel to obtain short-scale synchrony val-
ues. In addition, we computed the average signal in parcel and
computed PLVs between all possible pairs of parcels. Parcels
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FIGURE 6 | (A) Onset time descriptive statistics (median, quartiles, and
extrema) for early or late events, with fast or slow oscillations, relative to
the time of spindle onset defined on the EEG at Cz. (B) Phase-locking
value descriptive statistics for long-range and short-range synchrony
displayed for both early (columns 1, 2) and late (columns 3, 4)

synchronous events. The horizontal bar and asterisks indicate a
statistically-significant difference with p < 0.001 (see text for details). The
number of points in the distributions of short-range PLV (source pairs)
and long-range PLV (region pairs) are respectively 3,053,790 and 3828.
See text for how events were classified.

FIGURE 7 | Activation maps associated with each of the 4 categories of

SEs. The maps are normalized to a common scale (maximum power in red)
and displayed using Otsu’s threshold (Otsu, 1979). Based on the histogram
of an object (vector or image), Otsu’s threshold consists in classifying the
object in two classes with minimal intra-class variances, then binarizing the
object by setting the intensities of the lower class to 0 and that of the
higher class to 1. Unthresholded activation maps are presented in
Supplementary Figure 4.

were manually labeled to either the frontal, parietal, tempo-
ral, mesial or occipital regions. Supplementary Figure 6 shows a
schematic representation of connectivity among and within cor-
tical parcels, each being represented with a node. Long-range
pairwise PLVs values greater than 0.8 are depicted, and links
that are significant statistically are in bold. Statistical signifi-
cance of the PLV value for a pair was determined using the
approach described in Section Synchrony Among Sources. We
computed, within each condition [(early, late) × (fast, slow)]
the null distribution of large-scale synchrony in absence of SEs,
i.e., using ridge signals from the baseline. From that distribu-
tion, we derive the FDR threshold above which synchrony is

FIGURE 8 | Non-parametric statistical threshold on activation maps for

the early fast SEs (left) and the late slow SEs (right). Upper rows
displays cortices from a lateral view while lower row displays cortices from
a medial view. Non-parametric statistical threshold was set to 0.05,
Bonferroni-corrected. Color code here indicates the group-level average
F -value (see Section Power of Synchronous Sources) of the significantly
activated sources, insignificant ones are set to 0.

significant with p value of 5%. Short-range, within parcels syn-
chrony, is coded with the node color and is not thresholded
statistically.

Cortical networks involved a larger number of significant pair-
wise connections for late synchrony (99) than for early synchrony
(31). In particular, interhemispheric connections were denser in
late (8) than in early (1) synchrony (Supplementary Figure 6).

In order to disentangle effects of timing versus frequency,
we analyzed separately the 4 combinations of these two fac-
tors. We show the statistically-significant PLV links in Figure 9
for late slow and early fast synchrony where we observed sig-
nificant pairwise connections. There were no significant con-
nections in the other two conditions (early slow, late fast).
Interstingly, late slow synchrony involved a larger number of con-
nections (137) than early fast synchrony (31). Finally, significant
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FIGURE 9 | Connectivity profile associated with early fast (upper left),

early slow (bottom left), late fast (upper right) and late slow (bottom

right) SEs. Non-parametric FDR thresholding was applied to inter-regions
PLV values and significant PLVs are displayed with thick lines. Visualization

threshold was set to 0.8 and non-significant links are displayed with thin gray
lines. Left and right halves of each plot reflect separate hemispheres, each
consisting of 5 main divisions (F, frontal; P, parietal; M, mesial; T, temporal; O,
occipital). Node colors reflect intra-region synchrony (no threshold applied).

interhemispheric synchrony was observed only in late slow syn-
chrony. As a confirmatory analysis, we verified that this pattern
was also observable on individual subjects’ connectivity profiles
(see Supplementary Figure 7). We found this effect was observ-
able on 4 out 5 subjects, whereas the last subject showed an overall
low number of interhemispheric links.

DISCUSSION
In this work, we addressed the dynamics of neuronal networks
during sleep spindles under the angle of phase synchrony. We
proposed an original source imaging approach to reveal the
cortico-cortical functional connectivity associated with transient
synchronous events occurring during sleep spindles. We discuss
the present work in two steps: (1) the validation of the proposed
ridge-based methodology against consensual knowledge on spin-
dles and (2) the interpretation of new findings in relation to
hypothesized functional roles of spindles.

VALIDATION OF RIDGES FOR THE STUDY OF SPINDLES
The following sections are intended to validate the use of
frequency-locking for characterizing the dynamics of cortical

activity during sleep spindles. We argue and provide supporting
evidence that frequency-locking during spindles reveals spectral
and topographical properties that were previously reported by
studies on the signal amplitude during spindles. In addition,
we show that imaging the power of cortical sources underly-
ing frequency-locking during spindles yields activations within
regions that were previously shown to be involved in spindles
using a variety of imaging techniques. The results discussed
in this first section will allow us to argue that amplitude-
based and synchrony-based features of spindles reflect similar
neurophysiological processes.

Detectability of frequency-locking spindles
We used a wavelet-ridge framework to detect and quantify
frequency-locking during spindles. Using this framework, we
observe significant MEG SEs in the vast majority of spindles and
subjects, and the method allowed us to measure the duration of
spindle-related frequency-locked activity with remarkable consis-
tency across subjects. We see two main reasons why wavelet ridges
should be favored for studying frequency-locking during spindles.
(1) We observed that the central frequency of SEs detected on

www.frontiersin.org October 2014 | Volume 8 | Article 310 | 33

http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Zerouali et al. Dynamics of cortical networks of sleep spindles

MEG sensors is higher earlier compared to later within spindles.
(2) It was shown that cortical sources vary during the time course
of spindles recorded in MEG (Dehghani et al., 2011), which is
consistent with the observation that spindles are observed differ-
ent MEG sensors along time (Hao et al., 1992; Zierewicz et al.,
1999). Frequency-locking recorded with MEG thus reflects a
non-stationary process.

Therefore, global measures computed over the entire dura-
tion of spindles, such as magnitude-squared coherence, cannot
capture the complexity of the dynamics underlying synchrony
during spindles, which may explain why they yield low (0.22)
synchrony values (Dehghani et al., 2010; Bonjean et al., 2012).
Another approach based on autoregressive modeling and par-
tial cross-coherence also yielded low values (−0.29 to 0.38)
for average MEG synchrony (Langheim et al., 2006). However,
instead of capturing the complexity of MEG synchrony, this lat-
ter approaches filters out non-stationary components of MEG
signals and estimates coherence on the residue. In contrast,
wavelet ridges are particularly well suited to reveal patterns of
frequency-locking that change over time and space, because their
detection is more robust to spectral or spatial perturbations
(Amor et al., 2005).

MEG spindle dynamics
Our results showed that frequency-locking has a higher frequency
when it appears at the beginning of a spindle and lower fre-
quency when it appears at the end, with a clear boundary at 13 Hz.
This corroborates previous studies reporting that intra-spindle
frequency is frequently characterized by a progressive slowing of
oscillatory activity (Schonwald et al., 2011). We also observed
a typical 500 ms delay between early and late synchrony. Using
automatic spindles detection based on signal energy, Dehghani
et al. (2011) showed that spindles in MEG could arise up to
200 ms before their EEG counterpart. Interestingly, from the per-
spective of synchrony, a similar delay can be observed between the
onset of spindles visible on the EEG and MEG synchrony (MEG
often earlier). On average, however, MEG synchrony arises 110 ms
after EEG spindles onset.

By localizing the ridge complex signal, we efficiently target
the sources that generate frequency-locking during MEG spin-
dles. The ridge signal is thus more appropriate for the study of
functional connectivity, as will be discussed in the next section.
From the perspective of average power, we find different corti-
cal activation maps for ridges with higher versus lower central
frequency. Earlier and faster SEs emerged mainly from centro-
parietal regions bilaterally, but only the postcentral gyrus and the
superior parietal lobule survived statistical thresholding. Other
groups also linked fast spindles to centro-parietal sources using
dipolar source modeling (Manshanden et al., 2002; Urakami,
2008), distributed source modeling (Anderer et al., 2001), spatial
filtering (Gumenyuk et al., 2009), and fMRI (Schabus et al., 2007).
On the other hand, later and slower SEs emerged, bilaterally, from
frontal (medial and superior gyri), and parietal (precuneus, infe-
rior parietal lobule). Activation of the medial frontal lobe for
slow spindles was also observed using distributed source mod-
eling (Anderer et al., 2001) and fMRI (Schabus et al., 2007).
We note here that despite the small sample size in our study (5

subjects), our source localization yields highly significant activity
with remarkable concordance with the literature.

In addition, it was reported that frontal activity linked to
slow spindles shows fair inter-subject variability both at the
sensors (Doran, 2003) and the sources level (Anderer et al.,
2001), thus group analyses would tend to dampen activity in this
region. Inter-subject variability could also be explained by lower
Signal to Noise Ratio (SNR) for signals generated by deep/mesial
sources, which impacts on the performance of any sources local-
izer (Hämäläinen and Ilmoniemi, 1994). The significant group
activation in medial frontal gyrus could thus be explained by
higher resistance of ridge-based source localization to lower SNR
(Zerouali et al., 2013).

NEW INSIGHTS FROM FUNCTIONAL CONNECTIVITY
Sources of synchrony: connectivity
As discussed in Section Group-Level Synchronous Networks,
short-range connectivity is assessed using pair-wise synchrony
within parcels (3,053,790 pairs in total) while long-range connec-
tivity was defined as pair-wise synchrony among regions (3828
pairs). We observe that short-range spindle synchrony (99.9%
of all cortical pairwise associations) was significantly higher for
earlier than for later SEs, while the reverse was true for long-
range synchrony (higher for later SEs). This observation supports
the view that short- and long-range synchronies are somewhat
antagonistic. Indeed, short-range synchrony must be weak for a
network to synchronize massively among long-range distances
(Langheim et al., 2006) and strong short-range synchrony, such
as during slow wave sleep, prevents TMS-induced electrical waves
from propagating and reaching far cortical targets (Massimini
et al., 2005). We however note here that our values of short-
range synchrony are corrupted by current leakage during source
reconstruction. Indeed, due to the ill-posed nature of the sources
imaging inverse problem, source extension is usually overesti-
mated, thus creating artificially high PLV values (Schoffelen and
Gross, 2009; Hillebrand et al., 2012).

Our most important result is that, regardless of the timing of
frequency-locking (early vs. late SEs), we observed strong fronto-
temporal connectivity, bilaterally. However, inter-hemispheric
connectivity was weak during early SEs but was significantly
strengthened during later SEs. Also, although highly significant,
the quantitative variations in long-range functional connectivity
are weak (�PLV = 0.03). In our work, a 6% (�PLV/PLVearly)
increase in global synchronization level of the cortex yielded a
200% [(99 − 31)/31] increase in the number of significant long-
range connections. This is an interesting observation since it
supports the view that the reinforcement of long-range connec-
tions of the functional networks during spindles is a low-cost
mechanism. Cost-efficiency is an important feature of small-
world networks, such as brain networks, which optimize the
balance between local and long-range connectivity in order to
minimize wiring cost while preserving efficient information flow
(Bassett and Bullmore, 2006). It is worth to mention that the
null-hypothesis models the synchrony among uncoupled oscil-
lators with similar frequency contents (due to the narrow-band
spectrum as displayed in Figure 5). It has been computed by shuf-
fling the time series in sources space, separately in each condition.
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Alternatively, we could have modeled the null hypothesis as asyn-
chronous events at the sensors level. This could have been done by
shuffling the ridge masks among spindles in the data space. On a
qualitative basis, we observe that both approaches yield equivalent
thresholds, thus similar connectivity graphs. In addition, it would
be of interest to compare the connectivity changes highlighted
by our statistical thresholding of connectivity matrices to other
dimension-reduction strategies, such as minimum spanning trees
(Tewarie et al., 2014).

Taken together, our results suggest that functional connectiv-
ity undergoes important changes during spindles, evolving from
a pattern of short-range and intra-hemispheric connections to
more long-range and inter-hemispheric connections. This tran-
sition from local to global networks during spindles is one of the
most important new discoveries from our work.

Sources of synchrony: dynamics
Most spindles started with a faster oscillation that decelerated to a
slower oscillation at the end of the spindle. This suggests that fast
and slow stages of spindles are two manifestations of the same
oscillator, which we view as a neural system endowed with func-
tional capabilities, that varies in frequency over a dynamic range.
The fast/slow spindle classification thus may result solely from the
relative durations of the fast and slow regimes.

One puzzling observation is that early SEs can be either fast
or, although infrequently, slow and the reverse is true for late SEs.
We thus asked what is the fundamental property underlying the
two classes of spindles, timing or frequency? We found that, for
both early and late synchrony, cortical power has a consistent
distribution regardless of frequency. On the other hand, func-
tional connectivity patterns are inconsistent with respect to either
timing or frequency alone, early slow and late fast synchrony
being much reduced compared to the early fast and late slow
synchrony.

It is noteworthy that we observe a link between the fre-
quency at which the functional network oscillates and its spatial
extent. Indeed, we showed that early SEs, which are charac-
terized by a high frequency (>13 Hz), involve lower large-scale
connectivity than late SEs, which are characterized by a lower
frequency (<13 Hz). Despite a small frequency range, this result
is consistent with evidence suggesting that fast rhythms (i.e.,
gamma) support local synchrony among neurons within a cor-
tical patch while slower rhythms (i.e., beta, alpha, theta) support
distant synchrony (von Stein and Sarnthein, 2000). The coupling
mechanism between frequency and spatial extent was shown to
rely on the firing properties of interneurons in a mathemati-
cal model of coupled networks. Indeed, a qualitative change in
interneuron firing (spike doublet) was shown to cause a switch
in oscillating frequency from gamma to beta range (Ermentrout
and Kopell, 1998). Interestingly, using similar model, it was
shown that quantitative changes in the level of self-inhibition
of interneurons could tune the oscillating frequency within the
lower beta range (12–20 Hz, Kopell et al., 2000). Accordingly,
we can hypothesize that, during the time course of a spindle,
the levels of self-inhibition of interneurons of the thalamo-
cortical network increase, thus causing the oscillation frequency
to slow down.

In the light of previous findings, our results show that,
although frequency does not impact on the sources involved
in synchrony, the connectivity of the network is certainly
dependent on appropriate time-frequency dynamics that
might be modulated through self-inhibitory properties of
interneurons.

Implications for studies on the functional role of spindles
The implication of spindles in the consolidation of memory
has been suggested by a wealth of studies and is now widely
accepted as unequivocal (Walker and Stickgold, 2006). Procedural
learning and declarative memory are associated to spindle den-
sity and sigma power (Morin et al., 2008; Schabus et al., 2007;
Tamaki et al., 2009; Barakat et al., 2011; Fogel et al., 2012).
Generators of the oscillatory regime and functional connectiv-
ity underlying early and late synchrony may underlie the role
of spindles in brain plasticity. Future research should investi-
gate how overnight procedural and declarative memory consol-
idation would influence generators and functional connectivity
of early and late spindle synchrony. This research should also
be performed in an older population, which not only shows
reduced spindle density, but also reduced spindle amplitude,
duration, and a trend for faster spindle mean frequency. Age-
related difference in overnight memory consolidation (Spencer
et al., 2007; Aly and Moscovitch, 2010; Wilson et al., 2012) may
be linked to modifications in functional connectivity of spindle
synchrony.

CONCLUSION
In this paper, we studied sleep spindles as a sequence of transient
synchronous events using MEG recordings. The methodology we
developed targets specifically cortical synchronous oscillations.
It involves a non-linear filtering of MEG signals using wavelet
ridges, yielding ridge signals on the sensors that embed the syn-
chronous component buried in MEG recordings. Our approach
is endowed with a high sensitivity to spindle activity, since syn-
chrony can be detected regardless of energy, and high specificity
due to a controlled selection of synchronous events. We were thus
able to extract statistically robust patterns of functional connec-
tivity despite having tested only five participants. We were able to
show that functional connectivity undergoes dynamical changes
with respect to time-frequency features of the spindles. Future
research will focus on the effect of aging and learning on such
functional connectivity.
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Supplementary Figure 1 | Superimposition of the real part of the ridge

signal with the original signal of the Figure 1.

Supplementary Figure 2 | Example of FDR statistical thresholding of PLVs

distribution. The blue and red curves represent the distributions of PLVS

during a SE and during a baseline period, respectively. The threshold

(vertical dashed line) is set such that the ratio between the suprathreshold

area under the red curve and the suprathreshold area under the blue

curve is equal to an arbitrary value. We chose to set the FDR threshold at

5%, which amounts to tolerate 5% false positives.

Supplementary Figure 3 | Activation maps associated with early (upper

left) and late (upper right) SEs. The maps are displayed with Otsu’s

threshold for easier visual comparison.

Supplementary Figure 4 | Unthresholded activation maps associated with

each of the 4 categories of SEs. Normalization and color code are the same

as Figure 7.

Supplementary Figure 5 | Cortical parcels used in the computation of

large-scale functional connectivity. Parcels are grossly derived from the

Tzourio-Mazoyer atlas and registered with the MNI template. Color-coding

indicates brain lobes: frontal (red), parietal (blue), temporal (cyan), medial

(green), and occipital (orange).

Supplementary Figure 6 | Connectivity profile associated with early (left)

and late (right) SEs. Inter-region synchrony is depicted with curved lines

linking two nodes. Color coding and statistical thresholds are the same as

in Figure 9.

Supplementary Figure 7 | Connectivity profiles associated with early

(upper row) and late (bottom row) SEs for each subject. No statistical

threshold was computed on these profiles since subject-based analysis

suffers low degrees of freedom; all links displayed reflect PLV values

overs 0.9.

Supplementary Figure 8 | Morse wavelet parameterized with β = 4 and

γ = 4 . (A) Wavelet representation in the time domain. The thin black and

dashed lines represent respectively the real and imaginary parts of the

complex wavelet and the thick line represents its envelope. (B)

Representation of the wavelet in the Fourier domain over the positive part

of its spectrum.
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Many of the major advances in our understanding of how functional brain imaging signals
relate to neuronal activity over the previous two decades have arisen from physiological
research studies involving experimental animal models. This approach has been successful
partly because it provides opportunities to measure both the hemodynamic changes that
underpin many human functional brain imaging techniques and the neuronal activity about
which we wish to make inferences. Although research into the coupling of neuronal
and hemodynamic responses using animal models has provided a general validation of
the correspondence of neuroimaging signals to specific types of neuronal activity, it
is also highlighting the key complexities and uncertainties in estimating neural signals
from hemodynamic markers. This review will detail how research in animal models
is contributing to our rapidly evolving understanding of what human neuroimaging
techniques tell us about neuronal activity. It will highlight emerging issues in the
interpretation of neuroimaging data that arise from in vivo research studies, for example
spatial and temporal constraints to neuroimaging signal interpretation, or the effects of
disease and modulatory neurotransmitters upon neurovascular coupling. We will also
give critical consideration to the limitations and possible complexities of translating data
acquired in the typical animals models used in this area to the arena of human fMRI.
These include the commonplace use of anesthesia in animal research studies and the fact
that many neuropsychological questions that are being actively explored in humans have
limited homologs within current animal models for neuroimaging research. Finally we will
highlighting approaches, both in experimental animals models (e.g. imaging in conscious,
behaving animals) and human studies (e.g. combined fMRI-EEG), that mitigate against
these challenges.

Keywords: neurovascular, functional magnetic resonance imaging, rodent, neuroimaging, hemodynamic

INTRODUCTION

“One of the difficulties in understanding the brain is that it is like
nothing so much as a lump of porridge.”

Richard L. Gregory (Gregory, 1997)

Human functional brain imaging techniques now play a promi-
nent role in much neuroscience and psychological research.
Unlike many other organs in the body, assigning function or
aspects of functions, in space or time to particular components
of the brain based on even a very detailed analysis of its struc-
ture alone is extremely difficult. Although we have learned much
from neuropsychological research in human subjects or experi-
mental animal research studies, there can be little doubt that the
possibilities for understanding afforded by any technique that can
provide a spatiotemporal readout of changes in brain function are
immense. It is thus perhaps unsurprising that the rate of publica-
tion of scientific papers incorporating functional neuroimaging

now exceeds 10 per day (Kim and Ogawa, 2012). Beyond aca-
demic communities, these tools and the images they produce have
also captured public interest and provided renewed opportunities
for neuroscientists to engage with publics on both scientific mat-
ters and upon issues at the science-society interface (Racine et al.,
2005).

For more than 20 years, the non-invasive neuroimaging tech-
nique of functional magnetic resonance imaging (fMRI) based
on blood oxygen level dependent (BOLD) signal changes has
been used to estimate neural signals in the human brain (Ogawa
et al., 1990). Prior to this, positron emission tomography (PET)
firmly established the possibilities for human neuroimaging
based on surrogate hemodynamic markers. Since the human
application of these hemodynamic based neuroimaging tech-
niques, substantial effort has been directed toward improving our
understanding of functional brain imaging signals, the hemo-
dynamic changes that give rise to them, and the relationship
of these changes to underlying neuronal activity (Figure 1).
Although it is widely appreciated amongst scientific communities
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FIGURE 1 | Schematic illustration of the neurophysiological processes

underpinning hemodynamic neuroimaging signals. The boxed
processes linked by thick gray arrows around the outside represent
components of interest to those focussing on “parametric neurovascular
coupling,” whereas the more detailed processes illustrated in the center

represent important concepts in for investigation of “physiological
neurovascular coupling.” The relationships between the illustrated
biophysical or physiological components, as well as the baseline conditions
upon which changes are superimposed, may be mediated by the factors
illustrated in Figure 6.

that the relationships between activity within heterogeneous
neuronal populations and neuroimaging signals are complex,
rather indirect, and incompletely understood, many research
papers continue to report neuroimaging signals as “measures of
neuronal activity,” which they are not. In addition, it has been
shown that the presence of brain “activation” images in scientific
papers results in higher ratings of scientific quality even where
the images provide no additional information to the reader
(Mccabe and Castel, 2008). It is thus increasingly important
that we both build our understanding of precisely what func-
tional neuroimaging signals do tell us about brain activity, and
ensure that improved frameworks for the interpretation of brain
imaging data are effectively communicated. In this review, we
will use the terms neuroimaging or functional brain imaging to
refer to hemodynamic imaging techniques as applied to human
subjects, rather than the broader definition which includes
electroencephalography (EEG) or magnetoencephalography
(MEG).

Neuroimaging signals arise because of a coupling between
changes in neural activity, metabolism, and hemodynamics
(blood flow, oxygenation, and volume) in the brain, termed
neurovascular coupling (Figure 1; Villringer, 1997; Logothetis
and Wandell, 2004; Logothetis, 2008). Studies of neurovascular
and neurometabolic coupling have therefore been central to
the progress that has been made so far in investigating what
neuroimaging signals tell us about neuronal activity. Important
insights have arisen from research using animal models, in our
laboratory and elsewhere, in which detailed measurements of
functional brain imaging signals and/or the hemodynamic and
neuronal events underpinning them can be made (Mathiesen
et al., 2000; Norup Nielsen and Lauritzen, 2001; Smith et al.,
2002; Devor et al., 2003, 2005; Martindale et al., 2003; Jones
et al., 2004; Sheth et al., 2004; Berwick et al., 2005, 2008;

Hewson-Stoate et al., 2005; Martin et al., 2006a,b, 2012; Hillman
et al., 2007; Franceschini et al., 2008; Boorman et al., 2010;
Kim et al., 2010). It is possible, in animal models, to explore in
detail the changes that occur in each component of the complex
system linking neuronal activity to neuroimaging signal changes,
as illustrated in Figure 1. Thus, a number of landmark papers
(e.g. Logothetis et al., 2001) have now established the general
validity of fMRI signal changes as indicators of altered neuronal
activity: there is overwhelming empirical evidence that increases
in BOLD fMRI signals in healthy cortical structures reflect
increased neuronal activity in those structures. However, the
boundaries of this broad statement and limits to its generaliz-
ability are becoming increasingly important as neuroimaging
is applied to study the whole brain in both health and disease
contexts.

The focus of this paper will therefore be upon the excep-
tions, complexities and remaining uncertainties around neu-
roimaging signal interpretation, as revealed predominantly by
in vivo experimental animal research into neuroimaging sig-
nals and neurovascular coupling. We shall begin by outlining
the main approaches to investigating neuroimaging signals and
neurovascular coupling in experimental animal models, includ-
ing a brief overview of the major techniques. We shall then
review some of the key research questions that these approaches
allow us to address along with some of the main insights
provided thus far. We shall review recent research highlight-
ing areas where the relationships between neuronal activity
and hemodynamic changes are more complex and discuss the
implications of this for neural signal estimation in human neu-
roimaging. Finally we will turn attention to the experimental
animal models themselves, their limitations, as well as new pos-
sibilities to investigate neurovascular coupling directly in human
subjects.
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INVESTIGATING NEUROIMAGING SIGNALS USING
EXPERIMENTAL ANIMAL MODELS
Research using experimental animal models to investigate neu-
roimaging signals and their relationship to neuronal activity
has approached the issue from two converging perspectives.
On the one hand there has been an emphasis on determin-
ing the parametric relationships between neuronal activity and
neuroimaging signals, including characterization of the mathe-
matical relationships between signals, estimation of the hemody-
namic impulse response function (HIRF, see Figure 2 and section
Characterization of hemodynamic impulse response functions),
and the development of comprehensive biophysical models of
neurovascular coupling. We shall refer to this approach as being
concerned with “parametric neurovascular coupling,” emphasiz-
ing the concurrent measurement of signals in different com-
ponents of the neurovascular-neuroimaging system, illustrated
schematically in Figure 1 (outer processes). On the other hand,
attempts have been made to determine the physiological mecha-
nisms of neurovascular coupling, with a focus on the key chemical
mediators and modulators, and the relative involvement of differ-
ent cell types including astrocytes, neurons, pericytes, endothelial
cells, and vascular smooth muscle cells. We shall refer to this
approach as being concerned with “physiological neurovascu-
lar coupling,” emphasizing the biochemical and physiological
mechanisms that mediate the relationships between the neu-
ronal, metabolic, and hemodynamic components, illustrated in

FIGURE 2 | Illustration of the hemodynamic impulse response function

(HIRF, dashed gray line), which typically comprises two gamma

functions (red and blue lines), together approximating the

hemodynamic responses present in often noisy acquired

neuroimaging data (solid gray line). The various parameters required to
specify the HIRF are illustrated. Variations in these parameters that are not
accounted for can lead to inaccurate detection of “activity” in neuroimaging
studies. Some of the factors that might alter these parameters are
illustrated in Figure 6.

Figure 1 (inner detail). The former approach is more directly
relevant to the development of strategies to analyze neuroimag-
ing data and our ability to make general judgments regarding
the effects of experimental manipulations on the magnitude of
underlying neuronal signals, whereas the latter is critical if we are
to improve our detailed understanding of the neurophysiological
events that these signals represent. Convergence of both perspec-
tives is important for progressing our ability to estimate neural
signals from functional brain imaging data acquired in an increas-
ingly broad range of scenarios. With this distinction in mind, we
shall now briefly walk through the principle methodologies being
applied in this field and outline how they contribute to either
approach. A summary of the main techniques used to improve
understanding of neuroimaging signals in experimental animal
models is provided in Table 1 and for a fuller review the reader is
directed to recent publications by Devor et al. (2012, 2014) and
Zhao et al. (2014c).

fMRI FOR INTERROGATING NEUROIMAGING SIGNALS
To some extent it is “by definition” that investigations of neu-
rovascular coupling usually require measurement of both the
neural and vascular components of the overall system. In para-
metric neurovascular coupling research this is predominantly the
case and so experimental designs in which multiple data acquisi-
tion methods can be combined have become the workhorse of
this field. Because of the high degree of inter-trial (and inter-
subject) variability inherent in hemodynamic measurements in
particular, concurrent acquisition of neuronal and hemodynamic
data provides significant statistical and data modeling advan-
tages (in addition to reducing animal numbers). Combining
neuroimaging techniques that are used in humans (such as fMRI)
with electrophysiological techniques to measure neuronal signals
would appear the most parsimonious approach to elucidating
neuroimaging-neural signal relationships. These data provide
direct insight into the quantitative relationships between neu-
roimaging and neural signals. Furthermore, small-animal fMRI
systems, though a combination of reduced bore size (and accord-
ingly other hardware including gradient coils), smaller radiofre-
quency coils and increased field strength are routinely able to
resolve voxels approximately an order of magnitude smaller than
obtainable in human fMRI. High field strength fMRI in animal
models has enabled researchers to study the fine detail of hemo-
dynamic responses, with sub-second temporal precision and
in-plane voxel sizes of <100 μm (see section Heterogeneous dis-
tribution of fMRI signals sources revealed by high field strength
fMRI). However, combining this approach with direct measures
of neuronal activity is problematic for a number of reasons.
Firstly, electrodes to record neuronal activity will introduce arti-
facts into the imaging data. These can be minimized by care-
ful electrode design, choice of materials, and image acquisition
parameters, but it is very difficult to completely avoid distortion
of imaging data at precisely the point where it is of most interest
(where the electrode is positioned). Secondly, fMRI in particu-
lar makes use of large, rapidly changing electromagnetic fields
as part of the data acquisition process which can severely distort
the electrophysiological measurement of neural signals. Whilst an
increasing number of laboratories have been able to find ways
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Table 1 | Overview of principle methods used to investigate neuroimaging signals and neurovascular coupling.

Technique Data streams Main advantages Relative disadvantages Usable in

humans?

High field fMRI BOLD, CBV, CBF Cross-species technique, whole
brain imaging

High cost, difficult to combine with
other techniques, limited spatial and
temporal resolution

Yes

Near infrared
spectroscopy

Oxy-, deoxy, and total
hemoglobin

High temporal resolution, low cost
human neuroimaging

Poor spatial resolution, limited depth
penetration

Yes

Diffuse optical
tomography

Oxy-, deoxy, and total
hemoglobin

Cross-species technique Poor spatial resolution, limited depth
penetration

Yes

Optical imaging
spectroscopy

Oxy-, deoxy, and total
hemoglobin

Combination of good temporal and
spatial resolution, easy to combine
with other techniques

Limited depth penetration, cortical
surface only

Intraoperative
only

Photoacoustic
tomography

Oxy-, deoxy, and total
hemoglobin,
microcirculation

Whole brain imaging, high spatial
resolution

Relatively low temporal resolution No

Optical coherence
tomography

Blood flow
(microcirculation)

Absolute measurement of flow,
good depth penetration and spatial
resolution

Only cortical (surface structure)
imaging possible

No

Laser speckle contrast
imaging

Blood flow (2D) High sensitivity, can image through
skull

Limited depth penetration, spatial
resolution lower then optical
techniques

No

Confocal microscopy Blood flow, tissue
oxygen, microcirculation,
cellular activity

Excellent spatial and temporal
resolution, can measure neuronal
and vascular markers

Loss of spatial resolution at depth,
higher risk of photobleaching

No

Two-photon microscopy Blood flow, tissue
oxygen, microcirculation,
cellular activity

Highest spatial and temporal
resolution, neuronal and vascular
markers, good depth penetration

Relatively costly, not easy to
combine with other techniques

No

Voltage sensitive dye
imaging

Cellular activity High spatial and temporal resolution
measurement of cellular activity

Difficult to combine with other
optical readouts, risk of toxicity from
dyes

No

Laser doppler
flowmetry

Blood flow (point
mesaurement)

Easy to combine with other
techniqies

Point measurement only No

Tissue oxygen
voltammetry

Tissue oxygen (point
measurement)

High temporal resolution Point measurement only, limited
spatial precision

No

Tissue oxygen
polarography

Tissue oxygen (point
measurement)

Very high resolution recording Point measurement only, fragile
electrodes

No

Tissue oxygen
luminescence

Tissue oxygen (point
measurement)

Easy to use, good temporal
resolution

Point measurement only, limited
spatial precision

No

Invasive
electrophysiology
(Various)

Single or multi-unit
activity, local field
potentials

Highly localised recording, optimal
temporal resolution

limited compatibility with fMRI, risk
of damage to brain tissue from
electrode

No

Non-invasive
electrophysiology (EEG,
MEG)

Event-related potentials,
current sources and sinks

High temporal resolution, low cost
human neuroimaging

Limited spatial resolution Yes

Frontiers in Neuroscience | Brain Imaging Methods August 2014 | Volume 8 | Article 211 | 41

http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Martin In vivo neuroimaging research insights

around this (e.g. Huttunen et al., 2008), it is technically challeng-
ing and often requires substantial “development time” on an MRI
system, making it a costly process. Thirdly, there are also limits
to temporal and spatial resolution of PET and to a lesser extent
fMRI. Although high-field strength fMRI is now able to achieve
impressive results, as discussed further below, convergence upon
the spatiotemporal scales at which neuronal activity operates or
blood flow is directly regulated, remains elusive. Finally, a major
barrier to the use of non-invasive imaging techniques for research
in this field is cost: preclinical MRI facilities (for rats/mice) may
charge >$3000 per day, whereas facility costs are typically an
order of magnitude lower for using many of the alternate in vivo
approaches as summarized in Table 1.

OPTICAL METHODS FOR IMPROVED RESOLUTION AND MULTIMODAL
DATA ACQUISITION
Because of these limitations, and because more invasive
approaches can be used in experimental animals models, meth-
ods of making hemodynamic measurements that require more
direct brain access have become well established. An increas-
ingly wide range of techniques make use of the light absorption
and/or scattering properties of brain tissue, and specifically the
hemoglobin present in the vascular system, in order to obtain
high spatial and temporal resolution readouts of hemodynamic
changes. These techniques usually require visualization of the
brain either through a craniotomy or a thin cranial window (the
skull is thinned to translucency over the imaged brain tissue).
One popular technique, intrinsic signal optical imaging (Malonek
and Grinvald, 1996), measures changes in the concentration of

oxy- and deoxy-hemoglobin and is able to resolve changes at
the level of 10 s of microns and 10 s of milliseconds (Figure 3).
This technique is particularly amenable to combination with
other methods, such as the implantation of microelectrodes
to simultaneously record neuronal activity, or the addition of
other probes to record blood flow changes or tissue oxygena-
tion. Another advantage of this approach is that the cost and
complexity of the imaging system is much reduced compared
to MRI systems. However, a major disadvantage of many stan-
dard optical imaging approaches is the limited depth penetration
due to light scattering and absorption by tissue: systems exploit-
ing light in the visible wavelength range are limited in signal
acquisition to just the first few hundred microns of cortical tis-
sue. The related techniques of near infrared spectroscopy which
uses light at longer wavelengths to penetrate several centimeters
of tissue, or diffuse optical tomography which uses an EEG-style
array of detectors (and sources), have the advantage that they
are used in both human and animal studies (they can pene-
trate the skull), but there is a severe trade off in terms of spatial
resolution due to light scattering effects. This class of method-
ologies provides information relevant to both parametric and
physiological neurovascular coupling approaches (although typ-
ically individual research studies will emphasize one other the
other approach). This is because fairly detailed measurement of
different aspects of the hemodynamic and neuronal responses
can be combined with pharmacological manipulations to enable
interrogation of relevant biochemical pathways (e.g. see reviews
by Carmignoto and Gomez-Gonzalo, 2010; Cauli and Hamel,
2010).

FIGURE 3 | Grid-like arrangement of the rodent facial whiskers (A) is

topographically preserved with mapping in somatosensory cortex (B) of

individual whiskers to individual cortical columns (C). (A–C) adapted from
Chen-Bee et al. (2012). (D) Measurement of total hemoglobin concentration
changes during stimulation of individual whiskers (A1–E1) produces
spatiotemporal activation maps that allow spatial discrimination of activation

primarily located in each corresponding cortical column. (E) Co-registered
surface (vasculature) and cortical histological sections with the stimulated barrel
highlighted in black to verify anatomical specificity. The contour around each
stimulated barrel is the activated total hemoglobin region defined as all pixels
with 50% of the peak response from a mean image of the last 4 s of the 16 s
stimulation period. (D,E) adapted with permission from Berwick et al. (2008).
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MICROSCOPY METHODS FOR CELLULAR LEVEL RESOLUTION AND
RESEARCH INTO MECHANISMS
Two-photon laser scanning microscopy (2PSLM) in an increas-
ingly popular technique that is able to record both neuronal and
hemodynamic events at cellular level resolution (see Shih et al.,
2012a, for an excellent recent review) thus enabling physiological
neurovascular coupling to be investigated. Fluorescent reporter
molecules are used to provide information about intracellular
events, vascular responses, blood flow and other phenomena and
these can be measured at extremely high spatial resolution due
to the very narrow focal plane of 2PLSM. Additionally, the use
of laser light with wavelengths in the near infrared range is able
to achieve better tissue penetration than standard optical imaging
techniques (up to 1 mm). It is also possible to “stimulate” neu-
rophysiological events, for instance using calcium uncaging by
photolysis (e.g. Takano et al., 2006), thus providing opportunities
for very fine levels of control and recording of neurovascular func-
tion. This microscopic approach is often combined with highly
specific pharmacological or electrophysiological manipulations
which may be applied to individual cells. It can be performed
in vivo or in vitro, and increasingly research groups will deploy
the technique in both modes to address a specific question in
order to combine the enhanced control, manipulation and data
quality advantages of the in vitro approach with the demonstra-
tion of functional relevance that is best achieved in vivo. 2PLSM
is therefore becoming established as a “gold standard” method for
addressing physiological neurovascular coupling research ques-
tions. Disadvantages of 2PLSM include the requirement for the
lens objective to be very close to the imaged tissue sample, mak-
ing the combination of 2PLSM with other recording methods
technically challenging. This could be a problem for relating the
microscopic findings from 2PLSM to the more macroscopic vas-
cular and neuronal events that neuroimaging measures or makes
inferences about, respectively, and which is typically a strength of
parametric neurovascular coupling approaches.

MONITORING NEURONAL ACTIVITY
A major advantage of using animal models in this context is
that it is possible to combine methods that measure hemody-
namic changes (including non-invasive imaging tools such as
small animal MRI) with other, usually invasive methods that
can measure the changes in neuronal activity that underlie the
hemodynamic events. For this latter purpose, electrodes can be
implanted directly into the brain to record the activity of neu-
rons and in some cases multi-site electrode probes are used which
can capture activity at multiple locations in the brain or along the
length of a functional unit such as the cortical column (Berwick
et al., 2008). From these recordings it is possible to resolve both
local field potentials (LFPs) (an aggregate measure of excita-
tory and to a lesser extent inhibitory synaptic, activity in a local
cell population, primarily reflecting input) and spiking activity
(action potentials, primarily reflecting output activity). Other,
optical approaches, are able to produce high resolution 2 or 3-D
maps of cellular activity (Akkin et al., 2010), often in combi-
nation with reporter dyes (Devor et al., 2007). Although these
invasive approaches provide measurements of neuronal activity
that share signal sources with non-invasive electrophysiological

techniques that are used in human subjects, such as EEG or MEG,
because of large differences in the spatial resolutions achievable
and other factors, direct comparisons are not straightforward.
In this respect, further research is needed to improve under-
standing of the relationships between the different measures of
neuronal activity made in humans and animal models to under-
pin translation of findings between studies (e.g. Buzsáki et al.,
2012).

The direct brain access, experimental control and stability
afforded by the use of experimental animal models has enabled
many combinations of the techniques or approaches described
above and in Table 1 to be used in order to directly interro-
gate neuroimaging signals and neurovascular coupling (see Zhao
et al., 2014c). For example, in our own laboratory we have estab-
lished concurrent optical imaging and high field fMRI in rodents
in order to provide insights into the hemodynamic constituents
of BOLD fMRI signal changes (Figure 4). Working outside of
the MRI environment we have been able to combined a wider
range of measurement techniques for concurrent recording of
various neuronal, metabolic, and hemodynamic signals in rodent
somatosensory cortex (Figure 5), providing a multimodal read-
out of neurovascular function. The multimodal measurement
techniques, when combined with other experimental tools such
as transgenic animals or pharmacological manipulations, can

FIGURE 4 | Concurrent fMRI and optical imaging spectroscopy. An
oblique slice covering the dorsal surface of the brain (top left) is first used to
identify a coronal (top center) or topographic slice (top right) containing the
whisker barrel cortex for fMRI data acquisition. Apparatus allowing
concurrent optical imaging is illustrated (top), consisting of a specially
adapted MRI-compatible endoscope to transmit light to and from the brain
surface. Optical imaging data is shown in the bottom panels, including the
raw gray scale imaging of the cortical surface visualized through a thin
cranial window (left and center), and activation induced changes in
deoxyhemoglobin concentration (right) that correspond well to the
concurrently acquired fMRI data (top right). Adapted with permission from
Kennerley et al. (2012).
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FIGURE 5 | Example of concurrent multi-modal measurement of

neurovascular function developed in our laboratory showing

simultaneously acquired neuronal, metabolic and vascular responses in

the somatosensory cortex following a 16 s stimulation of the

contralateral whisker pad. (A) Cerebral blood volume (CBV) activation map

from optical imaging spectroscopy (OIS). (B) Grayscale image of thin cranial
window with measurement probes indicated. (C) Neuronal response (LFP
shown). (D) Oxy/Deoxy/Total Hemoglobin changes from OIS with cerebral
blood flow (CBF) changes from laser Doppler flowmetry. (E) Tissue oxygen
and temperature responses.

provide new insights which bridge the “parametric” and “phys-
iological” neurovascular coupling research approaches. This is
especially the case when the resultant data is made available for
the development of biophysical models which attempt to cap-
ture the mathematical relationships between important biological
parameters (e.g. Zheng et al., 2010; Brodersen et al., 2011; Rosa
et al., 2011).

POSSIBILITIES FOR ACUTE AND RELIABLE LONGER TERM DATA
ACQUISITION
Acute experiments involving animal models might be conducted
over many hours, during which time baseline physiological
parameters are carefully monitored and maintained within a nar-
row range. This enhanced window for data acquisition enables a
more intensive exploration of the effects of manipulating inde-
pendent variables (such as stimulation intensity, duration, fre-
quency, repetition rate, multiple stimulus types) upon measured
responses than would be possible in human subjects. Within such
a time window it also possible to explore the effects of phar-
macological or other manipulations on a within-subjects basis,
obtaining neurovascular coupling readouts pre-, during-, and
post-treatment. Because animals can be fixed with respect to
the imaging apparatus more rigidly and for longer periods than
would be possible in human subjects, test-retest reliability is very
high. Chronic experimental designs are also possible where data
from individual subjects can be acquired repeatedly over many
weeks or months (Weber et al., 2006; Silva et al., 2011; Brydges
et al., 2013; Martin et al., 2013). Although such approaches are
also used in human neuroimaging studies, the high degree of
experimental control possible in animal studies is particularly
advantageous in light of the many factors which in humans can
alter neurovascular coupling (e.g. as discussed elsewhere in this
paper).

WHOLE BRAIN ACCESS
Human neuroimaging studies frequently report on responses to
stimuli occurring across the brain, in both cortical and subcortical
regions. In animal models it is possible to elicit controlled changes
in neuronal activity in specific structures, including deep brain
structures, which are not easily accessible to non-invasive stim-
ulation techniques in order to refine our understanding of neu-
rovascular coupling across the whole brain. In addition, as many
brain structures are in receipt of multiple, convergent inputs
that may or may not involve different cell types or neurotrans-
mitters, it is possible, by independently stimulating convergent
pathways, to improve our understanding what the composite neu-
roimaging signal is revealing about input patterns (e.g. see Enager
et al., 2009; Krautwald and Angenstein, 2012; Krautwald et al.,
2013).

KEY AREAS OF INSIGHT FROM IN VIVO EXPERIMENTAL
ANIMAL RESEARCH STUDIES
In the following sections, we focus on four major themes that
emerge from state-of-the-art research studies using animal mod-
els which target key questions in relation to understanding
neuroimaging signals.

HETEROGENEOUS DISTRIBUTION OF fMRI SIGNALS SOURCES
REVEALED BY HIGH FIELD STRENGTH fMRI
Research carried out on high field strength, preclinical MRI sys-
tems has provided important insights into the hemodynamic
composition of neuroimaging signals as well as the localization
of separable signal components to specific vascular or neuronal
architectures across the cortical laminae. This is a question not
just relating to anatomical localization, but given our extensive
understanding of how neural computation is distributed within
the cortical columnar structure, goes to the core of precisely
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“what” fMRI signals reveal about neuronal activity in the context
of cortical neuroimaging.

Recent studies in rodents and non-human primates have
enabled the cortical hemodynamic response to sensory stim-
ulation be elucidated as a function of cortical depth. Goense
et al. (2012) studied both positive and negative BOLD signals,
in addition to the commensurate CBV and CBF changes, in the
primary visual cortex of anesthetized macaques. Although pos-
itive BOLD signals were associated with increases in both CBV
and CBF, the depth profile varied for the BOLD, CBV, and CBF
changes. Whilst BOLD increases were maximal at the cortical
surface, CBF increases were maximal at approximately layer IV
whilst CBV increases occurred with relative uniformity through-
out the cortical layers. More intriguingly, negative BOLD signals
occurred in regions where CBV increased and CBF decreased.
Maximal negative BOLD responses occurred across the middle
cortical layers whereas CBV responses were largest around layer
IV and CBF responses were largest at the surface. This pattern
of results suggest that the hemodynamic response to changes in
neuronal activity that is measured in most neuroimaging studies
(which lack the ability to resolve cortical layers) is an aggre-
gate of a complex set of blood volume, flow and oxygenation
response functions which appear to be heavily dependent upon an
interaction of vascular and neuronal architecture. Goense et al.,
further conclude that these data provide evidence for differing
neurovascular coupling mechanism operating at different cor-
tical layers and underlying positive and negative BOLD signal
changes. These data are in broad agreement with Shih et al. (2013)
who used CBV-weighted fMRI at 11.7T in anaesthetized rats to
resolve hemodynamic changes at a resolution that revealed cor-
tical columnar like structure. CBV changes were again found to
be maximal at ∼layer IV. In this study, the laminar profile of
neuronal activity was also measured (in a separate group of ani-
mals) and this revealed a mismatch between hemodynamic and
neuronal activation-depth profiles. A further challenge to the
specificity of BOLD fMRI signals to neuronal activity at the level
of cortical laminae was reported by Herman et al. (2013), who
calculated the laminar profile of changes in oxidative metabolism
(CMRO2) in response to somatosensory stimulation in anes-
thetized rodents using a multimodal “calibrated fMRI” approach.
Here, BOLD and CBV changes appeared spatially uncoupled to
separately measured neuronal activity whereas CBF and CMRO2

changes were relatively well coupled to LFPs and multi-unit
activity (spiking) respectively.

On the one hand the data obtained using these methods are
problematic for fMRI: the neuronal activity mapping potential
of BOLD signals in particular appears to be confounded by the
neurovascular macrostructure of the cortical column (the spa-
tial relationship of micro- and macro-vasculature to the neuronal
and neurometabolic activity “sinks”). On the other hand, these
data represent a new set of constraints that researchers can build
into mathematical modeling and data analysis tools in order
to improve the accuracy of inferences about neuronal activity.
In addition, the increasing availability of higher field strength
systems for research use and a wider use of multimodal fMRI
acquisition approaches (i.e., acquiring CBF and/or CBV data in
addition to BOLD signals) will mitigate against the uncertainty

inherent in BOLD signals. An important new direction for high
field strength fMRI research will be to improve understanding
of neurovascular and hemodynamic variability across heteroge-
neous subcortical structures, for instance across the thalamus,
hippocampus, or adjacent component structures of the basal gan-
glia. Since fMRI methods can be applied in both human and
animal models, these efforts will be best served by designing stud-
ies that are as far as possible analogous between species (i.e.,
in terms of stimulation paradigms, pulse sequences, anatomical
focus), with animal models presenting an opportunity for more
detailed investigation of key findings using additional, invasive
techniques (as described above).

CHARACTERIZATION OF HEMODYNAMIC IMPULSE RESPONSE
FUNCTIONS (HIRF)
The “hemodynamic impulse response function” (illustrated in
Figure 2) is widely used as a canonical model in fMRI data anal-
ysis tools and as such a detailed understanding of this and how
this is affected by brain region, health and disease status, phar-
macological or physiological manipulations, is very important
(Gitelman et al., 2003; Martindale et al., 2003; Handwerker et al.,
2012). In essence, the HIRF refers to the hemodynamic response
that results from a single neuronal event: by convolving this
function with either measured neuronal activity or more com-
monly an estimate of the neuronal input function, an estimate
of the neuroimaging signal change attributable to the stimulus
is obtained. The HIRF is often approximated as a composite
of two gamma functions which may be specified by a relatively
small number of parameters. In fMRI analysis these parame-
ters can either be fixed or allowed to vary within a predefined
range in order to optimize the identification of responsive voxels.
Although the general form of the temporal HIRF has been well-
characterized and there is recent evidence that it is stable in the
context of robust alterations in hemodynamic baseline param-
eters (Kennerley et al., 2012), in human studies as well as in
animal experiments it has been shown that there are many fac-
tors that can influence the parameter values that specify the HIRF
(Figure 6), as reviewed by Handwerker et al. (2012). A further
complication is introduced by Hirano et al. (2011) who argue that
a discrepancy between the BOLD and CBF HIRF that becomes
apparent when moving from very brief to longer stimuli, is related
to differential contributions of venous and arterial hemodynamic
changes to the neuroimaging signals at different time points.

Even less well-understood is the spatial structure of the HIRF,
yet specification of this is equally important in the context of
spatiotemporal neuroimaging methods and the signal processing
required. Within the cortex, the distinct neuronal and vascular
architecture that is present in different layers is known to be a
source of variability in hemodynamic responses, as described in
the previous section. There have however been very few exper-
imental studies investigating the spatial relationships between
neuronal and hemodynamic signal changes across the cortical
surface or in sub-cortical structures. One exception is Vazquez
et al. (2013), who investigated the hemodynamic point-spread
function using a multimodal stimulation and data-acquisition
approach and showed a linear relationship between the spatial
extent of neuronal and hemodynamic responses. One reason for
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FIGURE 6 | Potential modulators of the neuronal-neuroimaging signal

relationships illustrated in Figure 1. When considering two neuroimaging
targets, which may be: (1) different brain regions, (2) the same region in
different subjects, (3) the same region in the same subject at different time

points, or (4) the same region with before and after an experimental
manipulation, it is important to consider the many possible differences
between these targets that might affect the relationship between the
measured hemodynamic and the inferred neuronal events.

a lack of research into the spatial correspondence of neuronal and
hemodynamic changes that is required to inform development of
a spatial HIRF is the availability of methods to simultaneously
provide spatiotemporal readouts in both measurement modalities
(e.g. see Baraghis et al., 2011). One solution is to investigate spa-
tial hemodynamic changes in the context of neural systems with
very well-known spatial response properties, such as the primary
visual cortex (e.g. Aquino et al., 2014). In the context of optical
imaging techniques it may also be possible to take advantage of
rapid changes in light scattering that occur (due to cell swelling)
when neurons are activated, or to separate optical signal compo-
nents (e.g. from intrinsic metabolic and hemodynamic markers)
using multichannel acquisition systems (Zhao et al., 2014b).
In section Relating signals in time and space, we review other
research into the temporal and spatial relationships between neu-
ronal and hemodynamic signal changes which will also be impor-
tant in the refinement of the canonical HIRF and how it is used.

Understanding the sources of HIRF variability could lead to
improvements in neuroimaging experimental design, data analy-
sis or interpretation. This understanding could also produce pos-
sibilities for differences in the HIRF to be exploited as biomarkers
for the neuronal, vascular, or neurovascular perturbations of
function associated with many brain diseases. Future goals could
include the development a framework for neuroimaging data
analysis that applies empirically derived constraints on a flexible
HIRF according to (e.g.) brain region, subject age, health status,
etc. Alternately, methods for obtaining subject or brain region
specific HIRF estimates in human neuroimaging could be investi-
gated (Kang et al., 2003; Handwerker et al., 2012) with the aim of
developing a rapid scanning protocol which can help “tune-up”
the canonical HIRF to be used in the analysis of the main study
neuroimaging data.

INVESTIGATIONS OF NEUROVASCULAR COUPLING MECHANISMS
A full review of insights into the biochemical or physiologi-
cal mechanisms known to underpin neurovascular coupling is
beyond the scope of this paper and there are a number of excellent
recent reviews which address this issue directly (e.g. Attwell et al.,
2010; Carmignoto and Gomez-Gonzalo, 2010; Cauli and Hamel,
2010; Hillman, 2014). In overview, combining the methodolo-
gies detailed in section Investigating neuroimaging signals using
experimental animal models and Table 1 with pharmacologi-
cal manipulations has been useful in elucidating, for instance
through selective inhibition, key mechanisms, molecules, and
mediators involved in neurovascular coupling. It is partly through
this approach for instance that the roles of nitric oxide (Akgoren
et al., 1994; Lindauer et al., 1999; Kitaura et al., 2007) and
cyclooxygenases (Niwa et al., 2000, 2001; Lecrux et al., 2012) in
neurovascular coupling have been elucidated, or the relationships
between cerebral blood flow changes and oxidative metabolism
have been probed (Leithner et al., 2010). This approach also
enables the impact of therapeutic or other drugs upon neurovas-
cular coupling or brain imaging signals to be investigated, either
to explore these effects directly or to inform fMRI data interpreta-
tion in (for example) patient groups (Choi et al., 2006; Lindauer
et al., 2010; Chin et al., 2011; Sander et al., 2013).

Most recently, possibilities for using optogenetic tools to help
dissect the cellular-specific contribution to BOLD signals and
neurovascular coupling have become available. Work using these
methods is in its earliest stages. It has been applied to investi-
gate the spatial correspondence of hemodynamic and neuronal
responses to light-activation vs. sensory stimulation (Vazquez
et al., 2013; Li et al., 2014) and in addition Lee et al. (2010) com-
bined optogenetic stimulation with fMRI in mice and demon-
strated a complex pattern of both positive and negative BOLD
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signal changes attributable to specific activation of cortical pyra-
midal cells (Lee et al., 2010; Urban et al., 2012). As in other areas
adopting optogenetic approaches, there is a proliferation of new
viral vectors and transgenic lines that allow targeting of specific
components parts of the overall system (for example, astrocytes,
Figueiredo et al., 2011) and as such it seems likely that these
approaches will provide important insights into the contribu-
tions of elements of the neurovascular “circuit” to hemodynamic
and fMRI signal changes. Whilst there are a finite number of cell
types which contribute to neurovascular coupling, the number
of pharmacological components of the key signaling pathways is
much larger and by way of their interactions, substantially more
complex. Combining new optogenetic tools and in particular
inhibitory techniques (e.g. via halorhodopsin) with pharmaco-
logical manipulations will perhaps provide the most important
insights, as this will allow interrogation of cell-specific biochem-
ical pathways. It should also be noted that hemodynamic signal
changes, and in particular when detected using fMRI, may be
vulnerable to localized heating effects caused by laser power, as
recently reported by Christie et al. (2012) and as such the use of
optogenetic tools in neurovascular research will require careful
validation.

A long standing debate in the literature which has recently
become more prominent and which is likely to benefit from the
development of optogenetic tools, concerns the relative contri-
butions of neurons, astrocytes, and pericytes to neurovascular
coupling. Whilst the release of neurotransmitters and vasoactive
molecules from neurons is well established as a primary factor in
initiating vascular responses, how to attribute the subsequent bio-
chemical cascade resulting in locally increased blood flow to spe-
cific molecules and cell types remains uncertain. On the one hand
a recent paper provided evidence for stimulus induced vasodila-
tion occurring independently of the astrocyte-located mechanism
thought to be critical for initiating the blood flow response (Nizar
et al., 2013), yet conflicting results were subsequently reported by
Lind et al. (2013). For an in-depth review of the complex role of
astrocytes in neurovascular coupling, see Howarth (2014). Two
very recent publications are likely to initiate new lines of enquiry
in this field. Firstly Hall et al. (2014) outline a major and previ-
ously neglected role for pericytes in highly localized and dynamic
control of blood flow in the brain and in a review Hillman (2014)
suggests vascular endothelial cells may represent an additional
overlooked mechanism in the regulation of brain blood flow and
the generation of neuroimaging signals. The increasingly appar-
ent complexity of neurovascular coupling may suggest a degree of
physiological redundancy in the regulation of brain blood flow, an
evolutionary consequence of the very limited oxygen available for
sustaining the brains high metabolic demand should blood flow
be perturbed. A finding by Leithner et al. (2010) that 30% of the
hemodynamic response to evoked neuronal activity remains even
when the major known biochemical pathways mediating neu-
rovascular coupling are simultaneously inhibited by a cocktail of
pharmacological agents, and that this reduction had little impact
on neuronal activity, certainly seems indicative of system about
which there is much to discover.

These uncertainties are important for the interpretation
of neuroimaging signals in a number of ways. Knowing

the biochemical or cellular substrates of hemodynamic signal
changes, the relative contributions of direct neuron-vascular sig-
naling pathways or signaling mediated via other cell types, will
provide basic insights into the information contained within
neuroimaging signals about (for example) neural computa-
tion or functional connectivity. Furthermore, variation in the
contribution or functioning of these pathways between brain
regions, disease states, age, and many other conditions could
alter the provision of such information, and therefore have
implications for how we interpret neuroimaging data in many
situations.

In summary of this section, research into neurovascular
coupling and the neurophysiological basis of neuroimaging sig-
nals is advancing beyond a broad-brush validation of neu-
roimaging signals as a marker for neuronal activity changes.
It is now detailing a wider empirical landscape that will be
needed for the interpretation of functional brain imaging sig-
nals acquired in increasingly diverse experimental and empir-
ical contexts. The next sections highlight research in these
areas that challenges simplistic interpretations of fMRI signals,
suggesting that a more nuanced and contextually informed
approach to signal analysis and data interpretation is indeed now
required.

INTERPRETING FUNCTIONAL BRAIN IMAGING SIGNALS AS
NEURONAL ACTIVITY
In Figure 6 we summarize the factors which may influence what
neuroimaging signals tell us about neuronal activity and which
may differ between many conditions including brain regions,
subjects, patient groups, and time-points. With respect to the
interpretation of functional MRI signals, neuronal activity is usu-
ally broadly classified into two types: LFPs or spiking activity.
Much research and discussion has focused upon the relative con-
tributions of these two types of activity to BOLD signals and
although it is generally recognized that neuroimaging signals cor-
relate best to LFPs (Logothetis et al., 2001; Viswanathan and
Freeman, 2007), spiking activity has also been shown to correlate
closely in many (Logothetis et al., 2001; Jones et al., 2004), but not
all contexts so far investigated (Caesar et al., 2003; Thomsen et al.,
2004; Rauch et al., 2008). Another question that has been exten-
sively investigated using experimental animals is whether brain
hemodynamic responses are linearly, or non-linearly related to
changes in specific aspects of neuronal activity. Research in which
simultaneous neuronal and hemodynamic measures are made
in cortex has shown that both linear and non-linear patterns of
coupling are found which may be attributable to a range of fac-
tors (Jones et al., 2004, 2008; Sheth et al., 2004; Hewson-Stoate
et al., 2005; Martin et al., 2006b; Hoffmeyer et al., 2007; Zhang
et al., 2009; Liu et al., 2010; Magri et al., 2011). The issues of lin-
earity and contributions of spiking or synaptic activity become
more complex when the relative contributions of different neu-
ronal input pathways (e.g. Enager et al., 2009) and neuron types
to neurovascular coupling are considered. For example, it has
been shown that both excitatory (glutamatergic) and inhibitory
(GABAergic) neurons can evoke positive BOLD signals, whilst
activity amongst inhibitory neurons alone can produce negative
BOLD signals (Lauritzen et al., 2012).
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It is important to note that much of the research that has
been conducted to investigate the relative contributions of neu-
ronal activity types to neuroimaging signals has focused almost
exclusively on cerebral and to a lesser extent cerebellar cortical
structures. Human neuroimaging on the other hand, is applied
to study the whole brain and signals originating from subcorti-
cal structures are tacitly interpreted in the same way as cortical
signals, despite the relative lack of empirical research to support
such an approach. Indeed, the research that has been conducted
suggests that neurovascular coupling is brain region dependent
(Sloan et al., 2010; Devonshire et al., 2012), a finding that is per-
haps not unsurprising given we know that brain structures differ
substantially in their cytoarchitecture, vascular density, involve-
ment of different neurons and neurotransmitter systems, and
other factors (see Figure 6). We argue that as human neuroimag-
ing continues to provide surrogate markers for activation across
the whole brain, experimental animals studies will be needed to
probe the regional heterogeneity of neurovascular coupling and
the relative contributions of the various components of neuronal
activity. Key questions to ask of specific brain structures include:

• What types of activity, in which neurons and under the influ-
ence of which efferent inputs are represented in fMRI signals?

• Are the “activation” thresholds for functionally meaningful
neuronal activity (e.g. as determined through behavioral assay)
and fMRI detectable hemodynamic changes equivalent?

• What are the baseline or resting state characteristics of neu-
ronal activity, metabolism or hemodynamics upon which
experimentally evoked changes are superposed?

RELATING SIGNALS IN TIME AND SPACE
Detailed investigation of the spatiotemporal evolution of the
hemodynamic response in experimental animal models has
demonstrated that as it propagates through the capillary net-
work and begins to include lager contributions from upstream
or downstream changes in arterioles and venules respectively,
the estimation of neuronal signal changes from hemodynamic
proxies inevitably becomes more difficult (Hirano et al., 2011;
Yu et al., 2012). For instance a recent study investigated the
spatial correlation between neuronal activity and fMRI BOLD
responses in the mouse somatosensory cortex using a combi-
nation of sensory stimulation and channelrhodopsin-mediated
activation (Li et al., 2014). Focal activation of neurons using
laser light produced neuronal responses that were tightly con-
fined to the area of stimulation (∼0.5 mm), whereas the hemo-
dynamic responses to the same stimulus extended to a much
larger area (>3 mm). Work by Vazquez et al. (2013) indicates
a closer spatial correspondence of neuronal and hemodynamic
changes where hemodynamics are measured using optical meth-
ods. This highlights how the ability of BOLD fMRI to spatially
resolve neuronal activity changes is in part limited by biophys-
ical factors such as large-vessel signal contributions to BOLD
signals (see Kim and Ogawa, 2012, for a full review). In any
case, it is evident that measuring the fine detail of the hemo-
dynamic point-spread function, which may itself depend upon
various factors (Figure 6), is important for mapping neuronal
events.

Inverted hemodynamic responses corresponding to negative
BOLD signal changes have also been studied in detail in ani-
mal models using optical imaging techniques. In both awake and
anaesthetized rats, a center-surround response profile has been
observed, where focal increases in cerebral blood flow, volume
and oxygenation are accompanied by an inverted response annu-
lus which itself appears to have a neuronal origin (Devor et al.,
2007; Boorman et al., 2010; Martin et al., 2012). Although these
“negative surround” responses are detectable using high field
strength small animal fMRI (Kennerley et al., 2012), it is less likely
that these small changes would be readily detectable in human
fMRI, even though they may represent an important component
of the overall response. The equivalent problem may also exist
in the temporal domain. Our own work in awake rodents has
revealed that the temporal hemodynamic responses function may
have additional complexity which is masked by the commonplace
us of anesthesia in in vivo research studies (see Discussion below
and Martin et al., 2013). Specifically, we find evidence for a more
dynamic, oscillatory hemodynamic response in cortex yet once
again the limitations of (in this case temporal) resolution in typi-
cal human fMRI would make it unlikely that such changes would
be detected (Martin et al., 2013). A recent theoretical work sup-
ports both of these empirical results, predicting the occurrence
of both an adjacent region of negative BOLD response as well as
temporal signal oscillations (Aquino et al., 2014).

Improvements in our understanding of the fine detail of the
spatiotemporal hemodynamic response function would have two
main benefits. Firstly, by enabling the derivation or estimation of
a more accurate spatiotemporal HIRF (e.g. one that accounts for
spatiotemporal hemodynamic oscillations, Aquino et al., 2014),
we would be better able to estimate the magnitude and spa-
tial extent of the underlying neuronal responses in standard
fMRI studies. Secondly, as the spatial and temporal resolution
of neuroimaging increases with greater availability of higher field
strength magnets and other technological improvements, deter-
mining the finer grain detail of the spatiotemporal HIRF becomes
more important to ensure parallel improvements in the accuracy
of mapping neuronal activity in space and time using hemo-
dynamic proxies. In both cases, it is clear that more research
is needed to determine the spatiotemporal correspondence of
hemodynamic responses to underlying neuronal activity, as well
as how this changes across the brain.

QUANTIFICATION, BASELINES, AND NEUROENERGETICS
A major limiting factor for the interpretation of neuroimaging
signals, especially those studies using BOLD fMRI, is the fact
that BOLD signal changes are not quantitative. Signal changes are
expressed as a percentage of baseline values which are themselves
known to be influenced by a wide range of neurophysiological
and general physiological factors. Because the BOLD signal is a
product of cerebral blood flow, cerebral blood volume, and oxy-
gen consumption (Figure 1), baseline changes affecting any or
all of these properties will impact upon measured BOLD signals
in ways that may not necessarily reflect commensurate changes
in neuronal activity. For example, commonly ingested substances
such as caffeine can alter BOLD baseline, in part through effects
on oxidative metabolism and cerebral blood flow (Mulderink
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et al., 2002; Griffeth et al., 2011), as can aging, disease, or a
range of pharmacological manipulations (e.g. D’esposito et al.,
2003; Iannetti and Wise, 2007). In addition, Jones et al. (2008)
showed that experimental alterations in baseline neuronal activity
intended to emulate switching between different cortical arousal
states affected neurovascular coupling in a rodent model. As dis-
cussed in section Limitations of animal models for neurovascular
research, a major concern for the use of animal models in this
field is the effects of anesthetic agents on baseline parameters.

One approach to tackling these difficulties has been to develop
calibrated fMRI methods for use in humans which are able to
provide quantitative measures of metabolic changes in response
to task or stimulus conditions (see review by Hoge, 2012). This
approach effectively reduces the uncertainty inherent in standard
fMRI studies by providing a measurement that is more directly
linked to neuronal activity changes, moving the research imper-
ative from neurovascular coupling to neurometabolic coupling
and neuroenergetics. Research in experimental animal models is
making important contributions in this area and this endeavor is
supported by recent evidence that the brain’s energy budget, that
is the attribution of brain energy consumption to different neu-
ronal processes (Attwell and Laughlin, 2001), is preserved across
mammalian species (Hyder et al., 2013). A full review of neu-
rometabolic coupling and neuroenergetics is beyond the scope of
the present paper (see Hyder and Rothman, 2012), however an
important early finding from studies in rat was that energy use
by neurons (oxidative glucose consumption) is linearly correlated
to excitatory neuronal activity (glutamate release, Sibson et al.,
1998). Understanding the relationship between oxidative glu-
cose consumption and specific components of neuronal activity
is therefore an important objective for interpreting quantitative
neuroimaging signals. It is partly because of this and the knowl-
edge that the metabolism of neurons and astrocytes is closely
related (e.g. Pellerin and Magistretti, 1994; Bélanger et al., 2011),
that research to understand the fine detail of neuron-astrocyte
communication is so important for understanding functional
brain imaging signals. Studies in which the activity of neurons
and astrocytes can be differentiated and/or specifically manipu-
lated, for example using optogenetic approaches combined with
2PLSM will be significant in this regard (Li et al., 2013a) and
combination of these approaches with metabolic readouts, for
instance using molecular oxygen sensors (Lecoq et al., 2011) or
more macroscopic techniques (e.g. see Devor et al., 2012) will
advance understanding considerably.

IMPACT OF DISEASE AND MODULATORY
NEUROTRANSMITTERS UPON THE INTERPRETATION OF
FUNCTIONAL BRAIN IMAGING SIGNALS
Functional brain imaging is increasingly being applied to inves-
tigate brain function in clinical populations (e.g. Diamond et al.,
2007; Karmonik et al., 2010; O’brien et al., 2010; Sundermann
et al., 2014), it is important to be able to conduct a detailed
exploration of the impact of brain diseases upon neuroimag-
ing signals and their relationship to neuronal activity in animal
models. This includes the use of both transgenic lines and phar-
macologically or surgically induced disease states (Sanganahalli
et al., 2013; Serres et al., 2014). Such investigations may become

more important as neurovascular breakdown becomes increas-
ingly implicated in a range of disease conditions (Zlokovic,
2010, 2011), suggesting that the empirical basis of assumptions
concerning neuroimaging signal interpretation which have been
established through research primarily in healthy animals, may
not apply. If neuroimaging techniques are to be used to investigate
the effects of therapeutic drugs on brain function biomarkers, it
will also be important for example to delineate (neuro)vascular
and neuronal effects of these drugs. For example, a study in
human Alzheimer’s patients suggested that acetycholinesterase
inhibitors produced alterations in cortical vascular response to
stimuli that were independent of changes in the underlying neu-
ronal response (Rosengarten et al., 2009). In addition, the impact
of other perturbations of normal brain function including nor-
mal aging (D’esposito et al., 2003; Rosengarten et al., 2003) and
the ingestion of substances known to alter neurovascular and/or
hemodynamic function such as caffeine (Pelligrino et al., 2010;
Diukova et al., 2012) or alcohol (Luchtmann et al., 2013) upon
these signals can also be explored in depth (Meno et al., 2005;
Diukova et al., 2012).

Because functional brain imaging signals are the final conse-
quence of neuronal, neurometabolic and hemodynamic events,
they are vulnerable to disease-related perturbations operating at
a number of levels. Although alterations in neuronal function as
a result of pathology are in general likely to be reflected within
altered neuroimaging signals, a key question however is to what
extent these signal changes also reflect alterations in the nor-
mal translation of neuronal events to hemodynamic changes?
The use of neuroimaging data to estimate differences in neural
signals within subjects, between groups or experimental condi-
tions, or across experimental animals, tacitly assumes preserved
or at least non-systematically altered neurovascular coupling.
There is however accumulating evidence that many brain diseases
feature altered neurovascular coupling and that in estimating
neuronal signals using hemodynamic based imaging techniques,
these effects must be taken into account.

NEUROIMAGING IN NEURODEGENERATIVE DISEASE
There is a growing consensus that changes in the function of
the neurovascular unit are a critical component of brain dis-
ease development and progression (Benarroch, 2007; Zacchigna
et al., 2008; Iadecola, 2010; Grammas, 2011; Zlokovic, 2011). In
the case of neurodegenerative disease, alterations in neurovas-
cular function have been detected at early stages, preceding the
onset of clinical indicators (Bookheimer et al., 2000; Ruitenberg
et al., 2005; Knopman and Roberts, 2010; Sheline et al., 2010;
Zlokovic, 2011) and it is now well established that cerebrovas-
cular dysfunction is a major risk factor for many brain diseases
(Girouard and Iadecola, 2006; Iadecola, 2010; Toledo et al.,
2013). A number of studies have identified changes in vascu-
lar reactivity, hemodynamic responses or neurovascular coupling
in animal models of neurodegenerative disease (Rancillac et al.,
2012; Sanganahalli et al., 2013). In relation to this, neuroinflam-
mation has been identified as a key neurodegenerative disease
process involving neurovascular unit disruption. Whilst acute
neuroinflammatory responses may have a neuroprotective func-
tion, chronic inflammatory responses within the central nervous
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system are associated with neuronal damage and may not only
“fans the flames” of many CNS disorders (Frank-Cannon et al.,
2009), but may precede and even play a causal role in these dis-
eases (Hauss-Wegrzyniak et al., 1998; Qin et al., 2007; Gao et al.,
2011; Cunningham, 2013).

Work carried out in specific animal models of disease has
also suggested disease-related alterations in neurovascular func-
tion that may affect our ability to interpret fMRI signal changes.
In the area of neurodegeneration for instance, a widely used
transgenic model is one in which the amyloid-beta precursor
protein (APP) is over-expressed, leading to a toxic accumula-
tion of amyloid-beta protein. Such models recapitulate many,
but not all (for a review see Balducci and Forloni, 2011) of the
major features of human AD including an age-dependent neu-
rovascular impairment and vascular dysfunction (Lecrux and
Hamel, 2011). Work in these mice shows, amongst other things,
impaired hemodynamic responses to neuronal activation, altered
resting cerebral blood flow and cerebrovascular autoregulation
and impaired metabolic activity (Iadecola et al., 1999; Niwa et al.,
2002; Nicolakakis et al., 2008). Additionally, ApoE4 mice model
the known association in humans between AD (and cerebral
amyloid angiopathy, CAA) and possession of the apolipoprotein
E ε4 allele (ApoE4). Expression of ApoE4 has been linked to
higher risk of AD with earlier onset (Blacker et al., 1997) and
is believed to be related to dysfunctional clearance of amyloid-
beta from the brain (Castellano et al., 2011; Hawkes et al.,
2012). It has been suggested that the APOEε4 allele may alter
neurovascular function through amyloid-beta exerting a time-
and concentration-dependent toxic effect on rat microvascular
endothelial cells (Folin et al., 2006). In addition, fMRI readouts
of brain hemodynamic signals have found that in human ApoE4
carriers, cerebral blood flow, task-related brain activity, and func-
tional connectivity appear altered several decades prior to any
clinical indicators of dementia (Filippini et al., 2009, 2011).

In addition to Alzheimer’s disease and other neurodegenera-
tive conditions, alterations in neurovascular coupling have also
been reported in a number of other diseases and pathologi-
cal states (Girouard and Iadecola, 2006; Hamilton et al., 2010)
including stroke and ischemia (Lin et al., 2011; Baker et al., 2013;
Jackman and Iadecola, 2014), hypertension and hypotension,
spreading depression (Hamzei et al., 2003; Nagaoka et al., 2006;
Del Zoppo, 2010; Ayata, 2013; Fordsmann et al., 2013) as well as
in normal aging (D’esposito et al., 2003). There is also accumulat-
ing evidence for longer term effects of systemic health challenges
upon brain microcirculatory regulation and neurovascular cou-
pling. For example, a recent study demonstrated impairment of
neurovascular coupling in animals fed a high fat diet over a
period of several weeks (Li et al., 2013b) and systemic infection
has been show to produce alterations in cerebrovascular function
(Puntener et al., 2012) and the shape of hemodynamic responses
(Couch et al., 2013). Finally, many brain diseases involve alter-
ations in the function of specific neurotransmitter systems, and
we refer the reader to the next section for an exploration of the
possible effects of such alterations.

Overall, there is substantial scope for disease conditions and
potentially the health status of individuals more generally to
impact upon how we should interpret functional neuroimaging

data. By understanding more specifically how these alterations
impact upon neurovascular function and the relationships
between neuronal and hemodynamic changes, it may be pos-
sible to either optimize data analysis strategies to account for
these effects or build consideration of these changes into our
discussions of neuroimaging findings. Lastly, we speculate that
early alterations in neurovascular function associated with many
diseases may be detectable through concurrent measurement of
neuronal and hemodynamic activity in the brain. As such, these
neurovascular changes may provide for novel disease biomarkers,
measureable using multimodal techniques that are now becoming
available for use in humans. We return to this in the last section
of this review.

NEUROTRANSMITTER AND NEUROPHARMACOLOGICAL
MODULATIONS OF NEUROVASCULAR COUPLING
Although the established view of the role of specific
neurotransmitters in neurovascular coupling processes empha-
size predominantly glutamate and GABA (e.g. Logothetis, 2008),
recent evidence has emerged suggesting that other neurotrans-
mitters may also play a role. The serotonin, noradrenaline,
dopamine, and acetylcholine systems each feature neurons that
project widely throughout cortical and subcortical structures, in
addition to forming key elements of certain specific structure-
structure connections. A fundamental challenge for the use of
hemodynamic imaging methods in contexts where function in
these neurotransmitter systems (and relevant structures) arises
from the fact that they are vasoactive (Choi et al., 2006; Hamel,
2006; Martin and Sibson, 2008; Jenkins, 2012; Shih et al., 2012b;
Toussay et al., 2013), and therefore able to elicit hemodynamic
effects which may not be directly related to their effects upon
neuronal activity. We will focus here on the emerging evidence
for effects of dopamine and serotonin neurotransmission upon
neurovascular coupling and the interpretation of neuroimaging
signals, although similar lines of evidence exist for modulation
of neuroimaging signals by other neurotransmitters including
acetylcholine (Hamel, 2006; Rosengarten et al., 2006; Kocharyan
et al., 2008) and noradrenaline (Toussay et al., 2013).

The neurotransmitter dopamine (DA) and the functional
anatomy of the dopaminergic system has been intensively stud-
ied for many years. This is due in part to the known involvement
of this neurotransmitter in a range of cognitive, affective and
motor functions in healthy brain as well as a wide range of
diseases including Parkinson’s disease, schizophrenia, drug addic-
tion, ADHD, and pain disorders to name a few. Unsurprisingly,
there is a rapid proliferation of non-invasive brain imaging stud-
ies of both healthy and disease-related brain processes that are
associated with alterations in DA function, for instance, fMRI
studies of Parkinson’s disease (Hacker et al., 2012), risk-taking
behavior (Kohno et al., 2013), schizophrenia (Yoon et al., 2013),
reward prediction error (Chowdhury et al., 2013). This litera-
ture, which addresses pharmacological, disease- or task-related,
or genetic alterations in DA function, rests on the assumption
that differences in fMRI signals between conditions or subjects
are attributable to effects of the altered DA function on neuronal
activity. We suggest that sufficient data to support this assump-
tion does not yet exist. Although arguments have been made that
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fMRI signals may provide an adequate biomarker of DA release
(Knutson and Gibbs, 2007), this does not address the issue of how
to interpret stimulus/task evoked changes in neuronal activity in
the context of altered DA function. In addition, we know that the
long established vasoactive properties of dopamine are capable of
producing complex effects upon the relationship between DA sig-
naling, neurovascular coupling and fMRI responses in subcortical
structures (Devonshire et al., 2004; Choi et al., 2006; Shih et al.,
2009; Jenkins, 2012; Mandeville et al., 2013).

Due in part to its non-quantitative nature, alterations in base-
line parameters including metabolism, cerebral blood flow, and
oxygenation renders fMRI signal interpretation vulnerable to the
effects of such changes upon both evoked responses and resting-
state measurements. As it has been shown that the magnitude of
stimulus-evoked BOLD responses is dependent upon such base-
line parameters (Shulman et al., 2007; Lu et al., 2008), the effects
of changes in dopaminergic neurotransmission upon local base-
line conditions such as cerebral blood flow and brain metabolism
is an important potential confound. In relation to this, direct reg-
ulation of brain microvasculature tone by dopamine has been
demonstrated (Krimer et al., 1998; Choi et al., 2006; Kowianski
et al., 2013) and such vasomotor regulation has the capacity to
modulate measured fMRI signal changes (Tian et al., 2010), with
these effects occurring independently of neurogenic neurovascu-
lar coupling and this potentially confounding interpretation of
fMRI data. For instance, Arthurs et al. (2004) measured the effects
of the selective dopamine D2 receptor antagonist sulpiride on
electrophysiological and fMRI responses in human subjects and
using path analysis estimated that 84% of the drug effect on fMRI
responses to stimulation occurred via direct effects upon hemo-
dynamics, rather than neuronal responses themselves (Arthurs
et al., 2004).

fMRI is also widely used to investigate the role of 5-HT in nor-
mal function, disease processes, and therapeutic drug effects in
a wide range of human and animal models (Hariri et al., 2002;
Hariri and Weinberger, 2003; Del-Ben et al., 2005, 2008; Mckie
et al., 2005; Stark et al., 2006, 2008; Rao et al., 2007; Tanaka
et al., 2007; Graeff and Del-Ben, 2008; Munafo et al., 2008).
Within human fMRI studies, responses in structures receiv-
ing serotonergic input appear to be profoundly influenced by
synaptic 5-HT, with up to 42% of fMRI response variability
attributable to availability of the 5-HT transporter (Rhodes et al.,
2007). Windischberger et al. (2010) report a powerful modula-
tion of BOLD responses to stimuli by selective serotonin reuptake
inhibitors (SSRIs) that was specific to regions receiving dense
serotonergic projections. However, many research studies point
to a complex role for serotonin in neurovascular coupling (Cauli
et al., 2004; Hamel, 2006), vascular reactivity (Bonvento et al.,
1997) and for the interpretation of BOLD fMRI signals in terms
of spiking or synaptic activity (Rauch et al., 2008). Additionally,
the well-established influence of ascending serotonergic projec-
tions on the cerebral vasculature and microvascular tone (Toda
and Fujita, 1973; Dieguez et al., 1981; Cohen et al., 1996, 1999)
provide strong potential for modulation of vascular compliance
and therefore BOLD signal dynamics (Behzadi and Liu, 2005;
Boas et al., 2008). This severely complicates (a) the interpretation
of neuroimaging signals from structures receiving serotonergic

input, and (b) comparisons of task-evoked responses between
conditions involving altered 5-HT function.

LIMITATIONS OF ANIMAL MODELS FOR NEUROVASCULAR
RESEARCH
Although work in animal models is essential to advance the
capabilities of hemodynamic neuroimaging methods to estimate
neuronal activity in humans, there are a number of important
limitations associated with their use. A major concern is the use
of anesthesia in the vast majority of animal research carried out
in this field. Anesthesia is used for two main purposes. Firstly,
as many of the techniques used to study neuronal, neurovascular
and hemodynamic processes are invasive, anesthesia is necessary
in order to prevent suffering associated with (for instance) the
placement of recording electrodes. Secondly, anesthesia is often
used in order to prevent movement of the animal during data col-
lection. It is possible to conduct both imaging (e.g. using fMRI or
optical techniques) and electrophysiological experiments in un-
anaesthetized animals and indeed this approach has been taken
by a number of laboratories (see below). For small animal imag-
ing in particular therefore, anesthesia is frequently used chiefly to
prevent movement, avoiding the need for restraint and/or length
animal training protocols. Because all general anesthetics have
at least moderate effects upon normal physiological regulation
(for example blood pressure, blood oxygenation, thermoregu-
lation) it is usually necessary to perform additional invasive
procedures (even if the imaging technique is itself non-invasive)
in order to enable normal physiology to restored, monitored and
maintained.

Using anesthesia in animal research models has important
consequences for translation of findings from in vivo experimen-
tal research to the human neuroimaging arena (where subjects are
rarely imaged under anesthesia). Previous research in our labora-
tory and elsewhere has indicated that anesthetic agents disrupt
neurovascular coupling in a number of ways (Lahti et al., 1999;
Nakao et al., 2001; Brevard et al., 2003; Sicard et al., 2003; Martin
et al., 2006b, 2012; Luo et al., 2007; Tsurugizawa et al., 2010;
Fukuda et al., 2013), including via alterations in baseline hemo-
dynamic parameters (Shulman et al., 1999; Hyder et al., 2002).
A recent study comparing the effects of four different anesthetics
on BOLD fMRI responses in mice found that response differences
could largely be explained by differing systemic effects of the stim-
uli attributable to the different anesthetic conditions (Schroeter
et al., 2014).

A relatively consistent finding is that anesthetics significantly
delay the hemodynamic response function (Martin et al., 2006b;
Huttunen et al., 2008; Franceschini et al., 2010) and although
a recent study comparing fMRI BOLD responses in awake and
anesthetized marmosets found the opposite effect (more pro-
tracted responses in awake animals, Liu et al., 2013), the authors
suggest this was in turn the result of the much larger responses
observed and consequent increases in venous drainage time.
A further complication is that different anesthetic agents disrupt
neurovascular coupling in different ways. This may be particu-
larly problematic for pharmacological neuroimaging studies. For
example Du et al. (2009) demonstrated anesthetic-dependent
effects upon hemodynamic changes induced by cocaine including
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alterations in the coupling between different hemodynamic mea-
sures. A study investigating the role of nitric oxide in neurovas-
cular coupling found differences between awake and anesthetized
conditions that were in turn attributable to the deleterious effects
of the anesthetic agent upon the magnitude of stimulus-evoked
cerebral blood flow changes (Nakao et al., 2001). For a more in
depth discussion of the effects of anesthesia in studies of neu-
rovascular coupling the reader is directed to a recent review paper
(Masamoto and Kanno, 2012).

Much human fMRI engages subjects in complex cognitive
tasks which involve activity within, and communication between,
networked structures. Models of many relevant cognitive and
affective processes such as learning, memory and attention have
been established in awake behaving animals, as well as capabil-
ities to study disease-relevant alterations in these functions. An
additional problem with the use of anesthesia in animal mod-
els therefore is that it limits the possibilities for investigating
neurovascular function, and therefore improving our under-
standing neuroimaging signals, in the context of these “higher-
order” brain functions. Although a number of laboratories have
developed procedures for conducting fMRI or other hemody-
namic measurement procedures in awake animals (Martin et al.,
2002, 2013; Brevard et al., 2003; Sicard et al., 2003; Chin et al.,
2011; Desai et al., 2011; Brydges et al., 2013; Liu et al., 2013;
Pisauro et al., 2013; Takuwa et al., 2013), and a few stud-
ies also report on the neuronal signals underlying the hemo-
dynamic and/or fMRI responses (Lipton et al., 2006; Martin
et al., 2006b; Goense and Logothetis, 2008; Sirotin and Das,
2009; Desai et al., 2011; Liu et al., 2013), this work continues
to focus almost exclusively on cortical structures. In addition,
the effects of stress, especially where animals are restrained,
must be carefully taken into account as this is likely to have
a range of general physiological and neurophysiological effects.
This is particularly the case were animal models of neuropsy-
chiatric illness or related drug treatments are being studied. It
will also be a challenge to establish animal models for cogni-
tive or behavioral neuroscience in the context of the appara-
tus generally required for investigation of neuroimaging signals
and neurovascular coupling (as outlined in section Investigating
neuroimaging signals using experimental animal models and
Table 1), where restraint is required. To reduce restraint stress
and allow more sophisticated experimental designs, methods
for fixing experimental animals with respect to data acquisition
apparatus but permitting engagement in cognitive tasks have
recently been reported (e.g. Dombeck et al., 2007), and one
study reports a method whereby rats voluntarily engage with
head-restraint apparatus to allow functional brain imaging (using
2PLSM).

FUTURE RESEARCH CHALLENGES AND POSSIBILITIES
We suggest that a key contribution of future research stud-
ies in animal models will be the investigation of neuronal-
hemodynamic-neuroimaging signal relationships in subcortical
structures, using both awake and anesthetized animals. To opti-
mize the translation of neurovascular coupling data from animal
studies to improving neural signal estimation in human fMRI,
it will also be important to study neurovascular coupling in the

context of information processing or in behavioral paradigms
that more closely reflect research designs used in human sub-
jects. A major challenge in this respect will be the use of restraint
in most of the current awake animal studies. A small number
of laboratories have already successfully investigated affective or
cognitive processes using fMRI in awake rats (e.g. see review
by Ferris, 2014; also Brydges et al., 2013; Zhao et al., 2014a)
and the combination of these approaches with either concur-
rent measurement of neuronal data, or careful synthesis of new
hemodynamic data with existing data regarding underlying neu-
ronal activity, will provide important insights. Methods have also
been recently developed for use in rodents that utilize virtual
reality technology in order to provide head-fixed animals with a
pseudo-environment with which they can interact (Harvey et al.,
2009; Scott et al., 2013). Adaptations of these techniques may
further provide key insights into the neuronal events that fMRI
signals report on whilst the brain is engaged in relatively complex
tasks.

Technological developments are increasing the possibilities
to investigate the neuronal basis of hemodynamic neuroimag-
ing signals directly in humans. For example, combining EEG
with fMRI (EEG-fMRI) is an approach that has primarily been
deployed to marry the relatively high spatial resolution of fMRI
with the high temporal resolution of EEG for cognitive neu-
roscience research purposes (Huster et al., 2012; Laufs, 2012).
This approach may also provide insights into neurovascular cou-
pling in human subjects (Wan et al., 2006; Diukova et al., 2012;
Huster et al., 2012; Mayhew et al., 2013; Mullinger et al., 2013)
although the spatial and temporal mismatch of the measure-
ments made by each technique will pose a number of chal-
lenges: the spatial and temporal domains from which data are
sampled are very different. Other approaches include simultane-
ous near infra-red spectroscopy (NIRS) and EEG (Moosmann
et al., 2003), combined MEG and NIRS (e.g. Mackert et al.,
2004) or diffuse optical imaging combined with MEG (Ou
et al., 2009). Most recently, Fabiani et al. (2014) report on
a combined optical spectroscopy, event-related potential and
fMRI study of change in neurovascular function in normal
aging.

SUMMARY
As non-invasive brain imaging techniques are used to address
an increasingly diverse range of questions relevant to both brain
function and dysfunction, it will become more important that
our understanding of the neurophysiological basis of these signals
is specific to the brain structure, disease context, pharmaco-
logical, or task-related effects under investigation. Fortunately
a wide range of experimental tools, including combinations of
methods that optimize our ability to probe neuroimaging and
neuronal signal relationships, are now available in experimental
animals. It will be important that these approaches continue to
develop to enable neurovascular coupling to be probed in contexts
established in behavioral neuroscience. Simultaneously, technical
advances in human research studies that allow neurovascular cou-
pling to be probed directly will help detail a more comprehensive
empirical framework for estimating neural signals in the human
brain from hemodynamic proxies.
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The contribution of astrocytes to the regulation of cerebral
blood flow
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Edited by: In order to maintain normal brain function, it is critical that cerebral blood flow (CBF) is
matched to neuronal metabolic needs. Accordingly, blood flow is increased to areas where
neurons are more active (a response termed functional hyperemia). The tight relationships
between neuronal activation, glial cell activity, cerebral energy metabolism, and the
cerebral vasculature, known as neurometabolic and neurovascular coupling, underpin
functional MRI (fMRI) signals but are incompletely understood. As functional imaging
techniques, particularly BOLD fMRI, become more widely used, their utility hinges on
our ability to accurately and reliably interpret the findings. A growing body of data
demonstrates that astrocytes can serve as a “bridge,” relaying information on the level
of neural activity to blood vessels in order to coordinate oxygen and glucose delivery with
the energy demands of the tissue. It is widely assumed that calcium-dependent release
of vasoactive substances by astrocytes results in arteriole dilation and the increased
blood flow which accompanies neuronal activity. However, the signaling molecules
responsible for this communication between astrocytes and blood vessels are yet to
be definitively confirmed. Indeed, there is controversy over whether activity-induced
changes in astrocyte calcium are widespread and fast enough to elicit such functional
hyperemia responses. In this review, I will summarize the evidence which has convincingly
demonstrated that astrocytes are able to modify the diameter of cerebral arterioles. I
will discuss the prevalence, presence, and timing of stimulus-induced astrocyte calcium
transients and describe the evidence for and against the role of calcium-dependent
formation and release of vasoactive substances by astrocytes. I will also review alternative
mechanisms of astrocyte-evoked changes in arteriole diameter and consider the questions
which remain to be answered in this exciting area of research.

Keywords: astrocyte, neurovascular coupling, cerebral blood flow, calcium, functional hyperemia

INTRODUCTION
For normal functioning of the brain to be maintained it is critical
that increases in neuronal energy demands are met by changes
in local blood flow with high temporal and spatial resolution.
This necessitates close connections between neurons, glia, and
the energy metabolism and blood supply of the brain. Increased
neuronal activity is accompanied by an increase in local cerebral
blood flow (CBF), a phenomenon termed functional hyperemia.
It is this increase in CBF and oxygenation which underlies BOLD
functional MRI (fMRI). BOLD fMRI is commonly used as a sur-
rogate measure of neural activity. A valid interpretation of such
data requires a thorough understanding of the cellular basis of
the BOLD signal. While a coupling between cerebral energy con-
sumption and neuronal activity was originally suggested over a
century ago (Roy and Sherrington, 1890), the exact relationship
remains an active area of research. Although neuronal activity
induced increases in blood flow are due, at least in part, to the
direct action of neurons [via glutamate-evoked release of nitric
oxide (NO)] on arteriole smooth muscle (Fergus and Lee, 1997),
over the past decade there has been extensive research (Zonta
et al., 2003; Mulligan and MacVicar, 2004; Filosa et al., 2006;

Takano et al., 2006) determining the role which astrocytes, and
activity-induced Ca2+ signals within astrocytes, may play (as
discussed in recent reviews by Attwell et al., 2010; Petzold and
Murthy, 2011).

Being situated in the synaptic cleft and having multiple endfeet
which are opposed to smooth muscle cells (Figure 1A), astro-
cytes can act as a “bridge,” relaying information about changes in
synaptic activity between neurons and the vasculature, ensuring
that neuronal energy demands are met.

INITIAL IN VITRO EVIDENCE DEMONSTRATED THAT
ASTROCYTES CAN REGULATE ARTERIOLE DIAMETER
Initial studies revealing a potential role of astrocytes in neurovas-
cular coupling were performed in vitro using acute brain slices
and whole mount retina. This in vitro research has resulted in
convincing evidence that astrocytes are able to control vascu-
lar diameter (Figure 1B). During neuronal activity, glutamate is
released and acts via neuronal NMDA receptors to activate neu-
ronal nitric oxide synthase (nNOS), resulting in the release of
NO. NO acts on smooth muscle cells, increasing blood flow via
a cGMP pathway (Fergus and Lee, 1997). However, in addition to
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FIGURE 1 | Increases in astrocyte [Ca2+]i are accompanied by changes in

vessel diameter in vitro and in vivo. (A) Two-dimensional projection of two
photon microscopy images showing that GFP-positive astrocytes and their
endfeet delineate an arteriole. Scale bar is 20 μm. Reprinted by permission from
Macmillan Publishers Ltd., Nature (Mulligan and MacVicar, 2004) copyright
(2004). (B) Astrocytes in brain slice from rat loaded with calcium indicator dye
(rhod-2/AM) and caged calcium compound (DMNPE-4/AM). Uncaging calcium
within astrocytes causes an increase in [Ca2+]i in astrocyte soma and endfeet
which preceded vasodilation (top). Vessel and pseudo-colored endfoot Ca2+
changes correspond to times in top image. Reprinted by permission from

Macmillan Publishers Ltd., Nature (Gordon et al., 2008) copyright (2008).
(C) Vessel diameter changes can be measured in mouse cortex in vivo using
2-photon microscopy in line scan mode. Here, calcium is measured using
rhod-2/AM and vessels are visualized with a dextran-coupled dye. Left, line scan
image of an artery exposed to photolysis of caged Ca2+ which increases
astrocyte [Ca2+]i. Astrocytic Ca2+ and vessel diameter increase almost
simultaneously following photolysis. Right, larger views of line scan section
indicated in yellow boxes. (D) Time course of changes in astrocyte [Ca2+]i and
vessel diameter in (C). Reprinted by permission from Macmillan Publishers
Ltd., Nature Neuroscience (Takano et al., 2006) copyright (2006).

triggering neuronal NO-evoked effects on the vasculature, neu-
ronally released glutamate can act on astrocyte metabotropic
glutamate receptors (mGluR), raising astrocyte [Ca2+]i (Zonta
et al., 2003; Takano et al., 2006). Over a decade ago, obser-
vations of astrocyte soma and endfeet [Ca2+]i signals which

were well-timed with vessel diameter changes in response to
mGluR activation were the first evidence that astrocytes may con-
tribute to neurovascular coupling (Zonta et al., 2003). This work
implicated cyclooxygenase enzymes (COX) in the downstream
signaling pathway leading from increased astrocyte [Ca2+]i to
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vessel dilation. An increase in astrocytic [Ca2+]i can result in
the production of arachidonic acid (AA) via phospholipase A2
(PLA2), a Ca2+ sensitive enzyme highly expressed in astro-
cytes (Farooqui et al., 1997; Cahoy et al., 2008). AA is subse-
quently metabolized to COX and cytochrome P450 epoxygenase
derivatives [prostaglandin E2 (PgE2) and epoxyeicosatrienoic
acids (EETs), respectively]. These vasoactive metabolites can be
released from the astrocyte endfeet, apposed to arterioles, result-
ing in activation of smooth muscle K+ channels and vasodilation
(although see Dabertrand et al. (2013) who suggest that PgE2 may
constrict, rather than dilate, isolated parenchymal arterioles).

In addition to AA being metabolized within the astrocyte,
it can diffuse to arteriole smooth muscle, producing the vaso-
constrictor 20-HETE via ω-hydroxylases (Roman, 2002). Shortly
after the demonstration that astrocyte [Ca2+]i increases were
closely linked to vasodilations, two photon photolysis of caged
calcium directly within the somata of astrocytes was used to
trigger a [Ca2+]i transient within the astrocyte and evoked
vasoconstriction (Mulligan and MacVicar, 2004). Pharmacology
experiments revealed the importance of PLA2 and it was pro-
posed that 20-HETE, a vasoconstrictor, was generated from
AA, which was formed in the astrocytes. 20-HETE inhibits
smooth muscle K+ conductances to depolarize and contract
smooth muscle cells (Lange et al., 1997). Thus, astrocyte
[Ca2+]i entry can trigger either vasodilation (Zonta et al.,
2003; Filosa et al., 2004) or vasoconstriction (Mulligan and
MacVicar, 2004) depending on which signaling pathway domi-
nates (Figure 2).

The retina is an ideal system in which to study blood flow regu-
lation in response to local signals as its low density of blood vessels
requires the ability to efficiently match the local blood supply
to local neuronal metabolic needs (Funk, 1997). The observa-
tion that glial [Ca2+]i transients were closely correlated in time
with changes in arteriole diameter was extended to the case of the
retina where both vasodilations and constrictions were reported
to be evoked by either physiological light stimulation or uncaging
of Ca2+ in Muller cells (Metea and Newman, 2006). In agree-
ment with the previous findings in hippocampal slices (Mulligan
and MacVicar, 2004), 20-HETE was implicated as the vasocon-
strictor molecule in the retina. However, in contrast to findings
in cortical slices (Zonta et al., 2003), the data suggested that
conversion of AA to EETs, rather than to PgE2, caused arteri-
ole dilations in the retina. The hunt was on to find the variable
which selects a dilatory response over a constrictive one and vice
versa.

While in vitro studies have several advantages, including the
ability to control various cellular elements, there are techni-
cal limitations to this approach which are worth noting. A
lack of myogenic tone, due to a lack of perfusion and intra-
luminal pressure (Iadecola and Nedergaard, 2007), can result
in vessels being maximally dilated. To compensate for this
loss of tone, in many studies, slices are pre-treated with a
vasoconstrictor (Zonta et al., 2003; Filosa et al., 2004; Metea
and Newman, 2006). However, preconstriction has been shown
to alter the direction of arteriolar responses (Mulligan and
MacVicar, 2004). Furthermore, many experiments are carried
out at non-physiological temperatures, e.g., with brain slices

FIGURE 2 | Astrocyte calcium-dependent vasoactive signaling

pathways. Neuronally released glutamate can act on astrocyte mGluRs,
activating PLC, and increasing astrocyte [Ca2+]i, activating PLA2 resulting in
the release of AA from the plasma membrane. AA can be metabolized
within the astrocyte to form PgE2 or EETs which are released and act on
smooth muscle cells, evoking vasodilation. Alternatively, AA can be
released and act on smooth muscle cells where it is metabolized to the
vasoconstrictor 20-HETE. ATP can activate Ca2+-mediated downstream
vasoactive pathways either by acting on P2Y receptors and activating PLC
or via P2X7 receptors, increasing [Ca2+]i. An alternative vasoactive pathway
downstream of the [Ca2+]i increase is the activation of BKCa channels and
subsequent efflux of the vasodilator K+.

maintained at room temperature (Mulligan and MacVicar, 2004;
Gordon et al., 2008).

HOW IS THE DIRECTION OF ARTERIOLE DIAMETER CHANGE
DETERMINED?
NO, which can bind to the heme moiety and inactivate
cytochrome P450 enzymes (Fleming, 2001; Roman, 2002), was
suggested to determine the direction of retinal arteriole diameter
change (Metea and Newman, 2006). While in the brain neu-
ral activity and the resulting NO production has been shown to
correspond to increases in blood flow (Akgoren et al., 1994), in
the retina the occurrence of vasoconstrictions dominated as NO
levels increased (Metea and Newman, 2006). This finding was
in agreement with pharmacological inhibition of NO synthase,
which converted astrocyte-evoked vasoconstrictions to vasodila-
tions in brain slices (Mulligan and MacVicar, 2004). A possible
explanation for this observation is that preconstriction of vessels
by L-NAME, which was used to inhibit NO synthase, increases the
basal tone of vessels and, hence, may predispose them to dilate to
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other factors (Blanco et al., 2008). Many of the enzymes suggested
to be responsible for signaling downstream of the increase of
astrocyte [Ca2+]i are sensitive to NO (e.g., CYP4A which pro-
duces 20-HETE) (Fleming, 2001; Roman, 2002) suggesting that a
complex relationship may exist between NO levels and neurovas-
cular coupling signaling pathways. Differing basal NO levels may
exist in different preparations, hence pathways may be inhibited
to varying degrees. This may explain why some groups reported
only constrictions (Mulligan and MacVicar, 2004) while others
reported constrictions and dilations (Metea and Newman, 2006).

Metabolic factors, such as partial pressure of oxygen (pO2)
(Offenhauser et al., 2005) and the extracellular lactate con-
centration (Hu and Wilson, 1997) change rapidly within the
parenchyma during neural activity. Gordon et al. (2008) per-
formed experiments in acute brain slices and proposed that such
metabolic factors may play a role in determining the direction
of arteriole diameter changes. The level of oxygen present in the
aCSF (artificial CSF) used in these experiments was found to
determine the direction of arteriole diameter change in response
to uncaging calcium within the soma of astrocytes (Gordon et al.,
2008). At higher levels of O2 (aCSF bubbled with 95% O2 and 5%
CO2, typical of acute brain slice experiments), vasoconstrictions
were triggered, while at lower O2 levels vasodilations dominated
(Figure 1B). The lower O2 level (aCSF bubbled with 20% O2),
resulted in a pO2 which mimics the lower end of physiological
measurements in vivo (Offenhauser et al., 2005). At the lower oxy-
gen levels used, both lactate and adenosine levels were increased
compared to under conditions of higher O2 and vasodilation
was proposed to be dominant due to two mechanisms. Firstly, as
uptake of PgE2 by the prostaglandin transporter is inhibited by
extracellular lactate (Chan et al., 2002), there is an accumulation
of extracellular PgE2 following [Ca2+]i-evoked PgE2 release by
astrocytes, thus facilitating the vasodilatory response. Secondly,
the increased levels of adenosine were proposed to be acting on
A2A receptors on the smooth muscle itself, blocking Ca2+ chan-
nels (Murphy et al., 2003) and preventing vasoconstriction. In
agreement with these findings, in ex vivo retina, the incidence of
light-evoked vasoconstrictions was lower in 21% O2 compared to
100% O2. Additionally, at the lower oxygen level, a PgE2 compo-
nent of vasodilation became salient (Mishra et al., 2011). Whether
such a mechanism plays a functional role in vivo remains to be
proven. Although changing tissue pO2 by breathing high or low
oxygen has been shown to change basal CBF and arteriole diam-
eter in the direction predicted by in vitro experiments (McCalden
et al., 1984; Mishra et al., 2011), hyperoxia had no effect on light-
evoked dilations or flow in the retina in vivo (Mishra et al., 2011).
Furthermore, an increased tissue pO2 failed to alter the func-
tional hyperemia response to sensory stimulation (Lindauer et al.,
2010). Lin et al. (2010) recently published human NMR spec-
troscopy studies showing that CBF increases were positively cor-
related with lactate production while being negatively correlated
with the percentage change in oxygen consumption (CMRO2).
These findings suggest that task-induced CBF responses are medi-
ated by factors other than the demand for oxygen. In order to test
the in vivo relevance of the findings of Gordon et al. (2008), it
may be more appropriate to test the end effectors predicted by
their experiments, i.e., lactate and adenosine.

ALTERNATIVE MECHANISMS OF ASTROCYTE CONTROL
OF CBF
In addition to the mGluR-evoked mechanisms of CBF regulation,
there is evidence for a further glutamate-dependent pathway. In
the olfactory bulb, intrinsic optical signal (IOS) changes (used as
a proxy for CBF measurements) in response to odor stimulation
were found to be unaffected by blocking AMPA/NMDA recep-
tors nor mGluRs (Gurden et al., 2006). However, the increase
in CBF was reduced when glial glutamate transporters were
blocked. This work was expanded by Schummers et al. (2008)
who demonstrated that, in visual cortex, the astrocytic [Ca2+]i

signal and the change in IOS in response to a visual stimu-
lus were significantly reduced when glial glutamate transporters
were blocked. Furthermore, blocking glial glutamate transporters
reduced odor-evoked increases in both erythrocyte velocity and
flux in the olfactory bulb [even after controlling for poten-
tially higher receptor activity after transporter blockade Petzold
et al. (2008)]. In contrast to experiments in the visual cortex
(Schummers et al., 2008) however, Petzold et al. (2008) observed
no significant change of the calcium response in astrocyte somata
when blocking glial glutamate uptake. While further experimen-
tation is needed to resolve the signaling molecules which underlie
this mechanism of CBF control, these data suggest that calcium-
independent vasodilatory pathways may exist. Indeed, IP3-
independent stimulation-induced vasodilation has recently been
observed in the cortex of IP3 knockout mice (Nizar et al., 2013).
The role of astrocyte Ca2+ signaling in the regulation of CBF is
currently hotly debated and will be discussed later in this review.

In contrast to brain slices, glutamate is largely ineffective in
evoking glial [Ca2+]i increases in the retina. In retina, neuron-
to-glia signaling, and resulting vasoactivity, is mediated by neu-
ronal release of ATP and activation of purinergic P2Y receptors
(Newman, 2005; Metea and Newman, 2006). Activation of P2Y
receptors (which are highly expressed in astrocyte endfeet: Simard
et al., 2003), activates phospholipase C (PLC) and the down-
stream calcium-dependent signaling pathways discussed above
(Figure 2). ATP can also act on glial P2X7 receptors, resulting
in an increase in astrocyte [Ca2+]i (Carrasquero et al., 2009;
Habbas et al., 2011) and triggering the formation and release
of vasoactive substances (Figure 2). In addition to neuronally
released ATP, calcium-dependent ATP exocytosis by glial cells may
occur (Pangrsic et al., 2007; Blum et al., 2008). ATP which is
released into the extracellular space is rapidly hydrolyzed to form
adenosine (Xu and Pelligrino, 2007) which has been shown to be
vasodilatory in both the cerebral cortex and cerebellum, and is
thought to be involved in functional hyperemia in vivo (Dirnagl
et al., 1994; Akgoren et al., 1997; Shi et al., 2008).

Increases in extracellular concentrations of K+ cause vasodi-
lation in cerebral arterioles (Kuschinsky and Wahl, 1978).
Although the original hypothesis of “astrocyte K+ siphoning”
(Paulson and Newman, 1987) has been disproved (Metea et al.,
2007), a calcium-dependent mechanism by which astrocytes
may contribute to the regulation of CBF via K+ has been
demonstrated (Filosa et al., 2006). BKCa channels in astrocyte
endfeet were shown to be activated following neuronal activity-
evoked increases in astrocytic [Ca2+]i via mGluR activation. The
resulting local increase in extracellular K+ activated Kir channels
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(Kir2.1) on the smooth muscle cell, hyperpolarizing the cell and
leading to vasodilation. This work is consistent with in vivo stud-
ies inhibiting BKCa channels (Gerrits et al., 2002) and Kir channels
(Leithner et al., 2010), both of which were found to result in an
attenuation of the CBF increase evoked by somatosensory acti-
vation. However, as glial membrane potentials are close to the
equilibrium potential for K+ (Kuffler et al., 1966), increasing K+
conductance may not result in an increased net efflux of K+.
Furthermore, as the contribution of endfeet K+ efflux (via glial
Kir4.1 channels) has been disproved in the retina (Metea et al.,
2007), its role in the cortex needs to be verified.

DO ASTROCYTES PLAY A ROLE IN THE REGULATION OF CBF
IN VIVO?
Several experimental models have been used to investigate the
role of astrocytes in the regulation of CBF in vivo including:
uncaging of Ca2+ within astrocytes, somatosensory stimulation,
pharmacological inhibition, and genetic deletion.

When Ca2+ was uncaged within astrocyte endfeet, triggering
an increase in astrocyte [Ca2+]i, dilation of an adjacent arteriole
was observed (Figures 1C,D) (Takano et al., 2006). In agreement
with the suggestion that AA conversion to PgE2 underlies the dila-
tion, inhibition of COX-1 but not COX-2 enzymes blocked the
vasodilations. However, controversy remains regarding the role of
COX-1 in neural activity-evoked vasodilation. While COX-1 inhi-
bition (with a high dose of SC560) can inhibit the CBF response
to odorant stimulation in the olfactory bulb (Petzold et al., 2008)
or uncaging of Ca2+ in astrocytes in the cortex (Takano et al.,
2006), lower doses of SC560 have no effect on the CBF response
to whisker stimulation (Niwa et al., 2001; Lecrux et al., 2011;
Liu et al., 2012). Furthermore, genetic deletion of COX-1 had no
effect on functional hyperemia (Niwa et al., 2001). In contrast,
pharmacological inhibition or genetic knockout of COX-2 atten-
uates the CBF response to neuronal activation (Niwa et al., 2000).
As COX-2 is more highly expressed in neurons than astrocytes,
these data have led to the suggestion that neuronal COX activ-
ity may underlie the component of functional hyperemia which
is mediated by COX products. Recent data suggests that photol-
ysis of caged Ca2+ might artifactually produce vasodilation via
glutamate-permeable anion channels. Activation of these chan-
nels (either by calcium or astrocytic volume changes following
photolysis) leads to glutamate release and an mGluR-mediated
increase in mEPSC frequency. Photolysis-induced astrocytic glu-
tamate release activates neuronal mGluRs and NMDA/AMPA
receptors resulting in K+ efflux and neuronal depolarization (and
potentially smooth muscle cell hyperpolarization due to increased
extracellular K+) (Wang et al., 2013). This effect may explain
the differing effects of COX-1 inhibition on sensory stimulus-
mediated vasodilation vs. photolysis-mediated vasodilation. In
addition, regional heterogeneity of COX-1 expression (as has
been found for nNOS) may offer a further explanation for the
differing effects of COX-1 inhibition which have been observed.

Although some groups have used sensory stimuli to investi-
gate the signaling pathways underlying astrocyte-mediated CBF
changes (e.g., Zonta et al., 2003; Petzold et al., 2008), much
of the evidence for astrocytic mGluR-mediated vasodilations is
based on in vitro work using tissue from juvenile rodents (e.g.,

Zonta et al., 2003; Mulligan and MacVicar, 2004). A role for
mGluR-mediated vasodilations in adult rodents remains con-
tentious. Recent research has suggested that expression levels
of mGluR5 alter with development, being undetectable beyond
postnatal week 3 (Sun et al., 2013). In agreement with this finding,
Calcinaghi et al. (2011), using a highly specific mGluR5 blocker,
found no evidence for a role of mGluR5 in the onset or mainte-
nance of CBF increases in the whisker barrel of adult anesthetized
rats in response to brief whisker stimulation. Furthermore, block-
ade of mGluRs in the olfactory bulb had no effect on the hemo-
dynamic response to odor stimulation (Gurden et al., 2006).
However, in contradiction to these results, mGluR5-antagonist
sensitive sensory simulation-evoked astrocyte [Ca2+]i transients
in the barrel cortex of adult mice have been reported (Wang
et al., 2006; Lind et al., 2013). In the olfactory bulb, Petzold et al.
(2008) reported that the mGluR5 antagonist, MPEP, decreased
vasodilations, supporting the idea that functional hyperemia is
mediated, at least in part, by mGluR5, which, within the glomeru-
lar layer is expressed exclusively in astrocytes. Vasodilations were
also reduced by inhibiting COX-1, suggesting that the functional
hyperemia mediated by astrocytic mGluR5 depends on COX-
1 activity. It remains unclear, therefore, under what conditions
mGluR5 plays a role in neurovascular coupling.

Several additional factors may explain the discrepencies
observed in different studies. Regional differences in expression
of mGluR5 and/or the importance of mGluR-mediated signal-
ing for the regulation of CBF may exist (MPEP reduces fMRI
responses to hindpaw stimulation in rat primary cortex by only
18%, compared to 66% in striatum: Sloan et al., 2010). mGluR5
may be upregulated in reactive astrocytes (Aronica et al., 2000),
suggesting that the role of astrocytic mGluR5 in neurovascular
coupling may be associated more with non-physiological condi-
tions. The recruitment of astrocyte calcium-mediated vasodila-
tion may depend upon the frequency of stimulation used. Wang
et al. (2006) demonstrated that astrocyte calcium signals in the
barrel cortex of mice were a function of frequency, with sig-
nals rarely evoked by a 1 Hz whisker stimulation and peaking
in response to 5Hz stimulation (although this may only occur
in the anesthetized state, see Thrane et al., 2012). Furthermore,
recent imaging of neuronal and astrocytic calcium signals in the
rat somatosensory cortex has shown that high frequency activa-
tion of the forepaw (a 10 Hz but not a 1 Hz stimulus) leads to a
late component of vasodilation that is correlated with increased
astrocyte calcium and increased CBF as measured by fMRI BOLD
signals (Schulz et al., 2012). The findings discussed throughout
this review suggest that there is a complex interaction of many
factors (both astrocytic and neuronal) determining how CBF is
controlled, both basally and in response to neural activity. The
task of studying the cellular functionality of astrocytes and/or
neurons is thus a challenging one.

In addition to the vasodilations described above, there is in
vivo evidence for astrocyte [Ca2+]i transients resulting in vaso-
constriction. Two-photon imaging of astrocytes bulk loaded with
calcium indicator dyes revealed that vasoconstrictions of pene-
trating cortical arterioles occurred during spreading depression
(SD) at the onset of the fast astrocytic Ca2+ wave (Chuquet
et al., 2007). Inhibiting either PLA2 or the refilling of internal

www.frontiersin.org May 2014 | Volume 8 | Article 103 | 64

http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Howarth CBF control by astrocytes

calcium stores reduced the SD-induced vasoconstriction, sug-
gesting that astrocytes mediate SD-induced vasoconstrictions via
PLA2-mediated AA release.

In summary, the evidence suggests that in response to neu-
ral activity, astrocyte [Ca2+]i increases and vasoactive messengers
are released from astrocytic endfeet. Thus, astrocytes may evoke
changes in arteriole diameter and regulate CBF.

ARE ACTIVITY-EVOKED ASTROCYTE CALCIUM TRANSIENTS
WIDESPREAD AND FAST ENOUGH TO CONTRIBUTE TO
NEUROVASCULAR COUPLING?
Although a large body of evidence has been acquired over the past
decade suggesting that astrocytes are potential mediators of func-
tional hyperemia, the idea remains controversial. The presence,
prevalence, and timing of astrocyte Ca2+ signaling in response
to neural activity and its role in the regulation of CBF is cur-
rently hotly debated. In a recent review, Cauli and Hamel (2010)
discuss the relative timings of astrocytic and neuronal calcium
responses to neuronal activity. Rapid calcium events are thought
to reflect activation of ionotropic receptors (which are expressed
frequently in neurons), while slower calcium responses are pro-
posed to reflect activation of metabotropic receptors (expressed
by astrocytes and neurons) and the release of calcium from intra-
cellular stores. These calcium signal dynamics agree with the
observation that calcium events in neurons often precede those in
astrocytes (Wang et al., 2006; Schummers et al., 2008; Nizar et al.,
2013). These data would suggest that astrocytes may only con-
tribute to functional hyperemia in the late phase of the response.
Recent studies have suggested that arteriole dilations resulting
from neural activity may not only precede astrocytic [Ca2+]i sig-
nals (Nizar et al., 2013) but can, in fact, occur in the absence of
glial [Ca2+]i signals (Schulz et al., 2012).

Using in vivo 2-photon imaging of astrocytes, Wang
et al. (2006) reported whisker stimulation-evoked astrocyte
[Ca2+]i transients in the barrel cortex which peak several sec-
onds post stimulation. Such transients are too slow to trigger
the hemodynamic response to neural activity, which occurs any-
where from a few hundred milliseconds to a couple of seconds
after the onset of neuronal activity (Kleinfeld et al., 1998; Devor
et al., 2003; Zonta et al., 2003). This idea is supported by evi-
dence suggesting that there is a long lag time between the onset of
stimulation and astrocyte [Ca2+]i transients (Schulz et al., 2012;
Thrane et al., 2012) and that, following forepaw stimulation, the
onset of astrocyte calcium responses may lag behind the onset
of arteriole dilation at the same depth within the cortex (Nizar
et al., 2013). In this last study (as is common in such studies),
bulk loading of the calcium indicator dye, Oregon Green Bapta-
1 (OGB-1) was used to measure calcium signals in both neurons
and astrocytes. During data analysis the astrocyte region of inter-
est (ROI) was minimized in order to avoid contamination from
neuropil signals, which were suggested to account for the initial
rapid calcium transients sometimes observed within an astro-
cyte ROI. Such rapid transients were not observed in astrocytes
when using the calcium indicator dye Fluo-4, which was absent
in neurons. The difficulty in determining with 100% certainty
whether a calcium signal is within an astrocyte, astrocytic pro-
cess, or neuropil highlights the need for the development both

of improved sensitivity of 2-photon detection and of better dye
localization. However, other studies also using in vivo 2-photon
microscopy, IOS and bulk loading of calcium indicator dyes, con-
tradict these findings. Within the olfactory bulb glomerulus, odor
stimulation resulted in a local increase in CBF which was strongly
correlated, both spatially and temporally, with an increase in
astrocytic [Ca2+]i (Petzold et al., 2008). More recently, Lind et al.
(2013) used signal-enhancing analysis of Ca2+ activity to give
higher sensitivity to fast Ca2+ signals. This study demonstrates
that, in contrast to the small proportion of astrocytes previously
reported to exhibit fast [Ca2+]i transients (Winship et al., 2007),
in the whisker barrel cortex of adult mice 66% of astrocyte somata
and 70% of processes exhibit a stimulus-evoked [Ca2+]i eleva-
tion with rapid onset (peak ∼100 ms) and short duration which
precedes local vasodilations (Lind et al., 2013). While stimulus-
evoked [Ca2+]i transients occurring concurrently in neurons and
astrocytes correlated with synaptic activity, only the astrocytic sig-
nals correlated with hemodynamic changes. Astrocytic calcium
transients consisted of a fast response and, in ∼10% of astrocytes,
slow augmentation. The authors suggest that it is this slow com-
ponent that has been previously reported by other studies and
that it is their improved analysis method which enables the fast
component to be detected.

ARE SUBCELLULAR CA2+ TRANSIENTS IMPORTANT?
In brain slices, it has been shown that calcium signals can occur
in astrocytic processes in the absence of changes in the cell body
(Di Castro et al., 2011). It may be that subcellular astrocyte cal-
cium transients, e.g., those in the endfeet rather than those in
the soma, are important for the regulation of CBF (McCaslin
et al., 2011; Dunn et al., 2013; Lind et al., 2013). Devor’s group
reported that the onset of [Ca2+]i transients in endfeet (which
may precede those in the soma: Wang et al., 2006) were delayed
relative to the onset of arteriole dilation at the same cortical depth
(Nizar et al., 2013). However, Lind et al. (2013) demonstrated fast
[Ca2+]i transients within endfeet which preceeded local vasodi-
lation. In order to investigate [Ca2+]i transients in the astrocytic
soma and/or processes, these studies, along with those of other
groups (e.g., Dunn et al., 2013), utilized bulk loading of calcium
indicator dye which lacks cellular specificity. The development
of targeted expression of genetically induced calcium indicators
will allow better dye localization and may result in the reliable
detection of fast subcellular [Ca2+]i transients. Such subcellu-
lar transients could result in the release of vasoactive substances,
hence playing a role in the regulation of CBF. Although this tech-
nique has yet to reveal results in vivo, membrane-bound genetic
calcium indicators have been shown to detect local, subcellular,
calcium rises in cultured astrocytes (Shigetomi et al., 2010a,b).

Finally, the majority of published neurovascular coupling
studies have been performed in the cortex of anesthetized ani-
mals. Anesthetics may disrupt important features of neurovas-
cular coupling, thus acting as a confound in understanding
the cellular mechanisms underlying the regulation of CBF in
response to neural activity (Martin et al., 2012). Three commonly
used anesthetic combinations (ketamine/xylazine, isoflurane, and
urethane) have been found to significantly suppress sensory-
evoked astrocyte [Ca2+]i transients in mice (Thrane et al., 2012).
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Sensory-evoked [Ca2+]i transients were found to be more delayed
with a slower rise time and longer duration in anesthetized ani-
mals compared to awake animals (Thrane et al., 2012). Further
studies in awake rodents, such as those performed by Martin
et al. (2012), are required in order to fully investigate the role
of astrocytes, and their sensory-evoked [Ca2+]i transients, in
neurovascular coupling.

CONCLUSIONS
The work outlined here demonstrates that astrocytes are capa-
ble of eliciting both vasoconstriction and vasodilation of brain
arterioles. A popular hypothesis of astrocytic control of CBF in
response to neural activity has been that neuronally released glu-
tamate acts on astrocytic mGluRs to raise astrocytic [Ca2+]i,
initiating downstream production of AA and the formation and
release of vasoactive substances (Zonta et al., 2003; Mulligan
and MacVicar, 2004; Takano et al., 2006; Petzold et al., 2008).
However, recent studies have called into question the role of
mGluR5 and IP3-mediated downstream pathways in the func-
tional hyperemia response (Gurden et al., 2006; Calcinaghi et al.,
2011; Nizar et al., 2013; Sun et al., 2013). Evidence from the
retina suggests that neuron-glia signaling may be mediated by
neuronally released ATP acting on glial P2Y receptors rather than
via activation of mGluRs by glutamate (Newman, 2005; Metea
and Newman, 2006). Indeed, it has been shown that astrocyte
[Ca2+]i signals can be evoked by ATP in the cerebral cortex (Sun
et al., 2013) and in cerebellar slices (Piet and Jahr, 2007; Habbas
et al., 2011). Alternative hypotheses of astrocyte control of ves-
sel diameter also include the efflux of K+ through Ca2+-activated
K+ channels in astrocyte endfeet (Filosa et al., 2006), although
the functional, in vivo, significance of this pathway remains to
be demonstrated. The role of astrocyte [Ca2+]i transients in the
control of CBF in vivo during functional hyperemia remains con-
troversial. An inability to observe Ca2+ transients that are fast
enough for neurovascular coupling has called into question the
impact of astrocytes on CBF regulation in response to neural
activity (Nizar et al., 2013). Recent advances in data analysis
techniques resulting in a higher sensitivity to fast Ca2+ signals
may have overcome this problem (Lind et al., 2013), providing
direct evidence for the existence of Ca2+ responses which are
rapid enough to contribute to neurovascular coupling. It is, how-
ever, worth considering that while we study Ca2+ because we
can currently visualize it, Ca2+-independent mechanisms such
as those involving glutamate transport (Gurden et al., 2006;
Petzold et al., 2008; Schummers et al., 2008) may play an impor-
tant role in astrocyte-mediated regulation of CBF. A role for
astrocytes in the control of CBF in pathology also remains a pos-
sibility (Chuquet et al., 2007). While the evidence suggests that
astrocytes are important players in neurovascular coupling and
functional hyperemia, the questions of whether astrocytes play a
dominant role in triggering fast hemodynamic responses and, in
particular, under what circumstances astrocytic Ca2+-mediated
pathways are responsible, remain open. The exact mechanisms by
which astrocytes are able to sense changes in neuronal activity
and trigger the intracellular events regulating the resulting vas-
cular response which underlies the fMRI BOLD signal remain
unclear. Indeed, which pathway predominates may often result

from the experimental model used. Other issues which remain
to be solved are: what is the functional significance of astrocytic
[Ca2+]i transients in awake animals? Under what circumstances
are mGluR-mediated vasodilation and constriction important?
What are the messengers underlying neurovascular coupling in
healthy and diseased brain? Do slow astrocyte [Ca2+]i signals
contribute to the sustained hemodynamic response? Research
on this topic must continue. New technologies such as targeted
genetic encoding of calcium indicators, optogenetics, and trans-
genic mouse lines allowing astrocyte physiology specifically to
be altered will help us move forward with this research. Only
by fully understanding the cellular mechanisms underlying func-
tional hyperemia and the resulting BOLD signal will we be able to
accurately interpret the BOLD fMRI signal in health and disease.

ACKNOWLEDGMENTS
Clare Howarth is a Vice Chancellor’s Advanced Fellow at the
University of Sheffield. I would like to thank Anusha Mishra and
Fergus O’Farrell for their comments on the manuscript.

REFERENCES
Akgoren, N., Fabricius, M., and Lauritzen, M. (1994). Importance of nitric oxide

for local increases of blood flow in rat cerebellar cortex during electrical stim-
ulation. Proc. Natl. Acad. Sci. U.S.A. 91, 5903–5907. doi: 10.1073/pnas.91.
13.5903

Akgoren, N., Mathiesen, C., Rubin, I., and Lauritzen, M. (1997). Laminar analysis
of activity-dependent increases of CBF in rat cerebellar cortex: dependence on
synaptic strength. Am. J. Physiol. 273, H1166–H1176.

Aronica, E., Van Vliet, E. A., Mayboroda, O. A., Troost, D., Da Silva, F. H., and
Gorter, J. A. (2000). Upregulation of metabotropic glutamate receptor sub-
type mGluR3 and mGluR5 in reactive astrocytes in a rat model of mesial
temporal lobe epilepsy. Eur. J. Neurosci. 12, 2333–2344. doi: 10.1046/j.1460-
9568.2000.00131.x

Attwell, D., Buchan, A. M., Charpak, S., Lauritzen, M., MacVicar, B. A., and
Newman, E. A. (2010). Glial and neuronal control of brain blood flow. Nature
468, 232–243. doi: 10.1038/nature09613

Blanco, V. M., Stern, J. E., and Filosa, J. A. (2008). Tone-dependent vascular
responses to astrocyte-derived signals. Am. J. Physiol. Heart Circ. Physiol. 294,
H2855–H2863. doi: 10.1152/ajpheart.91451.2007

Blum, A. E., Joseph, S. M., Przybylski, R. J., and Dubyak, G. R. (2008). Rho-
family GTPases modulate Ca(2+)-dependent ATP release from astrocytes. Am.
J. Physiol. Cell Physiol. 295, C231–C241. doi: 10.1152/ajpcell.00175.2008

Cahoy, J. D., Emery, B., Kaushal, A., Foo, L. C., Zamanian, J. L., Christopherson, K.
S., et al. (2008). A transcriptome database for astrocytes, neurons, and oligoden-
drocytes: a new resource for understanding brain development and function.
J. Neurosci. 28, 264–278. doi: 10.1523/JNEUROSCI.4178-07.2008

Calcinaghi, N., Jolivet, R., Wyss, M. T., Ametamey, S. M., Gasparini, F., Buck,
A., et al. (2011). Metabotropic glutamate receptor mGluR5 is not involved in
the early hemodynamic response. J. Cereb. Blood Flow Metab. 31, e1–e10. doi:
10.1038/jcbfm.2011.96

Carrasquero, L. M., Delicado, E. G., Bustillo, D., Gutierrez-Martin, Y., Artalejo, A.
R., and Miras-Portugal, M. T. (2009). P2X7 and P2Y13 purinergic receptors
mediate intracellular calcium responses to BzATP in rat cerebellar astrocytes.
J. Neurochem. 110, 879–889. doi: 10.1111/j.1471-4159.2009.06179.x

Cauli, B., and Hamel, E. (2010). Revisiting the role of neurons in neurovascular
coupling. Front. Neuroenergetics 2:9. doi: 10.3389/fnene.2010.00009

Chan, B. S., Endo, S., Kanai, N., and Schuster, V. L. (2002). Identification of lac-
tate as a driving force for prostanoid transport by prostaglandin transporter
PGT. Am. J. Physiol. Renal Physiol. 282, F1097–F1102. doi: 10.1152/ajpre-
nal.00151.2001

Chuquet, J., Hollender, L., and Nimchinsky, E. A. (2007). High-resolution in vivo
imaging of the neurovascular unit during spreading depression. J. Neurosci. 27,
4036–4044. doi: 10.1523/JNEUROSCI.0721-07.2007

Dabertrand, F., Hannah, R. M., Pearson, J. M., Hill-Eubanks, D. C., Brayden, J.
E., and Nelson, M. T. (2013). Prostaglandin E2, a postulated astrocyte-derived

www.frontiersin.org May 2014 | Volume 8 | Article 103 | 66

http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Howarth CBF control by astrocytes

neurovascular coupling agent, constricts rather than dilates parenchymal arte-
rioles. J. Cereb. Blood Flow Metab. 33, 479–482. doi: 10.1038/jcbfm.2013.9

Devor, A., Dunn, A. K., Andermann, M. L., Ulbert, I., Boas, D. A., and Dale, A. M.
(2003). Coupling of total hemoglobin concentration, oxygenation, and neural
activity in rat somatosensory cortex. Neuron 39, 353–359. doi: 10.1016/S0896-
6273(03)00403-3

Di Castro, M. A., Chuquet, J., Liaudet, N., Bhaukaurally, K., Santello, M., Bouvier,
D., et al. (2011). Local Ca2+ detection and modulation of synaptic release by
astrocytes. Nat. Neurosci. 14, 1276–1284. doi: 10.1038/nn.2929

Dirnagl, U., Niwa, K., Lindauer, U., and Villringer, A. (1994). Coupling of cerebral
blood flow to neuronal activation: role of adenosine and nitric oxide. Am. J.
Physiol. 267, H296–H301.

Dunn, K. M., Hill-Eubanks, D. C., Liedtke, W. B., and Nelson, M. T. (2013). TRPV4
channels stimulate Ca2+-induced Ca2+ release in astrocytic endfeet and amplify
neurovascular coupling responses. Proc. Natl. Acad. Sci. U.S.A. 110, 6157–6162.
doi: 10.1073/pnas.1216514110

Farooqui, A. A., Yang, H. C., Rosenberger, T. A., and Horrocks, L. A. (1997).
Phospholipase A2 and its role in brain tissue. J. Neurochem. 69, 889–901. doi:
10.1046/j.1471-4159.1997.69030889.x

Fergus, A., and Lee, K. S. (1997). Regulation of cerebral microvessels by glu-
tamatergic mechanisms. Brain Res. 754, 35–45. doi: 10.1016/S0006-8993(97)
00040-1

Filosa, J. A., Bonev, A. D., and Nelson, M. T. (2004). Calcium dynamics in cortical
astrocytes and arterioles during neurovascular coupling. Circ. Res. 95, e73–e81.
doi: 10.1161/01.RES.0000148636.60732.2e

Filosa, J. A., Bonev, A. D., Straub, S. V., Meredith, A. L., Wilkerson, M. K.,
Aldrich, R. W., et al. (2006). Local potassium signaling couples neuronal activ-
ity to vasodilation in the brain. Nat. Neurosci. 9, 1397–1403. doi: 10.1038/
nn1779

Fleming, I. (2001). Cytochrome p450 and vascular homeostasis. Circ. Res. 89,
753–762. doi: 10.1161/hh2101.099268

Funk, R. H. (1997). Blood supply of the retina. Ophthalmic Res. 29, 320–325. doi:
10.1159/000268030

Gerrits, R. J., Stein, E. A., and Greene, A. S. (2002). Ca(2++-activated potassium
(K(Ca)) channel inhibition decreases neuronal activity-blood flow coupling.
Brain Res. 948, 108–116. doi: 10.1016/S0006-8993(02)02957-8

Gordon, G. R., Choi, H. B., Rungta, R. L., Ellis-Davies, G. C., and MacVicar,
B. A. (2008). Brain metabolism dictates the polarity of astrocyte control over
arterioles. Nature 456, 745–749. doi: 10.1038/nature07525

Gurden, H., Uchida, N., and Mainen, Z. F. (2006). Sensory-evoked intrinsic optical
signals in the olfactory bulb are coupled to glutamate release and uptake. Neuron
52, 335–345. doi: 10.1016/j.neuron.2006.07.022

Habbas, S., Ango, F., Daniel, H., and Galante, M. (2011). Purinergic signalling in teh
cerebellum: Bergmann glial cells express functional ionotropic P2X7 receptors.
Glia 59, 1800–1812. doi: 10.1002/glia.21224

Hu, Y., and Wilson, G. S. (1997). A temporary local energy pool coupled to neu-
ronal activity: fluctuations of extracellular lactate levels in rat brain monitored
with rapid-response enzyme-based sensor. J. Neurochem. 69, 1484–1490. doi:
10.1046/j.1471-4159.1997.69041484.x

Iadecola, C., and Nedergaard, M. (2007). Glial regulation of the cerebral microvas-
culature. Nat. Neurosci. 10, 1369–1376. doi: 10.1038/nn2003

Kleinfeld, D., Mitra, P. P., Helmchen, F., and Denk, W. (1998). Fluctuations
and stimulus-induced changes in blood flow observed in individual capillar-
ies in layers 2 through 4 of rat neocortex. Proc. Natl. Acad. Sci. U.S.A. 95,
15741–15746. doi: 10.1073/pnas.95.26.15741

Kuffler, S. W., Nicholls, J. G., and Orkand, R. K. (1966). Physiological properties
of glial cells in the central nervous system of amphibia. J. Neurophysiol. 29,
768–787.

Kuschinsky, W., and Wahl, M. (1978). Local chemical and neurogenic regulation of
cerebral vascular resistance. Physiol. Rev. 58, 656–689.

Lange, A., Gebremedhin, D., Narayanan, J., and Harder, D. (1997). 20-
Hydroxyeicosatetraenoic acid-induced vasoconstriction and inhibition of
potassium current in cerebral vascular smooth muscle is dependent on
activation of protein kinase C. J. Biol. Chem. 272, 27345–27352. doi:
10.1074/jbc.272.43.27345

Lecrux, C., Toussay, X., Kocharyan, A., Fernandes, P., Neupane, S., Levesque, M.,
et al. (2011). Pyramidal neurons are “neurogenic hubs” in the neurovascu-
lar coupling response to whisker stimulation. J. Neurosci. 31, 9836–9847. doi:
10.1523/JNEUROSCI.4943-10.2011

Leithner, C., Royl, G., Offenhauser, N., Fuchtemeier, M., Kohl-Bareis, M.,
Villringer, A., et al. (2010). Pharmacological uncoupling of activation induced
increases in CBF and CMRO2. J. Cereb. Blood Flow Metab. 30, 311–322. doi:
10.1038/jcbfm.2009.211

Lin, A. L., Fox, P. T., Hardies, J., Duong, T. Q., and Gao, J. H. (2010). Nonlinear
coupling between cerebral blood flow, oxygen consumption, and ATP produc-
tion in human visual cortex. Proc. Natl. Acad. Sci. U.S.A. 107, 8446–8451. doi:
10.1073/pnas.0909711107

Lind, B. L., Brazhe, A. R., Jessen, S. B., Tan, F. C., and Lauritzen, M. J. (2013).
Rapid stimulus-evoked astrocyte Ca2+ elevations and hemodynamic responses
in mouse somatosensory cortex in vivo. Proc. Natl. Acad. Sci. U.S.A. 110,
E4678–E4687. doi: 10.1073/pnas.1310065110

Lindauer, U., Leithner, C., Kaasch, H., Rohrer, B., Foddis, M., Fuchtemeier, M.,
et al. (2010). Neurovascular coupling in rat brain operates independent of
hemoglobin deoxygenation. J. Cereb. Blood Flow Metab. 30, 757–768. doi:
10.1038/jcbfm.2009.259

Liu, X., Li, C., Falck, J. R., Harder, D. R., and Koehler, R. C. (2012). Relative con-
tribution of cyclooxygenases, epoxyeicosatrienoic acids, and pH to the cerebral
blood flow response to vibrissal stimulation. Am. J. Physiol. Heart. Circ. Physiol.
302, H1075–H1085. doi: 10.1152/ajpheart.00794.2011

Martin, C., Zheng, Y., Sibson, N. R., Mayhew, J. E., and Berwick, J. (2012). Complex
spatiotemporal haemodynamic response following sensory stimulation in the
awake rat. Neuroimage 66C, 1–8. doi: 10.1016/j.neuroimage.2012.10.006

McCalden, T. A., Nath, R. G., and Thiele, K. (1984). The role of prostacyclin in the
hypercapnic and hypoxic cerebrovascular dilations. Life Sci. 34, 1801–1807. doi:
10.1016/0024-3205(84)90672-6

McCaslin, A. F., Chen, B. R., Radosevich, A. J., Cauli, B., and Hillman, E. M. (2011).
In vivo 3D morphology of astrocyte-vasculature interactions in the somatosen-
sory cortex: implications for neurovascular coupling. J. Cereb. Blood Flow Metab.
31, 795–806. doi: 10.1038/jcbfm.2010.204

Metea, M. R., Kofuji, P., and Newman, E. A. (2007). Neurovascular coupling is not
mediated by potassium siphoning from glial cells. J. Neurosci. 27, 2468–2471.
doi: 10.1523/JNEUROSCI.3204-06.2007

Metea, M. R., and Newman, E. A. (2006). Glial cells dilate and constrict blood ves-
sels: a mechanism of neurovascular coupling. J. Neurosci. 26, 2862–2870. doi:
10.1523/JNEUROSCI.4048-05.2006

Mishra, A., Hamid, A., and Newman, E. A. (2011). Oxygen modulation of neu-
rovascular coupling in the retina. Proc. Natl. Acad. Sci. U.S.A. 108, 17827–17831.
doi: 10.1073/pnas.1110533108

Mulligan, S. J., and MacVicar, B. A. (2004). Calcium transients in astro-
cyte endfeet cause cerebrovascular constrictions. Nature 431, 195–199. doi:
10.1038/nature02827

Murphy, K., Gerzanich, V., Zhou, H., Ivanova, S., Dong, Y., Hoffman, G., et al.
(2003). Adenosine-A2a receptor down-regulates cerebral smooth muscle L-type
Ca2+ channel activity via protein tyrosine phosphatase, not cAMP-dependent
protein kinase. Mol. Pharmacol. 64, 640–649. doi: 10.1124/mol.64.3.640

Newman, E. A. (2005). Calcium increases in retinal glial cells evoked
by light-induced neuronal activity. J. Neurosci. 25, 5502–5510. doi:
10.1523/JNEUROSCI.1354-05.2005

Niwa, K., Araki, E., Morham, S. G., Ross, M. E., and Iadecola, C. (2000).
Cyclooxygenase-2 contributes to functional hyperemia in whisker-barrel cortex.
J. Neurosci. 20, 763–770.

Niwa, K., Haensel, C., Ross, M. E., and Iadecola, C. (2001). Cyclooxygenase-1 par-
ticipates in selected vasodilator responses of the cerebral circulation. Circ. Res.
88, 600–608. doi: 10.1161/01.RES.88.6.600

Nizar, K., Uhlirova, H., Tian, P., Saisan, P. A., Cheng, Q., Reznichenko, L., et al.
(2013). In vivo stimulus-induced vasodilation occurs without IP3 receptor acti-
vation and may precede astrocytic calcium increase. J. Neurosci. 33, 8411–8422.
doi: 10.1523/JNEUROSCI.3285-12.2013

Offenhauser, N., Thomsen, K., Caesar, K., and Lauritzen, M. (2005). Activity-
induced tissue oxygenation changes in rat cerebellar cortex: interplay of post-
synaptic activation and blood flow. J. Physiol. 565, 279–294. doi: 10.1113/jphys-
iol.2005.082776

Pangrsic, T., Potokar, M., Stenovec, M., Kreft, M., Fabbretti, E., Nistri, A., et al.
(2007). Exocytotic release of ATP from cultured astrocytes. J. Biol. Chem. 282,
28749–28758. doi: 10.1074/jbc.M700290200

Paulson, O. B., and Newman, E. A. (1987). Does the release of potassium from
astrocyte endfeet regulate cerebral blood flow? Science 237, 896–898. doi:
10.1126/science.3616619

Frontiers in Neuroscience | Brain Imaging Methods May 2014 | Volume 8 | Article 103 | 67

http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Howarth CBF control by astrocytes

Petzold, G. C., Albeanu, D. F., Sato, T. F., and Murthy, V. N. (2008).
Coupling of neural activity to blood flow in olfactory glomeruli is medi-
ated by astrocytic pathways. Neuron 58, 897–910. doi: 10.1016/j.neuron.2008.
04.029

Petzold, G. C., and Murthy, V. N. (2011). Role of astrocytes in neurovascular
coupling. Neuron 71, 782–797. doi: 10.1016/j.neuron.2011.08.009

Piet, R., and Jahr, C. E. (2007). Glutamatergic and purinergic receptor-mediated
calcium transients in Bergmann glial cells. J. Neurosci. 27, 4027–4035. doi:
10.1523/JNEUROSCI.0462-07.2007

Roman, R. J. (2002). P-450 metabolites of arachidonic acid in the control of cardio-
vascular function. Physiol. Rev. 82, 131–185. doi: 10.1152/physrev.00021.2001

Roy, C. S., and Sherrington, C. S. (1890). On the regulation of the blood-supply of
the brain. J. Physiol. 11, 85–158.

Schulz, K., Stydekum, E., Krueppel, R., Engelbrecht, C. J., Schlegel, F., Schroter, A.,
et al. (2012). Simultaneous BOLD fMRI and fiber-optic calcium recording in
rat neocortex. Nat. Methods 9, 597–602. doi: 10.1038/nmeth.2013

Schummers, J., Yu, H., and Sur, M. (2008). Tuned responses of astrocytes and their
influence on hemodynamic signals in the visual cortex. Science 320, 1638–1643.
doi: 10.1126/science.1156120

Shi, Y., Liu, X., Gebremedhin, D., Falck, J. R., Harder, D. R., and Koehler, R. C.
(2008). Interaction of mechanisms involving epoxyeicosatrienoic acids, adeno-
sine receptors, and metabotropic glutamate receptors in neurovascular coupling
in rat whisker barrel cortex. J. Cereb. Blood Flow Metab. 28, 111–125. doi:
10.1038/sj.jcbfm.9600511

Shigetomi, E., Kracun, S., and Khakh, B. S. (2010a). Monitoring astrocyte calcium
microdomains with improved membrane targeted GCaMP reporters. Neuron
Glia Biol. 6, 183–191. doi: 10.1017/S1740925X10000219

Shigetomi, E., Kracun, S., Sofroniew, M. V., and Khakh, B. S. (2010b). A genetically
targeted optical sensor to monitor calcium signals in astrocyte processes. Nat.
Neurosci. 13, 759–766. doi: 10.1038/nn.2557

Simard, M., Arcuino, G., Takano, T., Liu, Q. S., and Nedergaard, M. (2003).
Signaling at the gliovascular interface. J. Neurosci. 23, 9254–9262.

Sloan, H. L., Austin, V. C., Blamire, A. M., Schnupp, J. W., Lowe, A. S., Allers, K.
A., et al. (2010). Regional differences in neurovascular coupling in rat brain
as determined by fMRI and electrophysiology. Neuroimage 53, 399–411. doi:
10.1016/j.neuroimage.2010.07.014

Sun, W., McConnell, E., Pare, J. F., Xu, Q., Chen, M., Peng, W., et al. (2013).
Glutamate-dependent neuroglial calcium signaling differs between young and
adult brain. Science 339, 197–200. doi: 10.1126/science.1226740

Takano, T., Tian, G. F., Peng, W., Lou, N., Libionka, W., Han, X., et al. (2006).
Astrocyte-mediated control of cerebral blood flow. Nat. Neurosci. 9, 260–267.
doi: 10.1038/nn1623

Thrane, A. S., Rangroo Thrane, V., Zeppenfeld, D., Lou, N., Xu, Q., Nagelhus, E. A.,
et al. (2012). General anesthesia selectively disrupts astrocyte calcium signaling
in the awake mouse cortex. Proc. Natl. Acad. Sci. U.S.A. 109, 18974–18979. doi:
10.1073/pnas.1209448109

Wang, F., Smith, N. A., Xu, Q., Goldman, S., Peng, W., Huang, J. H., et al.
(2013). Photolysis of caged Ca2+ but not receptor-mediated Ca2+ signal-
ing triggers astrocytic glutamate release. J. Neurosci. 33, 17404–17412. doi:
10.1523/JNEUROSCI.2178-13.2013

Wang, X., Lou, N., Xu, Q., Tian, G. F., Peng, W. G., Han, X., et al. (2006). Astrocytic
Ca2+ signaling evoked by sensory stimulation in vivo. Nat. Neurosci. 9, 816–823.
doi: 10.1038/nn1703

Winship, I. R., Plaa, N., and Murphy, T. H. (2007). Rapid astrocyte calcium signals
correlate with neuronal activity and onset of the hemodynamic response in vivo.
J. Neurosci. 27, 6268–6272. doi: 10.1523/JNEUROSCI.4801-06.2007

Xu, H. L., and Pelligrino, D. A. (2007). ATP release and hydrolysis contribute to
rat pial arteriolar dilatation elicited by neuronal activation. Exp. Physiol. 92,
647–651. doi: 10.1113/expphysiol.2006.036863

Zonta, M., Angulo, M. C., Gobbo, S., Rosengarten, B., Hossmann, K. A., Pozzan,
T., et al. (2003). Neuron-to-astrocyte signaling is central to the dynamic control
of brain microcirculation. Nat. Neurosci. 6, 43–50. doi: 10.1038/nn980

Conflict of Interest Statement: The author declares that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 27 February 2014; accepted: 18 April 2014; published online: 09 May 2014.
Citation: Howarth C (2014) The contribution of astrocytes to the regulation of cerebral
blood flow. Front. Neurosci. 8:103. doi: 10.3389/fnins.2014.00103
This article was submitted to Brain Imaging Methods, a section of the journal Frontiers
in Neuroscience.
Copyright © 2014 Howarth. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or repro-
duction in other forums is permitted, provided the original author(s) or licensor are
credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

www.frontiersin.org May 2014 | Volume 8 | Article 103 | 68

http://dx.doi.org/10.3389/fnins.2014.00103
http://dx.doi.org/10.3389/fnins.2014.00103
http://dx.doi.org/10.3389/fnins.2014.00103
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive


ORIGINAL RESEARCH
published: 15 December 2015
doi: 10.3389/fnins.2015.00419

Frontiers in Neuroscience | www.frontiersin.org December 2015 | Volume 9 | Article 419 |

Edited by:

Clare Howarth,

The University of Sheffield, UK

Reviewed by:

Amir Shmuel,

McGill University, Canada

Kevin Matthews Aquino,

University of Sydney, Australia

*Correspondence:

Christopher W. Tyler

cwt@ski.org

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 14 April 2014

Accepted: 16 October 2015

Published: 15 December 2015

Citation:

Tyler CW, Likova LT and Nicholas SC

(2015) Analysis of Neural-BOLD

Coupling Through Four Models of the

Neural Metabolic Demand.

Front. Neurosci. 9:419.

doi: 10.3389/fnins.2015.00419

Analysis of Neural-BOLD Coupling
Through Four Models of the Neural
Metabolic Demand
Christopher W. Tyler *, Lora T. Likova and Spero C. Nicholas
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The coupling of the neuronal energetics to the blood-oxygen-level-dependent (BOLD)

response is still incompletely understood. To address this issue, we compared the fits

of four plausible models of neurometabolic coupling dynamics to available data for

simultaneous recordings of the local field potential and the local BOLD response recorded

from monkey primary visual cortex over a wide range of stimulus durations. The four

models of the metabolic demand driving the BOLD response were: direct coupling with

the overall LFP; rectified coupling to the LFP; coupling with a slow adaptive component of

the implied neural population response; and coupling with the non-adaptive intracellular

input signal defined by the stimulus time course. Taking all stimulus durations into

account, the results imply that the BOLD response is most closely coupled with metabolic

demand derived from the intracellular input waveform, without significant influence from

the adaptive transients and nonlinearities exhibited by the LFP waveform.

Keywords: fMRI, metabolic coupling, neural signal estimation, human brain, multimodal imaging, BOLD, local field

potentials

INTRODUCTION

The goal of functional Magnetic Resonance Imaging (fMRI) is to estimate properties of the
neural signals in the brain during the spectrum of activities controlled by the nervous system.
However, the recorded fMRI signal is a response to the metabolic demands of supporting the
nearby neural activity (Thompson et al., 2003, 2004). It is therefore important to understand as
much as possible about the pathway coupling the recorded fMRI response to the dynamics of the
neural activity giving rise to it. The theoretical development of the neural/BOLD coupling logic
is based on that of Tyler and Likova (2011) although the present application to monkey joint
fMRI/local-field-potential data is entirely novel.

Neural/Astrocyte Coupling
It is widely accepted that the origin of the metabolic demand driving the blood-oxygen-level-
dependent (BOLD) signal recorded in fMRI is the energetic load deriving from transmitter release
at the synaptic inputs to each neuron (Logothetis, 2002, 2003; Logothetis and Wandell, 2004;
Shmuel et al., 2006; Carmignoto and Gómez-Gonzalo, 2010). The transmitter release is tightly
coupled to the activation of the post-synaptic receptors on the recipient cell membrane and
consequently to the energetic demands of the synaptic activation of the transmitter molecules for
future release, the majority of synapses being glutamatergic (Magistretti, 2006). The synaptic origin
of the energetic demand driving the BOLD signal is thus coupled to the net transmitter signal
impinging on the cells, and hence to the intracellular potential in these cells. The majority of these
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energetic demands are met by either by glycolysis of glutamate
to glutamine in the neighboring astrocytes (Shank and Aprison,
1979; Wang and Floor, 1994; Bélanger et al., 2011; see Figure 1),
or by oxidative phosphorylation from the neuronal mitochondria
(Attwell and Laughlin, 2001; Hall et al., 2012; Pellerin and
Magistretti, 2012).

It should be mentioned, however, that the existence of a
direct interneuron pathway for vasodilation and vasoconstriction
has also been proposed (Dirnagl et al., 1993; Ma et al., 1996),
although the proportion of the effects specific to this direct
pathway remain a matter of debate (Lindauer et al., 1996;
Attwell et al., 2010). Indeed, we are unaware of any studies
on this issue that provide evidence of interneuron control of
vascular diameter having the fast (∼5 s) time constant sufficient
to account for the BOLD response dynamics in the human brain
in vivo.

Source of BOLD Waveform Variability
It is well known that there are substantial variations in the BOLD
waveform in different cortical regions recorded during the same
task (Handwerker et al., 2004, 2012; Fox et al., 2005), which
have often been interpreted as due to variations in the local
hemodynamics among cortical regions. Two points should be
made in this regard. One is that differences in hemodynamics
are largely attributable to differences in density of the arterial
supply and draining veins overlying the cortical parenchyma
(Handwerker et al., 2012), which indeed are expected to have
different dynamics from the local capillaries within the cortex.
However, this is an issue that can be addressed by accurate
segmentation and the appropriate choice of voxel sizes to
exclude extra-parenchymal signals and restrict the recorded
BOLD responses to cortical space. To our knowledge, none of
the papers evaluating the regional variations in BOLD waveform
have implemented this strategy.

FIGURE 1 | The astrocytes as the substrate for the neurovascular coupling of the neural metabolism. (From Magistretti, 2006, with permission).

The other important point is that none of the studies of
regional variations in BOLD waveform have assessed the role
of neural variations in temporal waveform in this phenomenon.
Neural waveform variations among neurons of different types
and even the same types in different cortical regions are well-
established (e.g., Hegdé and Van Essen, 2004, 2006). Such
variations in the source signal can readily give rise to variations
in the consequent BOLD waveforms, even on a different (longer)
timescale (see Tyler et al., 2008; Tyler and Likova, 2011, 2014).
Given this neurophysiological evidence, it is arbitrary and
prejudicial to attribute all BOLD waveform variations purely
to hemodynamics. There must be a neural component to this
variation that needs to be acknowledged in all analyses of BOLD
variations across regions.

Indeed, the logic of the known neural variations in neural
signals poses the question whether any of the regional BOLD
variation can be securely attributed to hemodynamic causes.
All studies of regional BOLD variation to date have employed
paradigms in which the BOLD responses are mediated by neural
signals, whether in response to external stimulation or intrinsic
neural interactions. As such, the BOLD responses were subject to
the known functional variation of neural activity across regions of
cortical specialization, and hence of potential temporal variation.
Only if the neural signals were determined to be equal by
direct measurement, or the BOLD signals across cortical regions
were generated by a post-neural input, such as nitric oxide
infusion in the region of the blood vessels, could the variation
be convincing attributed to hemodynamic factors. However, in
order to follow the first course, it is necessary to determine the
aspect of the neural signals that is responsible for generating
BOLD response dynamics, which is the topic of the present
paper based on a novel analysis of simultaneously recorded
local field potential (LFP) and BOLD signals from monkey
cortex.
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Nonlinearity of the BOLD Time Course
The neural and BOLD response time courses were measured
simultaneously to rotating checkerboards stimuli in a study
by Logothetis (2003) in behaving monkeys. The neural time
course was recorded in terms of the LFP, with the BOLD
signal being recorded from 16 adjacent voxels (since the
presence of the electrode prevented recording from the actual
voxel containing it). Representative results are shown in
Figure 2.

Two points are noteworthy. One is that the LFP timecourse
(black curves) does not exactly match the stimulus timecourse
(black box function) despite the author’s efforts to do so by
providing a continuously moving, high contrast target. The
timecourse has the initial transient ubiquitously seen in single-
unit recordings, followed by a sustained plateau that shows
a gradual adaptation effect. The off-response shows a similar
(inverted) transient, but only minimum evidence of the plateau.
As a result, the overall LFP response is nonlinearly related to the
stimulus in a manner that can be captured by a parallel-channel
model of the sum of several component neural responses, but not
by a serial model of convolution with any single form of temporal
impulse response.

Logothetis’ concern was not, however, with the linearity or
otherwise of the LFP, but with its relation to the BOLD response.
The BOLD time course was predicted on the basis of convolution

of the recorded LFP waveforms with an estimated impulse
response function. The function that provided a good fit for
short duration stimuli, however, showed significant deviations
from the measure data at long durations (Figure 2), predicting a
substantially stronger BOLD response than was actually recorded
at the longest duration, in particular.

This result implies that the neurometabolic coupling is not
well-described by a linear convolution process, but has further
nonlinearities built into it that need to be taken into account in
an attempt to infer the neural signal on the basis of local BOLD
response recordings.

The LFP recordings in Figure 2 make it apparent that
the LFP waveform has a complex time course that can be
approximated by two exponentials with time constants of about
1 s and >30 s, respectively. Relative to the usual time courses of
neural transients, of about 50ms these are remarkably prolonged
neural processes on the time scale of the recorded BOLD signal
from the same general region of cortex (blue trace).

The importance of this adaptation effect is emphasized by
the fact that the recorded LFP signal does not fully match
the predicted BOLD activation (red curve), and therefore a
more comprehensive model is required, going beyond the
standard General Linear Model (GLM) of convolution of a
metabolic kernel with the stimulus time course. We note that
a corresponding adaptation effect in the neural response to

FIGURE 2 | Time course of the local field potentials (black trace), BOLD (red blue trace), and predicted BOLD (red trace) to a continuous dynamic

stimuli (black rectangle) of 3, 6, 12, and 24 s duration (A–D, respectively from Logothetis, 2003, with permission). The prediction was generate by linear

convolution of the recorded LFP signal with a hemodynamic response function (see Logothetis, 2002, for details).
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flickering stimulation was inferred by Pfeuffer et al. (2003) from
the pattern of variations in BOLD response amplitude as a
function of stimulus duration.

THEORETICAL ANALYSIS

Analysis of Neural/BOLD Coupling
Nonlinearities
The widespread utilization of the general linear model in
fMRI analyses may be taken to imply that it is an adequate
approximation to the BOLD signal behavior under typical
recording conditions, but a detailed reveals some limitations of
this model. As a starting point of the analysis, we have developed
a specific model structure of the processes leading to the BOLD
paramagnetic signal of fMRI recordings (Tyler and Likova, 2011).
This model goes beyond the linear convolution analyses of
Friston (1997) and Friston et al. (1998, 2000) in incorporating
multiple forms of neural signal within each voxel and recognizing
an explicit glial aspect to the metabolic coupling pathway.

In general terms, the stimulus impinging on the subject
generates a sequence of neural responses starting with the
transduction into a neural signal within the sensory receptors,
which then propagates to the brain and activates various
populations of neurons within the voxels then being analyzed by
the fMRI technique. For instance, the signals arriving from the
retina generate synaptic activation of the populations of cortical
cells, which generates a local energetic demand for the restoration
of the neurotransmitter molecules carrying the activation signals.
The chain of cortical metabolic processing, illustrated in the block
diagram of Figure 3, progresses from the local metabolic demand
generated by the neural events at the synapse through the
metabolic coupling mediated by the neighboring astrocyte glial
cells as a whole to the processes of oxygen delivery by the adjacent

capillaries that is detected by the imaging methodology. It is
important to emphasize that the astrocytemetabolic processes are
slow relative to the intracellular signal dynamics, about as slow as
the processes of hemodynamic oxygen supply. The time constant
of the astrocyte responses is known to be of the order of several
seconds (Kelly and Van Essen, 1974; Filosa et al., 2004; Metea
and Newman, 2006; Schummers et al., 2008), and it is clear that
there must be a substantial pre-hemodynamic component from
these slow responses. Kelly andVan Essen (1974) and Schummers
et al. (2008) also show that the slower glial responses are as
strongly tuned to local stimulus orientation as are the neural
responses, implying a tight functional coupling between them.
However, at present too little is known of their dynamics and/or
nonlinearities to securely assign precise time constants to the
astrocytic component relative to the hemodynamic component.

Specifying the Model Framework
The model framework is slightly modified from that in Tyler and
Likova (2011). We treat the neural responses within each voxel
for a given stimulus S(t) as generated by sets of homogeneous
populations with similar signal waveforms Ni(t) within each
population (see Figure 3). For generality, it is assumed that
these neural signal waveforms are generated by a nonlinear
transduction from the input stimulus. The transduction from
each neural population response to the local metabolic demand
Mi(t) is further assumed for generality to be nonlinear. The
overall metabolic demands G(t) within a voxel are met primarily
by the surrounding astrocytes, which support the required
neural energy consumption over time and space and make
a complementary metabolic demand G(t) on the adjacent
vasculature. This integrated metabolic demand stimulates the
vascular hemodynamic processes H(t) provide the requisite
oxygen and glucose exchange to replenish the energy depletion
in the astrocytes. The last three stages constitute the metabolic

FIGURE 3 | Block diagram of the main processing stages that lead up to the BOLD signal. The subscript i indicates that the stage incorporates multiple

components from homogeneous subpopulations within a voxel (from Tyler and Likova, 2011, 2014).
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TABLE 1 | Mathematical model of the operations involved in the

generation of the BOLD signal from the input stimulus.

Output Generation logic Features

Neural signal Ni (t) = f[S(t) ⊗ ni (t)].e
−t/γ Nonlinear transducer

with adaptation

Neural metabolic

demand

Mi (t) = f[Ni (t) ⊗ m(t)] Nonlinear transducer

Glial metabolic

coupling

G(t) = ΣMi (t) ⊗ g(t) Multiple linear

summation

Hemodynamic

response

H(t) = G(t) ⊗ h(t) Linear (slow)

Paramagnetic

response

BOLD(t) = H(t) ⊗ p(t) Linear (fast)

Metabolic

coupling relation

BOLD(t) ≈ ΣMi (t) ⊗ mrk(t) Combines 4 previous

stages

response that determines the ratio of oxygenated to deoxygenated
hemoglobin in the blood complement of a given voxel that is
estimated through the paramagnetic reaction as the BOLD signal
Y(t). These post-neural processing stages are often modeled as
a linear metabolic response kernel (mrk) convolved with the
presumed neural signal.

The terms of the conceptual model in Figure 3 are related
by a series of mathematical operations specified in Table 1

(modified from Tyler and Likova, 2011). The three operators
are: (i) linear convolution (⊗), a nonlinear amplitude relation
(f[ ]), and a multiple linear integrator (Σ). Note that each stage
of the model is treated as the linear convolution of the output
signal from the previous stage with a temporal response kernel
designated by lower case initial for the respective process, i.e., the
neural response function n(t), the metabolic response function
m(t), the glial response function g(t), the true hemodynamic
response function h(t), the paramagnetic response function p(t)
that generates the BOLD signal, and an approximate metabolic
response kernel mrk(t). This last process corresponds to a linear
approximation of the metabolic coupling relation implied by
the previous three stages. The linear integration across multiple
parallel elements within the voxel provided by the glial coupling
stage corresponds to a nonlinear process in the context of single-
channel solution.

Nonlinearities
Unlike the example in Figure 2, however, typical LFP responses
show a much weaker transient at offset than onset (see
Figure 6, column 1), which implies the presence of an adaptation
process decreasing the transient component over time. Such
adaptation can be readily modeled by the nonlinear process of an
exponential decay with time constant γ multiplying the response
over time (after convolution with the stimulus), as shown in the
first line of Table 1.

Table 1 thus invokes three kinds of nonlinearities in the
overall model—an amplitude nonlinearity (lines 1 and 2), an
adaptive temporal nonlinearity (the exponential term in line 1),
and a multiple summatory nonlinearity (line 3). Nevertheless,
these stages are typically inaccessible, therefore for practical
purposes, they are approximated by the linear model form in

the last line of the table: a function representing the neural
metabolic demand evoked by the neural response to the stimulus
presentation is convolved with the metabolic response kernel
(mrk).

Nonlinear Model of the Local Field
Potential (LFP)
The Neural Signal
A comprehensive model of the BOLD therefore requires an
accurate model of the intracellular potential dynamics coupled to
stimulation. If the excitatory and inhibitory transmitter release
are symbolized by ψe, ψi, we can specify the relationships
between the synaptic input and the intracellular potential VI(t)
as follows:

VI (t) =
∑
ηe

ψe(t)−
∑
ηi

ψi(t)+ n0 (0, σ0)

= stim(t)⊗
(
ηet

kee−t/τe
− ηit

kie−t/τi
)
+ n0 (0, σ0) (1)

where ηe and ηi are the number of excitatory and inhibitory
transmitter molecules, respectively (or, strictly, the number
of ionic charges carried by the net inflow of transmitter
molecules per unit time) and n (0, σI) is the cumulated noise of
the intracellular signal from quantal, thermal, and transmitter
sources.

To avoid complications, we do not specify the contributory
components of the intracellular noise. For example, the quantal
component will decrease in standard deviation as luminance
level is increased, and the transmitter source may decrease in
standard deviation as the activation level decreases, but we
assume the totality of noise sources add up to a constant
Gaussian noise source to a first approximation. This assumption
has been evaluated in detail by Carandini (2004) in coupled
intracellular and extracellular recordings. His model provides an
accurate quantitative account of the strong signal-dependence
of the variability of the extracellular spike rate (Tolhurst
et al., 1981; Vogels et al., 1989) in terms of a purely additive
Gaussian intracellular noise passing through the threshold-like
nonlinearity of the spike generation process. Thus, the additive
Gaussian noise assumption for the intracellular signal governing
the metabolic demand is fully compatible with the signal-
dependent properties of neural spike noise.

The constants ηe and ηi are specified for every individual cell
and will vary substantially among cell types. Indeed, they will vary
substantially with the placement of the intracellular (e.g., patch-
clamp) recording site in relation to the synaptic inputs of the cell.
However, for the present purposes, the relevant values are the
average values integrated over large volumes of cortex leading to
the local metabolic demand that underlies the BOLD signal, as
reflected in the local field potential (LFP) recorded at a site in the
extracellular medium.

As is highlighted by the data of Figure 2, there are adaptive
effects in the neural response with a complex time course that
can be approximated by two exponentials with time constants
of about 1 s and >30 s, respectively. These are remarkably
prolonged neural processes on the time scale of the recorded
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BOLD signal from the same general region of cortex (blue trace)
as indicated by the fact that the recorded LFP signal does not fully
match the predicted BOLD activation (red curve). The negative
LFP signal in Figure 2 following stimulus offset has a similar
(but inverted) time course to that following the stimulus onset,
implying that the adaptation effect is a subtractive inhibition
rather than solely a multiplicative form of fatigue (which would
have no negative rebound). If such a gain control were purely
multiplicative, the amplitude of signal change at offset would be
substantially less than that at onset, whereas the two amplitudes
are similar within about 10%. Thus, the adaptive inhibition
must be predominantly subtractive rather than multiplicative
gain control and may correspond to the tonic intracellular
hyperpolarization suggested by Carandini and Ferster (1997,
2000) to be the mechanism for pattern adaptation. However, it is
adapting essentially to a dynamic input modulation, and hence
the sustained LFP signal should be treated as deriving from a
full-wave rectified transform of the intracellular potential.

Formally, the neural signal for the present analysis is
considered to be the extracellular voltage Vj(t) in each
jth subpopulation of neurons with homogeneous response
characteristics and is related to the intracellular voltage
according to

V + τj
dV

dt
= αjVI, where V = Vj (t −1t) (2)

and where τj and ζj are the time constants of the two
exponentials,1t is an onset delay, and αj is a scaling factor, for a
given neural population j.

Solving Equation (2) for Vj (t) and restricting it to positive t
gives:

Vj(t −1t) =
αj
τj
VI(t −1t)⊗ e−(t−1t)/τj , t > 1t

= 0, t < 1t (3)

Thus, the neural input for the contributions of the various neural
populations to the LFP for the model of Table 1 is:

n (t) =
∑
j> 1

Vj (t) (4)

together with a sustained component given by:

n1 (t) =

∫
V1 (t) (5)

Finally, themrk for the metabolic coupling relation in the last line
of Table 1 is assumed to be a gamma function of the form:

mrk(t) = αMtk · e−t/τM (6)

where αM , k, and τM are the characteristic constants of the mrk
dynamics.

To implement the additive (parallel-process) model of
Equation (3) (shown in Figure 4 for a qualitative fit to the data
of Figure 2), the two decay components had time constants
of 1 and 60 s (“slow” and “fast” components, red and green
curves in Figure 4A). These processes were convolved with a
neural signal derived from sum of the two components after
convolution of the two components with the rectangular form of
the continuous stimulus for 3 and 12 s, the latter corresponding
to the responses in Figure 2. This model captures the qualitative
features of the LFP data (Figures 4B,C, black curves) with the
sum of the two component responses (red and green curves in
Figure 4C). Again, it is difficult to obtain such a combination of
the two component slopes with purely serial model, because this
would imply a convolution of the two exponentials which would
necessarily result in a function dominated by the slower process
rather than allowing both processes full expression.

FIGURE 4 | (A) Two exponential decay processes (red and green curves) used to account for the adaptation effects in Figure 2. (B) The properties of Equation (4) for

a stimulus of 3 s duration. (C) The same for 12 s duration (black curve), together with the components making it up (red and green curves). (See text for details).
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FIGURE 5 | Four plausible models of the BOLD response characteristic

through linear convolution with various metabolic response kernel

hypotheses.

Neurometabolic Coupling
As will become evident, we will need a range of models of
neurometabolic coupling to account for the variety of data
available. We therefore develop four options as to what aspect of
the neural signal is coupled through the metabolic demand to the
BOLD response (see Figure 5). All four options assume that the
coupling to generate the BOLD response can be approximated as
a linear process of convolution with themrk (last line of Table 1),
with the nonlinearities occurring in terms of the predominant
aspect of the neural signal and the early stages of the metabolic
chain that is assumed to be driving the BOLD response. Thus,
the coupling of themrk with a LFP model response is assumed to
be linear (as in Friston et al., 1998).

LFP Coupling
The first model option (Figure 5, top row) is the original concept
that the LFP represents the net neural signal in the voxel,
which generates the metabolic demand that drives the metabolic
recovery processes through in the blood supply (Lippert et al.,
2010), as mediated by the intervening glial cells. The net neural
signal contributing to the LFP is the input for a given cortical
area as well as its local intracortical processing, including the
activity of excitatory and inhibitory interneurons and the effect of
neuromodulatory pathways (Logothetis, 2003, 2008; Magri et al.,
2012). The LFP model for this option is specified in the first line
ofTable 1, which incorporates a slow adaptive process in addition
to the fast and slow decay components of Equation (4).

Slow Adaptive Coupling
Instead of assuming that the MRK input derives from the
whole LFP, it may be assumed to be specific primarily to the
slow adaptive component of the model (Figure 5, second row),
with the fast component attributable to spiking activity, which
would have little impact on the BOLD response due it its low
metabolic requirements (Logothetis, 2002, 2003, 2008; Logothetis
and Wandell, 2004). Thus, the mrk is assumed to be solely the
sustained component of Equation (5) followed by the adaptive
process of line 1 of Table 1.

Neurotransmitter Input Coupling
An alternative option is the assumption that all the observed
LFP adaptation is a function of extracellular signal diffusion after
the metabolic demand has been defined by the neurotransmitter
processes (Figure 5, third row). Under this assumption, the
neurometabolic coupling would be with a non-adaptive sustained
neurotransmitter response to the input signal, as proposed by
Logothetis (2002, 2003, 2008) and specified in Equation (5).
In particular, this hypothesis implies that there would be no
transient off-response component contributing to the BOLD
signal.

Rectified LFP Coupling
A final option (Figure 5, fourth row) is that any deviation of
the LFP from zero (either positive or negative) is mediated by
the release of some form of neurotransmitter and represents a
metabolic demand (Sotero and Trujillo-Barreto, 2007; Tyler and
Likova, 2011), as specified in Equation (1) with ηi taking the
value of −1. This assumption implies that the release of any
neurotransmitter in the form of either excitatory or inhibitory
synaptic coupling would constitute a neurometabolic load that
generated a positive neurometabolic demand. A simplified model
of such a demand would thus be represented by a rectified
version of the nonlinear LFP (Rect LFP), although it is possible
that this would still underestimate the metabolic demand due to
electrical cancellation of the positive and negative components
in different parts of the cell. Nevertheless, the rectified LFP
would constitute a lower bound of the neurometabolic demand,
and in particular would convey its characteristic of having no
negative aspects. This simplified model can therefore be used as
an initial assay of whether the rectification approach has merit,
with possible elaboration if it provides a better fit than the other
models.

METHODS

As specified in the previous section, these four hypothetical forms
of coupling have all been proposed in the literature. Here we may
now compare their performance within primary visual cortex
(V1) of macaque monkeys from LFP data made available to us
by Nikos Logothetis from the study described in Figure 2 (see
Logothetis, 2003, for details), with seven recording durations
(2, 3.2, 4.3, 6.4, 12.8, 13.4, and 25.7 s). The LFP bandwidth was
10–300Hz. The stimuli were large-field rotating checkerboards,
alternating in direction every 2 s, designed to avoid response
adaptation as much as possible. There were a total of 28 datasets,
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which are averaged for each available duration to provide the
average data for the seven durations shown in Figure 6.

The model fitting was implemented through the Matlab
fminsearch function for optimization of a parametrized function
to data, with the mean squared error as the variable to be
minimized. For the full LFP model of Equation (4), we needed
to include a sustained (non-adaptive) component (Equation 5) in
addition to the two adaptive components (see line 1 of Table 1)
in order to capture the characteristics of the response; thus i =
1, 2. To fit the LFP model of Equation (4) to these data, the
four dynamic parameters of τi, ζI , their onset delay 1t and
their adaptation time constant γ , were optimized for the fit to
the mean responses simultaneously across all seven durations,
together with amplitude of each component as a free parameter
at each duration, making a total of 4 + 7 = 11 free parameters.
For each duration, n = 64 and the residual variances for the LFP
fits are specified in each panel of the first column of Figure 6.
Thus the 64 × 7 = 448 parameters of the average LFP data are
fit with a model of 11 free parameters. The component weights of
the resulting three components (green curves) are shown in the

remaining columns of Figure 6, with the overall LFP waveforms
(dashed blue curves) for comparison.

For the full model fits to the BOLD waveforms, the optimized
LFP fit for each duration was convolved with an mrk according
to Equation (6), with k and τM optimized to all durations
simultaneously, together with an amplitude parameter αM and
baseline shift parameter for each of the 7 durations (2+2∗7 = 16
free parameters). Since the BOLD sampling rate was 250ms, the
dataset of 160 × 7 = 1120 parameters was being fit with the 16
free parameters for each of the four models of metabolic demand
shown in Figure 5 (given the LFP fit as the input function for
each duration). The presence of 160 samples at each duration
implies that individual fits are significant at p < 0.001 of the F-
test, providing Bonferroni correction to p < 0.02 for multiple
applications to 16 fits if they account for more than 61% of the
variance (i.e., if the residual variance is less than 39% of the
overall variance).

Moreover, for the ratio between any two variances to be
significant, the ratio has to exceed 1.63 on the F-test for
significance at p < 0.001 (which provides an appropriate level

FIGURE 6 | Left column: Overall neural model fits (blue curves) to the average LFP responses (red curves) at each of 7 durations. Proportion of variance

unaccounted for (R2) shown as insets. Three right columns: Optimized sustained, fast and slow adaptive components (green curves for each duration) required to

provide the overall neural model fits (blue curves). Note that residual variance (1–R2) is less than 3% in all cases, and must be considered to have fully characterized

the LFP dynamics of V1.
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of Bonferroni correction for the test validity at p < 0.05 over
the multiple applications of 6 pairwise comparisons among the 4
models, times 7 durations, or a total of 42 test applications).

MODELING RESULTS

The first aspect of the study was to fit the model of Equation
(4) to the average LFPs across duration, as shown in Figure 6.
This model fit had the twofold goal of (a) providing a low-
free-parameter characterization of the LFP waveform and of (b)
defining its component structure in terms of the components
developed in Equations (2–5) and Figure 5. The specific model
components were thus a sustained component matching the
stimulus input, a fast adaptive component and a slower adaptive
component. (Note that the adaptation gives the latter two
components a much reduced offset transient relative to their
onset transients at long durations; Figure 6, columns 3 and 4.)
The optimal dynamic parameters are specified in Table 2.

The neural model fits to the LFP waveforms show that the
three-component model has the appropriate structure to match
all the evident features of the waveform, accounting for an
average of 98% of the variance. Except at short durations, all three
components are approximately equally weighted in the combined
model. It might be possible to capture the data with the same
component weights across duration, but the goal of the study is
not LFP modeling per se, so it was not relevant to pursue this
issue.

Fits of the four models for the metabolic demand to the BOLD
responses at each duration are shown in Figure 7, based on
the components of the LFP fits in Figure 6, together with their
optimized mrk (top row). Note that the BOLD mrk parameters
in Figure 7 were allowed to vary across the four models (as
there is no prior on the relationships among the models), but
held constant over the 7 stimulus durations, as the metabolic
parameters are not expected to be affected by the nature of the
stimulus. The time constants of the optimized mrk waveforms
in terms of peak latency were 4.8, 9.3, 6.6, and 2.7 s for the
four models, respectively, based on a 5th-order gamma function
model.

As specified in Methods, the individual fits are significant at
p < 0.03 if the residual variance is <39%. Thus, all the fits
are significant except for several of those for the 3.2 and 4.3 s
durations.

For the specific comparisons among the different models, the
statistically significant cases may be assessed as any having ratio
of the residual variances greater than 1.63 between model fits at a
given stimulus duration, as described in Methods.

Across the durations, each of the model fits is significantly
worse than for the Input model at a few durations (residual
variances shown in bold), particularly those for the Slow Adapt
model, and no model has significantly better fits than the Input

TABLE 2 | Optimal parameter values for the LFP model.

Parameter 1t τ i ζ γ

Value (ms) 0.61 1.01 2.79 2.95

model at any duration, with the exception of the LFP model
at one duration—12.8 s (Figure 7). At the longest duration, the
Input model fits are significantly better those for all three other
models. Thus, taken together, the net result is that the Input
model provides the best fit overall across the 7 stimulus durations.

DISCUSSION

Taking all durations into account, the results of this modeling
study imply that the BOLD response is most closely coupled
with the neurotransmitter input waveform defined by the
sustained response close to the boxcar waveform of the stimulus
time course, without the transients and adaptive nonlinearities
exhibited by the LFP waveform. The best-fitting BOLD mrk
was a 5th-order gamma function with a peak time of 4.8 s and
no inhibitory rebound, accounting for more than 90% of the
variance at the three longest durations (which would correspond
to correlations between the model and the data of >0.95). In
practice, of course, the inputs to V1 voxels would have passed
through several stages of neural processing in the visual pathway,
including transmission delays, and temporal integration, but
these effects are evidently too small to be resolved on the time
scale of the available analysis. Also, it should be noted that
the initial transients characteristic of most neuronal responses
are specifically minimized by the design of the stimuli, which
provided continuousmovement alternating in direction every 2 s,
and hence that the initial neural response should be expected
to closely match the stimulus specification. In this context, it is
actually surprising to find the LFP exhibiting the pronounced
initial transient that is evident in Figure 6, since the stimulus
was specifically designed to minimize such deviations from the
input boxcar waveform in the form of directional adaptation.
However, the present data and model fits imply that any longer-
term adaptation to this kind of motion stimulus is happening
beyond the stage of the neural inputs to V1, as there is no
tendency on average for the BOLD response to decline at the
longest durations, and hence it must derive from a non-adapting
component of the neural response in V1.

Thus, the net conclusion from this study agrees with that of
(2002, 2003, and 2008), that the form of the BOLD signal is most
compatible with the input to the neuronal response, i.e., with
the energetics of the primary neural activation that requires a
glutamatergic metabolic response. It is noteworthy that this is the
coupling that involves the briefest estimated mrk, because this is
the metabolic demand with the least transient input of the four.
In fact, themrk peak for this case is occurring at only 4.8 s, a fairly
typical value for the general understanding for human BOLD
responses. (Note, however, that this value cannot be compared
directly with the HRF of the standard approach, as the HRF
incorporates all preceding neural dynamics, whereas the mrk is
restricted to the metabolic response kernel by the assumptions of
the analysis.)

Moreover, the model mrk had no delay parameters. As can be
seen from the examples in Figure 7 (first column), there is no
visible tendency for the rise of the BOLD onset to lag the model
fits. This result suggests that there is no inherent BOLD delay
relative to the gamma-function model of the mrk in relation to
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FIGURE 7 | Model fits (blue curves) for the four models of BOLD coupling for the respective components of the LFP coupling models of Figure 6 fitted

to the average BOLD responses (red curves) at 7 durations. Top row shows the BOLD metabolic kernels (green curves) required to best fit for each model.

Insets specify the percent residual variance of the fits, with those significantly higher than those for the Input model shown in bold. The non-adapting neural Input

model thus provides the best fit to the average BOLD data overall.

neural activation beyond that implied by the order of the gamma
function required to account for the full BOLD waveform. Any
further delays that may be needed in a range of GLM analyses of
the gamut of tasks in the literature may be attributed to neural
processing delays.

It should be emphasized that the linear convolution of the
mrk stage required for the present fits implies (although it does
not prove) that any further complexity or cortical diversity of
the measured BOLD dynamics, as reported by Fox et al. (2005),
Handwerker et al. (2012) or Likova and Tyler (2007), for example,
is attributable to variations in the underlying neural signals
rather than to variations in the BOLD HRF per se. On this
basis, the results further imply that the use of stimuli that allow
neural adaptation prior to arrival in the cortex, and hence an

adaptive waveform for the cortical input (wherever in the cortex
that may be), would show an adaptive BOLD response in that
region of cortex. Moreover, a neural input that had a negative
rebound in the signal arriving at the cortex would show a negative
rebound in the BOLD response. For example, the rotating noise
stimulus of the Logothetis study analysis here was changed in
direction every 2 s to minimize adaptation effects. If instead it
had been maintained indirection for the full 40 s time period,
classic motion adaptation would have been expected during the
stimulus presentation, with a negative rebound corresponding
to the motion aftereffect. Such behavior was indeed reported by
Tootell et al. (1995). Evidence in favor even stronger adaptation
effects in a purely transient noise paradigm is provided by Likova
and Tyler (2007).
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CONCLUSION

The good quality of the full model fits to the combined LFP
and BOLD data as a function of duration provides a principled
assessment of the nature of the neural/BOLD coupling behavior
underlying BOLD fMRI and provides structured insights into the
nature of the neural signal components contributing to the BOLD
response dynamics. In general, the results are consistent with
previous work employing a linear convolution of the stimulus
waveform with a gamma-function model of the BOLD dynamics,
but they provide further insight into the nature of the underlying
processes involved. In particular, they reveal that no negative
rebound of the BOLD response is required to account for the
recorded BOLD waveforms.

In relation to the first stage of the model process, the
extremely high quality of the model fits to the LFP data
provides strong evidence that the LFP component model
has the appropriate component structure to account for the
mechanisms contributing to the recorded LFP dynamics. This
question was not the focus of the present paper, but we note
that there are surprisingly few modeling studies attempting
to characterize the mechanisms of neural response dynamics,

particularly in the case of LFPs, and propose this model
structure as the starting point for more targeted studies of this
issue.

In relation to the question of assessing the neural signals
contributing to BOLD responses throughout the brain, a key tool
in this enterprise is an accurate model structure for the likely
neural responses in any local volume of cortex. The parameters of
such a model can allow for optimization to the range of responses
encountered across stimulus conditions, cortical regions and
individual brains. The success of the present analysis helps to
provide validation that this is an achievable goal, and should
encourage similar efforts for a wider range of stimulus conditions
to determine how far the present model can be generalized and
what other aspects need to be included to characterize the full
range of such constraints.
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Recent studies from our group and others using quantitative fMRI methods have found
that variations of the coupling ratio of blood flow (CBF) and oxygen metabolism (CMRO2)
responses to a stimulus have a strong effect on the BOLD response. Across a number of
studies an empirical pattern is emerging in the way CBF and CMRO2 changes are coupled
to neural activation: if the stimulus is modulated to create a stronger response (e.g.,
increasing stimulus contrast), CBF is modulated more than CMRO2; on the other hand,
if the brain state is altered such that the response to the same stimulus is increased (e.g.,
modulating attention, adaptation, or excitability), CMRO2 is modulated more than CBF.
Because CBF and CMRO2 changes conflict in producing BOLD signal changes, this finding
has an important implication for conventional BOLD-fMRI studies: the BOLD response
exaggerates the effects of stimulus variation but is only weakly sensitive to modulations
of the brain state that alter the response to a standard stimulus. A speculative hypothesis
is that variability of the coupling ratio of the CBF and CMRO2 responses reflects different
proportions of inhibitory and excitatory evoked activity, potentially providing a new window
on neural activity in the human brain.

Keywords: cerebral blood flow (CBF), cerebral metabolic rate of oxygen (CMRO2), blood oxygenation level

dependent (BOLD), functional magnetic resonance imaging (fMRI), inhibitory/excitatory neural activity

THE CHALLENGE OF INTERPRETING THE BOLD RESPONSE
IN A QUANTITATIVE WAY
Functional magnetic resonance imaging (fMRI) based on the
detection of blood oxygenation level dependent (BOLD) signal
changes has had an enormous influence on human neuroscience
studies, providing a sensitive and noninvasive tool for detecting
a change in neural activity in response to a stimulus or during
spontaneous neural fluctuations. The basic physical phenomenon
underlying the BOLD effect is that deoxyhemoglobin is param-
agnetic, and its presence reduces the MR signal slightly (Buxton,
2013). If the blood becomes more oxygenated, the MR signal
goes up. Note, though, that this phenomenon by itself is not
enough to explain why the BOLD effect happens: one could eas-
ily imagine that CBF and CMRO2 increase by the same fraction
in response to neural activity changes, which would not change
blood oxygenation. The existence of the BOLD effect depends
also on a second, physiological phenomenon: when neural activ-
ity increases CBF increases much more than CMRO2—decreasing
the local oxygen extraction fraction—and the decreased concen-
tration of deoxyhemoglobin creates the BOLD response. While
it is widely understood that the BOLD response is not directly
related to neural activity, there is nevertheless a tendency to think
of it as a relatively simple two-step process: increased neural activ-
ity leads to a CBF change, which then produces a BOLD signal
change. In this perspective article we argue that this view is too
simplistic, because it leaves out the important role played by

CMRO2: when neural activity increases, the CBF increase tends to
wash out deoxyhemoglobin, while the CMRO2 increase tends to
create more deoxyhemoglobin. For this reason, the BOLD signal
depends strongly on the coupling ratio n, the ratio of the frac-
tional changes in CBF and CMRO2. For example, the same change
in CBF will produce a larger BOLD response when n is large.

For this reason, interpreting the BOLD response in terms
of the underlying neural activity is not just a question of
understanding neurovascular coupling; we must also understand
neuro-metabolic coupling. Local neural activity includes both
synaptic and spiking activity, and both excitatory and inhibitory
activity. The basic problem is that we currently do not have a good
quantitative understanding of how each of these aspects of neu-
ral activity drives CBF and CMRO2. Current thinking is that the
acute CBF response to a stimulus is not driven directly by the
change in energy metabolism, but rather by signals related to the
neural activity itself (Attwell and Iadecola, 2002). This essentially
feed-forward mechanism provides a way to avoid a potentially
dangerous drop in tissue O2 concentration by increasing CBF in
anticipation of a greater need for oxygen (Buxton, 2010). The
need for a relatively fast CBF response is that there is very little
O2 available in tissue to serve as a buffer [tissue O2 in gray mat-
ter would be depleted in about 1 s for normal CMRO2 (Buxton,
2010)], and a quick increase in CMRO2 could lead to a sharp drop
in available O2 in the tissue unless CBF also quickly rises. This
means that we must think of CBF and CMRO2 as being driven in
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parallel by neural activity, but potentially by different aspects of
that activity.

These physiological considerations emphasize the difficulty of
interpreting the BOLD response in a quantitative way. Most fMRI
investigators would support the view that if a local BOLD sig-
nal change is detected in response to a stimulus, it suggests that
there is some underlying change in neural activity, the basis of
using the BOLD response as a mapping signal. However, if we
focus on questions comparing BOLD responses under different
conditions, the interpretation becomes more problematic: does a
change of the underlying neural activity in response to a stimu-
lus necessarily lead to a BOLD signal change? Or, if the BOLD
response is different comparing two conditions, does the mag-
nitude of the difference reflect the magnitude of the underlying
physiological differences? These are more difficult questions to
answer, and reflect a key shift from simply asking where activa-
tion occurs to asking how much activation occurs. The difficulty
in making this shift is part of the reason for the lack of clinical
impact of fMRI, despite the clear potential to provide informa-
tion on brain dysfunction. The most established fMRI application
in a clinical setting is in pre-surgical planning (Chakraborty and
McEvoy, 2008), where the basic question is with regard to the
location of activity, reflecting the success of fMRI as a mapping
tool. For many clinical and neuroscience applications, though, the
part of the brain of interest is already known, and the important
question is: what is the level of neural activity of that brain area
under different conditions?

We take this as the fundamental challenge for fMRI: how can
we interpret the magnitude of the BOLD signal in a quantita-
tive way in terms of the underlying physiological activity? Based
on the studies discussed below, our conclusion is that the BOLD
response alone is ambiguous, and cannot be interpreted reli-
ably as a quantitative reflection of the underlying physiology.
Fortunately, though, the combination of BOLD imaging with

arterial spin labeling (ASL) methods and a calibrated BOLD
approach makes it possible to isolate the effects of CBF and
CMRO2 (Davis et al., 1998; Hoge, 2012; Pike, 2012). This quanti-
tative fMRI approach provides a much richer context for assessing
the underlying physiology of brain activation and offers the
potential of revealing more about the underlying neural activity
than BOLD imaging alone.

THE COMPLEXITY OF THE BOLD RESPONSE
From a quantitative viewpoint, we can look at the BOLD response
as driven by a CBF change, but strongly modulated by two addi-
tional physiological factors: the CBF/CMRO2 coupling ratio n,
discussed above, and the amount of deoxyhemoglobin present
in the baseline state (Figure 1). In order to clarify the complex-
ity of the BOLD signal, we introduced a simple heuristic model
for the BOLD response (�S), based on a more detailed model
(Griffeth and Buxton, 2011), that approximately captures the
different factors involved (Griffeth et al., 2013):

�S = A (1 − 1/n − αV ) (1 − F0/F) (1)

The scaling factor A is proportional to the total amount of deoxy-
hemoglobin present in the baseline state, and so depends on
the baseline oxygen extraction fraction and venous blood vol-
ume, and also depends on technical factors related to the data
acquisition (magnetic field strength and echo time). The base-
line CBF is denoted F0, and the activated CBF is denoted F.
The nonlinear dependence on F reflects the ceiling effect on
the BOLD response: even a very large flow is limited in its
effect because it can only reduce the finite amount of deoxy-
hemoglobin present in the baseline state. The parameter αV

describes the effect of a change in venous blood volume with
activation, which changes the total blood volume containing
deoxyhemoglobin. Typical values of the parameters for a strong

FIGURE 1 | The physiological basis of the BOLD response. A stimulus
evokes increased excitatory and inhibitory neural activity, with the
energy cost of the net evoked activity met primarily by an increase in
oxygen metabolism (CMRO2), with increased blood flow (CBF) driven by
aspects of the neural response. The BOLD response is primarily driven

by the CBF change (F /F0), but strongly modulated by the ratio n of the
fractional changes in CBF and CMRO2 and the baseline state (A), and
to a lesser degree by venous blood volume changes (αV ). Equation (1)
is a simple model for the BOLD response in terms of these
physiological changes.
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activation in visual cortex are A = 0.12, F/F0 = 1.4 (40%
flow increase), n = 2 (20% CMRO2 increase), and αV = 0.2
(Chen and Pike, 2009), giving a BOLD signal change of about
0.01 (1%).

Caffeine provides a useful test for exploring the complexities
involved in the BOLD response because it has both neural and
vascular effects through inhibition of adenosine receptors, and
thus affects multiple factors in Equation (1). Adenosine has the
somewhat counterintuitive effect of inhibiting neural activity but
increasing CBF, which is most likely a protective mechanism lim-
iting O2 demand while trying to increase O2 delivery. We thus
expect administration of caffeine to reduce CBF but potentially
to increase CMRO2 as the effects of adenosine are blocked. In our

study (Perthen et al., 2008; Griffeth et al., 2011) we used a cali-
brated BOLD experimental design that made it possible to refer
all changes to the pre-caffeine baseline state, allowing us to look
at both baseline changes due to caffeine and also the response
to a visual stimulus before and after caffeine (Figure 2A). The
primary findings were that baseline CBF was reduced by 25%
due to caffeine, consistent with earlier studies (Chen and Parrish,
2009a), while baseline CMRO2 increased, and in addition the
absolute CMRO2 response to the visual stimulus was increased by
60% post-caffeine [consistent with findings in (Chen and Parrish,
2009b)]. The latter result is consistent with the idea that caffeine
led to increased excitability, in the sense that the same stimulus
elicited a much stronger evoked response.

FIGURE 2 | Pattern of variation of the coupling ratio of CBF and

CMRO2 responses. Data from three studies of visual cortex show how
responses are modulated by: (A) ingestion of 200 mg caffeine (Perthen
et al., 2008; Griffeth et al., 2011); (B) increasing stimulus contrast (Liang
et al., 2013); and (C) increasing attention to a fixed stimulus (Moradi et al.,
2012). For the caffeine data (A), changes are as a percentage of
pre-caffeine baseline state, and the plots for CBF (middle column) and
CMRO2 (right column) show both the baseline shift due to caffeine (the
shift of the bottom of the bars) as well as the change in the activation

state due to the visual stimulus response (the shift of the top of the bars).
Note that the relative BOLD responses (left column) for the two conditions
within each experiment (pre- vs. post-caffeine, low contrast vs. high
contrast, and unattended vs. attended) do not quantitatively reflect the
underlying CMRO2 response for those conditions. The BOLD response
was unchanged with caffeine, despite a large change in the CMRO2

response to the stimulus, and the BOLD response greatly overestimated
the CMRO2 change when stimulus contrast was changed and greatly
underestimated the CMRO2 change when attention was modulated.
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The surprising result, given these large changes in the underly-
ing physiology, was that the BOLD response to the visual stimulus
was unchanged by caffeine. The origin of this negative find-
ing illustrates the complexity involved in interpreting the BOLD
response, in this case because two effects were present but acting
in opposite directions. The baseline shift, decreasing CBF with
increasing CMRO2, would increase baseline levels of deoxyhe-
moglobin, creating a larger value of A. However, the increased
neural excitability, with a larger change in CMRO2 compared
to CBF in response to the visual stimulus, decreased the value
of n. In our study population these two effects mutually can-
celled, leaving the BOLD signal unchanged. In short, this example
shows that large physiological changes, detected with quantita-
tive fMRI methods, can be missed when looking only at BOLD
responses.

THE VARIABILITY OF FLOW/METABOLISM COUPLING
The caffeine example raises a basic question: how variable is the
CBF/CMRO2 coupling ratio under different conditions? For the
past several years we have tried to address this question with a
series of calibrated BOLD studies in human visual cortex. While
we (Ances et al., 2008) and others (Chiarelli et al., 2007) have
found different coupling ratios in different brain regions, our goal
in these studies was to specifically test whether the coupling ratio
changes for the same brain region under different conditions. For
several conditions we found the coupling ratio n to be unchanged,
in good agreement with earlier pioneering studies using the cal-
ibrated BOLD approach by Hoge et al. (1999). In particular, one
scenario in which we expected to see coupling differences was
comparing color and luminance stimuli designed to preferen-
tially stimulate blob and interblob regions. Anatomically, these
regions are defined by different concentrations of cytochrome
oxidase, suggesting different capacities for oxidative metabolism.
However, we found no evidence for a coupling difference when
the stimuli were adjusted to evoke similar magnitudes of response
(Leontiev et al., 2013).

However, in several other studies we found evidence for sig-
nificant variability of the CBF/CMRO2 coupling ratio (Figure 2).
In these studies we found that n was smaller for a weak stimu-
lus compared with a stronger stimulus (varying contrast of the
stimulus) (Liang et al., 2013), for an attended stimulus compared
to the same stimulus when unattended (Moradi et al., 2012), and
with adaptation to a sustained stimulus compared to the initial
response (Moradi and Buxton, 2013). Put another way, com-
pared to the CBF response these data are consistent with the
CMRO2 response rounding off more as the stimulus intensity
increases, responding more strongly to attention, and adapting
more quickly to a sustained stimulus. Based on these studies an
interesting empirical pattern is beginning to emerge for how CBF
and CMRO2 respond to different types of neural activity. If the
stimulus is modulated to create a stronger response (e.g., increas-
ing stimulus contrast), CBF is modulated more than CMRO2

(n increases); on the other hand, if the brain state is altered
such that the response to the same stimulus is increased (e.g.,
modulating attention, adaptation, or excitability with caffeine),
CMRO2 is modulated more than CBF (n decreases). Because
CBF and CMRO2 changes conflict in producing BOLD signal

changes, this finding has an important implication for conven-
tional BOLD-fMRI studies: the BOLD response exaggerates the
effects of stimulus variation but is only weakly sensitive to mod-
ulations of the brain state that alter the response to a standard
stimulus.

These effects are not small, as illustrated in Figure 2. Changing
the stimulus contrast created a modest change in the evoked
CMRO2 response but the BOLD response modulation was about
twice as large. In contrast, attention created a large amplifica-
tion of the CMRO2 response, with only a modest change in the
BOLD response. Going back to our caffeine study, despite a large
change in the CMRO2 response to the stimulus, there was no
change in the BOLD response. In short, the BOLD signal could
exaggerate the underlying change in CMRO2 or miss it entirely.
Note that these effects are all consistent with our understand-
ing of the conflicting effects of CBF and CMRO2 changes on
the BOLD response, with relatively small changes in n having
a large effect. The intriguing physiological phenomenon is that
the coupling ratio is not fixed within a brain region, but varies
under different conditions. This clearly presents a problem for the
interpretation of the BOLD response alone, but these results also
show that quantitative fMRI methods can provide a deeper probe
of the physiology of brain activation, and raises the question:
does the CBF/CMRO2 coupling ratio tell us something about the
underlying evoked neural activity?

NEURAL ACTIVITY: WHAT COSTS ENERGY AND WHAT
DRIVES BLOOD FLOW?
Our basic assumption is that CMRO2 is the physical parame-
ter closest to the underlying neural activity in that it reflects the
net energy cost of that activity. This assumption is important
to make explicit, because it is complicated by the dissociation
of glucose metabolism and oxygen metabolism in the brain
(Fox et al., 1988). For reasons that are not well understood,
glucose metabolism increases more than oxygen metabolism
with increased neural activity. Nevertheless, most of the energy
required in terms of adenosine triphosphate (ATP) generation
to support the neural activity is thought to come from oxidative
metabolism of pyruvate, with the contribution from glycolysis as
a small fraction (Buxton and Frank, 1997; Lin et al., 2010).

The primary energy cost of neural activity is the restoration
of sodium and calcium gradients partially degraded by neural
activity (Attwell and Laughlin, 2001; Buxton, 2013). These ions
are maintained in a state far from thermodynamic equilibrium,
with high extracellular concentrations and low intracellular con-
centrations. An action potential arriving at an excitatory synapse
triggers a chain of events that leads to the opening of sodium
channels on the post-synaptic dendrite. The sodium then flows
through the channel due to the electrochemical gradient, creating
an excitatory inward synaptic current that partially depolarizes
the membrane potential. This in turn leads to the opening of
voltage sensitive calcium channels, creating an influx of calcium
ions (Lauritzen, 2005). If the net excitatory current into the post-
synaptic cell reaches the soma with sufficient strength an action
potential is generated. Importantly, none of this signaling process
requires energy, because each step is downhill in a thermody-
namic sense. The energy cost is in restoring the ion gradients by
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pumping sodium and calcium back out of the cell, requiring ATP
as the source of free energy for this thermodynamically uphill
process. For this reason, excitatory neural activity has a high ener-
getic cost. While there is an energy cost associated with clearing
neurotransmitter from the synaptic cleft and repackaging it in the
pre-synaptic terminal, this is thought to be less than 10% of the
total energy cost of synaptic activity (Attwell and Laughlin, 2001).
There is also a cost in generating and propagating the action
potential, and although this cost is estimated to be about half of
the energy cost for the rat brain, the higher number of synapses
each axon projects to in the primate brain shifts the dominant
energy cost to recovery from synaptic activity rather than action
potential production. Estimates for the primate brain are that
excitatory synaptic activity accounts for about 3/4 of the energy
costs of neural signaling (Attwell and Iadecola, 2002).

Inhibitory synaptic activity is likely to have a much lower
energy cost. Inhibitory activity can take several forms, but the
simplest is the opening of chloride channels. The extracellular
medium has a higher concentration of both sodium and chloride
than the intracellular medium. However, because chloride ions
are negatively charged, their distribution is close to equilibrium
with the negative intracellular electric potential. The membrane
potential reflects the balance of open channels for different ions,
and opening more chloride channels tends to peg the membrane
potential at the chloride equilibrium potential, effectively reduc-
ing the effect of simultaneous excitatory sodium currents. When
GABA, the primary inhibitory neurotransmitter in the cortex,
is released there will again be the energy cost associated with
clearing and repackaging the neurotransmitter, but there is no
large energy cost for post-synaptic ion pumping: chloride ions are
already in a near equilibrium distribution, and there is no large
sodium flux as there is for excitatory activity.

Blood flow is driven strongly by aspects of excitatory synap-
tic activity, a well-matched feed-forward system given that the
dominant energy cost is excitatory activity. In contrast, the role
of inhibitory interneurons in the control of CBF presents an
intriguingly complex picture (Cauli et al., 2004). Some classes
of interneurons have a constricting effect on blood vessels, act-
ing to reduce CBF. However, other classes of interneurons have
a vasodilatory effect, increasing CBF. In particular, one of the
most potent vasodilators known, nitric oxide (NO), is released
by inhibitory interneurons (Estrada and DeFelipe, 1998). As with
the effects of adenosine, discussed above in the context of our caf-
feine experiment, this is an example of an agent that has opposite
effects on CBF and CMRO2: acting to increase CBF while also
acting to inhibit neural activity and thus reduce CMRO2.

DOES CBF/CMRO2 COUPLING REFLECT THE BALANCE OF
INHIBITORY AND EXCITATORY NEURAL ACTIVITY?
The observation that there are examples of inhibitory mech-
anisms that have a larger effect on increasing CBF than on
increasing CMRO2 (or even act to reduce CMRO2) suggests a
speculative hypothesis: the coupling ratio n of CBF and CMRO2

responses to a stimulus tracks with the ratio of inhibitory to exci-
tatory activity in the neural response. In this picture, when there is
a strong involvement of inhibitory activity, CBF is increased rela-
tive to CMRO2 because of the vasodilatory effect of the inhibitory

mechanisms, and thus n is larger. In our experiments we had no
direct information on the balance of excitatory and inhibitory
activity, but we can imagine plausible scenarios based on this
hypothesis. For our attention experiment, the visual stimulus was
either the focus of the task or a distractor for another task the sub-
ject was asked to perform; we hypothesize that inhibition of the
response to the stimulus in the latter unattended case would lead
to a larger n, as observed (Moradi et al., 2012). With adaptation,
we hypothesize that increased involvement of inhibitory mecha-
nisms over time would act to reduce the CMRO2 response while
continuing to push up the CBF response, as observed (Moradi
and Buxton, 2013). In the caffeine experiment, before caffeine
was given adenosine was more effective, tending to increase the
balance of inhibitory and excitatory activity and boost the CBF
response but suppress the CMRO2 response (Griffeth et al., 2011).
With increasing contrast of a visual stimulus, animal studies of
the behavior of different cellular types found a flattening of the
response of simple regularly spiking neurons (thought to be glu-
tamatergic excitatory cells) but continued increasing activity of
simple fast spiking neurons (thought to be inhibitory GABAergic
neurons) (Contreras and Palmer, 2003), suggesting a greater pro-
portional involvement of inhibitory activity as contrast increases,
consistent with our finding of increased n (Liang et al., 2013).

This hypothesis is speculative, but suggests the possibility
of a new direction in which quantitative fMRI may be able
to provide information on the underlying activity. Note that
this information is in addition to the magnitude of the overall
evoked response, as reflected in the CMRO2 response. The over-
all response depends on the balance of excitatory and inhibitory
activity in a nonlinear way, and the overall response magnitude
(the CMRO2 response) could be large for either a weaker stimulus
with no inhibition or a stronger stimulus with more involvement
of inhibitory mechanisms. If this hypothesis is true, then the ratio
of CBF and CMRO2 responses could provide an index of the
involvement of inhibitory neural activity that could distinguish
these cases.

In conclusion, the BOLD response is a complex phenomenon,
and the magnitude of the BOLD response cannot be taken as
a quantitative reflection of underlying activity. Our studies sug-
gest a pattern in which the BOLD magnitude exaggerates the
physiological changes when the stimulus strength is changed,
but underestimates or completely misses those changes when the
brain state is modulated to change the response to the same stim-
ulus. This is a problem for interpreting BOLD imaging alone, but
quantitative fMRI methods offer a way to untangle the ambi-
guities of the BOLD response. Current work in our group is
focused on developing approaches to apply these methods to ana-
lyze dynamic responses (Simon et al., 2013) and to make the
calibration easier to apply by eliminating the need to breathe
special gas mixtures (Blockley et al., 2012). Potentially, quan-
titative fMRI methods provide two candidate measurements of
neural activity: the overall evoked response, as reflected in the
CMRO2 change; and the balance of evoked inhibitory and exci-
tatory activity, as reflected in the coupling ratio of the CBF and
CMRO2 responses. We emphasize though, that this picture is
speculative, based on two elements: (1) a limited set of experi-
ments in human primary visual cortex to explore the variability
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of CBF/CMRO2 coupling; (2) limited understanding of the role
of inhibitory mechanisms on CBF control (most of which comes
from brain slice experiments, rather than in vivo experiments)
and very little understanding of effects of inhibitory activity on
CMRO2 (although the theoretical arguments are plausible). Each
of these elements requires much more experimental attention to
test whether there is any truth in this speculative hypothesis.
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The presence of a visual stimulus not only increases the blood oxygenation level
dependent (BOLD) activation in its retinotopic regions in the visual cortex but also
suppresses the activation of the nearby regions. Here we investigated whether there
are multiple components for such lateral effects by using the m-sequence paradigm to
measure the stimulus spatial configuration specific BOLD activation. The central target (2
cyc/deg grating) was centered on a fixation point while the flanking stimulus was placed
2◦ away and was located on axes that were either collinear or orthogonal to the target’s
orientation. Three types of flankers were used: gratings whose orientation was the same
as the central stimulus, gratings which were orthogonal to the stimulus, and random dots.
The onset and offset of each stimulus were determined by shifted copies of an 8-bit long
m-sequence. The duration of each state of the sequence was 2 s or 1TR. The first order
activation, computed as the waveform recorded following on-states minus that recorded
after off-states, determined the retinotopic regions for each stimulus. We then computed
BOLD activation waveforms for the target under various flanker conditions. All flankers
reduced the activation to the target. The suppressive effect was largest following the
presence of the iso-orientation collinear flankers. Our result suggests two types of BOLD
signal suppression: general suppression, which occurs whenever a flanker is presented
and is insensitive to the spatial configuration of the stimuli, and spatial configuration
dependent suppression, which may be related to the collinear flanker effect.
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INTRODUCTION
The visual response to a stimulus can be modulated by another
stimulus. For instance, in the Ebbinghaus effect, a target cir-
cle surrounded by large circles appears to be smaller than the
same target surrounded by small circles; in simultaneous con-
trast (Wallach, 1948; Gilchrist, 2006), a patch of gray on a dark
background appears brighter than the same patch on a bright
background; and, in particular, in the flanker effect (Polat and
Sagi, 1993, 1994; Chen and Tyler, 2001, 2008), the visibility of a
low contrast periodic pattern (target) increases when it is flanked
by collinear and iso-oriented patterns (flankers). Such lateral
modulation of visual performance may have a neurophysiologi-
cal basis. Whereas a visual cortical neuron only responds to visual
stimuli projected onto its receptive field (Hubel and Wiesel, 1962;
DeAngelis et al., 1993), this response can be modulated by the
presence of other visual stimuli presented outside its classical
receptive field (Blakemore and Tobin, 1972; Nelson and Frost,
1985; Knierim and Van Essen, 1992; Sillito et al., 1995; Polat et al.,
1998; Sengpiel et al., 1998; Kapadia et al., 1999, 2000; Chen et al.,
2001; Freeman et al., 2001; Angelucci et al., 2002; Cavanaugh
et al., 2002).

In psychophysical or electrophysiological experiments, the lat-
eral effect can be measured by comparing the visual performance
or cell response to a visual target in the presence of a spatial

context with those without a context. This approach, however,
may not be directly applicable to an fMRI study. The blood oxy-
genation level dependent (BOLD) activation in the early visual
cortex does show a retinotopic property, i.e., that the activation
of a particular voxel corresponds to the presence of visual stim-
uli at a certain location (Engel et al., 1997; Tootell et al., 1998).
Thus, at first glance, it might be possible simply to measure the
context effect by comparing the activation of a set of voxels to
a target projected to their corresponding retinotopic locations
on the display, with and without the presence of a context out-
side their corresponding retinotopic locations. Indeed, there were
fMRI studies did just that (Zenger-Landolt and Heeger, 2003;
Tajima et al., 2010; Wade and Rowland, 2010). However, the result
from such experimental paradigm may not reflect the true neu-
ral mechanisms for context effect. For instance, it is known that
the presence of a visual stimulus not only produces an increment
of BOLD activation in the corresponding retinotopic regions for
that stimulus, there is also a sustained reduction in BOLD activa-
tion in the neighboring brain regions (Logothetis, 2002; Shmuel
et al., 2002, 2006; Smith et al., 2004; Chen et al., 2005). Such
negative BOLD may not have a neurophysiological origin but,
as discussed by Shulman et al. (1997) and Shmuel et al. (2002),
it may be caused by “blood steal,” i.e., the activation to the
visual stimuli draws fresh blood to the corresponding retinotopic
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region, thus reducing it in the neighboring regions. The reduction
of fresh blood, in turn, causes a reduction in BOLD activation.
Hence, there is a possibility that the effect of a context stimulus
on the activation of a target brain region is simply caused by the
regions responsive to that context stimulus drawing blood away.
That is, the measurement of the context in the target region may
be contaminated by a hemodynamic cause and thus cannot reflect
the nature of the lateral interactions between neural mechanisms.

The possibility of the involvement of a hemodynamic factor
in the BOLD activation illustrates the risk of studying context
effect. Even without the hemodynamic factor, the presentation of
the context stimulus may cause an overall change in the neural
activity due to, say, an increment in the stimulus size. Thus, the
experimental result may tag a neural mechanism that is unrelated
to the context effect in perception. To avoid such risk, the better
strategy is to compare activation to the stimuli that are known to
cause a difference in perception.

The flanker effect is strongly configuration dependent. At the
behavioral level, the detection threshold for a Gabor target is
reduced by the presence of Gabor flankers only if the flanker has
the same orientation (Polat and Sagi, 1993; Chen and Tyler, 2002)
and is placed on the collinear axis of the target orientation (Polat
and Sagi, 1993, 1994; Solomon and Morgan, 2000; Chen and
Tyler, 2008). A flanker with an orthogonal orientation or which
is placed away from the collinear axis has little, if any, effect on
target detection. Electrophysiological evidence also shows that the
response of a visual cortical neuron is best modulated if the con-
text has an orientation similar to the preferred orientation of the
cell (Blakemore and Tobin, 1972; Nelson and Frost, 1985) and is
placed on the collinear axis (Kapadia et al., 2000).

Here, we exploited the configuration dependency of the flanker
effect. We tested the BOLD activation of the brain region respon-
sive to a central target in the presence of flankers with different
orientations and locations. A BOLD activation caused by the
visual context effect should show a dependency on the spatial con-
figuration. That is, a flanker which has the same orientation and
is placed on the collinear axis should produce the largest change
in BOLD activation from that to the target alone. On the other
hand, a lateral effect that is not related to the visual context effect,
such as those with hemodynamic origins or an overall change in
neural activity, should be indifferent to the spatial configuration
of the stimuli.

In our experiment, there could be more than one stimulus
component on the display. To separate the effect of different
stimulus components, we used an M-sequence technique (Sutter,
2001; Buracas and Boynton, 2002) to control the experimental
sequence. An M-sequence is a temporal binary (e.g., 0/1) random
sequence that determines the state of a stimulus; in our experi-
ment, the onset and the offset of the stimulus components. This
type of binary sequence is generated in such a way as to consist of
the same number of zero and one events and all possible combina-
tions of zero and one events within a pre-designated length. That
is, there is no bias on any states of the stimulus. Furthermore, an
M-sequence also has the property that any temporal shift of the
sequence is always orthogonal to the original sequence. Thus, one
can assign each stimulus component to an M-sequence, which is
a shift-copy of the M-sequences for other stimulus components.

In this way, the occurrences of any stimulus component com-
binations, such as target alone, flanker 1 alone, target+flanker1,
etc., are the same and therefore there is no bias toward any
stimulus combination. In addition, since all M-sequences used in
the experiments are orthogonal to each other, one can extract the
effect of one stimulus component without being contaminated
by the effect of the other components. With these properties, we
were able to have multiple flankers in one fast event-related run
and thus keep our experiment to a reasonable length.

METHODS
PARTICIPANTS
Eight healthy volunteers between early 20 to early 40 years old
participated in this study. One participant was the author of this
paper while the others were naïve to the purpose of the exper-
iment and were compensated financially for the hours of the
experiment. Informed consent was obtained from each partici-
pant before scanning. The experiment was approved by the IRB
of the National Taiwan University Hospital.

EQUIPMENT AND DATA ACQUISITION
All stimuli were delivered with MR-compatible goggles
(Resonance Technology, USA) mounted on the head of the
participants. The resolution of the goggles was 800 × 600 with
a dot size of 0.096◦ visual angle. The frame rate was 60 Hz. All
the stimuli were generated on a PC compatible computer with
the Psychophysics toolbox (Brainard, 1997) under the MATLAB
(The Mathworks, Matick, MA, USA) environment. The visual
acuity of the participants was corrected to normal by a set of
convex lenses mounted on the goggles, in front of the display.

The magnetic resonance images were collected on a Bruker
30/90 Medspec 3T scanner (Bruker Medical, Ettlingen, Germany)
with a cylindrical head coil. The functional images (T2∗-weighted
BOLD) were acquired with an Echo-planar imaging sequence
(Stehling et al., 1991) with TR = 2000 ms, TE = 33 ms, flip
angle = 90◦, and voxel resolution = 3 × 3 × 3 mm. The images
were collected in 20 transverse planes parallel to the AC-PC (ante-
rior commissure-posterior commissure) line with a 19.2 cm FOV
and an image matrix of 64 × 64. A set of anatomical images
(T1-weighted, 256 × 256) was acquired in identical planes.

For the functional data, before statistical analysis, we first
used SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/)
software to correct for the timing difference between slices in
a volume, and realigned the images acquired at different time
points to remove head motion artifacts. The realigned images,
as well as the anatomic images, were then normalized to a stan-
dard template with SPM8. The normalized images were fed to the
mrVista software (Wandell et al., 2000) for co-registration and
visualization after statistical analysis.

STIMULUS
As shown in Figure 1, there were three components in a stimulus.
The first component was the central stimulus, or the target, which
was a sinusoid grating with a 45◦ orientation, presented through
a circular aperture with a 2◦ radius. The second component was
a collinear flanker located on the two ends of the target along
the axis that passed through the center and was parallel to the
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FIGURE 1 | cIllustration of stimuli in the three test conditions. (A) The
Iso-orientation condition with three image components labeled; (B) the
orthogonal condition; and (C) the random dot condition.

orientation of the target. The third component was a side flanker
located on the axis orthogonal to the orientation of the target. The
flankers were either a sinusoid grating or random dots presented
through a fan aperture. The aperture in each quadrant extended
from 2.5 to 6◦ visual angle from the center of the display in radius
and spanned 70◦ in azimuth.

There were three types of stimulus. In the iso-orientation
condition, the flankers contained sinusoidal gratings at a 45◦
orientation. In the orthogonal condition, the flankers contained
sinusoidal gratings at a 135◦ orientation. The gratings had a spa-
tial frequency of 4 cyc/deg and a contrast of 95%. In the random
dot condition, the flankers were random dots whose luminance
was drawn from a uniform distribution that had the same range
and mean as the luminance distribution of the pattern stimuli.
All stimulus components were presented on a gray background of
mean luminance.

PROCEDURE
We used a fast event-related design. The stimulus was updated
every 2 s (1TR). The sequence of the presentation of image
components was determined by m-sequences. The method of
generating m-sequences has been discussed by Sutter (2001). We
used 8-bit m-sequences for the experiment. The duration of each
state was 2 s. We used three shift-copies of the same sequence in
each run. The original sequence controlled the onset and offset of
the central target. The second sequence, which was constructed

by shifting the first sequence by 64 states, controlled the collinear
flanker. The third sequence, which was constructed by shifting the
first sequence by 128 states, controlled the side flanker. The state
value 1 meant that the image component was presented, while
the state value 0 meant that it was not presented. In each state, the
stimulus was presented for 1 s, followed by a 1 s blank in which
only the gray background of mean luminance and the fixation
point were shown on the display. All stimulus components, when
presented, counter-phase flickered (that is, the luminance of each
pixel alternating between positive and negative polarity about the
mean luminance) at 4 Hz.

A circular fixation point (0.26◦ diameter) was placed at the
center of the display throughout the experiment. At the beginning
of each state, there was a 1/10 chance that the color of the fixa-
tion would change from red to green or vice versa. The observer
was to press a button to indicate the change in fixation color. All
observers achieved at least 80% accuracy in this fixation task.

For each participant, there were three functional runs, one for
each of the iso-orientation, orthogonal orientation, and random
dot conditions respectively. Each run started with a 6 s (3TR)
blank period followed by 256 (28) m-sequence states (512 s). The
data from the first 6 s was not included in data analysis to avoid
the start transient. The order of the three functional runs was
randomized for each observer.

RESULT
THE FIRST ORDER ACTIVATION AND ROI SELECTION
Figure 2 shows the first order activation for each stimulus com-
ponent on flat maps for one observer. The flat maps here had
their center near the occipital poles and extended 80 mm in radius
around that point. The areas delineated by colored borders are
the first-tier retinotopic areas (V1–3), identified with a rotating
wedge for that observer acquired for a previous study (Chen et al.,
2007).

The first order activation here is the BOLD activation to the
presence of a stimulus component. The first order activation from
an m-sequence can be extracted with a linear regression method
(Buracas and Boynton, 2002). We first convolved the sequence
for each image component with a difference-of-gamma (DOG)
hemodynamic response function,

g (t) = w1 ×
[
(t1/α1)

β1×e(−t1/α1)

−w2 × (t2/α1)
β2×e(−t2/α1)

]
(1)

where t is time in seconds, t1 = t − 6 and t2 = t − 12. The val-
ues of the parameters, given by Chen and Tyler (2008) are α1 =
5.4, α2 = 10.8, β1 = 6, β2 = 12, w1 = 1 and w2 = 0.35. Those
parameters were shown (Chen and Tyler, 2008) to provide a
good fit to the hemodynamic response function following a 1 s
sensory stimulation measured by Glover (1999). The convolved
sequences, along with a unity vector, were used as regressors.
In this way, we were able to acquire the base line activation
(the regression coefficient to the unity vector) and the activation
amplitude to the presence of each of the three image components
for each voxel. The activation of a voxel to an image component
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FIGURE 2 | The first order activation for the three image components.

(A) the target, (B) the collinear flanker, and (C) the side flanker. In each row,
the two inner insets illustrated voxels (pseudo-colored area) showing
significant [t(253) > 4.72] activation to the respective image component on a
flat map in the left and right hemispheres respectively. The colored contours

denote visual areas as labeled in Panel (A). The outer insets of each row are
the waveform of activation averaged across significant voxels in the left and
right hemispheres respectively. The smooth curve is the fit of a
difference-of-gamma function. The error bars denote one standard error of
measurement.

was considered significant if the t-statistics of the regression
coefficient for the corresponding sequence reached 4.72. This cri-
terion was equivalent to a two-way α-level about 10−6 for each
individual voxel and Bonferroni corrected α-level 0.01, based on
the number of gray matter voxels.

The central target produced activation in the foveal conflu-
ence region (Figure 2A). The two flankers, on the other hand,
produced activation in the peripheral region (Figures 2B,C). The
regions for the central target activation were used as areas of inter-
est (ROIs) for the subsequent analysis. These ROIs respond little
to the flankers alone. As shown in Figure 2 the areas activated by
the flankers (Figures 2B,C) had no overlap with these ROIs. The
amplitude of the BOLD activation in these ROIs to flankers never
reached a statistically significant level (α-level 0.01). Hence, our
result in the foveal ROIS cannot be explained by an intrusion from

the flankers. Notice that, since it is difficult, if not impossible, to
separate the foveal responses in different early visual areas, we
opted to treat all voxels activated by the target in the early visual
cortex in each hemisphere as one ROI.

LATERAL EFFECTS ON BOLD ACTIVATION
Figure 3 showed BOLD activation produced by the presence of
the target in the various flanker conditions in the left and right
hemisphere ROIs. In each panel, blue symbols and curves denote
the BOLD activation following the stimulus events in which only
the target was presented; red symbols and curves, the target and
the collinear flanker; and magenta symbols and curves, the target
and the side flankers. The smooth curves are fits of the DOG func-
tion Equation (1) with amplitude w1 as the free parameter. The
BOLD activation for each voxel was time locked average following
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FIGURE 3 | The BOLD activation produced by the presence of the target

in (A) the iso-orienation flanker condition, (B) the orthogonal flanker

condition, and (C) the random dot flanker condition averaged across

participants and voxels. The left and right columns show activations in the
left and right hemisphere ROIs respectively. In each panel, blue symbols and

curves denote the BOLD activation following the stimulus events in which
only the target was presented; red symbols and curves, the target and the
collinear flanker; and magenta symbols and curves, the target and the side
flankers. The smooth curves are fits of the difference-of-gamma function
Equation (1). The error bars denote one standard error of individual difference.
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a specific event. The activation was then averaged across all voxels
in an ROI, before being averaged across participants. The error
bars denote the standard error of individual difference.

Without flankers, the BOLD activation to the central target
in the ROIs showed a typical biphasic shape and peaked at 6 s
after stimulus onset. The presence of the flankers reduced the
amplitude of BOLD activation to the target. In the iso-orientation
condition, the presence of the flankers reduced the BOLD activa-
tion. The peak activation, on average, dropped 34% [t(7) = 3.07,
p = 0.009] and 27% [t(7) = 3.21, p = 0.007] in the left and right
hemisphere respectively. The activation with the collinear flankers
was only half of that without flankers [t(7) = 4.02, p = 0.003
for the left and t(7) = 4.39, p = 0.002 for the right hemisphere].
Thus, while the presence of either flanker reduced the peak activa-
tion, the effect was greater in the collinear flanker condition than
in the side flanker condition. The difference between the collinear
and the side flanker was significant in both the left [t(7) = 2.87,
p = 0.01] and in the right hemisphere [t(7) = 1.98, p = 0.04].
Notice that, the flankers also reduced BOLD activation in the
undershoot region of the waveform. However, there was no sys-
tematic difference between the side and the collinear flankers in
this.

In the orthogonal orientation condition (Figure 3B), the pres-
ence of either collinear or side flankers reduced the BOLD acti-
vation to the target. However, there was little, if any, difference
in activation amplitude between the two flanker conditions. The
result for the random condition (Figure 3C) was similar to that of
the orthogonal orientation condition. That is, the presence of the
flankers reduced the BOLD activation to the target by a similar
amount regardless the location of the flankers.

To summarize our result, Figure 4 shows the peak activation
in all flanker conditions. As shown above, the flanker location
effect, or the activation difference produced by the collinear and
side flankers, was only significant in the iso-orientation condi-
tion. There was little, if any, difference in activation amplitude
between the two flanker conditions in either orthogonal or noise
conditions. The orientation effect, or the activation difference
produced by the iso-orientation and orthogonal flankers was pro-
nounced in collinear location. The difference was statistically
significant in the left hemisphere [t(7) = 2.01, p = 0.04] but not
beyond the limitation of noise [t(7) = 1.58, p = 0.08] in the right
hemisphere. There was no orientation effect at the side location.

DISCUSSION
Despite a very short time interval between events (2 s), we were
able to obtain a reliable measurement of BOLD activation to stim-
ulus components (Figure 2) and various combinations of them
(Figure 3) with m-sequences. Hence, the m-sequences technique
is indeed a useful and efficient tool to measure brain activity to
multiple visual inputs with fMRI.

In this study, we showed that BOLD activation to a target in
the early visual cortical regions was suppressed by flankers pre-
sented outside the corresponding retinotopic locations of those
regions. Such suppression occurred regardless of the orientation
(iso-orientation, orthogonal orientation), composition (grating
or random dot) or location (collinear or side) of the flankers.
The suppression effect was greatest when the iso-orientation

flankers were presented at the collinear location. Other than the
iso-orientation collinear flankers, the suppression effect from all
other flankers was similar. Hence, there seem to be at least two
types of lateral suppression in the early visual cortex: one is a gen-
eral suppression that occurs whenever a stimulus component is
presented and the other is a spatial configuration specific suppres-
sion that occurs only when the iso-orientation collinear flankers
are presented.

The configuration specific effect is consistent with the well-
known collinear lateral interaction phenomenon, that is, that the
visibility of a target periodic pattern can be altered by the presence
of an iso-orientation flanker whose stripes are collinear with those
of the target (Polat and Sagi, 1993, 1994; Zenger and Sagi, 1996;
Solomon et al., 1999; Chen and Tyler, 2001, 2002, 2008). This
collinear flanker effect is reduced as the orientation of the flanker
deviates from that of the target (Polat and Sagi, 1993; Chen and
Tyler, 2002), or as the flankers move away from the collinear axis
toward the sides (Polat et al., 1997; Solomon et al., 1999; Chen
and Tyler, 2008). Single cell recording also shows similar configu-
ration effects (Polat et al., 1998; Kapadia et al., 2000). There is also
anatomic evidence showing that V1 neurons send their fibers to
contact V1 neurons in other hypercolumns with the same orienta-
tion preference (Bosking et al., 1997). Hence, there is convergent
evidence for a collinear lateral interaction that is reflected in our
configuration specific effect.

Many psychophysics studies demonstrate the collinear lateral
interaction by showing that the detection threshold to the tar-
get decreases with the presence of collinear flankers (Polat and
Sagi, 1993; Huang et al., 2012). That is, the effect of the flankers
is to facilitate target detection. At first glance, this collinear facil-
itation contradicts our suppressive effect. However, it is known
that collinear lateral interaction is contrast dependent. Polat et al.
(1998, also see Chen et al., 2001) showed that the presence of
collinear flankers not only increased the firing rate of the primary
visual cortical neurons at low target contrast, but also decreased
it at high contrast. At the behavioral level, indeed, the presence
of collinear flankers reduces contrast detection and discrimina-
tion thresholds at low contrasts. However, it also increases the
contrast discrimination threshold at high contrast, suggesting a
reduction of internal response to the target by the flankers (Chen
and Tyler, 2001, 2008; Wu and Chen, 2010). That is, the collinear
lateral interaction is suppressive at high contrasts. Our stimuli
had a contrast of 80%, well into the suppressive range reported
in the previous studies (Polat et al., 1998; Chen and Tyler, 2001).

Some may argue that our collinear effect may be due to a
preference for radial orientation in the visual cortical activation.
That is, the BOLD activation of the visual cortex to a pattern
whose orientation points to the fixation (radial) is greater than
that whose orientation is orthogonal to the radial orientation
(Sasaki et al., 2006; Freeman et al., 2013). In our experiment,
the iso-orientation collinear flanker was a radial stimulus while
the iso-orientation side flanker was not. Hence, the larger lat-
eral effect produced by the collinear flanker might just reflect the
greater cortical activation to the iso-orientation collinear flankers.
However, notice that, the iso-orientation collinear flankers were
not the only radial stimuli in our experiment. The orthogonal
side flankers were also radial stimuli. Yet, we found no difference
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FIGURE 4 | The peak activation under various flanker conditions. The left panel shows the activation in the left hemisphere ROI and the right panel shows
the activation in the right hemisphere ROI. ∗Denotes statistically significant difference at 0.05 level.

in the lateral effect produced by the side flankers (radial) and the
collinear flankers (not radial) in the orthogonal condition. Hence,
the radial bias of the cortical response cannot explain our result.

Different factors may underlie the general lateral suppression
in our result. It is known that the presence of a visual stimulus
not only produces an increment of BOLD activation in the cor-
responding retinotopic brain regions for that stimulus; there is
also a sustained reduction in BOLD activation in the neighboring
brain regions (Logothetis, 2002; Shmuel et al., 2002; Smith et al.,
2004; Chen et al., 2005). One hypothesis is that negative BOLD
activation may be of hemodynamic origin (Shulman et al., 1997;
Shmuel et al., 2002). For instance, the presence of a visual stimu-
lus could increase the activation of certain cortical regions, which
in turn would lead to an increment of cerebral blood flow (CBF)
to those cortical regions. This local increment in CBF could result
in a redistribution of blood and thus a decrement of CBF in neigh-
boring cortical regions. As a result, one may observe a decrement
in BOLD activation in voxels corresponding to the visual fields
outside the stimulus. Recent evidence, however, is against this
“blood steal” theory. Shmuel et al. (2002, 2006) show that neg-
ative BOLD activation is correlated with the local field potential,
suggesting a neural origin. Smith et al. (2004) found that nega-
tive BOLD activation can occur in a different hemisphere from
the one with positive activation. Such extended signal reduction
is unlikely to be hemodynamic in origin, given different blood
vessels supplying the two hemispheres.

There is also evidence that the general lateral suppression
of BOLD activation may be caused by the response of broadly
tuned visual mechanisms. It is known that after staring at a
gray region surrounded by a dynamic patterned background
(adapter), observers perceive a twinkling aftereffect in the loca-
tion of the gray region when the pattern stimulus is removed
(Ramachandran and Gregory, 1991; Hardage and Tyler, 1995).
That is, the aftereffect is induced in a region that had never

received any stimulation during either the adapting or the test
phases. Chen et al. (2005) showed that negative BOLD activa-
tion is positively correlated with the aftereffect. That is, while
the BOLD activation in the stimulated brain region went up and
down with the onset and offset of the visual stimulus respec-
tively, the activation in the unstimulated region actually decreased
after the stimulus onset and rebounded after the stimulus offset.
Furthermore, the amplitude of the rebound in the unstimulated
region increased the strength of the aftereffect. Thus, such neg-
ative BOLD activation should reflect the lateral inhibition in the
visual system. Notice that the percept of the twinkle aftereffect is
similar regardless of the pattern of the adapter. Hence, such lateral
inhibition can be induced by a wide range of stimuli.

There were studies (Zenger-Landolt and Heeger, 2003; Tajima
et al., 2010; Wade and Rowland, 2010) measuring the BOLD acti-
vation of a central grating surrounded by another grating. The
common result was that the BOLD activation to the target can
be suppressed by the presence of surrounding ring. For a better
quantitative analysis for this surround effect, Wade and Rowland
(2010) measured the BOLD activation to the target of various
contrasts and found that their result can be fit with a model
assuming a broadly tuned lateral interaction mechanism. These
broadly tuned lateral interactions are consistent with the general
lateral suppression we found in this study.

With a model based approach, Zuiderbaan et al. (2012) and
Greene et al. (2014) showed that the BOLD activation in V1–3 to
a visual stimulus can be best described by a model with a popula-
tion receptive field (i.e., the receptive field of a unit of gray matter)
with excitatory and inhibitory regions. This result may imply a
lateral interaction among neural mechanisms. Notice that, their
results were based on an analysis of single voxels while our result
was manifested in ROIs with dozens of voxels. Given the differ-
ence in scale, it is difficult to make a direct comparison between
the two sets of results. A further model that can associate the
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activation of a single and a group of voxels is needed before we
can have a comprehensive treatment on the results from these
different paradigms.

In conclusion, the presence of any flankers can produce a
suppressive effect on BOLD activation to the central stimulus.
Furthermore, it is the iso-orientated collinear flankers that create
the greatest suppression. Thus, our results suggest two types of
lateral suppression in BOLD activation: the first is a general sup-
pression, which may relate to a neural mechanism with a broad
tuning property, such as the one underlying “negative BOLD,”
and the second is a spatial configuration dependent suppression
which may be related to collinear flanker effect.
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A methodology for investigating learning is developed using activation distributions,

as opposed to standard voxel-level interaction tests. The approach uses tests of

dimensionality to consider the ensemble of paired changes in voxel activation. The

developed method allows for the investigation of non-focal and non-localized changes

due to learning. In exchange for increased power to detect learning-based changes, this

procedure sacrifices the localization information gained via voxel-level interaction testing.

The test is demonstrated on an arc-pointing motor task for the study of motor learning,

which served as the motivation for this methodological development. The proposed

framework considers activation distribution, while the specific proposed test investigates

linear tests of dimensionality. This paper includes: the development of the framework, a

large scale simulation study, and the subsequent application to a study of motor learning

in healthy adults. While the performance of the method was excellent when model

assumptions held, complications arose in instances of massive numbers of null voxels or

varying angles of principal dimension across subjects. Further analysis found that careful

masking addressed the former concern, while an angle correction successfully resolved

the latter. The simulation results demonstrated that the study of linear dimensionality is

able to capture learning effects. The motivating data set used to illustrate the method

evaluates two similar arc-pointing tasks, each over two sessions, with training on only

one of the tasks in between sessions. The results suggests different activation distribution

dimensionality when considering the trained and untrained tasks separately. Specifically,

the untrained task evidences greater activation distribution dimensionality than the trained

task. However, the direct comparison between the two tasks did not yield a significant

result. The nature of the indication for greater dimensionality in the untrained task is

explored and found to be non-linear variation in the data.

Keywords: canonical variates analysis, cognitive learning, BOLD fMRI, statistical parametric mapping, interaction

test

1. Introduction

This manuscript considers settings where task-related activation may be present before and after
learning, yet the distribution of activated voxels changes. For context, consider the motivating
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study for the work, where two motor tasks of equal difficulty
were performed in a scanner over two sessions. Training for one
of the tasks occurred in between the sessions, while the other
task served as a control. Current methodology would use ran-
dom effects statistical parametric mapping (SPM Friston et al.,
2011) to test for a differential effect of training between tasks to
study learning. However, this approach suffers from considering
only voxel-level activation, or change in activation, in isolation.
In contrast, learning may induce changes in activation distribu-
tion, i.e., the distribution of intensities of BOLD responses to the
paradigm. Moreover, the study of activation distributions offers
many potential benefits over voxel-level testing, including: the
elimination of multiplicity concerns, robustness to registration,
and sensitivity to hypotheses of particular interest in the study of
learning.

Analysis of dimensionality of fMRI task-based activation
maps (Worsley et al., 1997; Zarahn, 2002) provides a starting
framework. The proposed procedure considers the distribution
of activation maps and tests their dimensionality using eigen-
value decompositions. To illustrate the goals of the test, consider
our motivating example. Learning could manifest itself in many
ways in the collection of voxels that are activated. For example,
BOLD contrast estimates of the activated voxels could be identi-
cal across sessions, increased or decreased, change from activated
to not (and vice versa) or uncorrelated. The test of dimensionality
should be considered one of several possible probes to interrogate
such hypotheses.

Our investigation includes a large scale simulation study of
brain activation maps. The simulation results demonstrate that
the study of dimensionality in a framework similar to Zarahn
(2002) is able to capture learning effects. The motivating data set
is used to illustrate the method, which is applied to the trained
and untrained tasks separately and then jointly.

2. Methods

Subjects performed an fMRI motor task in two scanning ses-
sions, with training between them. A second, similarly difficult,
fMRI motor task was performed at the two sessions, but had
no training in between. We focus on activation maps within an
appropriately selected spatial mask, such as one encapsulating the
primary motor cortex. Let γ̂ijk(v) be the subject- (represented by
index i = 1, . . . ,N), session- (j = 1, 2), task- (k = 1, 2) and
voxel- (v = 1, . . . ,V) specific estimates of task activation. These
are obtained by voxel-wise regression of a HRF-convolved task
paradigm in registered space (see Lindquist, 2008; Lindquist et al.,
2009, for descriptions and discussion), conducted separately for
each subject’s visit.

This paper is concerned with the statistical analysis of, and
hypotheses associated with, the collection of subject-specific
activation maps, represented by the V × 2 matrix Ŵ̂ik =

{γ̂i1k(v), γ̂i2k(v)}
V
v=1.

A conceptual model is considered where the activation
maps are estimates of assumed true activation maps, Ŵik =

{γi1k(v), γi2k(v)}
V
v=1. Thus, variation in the elements of Ŵik is

(intra-subject) biological variation in the hemodynamic BOLD
response to the paradigm. In contrast, variation in Ŵ̂ik includes

this biological variation, as well as all of the variation and biases
that occur in the practical process of computing the BOLD
paradigm response.

Both Ŵ̂ik and Ŵik also vary across subjects. Consider the V × 2
matrix, Ak = {β1k(v), β2k(v)}

V
v=1 as representing the popula-

tion average of voxel-level activation. Here βjk(v) = E(γijk(v)),
j = 1, 2. A non-zero βjk(v) indicates that, on average, sub-
jects activated at that particular location. Treating v as being
meaningfully consistent across subjects requires that appropriate
template-based (or equivalent) registration has been performed.
The matrix, ÂK , is thus a data-level estimate of Ak, obtained by
taking empirical means across subjects at each voxel.

A straightforward investigation of learning for the first
(trained) task arises from a sharp null hypothesis test of:

H0 : β21(v)− β11(v) = β22(v)− β12(v),

conducted separately, voxel-by-voxel. This tests the difference
in the longitudinal change in the BOLD response between the
trained and untrained tasks. Comparing longitudinal learning
effects with a reference (untrained) task addresses non-learning
based biases across sessions. The test in question is normally
conducted with standard interaction tests—perhaps accounting
for subject-level correlation (see Diggle et al., 2002, for a general
treatment of correlated data). Typically, the test is performed sep-
arately at each voxel, via so-called Statistical Parametric Mapping
(SPM). Significance is usually ascertained with super-threshold
voxel level statistics using random field theory (see Friston et al.,
2011, and the references therein) or via resampling statistics
(Nichols and Holmes, 2001).

This SPM approach has several benefits for the study of learn-
ing. However, it also has limitations. Notably, the approach suf-
fers from multiplicity issues and concentrates only on focal and
localized interaction hypotheses, one voxel at a time. Moreover,
it is highly dependent on accurate co-registration across subjects.
Little information is gained from the ensemble of voxels, except
through smoothing during preprocessing.

As an alternative, consider examining the activation distribu-
tion. Let D = A2 − A1 = {β21(v) − β11(v), β22(v) − β12(v)}
be the V × 2 matrix of longitudinal changes in the contrasts of
interest, with its associated estimate, D̂. The SPM approach tests
whether the two entries of each row of D are the same. Suppose
one instead assumes that elements ofD arise from a bivariate dis-
tribution and interest is in the ensemble of voxel-specific pairs,
instead of individual voxels.

Figure 1 is a conceptual diagram showing possible shapes
associated with the distribution of voxel pairs. The conceptual
model is informed by the idea of Gaussian mixture models (see
McLachlan and Peel, 2000, for an introduction). The mixture
model is governed by four major areas: (A) voxels that were “acti-
vated” (had a change across sessions) only in the trained task, (B)
voxels that were activated in both tasks, (C) voxels that were acti-
vated only in the untrained task, and (D) voxels that were not
activated in either task.

It is the shape of (B) that is of primary interest. For instance,
any shift in B above the diagonal line represents training based
learning. If the shape is spherical, there is no correlation between
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FIGURE 1 | Conceptual diagram for fMRI activation distributions based

on the motivating study of motor learning. Shaded areas represent

learning based (inter-session differences) between a trained (Y axis) and

untrained (X axis) task. Across all panels, Area (A) represents voxels with

change in activation across sessions only in the trained task, (B) represents

voxels with change in activation across sessions in both the trained and

untrained task, (C) voxels with change in activation across sessions only in the

untrained task, (D) represents no change in activation for both tasks. The four

panels (I–IV) represent different potential shapes of the activation distributions

for (B) with (I, II) showing a two dimensional shape and (III, IV) showing an

approximately one dimensional. In (I, III) inter-sessions differences are

symmetrically represented whereas in II, IV one task had a uniformly greater

increase.

training status and change in activation across sessions. In con-
trast, the more ellipsoidal the shape, the greater the correlations
in activation extent across sessions.

While acknowledging that SPM operates voxel-by-voxel, and
that Figure 1 displays voxel groups, the SPM approach would
investigate each point’s distance from the diagonal line, assessing
significance relative to inter-subject variability. Therefore, given
enough data, the SPM approach would conceptually reject for
voxels in groups (A) and (C) in the cases represented by all panels.
However, it would reject most of the voxels in group B in panels
II and IV only. The approach would reject few of the voxels in (B)
for panels I and III. Contrast this with the shape and dimension-
ality of (B) being constant for panels I and II together and III and
IV together. Thus, to the extent that learning represents itself as
changes in the shape of the activation distribution, the voxel-wise
approach would not tell the complete story.

Instead, we view the shape of the bivariate distributions of
points in group (B) as informative for studying changes in task
activation. One key attribute is its intrinsic dimensionality (1 vs.
2 dimensional). Ignoring groups (A), (C), and (D), one would
conclude that (B) is two dimensional in panels I and II and
intrinsically one dimensional in III and IV. The dimensional-
ity of (B) is useful for differentiating whether changes in inten-
sity or distribution account for activation changes following
learning.

The use of principal components to investigate the dimen-
sionality of learning builds upon an existing literature on the

use of dimensionality testing in the study of activation maps
(Worsley et al., 1997). Specifically, Zarahn (2002) and Moeller
and Habeck (2006) considered it within the context of functional
imaging. The aim of this work is to study the goals, limitations
and hypotheses of tests of dimensionality of fMRI activation
maps. A test of one vs. two dimensions on the set D̂, that is
rank(D̂), investigates the null hypothesis

H0 : β21(v)− β11(v) = c{β22(v)− β12(v)}

for unspecified c and collectively for all voxels v.
Let Âk =

1
N

∑
Âik and recall that D̂ = Â2 − Â1. Fol-

lowing the existing work on tests of dimensionality in fMRI,
we use root tests of the second eigenvalue (see Mardia et al.,
1980) to investigate the hypotheses of one dimension vs. two.
A simulation-based investigation of this test follows. The sim-
ulation study includes: the strength of the effect, the intrin-
sic dimensionality (considering power and error rates), and
the impact of biological and measurement variation, includ-
ing variation in the angle of the subject-specific principal
direction.

3. Materials and Simulation

3.1. Motivating Data Set
A motor learning study served as motivation for this work,
though we emphasize that the methodology generally applies
to any study of change in activation. The goal of the motor
study centered on investigating skilled motor learning via the
Arc Pointing Task (APT) (Shmuelof et al., 2012), where the task
was designed to better understand neural correlates of motor
skill acquisition. The subjects completed two similarly demand-
ing motor tasks of drawing an arc within reference lines by
moving their (non-dominant in all cases) left wrist. The inte-
rior circles in Figure 2 represent the starting and end points of
the path. Subjects were directed to stay within the lines of the
outer circles while tracing the arc. Subjects were scanned while
performing the tasks at baseline and again 5 days later, with
training on just one of the two tasks in the interim. Compar-
ison of fMRI activation (or any measurement of motor func-
tion) from baseline to follow-up considers both effects related
to motor learning and those related to changes between ses-
sions. Comparison with the, otherwise similar, untrained task as
a reference eliminates additive inter-session biases unrelated to
learning.

The specifics of the study are as follows. Thirteen right-handed
subjects (8 females, 18–27 years of age) engaged in the above
described motor tasks, none having performed these tasks pre-
viously. Subjects participated in a 5 day protocol consisting of
daily behavioral sessions in the lab and two fMRI scans on the
baseline and final days (1 and 5, respectively). During scanning,
subjects performed the APT. Horizontal (trained) and vertical
(untrained, control) APT movements were performed in sepa-
rate block design experiments before and after training for the
horizontal task. Six movements were performed in 18 blocks

Frontiers in Neuroscience | www.frontiersin.org April 2015 | Volume 9 | Article 85 | 99

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Yang et al. Dimensionality investigation of fMRI learning

FIGURE 2 | Example of the Arc Pointing Task (APT) executed within

the fMRI session. Subjects were asked to navigate a cursor lying between

the inner and outer concentric circles. Two tasks of similar difficulty were

investigated. A horizontal task (A) where subjects were trained in between

two scanning sessions and a vertical task (B) where subjects were not

trained.

(repeated 6 times), at a slow speed (1.5 s per movement). Sub-
jects received online feedback regarding the position of the cur-
sor, but no further information about their success or failure, or
about their movement speed. In the trained task, targets were
presented on the horizontal line (same configuration as during
the behavioral task in the lab) and in the untrained task, targets
were aligned vertically. Movements were always in the clock-
wise direction. Subjects performed the movements with their
(non-dominant) left wrist, while lying on their back, and receiv-
ing visual feedback of their movements through goggles (res-
onance technology, Los Angeles, CA). Further details on the
experimental paradigm can be found in Shmuelof et al. (2014).

Data was acquired on a Philips Intera 3T scanner using a
Philips SENSE head coil. The functional scans were collected
using a gradient echo EPI, with voxel size of 3 × 3 × 3mm
(240 × 240 × 240mm matrix). TR = 2 s, flip angle = 77o, axial
slices, TE = 25ms. Forty slices were gathered in an interleaved
sequence at a thickness of 3mm (no gap). Ninety − six volumes
were accumulated in each experimental run. The first 2 volumes
were discarded to allow magnetization to reach equilibrium. A
single T1-weighted anatomical scan was also obtained for each
subject (MPRAGE, 1mm3).

Functional data were preprocessed using SPM5 (http://www.
fil.ion.ucl.ac.uk/spm/software/spm5/). Before statistical analysis,
the data was also corrected for slice timing acquisition and head
motions, re-sliced to 2× 2× 2 mm voxels using a fourth degree
B-spline interpolation, and transformed into a Talairach standard
space (Talairach and Tournoux, 1988). A general linear model
was used for data analysis, followed by calculation of beta maps.
Scatter plots of beta before training and after training are shown
in Figures 3, 4.

By comparing the trained and untrained tasks, the population
impact of learning was estimated by considering differences in
the change in activation maps over sessions. Using the developed
notation, the collections compared are, {β21(v) − β11(v)}v=1,...V

to {β22(v) − β12(v)}v=1,...,V , where, as previously noted, the first

index indicates session (baseline and fifth day) and the second
indicates task (horizontal and vertical). The test of dimensional-
ity then considers whether the changes in activated voxels after
training is uncorrrelated with the changes in the untrained (but
otherwise similar) task. Under Gaussian assumptions, absence
of correlation among activated voxels implies that the extent of
activation is unrelated between sessions.

All subjects gave written, informed consent and received
a small compensation for participating in the Study, which
was approved by the Columbia University Institutional Review
Board.

3.2. Simulation Study
Assume there are V = V1+V2 voxels in total: V1 that are signifi-
cantly different across sessions (group B in Figure 1) and referred
to as “activated,” and V2 that are not (group D in Figure 1).
Under this working example, the term activated implies a non-
zero change in the contrast values across sessions. Thus, π =

V2
V

is the percentage of non-activated voxels.
The simulation model is:

biv
iid
∼ N

{(
β21(v)− β11(v)
β22(v)− β12(v)

)
, Iσ 2

}
= N(δ(v), Iσ ), (1)

where δ(v) = {δ1(v), δ2(v)} = {β21(v)− β11(v), β22(v)− β12(v)}
and biv = {b1iv, b2iv} is a subject-specific realization plus noise.
The generation of the δ(v) parameters varied across simulation
settings, and is described separately for each case below.

In all simulation settings, the estimate of the V × 2 matrix
of the δ(v), labeled D̂, was obtained via the voxel-specific mean
across subjects. FollowingWorsley et al. (1997), theV×2 matrix,
Z, denotes δ̂ divided by its standard error. That is, Zk(v) =

Var{δ̂k(v)}
−1/2δ̂k(v) make up row v and column k of Z. Here the

variance was calculated across subjects separately for each voxel.
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FIGURE 3 | Contrast maps from the horizontal arc pointing task. The X axis for each plot is the first session while the Y axis is the second. Red lines show the

direction of the first principal component while a dotted identity line is shown for reference.

The cross-product matrix is then

S =

V∑
v=1

Z(v)′Z(v)/V.

The Lawley/Hotelling trace statistic is:

Sq =

h∑
j=q+1

λj/(h− q),

where λj, j = 1, 2, · · · , h are the eigenvalues of S, h is the
total number of eigenvectors and q is the testing rank. Under
independence and Gaussian assumptions, Sq follows an F dis-
tribution under the null hypothesis, where the first q principal
components capture all of the signal. In our case, h = 2, q = 1
and the test statistic is simply the second eigenvalue of S.

3.2.1. Simulation Under the Null Hypothesis
The first simulation setting considers the hypothesis of uni-
dimensionality; that is, whether δ1(v) = cδ2(v), where c is
constant across subjects. The parameter δ1(v) for the activated
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FIGURE 4 | Contrast maps of the vertical arc pointing task. The X axis for each plot is the first session while the Y axis is the second. Red lines shows the

direction of the first principal while a dotted identity line is shown for reference.

voxels was simulated as uniformly distributed in [min,max],
with this range computed from values of [0, 1]–[10, 15]. Note
that for voxels inactive in both time points, δ1(v) = 0. Thus,
δ1(1), . . . , δ1(V1) 6= 0 while δ1(V1 + 1), . . . , δ1(V) = 0. Note
that, δ2(v) = cδ1(v) regardless of null status.

Figure 5 shows example data for a simulated subject as well as
the estimated statistics. The null simulation varied according to
the following: (i) distance of the activated voxels from the inac-
tivated ones, as well as the range of activation, (controlled by
min and max); (ii) the percentage of inactivated voxels (π); and
(iii) the number of subjects (N). For all of the null hypothesis

scenarios, c = 1. The type I error rates correspond to the percent-
age of rejections of the Lawley/Hotelling trace statistic for each
simulation setting. The specifics of each scenario are described
below while the results are shown in Table 1.

Simulation under variation in the distance: In this scenario,
N = 12, V1 = 40, V2 = 200, and σ = 1. Five scenarios for
each pair ofmin andmax were considered. The results sug-
gest that the type I error is not significantly affected by the
distance of the activated voxels from the inactivated ones.
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FIGURE 5 | Example simulated data. (A) Shows the simulated data. (B) Shows the estimate of b using Equation (1). (C) Shows the estimate of Z, where

Zk (v) = Var{δ̂k (v)}
−1/2 δ̂k (v).

Changing the percentage of inactivated voxels: In this case,
N = 12, σ = 1, min = 0.5, and max = 1.5. The total
number of voxels was set at V = 240. These results suggest
that the test is not significantly affected by the percentage of
inactivated voxels.

Varying the number of subjects: In this case, V1 = 40, V2 =

200, σ = 1, and [min,max] = [0.5, 1.5]. The results imply
that the type I error does not change significantly as N
varies.

3.2.2. Simulation Under the Alternative Hypothesis
There are a variety of ways in which the null hypothesis can fail
to be true; herein, several key departures were analyzed. First,
consider a straightforward departure, where Figure 1 holds, with
sets (A) and (C) both empty. The extent of spherical and ellip-
tical variation around the principal axis are evaluated. However,
other departures could also be present.Most importantly, the null
could be true for each subject, but with a varying angle along
the principal axis. In addition, a non-trivial percentage of vox-
els changing activation status (i.e., sets (A) and (C) from Figure 1

being non-empty) would similarly represent a departure from the
null hypothesis. The simulation scenarios for these parameters
are described below.

The number of subjects remains N = 12 while min = 0.5,
max = 1.5, V1 = 40, and V2 = 200.

Simulation under a basic alternatives: Two basic alternative
settings were considered. In the first, the δ(v) were simu-
lated as two dimensional, yet one dimension dominates the
other. This method of simulation added orthogonal vari-
ation around the line used in the simulation under the
null hypothesis. Specifically, the activated voxels have Gaus-
sian variation orthogonal to the major axis (see Figure 6A).
This was done in lieu of simulating a bivariate Gaus-
sian with a non-zero correlation to consider an even,
non-concentrated spread along the major axis. Simulations

using a bivariate normal yielded similar results. In the sec-
ond setting the correlation was assumed to be zero (see
Figure 6B).

Variability of the angle of the principal axis Consider a null
setting, as in Section 3.2.1. However, assume that the con-
stant, c, varies across subjects. Let ci denote this constant
for subject i. To simulate the data, first the null simulation
from Section 3.2.1 was performed then the observed
bivariate points {b1iv, b2iv} were multiplied by the rotation

matrix

(
cos θi − sin θi
sin θi cos θi

)
, where θi is a subject-specific

rotation angle from the 45o line, generated from a Gaussian
distribution with mean 0 and standard deviation σa, which
varied from 0.01 to 0.5. Before the rotation, c = 1, while
afterwards, ci = tan(45o − θi). Examples of the simulated
data are shown in Figure 7.

Changing Activation Sets In this setting, the impact of a non-
trivial percentage of voxels, or change in voxels that switch
activation status, i.e., corresponding to a large collection of
voxels in sets (A) and (C) in Figure 1. An example simu-
lation is shown in Figure 8. Here, the bkiv were either 0 or
uniform, where a min = 0.5 and max = 1.5. The specific
values were: 200 voxels set to be inactive for both the trained
and untrained tasks, 40 voxels set to be activated for the
trained and untrained groups,Va voxels were activated with
training, but inactivated without training, while another Va

voxels were inactivated with training but activated without
training. Here Va was varied between 10 and 400. Note that,
in this setting, the Z matrix (see Figure 8) is substantially
different from the direction of its first eigenvector.

3.3. Simulation Results
Table 1 displays the results across the simulation settings. All tests
were performed at a nominal 5% error rate.
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TABLE 1 | Results of the simulation studies.

V1 V2 N min max σ Type I error

H0 Variation in the distance 40 200 12 0 1 1 0.051

40 200 12 0.5 1.5 1 0S.053

40 200 12 1.5 2.5 1 0.051

40 200 12 3 5 1 0.059

40 200 12 10 15 1 0.053

Changing the percentage of inactivated voxels 20 220 12 0.5 1.5 1 0.069

40 200 12 0.5 1.5 1 0.052

80 160 12 0.5 1.5 1 0.062

120 120 12 0.5 1.5 1 0.060

200 40 12 0.5 1.5 1 0.056

Varying the number of subjects 40 200 4 0.5 1.5 1 0.048

40 200 8 0.5 1.5 1 0.052

40 200 12 0.5 1.5 1 0.051

40 200 20 0.5 1.5 1 0.058

40 200 100 0.5 1.5 1 0.052

V1 V2 N min max σ σb Power

Ha Basic alternatives—correlated 40 200 12 0.5 1.5 1 0.05 0.042

40 200 12 0.5 1.5 1 0.1 0.059

40 200 12 0.5 1.5 1 0.2 0.184

40 200 12 0.5 1.5 1 0.5 0.972

40 200 12 0.5 1.5 1 1 1.000

40 200 12 0 1 1 0.2 0.195

40 200 12 0.5 1.5 1 0.2 0.186

40 200 12 1.5 2.5 1 0.2 0.196

40 200 12 3 5 1 0.2 0.188

40 200 12 10 15 1 0.2 0.195

40 200 4 0.5 1.5 1 0.2 0.046

40 200 8 0.5 1.5 1 0.2 0.101

40 200 12 0.5 1.5 1 0.2 0.171

40 200 20 0.5 1.5 1 0.2 0.342

40 200 100 0.5 1.5 1 0.2 0.998

Basic alternatives—uncorrelated 40 200 12 1 1 1 0.05 0.045

40 200 12 1 1 1 0.1 0.065

40 200 12 1 1 1 0.2 0.171

40 200 12 1 1 1 0.5 0.973

40 200 12 1 1 1 1 1.000

V1 V2 N min max σ σa Power

Variability of the angle of the principal axis—without angle correction 40 200 12 0.5 1.5 0.5 0.01 0.041

40 200 12 0.5 1.5 0.5 0.02 0.051

40 200 12 0.5 1.5 0.5 0.05 0.056

40 200 12 0.5 1.5 0.5 0.1 0.025

40 200 12 0.5 1.5 0.5 0.5 0.007

40 200 12 0 1 0.5 0.01 0.042

40 200 12 0.5 1.5 0.5 0.01 0.045

40 200 12 1.5 2.5 0.5 0.01 0.054

40 200 12 3 5 0.5 0.01 0.051

40 200 12 10 15 0.5 0.01 0.030

(Continued)
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TABLE 1 | Continued

V1 V2 N min max σ Type I error

Variability of the angle of the principal axis—with angle correction 40 200 12 0 1 0.5 0.01 0.005

40 200 12 0.5 1.5 0.5 0.01 0.027

40 200 12 1.5 2.5 0.5 0.01 0.064

40 200 12 3 5 0.5 0.01 0.078

40 200 12 10 15 0.5 0.01 0.109

V1 V2 N min max σ Va Power

Changing activation sets 40 200 12 0.5 1.5 0.5 10 0.057

40 200 12 0.5 1.5 0.5 20 0.048

40 200 12 0.5 1.5 0.5 40 0.057

40 200 12 0.5 1.5 0.5 100 0.097

40 200 12 0.5 1.5 0.5 400 0.205

Shown are type I error rates and power across simulation settings.

FIGURE 6 | Example simulation from the alternative hypothesis. The axes are the two dimensional bivariate simulated data representing inter-session

differences for each task in the motivating study. In (A) the voxels have Gaussian variation added orthogonally to the major axis. In (B) there is no relationship.

FIGURE 7 | Example simulation for the setting when the principal axis differs across subjects. The axes are the two dimensional bivariate simulated data

representing inter-session differences for each task in the motivating study. The gray line is a reference identity line, while the red line is the axis of principal direction.
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3.3.1. Simulations Under the Null Hypothesis
Adherence to the specified nominal error rate was remarkably
consistent as parameter settings varied. When varying the dis-
tance, the test showed only slight liberalism (Type I error rate
larger than the nominal) across settings. Only for unrealistically
small activation sets did the test demonstrate liberalism when
altering the activation set size. In addition, varying the number
of subjects had little impact. Adherence to the nominal error rate
was acceptable, even at very low numbers of subjects.

3.3.2. Simulations Under the Alternative Hypothesis
Under the basic alternative, where the true voxel states pos-
sessed a strong (but not perfectly linear) corelation, power varied
as expected. Under a strong correlation (σb close to 0), power
trended to the nominal type I error rate. Encouragingly, power
quickly trended to one as the true relationship moved away from
a dominant dimension. As expected, the power tended to 1 as
the sample size increased (confirming the relevant asymptotics).
However, the sample size needed to be relatively large to have
adequate power at the modest value of σb = 0.2.

In the case where no dimension dominated under the basic
alternative of absence of correlation, power changed significantly
with the spread of activation, σb. When the angle of principal
direction varied, power suffered dramatically. To address this,
a first stage subject-specific principal components rotation was
investigated. This appeared to improve power in settings where
the null and non-null voxels were more clearly delineated, but
continued to exhibit low power (11%) when the distance was
large (min = 10, max = 15). A non-trivial fraction of voxels
changing activation status had a negative impact on power.

4. Data Analysis of the Motivating Data Set

This section investigates the impact of training on activation
using the APT data described in Section 3.1 and represented in
Figures 3, 4, which show estimated beta maps. A null hypothe-
ses suggests that the data points are close to the principal line.

Notably, a distinction between the null and alternative hypoth-
esis is difficult to ascertain graphically. However, it is apparent
that the axis of principal direction varies by subject. Next, dimen-
sionality is tested via three methods: first considering only the
(trained) horizontal task, then only the (untrained) vertical task,
and then comparing both. When considering the untrained task
in isolation we are testingH0 :β21(v) = cβ11(v), thenH0 :β22(v) =
cβ12(v) for the trained and H0 : β21(v) − β11(v) = c{β22(v) −
β12(v)} when comparing trained and untrained. (The paper used
the latter as the primary motivating example.) In Table 2, the
results before and after angle correction are shown.

4.1. Motor Learning Data Results
The axis of principal direction varied by subject (see Figures 3, 4).
Before correcting for the principal angle, the tests of dimension-
ality were insignificant, for both the horizontal and the vertical
tasks. However, after correcting the principal angle by subject,
the p-values of the tests were highly reduced. Focusing only on
the tasks separately, the test of dimensionality yielded a p-value
of 0.05 for the vertical task and 0.16 for the horizontal one. When
comparing across tasks, the p-value was 0.36. Thus, the untrained
task has a significant second dimension that does not appear to
be present in the trained. Inspecting the data, excess variability
in the trained task appears to be due to biomodal changes in

TABLE 2 | P-values of the tests of dimensionality for the motor learning

data set.

Tasks Without angle With angle

correction correction

Horizontal Session 1 vs. Session 2 0.520 0.163

Vertical Session 1 vs. Session 2 0.598 0.050

Horizontal vs. Vertical 0.3620

The first row considers the Session 1 vs. Session 2 for the Horizontal task (H0 : β21 (v) =

cβ11 (v)). The second row does the same for the vertical task (H0 : β22 (v) = cβ12 (v)). The

third considers inter-session differences across tasks (H0 : β21 (v) − β11 (v) = c{β22 (v) −

β12 (v)}). P-values are given with and without having performed an angle correction.

FIGURE 8 | Example simulation from the alternative with changing

activation sets. The axes are the two dimensional bivariate simulated

data representing inter-session differences for each task in the motor

learning study. Shown are the true parameter values (leftmost panel),

the simulated subject data (middle panel) and the Z-values (rightmost

panel).

Frontiers in Neuroscience | www.frontiersin.org April 2015 | Volume 9 | Article 85 | 106

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Yang et al. Dimensionality investigation of fMRI learning

activation. It is not surprising that the comparison across tasks
was non-significant, given the increased variability obtained from
taking differences and the issues of power for the test.

5. Discussion

5.1. Simulation Results
The simulation results suggest that tests of dimensionality are
a reasonable exploratory testing procedure for investigating the
distribution of paired activation maps. However, their confirma-
tory performance was hindered by instances with low power in

situations that could be realistically seen in practice. The adher-
ence to the nominal type I error rate, on the other hand, was
uniformly acceptable across simulation settings. Thus, a rejection
from this test is likely informative, while an acceptance less so.

The low power cases occurred where there is substantial vari-
ability in the principal axis, or where activation status changed.
This latter condition created confusion between noise and sig-
nal, with the test attributing signal variability as noise. Of the
two cases, careful masking could eliminate concern over chang-
ing activation status. However, variability in the principal axis
is likely the norm and could arise from a number of plausible

FIGURE 9 | A simulation example highlighting increased power

for detecting learning based differences. The axes are the two

dimensional bivariate simulated data representing inter-session

differences for each task in the motivating study. The alternative of

the dimensionality test is true and the P-value is 0.03, suggesting

that activation extent is unrelated between tasks. However, only

11% of the voxels satisfy a voxel level test of significance (colored

in red).
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biological, technological and processing causes. The straightfor-
ward refinement of a first stage subject-level principal component
rotation improves the power.

5.2. General Discussion
This manuscript posited a different paradigm for statistically
evaluating learning using task-related BOLD fMRI activation
maps. At its core, the primary advance is the supposition
of using the bivariate distribution of the activation maps, or
changes in activation maps, when comparing tasks over ses-
sions. Under this framework, changes in the distribution of
activated voxels are key, not voxel level changes in activation
extent, as would be evaluated in voxel-level parametric map-
ping interaction tests. An unintended benefit of this distribu-
tional approach in this setting is avoiding the familiar issue
of having to determine interactions where main effects are not
present.

The intended benefit of increasing power over voxel-level
interaction tests was found to be true, provided assumptions
hold. For example, Figure 9 provides a simulation example where
the alternative test of dimensionality is both true and detected
(P-value of 0.03). However, only 11% of the voxels would sat-
isfy a voxel level test of significance. We emphasize the differ-
ent nature of the hypotheses interrogated by these approaches
so that comparisons of power should be taken with a grain
of salt.

Evaluating distributional differences for learning-based acti-
vation tests a different scientific hypothesis than voxel level
testing. In our example, the question was how BOLD acti-
vation, or changes in activation, relate between trained and
untrained tasks. Investigating activation distributions is less
sensitive to the requirement of focal localization of effects
compared to interaction testing. For example, two small spa-
tially separated significant interaction regions may have differ-
ent voxel-level interaction significance than a single contiguous
region of the same aggregate size. In contrast, the distribution
may not change. Conversely, evaluating contrast map distribu-
tions does not provide the benefits of localization to inform
results.

It is worth emphasizing that the investigation of activation dis-
tribution represents a complementary procedure to voxel-level
testing and does not represent a form of omnibus test to be per-
formed prior to it. Thus, it is perhaps not useful to generate a
single analytic pipeline, whereby omnibus distributional tests are
followed by voxel level contrasts of interest.

An interesting next direction in this line of research
would consider full models of the joint distribution of
{β11(v), β12(v), β21(v), β22(v)}. This could be accomplished
using a Bayesian random effects approach via mixtures of Gaus-
sian random variables. However, the feasibility, applicability
and gain of such an approach over simpler solutions remains
unknown. A tantalizing possible benefit would be robustness to
inter-subject registration to a template. In contrast, interaction
tests focus on localization and as such, place a heavy burden on
accurate inter-subject registration. A full random effect mixture
model could possibly remove the need for inter-subject registra-
tion, or at least remove the need for non-affine registration.

The far simpler approach discussed in this manuscript
addresses dimensionality. The results show that the operating
characteristics of the approach are viable, if modeling assump-
tions are met. Particularly encouraging was the robustness to
variation in the distance of the center of activation from null vox-
els. However, its sensitivity to the angle of the principal axis is a
core issue, as such variation is clear from the data.

In the real data analysis it is noteworthy that the vertical and
horizontal tasks differed in their respective tests of dimension-
ality. Particularly, the null hypothesis was not rejected in the
trained task (horizontal) while it was in the untrained task (ver-
tical). However, there does appear to be more apparent non-
Gaussianity in the vertical task, suggesting a component of the
rejection is related to a form of dimensionality not well-covered
by the model. The contrast test comparing vertical vs. horizon-
tal was not significant. Therefore, it cannot be concluded that
the activation distribution given by the inter-session differences
across tasks is not linear. For all three cases, the data analysis
suggests large variability in the subject-specific principal axes, a
setting where low power was evidenced in the simulation study.
Thus, the null results are perhaps indicative of low power.
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Resting state functional MRI (rsfMRI) connectivity patterns are not temporally stable, but
fluctuate in time at scales shorter than most common rest scan durations (5–10 min).
Consequently, connectivity patterns for two different portions of the same scan can
differ drastically. To better characterize this temporal variability and understand how
it is spatially distributed across the brain, we scanned subjects continuously for
60 min, at a temporal resolution of 1 s, while they rested inside the scanner. We then
computed connectivity matrices between functionally-defined regions of interest for
non-overlapping 1 min windows, and classified connections according to their strength,
polarity, and variability. We found that the most stable connections correspond primarily to
inter-hemispheric connections between left/right homologous ROIs. However, only 32%
of all within-network connections were classified as most stable. This shows that resting
state networks have some long-term stability, but confirms the flexible configuration
of these networks, particularly those related to higher order cognitive functions. The
most variable connections correspond primarily to inter-hemispheric, across-network
connections between non-homologous regions in occipital and frontal cortex. Finally we
found a series of connections with negative average correlation, but further analyses
revealed that such average negative correlations may be related to the removal of CSF
signals during pre-processing. Using the same dataset, we also evaluated how similarity of
within-subject whole-brain connectivity matrices changes as a function of window duration
(used here as a proxy for scan duration). Our results suggest scanning for a minimum of
10 min to optimize within-subject reproducibility of connectivity patterns across the entire
brain, rather than a few predefined networks.

Keywords: fMRI, connectivity dynamics, stability, rest, sliding window analysis

INTRODUCTION
In recent years, the functional magnetic resonance imaging
(fMRI) research community has undertaken a slow, yet con-
stant shift in attention from functional localization (where in
the brain a specific function resides) to functional connectivity
(how different brain regions interact with each other). Today,
it is well established that some brain regions are tuned pri-
marily to perform specific tasks (e.g., motor cortex controls the
movement of body parts, visual cortex analyzes incoming visual
stimuli, etc.) Still, this one-to-one relationship soon diffuses as
one moves beyond primary cortices into association cortex to
understand the neuronal correlates of higher cognitive func-
tions such as emotions, speech, or attention. Moreover, it is
increasingly common to discover variations in functional con-
nectivity, rather than in specific functional modules, that seem
to differentiate complex mental conditions (see Greicius, 2008
for a review) such as autism (Just et al., 2007; Gotts et al.,
2012), depression (Sheline et al., 2010), and Alzheimer’s Disease
(Wang et al., 2013a).

One well-known, non-invasive approach to the study of
functional connectivity in the human brain is resting state fMRI
(rsfMRI; Biswal et al., 1995). In this technique, the spatial co-
fluctuation of Blood Oxygenation Level Dependent (BOLD) sig-
nals is recorded while subjects rest quietly in the scanner in the
absence of any specific task demands, and these data are used to
explore patterns of functional connectivity at the system level (see
Lowe, 2010 for a historical review). More importantly, rsfMRI
is not only a powerful research tool, but it has great potential
for clinical applications given its experimental simplicity, short
scanning durations, richness of information, ease of sharing, and
low requirement for subject compliance. Nevertheless, for clini-
cians to be able to rely on rsfMRI-based biomarkers to diagnose
or intervene, several challenges with respect to reproducibility
and interpretation must be resolved (Castellanos et al., 2013).
Although overall patterns of rsfMRI-based functional connectiv-
ity have proven to be reliable across scans, subjects, and even
institutions, quantitative measures with the potential to become
biomarkers (e.g., the strength of a given connection) are not yet
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sufficiently reliable, as they depend on factors such as scan condi-
tion (e.g., eyes closed vs. eyes open Yan et al., 2009; Van Dijk et al.,
2010; McAvoy et al., 2012), scan duration (Birn et al., 2013), and
specific pre-processing steps used during the analysis (Murphy
et al., 2009; Power et al., 2012). Despite these dependences,
some rsfMRI connectivity metrics such as regional homogeneity
(ReHo; Zuo et al., 2013), amplitude of spontaneous low frequency
oscillations (Zuo et al., 2010), and several measures of centrality
(Zuo et al., 2012) have been shown to have encouraging test–
retest reliability. Nevertheless, one additional factor that poses
interesting questions regarding how to best record and quantify
rsfMRI-based metrics is the recently observed dynamic behavior
of rsfMRI connectivity patterns (Chang and Glover, 2010).

Several recent studies have shown how patterns of rsfMRI con-
nectivity vary substantially even over the duration of a single scan
(Chang and Glover, 2010; Handwerker et al., 2012; Tagliazucchi
et al., 2012; Hutchison et al., 2013b), thereby calling into ques-
tion the assumption of temporal stationarity even over short
timescales (see Hutchison et al., 2013a for a review). Similarly,
other studies have explored how scan duration affects the repro-
ducibility of rsfMRI connectivity patterns (Van Dijk et al., 2010;
Birn et al., 2013). However, most of these studies have focused
their analysis on a handful of representative connections and
networks. Given the large variability of functional roles and con-
nection strengths across the human brain connectome, it can be
expected that optimal scan acquisition strategies and reliability
of biomarker measurements will depend greatly on the connec-
tions of interest. For example, Allen et al. (2014) recently reported
a series of rsfMRI networks, labeled the “Zone of Instability,”
that exhibit significantly greater temporal variability in functional
connectivity. These regions with the greatest instability corre-
spond primarily to dorsal attention areas, default mode regions,
and superior occipital areas. Still Allen and colleges’ exploration
of dynamic behavior was constrained by the duration of the rest-
ing scans (5 m and 4 s) and their temporal resolution (2 s), which
limit both the quality of functional connectivity estimates (given
the low number of available data points) and the domain of func-
tional connectivity configurations that occur during such short
scan periods.

The purpose of the current study is to further explore and
characterize rsfMRI connectivity dynamics, and in that manner
extend some of the findings of Allen et al. (2014) and others
(Tagliazucchi et al., 2012; Hutchison et al., 2013b). To over-
come the above-mentioned limitations resulting from short scan
durations, in this study rsfMRI data were collected in 12 partic-
ipants who were scanned continuously for 60 min at a temporal
resolution of 1 s. Using these data, we evaluated pair-wise con-
nections over the scale of minutes, investigating their polarity,
strength, and variability. We evaluated the spatial distribution of
three categories of connections (namely stable positive connec-
tions, variable positive connections, and negative connections)
and whether assignment of connections to these three groups was
consistent across subjects. Using a sliding window approach, we
found that most stable positive connections correspond mainly
to symmetric, inter-hemispheric, within- and across-network
connections; while most variable positive connections corre-
spond primarily to inter- and intra-hemispheric, across-network
connections between occipital and frontal regions. Negative

connections correspond primarily to those between two medial
subcortical regions and fronto-parietal regions. We also evalu-
ated how window length, a proxy for scan duration, affects the
degree of similarity in whole-brain, within-subject connectiv-
ity patterns. We found two regimes in terms of how similarity
changes with scan duration. For short scan durations (approxi-
mately less than 10 min) similarity of whole-brain connectivity
patterns decreases quickly as scan duration shortens. For longer
durations, although similarity increases with scan length, it does
so at a much lower rate.

MATERIALS AND METHODS
DATA ACQUISITION
Twelve healthy volunteers (7 males; age: 30.17 ± 10.22 years)
participated in this study after providing written consent in agree-
ment with a protocol approved by the NIH Protocol Review
Board. Subjects were scanned continuously in a General Electric
3T MRI scanner for 60 min while relaxing with their eyes closed.
A 32-channel receive-only head coil was used. The resting scans
were acquired using a gradient-recalled echo-planar imaging
(EPI) sequence (TR = 1 s, TE = 27 ms, FOV = 24/21 cm, image
matrix = 64 × 64/72 × 72, slice thickness = 4.0 mm, slice spac-
ing = 0.0 mm, flip angle = 60◦, number of slices = 23, number
of acquisitions = 3600, ASSET Acceleration = 2). In addition,
a high-resolution T1 spoiled gradient echo (SPGR) scan was
acquired for alignment and presentation purposes (sagittal pre-
scription, number of slices per slab = 176, slice thickness = 1 mm,
FOV = 256 mm, image matrix = 256 × 256) in each subject.

Respiration and cardiac traces were also collected during the
resting scans using a respiration belt and a pulse oximeter, in all
subjects except one. Both physiological traces were acquired with
a sampling rate of 50 Hz.

In order to achieve a temporal resolution of 1 s, it was neces-
sary to restrict our spatial coverage. In particular, with the current
data, we cannot draw any conclusions regarding connections
involving the cerebellum, temporal poles, or ventral temporal
regions. New technological developments, such as multi-slice
acquisition techniques (Feinberg and Setsompop, 2013), may
soon be able to eliminate this limitation (Smith et al., 2012).

DATA PRE-PROCESSING
Data pre-processing was conducted with the AFNI software pack-
age (Cox, 1996). Pre-processing steps include: discarding of initial
10 volumes to allow for magnetic homogenization; despiking
(with AFNI 3dDespike); physiological noise correction (in all sub-
jects but one) including regressors for the RETROICOR (Glover
et al., 2000), RVT (Birn et al., 2006), and RHR (Chang et al.,
2009) models; slice time correction (AFNI program 3dTshift);
head motion correction (AFNI program 3dvolreg) and transfor-
mation into MNI space (AFNI program @auto_tlrc) in a single
interpolation step; and spatial smoothing (FWHM = 6 mm).
In addition, mean, linear trends, signal from local white matter
(WM), signal from the lateral ventricles (CSF), motion esti-
mates, the first derivative of motion estimates, and a series of
sine and cosine functions to remove all frequencies outside the
range (0.01–0.25 Hz) were regressed out in a single regression
step (AFNI program 3dTproject). This last regression step permits
us to account for potential hardware instabilities and remaining
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physiological noise (ANATICOR; Jo et al., 2010, 2013; Gotts
et al., 2013). During this regression step, time points with motion
greater than 0.4 mm were removed from the data (scrubbing) and
replaced by values obtained via linear interpolation in time. On
average, 1649 degrees of freedom (DOF) remain after the above-
mentioned regression and censoring steps (Table 1 shows motion,
number of interpolated volumes, and remaining DOFs for each
subject).

Spatial transformation matrices to go back and forth between
the original EPI space, T1-anatomical space, and MNI standard
space were also computed for each subject using AFNI programs
3dAllineate and @auto_tlrc. These matrices were subsequently
used for presentation purposes and to bring publicly available
atlases into each subject’s functional data space (see below).

BRAIN PARCELLATION
In order to parcellate the brain into a limited number of spa-
tially contiguous, functionally homogeneous, non-overlapping
regions of interest (ROIs), we used the publicly available tem-
plate of 150 ROIs associated with the Craddock Atlas (Craddock
et al., 2012) (Figure 1A). An ROI-based approach was selected
over a voxel-wise approach to help with interpretation, minimize
the contribution of small errors in alignment to between-subject
comparisons, and ease computational load. Nevertheless, despite
using a functionally-based atlas with relatively small ROIs, some
level of functional inhomogeneity should be expected when com-
bining voxels into a single time-series (Zuo et al., 2013).

For each subject, we first brought this MNI atlas template
into each subject’s EPI space. Subsequently, we removed ROIs (20
ROIs from cerebellum, midbrain, and lower temporal cortex) that

Table 1 | Motion, number of censored time points, and remaining

DOFs after bandpass filtering, regression of nuisance signals, and

censoring in each subject.

Max. absolute Max. relative # Data points Remaining

displacement displacement interpolated DOF

(mm) (mm)

SBJ01 5.07 0.92 13 1694

SBJ02 5.16 1.10 14 1693

SBJ03 4.12 0.65 40 1667

SBJ04 5.73 0.50 2 1705

SBJ05 1.97 0.31 0 1707

SBJ06 1.99 0.30 0 1707

SBJ07 4.52 0.68 2 1705

SBJ08 2.59 0.24 0 1707

SBJ09 2.91 0.47 452 1255

SBJ10 6.62 0.80 82 1625

SBJ11 3.60 0.26 0 1707

SBJ12 3.71 1.05 88 1619

Mean 4.00 0.61 57.75 1,649.25

Participant SBJ09 was excluded from all sliding window analyses due to the

large number of data points that required interpolation due to head movement

according to the criteria set during pre-processing.

did not have at least 10 voxels within the imaged field of view for
all 12 subjects (Figure 1B).

In order to group the remaining 130 non-overlapping ROIs
into functionally relevant networks, we used the functional net-
work taxonomy published by Laird et al. (2011), excluding two
artifactual networks (ICNs 19 and 20 identified as artifactual by
Laird and colleagues) and two networks not covered by our scan-
ning FOV (ICNs 5 and 14). Each ROI was assigned to one of
the 16 remaining networks described by Laird and colleagues
by identifying the network with maximal spatial overlap with
that ROI (Figure 1C). Within each network, ROIs in connectivity
matrices appear sorted according to decreasing degree of overlap
with that network. Table 2 shows detailed information regarding
which Laird et al. (2011) networks were used, the labeling scheme
used in the remainder of this paper, how many ROIs were assigned
to each of these networks, and the color assigned to the nodes of
each network in the result figures.

ROI REPRESENTATIVE TIME SERIES EXTRACTION
For each ROI, the principal singular vector (computed with AFNI
program 3dmaskSVD) across all voxels in the ROI was used as
the representative time series. This resulted in 130 time series
of interest with 3590 time points in each subject. The average
and standard deviation of the Pearson’s correlation between each
ROI’s representative time series and all voxels in the ROI, across
all subjects and all ROIs, was 0.61 ± 0.08.

CONNECTIVITY MATRIX BASED ON WHOLE TIME SERIES: STATIONARY
ANALYSIS
For each subject, we computed an overall correlation matrix
(130 × 130) under the assumption of temporal stationarity, using
all available 3590 time points. In these matrices, connectivity
between two given ROIs is measured in terms of their Pearson’s
correlation (r). These matrices are symmetric, with r = 1 along
the diagonal. All information is therefore contained in the 8385
values that form the upper triangular region. In the remainder of
this manuscript we use the term “connectivity snapshot” to refer
to a vector that contains only these uniquely informative values.

Binarized (connected/not-connected) versions of these con-
nectivity matrices were also obtained using the following criteria:
a cell in the matrix is given a value of 1 (connected) only if the
corresponding correlation value for that cell is statistically signifi-
cant at p < 0.05 corrected for multiple comparisons according to
the Bonferroni criteria, taking into account the number of unique
connections in the matrix (i.e., p < 0.05/8385). Otherwise, the
cell is given a zero (not-connected) in these binary matrices. Even
though the correct DOFs (Table 1) were used when computing
the significance of the correlations prior to the multiple compar-
ison correction, the significance level is approximate due to the
unknown relationship between signal and noise in rsfMRI.

SELECTION OF CONNECTIONS OF INTEREST FOR SLIDING WINDOW
ANALYSIS
For our exploratory analysis of rsfMRI dynamics, we studied
connections that showed significant correlation values in the
stationary analysis for at least seven participants (half of the
sample plus one). This selection step reduced the number of
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FIGURE 1 | (A) Depiction of the 150-ROI Craddock Atlas on top of five sagittal
slices in the MNI stereotaxic space. (B) Depiction of the remaining 130 ROIs
from the atlas considered in this study. ROIs eliminated from the original atlas

correspond mainly to the cerebellum and inferior temporal regions that were
not part of the imaging FOV for all 12 participants. (C) Grouping of the remaining
ROIs according to the Laird et al. (2011) functional network templates.

pairwise connections under study from the original 8385 to 5232
connections (see Figure 3).

WHOLE-BRAIN, WITHIN-SUBJECT CONNECTIVITY MATRIX
SIMILARITY vs. WINDOW DURATION
In order to evaluate how the within-subject similarity of whole-
brain connectivity patterns changes as a function of window
length, we segmented our 60 min of data (minus the first 10 dis-
carded seconds) into temporally non-overlapping windows with
durations ranging from 30 s to 19.5 min in steps of 30 s. The
number of available non-overlapping windows decreases with
increasing window duration. A maximum duration of 19.5 min
was chosen so that at least three different windows were available
for the analysis in each individual.

For each subject and window duration, we first computed con-
nectivity matrices for each non-overlapping window. We then

computed the average correlation between all available matrices
for a given duration and subject. This average number permits us
to describe within-subject similarity between connectivity matri-
ces for a given duration. We finally computed an average value
across all subjects, for each window duration, to obtain an aggre-
gate measure of within-subject similarity for our population of
subjects (Figure 4).

CONNECTION STABILITY ANALYSIS
For each subject, we computed sliding window correlations with
a window length of 60 s and a window step of 60 s (to avoid
overlap). There are two reasons for choosing this 60 s window
duration: (1) to have a sufficiently large number of data points
per window to compute meaningful correlation values; and (2)
because recent studies have shown that functional connectivity is
related to both cognition (Shirer et al., 2012) and electrocortical
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Table 2 | Summary of correspondence between Craddock Atlas ROIs and Laird Network Templates.

Original network ID New network ID Number of ROIs Description Node color

(Laird et al., 2011)

ICN01 EI4 7 Emotion/Interoception network #4 Cyan

ICN02 EI3 10 Emotion/Interoception network #3 Aqua

ICN03 EI2 6 Emotion/Interoception network #2 Light blue

ICN04 EI1 8 Emotion/Interoception network #1 Dark blue

ICN06 MV1 8 Motor/Visuospatial network #1 Dark green

ICN07 MV2 8 Motor/Visuospatial network #2 Light green

ICN08 MV3 5 Motor/Visuospatial network #3 Green

ICN09 MV4 4 Motor/Visuospatial network #4 Olive green

ICN10 VS1 9 Visual network #1 White

ICN11 VS2 5 Visual network #2 Dark yellow

ICN12 VS3 11 Visual network #3 Yellow

ICN13 DMN 12 Default mode network Red

ICN15 FPR 13 Right fronto-parietal network Orange

ICN16 AUD 11 Auditory network Pink

ICN17 SPP 7 Speech production network Gray

ICN18 FPL 6 Left fronto-parietal network Brown

measures (Tagliazucchi et al., 2012) at similar temporal scales.
Nevertheless, to evaluate the extensibility of these results to other
window durations, we also performed the same analysis using
non-overlapping windows of 120 and 180 s durations.

A 20% tapering of the time series was performed prior to com-
putation of the correlation. For 60 s windows, the sliding window
analysis produced for each participant (s) a matrix Cs (connec-
tion, window) with 5032 connections X 59 windows (not 60 due
to the 10 s discarded at the beginning of the scan) that contains
information about the evolution of connectivity strength over
time for all connections under scrutiny (Figure 2A).

Most stable/variable connections
Subsequently, for each row of this matrix, we computed the
coefficient of variation (CVAR) as follows:

CVAR (i,s) = stdev (Cs(i,:))/mean (Cs(i,:)) (1)

where s is a given subject and i is a given connection (Figure 2A).
In order to compute this summary metric we transformed cor-
relation values into Fisher’s Z-scores, computed the summary
statistics, and then transformed these back from Fisher’s Z-scores
into correlation values.

In addition, the median and standard deviation of CVAR
values across all subjects and connections was computed, and
connections whose CVAR was outside one standard deviation
of this median were removed from further analyses (Figure 2B).
This threshold condition eliminated 9 ± 5 (mean ± standard
deviation) connections per subject. After removal of outlier con-
nections, the Cs matrices were sorted according to their CVAR
values (Figure 2C). We then classified all remaining connections
into one of three groups (Figure 2D). First, we divided the pool
of connections into those with positive or negative CVAR. Then,
within the pool of connections with positive CVAR, we further

subdivided these into two subgroups: 50% of the positive CVAR
connections with the highest CVAR values went into one sub-
group (most variable), and the remaining half went into the other
subgroup (most stable). In summary, this process forces every
non-outlier connection to be part of one these three groups:

• Negative Connections (blue): connections with negative CVAR,
which is the result of a negative average Pearson’s correlation
across time.

• Most Stable Positive Connections (green): connections in the
lowest half of positive CVAR values.

• Most Variable Positive Connections (red): connections in the
highest half of positive CVAR values.

To aggregate results across subjects while giving maximum atten-
tion to connections with a similar pattern of correlation across
participants, we generated a new group-level classification matrix
in which a given connection was marked as being of one of the
three types mentioned above, if and only if, that connection was
classified in the same manner in all participants (Figure 2E—
Top). In addition, to examine the effect of this threshold, matrices
were also generated showing the number of subjects in which con-
nections were classified in each group (Figure 7). To evaluate the
presence of patterns of interest in the spatial distribution of these
three types of connections, we used AFNI program SUMA (Saad
and Reynolds, 2012) to visualize each of these three groups in a
3D brain space (Figure 2E—Bottom).

Permutation analysis for group-level connection identification
In order to determine the probability that results of the connec-
tion grouping procedure described above would occur due to
chance, we conducted a permutation test in which the labels of
all connections in each subject were randomly shuffled. Using the
same group sizes for each subject from the real data, the connec-
tions for each group were then selected within that subject. The
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FIGURE 2 | Sliding-Window methods. (A) Example running window
connectivity matrix for one representative subject on the left, and its
associated vector of CVAR values on the right. The thresholds used to
discard connections on the basis of excessive CVAR are depicted as red
dashed lines. Eight connections that were discarded for this particular
subject are marked as red dots. (B) Sliding window connectivity matrix
and CVAR vector after removal of outlier connections. Now there are
5023 connections, instead of 5032, for this representative subject. (C)

Sliding window connectivity matrix and CVAR vector after sorting
connections according to their CVAR. Connections with negative CVAR
are at the bottom of the graph, while connections with positive CVAR are
on the top. The further a connection is from the horizontal axis where

CVAR is the closest to zero (black dashed line), the more variable the
strength of that connection across time. (D) Classification of connections
in three possible groups for three other representative subjects, shown
both as sorted sliding window connectivity matrices (left) and in a single
matrix form (right) where the color of the cell for a connection denotes
its group assignment according to our criteria. The three groups are:
connections with negative CVAR (blue); lowest positive CVAR/most stable
connections (green); largest positive CVAR/least stable connections (red).
(E) Aggregated results across subjects. We do this by only selecting
connections classified the same way across all 11 participants that were
included in the sliding window analysis. Connections of the three types
are shown both in matrix view (top) and in brain space (bottom).

number of connections classified in the same group across all sub-
jects was then counted. This procedure was repeated 5000 times to
obtain a distribution of the number of connections that would be
classified in the same group in all subjects based only on chance.

RESULTS
STATIONARY ANALYSES RESULTS
Figure 3A shows the static connectivity matrices for four rep-
resentative subjects computed using the complete time series
(3590 time points). Although there is some degree of simi-
larity in the overall structure of the matrices across subjects
(e.g., within-network connections are stronger than between-
network connections in all subjects; connectivity between MV2
and VS3 is also stronger in many subjects), there are clear

differences in terms of the strength of many individual con-
nections. From a quantitative point of view, the average cor-
relation between the different subjects’ connectivity snapshots
(upper top triangle of the matrix excluding the diagonal) is
r = 0.53 ± 0.07.

Figure 3B shows binarized (connected/unconnected) versions
of the connectivity matrices presented in Figure 3A. The average
and standard deviation number of statistically significant con-
nections for the current sample was 5198 ± 747 (out of 8385
possible connections). Figure 3C shows another matrix view of
the data where the value in each cell is the number of subjects for
which that particular connection is statistically significant under
the criteria described above. Finally, Figure 3D shows a bina-
rized version of this aggregate view (Figure 3C), by marking with
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FIGURE 3 | (A) Weighted connectivity matrices in terms of Pearson’s
correlation (r ) for four representative subjects when the complete time
series (3950 data points) enter the analysis. (B) Binary connectivity
matrices for the same four representative subjects after statistical

thresholding. (C) Matrix showing the number of subjects for which a
given connection was marked as statistically significant. (D) Matrix
showing connections that were marked as statistically significant in at
least seven subjects.

gray color only the connections that were classified as statistically
significant in at least seven (more than half of the study popula-
tion) subjects. There are a total of 5032 connections that pass this
group-level threshold. All remaining results, with the exception of
the whole-brain within-subject similarity vs. scan duration analy-
sis (section Similarity of Whole-Brain Connectivity as a Function
of Window Duration), were conducted using only this subset of
5032 connections.

SIMILARITY OF WHOLE-BRAIN CONNECTIVITY AS A FUNCTION OF
WINDOW DURATION
Figure 4 shows how within-subject similarity of connectivity pat-
terns across the whole brain decreases as a function of window
duration. For durations larger than 10 min, the rate of decrease
is relatively slow. It is for durations shorter than approximately
6 min that within-subject similarity decreases at a faster rate. This
behavior was consistent across subjects.
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FIGURE 4 | Similarity of whole-brain connectivity vs. window duration.

Data for individual subjects are shown as red dashed lines. Average across all
subjects is shown in black. The similarity of connectivity matrices clearly
decreases as a function of window duration. The decreasing rate is
particularly accentuated for durations below 10 min. As window duration

decreases, a larger number of windows enter the analysis for a given
duration. The number of windows contributing to each duration in each
subject is provided at the bottom of the graph. All window durations within
the same shaded region (white or gray) have the same number of windows
contributing to the computation of similarity.

HISTOGRAMS OF SLIDING-WINDOW CORRELATIONS
Figure 5A shows histograms of correlation values across time (bin
width = 0.25) for all connections in one representative subject
(SBJ01) as black traces. Visual inspection reveals no clear bound-
aries between different connection types, but a continuum of
behavior in which connections span a wide range of mean and
standard deviation values. Peaks can be observed at all centers
of histogram bins. This is not the result of individual histograms
having many peaks (temporal evolution of connectivity strength
following multimodal distributions), but due to the overlap of
approximately 5000 histograms with a wide range of means and
standard deviations. To show how individual histograms do not
present such sharp profiles, but are mostly uni-modal in shape, a
subset of 11 randomly selected histograms are highlighted with
dashed colored lines in Figure 5A. Figure 5B shows the same
histograms as Figure 5A, but this time histograms have been col-
ored according to their membership to one of the three groups
defined in terms of CVAR (blue = negative CVAR; red = most
variable positive CVAR; green = most stable positive CVAR).
Despite the lack of clear boundaries between histograms, the clas-
sification criteria based on the CVAR were able to generate three
compact groups of connections in all subjects (Figure 5C shows
a second representative subject). An additional observation is
that most stable positive connections, as defined with the CVAR
criteria, are connections with high mean connection strength
across time (green histograms peak primarily at the right of the
graphs).

MOST VARIABLE POSITIVE CONNECTIONS
Figures 6A,B show the 23 connections classified as most vari-
able in all participants for a window duration of 60 s. Table 3
summarizes the distribution of such connections across different
networks. All 23 connections correspond to connections between
ROIs from different networks (Table 3). Primarily, most variable
connections correspond to non-symmetric, inter-hemispheric
connections between occipital (visual networks) and frontal
regions (fronto-parietal networks). A similar general pattern
was observed for window durations of 2 (Figure 6C) and 3
(Figure 6D) min. The total number of connections in this pool
was 13 for 2 min windows, and 14 for 3 min windows.

In addition, Figure 7A shows a non-thresholded version of
Figure 6B, where the color of each connection represents the
number of subjects for which that connection was classified as
most variable. Connections marked as most variable for seven
or more subjects are colored with different shades of red. These
connections still correspond primarily to inter-network connec-
tions. Moreover, they tend to correspond primarily to connec-
tions between occipital (visual networks) and fronto-parietal
networks, as well as connections between nodes of EI3 and all
other networks.

MOST STABLE POSITIVE CONNECTIONS
Figures 8A,B show the 364 connections classified as most stable
in all participants for a window duration of 60 s. Table 4 sum-
marizes the distribution of these connections within and across
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FIGURE 5 | (A) Distributions of correlation values across time for all the
connections in a representative subject are depicted in black. To highlight the
mostly uni-modal shape of individual histograms, 11 randomly selected
histograms are highlighted using dashed colored lines. (B) Same histograms
as in (A), but this time each histogram is colored according to the

membership of each connection to one of three groups: blue = negative
CVAR connection; red = most variable positive CVAR connection; green =
most stable positive CVAR connection. Grouping of connections show a
compact profile with all connections from the same group clustering
together. (C) Same as (B) for a second representative subject.

different networks. Roughly 40% of the connections, 148, cor-
respond to within-network connections and the remaining 216
to across-network connections. A large percentage of stable pos-
itive connections are symmetric, inter-hemispheric connections.
This pattern becomes more apparent if we restrict our analysis
only to connections in the bottom 25% and 12.5% of positive
CVAR values (Figure 9). When window duration was increased
to 2 (Figure 8C) and 3 (Figure 8D) min, a similar spatial pattern
arises. The total number of positive stable connections was 344
for 2 min windows, and 334 for 3 min windows.

In addition, Figure 7B shows a non-thresholded version
of Figure 8B, where connections classified as most stable
for seven or more subjects appear with different shades of
green. Most stable connections under these less stringent con-
ditions correspond primarily to within-network connections,
although several clusters of most stable connections can be
observed between the AUD and SPP networks, between the four
MV networks, and between MV3-4 and visual and auditory
regions.

Figure 10 shows a summary view of the matrix in Figure 8B.
For each square, we show the percentage of connections that fall
within the most stable positive pool. Therefore, squares in the
diagonal show the percentage of within-network connections that
were classified as most stable. For example, MV3 and VS2 are
the two most cohesive networks, with 100 and 70% of all pos-
sible within-network connections being consistently stable across
time. Squares outside the diagonal show the percentage of all pos-
sible connections between two given networks that fall within the
pool of most stable connections. We can see how MV1, MV3, and
MV4 (red dashed outlines) have a substantial number of stable
communication pathways among each other. The same is true for
the SPP and the AUD networks (green dashed outlines). All per-
centages in this figure have been corrected to take into account
only the 5032 connections that passed our stationary significant
criteria.

NEGATIVE CONNECTIONS
Figures 11A,B show the 32 connections with negative CVAR in all
participants for a window duration of 60 s. Table 5 summarizes
the distribution of such connections across different networks.
All negative connections correspond to across-network connec-
tions. In particular, 26 connections involve two regions from the
Emotion/Interoception network #2 (EI2). This pattern of nega-
tive CVAR connections primarily involving regions from the EI2
network is also very apparent in Figure 7C, where connections
marked as negative CVAR connections in seven or more subjects
appear marked in different shades of blue. When window dura-
tion was increased to 2 (Figure 11C) and 3 (Figure 11D) min a
similar connectivity map was also produced. The total number of
negative connections was 32 for 2 min windows, and 30 for 3 min
windows.

DISCUSSION
Using 60 min resting scans with a temporal resolution of 1 s
and a sliding window analysis approach, we divided functional
connections in our data into three groups based on similarity
of patterns of temporal variability across our study population.
Sorting and grouping of connections was done according to the
coefficient of variance (CVAR) of connectivity strength across
time. The CVAR is a common measure of spread for Gaussian-
like distributions that accounts for differences in the mean and
has a simple interpretation (i.e., the larger the CVAR, the big-
ger the spread of the distribution of values around the mean).
Connectivity strength histograms (Figure 5) showed distribu-
tions follow mostly uni-modal, bell-like shapes with different
levels of spread, suggesting that the use of CVAR is a valid first
approximation to estimate variability for the temporal evolution
of connection strength. To aggregate results at the group level, we
decided to focus our attention only on connections classified in
the same manner across all participants. A permutation analy-
sis (5000 repetitions) revealed that the number of connections
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FIGURE 6 | (A) Most variable positive connections for window
length = 60 s. Connections classified as most variable in all 11
participants are shown over 3D renderings of a brain surface. (B)

The same information shown as a 2D matrix. Colors corresponding

to networks on the axes of the matrix are used to color nodes
of that network in brain space. (C) Most variable connections for
window length = 120 s. (D) Most variable connections with window
length = 180 s.

Table 3 | Absolute (#) and relative (%) number of connections with positive high CVAR (most variable) for each network.

Most variable Network ID

DMN FPR FPL EI1 EI2 EI3 EI4 MV1 MV2 MV3 MV4 VS1 VS2 VS3 AUD SPP

Within
#

0
%

Across
# 4 9 1 1 1 3 3 2 0 3 0 5 3 7 1 3

% 0.47 1.09 0.21 0.16 0.37 0.49 0.68 0.31 0.00 0.79 0.00 0.77 1.06 0.90 0.12 0.56

Connection counts are divided in two groups: connections between two ROIs that are part of the same network (within) and connections between ROIs that are

part of different networks (across).

randomly found in any of the three groups, when following
the above-mentioned criteria to combine results across subjects,
is less than four connections. Finally, to evaluate the role that
regional differences in signal-to-noise ratios may have played in
our study, we also computed average temporal signal-to-noise
ratio (TSNR) across subjects for all ROIs entering the analysis.
We found no clear relationship between ROI TSNR values and

participation in connections of a given type (most variable, most
stable, or negative CVAR). These results suggest that the simple
criteria used in this study provide reasonable descriptions of the
patterns of temporal variability in resting state connectivity, and
that these results are reproducible across subjects and capture
true structure present in the data (i.e., not found by purely by
chance).
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FIGURE 7 | Number of subjects for which a given connection was

classified as most variable (A), most stable (B), and with negative CVAR

(C). Connections that were consistently classified in the same group for all 11
subjects are marked with a black outline. These are the same connections

shown in Figure 6 (most variable), Figure 8 (most stable), and Figure 11

(negative CVAR). Connections that were classified in the same group for
seven or more subjects appear in different shades of red (most variable),
green (most stable), or blue (negative CVAR) in the corresponding panel.

FIGURE 8 | (A) Most stable positive connections for window length = 60 s.
Connections classified as most stable in all 11 participants are shown over 3D
renderings of a brain surface. (B) The same information shown as a 2D matrix.

Colors corresponding to networks on the axes of the matrix are used to color
nodes of that network in brain space. (C) Most stable connections for window
length = 120 s. (D) Most stable connections with window length = 180 s.
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Table 4 | Absolute (#) and relative (%) number of connections with positive low CVAR (most stable) for each network.

Most stable Network ID

DMN FPR FPL EI1 EI2 EI3 EI4 MV1 MV2 MV3 MV4 VS1 VS2 VS3 AUD SPP

Within
# 23 9 6 9 2 8 3 7 5 5 6 4 7 26 25 3

% 44.23 12.50 40.00 37.50 28.57 22.86 15.00 26.92 17.86 50.00 100.00 11.76 70.00 47.27 50.00 14.29

Across
# 44 15 18 34 3 20 14 38 22 40 25 25 4 28 60 42

% 5.15 1.82 3.79 5.48 1.11 3.24 3.19 5.94 3.53 10.58 8.09 3.86 1.41 3.60 7.13 7.87

Connection counts are divided in two groups: connections between two ROIs in the network of interest (within) and connections between one ROI in the network

of interest and one ROI not in the network of interest (across).

FIGURE 9 | (A) Most stable positive connections when only
connections within the lowest 25% of CVAR values are selected in
each subject. (B) Most stable positive connections when only
connections within the lowest 12.5% of CVAR values are selected in

each subject. As the selection criterion becomes more stringent, a
smaller number of connections make it to the group level maps
presented here. When fewer connections are present, the symmetric
inter-hemispheric pattern becomes clearer.

The connections that reliably fall in each category have very
distinct spatial patterns when plotted in brain space. In partic-
ular, most temporally stable connections (low positive CVAR)
correspond mainly to symmetric, inter-hemispheric connec-
tions both within- and across-networks; most temporally vari-
able connections (high positive CVAR) correspond mainly to
non-symmetric, inter-hemispheric, across-network connections
between occipital and frontal regions; and connections with nega-
tive CVAR correspond mainly to connections between two medial
ventral subcortical regions and bilateral fronto-parietal regions.
These general patterns were observed for non-overlapping win-
dow durations ranging from 1 to 3 min. We discuss the findings
related to each of these categories in detail below.

MOST STABLE POSITIVE CONNECTIONS
Most stable positive connections is the largest of the three connec-
tion pools, with approximately one order of magnitude more con-
nections than the other two groups (364 most stable connections

vs. 23 and 32 in the other two groups). Moreover, most stable
connections are not only more consistent across subjects and fluc-
tuate less, but fluctuate around higher correlation values than
least stable connections (green histograms cluster on the right
hand side, which corresponds to stronger positive correlation
values; see Figures 5B,C). These two observations suggest that
while being classified as most variable or negative may depend
to a larger extent on subject-dependent factors (e.g., on-going
cognition, awareness levels, etc.), most stable connections are so
because of an underlying source largely independent of these fac-
tors. One such source could be anatomical connectivity. Several
studies have shown a good correspondence between BOLD rest-
ing state connectivity patterns and underlying direct anatomical
connections as measured in Diffusion Tensor Imaging (DTI)
(Greicius et al., 2009; Van Den Heuvel et al., 2009) and in primate
electrophysiology and tracer studies (Margulies et al., 2009; Wang
et al., 2013b). Additionally, computational modeling studies have
shown that structural connections provide robust predictions of
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FIGURE 10 | Percentage of within-network (diagonal) and across-network (non-diagonal) most stable positive connections. Two groups of networks with
high percentages of across-network connections being temporally stable are highlighted with red (MV1, MV2, and MV3) and green (AUD, SPP) dashed lines.

functional connectivity, although the reverse is not always true
(Honey et al., 2009; Deco et al., 2011). Relating to the current
study, Honey et al. (2009) observed that ROI pairs with direct
anatomical connectivity—as measured by diffusion spectrum
imaging tractography—had more stable functional connectivity
both within and across rsfMRI sessions. In agreement with their
findings, many of the most stable connections identified here
are symmetric, inter-hemispheric connections between left/right
homologous regions that are known to have direct connections
via the corpus callosum. However, it should also be noted that
stable functional connectivity patterns can also be supported
by indirect anatomical connections as well (Tyszka et al., 2011;
O’Reilly et al., 2013).

Approximately 40% of the most stable connections correspond
to those between two nodes of the same network (within-network
connections). Still, that accounts for only 32% of all within-
network connections, which confirms prior observations suggest-
ing that resting-state networks are not as temporally stable in their
configuration as originally assumed (Chang and Glover, 2010;
Handwerker et al., 2012; Smith et al., 2012; Tagliazucchi et al.,
2012; Hutchison et al., 2013b). Our data also shows that levels of
temporal cohesion vary substantially across networks. The four
most temporally cohesive networks were MV4 (100% of its 6
within-network connections fall in the most stable group), VS2

(70%), MV3 (50%), and AUD (50%) (Figure 10 and Table 4).
The MV4 network, which primarily covers bilateral dorsal pari-
etal cortex (BA5), has been shown to have a preference for motor
execution and learning (Laird et al., 2011). The MV3 network,
which sits laterally to MV4 and covers mainly primary and sup-
plementary motor cortex for upper extremities was found to be
strongly associated with tasks involving hand movement (Laird
et al., 2011). Additionally, networks VS2 (which covers posterior
and inferior portions of occipital cortex) and AUD (which cov-
ers the transverse temporal gyri) correspond to primary visual
and auditory cortices. Taken together, our results suggest that
primary sensory-motor networks are among the most tempo-
rally stable with respect to their internal connectivity patterns.
On the other end of the spectrum, VS1 (11.76%), FPR (12.50%),
SPP (14.20%), and EI4 (15%) were the networks with the lowest
percentage of within-network connections that were consistently
stable across all subjects. These networks span a wide range
of regions involved in complex higher-order functions such as
visual identification of complex visual stimuli (VS1), attention
control and reasoning (FPR), speech production (SPP), and emo-
tion discrimination (EI4). It may be that performance of these
more complex tasks relies on a broader and more dynamic set of
connectivity configurations, and that these tasks and their con-
figurations occur less often during rest. In agreement with these
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FIGURE 11 | (A) Negative CVAR connections for window length =
60 s. Connections with negative CVAR in all 11 participants are
shown over 3D renderings of a brain surface. (B) The same
information shown as a 2D matrix. Colors corresponding to networks

on the axes of the matrix are used to color nodes of that
network in brain space. (C) Negative CVAR connections for window
length = 120 s. (D) Negative CVAR connections with window
length = 180 s.

Table 5 | Absolute (#) and relative (%) number of connections with negative CVAR for each network.

Negative Network ID

DMN FPR FPL EI1 EI2 EI3 EI4 MV1 MV2 MV3 MV4 VS1 VS2 VS3 AUD SPP

Within
#

0
%

Across
# 2 11 4 1 26 1 2 5 1 0 1 0 0 0 3 7

% 0.23 1.34 0.84 0.16 9.63 0.16 0.46 0.78 0.16 0.00 0.32 0.00 0.00 0.00 0.36 1.31

Connection counts are divided in two groups: connections between two ROIs in the network of interest (within) and connections between one ROI in the network

of interest and one ROI not in the network of interest (across).

findings, Mueller et al. (2013) found that inter-subject variability
in stationary patterns of global functional connectivity was lowest
in unimodal cortical areas similar to the sensory-motor systems
found to be most stable here.

Regarding most stable between-network connections, we
found two sets of networks to be the most stably intercon-
nected. The first group consists of networks MV1, MV3, and

MV4 (red outlines in Figure 10). The second group consists of
SPP and AUD (green outlines in Figure 10). These groups of
networks were found to be tightly connected in terms of their
functional role when matched against thousands of activity pat-
terns from task-based studies included in the BrainMap database
(Fox et al., 2005). MV1, MV3, and MV4 were found to consis-
tently participate in a variety of experiments related to motor and
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visuo-spatial integration and coordination (Laird et al., 2011).
Moreover, MV3 and MV4 (the two networks with the largest per-
centage of inter-network stable connections) failed to split into
two separate entities in a prior similar study that used a smaller
subsample of the BrainMap database (Smith et al., 2009). In the
case of the SPP and AUD networks, their functional relation-
ship was not as strong, but both networks heavily contribute to
language-related tasks. These reported agreements between net-
work groupings based on functionality (as measured by paradigm
and behavioral domain) and levels of stable inter-connectivity
suggest that networks that share a common functional space (e.g.,
motor-visual integration, language) also share stable communi-
cation pathways, despite appearing as separate entities in resting
state analyses that do not focus on the dynamic aspects of con-
nectivity. Nonetheless, it is worth noticing that the other two
multi-network functional spaces defined by Laird et al. (2011),
namely emotion/interoception and visual, did not show such a
clear pattern of stable interconnectivity between networks.

MOST VARIABLE POSITIVE CONNECTIONS
Most variable positive connections correspond primarily to inter-
network, inter-hemispheric connections involving nodes from
the fronto-parietal networks (FPR: 9 connections; FPL: 1 con-
nection) and the visual networks (VS3: 7 connections; VS2: 3
connections; VS1: 5 connections). It has been previously shown
that the fronto-parietal network is composed of flexible hub
regions that can reconfigure their functional connectivity rapidly
in order to adapt and participate in a great variety of exter-
nally driven tasks (Cole et al., 2013). Our results suggest that
such flexibility can also be observed during undirected cognition
while resting, and not solely in situations requiring highly adap-
tive task control. Moreover, a recent study showed that subjects
engage and transition between many different mental activities
while resting in the scanner (Delamillieure et al., 2010). The three
most common mental activities reported by this pool of 180
subjects were visual imagery, inner speech, and somatosensory
awareness. All but one across-network connections involving the
fronto-parietal network also involve nodes from the visual and
SPP networks, which are directly related to these mental activities
commonly reported by subjects after rest scans. Lastly, additional
connections belonging to this category outside the fronto-parietal
network correspond primarily to connections between occipital
regions and nodes from the DMN, motor/visuospatial networks,
and the emotion/interoception networks (as described by Laird
et al.). Some of these areas, in particular DMN and hetero-
modal occipital regions, overlap with areas described as part of
the “Zone of Instability” (regions with more temporally variable
connections between them) by Allen et al. (2014).

Although high temporal variability makes these connections
a difficult target for study, the fact that such high volatility was
consistent across all subjects in our pool suggests that these con-
nections may constitute good targets for some technical and
clinical applications. First, the pool of 23 connections identi-
fied as most variable across all subjects may constitute a good
set of “worse-case scenario” targets for reproducibility studies
and/or optimization of parameters such as scan duration. They
could help obtain conservative bound values for such parameters.

Moreover, the ability of certain regions to flexibly reconfigure
their connectivity patterns has been shown to be directly related
to the capacity to learn new motor skills (Bassett et al., 2011).
Finally, Mueller et al. (2013) recently showed that areas with
the largest levels of inter-subject variability in stationary global
connectivity patterns correspond primarily to heteromodal asso-
ciation cortex in lateral pre-frontal cortex, the temporal-parietal
junction, fronto-parietal control regions, and attention network
areas (as defined by Yeo et al., 2011). They also reported a
large degree of overlap between these regions of high functional
connectivity variability and a brain map obtained from a meta-
analysis of areas that predict individual differences in several
cognitive and behavioral domains (e.g., personality traits, intel-
ligence, memory performance, etc.) Many of the connections
classified as most variable in our study are between ROIs located
in the areas and networks of high variability reported by Mueller
and colleagues. This suggests that short-term temporal variabil-
ity in connectivity patterns (as observed here) may be partially
responsible for the inter-subject differences in functional connec-
tivity observed at longer temporal scales, which may in turn be
related to individual differences in cognition and behavior. Given
the consistently high temporal instability of these connections
across all our healthy subjects, it would be interesting to study
if temporal variability is somehow impaired or increased in pop-
ulations with some level of cognitive decline, and in that manner
evaluate the potential diagnostic power of the dynamic behavior
of rsfMRI connectivity.

NEGATIVE CONNECTIONS
Of the 32 connections with negative CVAR in all participants,
26 correspond to connections involving two medial ROIs that
are part of the EI2 network. The first ROI (with 21 negative
connections) spans a large range of small anatomical structures,
including the mammillary bodies, the hypothalamus, medial por-
tions of the caudate, the fornix, and the third ventricle. The
second ROI (with 5 negative connections) is located just poste-
rior to the first and covers large portions of the bilateral thalamus.
Correlation maps between each ROI’s representative time series
and all ROI voxels (Figure 12) show how the highest contribut-
ing voxels to the representative time series fall primarily within or
around the third ventricle. This is particularly true for the ROI
with 21 negative CVAR connections. This pattern suggests that
negative correlations between these ROIs and other brain regions
are not the result of anti-correlation between GM structures
within the ROIs and other brain regions, but a result of the regres-
sion of CSF signals during pre-processing (Saad et al., 2012). In
this study, the CSF signals may have been contaminated by sig-
nals from other neighboring tissues due to the relatively large
voxel size used in this study. In fact, when the removal of CSF sig-
nal is omitted from the analysis pipeline, only three connections
with negative CVAR remain, thereby supporting the potential
artifactual origin of the average negative behavior observed for
these connections. Conversely, the general patterns described for
the other two connection types (most stable and most variable)
remains consistent when CSF is not removed during the analysis.

It is also worth noting that while omitting the step concern-
ing the removal of CSF signals led to the disappearance of the
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FIGURE 12 | Intra-ROI correlation maps to the ROI representative time-series for 2 ROIs of interest. Voxels with the highest correlation to the
representative time series (red color) are those in and around the third ventricle.

majority of connections with an average negative correlation (and
therefore negative CVAR), we nevertheless observed many con-
nections alternating between positive and negative connectivity
for short periods, regardless of CSF signal removal. This is in
agreement with prior observations of this phenomenon in studies
on functional connectivity dynamics (Chang and Glover, 2010;
Hutchison et al., 2013b).

STABILITY OF WITHIN-SUBJECT CONNECTIVITY PATTERNS vs.
WINDOW DURATION
In addition to classifying connections in the three above-
mentioned groups, we also evaluated how window length (used
here as a proxy for scan duration) affects the within-subject simi-
larity of whole-brain connectivity patterns. We found two general
regimes. For durations below approximately 6 min, similarity
of within-subject whole-brain connectivity matrices decreases
quickly as window length decreases. Conversely, for durations
above 10 min, the rate at which similarity increases with scan
duration is much slower. This result suggests that if stability is a
factor of interest (e.g., in longitudinal studies), using longer scans
is desirable, particularly above approximately 10 min. Most previ-
ous studies of rsfMRI reproducibility have used shorter scans and
focused on a handful of connections when evaluating the tem-
poral stability of rsfMRI as a function of scan duration. Van Dijk
et al. (2010) concluded that stable measures of connectivity can be
obtained with scans as short as 5 min. This conclusion was based
on how scan duration affected average within- and between-
network correlations for only three networks (default mode,
dorsal attention, and a reference network consisting of auditory,
motor, and visual regions). Nevertheless, Birn et al. (2013) more
recently concluded that increasing scan length from 5 to 13 min
greatly improved reproducibility. In this case, the authors stud-
ied all potential connections between 17 different ROIs. Using a
completely different approach, Anderson et al. (2011) found that
obtaining functional connectivity “fingerprints” that uniquely
identified each participant required a minimum of approximately
15 min of data. Despite differences in scanning and analytical
procedures, our results are in better agreement with those of

Anderson et al. (2011) and Birn et al. (2013), which are based
on larger samples of connections. This suggests that a minimum
of approximately 10 min is desirable for good reproducibility, and
that reproducibility keeps increasing at a lower rate for yet longer
scan durations. Collectively, these results also highlight how sug-
gested scan duration will depend on the target networks under
analysis.

LIMITATIONS OF THE STUDY
In this study we did not record any measure of vigilance (e.g.,
eye tracking system, concurrent EEG recordings). Given the dura-
tion of the scans and that subjects were instructed to keep their
eyes closed, it is very likely that our subjects went through some
periods of sleep or decreased vigilance during the 60 min scans,
despite being instructed to stay awake. Changes in vigilance or
sleep are known to affect connectivity patterns measured with
fMRI (Horovitz et al., 2009; Tagliazucchi et al., 2012). To par-
tially evaluate the effect of this potential confound, we performed
the analysis again using the first and last halves of the time series
separately, under the assumption that periods of drowsiness will
become more frequent as scanning progresses. When the data
was split in this manner, the spatial patterns of connectivity per
connection category and the bulk differences in number of con-
nections per category remain very similar to those reported for
the whole-run analysis (see Supplementary Figure 1). This sug-
gests that although the classification of specific connections may
be affected by this factor, the overall patterns discussed above
remain present. Nevertheless, a better-controlled experiment with
information about when these changes in vigilance occur may
help better elucidate the origin of the patterns observed here. Also,
restricting the analysis to periods of equal vigilance levels may
help increase the number of patterns found to be common across
subjects.

Another important factor to consider is how ROI and net-
work templates used during the analysis affect interpretation
of the data. We used a functionally-based atlas for the pur-
pose of aggregating voxels into functionally homogenous regions.
Functionally-based atlases have been proven to outperform
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anatomically-based atlases at reproducing functional connectiv-
ity patterns present at the voxel level (Craddock et al., 2012)
and when attempting to decode cognitive states based on mea-
sures of connectivity (Shirer et al., 2012). In particular, the 150
ROI atlas was selected because it provided a good compromise
between ROI size (sufficient functional homogeneity), computa-
tional tractability, and interpretability of the results. Using more
fine-grained ROIs may allow detection of additional patterns of
interest, and additional studies should be conducted to evaluate
the robustness of the results presented here against the use of
different parcellation schemes (Yeo et al., 2011; Shirer et al., 2012).

In a similar manner, the Laird et al. (2011) ICN templates were
chosen to aid with interpretation given their behavioral corre-
lates. Our discussion regarding the temporal stability of within-
and across-network communication pathways heavily relies on
the assignment of ROIs to these networks. Differences in network
definition, and subsequent distribution of ROIs across them, may
affect the conclusions. As of today, the fMRI community still
debates which is the most informative decomposition level, or
levels, to study resting state connectivity, as the configuration of
networks heavily depends on this parameter (Abou-Elseoud et al.,
2010). Moreover, there is an avid debate regarding the actual con-
figuration of the well-studied default mode network (Buckner
et al., 2008; Liu and Duyn, 2013). Comparative analyses between
measures of temporal stability, such as the ones presented here,
and network definitions obtained at different decomposition lev-
els may help determine the most appropriate levels of brain
parcellation.

CONCLUSIONS
We used a sliding window analysis to attempt a basic characteriza-
tion of BOLD resting state connectivity dynamics. We found three
well-differentiated sets of connections, whose temporal variability
patterns were reproducible across all participants and have dis-
tinct spatial patterns. First, most stable connections were found
to correspond primarily to symmetric, inter-hemispheric connec-
tions both within and across networks. We found that primary
sensory-motor networks seem to be more temporally stable in
their connectivity patterns than those more closely related to
higher order cognitive processes. Second, most variable connec-
tions were found to correspond primarily to non-symmetric,
inter-hemispheric, across-network connections between occipi-
tal and frontal regions. The number of connections consistently
among the most variable group across all subjects was much lower
than the number of connections among the most stable, suggest-
ing subject-dependent, ongoing cognitive variables have a strong
effect on the configuration of flexible connections in the brain.
Finally, a small set of connections was found to have negative aver-
age connectivity across time, though a large percentage of these
were identified as potential artifacts. All these general patterns
were present for window lengths ranging from 1 to 3 min.

We also used the current dataset to evaluate how whole-brain,
within-subject similarity of connectivity patterns varies as a func-
tion of window duration. This applies to studies where the focus
is not on the dynamic behavior of connections, but on overall
stable patterns that arise when full scans enter the analysis. Our
results suggest that in order to maximize similarity of overall

whole-brain connectivity, rest scans should last as long as pos-
sible, with clear stability benefits for 10 min rather than 5 min
scans.
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One way to study connectivity in visual cortical areas is by examining spontaneous
neural activity. In the absence of visual input, such activity remains shaped by the
underlying neural architecture and, presumably, may still reflect visuotopic organization.
Here, we applied population connective field (CF) modeling to estimate the spatial profile
of functional connectivity in the early visual cortex during resting state functional magnetic
resonance imaging (RS-fMRI). This model-based analysis estimates the spatial integration
between blood-oxygen level dependent (BOLD) signals in distinct cortical visual field maps
using fMRI. Just as population receptive field (pRF) mapping predicts the collective neural
activity in a voxel as a function of response selectivity to stimulus position in visual space,
CF modeling predicts the activity of voxels in one visual area as a function of the aggregate
activity in voxels in another visual area. In combination with pRF mapping, CF locations
on the cortical surface can be interpreted in visual space, thus enabling reconstruction
of visuotopic maps from resting state data. We demonstrate that V1 ➤ V2 and
V1 ➤ V3 CF maps estimated from resting state fMRI data show visuotopic organization.
Therefore, we conclude that—despite some variability in CF estimates between RS
scans—neural properties such as CF maps and CF size can be derived from resting state
data.

Keywords: RS-fMRI, population receptive fields, connective field modeling, connectivity mapping, visuotopic maps

INTRODUCTION
The human visual cortex is a highly complex and intercon-
nected system operating at various temporal and spatial scales,
and as such, non-invasive assessment of the neural correlates
of human visual processing are of great importance. A signifi-
cant contribution toward understanding human visual processing
can be made by studying cortico-cortical interactions between
different visual areas (Heinzle et al., 2011; Haak et al., 2013;
Raemaekers et al., 2013). One way to study these neural corre-
lates is by examining spontaneous blood-oxygen level dependent
(BOLD) co-fluctuations during resting state (Heinzle et al., 2011;
Raemaekers et al., 2013). Given that resting state BOLD fluctu-
ations are partly shaped by the underlying functional and neu-
roanatomical organization (Biswal et al., 1997; Logothetis, 1998;
Raichle et al., 2001; Boly et al., 2007; Deco et al., 2011; Hutchison
et al., 2013a; Wang et al., 2013), analysis of resting state activity
offers a possibility to examine intrinsic functional connectivity
of the visual system as well as the extent of variability of these
processes.

Although functional magnetic resonance imaging (fMRI)
indirectly measures neural activity, accurate methods to map
neural response selectivity in the early visual cortex from the

BOLD signal have been developed (Engel et al., 1997; Smith et al.,
2001; Dumoulin and Wandell, 2008). With these methods, the
unifying concept of classical receptive field (Hubel and Wiesel,
1962) has found its place in fMRI, under the definition of popula-
tion receptive field (pRF). The term pRF was first used to describe
population encoding in macaque early visual areas (Victor et al.,
1994). Used in fMRI, the term describes the aggregate responses
of fMRI recording sites (voxels) to presented stimuli, in terms
of the position and size of the visual field area to which each
recording site responds.

The parametric modeling approach of the pRF techinque has
allowed non-invasive investigation of neural response selectivity,
its cortical organization, and the computational properties of the
visual system. A recent complementary method, called connec-
tive field (CF) modeling (Haak et al., 2013), extends this type of
analysis to model cortico-cortical interactions in terms of spa-
tially localized patterns of functional connectivity. Specifically,
this method enables characterization of a recording site in terms
of aggregate cortical activity in another brain area, thus extend-
ing the concept of receptive field from a description of preferred
locations in visual (stimulus) space to preferred locations on the
cortical surface.
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CF modeling was originally conceived as a method to analyze
responses evoked by visual field mapping (VFM) stimuli, though
the analysis does not use a description of the stimulus. As such,
it could in principle be applied to explore cortico-cortical con-
nectivity profiles during different experimental conditions as well
as resting state. To realize this potential, a number of questions
must be addressed. In this paper, we try to provide answers to
at least four of them. First, how do we measure CF models in the
presence of substantial physiological measurement noise? Second,
how much scan time is sufficient to achieve accurate discrimina-
tion of CF models obtained from resting state data? Third, how
do CF parameters obtained from resting state compare to those
obtained from stimulus-evoked activity? Four, to what extent do
CF parameters vary between resting state scans?

While previous studies have examined cortico-cortical inter-
actions in the early visual cortex during resting state (Heinzle
et al., 2011; Raemaekers et al., 2013), our current study focuses
on the application of the CF method. These previous studies
used model-free approaches whereas the CF method is a model-
based approach. To the extent that the model adequately describes
the underlying neuronal activity, model-based approaches pro-
vide summary descriptions of aggregate neural activity, which is
another reason to examine the application of the CF method to
analyze resting state fMRI data.

MATERIALS AND METHODS
PARTICIPANTS
We recruited four subjects with normal visual acuity (age:
S1 = 26, S2 = 30, S3 = 31, S4 = 40 years old). Experimental
procedures were approved by the medical ethics committee of the
University Medical Center Utrecht.

STIMULUS
Visual stimuli were presented by back-projection onto a
15.0 × 7.9 cm gamma-corrected screen inside the MRI bore. The
subject viewed the display through prisms and mirrors, and the
total distance from the subject’s eyes (in the scanner) to the dis-
play screen was 36 cm. Visible display resolution was 1024 × 538
pixels. The stimuli were generated in Matlab (Mathworks, Natick,
MA, USA) using the PsychToolbox (Brainard, 1997; Pelli, 1997).
The mapping paradigm consisted of drifting bar apertures at var-
ious orientations, which exposed a 100% contrast checkerboard
moving parallel to the bar orientation. After each horizontal
or vertical bar orientation pass, 30 s of mean-luminance stim-
ulus were displayed. Subjects fixated a dot in the center of the
visual stimulus. The dot changed colors between red and green
at random intervals. To ensure attention was maintained, sub-
jects pressed a button on a response box every time the color
changed (detailed procedures can be found in Dumoulin and
Wandell, 2008; Harvey and Dumoulin, 2011). The radius of the
stimulation area covered 6.25◦ of visual angle from the fixation
point.

RESTING STATE
During the resting state scans, the stimulus was replaced with a
black screen and subjects closed their eyes. We chose this so that
there was no visual input; neither from outside the stimulus area

(hence eyes closed) nor from light coming through the eyelids
(hence the black screen). The lights in the scanning room were
off and blackout blinds removed light from outside the room. The
room was in complete darkness.

DATA ACQUISITION
Functional T2∗-weighted 2D echo planar images were acquired
on a 7 Tesla scanner (Philips, Best, Netherlands) using a 32 chan-
nel head coil at a voxel resolution of 1.98 × 1.98 × 2.00 mm, with
a field of view of 190 × 190 × 50 mm. TR was 1500 ms, TE was
25 ms, and flip angle was 80◦. The volume orientation differs
between subjects, though in all cases it was approximately per-
pendicular to the calcarine sulcus. High resolution T1-weighted
structural images acquired at 7T using a 32 channel head coil
at a resolution of 0.49 × 0.49 × 0.80 mm, with a field of view
of 252 × 252 × 190 mm. TR was 7 ms, TE was 2.84 ms, and flip
angle was 8◦. We compensated for intensity gradients across the
image using an MP2RAGE sequence, dividing the T1 by a co-
acquired proton density scan of the same resolution, with a TR
of 5.8 ms, TE was 2.84 ms, and flip angle was 1◦. In total, eight
240-volumes functional scans were acquired; comprising 5 rest-
ing state scans (RS) and 3 interleaved VFM scans. The first scan
was a RS scan. Physiological data were not collected.

PREPROCESSING
First, the T1-weighted structural volumes were resampled to
1 mm isotropic voxel resolution. Gray and white matter were
automatically segmented using Freesurfer and hand edited in
ITKGray to minimize segmentation errors (Teo et al., 1997).
The cortical surface was reconstructed at the white/gray mat-
ter boundary and rendered as a smoothed 3D mesh (Wandell
et al., 2007). Motion correction within and between scans was
applied for the VFM and the RS scans (Nestares and Heeger,
2000). To clean the resting scan signals from DC baseline drift
and reduce high frequency nuisance from physiological variation,
time courses were band pass filtered with a high-pass discrete
cosine transform filter (DCT) with cut-off frequency of 0.01 Hz
and a low-pass 4th order Butterworth filter with cutoff frequency
of 0.1 Hz. Finally, functional data were aligned to the anatom-
ical scans (Nestares and Heeger, 2000) and interpolated to the
anatomical segmentation space.

ANALYSIS
Population receptive field mapping
Early visual areas V1, V2, and V3 were mapped using the pRF
method (Dumoulin and Wandell, 2008). The method uses a
parameterized forward model of the underlying neuronal popula-
tion, a description of the hemodynamic response (HRF), and the
stimulus aperture. The model we chose corresponds to a circular
Gaussian characterized by three parameters: x and y (positions),
and size (σ). A set of candidate pRF models are combined with the
stimulus aperture to generate predictions of the neural responses
each candidate pRF would produce. Subsequent convolution of
this predicted neural response time course with the HRF give a
set of candidate predicted fMRI response time courses for each
combination of pRF parameters. The best fitting predicted fMRI
time courses and their associated pRF parameters are then chosen
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to summarize the response of each recording site (Dumoulin and
Wandell, 2008).

Connective field mapping
CF model parameters were estimated for both the VFM and RS
scans using the CF modeling method described by Haak et al.
(2013). CF models summarize the activity of each recording site
in a target region of interest (ROI) in terms of the aggregate activ-
ity contributed by a set of recording sites in a source ROI (Haak
et al., 2013). Specifically, the BOLD activity over a particular part
of a source region (the CF) is integrated (summed) to yield the
BOLD activity at a target recording site, whose neural response we
are trying to describe. As we aim to determine the source CF for all
target recording sites within an ROI simultaneously, we describe
a target visual field map ROI (i.e., V2 or V3). As candidate source
CFs are limited to a particular visual field map, this is described as
the source ROI (here, always V1). First, a discrete parameter space
of 2-dimensional Gaussians of different candidate sizes (σ) is gen-
erated for each candidate location (each recording site inside the
source ROI, V1), giving a set of candidate V1-referred CF mod-
els. In the next step, similarly to the pRF approach, a candidate
predicted time course is generated for each candidate CF model
by calculating the Gaussian weighted sum of the measured sig-
nals from the candidate CF (including the preferred recording site
and its neighbors). These candidate time courses predictions are
compared to the measured time course of each recording site in
the target ROI (V2 and V3), and the best fitting prediction and
its associate V1-referred CF parameters are chosen for each target
recording site. Furthermore, because CF preferred locations in V1
cortical surface are associated with preferred visual field positions
during pRF mapping, coordinates in visual space can be inferred
for target recording sites. This allows the reconstruction of visuo-
topic maps even in the absence of stimuli. Note that the size of
a CF represents the Gaussian spread along the cortical surface
(mm) and is defined as the shortest path distance between pairs
of vertices in the 3D mesh associated with the gray/white mat-
ter border. The location and size of the ROIs are defined during
pRF mapping. These parameters (location and size of the source
ROI) may restrict CF position but not CF size. By emphasizing
the spatial profile of functional connectivity, a CF allows to exam-
ine spatially localized connectivity patterns among brain areas. As
with most functional connectivity measures, CF models do not
infer the temporal order of the responses in target and source
recording sites.

Discriminability criterion
By emphasizing local over long-range functional connectivity,
biologically inspired models like pRF and CF are generally robust
to global effects (i.e., physiological noise). Nevertheless, evalu-
ation of model significance can be frustrated by the noisy and
non-stationary nature of the time series obtained from resting
state. To overcome this issue and assess the statistical significance
of CF models estimated from the RS, we apply a strategy based in
surrogate data testing.

First, we distinguish the contribution of topographically orga-
nized BOLD co-fluctuations from spatially uncorrelated random
BOLD fluctuations. This distinction allows defining a criterion

in terms of model discriminability. In this context, we define
discriminability as the distinction between topographically orga-
nized BOLD co-fluctuations and spatially uncorrelated random
BOLD fluctuations. To determine model discriminability, we esti-
mated null distributions from the variance explained (VE) of CF
models obtained from surrogate V1 BOLD time courses. To gen-
erate these surrogate BOLD signals, artificial time courses were
produced with the iterative amplitude adjusted Fourier trans-
form (iAAFT) method (Schreiber and Schmitz, 1996; Venema
et al., 2006). This method randomizes the phase of the origi-
nal signal, but preserves its autocorrelation, linear structure, and
amplitude distribution. The spatial correlation between BOLD
time courses in the source region is lost but their fundamental sta-
tistical properties are preserved. Each CF model estimation was
accompanied of an estimation based on surrogate time courses.
For the present analysis, the null distributions obtained from 240
volumes (each RS scan) are comparable across subjects and target
ROIs (V2 and V3); therefore, we combined all estimates into one
null distribution and used the 5th percentile as discrimination
threshold.

Second, we estimated the amount of data that is sufficient to
discriminate RS-based CF models by examining the dependence
of discrimination accuracy on data quantity. First, CF models
were calculated for different amounts of RS data (both for original
and for surrogate data). Segments of 40, 80, 120, 160, 200, and 240
volumes starting from the beginning of each RS scan were used.
Next, VE estimates (adjusted for the degrees of freedom in each
amount of volumes) were grouped according to their correspond-
ing segment length, obtaining original and null VE distributions
for each amount of volumes. These distributions allow the appli-
cation of a receiver-operator characteristic (ROC) analysis. By
assessing the performance of a binary classifier as its discrim-
ination threshold is varied, ROC analysis provides quantitative
measures of model discrimination performance. To discriminate
CF models attributed to genuine BOLD co-fluctuations from
those attributed to random BOLD activity, the corresponding VE
cutoff threshold is moved from 0 to 1 across the original and
the null distributions, producing a contingency matrix of true
positives (hits), false positives (false alarms), true negatives (cor-
rect rejections), and false negatives (miss). Using the contingency
matrix, values of true positive rate (sensitivity) and false positive
rate (1-specificity) are computed and plotted as ROC curves. In
ROC space, a diagonal line corresponds to random discrimina-
tion. The area under the ROC curve (AUC) is commonly used
to quantify classifier discriminability, with a value of 0.5 corre-
sponding to random, and a value of 1 to perfect, classification.
We choose informedness as our discriminability index, which cor-
responds to twice the area between the curve and the diagonal:
2∗AUC-1 (Hanley and McNeil, 1982; Fawcet, 2006). It has the
advantage that 0 represents random, and 1 represents perfect clas-
sification. Finally, we estimated the dependence of discrimination
accuracy on the EV cutoff threshold by calculating the F1 score
for each amount of volumes.

Spatial analysis
In the spatial domain, we estimate CF size change and position
scatter during RS using VFM-based size and position as reference.
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First, to assess CF position variability in the RS, we assume
that CFs are topographically organized. This implies that neural
activity in neighboring cortical locations in the target ROI may
correlate with neural activity in neighboring cortical locations
inside the source ROI that represent the same portions of visual
space, as shown by VFM. This assumption allows us to estimate
position variability as position scatter of V1-referred CFs by cal-
culating their displacement on the V1 cortical surface with respect
to their VFM-based reference positions.

We proceeded as follows: for each recording site in the target
ROI, position scatter was calculated as the shortest distance along
the cortical manifold between the VFM-based center position and
the RS-based position. This distance was computed in millime-
ters using Dijkstra’s algorithm (Dijkstra, 1959). Estimates whose
associated models scored a VE above discrimination threshold
(0.35 VE) were retained. To quantify the variability in position
scatter for each subject and each RS scan, the median (to assess
tendency) and the median absolute deviation (MAD; to assess dis-
persion) were calculated for each RS scan and subject. To assess RS
scan-to-scan variability, we also calculated these values for all RS
scan pairs. In order to determine a possible influence of cortical
distance (i.e., shared vasculature, spatial blurring), we compared
position scatter as a function of the distance between CF cen-
ters and their associated recording sites in the target area. We
then compared position scatter as a function of VFM-based ref-
erence eccentricity. Finally, agreement in eccentricity estimates
was quantified by calculating linear correlation coefficients for
VFM- and RS-based eccentricities.

Second, we examined differences in size for V1 ➤ V2 and V1 ➤

V3 models between RS- and VFM-based estimates. RS-based size
estimates for V1 ➤ V2 and V1 ➤ V3 from all participants were
grouped by map combination and compared to those obtained
based on VFM using a two-sample Kolmogorov–Smirnov test
(KS-test). Subsequently, we examined the relation of RS-based CF
size as a function of VFM-reference eccentricity by binning eccen-
tricity in bins of 1◦ and calculating linear fits over the mean with
bootstrapped confidence intervals (1000 iterations).

RESULTS
DERIVING CONNECTIVE FIELD MODELS BASED ON RESTING STATE
fMRI DATA
Our first analysis concerned two questions: whether CF mod-
els could be obtained in presence of substantial physiological
measurement noise; and, if the models obtained could be discrim-
inated based in the contribution of genuine spontaneous BOLD
co-fluctuations. Figure 1 shows the distributions of VE for actual
(blue) and surrogate (black) RS data. We used the VE of CFs
obtained from surrogate RS data as null-distribution (240 vol-
umes, TR: 1.5 s). The VE cutoff threshold was estimated based
on the 5th percentile of the null-distributions and lies around
∼0.35 VE for all subjects. The majority of the models have a
VE that exceeds this cutoff threshold. Importantly, this analysis
demonstrates that the estimation of CF models based in genuine
spontaneous BOLD co-fluctuations is possible even in presence
of substantial physiological measurement noise. Nevertheless, we
cannot determine the effect that these confounds exerts in the
estimation of CF parameters.

FIGURE 1 | Distributions of variance explained. Histogram of relative
frequency of recording sites in V1-referred connective field models in V2 as
a function of their variance explained. The black distribution represents the
hypothesis of non-discriminability (noisy and spatially uncorrelated signals
obtained with the IAAFT method) and was generated by fitting connective
field models to surrogate BOLD signals. The blue distribution illustrates a
typical outcome for an actual resting state scan.

In addition, we examined the dependence of discrimination
accuracy on the amount of volumes included in the analysis. To
do so, we calculated VE (adjusted for degrees of freedom) for
actual and surrogate data for various amounts of volumes and
applied a ROC analysis. Figure 2 summarizes the results of the
analysis for a single subject (Subject 3). First, it shows the VE
distributions for actual (black) and surrogate data (red) as a func-
tion of the amount of volumes included in the analysis. VE drops
with the number of volumes, but drops more sharply for the sur-
rogate data (Figure 2A). The resulting ROC curves are shown
in Figure 2B; they show detection probability as a function of
false alarm probability for each amount of volumes. Detection
probability increases with the amount of volumes. Figure 2D
shows discrimination accuracy (F1 score) as a function of the VE
threshold for each amount of volumes analyzed.

This analysis also indicates that CF modeling could be based
on even shorter scan periods with retaining reasonable discrimi-
nation accuracy. However, fewer models are expected to lie above
threshold. Finally, it must be noted that, even though this analysis
provides a strategy to optimize modeling accuracy by adjust-
ing the VE cutoff threshold, in the remaining analysis we use a
threshold of 0.35 VE, which corresponds to the 5th percentile of
the null-distribution obtained after grouping the VE of surrogate
RS-based models from all scans and subjects.

SPATIAL ASPECTS OF RESTING STATE CONNECTIVE FIELD MAP
ESTIMATION
The next question we address is whether the topographical maps
based on RS data have similar characteristics as the one based
on VFM data (our current reference). Also, how variable are the
results between RS scans? To provide an impression of this vari-
ability, Figure 3 shows both VFM and RS derived CF maps for
a single participant (maps for other participants are shown in
Supplementary Materials). V2 and V3 CF parameter maps (V1-
referred) are plotted on a smoothed 3D mesh representing gray
matter along the cortical surface. Eccentricity, polar angle and size
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FIGURE 2 | Overall modeling performance characteristics for a single

subject. (A) Dependence of variance explained on the amount of volumes.
The whisker box-plots illustrates the distributions of variance explained
adjusted by degrees of freedom. Red distributions were obtained from RS
data and black distributions from surrogate RS data. The central mark is the
median, the edges of the box are the 25th and 75th percentiles, and the
whiskers indicate the most extreme data points with an interquartile range
of 1.5 (Tukey box-plot). (B) Receiver operating characteristic (ROC) curves
corresponding to each amount of volumes. (C) Discriminability increases as
a function of the amount of volumes (we choose discriminability index in
the form of informedness: 2∗AUC-1, equivalent to Gini coefficient). (D)

Discrimination accuracy (F1 score) as a function of the adjusted EV cut-off
threshold for each amount of volumes (colors as in B). Data are for V1 ➤ V2
CF models from subject 3.

(σ) are plotted in three columns. In top row of panels, CF param-
eters estimated based on VFM data are shown. These maps serve
as our reference. In the lower rows of panels, these same parame-
ters are plotted for all RS scans. As shown previously (Haak et al.,
2013), the VFM derived maps show a clear retinotopic organiza-
tion (note that in the context of CF modeling, eccentricity and
polar angle maps are inferred from a pRF mapping and associ-
ated to each recording site in the source region, in this case V1).
In some RS scans eccentricity and polar angles maps resembles the
VFM-based reference, although some variability can be observed
(Figure 3, RS4, RS5). To quantify the variability of the individual
maps, the median position displacement in CF cortical location
(relative to the VFM reference and between all RS scan pairs; in
mm) and the MAD were calculated for RS1 to RS5 (values are
reported in the legend of Figure 3). These values confirm the
impression that RS4 and RS5 most clearly resemble the visuotopic
organization observed in the VFM-based maps (results are shown
for participant 3, those for the other participants are shown in the
Supplementary Material).

Figure 4A plots the change in V1-referred CF center position
between RS- and VFM-based reference position as a function of
VE (of the RS model). CFs with higher VE show smaller corti-
cal displacements. The majority of CFs (as indicated by the heat
map) have a high VE and show relatively small displacements.
Figure 4B shows a distance effect for V1 ➤ V2 (R = 0.90, p <

0.0001) but not for V1 ➤ V3 (R = 0.11, p < 0.0001). Figure 4C
shows that there are no systematic deviations from the median
cortical displacement as a function of eccentricity. Figure 4D
shows a good agreement between RS- and VFM-based eccen-
tricities (V1 ➤ V2: R = 0.97, p < 0.0001; V1 ➤ V3: R = 0.70,
p < 0.0001).

Figure 5 shows VFM- and RS-based V1-referred CF size dis-
tributions for V2 and V3 (data grouped over all scans and
participants, N = 4). RS-based CF size tend to be smaller than
those estimated based on VFM data (V1 ➤ V2: p < 0.0001, KS-
test = 0.240; V1 ➤ V3: p < 0.0001, KS-test = 0.0001). Moreover,
we cannot confirm a difference in RS-based CF size estimates for
V1 ➤ V2 or V1 ➤ V3 (p = 0.0065, KS-test = 0.015).

Figure 6 plots the relationship between CF size and eccentric-
ity for VFM- and RS-based estimates. The left panel shows that
VFM-based CF size estimates for V1 ➤ V2 do not increase signif-
icantly with eccentricity (black line), whereas those for V1 ➤ V3
do (yellow line). The right panel shows that RS-based CF size for
V2 (black line) and V3 (yellow line) do not increase significantly
with eccentricity.

Together, the analyses shown in Figures 5, 6 show that RS-
based CF size estimates are smaller than those estimated based on
VFM. In RS, CF size does not appear to increase with eccentricity,
neither within the visual hierarchy.

DISCUSSION
CONNECTIVE FIELD MODELS CAN BE ESTIMATED BASED ON RESTING
STATE DATA
We have shown that connective field (CF) modeling can be
based on resting state (RS) data. This indicates that sponta-
neous blood-oxygen level dependent (BOLD) co-fluctuations in
the early visual cortex state preserves fine-grained topographic
connectivity structure. While this preservation of topographic
connectivity corroborates results of previous studies (Heinzle
et al., 2011; Raemaekers et al., 2013) our study goes beyond these
by examining both the topography and the spatial properties of
the functional connections. In order to assess the statistical signif-
icance of our CF estimates, we determined a variance explained
(VE) cutoff threshold taking into account the VE of CF models
based on surrogate RS data (Figure 1). This involves disrupt-
ing the phase correlations across recording sites in the source
region of interest (ROI) in order to destroy the local structure
of BOLD co-fluctuations. Furthermore, we examined the depen-
dence of discrimination accuracy on the amount of data and
found six minutes of scanning (240 volumes using a TR of 1.5 s
at 7T) to be more than sufficient to achieve good discrimination
(Figure 2).

AGREEMENT BETWEEN RESTING STATE AND VISUAL FIELD MAPPING
BASED CONNECTIVE FIELD PARAMETERS
Although data obtained during RS provide different informa-
tion than data obtained during stimulation, a comparison of
the maps estimated from RS to those estimated based on visual
field mapping (VFM) reveals a fairly close agreement between
the two (Figure 3). Some RS maps show patterns of visuotopic
organization that agree well with their VFM reference (Figure 3,
RS4, RS5). Nevertheless, we observed substantial variability in CF
model parameters for different RS scans. We quantified the degree
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FIGURE 3 | Visualization of connective field maps for a single subject.

From left to right: eccentricity, polar angle, and size. Top panel corresponds
to visual field mapping (VFM)-based estimates. Lower panels show
parameter estimates for each resting state (RS) scan. For V1 ➤ V2 CF
models, the position displacement in CF cortical location (in mm) between
VFM- and RS-based estimates for RS1 to RS5 is: median (MAD) = 10.0 (5.4);
8.5 (5); 5.8 (3.7); 3.8 (3.4); and 4.1 (3.0), respectively [total = 5.4 (3.9)].
Corresponding position displacement values between RS4 and RS5 (the RS
scans with lowest displacement: 4.1 (3.1); between RS1 and RS2 (the RS

scans with highest displacement): 8.5 (5.8); between RS1 and RS4: 10.5
(6.6); when grouping results for all RS scan pairs: 8.6 (5.9). For V1 ➤ V3 CF
models, the corresponding values are: 13.6 (6.3); 14.4 (6.8); 7.9 (5.4); 6.7 (5.5);
and 7.1 (4.2) [total = 8.7 (5.5)]. Eccentricity and polar angle are inferred from
V1 pRF mapping (see Materials and Methods for details). Data are for V1 ➤

V2 and V1 ➤ V3 models estimated for subject 3 (data for other subjects
included in Supplementary Materials). A threshold of 0.35 VE was applied.
Median cortical displacements reflect the agreement between RS and VFM
maps and between different RS maps.

of agreement by measuring CF position scatter as the cortical
displacement between RS- and VFM-based CF cortical positions
and show that the median cortical displacement reflects the agree-
ment observed in Figure 3 (data for other subjects are shown
in Supplementary Materials). Besides the observed variability in
visuotopic organization, CF size estimates obtained for RS scans
were generally smaller than those obtained for VFM (Figure 5).

Moreover, contrary to estimates based on VFM, RS-based CF size
did not increase with eccentricity neither throughout the visual
hierarchy (Figure 6).

SPATIAL CHANGES: POSSIBLE MECHANISMS
In the absence of visual input, changes in CF size and variability
in CF position may reflect a reduction in the amount of spatial
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FIGURE 4 | Position scatter for V1-referred connective fields for a

single subject. (A) Joint histogram of cortical displacement in V1-referred
CF centers as a function of adjusted VE. The goodness of fit tends to
decrease with larger displacements (colorbar depicts frequency of voxels
after grouping data from all RS scans; the number of voxels that entered
the analysis is: 1622 for V1 ➤ V2 and 1467 for V1 ➤ V3). (B) Position
scatter as a function of the distance from the target voxel. A cortical
distance effect can be seen in V1 ➤ V2 (R = 0.90, p < 0.0001) but not in
V1 ➤ V3 (R = 0.11, p < 0.0001). (C) No systematic deviations from the

median distance are observed for eccentricity (data was binned in
eccentricity bins of 0.25◦). Points represent the median of each bin and
error-bars the median absolute deviation for the corresponding bin. (D)

There is good agreement between RS-based eccentricity and VFM
reference eccentricity (V1 ➤ V2: R = 0.97, p < 0.0001; V1 ➤ V3: R = 0.70,
p < 0.0001) (data was binned in eccentricity bins of 0.25◦. Points
represent the median of each bin and error-bars the median absolute
deviation for the corresponding bin). Data are from subject 3. A cutoff
threshold of 0.5 VE (F1 ∼0.85) was applied in (B–D).

FIGURE 5 | V1-referred connective field size during visual field

mapping and resting state scans grouped over participants (N = 4).

Resting state based CF size is generally smaller than their visual field
mapping based CF size (V1 ➤ V2: p < 0.0001, KS-test = 0.240; V1 ➤ V3:
p < 0.0001, KS-test = 0.0001). CF size does not increase in the visual
hierarchy when measured during resting state (p = 0.0065, KS-test =
0.015). A cutoff threshold of 0.35 VE was applied.

integration and selectivity, respectively. Possible mechanisms
underlying these changes in CFs may involve temporal restructur-
ing of corticothalamic network activity in a state-dependent way
(Mastronarde, 1989; Wörgötter et al., 1998; Andolina et al., 2007;
Britz and Michel, 2011), as well as intracortical processing medi-
ated by horizontal connections and feedback signals from higher

FIGURE 6 | Relation between eccentricity and V1-referred connective

field size in visual areas V2 (black) and V3 (yellow) grouped over

participants (N = 4). Resting state based size estimates do not increase
with eccentricity. Eccentricity was binned in intervals of 1◦. Dots indicate
the mean of VE-weighted CF size for each bin. Linear fits were calculated
for these means. Dashed lines correspond to the 95% bootstrap
confidence interval of the linear fit (1000 iterations). A cutoff threshold of
0.35 VE was applied.

cortical stages (Rao and Ballard, 1999; Steriade, 2000; Llinás and
Steriade, 2006; Botelho et al., 2014; Schmid and Keliris, 2014).
Decreased corticothalamic feedback and cortical lateral inhibition
in the absence of visual input likely plays a role in the shrinkage
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of CFs, as well as in the reduced visuotopic organization observed
on the higher-scatter CF maps. These input changes might adjust
the balance between excitation and inhibition in cortical neuronal
populations that eventually shapes cortico-cortical connectivity
as a function of stimulation, behavioral context, and physiolog-
ical state (Kosslyn et al., 1995; Lehmann et al., 1998; Rao and
Ballard, 1999; Steriade, 2000; Martínez-Trujillo and Treue, 2004;
Slotnick et al., 2005; Womelsdorf et al., 2008; Greenberg et al.,
2012; Haak et al., 2012). During resting state, a variety of ongoing
processes may modulate connectivity between visual areas. In par-
ticular, the transitional period from wakefulness to sleep leads to a
progressive inhibition of synaptic transmission through thalamic
relay neurons (Steriade, 2000; Llinás and Steriade, 2006), which is
another possible cause to the changes observed.

Another reason to speculate that there may be differences
between the RS and VFM results is related to the origin of the
BOLD signal. Given that the majority of the brain’s energy bud-
get is devoted to ongoing intrinsic activity (i.e., RS), the metabolic
costs of the adjustment between excitation and inhibition may
reflect in the BOLD signal. The relative contribution of excitation
and inhibition to the BOLD signal changes between the RS and
VFM scans. Inhibitory functions, which may be supported more
by oxidative mechanisms than by excitatory signaling, may con-
tribute less to the measured BOLD signal (Buzsaki et al., 2007). As
a consequence, resting state BOLD co-fluctuations may provide a
different picture of the neural connections.

LIMITATIONS AND FUTURE DIRECTIONS
The current study assesses CF properties in four healthy
participants. Even though the results are consistent between
participants, further studies involving more participants are
advised. Moreover, the CF models were estimated based on
entire RS scans. As such, they only estimate average CF
properties and do not capture temporal variations in these.
To establish the possible neural mechanisms underlying the
observed changes in CF properties, further research is still
necessary. In its current implementation, the present method
cannot determine the precise factors that contribute to this
variability. Large-scale network interactions, physiological pro-
cesses and measurement noise might all influence the variabil-
ity observed. Important to note is, however, that biologically
inspired methods like pRF and CF modeling that emphasize
local connectivity are generally robust to global effects like
physiological noise.

In future studies, extending the present analysis with dynamic
functional connectivity metrics (Sakoğlu et al., 2010; Kiviniemi
et al., 2011; Allen et al., 2012; Hutchison et al., 2013b), might
help to disclose relevant temporal and spatial repertories in
various experimental conditions allowing to study phenomena
that unfold over time, such as attention, contextual modulation,
and object recognition. Adding independent measures of neural
activity like electroencephalography (Yuan et al., 2012) or other
neurophysiological recordings seems a promising path to capture
relevant temporal variations in neural activity. Future analyses
could also take into account simultaneously recorded physiolog-
ical data and draining veins in the preprocessing of the data, as
these are known to influence resting state functional connectivity

estimates (Birn et al., 2001; Logothetis et al., 2009; Winawer et al.,
2010; Heinzle et al., 2011; Haak et al., 2013). Lastly, it should be
noted that some of the possible mechanisms underlying changes
in CF properties are based on animal models (Wörgötter et al.,
1998; Steriade, 2000; Haupt et al., 2004; Llinás and Steriade,
2006; Andolina et al., 2007; Womelsdorf et al., 2008). Because
certain experimental manipulations are not possible in human
subjects, comparative approaches between humans and animal
models are needed to bridge the gap in RS-fMRI investigations
(Hutchison and Everling, 2012; Mantini et al., 2012). Examining
the correspondence of functional and anatomical connectivity in
homologous brain architectures will help to further elucidate the
mechanisms underlying neural activity.

CONCLUDING REMARKS
We have shown that CF estimates can be obtained based on RS
data. We observed good agreement can be observed between RS-
and VFM-based maps, and between different RS-based maps.
This implies that local functional connectivity in visual cortical
areas during resting state, as measured with CF modeling, may
reflect the underlying neural architecture. However, we found that
CF estimates may vary between RS scans even for high VE scans.
The present study cannot determine to what extent this variabil-
ity is explained by genuine changes in the neural properties of the
visual system or by various external sources of noise. Nevertheless,
we show that neural properties such as CF maps and CF size can
be derived from RS data.
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SECTION
In this issue Mandl and colleagues repli-
cated the findings of a previous study
(Mandl et al., 2008) in which they
explored task-related changes in fractional
anisotropy (FA) along white matter (WM)
tracts using functional diffusion tensor
imaging (fDTI). They report increased FA
in WM of thalamocortical pathways dur-
ing tactile stimulation and in the optic
radiations during visual stimulation, while
only minor changes in mean diffusivity
(MD) and blood oxygenation level depen-
dent (BOLD) contrast were observed.
Mandl and colleagues suggest that fDTI
might provide a novel window on previ-
ously inaccessible WM information trans-
fer. These findings, in addition to a
number of previous reports of changes
in MD with close temporal proximity to
behavioral stimuli, could have a signif-
icant impact on our understanding of
brain function (Aso et al., 2009; Baslow
et al., 2012). However, at the present time
there has been no rigorous validation of
the methodology or thorough explanation
of the physiological basis for the effects
(Miller et al., 2007; Jin and Kim, 2008;
Yacoub et al., 2008). In this commentary
we discuss the possible explanations for
the functional FA observations and how

future studies could begin to explore these
effects.

The most likely explanation for the
observed increase in FA is that it reflects
changes in the BOLD fMRI signal. It is
well established that neuronal activation
is associated with a decrease in the trans-
verse relaxation rate (R2), observed as an
increase in the gray matter (GM) magnetic
resonance signal (Ogawa et al., 1990). In
contrast, WM BOLD activation is a very
rarely reported phenomenon. It follows
that the relative GM/WM BOLD signal
ratio is very likely to increase during a
stimulus-induced positive BOLD period,
and decrease during the post-stimulation
negative BOLD period. Since GM and WM
have different FA-values, a change in the
relative GM/WM ratio may have an impact
upon FA quantification. In contrast, since
GM and WM have similar MD values, a
change in the GM/WM ratio would prob-
ably not influence MD. However, the very
small BOLD signal changes observed in
this study would seem to suggest oth-
erwise, but could be explained by the
method of analysis. By taking into account
voxels along the entire tract length, areas
of WM proximal to GM regions at tract
termination points might have been more
strongly influenced by a GM BOLD effect
than those in the main body of the tract.

To test this hypothesis we simu-
lated the effect which a partial-volume
of gray matter would have on par-
allel and transverse diffusivity using
published parameters. Relaxation rates
R2_gm = 14.12 1/s, R2_gm_activation =
14.00 1/s, and R2_wm = 12.34
1/s; estimated from the relation
�R2 = −�S

S /TE (Donahue et al., 2006;
Miller et al., 2007); ADC values ADCgm =

0.937 ∗ 10−3 mm2/s, ADCwm,parallel =
1.5 ∗ 10−3 mm2/s, ADCwm,radial = 0.4 ∗
10−3 mm2/s (Kiselev and Il’yasov,
2007; Qiu et al., 2008); Gray matter
fraction (fgm), White matter fraction
(fwm = 1 − fgm), TE (78 ms) and b-value
(1000 s/mm2) (Mandl et al., 2008) using
the equation below:

�S

S
=

(
Sactivation

Sbaseline
− 1

)
∗ 100%

=

⎛
⎜⎜⎜⎜⎝

fgm · e−R2,gm,act ·TE − ADCgm·bvalue

+ fwm · e
−R2,wm·TE − ADC

wm,
par
radial

·bvalue

fgm · e−R2,gm·TE − ADCgm·bvalue

+ fwm · e
−R2,wm·TE − ADC

wm,
par
rad

·bvalue

− 1

⎞
⎟⎟⎟⎟⎠

Figure 1 illustrates that the signal changes
are substantial even with modest 20%
gray matter partial volumes, with a 0.28%
increase in parallel diffusivity, 0.11%
reduction in transverse, and BOLD change
of 0.18%. This suggests that small BOLD
changes could provide a physiological
explanation for the changes observed.
However, this possibility would still not
explain the differences in observed time
courses between the two stimulation types.
Although changes in the GM BOLD signal
would appear to be the most likely expla-
nation, it is still unclear to what extent
and precisely how this could impact on
FA measurements in central white matter
pathways.

A more technical consideration is the
possible effect of image noise and par-
tial volumes on FA quantification (Basser
and Jones, 2002; Rudrapatna et al., 2012).
At 2.5 × 2.5 × 7 mm3 resolution, it is
likely that several WM voxels could be
contaminated with volumes of GM, even
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FIGURE 1 | Simulated changes in parallel and transverse diffusivity signal and ADC as a function of percentage partial-volume with gray matter.

after using standardized white matter
templates. Noise in MRI acquisitions is
thought to cause an overestimation of FA
in both isotropic and anisotropic struc-
tures (Pierpaoli and Basser, 1996), and it
is also well known that stimulation-evoked
BOLD responses demonstrate substantial
trial-to-trial fluctuations. Therefore, could
the trial-to-trial BOLD response fluctua-
tions impose an apparent increase in the
MR noise level and cause a functional FA
overestimation? Although a possibility, the
very low BOLD signal changes indicate
that this is unlikely. The specificity of the
results to pathways previously associated
with tactile or visual function, and the
replication of prior results (Mandl et al.,
2008) suggest that partial volume or noise
effects cannot fully explain these findings.

A final possibility is that FA increases
may reflect activity-evoked glial swelling
associated with increases in extracellular
potassium levels (Ransom et al., 1985).
Such activity would predict an increase
in Na+, K−-ATPase utilization to recover
post-activation transmembrane ion gradi-
ents, which in turn might translate into
changes in vascular oxygenation levels.
However, the extant evidence from BOLD
fMRI and PET studies does not support
a metabolic explanation for the observed
effects. In vitro studies in the rat brain—
which are free from confounding vascular
effects - show that massive depolarization
and increases in metabolism have a mini-
mal effect upon WM ADC quantification
(Anderson et al., 1996). Thus, the lack of
convincing evidence for WM activation
is in line with the emerging view that

WM energy consumption is predomi-
nantly dedicated to non-signaling related
ATP consumption and maintenance of
resting potentials (Harris and Attwell,
2012).

In order to advance the use of func-
tional DTI, a more detailed exploration
of the origin of the observed changes is
vital. To describe the basic WM, GM,
and CSF model, even when contributions
from blood and R2 are excluded, requires
18 separate parameters (Basser and Jones,
2002). This level of complexity sets signif-
icant limitations on the interpretation of a
functional FA change, therefore we recom-
mend caution when interpreting the origin
of fDTI signals, as at the present time the
picture is far from clear. Future investiga-
tions should: (1) exclude activated BOLD
voxels from FA analyses to ameliorate the
impact of possible BOLD or noise effects
and (2) investigate the effect of hypercap-
nia on FA quantification in humans, since
this is not associated with a substantial
increase in neuronal information process-
ing. Such experiments may help disentan-
gle the impact of vascular effects upon
functional FA quantification and extend
our understanding of signal changes in
WM using fDTI.

ACKNOWLEDGMENTS
This work was partly funded by the UK
Medical Research Council.

REFERENCES
Anderson, A. W., Zhong, J., Petroff, O. A. C.,

Szafer, A., Ransom, B. R., Prichard, J. W.,
et al. (1996). Effects of osmotically driven

cell volume changes on diffusion-weighted
imaging of the rat optic nerve. Magn. Reson.
Med. 35, 162–167. doi: 10.1002/mrm.1910
350206

Aso, T., Urayama, S., Poupon, C., Sawamoto,
N., Fukuyama, H., and Bihan, D. L. (2009).
An intrinsic diffusion response function
for analyzing diffusion functional MRI
time series. Neuroimage 47, 1487–1495. doi:
10.1016/j.neuroimage.2009.05.027

Baslow, M. H., Hu, C., and Guilfoyle, D. N. (2012).
Stimulation-induced decreases in the diffusion of
extra-vascular water in the human visual cor-
tex: a window in time and space on mechanisms
of brain water transport and economy. J. Mol.
Neurosci. 47, 639–648. doi: 10.1007/s12031-011-
9700-6

Basser, P. J., and Jones, D. K. (2002). Diffusion-
tensor MRI: theory, experimental design and data
analysis–a technical review. NMR Biomed. 15,
456–467. doi: 10.1002/nbm.783

Donahue, M. J., Lu, H., Jones, C. K., Edden, R. A.,
Pekar, J. J., and van Zijl, P. (2006). Theoretical and
experimental investigation of the VASO contrast
mechanism. Magn. Reson. Med. 56, 1261–1273.
doi: 10.1002/mrm.21072

Harris, J. J., and Attwell, D. (2012). The energetics of
CNS white matter. J. Neurosci. 32, 356–371. doi:
10.1523/JNEUROSCI.3430-11.2012

Jin, T., and Kim, S.-G. (2008). Functional changes
of apparent diffusion coefficient during visual
stimulation investigated by diffusion-weighted
gradient-echo fMRI. Neuroimage 41, 801–812. doi:
10.1016/j.neuroimage.2008.03.014

Kiselev, V. G., and Il’yasov, K. A. (2007). Is the “biex-
ponential diffusion” biexponential? Magn. Reson.
Med. 57, 464–469. doi: 10.1002/mrm.21164

Mandl, R. C., Schnack, H. G., Zwiers, M. P., van
der Schaaf, A., Kahn, R. S., and Pol, H. E. H.
(2008). Functional diffusion tensor imaging: mea-
suring task-related fractional anisotropy changes
in the human brain along white matter tracts.
PLoS ONE 3:e3631. doi: 10.1371/journal.pone.
0003631

Miller, K. L., Bulte, D. P., Devlin, H., Robson, M.
D., Wise, R. G., Woolrich, M. W., et al. (2007).
Evidence for a vascular contribution to diffusion

Frontiers in Neuroscience | Brain Imaging Methods April 2014 | Volume 8 | Article 68 | 140

http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Autio and Roberts Interpreting functional diffusion tensor imaging

FMRI at high b value. Proc. Natl. Acad. Sci. U.S.A.
104, 20967–20972. doi: 10.1073/pnas.0707257105

Ogawa, S., Lee, T. M., Kay, A. R., and Tank, D.
W. (1990). Brain magnetic resonance imaging
with contrast dependent on blood oxygenation.
Proc. Natl. Acad. Sci. U.S.A. 87, 9868–9872. doi:
10.1073/pnas.87.24.9868

Pierpaoli, C., and Basser, P. J. (1996). Toward a quan-
titative assessment of diffusion anisotropy. Magn.
Reson. Med. 36, 893–906. doi: 10.1002/mrm.19
10360612

Qiu, D., Tan, L.-H., Zhou, K., and Khong, P.-
L. (2008). Diffusion tensor imaging of nor-
mal white matter maturation from late child-
hood to young adulthood: voxel-wise evalua-
tion of mean diffusivity, fractional anisotropy,
radial and axial diffusivities, and correlation with
reading development. Neuroimage 41, 223–232.
doi: 10.1016/j.neuroimage.2008.02.023

Ransom, B. R., Yamate, C. L., and Connors, B. W.
(1985). Activity-dependent shrinkage of extracel-
lular space in rat optic nerve: a developmental
study. J. Neurosci. 5, 532–535.

Rudrapatna, U. S., van der Toorn, A., van
Meer, M., and Dijkhuizen, R. M. (2012).
Impact of hemodynamic effects on
diffusion-weighted fMRI signals. Neuroimage
61, 106–114. doi: 10.1016/j.neuroimage.2012.
02.050
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A commentary on

Interpreting functional diffusion tensor
imaging
by Autio, J. A., and Roberts, R. E. (2014).
Front. Neurosci. 8:68. doi: 10.3389/fnins.
2014.00068

In this comment by Autio and Roberts
(2014) on our second fDTI article
“Functional Diffusion Tensor Imaging
at 3 Tesla” (Mandl et al., 2013) the
authors suggest that BOLD signal orig-
inating from gray matter could in part
explain the reported task-related FA
changes in white matter. The rationale
is that the relative contribution from
activated gray matter to the measured
signal increases in voxels containing both
gray and white matter. Because the ADC
value for gray matter is between the par-
allel and perpendicular ADC for white
matter, this increased contribution effec-
tively could lead to an increase in the
measured parallel ADC and a decrease
in the measured perpendicular ADC
and hence an increase in FA. Indeed,
contamination by signal “leaking” from
gray matter into white matter has been
one of our major concerns in both our
fDTI articles, together with the effects of
motion.

However, we think that the proposed
mechanism by Autio and Roberts to the
reported task-related FA changes does not
contribute to our finding. One, the use
of the non-parametric sign test in our
first fDTI paper (Mandl et al., 2008) pre-
vents that only a few voxels (e.g., the

end points of the tract touching active
gray matter) can result in activation of
a complete tract. Two, the global shift
of the histograms presented in Figure 5
Mandl et al. (2008) shows that a large part
of the white matter voxels in the active
tracts contribute to the measured task-
related FA change. Of course this in itself
does not rule out the proposed mecha-
nism because it could be that the active
tracts are (for a large part) surrounded
by active gray matter voxels. This may for
instance be the case for the optic radia-
tions. These tracts are relatively short and
are for a large part adjacent to (possi-
ble active) gray matter voxels. However,
this certainly is not the case for the active
thalamo-cortical tracts as can be seen in
the supplementary movie (Mandl et al.,
2008, Movie S1). This movie shows the
combined fDTI and BOLD fMRI results
for the tactile experiment in a single sub-
ject (subject nr 5). It can be readily seen
that the hypothesized partial voluming
with possible active gray matter could only
occur at the endpoints of the fiber bundle.
Furthermore, three, in the second fDTI
paper (Mandl et al., 2013) we introduce
a time lag between the stimulus and the
start of the acquisition of a fDTI volume
to make the measurement less sensitive to
relatively fast varying signal changes (e.g.,
BOLD related signal changes). Still, sim-
ilar effects were reported for the tactile
experiment.

Taken together we conclude that
although the hypothesized mechanism
by Autio and Roberts is intriguing and
more experiments are needed to obtain

better insight in the underlying mech-
anisms it cannot explain our measured
task-related changes in FA in functional
Diffusion Tensor Imaging.

REFERENCES
Autio, J. A., and Roberts, R. E. (2014). Interpreting

functional diffusion tensor imaging. Front.
Neurosci. 8:68. doi: 10.3389/fnins.2014.00068

Mandl, R. C., Schnack, H. G., Zwiers, M. P., Kahn,
R. S., and Hulshoff Pol, H. E. (2013). Functional
diffusion tensor imaging at 3 Tesla. Front.
Hum. Neurosci. 7:817. doi: 10.3389/fnhum.2013.
00817

Mandl, R. C., Schnack, H. G., Zwiers, M. P., van der
Schaaf, A., Kahn, R. S., and Hulshoff Pol, H. E.
(2008). Functional diffusion tensor imaging: mea-
suring task-related fractional anisotropy changes
in the human brain along white matter tracts. PLoS
ONE 3:e3631. doi: 10.1371/journal.pone.0003631

Conflict of Interest Statement: The authors declare
that the research was conducted in the absence of any
commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 16 April 2014; accepted: 08 May 2014;
published online: 27 May 2014.
Citation: Mandl RCW, Schnack HG, Zwiers MP, Kahn
RS and Hulshoff Pol HE (2014) Do we measure
gray matter activation with functional diffusion ten-
sor imaging? Front. Neurosci. 8:126. doi: 10.3389/fnins.
2014.00126
This article was submitted to Brain Imaging Methods, a
section of the journal Frontiers in Neuroscience.
Copyright © 2014 Mandl, Schnack, Zwiers, Kahn and
Hulshoff Pol. This is an open-access article distributed
under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduc-
tion in other forums is permitted, provided the original
author(s) or licensor are credited and that the origi-
nal publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with
these terms.

www.frontiersin.org May 2014 | Volume 8 | Article 126 | 142

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/journal/10.3389/fnins.2014.00126/full
http://community.frontiersin.org/people/u/101051
http://community.frontiersin.org/people/u/97633
http://community.frontiersin.org/people/u/139274
http://community.frontiersin.org/people/u/8043
http://community.frontiersin.org/people/u/44734
http://www.frontiersin.org/Journal/10.3389/fnins.2014.00068/full
http://www.frontiersin.org/Journal/10.3389/fnins.2014.00068/full
http://dx.doi.org/10.3389/fnins.2014.00126
http://dx.doi.org/10.3389/fnins.2014.00126
http://dx.doi.org/10.3389/fnins.2014.00126
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive


http://www.frontiersin.org/

	 Cover
	Frontiers Copyright Statement
	Neural Signal Estimation in the Human Brain
	Table of Contents
	Editorial: Neural Signal Estimation in the Human Brain
	Author contributions
	Funding
	References

	Localization of MEG human brain responses to retinotopic visual stimuli with contrasting source reconstruction approaches
	Introduction
	Materials and Methods
	Participants
	MEG Retinotopy
	Data collection and pre-processing
	Stimuli
	MEG scanner and data acquisition
	Preprocessing and HPI correction
	Artifact removal

	Source reconstruction of MEG signals
	Anatomical MRI data collection
	Source space modeling and HPI-MRI alignment
	First response peak (FRP)
	Minimum norm estimate (MNE) reconstruction
	Beamformer (early evoked response)
	Beamformer (time-frequency)
	Multiple sparse priors (MSP) reconstruction
	Morphing 3D source images to the individual's cortical surface


	Functional MRI Retinotopy
	Stimuli
	fMRI data acquisition
	fMRI retinotopy mapping

	MEG-fMRI Comparisons
	Source localization accuracy
	Threshold for active vertices


	Results
	Localization of Visually Evoked Responses to Angular Retinotopic Stimuli
	Beamforming Source Reconstruction of Stimulus-Induced Oscillations
	Localization of Visually Evoked Responses to Eccentricity-Varying Stimuli
	Effect of Confining Eccentricity-Varying Stimuli to a Visual Field Quadrant
	Angular retinotopy with quarter-rings
	Eccentricity localization with quarter-rings


	Discussion
	Source Localization Accuracy of Visual Responses to Stimuli Varying by Angular Location
	Source Localization Accuracy of Visual Responses to Stimuli Varying by Eccentricity
	Limitations

	Conclusions
	Acknowledgments
	References

	A time-frequency analysis of the dynamics of cortical networks of sleep spindles from MEG-EEG recordings
	Introduction
	Materials and Methods
	Protocol, MEG Recordings, and Anatomical MRI
	Wavelet Analysis
	Frequency-Locking in the Sensors Space
	Statistically Significant Frequency-Locking
	Non-Linear Filtering of MEG Signals
	Imaging Cortical Synchrony

	Group-Level Synchronous Networks
	Power of Synchronous Sources
	Synchrony among Sources

	Results
	MEG Frequency-Locking during Spindles (SEs)
	Timing of MEG SEs during Spindles
	Central Frequency of SEs in Spindles
	Activation Maps
	Significant Regions of Cortical Synchrony during Sleep Spindles
	Short- and Long-Range Synchrony during Sleep Spindles
	Synchronous Networks during Spindles

	Discussion
	Validation of Ridges for the Study of Spindles
	Detectability of frequency-locking spindles
	MEG spindle dynamics

	New Insights from Functional Connectivity
	Sources of synchrony: connectivity
	Sources of synchrony: dynamics
	Implications for studies on the functional role of spindles


	Conclusion
	Acknowledgment
	Supplementary Material
	References

	Contributions and complexities from the use of in vivo animal models to improve understanding of human neuroimaging signals
	Introduction
	Investigating Neuroimaging Signals using Experimental Animal Models
	fMRI for Interrogating Neuroimaging Signals
	Optical Methods for Improved Resolution and Multimodal Data Acquisition
	Microscopy Methods for Cellular Level Resolution and Research into Mechanisms
	Monitoring Neuronal Activity
	Possibilities for Acute and Reliable Longer Term Data Acquisition
	Whole Brain Access

	Key Areas of Insight from in vivo Experimental Animal Research Studies
	Heterogeneous Distribution of fMRI Signals Sources Revealed by High Field Strength fMRI
	Characterization of Hemodynamic Impulse Response Functions (HIRF)
	Investigations of Neurovascular Coupling Mechanisms

	Interpreting Functional Brain Imaging Signals as Neuronal Activity
	Relating Signals in Time and Space
	Quantification, Baselines, and Neuroenergetics

	Impact of Disease and Modulatory Neurotransmitters Upon the Interpretation of Functional Brain Imaging Signals
	Neuroimaging in Neurodegenerative Disease
	Neurotransmitter and Neuropharmacological Modulations of Neurovascular Coupling

	Limitations of Animal Models for Neurovascular Research
	Future Research Challenges and Possibilities
	Summary
	Acknowledgments
	References

	The contribution of astrocytes to the regulation of cerebral blood flow
	Introduction
	Initial In Vitro Evidence Demonstrated that Astrocytes can Regulate Arteriole Diameter
	How is the Direction of Arteriole Diameter change Determined?
	Alternative Mechanisms of Astrocyte Control of CBF
	Do Astrocytes Play a Role in the Regulation of CBF In Vivo?
	Are Activity-Evoked Astrocyte Calcium Transients Widespread and Fast Enough to Contribute to Neurovascular Coupling?
	Are Subcellular Ca2+ Transients Important?
	Conclusions
	Acknowledgments
	References

	Analysis of Neural-BOLD Coupling Through Four Models of the Neural Metabolic Demand
	Introduction
	Neural/Astrocyte Coupling
	Source of BOLD Waveform Variability
	Nonlinearity of the BOLD Time Course

	Theoretical Analysis
	Analysis of Neural/BOLD Coupling Nonlinearities
	Specifying the Model Framework
	Nonlinearities

	Nonlinear Model of the Local Field Potential (LFP)
	The Neural Signal

	Neurometabolic Coupling
	LFP Coupling
	Slow Adaptive Coupling
	Neurotransmitter Input Coupling
	Rectified LFP Coupling


	Methods
	Modeling Results
	Discussion
	Conclusion
	Acknowledgments
	References

	Variability of the coupling of blood flow and oxygen metabolism responses in the brain: a problem for interpreting BOLD studies but potentially a new window on the underlying neural activity
	The Challenge of Interpreting the BOLD Response in a Quantitative Way
	The Complexity of the BOLD Response
	The Variability of Flow/Metabolism Coupling
	Neural Activity: What Costs Energy and What Drives Blood Flow?
	Does CBF/CMRO2 Coupling reflect the Balance of Inhibitory and Excitatory Neural Activity?
	Acknowledgments
	References

	Corrigendum: Variability of the coupling of blood flow and oxygen metabolism responses in the brain: a problem for interpreting BOLD studies but potentially a new window on the underlying neural activity
	Author Contributions

	Partitioning two components of BOLD activation suppression in flanker effects
	Introduction
	Methods
	Participants
	Equipment and Data Acquisition
	Stimulus
	Procedure

	Result
	The First Order Activation and ROI Selection
	Lateral Effects on BOLD Activation

	Discussion
	Acknowledgments
	References

	On tests of activation map dimensionality for fMRI-based studies of learning
	1. Introduction
	2. Methods
	3. Materials and Simulation
	3.1. Motivating Data Set
	3.2. Simulation Study
	3.2.1. Simulation Under the Null Hypothesis
	3.2.2. Simulation Under the Alternative Hypothesis

	3.3. Simulation Results
	3.3.1. Simulations Under the Null Hypothesis
	3.3.2. Simulations Under the Alternative Hypothesis


	4. Data Analysis of the Motivating Data Set
	4.1. Motor Learning Data Results

	5. Discussion
	5.1. Simulation Results
	5.2. General Discussion

	References

	The spatial structure of resting state connectivity stability on the scale of minutes
	Introduction
	Materials and Methods
	Data Acquisition
	Data Pre-Processing
	Brain Parcellation
	ROI Representative Time Series Extraction
	Connectivity Matrix Based on Whole Time Series: Stationary Analysis
	Selection of Connections of Interest for Sliding Window Analysis
	Whole-Brain, Within-Subject Connectivity Matrix Similarity vs. Window Duration
	Connection Stability Analysis
	Most stable/variable connections
	Permutation analysis for group-level connection identification


	Results
	Stationary Analyses Results
	Similarity of Whole-Brain Connectivity as a Function of Window Duration
	Histograms of Sliding-Window Correlations
	Most Variable Positive Connections
	Most Stable Positive Connections
	Negative Connections

	Discussion
	Most Stable Positive Connections
	Most Variable Positive Connections
	Negative Connections
	Stability of Within-Subject Connectivity Patterns vs. Window Duration
	Limitations of the Study

	Conclusions
	Acknowledgments
	Supplementary Material
	References

	Cortical connective field estimates from resting state fMRI activity
	Introduction
	Materials and Methods
	Participants
	Stimulus
	Resting State
	Data Acquisition
	Preprocessing
	Analysis
	Population receptive field mapping
	Connective field mapping
	Discriminability criterion
	Spatial analysis


	Results
	Deriving Connective Field Models Based on Resting State fMRI Data
	Spatial Aspects of Resting State Connective Field Map Estimation

	Discussion
	Connective Field Models can be Estimated Based on Resting State Data
	Agreement Between Resting State and Visual Field Mapping Based Connective Field Parameters
	Spatial Changes: Possible Mechanisms
	Limitations and Future Directions

	Concluding Remarks
	Acknowledgments
	Supplementary Material
	References

	Interpreting functional diffusion tensor imaging
	Section
	Acknowledgments
	References

	Do we measure gray matter activation with functional diffusion tensor imaging?
	References

	BackCover



