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Clustering is an efficient way to analyze single-cell RNA sequencing data. It is commonly used to identify cell types, which can help in understanding cell differentiation processes. However, different clustering results can be obtained from different single-cell clustering methods, sometimes including conflicting conclusions, and biologists will often fail to get the right clustering results and interpret the biological significance. The cluster ensemble strategy can be an effective solution for the problem. As the graph partitioning-based clustering methods are good at clustering single-cell, we developed Sc-GPE, a novel cluster ensemble method combining five single-cell graph partitioning-based clustering methods. The five methods are SNN-cliq, PhenoGraph, SC3, SSNN-Louvain, and MPGS-Louvain. In Sc-GPE, a consensus matrix is constructed based on the five clustering solutions by calculating the probability that the cell pairs are divided into the same cluster. It solved the problem in the hypergraph-based ensemble approach, including the different cluster labels that were assigned in the individual clustering method, and it was difficult to find the corresponding cluster labels across all methods. Then, to distinguish the different importance of each method in a clustering ensemble, a weighted consensus matrix was constructed by designing an importance score strategy. Finally, hierarchical clustering was performed on the weighted consensus matrix to cluster cells. To evaluate the performance, we compared Sc-GPE with the individual clustering methods and the state-of-the-art SAME-clustering on 12 single-cell RNA-seq datasets. The results show that Sc-GPE obtained the best average performance, and achieved the highest NMI and ARI value in five datasets.
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INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) data measures the gene expression level in individual cells instead of the average gene expression level in bulk RNA-seq cells (Stuart and Satija, 2019). So, it has advantages in accurately identifying the transcriptomic signatures for cell types (Grün et al., 2015). Along with the rapid development of scRNA-seq technologies, the cost of sequencing is reduced, and larger datasets are generated, carrying a higher error rate (Vitak et al., 2017). The development brought some computational challenges (Kiselev et al., 2019; Zhu et al., 2019a), for example, (1) high noise. The drop-out rate from reverse transcription failure and sequencing depth would reach 80% (Soneson and Robinson, 2018; Andrews and Hemberg, 2019); (2) high dimension. The dimension usually exceeds 10,000, making it difficult to measure the similarity of cell pairs; (3) larger sample size. The sample size increases from dozens to hundreds of thousands, which raises the time and complexity involved in identifying cell types (Grun, 2020).

Clustering is an efficient way of analyzing scRNA-seq data to identify novel cell types, and some single-cell clustering methods are proposed (Xu et al., 2019; Yip et al., 2019). However, it can be observed that the clustering results from various clustering methods are different in the number of clusters and cell assignments. Meanwhile, no method performs best on all scRNA-seq datasets. The reason is that the existing methods focus on a different step in identifying cell types, including data denoising (Wang et al., 2018), dimensionality reduction (Wang and Gu, 2018; Becht et al., 2019), similarity measurement (Kim et al., 2019) and clustering (Qi et al., 2019; Zhu et al., 2019b). Notably, the similarity measurement plays an important role in identifying cell types. Some graph partitioning-based clustering methods achieved better performance for the accurate similarity measurement. For example, SNN-cliq (Xu and Su, 2015) constructed a weighted shared nearest neighbor (SNN) graph; and clustered cells by partitioning the cliques on the graph. PhenoGraph (Levine et al., 2015) performed another weighted strategy to generate an SNN graph; and partitioned the graph using the Louvain community detection method. SSNN-Louvain (Zhu et al., 2020) integrated the structural information to construct a structural SNN graph; and clustered cells by modifying the Louvain community detection method. The cells are sorted as per their importance in the initialization step of Louvain community detection method. MPGS-Louvain (Zhu et al., 2019c) constructed a novel global and path-based similarity graph, and also partitioned it using a modified Louvain community detection method. Therefore, it is a challenge to enhance the accuracy of clustering by combining more efficient clustering information in multiple views.

An increasing number of research shows that the cluster ensemble method is a good idea, which integrates the information of each clustering method in a different view (Kuncheva and Vetrov, 2006; Vega-Pons and Ruiz-Shulcloper, 2011; Liu et al., 2019). ISSCE (Yu et al., 2016) designed a clustering ensemble strategy to cluster high dimensional data, including three steps: firstly, the incremental approach was implemented to select clustering members; secondly, the random subspace division was applied to handle high dimensional data; finally, the constraint propagation method was used to integrate prior knowledge. Recently, some cluster ensemble methods for scRNA-seq data have been proposed. SC3 (Kiselev et al., 2017) ensembled several clustering results from k-means algorithm into a consensus matrix; and clustered cells using hierarchical clustering (HC). SAFE-clustering (Yang et al., 2019) implemented a hypergraph-based strategy to ensemble CIDR, Seurat, tSNE, and SC3 to construct a consensus matrix. k-means was used to cluster cells. They also proposed the SAME-clustering (Huh et al., 2020) methods by using a consensus matrix-based strategy to ensemble the same four clustering methods and combining the Expectation-Maximization algorithm to cluster cells. We find that these cluster ensemble methods are based on hypergraph-based or voting-based integrated learning and do not consider the different importance of the individual clustering method.

According to the principle that the minority is subordinate to the majority, we assume that the more consistent the cluster labels predicted by different clustering methods are, the more accurate they will be. That is, the individual clustering method with a higher similarity to others would be more important in the cluster ensemble strategy. Base on this assumption, we propose a novel graph partitioning-based ensemble method for single-cell clustering (Sc-GPE), integrating SNN-cliq, PhenoGraph, SSNN-Louvain, MPGS-Louvain, and SC3 by a weighted voting-based method. To measure the importance of the individual clustering method, we design a scoring strategy based on the adjusted rand index (ARI) (Hubert and Arabie, 1985). Then we construct a weighted consensus matrix, the weight is a score of the importance of each method. Finally, HC is performed to cluster cells. To prove the performance, Sc-GPE is compared to the five original clustering methods and the state-of-the-art cluster ensemble method “SAME-clustering.” The results demonstrate that Sc-GPE outperforms other methods.



MATERIALS AND METHODS

According to the analysis above, we can find that integrating multiple clustering results would merge more information in different views. Moreover, different clustering methods play different roles in integration. Inspired by these ideas, we propose the Sc-GPE method by ensembling five graph partitioning-based clustering methods which are SNN-cliq, PhenoGraph, SSNN-Louvan, MPGS-Louvain, and SC3. The main reasons for choosing the five clustering methods are as follows: firstly, the first four clustering methods are graph partitioning-based methods, and the last one is the consensus matrix-based method. Their good performance provides the basis to improve the accuracy of the cluster ensemble. Secondly, in the five clustering methods, different strategies of similarity graph construction and graph partitioning have been implemented, respectively. They would enhance the generalization ability of clustering. Sc-GPE has three following advantages: (1) it does not need to deal with the problem of different cluster labels from different cluster methods, so it is suitable for unsupervised clustering lacking the true cluster labels; (2) It is easy to implement since no special parameters need to be adjusted; (3) The weighted strategy is comprehensible and effective.


Sc-GPE

In Sc-GPE, a gene expression matrix with m rows (genes) and n columns (cells) is the input of the five clustering methods. The five clustering results sets are achieved and ensembled into a consensus matrix with n rows (cells) and n columns (cells). Then, based on the consensus matrix, a weighted consensus matrix is constructed by measuring the importance of the individual clustering method. That is, the voting strategy in the original consensus matrix is replaced as a weighted voting strategy, and the weight is determined according to the similarity of the clustering result pairs. The overview of Sc-GPE method is shown in Figure 1.


[image: Figure 1]
FIGURE 1. The overview of the Sc-GPE method. (A) The gene expression matrix is input; (B) five individual clustering methods are performed to generate five clustering solutions; (C) the original consensus matrix is constructed; (D) the weighted consensus matrix is produced by measuring the importance of the individual clustering methods; (E) HC clustering is performed.


Cells are defined as set C = {c1, …, cn}, where n is the number of cells. Let k be the number of individual clustering methods, the clustering results set is defined as R= {R1, …, Rk}. So, in the k clustering methods, the i-th cell ci is assigned to k predicted cluster labels, denoted as R(ci) = {R1(ci), …, Rk(ci)}. The detail of Sc-GPE is described as follows.

Firstly, the original consensus matrix is constructed. The consensus matrix Ix, y is calculated based on Equations (1) and (2). In Equations (1) and (2), when the cell cx and cell cy are assigned into the same cluster in the l-th method, the value of [image: image] is equal to 1, otherwise is 0. The element of the consensus matrix presents the probability of cell pairs divided into the same cluster by each method. For example, when k is 5, the element of the consensus matrix Ix, y equals the sum of [image: image] in the five methods multiplying by the same weight 1/5. Because this represents the probability of the occurrence of cell pairs in the same cluster, this strategy does not need to solve the problem that each cell achieves different cluster labels from the individual clustering methods.

[image: image]
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where cx and cy are cell pairs in cells set C. k is the number of individual clustering methods. Rl is the clustering results in the l-th method.

Next, based on the assumption that the more consistent cluster labels predicted by all the clustering methods are more accurate, we design an importance score of the individual clustering methods. As ARI is a popular index for measuring the consensus of two clustering solutions, we use ARI to measure the importance of the individual clustering method. The importance score is defined as Equations (3) and (4). In Equations (3) and (4), ωl denotes the importance of the l-th clustering method in all k methods. rl represents the similarity between the l-th clustering method and other methods, which is calculated by averaging the ARI between predicted clusters in the l-th clustering method and the ones in each of the other methods.

[image: image]
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where ωl is the importance score of the l-th clustering method. rl is the average of ARI between predicted clusters from the l-th method and other methods, and k is the number of individual clustering methods.

Then, the weighted consensus matrix is constructed by introducing the importance score of the individual clustering method to the original consensus matrix. The weighted consensus matrix Ix, y' is defined as Equation (5). In Equation (5), the weighted consensus matrix Ix, y' multiplies the importance score ωl of the individual clustering methods, instead of the constant 1/k in the original consensus matrix.

[image: image]

Finally, the HC method is performed to cluster cells on the weighted consensus matrix.



Evaluation Indices

We use two popular indices to evaluate the performance of clustering methods, including Normalized Mutual Information (NMI) (Estévez et al., 2009) and Adjusted Rand Index (ARI) (Hubert and Arabie, 1985). The two criteria are statistic-based indicators, showing the consensus of the predicted labels and the true ones in different views. NMI demonstrates the difference by calculating Mutual Information and Entropy between the two clustering solutions, with the range of values from 0 to 1. ARI presents the probability that a data pair will appear in the same cluster in the true clusters and the predicted clusters, with the range of values from −1 to 1. The higher the NMI or ARI value obtained, the better performance the method has.

[image: image]

where I(P; Q) is the mutual information between P and Q. H(P) and H(Q) is the entropy of P and Q, respectively.

[image: image]

where n is the number of cells. In the contingency table resulting from the overlap between true clusters and predicted ones, nij is the element in the i-th row and the j-th column, ai is the summation of the elements in the i-th row, and bj is the summation of the elements in the j-th column.



Datasets

We collected 12 published scRNA-seq datasets. Generally, they serve as gold standard datasets with true labels. They are available from Gene Expression Omnibus (GEO) and European Bioinformatics Institute (EMBL-EBI), respectively. These datasets have been normalized to various units, such as Transcripts Per Million reads (TPM), Fragments Per Kilobase of transcript per Million fragments mapped (FPKM), and Reads Per Kilobase per Million mapped reads (RPKM), etc. The details of the datasets are presented in Table 1.


Table 1. The detail of scRNA-seq datasets.

[image: Table 1]




EXPERIMENTS AND RESULTS


Implementation of the Five Clustering Methods

For optimal performance, we performed the five clustering methods with the default parameters in the references. The details of the parameters are described as follows.

For SNN-cliq, the nearest neighbor parameter k is set to 3; the connectivity parameter of quasi-cliques r is set to 0.7; the threshold of the overlap of quasi-cliques m is set to 0.5.

For PhenoGraph, the surface marker expression data is normalized based on dividing by the maximum values. To construct the SNN graph, the nearest neighbor parameter k is set to 50.

For SC3, the log-transformed normalized log2(x+1) is performed.

For SSNN-Louvain and MPGS-Louvain, SIMLR is performed with the default parameters in the initial similarity measurement step. The width parameter of the Gaussian kernel function σ is set to 1.0, 1.25, 1.5, 1.75, and 2. The nearest neighbor parameter k is set to 10, 12, 14… 30. (σ, k) pair resulting in 55 Gaussian kernels. In SSNN-Louvain, to construct the structural SNN graph, the nearest neighbor parameter k is set to 0.1n (n is the number of nodes). In MPGS-Louvain, the path length l is set to 2 for high performance and low time complexity.

Furthermore, in SNN-cliq, PhenoGraph, SSNN-Louvain, and MPGS-Louvain, the number of categories can be automatically estimated by using quasi-clique partition or Louvain community detection, without a priori true categories.



Similarity Measurement of the Individual Clustering Methods

To analyze the difference of predicted results between the individual clustering methods, we calculate the ARI between the different clustering results and provide the consensus matrix heatmap. We select four scRNA-seq datasets: Ramskold, Yan, Yeo, and Liu, in which the Ramskold dataset is easy to partition while the Liu dataset is hard to cluster. The first three datasets have a smaller number of true categories from four to seven, and the latter dataset has the true categories 25. The heatmaps are shown in Figure 2.


[image: Figure 2]
FIGURE 2. The similarity of the individual clustering methods. (A) Liu dataset; (B) Ramskold dataset; (C) Yan dataset; (D) Yeo dataset.


From Figure 2, it is observed that some faint similarity exists among the solutions of the individual clustering methods, which is consistent with the results from Yang et al. (2019). In different datasets, the similarities between the results of the individual clustering methods vary. For example, SSNN-Louvain shows relatively high similarity with SC3 and PhenoGraph on the Liu dataset. MPGS-Louvain shows a higher similarity than other clustering methods to the Ramskold dataset. SC3 is observed in the high similar to PhenoGraph on the Yan dataset. SNN-cliq shows a low similarity with other methods on the Yeo dataset. The difference between SC3 and PhenoGraph varies greatly in different datasets. The similarity between SC3 and PhenoGraph is close to one on the Yan and Yeo datasets, but the opposite results are achieved on the Liu and Ramskold datasets.

Furthermore, we can observe big differences between SNN-cliq and SC3, PhenoGraph on the four datasets. Therefore, we can find that different clustering methods would capture information about scRNA-seq data from different perspectives.



Comparisons With the Individual Clustering Methods and SAME-Clustering

To test the performance of our proposed Sc-GPE method, we compare it with both the five clustering methods and the state-of-the-art clustering ensemble algorithm SAME-clustering on 12 scRNA-seq datasets in terms of NMI and ARI. The results are shown in Figure 3. SAME-Clustering achieves the NA value of NMI and ARI on the Pollen dataset, because the clustering member Seurat in SAME-Clustering failed to run on this dataset.


[image: Figure 3]
FIGURE 3. The performance of Sc-GPE, MPGS-Louvain, SSNN-Louvain, SSNN-cliq, PhenoGraph, and SC3. (A) NMI; (B) ARI.


From the experimental results, Sc-GPE achieves the highest average of NMI and ARI in all methods. Sc-GPE outperforms the six methods on five scRNA-seq datasets: Yan, Grover, Liu, Yeo, and Ramskold, while SC3 achieves the best performance on five scRNA-seq datasets: Biase, Deng, Pollen, Ting, and Goolam. The averages of NMI and ARI obtained by Sc-GPE are 6.92 and 17.79% higher than those of SC3, respectively. SAME-Clustering works best on three datasets: Biase, Darmanis, and Trapnell. The averages of NMI and ARI obtained by Sc-GPE are 21.84 and 20.19% higher than those of SAME-clustering, respectively. A large difference in clustering performance can be observed on the Grover, Liu, and Goolam datasets. The results show that Sc-GPE performs well and outperforms other methods.

Moreover, we compare the number of clusters in the seven methods, shown in Table 2. It can be observed that the number of predicted clusters has an obvious influence on the clustering solutions. For example, the clustering number of SNN-cliq and PhonoGraph is quite different from that of other methods, which is in consensus with their relatively poor performance on most datasets. SNN-cliq achieves the clustering numbers commonly more than the true categories except for the pollen dataset, PhonoGraph is just the opposite.


Table 2. The comparison of the number of clusters from seven methods.

[image: Table 2]

To further demonstrate the performance of Sc-GPE, we provide a box plot of the seven methods for 12 datasets, measured by NMI and ARI, shown in Figure 4. The box plot clearly shows that Sc-GPE outperforms the other six methods. The worse ARI value of 0.249 in Sc-GPE is from the Trapnell dataset, where some cells are misallocated resulting from two poor clustering solutions. SNN-cliq achieves the worst results in terms of ARI, and PhenoGraph performs worst on the NMI.


[image: Figure 4]
FIGURE 4. The box plot of performance for the seven methods. (A) NMI; (B) ARI.





CONCLUSIONS

Currently, various single-cell clustering algorithms have been proposed with the advantage of accurately representing cell heterogeneity. However, there is a problem that the predicted cluster results from different clustering methods are quite different, which would limit the generalization capabilities. Combining the information from different cluster results would be a good resolution to improve the performance of clustering. So, we propose a novel cluster ensemble method Sc-GPE, which integrating five clustering methods: SNN-cliq, PhenoGraph, SSNN-Louvain, MPGS-Louvain, and SC3.

In Sc-GPE, a consensus matrix-based ensemble model is performed. It is a good statistics approach that can solve the problem of the different cluster labels generated in the individual clustering methods making it difficult to determine the correspondence cluster labels across all methods, which usually exists in the hypergraph-based cluster ensemble method. Furthermore, a weighted strategy is designed to measure the importance of individual clustering methods according to the similarity with other methods. A weighted consensus matrix is constructed based on the weighted strategy, which can distinguish the role of the individual clustering methods.

Sc-GPE provides close-to-the-best clustering solutions by combing the clustering methods that perform various similarity measurements and graph partitioning algorithms. The experimental results from twelve scRNA-seq datasets show that Sc-GPE outperforms the five individual clustering methods and state-of-the-art SAME-clustering method. However, the relatively small number of individual clustering methods may provide insufficient information and limit the performance of the Sc-GPE, and how to choose more optimal individual clustering methods should be researched in future work.
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Identifying personalized driver genes is essential for discovering critical biomarkers and developing effective personalized therapies of cancers. However, few methods consider weights for different types of mutations and efficiently distinguish driver genes over a larger number of passenger genes. We propose MinNetRank (Minimum used for Network-based Ranking), a new method for prioritizing cancer genes that sets weights for different types of mutations, considers the incoming and outgoing degree of interaction network simultaneously, and uses minimum strategy to integrate multi-omics data. MinNetRank prioritizes cancer genes among multi-omics data for each sample. The sample-specific rankings of genes are then integrated into a population-level ranking. When evaluating the accuracy and robustness of prioritizing driver genes, our method almost always significantly outperforms other methods in terms of precision, F1 score, and partial area under the curve (AUC) on six cancer datasets. Importantly, MinNetRank is efficient in discovering novel driver genes. SP1 is selected as a candidate driver gene only by our method (ranked top three), and SP1 RNA and protein differential expression between tumor and normal samples are statistically significant in liver hepatocellular carcinoma. The top seven genes stratify patients into two subtypes exhibiting statistically significant survival differences in five cancer types. These top seven genes are associated with overall survival, as illustrated by previous researchers. MinNetRank can be very useful for identifying cancer driver genes, and these biologically relevant marker genes are associated with clinical outcome. The R package of MinNetRank is available at https://github.com/weitinging/MinNetRank.
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INTRODUCTION

Rapid technological advances in high-throughput sequencing have driven the development of omics field. Omics data types include genomics, transcriptomics, proteomics, epigenomics, and metabolomics (Hasin et al., 2017). However, a single type of “omics” only provides limited insights into the biological mechanisms of diseases. Additionally, the different omics data events are somewhat interdependent. An integrative study of multi-omics data contributes to a holistic understanding of the molecular function (Sun and Hu, 2016). An essential question in cancer genomics is distinguishing driver genes, which are causally implicated in oncogenesis, from biologically neutral passenger genes that are immaterial to neoplasia (Greenman et al., 2007). Passenger mutations can become driver mutations (and vice versa) under changing environmental conditions and selection pressures, increasing the complexity of intratumor heterogeneity (Yap et al., 2012). Accumulating evidence suggests that identifying personalized driver genes is essential for the development of effective personalized therapies and realizing the goals of precision medicine (Dagogo-Jack and Shaw, 2018). A critical but challenging step is to incorporate different omics data in a meaningful and efficient way to discover cancer driver genes and elucidate potential causative changes of cancer (Huang et al., 2017). The main approaches for distinguishing driver genes from passenger genes can be divided into frequency-based methods and network-based approaches.

Frequency-based methods estimate the background mutation rate (BMR) representing the rate of random passenger mutations and identify driver genes that harbor significantly more somatic mutations than BMR (Ding et al., 2008; Pon and Marra, 2015). However, accurately estimating BMR is difficult because of the variability among cancer types, among samples of the same cancer type, and between genomes (Pon and Marra, 2015). Subsequent frequency-based methods, such as MuSiC and MutSigCV, have been developed to correct for one or more of these factors (Dees et al., 2012; Lawrence et al., 2013). Somatic mutations are characterized by a small number of frequently mutated genes and many infrequently mutated genes. Moreover, more than 99.9% of the somatic mutations in tumors are passengers (Vogelstein et al., 2013). It is challenging to identify infrequent or rare driver genes by methods based only on mutation frequency.

Network-based approaches have emerged as promising and powerful methods to detect low-frequency and high-frequency mutated driver genes due to their ability to model gene interactions. For network-based approaches, nodes representing genes and edges are links between two genes if there is an interaction between them (Huang et al., 2017). Network-based methods have been successfully applied to many biomedical fields, such as the discovery of mutation subnetwork (Vandin et al., 2011), prediction of drug–target interaction, and cancer gene prioritization (Bashashati et al., 2012; Chen et al., 2012; Yu et al., 2013). HotNet2 uses a network diffusion model to simultaneously assess the frequency of somatic mutation and the local topology of the interaction network and detects significantly mutated subnetworks (Leiserson et al., 2015). Mutations for Functional Impact on Network Neighbors (MUFFIN) is a method for prioritizing cancer genes accounting for mutation frequency of genes and their direct neighbors in functional network (Cho et al., 2016). Both HotNet2 and MUFFIN use mutation data only without integrating other omics data. DawnRank is a single patient approach to rank potential driver genes based on their impact on downstream differential expression genes in the interaction network (Hou and Ma, 2014). NetICS predicts mediator genes affected by proximal upstream-located aberrant genes and proximal downstream-located differentially expressed genes (Dimitrakopoulos et al., 2018). Both DawnRank and NetICS consider only incoming degree or outgoing degree of interaction network for single omics. For example, DawnRank only considers incoming degree for expression data. It is desirable to use incoming and outgoing degree simultaneously. Driver_IRW (Driver genes discovery with Improved Random Walk method) assigns different transition probabilities for different genes of the interaction network (Wei et al., 2020). DeepDriver predicts cancer driver genes based on mutation-based features and gene similarity networks using deep convolutional neural networks (Luo et al., 2019). None of these methods consider the different weights for the different types of mutations; however, the weighting method is essential for sample-specific study. Furthermore, none of these methods investigate the relationship between the top rankings of genes and overall survival. Therefore, we develop a more meaningful and efficient method that considers different weight coefficients for the various types of mutations, simultaneously considers the incoming and outgoing degree of interaction network for single omics, and uses minimum strategy to integrate multi-omics data.

We present a new method called MinNetRank that uses minimum strategy among multi-omics data to prioritize cancer genes (Figure 1). The main steps of MinNetRank include (1) single-omics data analysis: calculating mutation relevance scores and expression relevance scores of genes for each sample using network diffusion based on incoming and outgoing degree. We further consider different weight coefficients for the different types of mutations and propose Weighted_MinNetRank. (2) The integration of multi-omics data: calculating the minimum value of mutation relevance score and expression relevance score as an integrated score for each gene in each sample. A higher minimum value reflects a higher mutation relevance score and expression relevance score simultaneously; (3) prioritizing driver genes: aggregating the sample-specific and integrated-score-based rankings of genes into a robust population-level gene ranking.


[image: image]

FIGURE 1. Overview of MinNetRank workflow. MinNetRank integrates mutation data and expression data into the interaction network; MinNetRank utilizes minimum strategy to select the candidate driver genes with both high mutation relevance score and high expression relevance score; the sample-specific and integrated-score-based rankings of genes are integrated into the overall rankings. We access the performance in predicting known cancer genes, discovering personalized driver genes, and survival risk stratification of tumor samples.


We apply Weighted_MinNetRank and MinNetRank to analyze five The Cancer Genome Atlas (TCGA) datasets (hepatocellular carcinoma, stomach adenocarcinoma, bladder urothelial carcinoma, lung adenocarcinoma, and skin cutaneous melanoma) and one International Cancer Genome Consortium (ICGC) dataset (hepatocellular carcinoma). We select the top 50 genes of population-level ranking as candidate driver genes. We systematically examine the performance of Weighted_MinNetRank and MinNetRank from three aspects. Firstly, Weighted_MinNetRank and MinNetRank outperform other methods [Mean, Maximum, DawnRank, NetICS, and a commonly used frequency-based method (Freq)] in terms of precision, F1 score, and partial area under the curve (AUC) value of selecting cancer driver genes. Secondly, Weighted_MinNetRank and MinNetRank detect rare and novel candidate driver genes (e.g., SP1 in hepatocellular carcinoma). Finally, the top seven genes can be used as prognostic biomarkers for risk stratification. The survival difference between two subtypes (low-risk and high-risk groups) is statistically significant in all six datasets.



RESULTS

We propose a new method (MinNetRank) that uses minimum strategy among multi-omics data to prioritize cancer genes. For comparison, we also add the performance of mean (Mean) and maximum (Maximum) to integrate the mutation data and expression data. All mutations have the same weight for MinNetRank. We further consider different weight coefficients for the different types of mutations (Weighted_MinNetRank). In this study, Weighted_MinNetRank and MinNetRank are compared with other five methods [Mean, Maximum, DawnRank (Hou and Ma, 2014), NetICS (Dimitrakopoulos et al., 2018), and Freq] on five types of cancer (liver hepatocellular carcinoma, stomach adenocarcinoma, lung adenocarcinoma, bladder urothelial carcinoma, and skin cutaneous melanoma). Freq is a simple and common method based only on mutation frequency, which compares the mutation frequency of genes in tumor patient (Dimitrakopoulos et al., 2018; Guo et al., 2018). Weighted_MinNetRank and MinNetRank are an efficient and easy-to-use network-based method for cancer genes discovery by integrating multi-omics data, as shown in the subsequent results.


Overview of MinNetRank

The schematic in Figure 1 illustrates the three-step procedure of our new method MinNetRank. MinNetRank requires three input files: gene mutations, gene expression for tumor and normal samples, and the interaction network.

Step 1: calculating mutation relevance score and expression relevance score using RWR (Random Walker with Restart) algorithm. The n×m matrix SM is the gene mutation status for each sample, where n is the number of genes, and m is the number of samples. [image: image] if gene i is mutated in sample k and [image: image] otherwise. We further consider different weight coefficients for the different types of mutations and supplement a new method (Weighted_MinNetRank). We normalize each column of SM by SM/colSum(SM). We define the n×m mutation relevance score matrix WM as multiplication between diffused matrix D and SM:

[image: image]

The Dij reflects the connectivity between gene i and gene j, and [image: image] reflects the mutation status of gene i in sample k. The product [image: image] is gene i’s mutation relevance score in sample k, defined as the proximity of gene i to mutation genes.

Similarly, the n×m matrix SE is RNA differential expression score (Absolute value of Log2 Fold-Change, ALFC) for each sample. We define the expression relevance score matrix WE as,

[image: image]

Step 2: minimum value of mutation relevance score and expression relevance score. To integrate multi-omics data (gene mutation and expression data), the mutation relevance score and expression relevance score are combined to produce a gene min-score for each sample. The min-score is the minimum value of [image: image] and [image: image]:

[image: image]

pmin is R function and returns the minimum of the corresponding elements of the two input vectors. Wik is the minimum value of [image: image] and [image: image], where n is the number of genes, and m is the number of samples. The high score of Wik means that gene i is proximal to many mutation genes and differentially expressed genes for each k. The minimum value is a meaningful and efficient way to integrate multi-omics data for the following two reasons:

Firstly, the minimum strategy reduces extreme values that may be potential outliers in highly skewed distributions. The probability distribution of [image: image] (the mutation relevance scores for genes in sample k) and [image: image] (the expression relevance scores for genes in sample k) is a positively skewed distribution. This means that some genes have extremely high scores. These high scores may be due to the technical noise of high-throughput sequencing and the incomplete interaction network. For example, as shown in Figure 2, sample TCGA-BC-A10X has three mutated genes in TCGA-LIHC, and only one gene (OR2C3) of these is in the interaction network. The OR2C3 mutation relevance score in TCGA-BC-A10X is evidently high ([image: image]OR2C3 and k = TCGA-BC-A10X) and is ranked 1st. Meanwhile, the OR2C3 expression relevance score in TCGA-BC-A10X is 3.24-06 and is ranked 8,221st. Henceforth, the high mutation relevance score needs to be cautiously processed. Lastly, the min-score of OR2C3 mutation relevance score and expression relevance score is ranked 1,943rd. OR2C3 is an olfactory receptor protein and probably is not a potential driver gene (Malnic et al., 2004; Riessland et al., 2017).
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FIGURE 2. The heatmap of rankings of mutation relevance scores, expression relevance scores, and min-scores. Each row represents a gene. Ranking differences are shown in different colors. Red means high ranking (high score), and blue means low ranking. The rankings of genes are ordered by the rankings of min-scores. The left is the enlarged drawing of the top 50 genes with both high mutation relevance score and high expression relevance score. OR2C3 has high mutation relevance score (red) and low expression relevance score (blue). The ranking of OR2C3 for mutation relevance score, expression relevance score, and min-score in TCGA-BC-A10X is 1, 8,821, and 1,943, respectively.


Secondly, the minimum (“double high”) strategy is necessary to prioritize cancer genes having a higher biological relevance. If one gene has a relatively high mutation relevance score but low expression relevance score (such as OR2C3 in TCGA-BC-A10X), this gene may not be a potential driver gene since differential gene expression is the downstream events of DNA mutation (Sager, 1997). In the other case, the SI expression relevance score in TCGA-DD-AAE2 is ranked 8th ([image: image]SI, and k = TCGA-DD-AAE2), and the mutation relevance score is ranked last. Only MGAM interacts with SI in the interaction network, and TCGA-DD-AAE2 has no SI or MGAM mutation. We hope the candidate driver genes have a high mutation relevance score and high expression relevance score.

MinNetRank used a minimum strategy to integrate multi-omics data (mutation data and expression data). We further investigated which data have the greatest effect on the minimum score. We calculated the proportion of mutation relevance score and expression relevance score in minimum scores for the top 50 candidate cancer genes. The proportion of mutation relevance score was 0.657 in all six datasets, and expression relevance score was 0.347. Mutation relevance score affected the minimum score more.

Step 3: integrating sample-specific rankings of genes into a population-level ranking. We transform the min-scores into rankings, since min-scores indicate the relative importance of each sample’s genes. To integrate the sample-specific rankings of genes into a robust population-level ranking, we calculate the sum of per-sample ranking. Each step of MinNetRank is based on single sample analysis, such as using the per-sample network diffusion, calculating the minimum value of mutation relevance score and expression relevance score for each gene in each sample, and transforming min-scores into rankings for each sample. We calculate the sum of per-sample ranking as the population-level ranking.

To perform a systematic comparison of seven methods (Weighted_MinNetRank, MinNetRank, Mean, Maximum, DawnRank, NetICS, and Freq), the 576 genes annotated in cancer gene census (CGC) are used as the gold standard cancer driver gene set, and the genes not in CGC are the negative set. The evaluation metrics (precision, F1 score, and partial AUC value) are based on the top 50 genes of six different datasets (five TCGA datasets and one ICGC dataset). The five TCGA datasets are regarding hepatocellular carcinoma (TCGA-LIHC), stomach adenocarcinoma (TCGA-STAD), bladder urothelial carcinoma (TCGA-BLCA), lung adenocarcinoma (TCGA-LUAD), and skin cutaneous melanoma (TCGA-SKCM), respectively. The one ICGC dataset includes hepatocellular carcinoma data from LIRI-JP (Liver Cancer–RIKEN, JP) project (LIRI-LIHC) (Fa et al., 2019). Skin cutaneous melanoma, lung adenocarcinoma, bladder urothelial carcinoma, and stomach adenocarcinoma have a high mutation burden (Martincorena and Campbell, 2015), and LIHC has two different datasets. Both are common cancer types and pose increasing public concerns. The detailed descriptions of six datasets are provided in Table 1. The somatic mutations include non-synonymous simple nucleotide variation (SNV) and insertions and deletions (InDels) in coding regions.


TABLE 1. Six datasets used in MinNetRank.

[image: Table 1]


MinNetRank Accurately Predicted Cancer Gene

In general, considering the weights for the different types of mutations (Weighted_MinNetRank) had a better performance than other six methods (MinNetRank, Mean, Maximum, NetICS, DawnRank, and Freq) in all six cancer datasets (TCGA-LIHC, TCGA-STAD, TCGA-BLCA, TCGA-LUAD, TCGA-SKCM, and LIRI-LIHC). Weighting for the different types of mutations was essential for a personalized analysis. As shown in Figure 3 (for datasets TCGA-LIHC and LIRI-LIHC), Supplementary Figure 1 (for datasets TCGA-STAD and TCGA-BLCA), and Supplementary Figure 2 (for datasets TCGA-LUAD and TCGA-SKCM), Weighted_MinNetRank and MinNetRank achieved a higher precision, F1 score, and AUC in all six datasets, namely, Weighted_MinNetRank and MinNetRank could rank the known gold standard cancer driver genes higher. The AUC of Freq was not calculated as the mutation frequency for some genes were the same.
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FIGURE 3. Comparison of precision, F1 score, and AUC for different methods in TCGA-LIHC and LIRI-LIHC datasets. (A) The X-axis is the top 50 candidate cancer genes, and the Y-axis is the precision according to known cancer genes (in CGC). (B) The X-axis is the top 50 candidate cancer genes, and the Y-axis is the F1 score according to known cancer genes. (C) The ROC curve of the top 50 candidate cancer genes.




MinNetRank Robustly Predicted Cancer Gene

The Weighted_MinNetRank and MinNetRank also had the advantage of obtaining robust and stable results using the subset of samples with different sample sizes. We calculated the mean and standard deviation (SD) of the precision values P (mean precision of the top 50 genes), F1 scores, and partial AUC values after 10 runs. The precision value was proportional to the area under the precision curve (Figure 3A). All six methods used the same subset of samples, and the subset of samples was randomly selected from all samples by R. Using the same subset of samples, we compared the results of six methods. The mean of the precision, F1 score, and partial AUC for Weighted_MinNetRank and MinNetRank was higher than other methods, and the SD was smaller [Figure 4 (for datasets TCGA-LIHC and LIRI-LIHC), Supplementary Figure 3 (for datasets TCGA-STAD and TCGA-BLCA), and Supplementary Figure 4 (for datasets TCGA-LUAD and TCGA-SKCM)]. The performance in all six datasets and different sample sizes showed the robustness of our method. Furthermore, Weighted_MinNetRank and MinNetRank still performed well, even with a smaller number of samples.
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FIGURE 4. Robustness of results using the subset of samples in TCGA-LIHC and LIRI-LIHC datasets. (A) The X-axis is the subset of samples, and the Y-axis is the mean and SD of the precision values after 10 runs using the subset of samples. (B) The X-axis is the subset of samples, and the Y-axis is the mean and SD of the F1 score after 10 runs using the subset of samples. (C) The X-axis is the subset of samples, and the Y-axis is the mean and SD of the partial AUC after 10 runs using the subset of samples.


In order to evaluate the contribution of each part of Weighted_MinNetRank and MinNetRank (calculating the relevance score using both incoming and outgoing degree of the interaction network for single omics, using minimum strategy to integrate multi-omics data, and the different weighted methods), we calculated the precision, F1 score, and partial AUC value of the top 50 candidate cancer genes. We also added network metrics (degree centrality, betweenness centrality, and the mean of degree and betweenness centrality). We needed to calculate the baselines of the network only once, and the results were the same for all datasets. As shown in Table 2, Weighted_MinNetRank had a better performance than all other methods in terms of precision, F1 score, and partial AUC in all six datasets. For weighted methods, Weighted_MinNetRank_PrCID had better performance than PrDSM weighted methods (Weighted_MinNetRank_PrDSM and Weighted_MinNetRank_Filter_PrDSM) in all datasets. There was no significant difference between Weighted_MinNetRank_PrCID and Weighted_MinNetRank. There were some possible reasons for this phenomenon. Firstly, there were many synonymous mutations in all datasets (32,381 synonymous mutations on average); however, the percentage of deleterious synonymous mutations was relatively small (9.76% in the study of PrDSM) (Cheng et al., 2019). Many benign synonymous mutations increased noise. We may need to pre-process the scores of synonymous mutations (Weighted_MinNetRank_Filter_PrDSM performed better than Weighted_MinNetRank_PrDSM). Secondly, the number of missense mutations was the largest, and the number of frameshift mutations was small, so Weighted_MinNetRank weighting for missense mutations had almost the same performance as Weighted_MinNetRank_PrCID weighting for missense mutations and frameshift mutations. LIRI-LIHC dataset did not provide the position information of frameshift mutations in cDNA, so Weighted_MinNetRank_PrCID was not available for LIRI-LIHC dataset.


TABLE 2. The performance of each part of MinNetRank according to the precision, F1 score, and partial AUC value.
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MinNetRank Discovered Rare and Novel Driver Genes

In addition to obtaining the accurate and robust results, one of the main advantages of MinNetRank was to discover rare and personalized cancer genes. Personalized driver genes could contribute to the development of personalized medicine.

A gene was considered as a rare gene if the gene was mutated in a small number of samples (<5%). For the top 50 candidate driver genes of MinNetRank, the numbers of rare genes in TCGA-LIHC, LIRI-LIHC, TCGA-STAD, TCGA-BLCA, TCGA-LUAD, and TCGA-SKCM were 48 (96%), 48 (96%), 42 (84%), 44 (88%), 48 (96%), and 42 (84%), respectively. Among rare genes, 28 genes (58.33%), 27 genes (56.25%), 27 genes (64.28%), 27 genes (61.36%), 27 genes (56.25%), and 27 genes (64.28%) have not been classified as known cancer gene in TCGA-LIHC, LIRI-LIHC, TCGA-STAD, TCGA-BLCA, TCGA-LUAD, and TCGA-SKCM, respectively. We further investigated the rare genes in CGC (gold standard cancer driver gene set), and there were 98.00, 97.95, 85.05, 90.79, 91.73, and 82.11% rare genes in TCGA-LIHC, LIRI-LIHC, TCGA-STAD, TCGA-BLCA, TCGA-LUAD, and TCGA-SKCM, respectively. The proportion of rare genes in CGC was high, and the proportion of rare genes for all CGC known cancer genes was approximately the same as the proportion of rare genes for the top 50 candidate driver genes.

MinNetRank also identified novel cancer driver genes that have not been classified as drivers by other methods. Taking an example for SP1, SP1 was considered as a cancer gene only by MinNetRank and was ranked 3rd, 3rd, 3rd, 2nd, 3rd,and 1st in TCGA-LIHC, LIRI-LIHC, TCGA-STAD, TCGA-BLCA, TCGA-LUAD, and TCGA-SKCM, respectively (Supplementary Table 1). The mutation frequency of SP1 was 8.26 × 10–3, 1.60 × 10–2, 2.43 × 10–2, 8.85 × 10–3, and 1.07 × 10–2 (ranked 2903rd, 6393rd, 1599th, 7892nd,and 10330th in terms of the mutation frequency) in TCGA-LIHC, TCGA-STAD, TCGA-BLCA, TCGA-LUAD, and TCGA-SKCM, respectively. SP1 was a zinc finger transcription factor and was reported to be associated with cell differentiation, proliferation, and apoptosis (Beishline and Azizkhan-Clifford, 2015; Safe et al., 2018). Using pathway enrichment analysis, we found that SP1 was involved in multiple pathways enriched by known cancer genes, such as the transforming growth factor (TGF)-beta signaling pathway and choline metabolism in cancer and breast cancer.

As shown in Figure 5 (for datasets TCGA-LIHC and LIRI-LIHC), Supplementary Figure 5 (for datasets TCGA-STAD and TCGA-BLCA), and Supplementary Figure 6 (for datasets TCGA-LUAD and TCGA-SKCM), SP1 RNA expression of tumor samples was statistically higher than normal samples in TCGA-LIHC (Wilcoxon Rank-Sum, P = 6.85e-13), LIRI-LIHC (Wilcoxon Rank-Sum, P = 2.2e-16), and TCGA-STAD (Wilcoxon Rank-Sum, P = 5.89e-10). The differential expression was not significant in TCGA-BLCA (Wilcoxon Rank-Sum, P = 0.17), TCGA-LUAD (Wilcoxon Rank-Sum, P = 0.95), and TCGA-SKCM (Wilcoxon Rank-Sum, P = 0.21). We further validated SP1 expression on the protein level, and the differential protein expression between tumor and normal samples was significant in LIHC (Wilcoxon Signed Rank test, P = 4.14e-13). Only LIHC had protein expression data from CPTAC (The National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium) dataset. These results suggested that SP1 can be the biomarker of hepatocellular carcinoma.


[image: image]

FIGURE 5. The SP1 differential expression between tumor and normal samples. From left to right: SP1 RNA differential expression in TCGA-LIHC dataset, SP1 RNA differential expression in LIRI-LIHC dataset, and protein differential expression for LIHC from CPTAC dataset.




Top Genes of MinNetRank Were Associated With Clinical Outcome

For each dataset, we selected seven genes with top ranking and high SD as biomarkers for tumor stratification (mentioned in the section “Materials and Methods”). We performed unsupervised K-means clustering using obtained biomarkers to assign each patient into either high-risk or low-risk groups. The Kaplan–Meier survival curves of the two groups are well separated, and the log-rank P-values of the survival difference between two groups are 9.21e-04, 1.23e-05, 2.42e-03, 3.75e-03, 9.21e-04, and 4.19e-02 for TCGA-LIHC, LIRI-LIHC, TCGA-STAD, TCGA-BLCA, TCGA-LUAD, and TCGA-SKCM, respectively [Figure 6 (for datasets TCGA-LIHC and LIRI-LIHC), Supplementary Figure 7 (for datasets TCGA-STAD and TCGA-BLCA), and Supplementary Figure 8 (for datasets TCGA-LUAD and TCGA-SKCM)].


[image: image]

FIGURE 6. The survival difference between the high-risk group and the low-risk group.


In the two liver cancer datasets (TCGA-LIHC and LIRI-LIHC), there were six shared genes (CTNNB1, JUN, PIK3R1, RAC1, SRC, and TP53). All these genes used for tumor stratification are biologically relevant. CTNNB1 regulated cell growth and adhesion and was predictive for recurrence in aggressive fibromatosis (van Broekhoven et al., 2015). JUN (AP-1 Transcription Factor Subunit) participated in regulating a diverse array of cellular processes, including proliferation, apoptosis, differentiation, and survival (Trop-Steinberg and Azar, 2017). PIK3R1 was a prognostic biomarker for breast cancer (Cizkova et al., 2013). RAC1 regulated a wide range of cellular events, including the control of cell growth and the activation of protein kinases (Lou et al., 2018). SRC was prognostic relevant to colon cancer and rectal cancer (Martínez-Pérez et al., 2017). TP53 was one of the most frequent alterations and potential prognostic markers in human cancers (Olivier et al., 2010). GRB2 was the special biomarker for TCGA-LIHC, and MAPK14 was for LIRI-LIHC. GRB2 was evaluated as a prognostic marker for lung adenocarcinoma (Toki et al., 2016). MAPK14 was a member of the MAP kinase family. MAPK pathway regulated cell proliferation, differentiation, and development (Fang and Richardson, 2005). The seven biomarkers are the same in TCGA-STAD and TCGA-BLCA (CTNNB1, GRB2, JUN, RAC1, SP1, SRC, and TP53). These seven genes were reported to be related to prognosis (Hang et al., 2016). For TCGA-LUAD and TCGA-SKCM, there were six shared genes (CTNNB1, JUN, RAC1, SRC, TP53, and GRB2). GNB1 was the special biomarker for TCGA-LUAD, and FYN was for TCGA-SKCM. FYN was tyrosine kinases and was an essential molecule in cancer pathogenesis and drug resistance (Elias and Ditzel, 2015). In summary, the top seven genes were associated with clinical outcome and were biologically relevant in all six datasets. These results suggested that MinNetRank could also be a promising method for tumor stratification.

NetICS and DawnRank did not investigate the prognostic value of top genes in cancer. To evaluate the performance of predicting the clinical outcome for different methods, we used the same criterion to choose the top seven genes for each method in six datasets. Compared with NetICS and DawnRank, only Weighted_MinNetRank and MinNetRank obtained a statistically significant survival risk difference between the high-risk and low-risk groups in all six datasets (Supplementary Table 2).



DISCUSSION

Extensive genetic heterogeneity exists between tumors of different tissues and between individuals with the same tumor type (Burrell et al., 2013). The personalized mutation profile is the key to advance personalized disease diagnosis and therapy in the clinic (Sheng et al., 2015; Olivier et al., 2019). However, few methods could efficiently prioritize driver genes over many passenger genes in a single patient. The critical challenge facing today is to predict rare and even personalized driver genes with higher accuracy. We develop MinNetRank, an efficient and easy-to-use method that integrates the mutation data, expression data and interaction network to prioritize each sample’s driver genes. Weighted_MinNetRank further considers the different weights for the different types of mutations.

Weighted_MinNetRank and MinNetRank achieve a higher precision, F1 score, and partial AUC value of prioritizing cancer genes in five TCGA datasets (TCGA-LIHC, TCGA-STAD, TCGA-BLCA, TCGA-LUAD, and TCGA-SKCM). We also utilize an additional liver cancer cohort (LIRI-LIHC) to validate the result of TCGA-LIHC. Better performance in all datasets demonstrates the proposed approach’s robustness (Figure 3 and Table 2). We use top candidate driver genes for pathway enrichment analysis and find some signaling pathways previously studied in cancer, such as the Ras signaling pathway and ErbB signaling pathway. Furthermore, we first investigate the relationship between the top seven genes and clinical outcome and find the statistically significant survival difference between the low-risk and high-risk groups in all six datasets only for Weighted_MinNetRank and MinNetRank. The top seven genes are biologically relevant and could be used as biomarkers for survival risk stratification. Accurate outcome prediction is important for personalized cancer therapies in clinical practice, for instance, a low-risk patient can be advised to select a less radical therapy.

We demonstrate that MinNetRank can discover rare and novel cancer genes. Personalized driver genes could contribute to developing personalized diagnosis and therapy. SP1 is considered a candidate driver gene only by MinNetRank and is ranked top three in all six datasets. The RNA expression of SP1 is significantly higher in LIHC tumor samples (TCGA-LIHC and LIRI-LIHC datasets) and STAD tumor samples (TCGA-STAD dataset). The differential expression is further validated on the protein level in LIHC. SP1 is the biomarker for tumor stratification in TCGA-STAD and TCGA-BLCA, and SP1 RNA expression is associated with survival outcome in TCGA-STAD dataset (Cox proportional hazards model, P = 0.02). These results are in accordance with the reports in literatures (Shi and Zhang, 2019). Targeting SP1 is highly promising strategy in cancer chemotherapy (Vizcaíno et al., 2015).

Using both the incoming and outgoing degree of interaction network, the minimum strategy and weighting for the different types of mutations all contribute to the accuracy and robustness of prioritizing driver genes. Known cancer genes have a higher incoming and outgoing degree, and simultaneously considering incoming and outgoing degree is rational. MinNetRank adopts a minimum strategy to prioritize cancer genes with a high mutation relevance score and high expression relevance score. These enable our method to select more relevant genes and avoid the potential outliers, which are common in high-throughput sequencing technologies due to the positively skewed distributions of mutation and expression relevance scores. Weighting for different types of mutations is essential for sample-specific study and finding personalized driver genes.

There are some limitations to MinNetRank and similar methods. Firstly, MinNetRank largely depends on the interaction network. Although many interaction sources exist, such as experiment, co-expression, and text mining, the interaction network is still incomplete. If the mutation gene or differentially expressed gene is not in the interaction network, this gene would not be used for network diffusion and not be as a candidate cancer gene. Secondly, MinNetRank uses paired tumor and normal samples to calculate ALFC; however, TCGA datasets have a limited number of normal samples with expression data. Thirdly, MinNetRank only integrates mutation data and expression data into the interaction network. Besides mutation data, other events, such as miRNA differential expression, epigenetic changes, copy number variation, and structure variation, could also contribute to cancer progression. Differential expression data, including RNA expression data and protein expression data, could be combined. We may need to improve MinNetRank from two aspects in the future. On one hand, we could integrate the gene co-expression network with the interaction networks (Hou et al., 2019; Wei et al., 2020). We also need to incorporate additional types of omics data (genomics, transcriptomics, proteomics, epigenomics, and images). On the other hand, Weighted_MinNetRank only considers mutations in coding region. We may need to incorporate non-coding mutations. We also need to give weight coefficients for all mutations through multiple techniques.

Integrating different types of omics data is often used to better elucidate the molecular function. However, sound study designs and solid analytical strategies are needed to advance human disease research further. For example, the mean precision of the top 50 cancer genes is 0.61 (MinNetRank) and 0.56 (NetICS) in TCGA-LIHC and 0.61 (MinNetRank) and 0.54 (NetICS) in TCGA-BLCA. The top 50 candidate cancer genes of NetICS used here are from the published paper (Dimitrakopoulos et al., 2018). In this article, NetICS integrates different types of data that include somatic mutation, copy number variation, methylation, miRNA expression, gene expression, and protein expression. Although MinNetRank only focuses on integrating the mutation data and expression data, the mean precision of MinNetRank is still higher than that of NetICS.



CONCLUSION

This article developed a new method (denoted as MinNetRank) by setting weights for different types of mutations and using the minimum strategy to integrate multi-omics for cancer genes discovery. Minimum strategy reduced the influence of extreme scores in highly skewed distributions and was the “double high” strategy to prioritize cancer genes, having a relatively high mutation score and expression score. Different weight coefficients for the different types of mutations contributed to the better performance. We demonstrated our method’s accuracy and robustness in prioritizing driver genes on five TCGA datasets and one ICGC dataset. Besides, MinNetRank has the advantage of discovering rare and personalized cancer genes. The top seven candidate driver genes stratified patients into two subtypes (high-risk and low-risk groups) exhibiting significant survival differences and could be used as prognostic biomarkers for survival. Of course, our method has room for improvement. Gene co-expression network and more types of omics data should be incorporated, and different weight coefficients should be considered.



MATERIALS AND METHODS


Dataset

The genes annotated in the CGC can be used to benchmark known cancer genes (Tate et al., 2019). This gold standard known cancer gene set includes 576 genes (July 2019)1. Many cancer studies use CGC genes as the benchmark for the evaluation (Bashashati et al., 2012; Hou and Ma, 2014; Bertrand et al., 2015; Wei et al., 2017; Guo et al., 2018).



Interaction Network

We used the interaction network that has been widely used in the related paper (Hou and Ma, 2014; Guo et al., 2018). The interaction network integrated a variety of resources, including the network used in MEMo as well as the up-to-date information from Reactome (Croft et al., 2011; Ciriello et al., 2012), the NCI-Nature Pathway Interaction Database (Schaefer et al., 2009), and KEGG (Kanehisa et al., 2016). The resulting interaction network consisted of 11,648 genes and 211,794 edges. The average degree centrality of interaction network was 34.20, and the average betweenness centrality was 1.58E-04.



MinNetRank

MinNetRank uses an interaction network that could discover cancer driver genes more efficiently (Leiserson et al., 2015). One of the main reasons for this is the high connectivity (high incoming degree and outgoing degree) of known cancer genes in the interaction network. For example, the mean and median of incoming degree for known cancer genes (in CGC) are 36.06 and 17, which are much higher than those of the genes that are not classified as known cancer genes (17.41 and 3, respectively). Also, the mean and median outgoing degree of known cancer genes are 30.37 and 12, which are much higher than those of the genes that are not in CGC (17.66 and 4, respectively). To a certain extent, this is expected since genes with high connectivity could exert a more significant influence on the biological system (Winter et al., 2012). RWR algorithm models how closely related the two genes are and measures both the direct and indirect neighbors of each gene in the interaction network, making it more sensitive for prioritizing cancer driver genes (Dimitrakopoulos et al., 2018). Unlike NetICS and DawnRank, we consider both incoming and outgoing degree of interaction network for single omics.


Diffused Matrix

Let A be the n×n adjacency matrix of an interaction network where n represents the number of nodes (the number of genes in the interaction network). A is a 0–1 matrix and aij = 1 if there is a directed edge from node j to node i. A′ is the transpose of matrix A and aji = 1 if there is a directed edge from node i to node j. We denote [image: image] as the outgoing degree of node j or the number of outgoing edges. While [image: image] is the incoming degree of node j. MinNetRank considers both the incoming degree and outcoming degree, so we define the normalized adjacency matrix A^norm as,

[image: image]

We define the diffused matrix D as,

[image: image]

The value of Dij lies between 0 and 1 and reflects the connectivity between nodes j and i. Higher score means that two genes are more closely related. The restart probability of β(0≤β≤1) determines the degree of diffusion, namely, how far the random walker can move in the network. When β = 1, there is no diffusion, namely, we do not use the information of the interaction network. When β = 0, gene mutation score or differential expression score (see below) diffuses to the whole network. β depends on the interaction network and is independent of any mutation data or expression data. We chose β to balance diffusion and retainment (Leiserson et al., 2015), and β is 0.48 in this study. The diffused matrix D needs to be computed only once for a given interaction network.



ALFC

For each patient k, we calculate the Absolute value of Log2 Fold-Change (ALFC) of gene i for the paired tumor and normal samples as a differential expression score. The fold change, or relative difference, is widely used to measure differential gene expression (Love et al., 2014). The absolute value of fold change is taken in order to capture both upregulation and downregulation.

[image: image]



Weighted_MinNetRank

Weighted_MinNetRank uses SIFT scores (between 0 and 1) as the weight coefficients for missense mutations and gives the same weight with 1 to other mutations (stop-gain, stop-loss, frameshift, and non-frameshift) (Ng and Henikoff, 2001). Although synonymous mutations do not alter amino acids, some deleterious synonymous mutations play important roles in cancer (Wen et al., 2016). We further incorporate synonymous mutations and use PrDSM scores as the weights for synonymous mutations (Weighted_MinNetRank_PrDSM). We also use PrDSM scores greater than 0.38 as the weights (Weighted_MinNetRank_Filter_PrDSM). If a PrDSM score is greater than 0.308, the corresponding synonymous mutation is considered as deleterious (Cheng et al., 2019). Besides, we use PredCID scores as the weights for frameshift mutations (Weighted_MinNetRank_PrCID) (Yue et al., 2020).



Assessing the Performance in Predicting Known Cancer Genes

In order to assess the performance in predicting known cancer genes, our method (Weighted_MinNetRank and MinNetRank) was compared with NetICS (Dimitrakopoulos et al., 2018), DawnRank (Hou and Ma, 2014), and Freq. The top 50 genes of the population-level ranking were identified as candidate driver genes and compared with the positive genes in CGC. We used the precision, F1 score, and partial AUC value to evaluate the performance. The precision was defined as expression (7) and can be viewed as the measure of exactness. The recall was the percentage of total known cancer genes correctly predicted by MinNetRank. F1 score combined recall and precision using the harmonic mean. There were many more negative genes than positive genes (positives/negatives = 0.052) and even fewer positive genes when we considered cancer type-specific known cancer genes (positives/negatives ≈ 0.0029). It was more informative to use partial AUC, which considered the number of true positives scored higher than the nth highest scoring negatives, measured for all values from 1 to n (Dimitrakopoulos et al., 2018). Precision, F1 score, and partial AUC were based on the top 50 genes.
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where T was the total number of known cancer genes in CGC, and Ti was the number of positives scored higher than the ith highest scoring negatives.



Assessing the Robustness Using the Subset of Samples

In order to further compare these methods, we calculated the precision, F1 score, and partial AUC using the subset of samples with different sample sizes. We experimented with sample sizes of n = 10, 25, 50∗1, 50∗2, …, 50∗⌈N/50⌉, and N was the total sample size of multi-omics data. For each sample size, we performed 10 random samples. We defined the precision value P = mean(pi), where pi was the precision of top i candidate cancer gene, i = 1, 2, …, 50. The mean and SD of precision value, F1 score, and partial AUC value for 10 runs were used to measure the robustness.



Tumor Stratification

Some papers used gene mutation data and expression data to identify genes that were indicators for survival. Using these biomarkers, patients can be stratified into subtypes (Haider et al., 2014). We further investigated the relationship between the top genes of population-level ranking and patients’ survival time. Genes whose expression with a low variation between tumors provided very limited information for tumor stratification (Winter et al., 2012). According to the genes’ rankings, we selected the top seven genes with a greater SD of expression than five as biomarkers for each dataset (Winter et al., 2012). Using these seven biomarkers, K-means clustering (unsupervised learning algorithm) assigned each patient to one of the two clusters (high-risk and low-risk groups). The log-rank test was then used to compare the survival differences of the two groups (R survival package).
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Increasing lncRNA-associated competing triplets were found to play important roles in cancers. With the accumulation of high-throughput sequencing data in public databases, the size of available tumor samples is becoming larger and larger, which introduces new challenges to identify competing triplets. Here, we developed a novel method, called LncMiM, to detect the lncRNA–miRNA–mRNA competing triplets in ovarian cancer with tumor samples from the TCGA database. In LncMiM, non-linear correlation analysis is used to cover the problem of weak correlations between miRNA–target pairs, which is mainly due to the difference in the magnitude of the expression level. In addition, besides the miRNA, the impact of lncRNA and mRNA on the interactions in triplets is also considered to improve the identification sensitivity of LncMiM without reducing its accuracy. By using LncMiM, a total of 847 lncRNA-associated competing triplets were found. All the competing triplets form a miRNA–lncRNA pair centered regulatory network, in which ZFAS1, SNHG29, GAS5, AC112491.1, and AC099850.4 are the top five lncRNAs with most connections. The results of biological process and KEGG pathway enrichment analysis indicates that the competing triplets are mainly associated with cell division, cell proliferation, cell cycle, oocyte meiosis, oxidative phosphorylation, ribosome, and p53 signaling pathway. Through survival analysis, 107 potential prognostic biomarkers are found in the competing triplets, including FGD5-AS1, HCP5, HMGN4, TACC3, and so on. LncMiM is available at https://github.com/xiaofengsong/LncMiM.
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INTRODUCTION

Non-coding RNAs (ncRNAs) were once considered as junk RNAs; however, evidence has increasingly shown that ncRNAs can perform diverse functions (Slack and Chinnaiyan, 2019; Yao et al., 2019; Chen et al., 2020; Nair et al., 2020). Among ncRNAs, the most intensively studied subclass are microRNAs (miRNAs, usually 19–24 nucleotides long), which can regulate gene expression posttranscriptionally by destabilizing target mRNAs via the RNA-induced silencing complex (RISC) (Bartel, 2009; Gebert and MacRae, 2019). The miRNA-based regulation has been reported to be involved in many pathologies including cancer (Peng and Croce, 2016; Dhawan et al., 2018; Huang et al., 2019). By contrast, the other class of abundant ncRNAs, lncRNAs (>200 nucleotides long), are still less understood, although much larger numbers of lncRNAs have been identified using high-throughput sequencing techniques in recent years (Fang et al., 2018; Frankish et al., 2019; Volders et al., 2019). Nevertheless, the existing well-characterized lncRNAs have demonstrated their important roles in various critical biological processes, such as chromatin remodeling, genomic splicing, cell proliferation, and cell differentiation (Fatica and Bozzoni, 2014; Han and Chang, 2015; Romero-Barrios et al., 2018; Rossi et al., 2019; Yao et al., 2019). In addition, dysregulation of lncRNAs is implicated in various human diseases (Schmitt and Chang, 2016; Bao et al., 2019; Gao et al., 2019).

Recent studies prove that lncRNAs participate in the posttranscriptional regulation by acting as competing endogenous RNAs (ceRNAs) (Song et al., 2017; He et al., 2019). The lncRNAs that share miRNA response elements (MREs) with mRNAs can compete for miRNA binding, thereby alleviating the inhibitory effect of miRNAs on their mRNA targets. To date, considerable lncRNA-associated competing triplets (lncRNA–miRNA–mRNA) have been reported to be involved in cancer progression (Du et al., 2016; Cong et al., 2019; Wang et al., 2019). For example, the lncRNA MEG3 functions as a ceRNA of oncogenic miR-181 to regulate gastric cancer progression (Peng et al., 2015, 3). The lncRNA UCA1 upregulates the expression of ERBB4 through competitively “sponging” miR-193a−3p and functions as an oncogene in non-small cell lung cancer (NSCLC) (Nie et al., 2016, 1). The XIST/miR-92b/Smad7 triplet is found to play an important role in the progression of hepatocellular carcinoma (Zhuang et al., 2016). Hence, lncRNA associated competing triplets attract more and more attention in cancer research.

At present, several computational methods have been proposed for identifying competing triplets (Le et al., 2017; Hornakova et al., 2018). In general, people usually use linear correlations between gene–gene and/or gene–miRNA pairs to identify ceRNA triplets, since it requires a small sample size and fewer computations (Wang et al., 2015). However, the linear correlation-based methods do not measure the impact of the miRNA on the gene–gene interaction within triplets, resulting in reduced credibility of competing triplet identification results. In order to overcome this problem, several methods based on partial correlation (PC) or conditional mutual information (CMI) have been developed. Among them, two typical methods are often employed: sensitivity correlation and HERMES (Sumazin et al., 2011; Paci et al., 2014). Sensitivity correlation calculates the difference between linear correlation and partial correlation for ceRNA pairs, while HERMES calculates the difference in mutual information for each gene–gene interaction between high and low miRNA expression levels. Despite the constant increase in available methods (Wen et al., 2020), identification of competing triplets through utilizing RNA-seq and miRNA-seq data remains a challenging issue.

With the widespread application of high-throughput sequencing technology, a great deal of data has been accumulated in public databases (Lonsdale et al., 2013; Weinstein et al., 2013). The increasing data lead to more competing triplets identified by the existing methods (Wang et al., 2019); however, they also introduce some new problems needed to be solved. First, the bigger the data size, the fewer the number of linear correlated miRNA–gene pairs we could find. It seems that the relationship between the expression patterns of miRNA and its target gene is not a linear correlation as assumed by the existing methods. Second, it is noted that competing gene–gene interactions may be regulated by several miRNAs, and thus, the increased data size would make it harder to evaluate the impact of the miRNA on gene–gene interactions by using PC and CMI. In addition, besides the impact of the miRNA on gene pairs, the influence of the gene on the relationship between miRNA and other target genes should be also considered.

Here, for large data sets, we present a powerful method, named LncMiM, to identify lncRNA-associated competing triplets with a new framework addressing the above issues. From the large scale of gene and miRNA expression profiles derived from the TCGA database, 847 competing triplets were identified by using LncMiM, while only a few triplets were identified as competing ones by linear correlation-based methods. The enrichment analysis shows that they are mainly involved in cell proliferation process, cell division process, cell cycle, and ribosome pathways. Among them, 18 competing triplets were found to be associated with prognosis in high-grade serous ovarian cancer. Our method will help in identifying more lncRNA-associated competing triplets in cancer and may contribute to reveal the potential post-transcriptional regulatory mechanism of lncRNAs.



MATERIALS AND METHODS


Data Collection and Pre-processing

As shown in Figure 1, paired RNA-seq and miRNA-seq data of ovarian cancer (379 samples from 373 patients) are downloaded from the Cancer Genome Atlas (TCGA) (Weinstein et al., 2013). The RNA-seq data type is “Gene Expression Quantification,” and its workflow type is “HTSeq-FPKM.” The miRNA-seq data type is “Isoform Expression Quantification,” and its workflow type is “BCGSC miRNA Profiling.” The RPM (reads per million mapped reads) value was used to evaluate the expression level of miRNAs. For different samples from the same patient, we merged them by calculating the mean FPKM or RPM value for each lncRNA, mRNA, and miRNA. Finally, we got 376 samples with both the RNA-seq data and miRNA-seq data.


[image: Figure 1]
FIGURE 1. The workflow of LncMiM.


The annotation files of the protein-coding transcripts and the long non-coding transcripts were downloaded from the GENCODE (version 33) database (Harrow et al., 2012). With the transcript annotation, we extracted the mRNA expression data and the lncRNA expression data from the RNA-seq data, and the mRNAs without 3′ UTR annotation were abandoned. Human miRNA sequences and annotation were downloaded from the miRBase (release 22.1) database (Kozomara et al., 2019), and the seed and mature sequences of miRNAs in the miRNA-seq data were both extracted. In order to reduce the computation burden and avoid false-positive identification, we filtered out all the lower expressed RNA (mRNA, lncRNA, and miRNA) based on an artificial criterion. The remaining expressed RNAs need to be satisfied with the following conditions: (a) RNA's expressed value should be >0 in more than 75% of the 376 samples; (b) RNA's expressed value should be >5 in more than 25% of the samples; and (c) the expression variation across samples (log2IQR) should be >0.58. As a result, the expression data of 8,076 mRNAs, 225 lncRNAs, and 387 miRNAs were used for further analysis.



Construction of Candidate Triplets

TargetScan, PITA, and miRanda are three commonly used methods to predict miRNA–target interactions (Figure 1). Due to their distinct miRNA-target predicting strategies, these methods are exclusive to any single one alone (Chiu et al., 2015). Thus, TargetScan (version 7.2) (Agarwal et al., 2015), PITA (version 6) (Kertesz et al., 2007), and miRanda (v3.3a) (Miranda et al., 2006) were all applied to predict miRNA–target genes. The parameters of TargetScan and PITA were set to the default values, while the score threshold of miRanda was set to 120 to get a larger miRNA–target gene pool. In addition, the experimentally validated miRNA–target interactions derived from the miRTarBase database (release 8.0) were also added into the miRNA–target gene dataset (Huang et al., 2020).

The lncRNA–miRNA–mRNA triplets were constructed based on the interaction relationship of miRNA–lncRNA and miRNA–mRNA; then the lncRNA and mRNA in each triplet were extracted as lncRNA–mRNA pairs. The Spearman's rank correlation coefficient (SCC) was calculated for the miRNA–lncRNA, miRNA–mRNA, and lncRNA–mRNA pairs to evaluate the regulatory relationships between miRNA, mRNA, and lncRNA in each triplet. Through a rigid screening, only 0.1% pairs were remained as functional interactions, and the cutoff values for the miRNA–lncRNA, miRNA–mRNA, and lncRNA–mRNA pairs are −0.305, −0.311, and 0.520, respectively. Based on the types of remaining interactions, candidate triplets are grouped into three classes: I, “lncRNA-centered” triplets with miRNA–lncRNA and lncRNA–mRNA interactions; II, “miRNA-centered” triplets with lncRNA–miRNA and miRNA–mRNA interactions; and III, “mRNA-centered” triplets with miRNA–mRNA and mRNA–lncRNA interactions.



Workflow of LncMiM for Identifying Competing Triplets

For identifying competing triplets from the three types of candidate triplets, specific workflows were respectively built to evaluate the centered miRNA, lncRNA, and mRNA on the relationship between the other RNAs (Figure 1). In each workflow, samples were firstly sorted in an ascending order based on the expression of the centered RNA in the candidate triplet. The SCC of the other RNAs was calculated on the samples within the sliding window, whose size is set to 94 (25% of the total samples) and step is set to 1. And then, the maximum and minimum SCCs were calculated. Based on the type of candidate triplets, different filtering criteria were set to identify competing triplets. For the “lncRNA-centered” and “mRNA-centered” triplets, their minimum SCC should be < −0.311 and −0.305, respectively. For the “miRNA-centered” triplets, their maximum SCC should be more than 0.520. In addition, the difference between the maximum and minimum SCC should be >0.300. Finally, all the candidate triplets meeting their corresponding filtering criteria were identified as competing triplets.

In addition, to assess the statistical significance of the correlation coefficient difference (ΔCor), a series of null hypotheses were tested by measuring the ΔCor distribution over random conditions. That is, for each candidate triplet, two non-overlapping sample subsets were randomly chosen from the complete dataset, rather than based on the expression of miRNA, and then the correlation coefficient and ΔCor were calculated for these two random sample subsets. This process was repeated 100 times. The p-value is defined as the fraction of ΔCor in random condition that was larger than that on the specified conditions mentioned above; p-values were Bonferroni-corrected for the total number of candidate triplets. The triplets with adjusted p-values < 0.01 are statistically significant.



Functional and Survival Analysis of the Competing Triplet

With the competing triplets, the integrative regulatory network was built and visualized by Cytoscape (Shannon et al., 2003). The size of the node and the width of the line are determined by the number of competing triplets containing them. The circular layout was produced by using the yFiles layout Algorithms. DAVID 6.8 (https://david.ncifcrf.gov) was used to perform the enrichment analysis of biological processes and KEGG pathways (Huang et al., 2009). For the enriched biological process terms, their adjusted p-values should be < 0.05.

The clinical profiles of 373 patients with high-grade serous ovarian cancer were downloaded from the TCGA database. The patients' ID, age at initial pathologic diagnosis, vital status, days to death, days to last follow-up, neoplasm histologic grade, and clinical stage were extracted from the clinical profiles. Based on data integrity, 369 patients' clinical data were screened out for the following survival analysis. The days to death together with the days to last follow-up make up the overall survival time of patients. Both the single variate and multivariate survival analyses used the Cox proportional hazards (PH) regression. In addition, to investigate the impact of specific genes on the survival time, patients were classified into different groups through four ways based on their expression levels. The survival analysis and visualization were performed by using the “survminer” R package.




RESULTS


Investigation of the Expression Relationship Between miRNA and Target Gene

In general, miRNAs are assumed to be linearly correlated with their target genes. Thus, the Pearson correlation coefficient (PCC) was initially used to identify negatively correlated miRNA–mRNA and miRNA–lncRNA pairs. With the threshold of −0.30, from the 74,086 miRNA–lncRNA pairs and 2,608,237 miRNA–mRNA pairs (Figures 2A,E), only 3 miRNA–lncRNA pairs and 443 miRNA–mRNA pairs were found to be negatively correlated, which are far less than expected. As shown in Figure 2B, there is a negative regulatory relationship between miR-509-3p and POSTN, but the PCC is only −0.234. Similarly, miR-224-5p is also shown to be negatively correlated with MIR100HG; their PCC is −0.263 (Figure 2E). If the expression values were normalized by a logarithmic transformation, however, the PCCs of miR-509-3p–POSTN and miR-224-5p–MIR100HG change to −0.638 and −0.374, respectively (Figures 2C,F). As shown in Figures 2G,I, after the logarithmic transformation, more negatively correlated miRNA–target gene pairs were detected. In addition, with the increase in the sample size, the number of negatively correlated miRNA–lncRNA pairs (PCC < −0.3, P-value < 0.05) significantly decreases (Figure 2H). These results implied that PCC is not appropriate for the evaluation of the regulatory relationship between miRNA and target gene, especially for large sample data.
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FIGURE 2. Investigation of the correlation between miRNA and the target. (A) The Venn diagram of miRNA–mRNA pairs. (B) The scatter plot of miR-509-3p and POSTN. (C) The scatter plot of miR-509-3p and POSTN after logarithmic transformation. (D) The Venn diagram of miRNA–lncRNA pairs. (E) The scatter plot of miR-224-5p and MIR100HG. (F) The scatter plot of miR-224-5p and MIR100HG after logarithmic transformation. (H) The density distribution of the correlation between miRNA and lncRNA. PCC, Pearson correlation; PCC(log), Pearson correlation after logarithmic transformation; SCC, Spearman correlation. (G) The influence of the sample size on the identification of the negatively correlated miRNA–lncRNA pairs. Negative correlation: cor(miRNA,lncRNA) < −0.3, p-value < 0.05. (I) The counts of correlated miRNA–lncRNA, miRNA–mRNA, and lncRNA–mRNA calculated on 376 ovarian cancer samples.


Here, we assumed that the relationship between miRNA and the target is not linear. As shown in Figures 2B,C,E,F, as compared with the PCC, the SCC is more accurate for assessing the relationship between miRNA and the target. In addition, the SCC is less affected by the sample size (Figure 2H) and can detect more negatively correlated miRNA–target gene pairs (Figure 2I). Thus, the SCC was used to screen negatively correlated miRNA–target pairs. From the 74,086 miRNA–lncRNA pairs and 2,608,237 miRNA–mRNA pairs, only 0.1% were respectively screened out as the negatively correlated miRNA–target pairs. A total of 72 negatively correlated miRNA–lncRNA pairs and 2,608 negatively correlated miRNA–mRNA pairs were selected, respectively, with the thresholds −0.311 and −0.305. Besides the miRNA–target pairs, with threshold 0.52, 1,806 positively correlated mRNA–lncRNA pairs were screened out from 1,816,605 candidate mRNA–lncRNA pairs.



Investigation of the Impact on Pairwise Interaction by the Other One in Triplets

With the strictly selected negatively and positively correlated interactions, 256 competing triplets can be found by using the traditional strategy. If a miRNA is negatively correlated to two positively correlated target genes, then they form a competing triplet. As this traditional strategy ignores the mediating effect of miRNA on the positive relationship between target genes, several competing triplets may be fake ones. For example, miR-185-3p is negatively correlated to the two positively correlated target genes (Figures 3A–C); however, the positive correlation between SNHG29 and RPLP0 is not related to miR-185-3p (Figure 3D). According to the ceRNA hypothesis, SNHG29–miR-185-3p–RPLP0 is a fake competing triplet. Thus, the impact of miRNA on the interaction between ceRNA pairs should be considered.


[image: Figure 3]
FIGURE 3. The impact of miRNA on the interaction between ceRNA pairs in triplets. (A) The scatter plot of miR-185-3p and RPLP0. (B) The scatter plot of SNHG29 and RPLP0. (C) The scatter plot of miR-185-3p and SNHG29. (D) The impact of miR-185-3p on the SNHG29–RPLP0 interaction. (E) The scatter plot of miR-151a-3p and TRAPPC1. (F) The scatter plot of SNHG29 and TRAPPC1. (G) The scatter plot of miR-151a-3p and SNHG29. (H) The impact of miR-151a-3p on the SNHG29–TRAPPC1 interaction.


To determine whether the interaction between target genes is derived from their relationship with miRNA, a commonly used method is to compare the correlation coefficients of target gene pairs under conditions of high and low miRNA expression levels. Accordingly, the differences of lncRNA–mRNA pairs' SCCs on the first and last quarter of samples sorted by miRNA expression were calculated, and 15 of the 256 competing triplets were identified to be true. A hidden hypothesis of this method is that the strength of the interaction between lncRNA and mRNA is linearly correlated with the miRNA expression level. However, according to the ceRNA hypothesis, both extremely high and extremely low miRNA expressions would impair the interaction between ceRNA pairs and even make them unrelated with each other. For example, miR-151a-3p is negatively correlated to the two positively correlated target genes (Figures 3E–G). The SCC between TRAPPC1 and SNHG29 is not linearly correlated with the expression level of miR-151a-3p (Figure 3H). The SCC achieves the maximum value at about the median miRNA expression level. Therefore, in LncMiM, all the miRNA expression levels, rather than only the highest and lowest ones, are considered when evaluating the impact of miRNA on the interaction between target gene pairs.

Besides the impact of miRNA on the lncRNA–mRNA interaction, lncRNA and mRNA can also affect the miRNA–target interactions. As shown in Figure 4, miR-151a-3p is negatively correlated to the two positively correlated target genes (RPS6 and SNHG29). The SCC between RPS6 and SNHG29 is significantly changed with the rise of miR-151a-3p expression levels (Figure 4E). Moreover, the correlation relationship between RPS6 and miR-151a-3p is impacted by the SNHG29 (Figure 4D), and the interaction between SNHG29 and miR-151a-3p is influenced by the RPS6 (Figure 4F). As the pairwise interactions are impacted by the other one in the triplets, it is not enough to assess the real relationship between each pair only based on their own expression profiles, especially when the sample size is very large. The triplet with two correlated pairs may also be a competing triplet; thus, three types of candidate triplets were analyzed in LncMiM. Using the selected miRNA–target and lncRNA–mRNA pairs, 2060 “miRNA-centered” triplets, 1944 “lncRNA-centered” triplets, and 1537 “mRNA-centered” triplets were assembled. By using LncMiM, 231 “miRNA-centered” triplets, 339 “lncRNA-centered” triplets, and 439 “mRNA-centered” triplets were identified as competing triplets (Supplementary Table 1). In total, 847 competing triplets were found, including 38 miRNAs, 36 lncRNAs, and 236 mRNAs.
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FIGURE 4. The pairwise interaction impacted by the other one in triplets. (A) The scatter plot of miR-151a-3p and RPS6. (B) The scatter plot of SNHG29 and RPS6. (C) The scatter plot of miR-151a-3p and SNHG29. (D) The impact of SNHG29 on the miR-151a-3p–RPS6 interaction. (E) The impact of miR-151a-3p on the SNHG29–RPS6 interaction. (F) The impact of RPS6 on the miR-151a-3p–SNHG29 interaction.




Functional Analysis of the lncRNA-Associated Competing Triplets in Ovarian Cancer

In the competing triplets, a considerable number of lncRNAs, miRNAs, and mRNAs have been reported to be associated with ovarian cancer. By searching related literature and databases, about 30% lncRNAs have been verified to play roles in the regulation of proliferation, invasion, and migration of ovarian cancer cells, including ZFAS1, SNHG1, GAS5, EMX20S, GIHCG, TP53TG1, EPB41L4A-AS1, SNHG8, SNHG6, and HCP5 (Zhan et al., 2018; Gao et al., 2019; Wu et al., 2019; Miao et al., 2020; Wang et al., 2020). In addition, some lncRNAs (e.g., SNHG29, FGD5-AS1, TRIM52-AS1, EPB41L4A-AS1, RNASEH1-AS1, SNHG7, SPINT1-AS1, MAPKAPK5-AS1, and PITPNA-AS1) are reported to be involved in other types of cancers (Wang et al., 2018; Gao et al., 2019, 2; Han et al., 2019; Zhou et al., 2020). Through retrieving the miRCancer database (version june2020) (Xie et al., 2013), 60.5% miRNAs in the competing triplets have been proved to be associated with ovarian cancer. In the mRNAs, 29 ovarian cancer oncogenes were found by searching the OCGene database (Liu et al., 2015). These results indicate that the lncRNA-associated competing triplets play important roles in the progression of ovarian cancer.

To analyze the regulatory relationship between lncRNA, miRNA, and mRNA in ovarian cancer, a comprehensive network was established through combining the 847 lncRNA-associated competing triplets (Figure 5A). In the network, 310 nodes are connected by 1,182 edges, including 132 miRNA–lncRNA edges, 539 miRNA–mRNA edges, and 511 lncRNA–mRNA edges. Among them, the top 10 nodes with most connections are miR-151a-3p, ZFAS1, SNHG29, miR-185-5p, GAS5, AC112491.1, let-7e-5p, miR-664a-3p, AC099850.4, and miR-15b-3p. The top 10 edges connected with most nodes are miR-151a-3p–AC112491.1, miR-185-5p–ZFAS1, miR-185-5p–SNHG29, miR-151a-3p–GAS5, let-7e-5p–ZFAS1, miR-664a-3p–AC026401.3, miR-151a-3p–SNHG29, miR-151a-3p–ZFAS1, miR-664b-3p–AC099850.4, and miR-15b-3p–GAS5. Based on the connections, the nodes are divided into two groups. The small group is mainly regulated by the miR-664a-3p and AC026401.3 pair, while the ribosome protein-related mRNAs are all located in the large group.
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FIGURE 5. Comprehensive analysis of the lncRNA-associated competing triplets. (A) The regulatory network consists of all the competing triplets. (B) GO biological process enrichment analysis. (C) KEGG pathway enrichment analysis.


Among the mRNAs, there are 39 RPL and 27 RPS genes, which indicates that the triplets are involved in the ribosome biogenesis. Except the RPs, the GO biological process enrichment analysis of the other genes shows that the competing triplets are also involved in cell division, cell proliferation, regulation of cell cycle, anaphase-promoting complex-dependent catabolic process, cytokinesis, chromosome segregation, and other nine processes related with cell mitosis (Figure 5B). In addition, the competing triplets are found to be mainly enriched in five KEGG pathways, including cell cycle, oocyte meiosis, oxidative phosphorylation, p53 signaling pathway, and progesterone-mediated oocyte maturation (Figure 5C). All the results suggest that the lncRNA-associated competing triplets mediate ovarian cancer progression through regulating ribosome biogenesis, cell cycle, cell division, and cell proliferation, and they may be associated with survival in patients with high-grade serous ovarian cancer.



Identification of Potential Prognostic Competing Triplets

The Cox PH analysis was used to identify survival time associated miRNAs, mRNAs, and lncRNAs in the competing triplets. The result of univariate Cox PH analysis indicates that the lncRNA FGD5-AS1 (p = 0.0008) is a potential prognostic biomarker for all patients with ovarian cancer. For patients in grade G2, C12orf45, NDUFB8, POLR2J, SNRPE, and SNRPF are found to be associated with survival time (p < 0.001). By multivariate analysis with patient age at diagnosis, more potential prognostic biomarkers are found, including FGD5-AS1, GABPA, MRPS27, NR1D2, and NR2C2. For patients in grade G2, only SNRPF is related to the survival time with the diagnosis age. For patients in grade G3, FGD5-AS1, LETMD1, MAPKAPK5-AS1, MRPS27, and SDHC are screened out as prognostic biomarkers with the diagnosis age. FGD5-AS1 and MRPS27 are found to be associated with the survival time of patients in stage IIIC, while B9D1, RNASEH1-AS1, SPINT1-AS1, and ZWINT are associated with the survival time of patients in stage IV. The association between the survival time and the triplet was also evaluated by using multivariate Cox PH analysis. With the threshold p < 0.001, miR-224-5p/AL354892.2/ZBTB12 is found to be survival associated competing triplets. Considering the age of the patient at the initial pathologic diagnosis, 18 competing triplets are found to be associated with the overall survival time of patients in ovarian cancer, including miR-224-5p/AL354892.2/ZBTB12, miR-3653-3p/FGD5-AS1/NR1D2, miR-224-5p/AC112491.1/NDUFB8, and so on (Supplementary Table 2).

In addition, the Kaplan–Meier survival analysis was also performed to evaluate the potential prognostic power of miRNAs, lncRNAs, and mRNAs in the competing triplets. Considering the large data size, for each gene, the tumor samples were divided into two or three groups according to their expression levels by four ways (Figure 6A). By different grouping modes, a total of 107 RNAs are found to be associated with survival time, including 13 miRNAs, 10 lncRNAs, and 84 mRNAs (Supplementary Table 3). As show in Figure 6B, each grouping mode has its unique results. Especially, the grouping mode b has the least common results with the other modes, which indicates that there is a more complicated relationship between the patient survival time and the gene expression value. For each grouping mode, the most significant genes are HMGN4, TACC3, RNF111, and VGLL4 (Figures 6B,C,E,F). The survival associated genes are involved in 368 competing triplets, which are found to be enriched in cell division, cell proliferation, ribosome, and cell cycle.
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FIGURE 6. Survival analysis of competing triplets. (A) Four grouping modes. (B) The Kaplan–Meier curve of HMGN4 with mode a. (C) The Kaplan–Meier curve of TACC3 with mode b. (D) The Venn diagram of survival associated genes with four grouping modes. (E) The Kaplan–Meier curve of RNF111 with mode c. (F) The Kaplan–Meier curve of VGLL4 with mode d.





DISCUSSION

In this study, TargetScan, PITA, miRanda, and miRTarBase were used together to predict miRNA–target pairs, and a total of 2,608,237 miRNA–mRNA and 74,086 miRNA–lncRNA interactions were found (Supplementary Table 4). As shown in Figures 2A,D, each tool exclusively predicted a fraction of miRNA–target interactions. Although a vast number of miRNA–target interactions were predicted by TargetScan, PITA, and miRanda, there are still several experimentally validated miRNA–target interactions predicted by none of these tools. miRNA–mRNA pairs together with miRNA–lncRNA pairs could construct a huge number of triplets (~1.69E+9). Considering the computation and time cost, miRNA–target pairs were firstly filtered by correlation relationships.

Through the miRNA–target relationship, 1,816,605 indirect interactions between mRNA and lncRNA were established. Based on the linear relationship calculated by the PCC, 3 negatively correlated miRNA–lncRNA pairs (PCC = −0.3), 443 negatively correlated miRNA–mRNA pairs (PCC = −0.3), and 27,897 positively correlated lncRNA–mRNA pairs (PCC > 0.3) were screened out. With the linearly correlated pairs, 64 competing triplets were established. The impact of miRNA on the linear relationship between lncRNA and mRNA was only found in seven competing triplets. In contrast, based on the non-linear relationship assessed by the SCC, 89 negatively correlated miRNA–lncRNA pairs (SCC = −0.3), 3,586 negatively correlated miRNA–mRNA pairs (SCC < −0.3), and 33,267 positively correlated lncRNA–mRNA pairs (SCC > 0.3) were screened out. Comparing with the PCC, more negatively correlated miRNA–target pairs are found by the SCC.

In most of the scatter plots of the negatively correlated miRNA–target pairs, the points are mainly located in the bottom left corner, which looks like a triangle other than a line (Figure 2E). By comparison, after normalizing expression values by a logarithmic transformation, the points become more dispersed and scatter around a line. This result indicates that the linear correlation between miRNA and the target is impacted by the large span of the expression values, which is brought by the large sample size. In addition, the different orders of magnitude of the expression value between miRNA and the target gene are also an impact factor. The expression value of miRNA is calculated by RPM (max value: 8.23E5), while the expression values of mRNA and lncRNA are calculated by FPKM (max value of mRNA: 2.15E4, max value of lncRNA: 1.85E3). Therefore, it is better to assess the relationship between miRNA and the target by the non-linear correlation, especially on the large scale of data.

The bigger the size of the patient data, the more complex the relationships between ceRNAs we can observe. According to the ceRNA hypothesis, the strength of the competing relationship between ceRNAs is not constant but depends on the amount of miRNA (Figures 3H, 4E). Similarly, the strength of the interaction between miRNA and ceRNA is also impacted by the amount of the other ceRNA (Figures 4D,F). In 231 competing triplets, miRNAs are negatively correlated to the mRNAs and lncRNAs. Although the positive correlation between mRNA and lncRNA is not significant on the whole samples, their correlation is changed with the expression level of miRNA, and a significant positive correlation can be observed on a specific subset of samples. In 778 competing triplets, the negative correlation between miRNA and ceRNA is not significant on the whole samples, but there is a significant negative correlation on a specific subset of samples, and the correlation is influenced by the other ceRNA. Thus, besides the impact of miRNA on the interaction between ceRNAs, the impact of ceRNA on the correlation between miRNA and other ceRNAs should also be considered.

However, there is still no method considering the impact of both the miRNA and the ceRNAs when identifying competing triplets. The method, sensitivity partial Pearson correlation (SPPC), only estimates the impact (sensitivity) of miRNA on the interactions between ceRNAs (Paci et al., 2014). However, when using SPPC on “miRNA-centered” candidate triplets, no competing triplets were identified. JAMI is a conditional mutual information-based method, which can only estimate the impact of ceRNA on the interaction between miRNA and other ceRNAs (Hornakova et al., 2018). With JAMI, 87 competing triplets were filtered out from 1,507 “mRNA-centered” candidate triplets, and 385 competing triplets were identified from 1,944 “lncRNA-centered” candidate triplets. The JAMI results only show that the centered ceRNA has a significant influence on the relationship between miRNA and the other RNA in a candidate triplet, but it is still unknown if the other RNA is a ceRNA that should be negatively correlated with miRNA. In addition, the SNHG29/miR-151a-3p/RPS6 competing triplet is not identified by JAMI (Figure 4).

Considering the drawbacks of the existing tool, we developed a novel method named LncMiM to identify lncRNA-associated competing triplets in ovarian cancer. Besides the impact of miRNA on the interaction between ceRNA pairs, the impact of ceRNA on the interaction between miRNA and the other ceRNA is also used to identify competing triplets. As compared with other tools, LncMiM shows better performance (Supplementary Table 5). By using LncMiM, 231 competing triplets were identified from 2,060 “miRNA-centered” candidate triplets, 339 competing triplets were identified from 1,944 “lncRNA-centered” triplets, and 439 competing triplets were identified from 1,507 “mRNA-centered” triplets. In final, a total of 847 lncRNA-associated competing triplets were found. The functional enrichment analysis shows that the competing triplets are mainly involved in cell division, cell proliferation, and regulation of cell cycle. The KEGG pathway analysis shows that they are associated with ribosome, cell cycle, oocyte meiosis, oxidative phosphorylation, p53 signaling pathway, and progesterone-mediated oocyte maturation. Among them, 18 competing triplets are found to be significantly correlated with the overall survival in ovarian cancer.
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After years of development, the complexity of the biological sequence alignment algorithm is gradually increasing, and the lack of high abstract level domain research leads to the complexity of its algorithm development and improvement. By applying the idea of software components to the design and development of algorithms, the development efficiency and reliability of biological sequence alignment algorithms can be effectively improved. The component assembly platform applies related assembly technology, which simplifies the operation difficulty of component assembly and facilitates the maintenance and optimization of the algorithm. At the same time, a friendly visual interface is used to intuitively complete the assembly of algorithm components, and an executable sequence alignment algorithm program is obtained, which can directly carry out alignment computing.

Keywords: biological sequence alignment algorithm, component, component model, component assembly platform, B/S architecture


INTRODUCTION

Bioinformatics is an interdisciplinary subject involving life sciences, mathematics, and computer science. Its main research work lies in the acquisition, processing, and storage of biological information, and further includes distribution, analysis, and interpretation. Its research methods are to use various technologies and tools of computer, biology and mathematics to mine and understand the biological significance contained in the massive data (Wang et al., 2015; Liu, 2018). After years of development, bioinformatics has shaped big data of biological information. As a basic method of mining biological sequence information, sequence alignment algorithms have received extensive attention from researchers in recent years.

Sequence alignment algorithms can be divided into pairwise sequence alignment algorithms and multiple-sequence alignment algorithms(Zhan et al., 2019, 2020). The most classic solution of the pairwise sequence alignment algorithm is the dynamic programming algorithm, and the multiple-sequence alignment algorithm is due to its NP completeness (Wang and Jiang, 1994), the current research is dedicated to finding the best approximate solution, but there is a lack of research on the level of algorithm domain. In recent years, the complexity and development difficulty of the newly proposed sequence alignment algorithm program have been increasing, and the efficiency of algorithm development and maintenance cannot be guaranteed. The idea of Component-Based Software Development (CBSD) (Yin, 2017) is viewed as an effective means to solve the “software crisis.” It is also one of the current development trends of software development. Its greatest advantage is that it can reuse the existing development results and improve software development efficiency. Algorithm is the core of software, which embodies the wisdom of software developers. The development efficiency and running efficiency of the algorithm have a crucial impact on the final quality of software. Therefore, the development idea of CBSD can be applied to algorithm development to further improve the development activities of algorithm programs.

Don Batory proposed an algorithmic component development method, connecting the feature model, grammar, and proposition formula to achieve the purpose of defining arbitrary constraints and using satisfiability solvers to debug feature models. In addition, a logical truth maintenance system is introduced to propagate the constraint characteristics of feature selection. Finally, based on these theoretical foundations, a product line development tool set that supports feature modularization and its combination is developed, and the combination development of graph algorithm is described (Batory, 2005).

Through in-depth study, we found that the first step of component-based algorithm development is to complete the domain analysis of algorithm family in a certain domain, and obtain a domain feature model that can guide component design and implementation. Next step is the structural design and interaction design of the components according to the requirements shown in the feature model. Finally it is to implement models using a suitable development language and provide corresponding component assembly services. Under the guidance of generative programming (Czarnecki and Eisenecker, 2000), FODM (Zhang and Mei, 2003) domain modeling method and PAR (Xue, 1993, 1997, 1998, 2016; Wang and Xue, 2009; Xue et al., 2018), domain modeling activities, component design activities and component implementation activities for common sequence alignment algorithms are almost done by our research team. Based on the existing results, the paper presents the assembly platform of sequence alignment algorithm components. The platform mainly provides the assembly services for the developed algorithm components, which greatly improves the automation of the algorithm component assembly, and further reduces the complexity of the algorithm development.



PLATFORM CONSTRUCTION


Preliminaries
 
Software Reuse

With the development of computer technology, its influence in human society is gradually improved. While the complexity and security of software are becoming increasingly prominent. Researchers are difficult to grasp the efficiency, cost, quality and future maintenance of software development. As early as 1968, the North Atlantic Treaty Organization (NATO) has put forward the definition of software crisis. And then the research of software engineering (Wang et al., 2018) also develops rapidly. Software reuse (Zhang and Mei, 2003, 2014; Zhang et al., 2005; Barros-Justo et al., 2019; Feng et al., 2019) is considered to be a feasible technology to improve the level of software industrial production and effectively solve the software crisis.

The idea of software reuse is to reuse the existing software in accordance with the specifications in the development process. When developing other systems in the same field, it is not necessary to develop from scratch, but on the basis of reusable resources to carry out efficient reuse development. In this process, abstraction is the basic element (Zhu, 2017), and efficient reuse cannot lack high-abstraction modeling of related reuse fields. The scope of reusable resources covers various forms of products, including software design documents, domain models, software patterns, code components, software architecture, software implementation documents, application generators and so on.



Component Technology

Component assembly technology (Zhang, 2018; Wu, 2019) is the core part of realizing CBSD. After completing a series of component design and development work, the final goal of CBSD is to assemble the components. From the current research (Xu et al., 2006; Chen et al., 2012; Zhen et al., 2014), the technology has achieved some research results.

The component assembly forms mainly include black box assembly, white box assembly and gray box assembly. The main difference is whether the components need to be modified before assembly. Black box assembly is the most suitable assembly method for component encapsulation, but it also reduces the adaptability of components. White box assembly emphasizes the adaptability of components. The assembly is flexible and can achieve greater composability. However, due to too many implementation details exposed, the ease of use of components will be reduced, and improper modifications will occur, so that the final assembly cannot achieve the expected. Gray box assembly is the most widely used assembly method currently. It combines black box assembly and white box assembly and can be adapted to a variety of application scenarios.

The difference between sequence alignment algorithm component and software component is that the former often has higher coupling degree, and the algorithm component often needs to be modified to adapt to the relevant application scenarios. However, the idea of sequence alignment algorithm is complex. If the assembler does not have a good understanding of the algorithm, new errors will be made when modifying it. Therefore, before assembling algorithm components, it is necessary to conduct a detailed domain analysis, formally describe the algorithm component, and form a structure framework to guide the algorithm component assembly. Finally, the gray box assembly of sequence alignment algorithm components is completed under the guidance of domain model, formal specification and algorithm framework.




Platform Design
 
Requirement Analysis

The goal of CBSD is that the software system can be automatically generated from a series of software components according to the system requirements supported by the generator. The purpose of developing the component assembly platform for sequence alignment algorithm is also to reduce the manual assembly workload as much as possible and improve the automation level of the whole component system.

The platform mainly includes component transformation, component assembly and code running. By means of C++ program generation system of PAR, the component transformation module can transform Apla components into C++ components, see details in Xue et al. (2018). The component assembly function and code running function are composed of four modules, i.e., component library, component selection, code assembly, and code running. The interactive relationship among the modules is shown in Figure 1.


[image: Figure 1]
FIGURE 1. Interactions among component assembly modules.


Component library module includes two parts, one is the source code of algorithm components that have been transformed and stored in the files, and the other is the Apla component assembly code that needs to be manually developed or modified in the database. In addition, the component library module also plays a management role, such as adding, deleting, modifying, and checking components, supporting further component expansion and modification in the future.

Component selection module reads the components in the component library and displays them on the platform interface according to their required and optional features and the type characteristics of their affiliation. After selecting the components, the validity of component composition is checked. According to the multi-choice one or multi-choice relationship of feature dimension and the dependency relationship between components, the component composition is constrained accordingly to prevent illegal combination from the subsequent process.

After completing the component selection, code assembly module obtains the required Apla assembly code from the database, and the user can make appropriate modifications to correctly call the selected component in the component library. After the assembly code is developed, the Apla code is converted into the corresponding C++ code through the transformation system of PAR platform. Finally, the assembly and compilation of executable codes is completed in the sever of platform to generate executable algorithmic programs.

After the user inputs the alignment data, the code running module executes the corresponding executable alignment algorithm program. It enables the user to directly perform sequence alignment operations on the platform, and displays the final algorithm running results on the page.



System Design

The platform is developed using B/S architecture following J2EE specifications, the Java language is used, and the Spring Boot (Wang et al., 2016) and MyBatis (Rong, 2015) as well as Thymeleaf framework, which are currently popular in web development, are adopted, and the stability of their architecture has been tested by practical applications.

The overall architecture of the assembly platform is shown in Figure 2, including the data layer, service layer, and interface layer. The data layer mainly uses MySQL and files to store the Apla program and component source code required by the platform. The service layer mainly includes component assembly service, component transformation service, and program run service. The application layer mainly uses HTML to display the platform, uses JS to implement the relevant interaction logic.


[image: Figure 2]
FIGURE 2. Overall platform architecture.


According to the requirement analysis, the functional architecture of the platform is shown in Figure 3. Component transformation module includes the functions of Apla development, Apla transformation, Apla code storage and maintenance, and C++ code storage and maintenance. As the core of the platform, component assembly module consists of the functions of component display, component selection, component combination verification, assembly code generation, compiling code generation, component compilation and component maintenance. Program running module is composed of the functions of sequence input, parameter input, code execution and result display.


[image: Figure 3]
FIGURE 3. Platform functional architecture.




Detailed Platform Design

Through system function requirement analysis, overall architecture design, and functional architecture design, the sequence alignment algorithm component assembly platform is outlined. Next is to give a detailed design of the platform system based on the operating sequence of each module. The platform mainly includes component conversion process, component selection process, component assembly process and algorithm execution process. This section mainly describes the process of component assembly, as shown in Figure 4.


[image: Figure 4]
FIGURE 4. Component assembly process.





Analysis of Key Platform Algorithms

The pairwise sequence alignment algorithm and heuristic multiple sequence alignment algorithm based on dynamic programming have been implemented in the platform, and the most critical one is the progressive multiple sequence alignment algorithm based on phylogenetic tree. The most classic ClustalW (Thompson et al., 1994) algorithm in the algorithm thought is implemented in 1994 by Thompson and Higgins. Its operation steps are described as follows, and the algorithm diagram is shown in Figure 5.

(1) Pairwise sequence alignment. The sequence group is aligned between two pairs, and the distance matrix is established by the pairwise sequence alignment score to indicate the distance between the sequences.

(2) Generate a phylogenetic tree. Using the information in the distance matrix, a phylogenetic tree is established through the corresponding clustering algorithm to guide the subsequent multiple sequence alignment operations.

(3) Progressive alignment. The previous operation has generated a guide tree, and the last step is to gradually complete the alignment of all sequences in the form of keeping gaps, starting from the close evolutionary relationship according to the alignment sequence reflected by the guide tree.


[image: Figure 5]
FIGURE 5. Steps of ClustalW.


The components involved in the algorithm are sequence validity check component, pairwise sequence alignment component, distance matrix component, phylogenetic tree component, progressive alignment component, and alignment result output component. Since the distance matrix component and the pairwise sequence alignment component are highly coupled, the pairwise sequence alignment component is designed as a generic operation parameter of the distance matrix, and the corresponding distance matrix can be generated by instantiating different pairwise sequence alignment algorithms. The phylogenetic tree component also includes a clustering algorithm selection sub-component, which is also designed as a generic operation parameter. The commonly used instantiation algorithms are the NJ algorithm (Saitou and Nei, 1987) and the UPGMA algorithm (Zhang et al., 2018). The objective function (Carrillo and Lipman, 1988; Notredame et al., 1998) is also designed as a generic operation parameter while performing a progressive alignment, here we aims to expand the scope of algorithm components assembly.




ASSEMBLY EXAMPLE

We will carry out an example of the assembly for the progressive alignment algorithm based on phylogenetic tree to demonstrate how the modules of the platform work together and how they interact with each other.

(1) Transform Apla components except those for assembling. The transformation system of PAR platform is used to convert the developed Apla components into C++ components and store them to the platform's local files.

(2) Visually select several existing components satisfying the composable constraints according to the established domain feature model and component interaction model. The components are grouped by the required or optional attribute. In order to prevent the selection of illegal combinations from the subsequent assembly, the distinction between multi-choice-one or multi-choice-multi is carried out in the optional components group. The component selection interface is shown in Figure 6.

(3) Based on the interaction relationship between the components, read the corresponding Apla assembly code in the database and display it on the page following the selection of component combination. The user can check and modify the component assembly code, and then submit an Apla conversion request and store the converted C++ assembly code as the local file.

(4) After all the Apla component conversion and assembly code conversion, the makefile script file for compilation is generated automatically, and is executed to compile and link the C++ components. The parameter input interface of sequence the Presentation 1 for details.

(5) After the user inputs the sequence data, and the replacement matrix as well as the penalty model required by the multiple sequence alignment, the algorithm program generated will be executed, and the alignment output displayed in the user interface. As shown in Figure 7.


[image: Figure 6]
FIGURE 6. Component selection interface.



[image: Figure 7]
FIGURE 7. Alignment result interface.




SUMMARY

With the development of CBSD, component-based development technology has been verified in many practical applications. It can exactly improve the development efficiency and maintenance of software. In this paper, the component development technology is applied to the development of biological sequence alignment algorithms. Under the guidance of domain modeling, generative programming and PAR, the formal transformation of sequence alignment algorithm components is carried out, and a B/S-based visual assembly platform for the gray box assembly of algorithm components is constructed. On top of our previous study results, the components required by the sequence alignment algorithm are classified and displayed, and the corresponding combination constraints are designed and implemented. After the legal component combination is selected, the assembly code can be modified and compiled to form an executable algorithm program. In addition, the algorithm can run directly on the platform to facilitate users to conveniently conduct sequence alignment studies.

Next, we will release out codes in GitHub. Future work also includes the improvement of the biological sequence alignment algorithm component assembly platform from the following aspects.

(1) The algorithm components of this platform will be further expanded to enlarge the scope of algorithms generated from component assembly.

(2) The combination constraints in the platform have not been explicitly implemented. We will restrict the combination constraints of algorithm components to XML files, and shape the corresponding combination constraint documents to make it easier for users to assemble.

(3) With the richer component library, the algorithm component library needs to have an efficient component search function. Recent years, the recommendation algorithm based on artificial intelligence has developed rapidly. The feasibility of introducing this technology into the platform to improve the ease and automation level of algorithm assembly platform will be carefully studied.
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As a key algorithm in bioinformatics, sequence alignment algorithm is widely used in sequence similarity analysis and genome sequence database search. Existing research focuses mainly on the specific steps of the algorithm or is for specific problems, lack of high-level abstract domain algorithm framework. Multiple sequence alignment algorithms are more complex, redundant, and difficult to understand, and it is not easy for users to select the appropriate algorithm; some computing errors may occur. Based on our constructed pairwise sequence alignment algorithm component library and the convenient software platform PAR, a few expansion domain components are developed for multiple sequence alignment application domain, and specific multiple sequence alignment algorithm can be designed, and its corresponding program, i.e., C++/Java/Python program, can be generated efficiently and thus enables the improvement of the development efficiency of complex algorithms, as well as accuracy of sequence alignment calculation. A star alignment algorithm is designed and generated to demonstrate the development process.

Keywords: multiple sequence alignment algorithm, domain component, algorithm generation, convenient software development platform, bioinformatics


INTRODUCTION

Alignment is a common and important approach in biology study. In the research of bioinformatics (Wang et al., 2015), biological sequence alignment is one of the important processes of similarity analysis between unknown and known molecular sequences, the basis of biological sequence analysis and database search, and used in the sequence assembly. It is the key link to apply high-performance computing to biology.

Sequence alignment is a technique for identifying regions of sequence similarity by arranging genome sequences to obtain the function, structure, or evolutionary relationship between the sequences to be aligned. With the implementation of the Human Genome Project, the development of sequencing technology has produced a large amount of raw sequence data about biological molecules. For example, Illumina HiSeqX Ten can generate approximately 3 billion 2 × 150 bp paired-end sequencing data within 3 days (Illumina, 2016). Challenged with such a wealth of genome sequence data, to efficiently process and analyze these data, to compare similar regions and conserved sites between the two sequences, to seek sequence homology structures, and to reveal biological heredity, variation, and evolution, etc., have become the main motivations for the research of sequence alignment algorithms.

At present, most of the research on alignment algorithms focus on specific problems (Isa et al., 2014; Cattaneo et al., 2015; Chattopadhyay et al., 2015; Huo et al., 2016) or specific algorithm optimization (Farrar, 2007; Houtgast et al., 2017; Junid et al., 2017) in the field of sequence similarity analysis, but less on the whole problem domain, so it is difficult to get an algorithm component library with a higher level of abstraction and suitable for the whole field of sequence similarity analysis. To some extent, this leads to the redundancy of the sequence alignment algorithm and the errors that may be caused by the artificial selection algorithm. It also makes it difficult for people to effectively understand the algorithm structure and ensure the correct use of the algorithm, which reduces the accuracy of the sequence similarity analysis. Because of the specificity and low-level abstraction of existing algorithms, researchers need to spend a lot of time to learn and use such algorithms, and it is also difficult to locate and solve the errors generated by the algorithms; thus, maintainability and reusability of the algorithms are reduced, and the burden of sequence similarity analysis is increased.

Sequence alignment algorithms can be divided into pairwise alignment algorithms and multiplesequence alignment algorithms (Zhan et al., 2019, 2020). Among them, the most classic solution to the pairwise sequence alignment algorithm is dynamic programming. We studied the field of dynamic programming–based pairwise sequence alignment algorithm (DPPSAA) in the early stage and established a domain component library (Shi and Zhou, 2019), which has been successfully applied to the problem of pairwise sequence alignment algorithm. However, the multisequence alignment algorithm is rather complex. Because of its non-deterministic polynomial (NP)-complete (Wang and Jiang, 1994), current researches are all devoted to finding the optimal approximate solution. With the increase of the complexity and difficulty of the multisequence alignment algorithm, the reliability and efficiency of the algorithm are difficult to be guaranteed.

Based on the previous work, this article adopts the formal method PAR (Xue, 1997, 2016; Shi and Xue, 2009, 2012; Xue et al., 2018) to describe, construct, transform, and refine the components, models, and frameworks related to the multisequence alignment algorithm and expand PAR platform to support the generation of effective multiple sequence alignment algorithm via component assembly. The multilevel different models in the algorithm development process are unified under the PAR framework to effectively ensure the reliability of the resulting algorithm and improve the efficiency of algorithm development.

Through in-depth analysis of the field of multiple sequence alignment algorithms, based on the component library of the DPPSAA domain, some algorithm components have been improved and added, and a component library of multiple sequence alignment algorithms on top of the component library of the DPPSAA domain was established. Finally, an example, the successful assembly of the star alignment algorithm and the automatic generation of the C++ program, is shown.



ALGORITHM GENERATION UNDER THE PAR FRAMEWORK


Related Work

On the basis of the component library in the DPPSAA domain, this article has carried out the research on the algorithm design and program generation of multiple sequence alignment algorithms under the PAR framework.


PAR

The PAR framework includes two parts: software formal method and convenient software development platform. The PAR method is composed of a generic algorithm design language Radl, a generic abstract programming language Apla, systematic methodology for algorithms and programming. It combines two high-efficiency techniques, i.e., partition and recursion used in special problems, covering a variety of known algorithm design techniques such as dynamic programming, greedy, divide and conquer, and so on. It can be used as a unified method of algorithm generation to avoid the difficulty of making choices among the existing algorithm design methods. The PAR platform is composed of Apla to C++/C#/Java/Python program generation systems and realizes the automatic generation of algorithmic programs such as sequential programs, parallel/concurrent programs, and database applications.

Practice has proven that the productivity of complex algorithm program and database application software can be greatly improved by using the language, method, series algorithm, and program automatic generation tool provided by PAR. Many military departments, such as the National General Equipment Department, Beijing Military Region, and armored academy, have taken the lead in applying these achievements to the construction of China’s important military projects and have achieved remarkable military and economic benefits. The PAR framework has been appraised by the expert group of the Ministry of Science and Technology of China as “having the international advanced level, among which the theoretical framework of the correctness of the complex algorithm program has the international leading level.”



DPPSAA Domain Model and Component Library

In Shi and Zhou (2019), we analyzed the characteristics of DPPSAA, extracted the common and variable features and the constraints and dependencies between them, established the DPPSAA domain model and its algorithm component interaction model, and further implemented the models using the abstract programming language Apla to form a highly abstract DPPSAA component library, in order to automatically or semiautomatically assemble components to generate sequence alignment algorithms for specific fields, thereby reducing the error rate and time cost of manual selection algorithms for sequence similarity analysis, improving the efficiency of algorithm execution, and even assembling a more efficient new sequence alignment algorithm based on dynamic programming.

The experimental results show that the DPPSAA algorithm component library has a certain degree of practicability and has good expected results. It can be seen from the domain realization process that the domain feature model is a formal description at a higher level of abstraction, which not only makes the specific composition characteristics and dependencies of the algorithm clearly displayed, but also is very helpful for understanding the overall architecture of the algorithm. Moreover, the establishment of the feature interaction model makes it easier to specify the specific configuration knowledge required by the algorithm in the domain implementation process and then automatically assemble the components in the DPPSAA algorithm component library to design the desired algorithm, without paying too much attention to the details of algorithm implementation.




Algorithm Generation Process

Based on a large amount of practical work carried out in the early stage, combined with related methodologies such as PAR and domain engineering, the development of multisequence alignment algorithms can be divided into two parts: reuse-oriented development and application reuse development.

For reuse-oriented development, it can be divided into the following steps:

1. Analyze the algorithm family in the field of multiple sequence alignment, and establish the domain model.

2. Formally describe the component function specifications.

3. Use the PAR method to design abstract Apla algorithm components, use the PAR platform to obtain highly reliable executable language-level components, and expand the PAR platform component library in a self-expanding manner.

The process of designing a specific problem-solving algorithm and generating a program is a development process of application reuse:

1. Analyze and (formally) characterize the specific problem to be solved.

2. Determine the algorithm components required for assembly.

3. The Apla abstract language is used to describe the assembly process, and the executable program corresponding to the specific algorithm is automatically generated through the PAR platform.

The introduction of the PAR framework reduces the operational difficulty of algorithm component assembly and improves the automation of algorithm component assembly.




STAR ALIGNMENT ALGORITHM


Algorithm Idea

The star alignment algorithm (Zou et al., 2009, 2015) is a heuristic fast approximation algorithm for typical multisequence alignment. It compares all sequences in pairs and selects the sequence with the highest alignment score with other sequences as the central sequence. Then, continue to compare with other sequences to obtain the final alignment result. When adding subsequent sequences to the alignment process, follow the “leave blank once, leave blank everywhere” rule, which cannot guarantee the ultimate result of the alignment.

For example, for the sequence s1 = CGCT, s2 = GCGT, s3 = CCTG, the pairwise alignment results of the sequences s1, s2, and s3 are shown in Table 1.



TABLE 1. Distance matrix of s1, s2, and s3.
[image: Table1]

The star alignment algorithm adds the alignment scores of each sequence to other sequences and selects the sequence with the largest score as the central sequence. Therefore, in this case, s1 is selected as the center sequence, and the best alignment result and the final merge result with S2 and S3 are shown in Figure 1.

[image: Figure 1]

FIGURE 1. Result of star sequence alignment.




Algorithm Component and Apla Implementation

Using feature modeling knowledge and performing process analysis on star alignment algorithms, we will know that multisequence alignment is mainly used as the core service of star alignment algorithms in the star alignment process. The multiple sequence alignment service is mainly based on the pairwise sequence alignment, by selecting the optimal pairwise sequence alignment result as the central sequence, and then continuously adding the suboptimal sequence to the alignment until the final multisequence alignment result is obtained. After analyzing the execution process of the star alignment algorithm, the multisequence alignment operation service mainly consists of the following features (the component name of the corresponding feature in parentheses): sequence legality check (msa_check), distance matrix (dist_Matrix), pairwise alignment manipulation (align_manipulation), center sequence selection (msa_center), remember alignment space (rmb_space), multisequence alignment result output (msa_op_result), and so on. Among them, sequence legality check, pairwise alignment manipulation, distance matrix, and center sequence selection are mandatory features in the star alignment algorithm, and the multisequence alignment result output feature mainly depends on the remember alignment space feature; that is, when the assembly algorithm contains a multisequence alignment result output component, it will include and implement the remember alignment space component by default.

Taking DPPSAA as the basis of sequence alignment, generic programming language Apla is used to abstractly represent the star alignment algorithm, which can realize star alignment algorithm by standardized assembly. Here, we expand on the basis of the component library in the DPPSAA domain, so that the component library in this domain can be used to assemble and implement the star alignment algorithm. We perform Apla representation of the extended component as follows:

1. Sequence legality check

msa_check is an extension based on the check component in the DPPSAA field that can be used to detect multiple sequences. The Apla process statement is:

procedure msa_check(String str[]);

where str[ ] represents the base string array for multiple sequence alignment.

2. Distance matrix

dist_Matrix means that all pairwise alignment scores participating in multisequence alignments are returned as distance matrix elements, and the component uses pairwise sequence alignment operations as its generic parameters. The prototype of the Apla function is as follows:

function dist_Matrix (procalign_manipulation(sometype elemMatrix; ADT dp_mode(eM:elemMatrix); op_mode (func score_op():integer; proc traceback (proc print_align(); proc print_extrude() =NULL)); result:boolean; eM: elemMatrix; s:String; t:String))):integer[ ][ ].

3. Center sequence selection

The msa_center component is an important part of the components library of multiple sequence alignment algorithm. This component can be used to select the best alignment in all pairwise alignments; take the best alignment sequence in the alignment as the center sequence, and then iteratively add the remaining sequences to obtain the best multiple sequence alignment results. The function prototype is as follows:

function msa_center(dist[][]: integer):integer;

The array dist represents the array returned by the distance matrix, and the component returns the index value of the center sequence.

4. Remember alignment space

In the star alignment algorithm, the algorithm follows the rule of “leave blank once, leave blank everywhere” when adding subsequent sequences to the alignment process. Therefore, the role of the rmb_space component is to remember the space inserted during each sequence alignment. The function prototype is as follows:

function rmb_space(): integer[][];

5. Multisequence alignment result output

This component inserts the space index value obtained in (4) into the sequence to output the final multisequence alignment result. This component can be implemented with the following Apla process:

procedure msa_op_result(space[][]:integer);



Star Alignment Algorithm Generation

Using the Apla-C++ conversion system, the aforementioned component library is converted into the corresponding C++ component through the combination of automatic conversion and manual conversion, which can be used to generate the star alignment algorithm program and conduct test analysis to obtain experimental results. This section shows only the three main components: dist_Matrix component, msa_center component, and rmb_space component.

As the star alignment algorithm requires the pairwise sequence alignment manipulation, and the alignment score result value is used as the element of the distance matrix, the dist_ matrix component needs to use the sequence alignment manipulation in DPPSAA as its generic parameter to obtain the score value of the pairwise alignment of all sequences. In the process of converting the Apla program to the C++ program, it is first necessary to assemble the components in DPPSAA to form a pairwise sequence alignment algorithm and design the pairwise sequence alignment algorithm as an independent function as the function pointer parameter of the distance matrix component, which reduces the dependency between the pairwise sequence alignment algorithm and the distance matrix. Here, we set the pairwise sequence alignment algorithm to NW algorithm and return the pairwise sequence alignment scores. The C++ code is as follows:

class MsaNW{//NW algorithm assembly

public:

int Msa_NW(Score_matrix_mani& matrix,const std::string& s,const std::string& t){

matrix.apply_memory();

matrix.Memory_Score_of_Matrix(&Init_Score_matrix::Init_Score_matrix1, matrix.get_Matrix(), matrix.getPenaltyMatrix(), matrix.get_length_s(), matrix.get_length_t());

dp_mode dp_NW;

dp_NW.align_and_score(matrix,&set_and_remember::set_and_remember1);

return matrix.the_Last_element_score();

}

}

The C++ program obtained by transforming the dis_matrix component is as follows:

class dist_Matrix{

int** dist; //distance matrix

int* row_sum;//sum of row

int seqs_num;//number of sequences

public:

void Dist_Matrix(int(MsaNW::*Msa_NW)(Score_matrix_mani&, const std::string&, const std::string&),std:string* seqs, Score_matrix_mani** matrix)//final score {..}

void sum_row(){..}

}

Among them, the class dist_Matrix contains three attributes; dist represents the distance matrix, for example, the element dist[0][1] = 1, which represents the pairwise sequence alignment score value of the first sequence, and the second sequence is 1; row_sum represents the sum of the scores of each sequence after pairwise alignment with other sequences, that is, the row sum of dist; seqs_num represents the number of sequences participating in the alignment. In the method Dist_Matrix, seqs represents a string pointer to all sequences participating in the alignment, matrix represents a two-dimensional matrix composed of score matrix objects obtained after pairwise alignment of all sequences, and the method sum_row() is used for calculation row_sum value.

At the same time, msa_center component is transformed into a class msa_center. The attribute center_index of this class records the index of the center sequence. The method Msa_center is used to calculate the center_index, and the distance matrix object is used as its parameter. The C++ representation of this component is as follows:

class msa_center{

private:

int center_index; //record center sequence index

public:

int Msa_center(dist_Matrix distM){..}

}

rmb_space component is also converted to the class rmb_space in C++, where the attribute Msa_space_loc represents the gap position inserted when the center sequence is aligned with other sequences, and the attribute msa_ret_str means the sequence alignment result after inserting gaps in all sequences according to the “leave blank once, leave blank this time” rule. The C++ representation is as follows:

class rmb_space{

int** Msa_space_loc;//the position of the space when each sequence is aligned with the center sequence

std::string* msa_ret_str;//MAS alignment result

public:

void Msa_add_space(MsaCenterSeq mcs, Dist_Matrix distM, Msa_Sequence* seqs, Score_matrix_mani** matrix){.}

}

Through the above conversion, we can obtain the complete component library to assemble and generate the star alignment algorithm. The process of assembling and generating the star alignment algorithm is listed below, where Star represents the parameter matrix of the method Dist_Matrix used to construct the distance matrix in the star alignment algorithm, that is, the score matrix operation object in the NW algorithm.

int main{

std::string s[3]={"CGCT", "CCTG","GCGT"};

int seq_num = sizeof(s)/sizeof(s[0]);

Msa_check().check_dna(s, seq_num);

Star star(s, seq_num);

dist_Matrix distM(seq_num);

distM.Dist_Matrix(&MsaNW:Msa_NW,s, star.get_matrix());

distM.sum_row();

msa_center mc;

mc.Msa_center_seq(distM);

RmbSpace rs(seq_num, star.get_Seqs()->max_length());

rs.Msa_add_space(mc, distM, star.get_seqs(), star.get_matrix());

Msa_print_align().msa_print_align(rs.get_ret_str(), seq_num);

}



Experiment Analysis

We downloaded four Escherichia coli DNA data with a length of approximately 200 characters from NCBI’s Genbank gene database website for experimental testing. The basic configuration of the machine is 3.40 GHz, Intel Core i7 processor, 8 GB RAM, and Windows 7 operating system. The result of the experiment is shown in Figure 2. The comparison takes 11.318 s.

[image: Figure 2]

FIGURE 2. Snapshot of the alignment result.


The running kr alignment algorithm generated by the assembly can perform multisequence alignment better and has obtained results similar to the original star alignment algorithm, which verifies the practicability of the star alignment algorithm generated by the assembly.




CONCLUSION

Sequence alignment algorithms are widely used. Because of the complexity of multiple sequence alignment problems and the diversity of algorithm design strategies, it is difficult to guarantee the development efficiency and reliability of multiple sequence alignment algorithm programs.

This article takes the problem of multiple sequence alignment as a special field and works on the algorithm development and program generation under PAR framework. Through the analysis of problem characteristics, the generality of the domain algorithm family is extracted, the features are described, and abstract algorithm components are designed. Based on the research of the pairwise sequence alignment algorithm family, the method and platform under the PAR framework are used to assemble the specific multisequence alignment algorithms and generate programs automatically. As a case study, assembly of the star alignment algorithm is given to demonstrate the generation process of the specific algorithm program, which further proves the practicability of the component library in the related field and the reliability and efficiency of the algorithm generation under the PAR framework.
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The dimensionality reduction method accompanied by different norm constraints plays an important role in mining useful information from large-scale gene expression data. In this article, a novel method named Lp-norm and L2,1-norm constrained graph Laplacian principal component analysis (PL21GPCA) based on traditional principal component analysis (PCA) is proposed for robust tumor sample clustering and gene network module discovery. Three aspects are highlighted in the PL21GPCA method. First, to degrade the high sensitivity to outliers and noise, the non-convex proximal Lp-norm (0 < p < 1)constraint is applied on the loss function. Second, to enhance the sparsity of gene expression in cancer samples, the L2,1-norm constraint is used on one of the regularization terms. Third, to retain the geometric structure of the data, we introduce the graph Laplacian regularization item to the PL21GPCA optimization model. Extensive experiments on five gene expression datasets, including one benchmark dataset, two single-cancer datasets from The Cancer Genome Atlas (TCGA), and two integrated datasets of multiple cancers from TCGA, are performed to validate the effectiveness of our method. The experimental results demonstrate that the PL21GPCA method performs better than many other methods in terms of tumor sample clustering. Additionally, this method is used to discover the gene network modules for the purpose of finding key genes that may be associated with some cancers.

Keywords: Lp-norm, graph regularization, sparse constraint, principal component analysis, tumor clustering, gene network modules, L2, 1-norm


INTRODUCTION

High-throughput sequencing technologies, including genome-wide measurements, have enabled large-scale gene expression profiles to accumulate faster (Goodwin et al., 2016). It is of great significance to obtain useful information from these data. Reliable and precise identification of cancer types and obtaining key pathogenic genes are very important for cancer diagnosis and treatment (Koboldt et al., 2012). Generally, gene expression data have a typical characteristic of “high dimension, low sample” size (West, 2003), which is a challenge for most traditional statistical methods. Too many variables and some uncorrelated noise variables in the gene expression data may all have a negative effect on the tumor clustering performance regardless of whether supervised or unsupervised clustering methods are used. Despite these problems, many researchers have demonstrated the effectiveness of tumor-type identification and feature selection by leveraging many machine learning algorithms (Hochreiter et al., 2010; Lee et al., 2010; Liu J. X. et al., 2015; Bunte et al., 2016; Kong et al., 2017; Wang et al., 2017; Chen et al., 2019). Among them, algorithms based on principal component analysis (PCA) (Collins, 2002; Jolliffe, 2002) have been widely used to process gene expression data successfully (Liu et al., 2013; Liu J. X. et al., 2015; Wang et al., 2017; Feng et al., 2019) for dimension reduction and denoising. However, PCA-based algorithms, including sparse principal component analysis (SPCA) (Zou et al., 2006; Shen and Huang, 2008; Journee et al., 2010; Liu et al., 2016; Feng et al., 2019) and robust principal component analysis (RPCA) (Candès et al., 2009; Liu et al., 2013; Liu J. X. et al., 2015; Wang et al., 2017), mainly deal with data that lie in a linear data manifold (Jiang et al., 2013). Many methods that can handle data lying in a non-linear manifold have been proposed, such as locality preserving projections (LPP) (He et al., 2005), locally linear embedding (LLE) (Roweis and Saul, 2000), local tangent space alignment (Zhang and Zha, 2002), Laplacian eigenmap (LE) (Belkin and Niyogi, 2002, 2003; Spielman, 2007) and latent variable model (LELVM) (Keyhanian and Nasersharif, 2015). The purpose of these non-linear dimensionality reduction techniques is to find a representation of points (samples) in a low-dimensional space, in which all points (samples) still maintain the similarity in the original high-dimensional space.

In recent years, optimization models that combine linear and non-linear dimensionality reduction methods, especially graph Laplacian embedding, have demonstrated their effectiveness. Liu et al. (2017) constructed a graph Laplacian matrix for semisupervised feature extraction. Cai et al. (2011) proposed a method named graph regularized non-negative matrix factorization (GNMF), which combined graph structure and non-negative matrix factorization for an improved compact representation of the original data. Jiang et al. (2013) developed graph-Laplacian PCA (gLPCA), which sought a low-dimensional representation of image data with significant improvement in clustering and image reconstruction by incorporating graph structures and PCA. Feng et al. (2017) employed pgLPCA based on graph Laplacian regularization and Lp-norm for feature selection and tumor clustering. Wang et al. (2019a) used Laplacian regularized low-rank representation (LLRR), which considers the intrinsic geometric structure of gene expression data to cluster the tumor samples. In addition, many methods benefit from norm constraints. For example, Journee et al. (2010) employed the L0-norm constraint based on PCA to stress the sparse expression of genes in samples. The L1-norm (Tibshirani, 1996) was introduced as the regularization function in sparse singular value decomposition (SSVD) (Lee et al., 2010; Kong et al., 2017) and the mix-norm optimization model proposed by Wang et al. (2019b). Feng et al. (2016) employed the L1/2-norm constraint in their model to select characteristic genes. However, there remain some facets to be improved: for example, the robustness of the algorithm should be enhanced further, and the sparse representation of the data should be highlighted. For these purposes, the Lp-norm (Chartrand, 2012; Nie et al., 2013; Feng et al., 2017; Kong et al., 2017) constraint was used in the optimization model to degrade the sensitivity of outliers of the data. The L2,1-norm (Xiang et al., 2012; Yang et al., 2012) constraint was used by Liu et al. (2017) and Wang et al. (2019b) to generate the row sparsity.

Motivated by the literature mentioned above, especially (Tibshirani, 1996; Chartrand, 2012; Xiang et al., 2012; Nie et al., 2013; Feng et al., 2017; Kong et al., 2017), we propose a new method named PL21GPCA incorporating traditional PCA, graph Laplacian embedding and different norm constraints on the loss function and the regularization function for robust tumor sample clustering and gene network module discovery. Five gene expression datasets, including one benchmark dataset, two single-cancer datasets from The Cancer Genome Atlas (TCGA), and two integrated datasets of multiple cancers from TCGA, are used to evaluate the effectiveness of our method. The experimental results demonstrate that the PL21GPCA method outperforms many existing methods in terms of tumor sample clustering. Additionally, this method is employed to discover gene network modules to identify the key genes with close relationships to some cancers.

We organize the rest of this paper as follows. Section “Related Works” provides the related works containing the non-convex proximal Lp-norm, L2,1-norm and graph regularized PCA. The optimization model of PL21GPCA is presented, and the solution procedure is detailed in section “Methodology.” Section “Experiments and Discussion” presents the parameter selections, experimental results and some discussions. The tumor sample clustering and gene network analysis are also described in this section. In Section “Conclusion and Suggestions,” we present the conclusion for this article and propose some suggestions for future research.



RELATED WORKS


Definitions of the Proximal Lp-Norm and L2,1-Norm

Let X∈Rp×n be a data matrix, the proximal Lp-norm of X is defined as follows:

[image: image]

The Lp-norm with 0 < p < 1 is a function with three typical characteristics: globally non-differentiable, non-convex, and non-smooth (Chartrand, 2012; Zhang et al., 2015). Many researchers have made suggestions to deal with Lp-norm (0 < p < 1) minimization (Chartrand, 2012; Guo et al., 2013; Qin et al., 2013). Since Lp-norm minimization can result in a sparser solution than the L1-norm and perform better in terms of robustness to outliers than the L2-norm in a sense, we use it to constrain the loss function of the PL21GPCA optimization model. The generalized shrinkage operation proposed by Chartrand (2012) is adopted to solve the function effectively in our method.

The L2,1-norm of matrix X is as follows:

[image: image]

where xi (corresponding to feature i) is the ith row of matrix X. Yang et al. (2012) provided an intuitive explanation of the L2,1-norm in the literature. To solve the L2,1-norm, we can compute the L2-norm of each row of X first, record it as a vector b(X) = (∥x1∥2,∥x2∥2,…,∥xp∥2), and then compute the L1-norm of vector b(X). The components of vector b indicate the importance of each feature. The L2,1-norm favors obtaining a small number of non-zero rows in matrix X, and then feature selection will be achieved.



PCA and Graph Laplacian Embedding


Principal Component Analysis (PCA)

Let X = (x1,⋯,xn) ∈ Rp×n (p≫n) be a matrix whose rows represent genes and columns represent samples. PCA is usually used to find the optimal principal directions VT = (v1,⋯,vn) ∈ Rk×n (VTV = I) that define the low-dimensional (k-dim) subspace. And the projected data points in the low subspace Vcan be denoted as the elements of the matrix Up×k = (u1,⋯,uk) ∈ Rp×k. The traditional PCA finds Uand V with the squared Frobenius norm:

[image: image]

In our optimization model, the proximal Lp-norm ∥g∥p (0 < p < 1) (Chartrand, 2012; Nie et al., 2013; Feng et al., 2017) is used instead of the traditional quadratic loss function ∥g∥F to reduce the influence of outliers and noise. PCA naturally relates closely to the classic clustering means known as K-means (Ding and He, 2004). The optimal principal components contained in matrix V provide the solution of the K-means clustering method. It inspired us to combine PCA with Laplacian embedding, whose principal purpose is also clustering.



Graph Laplacian Embedding

Principal component analysis can find an approximate set of basis vectors in the case where data usually lie in a linear manifold (Jiang et al., 2013). In consideration of the local invariance of the intrinsic geometric structure of the data distribution, graph Laplacian embedding is a popular method among recent studies in non-linear manifold learning theory (Belkin and Niyogi, 2002, 2003; Spielman, 2007). The assumption of local invariance is that if two points (samples) are close in the intrinsic geometry of the original data distribution, the representations of these two points (samples) in the new coordinate are also close to each other. The local geometric structure can be modeled through a nearest neighbor graph on a scatter of data points. Given the data matrix X = (x1,⋯,xn) ∈ Rp×n, xi(i = 1,⋯,n)can be regarded as one data point (one vertex in the graph). For each data point xi, we find its k′ nearest neighbors and put edges between xi and its neighbors. Then, a graph with n vertices can be constructed, on which the weight matrix W∈Rn×n is defined. wij is the weight between vertices xi and xj, it is used to measure the closeness of two points xi and xj, and it is a symmetric similarity matrix. There are three popular choices defining the weight matrix on the graph: heat kernel weighting, 0–1 weighting, and dot-product weighting. If nodes i and j are connected, using heat kernel weighting, [image: image], wij = 1 using 0–1 weighting and [image: image] using dot-product weighting. The different similarity measures are suitable for different situations. Detailed information about the different weighting schemes can be found in the literature (Cai et al., 2011).

Let ZT = (z1,z2,⋯,zn) ∈ Rk×n represent the ndata points in the k-dim embedding coordinates ZT = (v1,⋯,vn) ∈ Rk×n (ZTV = I), i.e., the representation of x_i in the new low-dimensional basis is zi = [vi1,⋯,vik]. The “dissimilarity” of the two data points in the low basis can be measured by the Euclidean distance or the divergence distance. The Euclidean distance is adopted in our method. Define the “dissimilarity” of the two points in the low basis as d(zi,zj) = ∥zi−zj∥2, combined with the weight matrix W, and the smoothness of the low-dimensional representation can be measured by minimizing:

[image: image]

where Tr(•)is the trace of a matrix, D=diag(d_1,⋯,d_n)is a diagonal matrix, and [image: image]. We call the L=D–W the Laplacian matrix (Spielman, 2007).



METHODOLOGY

The PL21GPCA procedure is presented in this section. Figure 1 illustrates our general research framework. In brief, our work includes two steps. The first is obtaining the optimal projected matrix Up×k and the principal directions matrix Vk×n via PL21GPCA. The second is to evaluate the validity of PL21GPCA. In this step, based on the principal directions matrix Vk×n obtained by PL21GPCA, the classic clustering method K-means is employed for tumor sample clustering. According to the projected matrix Up×k, the differentially expressed genes are selected to carry out gene network analysis to find the key genes with close relationships to some cancers.


[image: image]

FIGURE 1. The general schematic framework of the PL21GPCA methodology.


To summarize, three aspects are highlighted in our method:

(1) To reduce the influence of outliers and noise, the non-convex proximal Lp-norm ∥g∥p(0 < p < 1) is used on the loss function, which could improve the robustness of the optimization model effectively compared with the other constraints.

(2) To enhance the sparsity of gene expression in cancer samples, the L2,1-norm is used on the projected matrix Up× k.

(3) To retain the intrinsic geometric structure of the data points (samples), the graph regularization item is recommended in the optimization model.

Assume the input matrix X = (x1,⋯,xn) ∈ Rp×n(p≫n), which denotes p genes’ expression in n samples. Our goal is to find the optimal low-dimensional (k-dim) subspace denoted as ZT = (v1,⋯,vn) ∈ Rk×n (ZTV = I) and the projected matrix Up×k = (u1,⋯,uk) ∈ Rp×k in the low subspace. The traditional PCA finds Uand V with the squared Frobenius norm in the solution. In our optimization model, the proximal Lp-norm ∥g∥p(0 < p < 1) (Chartrand, 2012; Nie et al., 2013; Feng et al., 2017) replaces the traditional quadratic loss function ∥g∥F to reduce the influence of outliers and noise. The L2,1-norm is used on one of the regularization terms to enhance the sparse gene expression in cancer samples. The graph Laplacian regularization item emphasizing the local invariance of the intrinsic geometric structure is recommended in the optimization model.

The objective function of this method is designed as follows:

[image: image]

Clearly, the objective function is somewhat intractable because it is non-convex and non-smooth. We adopt the augmented Lagrangian multiplier (ALM) (Hestenes, 1969; Bertsekas, 1982; Spielman, 2007; Lin et al., 2010) to address this optimization problem. Researchers have proven that the ALM algorithm possesses Q-linear convergence properties under some conditions (Bertsekas, 1982).

When using the ALM method to obtain the optimal solution of (5), we replace X−UZT with E. Eq. (5) can be equivalently written as:

[image: image]

According to the ALM method, eq. (6) is equivalent to minimizing:

[image: image]

where Y is the Lagrangian multiplier, and μ is the step size of the update rule. In (7), there are three variables to be solved. The alternating direction method (ADM) (Gabay and Mercier, 1976) is adopted to tackle this thorny problem because the equation with only one variable is easily solved when the others are fixed. By this means, (7) naturally results in three subproblems.

Problem 1: When U and V are fixed, (7) is written as follows:

[image: image]

where 0 < p < 1. Eq. (8) can be solved by the proximal shrink operator denoted as follows:

[image: image]

Let [image: image]. Then, according to the shrinkage operation (soft thresholding) proposed by Chartrand (2012), E is updated as:

[image: image]

Problem 2: When E and V are fixed, (7) is simplified as follows:

[image: image]

To simplify (11), let [image: image]. Then, (11) is written as:

[image: image]

The partial derivatives of L with respect to Uare:

[image: image]

where Q∈Rp×p is a diagonal matrix with [image: image](i = 1, … ,p) (Xiang et al., 2012). Letting (13) be equal to 0, the following update rule for U is then obtained:

[image: image]

To simplify (14), let [image: image], and then (14) is written as:

[image: image]

Problem 3: When E and Ware fixed, (7) is simplified as follows:

[image: image]

With respect to the settings [image: image], (16) can be written equivalently as:

[image: image]

Based on (17), Vis found by minimizing:

[image: image]

Therefore, Vr+1 can be obtained as follows:

[image: image]

where (v1,…,vk) are the keigenvectors corresponding to the smallest k eigenvalues of the matrix [image: image]. Thus, based on the ALM, ADM and the shrinkage operation, the solution to solve the optimization model described in (5) is shown in Algorithm 1. In the optimization model, there are six parameters k, p, λ, α, ρ, μ to be pre-determined, among them. As the parameters used to control the step size in the update rule of AML, we set μ = 10−2 and ρ = 1.2 for all gene expression datasets experiments (Feng et al., 2016). The parameter k is determined refering to the number of prior categories of each dataset. For the three essential parameters p, λ, α, to be determined in (5), we choose them corresponding to different situations for the best clustering performance through extensive experiments. Different parameters are chosen for different datasets. Detailed parameter selections and discussions are described in section “Experiments and Discussion.”


ALGORITHM 1. The solution to optimized (5).

[image: Table 1]


EXPERIMENTS AND DISCUSSION


Gene Expression Datasets

Five gene expression datasets, which include one benchmark dataset, two single-cancer datasets from TCGA, and two integrated multicancer datasets from TCGA, are used to evaluate the performance of PL21GPCA. The verified experiments consist of two aspects: “tumor sample clustering” and “gene network module discovery.” Based on the optimal low-dimensional (k-dim) subspace denoted as VT =(v_1,⋯,v_n)∈Rk×n   (VT V=I), the classical clustering method K-means is then used for tumor clustering. For comparison, extensive experiments are also performed using existing dimensionality reduction methods, including SPCA (Journee et al., 2010), RPCA (Candès et al., 2009), gLPCA (Jiang et al., 2013), pgLPCA (Feng et al., 2017) and GNMF (Cai et al., 2011). Among the compared methods, some are based on PCA, and some introduce the graph Laplacian regularization item. Based on the optimal projected matrix Up×k, the differentially expressed genes are selected for gene network analysis to find key genes with close relationships to some cancers.

The details of the five data sets are as follows. The benchmark gene expression dataset is lung cancer data (Bhattacharjee et al., 2001) that have often been employed by researchers to evaluate their algorithms (Lee et al., 2010; Kong et al., 2017), consisting of 12,625 genes of 56 samples. There are four types of lung cancer in the 56 samples: pulmonary carcinoid (20), colon metastases (13), small cell lung carcinoma samples (6) and normal lung samples (17). The two single-cancer datasets and the two integrated multicancer datasets are all from The Cancer Genome Atlas (TCGA) which is known as the largest tumor specimens database. The genomic data provided by TCGA include DNA methylation, microRNA expression, gene expression, protein expression, and DNA copy number, etc. We downloaded gene expression datasets (at level 3) of five different cancers from TCGA: colorectal cancer (CRC), cholangiocarcinoma (CHOL), squamous cell carcinoma of head and neck (HNSC), pancreatic cancer (PAAD), and esophageal cancer (ESCA). Each dataset consists of 20,502 genes expressed in different numbers of samples. In our experiments, CRC and CHOL are used as single-cancer datasets to evaluate the performance of the PL21GPCA method. There are 281 samples for CRC and 45 for CHOL. Each of these two datasets contains two types of cancer samples, “negative” and “positive.” “Negative” or “NT” represents normal samples. “Positive” or “TP” represents diseased samples. There are 262 “TP” samples in the CRC data and 36 in the CHOL data, and the rest are “NT” samples. Two integrated datasets are used to further verify the performance of the PL21GPCA method. Each integrated dataset consists of 3 types of cancers. One of the integrated datasets, H_C_P, contains 836 “TP” samples, among which the sample numbers of the three cancers are 398 (HNSC), 262 (CRC), and 176 (PAAD). The other integrated dataset, E_C_C, contains 481 “TP” samples, in which the sample numbers of the three cancers are 183 (ESCA), 36 (CHOL), and 262 (CRC). The statistics of these datasets are summarized in Table 1.


TABLE 1. Statistical information on the experimental data.

[image: Table 1]


Tumor Sample Clustering


Evaluation Metric

Based on the optimal principal directions ZT = (v1,⋯,vn) ∈ Rk×n (ZTV = I), the K-means algorithm is then employed for tumor sample clustering. The accuracy (ACC) and the normalized mutual information (NMI) are the two most commonly used metrics to evaluate the clustering results (Cai et al., 2005). For the ith sample, we use pi to denote the prior label and ri to denote the obtained clustering label. The metric ACC is defined as follows:

[image: image]

where n denotes the total number of samples in every dataset. The function θ(x,y) equals 1 if x=y and 0 otherwise. The function map(ri) maps each obtained cluster label ri to the equivalent prior label. Let C be the prior set of clusters and C′ be the obtained set from our algorithm. Define their mutual information metric MI(C,C′) as:

[image: image]

where p(ci) and [image: image]are the probabilities that a sample arbitrarily selected from the dataset belongs to clusters ci and [image: image], respectively, and [image: image] is the joint probability. In the experiments, the metric NMI is defined as follows:

[image: image]

where H(C) and H(C′)are the entropies of C and C’, respectively. Therefore, the metric NMI(C,C′) ranges from 0 to 1. NMI=1 if the two sets of clusters are identical, and if the two sets are independent, NMI=0.

However, a problem that needs to be resolved is that the K-means algorithm may or may not converge to the same solution in each run with random initial conditions. Therefore, the evaluated metrics ACC and NMI obtained by only once-running of k-means is not enough to explain the result. To solve this problem, for the given cluster number k, K-means was run 50 times on each dataset, and the average performance was computed. As a reference, we also recorded the maximum values of ACC and NMI of the 50 runs. Thus, four metrics, ACC_max, ACC_mean, NMI_max and NIM_mean, are used to evaluate our experiments. Generally, the larger the mean value is, the better is the clustering performance, and the better are the stability and robustness of the clustering. This also indicates that the corresponding dimension reduction method has good robustness and sparse effect.



Parameter Selection

The PL21GPCA model has three essential parameters, p, λ, and α, which need to be determined in (5). The range of each parameter is 0 < p < 1, λ > 0, α > 0. When determining the optimal value of one parameter, the other two parameters are fixed. We focus on the influence of the value of p on the performance. PL21GPCA achieves consistently good performance when the two regularization parameters λ and α are varied from 10 to 1,000 on all three datasets. Figure 2 shows how the average performance varies when taking the essential parameter p at nine different values from 0.1 to 0.9. For every dataset, extensive experiments are carried out to seek the appropriate parameters to achieve the best performance for tumor sample clustering. Thus, different parameters are chosen for different datasets (see Table 2).


[image: image]

FIGURE 2. The average performance taking the essential parameter at nine different values from 0.1 to 0.9. (A) The mean value of ACC for different cancer datasets. (B) The mean value of NMI for different cancer datasets.



TABLE 2. Values of the three parameters p, λ, and α for different datasets.

[image: Table 2]
There is another parameter that is not appear in the objective function of PL21GPCA. However, it is also an important parameter affecting the performance of our method. It is parameter k′, the number of nearest neighbors of every point when constructing the graph in the step of graph Laplacian embedding. Setting this parameter too small may cause overfitting, and too large may increase the error. By extensive experiments, we find that the appropriate value for this parameter is near the square root of the sample number for different datasets.



Clustering Results

Tables 3–5 show the clustering results on the lung cancer data, single-cancer data from TCGA (CRC and CHOL datasets), and integrated cancer data (H_C_P and E_C_C datasets), comparing the PL21GPCA-based method with the competitors. For each dataset with a given cluster number k, the K-means algorithm was run 50 times to randomize the experiments. The maximum and the mean value metrics are all presented in the tables. The performance of the PL21GPCA-based method is highlighted in bold in the tables. Regardless of the datasets, the PL21GPCA-based method always results in the best performance on the mean value metrics ACC_mean and NMI_mean. As mentioned above, the mean value is more meaningful than the maximum value, which is for reference only. By leveraging the power of three measures, including taking the proximal Lp-norm ∥g∥p(0 < p < 1) on the loss function, employing the L2,1-norm regularization item to insure feature selection, and introducing the Laplacian regularization item to emphasize the geometrical structure of the data, the PL21GPCA-based method can always get a better clustering performance.


TABLE 3. Clustering performance on lung cancer.

[image: Table 3]

TABLE 4. Clustering performance on CRC and CHOL.

[image: Table 4]

TABLE 5. Clustering performance on H_C_P and E_C_C.

[image: Table 5]
For the different types of data used in the experiments, a number of meaningful points need to be emphasized further.


The benchmark data

For the lung cancer dataset, Table 3 shows that the PL21GPCA-based method achieves the same performance as SPCA, RPCA and pgLPCA considering the maximum value metrics (the ACC_max and the NIM_max are also 100%) but is obviously superior to the other methods in terms of the mean value metric (ACC_mean reaches 96.82% and the NIM_mean reaches 93.44%).



Single-cancer data from TCGA

Table 4 shows the clustering performance of the two single-cancer datasets from TCGA. For the CRC dataset, our method presents very superior performance compared with other methods, with the ACC_mean reaching 99.64% as well as the ACC_max. The good average performance shows the robustness of the PL21GPCA method. In addition, the two NMI metrics (all reaching 90.55%) also go far beyond the performance of other methods. For the CHOL dataset, all the methods achieve the same results (100%) when considering the maximum value metrics. Our method achieves the same performance (100%) as GNMF and RPCA in terms of the mean value metrics. A surmise is reported that there may be distinct discriminations for the two kinds of samples in the original CHOL data (Kong et al., 2017).



Integrated multicancer data from TCGA

Table 5 reports the estimation results on the two integrated datasets. It shows that the PL21GPCA method performs much better than the competitors. As highlighted in bold in Table 5, for H_C_P data, the ACC_max and the ACC_mean all reach 96.41%, and the NMI_max and the NMI_mean are also superior to the corresponding values for other methods. For E_C_C data, our method is still outstanding; taking the ACC metric as an example, the ACC_max reaches 85.65%, and the ACC_mean reaches 84.09%. Based on the excellent performance on these two integrated datasets, should we speculate that the PL21GPCA method is more suitable for learning the compact representation of higher-dimensional and more complex data than its competitors, which needs further verification.

Finally, as we can see from Tables 3–5, among the compared methods, the RPCA method performs second to our method and better than the other competitors, such as SPCA, GNMF, gLPCA, and pgLPCA. The performance of RPCA is in italics in the tables. If the intrinsic geometric structure is introduced to RPCA, will the performance be improved further? This question is also worth further verification.



Embedding Evaluation

To further show the performance of the novel dimensionality reduction method compared others, a visualized data distribution of the low-dimensional embedding corresponding to the first two components of the PCA-based method are demonstrated. Besides the proposed method PL21GPCA, the results of three other methods including SPCA, gLPCA, pgLPCA are compared because these methods are also the direct extensions of PCA. Figure 3 presents the sample clustering results in a two-dimensional space. We choose two representative datasets CRC data and H-C-P data to show the results. Figures 3A–D are the results of the compared methods SPCA, glPCA, gpLPCA and PL21GPCA, respectively, on the CRC dataset. Figures 3E–H are the compared results of the four methods on the H-C-P dataset. No matter for the CRC data which contains two types of cancer samples, or for the H-C-P data which contains three types of cancer samples, SPCA and gLPCA make the samples from different categories being mixed together, and the pgLPCA can only separate the samples into categories roughly, so they have unideal clustering results. However, PL21GPCA make the embeddings of samples in clearer distribution. Therefore, the clustering results is better than the compared methods. The visualized results verified the robustness and the flexibility of the proposed model.


[image: image]

FIGURE 3. A visualized comparison of low-dimensional embeddings by SPCA, gLPCA, pgLPCA, and PL21GPCA on COAD and H-C-P datasets. (A–D) Are the results of the compared methods SPCA, glPCA, gpLPCA, and PL21GPCA respectively on the CRC dataset. (E–H) Are the compared results of the four methods on the H-C-P dataset.




Experiments on Simulated data

Experiments on simulation data are also carried out to evaluate the effectiveness of PL21GPCA. The simulation data used in the experiment is a matrix X3000×80 generated by rand function in Matlab. In order to simulate the representation of features in different types of samples, based on the generated matrix X3000×80, some changes have also been made. Firstly, we add 1 to the values of columns 1 to 20 in rows i∗30−29(i = 1,⋯100) of matrix X3000×80, add 2 to the values of columns 21 to 40 in rows i∗30−19(i = 1,⋯100), add 3 to the values of columns 41 to 60 in rows i∗30−9(i = 1,⋯100), add 4 to the values of columns 61 to 80 in rows i∗30−5(i = 1,⋯100), add 2 to the values of columns 21 to 40 in rows i∗30−25(i = 1,⋯100), add 1 to the values of columns 1 to 20 in rows i∗30−15(i = 1,⋯100), which means that the 80 samples in the simulation data contain four categories. Secondly, we use the function imnoise in matlab to add different sizes of Gaussian white noise to X. The mean value of the added Gaussian white noise is 0 and the variance σ2 is chosen in the range of [0.4∼1.2]. Next, we use the proposed method PL21GPCA and the compared methods to reduce the dimension and denoise the simulated data, and then use the K-means method to cluster the denoised data, the evaluation metric ACC_mean mentioned above is used to test the effectiveness of the method. the K-means algorithm is run 50 times to randomize the experiments.

Table 6 shows the experiments results on simulated data. It can be seen evidently that the performances of all methods change with the increase of noise. The best performance of different methods when adding different noises are marked with black bold. Although the performance of pl21GPCA is second only to RPCA when the noise is low (σ2 = 0.4), with the increase of Gaussian white noise, the effect of our proposed method is mostly ahead of other methods especially when σ2 = 0.6, 0.8, 1.2, which shows that the new method has better de-noising ability and robustness.


TABLE 6. Clustering performance on simulated data with different Gaussian white noise.

[image: Table 6]


Gene Network Module Discovery

Due to the outstanding performance of our method on the CRC dataset and the integrated H_C_P dataset, the construction and analysis of the gene network are based on these two datasets. The strategy of gene network module discovery involves two steps. First, the genes for constructing the co-expression gene networks are selected. Second, based on the filtered genes, co-expression networks are established, and then the key genes that may be closely related to some cancers are analyzed.


Gene Selection

In this step, there are two problems to be solved: one is how to select genes, and the other is how many to select. It is known that among thousands of genes, only a handful of them regulate a specific biological process (Delbert et al., 2005; Liu et al., 2013). These minority of genes are called differentially expressed genes (Liu J. et al., 2015). In this article, the differentially expressed genes are selected to carry out gene network analysis according to the projected matrix Up×k. Now, we mark the optimal projected matrix Up×k as [image: image]; therefore, these differentially expressed genes can be identified according to [image: image] (Liu J. et al., 2015; Feng et al., 2016). We denote [image: image]as follows:

[image: image]

The upregulated genes are reflected by the positive value in the matrix [image: image], and the downregulated genes are reflected by the positive value (Liu et al., 2013). Therefore, the absolute value of the items in [image: image] is used to identify the differentially expressed genes. The items of each row in [image: image] are summed, and then the evaluating vector denoted as [image: image] is obtained:

[image: image]

The larger item in [image: image] indicates the more strongly differentially expressed gene. Therefore, we sort the elements in [image: image] in descending order and take the top l(l≪p) elements. In many studies, it has been unclear how many genes should be selected for gene network analysis. Since only a small number of genes can regulate a specific biological process, these genes may play a decisive role in the clustering results of tumor samples. In this paper, the number of genes used for constructing the gene network is determined according to the clustering performance based on the selected genes. Through experimentally investigating the clustering performance with the number of selected genes varied from 500 to 2000, it is found that the clustering results corresponding to 1600 genes are best for the CRC data and 700 for the H_C_P data.



Construction of Gene Networks

Suppose l differentially expressed genes are used to construct the gene network. Let matrix Rl×n denote the l gene expression in n samples. We use the Pearson correlation coefficient (PCC) (Hou et al., 2019) to measure the correlation of any two genes in Rl×n. The values in the PCC matrix vary in the range of [0,1]. The larger the PCC value is, the higher the correlation is. Based on matrix Rl×n, an adjacency matrix Al×l can be calculated. According to the adjacency matrix, an intuitive visualized graph of the gene interaction network composed of several modules is obtained.



Analysis of Gene Network Modules

There are 39 modules, including 218 nodes and 504 edges, in the constructed network based on the CRC data. We analyzed the top 10 nodes (genes) with higher degrees in the first three modules that retained more relevant interactions. The degree of the node (gene) shows its role in the network modules. The larger the degree of the node (gene) is, the more important the node (gene) is, and such nodes (genes) may retain the tight connectivity of the network. Figure 4 shows the main part of the first three gene network modules in which a small number of nodes whose degree is very low have been removed. The roles of the top ten genes in the first three modules are illustrated in Figure 4. The degree value of a node in Figure 4 is represented by its size and color. The larger the node is, the darker its color is, which corresponds to a larger degree of the node. Referring to GeneCard with its website http://www.genecards.org/, we list the annotations of the top ten genes in Table 7. Five of the top ten genes have been validated as associated with multiple cancers: SPARC, ABCC12, COL6A3, LUM, and RPS3. The corresponding nodes of these genes are marked with a black outline in Figure 4 and are also shown in bold in Table 7. In the literature (Liu Q. Z. et al., 2015), the gene SPARC has been recommended as a predictor of colorectal cancer. The gene ABCC12 is a human ATP binding cassette (ABC) transporter and is a multidrug resistance protein (MRP9). However, MRP9 has been recognized as an important target for the immunotherapy of breast cancer (Bera et al., 2002). Studies have shown that colorectal cancer can be predicted by the gene COL6A3 because it is overexpressed in samples of colorectal cancer. Therefore, COL6A3 is considered a potential diagnostic and prognostic marker gene for colorectal cancer (Qiao et al., 2015). As one of the members of the leucine-rich proteoglycan family, the gene Lumican (LUM) is overexpressed in many kinds of cancers, including colorectal, neuroendocrine, cervical, carcinoid, breast, and pancreatic cancer. LUM also causes the growth and invasion of pancreatic cancer (Ishiwata et al., 2007). The ribosomal protein gene S3 (RPS3) is also overexpressed in colorectal cancer. Researchers found an increase in ribosome synthesis in patients with colorectal cancer (Pogue-Geile et al., 1991). Although the other five genes RPL32, TMEM59L, LOC642929, LHX2, and TLCD3B have not been identified in clinical studies indicating their effect on cancers, they may be considered candidate oncogenes because of their high ranking in our constructed gene network modules. By constructing co-expression gene network modules based on the CRC dataset, we found some disease-causing genes for colorectal cancer and other related cancers. It shows that constructing gene network modules via the genes filtered based on PL21GPCA can help us discover the key oncogenes.


[image: image]

FIGURE 4. The first three modules of the constructed network based on the CRC data. The five marked genes SPARC, ABCC12, COL6A3, LUM, and RPS3 have been confirmed to be associated with CRC and other cancers. (A) Module 1; (B) Module 2; (C) Module 3.



TABLE 7. Annotations of the top ten genes in the first three network modules based on CRC data.

[image: Table 7]
The constructed network based on the integrated data H_C_P includes 157 nodes and 644 edges. We analyzed the five important nodes (genes) with higher degrees in the first three modules that retained more relevant interactions. Figure 5 illustrates the main part of the first three gene network modules in which the nodes of very low degree have also been removed. Referring to GeneCards, their annotations are listed in Table 8. The five genes RPL32, EEF1G, SPRR1B, COL1A2, and MMP2 have been recognized to be related to multiple cancers. The corresponding nodes of these genes are marked with a black outline in Figure 5. Wan et al. (2004) conducted large-scale experiments on human liver cancer cells. Research has shown that RPL32 is one of the potential genes that affect human cell growth and cancer formation and provides an important tool for diagnostic markers and drug targets (Wan et al., 2004). EEF1G has been thought to be a characteristic gene for colorectal cancer; it is highly expressed in most colorectal cancers and could be considered a marker gene for colorectal cancer detection (Matassa et al., 2013). In addition, the expression level of EEF1G in pancreatic tumor cells was higher than that in normal cells (Lew et al., 1992). SPRR1B is overexpressed in human oral squamous cells. It has been experimentally proven that SPRR1B overexpression in cells will signal MAP kinases but inhibit MAP kinase signals, so SPRR1B can affect cell growth and maintenance (Michifuri et al., 2013). Kiyoshi Misawa and other researchers mainly studied the expression of COL1A2 in head and neck squamous cell carcinoma (HNSC) and found that hypermethylation of CpG may cause inactivation of the gene COL1A2. Therefore, the COL1A2 gene may affect the formation and development of HNSC and could become a major biomarker (Misawa et al., 2011). As a member of the matrix metalloproteinase (MMP) gene family. MMP2 is relevant to the generation of malignant tumors, including colorectal cancer, lung cancer, and breast cancer (Yu et al., 2002; Arajo et al., 2015; Ren et al., 2015). Analysis through the gene network constructed based on integrated multicancer data is helpful for mining the interrelationships between different cancers and genes. It may provide an important reference for the diagnosis and treatment of various diseases.


[image: image]

FIGURE 5. The first three modules of the constructed network based on the H_C_P data. The five marked genes RPL32, EEF1G, SPRR1B, COL1A2, and MMP2 have been confirmed to be associated with multiple cancers. (A) Module 1; (B) Module 2; (C) Module 3.



TABLE 8. Annotations of the most important five genes in the first three network modules based on H_C_P data.

[image: Table 8]


CONCLUSION AND SUGGESTIONS

In this article, we propose a new dimensionality reduction method named PL21GPCA based on PCA for robust tumor sample clustering and gene network module discovery. Based on the traditional PCA, the non-convex proximal Lp-norm ∥g∥p(0 < p < 1)is applied on the loss function to decrease the sensitivity to outliers and noise. The L2,1-norm is used on the projected matrix to enhance the sparse gene expression in cancer samples. The graph regularization item is introduced to the optimization model to retain the geometric structure of the data. Five gene expression datasets, including one benchmark dataset, two higher-dimensional single-cancer datasets from TCGA, and two integrated multicancer datasets from TCGA, are used to evaluate the performance of our method. The compared experiments demonstrate that the PL21GPCA method outperforms many existing methods in terms of tumor sample clustering. Moreover, this method is employed to discover gene network modules to find the key genes with close relationships to cancers. The results of our study may be a useful reference for clinical diagnosis.

There are some suggestions for future research. First, in the optimization model of PL21GPCA, the constraint used on the loss function is the non-convex proximal Lp-norm ∥g∥p(0 < p < 1), since Lp-norm minimization can result in a sparser solution than the L1-norm and perform better in terms of robustness to outliers than the L2-norm. However, in addition to the generalized shrinkage operation proposed by Chartrand (2012), there are some other suggestions to address the Lp-norm (0 < p < 1) minimization (Guo et al., 2013; Qin et al., 2013) problems. Therefore, we will continue to explore other solutions to the optimization model with the Lp-norm ∥g∥p(0 < p < 1). Second, we will evaluate the performance of PL21GPCA as a compact representation method combined with other methods, including supervised and unsupervised clustering methods such as spectral clustering, support vector machine (SVM) or their improved versions. Third, as mentioned above, the PL21GPCA method gets especially outstanding performance for processing the integrated data, so we will use the PL21GPCA method to process many other integrated data to verify its performance further.
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Transmembrane protein (TMP) is an important type of membrane protein that is involved in various biological membranes related biological processes. As major drug targets, TMPs’ surfaces are highly concerned to form the structural biases of their material-bindings for drugs or other biological molecules. However, the quantity of determinate TMP structures is still far less than the requirements, while artificial intelligence technologies provide a promising approach to accurately identify the TMP surfaces, merely depending on their sequences without any feature-engineering. For this purpose, we present an updated TMP surface residue predictor TMP-SSurface2 which achieved an even higher prediction accuracy compared to our previous version. The method uses an attention-enhanced Bidirectional Long Short Term Memory (BiLSTM) network, benefiting from its efficient learning capability, some useful latent information is abstracted from protein sequences, thus improving the Pearson correlation coefficients (CC) value performance of the old version from 0.58 to 0.66 on an independent test dataset. The results demonstrate that TMP-SSurface2 is efficient in predicting the surface of transmembrane proteins, representing new progress in transmembrane protein structure modeling based on primary sequences. TMP-SSurface2 is freely accessible at https://github.com/NENUBioCompute/TMP-SSurface-2.0.
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INTRODUCTION

Transmembrane Proteins (TMPs) are the gatekeepers to the cells and control the flow of molecules and information across the membrane (Goddard et al., 2015). The function of MPs is crucial for a wide range of physiological processes like signal transduction, electron transfer, and neurotransmitter transport (Roy, 2015). They span the entire biological membrane with segments exposed on both the outside and inside of aqueous spaces and have a profound effect on the pharmacokinetics of various drugs (Padmanabhan, 2014), cell mechanics regulation (Stillwell, 2016), molecule transport (Oguro and Imaoka, 2019; Puder et al., 2019) and so on. Also, the evidence is pointing toward TMPs associating with a wide range of diseases, including dyslipidemia, autism, epilepsy (Rafi et al., 2019; Tanabe et al., 2019; Weihong et al., 2019), and multiple cancers (Moon et al., 2019; Yan et al., 2019). Moreover, based on the current therapeutics market, it is evaluated that more than one-third of future drug targets would be TMPs (Studer et al., 2014) and the surface of TMPs is always identified as an interaction interface according to statistical reports (Lu et al., 2019b).

The quantitative approach for measuring the exposure of residues is to calculate the relatively accessible surface area (rASA) of the residues (Tarafder et al., 2018). rASA reflects the exposure of a single residue to the solvent, making it a directive reference of protein structures. Predicting rASA of TMPs is a rewarding task to biological problems like function annotation, structural modeling, and drug discovery (Zhang et al., 2019). In this case, accurate sequence-based computational rASA predictors need to be developed urgently to provide more support for structure prediction.

Many rASA predictors had been reported performing well on soluble proteins but the structural differences between the two protein types are significant, especially when interacting with the phospholipid bilayer. There are a few methods released to predict rASA of TMP residues based on their primary sequences. Beuming and Weinstein (2004) firstly proposed a knowledge-based method to predict the binary state (buried or exposed) of residues in terms of a preassigned cutoff in the transmembrane region of α-TMPs, it is the first rASA predictor of TMPs. After that, a series of methods using machine learning including SVC, SVR, and SVM emerged, which can be automatically divided into two categories according to their functionality: binary classifier and rASA real value predictor. All of these machine learning-based methods were designed for α-TMPs, some methods were just effective with the transmembrane region of the proteins restrictedly, such as TMX (Liwicki et al., 2007; Wang et al., 2011), TMexpoSVC (Lai et al., 2013), and TMexpoSVR (Lai et al., 2013), only MPRAP (Illergård et al., 2010) and MemBrane-Rasa (Xiao and Shen, 2015; Yin et al., 2018) were able to predict rASA of the entire sequence. Our previous work (Lu et al., 2019a) combined Inception blocks with CapsNet, proving that deep learning takes many advantages for the prediction but there is still room for accuracy improvement.

The predictors mentioned above including our previous version all applied common methods like SVM and feed-forward neural networks. However, these non-sequential models do not naturally handle sequential data and have trouble capturing long-term dependencies of a certain sequence (Sønderby and Winther, 2014), thus being a bottleneck in rASA prediction tasks, calling for more suitable models. In recent years, various Long Short Term Memory (LSTM) models have already employed to learn temporal information of protein secondary structure, confirming the amazing ability of LSTM in handling protein sequences through experimental verification (Sønderby and Winther, 2014; Sønderby et al., 2015; Heffernan et al., 2017). When it comes to sequence level issues, LSTM is definitely a better choice. Furthermore, previous tools did not have measures for reinforcing effective features, resulting in lower inefficiency of model learning. Additionally, various input restrictions and long waiting times also made the predictors less friendly to users.

In this study, we proposed an attention-enhanced bidirectional LSTM network named TMP-SSurface2 to predict rASA of TMPs at the residue level, which was implemented on top of the CNN-based Z-coordinate predictor TM-ZC (Lu et al., 2020). TMP-SSurface2 was trained and tested against the non-redundant benchmark dataset we created with primary sequences as input, improving the Pearson correlation coefficients (CC) value performance of the old version from 0.584 to 0.659, and reduced the mean absolute error (MAE) from 0.144 to 0.140. Apart from state-of-the-art prediction accuracy, TMP-SSurface2 also achieved the highest output efficiency compared to existing methods with no length restriction of input. The source codes of TMP-SSurface2 and the corresponding materials can be freely accessed at https://github.com/NENUBioCompute/TMP-SSurface-2.0.



MATERIALS AND METHODS


Benchmark Dataset

A total of 4,007 TMPs were downloaded from PDBTM (version: 2019-01-04). We removed the proteins which contained unknown residues such as “X” or whose length was less than 30 residues since too short a sequence may not form a representative structure. To avoid the redundancy of data and reduce the influence of homology bias, CD-HIT (Li and Godzik, 2006) was utilized to eliminate the duplicate structures with a 30% sequence identity cut-off resulting in 704 protein chains (618 α protein chains and 86 β protein chains) left. These proteins were randomly divided into a training set of 604 proteins, a validation set of 50 proteins, and a test set of 50 proteins, respectively. In this work, five-fold cross-validation experiments were performed and the results were compared against other predictors.

The residue solvent accessibility surface area (ASA) is defined as the surface accessibility of a certain residue when exposed to water or lipid. Several tools are capable of calculating ASA, such as Naccess (Lee and Richards, 1971), PSAIA (Mihel et al., 2008), MSMS (Sanner et al., 1996), and Dictionary of Protein Secondary Structure (DSSP) (Kabsch and Sander, 1983).

The ASA of residues was calculating by DSSP, using a probe with a radius of 1.4 Å. A residue’s ASA is divided by the corresponding standard maximum accessible surface area (MaxASA), which is the ASA of extended tri-peptides (Gly-X-Gly) (Tien et al., 2013), to generate rASA values. rASA can be calculated by the following formula:
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Features and Encoding

To make the prediction more accurate, it is vital to provide useful features to deep learning-based methods. In our experiments, we carefully select two encoding features to represent the protein fragment: one-hot code and PSSM.

Prediction of transmembrane protein residues’ rASA is a classical regression problem, which can be formulated as follows: for a given primary sequence of a TMP, a sliding window of k residues was used to predict the real value of central residue’s rASA. For instance, if k is 19, then each protein is subsequently sliced into fragments of 19 amino acids.

For each residue in protein sequences, one-hot code is a 20-dimension vector (see Figure 1), using a 19 dimensional “0” vector with a “1” corresponding to the amino acid at the index of a certain protein sequence. In this way, each protein fragment can be mapped into an exclusive and undisturbed coding within its relative position information (He et al., 2018). It is proved that a one-hot code is extremely easy to generate while effective for protein function prediction associated problems (Ding and Li, 2015).
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FIGURE 1. One-hot code of protein residues.


A position-specific scoring matrix (PSSM) reflects the evolutionary profile of the protein sequence based on a search against a certain database. Highly conserved regions during evolution are always functional regions according to the researches (Jeong et al., 2010; Zeng et al., 2019), so PSSM has been widely used in many bioinformatics problems and achieves commendable results. In our study, PSI-BLAST (Altschul et al., 1997) was utilized to generate PSSM searching against the uniref50 (version: 2019-01-16) database with 3 iterations and a 0.01 E-value cutoff. For a given protein sequence, the PSSM feature is a 20-dimension matrix with each column representing a profile and each row representing a residue.

As shown in Figure 2, each amino acid in the protein sequence is represented as a vector of 41 numbers, including 20 from one-hot code (represented as binary numbers), 20 from PSSM, and 1 Noseq label (representing a gap) (Fang et al., 2018) in the last column to improve the prediction performance of the residues located on both ends of protein while using a sliding window. In order to facilitate the window sliding operation, the first and last parts of the sequence are, respectively, padded with 1 and 0 s, which length is half of the sliding windows size. For each protein with L residues, we can get L matrices.
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FIGURE 2. Encoding features as the model input.




Model Design

In this section, a novel compound deep learning network is presented. Figure 3A shows the proposed pipeline. The input features for TMP-SSurface2 are the one-hot code and the PSSM matrix. The CNN whose structure and parameters are all same as TM-ZC is used to generate the Z-coordinate of TMP residues. Z-coordinate, which is an important constituent in the field of MP structure prediction, is often implemented to stand for a residue’s relative position concerning the membrane (Yin et al., 2018). After that, the final feature map containing a one-hot code, PSSM, and Z-coordinate will be put into a bidirectional LSTM (BiLSTM) network for training and testing.


[image: image]

FIGURE 3. (A) Pipeline of the deep learning model. (B) The attention-enhanced bidirectional LSTM network.


To further optimize the model, we also attached an attention mechanism (Baron-Cohen, 1995) layer to the top of BiLSTM, which is motivated by how we pay visual attention to different regions of an image or correlate words in one sentence, to help LSTM focus on a certain region that relatively deserves more attention. The detailed structure of the mentioned LSTM network is shown in Figure 3B.

Formula (2) to formula (9) describe the forward recursions for a single LSTM layer, where ⊙ equals to the elementwise multiplication, x_t means input from the previous layer,it,ft, o_t represent “input gate,” “forget gate” and “output gate,” respectively.ht−rec stands for the output forwarded to the next time slice, and h_t is passed upwards in a multilayer LSTM (Sønderby and Winther, 2014). Attention neural networks have recently demonstrated popularity in a wide range of tasks ranging from natural language processing to computer vision (Chorowski et al., 2014; Rocktäschel et al., 2015; Sharma et al., 2015). Inspired by these projects, we attached an attention mechanism to LSTM for feature capturing. As shown in formula (10), the combination of attention mechanism enables the model to re-assign the weight (Watt) of the feature vector (V), indicating that the next output vector (V′) should focus more on which part of the input sequence, and then generate the next output according to the focus region.
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Our model was implemented, trained, and tested using Keras and Tensorflow. Main hyperparameters (sliding window size, training dropout rate, number of LSTM units, and layers of LSTM) were explored. The early stopping and save-best strategy were applied when the validation loss did not reduce in 10 epochs during training time, the process would stop and save the best model parameters. We used Adam optimizer to dynamically transform the learning rate while the model was training. All the experiments were performed using an Nvidia 1080Ti GPU.



Performance Evaluation

To quantitatively evaluate the predictions of TMP-SSurface2, Pearson correlation coefficients (CC) and mean absolute error (MAE) were used in this study. CC undertook the task of measuring the linear correlation between real values and predicting values. CC ranges from −1 to 1, where −1 indicates an abstract negative correlation, 1 positive correlation, and 0 absolutely no correlation. Formula (11) shows the definition of CC, where L represents the number of residues, x_i and y_i define the observed and predicted rASA value severally, [image: image] and [image: image] equal to the corresponding mean value, respectively.
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Mean absolute error measures the closeness of prediction values to real values. As shown in formula (12), MAE is defined as the average difference between predicted and observed rASA values of all residues.
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RESULTS


Feature Analysis

As we all know, it is the features, instead of model structures, determine the upper-performance limit of deep learning. To investigate the different features’ contribution to the predictor TMP-SSurface2, we tested both independent features used in the predictor and their various combinations on our valid dataset.

Table 1 illustrates that all of the three independent features (Z-coordinate, one-hot, and PSSM) contain useful information for predicting rASA by themselves, among which PSSM achieves the best overall results (CC = 0.631 and MAE = 0.144). It is suggested that PSSM is an important feature in rASA prediction mainly because of the inclusion of evolutionary knowledge. When combining these different features, as was indicated by a former study, the CC values are almost linearly related to the MAE values (Yuan et al., 2006), the maximum CC values always accompany the minimum MAE. Experimental investigation shows that every single feature made a contribution to the prediction and achieved the most considerable performance (CC = 0.659 and MAE = 0.140) when they were combined.


TABLE 1. Prediction performance based on individual input features and their various combinations.
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Hyperparameter Tuning and Model Performance

Tables 2–5 summarizes the exploration of the attention-enhanced bidirectional LSTM network with various hyperparameters on the validation dataset. The object of doing these experiments was to find out a better configuration of our method. The tested hyperparameters were carefully selected and only the major factors which would greatly influence the model were explored on the validation dataset.


TABLE 2. Effect of sliding window length on CC performance.
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TABLE 3. Effect of dropout rate on CC performance.
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TABLE 4. Effect of LSTM units’ number on CC performance.
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TABLE 5. Effect of the number of LSTM layers on CC performance.

[image: Table 5]A sliding window approach is utilized to append useful neighborhood information to improve prediction accuracy. Table 2 shows how the length of the sliding window affects the performance of our network. Since the contexts fed into the proposed deep learning model relies on the length of the sliding window, the prediction accuracy would be directly influenced by its value. In general, when the window size becoming larger, it will cost more time for training, but the prediction performance may not be better as the window length increases. Historically, if a sliding window was utilized by sequence-based protein structure predicting tasks, the peak of performance often occurred when its length was between about 13 and 23 residues (Fang et al., 2018; Lu et al., 2019a). We searched the window length from 13 to 23 by a step of two residues, finding the best result when the number is 19 and it was chosen as the final window length in this section.

Table 3 shows how the dropout rate affects the model performance when the window size is 19. Deep learning neural networks are much easier to overfit a training dataset with few examples, dropout regularization will help reducing overfitting and improve the generalization of deep neural networks (Dahl et al., 2013). The dropout rates in the range of 0.2–0.4 are all acceptable according to the training and testing prediction performance. Finally, we chose 0.3 as our dropout rate, and the concatenation network in our study is regularized using a 30% dropout.

In the LSTM network, the number of LSTM units is also an important parameter, which determines the output dimension of different layers just like ordinary neural networks. When the number of LSTM units in one layer changes, the scale of parameters and prediction accuracy of the model will immediately be affected. To find the best choice of LSTM units, we tried different values at the same time. The results are shown in Table 4, we chose 700 as the number of LSTM units in a simple layer.

As it can be seen in Table 5, when the LSTM network has two bidirectional layers (i.e., four simple layers, two forward and two backward), the model performs best on the validation set. However, the prediction accuracy of the model may not grow as the number of LSTM layers increases. It is suspected that a large number of model parameters will lead to the overfitting of LSTM on the training set, thus reducing the generalization ability of it.



Comparison With Previous Predictors

In this section, we list the existing methods that can be used to predict the rASA of TMP in the full chain and compare TMP-SSurface2 with them. Table 6 shows the performance improvement of the proposed TMP-SSurface2 after implementing the new model relative to the old version and the other tools. During testing MPRAP and MemBrane-Rasa on the independent dataset, we figured out that not every sequence fed into these predictors can get a corresponding output since some third-party tools might cause the failure. Just like TMP-SSurface, the new version is reliable in getting prediction results because of the simple coding scheme. Furthermore, TMP-SSurface2 significantly outperformed the previous predictors and has the quickest predicting speed. The details of the comparison are shown in Table 6.


TABLE 6. Comparison of TMP-SSurface2 with the previous predictors on the independent dataset.
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TMP Type Test

Statistical results show that most of the existing methods only focused on α-helical TMPs while ignored β-barrel TMPs, which made it inconvenient for the users who cannot distinguish the protein type. As described previously, the data set we used contains both α-helical and β-barrel TMPs, making our predictor more suitable for all types of TMP. Table 7 illustrates that when TMP-SSurface2 meets either of these two different TMPs, the prediction performance on the independent testing dataset was both considerable and reliable.


TABLE 7. Performance of TMP-SSurface2 on different types of TMPs.
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Contribution of Attention Mechanism

The attention mechanism promotes the model to extract features more effectively, speeding up the prediction accuracy to the peak, even improving the performance at the same time. To verify the positive effect of the attention mechanism, we monitoring the mean absolute error loss curve of the validation dataset with or without the attention layer, respectively, using the preselected best hyperparameters while training. As is shown in Figure 4, when the network is attention-enhanced, the convergence speed and accuracy of the training set were significantly improved.


[image: image]

FIGURE 4. Validation loss curve of the training process with and without attention mechanism.


Moreover, we also combined attention mechanisms with various network layers to verify whether or how much the attention mechanism would improve the prediction performance. Firstly, we removed the attention layer and tested the trained model on the test set. Meanwhile, we attached the attention mechanism to the bidirectional LSTM layer and the Dropout layer, respectively, to conduct experiments, the results are shown in Table 8. It can be seen that the combination of attention mechanism and bidirectional LSTM layer reached the best performance, which is related to the fact that the LSTM layer had learned the most abundant features. In essence, the attention mechanism is to enhance the feature extraction process, so it will achieve the best effect when combined with the network layer that is the most effective for feature extraction.


TABLE 8. Contribution of attention mechanism.
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Visualization of the Features Learnt by LSTM

Deep neural networks can learn high-level abstract features from original inputs, to verify whether the extracted features are generalizable, we utilized PCA (Wold, 1987) to visualize the input features and each LSTM unit’s output in one bidirectional layer with test data. Figure 5 shows the PCA scatter diagram of the test data before and after fed into LSTM, respectively. The input data had 42 features (i.e., 42 dimensions), PCA reduced its dimensionality and visualized it, but there was no clear cluster. The bidirectional LSTM layer we used contained 1,400 dimensions (twice of units in a simple LSTM layer) and the trend toward clustering had occurred, which demonstrates that LSTM had effectively captured useful and powerful features needed in this work.


[image: image]

FIGURE 5. Visualization of the features learned by LSTM using PCA.


Generally, buried residues are under stronger evolutionary constraints than exposed ones irrespectively of the environment (Kauko et al., 2008). The diagram shows that the residues whose rASA was lower than 0.2 narrowed down to a small area through PCA, which means these residues’ rASA values stayed closely aligned with the features derived from their sequence, just proved the previous statement.



Case Studies

To further demonstrate the effectiveness of TMP-SSurface2, we take 4n6h_A as an example of case studies. 4n6h_A is an Escherichia coli α-TMP (subgroup: G protein-coupled receptor) containing 408 residues as the receptor of multiple ligands like sodium ion, heme, and so on (Fenalti et al., 2014). Figure 6 shows the 3D visualization of the predicted result (surface version) and Figure 7 illustrates the comparison between the TMP-SSurface2-predicted rASA values and real rASA values. As were shown in figures, the overall trend of rASA has been appropriately captured, but TMP-SSurface2 seems conservative in predicting some fully exposed or buried residues’ rASA. It is suspected that TMP-SSurface2 may confuse these residues with the ones located on water-soluble regions, resulting in low prediction performance of them.


[image: image]

FIGURE 6. The 3D visualization of the predicted result (surface version).



[image: image]

FIGURE 7. The comparison between the TMP-SSurface2-predicted rASA values and real rASA values.




CONCLUSION

In this study, we proposed an updated TMP-SSurface predictor, which aimed to predict transmembrane protein residues’ rASA from primary sequences. Apart from classical feed-forward neural networks, we developed an attention-enhanced bidirectional LSTM network on top of the CNN-based Z-coordinate predictor to process sequential data and improved the CC value performance of the old version from 0.58 to 0.66 on the independent test dataset. The improvement of LSTM directly indicates that the order of residues in a sequence would exactly influence the protein structure and LSTM has a more powerful ability to process sequential data than CapsNet. The Z-coordinate feature was explored and applied in TMP-SSurface2 and proved to be useful, which means the z-coordinate has a lifting effect on rASA prediction, indicating that structural features can support each other. We also appended various important experiments like feature visualization and case study to visualize the effectiveness of the model. TMP-SSurface2 had no constraints with input since it could handle all types of TMPs at any length. The predicted rASA would make contributions to TMPs’ structure analysis, TMP-ligand binding prediction, TMP function identification and so on.
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Circular RNAs (circRNAs) are a class of endogenous non-coding RNAs (ncRNAs) with a closed-loop structure that are mainly produced by variable processing of precursor mRNAs (pre-mRNAs). They are widely present in all eukaryotes and are very stable. Currently, circRNA studies have become a hotspot in RNA research. It has been reported that circRNAs constitute a significant proportion of transcript expression, and some are significantly more abundantly expressed than other transcripts. CircRNAs have regulatory roles in gene expression and critical biological functions in the development of organisms, such as acting as microRNA sponges or as endogenous RNAs and biomarkers. As such, they may have useful functions in the diagnosis and treatment of diseases. CircRNAs have been found to play an important role in the development of several diseases, including atherosclerosis, neurological disorders, diabetes, and cancer. In this paper, we review the status of circRNA research, describe circRNA-related databases and the identification of circRNAs, discuss the role of circRNAs in human diseases such as colon cancer, atherosclerosis, and gastric cancer, and identify remaining research questions related to circRNAs.
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INTRODUCTION

Circular RNAs (circRNAs) are endogenous non-coding RNAs (ncRNAs) that have gained increasing attention in recent years. circRNAs are formed by exon or intron cyclization that ligates the 5′ terminal cap and 3′ terminal poly(A) tail to form a circular structure. They are mainly located in the cytoplasm or stored in exosomes, are unaffected by RNA exonucleases, are more stably expressed and less susceptible to degradation, and have been shown to exist in a wide variety of eukaryotic organisms (Li Y. et al., 2015; Pradeep et al., 2020). The widespread existence of circRNAs suggests that they have certain biological functions as lncRNAs and microRNAs (miRNAs) play (Jiang et al., 2009, 2014, 2015; Wang et al., 2014; Cheng L. et al., 2019; Liang et al., 2019; Wei and Liu, 2020; Yang et al., 2020). In recent years, studies have shown a diversity of formation mechanisms and biological functions of circRNAs. circRNAs are formed by various mechanisms; for example, spliceosomes (intracellular protein–RNA complexes) catalyze splicing as follows (Salgia et al., 2003): first, the spliceosome recognizes introns, which are flanked by the splice donor (or 5′ splice site) and the splice acceptor (or 3′ splice site) with specific sequences at the 5′ and 3′ ends; then, the 2′ hydroxyl group of the downstream sequence attacks the splice donor, resulting in a circular intron lariat structure; finally, the 3′ hydroxyl group of the upstream exon splice donor attacks the splice acceptor, the upstream and downstream exons are sequentially spliced to form a linear structure, and the intron lariat structure is usually degraded rapidly by debranching enzyme. Variable splicing is the process by which a precursor mRNA (pre-mRNA) can be transcribed from different RNA splicing methods; that is, different combinations of splice sites, to produce mutually exclusive mRNA splice isoforms, which in turn are translated to produce different protein products (Pan et al., 2008). This is the main function of RNA cyclization. Cyclization of circRNAs can be divided into intron and exon cyclization (Sanger et al., 1976), and the current mainstream cyclization mechanisms are categorized as follows: (1) exon skipping, (2) direct back-splicing of intron, (3) circRNA formation by RNA-binding proteins (RBPs; Chen, 2016; Zhang et al., 2018), and (4) circular intron RNA cyclization (Stoddard, 2014); the detailed mechanisms are shown in Figure 1. The diversity of circRNAs, and thus their diverse biological functions, is a direct result of these multiple formation mechanisms. For example, circRNAs can act as miRNA sponges (Hansen et al., 2013; Memczak et al., 2013; Zhao et al., 2020a), be translated into proteins (Yang et al., 2017), bind functional proteins (Li Z. et al., 2015), regulate RNA splicing (Conn et al., 2017), and regulate transcription (Chao et al., 1998; Memczak et al., 2013). Therefore, the identification of circRNAs contributes to our understanding of the formation and biological functions of circRNAs.


[image: image]

FIGURE 1. Formation of circRNAs by (a) exon skipping, (b) direct back-splicing, (c) formation by RNA-binding proteins (RBPs), and (d) circular intron RNA cyclization.


In 1976, Kolakofsky (1976) observed, for the first time, defective interfering RNAs in parainfluenza virus particles using electron microscopy. Sanger et al. (1976) discovered that plant-infecting viroids are a class of single-stranded, circular RNA molecules that have characteristics such as high thermal stability and a natural circular structure by self-complementary. In 1979, similar circular transcripts were found in HeLa cells and yeast mitochondria by electron microscopy (Hsu and Coca-Prados, 1979). In 1981, a ribosomal RNA (rRNA) gene was discovered in Tetrahymena that contained an intron sequence that formed a circular RNA after splicing. In 1988, the intron of 23S rRNA in archaea was found to be spliced at a specific site to form a stable circular RNA and to function as a transposon. In 1991, researchers identified several circular transcripts formed by different splicing patterns in the human oncogene DCC (Nigro et al., 1991), and these circular RNAs were then found in human ETS1 gene, mouse Sry (sex-determining region Y) gene, rat cytochrome P450 2C24 gene and human P450 2C18 gene.

Despite their early discovery, research on circRNAs has been slow in recent decades. Although circRNAs were discovered decades ago, they could not be detected by molecular techniques that relied on poly(A) enrichment because they did not have free 3′ and 5′ ends. Instead, cyclizable exons were spliced by reverse splicing, which was different from regular linear splicing. Moreover, the mapping algorithm of early transcriptome analysis could not directly map the sequenced fragments to the genome, leading to the idea that circRNAs were byproducts of missplicing. With the development of high-throughput sequencing and bioinformatics technologies, it was first proposed in 2012 that circRNAs are circular transcripts generated by reverse splicing of mRNA precursors, which are found to exist in large quantities in different types of human cells. In 2013, it was found that circRNAs can act as a sponge for miRNAs (Hansen et al., 2013; Memczak et al., 2013), which regulate the growth and development of organisms. Since then, circRNAs have rapidly become a research hotspot. To identify circRNAs, in addition to high-throughput techniques (RNA-seq), common analytical and computational methods are used, such as CIRI (Gao et al., 2015), segemehl (Hoffmann et al., 2014), Mapsplice (Wang et al., 2010), and CircSeq (Guo et al., 2014). In recent years, researchers have developed machine learning methods to identify circRNAs based on the above methods (Yin et al., 2021). Feature selection is an important part of these machine learning models. Feature selection, aiming to select a subset of features by eliminating redundant and noise features, is an important preprocessing step in bioinformatics. Recently, Su et al. (2018) proposed a binomial distribution based method to perform feature selection in computational genomics. The effectiveness of their method has been proved by predicting lncRNA subcellular localizations (Su et al., 2018). Since both nucleotide and amino acid composition obey binomial distribution, this method is suggested to be used for genomic and proteomic analysis. We provide here an overview of the research progress of circRNAs, including the development of circRNA databases, identification of circRNAs, and the role of circRNAs in human diseases such as colon cancer, atherosclerosis, and gastric cancer.



circRNA-RELATED DATABASES

In recent years, as circRNA research has progressed, an increasing number of circRNAs have been discovered in different species, and circRNA-related databases have been created. Some of the main circRNA databases published so far are listed below.


(1)circBase collects and merges public circRNA datasets and provides evidence of the genomic catalog of their expression, as well as scripts to identify circRNAs in sequencing data1 (Glazar et al., 2014).

(2)Circ2Trait is a comprehensive database that includes potential associations of circRNAs with diseases and traits by studying the interaction network of circRNAs with miRNAs and calculating their internal SNPs and Argonaute (Ago) interaction sites2 (Ghosal et al., 2013).

(3)deepBase contains about 150,000 circRNA genes from organisms, including human, mouse, Drosophila, and nematode. This database also constructs the most comprehensive expression map of circRNAs3 (Yang et al., 2010).

(4)CirNet mainly includes RNA-seq data of more than 400 samples from 26 tissues collected from the sequence read archive database. This database not only includes basic information on circRNAs but also provides expression profile data of circRNAs in different tissues and the competing endogenous (ce)RNA regulatory network of circRNAs–miRNA–gene4 (Liu et al., 2016).

(5)starBase v2.0 integrates published circRNA data and constructs interaction networks of miRNAs with circRNAs and circRNAs with RBPs. In addition, the database looks for potential miRNA–ncRNA, miRNA–mRNA, ncRNA–RNA, RBP–ncRNA, and RBP–mRNA interactions through high-throughput data. starBase also predicts the function of ncRNAs from miRNA-mediated (ceRNA) regulatory networks (miRNAs, lncRNAs, and pseudogenes) and protein-coding genes using the online tools miRFunction and ceRNAFunction5 (Li et al., 2014).





TOOLS FOR RECOGNITION OF circRNAs

Because of the low expression level of circRNAs and limitations of previous computational methods, these RNA molecules were only found in small numbers in individual genes and therefore initially thought to be products of missplicing, byproducts of RNA splicing, incidental in animals, or precursors of linear RNAs. In recent years, with improved experimental and computational methods for circRNAs and the use of next-generation high-throughput sequencing technologies (Wang et al., 2009; Zeng et al., 2017, 2019), a large number of stable circRNAs have now been found in a variety of cells, and 85% of circRNAs can be mapped to known genes, of which 84% overlap with coding exons (Memczak et al., 2013). Because of the special structure of circRNAs—they lack a 5′ terminal cap and a 3′ terminal poly(A) tail and have a closed-loop structure with covalent bonds—and their maturation mechanism, early sequencing methods could not easily detect such molecules. Improvements in sequencing analysis techniques and computational methods have made detection more efficient (Malysiak-Mrozek et al., 2019; Mrozek, 2020). Therefore, studies on the identification of circRNAs are reviewed from two aspects: (1) identification based on sequencing data and (2) identification based on sequence features and machine learning methods.


Identification of circRNAs Based on Sequencing

Many algorithms exist for circRNA identification, including CIRI (Gao et al., 2015), segemehl (Hoffmann et al., 2014), Mapsplice (Wang et al., 2010), CircSeq (Guo et al., 2014), and find_circ (Memczak et al., 2013). Using these algorithms, researchers have identified a large number of circRNAs in human, mouse, nematode, archaea, and other organisms (Yang et al., 2011; Jeck and Sharpless, 2014). We describe here several of these commonly used sequencing-based tools for identification of circRNAs.

CIRI (Stoddard, 2014) was developed by Gao et al. (2015) to comprehensively identify circRNAs, and it is based on the novel chiastic clipping signal algorithm. CIRI can accurately detect circRNAs from transcriptomic data without bias through multiple filtering strategies. This tool is mainly used to identify and annotate circRNAs from RNA-seq data. Unlike other methods for annotating circRNAs, CIRI eliminates false positives by using a new algorithm based on paired cross-clip signal detection in the BWA-MEM sequence alignment/map and combining it with systematic filtering.

CIRCexplorer, a tool for identifying circRNAs developed by Zhang et al. (2014), was the first to elucidate the regulatory mechanism of complementary sequences on production of exon-derived circRNAs. This tool revealed that regulation of variable cyclization was mediated by competitive pairing of complementary sequences, providing a new theoretical perspective on the complexity and diversity of gene expression at the transcriptional and posttranscriptional levels. Nearly 10,000 circRNAs were identified in human embryonic stem cell line H9 using a special nuclease to enrich circRNAs in combination with computational analysis software, demonstrating exon cyclization mediated by the complementary sequence of intron RNA. Competitive pairing of complementary sequences between different regions can selectively generate either linear RNAs or circRNAs.

CircSeq, a tool developed by Guo et al. (2014) to identify and characterize mammalian circRNAs, is a computational pipeline to identify and quantify the relative abundance of circRNAs from RNA-seq databases. Compared with other identification tools, CircSeq does not require available gene annotation to identify circRNAs. The application of the identification tool to non-polyA-selected RNA sequencing data in the ENCODE project proved its ability to classify and globally characterize more than 7000 human circRNAs.

The above sequencing methods all identify back-splicing sites from high-throughput sequencing data to detect circRNAs. In comparing some of the above identification tools, Hansen et al. (2016) and Sekar et al. (2019) found that only a small percentage of circRNAs could be predicted simultaneously by these tools, indicating significant differences and species variability. Therefore, the above tools developed around high-throughput sequencing technology have poor identification performance and low consistency. Moreover, these tools generally have high false-positive rates and low sensitivity (Hansen et al., 2016). To address these shortcomings, researchers have developed tools to identify circRNAs on the basis of sequence features and machine learning.



Identification of circRNAs Based on Sequence Features and Machine Learning

Identifying circRNAs using sequence features that distinguish circRNAs from linear RNAs (especially mRNAs that encode proteins) is an urgent problem to be solved in bioinformatics. In recent years, the combination of sequence features and machine learning has been successfully used to solve biological problems such as the prediction of gene regulatory sites and splice sites (Wang et al., 2008; Xiong et al., 2015), and protein function (Cao et al., 2017; Gbenro et al., 2020; Hippe, 2020; Zhai et al., 2020), etc (Mrozek et al., 2007, 2009; Wei et al., 2017b,c, 2018; Jin et al., 2019; Stephenson et al., 2019; Su et al., 2019a,b; Liu B. et al., 2020; Liu Y. et al., 2020; Smith et al., 2020; Zhao et al., 2020b,c). Some tools have been developed to identify circRNAs using sequence features and machine learning methods. The basic framework of using machine learning methods to predict circRNAs is shown in Figure 2.


[image: image]

FIGURE 2. Methodology for predicting circRNAs based on machine learning methods.


One study selected 100 RNA circularization-related sequence features, including length, adenosine-to-inosine (A-to-I) density, and Alu sequences of introns upstream and downstream of the splice site, and established a machine learning model to identify circRNAs in the human genome. The classification abilities of two machine learning methods, random forest (RF; Cheng et al., 2019b; Liu et al., 2019) and support vector machine (SVM; Jiang et al., 2013; Wei et al., 2014, 2017a, 2019; Zhao et al., 2015; Cheng, 2019; Hong et al., 2020; Li and Liu, 2020; Shao and Liu, 2020), were also compared. The results showed that the selected sequence features could effectively identify RNA circularization and that different sequence features contribute differently to the classification and prediction ability of the model. The RF method showed better classification than the SVM method.

In 2021, Yin et al. (2021) constructed a tool, named PCirc, to identify circRNAs using multiple sequence features and RF classification. This tool specifically targets the identification of circRNAs in plants, mainly from RNA sequence data. The tool encodes the sequence information of rice circRNAs by using three feature-encoding methods: k-mers, open reading frames, and splicing junction sequence coding (SJSC). The accuracy of the encoded information is greater than 80% when using the RF method for identification. The identification model can be used not only for the identification of rice circRNAs, but also for the recognition of circRNAs in plants such as Arabidopsis thaliana.



circRNAs AND HUMAN DISEASES

In terms of disease diagnosis, studies have found that the exosomes released by cancer cells contain abundant circRNAs, suggesting that circRNAs might be used as biological markers for clinical diagnosis. The key when using circRNAs for disease prediction is to identify the interaction site between the circRNA and miRNA or RBP, and then indirectly determine the association between the circRNA and disease by analyzing the relationship between the miRNA or RBP and disease (Jiang et al., 2010; Cheng et al., 2018; Liu, 2020; Zeng et al., 2020; Zuo et al., 2020).

In 2015, Li Y. et al. (2015) reported that exosomes are enriched with circRNAs, so it is possible that diseases such as colon cancer could be diagnosed by detecting circRNAs in serum. Aberrant expression of circRNAs in colorectal cancer and pancreatic ductal adenocarcinoma has been used as a diagnostic or predictive biomarker. By studying their expression profile, it was found that circRNAs may be associated with the molecular pathogenesis of cutaneous basal cell carcinoma (Sand et al., 2016).

The first validated circRNA, cANRIL, is closely related to a single nucleotide polymorphism (SNP) that is thought to alter the splicing of cANRIL, leading to expression of the INK4A/ARF loci, resulting in an increased incidence of atherosclerosis (Burd et al., 2010). Hypoxia is one of the key factors contributing to the development of atherosclerosis, and is therefore also regulated by circRNA (Boeckel et al., 2015).

Xu et al. (2015) showed that mice of a transgenic line overexpressing the miR-7 gene in β-cells developed diabetes mellitus. The same study showed that overexpression of the circRNA ciRS-7 inhibited miR-7 function and thus improved insulin secretion. Potential target genes of miR-7 have been identified by bioinformatics analysis and include Myrip (a gene regulating insulin secretory granules) and Pax6 (a gene enhancing insulin transcription).

A study by Li P. et al. (2015) identified the circRNA hsa-circ002059 as being associated with gastric cancer. In that study, expression of this circRNA was downregulated in gastric tissues of patients compared with healthy controls. In addition, hsa-circ002059 was found at significantly lower levels in plasma of patients with gastric cancer than in healthy controls.

In bladder cancer, circRNAs have been identified using high-throughput microarray technology. Using this approach, Zhong et al. (2016) found two downregulated circRNAs (circFAM169A and circTRIM24) and 4 upregulated circRNAs (circTCF25, circZFR, circPTK2, and circBC048201) in bladder cancer tissue compared with adjacent non-tumor tissues. In addition, in the cancer tissues, circTCF25 could increase expression of the CDK6 gene by modulating miR-103a-3p and miR-107. This is closely related to the development of cancer.

Qin et al. (2016) identified hsa-cir0001649 in hepatocellular carcinoma (HCC) and found that its expression was significantly decreased compared with that in adjacent normal liver tissue. In contrast, Shang et al. (2016) found that another circRNA, hsa-cir0005075, was significantly downregulated in HCC compared with adjacent normal tissue.

Exosomes are highly enriched with circRNAs. Exosomes are extracellular vesicles, 40 to 160 nm in diameter, that function as important intercellular signaling pathways (Li Y. et al., 2015; Kalluri and LeBleu, 2020). The exosome database exoRBase included 92 sequenced samples of serum exosomes, including samples from healthy volunteers and patients with coronary heart disease and colon cancer. The exosome samples contained 58,330 circRNAs and 18,333 mRNAs (Li et al., 2018). Zhang et al. (2019) demonstrated that circNRIP1, when secreted via exosome, can be taken up by gastric cancer cells and promote their proliferation, migration, and invasion. Therefore, exosomes can be regarded as in vivo carriers of circRNAs that can amplify their biological functions.



CHALLENGES AND PROSPECTS

Compared with long non-coding RNAs and miRNAs, research on circRNAs is still in its infancy and many questions remain to be answered, primarily in four areas:


(1)Transport and degradation: because circRNAs can resist RNase digestion and are stable in cells, the process of their degradation is unclear.

(2)Formation: it is unknown whether circRNAs are produced during or after transcription.

(3)Expression, translation, and function of circRNAs: circRNAs have stable structures and are highly conserved, underpinning their ability to play important roles in different organisms. Their unconfirmed roles, including acting as miRNA sponges, regulating gene expression, and targeting RBPs, require comprehensive and extensive elucidation.

(4)Research methodology: the experimental methodologies and bioinformatics used to identify circRNAs are challenging. For example, in experimental methods, general RNA-seq procedures such as reverse transcription may cause technical mis-ligation and generate a large number of artificial circRNAs. These pseudo circRNAs can account for 34–55% of the sequencing quantity, seriously affecting the accuracy of the data. As for methods that use machine learning and sequence features, only a few identification tools exist and their accuracy needs to be improved. These tools are not stable across different species. Therefore, in the future, stable identification models and deep learning methods are needed to establish identification tools for circRNAs and improve the robustness of the models.



Accurate identification will help determine additional biological functions of circRNAs. The unique features of circRNAs such as ceRNA may provide new ideas for drug discovery and development. The tissue specificity and stability of circRNAs make them potentially useful biomarkers. In the near future, it is likely that circRNAs will play important roles in the prevention, diagnosis, and treatment of various diseases.
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Enhancers are regulatory DNA sequences that could be bound by specific proteins named transcription factors (TFs). The interactions between enhancers and TFs regulate specific genes by increasing the target gene expression. Therefore, enhancer identification and classification have been a critical issue in the enhancer field. Unfortunately, so far there has been a lack of suitable methods to identify enhancers. Previous research has mainly focused on the features of the enhancer’s function and interactions, which ignores the sequence information. As we know, the recurrent neural network (RNN) and long short-term memory (LSTM) models are currently the most common methods for processing time series data. LSTM is more suitable than RNN to address the DNA sequence. In this paper, we take the advantages of LSTM to build a method named iEnhancer-EBLSTM to identify enhancers. iEnhancer-ensembles of bidirectional LSTM (EBLSTM) consists of two steps. In the first step, we extract subsequences by sliding a 3-mer window along the DNA sequence as features. Second, EBLSTM model is used to identify enhancers from the candidate input sequences. We use the dataset from the study of Quang H et al. as the benchmarks. The experimental results from the datasets demonstrate the efficiency of our proposed model.

Keywords: enhancer, identification, classification, recurrent neural network, long short-term memory


INTRODUCTION

Enhancers, as cis-acting DNA sequences, are small pieces of DNA that are surrounded by specific proteins that often boost the expression of specific genes, and the specific proteins are always transcription factors (TFs) (Sen and Baltimore, 1986; Krivega and Dean, 2012; Pennacchio et al., 2013; Liu B. et al., 2016, 2018; Nguyen et al., 2019). In fact, enhancers play a highly important role in vivo. As we know, enhancers can increase the gene expression by interacting with TFs. By activating the transcription of genes, one way that enhancers influence target gene transcription is by bringing enhancers close to target genes by forming chromatin loops, and the other way is through self-transcription. Either way will bring about increasing of gene expression (Krivega and Dean, 2012). Moreover, it is well known that enhancers can influence human health and many human diseases. Recently, researchers have shown that under evolutionary constraints, approximately 85% of human DNA corresponds to non-protein-coding sequences with a significant portion constituting cis-regulatory elements. It is therefore not surprising that genetic variations within these regulatory sequences may lead to phenotypic variations and serve as the etiological basis of human disease (Shen and Zou, 2020). This indicates that enhancers might contribute to evolution.

As the amount of histone modifications and other biological data available on public databases and the development of bioinformatics, gene expression and gene control have become increasingly well known (Kleinjan and Lettice, 2008; Liu G. et al., 2016, 2018; Liu et al., 2017; Wang et al., 2020), and study about enhancers is a hot spot currently, especially how to identify enhancers and their strength (Zou et al., 2016; Zacher et al., 2017; Zhang T. et al., 2020). However, there remain many challenges to identify enhancers. For example, enhancers locate in the non-coding regions that occupy 98% of the human genome. This feature leads to a large search space and increases the difficulty. It is also a formidable challenge that enhancers are located 20 kb away from the target genes, or even in another chromosome, unlike promoters are located somewhere around the transcription start sites of genes. These features make identifying the enhancers more difficult (Pennacchio et al., 2013). As a result, in recent years, a large number of researchers have turned their attention to this topic. In 2017, Zacher et al. proposed a hidden Markov model named Genomic State ANotation (GenoSTAN), which is a new unsupervised genome segmentation algorithm that overcomes many limitations, such as unrealistic data distribution assumptions. Although the experience has shown that chromatin state annotation is more effective in predicting enhancers than the transcription-based definition, sensitivity (SN) remains poor (Wang et al., 2020). There are also other algorithms that can be used for enhancer identification and classification. Liu et al. built a predictor that has two layers named “IEnhancer-2L,” which is the first predictor that can identify enhancers with the strength information. The authors used pseudo k-tuple nucleotide composition (PseKNC) to encode the DNA sequences and then made full use of support vector machine (SVM) to build a classifier (Liu B. et al., 2016). In 2018, a new predictor called “iEnhancer-EL” was proposed by Bin Liu et al. iEnhancer-EL is formed through k-mer, subsequence profile, or PseKNC and SVM. Then it obtains the key classifiers and final predictor for layers 1 and 2 (Liu B. et al., 2018; Nguyen et al., 2019). This bioinformatics tool is equivalent to an advanced version of iEnhancer-2L and therefore has better performance than Enhancer-2L. Last year, Quang H. et al. proposed a new model called iEnhancer-ECNN that uses both one-hot encoding and k-mer to encode the sequence and ensembles of convolutional neural networks as the predictor. In our view, it has great improvements in many metrics.

In this study, we build a prediction network named iEnhancer-ensembles of bidirectional long short-term memory (EBLSTM) to identify enhancers and predict their strengths at the same time. We use 3-mer to encode the input DNA sequences. Then we predict enhancers by EBLSTM. Although we only use DNA sequence information, the experimental results prove the effectiveness of our method.



MATERIALS AND METHODS


Benchmark Dataset

The dataset used in our study is collected from previous studies by Liu B. et al. (2016), Liu B. et al. (2018), and Nguyen et al. (2019) and consists of the chromatin states of nine cell lines, including H1ES, K562, GM12878, HepG2, HUVEC, HSMM, NHLF, NHEK, and HMEC (Liu B. et al., 2016). The dataset is divided into two parts; one part is used to train the model. We called this dataset as the development set. The other part is an independent test dataset. As shown in Figure 1A, the development set consists of 1484 enhancer samples and 1484 negative samples and it is also the layer 1 dataset for enhancer identification. Moreover, 1484 enhancer samples can be divided into 742 strong enhancer samples and 742 weak enhancer samples, and it is the layer 2 dataset for enhancer classification. As shown in Figure 1B, the independent test set contains 200 enhancer samples (100 strong and 100 weak) and 200 negatives. At the same time, the dataset can be presented as follows:
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FIGURE 1. Dataset partition. (A) The partition of the development set. (B) The partition of the independent test set.


where the Dataset is all the data that we used, Dataset+ means the positive dataset, which is the enhancers in our study, and Dataset− means the negative dataset, which is the non-enhancer dataset in our study. Therefore, these two formulas mean the Dataset consists of Dataset+ and Dataset−, and Dataset+ consists of Datasetstrong and Datasetweak.

To display the datasets of this experiment more intuitively, DNA consensus sequences of enhancers (Figure 2A), non-enhancers (Figure 2B), strong enhancers (Figure 2C), and weak enhancers (Figure 2D) are calculated. As Figure 2 shows, the specific distributions of A, T, C, and G on these four datasets are different. This means that differences in DNA sequence can be used to distinguish these four types of sequences.
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FIGURE 2. DNA sequence logo. (A) The DNA logo of enhancers. (B) The DNA logo of non-enhancers. (C) The DNA logo of strong enhancers. (D) The DNA logo of weak enhancers.


Every enhancer sample has the same length of 200 bp. In the process of building the model, the development set will be divided into five parts, no matter whether in layer 1 or in layer 2, and each part will be the validation in turn and other four parts will be the training set.



Sequence Encoding Scheme

In this study, we use the principle of k-mer (Liu et al., 2019; Zou et al., 2019; Yang et al., 2020; Zhang Z. Y. et al., 2020), which means dividing the nucleic acid sequence into many shorter subsequences with length of k to encode the 200-bp enhancer sequence. As we know, enhancers are a type of DNA sequence and are composed of two kinds of purines (including adenine and guanine) and two kinds of pyrimidines (including cytosine and thymine). Thus, we can encode the obtained sequence of a length of 200 using k-mer (k = 3) as a sequence with a length of 198 by the encoding method shown in Figure 3. For example, the DNA sequence D is shown as follows:
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FIGURE 3. Coding flow of 3-mer (taking DNA sequence with the length of 10 bp as an example).


3-Mers are extracted by sliding a 3-mer window along the original DNA sequence with one step as features. The example sequence could be cut into eight such short sequences in S1.
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Then, eight numbers are used to represent eight short sequences with a strategy that makes each different 3-bp subsequence corresponds to a different number as shown in Figure 3. The DNA sequence can be transformed as a number sequence as follows:

[image: image]

Finally, a number sequence of length 8 can be extracted from a 10-bp DNA sequence. Thus, a sequence of 200 bp in the experiment is encoded in this way and a sequence of 198 digits is produced. Using the sequence ATC in S1 as an example, ATC is regarded as a quaternary three-digit number, A as 0, T as 1, C as 2, and G as 3. Then convert the number in base 3 to base 10. So 64 different 3-mers can be represented by 0–63.



BLSTM Architecture

As Figure 4 shows, a sequence of numbers with the sequence encoding scheme with the length 198 followed by the body of the structure is used as input to BLSTM. It is mainly composed of an embedding layer, a bidirectional LSTM, a dropout layer, the rectified linear unit (relu), a dropout layer, and sigmoid activation functions. In the architecture, the main purpose of embedding term training is to incorporate into the model to form an end-to-end structure, and the vector trained by the embedding layer can better adapt to the corresponding tasks (Kleinjan and Lettice, 2008; Liu G. et al., 2016, 2018; Liu et al., 2017; Zhang T. et al., 2020). The recurrent neural network (RNN) is a network of nerves that processes sequential data. Compared with the ordinary neural network, it can process the sequence variation data (Zou et al., 2016; Zacher et al., 2017). Long short-term memory (LSTM) is a special RNN, and it is mainly used to solve the problem of gradient explosion and disappearance. In short, LSTM performs better than normal RNN if the sequence is long (Liu et al., 2019; Zou et al., 2019; Yang et al., 2020; Zhang Z. Y. et al., 2020). Bidirectional LSTM is equivalent to the LSTM upgraded version, which means that time sequence data are used to input history and future data simultaneously. In contrast to time sequence, two cyclic neural networks are connected to the same output, and the output layer can obtain historical and future information at the same time (Bian et al., 2014; Goldberg and Levy, 2014; Juntao and Zou, unpublished; Tang et al., 2014). The function of dropout layer is preventing model overfitting. In addition, after relu and sigmoid layers (Gers et al., 1999; Graves and Schmidhuber, 2005; Sundermeyer et al., 2012; Zaremba et al., 2014; Huang et al., 2015; Xingjian et al., 2015; Li and Liu, 2020; Sherstinsky, 2020), a probability of whether the sequence is an enhancer or not can be calculated.
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FIGURE 4. Architecture of the BLSTM model.




Ensemble Model

There are two algorithms in ensemble learning: boosting and bagging (Li et al., 2020; Lv Z. B. et al., 2020; Sultana et al., 2020; Zhu et al., 2020). In our experiment, the data from each experiment are relatively independent and the bagging algorithm is more suitable. First, the basis learner models are trained independently by using subsamples. Finally, the strong learner model is made by different ensemble methods. The testing result shows that bagging is better than boosting. The entire workflow of bagging is in perfect agreement with our experimental procedure. After that, through several experiments, compared with the voting and median methods, the average method (Figure 5) can improve most of the metrics in our experiment in the process of selecting the ensemble method.
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FIGURE 5. Workflow of the ensemble model (ensemble method is the averaging method).


In our experiment, the dataset is divided into five parts according to fivefold cross-validation and each part is used as the validation set (Cheng et al., 2019; Dao et al., 2020a; Tang et al., 2020; Zhang D. et al., 2020; Zhao et al., 2020), respectively, and the remaining four parts are used as the training set for the experiment. Five different sets of parameters and models are obtained in these five experiments, and then five sets of models are used to test and obtain the prediction results. The final prediction probability value of the five prediction results is obtained by the average method, and then the prediction results is obtained by comparing with the threshold value of 0.5.



Measurement

To get the performance of the model, some evaluation metrics are used, such as accuracy (ACC), SN, specificity (SP), Matthews’s correlation coefficient (MCC), and area under the ROC curve (AUC) (Jiang et al., 2013; Cheng, 2019; Liang et al., 2019; Dao et al., 2020b; Lv H. et al., 2020; Shao and Liu, 2020; Shao et al., 2020; Su et al., 2020; Lv et al., 2021; Zhang et al., 2021). In the formulas of these metrics, TP, TN, FP, and FN mean true positive, true negative, false positive, and false negative, respectively. As we know, ACC is a description of systematic errors, a measure of statistical bias, and it always evaluates a model objectively when the dataset is balanced. SN and SP can support the model more accurately when the data are not balanced. The ROC curve is based on a confounding factors matrix, and the abscissa and the ordinate of the ROC curve are the false positive rate (FPR) and true positive rate (TPR), respectively, and AUC is the area under the curve. When comparing the different classification models, the ROC curve of each model can be drawn to obtain the value of the AUC, which can be used as an important indicator to evaluate the quality of a model (Gers et al., 1999; Graves and Schmidhuber, 2005; Sundermeyer et al., 2012; Wei et al., 2014, 2017a,b, 2019; Zaremba et al., 2014; Jin et al., 2019; Su et al., 2019; Ao et al.,2020a,b; Li and Liu, 2020; Sherstinsky, 2020; Yu et al.,2020a,b,c). The higher the AUC value is, the better the model is. The MCC is used as a measure of the quality of binary classifications and it is always used in the field of bioinformatics and machine learning. The reason why it is seen as a balanced measure is that MCC can take into account TP, TN, FP, and FN and we can get more ACC results by this way. MCC is a value between +1 and −1. +1 means a perfect prediction, 0 represents that the method does not work, and −1 indicates that the prediction was the exact opposite. These evaluation metrics are calculated from the count of TP, TN, FP, and FN.
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RESULTS


Two-Layer Classification Framework

To finish the work in an orderly way, a two-layer classification framework is proposed, which is composed in two steps: identifying enhancer and classifying strong enhancer from weak enhancers. In fact, layers 1 and 2 have the same encoding scheme and network structure. The only difference between the two layers is the input dataset. In layer 1, all data are used as the training set, enhancer set, and non-enhancer set, as part of all data and considered the positive set and negative set, respectively. In layer 2, only the enhancers are used in the experiment. The strong enhancer and weak enhancer are used, respectively, as the positive set and negative set.


Layer 1: Enhancer Identification

As we know, enhancer identification is extremely important in the field of enhancers. Now it is a hot topic in bioinformatics. In this study, the process of identification can be regarded as preparation for next step. To illustrate it, before judging whether a DNA sequence is a strong enhancer or a weak enhancer, the first thing is to judge if the sequence is an enhancer or not. If it is an enhancer, then the model predicts if it is strong or weak. Through this process, it becomes easier to understand its characteristics. Compared with layer 2 (enhancer classification), layer 1 will have higher ACC. For the reason, there are more differences between enhancer and non-enhancer than strong enhancer and weak enhancer. The more the difference, the easier it is to distinguish. In the process of the experiment, all of the datasets (enhancer + non-enhancer) are divided into five parts. Data division strategy is shown in Table 1.


TABLE 1. The specific division of the dataset into five parts for identifying enhancers and non-enhancers.
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Layer 2: Enhancer Classification

The differences between strong enhancers and weak enhancers are small. Hence, for layer 2, enhancer classification is more difficult than layer 1. Enhancer’s biological function and distinguishing the enhancer’s strength are an important component in understanding its physical and chemical properties. For layer 2, more effort is paid in to study it. In this layer, the enhancer dataset (strong + weak) is split into five parts as layer 1, but the amount of enhancer data is smaller (Table 2). Compared with layer 1, the layer 2 data are characterized by smaller differences and smaller quantities.


TABLE 2. The specific division of the dataset into five parts for classifying strong enhancers and weak enhancers.
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Comparison of Different Encoding Schemes

In the second part of our study, we compared the encoding methods that we introduced the sequence and encoding scheme. The encoding method adopted in this article is to encode the letters in the sequence into the numbers by 3-mer. Meanwhile, several other coding methods have also been tested, such as 2-mer, one-hot, and encoding by correspondence between letters and numbers.

k-Mer is obtained by sliding on the DNA sequence with a step size of 1 bp. In our experiment, take 3-mer (k = 3) as an example. When k is 3, 198 3-mers can be extracted from DNA sequence of length 200. Each 3-mer consists of the three letters taken as a whole, so it is possible to encode the original letter sequence into a sequence of numbers of length 198 based on the encoding method shown in Figure 3. In addition, the purpose of k-mer is to enhance the relationship between adjacent letters so that the model can learn better. The same is true for 2-mer, except that we end up with a sequence of 199 digits. Another method is to encode the letters directly in the sequence into the corresponding numbers according to the one-to-one correspondence between letters and numbers (A->0, T->1, C->2, G->3). One-hot coding, in fact, means that there are N state registers used to encode N states. Each state has an independent register bit, and only one of these register bits is valid. In other words, there can only be one state. This method ignores the relationship between adjacent sequences.

As shown in Table 3, one-hot encoding scheme showed poor effect in every metric. Adjacent sequences are separated in this process and coding these sequences by one-hot into the EBLSTM may not be a good idea. The other three methods have a similar effect by careful observation, and SN of letters to numbers and 3-mer is equal. But in other metrics, 3-mer is undoubtedly the best one. Similarly, as shown in Table 4, in the process of enhancer classification, the difference among different encoding schemes will be more obvious. It can be seen that 3-mer performs better than the others for each item; thus, we think 3-mer is a more suitable encoding method for this experiment.


TABLE 3. Result of comparison of using different encoding schemes in layer 1 (enhancers identification) under 10 trials.
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TABLE 4. Result of comparison of using different encoding schemes in layer 2 (enhancers classification) under 10 trials.
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Comparison of Different Architectures

In this experiment, we tried eight different internal structures, including simple RNN, bidirectional RNN, simple LSTM, and bidirectional LSTM, and then, on the basis of the four networks doubled, respectively, which means that another four structures are two layers of RNNs, bidirectional RNNs, simple LSTMs, and bidirectional LSTMs. After this step, a model that has the best performance would be chosen that with higher metrics than other seven models. Then the dropout layer is added to produce the final architecture.

Tables 5, 6 show the different architecture results in layers 1 and 2, respectively. The results are shown from the results in Table 5. Except for SN, the bidirectional LSTM has better effect based on the four other evaluation metrics. The reasons may be that bidirectional LSTM is more complex than the other three architectures and more features can be captured by it. In fact, we also do the other four experiments, as mentioned in the previous paragraph. But increasing the number of layers in this architecture also raises the processing time longer. The efficiency will be reduced. Therefore, the results of these four experiments were added to the table. A similar situation occurs in Table 6, where bidirectional LSTM is also the better choice in many metrics, except SP. Together, these results provide important insights into the idea that bidirectional LSTM is the best fit for the experiment.


TABLE 5. Result of comparison of using different architectures in layer 1 (enhancers identification) under 10 trials.
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TABLE 6. Result of comparison of using different architectures in layer 2 (enhancers classification) under 10 trials.
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Comparison of Different Ensemble Models

As mentioned in Section “Ensemble Model,” during the experiment, we tested three ensemble strategies. Each method has advantages and disadvantages. To explore which kind of strategy is more suitable for enhancers DNA sequences characteristics identification, median, voting, and averaging are tested. Set of indicators across the different methods are assessed. In Table 7, the voting and averaging methods are significantly better than the median method, and their performance of the two is very similar, but AUC and MCC in the averaging method are higher than those in the voting method, which shows that the predictive effect and stability of the average method are more advantageous than those of the voting method. In addition, in Table 8, the averaging method is still the best of these three ensemble methods. Combining these two tables to draw a conclusion, the indicators for the averaging method are better than the other two methods. The averaging method is the best one, and finally in our model, this method is applied to achieve ensemble learning.


TABLE 7. Result of comparison of using different ensemble models in layer 1 (enhancers identification) under 10 trials.
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TABLE 8. Result of comparison of using different ensemble models in layer 2 (enhancers classification) under 10 trials.
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Comparison With Existing State-of-the-Art Methods

There are several excellent methods for the prediction of enhancers, and the well-known methods are iEnhancer-2L, EnhancerPred, iEnhancer-EL, and iEnhancer-ECNN. Tables 9, 10 show the results of the comparison with existing state-of-the-art methods in layers 1 and 2.


TABLE 9. Result of comparison with existing state-of-the-art methods in layer 1 (enhancers identification).
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TABLE 10. Result of comparison with existing state-of-the-art methods in layer 2 (enhancers classification).

[image: Table 10]As Table 9 shows, compared with the previous three experimental methods, all the results of the metrics are significantly improved, especially in AUC and MCC. Moreover, compared with iEnhancer-ECNN in 2019, in this study, the results for ACC, AUC, and SP are slightly higher, but the results for SN and MCC are slightly lower. As seen in Table 10, iEnhancer-EBLSTM remains a reliable method that has better performance than iEnhancer-2L, iEnhancer-EL, and EnhancerPred, especially for SN and MCC; this method has been greatly improved. From the experimental results, we can see that both IEnhancer-EBLSTM and IEnhancer-ECNN are significantly better than the previous methods. I think the reason lies in the fact that the deep learning model itself has certain advantages, which can capture features more accurately and learn more efficiently. The model obtained can have more accurate parameters, so as to obtain higher results. However, compared with iEnhancer-ECNN, the data for AUC in our experiment are lower than the result of them, but the data for SN are higher. Overall, these results indicate that iEnhancer-EBLSTM performs best in enhancer identification and classification.



DISCUSSION

In this paper, we proposed the prediction model called iEnhancer-EBLSTM to identify enhancers and their strengths. In addition, this model uses the principle of 3-mer to encode the DNA sequence and EBLSTM to get the predictive result. The biggest advantage of this method is that it only uses DNA sequence information and does not rely on other features such as chromosome status, gene expression data, and histone modification. This greatly facilitates researchers to use it. iEnhancer-BLSTM could be used not only for identifying enhancers but also for distinguishing strong enhancers from weak enhancers. In the first layer, the predictor can identify whether the DNA sequence is enhancer or not, and the ACC is 0.772. In the second layer, the predictor can classify that the enhancer is strong or weak, and the ACC is 0.658. A lot of work still needs to be done on the second layer. There is little difference between strong and weak enhancers. More and more information of DNA sequences, physical and chemical needs to be mined. The characteristic information can be recorded more completely, and the various models can be built based on this information in more detail.
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As one type of complex disease, gastric cancer has high mortality rate, and there are few effective treatments for patients in advanced stage. With the development of biological technology, a large amount of multiple-omics data of gastric cancer are generated, which enables computational method to discover potential biomarkers of gastric cancer. That will be very important to detect gastric cancer at earlier stages and thus assist in providing timely treatment. However, most of biological data have the characteristics of high dimension and low sample size. It is hard to process directly without feature selection. Besides, only using some omic data, such as gene expression data, provides limited evidence to investigate gastric cancer associated biomarkers. In this research, gene expression data and DNA methylation data are integrated to analyze gastric cancer, and a feature selection approach is proposed to identify the possible biomarkers of gastric cancer. After the original data are pre-processed, the mutual information (MI) is applied to select some top genes. Then, fold change (FC) and T-test are adopted to identify differentially expressed genes (DEG). In particular, false discover rate (FDR) is introduced to revise p_value to further screen genes. For chosen genes, a deep neural network (DNN) model is utilized as the classifier to measure the quality of classification. The experimental results show that the approach can achieve superior performance in terms of accuracy and other metrics. Biological analysis for chosen genes further validates the effectiveness of the approach.

Keywords: gastric cancer, omics data, biomarkers, feature selection, deep neural network, machine learning


1. INTRODUCTION

Gastric cancer is one of the most common malignant tumors of the digestive system (Nogueira et al., 2017). The pathogenesis is mainly relevant to helicobacter pylori infection, diet, environment, and genetic factors. It remains one of the most deadly cancers worldwide, especially among older males (Siegel et al., 2020). Generally speaking, early detection of cancer is crucial for increasing the chances for successful treatment and prolonging the patient's life. The 5-year survival rate of early-stage gastric cancer can reach more than 95% (Song et al., 2017). However, the early stage of gastric cancer is hard to monitor because of rare symptoms and some potential patients' cancer may be advanced when they are first diagnosed. Therefore, early targeting and treatment are very important in clinical practice of gastric cancer (Wang et al., 2020). In recent years, with the development of sequencing technology, the genome data of cancer patients can be obtained easily. These genomic data have been used to study the association between genetic changes and diseases and contribute to diagnosis and prognosis. However, these data always have the characteristics of high dimensions and low sample size (HDLSS) (Han et al., 2019). It is hard to process these data directly (Yan et al., 2018). Therefore, feature selection technology is usually adopted to assist in analyzing the possible cancer-causing genes, also called biomarkers, from massive cancer data. The biomarkers can facilitate us to understand the pathogenesis of diseases at a detailed molecular level and play an auxiliary role in clinical diagnosis.

Till now, many researchers have applied the feature selection methods to the field of gene expression data analysis (Ding and Peng, 2005; Lu et al., 2017; Zhao et al., 2020). However, it is incomprehensive to analyze cancer only using gene expression data. The rapid accumulation of omics data can provide disparate, partially independent, and complementary information about the entire genome (Zhang et al., 2016). The multi-omic data can lay an important foundation for mining informative biomarkers for cancer (Ruffalo et al., 2015). Among these omics data, DNA methylation is an important epigenetic event that affects gene expression during the development in various diseases such as cancer (Bird, 1986; Wang et al., 2018). In general, DNA methylation status is more reliable than gene expression (Paziewska et al., 2014). The combination of DNA methylation data and gene expression data is more beneficial to explain the pathogenesis of gastric cancer. Therefore, these two kinds of data are utilized to identify the biomarkers of gastric cancer in our study.

In this paper, we propose a novel gastric cancer biomarker identification approach, referred to GCBMI, to discover the possible biomarkers of gastric cancer. First, the gene expression data and DNA methylation data of gastric cancer are collected and processed. Then, fold change, statistical test, and mutual information are utilized to identify the differentially expressed genes of gastric cancer and the selected genes can serve as guidelines to reduce the dimension of omics data. At last, the DNN model is adopted as the classifier to measure the quality of classification. Experimental results indicate that GCBMI can obtain more favorable performance than other state-of-art methods.

The main contributions of this study are summarized as follows:

• For gastric cancer, a novel feature selection approach is proposed to identify the potential biomarkers. Here, DNA methylation data is integrated with the gene expression data effectively to obtain a comprehensive analysis to discover the relationship between gastric cancer and potential biomarkers.

• Besides T-test and FC, mutual information is introduced as a preliminary screening method to filter out redundant genes and FDR is adopted to revise p_value to further screen genes.

• The experimental results suggest that our approach can achieve improvement in different evaluation indicators than other state-of-art methods. In addition to evaluating accuracy, GO analysis, heatmap, and literature review are executed. The above biological validation is able to demonstrate that the genes selected by our approach are associated with gastric cancer.

The remainder of this paper is organized as follows: In section 2, we review related works of feature selection methods. The proposed approach is introduced in section 3. section 4 introduces the experimental design. Experimental results and biological analysis are described in section 5. Finally, we summarize the paper and make a vision for the future in section 6.



2. RELATED WORK

With the development of sequencing technology, massive amounts of cancer genome data have been accumulated at an accelerated speed. A number of feature selection methods have been extensively applied to cancer data. Traditional feature selection methods can be divided into two categories: filter methods and wrapper methods. Among them, the filter method has the advantage of low time consumption. So far, some filter methods had been well-applied to gene expression data.

Principal Component Analysis (PCA) is an effective dimensionality reduction method (Wold et al., 1987). Ding et al. combined feature extraction with feature selection in gene expression data (Ding et al., 2009). The relief was utilized to feature selection, and PCA was used to extract features. Then, they used the support vector machines (SVM) for classification. Experimental results illustrated that their method is effective to reduce the classification error rate in eight cancer datasets. But such methods cannot guarantee that the features still remain the corresponding biological significance. For example, the dimensionality reduction of features by PCA is equivalent to mapping the new features on the original features, and the features obtained after PCA are different from the original genes (Shen and Huang, 2008). Thus, it is often difficult to interpret the results.

Hsu et al. used extremely randomized trees (ET) to calculate the weight of the features (Hsu and Si, 2018). Feature selection was achieved by selecting features with high weight. Then, the linear SVM was combined to achieve about 95% accuracy on TCGA datasets. Lee et al. developed a novel filter method to identify the biomarkers of lung cancer and confirmed seven possible biomarkers (Lee et al., 2011).

In addition to filter methods, the wrapper methods utilize classification accuracy as a measurement standard for evaluation and find the optimal feature subset by iteration of meta-heuristic algorithms (Rodrigues et al., 2014). A lot of meta-heuristic algorithms had been well-applied to wrapper methods for feature selection of cancer such as bat algorithm (BA), recursive memetic algorithm (RMA), binary krill herd algorithm (MBKH), and so on (Dashtban et al., 2018; Ghosh et al., 2019; Zhang et al., 2020).

Dashtban et al. proposed MOBBA-LS which utilized fisher criterion and BA (Dashtban et al., 2018). They tested their method on three microarray cancer datasets. The accuracy achieved 100, 97, and 100% on leukemia, prostate, and SRBCT datasets, respectively. Ghosh et al. developed a recursive memetic algorithm (RMA) model for feature selection (Ghosh et al., 2019), and Zhang et al. proposed a pre-screening method of feature ranking, IG-MBKH, which is based on information gain (IG) and an improved binary krill herd (MBKH) (Zhang et al., 2020). The above methods can obtain favorable classification accuracy on microarray data of cancer.

Multiple-omics data can enable to provide a more comprehensive analysis of the entire genome. Among them, DNA methylation is one of the important epigenetic regulatory mechanisms (Luo et al., 2020). Especially, it is considered as a molecular factor that controls and regulates gene expression levels near the CpG sites. Its status is closely associated with diverse diseases and is generally more stable than gene expression (Ding et al., 2019). Therefore, the function of DNA methylation data was widely recognized. Increasing feature selection methods, which are based on gene expression data and DNA methylation data, were proposed.

For Alzheimer's disease, Park et al. proposed a biomarker prediction model, which integrated multi-omic data (Park et al., 2020). They used the Limma package to select possible biomarkers. Experimental results showed that their method can achieve better accuracy than using single data, and some chosen genes were reported in AlzGene database.

Mallik et al. proposed a method to identify biomarkers of cancer based on omics data (Mallik et al., 2017). The maximal relevance and minimal redundancy (mRMR) and parameter test like T-test were used to select the genes. The results suggested that their method had stable performance on different classifiers and classification accuracy can achieve about 95 and 90% in gene expression data and DNA methylation data, respectively.

Wang et al. proposed a feature selection method based on gene expression data and DNA methylation data of the six types of cancer (Wang et al., 2020). Their method can be divided into three steps. First, the correlation between gene expression profile and methylation profile of each gene was calculated to screen genes initially. Then, the genes were further filtered by T-test and FDR value. Finally, the genes selected in first two steps are filtered by Elastic Net. Finally, support vector machine was utilized as the classifier. The accuracy can be as high as 98% for the training set and 97% for the independent test set.



3. THE PROPOSED APPROACH

In this section, the proposed approach GCBMI is introduced. The overall workflow of GCBMI is shown in Figure 1. GCBMI consists of three stages: data pre-processing, selection of DEG and data combination, and using deep neural network as the classifier.


[image: Figure 1]
FIGURE 1. The workflow of gastric cancer biomarker identification approach (GCBMI).



3.1. Data Pre-processing

In this section, we regularize the gene expression data, and then merge the individual gene expression data files. In addition, on the basis of annotation file of the gene chip, the column (feature) name of each sample is converted to the gene name, and the label column is added. In the annotation file of the gene chip, the gene name corresponding to each probe is stored. If a gene corresponds to multiple probes, we take the median of expression value as new expression value of the gene. After that, the genes with null values are further removed. In order to eliminate the influence of outliers, the dataset is standardized by z-score according to the following formula (Zhang et al., 2014). Finally, the datasets are divided into training set and test set in our experiment.

[image: image]

where x and x′ represent a column of data before and after standardization. [image: image] and σ represent the mean and standard deviation of a column of data in training set.

Likewise, DNA methylation data are also processed accordingly to eliminate the influence of outliers.



3.2. Selection of Differentially Expressed Genes and Data Combination

In this section, how to identify DEG in our approach is introduced. For gene expression data, the characteristics of high dimension and low sample size make it hard to construct a prediction model directly and may lead to the over-fitting (Ma and Zhang, 2019). For this issue, an appropriate method is required to reduce the size of feature space and the risk of over-fitting.

In GCBMI, the DEG and the differentially methylated positions (DMP) are utilized to train the model. The overall process contains three steps as follows.

First, MI (Liu H. et al., 2009) is applied to select TopN genes for gene expression data and DNA methylation data, respectively. It is a classic filter method of feature selection, which has been successfully applied to many feature selection problems (Peng and Fan, 2017). In order to avoid redundancy, the MI is adopted to filter out irrelevant genes. N is set to 3,000 through the subsequent experiments.

Second, FC and T-test are adopted to do identify DEG and DMP. What is more, the FDR is applied to revise the p_value. Taking DEG as an example, FC value for each selected genes in the first step is calculated. Since the data obey the normally distributed by Z-score standardization. Parametric statistics like T-test can work well on this kind of data. Then, Levene-test (Ankarali et al., 2009) is applied to verify whether the samples with variance homogeneity or not. If they have variance homogeneity, performing the standard T-test (Gauvreau and Pagano, 1993) to calculate p_value. Otherwise, the Welch's T-test (Algina et al., 1994) is executed to calculate the p_value. After that, the FC value and significant p_value for each gene are obtained. Finally, FDR is utilized to revise p_value to further screen candidate genes. A suitable threshold for FC value, p_value, and FDR are set to filter genes. And then we can obtain DEG. Similarly, DMP can be obtained. As shown in Figure 1, in gene expression data, the |FC| > 2.1 and p_value < 0.05.The |FC| > 1.8 and p < 0.05 in DNA methylation data. The FDR threshold value of both experimental datasets is set as 0.01. A hypothesis is made that if the gene is differentially expressed and occur hypermethylated and hypomethylated in different samples. This gene may have a potential relationship with gastric cancer. So the overlapping genes in DEG and DMP are the possible biomarkers of gastric cancer.

Finally, in order to extend training samples, all possible pairs of gene expression data and DNA methylation data for tumor and normal samples are utilized to merge into a new dataset. As shown in Figure 2, Cartesian product (Emelyanov and Ponomaryov, 2017) is performed on the gene expression data and DNA methylation data. The gene expression data and methylation data that labeled as tumor are combined into new tumor samples, and which labeled as normal are combined into new normal samples. In this way, the gene expression matrix and DNA methylation matrix are combined into a new expression matrix. This matrix has a large sample size. For example, in one of the cross-validation, the training set of gene expression data has 214 samples, which contains 112 tumor samples and 102 normal samples. DNA methylation data have 237 samples, which contains 160 tumor samples and 77 normal samples. After the combination, we will obtain 17,920 tumor samples and 7,854 normal samples. Taking them as new tumor samples and normal samples, so the new training set contains 25,774 samples, including 17,920 tumor samples and 7,854 normal samples.


[image: Figure 2]
FIGURE 2. The process of combining data.




3.3. Using Deep Neural Network as the Classifier

DNN model has excellent classification performance compared with traditional classifiers in previous studies, such as (Chen et al., 2020; Singh and Yamada, 2020). Here, the DNN also adopted as the classifier and the parameters of the DNN are determined through experiments.

In this section, the structure of the network is introduced. Our DNN model consists of three parts: input layer, hidden layer, and output layer. The input layer consists of two parts, corresponding to gene expression data and DNA methylation data, respectively. Then we add six hidden layers that applied ReLU as the activation function. Each layer contains 100 nodes and a additional bias nodes. The dropout is added for each hidden layer to avoid overfitting, which refers to drop some neurons randomly according to a certain probability during the learning iteration. It is equivalent to train a sparser network than the original network. Each of iterations is training a different network model to prevent overfitting. Finally, since our data only have two categories, the output layer with one node is sufficient. Sigmoid function is adopted as the activation function of the output layer to make the output value between 0 and 1.

In the DNN model, the loss function is binary cross entropy and cost function is the reduced average value of cross entropy. Adam algorithm is applied to optimize the parameters of the network model. The formula of the loss function and cost function are as follows:

[image: image]
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where y and ŷ represent the true value and the predicted value of a sample. ŷ is the result of sigmoid regression. m is the total number of samples and i represents the index of the sample. w and b represent weights and biases, respectively.




4. EXPERIMENTAL SETTING

The experiments can be divided into two parts. First, we compare GCBMI with other state-of-art methods. The ET (Hsu and Si, 2018), Elastic Net (Wang et al., 2020), IG-MBKH (Zhang et al., 2020), and MOBAA-LS (Dashtban et al., 2018) are selected as the baselines. A detailed description of the comparison methods is as follows:

• ET was proposed by Hsu et al. They used ET to calculate the weight of the features and select features with high weight. SVM was combined to evaluate the feature subsets. This method achieved about 95% accuracy on TCGA datasets.

• Elastic Net was a novel method that integrates the Pearson correlation coefficient, T-test, and FDR. The data are based on gene expression data and DNA methylation data. In six types of omics-data, the accuracy can up to about 98% by combing with SVM.

• IG-MBKH was presented and applied to feature selection for high-dimensional datasets. This method combined IG and krill herd algorithm and they used K-Nearest Neighbor (KNN) classifier to evaluate the classification accuracy. The accuracy of classification on nine different cancer datasets was more than 90%.

• MOBAA-LS is based on fisher criterion and BA. The accuracy achieved 100, 97, and 100% on leukemia, prostate, and SRBCT datasets, respectively.

Second, we investigate the prediction performance of DNN in biomarker identification for gastric cancer and how our method using different classifiers can affect the classification accuracy. We undertake experiments to compare our method using DNN classifier compared with using the traditional classifiers, such as KNN (Tahir et al., 2007), SVM (Vieira et al., 2013), and Naive Bayesian (NB) (Bielza and Larrañaga, 2014).


4.1. Dataset

We select the GEO database, which is an authoritative database of cancer applied in many previous studies (Zouridis et al., 2012; Wang et al., 2013) as the benchmark database. And the gene expression data GSE29272 (Li et al., 2014) and DNA methylation data GSE30601 (Lei et al., 2013; Kurashige et al., 2016) of gastric cancer are downloaded to construct our experiment dataset. As shown in Table 1, there are 268 samples of gene expression data including 134 tumor samples, 134 normal samples, and 13,515 features. And DNA methylation data contains 203 tumor samples, 94 normal samples, and 14,476 features.


Table 1. Benchmark dataset.

[image: Table 1]



4.2. Parameter Setting

The experiments are conducted on Intel Dual Core CPU, 8 GB RAM, Windows 7 operating system. The procedure is implemented under the programming environment Python version 3.6. The feature selection algorithms, statistical detection methods, and classifiers are provided by the Scikit-learn package and scipy package and the DNN is built by Keras package. Related parameters are given as follows: DNN is set as described in the Section 3.3; SVM: degree = 3, gamma = auto, kernel = “rbf,” cache_size = 200; KNN: K = 5. The parameters of methods are set according to the original literature (Dashtban et al., 2018; Hsu and Si, 2018; Wang et al., 2020; Zhang et al., 2020). The specific settings are shown in Table 2.


Table 2. Parameter setting.

[image: Table 2]

According to Park et al. (2020), all experiments use five-fold cross validation. The dataset is divided into five parts, and one part is taken as the test set in order and the rest parts are taken as the training set in each cross validation. After the Cartesian product is executed, there are average 8,053 normal samples, 17,400 tumor samples as training set, and 496 normal samples, 1,079 tumor samples as test set. The accuracy, precision, recall, F1-score and Area Under Curve (AUC) are utilized to evaluate the classification results of the model (Tanzi et al., 2020). These evaluation indicators are defined as follows:
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The positive samples are tumor samples and the negative samples are normal samples. True positive (TP) indicates the number of tumor samples that have been correctly classified, false positive (FP) indicates the number of normal samples which are misclassified as tumor samples, true negative (TN) indicates the number of correctly classified normal samples, and false negative (FN) indicates the number of tumor samples, which are misclassified as normal samples.




5. RESULTS AND DISCUSSION


5.1. Comparison of Other State-of-Art Methods

In this section, GCBMI is compared with other state-of-art methods, and the experimental results are shown in Table 3. The accuracy of GCMBI achieved is 98.7%. The Elastic net also applies omics data, but the accuracy of GCBMI is 9% higher than the Elastic net. The performance of two wrapper methods IG-MBKH and MOBBA-LS are similar in our experiment. In terms of accuracy, these two methods are about 5% lower than our approach. The accuracy of extremely randomized trees achieved is 93%. What is more, in terms of precision and recall, GCBMI also has the highest precision and the second highest recall. This indicates FP and FN appear less frequently and the classification performance of GCBMI is superior to other state-of-art methods.


Table 3. Performance comparison on different metrics (the accuracy, precision, recall, F1-score, and AUC value are average).

[image: Table 3]

F1-score and AUC value are often applied to evaluate the stability and robustness of models. The two indicators of GCBMI can achieve about 99%. It is 5–7% higher than other state-of-art methods. In order to display the advantages of our method more intuitively, the histogram of experimental results is plotted in Figure 3.


[image: Figure 3]
FIGURE 3. The experimental results of gastric cancer biomarker identification approach (GCBMI) compared with other methods.


Overall, GCBMI can get better performance on different evaluation indicators than other feature selection methods, which indicates that the genes identified by GCBMI have more sufficient capacity to classify gastric cancer. The high F1-score and AUC value also illustrate that our model has better stability. The experimental results suggest that combined omics data are meaningful, and it may reveal some causal relationships between different biological layers.



5.2. The Impact of Classifiers on Performance

In this section, the impact of different classifiers is evaluated on our feature selection method. Table 4 displays the experimental results, which indicates that DNN model compared with the other three classifiers has better performance in different evaluation indicators. The performance of KNN is similar to SVM and NB is worst but still reaches 96%. The performance of our method is stable in different classifiers. GCBMI integrates gene expression data and DNA methylation data and expands the number of samples. In this way, the DNN model can be trained better and achieves superior results than other classifiers.


Table 4. Results with different classifiers (the accuracy, precision, recall, F1-score, and AUC value are average).

[image: Table 4]

On the whole, when compared with the KNN, SVM, and NB, our deep neural network model has better performance in different metrics, which indicates the validity of our feature selection approach. All the experimental results indicate that DNN model is a more appropriate classifier to feature selection in our approach. Figure 4 shows the histogram of the average accuracy, F1 score, and AUC value of GCBMI with different classifiers, respectively. The classification advantage of DNN model has been shown in it, which has demonstrated the effectiveness of GCBMI.


[image: Figure 4]
FIGURE 4. The experimental results of gastric cancer biomarker identification approach (GCBMI) with different classifiers.




5.3. Gene Analysis

In our experiment, the overlapped genes are recorded, which are shown in Table 5. In each fold of cross-validation, about 20 genes are selected. These genes are the intersections of DEG and DMP. Among them, eight genes appear in each intersection and they are thought to be biomarkers of gastric cancer. In this section, the selected genes are further analyzed to understand the biological relevance.


Table 5. Selected genes from integrating gene expression and DNA methylation dataset.

[image: Table 5]

Through literature retrieving, we can find the coding protein of PGC is a digestive enzyme produced by the stomach and it is the main component of the gastric mucosa. Polymorphism of this gene is associated with gastric cancer susceptibility. Serum levels of this enzyme are used as the biomarker for certain stomach diseases, including Helicobacter pylori associated gastritis (Sun et al., 2009). Moreover, Liu et al. discovered PGC was positively expressed in normal gastric mucosa (100%), and the expression rate was 6.45% in gastric cancer (Liu D. et al., 2009). The results suggested that PGC has important application value in the diagnosis of gastric cancer.

For gene PSCA, relevant research demonstrated that proteins encoded by PSCA play an important role in cell proliferation. In addition to being highly expressed in the prostate, it is also expressed in differentiating gastric epithelial cells. This gene includes a polymorphism that results in an upstream start codon in some individuals; this polymorphism is thought to be associated with a risk for gastric cancers (Bahrenberg et al., 2000; Sakamoto et al., 2008).

Except for PGC and PSCA, gene PDGFD as a member of PDGF family (Huang et al., 2014), its signaling pathway has been considered as a new target for the treatment of gastric cancer (Wang et al., 2009). Besides, gene KCNE2 is expressed mainly in the cytoplasm of parietal cells. Kuwahara et al. discovered that the loss of KCNE2 expression could cause gastric adenocancer (Kuwahara et al., 2013).

For these eight genes identified, in order to observe their expression level, gene expression heatmap is constructed. As shown in Figure 5, the expression levels of these eight genes in all samples are demonstrated. The first half of the heatmap are normal samples, and others are tumor samples. Basically, the result shows that these genes have different expression in normal and tumor samples. Some of these genes differed significantly between the two classes and may have some relationship with gastric cancer.


[image: Figure 5]
FIGURE 5. Heatmap of eight overlapped genes.


What is more, the enrichment analysis is conducted by DAVID database for selected genes. As shown in Table 6, biological significance of the genes are reported through Gene Ontology (GO). “GO:0008284 positive regulation of cell proliferation,” “GO:0046597 negative regulation of viral entry into host cell,” “GO:0030335 positive regulation of cell migration” are common biological activities in human cancer (Dyrskjøt et al., 2009). Among them, there have some items about platelet, some studies have suggested that gastric cancer may lead to changes in platelet count and morphology (Matowicka-Karna et al., 2013). In addition, some studies also have been pointed out that interferon (Ferrantini et al., 2007) and other related factors may have relationship with the occurrence of cancer.


Table 6. GO analysis of selected genes.
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6. CONCLUSION

In this work, we propose a novel feature selection approach, GCBMI, which uses gene expression and DNA methylation data for identifying the biomarkers of gastric cancer. GCBMI consists of three main parts, namely data pre-processing, selection of differentially expressed genes and data combination, and deep neural network as the classifier. Differential expression analysis, statistical test, and MI are integrated to obtain comprehensive view to implement the biomarkers identification after data pre-processing. MI is introduced to filter out irrelevant gene, and FC and T-test are utilized to select differentially expressed genes. In particular, FDR is applied to revise the p_value to further screen genes. After that, Cartesian product is performed to expand samples. Moreover, GCBMI adopts DNN as the classifier to evaluate the classification ability of selected genes. Experimental results on GEO dataset indicate that the proposed approach outperforms other state-of-the-art feature methods. The results of biological relevant verification indicate the status of the selected gene as the biomarkers of gastric cancer.

What is more, the performance of combined with omics data tends to be more superior than using a single omics data alone. In the future, some other omics data will be combined such as copy number variation (CNV) data to identify cancer biomarkers, and our methods will be applied to other fields as well (Liu et al., 2020). Besides, some measures will also be taken to improve our method so that its classification performance can be improved further.
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Multilayer networks provide an efficient tool for studying complex systems, and with current, dramatic development of bioinformatics tools and accumulation of data, researchers have applied network concepts to all aspects of research problems in the field of biology. Addressing the combination of multilayer networks and bioinformatics, through summarizing the applications of multilayer network models in bioinformatics, this review classifies applications and presents a summary of the latest results. Among them, we classify the applications of multilayer networks according to the object of study. Furthermore, because of the systemic nature of biology, we classify the subjects into several hierarchical categories, such as cells, tissues, organs, and groups, according to the hierarchical nature of biological composition. On the basis of the complexity of biological systems, we selected brain research for a detailed explanation. We describe the application of multilayer networks and chronological networks in brain research to demonstrate the primary ideas associated with the application of multilayer networks in biological studies. Finally, we mention a quality assessment method focusing on multilayer and single-layer networks as an evaluation method emphasizing network studies.
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INTRODUCTION

In recent years, the formulation of multilayer networks has provided new methods for the study of multilevel network systems. Many biological systems comprise interconnected units that can be effectively modeled as networks, which are mathematical structures describing connections between points (Jing et al., 2019; Liu B. et al., 2020; Shao et al., 2020). Complex network systems provide powerful research tools and methods for studying biological fields (Kumari and Verma, 2020; Liu X. et al., 2020; Shao and Liu, 2020), from interactions between genes and proteins (Zhang et al., 2019; Li Z. et al., 2020; Zhai et al., 2020), to the study of tissue and organ functions (Yang et al., 2020), and even human brain study (Zhang J. et al., 2020). The complexity and evolutionary nature of biological systems enable the extensive application of multilayer networks and associated methods. Additionally, ecosystems and evolutionary systems evolve and change over time, and the corresponding network structures for these systems change correspondingly. Furthermore, the reasons for all these changes, particularly topological changes in the course of network structure change, and the importance of network feedback in network structure analyses are all topics worthy of exploration.

A network representation is a simplified description of a more complex, multifaceted system. A social system can include different types of interactions of different biological significance (e.g., cooperation or competition), while standard network approaches usually ignore these interactions or achieve integration through analyzing networks with different edge types separately. In bioinformatics studies using network structures, the progress of each biological system relies on the amount of data and/or new discoveries about unknown biological areas. For example, in the study of transcription-translation relationships between genes and proteins, genes and proteins are represented by nodes, and the correspondence between genes and proteins is represented by links in the network. Therefore, it is necessary to first understand the characteristics of each individual gene and protein, and the methods used to identify these relationships (Lin et al., 2019; Zhang D. et al., 2021; Zhang Z.Y. et al., 2021; Zulfiqar et al., 2021). Only then can the most relevant genes and corresponding proteins for a disease or symptom be identified through clustering or linkage analyses of the network, which further enables the investigation of target therapies for symptoms of disease (Zhu et al., 2018; Iliopoulos et al., 2020). These applications all rely on the data set and on the biological correspondence of genes and proteins.

The definition of a multilayer network varies slightly from one application to another. All edges and nodes in a single network are homogeneous, but in the real world, there is heterogeneity in both the objects represented by the nodes and the connections represented by the edges. Multilayer networks add additional tagging capabilities to traditional networks. That is, tagging terms are added to the traditional network, which can be understood as a composite of simple (single-layer) networks with different tags for complex networks. This is a relatively easy way to understand the definition of complex networks on different systems. Currently, according to different applications and subjects, multilayer networks can be divided into the following types:

(1) Multiplex networks: Networks in which the nodes on different layers are connected by inter-layer edges.

(a) In multi-relational networks, each layer represents a different type of interaction, i.e., different relationships are the distinguishing dimension for building a multilayer network, and the relationships are the tagged labels.

(b) In a temporal network, each layer encodes the same type of interaction at different time points or time windows. That is, time series (time windows) are the tagged labels between layers in a multilayer network.

(2) Interconnected networks: Nodes in different layers do not necessarily represent the same entities and inter-layer edges between different types of nodes may exist.

(a) The network of networks consists of subsystems, which are themselves networks. They are interconnected by interlayer edges between subsystem nodes.

(b) In a contextual network, each layer is interpreted to represent a different type of node. For example, interactions between males in one layer, interactions between females in another layer, and interactions between the sexes in a third layer. These interactions are represented by inter-layer edges.

(c) Spatial networks (also known as geometric networks) can be connected by ecological networks of the subjects moving between various locations.

Multilayer networks are currently used in various fields including physics, chemistry, biology, technology, finance, and social systems because of their inherent structural and functional characteristics. In this review, we briefly introduce the development of multilayer network concepts, techniques, and applications in bioinformatics by reviewing multilayer network applications in bioinformatics, and we summarize the outlook and development of multilayer networks in bioinformatics by analyzing current research.



MULTILAYER NETWORK APPLICATIONS

The definition and methodology of multilayer network models in bioinformatics depends on the specific research problem. Organisms can be classified into different systems under different levels, and that system usually changes dynamically with time. Therefore, usually the representation of bioinformatics related networks varies depending on the specific biological system. In this review, we classify research topics into different categories according to the different levels of biological systems. As shown in Figure 1, multilayer networks in bioinformatics can be classified into five major categories.
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FIGURE 1. Multilayer network application area framework in bioinformatics.


As the understanding of DNA structure and function has gradually improved (Liu M.L. et al., 2020), understanding the relationships between genes and proteins, genes and disease, and disease and drugs has greatly evolved. For example, the correspondence between genes and disease has been mined through network structures, where the method utilizes a joint learning approach using the functional and connectivity patterns of proteins to predict disease-gene relationships using human interactome networks. In contrast to other data structures, interactomes are characterized by a high degree of incompleteness and lack of explicit negative knowledge, which makes prediction particularly challenging. To maximize potential information in the network, a second-order random walk procedure named random walker (RW^2) is applied in these studies. The random walker is able to learn rich representations of disease gene (or gene product) characteristics. This method has successfully compared with the best-known disease gene prediction systems and other state-of-the-art graph-based methods.

A large number of candidate disease-causing genes can be sequenced and checked for variation to help determine relationships between disease and genes (Zhang Z.M. et al., 2020). Many different computational methods have been developed to address this challenge. The observation that genes associated with similar diseases have a higher probability of interaction, many of these methods rely on the analysis of the topological properties of biological networks. However, the incomplete and noisy nature of biological networks is an important challenge. Two-step framework for disease gene ranking: (1) Construct a reliable functional connectivity network using sequence information and machine learning techniques. And (2) rank disease–gene relationships on the basis of that constructed functional connectivity network. Unlike other functional connectivity network-based frameworks that use functional connectivity networks based on the integration of various low-quality biological data, protein sequences can be used as comprehensive data to construct a reliable initial network. Additionally, the physicochemical properties of amino acids can be used to supplement hypotheses of protein function. In conclusion, our assessment of these methods indicates high efficiency and effectiveness for constructing functional linkage networks for disease genes (Wang et al., 2008; Jiang et al., 2010, 2013; Cheng et al., 2018; Zeng et al., 2018).

Gene function can also be determined by collecting biological data. For example, the Drosophila ovary epidermal cells (ECs) externally control the maintenance and progeny differentiation of germ line stem cells (GSC). In this study, the role of 173 EC genes that control GSC maintenance and progeny differentiation were identified using a Drosophila in vivo systemic RNAi approach (Zeng et al., 2016; Zou et al., 2016; Wang et al., 2019). Among the identified genes, 10 and 163 genes were required by ECs for GSC maintenance and progeny differentiation, respectively. The genes required for progeny differentiation were classified into different functional categories, including transcription, mRNA splicing, protein degradation, signal transduction, and cytoskeleton regulation (Cao et al., 2019). In addition, GSC progeny differentiation defects caused by defective ECs were often associated with BMP signaling elevation, indicating that preventing BMP signaling is a general functional feature of the differentiation niche. Finally, EC exon junction complex (EJC) components were identified as required for EC maintenance and the prevention of BMP signaling, and thus the promotion of GSC progeny differentiation. Therefore, this study identifies the major regulators of the differentiation niche and provides important insights into the external control of stem cell progeny differentiation.

Corresponding network structures for different biological data and specific subjects can also be designed to analyse specific biological systems (Zeng et al., 2016; Jiang et al., 2017; Liu et al., 2017). Currently, at the subcellular level, these networks mainly include gene regulatory networks (Wang et al., 2010; Ding et al., 2011; Jiang et al., 2014; Cheng et al., 2019; Konda et al., 2019; Liu L. et al., 2019; Mortezaeefar et al., 2019; Hong et al., 2020), protein functional networks (Guo et al., 2011, 2013, 2014; Sikandar et al., 2019; Tao et al., 2020; Liu et al., 2021), metabolic regulatory networks (Jin et al., 2020), and drug targeting networks (Wei et al., 2014; Ding et al., 2017, 2019, 2020a,b; Jin Q. et al., 2019; Jin S. et al., 2019; Srivastava et al., 2019; Zhao et al., 2019; Zeng et al., 2020).

The study of human brain functional and structural mechanisms using brain networks is also a hot field. Currently, research has mainly studied brain function by acquiring the brain waves of subjects, and the functional partitions of the brain have been predominantly obtained by functional experiments or magneto encephalography. This portion of our review will be introduced in detail in the next section.

Modern network theory is increasingly applied to neuroscience to understand neurophysiology and anatomy at different scales and under experimentally attainable physiological and pathophysiological conditions. The first attempt was made at the micro anatomical level of individual neurons. Watts and Strogatz analyzed the anatomical connections of the nervous system of Caenorhabditis elegans where neurons represent the nodes and synaptic or gap connections of a neural network. Their study revealed a highly clustered and efficient network, thus representing the first evidence of a real neural system with a small-world network. Later graph-theoretical approaches focused on morphological representations or dynamic correlations of the electrical stimulation activity of neuronal networks.

Network-based analyses have also been useful to address several questions in ecology and issues in conservation. The first study was carried out in a contextual network of so-called species interactions. Food webs are one of the fundamental issues in ecological studies, and despite the rather high variability detected in network structure, food webs present a complex topology similar to other types of real networks and host-parasite networks. One of the main advantages of these approaches is the direct assessment of the robustness and sensitivity of a given ecosystem to species loss or other perturbations. Another network type widely used in ecology is connected landscape mapping, where nodes typically represent patches on the landscape. The resulting spatial networks describe the linkages between processes and patterns that characterize the landscape, thus providing an effective way to assess important issues such as the effects of species dispersal or habitat loss.

Understanding the interactions between different species in a community and responses to environmental change is a central goal of ecology. However, defining the network structure of microbial communities is very challenging because of associated extremely diverse and unexplored states. Although recent developments in metagenomic technologies, such as high-throughput sequencing and functional gene arrays, have provided revolutionary tools for analyzing microbial community structure, it is still difficult to study network interactions in microbial communities based on high-throughput meta genomic data. A mathematical and bioinformatics framework for constructing molecular ecological networks (MENs) based on Random Matrix Theory (RMT) has been proposed. The remarkable feature of this approach compared with other network construction methods is that the network is automatically defined and robust to noise, thus providing a good solution to several common problems associated with high throughput.



APPLICATIONS OF MULTILAYER NETWORKS IN BRAIN RESEARCH

The brain is the control center of most animal activities, and it has been the goal of many researchers to unravel the mystery of the brain and simulate the human brain with external devices such as computers. Before that, the structure and mechanism of the brain needs to be clarified, and it is costly to study the human brain because of its complexity. The human brain is a complex system organized by the structural and functional relationships among its components (Liu et al., 2018; Song et al., 2018; Liu G. et al., 2019). Recent experimental advances have led to unprecedented amounts of data that describe the structure and function of the brain, and it is now possible to model the brain as a network by measuring pairwise interactions between its various units. This modeling can be performed across multiple scales, where network nodes represent units of the brain, including proteins, neurons, brain regions, or other measurement units. Recording techniques such as functional magnetic resonance imaging (fMRI), magneto encephalography (MEG), and electroencephalography (EEG) are capable of capturing brain dynamics across time and across multiple frequency bands.

Recent neuroscience research has also exploited the versatility of multilayer frameworks to model complex relationships in neural data. For example, given fMRI and diffusion tensor imaging (DTI) for a single subject, a multilayer network can be constructed, with one layer representing the fMRI network and another layer representing the DTI network. Using the fMRI data, a functional network can be constructed in which the nodes represent brain regions and the edges represent the coherence between regional activities. On the basis of DTI data, a structural network can be constructed by dividing the brain into regions and then measuring the strength of physical connections between these regions. Finally, considering each network as a layer in a multilayer network, the edges of a brain region in the fMRI layer can be added to the DTI layer to form a multilayer network.

The brain is an inherently dynamic system, and the performance of cognition requires dynamic reconfiguration of a highly evolved network of brain regions, which interact in complex and transient communications. However, an accurate description of these reconfiguration processes during human cognitive function remains elusive (Liu and Jiang, 2016). Therefore, many studies have used temporal networks to investigate the dynamic cluster structure of brain networks and reveal the underlying human brain dynamic changes during learning. Temporal networks that contain temporal information have the advantage of retaining the full information of the data without aggregating connections into individual networks.

When we complete different cognitive vision tasks, we subdivide the regional time series into time windows of variable size, and determine the impact of the time window size on the observed dynamics. Specifically, we applied a multilayer community detection algorithm to identify temporal communities, and we computed network flexibility to quantify the changes in these communities over time. Within our frequency band of interest, large and small time windows were associated with the brain network flexibility within a narrow range, while medium time windows were associated with broad network flexibility. Using medium time windows of 75–100 s, we identified brain regions with low flexibility (considered core regions and observed in visual and attentional areas) and brain regions with high flexibility (considered peripheral regions and observed in subcortical and temporal lobe regions) by comparison with appropriate control dynamic network models. In general, this work demonstrates the effect of time window size on the network dynamics observed during task execution, providing practical considerations when selecting time windows in dynamic network analysis. More generally, this work reveals organizing principles for functional brain connections that are inaccessible to static network approaches.

The hypothesis that human executive functions arise from the dynamic interactions of multiple networks has been tested in previous research (Ding et al., 2019). To corroborate this research, we investigated a key executive function (FCD), namely arbitrary visuomotor mapping. MEG and intracranial EEG were recorded using high gamma activity brain connectivity analysis. We then generated visuomotor mapping using the dynamic interactions of three partially overlapping cortico-cortical and cortico-subcortical functional connectivity (FC) networks. First, visual and parietal regions were coordinated with sensorimotor and premotor regions. Second, dorsal fronto parietal circuits dominated by sensorimotor and associative frontal striatal networks were incorporated. Finally, bilateral sensory-motor areas were coordinated with the cortico-cortical hemisphere between the left fronto parietal network and the visual areas. Our study argued that these networks reflect the processing of visual information, the emergence of visuomotor plans, and the processing of somatosensory responses or action outcomes. Thus, our study demonstrates that visuomotor integration exists in the dynamic reconfiguration of multiple cortico-cortical and cortico-subcortical FC networks. More generally, the approach demonstrates that optokinetic-related FC is unstable and shows task performance-related switching dynamics and regional flexibility on a time scale. In addition, our optokinetic-related FC has sparse connectivity with a density of 10%. Taken together, these findings shed light on the relationship between dynamic network reconfiguration and short-time executive function and provide a candidate start point for the better understanding of cognitive structure.

A vast number of multilayer network applications exists in bioinformatics, but the application of multilayer networks in any subfield of bioinformatics still relies on the acquisition and accumulation of bioinformatics data, and brain research is no exception. Therefore, interdisciplinary collaboration is a very efficient and necessary option. Brain structure and functionality are gradually understood, driven by brain data acquisition. According to these studies, the dynamic modeling of brain function by combining temporal dimensions is an effective means of study. Perhaps as research progresses, new data dimensions will be added (Wang et al., 2018, 2020; Wei et al., 2018a; Ding et al., 2019; Liu B. et al., 2019; Su et al., 2019b; Dao et al., 2020; Li J. et al., 2020; Lv et al., 2020).



CONCLUSION AND PERSPECTIVES

Multilayer (complex) networks have been an effective tool for studying complex problems in recent years and are currently being used in a variety of fields. As systems biology develops, multilayer networks are applicable to many aspects and research areas within the field. Because of dataset availability, these networks are currently more often applied to genetics and brain research. However, as research progresses, it should become easier to unravel structural and functional fogs in biology on one hand, and on the other hand, research in this area will prove beneficial to the understanding of biological principles in general to better serve all people. In view of current research status, our review has presented the following ideas and prospects:

(1) The development of biology is promoted by the joint development of various fields, and the application of multilayer networks in bioinformatics depends on the accumulation of biological data and the development of computer-related theories. Therefore, as an interdisciplinary subject, it needs the collaborative work of interdisciplinary experts.

(2) Because of the complexity and dynamic change of biological systems, time-series multilayer networks with the addition of temporal information will have more and more applications in the simulation of dynamic processes in the study of genes, disease, drug discovery, and brain research.

(3) Exploring the communication mode between tissue cells in the form of multi-layer network is to study the interaction (functionality) between structures on the basis of the network represented by the structure.

In addition to the structural and functional aspects of multilayer network research, methods to efficiently evaluate and assess the results of multilayer networks remains an importan tissue. The evaluation of the algorithmic complexity of multilayer networks has been proposed to assess if and when the multilayer representation of a system is qualitatively superior to classical single-layer aggregation network approaches (Wei et al., 2017a,b,c, 2018b, 2019; Su et al., 2019a, 2020a,b; Wang D. et al., 2021; Wang H. et al., 2021; Zhao et al., 2017).
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Single-cell Assay Transposase Accessible Chromatin sequencing (scATAC-seq) has been widely used in profiling genome-wide chromatin accessibility in thousands of individual cells. However, compared with single-cell RNA-seq, the peaks of scATAC-seq are much sparser due to the lower copy numbers (diploid in humans) and the inherent missing signals, which makes it more challenging to classify cell type based on specific expressed gene or other canonical markers. Here, we present svmATAC, a support vector machine (SVM)-based method for accurately identifying cell types in scATAC-seq datasets by enhancing peak signal strength and imputing signals through patterns of co-accessibility. We applied svmATAC to several scATAC-seq data from human immune cells, human hematopoietic system cells, and peripheral blood mononuclear cells. The benchmark results showed that svmATAC is free of literature-based markers and robust across datasets in different libraries and platforms. The source code of svmATAC is available at https://github.com/mrcuizhe/svmATAC under the MIT license.
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INTRODUCTION

With the technological progress in Single-cell Assay Transposase Accessible Chromatin sequencing(scATAC-seq) (Buenrostro et al., 2013), which has overcome the previous limitations and is able to generate thousands of single cells chromatin accessibility data at lower cost (Chen et al., 2019), a certain number of scATAC-seq datasets have been sequenced with different techniques in diverse libraries. For example, the Chromium Single Cell ATAC technology from 10X genomics (10X Genomic, 2020) can profile hundreds to tens of thousands of nuclei in one chip and finish the process from sample to sequencing-ready library in 1 day. For single-cell RNA-sequencing (scRNA-seq) and scATAC-seq data, the processing steps typically start with unsupervised clustering cells from coordinate-based peak matrix and then identify cell types from clustered groups. Thus, many methods requiring a training dataset labeled with corresponding cell populations for classifier training have been developed to get rid of the requirement of prior knowledge in scRNA-seq (Kiselev et al., 2018; Lieberman et al., 2018; Lopez et al., 2018; Boufea et al., 2019; Johnson et al., 2019; Ma and Pellegrini, 2019; Tan and Cahan, 2019). Support vector machine (SVM) performs the best among machine learning methods for classifying cell types in scRNA-seq (Abdelaal et al., 2019), and a lot of SVM-based tools have been proved effective and efficient (Pedregosa et al., 2011; Alquicira-Hernandez et al., 2019). However, the low copy number of DNA molecule in a cell results in only 1–10% of the accessible peaks in scATAC-seq being detectable, while the percentage for expressed genes detected in scRNA-seq is about 10–45% (Liu et al., 2019; Mereu et al., 2020). When clustering in scATAC-seq, such severe signal loss in a massive sparse space makes it more challenging to annotate cluster groups through gene-related canonical markers, which is practical and well-received in scRNA-seq. This missing of signal makes the SVM with linear kernel hard to work (Stewart et al., 2018) because this method starts with dimensionality reduction and feature selection, which is largely dependent on the accuracy and integrity of the dataset. Even so, SVM still outperformed other popular machine learning methods on cell-type classification of scATAC-seq (Cui et al., 2020), though the classification results of these methods (including SVM) are all performing at a low level. Since the signal missing will affect the quality of feature selection and then affects the construction of the classification model, the data recovery and signal strength enhancement are essential for SVM-based methods in scATAC-seq datasets (Yan et al., 2020).

Statistical methods such as imputing dropouts and correcting excess zero-counts have already been applied to scATAC-seq datasets, and this type of enhancing and recovering of missing signals has shown great power for downstream analysis. SCALE (Xiong et al., 2019) constructs a probabilistic Gaussian Mixture Model to characterize data, followed by denoising and imputing missing values in clustered subgroups. scOpen (Li et al., 2019) recovers the dropout signal in a particular cell using positive-unlabeled learning. However, these methods basically are using the statistic-based model, which may require an extra prior knowledge or time-consuming globally statistics. Since the repertoire of accessible regulatory elements in cell lines or tissues is unique, this type of data imputation is then considered as a kind of molecular signature for identifying. For example, Cicero (Pliner et al., 2018) is able to predictcis-regulatory DNA interactions through scATAC-seq from a single experiment.

Here, we present svmATAC, an automatic cell classification SVM-based method for scATAC-seq data. svmATAC enhances the data from cluster/group data first, followed by imputing the signal linkage according to the co-accessibility scores from Cicero. The enhanced and imputed data will then be input to SVM (linear kernel) classifier for model training and cell-type prediction (Figure 1). We applied svmATAC to several typical scATAC-seq datasets containing different cell types, including human immune cell (hereafter Corces2016) (Corces et al., 2016), human hematopoietic system cell (hereafter Buenrostro et al., 2018), and peripheral blood mononuclear cell (hereafter 10 × PBMCs) (Genomic, 2020), to evaluate its classification ability. With fivefold cross-validation, svmATAC showed a great advance on prediction accuracy and surpassed 7.13–21.34% compared to SVM (linear kernel). In inter-dataset experiments, svmATAC also maintained great predictive power to accurately and quickly identify cell types based on a pre-trained model. We believe that svmATAC has great potential to handle complex cell-type identification problems in practical and realistic scenarios.
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FIGURE 1. Summary of svmATAC method. (A) Training step. A fixed-size cell-peak matrix is constructed from a labeled scATAC-seq dataset. The peak matrix will be filtered and (1) matrix with 5 k peak will be split by cell types for calling distinct peak and signal in qualified peaks will be enhanced; (2) matrix with Cicero peak will be input to Cicero for calculating co-accessibility score between peaks. Two peaks with cis-regulatory interaction will be integrated for imputation in each enhanced peak matrix. All enhanced and imputed peak matrix will be merged to a single matrix for training SVM classifier. (B) Prediction step. A clustering is necessary at first for assigning each cell a clustering group number and then the matrix will be filtered, followed by enhancement and imputation steps. Finally, an SVM classifier will identify the cell types of predicting dataset using the SVM model trained from step A.




RESULTS


svmATAC as a General Framework for Classification of scATAC-seq

svmATAC applies two pivotal functions, i.e., group-based read signal enhancement and cis-regulatory relationship-based imputation to cell-peak matrix, followed by training model and predicting cell types using SVM classifier (Figure 1). With this specific design, the peak signals of scATAC-seq are strengthened and related by extra biological connections, which improves the feature selection in lower dimensional space. svmATAC consists of three main steps: (1) It applies a specific design enhancement method to establish cell-peak matrix. The peak value 0 will be set to 1 when the peak (column) signal rate is larger than prior knowledge cutoff in a cell-type/cluster group. This step is able to correctly classify some of the cell types (Supplementary Tables 1–10), compared to directly using raw dataset, but it is still not good enough. (2)An imputation method, i.e., Cicero, is applied to construct the cis-regulatory relationship between peaks and to compute the co-accessibility scores. Two peaks of a cell-type/cluster group will be integrated for imputation when its co-accessibility score ≥ 0.25 (Pliner et al., 2018). That is, the value 1 will be assigned for both peaks if any one peak is distinct. (3) The cell-peak matrix processed by the two pivotal functions will be used as input for an SVM classifier to perform model training. With the trained SVM model, svmATAC can achieve the final prediction of cell types in unlabeled dataset. In order to give a comprehensive evaluation on the performance of svmATAC, we, respectively, designed an intra-dataset experiment and an inter-dataset experiment as below.



Benchmark Results on Intra-Dataset Experiments

We evaluated the performance of svmATAC in an intra-dataset experiment by applying a fivefold cross-validation across each dataset after cell filtering. We randomly divided all the cells into fivefold with equal proportions of each cell population in each fold. The first and smallest dataset we used is from the human immune cells (hereafter Corces2016). This dataset consists of 576 immune cells from four isolated cell populations including leukemic blasts (Blast), lymphoid-primed multipotent progenitors (LMPP), leukemia stem cells (LSC), and monocytes. The gold standard labels we used here are from the original paper and predicted by enhancer cytometry. Compared to the SVM (linear kernel), we found an improvement on the predicted results when using svmATAC. The percentage of correctly predicted cells in all populations are all increased by at most 19.79% (from 75 to 94.79%) in monocyte (Figure 2A); the F1 scores are also improved in all population with monocyte increased the most from 0.85 to 0.97 (Figure 3A). The details for confusion matrix and F1 score list for Corces2016 are presented in Supplementary Tables 1, 2.
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FIGURE 2. Heatmap comparing the SVM (linear kernel) and svmATAC predicted cells versus true label of intra-dataset experiment. (A) The experiment on Corces2016. In monocyte, the percentage of correctly predicted cells by svmATAC is increased the most, by 19.79% (from 75 to 94.79%), while the percentage of LSC is increased the least, by only 0.52% (from 98.96 to 99.48%), compared to SVM (linear kernel). (B) The experiment on Buenrostro2018. All cells are correctly classified by svmATAC, and the percentage of correctly predicted cells in all population increase by at most 86% in MPP, compared to the SVM (linear kernel). (C) The experiment on 10× PBMCs v1. All cells are correctly classified by svmATAC. The cells of CD8+ T and FCGR3A+ Mono, which are totally incorrectly classified by the SVM (linear kernel), are all correctly classified by svmATAC. (D) The experiment on 10× PBMCs Next Gem. All cells are correctly classified by svmATAC. The cells of CD8+ T, DC, and FCGR3A+ Mono, most of which are incorrectly classified by the SVM (linear kernel), are all correctly classified by svmATAC. Colors represent the percentages of cells of a specific reported type labeled as each type by svmATAC.



[image: image]

FIGURE 3. The F1 scores plot showing the performance comparison of SVM(linear kernel) and svmATAC for cell classification of intra-dataset experiment. (A) The experiment on Corces2016. svmATAC performed best on LMPP and its F1 score is 1 and the F1 score of monocyte increased the most, by 0.12 (from 0.85 to 0.97), compared to SVM (linear kernel). (B) The experiment on Buenrostro2018. The F1 scores of all cell types are 1 for svmATAC, which means that all cells are correctly classified and the F1 scores of all populations are increased by at most 0.75 (from 0.25 to 1) in MPP, compared to SVM (linear kernel). (C) The experiment on Seurat labeled 10× PBMCs v1. All cells are correctly classified by svmATAC and the F1 score of each cell type is 1. The F1 scores of CD8+ T and FCGR3A+ Mono, which are 0 when using SVM (linear kernel), are all increased to 1 for svmATAC. (D) The experiment on Seurat labeled 10× PBMCs Next Gem. All cells are correctly classified by svmATAC and the F1 score of each cell type is 1. The F1 scores of CD8+ T and FCGR3A+ Mono increased most by 0.84 (from 0.16 to 1) and 0.51 (from 0.49 to 1) when using SVM (linear kernel), compared to SVM (linear kernel). The red panel represents the results for svmATAC, and the blue panel represents the results for SVM (linear kernel) on unenhanced and unimputed data.


The second dataset we used is from the human hematopoietic system, which consists of 2,034 labeled hematopoietic cells from 10 cell populations including hematopoietic stem cells (HSC), multipotent progenitors (MPP), lymphoid-primed multipotent progenitors (LMPP), common myeloid progenitors (CMP), granulocyte-macrophage progenitors (GMP), GMP-like cells, megakaryocyte-erythroid progenitors (MEP), common lymphoid progenitors (CLP), monocytes (mono), and plasmacytoid dendritic cells (pDC). In order to test the ability of identifying the cells from different batches, we divided the LMPPs into two groups: LMPP-O: generated and first published in Corces2016; LMPP: newly generated and first published in Buenrostro2018. We used the FACS-sorting labels as the gold standard for this dataset. All cells in this dataset are correctly classified using svmATAC. Similar to the results on Corces2016, the percentage of correctly predicted cells in all population are increased by at most 86% in MPP (Figure 2B), and the F1 scores are also improved in all populations, with MPP increased the most from 0.25 to 1 (Figure 3B), compared to SVM (linear kernel). The details for confusion matrix and F1 score list for Buenrostro2018 are presented in Supplementary Tables 3, 4.

The last two datasets we used are from the peripheral blood mononuclear cells. These two datasets were generated from the same healthy donor but prepared in different libraries. In total, there are 3,917 cells profiled in 10× PBMCs v1 dataset and 4,585 cells were profiled in 10× PBMCs Next Gem dataset but both datasets are unlabeled. Based on recent studies (Bravo González-Blas et al., 2019; Pliner et al., 2019), we expected eight populations in each dataset, so we clustered cells into eight groups and use these cluster IDs as the gold label for training and testing (Supplementary Figures 1, 2). However, though cells with the same cluster ID may be predicted together into one group, we cannot check whether these predicted cell-types are true positives when only cluster ID is available. Thus, we assigned cell types using Seurat v3 (Stuart et al., 2019) based on a labeled scRNA-seq dataset from the same sample and then selected the high-confidence labels as gold standard for scATAC-seq datasets. We totally labeled 2,927 cells for the 10× PBMCs v1 dataset and 3,670 cells for the 10× PBMCs Next Gem dataset. For the Seurat labeled 10× PBMCs v1 dataset, the percentage of correctly predicted cells in each population increases to 100%, while CD8+ T, DC, and FCGR3A+ Mono are barely correctly identified at first using SVM (linear kernel) (Figure 2C); the F1 scores also improved in all populations, notably from 0 to 1 in CD8+, 0.09–1 in DC, and 0–1 in FCGR3A+ Mono (Figure 3C), compared to SVM (linear kernel). For the Seurat labeled 10× PBMCs Next Gem dataset, the percentage of correctly predicted cells in all population increases by at most 91% in CD8+ T (Figure 2D); the F1 scores also improved and CD8+ T increased the most from 0.16 to 1 (Figure 3D). The details for confusion matrix and F1 score list for the Seurat labeled 10× PBMCs v1 dataset and the Seurat labeled 10 × PBMCs Next Gem dataset are presented in Supplementary Tables 5–8.



Benchmark Results on Inter-Dataset Experiments

In order to evaluate the ability of svmATAC to control or even overcome the deviation between different datasets such as batch effect, tissue type, and other technical factors, we designed the inter-dataset experiment, in which two datasets are generated from the same tissue, but prepared in different libraries and sequenced from different platforms.

We used Seurat labeled 10× PBMCs v1 to train a model first and then classify the labels of 10× PBMCs Next Gem based on this model. We compared the predicted labels with Seurat labels to evaluate the performance of svmATAC, and we found that although the model of the v1 dataset was trained on sparser molecular data from a different method and instrument, svmATAC is robust, performing well across datasets, and capable of overcoming batch effect and technical bias.

svmATAC accurately classified 99.95% (3,668 out of 3,670) cells in the 10× PBMCs Next Gem dataset (Supplementary Tables 9, 10), compared to 47.96% using SVM (linear kernel) (Figure 4A). We also notice that all cells in the 10× PBMCs Next Gem dataset are correctly classified by svmATAC, even though the cells of CD8+ T and FCGR3A+ Mono are barely correctly classified when using SVM (linear kernel). Therefore, the F1 scores for all populations in svmATAC are all improved and CD8+ T and FCGR3A+ Mono increase the most by 0.996 (from 0 to 0.996) and 0.96 (from 0.04 to 1), respectively (Figure 4B).
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FIGURE 4. Summary of inter-dataset experiment. (A) Heatmap comparing the SVM (linear kernel) and svmATAC predicted cells versus true label of inter-dataset experiment. The cells of CD8+T and FCGR3A+ Mono are barely correctly classified when using SVM (linear kernel). svmATAC not only successfully classified all cells of CD8+T and FCGR3A+ Mono but also correctly classified all cells of other cell types, which increased the percentage of correctly predicted cells of all cell population from 47.96 to 99.95%. (B) The F1 scores plot displaying the performance comparison of SVM (linear kernel) and svmATAC for cell classification of inter-dataset experiment. All cells are correctly classified by svmATAC, and the F1 score of each cell type is 1. The F1 scores of CD8+ T and FCGR3A+ Mono, which are 0 when using SVM (linear kernel), are all increased to 1 in svmATAC. (C) Umap plots of the 10× PBMCs Next Gem (n = 3,670 cells). The first panel is colored by the true ground cell types of dataset, i.e., Seurat labeled cell types. The second panel is colored by the SVM (linear kernel) classification and the third panel is colored by the svmATAC classification.


We next investigated qualitatively the obtained classification results, using the respective feature matrices to project the cells onto a 2-D space using UMAP (McInnes et al., 2018) and colored them based on the obtained classification results or the gold standard labels. We found a high distribution consistency between true labels and svmATAC classified labels (Figure 4C), while SVM (linear kernel) misclassified most of the cells into two similar cell groups. Because of the close spatial distribution in lower-dimensional feature space, SVM (linear kernel) misclassified almost all cells of FCGR3A+ Mono and CD8+ T to CD14+ Mono and Naive CD4+ T, respectively. svmATAC not only successfully classified the almost all cells of these two cell types but also correctly classified all cells of other cell types.



DISCUSSION

Single-cell ATAC sequencing is a new technology in the area of the chromatin accessibility profile of individual cells and gives a new perspective of the identification and characterization of cell types (Cusanovich et al., 2015). Here, we introduced svmATAC, a specially designed method for scATAC-seq data to classify single cells based on readout enhancement, imputation, and a SVM model. The benchmark results show that svmATAC is able to accurately classify cells in both intra- and inter-datasets. The outstanding achievements of svmATAC are mainly due to its two pivotal modules: (1) the peak signal enhancement can overcome the disadvantage of read loss by sequencing technology; (2) the biological cis-regulatory relationship-based imputation can establish connections between significant regions.

However, there are still a few shortcomings for svmATAC that cannot be ignored. (1) In the current version of svmATAC, the accuracy and sensitivity of cell-type classification are highly relying on the manually selected cutoff for enhancement and imputation, which does exist a gap for applying svmATAC to more complex scATAC-seq datasets. We will develop an automatic cutoff adjustment for svmATAC in the future. (2) We also notice that a certain number of noisy read signals are added by mistake to the enhancement and imputation processes and decreases the performance especially in the inter-dataset experiment. This is another point for future work about how to avoid adding useless signal in enhancement and imputation steps. (3) Although svmATAC shows its potential on overcoming the batch effect on inter-dataset experiments using 10× datasets, we still expect more datasets coming from the same tissue or sample but generated through different sequencing pipelines.

Moreover, svmATAC also supports the user-defined classification model from all kinds of machine learning algorithms, which has great potentials in the adaptability in various scATAC-seq datasets. Therefore, svmATAC is a promising approach and benefits cutting-edge genomic studies.



MATERIALS AND METHODS


Construction of Cell-Peak Matrix

Several region definitions for cell-peak matrix have been broadly used (Chen et al., 2019), including peaks on bulk data or aggregate single-cell data, pseudo-bulk data, regions around insertion sites, and fixed-size bins. The regions from bulk or aggregate scATAC-seq data are based on peak calling, and this process only keeps those areas covered by at least one read. The pseudo-bulk clades created by hierarchical clustering is different in the way of calling peaks, but the peaks are still generated from sequencing data. These regions around insertion sites do not rely on calling peaks from sequencing reads; however, this kind of peak region still only covers a part of the whole genome reference. These types of regions selection may be suitable for the developer’s application scenarios, such as clustering the cells into groups but cannot fulfill the requirement of svmATAC. This is because one of the most common scenarios for svmATAC is to predict the cell types for a dataset using a pre-trained classifier, which requires the two datasets used in training and predicting to share the same peak regions to ensure the compatibility of selected features.

We generated two types of cell-peak matrix containing different peak regions. One peak region is applying fixed-size peak regions (hereafter 5 k peak) for the training and predicting of the classifier process, in which we detected the read signal every 5,000 bp and therefore split the whole genome reference(hg19) into more than 600 k pieces. Note that some other tools may filter out the peaks with no read signal detected for saving memory and computing time, and we kept all the peaks here to make sure all regions for training data and predicting data are the same for compatibility of data structure. The other peak region is designed for Cicero; it is because we found that Cicero cannot process matrix with large regions spanning too large, such as 5 k here. We obtained a much smaller peak region (hereafter Cicero peak) from published data or bulk ATAC-seq data for matrix construction. This data matrix is only used for computing the co-accessibility score in the imputation process.

For the Coces2106 dataset, we first downloaded it from the NCBI database (GSE74310) and aligned it to hg19 using BWA-MEM (version 0.7.17-r1188) (Li, 2013) and enabled Picard (Broad_Institute, 2019) and Samtools (version 1.9) (Li et al., 2009) to remove the duplicated reads. Only duplication remove is applied to 10× PBMCs v1 and 10× PBMCs Next Gem dataset because these datasets are obtained in bam format from https://support.10xgenomics.com/single-cell-atac/datasets/1.2.0/atac_pbmc_5k_v1 and https://support.10xgenomics.com/single-cell-atac/datasets/1.2.0/atac_pbmc_5k_nextgem, respectively. These two 10× PBMCs datasets are downloaded with only cluster group ID available, but no true cell label was provided; we assigned labels to each cell by Seurat v3 as it can convincingly assign labels for scATAC-seq data when its scRNA-seq and labels are available. The peak and count file of Buenrostro2018 is available at GSE96769, and we obtained the aligned data from https://github.com/pinellolab/scATAC-benchmarking/tree/master/Real_Data/Buenrostro_2018.

Based on aligned and duplication-removed data and the cell labels provided in the datasets, we then estimated read coverage for each peak to build a cell-peak binary count matrix, in which each value 1 or value 0 represents whether a read signal was detected from the cell in this bin (1) or not (0). There is no limit to the number of cell types or the number of cells. Peaks that overlap ENCODE-defined blacklist regions are all set to zero. Cell populations with a size smaller than 10 were filtered. Note that for both kinds of peak region (5 k or Cicero), we did not filter out columns when all values are 0, which could be a kind of feature of classifier training.

Each cell matrix is represented in a compressed, sparse, column-oriented numeric matrix (dgCMatrix class in R). All these matrices are stored in RDS files and publicly available at https://github.com/mrcuizhe/svmATAC.



Signal Strength Enhancement

The massive loss of read signal in scATAC-seq leads to incorrect zero counts of the cell-peak matrix, which may influence the training and prediction of the SVM classifier. Recovering the loss signal in data is a popular and workable way to strengthen the classification ability of machine learning classifiers, and this method has already been broadly accepted and developed in scRNA-seq data analysis, whose loss rate is a quarter less than that of scATAC-seq.

The enhancement process in svmATAC is trying to recover the inherent loss signal caused by sequencing techniques or experimental bias and then enhance the peak signal strength of each group. The enhancement procedure is a group-based step, in which data must be first divided into several groups based on its cell labels or clustering group numbers.

We first separated the cell-peak matrix by cell types into annmmatrix by cell types, i.e., a data matrix with ncells and mpeaks, Then, we enhanced the read signal by recovering the missing signal using the following formula:


• When the fraction of non-zero cells of the ith peak is larger than the cutoff for enhancement (i.e., [image: image]), we will treat all counts in the ith peakas follows:



[image: image]

where S_i represents the read count for the ith column (peak) in cell-peak matrix, Ci,j represents the read count of the jth cell in theith column in matrix and i ∈ [1,m],j ∈ [1,n]. cenh represents the cutoff for enhancement, and we recommend 0.1 here based on the read loss rate of scATAC-seq (Mereu et al., 2020; Liu et al., 2019) and experiment results (Supplementary Tables 1–10), which also shows that the enhancement step is efficient and necessary on scATAC-seq data for cell-type classification.


• When the percentage of non-zero cells of a peak is less than the cutoff for enhancement (i.e., 0≤[image: image]), we will not change S_i and keep it intact.





Signal Imputation

Apart from the enhancement of read signal, another way frequently applied in scATAC-seq data analysis is imputing read signal based on iconic biomarkers or biologic relationships, which may benefit the selection of features for each cell type. The imputation in svmATAC is also group-based and includes two steps:


• Compute the co-accessibility score for every two peaks.

Co-accessibility scores represent the patterns and linkages of co-accessible pairs of DNA elements, such as distal elements and promoters. We use Cicero (v3.11, with default parameters) here to compute the co-accessibility scores for every two peaks. The co-accessibility score of each two peaks ranges from 0 to 1, indicating the strength of Cicero co-accessibility links. Scores closer to 1 indicate that two elements (peaks) are more co-accessible and vice versa.

• Imputing read signal based on cis-regulatory relationship into each group from co-accessibility score.

Two peaks from enhanced data matrix will be considered as significantly connected if its co-accessibility score is higher than a threshold value. We first separated the enhanced cell-peak matrix by cell types into ann = m matrix, i.e., a data matrix with ncells and mpeaks; then, all Cicero-linked peaks will be integrated for imputation using the following formula:

When the Cicero co-accessibility score for the linkage between the ith peak and kth peak is higher than the cutoff for imputation and there is no zero cell for the kth peak (i.e., [image: image]), we will treat all counts in the ith peak as follows:



[image: image]


whereSi represents the ith column (peak) in cell-peak matrix, Ci,j represents the read count of the jth cell in theithpeak in matrix and i,k ∈ [1,m],j ∈ [1,n]. cint represents the cutoff for co-accessibility score, and we recommend 0.25 here based on the prior knowledge from the Cicero paper and experiment results (Supplementary Tables 1–10), which also shows that the enhancement step is efficient and necessary on scATAC-seq data for cell-type classification. Lik represents the Cicero co-accessibility score for the linkage between the ithpeak and the kth peak.

When either the Cicero co-accessibility score for the linkage between theiþ peak and kþ peak is lower than the cutoff for imputation or there is more than one non-zero cell for the kth peak (i.e., [image: image]), we will not change the count value in theith peak and keep S_iintact.



Note that the matrix for computing Cicero co-accessibility score is based on Cicero peaks, which is different from the 5 k peak used for enhanced data matrix. Only the first (leftmost) 5 k peak will be considered for imputation if a peak from Cicero peaks is overlapped with multiple 5 k peaks. All imputed matrixes should be merged back into one matrix by columns(peaks) for downstream training and predicting.



Classifier Training and Predicting

The enhanced and imputed cell-peak matrix will be used as input for SVM to train a classifier, and the trained classifier will then be used to predict cell types in an unlabeled dataset. We totally designed two types of experiments including intra-dataset and inter-dataset for evaluating the performance and adjusting the parameters in svmATAC.

In intra-dataset experiments, we performed a fivefold cross-validation on four datasets, including Corces2016, Buenrostro2018, 10× PBMCs v1, and 10× PBMCs Next Gem, to evaluate the classification ability of svmATAC. The folds were divided in a stratified manner to keep equal proportions of each cell population in each fold. The training and testing folds were same for all methods.

To evaluate the performance of svmATAC in more realistic scenarios (batch effect, technical factors, etc.), we designed an inter-dataset experiment, in which we trained a classifier based on 10× PBMCs v1 dataset and used this classifier to predict the cells of 10× PBMCs Next Gem dataset. Note that for the predicting dataset, since there are no known labels before classification and our process of enhancement and imputation are both group-based, a clustering is recommended to assign the cells a group number for following enhancement and imputation.



Performance Evaluation Metrics

In this paper, we evaluated and compared the performance of SVM (linear kernel) and svmATAC using the following two metrics:

For all datasets, we compared the F1scores across different cell types and evaluated the performance of each method using mean F1scores.

F1 score is defined as:

[image: image]

where Precision is defined as:

[image: image]

Similarly, Recall (or the ratio of TPs to total calls in the truth set) is defined as:

[image: image]

We represented the percentage of cells of a specific reported type labeled as each type in a heatmap, which flatly and intuitively showed the confusion matrix and the percentage of correctly/incorrectly classified cells.

The percentage of cells of a specific reported type labeled as each type is defined as:

[image: image]

where Percentagecell_typei,cell_typej represents the percentage of those cell_typeicells labeled as cell_typej, Ncell_type_i,cell_type_j represents the number of those cell_typeicells labeled as cell_typej, and Ncell_typei represents the total number ofcell_typei.
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Supplementary Figure 1 | Heatmap and F1-score comparing the SVM (linear kernel) and svmATAC predicted cells cluster versus original cluster in intra-dataset experiment. (A) Heatmap displaying the confusion matrix of predicted cell cluster ID versus original cluster ID in 10× PBMCs v1 with cluster ID dataset. (B) Heatmap displaying the confusion matrix of predicted cell cluster ID versus original cluster ID in 10× PBMCs Next Gem with cluster ID dataset. (C) Bar plot displaying the f1 scores of 10× PBMCs v1 with cluster ID. (D) Bar plot displaying the f1 score of 10× PBMCs Next Gem with cluster ID. Colors of (A,B) represent the percentages of cells of a specific reported type labeled as each type by svmATAC. In (C,D), the red panel represent the results for svmATAC, and blue panel represents the results for general SVM on unenhanced and unimputed data.

Supplementary Figure 2 | Heatmap comparing the SVM (linear kernel) and svmATAC predicted cells cluster versus original cluster ID in inter-dataset experiment. (A) 10× PBMCs v1 with cluster ID dataset. (B) 10× PBMCs Next Gem with cluster ID dataset. Colors represent the percentages of cells of a specific reported type labeled as each type by svmATAC.

Supplementary Table 1 | F1 scores of intra-dataset experiment using Corces2016 dataset with different enhancement and imputation cutoffs.

Supplementary Table 2 | The confusion matrix across different enhancement and imputation cutoffs.

Supplementary Table 3 | F1 scores of intra-dataset experiment using Buenrostro2018 dataset with different enhancement and imputation cutoffs.

Supplementary Table 4 | The confusion matrix across different enhancement and imputation cutoffs for Buenrostro2018 dataset.

Supplementary Table 5 | F1 scores of intra-dataset experiment using 10× PBMCs v1 Seurat Labeled dataset with different enhancement and imputation cutoffs.

Supplementary Table 6 | The confusion matrix across different enhancement and imputation cutoffs for 10× PBMCs v1 Seurat Labeled dataset.

Supplementary Table 7 | F1 scores of intra-dataset experiment using 10× PBMCs Next Gem Seurat Labeled dataset with different enhancement and imputation cutoffs.

Supplementary Table 8 | The confusion matrix across different enhancement and imputation cutoffs for 10× PBMCs Next Gem Seurat Labeled dataset.

Supplementary Table 9 | F1 scores of inter-dataset experiment that training with 10× PBMCs v1 Seurat Labeled dataset and predicting in 10× PBMCs Next Gem Seurat Labeled dataset with different enhancement and imputation cutoffs.

Supplementary Table 10 | The confusion matrix across different enhancement and imputation cutoffs for inter-dataset experiment that training with 10× PBMCs v1 Seurat Labeled dataset and predicting in 10× PBMCs Next Gem Seurat Labeled dataset.
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MicroRNAs (miRNAs) are non-coding RNA molecules that make a significant contribution to diverse biological processes, and their mutations and dysregulations are closely related to the occurrence, development, and treatment of human diseases. Therefore, identification of potential miRNA–disease associations contributes to elucidating the pathogenesis of tumorigenesis and seeking the effective treatment method for diseases. Due to the expensive cost of traditional biological experiments of determining associations between miRNAs and diseases, increasing numbers of effective computational models are being used to compensate for this limitation. In this study, we propose a novel computational method, named PMDFI, which is an ensemble learning method to predict potential miRNA–disease associations based on high-order feature interactions. We initially use a stacked autoencoder to extract meaningful high-order features from the original similarity matrix, and then perform feature interactive learning, and finally utilize an integrated model composed of multiple random forests and logistic regression to make comprehensive predictions. The experimental results illustrate that PMDFI achieves excellent performance in predicting potential miRNA–disease associations, with the average area under the ROC curve scores of 0.9404 and 0.9415 in 5-fold and 10-fold cross-validation, respectively.

Keywords: miRNA-disease associations, high-order features, feature interactions, random forest, logistic regression


1. INTRODUCTION

MiRNAs are short non-coding RNAs with length about 19–25 nucleotides (Ambros, 2001, 2004; Bartel, 2004). Since the first miRNA (lin-4) was discovered by Victor Ambros in 1993 (Lee et al., 1993), miRNA has been the most widely studied class of non-coding RNAs now (Esteller, 2011). Besides, it has been confirmed that miRNAs commonly exist in plants, animals, viruses, and human beings, and have an essential effect on cell growth, differentiation, and apoptosis because of its post-transcriptionally gene regulation by affecting the translation of mRNAs (Wienholds and Plasterk, 2005; Das et al., 2014; Zhao et al., 2017). The important influence of miRNAs on biological processes is manifested in most intronic miRNAs sharing promoter regions with host genes (Zhao et al., 2015). Therefore, it is natural for scientists to link miRNAs with human diseases and use them as biomarkers in the treatment of diseases. For example, miR-164a is highly expressed in pediatric acute lymphoblastic leukemia and pediatric acute myeloid leukemia (Zhang et al., 2009; Li et al., 2010). Studies demonstrated that miR-21 plays a crucial role in a plethora of biological diseases including cancer, cardiovascular diseases, and inflammation (Kumarswamy et al., 2011). Guay and Regazzi (2015) and Horsham et al. (2015) observed that the deregulation of miR-7 expression can potentially affect the adaptive capacity of β cells, contributing to the development of diabetes. The model-based computational approach proposed by Wang et al. (2008) identified five transcription factors and 7 miRNAs to be potentially responsible for the level of androgen dependency. Although miRNAs are proved to have close relationship with human disorders, the traditional biological methods to detect the underlying association between miRNAs and diseases are laboratory based, costly, and time consuming. Therefore, it is urgent and essential to apply computational methods to solve this issue. Nowadays, many computational methods are proposed to predict the novel association between miRNAs and diseases, and they are mainly divided into two categories: one is based on the assumption that the functional similarity of miRNAs tends to relate to similar diseases, and the other is based on machine learning.

According to the hypothesis that the functionally related miRNAs have a positive relationship with corresponding diseases, Chen and Zhang (2013) presented three methods based on the microRNA similarity, phenotype similarity, and network consistency similarity obtained by both of the two above similarity values, which are named as MBSI, PBSI, and NetCBI, respectively. Among these methods, NetCBI is better than the others with area under the ROC curve (AUC) of 0.8066, which still needs to be improved. Li et al. (2017) provided DeepWalk method that utilizes similarities within a known miRNA–disease association bipartite network to predict the unidentified miRNA–disease association when biological information, such as miRNA functional similarity and disease semantic similarity is unavailable. Although this method could reach the highest AUC of 0.937, it is incapable to predict associations of new miRNA or diseases that do not exist in the known network. Shen et al. (2017) integrated miRNA functional similarity, disease semantic similarity, and known miRNA–disease association, and then employed collaborative matrix factorization to predict the unknown miRNA–disease association (CMFMDA). CMFMDA could predict undiscovered miRNAs and diseases without known associations, but it may bias to miRNAs with more verified associated diseases. Chen et al. (2016) developed WBSMDA to reveal the novel miRNA–disease associations by integrating confirmed miRNA–disease associations, miRNA functional similarity, disease semantic similarity, and Gaussian interaction profile (GIP) kernel similarity of diseases and miRNAs, and obtained an average AUC of 0.8031. Then, they further raised the AUC to 0.9035 with an original method called HAMDA (Chen et al., 2017), which employs the hybrid graph-based recommendation algorithm to uncover the unrecognized associations between miRNAs and diseases.

As for methods based on machine learning, Peng et al. (2019) proposed a learning-based model named MDA-CNN. The method generates a three-layer network, including miRNA similarity network, disease similarity network, and protein–protein interaction network, to extract features and integrates an autoencoder and a convolutional network to select features and predict miRNA–disease association, respectively. Although the highest AUC the MDA-CNN achieved is 0.8897, the method performs well at the miRNA-phenotype association prediction. Zheng et al. (2019) presented a model based on machine learning named MLMDA, which utilizes miRNA sequence information extracted by k-mer sparse matrix, combing with other similarities of diseases and miRNAs. Besides, the MLMDA adopts a deep autoencoder to glean more latent features and uses the random forest (RF) to predict novel miRNA–disease associations. Chen et al. (2019) developed a method called EDTMDA, which applies principal component analysis (PCA) to reducing the dimension of features and utilizes ensemble learning to gain ultimate scores between miRNAs and diseases. EDTMDA's AUC could reach 0.9309 in LOOCV, but the dependence on the known associations between miRNAs and diseases may lead to a preference for miRNAs that have more associated diseases. Jiang et al. (2013) proposed an SVM-based method to identify disease-related microRNAs, which can distinguish positive microRNA-disease associations from negative microRNA-disease associations. In 10-fold cross-validation procedure, this method achieved the AUC of up to 0.8884. Zhang et al. (2019) proposed an unsupervised deep learning method implemented by variational autoencoder. The method combines miRNA similarity and disease similarity with identified associations to get two spliced matrices as the input of variational autoencoder, and then obtains the association scores of miRNA and disease. The model is not affected by the dearth of negative samples, but is hard to interpret.

In conclusion, the aforementioned computational methods could predict the underlying miRNA–disease associations effectively, but each one still has its own limits. In this paper, we propose a novel method called PMDFI, which is an ensemble approach for miRNA–disease associations prediction based on feature interaction learning. Our model can be divided into four parts: data set collection and processing, high-level feature extraction, feature interaction, and an integrated learning model. In detail, we gather miRNA–disease associations from HMDD v2.0, and calculate miRNA functional similarity, disease semantic similarity, GIP kernel similarly for miRNA, and disease. Then, after using the stacked autoencoder to extract the high-order features, we send them to the feature interactive layer to gain cross features. Finally, we design an ensemble model combining multiple RFs and logistic regression to predict potential miRNA–disease associations. In the experimental results, PMDFI has achieved excellent performance in predicting potential miRNA–disease associations, with AUC of 0.9404 and 0.9415 under 5-fold and 10-fold cross-validation, respectively.



2. MATERIALS AND METHODS


2.1. Datasets for MDA Prediction

The experimentally supported miRNA–disease associations come from HMDD v2.0, which is derived from Li et al.'s work (Li et al., 2014). HMDD v2.0, a manual collected database, is used to annotate in details the miRNA–disease associations from genetics, epigenetics, circulating miRNAs, and miRNA-target interactions. We gather 5430 miRNA–disease association pairs encompassing 495 miRNAs and 383 diseases from the HMDD v2.0. In order to represent the associations between miRNA m(i) and disease d(j), we construct an adjacency matrix A495×383, where element A(i, j) = 1 indicates that miRNA has a definite association with disease, and element A(i, j) = 0 indicates that the association between miRNA and disease is uncertain. Matrix A is a sparse matrix with 5,430 of “1,” i.e., 5,430 miRNA–disease association pairs, and we take these pairs as positive samples. As for the negative samples, according to Zhou et al. (2020), all “0”s (miRNA–disease pairs with no definite association) in the matrix A are divided into 23 clusters with k-means clustering, and the same amount of samples are randomly selected from each cluster to form 5,418 negative samples. It is worth noting that, in order to ensure the validity of comparative experiments, the positive and negative samples in our datasets are the same as Zhou et al.'s work.



2.2. MiRNA and Disease Information Profiles
 
2.2.1. MiRNA Functional Similarity

The miRNA functional similarity is useful to predict the functions of unknown miRNAs and study the interactions between miRNAs, because miRNAs with similar functions tend to trigger pathologically similar diseases. The miRNA functional similarity matrix can be represented as follows:

[image: image]

where nm is the number of miRNAs and km is the size of the vector that represents an miRNA.

Here, we download miRNA function similarity between miRNA pairs directly from http://www.cuilab.cn/fles/images/cuilab/misim.zip, which calculated by Wang et al.'s work based on advanced MISIM method (Wang et al., 2010). The miRNA functional similarity matrix FS is a matrix with 495 rows and 495 columns, and element FS(mi, mj) represents the functional similarity between miRNA(i) and miRNA(j).



2.2.2. Disease Semantic Similarity

If an miRNA has been proved to be linked to a certain disease, it is possible that the miRNA is also related to other diseases with similar phenotypes. Therefore, the semantic similarity of the disease is effective in large-scale research on the association between disease and miRNA. The disease semantic similarity is described as directed acyclic graph (DAG), and

[image: image]

where d is the disease itself, T(d) is a set of nodes consisting of disease D and all its ancestor nodes, and E(d) corresponds to the edge set of the direct link from the parent node to the child node.

We collect disease semantic similarity from MeSH database (http://www.ncbi.nlm.nih.gov/), which has been widely adopted to study miRNA–disease associations (Zou et al., 2016). And each disease in DAG can be calculated as follows:

[image: image]

and

[image: image]

Then the semantic similarity score between diseases(i) and diseases(j) is defined as follows:

[image: image]
 

2.2.3. GIP Kernel Similarly for miRNA and Disease

GIP kernel similarity originates from the topological structure of the known interaction network, which is beneficial for predicting the miRNA–disease associations (Wang et al., 2010). We adopt a binary vector IP(d), a row in the adjacency matrix, to express the interaction profile of disease d with each miRNA, and the disease GIP kernel similarity between disease d(i) and d(j) can be calculated as follows:

[image: image]

and

[image: image]

where n is the number of human diseases and equals to 383, γd is an adjustable parameter of the kernel bandwidth, and [image: image] according to van Laarhoven et al.'s work (van Laarhoven et al., 2011). Similarly, we can use a binary vector IP(m) to express the interaction profile of miRNA m with each disease, and the GIP kernel similarly between miRNA m(i) and m(j) can be calculated as follows:

[image: image]

and

[image: image]

where m is the number of miRNAs and equals to 495, for the same reason, [image: image] is set to 1.




2.3. PMDFI Framework

In this study, we construct a model named PMDFI to predict potential miRNA–disease associations. The flowchart of PMDFI is shown in Figure 1. In the data set collection and processing stage, we gather 495 miRNAs and 383 diseases from the HMDD v2.0 database to form an adjacency matrix A495×383, including 5430 miRNA–disease pairs with definite associations. Then, we acquire miRNA functional similarity (FS), disease semantic similarity (SS), and GIP kernel similarity for miRNA (GSm) and disease (GSd). For each miRNA–disease pair, we extract four one-dimensional features, which include a 1 × 495 miRNA functional similarity feature, a 1×383 diseases semantic similarity feature, and a 1 × 495 and 1 × 383 GIP kernel similarity for miRNAs and disease. Then these features are input in parallel into the stacked autoencoder to extract high-order features, instead of directly concatenating and averaging them. In this way, our method has the ability to learn the internal deep connections in the feature matrix, which have been previously ignored due to the lack of miRNA functional similarity or diseases semantic similarity. In the feature interaction layer, the high-order features derived from stacked autoencoder are sent to perform feature interaction learning, which aims at obtaining four cross features containing the internal potential relationship of miRNA (disease) and the interaction information among those features. Finally, the obtained cross features are independently input into the four RF models for training, and a set of four prediction scores is calculated for each sample input. During each iteration, we constantly adjust the weight of each RF model, and adopt a logistic regression to make a final comprehensive prediction.


[image: Figure 1]
FIGURE 1. Flowchart of PMDFI model to predict potential microRNAs (miRNAs)–diseases associations. The model can be divided into four parts: data set collection and processing, high-order feature extraction, feature interaction, and an integrated learning model. First, we gather miRNA–disease associations from HMDD v2.0, and form the similarity matrix between miRNA and disease; second, we adopt a stacked autoencoders to extract high-order features; then, we use the interaction features layer to learn the interaction between different features. Finally, we combine multiple random forest (RF) with logistic regression to predict potential miRNA–disease associations.



2.3.1. Stacked Autoencoder to Extract High-Order Features

These four similarities matrix information (FS, SS,GSm, and GSd) have inevitable restriction that they are unable to present the inner deep connections among different miRNAs (diseases) due to low-order feature representations. To tackle this obstacle, inspired by Song et al.'s work (Song et al., 2019), we use a stacked autoencoder to extract meaningful high-order features for miRNA and disease from the established similarity network. The autoencoder is an artificial neural network that can learn the efficient representation of input data through unsupervised learning (Vincent et al., 2008; Shu et al., 2018). As a powerful feature detector, the autoencoder encodes the original input feature and reduces the dimensionality to find implicit associations between the input feature, and extracts expressive high-order features. As shown in Figure 2, the stacked encoder consists of two parts: an encoder (also known as the recognition network) and a decoder (also known as the generation network). The encoder converts the input feature into an internal representation, and the decoder converts the internal indicates conversion to output.


[image: Figure 2]
FIGURE 2. Extract high-order features based on autoencoder.


In order to learn high-order features, we build a stacked autoencoder that includes three hidden layers with 256, 128, and 64 units. The stacked autoencoder means that the feature vectors in the previous autoencoder are used as the input of the next autoencoder, and the whole training process is greedy in a layered manner. In our model, the feature information of FS = {fs1, fs2, ⋯ , fs495}, SS = {SS1, SS2, ⋯ , SS495},GSd = {d1, d2, ⋯ , d383} and GSm = {m1, m2, ⋯ , m495} is input into stacked autoencoder H1, H2, H3, and H4, respectively, and divided into four parallel groups for high-order feature extraction by minimizing the discrepancy between the input features and the reconstruction ones.

Initially, we set NL andNGias the number of units in the input layer and the ith hidden layer, and use one feature vector [image: image] to represent those input feature vectors. Subsequently, during the encoding process, the autoencoder transforms x into a latent representation g(i) through a composite mapping of linear transformation and non-linear activation function f, as shown in the following equation:

[image: image]

where i is ith hidden layer, [image: image] is the latent feature, [image: image] is the encoding weight matrix, [image: image] is the bias vector, and f (·) is the sigmoid function.

Here, we adopt three hidden layers, i.e., i = 3. Then there is the process of decoding, which learns features inverse mapping. The latent representation y(i) is mapped to a feature vector as follows:

[image: image]

similarly, g(i) is the latent data, [image: image] is the decoding weight matrix, [image: image] is the bias vector.

Given a training feature vector x(k), which can be shown as: x(k) = {fS(k), ss(k), d(k), m(k) (Denotedasχ = {FS, SS, GSd, GSm}), we can learn the underlying features by minimizing the reconstruction error of the cost function:

[image: image]

where N = 1, 2, 3, 4, and Y represents all the reconstructed feature vectors, y(k) is the kth reconstructed feature vector, x(k) is the kth training feature vector, m is the number of training feature vectors, λ is the weight decay parameter, θ = {W, b}, W is the weight, and b is the biases of the autoencoder.



2.3.2. Feature Interaction

In the previous section, we have obtained four different types of high-order features (Dfs, Dss, Dgs−m, and Dgs−d) derived from miRNA functional similarity, disease semantic similarity, and GIP kernel similarity for miRNA and disease. However, these four features are unilateral feature representations, which only express the degree of closeness among different miRNAs (diseases) and extract their meaningful latent connections. An effective prediction accuracy not only depends on valuable high-order features, but also on the feature interactive information. Therefore, we obtain cross features by combining different high-order features and use them to learn feature interaction information.

In our model, a feature interaction layer is adopted to gain the interaction information between different high-order features. Considering the miRNA–disease associations, we combine the two features of miRNA with the two features of disease, respectively, and gain a total of four cross features. In order to predict the association between a specific miRNA and a certain disease, Dfs and Dss are simultaneously mapped to the same space to obtain cross features, which can be expressed as:

[image: image]

Similarly, the other three cross features are shown as follows:

[image: image]
 [image: image]
 [image: image]

As a result, the high-order features of miRNA and disease are mapped to different spaces for feature interaction, and four unilateral high-order features are converted into four cross features with deep interactivity.



2.3.3. Ensemble Model Based on Multiple RF and Logistic Regression

An RF consists of an set of classification trees, and each tree divides the feature space into different regions based on the division of each node in the tree. During the training process, the randomness allows the trees to give independent estimates, which collectively contribute to achieve accurate and robust results. Here, we use four RFs and each RF is consisted of 300 independent trees. The core idea of our model is to input four interactive cross features into respective RF in parallel for self-learning and model building, and then merge the four RFs with logistic regression to make comprehensive predictions.

Our dataset includes 5,430 positive samples labeled as “1,” and 5,418 negative samples labeled as “0.” The input sample xk of each four cross features covers diversified feature information and the four cross features could be represented as [image: image], [image: image]. And we use θR = {[x1; f1], [x2; f2], ⋯ , [xm; fm]} to denote all training miRNA–disease pairs, where m is the number of all training sample pairs. In order to train a robust model, all samples are randomly input into the random forest for pre-training. For a sample xk, the interactive cross features fk are input into the corresponding RF, and a set of prediction score can be obtained and expressed as, [image: image]. [image: image] is a probability score between 0 and 1, which represents the degree of association between a miRNA and a disease. Subsequently, we use logistic regression to do the final classification task for each miRNA–disease pair, instead of simply averaging the probability score of the four RF regression models. We consider the score P(k) of each sample pair xk as a new feature [image: image] and assign it a weight [image: image], and constantly update the weights during each iteration. After logistic regression training, the comprehensive prediction performance can be expressed as: Y = wTx′ + b, where b is a constant. Finally, We conduct 5-fold cross-validation and 10-fold cross-validation on all samples to test the performance of our method.





3. RESULTS AND DISCUSSION


3.1. Evaluation Criteria

To assess the performance of PMDFI, we adopt 5-fold cross-validation (5-CV) and 10-fold cross-validation (10-CV) as well as several widely used measures, including recall, precision, F1-score, AUC, and area under the PR curve (AUPR). And these measures are calculated as follows:

[image: image]

[image: image]

[image: image]

where TP, FP, TN, and FN represent the true positive, false positive, true negative, and false negative, respectively.



3.2. Prediction of miRNA–Disease Association Based on PMDFI

We use 5-fold and 10-fold cross-validation to evaluate the performance of PMDFI in predicting miRNA–disease associations. In 5-CV (10-CV), all sample pairs are randomly divided into five (10) equal groups, and four (nine) groups of them are regarded as training samples, and the remaining one group is used as test samples. Table 1 lists the results of 5-CV and 10-CV obtained by PMDFI, and indicates that under 5-CV (10-CV), the AUC, AUPR, Precision, Recall, and F1-score of PMDFI are 0.9404 (0.9415), 0.9373 (0.9385), 0.8663 (0.8669), 0.8812 (0.8832), and 0.8736 (0.8748), respectively. The average AUC of our model exceeds 0.94 in either the 5-fold cross-test or the 10-fold cross-test. Therefore, the results fully demonstrate that PMDFI has a good performance in predicting the latent associations between miRNAs and diseases.


Table 1. The results of 5-fold and 10-fold cross-validation obtained by PMDFI.

[image: Table 1]



3.3. Comparison With Existing State-of-the-Art Methods

In order to systematically evaluate the performance of PMDFI, we compare our method with other state-of-the-art computational models, such as GBDT-LR (Zhou et al., 2020), LMTRDA (Wang et al., 2019), and RFMDA (Chen et al., 2018). GBDT-LR is a original model that combines gradient boosting decision tree with logistic regression to prioritize miRNA candidates for diseases. LMTRDA is a logistic model tree used to predict miRNA–disease associations by fusing multi-source information. RFMDA is a computational model of random forest for miRNA–disease associations prediction based on machine learning. The comparison between PMDFI and these models is carried out based on 5-CV and illustrated specifically in Table 2. From the table, PMDFI, GBDT-LR, LMTRDA, and RFMDA models achieve AUC of 0.9404, 0.9274, 0.8479, and 0.7388, respectively, and PMDFI presents the best performance. PMDFI outperforms GBDT-LR by 1.3%, LMTRDA by 9.25%, and RFMDA by 20.16% in terms of AUC. Figure 3 further describes the comparison of our method with other methods in 5-CV with the format of histograms, and the leftmost one represents our method. In conclusion, except that the recall is 0.0736 lower than RFMDA, PMDFI makes a significant improvement in the field of prediction for potential miRNA–disease associations.


Table 2. The comparison of different methods based on 5-fold cross-validation.
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[image: Figure 3]
FIGURE 3. Histograms of the results of different methods based on 5-fold cross-validation.




3.4. Comparison With Different Interactive Cross Features

In order to further illustrate the contribution of distinct interactive cross features to the potential miRNA–disease associations prediction, we separately input cross features D1 (Dfs ⊕ Dss), D2 (Dfs ⊕ Dgs−d), D3 (Dgs−m ⊕ Dss), and D4 (Dgsm ⊕ Dgs−d) into the RF model for training, without integrating the overall performance of the four cross features. Table 3 displays the performance of each interactive cross features on miRNA–disease potential association prediction.


Table 3. Comparison of the performance of four interactive cross features.

[image: Table 3]

In the table, the AUC and AUPR score of the four interactive cross features fluctuate in the range of 0.9249 ± 0.0143 and 0.9213 ± 0.0121, respectively. And the cross feature D1 has the worst performance with an AUC of 0.9106, which is 2.98% lower than the optimal score. Besides, the D4 cross feature has the best performance compared to other three, and its AUC, AUPR, Precision, Recall, and F1-score are 0.9392, 0.9334, 0.8630, 0.8834, and 0.8730, respectively. Although D4 is the best performer among the four cross features, the performance of it is still slightly worse than that of the integration of the whole four features. For a clearer comparison, we also draw a line graph of the four interactive cross features and their combinations in terms of AUC and AUPR values. Figure 4 gives a clue that the performance of integrating the four interactive cross features is the best, and its AUC and AUPR values are both at the highest point.


[image: Figure 4]
FIGURE 4. Line chart of area under the ROC curve (AUC) and area under the PR curve (AUPR) scores of different interaction cross features.




3.5. Comparison With Different Classifier Models

In our method, we use an ensemble learning model composed of multiple RFs to predict the potential miRNA–disease associations. To confirm the excellence of the RF-based ensemble learning model, we compare it with several common classifier models, such as SVM, k-nearest neighbor (KNN), and decision tree (DT), using a common data set and feature set. Figure 5 is the ROC curve of these four classifier models, where the AUC of SVM, KNN, DT, and PMDFI are 0.9336, 0.8348, 0.9171, and 0.9404, respectively. From the picture, the performance of SVM is slightly worse than PMDFI; the AUC of DT is 2.33% lower than PMDFI; the performance of KNN is the worst among them, and its AUC is 10.56% lower than PMDFI. In summary, our method, RF-based PMDFI, has a curve above all the other three ones, which stands for the best performance in predicting miRNA–disease associations.


[image: Figure 5]
FIGURE 5. The ROC curves of different classifier models.




3.6. Analysis of High-Order Feature Extraction and Feature Interaction

Unlike other models that directly use miRNA and disease similarity feature information, our method PMDFI utilizes high-order feature extraction and feature interaction to represent features. In order to verify the validity of the proposed feature representation approach, we compare it with other three methods. The first one is DBNMDA (Chen et al., 2020), which directly extracts the features of all miRNA–disease pairs to pre-train the Restricted Boltzmann Machine (RBM). The second one is DBMDA (Zheng et al., 2020), which utilizes the autoencoder to resize the miRNA (disease) similarity features and then fuses the features during the feature set construction stage. The third one is GBDT-LR (Zhou et al., 2020), which uses gradient boosting decision tree (GBDT) to extract distinguishing features and feature combinations. We name the feature representation in each of the aforementioned three methods as FeaRep1 (based on DBNMDA), FeaRep2 (based on DBMDA), and FeaRep3 (based on GBDT-LR). Table 4 reveals in details the outcome of distinct feature representation methods. The AUC of the feature representation method used in the PMDFI are 3.21, 0.97, and 0.37% higher than FeaRep1, FeaRep2, and FeaRep3, respectively. And we plot more straightforward histograms to illustrate the results of the comparison, as shown in Figure 6. From the figure, the feature representation method used by PMDFI, the rightmost one, is superior to the other three methods in all evaluation dimensions. To summarize, the experiment further demonstrates that high-order feature extraction and feature interaction have profound contributions to predicting the potential relevance of miRNA–disease.


Table 4. The specific outcomes based on different feature representation methods.

[image: Table 4]


[image: Figure 6]
FIGURE 6. Histograms of comparison of performance based on different feature representation methods.




3.7. Case Studies

To analyze the prediction performance of PMDFI in practical situations, we conduct several common disease case studies with PMDFI, including breast cancer, melanoma, and lymphoma. We initially train all known miRNA–disease associations in the HMDD v.2.0 with PMDFI, and then list top-10 predicted miRNAs for validation using two other databases, namely dbDEMC 2.0 (Yang et al., 2017) and miRCancer (Xie et al., 2013). The dbDEMC 2.0 is a database designed to store and display differentially expressed miRNAs in detected human cancers, which contains 2,224 differentially expressed miRNAs in 36 cancer types. And the miRCancer is a microRNA–cancer association database, which currently records 878 relationships between 236 miRNAs and 79 human cancers.

According to recent studies, we choose three prevalent diseases as our case studies and the results are listed in Table 5. The first one is breast cancer, as the most common cancer affecting women, which accounts for 23% of all cancers and 14% of cancer deaths (Jemal et al., 2011; Anastasiadi et al., 2017). The studies have shown that loss of the tumor suppressor miRNA or overexpression of the oncogenic miRNA may lead to the occurrence or metastasis of breast cancer (Serpico et al., 2014). Therefore, finding the relationship between miRNAs and breast cancer offers a direction for the diagnosis and treatment of breast cancer. From Table 5, we can see that nine out of the 10 predicted breast cancer related miRNAs appear in dbDEMC 2.0 or miRCancer. The second disease is Melanoma, which is the most serious type of skin cancer. It is caused by the cancerous transformation of skin cells when prolonged exposing under the ultraviolet light (Rastrelli et al., 2014). Pencheva et al. (2012) have identified a set of miRNAs that are deregulated in independent metastatic lines derived from multiple patients with melanoma, which manifests the importance to research the association between miRNAs and melanoma. The data from the middle line of Table 5 illustrate that the PMDFI model has accurately predict all the top 10 melanoma-related miRNAs. The last disorder is malignant lymphoma, which is a large group of tumors with considerable heterogeneity. Although it occurs in the lymph nodes, due to the distribution characteristics of the lymphatic system, lymphoma is a systemic disease that can invade almost any tissue and organ in the body (Dean et al., 2005; Paydas et al., 2016). Zheng et al. (2018) list several examples to describe miRNAs' role in the development of B-cell lymphoma, both as oncogenes and tumor suppressor genes, and nine out of the 10 predicted lymphoma-associated miRNAs are verified in dbDEMC 2.0 or miRCancer.


Table 5. The candidate miRNAs associated with breast cancer, melanoma, and lymphoma.
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4. CONCLUSION

Given the significance that the miRNA–diseases associations make to the diagnosis of diseases and superiority that computer have compared to biological experiments, emerging computational models pop up in the miRNA–disease associations prediction realm. In this paper, we propose a novel computational model called PMDFI, which is an ensemble learning method to predict the miRNA–disease associations based on feature interactive learning. Our method not only integrates the four RF models of separated cross features, but also incorporates logistic regression to provide comprehensive predictions by assigning adjustable weights. Moreover, we apply stacked autoencoders to extracting meaningful high-order features from miRNA functional similarity, disease semantic similarity, and GIP kernel similarity of miRNA and disease. And we also construct a feature interaction layer to promote the interactions between distinct features. As a result, PMDFI reaches the average AUC of 0.9404 and 0.9415 under 5-fold and 10-fold cross-validation and successfully predicted miRNA–disease associations within three case studies.

However, there is room for improvement in the future. First, with the rapid development of sequencing technology, all types of data have exploded, and we will integrate those multi-source data to dramatically improve the robustness of the model. Second, in future researches, we would devote ourselves to discovering more original features of miRNAs and diseases to boost the performance and explore some brand-new feature calculation methods. Third, concerning the negative samples, we randomly select them from unlabeled samples, which may include unreliable false samples. To offset these negative effect on the eventual prediction, we would introduce the measurement of reliable negative samples in the future.
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As a common type of structural variation, an insertion refers to the addition of a DNA sequence into an individual genome and is usually associated with some inherited diseases. In recent years, many methods have been proposed for detecting insertions. However, the accurate calling of insertions is also a challenging task. In this study, we propose a novel insertion detection approach based on soft-clipped reads, which is called SIns. First, based on the alignments between paired reads and the reference genome, SIns extracts breakpoints from soft-clipped reads and determines insertion locations. The insert size information about paired reads is then further clustered to determine the genotype, and SIns subsequently adopts Minia to assemble the insertion sequences. Experimental results show that SIns can achieve better performance than other methods in terms of the F-score value for simulated and true datasets.
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INTRODUCTION

Although single-nucleotide polymorphisms (SNPs) represent the most frequent genomic variation, it is generally acknowledged that human genomes show more differences as a consequence of structural variations (SVs) (Gusnanto et al., 2012). SVs generally refer to genome sequence changes greater than 50 bp and can be further categorized as insertions, deletions, duplications, inversions, and translocations, among others, as well as combinations of these categories (Feuk et al., 2006; Alkan et al., 2011; Baker, 2012). Some studies have shown that phenotypic changes and some diseases are caused by SVs, e.g., autism, Parkinson’s disease, and schizophrenia (Suzuki et al., 2011). Therefore, the accurate detection of SVs is of great significance for gene expression analysis and related disease research (MacConaill and Garraway, 2010). However, until a few years ago, there were no efficient methods for the detection of SVs with high precision. The development of next-generation sequencing (NGS) technology has allowed researchers to obtain a large amount of sequence data, which has improved research on SV detection (The 1000 Genomes Project Consortium, 2010; Zhang et al., 2010; Guan and Sung, 2016; Kosugi et al., 2019).

As one type of SV, an insertion refers to the addition of a DNA sequence to the genome. This sequence might be novel or could exist in the original genome, which would be equivalent to translocation or duplication. In general, insertions can be divided into two types: (i) novel insertions refer to the insertion of a sequence that cannot be found or mapped to the reference genome, and (ii) mobile element insertions or duplications constitute insertions in which the sequence comes from the original sequence. The sequence of this second type of insertion can be obtained through a comparison with the reference genome. Based on the identification of discordant patterns in sequence data, some SV detection methods can currently be utilized to detect insertions. In general, these methods can be categorized into the following four classes: (i) paired-end mapping (PEM-based methods, such as BreakDancer (Chen et al., 2009), PEMer (Korbel et al., 2009) and GASV (Sindi et al., 2009)), which is based on the physical position and distance information of paired-end or mate-pair reads (Lee et al., 2009; Hormozdiari et al., 2010); (ii) split read (SR)-based methods, which search for split alignments of unmapped or clipped reads, and an example is CREST, which uses clipped reads to identify structural variations through multiple alignments and assembly (Wang et al., 2011); (iii) depth of coverage (DoC)-based methods such as SegSeq (Chiang et al., 2009), EWT (Yoon et al., 2009) and CNVnator (Abyzov et al., 2011)), which provide a macroscopic view of whether there is a high coverage area on the genome; and (iv) de novo assembly, which uses related reads to recover insertion sequences. The latter methods, such as ANISE and BASIL (Holtgrewe et al., 2015), SvABA (Wala et al., 2018), EPGA (Luo et al., 2015b) and EPGA2 (Luo et al., 2015a), require a coverage depth that is not less than 40X and have a high cost. However, these methods usually focus on abnormal information, such as variations in the insertion size and soft-clipped information, and thus cannot yield accurate detection results for insertions with variable sizes.

Some hybrid methods have been proposed for the detection of insertions with variable sizes in recent years. For example, Pindel, as a classical method, is mainly designed for deletions and small insertions and uses PEM and SR signatures to locate the breakpoints (Ye et al., 2009). However, for large insertions over 50 bp, Pindel does not perform well and yields many false positive results. MindTheGap uses a k-mer-based method to detect the insertion site and recovers insertion sequences through an assembly of k-mers (Rizk et al., 2014). This method enables the detection of small and large insertions, but the methods finds it difficult to locate a breakpoint when other polymorphisms occur near the insertion site, which leads to a high number of false negative results. As an insertion detection approach based on breakpoints, BreakSeek applies a Bayesian model for the PEM and SR signatures to find the accurate position of an insertion (Zhao and Zhao, 2015). The BreakSeek method can obtain accurate breakpoint results and genotypes without assembly, but the coverage depth of the dataset has some impact on the performance. In addition, although some insertion detection methods, such as PopIns (Kehr et al., 2016) and Pamir (Kavak et al., 2017), perform well, they may require a large number of data points.

In this paper, we propose an insertion detection approach called SIns, which is based on soft-clipped reads and achieves high insertion detection accuracy. SIns adopts PEM to identify and correct the breakpoints from a previous analysis of soft-clipped reads and clusters the insert size to determine the genotype. For sequence assembly, SIns directly extracts all abnormal reads and uses Minia to recover the insertion sequences. We conducted experiments using simulated data and real datasets, and the results show that SIns exhibits high accuracy in breakpoint detection and genotype determination.

The rest of this paper is organized as follows: in Section 2, we introduce the proposed method in detail. The experimental results are shown in Section 3, and we summarize and discuss the findings in Section 4.



METHODS

In this study, we propose a novel insertion detection approach named SIns for the detection of insertions based on soft-clipped reads. In general, SIns performs the following three steps: (i) breakpoint detection, determining the location of insertions based on comprehensive information; (ii) genotyping, identifying the genotype of the insertion based on clustering results; and (iii) assembly of insertion sequences. The overall pipeline of SIns is shown (Figure 1).


[image: image]

FIGURE 1. The process of Sins.



Breakpoint Detection

Breakpoint detection is an important step in SIns. In this study, the breakpoints can be obtained through the following steps.


Step 1 Selection of Soft-Clipped Reads

For each soft-clipped read, SIns first obtains its clipped part, Sc, and then extracts a sequence Sr from the reference genome, which corresponds to Sr. Note that the length of Sr equals that of Sc.

Based on the Smith-Waterman algorithm, a score matrix between Sc and Sr can then be constructed to reflect their detailed matching degree. Moreover, SIns can obtain the maximum score from the matrix, which refers to the length of the longest successive sequence. To identify and screen out real soft-clipped reads, a threshold parameter c is then set to select those reads whose Sc and Sr exhibit higher similarity. This parameter c can be computed using the following equation:

[image: image]

where m represents the mappability (m ∈ [0,1]). If c equals 1, SIns selects it for the following steps; otherwise, SIns abandons it. A larger m indicates greater similarity between Sc and Sr. The default value for the parameter m is 0.5.



Step 2 Determination of Candidate Breakpoints

In our study, the soft-clipped reads were further divided into four types, namely, LL, LR, RL, and RR, which are shown in Figure 2. Taking “LL” as an example, the first L means that the left mate read is soft-clipped, and the second “L” specifies that this read is clipped on its head, whereas “RR” indicates that the right mate read is soft-clipped on its tail.
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FIGURE 2. Sequence A and B is normal, and sequence C is insertion sequence. R1, R2, R4′,and R3′ are soft-clipped reads. R1 belongs to the LL type, R2 belongs to the LR type, R4′ belongs to the RL type, and R3′ belongs to the RR type.


A true insertion might be related to the four types of soft-clipped reads. These soft-clipped reads can provide similar breakpoint information. In general, an insertion breakpoint is regarded strongly as true if the four types of soft-clipped reads mentioned above exist. However, it is difficult to find all types of soft-clipped reads for a true insertion, particularly if the DoC is low. In this paper, SIns defines four types of breakpoints, which are represented as {LL, LR}, {LL, RL}, {RL, LR}, and {RL, RR}. For a breakpoint, SIns collects all related soft-clipped reads that are kept to PSD and determines their types, and SIns then uses the following equation to determine whether a breakpoint is true:

[image: image]

where LL∧LR indicates that the PSD of a breakpoint contains LL and LR, and LL∨RL indicates that it contains LL or RL. Subsequently, SIns obtains a list of breakpoints using the above-described method. However, the method yields some false positive breakpoints, which can be due to a high GC content, sequencing error or SNPs. Therefore, even though their proportion is small, these breakpoints should be checked and filtered.



Step 3 Filtering of the Breakpoints

Through the above-described steps, SIns can obtain candidate breakpoints, which might include some false breakpoints. SIns then uses a filter method based on the insertion size to further improve the precision of these breakpoints. An insertion usually causes a series of abnormal reads with an anomalous insert size distribution.

For a candidate breakpoint, SIns first finds the paired reads that span this breakpoint and OEA reads (one-end-anchored reads). Note that these reads should be aligned in the region [p − (μ++3σ), p + (μ+3σ)], where p is the position of the breakpoint, μ is the insert size of the read library, and σ is the standard deviation of μ as shown in Figure 3. If the sum of paired reads and OEA reads is larger than Cov/2, SIns treats this breakpoint as true, otherwise, the method considers the breakpoint to be false. Cov is the coverage of the read library.
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FIGURE 3. For a breakpoint, SIns only consider reads aligned in the region [p – (μ+3σ), p + (μ+3σ)], where p is the position of the breakpoint.




Genotyping

Genotyping is a necessary step of SIns. In a polyploid, the genotype is divided into heterozygous and homozygous genotypes. Taking diploid as an example, a heterozygous variation is only included in one chromosome and not the other one contains. In contrast, homozygosity indicates that the same variation is found in both chromosomes.

Genotyping can provide great convenience for subsequent studies, and many approaches, particularly assembly-based methods, are available for genotyping; however, all the assembly-based methods usually require considerable time and memory. Here, SIns adopts a cluster-based method, which can save as much time as possible.

If an insertion occurs, it will inevitably cause a change in the insert size for paired reads around the breakpoint, such as OEA reads, and a decrease in the normal insert size. For a heterozygous insertion, the insert size is difficult to determine because the paired reads might originate from two different chromosomes. Some paired reads contain insertions, whereas others do not. We defined P (Pl, Pr, and i) for a paired read spanning the breakpoint, where Pl is the aligning position of the left mate read, Pr is the aligning position of the right mate read and i is the insert size value around this paired read. After obtaining P for all paired reads spanning the breakpoint, SIns applies the DBSCAN for clustering. In DBSCAN, the parameter eps = 50, min_samples = 2 in default, and these parameters can be adjusted. And, SIns determines a breakpoint as heterozygote if there is one cluster in the clustering result, otherwise, the breakpoint is deemed as homozygous. Two types of insert size distributions are shown in Figure 4.
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FIGURE 4. The paired reads (r1, r1′), (r2, r2′), and (r3, r3′) are obtained on the first chain, which contains an insertion. The other paired reads were obtained on the normal chain as shown. These insert sizes can be clustered into two clusters.




Assembly Insertion Sequences

In the assembly stage, SIns extracts OEA, soft-clipped and unmapped reads for a breakpoint to recover all possible insertion sequences. After applying the Minia (Boeva et al., 2012) algorithm to these abnormal reads, SIns generate a series of sequences with overlap, which contain insertion sequences. SIns then maps these sequences to the reference genome and obtains the insertion sequence results. For example, if the CIGAR value of a candidate sequence is 132M186I130M, the algorithm finds the length of this insertion, i.e., 186 bp, and determines that the sequence content is 133–318 bases.



EXPERIMENTS AND ANALYSIS

To verify the performance of SIns, we used SURVIVOR (Jeffares et al., 2017) and ART (Huang et al., 2012) to simulate a large number of insertions on human chromosome 22 ranging in size from 50 to 1,500 bp and in coverage from 5X to 50X. The recent popular detection methods MindTheGap and BreakSeek were compared with the proposed SIns method. In addition, the real human dataset NA12878 was selected to test the performance of SIns.


Experimental Settings


Simulation Datasets and Parameter Setting

The simulation dataset was based on human chromosome 22, and the error rate of the dataset was set to 0.1%. SURVIVOR was used to simulate the structural variation. Here, we selected insertions for the simulation, and other types of structural variations were set to 0. ART was used to simulate different read sets from the simulated chromosome 22 containing insertions. We first generated some simulations of chromosome 22 containing insertions of different sizes, namely, 50–300 bp, 301–600 bp, 601–1,000 bp, and 1,001–1,500 bp, and ART was then used to simulate read sets with different coverages, i.e., 5X, 10X, 20X, 30X, 40X, and 50X. The read length was uniformly set to 150 bp, the inset size was 500 bp, and the standard deviation was 50. Using the above parameters, we can understand the detection ability of SIns under various conditions.



Evaluation Metrics

If the difference between the detected breakpoint and the simulated breakpoint does not exceed 10 bp, we consider it a positive result, which is represented by TP; otherwise, the result is represented by FP. True breakpoints that were not detected are indicated by FN. To clearly show the detection performance of various methods, we used the metrics precision (Pr), recall (Rc) and F-score as follows:
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The F-score was defined as the harmonic average of precision and recall:
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Simulation Dataset


Results on Homozygous Dataset

We compared SIns with MindTheGap and BreakSeek, selected chromosome 22 as the reference and simulated a chromosome containing 1,051 insertions of 50–300 bp, a chromosome containing 597 insertions of 301–600 bp, a chromosome containing 597 insertions of 601–1,000 bp and a chromosome containing 790 insertions of 1,001–1,500 bp. Based on different coverages, we simulated six read sets for each simulated chromosome. The experimental results are shown in Table 1.


TABLE 1. Comparison of three tools for four ranges.

[image: Table 1]
As shown in Table 1, the performances of SIns and BreakSeek in detecting insertions of 50–300 bp were better. Although the precision of BreakSeek was generally higher than that of SIns, its F-score was only better than that of SIns when the coverages of the read set were 40X and 50X. We also found that SIns has a higher recall, which means that SIns can detect more true insertions. SIns exhibited higher precision and recall regardless of the coverage and the length of insertions. In addition, none of the methods worked well with low DoCs. However, for the case with a low coverage (DoC ≤ 10X), SIns showed better performance than the other methods.



Results on Heterozygous Dataset

To verify the performance of SIns in detecting heterozygous insertions, we simulated read sets of chromosome 22. Simulations of chromosome 22 containing insertions of 50–300 bp were used to produce these read sets, and other simulations of chromosome 22 containing an insertion of 301–600 bp were also used to generate other read sets. We then combine the read sets from the normal chromosome 22 and the simulations of chromosome 22. Note that the read sets were simulated with different coverages: 10X, 20X, 40X, 60X, and 80X. The experimental results are shown in Table 2.


TABLE 2. Result of 50–300 and 301–600 bp heterozygous insertions.
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As illustrated in Table 2, the detection results obtained with MindTheGap were less effective than those obtained with homozygous detection because MindTheGap has more sequences to choose from when selecting k-mers, which will yield some conflicting issues. The performance of BreakSeek on these two datasets was not as good as the results obtained with homozygotes, and a reason for this finding might be that normal reads extracted from the reference genome, which contained many contradictory PEM and SR information, were added. When BreakSeek iteratively analyses the PEM signature, there is too much contradictory information that can be used, and thus, the result cannot show the most authentic SV information. In contrast, when SIns extracts breakpoint information at the initial stage, the method relies more on SR information and thus experiences less interference from contradictory information. At the subsequent filtering stage, due to the addition of normal reads, the filtering conditions were more rigorous and precise, which explains why the precision of SIns increased, whereas the recall value decreased.



Experiments Based on Real Dataset

NA12878 is the gold standard dataset commonly used in genomics. Experiments with NA12878 (ERR194147 50X1) samples were conducted using the SIns, MindTheGap and BreakSeek methods. We extracted the reads with a probability of 0.1 because the coverage was too high. The generally recognized VCF file of this sample contains 50,016 insertion reports larger than 50 bp. The corresponding vcf file can be downloaded from NCBI. We only selected the detected results in the file records as true values. The test results are shown in Table 3.


TABLE 3. Results obtained with NA12878.

[image: Table 3]
We have filtered out the SNPs and Indels of this data set. The above results show that SIns has good performance on most chromosomes compared with MindTheGap and BreakSeek. Although the detection number of insertions on chromosome 15 and 20 are lower than that of MindTheGap, we can find the result on the rest of chromosomes are better than other two methods. And the average of F-score on all 22 chromosomes is 5.46% for SIns. MindTheGap is 2.42%, and BreakSeek is 2.85%. The average of F-score shows the same conclusion.



Running Time Comparison

Here we list the time comparison results of homozygote and heterozygous experiments.

Although clustering is useful in the SIns process, it does not require as many iterations as in BreakSeek, MindTheGap and other methods; thus, SIns exhibits a relatively obvious advantage in terms of running time. As shown in Tables 4, 5, all the methods were run in the same machine and a single thread by default. As a result, SIns exhibited better performance than the other two methods in most cases. The main time-consuming step of SIns is the third step: the reads used for assembly are extracted from the original read collection, which is the most work-intensive step. If the assembly is not considered and the method aims to just detect breakpoints and judge genotypes, SIns can complete the task within a short time.


TABLE 4. Homozygote results obtained with four ranges.
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TABLE 5. Heterozygous results obtained with four ranges.
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DISCUSSION

In this article, we propose an insertion detection method named SIns based on the comprehensive processing of soft-clipped read information. SIns can provide more precise detection of breakpoints and can perform relatively accurate genotyping. In addition, SIns uses the Minia algorithm for assembly of the insertion sequence, and the successfully assembled sequence is then filtered and tailored according to the breakpoint information. After these steps, the complete insertion sequence is provided.

Most of the existing methods show effectiveness in detecting small insertions but show poor performance in cases of low coverage. These methods usually are difficult to detect all types of SVs of all sizes. SIns focuses on the detection of insertions of different sizes. We tested the detection performance of SIns using various simulated datasets and compared it with MindTheGap and BreakSeek. In most cases, the performance of SIns was better than those of the other two methods. Comparing with the other two methods, SIns performs well both on low and high coverage data sets and different size insertions. The experimental results using a real dataset show that SIns exhibits good detection capability.
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Retrocopies, which are considered “junk genes,” are occasionally formed via the insertion of reverse-transcribed mRNAs at new positions in the genome. However, an increasing number of recent studies have shown that some retrocopies exhibit new biological functions and may contribute to genome evolution. Hence, the identification of retrocopies has become very meaningful for studying gene duplication and new gene generation. Current pipelines identify retrocopies through complex operations using alignment programs and filter scripts in a step-by-step manner. Therefore, there is an urgent need for a simple and convenient retrocopy annotation tool. Here, we report the development of RetroScan, a publicly available and easy-to-use tool for scanning, annotating and displaying retrocopies, consisting of two components: an analysis pipeline and a visual interface. The pipeline integrates a series of bioinformatics software programs and scripts for identifying retrocopies in just one line of command. Compared with previous methods, RetroScan increases accuracy and reduces false-positive results. We also provide a Shiny app for visualization. It displays information on retrocopies and their parental genes that can be used for the study of retrocopy structure and evolution. RetroScan is available at https://github.com/Vicky123wzy/RetroScan.
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INTRODUCTION

Gene duplications, which are generated by DNA- or RNA-mediated mechanisms (Innan and Kondrashov, 2010; Sakai et al., 2011), are a major source of the origination of new genes (Long et al., 2003) and play pivotal roles in genome evolution, new biological process origination and functional diversification (Flagel and Wendel, 2009). Retrocopies are a special type of RNA-mediated duplication (Brosius, 1991) in which the reverse transcripts of mRNAs derived from parental genes are occasionally reinserted at an ectopic location in the genome (Long et al., 2003). Retrocopies are new sequence fragments formed by retrotransposition events. Most retrocopies are non-functional due to their insertion at inappropriate sites or a lack of parental gene features such as introns or regulatory elements and are believed to be retropseudogenes (Lynch and Conery, 2000; Navarro and Galante, 2013). Another group of retrocopies may inherit the complete open reading frames (ORFs) of the parental genes or recruit regulatory elements such as promoters, enhancers and coding sequences from flanking regions to generate a functional retrogene (Pan and Zhang, 2009). Furthermore, the fusion of a retrocopy with coding sequences near the insertion site generates a chimeric gene (Betran et al., 2002; Wang et al., 2002). Recent studies have systematically identified a substantial number of retrocopies in the genomes of fruit flies (Bai et al., 2007), Caenorhabditis elegans (Schrider et al., 2011), humans (Ohshima et al., 2003; Zhang et al., 2003; Vinckenbosch et al., 2006), zebrafish (Fu et al., 2010), and other mammals (Pan and Zhang, 2009). Some studies have searched for retrocopies in plant genomes, mainly in Arabidopsis thaliana (Zhang et al., 2005), rice (Sakai et al., 2011), poplar (Zhu et al., 2009), and green algae (Jąkalski et al., 2016). Moreover, some functions of retrocopies have been verified through experiments; for example, Jingwei functions in the metabolism of recruitment pheromones and juvenile hormones in fruit flies (Long and Langley, 1993; Zhang et al., 2010), and CYP98A8 and CYP98A9 are involved in pollen development in Arabidopsis thaliana (Matsuno et al., 2009). Retrocopies not only contribute to the diversity of genome sequences but can also cause rapid and significant changes in the genome by altering genome structures. Therefore, they are an important driving force for the origination of new genes (Carelli et al., 2016) and provide evidence of evolutionary innovations (Navarro and Galante, 2015). With the rapid development of next-generation sequencing technology, many studies have assembled chromosome-level genomes of new species, and a tool for annotating retrocopies at the genome-wide level would help us to fully understand their positions in the genome and the process of their production. Such a tool would be highly significant for studying genome evolution and subsequently analyzing the function of retrocopies (Kaessmann et al., 2009).

Since retrocopies have often lost introns and but are otherwise highly similar to their parental genes, the identification of retrocopies in the whole genome is generally based on the use of protein sequences as templates for sequence alignment. Current retrocopy identification pipelines are based mainly on the TBLASTN, BLAT, and paralog methods (Casola and Betrán, 2017). Most studies of retrocopies are based on the TBLASTN method, which aligns the annotated protein-coding sequences to whole-genome sequences. Candidate hits are determined by alignment with parental genes to determine the numbers of lost introns, point mutations and frameshift mutations using FASTA (Pearson and Lipman, 1988) and GENEWISE (Birney et al., 2004). This method has been used to find retrocopies in humans (Vinckenbosch et al., 2006), Caenorhabditis elegans (Abdelsamad and Pecinka, 2014), Arabidopsis thaliana (Zhang et al., 2005), rice (Sakai et al., 2011), poplar (Zhu et al., 2009), and green algae (Jąkalski et al., 2016). However, the speed of the TBLASTN method is relatively slow, and scanning a large genome often takes several days or even a few weeks. But Kabza et al. (2014) were the first use LAST to identify retrocopies instead of TBLASTN, which greatly improved the speed of alignment. The use of BLAT to align genomic sequences with cDNA sequences instead of proteins is also a good option. The BLAT method directly estimates the number of missing introns according to the alignment results without additional programs. However, compared with the TBLASTN method, the BLAT method shows lower accuracy, and some positive retrocopies will be ignored. This is not conducive to further evolutionary analysis because the BLAT method cannot get the proteins mutations information between parental genes and retrocopies. Navarro and Galante (2015) used the BLAT method to scan for retrocopies in seven primate genomes, and the PlantRGDB database provides annotations for the retrocopies of 49 plant genomes (Wang, 2017). Moreover, a new method developed by Abdelsamad and Pecinka (2014) divides the annotated genes into two types, intron-free genes and intron-containing genes, and then aligns them using paralogs to identify retrocopies. Compared to the previous two methods, this approach can find more retrocopies in intron-free genes but also produces more false-positive results. It is impossible to find retropseudogenes via the paralog method because it focuses only on annotated genes rather than genome sequences. All of the above methods for identifying retrocopies present some disadvantages. Therefore, there is an urgent need to develop a comprehensive and uncomplicated tool for identifying, annotating and analyzing retrocopies in the genome which could facilitate in-depth research on retrocopies.

In the development of an easy-to-use retrocopy identification pipeline, the following requirements must be met. First, the increasing number of genome sequences generated by high-throughput sequencing technology have brought retrocopy research a new era, so the new pipeline must be suitable for various species, including large-scale genomes. Second, it must be convenient for users to configure and run, requiring few extra operations. Third, it should effectively reduce false-positive results. Finally, all results should be clearly displayed in the form of clear figures. To meet all of these design needs, we developed a convenient and accurate tool, RetroScan,1 which is based on the method of aligning protein sequences with genome sequences to recognize retrocopies by integrating multiple software programs and scripts. Next, RetroScan was used to explore the expression, age distribution and functions of the retrocopies. Finally, we constructed a reliable graphical interface to display the results, thus helping researchers to easily obtain information on retrocopies and achieve a deep understanding them.



MATERIALS AND METHODS

RetroScan is an easy-to-use tool for retrocopy identification that integrates a series of bioinformatics tools [LAST (Kielbasa et al., 2011), BEDtools (Quinlan and Hall, 2010), ClustalW2 (Larkin et al., 2007), KaKs_Calculator (Wang et al., 2010), HISAT2 (Kim et al., 2015), StringTie (Pertea et al., 2015), SAMtools (Li et al., 2009), and Shiny] and scripts. It scans retrocopies based on alignments between protein-coding genes and whole-genome sequences. This tool can also analyze heterosense substitution and synonymous substitution, compare gene structure between parental genes and retrocopies, and calculate corresponding expression values. Moreover, RetroScan has a user-friendly visualization interface that provides overall statistical information, a retrocopy structure diagram, the non-synonymous/synonymous substitution (Ka/Ks) ratio distribution and the fragments per kilobase per million (FPKM) heatmap using the Shiny package in R.


Retrocopy Identification

RetroScan mainly relies on the identification of genomic intronless alignments from mature transcripts (mRNAs) for the reason that retrocopies are processed copies of multiexon proteins. It requires at least two input files (Figure 1): a genome sequence file (FASTA format) and a corresponding annotation file (GFF format), from which it can provide detailed information on retrocopies and parental genes in the genome. If users wish to obtain the expression values of retrocopies, they need to submit additional RNA-Seq data.
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FIGURE 1. The pipeline of retrocopy annotation.


According to genome sequences and GFF file (Figure 1), RetroScan first employs the peptide sequences used as queries in similarity searches against complete genome sequences using LAST to identify candidate hits. To avoid duplicate results, the longest transcripts of each gene for alignment are retained for the next step. Multiexon proteins are selected for subsequent analysis because the parental genes must lose at least two introns. According to the alignment results from the previous step, users can set the sequence identity, coverage and alignment length parameters to consider the specific conditions of the species. Multiple alignment hits to the same genomic locus are clustered using BEDTools. When the distance between the hits is less than a certain length, indicating that they are unlikely to be separated by introns, adjacent homology hits are merged using BEDTools. The gap default is 40 bp in RetroScan, but if users want to change this threshold, they should take into consideration that the length of most introns ought to be larger than the threshold.

Next, the merged sequences are aligned back to multiexon proteins using LAST, and the best hits are retained as putative parental genes. Finally, the number of lost introns is estimated to obtain reliable results according to the alignment output. We calculate the position of the introns on the protein sequences according to the annotation file. RetroScan only retains parental genes (excluding the first and last 10 amino acids) that span at least two introns and single-exon retrocopies. We discard any cases involving possible DNA-based duplications by aligning retrocopy sequences back to genome sequences to minimize the number of false-positive results. If a retrocopy shows multiple highly similar sequences in the genome, it will be deleted.

In addition, retrocopies with either premature stop codons or frameshift mutations are defined as retropseudogenes; otherwise, they are defined as intact retrocopies. If one intact retrocopy can recruit novel regulatory elements or new protein-coding exons and evolve into a functional retrogene, it can be defined as a chimeric retrogene. RetroScan is more convenient and easier to use, which integrates multiple softwares and there is no need for the user to call the softwares at each step. Compared with the traditional processes, LAST alignment is faster. We also align the results of retrocopy back to the genome to avoid rertocopy caused by DNA duplication, which effectively reduces false positives.



Ka/Ks Analysis

The age distribution of the retrocopies (Figure 1) is determined by calculating Ka, Ks and the Ka/Ks ratio between each retrocopy and its parental gene. The coding sequence (CDS) information of the retrocopies and their parental genes based on the annotation file are extracted for Ka/Ks calculation. Then, RetroScan performs multiple alignments between the corresponding protein sequences using ClustalW2. Finally, the Ka, Ks, and Ka/Ks values are calculated using KaKs_calculator_2.0.



Retrocopy Expression Analysis

Although the sequences of the parental genes and retrocopies are similar, some retrocopies are not expressed, which implies that they have no function. Some retrocopies exhibit expression patterns similar to those of their parental genes and may have similar functions, and some retrocopies exhibit much higher expression values than their parental genes, which means that they may replace the parental gene function. Therefore, analyzing the expression of retrocopies in different tissues and organs is helpful for exploring their functions. As retrocopies show high similarity with their parental genes, the expression values of them might be biased by the lack of RNA-seq reads mapping uniquely to either copy. There are two factors that could possibly cause this. First, it is well known that retrocopies have very low expression and are usually limited to one or a few tissues (Carelli et al., 2016). Secondly, sequences that matched equally well to a given retrogene progenitor were excluded what additionally reduced the number of positive results (Rosikiewicz et al., 2017). To estimate the expression values of retrogenes (Figure 1), RetroScan uses HISAT2, SAMtools, and StringTie to analyze the RNA-Seq data based on retrocopy and parental gene position information, which has the advantages of high accuracy and fast speed. After the reads are mapped to the corresponding annotated sequences using HISAT2, RetroScan converts SAM files into BAM files and sorts them using SAMtools. Finally, StringTie calculates FPKM values, which are helpful for analyzing differential expression. All programs are run with the default settings.



Visualization

We developed a visual interface that can clearly display retrocopy structure, the ka/ks distribution, expression levels, sequence alignments and statistical figures. We use R to analyze the RetroScan results, while the web pages are mainly built with Shiny and a series of R packages such as ggplot2, UpSetR, ggmsa, VennDiagram, dplyr, DT, shinydashboard, Biostrings, muscle, pheatmap, stringr, shinyjs, RColorBrewer, ape, etc. The interface layout is divided into four parts: summary, retrocopy, KaKs and expression. Users can upload the RetroScan result files generated by RetroScan through the START button on the homepage.

The “Summary” page shows the RetroScan results and related statistical information which are mainly displayed in the form of tables, histograms, pie charts, line graphs, Venn diagrams, heat maps, and so on. There is a table containing all of the information for retrocopies and their parental genes, including the retrocopy ID, chromosome, start site and end site of the retrocopy; the parental gene ID, identity, coverage, and description; and the host gene ID (Figure 2A). The other parts of the page show seven statistical figures illustrating the chromosome distribution of the parental genes corresponding to the retrocopies on each chromosome (Figure 2B), the distribution of the number of retrocopies of by each parental gene, the retrocopy length distribution, the percentage of identity (Figure 2C), the percentage of coverage and the percentage of retropseudogenes, intact retrocopies and chimeric retrocopies. The static UpSet plot (Conway et al., 2017; Figure 2D) visualizes the intersections of datasets showing an identity ≥ 90%, ≥ 3 lost introns, host genes, a Ka/Ks ≤ 0.1, and coverage ≥ 90% in a matrix layout and introduces aggregates based on groupings and queries. The upper bar graph corresponds to the lower dot matrix graph including the intersections of related datasets.
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FIGURE 2. Visualization of the retrocopy results. (A) The table contains all information on retrocopies and parental genes. (B) The chromosome distribution of retrocopies. (C) The percentage of identity. (D) The UpSet plot visualizes the intersections of datasets showing an identity ≥ 90%, ≥ 3 lost introns, host genes, Ka/Ks ≤ 0.1 and coverage ≥ 90%. (E) The structure figure shows the differences in the gene sequences between the parental genes and retrocopies. (F) The retrocopy sequence and the parental gene mRNA and protein sequences. (G) Sequence alignment between the retrocopy and parental gene. (H) The expression values of retrocopy and parental genes. (I) Ks distribution histograms. (J) Histogram showing the mean FPKM values of retrocopies (blue bar) and parental genes (brown bar) in all tissues. (K) Heatmap showing the expression of all retrocopies.


The “Retrocopy” page includes a search box where users can enter any retrocopy ID. The search result integrates the detailed information, sequence structure, alignment and expression of a certain retrocopy. The structure figure (Figure 2E) shows the structural differences in the gene sequences among the parental genes, retrocopies and host genes so that users can clearly understand the formation of retrocopies from parental genes. The sequence section contains the sequences of the retrocopy gene and protein sequences (Figure 2F). The alignment section shows the sequence alignment between the retrocopy and the parental gene to allow users to identify the differences in bases (Figure 2G). The expression patterns in different developmental stages and tissues could be used as a basis for judging whether a retrocopy has a biological function and whether there is functional correlation between the retrocopy and its parental gene. The page displays the expression values in a line chart in which two lines represent the expression of the retrocopy and the parental gene (Figure 2H).

A Ka/Ks table and four statistical figures are provided to investigate the origin and evolution of retrocopies on the “KaKs” page. Users can view the table of Ka, Ks, and Ka/Ks values and set reasonable thresholds for filtering retrocopies. The age distribution is shown with a Ks histogram and is estimated by comparing the protein sequences of the parental genes and retrocopies (Figure 2I). Another Ks histogram shows the Ks distribution in three categories: retropseudogenes, intact retrocopies and chimeric retrocopies.

The expression page provides information on estimated retrocopy expression. The table shows the accurate FPKM values of the retrocopies and their parental genes. The histogram shows the mean FPKM values for each tissue (Figure 2J). Moreover, the heatmap shows the expression of all retrocopies (Figure 2K). The heatmap clearly shows the tissues in which retrocopies are highly expressed or not expressed, so that user can explore the function of retrocopies and whether their expression shows an organizational preference.

Users can filter the data based on any table column on each page and can directly search for keywords in the search box above the tables. All image colors and text sizes can be adjusted according to users’ needs. All information tables and figures can be downloaded by clicking the download tabs.




RESULTS


Test

RetroScan is suitable for species with available scaffold-level or chromosome-level genome assemblies and detailed annotation information. If users upload the relevant RNA-Seq data, they can further explore the expression values of retrocopies. A well-developed retrocopy annotation tool requires tests to examine its accuracy and improve its applicability. Here, we selected six eukaryotic species for verification, including two vertebrates [Homo sapiens (Falconer et al., 2012), Danio rerio (Howe et al., 2013)], two plants [Arabidopsis thaliana (Theologis et al., 2000), Oryza sativa (Sasaki and International Rice Genome Sequencing Project, 2005)] and two insects [Drosophila melanogaster (Adams et al., 2000), Aedes aegypti (Nene et al., 2007)]. The data were all downloaded from NCBI (Supplementary Table 1). In addition, we also tested species genomes from databases such as JGI (Phytozome), Ensembl and FlyBase (Supplementary Table 2). In our tests, RetroScan performed well and was suitable for genomic data of various databases. The running time and results of RetroScan are listed in Table 1. We ran RetroScan by entering the genome sequence files and corresponding annotation files. For evaluation, the programs were run on a dedicated Linux machine with Ubuntu18.04 running no other job, using the GNU time command to obtain real time. The machine had 16 GB of physical RAM and a six core Intel i7 CPU. We set all parameters to the default settings (thread = 1, identity ≥ 50%, coverage_rate ≥ 50%, coverage_len ≥ 50 aa, intron_loss_num ≥ 2, gap_len ≥ 40 bp, parent_loss_intron_len ≥ 60 bp, retro_one_exon_len ≤ 30, kaksmethod = NG). The size of the genomes ranged from 121 M to 3.3 G, and the number of retrocopy results reached 7048. The size of the genome, the number of annotated proteins and the proportion of repeated sequences have the greatest impact on the running time.


TABLE 1. RetroScan results for retrocopies in Homo sapiens, Danio rerio, Arabidopsis thaliana, Oryza sativa, Drosophila melanogaster, and Aedes aegypti.
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Comparison With Previous Studies

There is a lack of a uniform definition of retrocopy identity. The criteria for judging retrocopies are based mainly on the core definition that the sequences of retrocopies and their parental genes are highly similar but the parental genes lose multiple introns. Current retrocopy identification pipelines are based on the TBLASTN, BLAT, and paralog methods, and we selected representative studies in these pipelines to compare with RetroScan: RetrogeneDB (Rosikiewicz et al., 2017) for TBLASTN, PlantRGDB (Wang, 2017) for BLAT and the study of Abdelsamad and Pecinka (2014) and Zhang et al. (2005) for paralog (Supplementary Table 3). The results between these methods vary greatly, so we used Arabidopsis thaliana as an example to explain the reasons for these differences. RetroScan includes 343 retrocopies, RetrogeneDB includes 27, PlantRGDB includes 114 (duplicates have been removed), Zhang includes 69 and Abdelsamad includes 251. To compare other results with those of RetroScan, we considered any two retrocopies that overlapped at the same genomic position in which the overlap region was more than 50% of their sequence length to be the same retrocopy. An UpSet plot was generated to represent the intersections between five datasets (Figure 3). The total number of retrocopies in all studies was 627. Among the RetroScan retrocopies, 87 were shared with retrocopies from other pipelines, and 256 were novel (Figure 3). The 256 novel retrocopies consisted partly of retropseudogenes, which were mainly distributed in non-coding regions. Other novel retrocopies were newly discovered retrocopies that were ignored by the other four pipelines. We observed that all of the RetrogeneDB retrocopies overlapped with the RetroScan results because that study applied a similar pipeline to directly align protein-coding sequences with genome sequences using LAST. However, RetrogeneDB involved more stringent criteria (e.g., regarding alignment length, identity and coverage), and few retrocopies could be found in non-coding regions. RetroScan and PlantRGDB showed only 50 overlapping results, as PlantRGDB used the BLAT tool to identify retrocopies in plants. The BLAT method is not as accurate as BLASTN and will result in the loss of some positive results. The parental genes identified by the BLAT method do indeed lose multiple introns, but the sites of lost introns are located in the marginal area of the retrocopies, which are easily excluded in RetroScan (Figure 4A). Abdelsamad and Zhang developed a new method for identifying retrocopies. The method mainly compares intron-free genes and intron-genes with paralogs to find retrocopies. The paralog method can find more retrocopies in intron-free genes than the previous two methods but also produces more false-positive results. Therefore, only 39 overlapping results were observed with the results of this method. Moreover, it cannot find retropseudogenes because it only uses annotated genes rather than genomic sequences. A portion of the retrocopies identified by the paralog method were found in the ortholog clusters shared with other species, such as rice. Another possibility is that parental genes with multiple exons do not lose any introns (Figure 4B) or lose only one intron (Figure 4C) in the region corresponding to the retrocopies. RetroScan can solve most of the above problems. Because two alignments are performed, mapping proteins to genome sequences and confirming lost introns, RetroScan guarantees that the results are accurate and reliable.
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FIGURE 3. Comparison of Arabidopsis thaliana retrocopies identified by RetroScan and four other methods.



[image: image]

FIGURE 4. False-positive retrocopies. (A) The sites of lost introns are located in the marginal area of the retrocopies in PlantRGDB. (B) The parental genes identified by Zhang do not lose any introns. (C) The parental genes identified by Abdelsamad lose only one intron.





DISCUSSION

Retrocopies are fragments of genomic sequences which are highly similar to protein coding genes. They were considered as non-functional pseudogenes at some time in the past. Approaches established to identify pseudogenes include PseudoPipe (Zheng and Gerstein, 2006), HAVANA method (Searle et al., 2004), PseudoFinder (Chen et al., 2011), RetroFinder (Zheng et al., 2007), GIS-PET method (Ng et al., 2005), and consensus method (Zheng et al., 2007). These methods were developed by different teams, which mainly use alignment tools such as Blast, Blastz, and Blat to align DNA, protein, cDNA, and mRNA sequences and then accord to homology, intron-exon structure, existence of stop codons or frameshifts and so on to judge whether it is a pseudogene. However, not all retrocopies are pseudogenes, which are formed by retrotransposition and partly play some regulatory or other important roles in genome. Therefore, based on the identification of pseudogenes, researchers have developed new identification methods specifically for retrocopies by exhaustively aligning of genomic sequences against all possible parental genes. But different prediction methods often result in different numbers or sets of retrocopies because each researcher uses different criteria for identification.

Here, we draw up the criteria for judging retrocopies by RetroScan, which is a promising software developed to scan, annotate and display retrocopies. Regarding the coverage, similarity, the number of lost introns and other parameters between the parental genes and retrocopies, users can set according to the species situation. Compared to previous approaches, our new computational analysis tool shows increased accuracy and speed and is more convenient to use, especially when processing species with large-scale genomes. RetroScan is faster than the BLAT method and produces fewer false positives, similar to the paralog method. We used six species data to compare the results of RetroScan and three classic pipelines. Compared the sequence structure of retrocopies with parental genes, we found that RetroScan had the lowest false positives. At the same time, we ensure that the final results have nothing to do with DNA duplication by comparing the results back to the genome and deleting retrocopies with a large number of duplicates. It involves only one step and requires at least two input files (genome sequence file and annotation file). If RNA-Seq data are provided, it can further calculate the expression values of retrocopies. We used multiple sets of model species genomes for testing, and the results proved that RetroScan is effective for the identification of retrocopies. In addition, our study is the first to provide a user-friendly visual interface that displays results, including information on retrocopies, Ka/Ks values, retrocopy structure and expression. Our approach shows great potential for retrocopy identification and will make an important contribution to evolutionary research, providing a powerful tool for promoting research on the duplication of genes and the origination of new genes and new functions.

Unlike RetroScan that identifies retrocopies of a single species, there are studies that focus on the genetic variations between groups. Schrider et al. (2013) describe a computational approach leveraging next-generation sequence data to detect gene copy-number variants caused by retrotransposition (retroCNVs), and find that these variants account for a substantial number of gene copy-number differences between individuals, and that gene retrotransposition may often result in both deleterious and beneficial mutations. Miller et al. (2021) exploit sideRETRO, a pipeline dedicated to detecting retroCNVs in whole-genome sequencing data and revealing their insertion sites, zygosity and genomic context and classifying them as somatic or polymorphic events. These tools focus on identifying the CNVs of retrocopy in the population, while RetroScan contributes greatly to research on retrocopies in individual organisms, which is of great significance for establishing a foundation for the future analysis of retroCNVs between subgroups.

In summary, RetroScan is a comprehensive, efficient and one-step retrocopy identification tool developed for users. We firmly believe that RetroScan will be useful for further comparative and evolutionary studies.
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