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Recent studies have demonstrated structural and functional alterations in Parkinson’s
disease (PD) with mild cognitive impairment (MCI). However, the topological patterns
of functional brain networks in newly diagnosed PD patients with MCI are unclear so
far. In this study, we used functional magnetic resonance imaging (fMRI) and graph
theory approaches to explore the functional brain network in 45 PD patients with MCI
(PD-MCI), 22 PD patients without MCI (PD-nMCI), and 18 healthy controls (HC). We
found that the PD-MCI, PD-nMCI, and HC groups exhibited a small-world architecture
in the functional brain network. However, early-stage PD-MCI patients had decreased
clustering coefficient, increased characteristic path length, and changed nodal centrality
in the default mode network (DMN), control network (CN), somatomotor network (SMN),
and visual network (VN), which might contribute to factors for MCI symptoms in PD
patients. Our results demonstrated that PD-MCI patients were associated with disrupted
topological organization in the functional network, thus providing a topological network
insight into the role of information exchange in the underlying development of MCI
symptoms in PD patients.

Keywords: Parkinson’s disease, mild cognitive impairment, fMRI, graph theory, small world

INTRODUCTION

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases with multiple
movement disorders and non-motor symptoms. Among newly diagnosed PD patients, more than
20% will develop mild cognitive impairment (MCI) after 3–5 years. MCI is considered to be a
high-risk factor for the further development of dementia, which will seriously affect the quality
of patients’ lives (Kehagia et al., 2010). Unfortunately, the neural basis underlying the MCI in PD is
still not well understood.

As one of the most promising neuroimaging methods, magnetic resonance imaging (MRI)
involving voxel-based morphometry (VBM), diffusion tensor imaging (DTI), and functional
magnetic resonance imaging (fMRI) has been widely used to explore the structural and functional
abnormality of the brain in PD patients with MCI (PD-MCI). Evidence from VBM in PD-MCI
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showed structural atrophy in temporal, frontal, hippocampus,
and thalamus regions, compared with PD without MCI (PD-
nMCI) (Beyer et al., 2007; Chen et al., 2016; Gao et al., 2017). In a
DTI study, FA values were found to be significantly decreased in
parts of the corpus callosum in PD-MCI compared with healthy
controls (HC) and no significant difference between patients with
PD-nMCI and PD-MCI (Hattori et al., 2012). Another recent
longitudinal DTI study showed significant mean diffusivity
increase mainly in the frontal regions in the PD-MCI group when
compared with the PD group with normal cognition (Minett
et al., 2018). Moreover, investigators using the amplitude of low-
frequency fluctuations (ALFF) and regional homogeneity (ReHo)
as indicators in resting-state fMRI found PD patients with MCI
had abnormal resting brain activity in the left middle temporal
gyrus, right superior temporal gyrus, left superior frontal gyrus,
right inferior frontal gyrus (Gao et al., 2016; Wang et al.,
2018), left insula, and left precuneus (Li et al., 2020), compared
with PD patients without MCI. The “structural atrophy” and
“functional activity abnormalities” could indicate changes of
neuronal plasticity (or due to synaptic loss), hyperexcitability,
and neuronal circuit changes. The abnormalities in these regions
were hypothesized to be the basis of neuroanatomy and
pathophysiology in PD patients with MCI.

Recently, several studies by using resting-state fMRI found
that functional disconnection could be also associated with
MCI in PD. For example, the default mode network, which
is highly relevant for cognitive processes, was found to have
altered connectivity in PD with MCI (Hou et al., 2016). However,
the other study showed that functional connectivity of the
default mode network was altered in PD patients regardless
of cognitive status, while a functional disconnection in the
frontoparietal network was found to be associated with PD-MCI
without detectable structural changes (Amboni et al., 2015). The
patients “regardless of cognitive status” might indicate general
pathological changes in the brain. MCI-related “topological
changes in newly diagnosed PD” was mentioned but not
directly supported by their results. Furthermore, findings in
dynamic functional connectivity showed dynamic functional
brain deterioration in PD-MCI, which is not present in PD
without MCI (Díez-Cirarda et al., 2018). This evidence suggests
that not only abnormalities in specific, discrete brain regions but
also disruptions in functional connectivity or functional networks
may be involved in the neural mechanisms of PD-MCI.

As an emerging method of network analysis, the graph
theory modeled the brain as a complex functional system with
topological features (such as small-world properties and nodal
centralities), which are disrupted in PD patients. However,
the MCI-related topological changes in the functional network
were rarely explored, especially in the early-stage or newly
diagnosed PD. Given the existence of structural and functional
abnormalities in specific brain regions as well as disruption
of functional connectivity in PD patients, it is plausible that
the abnormalities of whole-brain topological networks in PD
patients with MCI may be observed. Therefore, our study
aimed to use resting-state fMRI data to find the MCI-
related topological changes in newly diagnosed PD patients.
First, we assessed the small-world topology of PD-nMCI,

PD-MCI, and HC. Second, we investigated the topological
parameters of the functional network (clustering coefficient,
characteristic path length, and small-world index). Finally, we
would like to evaluate the regions’ changes from the flow of
information perspective among these three groups by using
nodal centrality.

MATERIALS AND METHODS

Participants
All MRI and experimental data used in this study were
obtained from the Parkinson’s Progression Markers Initiative
(PPMI)1, which is a large-scale, comprehensive observational,
multicenter project of PD progression biomarkers (Marek
et al., 2011). A total of 85 participants were analyzed,
comprising 45 participants in the PD-nMCI group (mean
age = 62.64 ± 9.86, 30 males), 22 in the PD-MCI group
(mean age = 66.09 ± 8.56, 17 males), and 18 age- and sex-
matched HC (mean age = 64.33 ± 9.87, 14 males) (Table 1).
All PD patients were diagnosed according to the criteria of the
United Kingdom Brain Bank (Hughes et al., 1992). The study
was approved by Institutional Review Boards/Independent
Ethics Committees. Written informed consent was obtained
from all subjects. For more details on the study, please see
http://www.ppmi-info.org/wp-content/uploads/2013/02/PPMI-
Protocol-AM5-Final-27Nov2012v6-2.pdf.

MRI Data Acquisition
Imaging data were acquired on Siemens 3T MRI scanners. High-
resolution structural images were acquired using a T1-weighted
gradient-echo 3D MPRAGE sequence (TR = 2,300 ms, TE = 2.98,
FA = 9◦, 1 mm3 isotropic voxel). Resting-state fMRI scans
were acquired with an echo-planar sequence (TR = 2,400 ms,
TE = 25 ms, FA = 80◦, voxel size = 3.3 mm3, total of 210
volumes, 40 axial slices). Subjects were advised to relax quietly
with their eyes open for the resting-state functional scans while
trying not to fall asleep.

Data Preprocessing
The preprocessing workflow was performed using fMRIPrep
1.4.1 (Esteban et al., 2019), which is based on Nipype 1.2.0
(Gorgolewski et al., 2011) (details of the preprocessing process
are provided in the Supplementary Material).

Regions of Interest Parcelation
In the current study, we used the Schaefer parcelation template
(Schaefer et al., 2018) with 100 parcels, each of which is related
with one of the brain networks from the Yeo seven-network
parcelation (Thomas Yeo et al., 2011)–the visual network
(VN), dorsal attention network (DAN), somatomotor network
(SMN), default mode network (DMN), limbic network (LN),
frontoparietal task control network (CN), and ventral attention
network (VAN) (Supplementary Table 2).

1http://www.ppmi-info.org
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TABLE 1 | Demographic and clinical data of the subjects.

PD-nMCI (N = 45) PD-MCI (N = 22) HC (N = 18) Test factor P-value

Age (years) 62.64 ± 9.86 66.09 ± 8.56 64.33 ± 9.87 F = 0.99 0.38

Gender (M/F) 30/15 17/5 14/4 χ2 = 1.23 0.54

Disease duration (years) 2.43 ± 1.22 2.78 ± 1.34 – T = −1.07 0.06

UPDRS-III 20.49 ± 10.11 24.72 ± 12.49 – T = −1.49 0.14

H&Y stage 1.69 ± 0.47 1.86 ± 0.35 – T = −1.55 0.13

MoCa 28.24 ± 1.32 25.00 ± 2.99 27.56 ± 1.50 F = 21.34 <0.001

Education (years) 15.33 ± 2.84 15.86 ± 2.92 16.72 ± 2.67 F = 1.57 0.21

Graph Theory Analysis of the Functional
Brain Network
We transformed the matrix of the inter-regional correlation
coefficient into a binary matrix: if the positive value of the
correlation coefficient was larger than a certain threshold,
there was a relationship (assigned “1”) in the matrix of 100
(occasionally 100 correlation coefficient); otherwise, there was
no relationship (assigned “0”). There is currently no consensus
among researchers on how to choose a fixed threshold. So,
we threshed each matrix of correlation over a wide range
of density (10 to 50% with an increase of 1%), then we
estimated the properties of the resulting graphs at each threshold
value. It can also describe the network with a continuous
weighting between nodes, but this will result in complicated
statistical feature descriptions in the graph theoretical analysis
(He et al., 2007). This research, therefore, used binarized
networks for explanations of statistical characteristics, which are
comparatively simpler.

The coefficient C of the cluster parameter represents the
complexity of network clustering (Watts et al., 1998; Sporns et al.,
2004). The shortest path length indicated the shortest path for
the information from one node to another node in the network.
System resources were saved while information was transmitted
more quickly through the shortest possible path (Latora and
Marchiori, 2001). Small-world networks combine the benefits of
regular networks (with a larger cluster coefficient and a longer
characteristic path length) and random networks (with a smaller
cluster coefficient and a shorter characteristic path length),
which ensure the local and global efficiency of information
transmission (Watts et al., 1998). A small-world index (σ = γ/λ)
was used to measure the “small-world” characteristics of the
network (Achard, 2006; Humphries et al., 2006). The betweenness
centrality from a perspective of information flow describes
the centrality of nodes (Freeman, 1977). We used bi = B(i)/B
to normalize B(i), where B represents the mean betweenness
centrality of all the nodes in the network (Melie-García et al.,
2013). Then, we calculated the area under the curve (AUC) for
each network to seek the group differences of bi, which offers a
more straightforward scalar for brain network topology than the
single threshold selection.

Statistical Analysis
To determine if significant group differences existed in the
parameters of the graph theory (cluster coefficient, characteristic

path length, and nodal centrality), non-parametric permutation
tests were performed between groups. In short, we first calculated
the difference between groups in the average value of each
parameter to test the null hypothesis for each parameter that
the observed group difference could happen by chance. We
then reassigned all the values into two groups randomly and
recomputed the mean differences between the two randomized
groups. This randomization procedure was repeated 10,000
times, resulting in distributions of differences between groups
for each parameter. Finally, we used the 95% points of the
distributions (two-tailed) as the confidence intervals to test the
null hypothesis. If the null hypothesis was rejected (outside
the confidence intervals), the differences of parameters in the
functional brain network were thought to be significant.

RESULTS

The Small-World Topology of Functional
Brain Network in PD-MCI, PD-nMCI, and
HC
The functional brain networks in all the three groups had the
characteristics of “small-world” networks. The small-world index
of these three groups was larger than one (σ > 1) over an entire
range of density thresholds, indicating that even in human brains
afflicted with MCI, a relatively efficient network was needed to
maintain the daily activities (Figure 1C).

PD-MCI Patients versus PD-nMCI
Patients (P < 0.05, Two-Tailed)
Compared with PD-nMCI patients, the PD-MCI patients
showed significantly decreased clustering coefficient Cp (density
thresholds: 10–25%, 27–32%, 36%) (Figure 1A), small-world
index σ (density thresholds: 17 and 18%) (Figure 1C), and
increased characteristic path length Lp (density thresholds: 20–
29%) (Figure 1B). Meanwhile, increased nodal centrality in the
VN, DMN, and CN was observed in the PD-MCI group, while
there was decreased nodal centrality in the SMN (Table 2).

PD-MCI Patients Versus the HC Group
(P < 0.05, Two-Tailed)
Compared with the HC group, PD-MCI patients showed
significantly decreased clustering coefficient Cp (density
thresholds: 11%, 16–18%, 20–21%, 32–41%) (Figure 1A).

Frontiers in Neuroscience | www.frontiersin.org 3 December 2020 | Volume 14 | Article 6168727

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-616872 December 15, 2020 Time: 14:30 # 4

Chen et al. Topological Abnormalities in PD-MCI

FIGURE 1 | Cluster coefficient (Cp), characteristic path length (Lp), and small-world index (σ) in PD-MCI, PD-nMCI, and HC. (A) The Cp from the three groups. The
black triangle means significant differences between PD-nMCI and PD-MCI (density thresholds: 10–25%, 27–32%, 36%, P < 0.05, two-tailed). The black prismatic
means significant differences between HC and PD-MCI (density thresholds: 11%, 16–18%, 20–21%, 32–41%, P < 0.05, two-tailed). (B) The Lp from the three
groups. The black triangle means significant differences between PD-nMCI and PD-MCI (density thresholds: 20–29%, P < 0.05, two-tailed). (C) The σ from the three
groups. The black triangle means significant differences between PD-nMCI and PD-MCI (density thresholds: 17–18%, P < 0.05, two-tailed).

PD-nMCI Patients versus the HC Group
(P < 0.05, Two-Tailed)
There was no significant difference in Cp, Lp, and σ between the
PD-nMCI and HC groups.

DISCUSSION

We employed an fMRI approach to seek the differences among
PD-nMCI, PD-MCI, and HC to evaluate the topological changes
of brain functional networks in early-stage PD patients with
depression. Our results showed that compared with PD-nMCI,
early-stage PD-MCI patients had decreased clustering coefficient,
small-world index, and increased characteristic path length.

TABLE 2 | Nodal centrality differences between groups.

ROI label ROI name ROI network P-value

PD-MCI > PD-
nMCI

3 7Networks_LH_Vis_3 VN 0.037

41 7Networks_LH_Default_Par_2 DMN 0.002

88 7Networks_RH_Cont_PFCmp_1 CN 0.042

PD-nMCI > PD-
MCI

60 7Networks_RH_SomMot_2 SMN 0.027

ROI, region of interest.

Compared with the HC group, the PD-MCI groups showed
a significantly decreased clustering coefficient. There was no
significant difference in Cp, Lp, and σ between the PD-
nMCI and HC groups. Therefore, we used nodal centrality to
further test the hypothesis that small-world topology changes
in PD-MCI patients may be accompanied by information
communication alteration. Then, we found that nodal centrality
was significantly increased in the VN, DMN, and CN, but
significantly decreased in the SMN in PD-MCI compared
with PD-nMCI. Due to the aim of seeking MCI-related
changes in PD patients, we mainly focus on discussing the
differences of topological organization between PD-MCI and
PD-nMCI.

We found that the brain functional network of PD-MCI, PD-
nMCI, and HC had a small-world property, which was consistent
with many studies by using resting-state fMRI data in PD patients
(Luo et al., 2015; Sang et al., 2015; Berman et al., 2016; Fang et al.,
2017; Hou et al., 2020). Especially, in many studies of MCI and
even dementia patients, the functional network still satisfies the
network characteristics of the small world (Liu et al., 2012, 2014;
Bai et al., 2013; Brier et al., 2014). Unlike a random network
or regular network, a small-world network was found to be an
optimized network for information separation and integration
(Bullmore and Sporns, 2009). The brain functional network
of PD-MCI and PD-nMCI patients also showed a small-world
property in the current study, suggesting that even in patients
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with neurological and psychotic disorders (such as Alzheimer’s
disease, PD, and MCI), a relatively efficient network was needed
to maintain the daily activities.

Although the functional brain networks of these three groups
retain small-world characteristics, it is found that the clustering
coefficient and small-world index of the functional network in
PD-MCI patients were significantly lower, and the characteristic
path length was significantly longer than that in the PD-nMCI
group. In a topological network, the clustering coefficient reflects
the local efficiency and fault tolerance (Strogatz, 2001), while
short characteristic path length ensures the prompt transfers
and effective integration for information between distant brain
areas (Sporns and Zwi, 2004). Therefore, the decreased clustering
coefficient and increased characteristic path length of functional
network in PD-MCI patients suggest that in the MCI state of
PD, the local and global information processing efficiency of
the patient’s brain is significantly lower than that of the PD-
nMCI state, and the brain’s fault tolerance rate becomes worse.
In addition, there was no significant difference of topological
network between the PD-nMCI and HC groups. It means that
the brain topology network of early PD-nMCI patients is similar
to that of normal people. When PD patients are accompanied
by MCI, the topology network begins to be damaged, which also
explains the susceptibility of PD-MCI in topological network.

We also used betweenness centrality from a perspective of
information flow to further support the hypothesis that increased
characteristic path length and decreased clustering coefficient
in PD-MCI patients may be accompanied by alterations of
information communication. Our results showed that the regions
with significant increased nodal centrality were located in the
VN, DMN, and CN, while there was decreased centrality in the
SMN. The DMN and CN are two networks closely related to
cognitive processes in many neurologic and psychiatric disorders,
including PD, AD, depression, and autism. In particular, in
studies of PD patients with MCI, one study found significantly
decreased functional connectivity within the DMN in the PD-
MCI group compared with that in the PD-nMCI group (Hou
et al., 2016). However, another study showed that a functional
disconnection of the CN could be associated with MCI in PD,
rather than the DMN (Amboni et al., 2015). Additionally, a
recent fMRI study found no significant differences in nodal
centralities between PD-MCI and PD-nMCI, but a changing
trend in the DMN, CN, and SMN (Hou et al., 2020). These similar
studies show that PD-MCI patients have evidence of cognitive-
related network damage, but the damage pattern still needs more
research to explore. The current study also found abnormalities of
nodal centralities in SMN and VN, suggesting that sensorimotor
and visual-related networks may be accompanied by changes in
the cognitive process of PD. Taken together, we speculate that
changes in nodal centrality in the DMN, CN, SMN, and VN may
be contributing factors for MCI symptoms in PD patients, which
may be an important mechanism for PD-MCI patients.

It is worth mentioning that although our study found that
the PD-MCI group had significant abnormalities in topological
network parameters compared with the PD-nMCI group, there
were relatively few patients scanned by fMRI in the database,
which limited our further research. First, the gender distribution

within the group is uneven, that is, the number of male
patients is more than twice as high as that of female patients.
Since the potential incidence of Parkinson’s disease in men is
approximately twice that of women (Van Den Eeden et al., 2003),
the gender distribution of groups is consistent with the incidence
of Parkinson’s disease in the population, but we cannot further
reduce the impact of gender differences within the group on the
results. Secondly, PD-MCI patients may also be accompanied by
different mental illnesses including depression, anxiety, apathy,
and so on. Because the number of subjects is relatively small, it
is difficult to exclude these confounding factors in our results.
However, our above research results are very similar to previous
studies on PD-MCI. The abnormal network nodes we found are
also located in common cognitive-related networks, such as the
DMN and CN. Therefore, our results based on the current sample
size are interpretable, but whether PD-MCI-related topological
network abnormal patterns are fixed still requires more research,
a larger sample size, and better elimination of various factors for
further exploration.

CONCLUSION

We have investigated the topology of brain functional networks
in early-stage PD patients with MCI using resting-state fMRI
and graph theory analysis. Our result indicated that the brain
of early-stage PD-MCI patients was related to decreased cluster
coefficient, increased characteristic path length, and changed
nodal centrality in the DMN, CN, SMN, and VN, which
also provided a topological network insight into the role of
information exchange in the underlying development of MCI
symptoms in newly diagnosed PD patients.
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Hepatic encephalopathy (HE) is a neurocognitive dysfunction based on metabolic
disorders caused by severe liver disease, which has a high one-year mortality. Mild
hepatic encephalopathy (MHE) has a high risk of converting to overt HE, and thus the
accurate identification of MHE from cirrhosis with no HE (noHE) is of great significance in
reducing mortality. Previously, most studies focused on studying abnormality in the static
brain networks of MHE to find biomarkers. In this study, we aimed to use multi-layer
modular algorithm to study abnormality in dynamic graph properties of brain network
in MHE patients and construct a machine learning model to identify individual MHE
from noHE. Here, a time length of 500-second resting-state functional MRI data were
collected from 41 healthy subjects, 32 noHE patients and 30 MHE patients. Multi-layer
modular algorithm was performed on dynamic brain functional connectivity graph. The
connection-stability score was used to characterize the loyalty in each brain network
module. Nodal flexibility, cohesion and disjointness were calculated to describe how
the node changes the network affiliation across time. Results show that significant
differences between MHE and noHE were found merely in nodal disjointness in higher
cognitive network modules (ventral attention, fronto-parietal, default mode networks)
and these abnormalities were associated with the decline in patients’ attention and
visual memory function evaluated by Digit Symbol Test. Finally, feature extraction from
node disjointness with the support vector machine classifier showed an accuracy of
88.71% in discrimination of MHE from noHE, which was verified by different window
sizes, modular partition parameters and machine learning parameters. All these results
show that abnormal nodal disjointness in higher cognitive networks during brain network
evolution can be seemed as a biomarker for identification of MHE, which help us
understand the disease mechanism of MHE at a fine scale.

Keywords: mild hepatic encephalopathy, dynamic graph properties, multi-layer modular algorithm, disjointness,
machine learning, individual discrimination, functional MRI, brain network evolution

Abbreviations: Cerebelum_Crus1_R, right cerebellum crus 1 region; Cingulum_Mid_L/R, left or right middle cingulum
region; Cuneus_L, left cuneus region; Frontal_Inf_Tri_L, left inferior triangle frontal region; Frontal_Mid_Orb_L/R, left
or right orbital middle frontal region; Frontal_Sup_L/R, left or right superior frontal region; Frontal_Sup_Medial_L, left
superior medial frontal region; Frontal_Sup_Medial_L/R, left or right superior medial frontal region; Insula_R, right insular
region; Lingual_L/R, left or right lingual region; Occipital_Inf_R, right inferior occipital region; Parietal_Inf_R, right
inferior parietal region; Precentral_L, left precentral gyrus; Precuneus_L/R:left or right precuneus; Supp_Motor_Area_L,
left supplemental motor area; Temporal_Mid_R, right middle temporal region.
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INTRODUCTION

Hepatic encephalopathy (HE) is a syndrome of central nervous
system dysfunction based on metabolic disorders caused by
severe liver disease (Agrawal et al., 2015; Zhang et al., 2017b).
Mild hepatic encephalopathy (MHE), as a mildest form of HE
spectrum, has no recognizable clinical symptoms of HE, but is
characterized by subtle neurocognitive and psychomotor deficits,
such as psychomotor slowing, shortened attention concentration,
dysfunctional executive abilities, and memory loss (Agrawal
et al., 2015). MHE impairs individual’s daily functioning, driving
performance, work performance and learning ability (Agrawal
et al., 2015). MHE has a probability of 40% converting to
overt HE within six months if not treated promptly, and once
converted, patients will have increased falls, short survival and
high mortality (Campagna et al., 2014; Zhang et al., 2018b).
Early diagnosis and effective treatment are essential to reduce
conversion to overt HE and to improve patients’ quality of life.
Currently, it is difficult to clinically diagnose MHE patients from
cirrhotic patients with no HE (noHE). Therefore, it is of great
significance to understand the dysfunction mechanism of MHE
and to explore the biomarkers for precisely clinical diagnosis.

In the past years, resting state-functional magnetic resonance
imaging (RS-fMRI) characterized by non-invasiveness, high
sensitivity, ultra-fast imaging and no requirement of engaging
in a task, has attracted more and more attention in the study
of hepatic encephalopathy (Zhang et al., 2014a, 2017a). It
measures the relative changes of blood oxygen level dependent
(BOLD) signals as a representation of spontaneous neural
activities in the human brain. A number of studies have
explored changes in brain functional network that are related
to cognitive function in patients with MHE. Zhang et al.
(2014b) used graph theory analysis and found that changes
in small-world property in patients with MHE were related
to their cognitive impairment. Qi et al. (2012) used the
independent component analysis (ICA) to evaluate the difference
of resting state networks between MHE patients and healthy
controls (HCs), revealing that MHE patients showed significantly
decreased functional connectivity in dorsal attention network
(DAN), both decreased and increased functional connectivity
in default mode network (DMN), auditory network (AN)
and visual network (VN). No significant differences were
found in self-referential network (SFN) and sensorimotor
network (SMN) between MHE and HCs. Regional homogeneity
(ReHo) analysis of resting state brain activity showed that
compared with the noHE patients, the MHE patients show
decreased ReHo value in the bilateral parietal lobes including
the precuneus, supplementary motor area, frontal lobes and
occipital lobes including the cuneus. With whole-brain functional
connectivity analysis, a study (Zhang et al., 2012) concluded
that compared with HCs, MHE patients presented widespread
cortical and subcortical functional connectivity alterations that
were correlated with neuropsychologic impairment. Particularly,
impairment in the basal ganglia-thalamocortical circuit may
play a key role in mediating neurocognitive dysfunction,
especially the psychomotor speed and attention deficits in MHE
patients. These studies indicate that changes in resting state

functional connectivity can reflect abnormal cognitive function
in MHE patients. Some other studies combined the resting
state brain activity or functional connectivity features with
machine learning method (i.e. support vector machine, linear
discriminant analysis) to investigate the early identification of
MHE (Chen et al., 2014, 2016a,b; Jiao et al., 2017). However,
the discrimination accuracy is not satisfying to meet the clinical
demands. Moreover, these previous studies assumed the brain
as a static functional connectivity pattern during the whole
resting state scan (at least 5 min) and ignore the fact that
the human brain is obviously a dynamically interactive system,
and even at the relatively sluggish temporal resolution of fMRI
(Cai et al., 2019).

Recently, dynamic functional connectivity analysis has drawn
more and more attention in studies of brain disease (Hutchison
et al., 2013; Calhoun et al., 2014; Kucyi and Davis, 2015),
which can capture transient functional connectivity changes
and describe dysfunction of MHE at a fine scale. For example,
abnormality in dynamic brain function has been observed in
autism spectrum disorder (Harlalka et al., 2019), and epilepsy
(Tailby et al., 2018). Dynamic graph analysis is a promising
avenue to quantitatively characterize the time evolving brain
dynamics at a system level. It assumes the whole brain functional
connectivity as a graph, there is a modular structure in the brain
network graph (Rubinov and Sporns, 2010) and the modular
structure evolves dynamically across time. It was reported that
the modularity of dynamic functional connectivity networks can
change on a very short time scale, and thus this approach may be
able to track transient changes in functional connections between
brain regions (Betzel et al., 2016). Bassett et al. (2011) and Cole
et al. (2013) used multi-layer modular analysis on the dynamic
graph structure of the brain imaging data and found that the
modular structure in the dynamic network was able to represent
the cognitive function. Therefore, we believe that dynamic graph
analysis will give us a deeper insights into the abnormal cognitive
function of MHE.

In this study, we intended to use a multi-layer modular
analysis method to detect the changes of dynamic graph
properties of brain network in patients with MHE, investigate
the clinical correlation of these properties and further construct
a machine learning model based on the selected network
properties to identify MHE from noHE at the individual level.
We hypothesized that dynamic brain connectivity analysis
can reveal the complex, adaptive, cognitive dysfunction
underlying MHE and the temporal variation of the brain
network metrics could provide rich diagnostic information to
discriminate MHE from noHE.

MATERIALS AND METHODS

Participants
A total of 103 participants was used in this study, including 30
MHE patients, 32 noHE patients and 41 HCs, see Table 1. HC
group was added to study dysfunction mechanism as a contrast.
The machine learning model was performed on the patient
groups because the discrimination of cirrhosis with MHE from
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TABLE 1 | Demographic, neuropsychological and clinical data.

Protocols HC (n = 41) noHE (n = 32) MHE (n = 30) p-value χ2/F/T value

Sex (M/F) 28/13 18/14 21/9 0.449a 1.603a

Age (years) 50.1 ± 7.3 47.9 ± 8.2 50.9 ± 6.3 0.153b 1.917b

Education (years) 13.0 ± 2.6 12.3 ± 3.5 12.3 ± 3.0 0.499b 0.699b

NCT-A (seconds) 41.6 ± 3.2 43.1 ± 12.7 78.9 ± 14.6 <0.001b 93.427b

– – – <0.001c1 10.306c1

– – – <0.001c2 12.011c2

– – – 0.599c3 0.528c3

DST (score) 47.9 ± 10.2 43.1 ± 9.5 30.1 ± 11.7 <0.001b 25.920b

<0.001c1
−4.792c1

– – – <0.001c2
−6.685c2

– – – 0.043c3
−2.071c3

Prothrombin time (seconds) – 16.8 ± 6.0 18.8 ± 5.2 0.105c1 1.353c1

Albumin (mg/dl) – 32.0 ± 5.8 30.0 ± 5.9 0.565c1
−1.355c1

Total bilirubin (mg/dl) – 96.1 ± 139.3 106.4 ± 170 0.737c1 0.268c1

Blood ammonia (µmol/L) – 55.1 ± 21.3 72.6 ± 31.5 0.009c1 2.543c1

Child-Pugh A/B/C – 5/15/11* 1/7/22 – –

Data are presented as mean ± standard deviation. *: One person lacked information.
a: Pearson χ2 test of three groups (two-tailed), b: One-way analysis of variance test among three groups (two-tailed), c1: Two-sample t test between MHE and noHE
groups (two-tailed), c2: Two-sample t test between MHE and HC groups (two-tailed), c3: Two-sample t test between noHE and HC groups (two-tailed). DST, digit-symbol
test; HC, healthy control; MHE, mild hepatic encephalopathy; NCT-A, number connection test of type A; noHE, cirrhotic patients without clinical hepatic encephalopathy.

that with no HE is the main concern of clinical doctors. This
study was approved by the Medical Research Ethics Committee
of Tianjin First Central Hospital. Written informed consent was
obtained from each subject prior to participation in this study.

Before functional magnetic resonance imaging (fMRI)
scanning, patients with cirrhosis were tested for blood ammonia,
prothrombin time, total bilirubin, and albumin biochemical
parameters to assess liver function (Table 1). Functional status
of cirrhosis was assessed by child-pugh score (Pugh et al., 1973).
The HC group had no liver or other systemic problems, no
history of psychosis or neuropathy.

As recommended by previous studies (Weissenborn et al.,
2001; Li et al., 2013), neuropsychological tests including Number
Connectivity Test A (NCT-A) and Digit Symbol Test (DST)
were performed on all subjects to diagnose MHE by clinic. To
be specific, linear regression models of NCT-A and DST were
estimated with regressors of age and education in the HC group,
and then the model was used to predict scores of NCT-A and
DST for subjects in patient groups. The difference between the
predicted value and the true value was calculated, and the patient
with either DST or NCT-A difference greater than 2 standard
deviation was determined as MHE.

In addition, some patients used antibiotics if they have
infections, such as spontaneous bacterial peritonitis, and
pulmonary infection. Lactulose was used in 19 patients to
improve feces excretion function, and they took 5–10 g
lactulose three times a day. Patients were excluded if they took
psychotropic medications, suffered from uncontrolled endocrine
disorders, had other neuropsychiatric disorders or metabolic
diseases, had alcohol abuse within 6 months prior to the study,
or had large head motions during scanning. In the end, the
aforementioned 103 participants were remained.

Overview of Methodology
An overview of the framework is summarized in Figure 1.
First, resting-state fMRI data were preprocessed. Second, the
nodal time series were extracted using a sliding time window
to calculate the dynamic functional connection graph. Third,
the dynamic functional connection matrix is constructed with
Pearson correlation and these matrix can be seemed as a dynamic
graph. Fourth, the multi-layer modularization algorithm is used
to determine the temporal module structure in the dynamic
graph. Fifth, several dynamic graph properties describing brain
connection stability and node changes of module affiliation
during brain network evolution over time were calculated. Sixth,
inter-group difference of these metrics and their correlations with
the neuropsychological and clinical test scores were performed
at two levels of local network and individual node. Finally,
the metrics with largest inter-group differences were selected
as features to identify individual MHE from noHE by machine
learning, and discriminant analysis were used to explore the
contribution of each feature.

MRI Scanning Parameters
The MRI data were collected using a Siemens 3.0T (TIM-
Trio, Siemens Medical Solutions, Erlangen, Germany) MRI
scanner with a 32-channel head coil. Foam padding was used
to reduce head motion. The scan sequences of each subject
included conventional T2WI, 3D-T1WI and resting-state fMRI.
Two-dimensional T2-weighted turbo spin echo (TSE) and T1-
weighted MPRAGE sequences were used to detect brain lesions.
Gradient echo plane imaging (EPI) sequence was used to obtain
BOLD image with the following parameters: measurement= 200,
echo time (TE) = 30ms, repeat time (TR) = 2500 ms, flip
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FIGURE 1 | An overview of data analysis pipeline. À. fMRI data preprocessing; Á. Extracting regional time series based on Power’s 264 atlas; Â. Sliding-window
based dynamic functional connectivity matrix calculation; Ã. Multi-layer modular structure calculation from the dynamic brain connectivity matrix; Ä. Extraction of
dynamic network properties; Å. Group difference of dynamic network properties and their correlations with clinical cognitive test scores; Æ. Construction of
identification model based on dynamical network properties for individual MHE discrimination.

angle (FA) = 90◦, field of view (FOV) = 220 mm × 220 mm,
matrix = 96 × 96, slice thickness = 3 mm, slice gap = 0.3 mm,
and number of slices = 40. The total scan time of resting-state

data was 500 s. The subjects were asked to close their eyes, relax
physically and mentally, stay awake, keep their heads and bodies
still, and try not to think about anything.
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Data Preprocessing
The fMRI images were preprocessed using MATLAB 2013a
(MathWorks, Natick, MA, United States) with the GRETNA
software package1. The first 10 time points were removed to
equalize the magnetization and to allow subjects to adapt to
the scanning environment. Time slice correction and head
motion correction were performed for the remaining 190 time
points. We also calculate the frame-wise displacement (FD),
which represents the volume changes of the head position.
Subjects were removed with mean FD > 0.2 mm, maximum
translation > 2 mm, maximum rotation > 2 degree (Greve and
Fischl, 2009). The images were then normalized, including co-
registered, segmented, normalized to EPI Spaces and resampled
to 3 × 3 × 3 mm3, After spatial smoothing of the image
with a full width at half maxima (FWHM) kernel of 8 mm,
linear trend of BOLD signal was removed and covariates such
as white matter signal, cerebrospinal fluid signal (CSF) and 24
head motion parameters were regressed to reduce the influence
of other factors. According to previous studies, global signal
regression (GSR) has been shown to cause a possible inverse
correlation effect in resting brain networks, so GSR is not used in
image preprocessing (Murphy et al., 2009; Weissenbacher et al.,
2009; Saad et al., 2012). Finally, the regression time series was
temporal filtered (0.01–0.1Hz) (Liu and Duyn, 2013).

Dynamic Function Network Construction
We used a whole brain template to define the brain as 264
nodes (Power et al., 2011). The 14 functional networks were
partitioned based on 264 nodes for subsequent network analysis
(Power et al., 2013). The mapping between names of the
network and their abbreviations, member nodes are provided
in Table 2. The Pearson correlation was applied to obtain the
whole brain functional connectivity matrix. Then, to track the
dynamic changes in the brain over a short period of time,
we used a sliding window length of 45TR (112.5s), which
has been proved to achieve better identification performance
around 110s based on a previous study (Liu et al., 2017),
and the window moves with a step size of 1TR (2.5s). The
remaining 190 time points were divided into 146 time windows
(1-45, 2-46, 3-47..., 146-190). A Fisher Z-Transformation was
performed on the connection matrix within each window of
the subject for subsequent analysis. Therefore, the dynamic
functional connectivity matrix was obtained and it can be viewed
as a dynamic graph.

Multi-Layer Modular Algorithm
A multi-layer modular algorithm was used to determine the
modular structure in the dynamic functional connection matrix.

In order to quantify the temporal and spatial interactions
of brain nodes, we used an iterative and orderly Louvain
algorithm to track the changes of community partition over time.
Compared with the Louvain algorithm, the multi-layer modular
algorithm adds one parameter called omega, which is used to
control the strength of the coupling between time layers. The
optimization goal is to maximize the modularity (Q) of the
brain network. That is to maximize intra-modular connectivity

1https://www.nitrc.org/projects/gretna/

and minimize inter-modular connectivity, so as to find a stable
modular structure (Newman, 2004). The calculation method of
multi-layer modularization is as follows:
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1
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∑
ijsr

[(
Aijs − γs

kiskjs

2ms

)
δ (s, r)+ δ

(
i, j
)
· ωjrs

]
δ
(
Mis, Mjr

)
(1)

m =
1
2

∑
ij

Aij (2)

µ =
1
2

∑
jr

kjr (3)

where Aijs is the correlation between nodes i and j under the
sliding window of time point s, kis is the degree of node i under
time point s and kiskjs

/
2ms represents the Newman-Girvan

null model of intra-network connections. γs is the topological
resolution parameter under a time point s or layer s. ωjrs is the
time-coupling parameter between node j in the time window r
and node j in the time window s. For δ

(
Mis, Mjr

)
, if node i and j

belong to the same module, it is 1; otherwise, it is 0. For δ (s, r),
if s = r, it is 1; otherwise, it is 0. For δ

(
i, j
)
, if i = j, it is 1;

otherwise, it is 0.
In our study, we used Genlouvain Matlab toolbox (Jutla et al.,

2011–2019) to calculate the modular structure of the brain. And
the default value 1.0 was chosen as the gamma and omega values.
Due to the variability in optimizing the partition, we repeated the
algorithm 100 times.

Connection-Stability Matrix
In order to study the characteristics of nodal connection that
are more stable in dynamic brain interaction, we calculated
the connection-stability scores between nodes by dividing the
module results. The connection-stability score was calculated
as the proportion of time windows in which a given node
pair is assigned into the same module, with nodal network
membership defined on the basis of multi-layer modular
algorithm (gamma = 1.0 and omega = 1.0). If two nodes were
assigned to the same module in a time window, the connection-
stability score is 1, else it is set 0. A higher value indicates that two
nodes were relatively stable participating in the same community.
The output is G = N × N matrix, where each element (m, n)
is connection-stability scores between node m and node n. To
avoid the chance of a result, the final result of each metric was
the average of 100 runs.

Dynamic Nodal Metrics Extracted From Modular
Structure
From modular partition result, we extracted three dynamic
metrics to describe the nodal properties, namely nodal flexibility,
cohesion, disjointness. These metrics measured the dynamic
reconfiguration that occurs in the brain over time, and a higher
dynamic metrics would imply a hypervariable connection. To
avoid the chance of a result, the final result of each metric was
the average of 100 runs.
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TABLE 2 | The mapping between network names, their abbreviations and member nodes.

Networkindex Network name abbreviation member node

1 Uncertain Uncertain 1-12,84-85,132,140-142,182-185,247-250,253-254

2 Sensory_Somatomotor_Hand SSHN 13-41,255

3 Sensory_Somatomotor_Mouth SSMN 42-46

4 Cingulo-opercular_Task_Control CON 47-60

5 Auditory AN 61-73

6 Default_mode DMN 74-83,86-131,137,139

7 Memory_retrieval MRN 133-136,221

8 Ventral_attention VAN 138,235-242

9 Visual VN 143-173

10 Fronto-parietal_Task_Control FPN 174-181,186-202

11 Salience SN 203-220

12 Subcortical Subcortical 222-234

13 Cerebellar Cerebellar 243-246

14 Dorsal_attention DAN 251-252,256-264

FIGURE 2 | The connection stability profile of the brain network across time in MHE, noHE and HC groups. (A) The distribution of 14 brain networks in the 264-node
brain template; (B) The connection-stability matrix distributed in the 14 networks in MHE, noHE and HC groups. MHE, minimal hepatic encephalopathy; noHE,
non-hepatic encephalopathy; HC, health control.

(1) Flexibility
Node flexibility is defined as the ratio of the number
of times a node changes communities to the number of
possible times a node changes communities. It’s a number
between 0 and 1 where 1 means that the node is most
flexible over time.

fi = 1−
1

T − 1

T−1∑
s=1

δ
(
Gi,s, Gi,s+1

)
(4)

For δ
(
Gi,s, Gi,s+1

)
, if node i and j belong to the same

module, it is 1; otherwise, it is 0. T is the total number
of time windows.

(2) Cohesion
Although node flexibility determines how often the node
changes the community, it does not describe how the
node changes the community. Node cohesion describes
how often one node changes a community with another
(Telesford et al., 2017). A high cohesion value indicates that
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the node typically changes the community along with other
nodes. A low cohesion value indicates that the node rarely
changes the community with other nodes.

(3) Disjointness
Node disjointness is defined as the ratio of the number
of times a node can change a community independently
to the number of times a node can change a community
(Telesford et al., 2017). It quantify the percentage of times
a node changes its community independently. The global
disjointness for each subject was calculated as the mean
disjointness values of all nodes of each subject.

Group Differences in Dynamic Graph
Metrics
We used Kruskal-Wallis nonparametric one-way analysis of
variance (ANOVA) to analyze differences among three groups
(MHE, noHE, and HCs) in dynamic indicators and connection-
stability. The analyses were performed at two levels of brain
network and brain region nodes. If there was a statistical
difference, a post hoc test were performed to detect the inter-
group difference. Significant group differences were tested at
p < 0.05 after corrections for multiple comparisons.

Correlation With Neuropsychological
Scores
We used partial correlation analysis to examine the relationship
between dynamic metrics, connection-stability of each patient
and the neuropsychological scores, meanwhile the age, gender,
educational level, and head motion parameters were all used as
covariates to avoid their influences. Multi-level correlations have
been performed, from the network-level and individual node-
level. At the network level, the 264 nodes were divided into 14
brain networks (Power et al., 2013).

Discrimination of Individual MHE From
noHE
In this study, F-score was used as feature selection method to
measure the ability of the dynamic graph metrics (Chen and Lin,
2006). The F score of the ith feature is defined as follows:
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i − x̄i

)2
+

(
x̄(−)

i − x̄i

)2

1
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i

)2
+

1
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(
x(−)

k,i − x̄(−)
i

)2

(5)
Where the x is the average values of all the sample, while xi

(+)

and xi
(−) represent the mean values of all the positive and

negative samples, respectively. k represents each instance of the
specific ith feature. F(i) calculated the difference of ith feature
between the two groups. The larger the F-score, the stronger
the discrimination of this feature. We ranked all the features
according to the F-score, and selected the top k largest features for
the following classification analysis. The k was determined based
on the average classification performance of all loops. Finally, 23
features were selected in this study.

Support vector machine (SVM)2 was applied to classify
individual patient with MHE from the noHE using the extracted
features because SVM is especially suitable for fMRI data
with small samples and a high dimension. A leave-one-out
cross-validation(LOOCV) method was used to estimate the
classification performance due to its small-sample friendly nature
(Pereira et al., 2009).

To assess the performance of our method, we calculated
classification accuracy, sensitivity, and specificity, respectively.
Sensitivity measures the proportion of positives that are correctly
identified as such. Specificity measures the proportion of
negatives that are correctly identified as such. In addition,
the receiver operating characteristic (ROC) analysis was used
to evaluate the performance of the classifier. The larger area
under ROC curve (AUC) indicates a better discriminant power
(Fawcett, 2006). We used 1000 permutation tests to determine
whether the accuracy of the results were higher than the
chance level. Because the LOOCV approach makes the feature
selection of the sample subset in each fold slightly different,
the discriminant features were defined as the top 23 frequently
occurred features in all folds.

Validation
To validate the robustness of our findings, we also repeated
the analysis using multiple parameters. As for the analysis
results of correlation and group difference, we mainly verify
the robustness of the results under different time windows
and different modularization algorithm parameters. For the
time window size, a window length of 40TR (100 s), 50TR
(125 s) and 55TR (137.5 s) were considered. For multilayer
modular parameters, values near gamma = 1.0 and omega = 1.0
were analyzed repeatedly. As for the classification results, the
comparisons of feature selection method and classifier kernel
function were performed. We used the commonly used relief
method (Kira and Rendell, 1992) and the linear kernel SVM
classifier as a comparison.

RESULTS

The results reported in the group comparison and correlation
section are based on the parameters (gamma= 1.0; omega= 1.0;
window size = 45TR) that can obtain the best identification
accuracy. Results based on different parameters for validation
were reported in the classification section.

Effect of Disease on Network
Connection-Stability Matrix
The connection-stability matrix over time for MHE, noHE and
HC was shown in Figure 2. Before comparison, the connection
stability values were averaged in each network module. One-
way ANOVA results indicated that average connection-stability
score in sensory/somatomotor mouth network (SSMN), default
mode network (DMN), cingulo-opercular task control network
(CON), and frontro-parietal task control network (FPN) showed

2http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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significant differences among the three groups, but only FPN
survived false discovery rate (FDR) correction. Post hoc analyses
were performed to detect the inter-group difference. Results
showed that the average connection-stability scores of MHE
patients were significantly lower than that of HC in CON
and FPN, and marginally significant (adjusted p = 0.054)
in DMN after FDR correction, but no significant differences
were observed between other groups. The p-value in each
comparison and significances after FDR correction were all listed
in Table 3.

Correlation Results Between Network
Connection-Stability and Clinical Scores
We also calculated the correlation between the average network
connection-stability score and the clinical scores in all cirrhotic
patients. The results showed a significant positive correlation
between DST and network connection-stability scores in
DMN, visual network (VN), FPN, salience network (SN), and
subcortical network (Table 4). All the results were reported at
p < 0.05 after corrections for multiple comparisons.

Effect of Disease on Dynamic Nodal
Metrics
The results showed that the node disjointness score of MHE
patients was significantly higher than that of noHE patients

at some specific brain regions, which mainly fell in Frontal_
Sup_Medial_L/R, Frontal_Mid_Orb_R, Frontal_Sup_L/R
and Cingulum_Mid_L (Figure 3A). MHE patients were
significantly lower than noHE patients only in the area of
the Temporal_Mid_R. It can be seen that compared with
noHE patients, MHE patients have more frequent single-node
switching rate in regions in DMN and FPN and less frequent
single-node switching rate in region of VAN.

In order to better understand the pathogenesis, we also
conducted a control analysis between MHE patients and
the HC group. The results showed a significant difference
in Frontal_Inf_Tri_L, Frontal_Sup_Medial_L, Parietal_Inf_R,
Cuneus_L, Frontal_Sup_R, Precuneus_R areas (Figure 3B).
It can be seen that MHE patients had a higher single-
node switching rate than HC in most regions, except in
the Frontal_Inf_Tri_L region. The difference regions were
located in DMN, FPN, ventral attention network (VAN), VN
and SSHN.

Meanwhile, the noHE patients and the HC group were
compared. The disjointness of noHE patients was significantly
higher than HC in Insula_R, Precuneus_L, Frontal_Mid_L, but
lower in Frontal_Mid_R (Figure 3C). The difference nodes
mainly fell into DMN, FPN, SN and sensory/somatomotor
hand network (SSHN).

In addition, we analyzed the effect of disease on flexibility
and cohesion metrics, but no significant group difference

TABLE 3 | The differences in average network connection-stability scores among MHE, noHE and HC groups.

Network p value (ANOVA) p value (MHE vs. HC) Median MHE Median noHE Median HC

Uncertain 0.941 – 0.260 0.259 0.268

SSHN 0.231 – 0.367 0.382 0.406

SSMN 0.042 0.039 0.488 0.492 0.565

CON 0.022 0.006* 0.333 0.358 0.389

AN 0.32 – 0.349 0.345 0.366

DMN 0.031 0.018 0.307 0.351 0.356

MRN 0.26 – 0.455 0.517 0.502

VAN 0.392 – 0.324 0.333 0.317

VN 0.251 – 0.373 0.465 0.467

FPN 0.001* <0.001* 0.308 0.331 0.389

SAN 0.054 – 0.287 0.355 0.347

Subcortical 0.772 – 0.330 0.324 0.323

Cerebellar 0.45 – 0.493 0.478 0.518

DAN 0.523 – 0.381 0.402 0.365

Results with p < 0.05 are bold in the table. * indicates that p < 0.05 after FDR corrections for multiple comparisons.

TABLE 4 | Networks showing significant correlation of connection-stability with clinical test scores.

Network Blood ammonia[r] Blood ammonia[p] NCT[r] NCT[p] DST[r] DST[p]

DMN −0.12 0.37 −0.217 0.102 0.35 0.007*

VN −0.202 0.128 −0.132 0.324 0.376 0.004*

FPN 0.004 0.979 −0.278 0.035 0.338 0.009*

SN −0.147 0.272 −0.212 0.111 0.525 <0.001*

Subcortical −0.053 0.69 −0.106 0.43 0.361 0.005*

Results with p < 0.05 are bold in the table. * indicates that p-value survived FDR correction.
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FIGURE 3 | The differences in node disjointness during brain network evolution among the three groups by one-way analysis of variance (ANOVA). (A–C) The
difference regions of the brain networks and the corresponding spatial locations in post hoc comparison of MHE with noHE, MHE with HC and noHE with HC. MHE,
minimal hepatic encephalopathy; noHE, non-hepatic encephalopathy; HC, health control.

was found at p < 0.05 after corrections for multiple
comparisons.

Correlation Results Between Dynamic
Nodal Metrics and Clinical Scores
At the network level, we observed a significant negative
correlation between disjointness and DST score in DMN and
SN (p < 0.05, r > −0.4) (Figure 4). We didn’t find correlation
between cohesion or flexibility and all the clinical testing scores.

At the node level, there are much more nodes showing
correlation between disjointness and scores. These nodes are
listed in Supplementary Table 1. Some correlative nodes were
also found between cohesion or flexibility and clinical scores,
but it should be noticed that these nodes were mostly similar.
This suggests that the community flexibility is most likely caused
by nodes partition change in pairs. The higher correlation
in the disjointness metrics also indicates that community
switching of nodes in the disease population were more likely
changed individually.
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FIGURE 4 | Networks showing significant correlation of disjointness metric with DST score in DMN (A) and SN (B). DMN, default model network; SN, salience
network; DST, digit symbol test; MHE, minimal hepatic encephalopathy.

Validation analysis to check for robustness of correlation
results with different modularity parameters or different window
parameters are provided in the Supplementary Information
(Supplementary Tables 1–6).

Classification Results of MHE From
noHE
Considering node disjointness is the unique metric that can
reveal difference between MHE and noHE among the three
dynamic network properties, and it also shows correlation with
neuropsychological scores in patient groups, we take this metric
as discriminant features for identification MHE from noHE.
The accuracy, sensitivity and specificity of SVM classifier with
radial basis function (RBF) kernel were 88.71, 92.31, and 83.33%,
respectively. The permutation tests reveal a significance level of
p < 0.001 for accuracy, which suggests that the identification
accuracy was significantly higher than chance level, indicating the
effectiveness of the identification model.

The classification results of MHE from noHE based on
difference window size are shown in Table 5. All results achieved
a cross-validated classification accuracy above 83.87%, indicating
the robustness of the selected window length. On the other hand,
we obtained optimal window length of 45TR (112.5 s), basically
consistent with the result that the optimal classification accuracy
was obtained around the window length of 110s (Liu et al., 2017).

Figure 5 displays the classification accuracies based on
different feature selection method, SVM kernel function and
module partition parameters. For a fixed value of gamma
(gamma = 1.0), we found a stable accuracy above 80% in

omega value range between 0.6 and 1.4. When performing
analysis in other topological scales (gamma = 0.8, gamma = 0.9,
gamma = 1.1 with omega = 1.0), we observed a slightly
accuracy decrease. We also paid attention to the impact of
feature selection on classification accuracy. The commonly used
feature selection method “relief” was used as a comparison,
the results show almost no difference in classification accuracy.
Altogether, the best accuracy is obtained at 88.71% with
parameters of gamma = 1.0, omega = 1.0, F-score method and
RBF kernel in SVM.

The ROC curve using each subject’s classification score as a
threshold are shown in Figure 6A. The area under the ROC curve
(AUC) of the proposed method was 0.921, indicating an excellent
discriminative power.

Because we used LOOCV strategy to train the model,
features are different in different loops. The frequently occurred
discriminative feature nodes in all loops were displayed in
Figures 6B–D, which included Occipital_Inf_R, Precuneus_R,
Cingulum_Mid_L, Frontal_Sup_L/R, Lingual_L/R, Frontal_
Sup_Medial_L/R, Cuneus_L, Frontal_Mid_Orb_R, Precentral_L,
Insula_R, Temporal_Mid_R, Putamen, Supp_Motor_Area_L,
Cerebelum_Crus1_R.

DISCUSSION

Cognitive decline in cirrhotic patient with occurrence of MHE
has been largely acknowledged (Damulin, 2018), but the current
clinical diagnosis based on neuropsychological cognitive tests
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TABLE 5 | The classification results with different window length.

Windowlength (40TR) Window length (45TR) Window length (50TR) Window length (55TR)

ACC 85.48% 88.71% 85.48% 83.87%

SEN 92% 92.31% 88.89% 85.71%

SPE 81.08% 83.33% 84.38% 82.35%

FIGURE 5 | The classification results based on different module partition parameters (gamma, omega), feature selection methods (Fscore and Relief), and kernel
functions of classifier (RBF kernel and linear kernel), where omega is spatial resolution parameter, and gamma is temporal resolution parameter in multi-layer
community structure calculation. Values of gamma and omega = 0810 mean gamma = 0.8, omega = 1.0. RBF = radial basis function.

is easily mixed by sex, age and education level. In this study,
we aimed to investigate the biomark of MHE based on brain
imaging data. From a view of dynamic brain graph analysis,
we took the whole brain functional connectivity matrix as a
graph and applied multi-layer modular algorithm to analyze
the dynamic reorganization of the modules in brain graph of
MHE patients. Connection-stability profile and nodal affiliation
changes were used to describe the dynamic graph properties
of the brain network. By comparing these metrics among
groups, we found that in the connection-stability matrix,
MHE and HC showed significant differences within specific
networks, but there was no statistical significance between other
groups at network level. In terms of nodal dynamic metrics,
MHE and noHE showed significant differences merely in node

disjointness. Further, we observed node disjointness in patient
groups were correlated with neuropsychological scales. In order
to test the discriminative power in identification MHE from
noHE, we used SVM to classify the two groups based on
node disjointness metric. Consistent discriminant nodes were
identified contributing to a better explanation of dysfunctional
mechanisms. The high classification accuracy of 88.71% also
suggest the effectiveness of the dynamic brain functional metric
in identification of individual MHE.

In our study, the connection-stability matrix quantifies the
relative stability of node pairs in a dynamic process. A higher
value means less flexibility of the node pairs. From the matrix
profile of the three groups, it can be seen that the obtained
connection-stability matrix in healthy control group showed
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FIGURE 6 | Evaluation of individual MHE discrimination classifier. (A) ROC curve of the classifier. (B–D) The consistent discriminant nodes in SVM classification
showing in sagittal (B), axial (C) and coronal planes (D). MHE, minimal hepatic encephalopathy. ROC, receiver operating characteristic; AUC, = area under ROC
curve.

obvious modularity, which was similar to Power’s 14 functional
network partition results (Power et al., 2013). This suggests
that the modular partition results in the present study are
confidential and are consistent with brain functional network
organization patterns. Compared with healthy control group,
the average connection stability within SSMN, CON, DMN, and
FPN were significantly reduced in MHE patients (Table 3). This
is consistent with previous studies reporting that the abnormal
network strength in these networks (Chen et al., 2014; Jao et al.,
2015; Cheng et al., 2018). Because the SSMN is important for
motor control function (Matyas et al., 2010), the CON, DMN
and FPN are responsible for execute control function, attention,
and working memory that are important in daily activities (Fox
et al., 2005; Matyas et al., 2010), the abnormal connection stability
with these networks may explain the impairs in daily functioning,
driving performance, work capability and learning ability in
MHE patients (Agrawal et al., 2015). There was no significant
difference in the average connection-stability matrix between
MHE and noHE at the network level, but at the node level,
nodal disjointness difference was found between the two groups,

indicating that conversion from noHE to MHE is represented
by some nodal dysfunction within networks but not the whole
network dysfunction.

Further analysis of three node properties in comparison of
MHE with noHE indicates that significant differences were found
merely in node disjointness metric. The regions that showed
abnormal node disjointness were in middle temporal region,
superior medial and lateral regions, orbital frontal region, middle
cingulate cortex, and they mainly occupied the VAN, FPN and
DMN, which are important for attention allocation and execution
control functions that have decline in MHE patients (Rosazza
and Minati, 2011; Zhang et al., 2014a). These damaged areas of
MHE were also reported in previous studies (Chen et al., 2016a;
Zhang et al., 2018a). Comparison of the three groups together,
we can see in cirrhosis with no HE, the affected regions were
located in both primary network (SSHN) and high level cognitive
networks (SN, FPN, and DMN). When progression from noHE
to MHE, the dysfunctional nodes were mainly distributed in
the three high-level core cognitive networks (VAN, FPN, and
DMN), demonstrating that occurrence of MHE is related to core
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cognitive dysfunction. On flexibility and cohesion, we found
no significant differences, suggesting that brain impairment in
MHE patients might be caused by the abnormal proportion of
nodes independently switching network affiliation but not the
nodes that change network affiliation with other nodes together.
The results also show that single-node switching may be more
frequent in brain regions in MHE patients than in noHE patients.
This may lead to cognition-related dysfunction in MHE patients.

The cognitive deficit of all cirrhotic patients was evaluated
using DST and NCT-A scores in this study as recommended
(Weissenborn et al., 2001; Li et al., 2013), in which DST evaluates
cognitive function of attention and visual memory (Weissenborn
et al., 2001; Zhang et al., 2017a). Correlation analysis showed
that DST scores were positively correlated with the average
connection stability scores of DMN, VN, FPN, SN, subcortical
network and had negative correlations with the nodal disjointness
values of the DMN and SN. Theoretically, a higher flexibility of
the nodes corresponds to a lower average connection stability,
and thus consistency in the two correlation analyses were found
in DMN and SN. Both of the two networks are important
for attention and working memory (Pessoa et al., 2002; Silk
et al., 2010). DMN collectively comprises an integrated system
for different aspects of self-referential mental processes and it
is de-actived in a cognition-demanding task (Raichle et al.,
2001). SN is important for detection and mapping of salient
external inputs and internal brain events, and it drives the
switching between default mode and central executive networks
in a triple-network model underlying the high level cognitive
function (Menon, 2011). Therefore, correlation between the node
disjointness of the two networks and the DST scores indicates
that increased single-node switching rate in DMN and SN may
be responsible for decline in high level cognitive functions such as
attention and working memory that are important in the cirrhotic
patients’ daily life.

Since we found significant differences between MHE and
noHE merely in the node disjointness at network level and
unique correlation with neuropsychological scores was also
obtained in this metric, we used node disjointness to evaluate the
discriminative power of classifier. The experiment results show its
effectiveness in identification of individual MHE from noHE with
an accuracy of 88.71%. Comparison analyses show that the spatial
resolution parameter of omega had a greater impact on the results
than temporal resolution parameter gamma. The best result
was obtained when we chose the default values gamma = 1.0
and omega = 1.0 as the module partition parameters. With
the best omega of 1.0, each network module was functionally
explainable (see Figure 2). In respect of the impact of time
window size, it is not a parameter that affects our main results.
Results showed that the accuracy was highest when the time
window length was 45TR (112.5 s), which is consistent with a
previous study reported that classification accuracy was highest
when the time window length was around 110s (Liu et al.,
2017). With the comparisons of different combinations of feature
selection method and classifiers, the best accuracy was obtained
with F-score method and SVM with RBF kernel. In general,
by validation on different parameters, our results showed a
good discriminative power at individual level. Furthermore, by

comparing the discriminative nodes obtained from individual
diagnosis with the results from group statistical analysis, we
can see not only overlapping regions, but also other regions
were found in the discriminative analysis. This is because the
discriminative analysis can grasp the whole pattern information
in a multivariate way than the univariate group statistical analysis,
demonstrating that combination of the dynamic features with
machine learning model can provide more information.

However, some factors may limit the generalization of our
findings in clinical application. First, because of the difficulty
in patient recruitment, the sample size is small in this study,
which may bias the result. Large samples can improve statistical
power and reduce overfitting in the identification model. In the
future, we will verify the identification model by both internal
and external validations with lager sample size to provide a
stable performance. Other more complex models like deep neural
networks that can grasp deep and complex MHE characteristics
can also be tried with larger dataset to provide better accuracy.
Second, the laboratory test data was not used in the identification
model. It could be combined with imaging data together into the
identification model, which may provide a better identification
accuracy. Third, different medications among patients may affect
the findings in this study. In our study, lactulose was used in 19
patients to improve feces excretion function, and they took 5–10 g
lactulose three times a day. Antibiotics was used in some patients
who had infections such as spontaneous bacterial peritonitis,
pulmonary infection, which may bias the findings because
antibiotics may induce changes in synaptic plasticity and neural
cell growth (Heiss and Olofsson, 2019). In addition, the smoking
history may also affect the result, which should be considered in
the future studies. Last, laboratory test data are needed for healthy
controls to fully exclude the possible liver disease.

CONCLUSION

Previous studies mainly used static analysis features to study
MHE, we used the multi-layer modular algorithm based dynamic
functional connectivity features to study and identify MHE from
noHE. The core of this method is to extract metrics describing
network connection-stability and dynamic nodal affiliation based
on dynamic module partition results. It is found that compared
with HC, MHE showed differences in both primary sensory
network module and high level cognitive networks, consistent
with the symptom of decline in driving ability, daily functioning,
learning and working performance. When progression from
noHE to MHE, the cognitive impairments were mainly in higher
cognitive networks of DMN and SN by disrupting network
organization in a way of frequent single-node disjointness, which
is associated with the neuropsychological score. Based on the
node disjointness property, the individual discriminative model
showed a diagnosis accuracy of 88.71%. Taken together, the
results in this study suggest that dynamic graph analysis can
reveal the brain network evolvement patterns from noHE to
MHE, help us understand the dysfunction of the brain in a fine
scale, and provide powerful features for the individual diagnosis.
In the future, larger samples of patients with no mixture of
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interference factors are needed to verify the findings and further
optimize the model to improve the identification accuracy.
We can further investigate the clinical features of MHE on
electroencephalo-graph (EEG). EEG features and the clinical data
from laboratory test can also be incorporated into the machine
learning model to develop a tool that can be used with lower cost
and rural areas without fMRI.
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Seizure Freedom After Epilepsy
Surgery and Higher Baseline
Cognition May Be Associated With a
Negatively Correlated Epilepsy
Network in Temporal Lobe Epilepsy
Elliot G. Neal1, Mike R. Schoenberg1,2, Stephanie Maciver2, Yarema B. Bezchlibnyk1 and
Fernando L. Vale3*

1 Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States, 2 Department
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Background: Brain regions positively correlated with the epileptogenic zone in patients
with temporal lobe epilepsy vary in spread across the brain and in the degree of
correlation to the temporal lobes, thalamus, and limbic structures, and these parameters
have been associated with pre-operative cognitive impairment and seizure freedom after
epilepsy surgery, but negatively correlated regions have not been as well studied. We
hypothesize that connectivity within a negatively correlated epilepsy network may predict
which patients with temporal lobe epilepsy will respond best to surgery.

Methods: Scalp EEG and resting state functional MRI (rsfMRI) were collected from
19 patients with temporal lobe epilepsy and used to estimate the irritative zone. Using
patients’ rsfMRI, the negatively correlated epilepsy network was mapped by determining
all the brain voxels that were negatively correlated with the voxels in the epileptogenic
zone and the spread and average connectivity within the network was determined.

Results: Pre-operatively, connectivity within the negatively correlated network was
inversely related to the spread (diffuseness) of that network and positively associated
with higher baseline verbal and logical memory. Pre-operative connectivity within the
negatively correlated network was also significantly higher in patients who would go on
to be seizure free.

Conclusion: Patients with higher connectivity within brain regions negatively correlated
with the epilepsy network had higher baseline memory function, narrower network
spread, and were more likely to be seizure free after surgery.

Keywords: epilepsy surgery, networks, resting fMRI, negative correlation, temporal lobe epilepsy

Abbreviations: (18F-FDG) PET, 18Fluoro-2-deoxyglucose positron emission tomography; BOLD, Blood oxygenation level
dependent; BNT, Boston Naming Test; COWAT-FAS, Controlled Oral Word Association Test; ECoG, Electrocorticography;
EEG, Electroencephalography; EMU, Epilepsy Monitoring Unit; MNI, Montreal Neurological Institute; rsfMRI, Resting state
functional MRI; RAVLT6, Rey Auditory Verbal Learning Test, Trial 6; RAVLT7, Rey Auditory Verbal Learning Test, Trial
7; RFFT, Ruff Figural Fluency Test-unique designs; TLE, Temporal lobe epilepsy; FSIQ, Full Scale Intelligence Quotient:
Wechsler Adult Intelligence Scale-4th Ed.; LM-I, Logical Memory Immediate recall subtest: Wechsler Memory Scale-4th Ed.;
LM-II, Logical Memory Delayed recall subtest: Wechsler Memory Scale-4th Ed.; VR-I, Visual Reproduction Immediate Recall
subtest: Wechsler Memory Scale-4th Ed.; VR-II, Visual Reproduction Delayed Recall subtest: Wechsler Memory Scale-4th Ed.
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INTRODUCTION

Surgical Treatment of Temporal Lobe
Epilepsy
Epilepsy is a common primary neurological disorder that affects
0.5–1% of the global population, of which 20–30% are refractory
to medical management (Kwan and Brodie, 2000; Sander, 2003).
For those patients who are refractory to medication, the next
line of therapy involves some type of surgical intervention. If the
epilepsy is focal and the epileptogenic zone can be localized to
a temporal lobe using conventional techniques, which include
electroencephalography (EEG), MRI, 18Fluoro-2-deoxyglucose
positron emission tomography [(18F-FDG) PET], semiology,
and neuropsychological testing, then a surgery can be planned
to resect or ablate the hypothesized focus and disconnect the
epileptogenic network. Surgeries that have been used to treat
temporal lobe epilepsy include anterior temporal lobectomy,
selective amygdalohippocampectomy, temporal lobectomy with
amygdalectomy and minimal hippocampal resection, and
stereotactic laser amygdalohippocampotomy (SLAH) (Schramm,
2008). Resective surgeries in the temporal lobe have been shown
to result in seizure freedom in approximately two-thirds of
patients, and an improved quality of life when compared to
medical management alone (Wiebe et al., 2001; Bell et al., 2009;
Engel et al., 2012; Vale et al., 2012). However, this still leaves the
one-third of patients who undergo surgery in their temporal lobe
who continue to have debilitating seizures.

Network Analysis in Surgical Planning
When seizures recur, or are insufficiently controlled following
surgery, it is commonly assumed that the surgical intervention
was insufficient to resect, ablate, or disconnect the epileptogenic
brain region(s). This problem may arise when the epileptogenic
zone is knowingly spared due to concerns for post-operative
neurocognitive or neurological function, or when the
epileptogenic zone is incompletely evaluated by the pre-
operative work-up. Several authors have proposed a network
model for epilepsy, whereby the pre-operative work-up is
directed toward elucidating the connectivity within and extent of
the epileptogenic network which is both necessary and sufficient
for post-operative seizure control, as well as the relationship of
this network with networks underlying neurocognitive function
(Bartolomei et al., 2008; Bernhardt et al., 2013; Gonzalez et al.,
2019; Morgan et al., 2019). Typically, this consists of invasive
monitoring using intracranial EEG depth electrodes (Chauvel
et al., 2019). However, such studies are labor-intensive, take
time, and carry an inherent risk, leading to efforts to devise
non-invasive strategies for modeling epilepsy-related functional
networks that can be used to predict who is more likely to be
relieved of seizures.

Non-invasive Epilepsy Network Modeling
We previously developed a network modeling algorithm that uses
rsfMRI and surface EEG to generate a hypothesized epileptogenic
zone non-invasively. This algorithm then generates a network of
other regions with activation patterns that have a high degree of

positive correlation with the epileptogenic zone in patients with
temporal lobe epilepsy (Neal et al., 2018). With this model, we
showed that the degree of spread of this positively correlated
“epilepsy network” in patients with TLE was associated with
relatively worse outcomes both in rates of seizure freedom and
in measures of cognition including executive function and verbal
memory (Neal et al., 2019). Furthermore, we showed that greater
disconnection of this network after surgery was associated with
a higher likelihood of seizure freedom (Neal et al., 2020). These
results suggest that the positively correlated epilepsy network
may be associated with impaired cognition in patients with
temporal lobe epilepsy and that disconnection of this network
may impede the generation and propagation of seizures. Thus far,
the only network that we have studied is the positively correlated
epilepsy network.

Negative Correlation in Network Analysis
A positive correlation in activation patterns indicates that one or
more brain regions are likely connected in some way. However,
the opposite case may also be true: negatively correlated brain
regions may also be functionally connected (Figure 1A). For
example, if a particular neuron or group of neurons has an
inhibitory effect on its target, then every time the first neuron fires
then the target would fire less frequently. Therefore, a positive
activation in one region would be directly associated with a
deactivation in the connected area (Figure 1B). Mathematically,
this can be determined as a negative correlation value (Pearson
correlation coefficient <0). Negative correlation between nodes
of the DMN (default mode network) have been observed with
relation to task positive networks in healthy patients (Uddin
et al., 2009). Negative correlation has, for the most part, been
studied in relation to generalized epilepsies, with findings being
mostly related to the behavior of the DMN. Antagonism between
the dorsal attention network, salience network, and DMN was
shown to be related to impaired executive and attention function
in patients with absence seizures (Li et al., 2015). A similar
relationship between the task positive network and the DMN
in children with benign childhood epilepsy with centrotemporal
spikes was found when compared to a control group (Luo et al.,
2016). Patients with idiopathic generalized epilepsy have been
found to have segregation and negative correlation between
regions of the DMN (McGill et al., 2012).

In temporal lobe epilepsy, network studies utilizing negative
correlation have shown decreased connectivity in the temporal
lobes and a compensatory increase in the default mode network
connectivity over time (Zhang et al., 2010). In a SPECT-
based network study in temporal lobe epilepsy examining
the positive and negative network correlations, the authors
found that alterations in consciousness during seizures were
associated with increased cerebral blood flow (CBF) in the
temporal lobes and midline subcortical structures, which was
negatively correlated with CBF in the frontal and parietal
association cortices (Blumenfeld et al., 2004). In a small study
of patients who underwent surgery for temporal lobe epilepsy,
a similar result was found. rsfMRIs performed in these patients
demonstrated a negative correlation between the temporal
lobe and widespread cortical and subcortical regions compared
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FIGURE 1 | (A) Three different example time series data from two hypothetical rsfMRI voxels are shown. First, the oxygen utilization over time between two
hypothetical voxels is unrelated and therefore the correlation between the two is approximately zero. Next, the time series of each voxel behaves similarly and
therefore have a positive correlated coefficient indicating that they are functionally similar and likely intraconnected. Finally, two voxels that behave antagonistically but
are in-phase would have a negative correlation coefficient and we hypothesized that this relationship may represent a different type of functional connectivity than the
positive correlated voxels. (B) The negatively correlated epilepsy network is then generated between the voxels in the epileptogenic zone and all of the other brain
voxels with a below-threshold correlation coefficient. Two example patients are shown. (C) Patient #5 was not seizure free after surgery, and (D) Patient #15 was
seizure free. The negatively correlated network is shown in green, and the hypothesized epileptogenic zone, generated from surface EEG, is shown in red. The lack
of a clear organized negatively correlated network is obvious in the first patient, and the only visible areas are likely a contribution of the noisy rsfMRI signal and
reflects the clear difference that exists in this network between patients who are more likely to be seizure free after surgery compared to those who are not.

to controls (Morgan et al., 2010). These regions included the
thalamus, brainstem, frontal regions, and parietal regions,
whereas the control group did not have this same widespread
network of negatively correlated regions.

Objective
In the current study we hypothesize that the network consisting
of brain regions negatively correlated with the epileptogenic
zone can be determined in patients with temporal lobe
epilepsy undergoing surgery and intraconnectivity and spread

of that network may be predictive of seizure freedom and
neuropsychological outcomes after surgery.

MATERIALS AND METHODS

Patient Demographics
All reported data followed the Strengthening the Reporting of
Observational studies in Epidemiology (STROBE) guidelines
for observational trials and the protocol and informed consent
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was approved by our university’s Institutional Review Board
(IRB). Epileptic networks were modeled in nineteen patients
with unilateral TLE who underwent open microsurgery directed
toward the anterior/mesial temporal lobe. The patients included
in this study represent a series of patients with TLE who
signed consent and agreed to participate in this study between
May 2017 and March 2020. They underwent this pre-operative
network assessment and surgery at our tertiary referral center
(Table 1). Exclusion criteria included all patients who had less
than 1 year of follow up, pre-pubertal children (youngest patient
was 17 years old at the time of surgery), and patients with any
brain lesion except for mesial temporal sclerosis. Each patient
underwent a standard pre-surgical evaluation for epilepsy surgery
including MRI, epilepsy monitoring unit (EMU) video-EEG,
Wada testing, (18F-FDG) PET, and neuropsychological testing.
Surgery planning and post-surgical evaluation not related to
network analysis were conducted by a care team blinded to the
epileptic network modeling results.

Data Acquisition
Electroencephalography and rsfMRI were obtained on separate
visits non-concurrently as part of the pre-surgical evaluation.
No patient had a clinical seizure during the duration of
the rsfMRI acquisition, though we cannot say with absolute
certainty that patients did not have subclinical seizures during
the acquisition period. In our cohort there were no patients
that had interictal discharges more frequent than one per hour
according to subsequent epilepsy monitoring unit results. EEG
was acquired with 24 scalp electrodes in a standard International
10–20 configuration during the pre-operative EMU (Epilepsy
Monitoring Unit) session. rsfMRI was conducted in a 3-Tesla
MRI with a blood oxygenation level dependent (BOLD) MRI
sequence. rsfMRI was acquired with the patient lying supine
with eyes closed. The rsfMRI sequence consisted of a single 5-
min acquisition with parameters as follows: echo time (TE) of
35 ms, repetition time (TR) of 3000 ms, and a voxel size of
4 mm × 3.75 mm × 3.75 mm. Volumetric T1-weighted thin slice
(1.5 mm) MRI [Repetition Time (TR) 6.484, Echo Time (TE)
2.958, Inversion Time 18, Flip Angle 15, Field of View (FOV)
240 mm × 240 mm] was acquired during the same session. The
post-operative MRI was conducted 4 months after the surgery to
allow the acute surgery-related MRI signal to dissipate and not
affect the results.

Network Modeling
The epilepsy network for each patient was modeled similar to
what is previously described (Neal et al., 2018). Briefly, all MR
image sets were motion corrected, smoothed, and transformed
into Montreal Neurological Institute (MNI) space using the
six-parameter rigid body spatial transformation algorithm and
co-registered using SPM12 (Wellcome Department of Imaging
Neuroscience, University College London, United Kingdom).
The motion correction step was performed by least-squares
approach to realign all images in the rsfMRI set to the first
image in the series to reduce the effect of patient motion on
the post-processing analysis. The Gaussian smoothing kernel full
width at half maximum was 8 mm in all directions. The scalp

EEG data were filtered to remove non-physiologic frequencies
and cropped to include only the inter-ictal or ictal signals
identified by a blinded neurophysiologist (MATLAB 2019b,
Natick, MA, United States). A band pass filter was applied
between 1 and 100 Hz, and a notch filter was applied at 60 Hz.
Ictal and inter-ictal source discharges were localized by first
generating a transformed mesh from the thin-slice T1-weighted
MRI sequence. Then, cortical dipoles were modeled using a
forward computation that was followed by an empirical Bayesian
approach to inverse reconstruction, localizing the theoretical
evoked response (SPM12). This process was used to generate a
hypothesized epileptogenic or irritative zone source volume from
both interictal and ictal discharges, which was co-registered to the
rsfMRI in MNI space. The combined ictal and interictal regions
in the temporal lobe ipsilateral to the planned surgical resection
were included in the next steps of analysis for generating a
model of the network.

The rsfMRI time-series signature was extracted from the
epileptogenic zone volume and scaled to the global signal
average to adjust for differences between scans. Intra-axial image
voxels were extracted using a brain mask and compared to
the voxels in the hypothesized epileptogenic zone to generate
a Pearson correlation coefficient for each voxel with respect to
the epileptogenic zone. In previous studies using this algorithm,
the epilepsy network was defined as the collection of voxels that
had an above-threshold Pearson correlation, with the threshold
defined as the average Pearson correlation coefficient for each
patient, so that all volumes generated were positively correlated
with the epileptogenic zone. This type of analysis was done
in the present study to generate an epilepsy network, but the
primary aim of this study was to investigate the negatively
correlated regions, so the inverse epilepsy network was defined
as the voxels that had a Pearson correlation value less than
−0.4. The threshold −0.4 was selected to standardize the
analysis between patients, which has been shown to have a
high sensitivity for detecting nodes within brain networks (van
den Heuvel et al., 2008; Shen et al., 2013). Similar to our
prior studies, intraconnectivity within this unique network was
calculated by determining the correlation matrix for all the
voxels involved in the inverse epilepsy network and computing
an average value. This intraconnectivity is calculated from the
within-network functional connectivity between voxels inside
the negatively correlated epilepsy network, averaged across
the entire network. To clarify, the intraconnectivity is not
calculated between the negatively correlated network voxels and
the hypothesized epileptogenic zone. Similarly, post-operative
connectivity within the modeled network was determined by
calculating the mean Pearson connectivity coefficient within the
network when the same set of voxels were overlaid on the
post-operative rsfMRI image set. The spread of the negatively
correlated epilepsy network was defined as the median Euclidean
distance of each voxel within the network from the centroid
of the hypothesized epileptogenic zone generated from the
EEG source localization. The network was mapped without
prior knowledge of any parameters in the rsfMRI for each
patient and is not related to any anatomical or functional
atlas. Two examples, one of a negatively correlated that is
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TABLE 1 | Demographics.

Patient
number

Gender Age at
surgery

Anti-seizure medications (at surgery) Surgery
side

Dominant
hemisphere (Wada)

Seizure
free

1 Male 26 Levetiracetam, Lamotrigine Left Left No

2 Male 17 Lamotrigine Left Right No

3 Female 26 Vimpat, Aptiom Right Left No

4 Female 35 Carbamazepine, Lamotrigine Left Left No

5 Female 32 Levetiracetam, Topiramate Left Right No

6 Female 40 Zonisamide Right Left No

7 Female 36 Lamotrigine Left Left No

8 Female 47 Gabapentin Left Left Yes

9 Male 23 Levetiracetam Left Left Yes

10 Female 34 Lacosamide, Levetiracetam Left Right Yes

11 Female 19 Lamotrigine, Levetiracetam, Topiramate Right Left Yes

12 Female 40 Oxcarbazepine Right Left Yes

13 Male 26 Lacosamide, Levetiracetam, Topiramate Left Left Yes

14 Female 33 Brivaracetam, Lacosamide, Lamotrigine Left Left Yes

15 Male 32 Lacosamide Left Left Yes

16 Female 28 Lamotrigine, Levetiracetam, Perampanel, Zonisamide Left Left Yes

17 Female 24 Levetiracetam Left N/A Yes

18 Male 25 Perampanel, Oxcarbazepine Left Left Yes

19 Female 53 Lamotrigine Left Left Yes

more diffuse (Figure 1C) and one that is highly organized
and synchronized (Figure 1D) are shown. All network maps
and hypothesized epileptogenic zones are also included in
Supplementary Figure 1.

As a control comparison, a random ROI was used to generate
a random negatively correlated network using the exact same
method as described above. The random ROI used was in the
occipital lobe and had a size of 907 voxels, similar to the average
seed size for the hypothesized epileptogenic zone seeds. The same
metrics of network spread and intraconnectivity were calculated
as described above.

Neuropsychological Assessment
Pre-operatively, 19 patients had comprehensive
neuropsychological assessment following NIH Epilepsy common
data elements recommendations that quantify aspects of
cognition including declarative memory, attention/executive,
language, and visuoconstructional functions as well as general
intellectual ability. Quality of life and mood status was also
obtained. Pre- and post-operative data were available for a
subset of patients (n = 13) because data from the remaining
patients are still being collected and processed. Testing
and scoring were conducted by clinicians blinded to the
network modeling results. Subtests of the Wechsler Memory
Scale-4th Ed. (WMS-IV) analyzed immediate or delayed
logical memory (LM-I and LM-II) and immediate or delayed
visual reproduction (VR-I and VR-II), a measure of visual
memory. The Rey Auditory Verbal Learning Test short-
delay (RAVLT Trials 6) and long-delay (RAVLT 7) was
used to measure auditory-verbal memory, rate of learning,
learning strategies, retroactive and proactive interference, the
presence of confabulation in memory processes, retention of

information, and differences between learning and retrieval.
Both RAVLT 6 and 7 and LM-I and II are tests that measure
verbal memory. Verbal fluency was measured using the
Controlled Oral Word Association (FAS) and semantic fluency
was measured using the Animal Naming Test. Word retrieval
was measured using the Boston Naming Test (BNT). The Ruff
Figural Fluency Test (RFFT) evaluated non-verbal mental
flexibility, initiation, planning, and divergent reasoning.
Finally, each patient completed the Wechsler Adult Intelligence
Scale – 4th Ed (WAIS-IV) prorated full-scale intelligence
index. Raw scores for all neuropsychological tests except for
WAIS-IV IQ scores were used in analyses. We obtained a
“difference score” – defined as the post-operative score minus
the pre-operative score – such that higher difference scores
correlate to relatively higher function post-operatively, and
conversely lower scores representing a drop in these objective
measures of cognition.

Statistical Analysis
A two-sample t-test was used to compare independent groups
with continuous variables. P-values less than α = 0.05 were
considered significant. Spearman Rho correlation analysis was
used to compare network connectivity to neuropsychometric
testing results with a Bonferroni correction for multiple
comparisons. Network modeling statistical tests were conducted
using IBM SPSS Statistics Version 26 (IBM Corp., Armonk,
New York, United States).

Data Availability
The data that support the findings of this study are available from
the corresponding author, upon reasonable request.
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RESULTS

Demographics
In the cohort of 19 patients with unilateral TLE, five (26%)
were male and 14 (74%) were female. All underwent the
complete phase 1 evaluation described in the methods, with
three (16%) of those patients undergoing subsequent phase II
invasive monitoring (stereo-electroencephalography or subdural
strips/grids) for further clarification of epileptogenic focus
localization. Fifteen (79%) patients were determined to have
seizures originating from the left temporal lobe with the
remaining four (21%) having seizures in the right temporal
lobe. All patients underwent microsurgical resection with either
selective amygdalohippocampectomy (n = 13) or temporal
lobectomy with amygdalectomy and minimal hippocampal
resection (n = 6). Pre-operatively, ten (53%) patients had
suspicion of mesial temporal sclerosis on MRI, and none
of the patients had any other MRI lesions elsewhere in
the brain. After surgery, the same ten (53%) had tissue
specimen proven hippocampus sclerosis. All patients were
followed for at least 1 year after surgery, and with an average
time to follow-up of 24 months. Demographic information
is also shown in Table 1. All 19 patients had the negatively
correlated epilepsy network mapped, and the surgery planning
team was blinded to the results of the network result. In
addition, the seed size was determined for each patient and
found to be not significantly different between the seizure
free and the not seizure free group (810 vs. 858 voxels,
p = 0.7461). The seed size for each patient is included in
Supplementary Figure 1.

Highly Intraconnected Negatively
Correlated Epilepsy Networks Are Less
Widespread
The relationship between the positively correlated network and
outcomes after surgery has been assessed in previous papers, and
this analysis was performed to determine if these two networks
are independent from each other to prove that the negatively
correlated epilepsy network is a unique prognostic tool. Across
all patients, the degree of connectivity within each of these
networks was not significantly correlated (R = −0.255, p = 0.293),
suggesting that connectivity within the negatively correlated
epilepsy networks and within the positively correlated epilepsy
networks are independent variables. Next, the connectivity
between the voxels of the negatively correlated network (the
“intraconnectivity” of the network) was compared to the average
connectivity between the individual voxels to the epileptogenic
zone (negative correlation to the seed volume) and found to be
not significantly related (R = 0.130, p = 0.841). This suggested that
the intraconnectivity metric is independent from the negative
correlation observed between the voxels of the network and the
epileptogenic zone.

The intraconnectivity of the negatively correlated epilepsy
network was significantly correlated to the spread of the network,
such that the more highly intraconnected the network, the less
it was spread out across the brain (R = −0.6905, p = 0.0011).

A scatter plot of the network spread and intraconnectivity is
shown in Figure 2A.

Correlation With Improved Baseline
Memory Function and Decline in
Post-operative Naming Function
We found that both immediate and delayed visual memory
function were higher in patients with a more intraconnected
negatively correlated network (VRI R = 0.561, p = 0.012; VRII
R = 0.549, p = 0.015). No other significant correlations were found
pre-operatively.

Neuropsychological function was also measured post-
operatively for comparison to the pre-operative level. We
observed a negative correlation between the difference score for
naming and the pre-operative connectivity within the negatively
correlated epilepsy network, suggesting that patients with more
intraconnected negatively correlated epilepsy networks are
more likely to experience a larger decrease in their naming
function (BNT R = −0.590, p = 0.045). It should be noted
that the pre-operative performance on the same test was not
significantly correlated with negatively correlated epilepsy
network connectivity (R = 0.356, p = 0.134), suggesting that the
correlation of the difference in score was not likely related to a
baseline deficit in the patients with less intraconnected networks.

Negatively Correlated Epilepsy Network
Connectivity and Seizure Freedom
Seizure outcome was monitored at all stages of follow up after
surgery, but the Engel classification used in the present study was
determined at the most recent follow up for each patient. As of
the most recent follow-up (range: 14–36 months), seven patients
(37%) were not seizure free (Engel Class II, III, IV), and 12
patients (63%) were seizure free (Engel Class I). The connectivity
within the pre-operative positively correlated epilepsy network
was not significantly different between patients that were seizure
free and those that were not (p = 1.00). However, the pre-
operative connectivity within the negatively correlated network
was significantly higher in patients who went on to be seizure free
(p = 0.0095) (Figure 2B). Also, spread of the network (median
distance) was significantly lower in patients who were seizure free
compared to those who were not (p = 0.0083) (Figure 2C).

The control network maps consisting of the negatively
correlated networks generated from a random ROI were
analyzed in the same way and the results are shown in
Supplementary Figure 2. In this control network comparison,
the spread of the network was not correlated with within-
network intraconnectivity (R = 0.2338, p = 0.3354). The spread
of the randomly generated negative network was not significantly
higher in the patients who were not seizure free (p = 0.1570), and
the intraconnectivity was also not significantly different between
the two groups (p = 0.2901) (Supplementary Figure 2).

The predictive value of the negatively correlated epilepsy
network was also investigated. A receiver operating
characteristics (ROC) curve was created. The area under
the curve was determined to be 0.845 with the 95% confidence
interval ranging from 0.670 to 1.00. The connectivity threshold
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FIGURE 2 | (A) The relationship between the spread of the negatively correlated epilepsy network and the intraconnectivity of that network is shown.
Intraconnectivity of the network was calculated by determining the average correlation value between each network voxel and all of the other voxels in the network.
These data suggest that the intraconnectivity of the negatively correlated epilepsy network is inversely related to the spread of that network. Patients who are seizure
free after surgery are more likely to have a highly connected and less spread out network. Two bar charts are shown here, with one (B) comparing the connectivity of
the negatively correlated epilepsy network between patients who were seizure free after surgery and those who were not. The same groups are compared in the
second bar chart (C) comparing the geographical spread of the network, with higher numbers representing a more diffuse, spread out network. (∗p < 0.05,
∗∗p < 0.01).

that maximized specificity and sensitivity was (0.2728)
(sensitivity 75%, specificity 71%). A threshold of 0.2136
maximized sensitivity (specificity 57%, sensitivity 92%) and a
threshold of 0.3955 maximized specificity (specificity 100%,
sensitivity 67%). The ROC curve is shown in Figure 3.

DISCUSSION

Is Negatively Correlated Epilepsy
Network Connectivity a Good Sign?
In this paper, we defined and analyzed the “negatively correlated
epilepsy network” – a novel network that is negatively correlated
with the epileptogenic zone in 19 patients with temporal lobe
epilepsy who underwent open microsurgery. Pre-operatively,
we found that patients with highly intraconnected negatively
correlated epilepsy networks were more likely to have higher
baseline verbal and logical memory. Furthermore, the same
network was more highly intraconnected in patients that
would go on to be seizure free after epilepsy surgery. High
intraconnectivity and less spread in the negative network was
interpreted as a network that is more organized, because it
is more focal in its location in the brain, and all brain
regions involved in the network work together in synchrony.
Put simply, a more organized and homogeneous negatively
network appears to be a good prognostic factor in patients
with temporal lobe epilepsy undergoing surgery. Importantly,
when these results were compared to the same relationship in
networks generated from a random ROI, it was shown that
there was no significant relationship between intraconnectivity,
spread, and seizure freedom after surgery. This indicates that
the negatively correlated epilepsy network generated from a seed
volume consisting of the hypothesized epileptogenic zone is
unique and appears to be uniquely correlated with a clinically
significant outcome after surgery. It was shown that this simple,

FIGURE 3 | Receiver operating characteristics (ROC) curve showing the
predicted specificity and sensitivity of various thresholds of intraconnectivity of
the negatively correlated epilepsy network. The diagonal line represents y = x
reference line, the second line shows the sensitivity and specificity of
predicting seizure freedom at incremental thresholds, and the circle marker
represents the threshold (0.2728) that maximized sensitivity (75%) and
specificity (71%) of this threshold to predict seizure freedom after surgery. The
area under the curve was determined to be 0.845 with the 95% confidence
interval ranging from 0.670 to 1.00.

non-invasive test may be useful as a prognostic test to predict
seizure freedom.

The network consists of a group of brain regions that
are unique in that they have a negatively correlated rsfMRI

Frontiers in Neuroscience | www.frontiersin.org 7 January 2021 | Volume 14 | Article 62966733

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-629667 January 11, 2021 Time: 16:53 # 8

Neal et al. Negatively Correlated Network in Temporal Lobe Epilepsy

signature compared to the time series of the epileptogenic zone
as determined based on the irritative zone identified on the pre-
operative scalp EEG. We have previously described a positively
correlated “epilepsy network,” defined as the network of regions
with activation patterns that have a high degree of positive
correlation with the epileptogenic zone in patients with temporal
lobe epilepsy, and we hypothesized that the negatively correlated
regions might be similarly important in understanding the brain
function of the patient with temporal lobe epilepsy. In our
previous study, whereas the spread of the positively correlated
network was associated with worse baseline function, baseline
connectivity within the network was not predictive of which
patients would benefit from surgery. The degree of disconnection
in that network after surgery was, however, associated with
more seizure free outcomes. In contrast, the data presented in
the current study suggest that baseline connectivity within the
negatively correlated epilepsy network help to select for patients
who are most likely benefit from temporal lobe surgery.

A negative correlation, represented by a negative Pearson
correlation value, has been associated with brain regions that
act antagonistically (Uddin et al., 2009). Therefore, it is possible
that the negatively correlated epilepsy network that is more
intraconnected may antagonize the function of the epileptogenic
zone in a way that benefits the patient both pre- and post-
operatively. Perhaps the negatively correlated network acts
opposed to the epileptogenic zone during inter-ictal periods
and controls the negative effect that the aberrant activity in
the epileptogenic zone have on normal cognition. This may
explain why our cohort of patients with TLE had improved
performance on neuropsychological evaluations (specifically in
memory and executive function) that scaled directly with the
degree of connectivity within the negatively correlated network.

Studies involving simultaneous acquisition of EEG and fMRI
data have been conducted previously by several groups and
involve an analysis of negatively contrasted images that is
somewhat similar to the present study but with important
differences. These studies demonstrated that such an analysis
can be used to correlate hemodynamic changes in the brain
with the epileptogenic zone, and have shown that resection
of the epileptogenic zone, when closely associated with brain
regions exhibiting changes in BOLD activation, is positively
correlated with post-operative seizure control (Thornton et al.,
2010; van Houdt et al., 2013; Coan et al., 2016). While similar
to our approach, it is a crucial difference to note that in these
studies EEG and rsfMRI data were acquired simultaneously,
such that connectivity measurements were analyzed at the same
time that epileptic discharges were detected. As such, these
studies generate an ictal pattern of functional connectivity which
can then be correlated to the electrophysiological data in a
time-locked fashion. However, when data is acquired in this
fashion, the discharges likely cause a momentary change in the
connectivity patterns which is helpful for detecting the locally
connected epileptic network. In the current study, we elected
instead to measure EEG and rsfMRI non-concurrently. As such,
our connectivity data reflects functional connectivity patterns
existing in the interictal state, might well be different than those
observed during a seizure or epileptic discharge, and could

reflect network connectivity that is related to background normal
function of the brain that is known to be impaired in patients with
temporal lobe epilepsy. Alternatively, the results could represent
a different set of network relationships influential in background
memory and executive processing.

Is There Is Any Value in Epilepsy Surgery
Planning?
Since higher connectivity within the negatively correlated
epilepsy network was associated with a higher likelihood of
seizure freedom post-operatively, the prognostic value of this
single metric was also investigated. Within our cohort, an
average connectivity within the negatively correlated epilepsy
network of 0.2728 predicts seizure freedom with a specificity
of 71% and a sensitivity of 79%. Clinically, this tool is
non-invasive and easy to use. The negatively correlated
network is created automatically with standard EEG and MRI
technology that is available during a normal phase I epilepsy
surgery evaluation, and so can be readily integrated into
the standard pre-operative workflow of any comprehensive
epilepsy center.

Future Studies
This is still preliminary data and any hypotheses about the
exact mechanism of this negatively correlated epilepsy network
still need to be confirmed in future studies by applying
the thresholds calculated with the ROC analysis in an out-
of-sample test group to see if the prediction holds. Also,
there has been much work on multivariate predictive models
in epilepsy surgery (Spencer et al., 2005; Jehi et al., 2015).
In the future this unique connectivity metric may be able
to add to the predictive value of these models. We will
continue to collect data and build a larger database in the
hopes of finding more subtle changes between our subgroups.
We also plan to start including additional data such as
semiology and PET scan to better define network characteristics.
Magnetoencephalography and SEEG combined studies have
also shown that a multimodal approach using those methods
can help to further refine the localization of the epileptogenic
zone, and we will explore the possibility of adding this type
of data into future studies (Badier et al., 2017; Pizzo et al.,
2019). These network imaging results will be discussed in the
multi-disciplinary evaluation for epilepsy surgery in an effort
to generate prospective, out-of-sample data to substantiate the
conclusions of this study. The goal of this type of research would
be to strengthen the argument that network analysis can be
a valuable tool in predicting which patients will benefit from
resective surgeries.

Limitations
While not detracting from the results presented here,
some limitations to the applicability of this data should
be considered. First, this is a prospective but small cohort
and therefore represents preliminary data. Future studies
will aim to address this limitation, as described above.
Furthermore, the rsfMRI image sets collected in this
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study are from a single session and may therefore have lower
signal-to-noise ratios than comparable data taken across multiple
sessions or for longer acquisition times. It is well known that
surface EEG is limited in its precision and accuracy in estimating
an epileptogenic zone, and the aim of this study was to determine
if the utility of scalp EEG in defining an EZ and predicting
post-operative surgical outcomes can be enhanced with the
addition of different measures of functional connectivity. The
attempt is not to localize the EZ with 100% accuracy, but to
determine if clinically useful properties can be extracted from
functional connectivity data acquired non-invasively. Finally,
when undergoing rsfMRI imaging, we did not control for
the presence of anti-epileptic drugs. It is possible that these
drugs may inhibit certain neuronal processes and affect rsfMRI
signal patterns, and it is unknown how these drugs would
affect our results.

CONCLUSION

In this study, preliminary data was shown, and patterns of
connectivity were explored within a newly defined “negatively
correlated epilepsy network” in patients with refractory temporal
lobe epilepsy undergoing surgery. In the network, defined
as those areas of the brain that had a below-threshold
negative Pearson correlation with the hypothesized epileptogenic
zone estimated from surface EEG, intraconnectivity was
directly related to pre-operative performance on objective
neuropsychological evaluation of verbal and logical memory.
Also, pre-operative negatively correlated epilepsy network
connectivity was directly related to the likelihood of being
seizure-free after surgery. These findings together suggest a
benefit to the patient both pre- and post-operatively if they had
a highly connected negatively correlated epilepsy network, which
can be determined using commonly available, non-invasive
methods (EEG and rsfMRI). Even though this study is limited
in size, the preliminary, proof of concept findings suggest a novel
methodology of detecting negatively correlated brain regions may
be useful in deciding which patients would most likely benefit
from surgery. These data represent a step toward proving the
efficacy of non-invasive network mapping and should stimulate
future exploration into the utility and value of such an algorithm
in predicting outcomes after surgery.
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Supplementary Figure 1 | All hypothesized epileptogenic seed volumes are
shown in red for each patient and the seed volume size is also given. The green
volumes represent the negatively correlated epilepsy network for each patient. (A)
Hypothesized epileptogenic zones and negatively correlated epilepsy networks for
all patients who were not seizure free. (B) Seed volumes and negatively correlated
epilepsy network are shown for all patients that were seizure free.

Supplementary Figure 2 | A randomly generated ROI was used to create a
negatively correlated network using the same algorithm as described in the
“Materials and Methods” section. (A) No significant relationship between network
spread and intraconnectivity is seen when the negatively correlated epilepsy
network maps are analyzed. (B) No significant difference in network
intraconnectivity or (C) spread was found between patients that were seizure free
after surgery and those who were not.
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Connective Field (CF) modeling estimates the local spatial integration between signals
in distinct cortical visual field areas. As we have shown previously using 7T data, CF can
reveal the visuotopic organization of visual cortical areas even when applied to BOLD
activity recorded in the absence of external stimulation. This indicates that CF modeling
can be used to evaluate cortical processing in participants in which the visual input
may be compromised. Furthermore, by using Bayesian CF modeling it is possible to
estimate the co-variability of the parameter estimates and therefore, apply CF modeling
to single cases. However, no previous studies evaluated the (Bayesian) CF model using
3T resting-state fMRI data. This is important since 3T scanners are much more abundant
and more often used in clinical research compared to 7T scanners. Therefore in this
study, we investigate whether it is possible to obtain meaningful CF estimates from
3T resting state (RS) fMRI data. To do so, we applied the standard and Bayesian CF
modeling approaches on two RS scans, which were separated by the acquisition of
visual field mapping data in 12 healthy participants. Our results show good agreement
between RS- and visual field (VF)- based maps using either the standard or Bayesian
CF approach. In addition to quantify the uncertainty associated with each estimate in
both RS and VF data, we applied our Bayesian CF framework to provide the underlying
marginal distribution of the CF parameters. Finally, we show how an additional CF
parameter, beta, can be used as a data-driven threshold on the RS data to further
improve CF estimates. We conclude that Bayesian CF modeling can characterize local
functional connectivity between visual cortical areas from RS data at 3T. Moreover,
observations obtained using 3T scanners were qualitatively similar to those reported
for 7T. In particular, we expect the ability to assess parameter uncertainty in individual
participants will be important for future clinical studies.

Keywords: resting-state fMRI, uncertainty, connective field modeling, bayesian modeling, visual field mapping,
visual cortex
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HIGHLIGHTS

- Local functional connectivity between visual cortical areas can
be estimated from RS-fMRI data at 3T using both standard CF
and Bayesian CF modeling.

- 3T observations were qualitatively similar to those
previously reported at 7T.

- Bayesian CF modeling quantifies the model uncertainty
associated with each CF parameter on RS and VF data,
important in particular for future studies on clinical
populations.

INTRODUCTION

Spontaneous blood-oxygen level dependent (BOLD) fluctuations
have been used to study the intrinsic functional connectivity of
the human brain. Biswal et al. (1995) observed, for the first time,
the presence of bilateral spatial integration, coherent activity and
functional connectivity between distant homotopic brain areas,
even in the absence of a task. Ever since, resting-state fMRI
(RS-fMRI or RS) has played a key role in understanding the
temporal and spatial interactions of interconnected brain regions.
In parallel, various fMRI data-analysis tools have been developed
with the aim to describe the functional and neuroanatomical
organization of the brain. One of these methods is connective
field (CF) modeling (Haak et al., 2013b). CF, also known as
the cortico-cortical population receptive field (cc-pRF), modeling
allows to describe the response of a population of neurons in
the cortex in terms of the activity in another region of the
cortex. It translates the concept of the receptive field into the
domain of connectivity by assessing the spatial dependency
between signals in distinct cortical visual field regions (Haak
et al., 2013b). Even though the approach is agnostic to different
stimulus configurations, it has thus far been primarily developed
and applied in vision research. A previous study by Gravel
et al. (2014) showed that CFs, estimated from RS-fMRI data
recorded at a high magnetic field (7T), reflect the visuotopic
organization of early visual cortical maps. This indicates that even
in the absence of any visual stimulation, CF modeling is able
to describe the activity of voxels in a target region (e.g., V2 or
V3) as a function of the aggregate activity in a source cortical
visual area (e.g., V1).

While these previous results were obtained at 7T and in
healthy participants, 3T scanners are much more common, and
generally preferred for whole-brain analyses in patient studies
(van der Kolk et al., 2013; Polimeni and Uludağ, 2018). Therefore,
if RS data recorded at 3T can provide sufficient sensitivity
to estimate the spatial integration and connectivity of BOLD
signals in distinct regions of the early visual cortex (Gravel
et al., 2020), this would open up the CF modeling approach
to clinical studies performed at 3T and in individual cases.
Amongst others, this would provide the important advantage
that plasticity of visual cortical areas could be studied without
a dependence on actual visual stimulation. This is important, as
in ophthalmic and neurological patients visual input can already
be disrupted, potentially resulting in spurious plasticity estimates

(Baseler et al., 1999; Azzopardi and Cowey, 2001; Haak et al.,
2013b; Carvalho et al., 2020).

In order to assess the suitability of the CF approach for
studying unique patient cases at 3T, we will look beyond
the classical variance explained as an indicator of modeling
performance. To do so, we will assess the uncertainty of
model parameter estimates using a Bayesian approach. These
parameters are available to us by applying our recently developed
Bayesian framework for the CF model (Bayesian CF, Invernizzi
et al., 2020). In particular, this approach allows to estimate the
variability for each CF parameter estimate such as CF size and
beta. Moreover, when using our new Bayesian CF framework,
we can obtain a data-driven threshold in order to select relevant
voxels for both RS-fMRI and visual field mapping (VFM) data.

We applied both the standard CF estimation and the
novel Bayesian approach to RS and VFM data acquired at
3T. Subsequently, we compared the CF maps and parameters
obtained using the two CF approaches. Additionally, we assessed
test-retest reliability between the two runs of RS data.

Finally, we will qualitatively compare our results to those
obtained previously in Gravel et al. (2014).

To preview our results, we found a good agreement between
RS- and visual field (VF) – based maps obtained with both
the standard and Bayesian CF approach at 3T. Moreover,
most observations were qualitatively similar to those previously
observed for 7T data. This implies that local functional
connectivity between visual cortical areas during RS can be
estimated at 3T. No significant differences were found between
the two runs of RS data on V1 > V2 areas. Furthermore, we
showed how the parameter uncertainty can be used to assess
the variability of parameters in RS-fMRI BOLD fluctuations.
Therefore, the Bayesian CF approach presented here extends on
previous approaches to provide an interpretable and independent
measure of uncertainty in RS-based data. Finally, we show that
the novel retained CF parameter, beta, can serve as a sensitive
threshold for the selection of voxels and improve the reliability
of estimates. Taken together, our results demonstrate the utility
of applying a Bayesian CF approach to study inter areal cortical
integration in the human visual cortex in health and disease.

MATERIALS AND METHODS

Participants
Twelve healthy female participants (mean age 22 years,
s.d. = 1.8 years) with normal or corrected-to-normal vision
and without a history of neurological disease were included.
These data had been collected and used in previous projects
(Halbertsma et al., 2019; Invernizzi et al., 2020). For each of
the previous studies, the ethics board of the University Medical
Center Groningen (UMCG) approved the study protocol. All
participants provided written informed consent. The study
followed the tenets of the Declaration of Helsinki.

Stimuli Presentation and Description
The visual stimuli were displayed on a MR compatible screen
located at the head-end of the MRI scanner with a viewing
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distance of 118 cm. The participant viewed the complete
screen through a mirror placed at 11 cm from the eyes
supported by the 32-channel SENSE head coil. Screen size
was 36 × 23◦ of visual angle and the distance from the
participant’s eyes to the screen was approximately 75 cm.
Stimuli were generated and displayed using the Psychtoolbox1

and VISTADISP toolbox (VISTA Lab, Stanford University),
both Matlab based (Brainard, 1997; Pelli, 1997). The stimulus
consisted of drifting bar apertures (of 10.2◦ radius) with a
high contrast checkerboard texture on a gray (mean luminance)
background. A sequence of eight different bar apertures
with four different bar orientations (horizontal, vertical, and
diagonal orientations), two opposite motion directions and
four periods of mean-luminance presentations completed the
stimulus presentation that lasted 192 s. To maintain stable
fixation, participants were instructed to focus on a small colored
dot present in the center of the screen and press a button as
soon as the dot changed color. The complete visual field mapping
paradigm was presented to the participant six times, during six
separate scans.

Resting State
During the RS-fMRI scans, the stimuli were replaced by a black
monitor and the lights in the scanning room were turned off.
All participants were instructed to keep their eyes closed, remain
as still as possible, not to fall asleep, and try not to think of
anything in particular.

Data Acquisition
Magnetic resonance imaging (MRI) and fMRI data were
obtained using a 3T Philips Intera MRI scanner (Philips,
Netherlands), with a 32-channel head coil. For each subject, a
high-resolution T1-weighted three-dimensional structural scan
was acquired (TR = 9.00ms, TE = 3.5 ms, flip-angle = 8,
acquisition matrix = 251 mm × 251 mm × 170 mm, field of view
= 256 × 170 × 232, voxel size = 1 mm × 1 mm × 1 mm). Then,
six retinotopy (VFM) functional T2∗-weighted, 2D echo planar
images were obtained (TR = 1500 ms, field of view = 224 mm ×

72 mm × 193.5 mm, voxel resolution of 2.33 mm × 2.33 mm
× 3 mm). Finally two, full brain, resting-state (RS) functional
T2∗-weighted, 2D echo planar images were obtained using the
following parameters: TR = 2000 ms, field of view = 220 mm
× 121 mm × 220 mm, voxel size = 3.44 mm × 3.44 mm ×

3.29 mm. The functional scans were acquired in the following
order: (1) a RS-fMRI scan (RS1) lasted 708 s with a total of 350
volumes; (2) six VFM functional scans were collected, where each
scan lasted for 204 s with a total of 136 volumes; (3) finally, a
second RS-fMRI scan (RS2) with the same characteristic of RS1
(duration of 708 s with 350 volumes) was collected. MRI protocol
differences between VFM and RS scans are due to the fact that RS
was collected at whole-brain while VFM scans were geared to the
visual areas in the occipital brain areas.

Prior to the first VFM scan, a short T1-weighted anatomical
scan with the same field of view chosen for the functional scans

1https://github.com/Psychtoolbox-3/Psychtoolbox-3/

were acquired and used for obtaining a better co-registration
between functional and anatomical volume.

Data Analysis
Preprocessing and standard CF analysis of fMRI data were done
using ITKGray2, FreeSurfer (Fischl, 2012) and mrVista toolbox
for Matlab environment (VISTASOFT)3. The Bayesian pRF and
CF approaches were developed and implemented in Matlab
2016b (The MathWorks Inc., Natick, MA, United States). The
code for the Bayesian pRF and CF frameworks will be made
available via www.visualneuroscience.nl.

For each participant, the structural scan was aligned in a
common space defined using the anterior commissure-posterior
commissure line (AC-PC line) as reference. Next, gray and
white matter were automatically segmented using FreeSurfer
and manually adjusted using ITKGray4, in order to minimize
segmentation errors. Then, all functional data were pre-processed
using mrVista toolbox. For both RS and retinotopy data the
following steps are applied. First, head motion within and
between scans were corrected by using robust multiresolution
alignment of MRI brain volumes (Nestares and Heeger, 2000)
an alignment of functional data into anatomical space and an
interpolation of functional data with segmented anatomical gray
and white matter. For RS-fMRI data, a few additional denoised
steps were applied. These steps were possible since RS scans
were acquired at the whole brain. First, spatial smoothing of
6 mm FWHM was applied in order to perform the denoising
step based on ICA-AROMA that identified noise and motion
related components (Pruim et al., 2015). These components
were then removed from the unsmoothed RS-fMRI data that
are now further filtered by applying a band-pass filter with
high-pass discrete cosine transform with cut-off frequency of
0.01 Hz and a low-pass 4th order Butterworth filter with cut-off
frequency of 0.1 Hz.

Bayesian Population Receptive Field
Mapping Applied to VFM
Retinotopy scans were analyzed using a Bayesian population
receptive field (pRF) framework. For a detailed account see
Prabhakaran et al. (2020), which uses a Markov Chain Monte
Carlo (MCMC) approach to sample the parameter space for the
pRF mapping. Following the nomenclature of Dumoulin and
Wandell (2008), Zeidman et al. (2018), Carvalho et al. (2020),
Prabhakaran et al. (2020), we defined 2D symmetrical Gaussian
kernel centered at (x0, y0) with width defined as the standard
deviation σ, to define the pRF model. The best model fit was
projected onto a smoothed 3D mesh of the cortex. Based on the
obtained parameter-values, visual areas are outlined (V1, V2, V3,
hV4, LO1, and LO2) to act as source (V1) or target region (all
other) for subsequent RS analysis.

2http://www.itk.org
3http://vistalab.stanford.edu/
4http://itk.org
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Standard Connective Field Mapping of
RS Data
In the standard CF model, the optimal CF parameters (CF
position and CF size, which define the 2D symmetric Gaussian
kernel) were estimated based on a procedure that fitted the
time-series for each location in the target region (e.g., V2 or V3)
using a linear combination of the time-series in the source region
(e.g., V1; Haak et al., 2013b). The best fitting models are retained
and projected on a smoothed 3D mesh. The CF parameters
associated with the best fitting model are converted from cortical
units (cortical position) into visual field units (eccentricity and
polar angle). This is done by inferring the pRF properties –
obtained via the Bayesian pRF method Prabhakaran et al., 2020
of the center voxel in the source region for each target location
(Haak et al., 2013b).

Bayesian Connective Field Mapping
Similar to the Bayesian pRF, the Bayesian CF framework uses
a Markov Chain Monte Carlo (MCMC) approach to sample
the source region efficiently. Again we used a 2D symmetric
Gaussian kernel to predict the time series of the target regions.
As in the standard CF modeling, the eccentricity and polar
angle values associated with the CF centers are inferred from a
pRF mapping. For the sake of completeness, the entire fitting
procedure of the Bayesian CF model (option B) is described in
the Supplementary Material.

For each participant, standard and Bayesian-CF models were
estimated for both VFM and RS data. Target and source regions
definitions were based on the Bayesian pRF analysis. For both
Bayesian pRF and CF models, a total of 15000 iterations were
computed, where the first 10% of iterations were discarded
for the burn-in process (Chib, 2011; Liu et al., 2016) and
the posterior probability distributions were estimated on the
remaining samples.

Spatial Analysis
We used Pearson and circular correlations to compare and assess
the topographic organization of eccentricity and polar angle,
respectively, in both standard CF and Bayesian CF maps obtained
on RS and VFM data. The same type of correlations were used
to evaluate similarities in eccentricity and polar angle maps
between the two RS-fMRI scans obtained with standard CF and
Bayesian CF models. Furthermore, we computed the coefficient
of variation (Shoukri et al., 2008) to evaluate the within-subject
reproducibility of CF parameter estimates obtained by using
the standard CF and Bayesian CF. Correlation values higher
than 0.5 and p-values below 0.05 were considered statistically
significant. Moreover, to compare the relation between CF
size and eccentricity RS-based, we binned the eccentricity at
1◦ intervals and applied a linear fit over the mean per bin.
A confidence interval (CI) of the fit was defined by applying a
bootstrap technique 1000 times.

For the spatial analyses, only voxels for which the best-fitting
CF model explained more than 15% of the time-series variance
in the standard CF and eccentricity which is <1◦ and >7◦ were
included. This arbitrary threshold level was chosen based on

previous literature (Winawer et al., 2010; Baseler et al., 2011;
Haak et al., 2012, 2013b).

Finally, the intraclass correlation coefficient (ICC) (McGraw
and Wong, 1996; Perinetti, 2018) was computed to estimate the
test-retest reliability between the two RS-fMRI scans obtained
with standard CF and Bayesian CF models. A priori 5%
strongest activated voxels based on VE was used as threshold
to compute the ICC score. We also report the relation between
ICC and five different thresholds (1%, 5%, 10%, 25% and 50%,
Supplementary Figure 4).

Bayesian Analysis
Based on a quantile analysis of the posterior distribution
(Invernizzi et al., 2020), we computed a voxel-wise uncertainty
measure for each CF parameter by subtracting the upper (Q3) and
lower (Q1) quantile of the posterior distribution. The estimated
uncertainty was computed for both RS and VFM data for each
participant and then projected onto a smoothed 3D mesh of the
cortex. We repeated the same procedure for each CF parameter.

Beta Threshold
Following the procedure reported by Invernizzi et al. (2020)
we test if beta – the scaling amplitude of the predictor to the
amplitude of the measured signal – can serve as data-driven
threshold for RS-data. As a proxy distribution for the null
hypothesis (i.e., no correlation between source and target region),
one surrogate BOLD time series was calculated for each voxel
(Schreiber and Schmitz, 1996; Räth and Monetti, 2009; Lancaster
et al., 2018). A surrogate time series was generated using the
iterative amplitude adjusted Fourier transform method (IAAFT,
Schreiber and Schmitz, 1996; Räth and Monetti, 2009). Then, the
Bayesian CF model was fitted using this surrogate to real time
series of the target region which were unchanged. Based on the
best fit obtained in the MCMC iterations of the surrogate beta-
estimate, we calculated a familywise error (FWE) corrected beta-
threshold for all the voxels in the target region. Based on previous
literature, we selected the cut-off value of the 95th percentile
(Bornmann, 2013; Invernizzi et al., 2020) of the null distribution
as FWE-corrected beta threshold. Finally, we compared the voxel
selection at the single participant level using VE and the FWE
beta-threshold approaches.

RESULTS

The CF maps obtained from RS-based data for eccentricity, polar
angle and CF size were qualitatively comparable for the standard
and Bayesian CF models. In contrast to the VFM data, the relation
with CF size and eccentricity in RS data does not increase with
visual hierarchy. Again, the same behavior was observed using
both methods. No statistically significant difference was found
between the two RS scans for any CF parameter. We estimated the
uncertainty for the Bayesian CF parameters (CF size and beta).
An higher uncertainty from the CF parameters was observed
from both RS scans compared to VFM data and between RS2 and
RS1 scans. Finally, we showed how to use a new threshold based
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on the effect size of the model both in the presence and absence
of visual stimuli.

CF Models Based on RS-fMRI Data
We used V1 as source region while V2, V3, hV4, LO1, and LO2
as target to derive CF maps projected on a smoothed 3D mesh
on a single subject level (Figure 1). Such maps were created
using both standard CF and Bayesian CF models (Figures 1B–E).
Topographical maps for eccentricity, polar angle and CF size were
comparable for both CF models using RS data (Figure 1). We
used the VFM-based maps as reference (Figure 1A) as these maps
show a clear visuotopic organization for all the CF parameters

estimated. Then the same parameters are plotted for all RS scans
(Figures 1B,D: RS-based derived maps using standard CF model;
Figures 1C, E: RS-based derived maps using Bayesian CF model).
Furthermore, a good level of within-subject reproducibility was
observed for each CF parameter estimate for both CF models
using RS scans (Supplementary Table 2).

In line with the earlier work that introduced the standard CF
method (Haak et al., 2013a), we quantified possible differences
between the resulting RS-based CF and Bayesian-CF estimates
by correlating them against the pRF-derived eccentricity and
polar angle parameters that we used as reference (Table 1).
Eccentricity and polar angle parameters are estimated for each

FIGURE 1 | Visualization of CF maps of denoised data for a single participant. From left to right: eccentricity, polar angle, and CF size. (A) Corresponds to VFM
derived estimates. (B,C) Show parameter estimates for the first RS run (RS1) using standard CF and Bayesian CF models, respectively. (D,E) Show parameter
estimates for the second RS run (RS2) using standard CF and Bayesian CF models, respectively. The fact that (B,C) on the one hand, and (D,E) on the other, are
very comparable is important and indicates that the standard and Bayesian CF models produce highly similar results on RS data.
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TABLE 1 | Group level correlation between visual field and resting state maps derived using Bayesian pRF and CF modeling.

Eccentricity

ROIs Standard CF versus pRF

VFM RS1 RS2

r IQR [Q1, Q3] p-value r IQR [Q1, Q3] p-value r IQR [Q1, Q3] p-value

V1 –> V2 0.86 [0.82, 0.91] p < 0.001 0.44 [0.38, 0.54] p < 0.001 0.57 [0.47, 0.62] p < 0.001

V1 –> V3 0.82 [0.76, 0.87] p < 0.001 0.22 [0.13, 0.34] p < 0.001 0.31 [0.17, 0.43] p < 0.001

V1 -> hV4 0.81 [0.73, 0.83] p < 0.001 0.02 [−0.09, 0.40] 0.0048 0.34 [0.04, 0.46] p < 0.001

V1 -> LO1 0.78 [0.72, 0.81] p < 0.001 0.07 [−0.13, 0.24] 0.0018 0.15 [0.04, 0.3] 0.0021

V1 -> LO2 0.63 [0.43, 0.75] p < 0.001 −0.06 [−0.27, 0.17] 0.0154 0.08 [−0.04, 0.27] 0.0567

ROIs Bayesian CF versus pRF

VFM RS1 RS2

r IQR [Q1, Q3] p-value r IQR [Q1, Q3] p-value r IQR [Q1, Q3] p-value

V1 –> V2 0.86 [0.82, 0.91] p < 0.001 0.48 [0.34, 0.57] p < 0.001 0.58 [0.51, 0.63] p < 0.001

V1 –> V3 0.82 [0.77, 0.87] p < 0.001 0.25 [0.09, 0.43] p < 0.001 0.3 [0.16, 0.41] p < 0.001

V1 -> hV4 0.79 [0.73, 0.84] p < 0.001 0.08 [−0.16, 0.35] 0.0085 0.28 [0.06, 0.40] p < 0.001

V1 -> LO1 0.78 [0.72, 0.82] p < 0.001 0 [−0.17, 0.28] 0.0667 0.24 [0.10 0.43] p < 0.001

V1 -> LO2 0.65 [0.54, 0.76] p < 0.001 −0.03 [−0.25, 0.18] 0.0641 0.09 [−0.02, 0.38] 0.2264

Polar Angle

ROIs Standard CF versus pRF

VFM RS1 RS2

r IQR [Q1, Q3] p-value r IQR [Q1, Q3] p-value r IQR [Q1, Q3] p-value

V1 –> V2 0.92 [0.85, 0.93] p < 0.001 0.64 [0.41, 0.82] p < 0.001 0.78 [0.178, 0.84] p < 0.001

V1 –> V3 0.84 [0.78, 0.89] p < 0.001 0.17 [−0.05, 0.82] 0.002 0.26 [−0.53, 0.49] p < 0.001

V1 -> hV4 0.79 [0.51, 0.92] p < 0.001 −0.29 [−0.62, 0.66] p < 0.001 0.54 [−0.31, 0.77] p < 0.001

V1 -> LO1 0.79 [0.55, 0.89] p < 0.001 0.68 [0.34, 0.76] p < 0.001 0.56 [−0.11, 0.72] p < 0.001

V1 -> LO2 0.72 [0.46, 0.76] p < 0.001 0.49 [−0.23, 0.68] 0.0046 0.62 [−0.46, 0.76] p < 0.001

ROIs Bayesian CF versus pRF

VFM RS1 RS2

r IQR [Q1, Q3] p-value r IQR [Q1, Q3] p-value r IQR [Q1, Q3] p-value

V1 –> V2 0.92 [0.87, 0.93] p < 0.001 0.62 [0.40, 0.85] p < 0.001 0.83 [0.39, 0.87] p < 0.001

V1 –> V3 0.84 [0.70, 0.92] p < 0.001 0.17 [−0.03, 0.68] p < 0.001 0.17 [−0.36, 0.48] p < 0.001

V1 -> hV4 0.79 [0.51, 0.92] p < 0.001 −0.34 [−0.55, 0.17] p < 0.001 0.54 [−0.02, 0.71] p < 0.001

V1 -> LO1 0.82 [0.55, 0.90] p < 0.001 0.35 [0.10, 0.64] 0.0045 0.52 [−0.08, 0.79] p < 0.001

V1 -> LO2 0.67 [0.51, 0.82] p < 0.001 0.24 [−0.22, 0.76] 0.0021 0.3 [−0.35, 0.83] p < 0.001

Correlations coefficients were computed in order to assess the level of agreement between the eccentricity (Pearson’s correlation) and polar angle (circular correlation)
estimates obtained by using standard CF and Bayesian CF models and the ones derived by the pRF. We used the VFM-based pRF estimates as reference as stimuli
driven and they further show a clear visuotopic organization for all parameters. Correlation, p-values and interquartile range values were estimated at single subject level
and then concatenated across all participants.

single participant and then concatenated across participants to
calculate the Spearman’s correlation and circular correlation,
respectively. Overall a good agreement was found for V1 > V2
and V1 > V3 areas using both CF models. Negative or almost
zero correlation values can be observed for CF estimates between
distant visual areas (i.e., V1 > LO1, V1 > LO2).

To check the possible influence of the denoise procedure
applied to RS data, the same quantification analysis was
computed on non-denoised RS data. Similar results were
observed indicating that the ICA-AROMA denoise procedure
on RS-fMRI data did not influence the final CF outcomes.
A complete overview of these analyses is reported in
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TABLE 2 | Test-retest evaluation between RS scans.

Eccentricity

ROIs CF standard Bayesian CF

ICC (r) IQR [Q1, Q3] ICC (r) IQR [Q1, Q3]

V1 –> V2 0.9661 [0.943, 0.983] 0.9061 [0.844, 0.948]

V1 –> V3 0.2072 [0.073,0.462] 0.193 [0.074, 0.313]

V1 -> hV4 0.1045 [−0.012, 0.426] −0.006 [−0.065, 0.503]

V1 -> LO1 0.0909 [−0.109, 0.343] −0.0194 [−0.225, 0.235]

V1 -> LO2 0.1036 [−0.184, 0.604] 0.0413 [−0.244, 0.221]

Polar Angle

ROIs CF standard Bayesian CF

ICC (r) IQR [Q1, Q3] ICC (r) IQR [Q1, Q3]

V1 –> V2 0.9295 [0.874, 0.976] 0.8717 [0.720, 0.941]

V1 –> V3 0.3365 [0.179, 0.495] 0.2997 [0.075, 0.463]

V1 -> hV4 −0.027 [−0.081, 0.157] −0.0583 [−0.209, 0.067]

V1 -> LO1 0.0732 [−0.106, 0.536] 0.1944 [−0.053, 0.48]

V1 -> LO2 0.4057 [0.137, 0.734] 0.2635 [0.064, 0.6036]

CF size

ROIs CF standard Bayesian CF

ICC (r) IQR [Q1, Q3] ICC (r) IQR [Q1, Q3]

V1 –> V2 0.2939 [0.168, 0.396] 0.2192 [0.061, 0.344]

V1 –> V3 0.0214 [−0.029, 0.139] 0.0335 [−0.077, 0.201]

V1 -> hV4 −0.0533 [−0.131, 0.147] 0.0717 [−0.042, 0.156]

V1 -> LO1 −0.0308 [−0.153, 0.049] −0.0292 [−0.166, 0.076]

V1 -> LO2 −0.075 [−0.144, −0.017] −0.1147 [−0.141, −0.007]

For eccentricity, polar angle, and CF size estimates obtained by using the standard
CF and the Bayesian CF models. Intraclass correlation coefficients (ICC) were
computed across all participants and for each ROI separately. Median and
interquartile range are computed across the group.

Supplementary Material (Supplementary Figure 1 and
Supplementary Table 1).

Test-Retest Reliability
To estimate test-retest reliability between the two RS scans,
we selected the 5% most active voxels and computed the ICC
score for each parameter estimate obtained using both CF and
Bayesian CF model. For completeness, the relation between ICC
and chosen threshold is displayed in Supplementary Figure 4.
A positive ICC value is reported for V1 > V2 using both models.
For higher order visual areas this ICC value gradually drops
for all parameters Table 2.

Assessing Uncertainty in RS-fMRI Data
In order to estimate a voxel-wise uncertainty value associated
to each CF parameter, we computed a quantile analysis of the
posterior distribution for each participant. Then, for illustrative
purposes, we projected on a smoothed 3D mesh the uncertainty
estimates obtained for a single participant (Figure 2), where
V1 is the source region and V2, V3, hV4, LO1, and LO2

were the target regions; VFM-based CF maps were used as
reference (Figure 2A). An increased uncertainty in beta estimate
in RS1- and RS2-based CF maps was observed compared to
VFM-based CF maps but not for CF size. Interestingly, no clear
uncertainty-related visuotopic organization was found either
for VFM or RS data. Furthermore, we evaluated the possible
dependency between the Bayesian parameter estimates and the
corresponding (posterior) uncertainty by computing the cross-
correlation coefficient between these estimates (Table 3). In line
with the findings reported in Bornmann (2013), Invernizzi et al.
(2020) for VFM data, a weak correlation exists between beta,
sigma parameter estimates and their respective uncertainties
obtained on RS-data (Table 3). Again, this indicates that
uncertainty is an additional, independent parameter, but this time
obtained from resting-state data.

Bayesian CF Thresholding Application
To evaluate the goodness of the corrected beta-thresholding
method in the voxel selection on RS data, we compared the
model VE, each CF parameter and the uncertainty associated,
respectively (Figure 3, CF size and Supplementary Figure 2,
beta parameter). Both thresholds: VE is higher than 15% and
the FWE corrected effect size (>95% Figure 3A; for more
details, see Invernizzi et al. (2020) are indicated. Based on a
direct comparison of FWE beta-corrected threshold (CI) to the
standard VE of the model (Figures 3B,C), the 95% FWE CI-
based threshold proved to be more conservative. Note that it is
not straightforward to identify a point at which the two threshold
definitions will be equivalent.

This threshold was then used to compare the relation between
RS-based CF size and VFM-derived eccentricity. Figure 4 shows
that RS-based CF size does not increase with eccentricity within
the early visual areas. While it is possible to notice an increase
of CF size values with eccentricity only for the later visual
areas (LO1 and LO2), especially in RS2. However, no significant
differences were found between RS1 and RS2 scans in areas along
the visual hierarchy.

DISCUSSION

In this study, we show that 3T RS-fMRI data is suitable for
estimating local functional connectivity between visual cortical
areas. Furthermore, we observed a good level of agreement
between the standard and Bayesian (MCMC) CF models. This
indicates that also the latter tool is suitable for studying the
cortico-cortical properties of brains at rest. The obtained CF
estimates are qualitatively similar to those previously observed
for 7T RS-fMRI data. This further supports that sensitive
estimations and associated uncertainties can be derived from 3T
RS-fMRI data. Finally, we show that a FWE-corrected threshold
can be used as a complementary threshold to the standard
VE to increase the reliability of estimates. This indicates that
both stimulus-driven and RS-based CF modeling are suitable
approaches for use in patient- or single-case studies. Below, we
discuss our findings in more detail.
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FIGURE 2 | Visualization of uncertainty for CF parameter at single participant. From left to right: CF size, uncertainty of CF size, beta, and uncertainty of beta.
(A) Corresponds to VFM derived estimates. While, bottom (B,C) show the parameters and uncertainty estimates for each of the two RS scans.

TABLE 3 | Dependency between Bayesian CF parameters and uncertainties for both RS scan at group level.

V1 > V2 V1 > V3 V1 > hV4 V1 > LO1 V1 > LO2

RS1 CF size Beta CF size Beta CF size Beta CF size Beta CF size Beta

Unc. CF size 0.06 −0.01 0.11 0.04 0.1 0.07 0.15 0.1 0.1 0.09

Unc. Beta −0.03 0.01 −0.01 0.01 −0.04 0.01 −0.03 −0.12 −0.01 −0.01

RS2 CF size Beta CF size Beta CF size Beta CF size Beta CF size Beta

Unc. CF size 0.08 −0.08 0.06 −0.05 0.04 −0.02 0.03 0.02 −0.02 −0.06

Unc. Beta 0.01 −0.01 0.01 −0.02 0.01 −0.03 −0.03 −0.04 −0.02 0.04

Cross-correlations were computed between the estimated Bayesian CF parameters and the uncertainty derived from them. Only the CF parameters directly estimated
using the model (CF size and beta) are included in this analysis. CF size, beta, and their associated uncertainties were estimated at single participant level and then
concatenated across all participants.
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FIGURE 3 | Comparison of thresholding approaches at a single participant level for V1 > V2 connectivity based on RS1 data. In Panel (A) the FWE beta-corrected
thresholds obtained with both 95% CI and the standard VE of the model are shown. A direct comparison between the FWE threshold and the standard VE is
presented in Panels (B,C). Since we are interested in testing this FWE-corrected threshold in different conditions, CF size ∼0 which are discarded. In Panel (B) the
relation between VE and the Bayesian CF size is presented for all voxels (orange diamonds). Blue dots indicate the voxels surviving the 95% CI FWE beta-threshold.
The standard VE threshold is not applied but indicated by a black dotted line. In Panel (C), the relation between VE and the uncertainty associated with the CF size
is presented. Note that high uncertainty can be associated with voxels with a high VE.

FIGURE 4 | Connective field size as a function of VFM- based eccentricity for RS and VFM scans. For both RS and VFM scans, eccentricity was binned in intervals
of 1◦ and a linear fit was applied. The average CF size was calculated only for voxels that survived the FWE 95%CI threshold. Each dot indicates the mean of the CF
size in each bin. The dashed lines correspond to the 95% bootstrap confidence interval of the linear fit. For reference, the VFM data is included.

Comparable CF Estimates Based on
Resting-State and Visual Field Mapping
at 3T fMRI
The CF method was previously used to reveal relevant aspects
of resting-state brain activity using high-resolution 7T-fMRI.
Crucially, in this study, we have extended the CF approach and
assessed its performance at a lower-field strength (3T-fMRI).
Higher magnetic fields can increase the signal-to-noise ratio, the
tissue specificity and the spatial resolution of fMRI recordings.
However, 3T scanners are much more abundant and more often
used in clinical research than 7T ones. Our present findings
indicate that, despite the limited resolution of metabolism-
sensitive measurements such as fMRI for determining the
contribution of neuronal activity to hemodynamic signals, it
is still possible to study the aggregate neuronal population
properties at 3T using CF approaches. A good level of agreement
was found between the CF and Bayesian CF maps estimated from
RS and those estimated based on VFM for all CF parameters in
the early visual areas (Figure 1 and Table 1 – V1 > V2, V1 > V3).
Our quantitative and qualitative results are in agreement with
those presented previously (Haak et al., 2013b; Gravel et al., 2014;

Invernizzi et al., 2020). Qualitatively, we find that the CF maps
obtained at 3T are in fair agreement to those obtained at 7T
(Gravel et al., 2014, Figure 1). Moreover, while we observed
variability in the CF maps estimated for different RS scans, this
was also observed previously at 7T Gravel et al. (2014).

Thus, RS-derived CF maps at least partly reflect the functional
topographic organization revealed by pRF mapping — regardless
of the lower spatial resolution and signal-to-noise ratio afforded
by 3T-fMRI. While higher magnetic field strengths allow for
an enhanced spatiotemporal resolution, the temporal resolution
of fMRI is limited by the hemodynamic response to neuronal
activity, not by the magnetic field strength. This suggests that the
spatially weighted temporal correlations, as captured by the CF
method, suffice to reveal the underlying retinotopically organized
connectivity between areas.

Examining the relationship between CF size and pRF
eccentricity revealed that RS-derived CF size did not increase
with eccentricity, neither within individual areas nor throughout
the visual hierarchy (Figures 2, 4). In contrast, for VFM,
we did find increased CF sizes at higher pRF eccentricities
(Supplementary Figure 3). This was most pronounced for
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higher-order visual area LO2. The same trend was observed in
previous results obtained at 7T (Gravel et al., 2014).

In addition, we investigated whether spatial structure could be
observed in the uncertainty information, which could potentially
be due to large-scale network interactions, physiological
processes or measurement noise. In order to do so, we compared
the uncertainties associated with CF size, effect size (beta) in the
different conditions (Figure 2 and Table 3). However, neither in
the VFM nor in the RS based uncertainty maps did we observe
a clear visuotopic organization (Figure 2). Moreover, for the RS
data, we find only weak correlations between the CF size and beta
and their corresponding uncertainties (correlation <0.25). This is
similar to what we observed previously for VFM data (Invernizzi
et al., 2020). Therefore, we conclude that, given these rather weak
(co)dependencies, the uncertainties can be treated as additional
and independent CF parameters describing the RS state data.

The Effect Size as a New Approach for
Voxel-Wise Thresholding of RS Data
The Bayesian variant of CF modeling, in addition to the
uncertainties for the CF parameters, provides also a parameter
beta describing effect size (β). This parameter can be used to
threshold data in a voxel-wise manner similar to the estimated
Variance Explained (VE). Since VE indicates the goodness of
fit for the model, the current standard approach is to threshold
voxels based on the VE of the model for both VFM and RS
data (Haak et al., 2013b; Gravel et al., 2014; Halbertsma et al.,
2019). However, a high VE does not always correspond to a low
uncertainty in the parameter estimates (Thielen et al., 2019). As
previously shown for VFM data, beta thresholding provides an
alternative thresholding approach (Invernizzi et al., 2020). Here,
we show that a FWE-corrected beta threshold based on the 95%
CI also provides a valid approach for RS data and compares
favorably to VE thresholding (Figure 3 and Supplementary
Figure 2). However, some thought should be given before
applying it to RS data. On the one hand, beta thresholding is
more sensitive in the selection of voxels compared to the standard
VE. Given that RS data is inherently more noisy than VFM data
and this might affect the applicability of beta-thresholding for this
type of scan. On the other, a marked advantage of the FWE beta-
thresholding approach is that it is participant-specific (Invernizzi
et al., 2020). Therefore, using it ensures minimizing the loss of
individual participant data and is expected to be especially useful
when the Bayesian CF framework is applied to RS data acquired
in clinical populations (e.g., with a lesioned visual pathway or
brain neurodegeneration). In general, we conclude that FWE
beta-thresholding is a useful complementary approach to the
standard VE thresholding for both VFM and RS data.

Relationship Between Resting State
Signals and Functional Architecture
Recent studies have shown that indirect measures of intrinsic
neuronal activity, such as spontaneous BOLD fluctuations
recorded during RS, can still reflect the organization of the
neuroanatomical connectivity that characterizes early visual
cortical areas. These studies have allowed the assessment of

both fine-grained within- and between- area interactions. This
observed spatial specificity in spontaneous BOLD fluctuations
can only emerge if these are anchored in the topographically
organized architecture of the visual system, as has been
shown on multiple occasions (Biswal et al., 1995; Baseler
et al., 1999; Azzopardi and Cowey, 2001; Haak et al., 2013b).
However, the neuronal and physiological basis of these BOLD
patterns is still unclear. Whether spontaneous fMRI activity
reflects the consequences of local population spiking activity,
sub-threshold neuronal activity (Logothetis et al., 2001; Shi
et al., 2017), or metabolic relationships between neurons and
astrocytes (e.g., neurovascular coupling) is still a matter of debate
(O’Herron et al., 2016; Pang et al., 2017). It is possible that
retinotopically organized inter-areal BOLD coupling patterns
reflect intrinsic activity in distant cortical areas, sharing similar
selectivity in visual field positions which is likely due to
“hard wired,” i.e., white matter bundle coupling. Alternatively,
these patterns may reflect the footprint of slow fluctuations
that traverse the brain like “waves” (Logothetis and Wandell,
2004; Carandini et al., 2015). Recent studies have unified these
contrasting views by showing that both global fluctuations, in
the form of propagating hemodynamic waves, and transient
local coactivations are necessary for setting the spatial structure
of hemodynamic functional connectivity (Pisauro et al., 2013;
Matsui et al., 2016). Taken together, these studies point to
the multiple roles that neuroanatomical, physiological and
vascular factors play in shaping spontaneous RS activity in a
way that gives rise to visuotopically organized fluctuations in
the BOLD signal. The similar visual field position selectivity
revealed by RS- and VFM-derived CF maps, suggest a shared
neuroanatomical origin.

Limitations and Future Directions
Here, we qualitatively compared local functional connectivity
at different magnetic field strengths obtained in different
participants. For a direct comparison, the 3T and 7T derived
results should ideally be obtained in the same participants.
However, in our view, the differences in the acquisition protocols
are minor and were no reason to burden a new cohort
of participants to obtain new scans. Nevertheless, while we
indeed report a good level of agreement between the CF
estimates obtained using the RS and VFM scans, future studies
should consider using identical MR parameters for the VFM
and RS scans. Moreover, such future studies could investigate
the correlations in the temporal and spatial domain in the
cortex extending the Bayesian CF model to capture distinct
dynamics in functional connectivity, and their relationship to
different cognitive and behavioral states, both in health and
disease. Furthermore, such studies could also consider the
influence of high frequency fluctuations (above 0.1 Hz) in the
spontaneous BOLD signal (Chen and Glover, 2015) on CF
parameter estimates. Finally, the stimulus-agnostic and eye-
movement independent character of the CF analysis invites
applying the present approach also to other cortical regions,
such as those involved in auditory, somatosensory, or motor
processing (Knapen, 2020).
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CONCLUSION

We have shown that CF modeling is a suitable tool to characterize
and quantify the local functional connectivity of visual cortical
areas during resting state at 3T. Moreover, the CF modeling at 3T
provides qualitatively similar results to those previously observed
at 7T, indicating that this lower, yet much more commonly
available, field strength would be sufficient for characterizing the
brains of patients and individual cases. Finally, we show that
our novel Bayesian CF modeling approach provides additional
and independent parameters such as uncertainty and effect size
that, in principle, can be used to compare the local functional
connectivity over different conditions, models and/or groups and
assess the statistical significance of the modeling.
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Supplementary Figure 1 | Visualization of CF maps of non-denoised and
denoised RS data for a single subject. From left to right: eccentricity, polar angle
and CF size. (A) corresponds to VFM derived estimates. It is reported to serve as
reference for estimates obtained using RS data. (B,D) show CF parameters for
each RS run before applying ICA-AROMA denoising procedure. While (C,E) show
CF estimates for RS1 and RS2 after applying the denoised procedure.

Supplementary Figure 2 | Comparison of thresholding approaches on a single
subject level in V1 > V2 area using RS1 data. In (A) the relation between VE and
the beta parameter is presented for all the voxels (orange diamonds) and only for
the ones surviving the 95% CI FWE beta-threshold (blue dots). The standard VE
threshold is not applied but indicated by a black dotted line. In (B) the relation
between VE and the uncertainty associated with beta is presented.

Supplementary Figure 3 | Connective field size as a function of pRF eccentricity
for RS scans. For standard and Bayesian CF models, eccentricity was binned in
intervals of 1◦ and a linear fit was applied. The CF size was initially weighted with
variance explained higher than 0.15. Each dot and triangle indicate the mean of
the CF size for each bin. While the dashed lines correspond to the 95% bootstrap
confidence interval of the linear fit. In (A) CF models were applied to RS1 scan
while, in (B) to RS2 scan.

Supplementary Figure 4 | Evaluation of different VE thresholds on ICC. In order
to evaluate a viable VE threshold applied on the test-retest analysis, we evaluate
the influence of using five different% of strongest activated voxels based on VE
(1%, 5%, 10%, 25%, and 50%) on the final ICC (r) across ROIs (A–E). Each
participant is represented by a colored lines.

Supplementary Table 1 | Correlation between non-denoised and denoised CF
maps obtained from RS data at group level. To estimate and compare the level of
agreement between not-denoised and denoised CF maps that were obtained
from RS1 and RS2 scans by using the standard CF model, we computed the
Pearson’s correlations for the eccentricity (rho) and the circular correlation for the
polar angle (theta) parameters. In order to compute the correlation scores,
eccentricity and polar angle parameters were estimated at single subject level and
then concatenated across all participants.

Supplementary Table 2 | Within-subject variability of CF parameter estimates.
For standard and Bayesian CF models, we estimated the coefficient of variation to
evaluate the within-subject reproducibility of eccentricity and polar angle estimates
for both RS scans. The coefficient of variation is reported for each visual area and
for each participant.
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The right parietal lobe plays an important role in body image, and disorders of body
image emerge after lesions in the parietal lobe or with parietal lobe epilepsy. Body
image disorder also often accompanies upper-limb amputation, in which the patient
misperceives that their missing limb is still part of their body. Cortical reorganization is
known to occur after upper-limb amputation, but it is not clear how widespread and to
what degree functional connectivity (FC) is reorganized post-amputation, nor whether
such changes might be related to misperceptions of body image. Twenty-four subjects
who had a traumatically upper-limb amputees (ULAs) and 24 age-matched healthy
controls (HCs) underwent resting-state functional magnetic resonance imaging (rs-fMRI)
scans. Regions of interest (ROIs) in the right superior parietal gyrus (SPG_R) and right
inferior parietal lobule (IPL_R) were defined using BrainNet Viewer. We calculated the
amplitude of low-frequency fluctuations (ALFF) in ROIs and correlated the ROI mean
amplitude of low-frequency fluctuations (mALFF) and mean scores on the phantom
limb sensation (PLS) scale and beck depression index (BDI). We also calculated ROIs
and whole-brain FC. Compared to the HC group, we observed significantly increased
activation (mALFF) in ROIs of the ULA group. Moreover, correlation analyses revealed
a significant positive correlation between ROI mALFF and scores on the PLS. There
was a significant negative correlation between the SPG_R mALFF and BDI scores.
Seed-based, whole-brain FC analysis revealed that FC in the ULA group significantly
decreased in many brain regions across the entire brain. The right parietal lobe appears
to be involved in some aspect of body awareness and depression in amputation
patients. Upper-limb amputation results not only in reorganization in the local brain
area formerly representing the missing limb, but also results in more widespread
reorganization through FC changes in whole brain.

Keywords: amputation, body image disorder, phantom sensation, phantom pain, functional magnetic resonance
imaging, functional connectivity, ALFF
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INTRODUCTION

Limb amputation is an important health issue affecting the
quality of life of untold numbers of people worldwide (Pomares
et al., 2018). In the United States, for example, the number of
limb amputees continues to increase, mostly due to increases in
the number of traumatic injuries resulting from traffic accidents
and natural disasters, and amputations related to diabetes and
malignant tumors of limbs (Varma et al., 2014). This increasing
trend can be seen worldwide, with 1.5 amputations being
performed per 1000 people. Although amputation can save
lives, the risk of many types of medical complications remains.
Moreover, sensory disorders and psychological problems can be
present (Armstrong et al., 2019).

Phantom limb pain (PLP), residual limb pain (RLP), and
phantom limb sensation (PLS) are the most common clinical
complications of amputations (Woodhouse, 2005; Kaur and
Guan, 2018; Stover and Prahlow, 2020). Recent studies indicate
that 60–80% of amputees experience phantom pain and
approximately 80–100% experience phantom sensation (Jensen
et al., 1983; Urits et al., 2019). Faced with such high incidences
of complications, much basic research has focused on better
understanding quality-of-life reducing complications, especially
those involving PLP. Theories explaining PLP mainly involve
peripheral, central, and supraspinal mechanisms (Flor, 2002; Flor
et al., 2006). Despite various useful treatments for PLP (Erlenwein
et al., 2021), it still cannot be completely resolved clinically and
thus continues to seriously affect amputees’ quality of life.

Another consequence of upper-limb amputations is body
image disorder. Body image disorder, or disturbance, refers to
several different conditions in which a person’s body image
mismatches reality; that is, the patient feels extreme anxiety
and fear associated with an imagined or minor physical flaw,
which significantly impedes normal, everyday functioning. Body
image disorder comprises several different body disturbances
recognized by the DSM-V, including body dysmorphic disorder
and muscle dysmorphia, among others. Basic perceptual
functions of patients are normal, but the existence of their
own body parts, their spatial position, and the relationship
between each part are distorted (Demirdel and Ülger, 2021).
Amputees often suffer from body image disorders. For example,
even though their limb is absent, they perceive that their
limb still is present. This kind of disturbance in body image
has been linked to various negative psychosocial outcomes,
ones involving perceptual, affective, cognitive, evaluative, and
behavioral disturbances (McDonald et al., 2014; Luza et al., 2020).

Many studies have investigated the reorganization of
the nervous system after amputation, but usually from the
perspective of understanding PLS. PLS may be the result of
ongoing neuroplasticity (Mercier et al., 2006; Di Pino et al., 2009).
Other studies have reported strong correlational relationships
between PLS and the degree of cortical reorganization (Wheaton,
2017). A separate line of research on body image disorders
shows that the right parietal cortex is prominently involved in
the disorder. The right parietal cortex represents a higher-order
convergence zone of somatosensory, visual, and vestibular input
that is critical for sensorimotor integration (Wolpert et al., 1998).

This integration of sensory information with motor intention
and actions represents the core of a unified sense of the body
in space (Tsakiris, 2010). We are unaware of any relevant
research on whether brain remodeling in the parietal lobe
after amputation might be related to body image disorders in
upper-limb amputees (ULAs).

Resting-state functional magnetic resonance imaging (rs-
fMRI) is a promising tool for analyzing brain function
remodeling and functional connectivity (FC). rs-fMRI studies
represent a significant approach for researching different diseases
and disorders at the brain-network level (Smitha et al., 2017).
rs-fMRI does not require participants to perform any complex
sensorimotor task; it monitors intrinsic activity within the brain,
in the absence of any sensory or cognitive stimulus. Resting-state
FC analysis has been used to study network-level reorganization
of FC following arm amputation, and has revealed reduced FC
between neocortical areas associated with the missing hand and
the sensorimotor network in amputees (Makin et al., 2015).

Since PLS are manifested in an incorporeal body part, they
can be regarded as one type of body image disorder, one that is
closely related to changes in the right parietal lobe (Sadibolova
et al., 2019). Prompted by the above considerations, we predict
that the right parietal lobe in ULAs will undergo changes in
plasticity and FC integration, which might be detected with rs-
fMRI and network analysis (Smitha et al., 2017). Therefore, the
aim of the present study was to characterize right parietal lobe
plasticity following upper-limb amputation and to determine its
relationship to the phenomenology of PLS.

MATERIALS AND METHODS

Participants
Characteristics of participating subjects are summarized in
Table 1. Twenty-four individuals (19 male and 5 female) with
acquired unilateral upper-limb amputation (mean age ± SD:
44.67 ± 8.33; 15 patients with amputations on the right side)
were recruited through the department of orthopedic surgery of
a large metropolitan tier 1 hospital in China between October
2020 and December 2020. Thirteen amputations occurred above
the elbow and 11 occurred below the elbow. All the patients
underwent amputation following a traumatic injury. Exclusion
criteria were the following: (1) upper-limb amputation along
with another part of the body; (2) history of neurological
disease, diabetes, or previous neurotrauma; (3) presence of
neurological or psychiatric disorders; (4) elapsed time between
amputation and MRI scanning was <3 months; (5) history of
psychotropic drug use or (6) MRI contraindication. Twenty-
four limb-intact individuals matched for age (mean age, range
in years); education; and sex served as healthy controls (HCs).
These participants were recruited from the local community. All
subjects were right-handed, as assessed by the Chinese version
of the Edinburgh Handedness Inventory (Yang et al., 2018).
Each participant was informed of the purpose and methods
of the study, and each signed a written informed consent to
participate. The study was approved by the ethics committee
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TABLE 1 | Demographic and clinical characteristics of participating upper-limb amputees.

Subject no. Age/sex Side/level of amputation Education (years) Time* RLP† PLP‡ PLS§ BDI BAI

1 29/M L/AEA 7 38 1 2 7 2 3

2 44/F R/BEA 12 36 0 1 4 1 7

3 41/M L/AEA 9 32 6 4 9 1 1

4 41/M L/BEA 9 30 1 1 1 5 21

5 38/M R/AEA 9 34 2 3 10 3 4

6 56/M L/BEA 0 43 6 6 8 22 33

7 48/F R/AEA 8 32 6 6 4 13 9

8 42/M R/AEA 2 47 1 1 5 7 28

9 52/M R/AEA 8 26 7 6 3 33 46

10 41/M L/AEA 9 18 5 8 6 17 17

11 54/M L/AEA 5 264 5 5 9 1 8

12 59/M R/AEA 10 5 0 3 7 9 2

13 47/M L/BEA 12 26 1 0 4 12 3

14 42/M L/BEA 8 46 0 0 2 6 4

15 50/M R/AEA 8 348 0 2 8 2 1

16 39/M R/BEA 7 60 0 0 10 4 15

17 44/M R/BEA 12 48 1 1 6 4 5

18 45/F R/AEA 3 7 3 7 3 4 27

19 37/M R/BEA 22 4 5 7 10 3 5

20 40/M R/AEA 12 48 7 5 8 17 11

21 27/M R/BEA 15 51 1 0 4 2 0

22 60/F R/BEA 3 300 3 2 7 19 22

23 43/M L/AEA 8 252 2 0 10 1 1

24 53/F R/BEA 8 432 0 0 6 6 4

M, male; F, female; R, right; L, left; AEA, above the elbow; BEA, below the elbow; RLP, residual limb pain; PLP, phantom limb pain; PLS, phantom limb sensation; Chinese
version of BDI, beck depression index, 0 = Not at All to 63 = severe; Chinese version of BAI, Beck anxiety inventory, 0 = Not at All to 63 = severe.
*Elapsed time in months from amputation.
†Residual limb pain, 0 = none to 10 = worst imaginable at time of MRI.
‡Phantom limb pain, 0 = none to 10 = worst imaginable at time of MRI.
$Phantom Limb Sensations, 0 = none to 10 = worst imaginable at time of MRI.

of our institution and performed according to international
standards (World Medical Association., 2013).

Clinical Assessments
Clinical assessments were done before fMRI scanning. An
adapted questionnaire for upper limb amputation was used
to collect information about amputation-related variables. The
adaptations assessed the level of amputation, side of amputation,
elapsed time (months) since amputation, previous treatment
approaches, and whether they were effective or not. We also
assessed RLP; PLP; and the frequency, quality, and type of PLS.
Pain was measured with a visual analog scale assessment tool, on
which self-reported pain is scored on a scale from 0 (no pain) to
10 (worst imaginable pain). As a visual indicator of pain, this scale
was also color-coded with a gradient of green (at 0) to red (at 10).
Participants were asked to rate the presence and intensity of pain
related to PLP. Similar scales were used to assess RLP, stump pain,
and PLS, and non-painful sensations. Depression and anxiety,
respectively, was evaluated using the Chinese versions of the Beck
Depression Index (BDI) and Beck Anxiety Index (BAI).

MRI Scanning and Image Acquisition
For image acquisition of functional and structural data, we
used a Siemens 3.0-T MRI scanner (MAGNETOM Prisma;

Siemens Healthcare GmbH, Erlangen, Germany) equipped
with a 64-channel phased-array head coil. Rs-fMRI data were
collected via simultaneous multi-slice MRI technology for
a total of 240 volumes (288 s). The following parameters
were used: repetition time (TR) = 1200 ms; echo time
(TE) = 39 ms; flip angle = 52◦; matrix = 88 × 88; field of
view = 100 mm; slice thickness = 2.4 mm; 56 slices with
a voxel size = 2.4 mm × 2.4 mm × 3.0 mm. During the
resting-state scan, subjects were asked to relax with their eyes
closed and not to think of anything in particular. In addition,
for each participant we acquired high-resolution T1-weighted
structural images using a magnetization-prepared rapid gradient
echo (MPRAGE) pulse sequence. The following parameters
were used: TR = 2300 ms; TE = 2.46 ms; flip angle = 8◦;
matrix = 256 × 256; thickness = 1.0 mm; 176 slices with a voxel
size = 1 mm × 1 mm × 1 mm.

Data Preprocessing
Preprocessing was performed using Statistical Parametric
Mapping (SPM121) implemented in MATLAB R2013b
(MathWorks Inc., Natick, MA, United States). To allow the
signal to reach equilibrium and the participants to adapt
to the scanner noise, data collection began after 10 images

1http://www.fil.ion.ucl.ac.uk/spm
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FIGURE 1 | Regions of interest (ROIs) for network analysis of rs-fMRI data of
upper-limb amputees (ULA) and healthy control (HC) subjects.
Three-dimensional rendering showing the approximate locations of ROIs
(colored patches) in parietal cortex. SPG_R, right superior parietal gyrus (red);
IPL_R, right inferior parietal lobule (green).

were collected; thus, these first 10 scans of each subject were
discarded. The remaining 230 images of each subject were
co-registered to the individual anatomical data sets after the
anterior commissure had been manually defined as the reference
point. For all subjects, the translation or rotation parameters
did not exceed ±2.5 mm or ±2.5◦, respectively. To further
reduce the effects of confounding factors, including signals
from white matter and cerebrospinal fluid, the mean time series
of all voxels across the whole brain were removed from the
data via linear regression. The resulting maps were spatially
normalized into a standard stereotaxic space at a resolution of
3 mm × 3 mm × 3 mm using an echo-planar imaging template.
After normalization, the images were smoothed using the full
width at half maximum of the Gaussian kernel of 6 mm to
decrease spatial noise.

Seed Selection Using mALFF and FC
Analyses
We analyzed the mean amplitude of low-frequency fluctuations
(mALFF) and FC to define body image disturbance-related
brain regions in patients with upper-extremity amputations. We
selected two cortical areas from a freely available atlas of regions
defined by correlated activation patterns (Shirer et al., 2012).
These regions of interest (ROIs) were the right superior parietal
gyrus (SPG_R) and right inferior parietal lobule (IPL_R). Two
ROIs of cortical regions were visualized with BrainNet Viewer
(Xia et al., 2013; Figure 1).

Before calculating the amplitude of low-frequency fluctuations
(ALFF) value in our participants’ ROIs, all subject-level data were
preprocessed to remove any signal variations and noise using
the detrend and nuisance covariate regression features of the
Resting-State fMRI Data Analysis Toolkit plus V1.2 (RESTplus

V1.22 (Song et al., 2011). The data were detrended to reduce
low-frequency drift. Linear regression of the global mean signal,
head motion parameters, cerebrospinal fluid signal, and white
matter signal was performed to remove the effects of nuisance
covariates. We calculated the mALFF value of all the subjects’
ROIs (SPG_R and IPL_R). Next, we extracted the mALFF
value of each subject’s ROIs and correlated it with the subject’s
clinical scale scores.

Before calculating ROIs and whole-brain FC, all subject-
level data were preprocessed with detrend, nuisance covariate
regression, and band-pass filter. The data were detrended to
reduce low-frequency drift. Linear regression of global mean
signal, head motion parameters, cerebrospinal fluid signal, and
white matter signal was executed to remove the effects of nuisance
covariates. The data were processed with a temporal band-pass
filter (0.01–0.08 Hz) to reduce low-frequency drift and high-
frequency physiological noise. Then, FC analysis was performed
using the Resting-State fMRI Data Analysis Toolkit plus V1.2
(Song et al., 2011). Based on the literature and the ALFF
results, SPG_R and IPL_R were defined as the FC ROI. Next,
we performed seed-based whole-brain voxel-wise FC analysis
by computing the temporal correlation between the mean time
series of the ROIs and the time series of each voxel within the
brain. Pearson correlation coefficient maps were created for each
individual subject, and these were converted to z-values using the
Fisher z transformation.

Statistical Analysis
Analysis of Demographic and Clinical Characteristics
After validating the normality assumption, two-tailed two sample
t-tests and chi-square tests (only for sex) were performed to
compare the demographic and clinical data from the two groups
(SPSS 24.0; SPSS, Inc., Chicago, IL, United States). Significance
level was set at p < 0.05.

Analyses of ROIs mALFF
Independent sample t-tests were used for comparing differences
of mALFF between ULA and HC groups. Significance thresholds
for t-tests were set at p < 0.05; thresholds were corrected with
the AlphaSim module of Analysis of Functional NeuroImages
(AFNI) software3 (Cox, 1996). The results were viewed
with bspmview, a graphical user interface for overlaying,
thresholding, and visualizing 3D statistical neuroimages in
MATLAB. The specific anatomical location of the brain regions
with statistical significance in the Montreal Neurological Institute
(MNI) atlas template was also determined in bspmview.
mALFF values were represented by t-values: t > 0 indicated
increased functional activity and t < 0 indicated decreased
functional activity.

Relationships Between mALFF and Clinical
Characteristics
To quantify the relationship between mALFF values of ROIs and
clinical variables, correlational analyses were performed between

2http://restfmri.net/forum/rest_v12
3https://afni.nimh.nih.gov/
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TABLE 2 | Statistical comparison of participants’ demographic and clinical characteristics.

Characteristic ULA (n = 24) HC (n = 24) t-Value or χ2 p-Value

Age (mean ± SD) 44.67 ± 8.33 44.88 ± 12.03 −0.07 0.945

Education (year; mean ± SD) 8.58 ± 4.52 8.04 ± 6.05 0.352 0.727

Sex (male/female) 5/19 11/13 3.375 0.066

Elapsed time since amputation (month; mean ± SD) 92.79 ± 123.34 – –

Age at amputation (year; mean ± SD) 37.13 ± 10.18 – –

Side of amputation left/right (no.) 9/15 – –

Amputation above/below elbows (no.) 13/11 – –

ULA, upper-limb amputees; HC, healthy controls.

FIGURE 2 | Significant increases in rs-fMRI activity of right parietal lobe months after upper-limb amputation. ROIs showing significant differences in mean amplitude
of low-frequency fluctuations (mALFFs) in SPG_R and IPL_R (ULA vs. HC subjects; p < 0.05; AlphaSim corrected cluster). MRI slices of patients in transverse,
frontal, and axial planes with color-coded t-values overlaid. Color-coded scale indicates increasing positive t-values toward yellow. SPG_R, right superior parietal
gyrus; IPL_R, right inferior parietal lobule; ULA, upper-limb amputee; HC, healthy control.

the mALFF values of ROIs and RLP, PLP, PLS, BDI, and BAI
scores in ULAs. A two-tailed partial correlation analysis was used
after controlling for age, sex, educational level as confounding
variables and used multiple comparisons to correct p-values
(p < 0.05).

Analyses of FC
For seed-based whole-brain voxel-wise connectivity, two-tailed
two-sample t-tests were performed to evaluate group-related
differences between the ULAs and the HCs. Significance
threshold for t-tests was set at p < 0.01 (AlphaSim corrected).
The covariates of age, sex, and educational level were controlled.
These statistical analyses were carried out with the SPM12
toolbox.4

4https://www.fil.ion.ucl.ac.uk/spm/

RESULTS

Demographic and Clinical
Characteristics
Table 2 shows the demographic and clinical characteristics of
ULA and HC participants. No significant group differences were
observed regarding age, sex, or education (p > 0.05).

ROIs mALFF
Compared to the HC group, the ULA group showed a significant
increase in mALFF values of both the SPG_R and IPL_R
(p < 0.05; AlphaSim corrected cluster; see Figure 2).

Correlations Between ROIs mALFF and
Clinical Characteristics
Correlational analyses identified a significant positive correlation
between the mALFF values of IPL_R and PLS scores of the
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FIGURE 3 | Sensory and emotional disturbances after upper-limb amputation.
Correlations between ULA participants’ mALFF values in the ROIs and their
clinical characteristics. (A) Scatter plot and statistically significant linear
relationship between mALFF values of IPL_R and PLS scores (r = 0.707;
p < 0.001). (B) Scatter plot and statistically significant linear relationship
between mALFF values of SPG_R and PLS scores (r = 0.674; p < 0.001).
(C) Scatter plot and statistically significant linear relationship between mALFF
values of SPG_R and BDI score (r = −0.515, p = 0.01 < 0.05). SPG_R, right
superior parietal gyrus; IPL_R, right inferior parietal lobule; PLS: phantom limb
sensation; ULA, upper-limb amputee.

TABLE 3 | Decreased functional connectivity in ULA participants with seed region
in the IPL_R*.

Brain region Cluster size
(voxels)

Peak coordinates (x/y/z; MNI) t-Value

Temporal_Mid_R 238 57 −39 −3 −4.370

Temporal_Sup_R 45 −15 −6 −2.899

Cerebelum_L 102 −27 −63 −57 −4.354

Precentral_L 282 −33 −15 60 −3.961

Paracentral_Lobule_L −18 −27 69 −3.113

Insula_L 430 −42 12 −9 −3.957

Temporal_Sup_L −60 −15 12 −3.624

Lingual_R 157 21 −93 −12 −3.826

Occipital_Inf_R 42 −93 −6 −3.758

Cerebelum_L 154 −24 −78 −21 −3.493

Precentral_R 176 57 −6 48 −3.753

Frontal_Mid_R 45 12 54 −3.387

*Compared with functional connectivity of HC group (p < 0.01; AlphaSim
corrected; voxels > 100); MNI, Montreal Neurological Institute coordinate system.

ULA group (r = 0.707, p < 0.001; Figure 3A), and a significant
positive correlation between the mALFF values of SPG_R and
PLS scores of the ULA group (r = 0.674, p < 0.001; Figure 3B).
The analyses also identified a significant negative correlation
between the mALFF values of SPG_R and BDI scores of the ULA
group (r = −0.515, p = 0.01 < 0.05; Figure 3C).

Seed-Based Whole-Brain FC
Comparison of the brain connectivity maps of ULAs and HCs
revealed significantly decreased FC between the IPL_R seed and
many brain regions in the ULA group (p < 0.01; AlphaSim
corrected cluster; see Table 3 and Figure 4). In the ULA group, we
also observed decreased FC between the SPG_R and many brain
regions (p < 0.01; AlphaSim corrected cluster; see Table 4 and
Figure 5).

DISCUSSION

PLP and PLS are essentially illusions, misinterpreted perceptions
that the limb is still present after it has been amputated.
Approximately 41–76% of limb amputees report persistent PLP
and PLS (Ahmed et al., 2017). This condition can be considered
to be a type of body image disorder, since a coherent body image is
absent (Casale et al., 2009). Due to the loss of afferent and efferent
nerves in amputees, extensive cortical remodeling occurs. This
plasticity represents one of the key mechanisms that lead to PLP
and PLS (Makin and Flor, 2020).

The reorganization in the cerebral cortex after limb
amputation is sensorimotor in nature (MacIver et al., 2008)
and is believed to originate from post-amputation changes
in callosal connections (Giummarra et al., 2007) or from
“unmasking” of latent brain circuits that arise from permanent
changes in synaptic structure (Ramachandran and Rogers-
Ramachandran, 2000). Although many ULAs report PLP and
PLS, non-painful phantom sensation that is related to cortical
reorganization in amputees is controversial (Flor et al., 2006).
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FIGURE 4 | Seed-based functional connectivity maps of right inferior parietal lobe (IPL_R) in ULAs based on rs-fMRI. Compared to HC subjects, ULA subjects
showed decreased functional connectivity between the seed region in the IPL_R and various brain regions (p < 0.01; AlphaSim corrected; voxels > 100). ULA,
upper-limb amputee; HC, healthy control.

The aim of the present study was to determine whether right
parietal lobe plasticity following upper-limb amputation is
related to aspects of PLS and body image.

Traditionally, body image disorders have been associated with
damage to the convexity of the right parietal lobe posterior to the
post-central gyrus (area S1) (Roth, 1949). The posterior parietal
lobe is divided into the superior posterior gyrus (SPG) and
inferior posterior lobules (area IPL) (Berlucchi and Vallar, 2018).
Since the right SPG receives inputs from the dorsal visual stream
(S1 and S2), the premotor cortex, and M1 (Van Essen et al., 2019),
it seemed reasonable that the right SPG is strategically positioned
to integrate disparate sensory inputs to construct a dynamic body
image (Felleman and Van Essen, 1991). Therefore, we speculate
that the disruption in body image after upper-limb amputation
might be related to right parietal lobe remodeling.

Our rs-fMRI results revealed that the mALFF values of the
ULA group were increased in both the SPG_R and IPL_R
regions compared to those of the HC group. ALFF represents
the intensity of local brain activity. Thus, we conclude that right
parietal lobe activity increases after upper-limb amputation. This
finding is consistent with related research (Flor et al., 2000; Foell
et al., 2014). Increased activity in the right parietal lobe may
represent functional compensation related to limb deficiencies.

Xenomelia is another kind of body image disorder that is
often accompanied by the patient’s desire to self-amputate a
healthy limb (McGeoch et al., 2011). Several studies confirm that
reduced function of the right parietal lobe underlies this type
of mental illness (McGeoch et al., 2011; Hilti et al., 2013). It is
interesting that these two conditions – xenomelia and PLS – may
be accounted for by opposite processes: A functional decrease

TABLE 4 | Decreased functional connectivity in ULA participants with seed region
in the SPG_R*.

Brain region Cluster size
(voxels)

Peak coordinates (x/y/z; MNI) t-Value

Temporal_Inf_L 1152 −45 −30 −27 −4.963

Frontal_Inf_Tri_L −57 24 9 −4.794

Temporal_Pole_Mid_L −48 12 −30 −4.751

Temporal_Sup_L 358 −54 −42 15 −4.670

Temporal_Mid_L −63 −42 −6 −3.747

Frontal_Sup_L 598 −27 −9 69 −4.669

Postcentral_L −45 −33 63 −4.217

Precentral_L −45 −12 60 −4.048

Lingual_R 571 27 −72 0 −4.363

Fusiform_R 27 −51 −15 −3.825

Occipital_Inf_R 36 −87 −15 −3.619

Lingual_L 464 −9 −90 −18 −4.258

Postcentral_R 180 69 −12 27 −4.016

Temporal_Mid_R 308 63 −45 6 −4.004

Temporal_Inf_R 69 −39 −21 −3.619

Temporal_Sup_R 48 −54 21 −3.451

Frontal_Sup_Medial_R 111 12 51 45 −3.722

*Compared with functional connectivity of HC group (p < 0.01; AlphaSim
corrected; voxels > 100); MNI, Montreal Neurological Institute coordinate system.

in the right parietal lobe is correlated with a xenomelia patient’s
desire to amputate a healthy limb, whereas a functional increase
in the right parietal lobe is correlated with an amputee’s PLS.
Both conditions are body disorders. Our present correlation
analyses revealed a significantly positive correlation between
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FIGURE 5 | Seed-based functional connectivity maps of right superior parietal lobe (SPG_R) in ULAs based on rs-fMRI. Compared to HC subjects, ULA subjects
showed decreased functional connectivity between the seed region in the SPG_R and various brain regions (p < 0.01; AlphaSim corrected; voxels > 100). ULA,
upper-limb amputee; HC, healthy control.

mALFF values in IPL_R and SPG_R with PLS scores in the ULA
group. We can infer that there may be a certain relationship
between abnormal activation of the right parietal lobe and PLS.
Thus, the function of the right parietal lobe after upper-limb
amputation appears to dramatically change, affecting the quality
of life of amputees.

Two different brain regions that are anatomically connected
are more likely to be functionally connected (Smitha et al.,
2017). With the assistance of linear temporal correlation,
FC analyses using rs-fMRI data can establish that two
spatially separate ROIs are connected functionally. These kind
of data make it possible to analyze and understand the
occurrence and development of a brain disorder to some extent
(Park et al., 2018).

Through seed-based whole-brain FC calculations we found
that IPL_R and SPG_R regions in ULAs exhibit decreased
functional connections with many areas throughout the brain,
including lingual area, precentral area, frontal area, insula
area, among others (Figures 4, 5). Related studies on post-
amputation changes corroborate our finding that remodeling of
brain function is not limited only to local sensorimotor areas in
the brain that represent the respective limb (Makin et al., 2015;
Zhang et al., 2018; Molina-Rueda et al., 2019). How might these
widespread changes be manifest behaviorally?

Amputee patients with a body image disorder often have
reduced sensorimotor function, emotional disorders, and
compromised social skills (Ko et al., 2015). The present
study showed that the occipital lobe, which is involved in
the expression of body image disorders, has varying degrees
of reduced FC with brain areas that control sensorimotor

functions and brain areas that are involved in depression
and social emotions. Thus, upper-limb amputation is more
than simply removal of a limb. When we did correlation
analyses, we found that there are significant negative
correlations between the mALFF values of SPG_R and BDI
scores in amputees (see Figure 3C). We speculate that the
depression scores may be related to a reduction in functional
connections between SPG_R and frontal areas, because the
dorsolateral superior frontal gyrus is the most important
brain area associated with depression. These findings have
important implications for rehabilitation. When aiming to
improve remodeling of local brain areas related to the missing
limb representation, it is also important to consider how
to maintain FC of more remote brain areas involved in
other cognitive and emotional functions affected indirectly
by the amputation.

Our study has certain limitations that should be considered
when interpreting the results. First, there was a limited number
of subjects due to difficulty in recruiting ULAs. Of course, in
future studies, more efforts will be made to recruit more upper
limb amputees, so that the time and length of amputation can be
effectively and reliably controlled. Second, selection bias may be
present, because amputees self-selected to participate, meaning
that this cooperation may relate to higher social adaptability.
Third, physiological noise, such as respiratory and heartbeat
fluctuations, may have influenced the stability of the rs-fMRI
signals during scanning. However, we have no reason to believe
that this variable would be systematically distributed to either the
experimental or control group. Taken together, these limitations
mean that large-scale longitudinal studies are needed for studying
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resting-state brain function in brain regions of patients with
upper-limb amputation.

CONCLUSION

Our investigation of the functional organization of
parietal lobes in ULAs suggests that post-amputation
reorganization is a complex phenomenon that includes
functional reorganization in local areas of the respective
cortical limb representations and in the degree of FC
across wide areas of the brain. With further research,
these results provide a reference for directing postoperative
rehabilitation of not only upper-limb amputation patients
but also perhaps a “road map” for investigations of other
types of amputation.
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The low rates of treatment response still exist in the pharmacological therapy of major
depressive disorder (MDD). Exploring an optimal neurological predictor of symptom
improvement caused by pharmacotherapy is urgently needed for improving response
to treatment. The amygdala is closely related to the pathological mechanism of MDD
and is expected to be a predictor of the treatment. However, previous studies ignored
the heterogeneousness and lateralization of amygdala. Therefore, this study mainly
aimed to explore whether the right amygdala subregion function at baseline can
predict symptom improvement after 12-week pharmacotherapy in MDD patients. We
performed granger causality analysis (GCA) to identify abnormal effective connectivity
(EC) of right amygdala subregions in MDD and compared the EC strength before and
after 12-week pharmacological therapy. The results show that the abnormal EC mainly
concentrated on the frontolimbic circuitry and default mode network (DMN). With relief
of the clinical symptom, these abnormal ECs also change toward normalization. In
addition, the EC strength of right amygdala subregions at baseline showed significant
predictive ability for symptom improvement using a regularized least-squares regression
predict model. These findings indicated that the EC of right amygdala subregions may
be functionally related in symptom improvement of MDD. It may aid us to understand the
neurological mechanism of pharmacotherapy and can be used as a promising predictor
for symptom improvement in MDD.
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INTRODUCTION

Major depressive disorder (MDD) is a widespread and serious
mental disease with a range of depressive symptoms and impaired
emotional functions as its symbolic features (Hasin et al., 2018;
Tottenham et al., 2021). While pharmacological antidepressant
therapy is clearly effective, the treatment response is always low
and is often hindered by several unsuccessful trials (Saveanu
et al., 2015; Kautzky et al., 2021). Considering that treatment
prescription based on clinical experience exerts negative effects
on occupation, social relationships, and physical health of
patients, it is critical that we identify a reliable biological predictor
of pharmacotherapy to improve clinical outcome and reduce
medical costs (Lam et al., 2016; Fonseka et al., 2018).

Altered functional activities of amygdala were involved in
clinical symptoms of MDD, including emotional perception,
memory, and reaction, as reported by some meta-analyses
(Sergerie et al., 2008; Diener et al., 2012; Miller et al., 2015).
As the core of the emotional circuitry in the brain, the
amygdala plays a key role in the pathway among emotional
feelings and responses (LeDoux, 2000). Various neuroimaging
studies have focused on ascertaining the relationship between
the functional changes of the amygdala and the changes
of clinical symptoms in MDD patients (Arnone, 2019).
According to a facial emotion recognition paradigm-based
functional magnetic resonance imaging (fMRI) study, MDD
patients showed low reactivity in amygdala compared to
controls at baseline and increased toward “normalization” after
treatment (Ruhé et al., 2012). A resting-state fMRI (R-fMRI)
study also reported that antidepressant treatment changed the
amygdala abnormal functional connectivity (FC) in adolescents
with MDD (Cullen et al., 2016). Notably, these literatures
suggested that changes of the amygdala functions may signify
neural changes behind pharmacotherapy in MDD, but they
ignored the heterogeneousness and lateralization of amygdala
(Sah et al., 2003).

Based on cytoarchitectonic characteristics, some researchers
(LeDoux, 2000, 2007; Amunts et al., 2005) suggest that the
amygdala is composed of three subdivisions: centromedial
amygdala (CM), laterobasal amygdala (LB), and superficial
amygdala (SF). Recent neurobiological studies have revealed that
these three amygdala subregions may have unique connectivity
and distinct functional profiles (McGaugh, 2004; Hofmann and
Straube, 2019; Michely et al., 2020). The LB subregion is usually
viewed as the sensory interface of the amygdala, which is
responsible for receiving the sensory input from the thalamus and
auditory cortex, mainly including the auditory inputs (LeDoux,
2003). The CM is regarded as the output regions, which play an
important role in generating the behavior response for emotion
stimulation (Phelps and LeDoux, 2005). It has been found that
the SF in the amygdala has connections with the hypothalamus,
frontal cortex, and hippocampus and appears to regulate the
visceral function related to emotional stimulation (Price, 2003).
A study of amygdala subregion function demonstrated that
both LB-prefrontal cortex and CM/SF-brainstem connectivity
abnormalities exist in MDD (Tang et al., 2019). In another
study, MDD exhibited dysfunctional amygdala subregions to

frontal cortex circuitry, but no difference was found when using
the whole amygdala as seeds (Qiu et al., 2018). These finding
indicates that the amygdala has partially separated information
processing between amygdala subregions, and it is necessary
to divide the amygdala into different subregions. On the other
hand, a growing body of studies have emphasized the different
roles for the right and left amygdala in emotion processing; that
is, there is a lateralized activity pattern of the amygdala (Baas
et al., 2004). For instance, some researchers suggested that the
right amygdala may be more involved in the analysis of visual
information, and it will be activated more strongly when visual
stimulation appeared (Markowitsch, 1998). Moreover, the right
amygdala is faster, shallower, and more automated than the left
amygdala in processing information (Baas et al., 2004). The right
amygdala may be the first to participate in emotional analysis
and then quickly becomes habituated for negative stimulation
(Wright et al., 2001). The main function of habituation is to limit
the use of attention resources to stimulations; impaired habitual
function will easily lead to depression-related sustained negative
emotions and thinking rumination due to a number of negative
emotional experiences that cannot be habituated (Wright et al.,
2001). Intriguingly, previous studies have revealed more effect on
the right amygdala after treatment, hence implying the clinical
potential of the right amygdala in therapy (Suslow et al., 2010).
To some extent, the aforementioned findings indicate that the
analysis of right amygdala subregions is more promising for
elucidating the mechanisms of pharmacotherapy.

Effective connectivity (EC) is an effective technique to
characterize the brain information flow in the interacting
brain regions; furthermore, EC can detect the direction of
information and describe the casual influences exerted among
different brain regions, which have facilitated the identification
of abnormal intrinsic brain activity in various neurological and
neuropsychiatric diseases (Deshpande and Hu, 2012). Granger
causality analysis (GCA) is a popular method to estimate EC
using responses from time-series data in different regions to infer
the direction and intensity of the causal influence of regional
neural activity (Goebel et al., 2003; Hamilton et al., 2011). Prior
studies in MDD treatment have taken advantage of the GCA
technique to investigate the effect of electroconvulsive therapy
(ECT), and the result indicated that the amygdala subregion EC
can be used as a predictor of the treatment effect of ECT (Wang
et al., 2017). The information flow of amygdala subregions may
underlie the clinical symptom improvement of MDD. Exploring
MDD symptom improvement caused by pharmacotherapy in EC
of amygdala subregions is clinically meaningful and provides
directional information of brain function, which cannot be
detected by FC. However, very few studies investigate whether
the EC of right amygdala subregions at baseline can predict
medication efficacy.

Here, we have three aims: (1) to determine the abnormal EC
of right amygdala subregions in MDD patients; (2) to explore
the relationship between the variance in EC and symptom
improvement before and after 12-week pharmacological
treatment using longitudinal analysis; and (3) to predict
symptom improvement using the EC strength of right amygdala
subregions at baseline. As far as we know, few studies have
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focused on the subregions of the right amygdala and using
the GCA to investigate whether the EC can effectively predict
the symptom improvement in MDD patients. Given some
previous evidence in the analysis of the amygdala implicating
that the function of the amygdala is linked with antidepressant
interventions (Fonseka et al., 2018), we thus hypothesized
that pharmacotherapy would normalize the abnormalities
in EC of right amygdala subregions, and right amygdala
subregion-based EC strength at baseline is able to predict
the symptom improvement of MDD patients after 12-week
pharmacotherapy.

MATERIALS AND METHODS

Participants and Study Design
A total of 70 MDD patients (age: 26.93 ± 9.14 years, 21
males/49 females) and 43 sex- and age-matched healthy controls
(HCs) (age: 29.42 ± 12.56 years, 16 males/27 females) were
recruited from the Department of Psychiatry of Hangzhou
Seventh People’s Hospital and the Department of Psychiatry at
The Affiliated Hospital of Hangzhou Normal University. More
detailed information of the participants was summarized in
Table 1. All patients were interviewed by certified psychiatrists,
and 24-item Hamilton Rating Scale for Depression (HAMD) was
used to assess the severity of depression symptoms. All patients
met the following exclusion criteria: (1) currently pregnant
or lactating; (2) serious suicidal tendency; (3) severe medical
or neurological illness; (4) material dependence, including
tobacco, alcohol, or other psychoactive substances; or (5) metallic
implants or other contraindications to MRI. All the research
procedures were carried out in accordance with the Helsinki
Declaration of Ethical Principles and approved by the local
Institutional Review Boards of Hangzhou Normal University.

TABLE 1 | Demographic data and group differences.

Characteristics MDD
(Mean ± SD)

HC
(Mean ± SD)

t/χ2 value p-value

Sex (M/F) 70 (21/49) 43 (16/27) 0.63 0.43a

Age (years) 26.93 ± 9.14 29.42 ± 12.56 −1.22 0.23b

HAMD scores 28.06 ± 6.67
(70)

11.41 ± 7.09 11.76 <0.001b

Before
pharmacotherapy

27.78 ± 6.70
(36)

After pharmacotherapy 11.42 ± 7.09
(36)

Durations of illness
(months)

7.56 ± 12.74

On-medication (n
patients)

SSRIs 36

MDD, major depressive disorder; HC, healthy control; SD, standard deviation; M,
male; F, female; HAMD, 24-item Hamilton Rating Scale for Depression; SSRIs,
selective serotonin reuptake inhibitors.
aThe p-value was obtained by a chi-square test.
bThe p-value was obtained by a two-tailed two-sample t-test.

All subjects provided written informed IRB-approved consent
before participating.

The study design flowchart is shown in Figure 1. The
assessment of MDD patients included R-fMRI neural and
scale symptom assessment in the current study. Before
pharmacotherapy, all patients with MDD and HCs completed
resting-state fMRI scan and HAMD scale to get the time series
of each voxel in the whole brain and HAMD scores; meanwhile,
we used GCA to calculate the EC between the time series of
three amygdala subregions and whole brain voxels, and to
explore the abnormal EC of right amygdala subregions in the
MDD group through between-group comparison. After pretests,
MDD patients then began to receive antidepressant treatment
with typical selective serotonin reuptake inhibitors (SSRIs). The
medication doses were prescribed and adjusted by the treating
clinicians according to routine clinical practice and followed the
recommended dose ranges. It is worth nothing that we chose
the same kind of drugs (SSRIs) to reduce the heterogeneity
of antidepressant drugs, which are recognized and close to
homogeneous interventions in scientific research. After 12 weeks
of treatment, the remaining 36 (51.43%) of the 70 MDD patients
were invited to return to enter another identical fMRI scan and
HAMD scale; the EC strength and HAMD scores of the MDD
group were obtained again, and we performed a longitudinal
analysis to explore the changes of EC strength and HAMD
scores in pre- and post-test of treatment, respectively. Finally,
we used the voxel-wise EC strength of between right amygdala
subregions at baseline to predict symptom improvement,
which was defined as the changes of HAMD scores (HAMD
scores in pre-test – HAMD scores in post-test), through a
regularized least-squares regression using the Least Absolute
Shrinkage and Selection Operator (LASSO) algorithms-based
machine learning approach, and Spearman’s rank correlation
analysis was used to evaluate the model predictive power. The
HC participants did not take any medicine and received only
one fMRI scanning.

Image Acquisition and Preprocessing
Baseline imaging data for 70 MDD patients and 43 HCs were
collected before pharmacotherapy to determine neural alterations
in depressed individuals, and follow-up images of 36 (51.43%)
MDD patients were acquired after 12-week pharmacological
therapy. Baseline and follow-up imaging data were obtained
by a Siemens MAGNETOM Allegra syngo 3.0T MR Scanner
(Siemens AG, Medical Solutions, Erlangen, Germany) at the
Center for Cognition and Brain Disorders at Hangzhou Normal
University. Functional images were collected by using a T2∗-
weighted gradient-recalled echo-planar-imaging (EPI) sequence,
which has the following parameters: 33 axial slices with a slice
thickness = 3 mm, repetition time (TR) = 2,000 ms, echo time
(TE) = 30 ms, field of view (FOV) = 220 mm × 220 mm, flip
angle = 90◦, matrix = 64 × 64, and number of total volumes = 240.
A high-resolution T1-weighted structural image in the sagittal
orientation is obtained by using magnetization-prepared rapid
gradient echo (MPRAGE) sequence. The participants were told
to relax with their eyes closed but not fall asleep, and keep
motionless during the scanning as much as possible.
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FIGURE 1 | Study flowchart of current research. (A) Two different MDD assessment methods were used in the present study. (B) The EC analysis of right amygdala
subregions using Granger causality analysis. We explore abnormal right amygdala subregion-based EC in MDD patients by the comparison of R-fMRI data between
MDD and HCs. (C) The contrast of the variance of EC strength and the changes of HAMD scores of MDD patients before and after pharmacotherapy, respectively.
(D) The voxel-wise EC strength of right amygdala subregions at baseline is taken as feature sets to predict the changes of HAMD scores in MDD patients. The
Spearman’s rank correlation between predicted HAMD scores changes and observed HAMD scores changes is used to evaluate the prediction power of current
predictors. MDD, major depressive disorder; HC, healthy controls; R-fMRI, resting-state functional magnetic resonance imaging; CM, centromedial amygdala; LB,
basolateral amygdala; SF, superficial amygdala; EC, effective connectivity; HAMD, 24-item Hamilton Rating Scale for Depression; L, left hemisphere; R, right
hemisphere. Different color arrows indicate the change direction of studied indicators compared with the previous stage: cool colors indicate decrease and warm
colors indicate increase. ****p < 0.0001.

The preprocessing of image data was conducted using a
combination of the DPABI software1 (Yan et al., 2016) and
a custom code written in MATLAB (The MathWorks, Inc.,
Natick, MA, United States). The first 10 functional volumes
were discarded to stabilize the scanner signals and ensure
that the participants adapt themselves to the circumstances.
The remaining 230 images were performed by slice timing
correction and then realigned to the first volume for head
motion correction. The head motion information is recorded by
estimating the translations in each direction and the rotations
in angular motion about each axis for each of the consecutive
volumes. All participants exhibited a maximum displacement
of less than 2.5 mm in the x, y, or z directions and an
angular motion of less than 2.5◦ for each axis. To further
control the confounding influence of head motion, the framewise
displacement (FD) across time points was calculated for further
analysis (Power et al., 2012). The residual effects of Friston-24
motion parameters and signals of white matter and cerebrospinal
fluid were controlled by linear regression. The corrected images
were normalized into standard Montreal Neurological Institute
space (resampling voxel size = 3 mm × 3 mm × 3 mm).

1http://www.rfmri.org/

The images were smoothed with a 6-mm full-width at half-
maximum Gaussian kernel. To reduce the effect of the
physiological artifacts, we removed several sources of nuisance
signals [six motion parameters, white matter signal, and
cerebrospinal fluid (CSF) signal] from the smoothed images
through linear regression. After band-pass filtering (0.01–0.1 Hz),
the “scrubbing” cut method was employed to remove the “bad”
time points using Piecewise Cubic Hermite interpolation, and the
threshold is 0.5 mm (Liao et al., 2018).

Effective Connectivity Analysis of Right
Amygdala Subregions
Following some existing literatures, we defined three right
amygdala subregions by using cytoarchitectonically defined
probabilistic maps and select the masks of regions of interest
(ROIs), including CM, LB, and SF as provided within the SPM
Anatomy toolbox. All ROI masks of amygdala subregions will
serve as the seeds for subsequent EC analysis. The detailed
locations of the selected ROIs are shown in Figure 2A. The right
amygdala subregions were showed using the BrainNet Viewer
package (Xia et al., 2013).
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FIGURE 2 | The results of effective connectivity analysis of right amygdala subregions. (A) The subregions of the right amygdala: the centromedial amygdala (CM;
yellow), laterobasal amygdala (LB; purple), and superficial amygdala (SF; red). (B–D) Represent the illustration of the abnormal effective connectivity of MDD in three
different right amygdala subregions, respectively: CM, LB, and SF. The cool color arrows indicate significant decreased information flow of target brain regions in
MDD. The gray indicates the specific abnormal brain regions, and the yellow/purple/red represents right CM/LB/SF, respectively. EC, effective connectivity; CM,
centromedial amygdala; LB, basolateral amygdala; SF, superficial amygdala; PCUN, precuneus; IFGoperc, opercular part of inferior frontal gyrus; mSFG, medial
superior frontal gyrus; PCC, posterior cingulate cortex; L, left hemisphere; R, right hemisphere.

In order to acquire the resting-state EC map of each subregion
of the right amygdala, the GCA method was used to describe the
EC. The GCA is a method based on multiple linear regression,
which is used to study whether the current value of time series
Y is correctly predicted by a past value of another time series
X, and if the combination of the time series X and Y past value
could more accurately estimate the time series Y current value
than the time series Y past value alone, then time series X has
a Granger casual influence on series time Y (Roebroeck et al.,
2005). In the present study, voxel-wise GCA was implemented
by the DynamicBC toolbox (Liao et al., 2014). The time series of
the three right amygdala subregions was defined as the seed time
series X, and the time series Y represents the time series of the
rest of brain voxels. The residual-based GCA model was carried
out to investigate the EC between amygdala subregions and each
voxel of the whole brain. Finally, residual-based F was normalized
to a Z score using a custom code written in MATLAB for each
voxel to improve the normality of F for further statistical analysis
(Zang et al., 2012).

Predictive Model Definition and
Evaluation
To explore whether the effective connectivity of right
amygdala subregions might serve as useful predictors for
symptom improvement in MDD, a regularized least-squares

regression using LASSO algorithms combining with a nested
cross-validation predicted model was employed. We repeatedly
analyzed our current data using two different cross-validation
strategies, leave-one-out cross-validation (LOOCV) and 10-fold
cross-validation (10-fold CV), for internal validation, and
added it to the predicted model to improve robustness and
repeatability of our conclusions. The predicted model was
carried out by using MATLAB; the dependent variable is the
HAMD changes, and the independent variables included the
EC between one right amygdala subregion and all voxels in the
other two subregions at baseline. The LASSO regularization
uses the method based on the L1 constraint to perform the
selection of correlated variables and prevent unimportant
features from resulting in an overfitting problem (Witten and
Tibshirani, 2011), and the cross-validation strategy was adopted
to improve the generalization ability of the model. The model
was fit to the relationship between the EC strength of right
amygdala subregions and HAMD changes in each feature
set of n participants (where n is the number of participants,
n = 36 in this study), which was repeated k times (where
k is the number of the fold in cross-validation, including
36 and 10 in the current study). In each cross-validation
fold, we set the values of alpha = 1 and use the internal 10-
fold CV to select the best LASSO regularization parameter
lambda (λ), which controls the number of features selected,
and calculated the predicted HAMD changes of the left-out
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subject. After the cross-validation, the predicted HAMD
changes were achieved, and a Spearman’s rank correlation
between observed HAMD changes and predicted HAMD
changes was used to evaluate the model predictive performance.
The non-parametric p-value was calculated based on 10,000
permutation tests.

Statistical Analysis
In baseline MDD patients and HCs, through independent-sample
t-test and regressed covariates of age, sex, and head motion, the
differences of EC strength in right amygdala subregions between
MDD and HC groups were examined. To reduce the type I error,
the family-wise error (FWE) correction was conducted using
the Gaussian random field (GRF) theory, and the significance
threshold of FWE correction was set to p < 0.001 at the voxel level
and FWE correction at the cluster level to p < 0.0167 (0.05/3)
through Bonferroni correction.

To obtain the symptom change after pharmacotherapy,
we utilized paired-sample t-test to compare the HAMD
scores of MDD patients in before and after treatment, and
the threshold for significance was set as p < 0.05. The
HAMD scores of these patients will be used as an index
to evaluate the clinical symptom improvement of MDD.
Paired-sample t-test was also used to assess the variance
of abnormal EC strength in right amygdala subregions
found in between-group comparison before and after
pharmacotherapy. The statistical threshold was set at
p = 0.05 and using false discovery rate (FDR) correction
for multiple comparisons.

To further determine whether the neural changes are related
to symptom improvement and make further analysis meaningful,
we performed Pearson’s r correlation analysis between the
variance of abnormal EC strength and HAMD score changes
in the MDD group. The significance level threshold was set at
p < 0.05.

TABLE 2 | Brain regions with significant differences in right amygdala subregions
seeded-EC between MDD and HC.

Seed region Anatomical
region

Cluster size
(voxels)

Peak T-value MNI (XYZ)
coordinates

Right CM

Input regions PCUN.L 55 −3.99 0, −54, 33

Right LB

Output regions IFGoperc.R 48 −4.48 39, 0, 21

Right SF

Input regions mSFG.R 41 −3.99 9, 48, 21

Output regions PCC.R 48 −4.41 15, −42, 27

The statistical threshold used the GRF theory [single-tailed, voxel-level p < 0.001,
cluster-level p < 0.0167 (0.05/3, Bonferroni correction)]. MNI, Montreal
Neurological Institute; CM, centromedial amygdala; LB, basolateral amygdala; SF,
superficial amygdala; PCUN, precuneus; IFGoperc, opercular part of inferior frontal
gyrus; mSFG, medial superior frontal gyrus; PCC, posterior cingulate cortex; L, left
hemisphere; R, right hemisphere.

RESULTS

Effective Connectivity Analysis
As shown in Figure 2 and Table 2, compared with the healthy
controls, the patients with MDD showed attenuation of EC
strength, mainly including three inhibitory pathways: (1) from
the left precuneus (PCUN) to the right CM, (2) from the
right LB to the right opercular part of the inferior frontal
gyrus (IFGoperc), and (3) from the right medial superior
frontal gyrus (mSFG) to the right SF to the right posterior
cingulate cortex (PCC). There were no significant between-group
differences in the causal outflow from the right CM to other
brain regions and the causal inflow from other brain regions
to the right LB.

Longitudinal EC Analyses Following
12-Week Pharmacotherapy
In the MDD group, 36 (51.42%) patients completed both
before and after treatment clinical assessment and MRI
scanning. The primary clinical symptom improvement was
assessed by 24-item HAMD scores before and after 12-week
pharmacological treatment. Following antidepressant treatment,
the results showed that the symptom of MDD has a significant
improvement (t = 11.764, p < 0.0001, paired-sample t-test) after
the pharmacotherapy.

The longitudinal results showed the variance of EC strength
between pre- and post-test of pharmacotherapy. As shown
in Figure 3A, through paired-sample t-test, we have found
that all abnormal EC of right amygdala subregions had a
normalizing effect after treatment. The EC from the right
LB to the right IFGoperc (t = 2.444, p = 0.020) and
the EC from the right SF to the right PCC (t = 2.639,
p = 0.012) showed significant differences in pretest and
post-test. The variance of EC strength in the remaining
connectivity approached significance, which is the EC from
the left PCUN to the right CM (t = 1.942, p = 0.060)
and from the right mSFG to the right SF (t = 1.941,
p = 0.060), respectively.

Correlation analysis between the variance of mean EC strength
and HAMD score changes is illustrated in Figure 3B. We found
that improvement in symptoms after 12-week treatment was
significantly correlated with the variance of mean EC strength in
the EC from the left PCUN to the right CM (r = −0.357, p = 0.038)
and the EC from the right mSFG to the right SF (r = −0.358,
p = 0.032). There was no significant correlation in the EC from
the right LB to the right IFGoperc (r = −0.144, p = 0.402) and
the EC from the right SF to the right PCC (r = −0.203, p = 0.234),
but the change direction of them is still consistent with the change
direction of symptom improvement.

Predictive Accuracy
Based on the EC of right amygdala subregions at baseline
as features, the predicted model yielded significant prediction
power. As Figure 4 shows, the model analysis revealed that the
EC in right amygdala subregions exhibited excellent performance
in predicting symptom improvement in MDD patients; the
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FIGURE 3 | The association of the changes in two different assessment methods between pre- and post-test of pharmacotherapy. (A) The histogram shows the
variance in the EC strength between pre- and post-test of pharmacotherapy (FDR correction at p < 0.05), including the EC from the left PCUN to the right CM
(t = 1.942, p = 0.060), the EC from the right LB to the right IFGoperc (t = 2.444, p = 0.020), the EC from the right mSFG to the right SF (t = 1.941, p = 0.060), and
the EC from the right SF to the right PCC (t = 2.639, p = 0.012). *p < 0.05. (B) Scatter plots for the relationship between HAMD scores changes and the variance of
EC strength. The significant correlation was found in the EC from the left PCUN to the right CM (r = –0.357, p = 0.038) and the EC from the right mSFG to the right
SF (r = –0.358, p = 0.032). *p < 0.05. EC, effective connectivity; PCUN, precuneus; CM, centromedial amygdala; LB, basolateral amygdala; IFGoperc, opercular
part of inferior frontal gyrus; mSFG, medial superior frontal gyrus; SF, superficial amygdala; PCC, posterior cingulate cortex; HAMD, 24-item Hamilton Rating Scale
for Depression; L, left hemisphere; R, right hemisphere.

FIGURE 4 | Prediction results based on the EC of right amygdala subregions at baseline for symptom improvement. Scatter plots show the Spearman’s rank
correlations between the observed HAMD scores changes and predicted HAMD scores changes of all participants in (A) LOOCV: r = 0.443, permutation p = 0.007,
and (B) 10-fold CV: r = 0.525, permutation p = 0.001, respectively. **p < 0.01. LOOCV, Leave-one-out cross-validation; 10-fold CV, 10-fold cross-validation; HAMD,
24-item Hamilton Rating Scale for Depression.
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predicted HAMD changes had a Spearman’s rank correlation
of r = 0.443 with the observed HAMD changes with a
nested LOOCV (permutation p = 0.007), and Spearman’s rank
correlation is r = 0.525 in a nested 10-fold CV (permutation
p = 0.001).

DISCUSSION

In the current study, we investigated the abnormal EC patterns
of right amygdala subregions in MDD based on GCA. Three
abnormal EC pathways of right amygdala subregions were
identified in baseline MDD patients. With the relief of symptoms,
these abnormal connections are also normalized following 12-
week pharmacological therapy, and correlation analysis results
revealed that the variance of EC strength is related to the change
of HAMD scores. More importantly, individual depressive
symptom improvement can be predicted using the EC of right
amygdala subregions at baseline.

Abnormal Effective Connectivity
The GCA provided a new tool for exploring the EC, and emerging
reports have suggested that GCA can effectively identify the
directed functional interactions between brain regions (Chen
et al., 2009). We found the abnormal EC of depressed individuals
mainly in three significant inhibitory pathways, that is, from
the left PCUN to the right CM, from the right LB to the
right opercular part of IFG, and from the right mSFG to
the right SF to the right PCC. These abnormal brain regions
provided preliminary evidence for the neural substrate of clinical
symptom, which promotes further analysis.

Previous evidence suggested that the mSFG plays an
important role in emotional processing and response and has
been implicated in some emotional disorders (Phan et al., 2003).
For example, our previous research found that the FC between
mSFG and medial orbitofrontal cortex (mOFC) subregions is
correlated with anxiety in healthy male adults (Xue et al., 2018).
The activity of the mSFG is related to the amygdala, which
suggested that the extent of coupling between the mSFG and
the amygdala associated with emotional response to negative
scenes (Wu et al., 2016). The SF of the amygdala is also
considered to be involved in social and affective information
processing (Adolphs, 2008). The finding of inhibitory connection
from the mSFG to the SF supported the existing theories
suggesting that the neural mechanism of depression has extensive
involvement within frontolimbic circuitry (Lai, 2019). Besides,
our results also found that the function of PCC is inhibited by
the right SF, and the right CM is inhibited by the PCUN in
MDD patients. The PCC and the adjacent PCUN are the main
components of the default mode network (DMN), a network
of brain regions that are more active when the brain is at rest.
A large number of neuroimaging studies pointed out that the
DMN is closely associated with neuropathological mechanism
of MDD (Kaiser et al., 2015). Consistent with our results, the
abnormal connectivity between the amygdala and the PCC
or the PCUN has been found in different MDD populations
(Cullen et al., 2016). Furthermore, similar to the function of

the right amygdala, the PCC and the PCUN also have the
advantages in visual imaging processing (Shen et al., 2015). Due
to the fact that the right CM mediates behavioral responses to
potentially harmful stimuli, taken together, one interpretation of
our findings is that the damage of frontolimbic circuitry may
inhibit the normal function of the DMN in emotional processing
for external stimulus, and then inhibiting the CM nucleus of the
right amygdala makes correct emotional responses and cannot
habituate from a negative emotional stimulus up to wrong
emotional responses, such as sustaining negative emotions and
thinking rumination. Additionally, the IFG is involved in relaying
top-down cognitive inputs, which was shown to be involved
in the updating of task representations and to be activated
commonly in multiple cognitive tasks (Derrfuss et al., 2005;
Hampshire et al., 2010). The IFG has connected with the limbic
system and played a key role in cognitive-emotional integration
and continuous behavioral monitoring (Gao et al., 2016). We
speculated that the LB nucleus of the right amygdala, as the input
region, may be due to inadequate high-level cognitive guidance,
resulting in lower-level emotional cognitive processing disorders.

Longitudinal EC Analyses Following
12-Week Pharmacotherapy
The normalization of aberrant right amygdala subregions
connectivity may indicate that the EC of right amygdala
subregions correlated with the depressive symptoms. The
longitudinal analyses following 12-week pharmacotherapy
revealed that the depressive symptoms and hypoconnectivities
of right amygdala subregions were ameliorated with
pharmacotherapy; in other words, the pharmacotherapy
may relief the symptom of depression by improving the right
amygdala subregion brain function. This claim echoed previous
studies, which revealed that the pharmacological treatment
improved the SF nucleus function for emotion and social
information processing and the ability of the CM nucleus to make
correct emotion responses (Phan et al., 2003). Another study
suggested that pharmacological antidepressant effects can be
measured in terms of some increase of frontolimbic connectivity
and that these effects were most clearly demonstrated by the
change of amygdala connections (Chen et al., 2008). Considering
that mSFG and IFGoperc are part of frontolimbic circuitry
and are critical for the pathological mechanism of MDD, SSRIs
therapy may, in part, improve depressive symptoms by restoring
the connectivity between the amygdala and these regions. Some
analyses exploring the improvement of symptom predictors
for pharmacotherapy have found the potential of the PCC as
predictive of improved response (Rizvi et al., 2013). Lower
baseline EC between the CM and the PCC exhibited increased
strength after treatment in our study, which implies that this
connectivity was associated with treatment response to SSRIs.

Correlation analysis further supports our conclusion, which
shows that depressive symptom improvement is associated with
the change of brain function or neuroplasticity. The relationship
between MDD improvement and the PCUN component of
the DMN has been identified, which is consistent with
previous reports of the DMN being associated with symptom
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improvement (Fonseka et al., 2018). The PCUN and the PCC
located in the midline cortical regions of the DMN mediate
self-referential processing; they may have excessive involvement
in information processing in MDD (Li et al., 2013). What is
more, SSRI selective altered intrinsic regional DMN connectivity
has also been found in previous research (van de Ven et al.,
2013). The result of paired-sample t-test between before and after
treatment shows that the EC of the IFGoperc and the PCC with
right amygdala subregions was reconfigured under the influence
of treatment, although no significant corrections were found
there, which is related to the mechanism of pharmacotherapy.
MDD is a complex mental disease, which involves a variety
of abnormal brain functions (Furey et al., 2013). The HAMD
score only reflects the part of clinical symptoms in MDD
patients, and there are still many potential abnormalities in MDD
that may be changed by treatment. In addition, due to the
internal heterogeneity of mental illness itself and the influence
of external environment, the clinical diagnosis is often not as
detailed as research projects (Gao et al., 2018). Some hidden
anomalies that are not related to the HAMD scores in MDD
could be found by objective brain imaging measurements. This is
because the function of the human brain, which is characterized
by complex spatial structure, may have some complex non-
linear relationship with clinical scores that cannot be found in
correlation analysis (Cohen et al., 2020). Therefore, their changes
are still meaningful for better understanding of the neural
mechanism of MDD treatment. These results indicated that right
amygdala subregion function was suggested to be relevant to
characterize the neurobiology of antidepressant medications and
may be useful in guiding treatment selection in future studies.

Predictive Power of Effective
Connectivity
There is no doubt that the etiopathogenesis of depression
has its biological basis (Ge et al., 2020). It is important to
identify the neurobiological mechanisms of pharmacotherapy
in MDD, so that this knowledge can be applied to improve
clinical treatment. Great progress has been made in the
study of human brain dysfunction caused by depression or
MDD using MRI (Dosenbach et al., 2010). However, whether
these human brain functional indicators contain enough
information to help us predict the therapeutic improvement
remains a big unknown. Along this line, many studies
try to explore useful therapeutic predictors using difference
MRI neuroimaging makers and machine-learning algorithms
(Jiang et al., 2018). For example, a previous study indicated
that the right amygdala was associated with MDD, and
the right amygdala connectivity predicted the psychotherapy
improvement in depressed adolescents (Straub et al., 2017). In
our study, our results also demonstrated the predictive ability
of EC of right amygdala subregions at baseline for symptom
improvement after 12-week pharmacological therapy in MDD.
Consistent with our hypothesis, these findings are suggestive
of the fact that right amygdala subregion-seeded EC may aid
in understanding mechanisms of pharmacotherapy in MDD
and holds the promise for future research to improve the

clinical outcomes. Since emotional dysfunctions are the main
symptom of MDD, it makes sense to predict the symptom
improvement from the amygdala at baseline, and many studies
have discovered the potential of the amygdala as a predictor
for pharmacotherapy (Furey et al., 2013; Williams et al.,
2015). Moreover, the correlation between roles of the right
amygdala for visual emotional stimuli and MDD symptoms
improvement is supported by some studies (Furey et al., 2013;
Szczepanik et al., 2016).

Employing internal validation procedures, we built our
predictive models based on two different cross-validation
methods. Encouragingly, the results are robust and still support
our conclusion. From the methodological principle of GCA,
the “scrubbing” in data preprocessing removes the “bad” time
points and may affect the evaluation results of GCA. We thus
repeated all analyses without “scrubbing” in the preprocessing
analysis. Our findings were similar, and the model maintains
good prediction performance. The high reproducibility shows
the feasibility of the EC in the right amygdala subregions for
predicting the symptom improvement of MDD. Predictive data
mining has become very popular in neuroimaging research,
especially in the study of mental diseases (Meng et al., 2017).
The ultimate purpose of neuroimaging diagnosis is to predict the
symptom of patients, and our results strengthen the role of the
amygdala in the pathophysiology of MDD and its importance in
model mood dysregulation and as a new therapeutic target.

Limitation
Several limitations warrant further consideration. First, the
number of participants was small, and not all subjects have
completed the pre- and post-test, which may limit the statistical
power in finding the abnormal EC brain regions and challenge
our results. Therefore, a larger number of sample sizes and
measures to prevent the loss of subjects are needed in further
studies. Second, there is internal heterogeneity of SSRIs in the
pharmacological drugs among patients for the current dataset.
However, only the baseline data of R-fMRI have been used to
predict the symptom improvement, and these data are not related
to heterogeneous pharmacotherapy. Consistent with our dataset
and previous studies on the prediction of the MDD symptom
improvement treated with heterogenous antidepressant drugs,
neuroimaging markers also perform effective predictive capacity
(Shen et al., 2015), and a large-sample study shows that there
are only subtle differences between different pharmacological
treatment modalities (Stassen et al., 2007). Nevertheless, to
control the heterogeneity of therapy medicine is needed for
future research. Third, the dosages of drugs could affect the
experimental results. As the longitudinal study leads to the loss of
participant data, only 15 of the 36 participants in our remaining
data have complete information about the dosages of drugs.
We repeated our analysis by using the EC in right amygdala
subregions of these 15 subjects as features and incorporate the
drug dose as a covariant in the predicted model. Fortunately,
the EC of right amygdala subregions still significant predict
the symptom improvement. The high reproducibility of our
findings indicated the reliability of right amygdala subregions-
based predictor for treatment outcomes, but a more complete

Frontiers in Neuroscience | www.frontiersin.org 9 September 2021 | Volume 15 | Article 74210267

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-742102 September 7, 2021 Time: 13:20 # 10

Xiao et al. Symptom Improvement Prediction in MDD

large sample size should be used to verify this conclusion in
future research. Finally, the current study revealed that the EC
in right amygdala subregions significantly predicts the symptom
improvement of MDD patients after 12-week pharmacological
therapy. However, apart from the treatment improvement after
12-week pharmacotherapy, an important topic in the future is
whether the symptom improvement of other treatment courses
can be predicted.

CONCLUSION

The current study demonstrated the abnormal right amygdala
subregion-seeded EC, and the results mainly concentrated in the
frontolimbic circuits and the DMN. The longitudinal analysis
found that the symptom improvement caused by antidepressant
medications is associated with the change of mean EC strength
of right amygdala subregions in MDD patients. Importantly,
the EC in right amygdala subregions at baseline significantly
predicts the symptom improvement of pharmacotherapy. The
function of right amygdala subregions may contribute to
a better understanding of the neurobiological mechanism
of pharmacotherapy. Meanwhile, these results also provided
new supporting evidence for the application of neuroimaging
techniques in the treatment outcome prediction and thus guide
more individualized treatment for MDD patients.
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Objective: Attention deficit hyperactivity disorder (ADHD) is a commonly diagnosed
neuropsychiatric disorder in children, which is characterized by inattention, hyperactivity
and impulsivity. Using resting-state functional magnetic resonance imaging (R-fMRI), the
alterations of static and dynamic characteristics of intrinsic brain activity have been
identified in patients with ADHD. Yet, it remains unclear whether the concordance
among indices of dynamic R-fMRI is altered in ADHD.

Methods: R-fMRI scans obtained from 50 patients with ADHD and 28 healthy controls
(HC) were used for the current study. We calculated the regional dynamic changes in
brain activity indices using the sliding-window method and compared the differences in
variability of these indices between ADHD patients and HCs. Further, the concordance
among these dynamic indices was calculated and compared. Finally, the relationship
between variability/concordance of these indices and ADHD-relevant clinical test scores
was investigated.

Results: Patients with ADHD showed decreased variability of dynamic amplitude of
low-frequency fluctuation (dALFF) in the left middle frontal gyrus and increased one
in right middle occipital gyrus, as compared with the HCs. Besides, ADHD patients
showed decreased voxel-wise concordance in the left middle frontal gyrus. Further,
lower voxel-wise concordance in ADHD’s left middle frontal gyrus was associated with
more non-perseverative errors in Wisconsin Card Sorting Test, which reflects worse
cognitive control.

Conclusion: Our findings suggest that variability and concordance in dynamic brain
activity may serve as biomarkers for the diagnosis of ADHD. Further, the decreased
voxel-wise concordance is associated with deficit in cognitive control in ADHD patients.

Keywords: ADHD, resting-state fMRI, temporal dynamics, concordance, variability
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INTRODUCTION

Attention deficit hyperactivity disorder (ADHD) is characterized
by inattention, hyperactivity and impulsivity. It is one of the most
commonly diagnosed childhood neurodevelopmental disorder,
whose prevalence in school-age children and adolescents is
estimated at 7.2% (Thomas et al., 2015). This disorder seriously
affects these children’s academic performance and social skills
and causes immense burden for their families.

Maladaptive in the intrinsic brain activity of ADHD was
frequently reported in previous studies. Many of these findings
were derived from resting-state functional magnetic resonance
imaging (R-fMRI), which measures the blood oxygen level
dependent (BOLD) signal without task or stimulation and further
characterizes the spatiotemporal organization of brain activities
(Forster et al., 1998; Fox and Raichle, 2007). In specific, multiple
R-fMRI indices have been developed to depict the intrinsic BOLD
signal. For example, amplitude of low frequency fluctuation
(ALFF) characterizes the intensity of local activity of brain
spontaneous activity (Zang et al., 2007; Zou et al., 2008); Regional
homogeneity (ReHo) measures the consistency of regional neural
activity (Zang et al., 2004); Degree centrality (DC) describes
the association between a local area with the whole brain
(Buckner et al., 2009; Zuo et al., 2012); Voxel mirror homotopic
connectivity (VMHC) represents the functional connectivity
between each pair of symmetrical interhemispheric voxels (Zuo
et al., 2010). Global signal connectivity (GSC) is described as the
correlation between local voxels and global signal (Hahamy et al.,
2014; Power et al., 2017).

These R-fMRI indices have been used to characterize the
maladaptive brain functions in patients with ADHD. For
example, children with ADHD exhibited increased ALFF in
the occipital cortex and globus pallidus (An et al., 2013; Li
et al., 2014), and decreased one in the left orbitofrontal cortex
and ventral superior frontal gyrus (Li et al., 2014), showing
hyperactive visual processing and hypoactive frontal control.
Meanwhile, increased ReHo was reported in the bilateral lingual
and fusiform gyri and right dorsal anterior cingulate cortices,
and decreased ReHo in the bilateral ventral medial prefrontal
cortex, cerebellum and right middle frontal gyrus, and right
precuneus (An et al., 2013), which again indicated deficit in
frontal lobe. In addition, the increased ReHo in right dorsal
anterior cingulate cortex and left lingual gyrus, and the decreased
ReHo in right cerebellum were associated with higher ADHD
symptom scores in the ADHD group (An et al., 2013). Meantime,
decreased DC was observed in the head of the right pallidum,
caudate and putamen and in the left postcentral cortex (Di
Martino et al., 2013), as well as right posterior cingulate gyrus and
frontoparietal network (Jiang et al., 2019). Also, it was found that
children with ADHD exhibited increased DC in the cerebellar
anterior lobe, cingulate gyrus and middle occipital cortex, and
increased VMHC in bilateral superior frontal, middle occipital,
and cerebellar anterior lobes (Jiang et al., 2019). The findings
above have proven that the R-fMRI indices can successfully
capture the dysfunctions in the brains of ADHD patients.

Although these studies provided insights into the neural
basis of ADHD, they failed to capture the dynamic changes

in brain activities. Recent evidence demonstrated the temporal
dynamic in brain activity patterns (Hutchison et al., 2013; Allen
et al., 2014) and found that the alterations in these patterns
were associated with neurological and psychiatric disorders.
For example, patients with generalized anxiety disorder (GAD)
exhibited increased variability in dynamic ALFF (dALFF) across
wide spread brain regions (Cui et al., 2020). Meanwhile, patients
with major depressive disorder (MDD) showed decreased
variability in dALFF in the emotion network (Li et al., 2019).
As for patients with ADHD, one study reported that they
showed decreased mean value and variability in dynamic ReHo
in the parietal lobe, compared to the healthy control group
(Kim et al., 2018).

In addition, the concordance, i.e., temporal and spatial
coupling, among multiple dynamic brain activity indices shows
stable individual difference (Yan et al., 2017). Studies revealed
that patients with psychiatric disorders exhibited decreased
concordance in brain activity indices. For example, patients
with schizophrenia showed decreased volume-wise concordance
in whole gray matter and reduced voxel-wise concordance in
multiple brain regions. Moreover, these concordance changes
were negatively correlated with their onset age (Zhu et al.,
2018). For MDD patients, reduced concordance was found in a
wide range of brain regions, and the reduction was associated
with impaired prospective memory and sustained attention
(Zhu et al., 2019). Considering the tight relationship between
the concordance of R-fMRI indices and mental disorders, the
concordance may also underpin the ADHD. However, little has
been done to explore this potential biomarker.

The current study aimed to bridge this gap. In specific,
we compared the variability of dynamic R-fMRI indices
and concordance among them between patients with
ADHD and healthy controls, and further correlated the
variability/concordance with the clinical test scores. Based on
the results of previous studies, we hypothesized that ADHD
patients would exhibit abnormalities in dynamic brain activity
and its concordance, and this concordance would be related
to its clinical manifestations. Our study may enhance the
understanding of the neural mechanism underlying ADHD.

MATERIALS AND METHODS

Participants
Fifty-eight drug-naïve ADHD patients were recruited from the
Out-patient Clinic of the First Affiliated Hospital of Wenzhou
Medical University. Meanwhile, 31 healthy controls matched
in gender, age and IQ were recruited from local schools.
The diagnosis of ADHD was performed by three experienced
psychiatrists according to the Fifth Edition of the Diagnostic
and Statistical Manual of Mental Disorders (DSM-V). For
all the participants, the exclusion criteria were: (1) conduct
disorder, oppositional defiant disorder, or any other psychotropic
disorder besides ADHD; (2) history of major neurological or
physical illness; (3) current or history use of psychotropic
drugs; (4) intelligence quotient (IQ) lower than 80; (5) MR
scanning contraindications. This study was approved by the
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Ethics Committee of the First Affiliated Hospital of Wenzhou
Medical University. All participants were well informed and
written informed consent was obtained before the test.

Behavior and Cognition Assessment
The revised version of Conners’ Parent Rating Scale (CPRS)
(Conners et al., 1998) was used to assess children’s behavioral
problems, including conduct problems, study problems,
psychosomatic disorders, impulse hyperactivity, anxiety,
and hyperactivity.

The computerized Wisconsin Card Sorting Test (WCST)
(Feldstein et al., 1999) was used to assess the executive function,
including cognitive flexibility, working memory, continuous
attention, and response inhibition. In specific, patients were
required to match two cards according to the color, shape or
quantity. After 10 trials of correct matching, one completed
session was counted and the rule would be changed. The task
was ended if the participants complete six sessions or 128 trials.
The perseverative errors (at least two successive errors) and non-
perseverative errors were counted. Note that non-perseverative
errors were counted as the difference between the total number
of errors and the number of perseverative errors.

MRI Data Acquisition
Images were acquired in a 3T GE Sigma HDX 3.0 scanner
(GE Healthcare, United States) with the following parameters:
repetition time (TR) = 2,000 ms, echo time (TE) = 30 ms, 31 axial
slices, slice thickness = 4 mm, slice gap = 0.2 mm, flip angle = 90◦,
matrix size = 64 × 64, field of view (FOV) = 192 × 192 mm, and
240 volumes. High-spatial-resolution T1-weighted 3D images
were obtained axially using the following parameters:162 axial
slices, repetition time (TR) = 7,200 ms, echo time (TE) = 2.2 ms,
flip angle = 7◦, section thickness = 1 mm, gap = 0, field of view
(FOV) = 256 × 256 mm, data matrix = 256 × 256. During the
scanning, sponge earplugs were used to reduce scanner noise,
and foam cushions were used to minimize head movement.
The subjects were required to be relax, stay still, close their
eyes, and stay awake.

Data Preprocessing
Data Processing and Analysis for Brain Imaging (DPABI) (Yan
et al., 2016) was used for data preprocessing: (1) the first 10
volumes were eliminated to enable subjects to adapt to the
scanning environment and the magnetic field to be stable; (2)
slice timing correction; (3) head motion correction (subjects
were excluded from further analysis if their maximal head
motion exceeded 3 mm displacement or 3◦of rotation, 8 ADHD
patients and 3 HCs were therefore excluded, leaving 50 ADHD
patients and 28 HCs); (4) structural image alignment, aligning
the individual T1-weighted image to the average functional
image through six-degree-of-freedom linear transformation; (5)
structural image segmentation, which divides the structural
image into gray matter, white matter and cerebrospinal fluid; (6)
nuisance covariates regression, including the Friston-24 motion
parameters, white matter signals, cerebrospinal fluid signals and
linear drift. Note that the multiple direction motion parameters
and the mean frame-wise displacement (FD) of each subject

were calculated to evaluate and compare the head motion, results
were listed in Table 1 and Supplementary Table 1; (7) based on
the segmented images, the individual space was transformed to
the MNI space using the DARTEL (diffeomorphic anatomical
registration through exponentiated lie algebra) tool, and the
resampled voxel size is 3 mm × 3 mm × 3 mm.

Dynamic R-fMRI Indices Calculation
R-fMRI indices were calculated with following procedures:

ALFF (Zang et al., 2007; Zou et al., 2008). After Fourier
transform of time series of a voxel, ALFF takes the mean
amplitude of a specific frequency range (0.01–0.08 Hz) as the
intensity of local activity of the voxel.

ReHo (Zang et al., 2004). The Kendall’s coefficient of
concordance between the time series of a given voxel and the time
series of its closest voxel.

DC (Buckner et al., 2009; Zuo et al., 2012). In this study,
we calculate the Pearson correlation coefficient between the
time course of each voxel and the time course of every other
voxel in the whole brain. For each voxel, DC denotes the sum
of connections that showed a correlation coefficient exceeding
0.25 (Buckner et al., 2009; Yan et al., 2017). Correlations below
this threshold were considered mainly caused by signal noise.
Meanwhile, it has been proven that different threshold selection
from 0.1 to 0.3 did not significantly change the network structure
(Buckner et al., 2009). The obtained DC values were converted to
Z-scores by subtracting the global mean DC and dividing by the
SD of the whole brain DC, the obtained voxel-wise DC map.

VMHC (Zuo et al., 2010). Function images were transformed
into a symmetric space. Then, Pearson’s correlation coefficients
between time series from homologous brain regions were
calculated (VMHC). Finally, the VMHC maps were transformed
by Fisher Z-transformation for subsequent analysis.

TABLE 1 | Clinical and demographic characteristics of ADHD patients and HCs.

Characteristics ADHD (N = 50) HC (N = 28) Statistics P-value

Age 8.26 ± 1.93 8.93 ± 1.46 t = −1.596 0.115

Gender
(male/female)

(43/7) (20/8) χ2 = 2.454 0.117

Head motion (FD)
(mm)

0.105 ± 0.069 0.093 ± 0.054 t = 0.791 0.432

Full-scale IQ 116.94 ± 17.45 122.43 ± 13.84 t = −1.430 0.157

Conners’ Parent Rating Scale

Conduct problem 1.23 ± 0.51 0.39 ± 0.33 t = 8.869 <0.001***

Study problem 1.93 ± 0.68 0.64 ± 0.62 t = 8.217 <0.001***

Psychosomatic 0.41 ± 0.35 0.15 ± 0.24 t = 3.859 <0.001***

Impulsive–
hyperactive

1.70 ± 0.63 0.52 ± 0.50 t = 8.441 <0.001***

Anxiety 0.49 ± 0.47 0.35 ± 0.29 t = 1.646 0.104

Hyperactivity index 1.62 ± 0.54 0.50 ± 0.40 t = 9.457 <0.001***

Wisconsin Card Sorting Test

Perseverative errors 16.20 ± 9.24 12.00 ± 5.55 t = 2.506 0.014*

Non-perseverative
errors

13.62 ± 6.30 14.75 ± 4.96 t = −0.818 0.416

*P < 0.05; ***P < 0.001.
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GSC (Hahamy et al., 2014; Power et al., 2017). BOLD signals
from all the voxels were averaged as the global signal. Pearson
correlation coefficients between each voxel time course and the
global signal were calculated to get the GSC maps, finally The
GSC maps included in the subsequent analysis were Fisher
Z-transformed.

In particular, dynamics of these R-fMRI indices were analyzed
using Temporal Dynamic Analysis (TDA) toolkits based on
DPABI (Yan et al., 2016). Specifically, R-fMRI indices mentioned
above were computed with the hamming windows (window
length = 32 TR, window step = 4 TR, generating 50 windows).
Previous studies have revealed that even a window length
ranged from 30 to 60 s is able to capture dynamic functional
connectivity fluctuations and different window lengths do not
yield significantly different results (Preti et al., 2017). Also,
previous studies have demonstrated that the step size does not
dramatically affect the variance of dynamic properties of R-fMRI
(Liao et al., 2019). Therefore, we used a window length of 32
TR (64 s) and a step size of 4 TR (8 s) (Yang et al., 2020).
More importantly, different window length (48 TR/64 TR) were
used to validate our results (see Supplementary Materials). The
R-fMRI indices mentioned above were prefixed with a d to
indicate the dynamic indices. For example, dALFF represents
dynamic ALFF. Further, the standard deviation (SD) of each
index across the time series from each voxel was calculated and
normalized across the voxels to measure the variability in these
dynamic R-fMRI indices. Finally, the normalized SD maps of
each dynamic R-fMRI index were smoothed (FWHM = 4 mm)
to improve the signal-to-noise ratio.

Concordance Analysis
The concordance of five dynamic R-fMRI indices (ALFF, ReHo,
DC, VMHC, and GSC) were calculated. In specific, volume-
wise and voxel-wise concordance was measured by Kendall’s
W among these indices (Yan et al., 2017). The volume-wise
concordance (spatial concordance) was calculated in two steps.
First, compute the Kendall’s W of the five indices across voxels
for each window. Second, the dynamic volume-wise concordance
was computed as the averaged Kendall’s W across all time
windows for each participant. The voxel-wise concordance
(temporal concordance) was measured by the Kendall’s W of the
five indices across all time windows. By doing this, each voxel
(voxel-wise) was assigned a concordance value. These voxel-wise
concordance maps were then smoothed (FWHM = 4 mm) for
subsequent analyses. Thus, for each participant, they got one
volume-wise concordance value and N (N = number of voxels)
voxel-wise concordance values.

Importantly, we validated the results with the window length
of 48 and 64 TR.

Statistical Analysis
We compared age, IQ, ADHD-relevant clinical variables
between ADHD patients and healthy controls using two-
sample t-tests. Meanwhile, gender distributions were
compared using chi-square test. These statistical analyses
were performed with SPSS 23.0.

The dynamic R-fMRI indices and voxel-wise concordance
were compared using two-sample t-test, and the whole-brain
gray mask was applied, and the results were corrected by
multiple comparisons using Gaussian random field theory
(GRF, voxel-wise p < 0.001, cluster-wise p < 0.05, two-tailed).
Meanwhile, the volume-wise concordance was compared using
analysis of covariance (ANCOVA). Further, Pearson or Spearman
partial correlation was used to quantify the associations
between dynamic indices and ADHD-relevant clinical test
scores. Note that the age, gender, IQ, and head motions are
controlled as covariates.

RESULTS

Clinical and Demographic
Characteristics
The characteristics of samples were summarized in Table 1. In
particular, the ADHD group and the HCs group showed no
significant differences in age, gender, head motion, or IQ. As
measured by CPRS, ADHD patients exhibited significantly higher
hyperactive and impulsive, and had more serious behavior and
learning problems. In Wisconsin Card Sorting Test, the number
of perseverative errors in ADHD group was higher than that in
HC group (P = 0.014).

Alterations of Variability in ADHD
Compared with HCs, the ADHD group exhibited increased
dALFF variability in right middle occipital gyrus and decreased
dALFF variability in left middle frontal gyrus (GRF, voxel-wise
p < 0.001, cluster-wise p < 0.05, two-tailed; see Table 2 and
Figure 1). No significant between-group difference was found for
the dynamics of other R-fMRI indices.

FIGURE 1 | Brain regions showing different dALFF variability between the
ADHD and HCs.
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TABLE 2 | Brain regions with significant differences in R-fMRI dynamic indices (SD) between ADHD patients and HCs.

Measurements Brain regions MNI coordinates (x, y, z) Voxels Peak t-values P-value (cluster-lever)

dALFF Right middle occipital gyrus 36 −69 0.3 45 4.43 0.002

Left middle frontal gyrus −45 15 45 36 −4.68 0.005

Alterations of Volume-Wise and
Voxel-Wise Concordance in ADHD
The ANCOVA results indicated no significant differences in
volume-wise concordance between the ADHD group and HC
group. However, ADHD patients showed decreased voxel-wise
concordance in left middle frontal gyrus (GRF, voxel-wise
p < 0.001, cluster-wise p < 0.05, two-tailed; see Table 3 and
Figure 2).

Negative Correlation With the
Non-perseverative Errors
No significant correlations were found between the CPRS scores
and altered dALFF variability for the ADHD group. However, the
abnormal voxel-wise concordance of the left middle frontal was
negatively correlated with the non-perseverative errors in WCST
of patients with ADHD (Pearson partial correlation, r = −0.367,
p = 0.012; see Figure 3). Meanwhile, we found no correlation
between left middle frontal voxel-wise concordance and non-
persistent errors in HC group (Pearson partial correlation,
r = 0.099, p = 0.646; see Figure 3).

Validation of the Results
The validation results with the window length of 48 and 64
TR showed good agreement with the results mentioned above
(Supplementary Tables 2–5 and Supplementary Figures 1–6).

DISCUSSION

Abnormality in intrinsic brain activities is tightly associated with
ADHD. This study systematically compared the dynamic changes
in resting-state brain activities of patients with ADHD with
HCs. Specifically, we calculated the temporal variability, spatial
and temporal concordance of dynamic R-fMRI indices including
ALFF, ReHo, DC, VMHC, and GSC in both groups. These
properties were then compared between groups and correlated
with the clinical variables, in which both the alterations and
correlations were identified.

Altered Variability in Occipital and
Frontal Gyrus
Specifically, for the variability, ADHD patients exhibited
increased dALFF variability in right middle occipital gyrus and
decreased one in left middle frontal gyrus, which may reflect
the hyper-activation in visual cortex and hypo-activation in
frontal cortex. This is consistent with a previous study in which
decreased ReHo was found in frontal and increased ReHo and
ALFF was found in visual cortex (An et al., 2013).

The development of the frontal lobe is essential for the
acquisition, execution and control of a wide range of functions

FIGURE 2 | Brain region showing different voxel-wise concordance between
the ADHD and HCs.

(Rosch and Mostofsky, 2019). And frontal lobe is a component
of the brain region of the cognitive-attention network (cingulate-
frontal lobe-parietal lobe), these areas are typically involved in
cognitive, attentional, executive function, response inhibition,
motor control, and working memory (Bush, 2011). Deficits in
frontal lobe can lead to a series of developmental disorders
like ADHD, and increase the psychopathological vulnerability.
Many studies have revealed that the structural and functional
abnormalities in the frontal lobe of patients with ADHD
(Albajara Sáenz et al., 2019). For example, the volume of gray
matter (Shaw et al., 2011) and the ALFF (Yang et al., 2011) in
the middle frontal gyrus was decreased in ADHD patients. One
previous study also exhibited decreased functional connectivity
between right middle frontal gyrus and whole brain, and the
decreased was associated with lower IQ (Shaw and Sudre, 2021).
Consistent with the previous studies, we also observed decreased
dALFF variability in middle frontal gyrus. The decreased dALFF
variability indicated abnormal temporal fluctuations of brain
activity in this region. Such an abnormal pattern may underlie
the deficit in cognitive control of patients with ADHD, and
the failure in cognitive control plays a key role in the main
symptoms of ADHD.

Structural and functional alterations in occipital were also
reported in previous studies. For example, reduced gray matter
volume in the right middle occipital gyrus (Wang L. J.

TABLE 3 | Brain region with decreased voxel-wise concordance in ADHD.

Brain
Regions

MNI Coordinates
(x, y, z)

Voxels Peak
t-values

P-value
(Cluster-lever)

Left middle
frontal
gyrus

−24 3 60 40 −4.85 0.002
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et al., 2020) and hyper-activation of occipital lobe function
was found in ADHD (Tian et al., 2008; Icer et al., 2019),
indicating that atypical visual processing may play a key role.
Previous study also reported that the decreased connectivity
between the frontal cortex and visual cortex was associated
with increased severity in ADHD symptoms (Wang M.
et al., 2020). Meanwhile, the interaction between the dorsal
attention network and visual cortex is important for maintaining
attention (Shulman et al., 2009). These findings suggest that
brain activities in frontal and occipital regions and their
interactions may play a key role in ADHD, which awaits
further investigation.

Altered Concordance in Left Middle
Frontal Gyrus
Alterations in concordance among the dynamic R-fMRI indices
were also identified in patients with ADHD. A recent study
found that R-fMRI regional indices was high concordant in brain
cortical and subcortical areas across the time window (Yan et al.,
2017), and the voxel-wise concordance reflects homogeneity
between these indices. Several studies on schizophrenia or MDD
have found abnormal voxel-wise concordance in multiple brain
regions (Zhu et al., 2018, 2019). These findings suggest that
the concordance of dynamic indices may be an important
biomarker for neuropsychiatric disorders. In our study, ADHD
patients exhibited decreased voxel-wise concordance in the
left middle frontal, which was consistent with the decreased
dALFF variability in middle frontal gyrus, indicating maladaptive
in frontal lobe.

Correlation Between Concordance of
Frontal Gyrus and Executive Function
In addition, we found that the voxel-wise concordance change
in left middle frontal gyrus was negatively correlated with non-
perseverative errors in WCST of ADHD group. Whereas, we did
not find a correlation between them in the HCs. WCST is widely

used to assess executive function, including cognitive flexibility,
working memory, continuous attention and response inhibition
(Godinez et al., 2012). Non-perseverative error measures the
difficulties in working memory, sustained attention, and response
inhibition (Barceló, 1999; Barceló and Knight, 2002; Godinez
et al., 2012). Furthermore, non-perseverative errors have been
found to be associated with frontal lobe function in patients with
ADHD (Qian et al., 2018). However, no significant difference
in non-perseverative errors was found between ADHD patients
and healthy controls. This may due to the relatively small sample
size, which might induce more variance and undermine the
difference between these two groups. Nevertheless, this implies
that the concordance in left middle frontal gyrus can be a sensitive
biomarker that can capture the changes in non-preservative
errors in ADHD patients.

Clinical Applications
Our findings highlighted the role of frontal lobe in the
neuropathological mechanism of ADHD, and demonstrated
that concordance of R-fMRI indices can serve as a biomarker
to indicate the deficit in frontal lobe. To date, the diagnosis
of ADHD is still based on symptom scores from clinical
interviews, which can be subjective and can be influenced by
many factors, such as the experience, stereotype, and cultural
differences. Neuropsychiatric biomarkers can help to build a
standard and objective diagnosis system, which can benefit the
patients. R-fMRI is among the neuropsychiatric tools that have
the potential to find the biomarkers (Abi-Dargham and Horga,
2016). Such biomarkers, combined with the rapidly developed
machine learning algorithms, researchers are able to precisely
classify the ADHD from healthy control (Du et al., 2018).
R-fMRI indices such as ReHo (Wang et al., 2013) and functional
connectivity (Fair et al., 2012) have been frequently used by
these researchers. Functional concordance incorporates features
from multiple metrics, which are fully explored in the current
study, can also be used to train the machine learning models,

FIGURE 3 | Scatter plot of the voxel-wise concordance in the left middle frontal and the non-perseverative errors in WCST of patients with ADHD. (Pearson partial
correlation scatter diagram, controlling for effects of head motion, age, IQ, and gender).

Frontiers in Neuroscience | www.frontiersin.org 6 September 2021 | Volume 15 | Article 73159676

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-731596 September 11, 2021 Time: 16:12 # 7

Lou et al. Altered Dynamic Functions in ADHD

and thereby can promote the accuracy of classification and
prediction of ADHD.

Further, the behavioral dysfunction may be too subtle to be
measured, just like the non-perseverative errors that failed to
be capture by the current study. However, as mentioned above,
the R-fMRI indices as proposed by the current study are able to
evaluated the maladaptive of brain functions.

Limitations
This study has several limitations. First, no significant differences
were found among some dynamic indices, which may be
due to the relatively small sample size. A larger sample
size is needed to validate the alterations in dynamic brain
function in ADHD and examine the relationship between
dynamic variables and psychological data. Second, the current
study only focus on the BOLD signal from gray matter.
However, previous studies have demonstrated the white matter
signals also provide valuable information (Peer et al., 2017;
Ding et al., 2018; Li et al., 2020a,b). Hence, further studies
are need to explore the altered variability and concordance
of white matter signals in patients with ADHD. Third,
this study used a variety of indices to reflect different
patterns of dynamic spontaneous brain activity, but the seed-
based functional connectivity analysis (FC) and independent
component analysis (ICA) were not included in the analysis,
this is because ICA may be biased by component selection
and FC may be biased by seed definition. In future studies,
more supplementary R-fMRI indices should be considered,
which may help to describe the spontaneous brain activity
more thoroughly and understand its underlying physiological
processes more deeply.

CONCLUSION

The current study investigated the variability and concordance
of a range of commonly used R-fMRI indices in ADHD.
We found that patients with ADHD exhibited increased
dALFF variability in right middle occipital gyrus and decreased
dALFF variability in left middle frontal gyrus. Meanwhile,
we found that voxel-wise concordance of a series of R-fMRI
indices in patients with ADHD was decreased in frontal
lobe, and a greater decrease was related to worse WSCT
performance. These findings suggest that dynamic analysis and
functional concordance may provide new insights into the
neuropathological mechanism of ADHD.
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The objective of this study is to introduce a new quantitative data-driven analysis (QDA)
framework for the analysis of resting-state fMRI (R-fMRI) and use it to investigate the
effect of adult age on resting-state functional connectivity (RFC). Whole-brain R-fMRI
measurements were conducted on a 3T clinical MRI scanner in 227 healthy adult
volunteers (N = 227, aged 18–76 years old, male/female = 99/128). With the proposed
QDA framework we derived two types of voxel-wise RFC metrics: the connectivity
strength index and connectivity density index utilizing the convolutions of the cross-
correlation histogram with different kernels. Furthermore, we assessed the negative and
positive portions of these metrics separately. With the QDA framework we found age-
related declines of RFC metrics in the superior and middle frontal gyri, posterior cingulate
cortex (PCC), right insula and inferior parietal lobule of the default mode network (DMN),
which resembles previously reported results using other types of RFC data processing
methods. Importantly, our new findings complement previously undocumented results
in the following aspects: (1) the PCC and right insula are anti-correlated and tend to
manifest simultaneously declines of both the negative and positive connectivity strength
with subjects’ age; (2) separate assessment of the negative and positive RFC metrics
provides enhanced sensitivity to the aging effect; and (3) the sensorimotor network
depicts enhanced negative connectivity strength with the adult age. The proposed QDA
framework can produce threshold-free and voxel-wise RFC metrics from R-fMRI data.
The detected adult age effect is largely consistent with previously reported studies
using different R-fMRI analysis approaches. Moreover, the separate assessment of
the negative and positive contributions to the RFC metrics can enhance the RFC
sensitivity and clarify some of the mixed results in the literature regarding to the DMN
and sensorimotor network involvement in adult aging.

Keywords: quantitative data-driven analysis (QDA), resting-state functional magnetic resonance imaging (R-
fMRI), resting-state functional connectivity (RFC), connectivity strength index (CSI), connectivity density index
(CDI), adult age
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INTRODUCTION

Among the different analysis approaches for resting-state fMRI
(R-fMRI) data, the anatomic region-of-interest (ROI)-based, and
data-driven independent component analysis (ICA) methods are
probably the most commonly used (Tyszka et al., 2014). Resting-
state functional connectivity (RFC) results from the ROI-based
and ICA derived methods are generally similar but conceptually
different. The quantitative relationship between ROI-based and
ICA derived measures of RFC has been investigated with
computer simulation and experiment approaches (Joel et al.,
2011; Rosazza et al., 2012). In theory, the ROI-based RFC
measures can be shown to be the sum of the ICA derived RFC
both for the within and between networks (Joel et al., 2011;
Rosazza et al., 2012).

With ROI-based analysis the brain is first parcellated into pre-
defined anatomical regions, the mean time course for each ROI
is then determined. By calculating the temporal correlations in
a pairwise fashion between the defined ROIs, for each R-fMRI
dataset a correlation coefficient matrix of the ROIs can be
obtained for further statistical assessment. Therefore, specific
connectivity between specific regions is explicitly tested in a
model-driven framework by using the average time courses of
the selected ROIs as a temporal model. Since the RFC patterns
do not necessarily coincide precisely with the atlas-based ROI
definition, all voxels within predefined ROIs are not necessarily
a part of the network-of-interest and functionally connected.
This can potentially affect the accuracy and sensitivity of the
ROI-based analysis (Song et al., 2016). On the other hand, ICA
can reveal dynamics and spatially distributed brain networks in
a data-driven fashion without the need of a temporal model.
Beside motor and sensory networks, ICA studies have identified
the brain networks involved in attentional control (Lawrence
et al., 2003), including the task-dependent (Vossel et al., 2014)
dorsal and ventral lateral attention networks (DAN and VAN),
the task-independent (Raichle et al., 2001; Buckner et al., 2008)
default mode network (DMN), and the salience network (SN),
which was postulated to be the switching control network for the
up-regulation of attention networks and the downregulation of
the DMN (Menon and Uddin, 2010). The dynamic interactions
between the DAN, VAN, DMN, and SN networks are believed
to be the key for understanding the function and dysfunction
efficient attention allocation for task performance.

Despite the growing consensus regarding the ICA-derived
intrinsic RFC networks in the healthy brain with stable spatial
components reproduced across studies (Damoiseaux et al., 2006;
Smith et al., 2009; Allen et al., 2011), the precise number
of independent components (NIC), as a prerequisite input
parameter for ICA, is not known a priori. NIC can substantially
influence the ICA outcomes (Wang and Li, 2015). Moreover,
there is lack of gold standard for the selection of meaningful
components to exclude non-interesting noise resources, such as
ventricular, vascular, susceptibility, or motion-related artifacts
(Wang and Li, 2013).

In this study we refined further of our quantitative data-driven
analysis (QDA) framework based on the time course of individual
voxel inside the brain. The QDA approach is data-driven as

ICA and can generate two types of quantitative RFC metrics for
each voxel inside the brain without the need for specifying a
particular threshold, model or mode. Since it uses the time course
of each voxel within the brain as the reference seed in turn to
compute voxel-wise whole-brain correlational coefficient matrix,
the size of the correlation matrix is equal to the number of voxels
inside the brain. It is typical N > 104 for whole-brain R-fMRI
datasets with 4 mm voxel size. To facilitate further statistical
assessment of the whole-brain correlation matrix, we derive two
types of voxel-wise RFC metrics from the correlation matrix,
namely the connectivity strength index (CSI) and connectivity
density index (CDI). CSI and CDI provide general connectivity
metrics of strength and density for the local voxel with the rest of
brain, respectively. These metrics can be used for straightforward
statistical comparison to assess differences between groups and
longitudinal changes of individuals. This is a basic requirement
for radiological diagnosis in clinical practice.

Several voxel-based RFC metrics have been proposed in the
literature. Among other things, the regional homogeneity (Zang
et al., 2004; Meier et al., 2017; Reynolds et al., 2017), measures
of low frequency oscillation including the amplitude of low
frequency fluctuations (ALFF) and the fractional ALFF (Yang
et al., 2007; Zang et al., 2007; Zou et al., 2008; Sun et al., 2016;
Zhang X.D. et al., 2016; Pan et al., 2017), measurements of
complexity, such as the Hurst exponent (Hayasaka and Laurienti,
2010; He, 2011; Ciuciu et al., 2014), and brain entropy (de Araujo
et al., 2003; Zhao et al., 2010; Jia et al., 2017; Viol et al., 2017) have
been used for studying the RFC in normal and diseased brains.
These methods have yielded interesting results. However, there
remains still some methodological issues to be addressed, such
as the arbitrariness in the selection of cut-off frequency (Yang
et al., 2007; Zang et al., 2007; Zou et al., 2008; Sun et al., 2016;
Zhang X.D. et al., 2016; Pan et al., 2017), loss of information
(Hayasaka and Laurienti, 2010; He, 2011; Ciuciu et al., 2014), and
computation difficulty (de Araujo et al., 2003; Zhao et al., 2010;
Jia et al., 2017; Viol et al., 2017). These technical difficulties may
have contributed to the inconsistent findings in the published
literature. Moreover, the different RFC metrics portray different
aspects of R-fMRI signal and may have different sensitivities
to the physiological activities and pathological abnormality
(Golestani et al., 2017; Reynolds et al., 2017).

Both ICA and ROI-based approaches have previously been
applied to study age-related changes in RFC (Bluhm et al., 2008;
Biswal et al., 2010; Weissman-Fogel et al., 2010; Zuo et al., 2010;
Dennis and Thompson, 2014; Alarcon et al., 2015; Zhang C.
et al., 2016). Numerous studies have confirmed that reduced
RFC in healthy aging in the DMN is correlated with cognitive
deficit (Damoiseaux et al., 2008; Biswal et al., 2010; Campbell
et al., 2013; Ferreira and Busatto, 2013; Scheinost et al., 2015).
There is accumulating evidence to support the notion that elderly
adults typically have reduced RFC across most parts of the
DMN, particularly in the dorsal medial prefrontal cortex (mPFC)
and the ventral and posterior cingulate cortex (PCC; Campbell
et al., 2013; Scheinost et al., 2015). However, in the reported
literature there is also considerable variability concerning age-
related RFC differences in the limbic and other DMN subsystems.
For example, some studies have found age-related RFC reduction
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in the hippocampal (Damoiseaux et al., 2008; Campbell et al.,
2013; Scheinost et al., 2015) and subcortical regions (Ystad et al.,
2010), whereas others reported either no significant decline or
elevated RFC in some of the specific hippocampal (Pasquini et al.,
2015) and DMN regions (Salami et al., 2014; Damoiseaux et al.,
2016). The discrepancies in the reported findings among the
different R-fMRI studies may reflect not only variability in the
sample characteristics, but also diversity in the data processing
methods for deriving the different RFC metrics for connectivity
of specific pathways.

The main objective of this study is to develop a QDA
framework to analyze R-fMRI data and derive quantitative,
model-free, and threshold-free RFC metrics, which are optimally
sensitive to physiological and pathological changes in the central
nervous systems. We used the proposed metrics to assess if and
how adult age in healthy subjects influences these RFC metrics.

EXPERIMENTAL AND METHODS

Participants
A total of 227 volunteers (aged 18–76 years,
male/female = 99/128) completed the study and were recruited
into the study through the local media advertisement in the
Stockholm region. All participants were right-handed, and
native Swedish speakers with normal or corrected-to-normal
vision. They all reported being free of a history of neurological,
psychiatric, and cardiovascular diseases. None of the participants
reported any use of psychotropic drugs. Each subject signed
informed consent before completing the magnetic resonance
imaging (MRI) examination protocol. They were financially
compensated for their participation. The regional ethics
committee approved the study protocol 2014/1982-31/1, which
was conducted in line with the declaration of Helsinki.

Magnetic Resonance Imaging Data
Acquisition Protocol
The MRI data acquisition was conducted on a whole-body
3T clinical MRI scanner (Magnetom Trio, Siemens Medical
Solutions, Erlangen, Germany) equipped with a 32-channel
phased-array receiving head coil. All data was acquired at
Karolinska University Hospital, Huddinge, Stockholm, between
noon and 5:00 PM. The MRI data acquisition protocol included
the following scanning sessions: (1) 3-plane localizer; (2)
Conventional clinical MRI scans including 3D T1-weighted
MPRAGE, T2 and FLAIR scans; and (3) A session of 375 s
long R-fMRI measurements. The main acquisition parameters
for the R-fMRI data included the following: TE/TR 35/2,500 ms,
flip angle = 90◦, 34 slices of 3.5 mm thick, FOV = 225 mm,
matrix size = 76 × 76, data acquisition acceleration with
GRAPPA parallel imaging method (iPAT = 2), and 150
dynamic timeframes. The T1-weighted MPRAGE images used
for co-registration with functional images were acquired with
the following parameters: TR = 1,900 ms, TE = 2.52 ms,
FA = 9 degrees, FOV = 256, voxel size 1 mm × 1 mm × 1 mm.
The acquisition parameters for the FLAIR image were the
following: TE/TR = 89/9,000 ms, flip angle = 130◦; inversion

time (TI) = 2,500 ms, slice thickness = 4.0 mm, and
FOV = 199 × 220 mm. An experienced radiologist inspected
both the FLAIR and T1-weighted images for potential signs
of neuropathology.

We used foam patting to fix each subject’s head carefully in
the head coil to reduce involuntary head motions. During the
R-fMRI data acquisition the participants were instructed to focus
their sight on a white cross in black background projected on
a screen installed in front of their eyes. The subjects were also
instructed to not think about anything particular during the
R-fMRI session.

Resting-State Functional Magnetic
Resonance Imaging Data Pre-processing
The R-fMRI datasets underwent a preprocessing procedure,
which has been described elsewhere in details (Li et al.,
2021) and was performed with AFNI (Version Debian-
16.2.07∼dfsg.1-3∼nd14.04+1, http://afni.nimh.nih.gov/afni)
and FSL1 programs with a bash wrapper shell (Wang and Li,
2013, 2015). After temporal de-spiking, six-parameter rigid
body image registration was performed for motion correction.
The average volume for each motion-corrected time series
was used to generate a brain mask to minimize the inclusion
of the extra-cerebral tissues. Spatial normalization to the
standard MNI template was performed using a 12-parameter
affine transformation and a mutual-information cost function.
During the affine transformation the imaging data were also
re-sampled to isotropic resolution using a Gaussian kernel
with 4 mm full width at half maximum (FWHM). The co-
registered average image volume for the cohort has 28,146
non-zero voxels inside the brain and was used to generate
the average brain mask for the preprocessed whole-brain
R-fMRI data with 4 mm spatial resolution. Nuisance signal
removal was performed by voxel-wise regression using 14
regressors based on the motion correction parameters, average
signal of the ventricles and their 1st order derivatives. After
baseline trend removal up to the third order polynomial,
effective band-pass filtering was performed using low-
pass filtering at 0.08 Hz. Local Gaussian smoothing up to
FWHM = 4 mm was performed using an eroded gray matter
mask (Wang and Li, 2015).

Pearson’s correlation coefficients (CC) were computed
between the time courses of all pairs of voxels inside the
brain, leading to a whole-brain functional connectivity matrix
for each subject. This computation was performed for all
voxels located within the brain mask, which was generated
by overlapping the registered brains of all participants. This
brain mask contained 28,146 voxels and each voxel inside
the brain was used as the seed voxel in turn. Therefore, the
size of the CC matrix size is 28,146 × 28,146. Each row
or column of the CC matrix corresponds to the CC image
volume for the seed voxel with the rest of the brain. That
is the connectivity map for the seed voxel. As schematically
illustrated in Figure 1, based on the CC histogram for each
row of the matrix we derived the following two types of

1http://www.fmrib.ox.ac.uk/fsl
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FIGURE 1 | A schematic overview to illustrate the QDA framework. With QDA the time course of each voxel is used in turn to compute the whole-brain CC matrix.
For each row of the CC matrix, we compute a CC histogram with 200 evenly binned intervals within [−1, 1]. The histogram shown in the graph is the cohort’s
average CC histogram for a voxel within the PCC as marked with the cross. Two types of RFC images are derived from the CC matrix: (1) CSIP and CSIN whose
voxel values are the averages of the positives and negatives in each row of the CC matrix, respectively. (2) CDIP and CDIN whose voxel values are the positive and
negative parts of the convolution between the CC histogram and the kernel, respectively.

threshold-free voxel-wise RFC metrics: the CSI and CDI. As
we are interested in systematically investigating all relevant
synchronized activities in the whole brain, we quantify the
negative and positive portions of the CC histogram separately
to avoid information cancelation, sensitivity reduction, and
statistical interference. From here on, the subscripts “N” and
“P” are used to indicate the negative and positive portions of the
RFC metrics, respectively. The metrics without subscripts refer
to the mixed measures without distinction of the negative and
position correlations.

As shown in Figure 1, the voxel value for the CSIP and CSIN
are defined as the averages of the positives and negatives in each
row of the CC matrix, respectively. That is

CSIP =

(∑
CC>0

CCrow

)
/np (1)

CSIN =

(∑
CC<0

CCrow

)
/nn (2)

Where CCrow refers to a row in the CC matrix. np and nn refer
to the number of positive and negative correlation coefficients in
a row of the CC matrix, respectively. The voxel values for CDI

are defined as the convolution between the CC histogram and a
kernel function. That is

CDI = Hist (CCrow)⊗ kernel (3)

The CDIP and CDIN correspond to the positive and negative
portions of the convolution defined in Eq. (3), respectively. To
facilitate statistical comparison it is useful to transform the raw
RFC metrics into standard Z-score using the following formula:

Z = (RFC− u) /σ (4)

Where µ and σ are the mean and standard deviation of the
corresponding RFC metrics, respectively. For optimization of
the CDI sensitivity, we investigated 6 different kernel functions
including

ki=1,2,...,4 =
∣∣xi∣∣ , (5)

k5 =
∣∣sin2 (π/2x)

∣∣ , (6)

k6 = step(|x| − 0.3), (7)

where x⊂ [−1,1] corresponds to the interval of the correlation
coefficients. The kernels are also graphically depicted in Figure 2.

Frontiers in Neuroscience | www.frontiersin.org 4 October 2021 | Volume 15 | Article 76841883

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-768418 October 13, 2021 Time: 16:8 # 5

Li et al. QDA Framework for R-fMRI

FIGURE 2 | The six different kernel functions investigated in the study to derive the CDIP and CDIN metrics. The widely used threshold method can be considered as
the case for the square-well kernel function (k6).

The kernel should weight the higher correlation coefficients more
than the lower ones. The widely used threshold approach can
be considered as the case of the square-well kernel function k6.
For illustration, an arbitrary threshold of 0.3 was used here. The
CSI metrics can also be considered as a special case of CDI
corresponding to a kernel of the sign function.

Statistical Analyses
To investigate if and how the RFC metrics are influenced by
heathy aging for the studied cohort we performed voxel-wise
linear regression analyses of the CSI and CDI metrics versus
the subject’s age, while gender was treated as a covariate by
using the AFNI program 3dRegAna to extract the regression
parameter β and linear coefficient r. The statistical significance
was assessed by using a two-step approach. Firstly, we imposed
a voxel-wise threshold p < 0.001 (uncorrected corresponding
t-score ≥ 3.34) to form the initial cluster candidates. Secondly,
we performed permutation simulations without assuming a
particular form of probability distribution for the voxel values in
the statistic images to identify the brain ROI out of the initially
detected clusters at family-wise error rate p ≤ 0.05. Using the
detected ROIs as masks, the mean values of the RFC metrics
for each ROI were evaluated and plotted against the subjects’
age. Besides linear regression analysis with age, we performed
also verification using two-sample t-test between the young and
elderly subgroups. For this, we selected all subjects aged 18–
30 years as the young subgroup (n = 124, males/females = 51/73),

and all subjects aged 64–76 years as the elderly subgroup (n = 76,
males/females = 35/41). To keep sufficient age gap between the
young and elderly subgroups the remaining 27 subjects in the age
range of 31–63 years old were excluded from the t-test. In the
selection of subgroups we attempted to minimize the number of
excluded subjects with intermediate ages, maximize the age gap
between the subgroups, and keep similar number of subjects and
age ranges. It should be emphasized that all 227 subjects were
included in the regression analysis.

RESULTS

The Quantitative Data-Driven Analysis
Framework
The CC histogram for each seed voxel in the brain is dependent
on its location in the brain (see Supplementary Materials).
Figure 3 shows the average CC histogram of the cohort for a
seed voxel in the PCC as illustrated by the cross in Figure 1.
The histogram is somewhat asymmetric and shifted toward the
positive side. This is quite typical at least for voxels within gray
matter. Selecting different threshold values along the histogram
allows us to examine the RFC networks of different connection
strengths associated with the selected seed voxel. As shown
in Figure 3, at high negative threshold (Figures 3A,B) we
observe the DMN. At low negative threshold, we observe its
association with cerebral spinal fluid (CSF) space and white

Frontiers in Neuroscience | www.frontiersin.org 5 October 2021 | Volume 15 | Article 76841884

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-768418 October 13, 2021 Time: 16:8 # 6

Li et al. QDA Framework for R-fMRI

FIGURE 3 | The average CC histogram of the cohort for a seed voxel in the posterior cingulate cortex (PCC) as indicated by the green cross. Selecting different
threshold values along the histogram allows us to examine the functional connection networks of different strengths (A–F) associated with the seed voxel in the PCC.

matter (Figure 3D). At moderately high positive threshold, the
PCC voxel is not only a part of the DMN, but also connected to
most of the cortical gray matter (Figures 3E,F). At high positive
threshold, the PCC voxel is associated with the posterior portion
of the DMN and the visual cortex (Figure 3C). The visual cortex
looks relatively bright at high threshold indicating a relatively
high number of voxels are associated with the visual network or
voxels within the visual cortex are associated with each other at
high threshold criterion. The idea of the QDA framework is to
avoid the arbitrary threshold and optimize the contribution of
meaningful informatics to the quantitative RFC metrics.

Figure 4 shows an axial slice of CDIP and CDIN images
for a typical R-fMRI dataset (from a 36 year old male subject).
Multiple brain regions depict high CDIP including the bilateral
mPFC, superior and middle temporal gyri (MTG), inferior and
superior parietal lobule, precuneus and PCC. These regions have
been described as RFC hubs implying their important role in
neural signaling and communication across the brain (Buckner
et al., 2009; Tomasi and Volkow, 2011). On the other hand,
the PCC, insula cortex. White matter and CSF regions have
high CDIN metric. The contrast and intensity variations across
each row in Figure 4 demonstrate that selection of the kernel
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FIGURE 4 | An axial slice of the CDIP (upper row) and CDIN (lower row) metrics derived from a typical R-fMRI dataset (a male subject of 36 year’s age). The images
from left to right depict the results for the following 6 kernel functions | x|, | x2 |, | x3 |, | x4 |, sin2(π/2x), and step(| x| −0.3), respectively.

function can optimize the contrast and signal-to-noise ratio of
the CDI metrics.

Resting-State Functional Connectivity
Changes Associated With the Adult Age
The linear regression results for the CSI, CSIN, and CSIP data
versus subjects’ age are summarized in Figure 5 and Table 1. The
corresponding results for the CDI, CDIN, and CDIP are shown
in Figure 6 and Table 2. The CSI metric without separation

FIGURE 5 | Brain regions with significant correlation (p < 0.05, corrected)
between the connectivity strength metrics and the subject’s age. The results
for the CSI (A), CSIN (B), and CSIP (C) are depicted separately. The Color bar
shows the t-score level.

of the negative and positive correlations shows decline of the
functional connectivity strength with age in the superior and
middle prefrontal gyrus (MFG) and increase of connectivity
strength in the precuneus and right inferior parietal lobule (r-
IPL). The more specifically defined CSIN and CSIP metrics are
more sensitive to the adult age effect and the detected brain
volumes with significant aging effect are nearly tripled compared
with that for the CSI metric. With CSIN and CSIP we also observe
a more intricate pattern of change with the adult age, which are
summarized as follows:

(1) The CSIP shows mainly decline trend with adult age
(negative β and r) in the extended DMN including
superior and MFG, PCC, bilateral insula cortex and left
middle temporal gyrus (l-MTG) except for putamen where
upregulation of CSIP was observed.

(2) The CSIN depicts a more complicated pattern of
dependence on adult age. The negative connectivity
strength was reduced (positive β and r) with adult age in
the PCC, right insula cortex and IPL, while enhancement
(negative β and r) was detected in the sensorimotor
network (paracentral lobule, bilateral postcentral gyri),
bilateral parahippocampal cortices (PHC), and right
superior temporal gyrus.

(3) There are two brain regions where both the CSIN and
CSIP demonstrated significant reduction trend with adult
age, which were detected by applying the logical “AND”
operation to the regression results for the CSIP and
CSIN. As shown in Table 2 and Figure 7, the two
overlapping ROIs in the PCC and r-insula cortex depict
significant down-regulation of CSIP and CSIN metrics with
the subjects’ age.

To study the specific connectivity associated with the two
ROIs defined by the overlap between the CSIN and CSIP metrics,
we computed Pearson’s correlation maps for the time courses
of the seeds as defined by the overlapping ROIs depicted
in Figure 7A. As expected, the associated RFC network for
the PCC ROI is obviously the well-known DMN and include
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TABLE 1 | The brain regions where the connectivity strength metrics are significantly (p < 0.05) correlated with the subjects’ ages.

RFC Voxel Xcm Ycm Zcm β (103) r p Annotation

CSI 239 +2.1 +63.0 +47.9 9.50 0.459 <0.01 Precuneus

152 +3.4 −47.3 +30.1 −9.72 −0.389 <0.01 Superior and MFG

62 −38.5 +55.3 −35.5 9.57 0.354 <0.01 R-IPL

CSIN 237 +0.0 +53.1 +27.3 12.29 0.413 <0.01 PCC

171 −42.6 −10.4 +11.0 12.36 0.411 <0.01 R-insula cortex

161 −2.3 +28.2 +59.4 −11.05 −0.371 <0.01 Paracentral lobule

153 −49.1 +47.6 +41.2 11.62 0.441 <0.01 R-IPL

133 −39.8 +25.7 +55.5 −10.99 −0.325 <0.01 R-postcentral gyrus

75 −27.3 −3.8 −34.0 −9.99 −0.450 <0.01 R-PHC

67 −56.8 +14.6 +5.9 −9.28 −0.400 <0.01 R-STG

58 +18.4 +0.4 −18.9 −9.36 −0.441 <0.01 L-PHC

56 +42.0 +25.9 +57.1 −10.38 −0.309 <0.01 L-postcentral gyrus

713 +2.0 −45.4 +23.6 −10.37 −0.487 <0.01 Superior and MFG

CSIP 157 −1.1 +14.7 −17.8 7.96 0.506 <0.01 Putamen

110 +55.7 +13.1 −19.5 −9.49 −0.433 <0.01 L-MTG

75 +2.7 +48.5 +31.1 −9.01 −0.336 <0.01 PCC

53 −40.0 −8.7 +0.8 −8.48 −0.361 <0.01 R-insula cortex

52 +45.1 −10.5 −8.9 −8.36 −0.376 <0.01 L-insula cortex

CSIN CSIP 70 +2.8 +49.0 +31.0 14.15 0.374 <0.01 PCC (CSIN)

13.37 0.362 <0.01 PCC (CSIP)

34 −40.8 −10.0 +0.0 −9.04 −0.334 <0.01 R-Insula cortex (CSIN)

−8.63 −0.336 <0.01 R-Insula cortex (CSIP)

The volume, center of mass coordinates in MNI space, regression parameter (β), linear correlation coefficient (r), statistical significance (p), and anatomic annotations
are specified. The default is bilateral, while R and L- indicate the right and left hemisphere of the brain, respectively. CSINP indicates the overlapping results
between CSIN and CSIP.

4 negatively correlated brain regions, which are the bilateral
IPL and insula cortices (see Figure 7B). On the other hand,
the associated RFC network for the insula ROI includes the
PCC and bilateral precuneus as the negatively correlated brain
regions (Figure 7C) Figure 8. Shows the anti-correlated brain
regions between the above 2 RFC networks as obtained by
multiplying the two correlation maps with each other and
applying negative threshold at CC ≤ (−0.5). The mutually
inclusive anti-correlation between the PCC and the right insular
cortex explains why both CSIP and CSIN metrics in these regions
depict declines with the adult age.

Figure 9 shows the ROI average of the CSIN and CSIP metrics
in the PCC and right insula cortex as a function of the subject’s
age. With normal aging, both the CSIP and CSIN are reduced
in these brain regions (overlap shown in Figure 7A). Therefore,
the PCC and right insula are particularly sensitive to the adult
age effect. However, the aging effect is barely detectable by the
unseparated CSI metric (see Table 1).

As expected, the CDIP and CDIN metrics derived by using
the different kernels differ in their sensitivity in detecting
the adult age effect. Figure 10A shows the detected brain
volumes where the CDIP and CDIN metrics are significantly
associated with the adult age. The sensitivity difference of
the kernels is also manifested in the regression parameter β

which are detailed in Table 3 and Figure 10B. To compare
the similarity of the detected aging effects among the CDI
metrics of different kernels, we assessed the joint overlapping
brain regions detected by the different CDIN and CDIP metrics
of different kernels. The observed overall trends of RFC

enhancement or decline with age are quite similar. The joint
overlapping volumes for the CDIP and CDIN metrics of different
kernels are 733 and 671 voxels, respectively. Moreover, there
is also a reasonable anatomic consistency between the results
of the connectivity strength metrics and connectivity density
metrics. As detailed in Tables 2, 3, the anatomical locations
of the joint overlapping regions for the different CDIP metrics
match those for the 3 largest ROIs identified by the CSIP
results (see Table 1). Similarly, the brain regions of the joint
overlapping for the different CDIN metrics are largely the same
as those identified by the CSIN data (see Table 1). However,
it should be noted that the β parameters for the CDIN and
CSIN have opposite signs even through the trend of change
with the adult age is the same. This is because the negative
connectivity strength (CSIN) is negative in nature, while the
connectivity density corresponding to the negative correlation
(CDIN) is always positive. Therefore, the enhancement of the
negative connectivity strength (CSIN) with age (for example
in the sensorimotor network) corresponds to a negative β,
while the connectivity density result corresponds to a positive
β value.

DISCUSSION

Effects of Adult Age on Resting-State
Functional Connectivity
Age is an important risk factor for declines of neural cognitive
functions and pathology of neurodegenerative diseases. It is also
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FIGURE 6 | Brain regions with significant correlation (p < 0.05, corrected)
between the connectivity strength metrics and the subject’s age. The results
for the CDI (A), CDIN (B), and CDIP (C) are depicted separately. The Color bar
shows the t-score level.

a complex metric difficult to precisely interpret the involved
physiology. Healthy individuals of similar age may have quite
different vascular and brain-health status. It follows that age
is not a single strongest predictor for the RFC in the brain.
This is likely to be the reason why the linear regressions
of the RFC metrics with the adult age depict substantial
scatters and relative low correlation coefficients. The impact
of the potential confounds and pre-processing strategies that
can mitigate them have been extensively investigated in the
published literature (Bluhm et al., 2008; Biswal et al., 2010;
Weissman-Fogel et al., 2010; Zuo et al., 2010; Dennis and
Thompson, 2014; Alarcon et al., 2015; Zhang C. et al., 2016;
Geerligs et al., 2017; Hussein et al., 2020). Here we focus
on comparing our findings in the context of documented
literature results, particularly the adult age effect in the DMN,
dorsal attention network (DAN), sensorimotor network, and
subcortical brain regions.

With QDA, we found support for RFC decline with advancing
adult age in multiple brain regions of the DMN and DAN,
including superior and MFG, PCC, MTG, and IPL. Age-related
RFC decrements in the DMN and DAN have previously been
reported in numerous R-fMRI studies using ROI and ICA
based analysis (Buckner et al., 2008; Damoiseaux et al., 2008;
Dennis and Thompson, 2014; Scheinost et al., 2015; Luo et al.,
2020). Our findings regarding to the RFC changes in the
DMN are overall in agreement with previous reported results

(Damoiseaux et al., 2008, 2016; Koch et al., 2010; Ystad et al.,
2010; Williams, 2013; Lu et al., 2014; Persson et al., 2014, 2015;
Salami et al., 2014). Besides the DMN and DAN, normal aging
was associated with RFC increase in the sensorimotor, subcortical
network, and para-hippocampal cortex. This has also been
reported previously (Persson et al., 2015, 2016; Damoiseaux et al.,
2016; Geerligs et al., 2017; Hussein et al., 2020; Luo et al., 2020).
We didn’t find significant age-related RFC declines in precuneus
and specific sub-regions of the hippocampal cortex as reported
in previous studies (Salami et al., 2014; Damoiseaux et al.,
2016). Since we assessed the negative and positive correlation
separately, this may allow us to detect more intricate age-
related RFC changes in the brain. To illustrate this point, we
analyzed further the 3 ROIs with significant correlation between
the CSI and the subject’s age. As shown in Tables 1, 4 and
Figure 11, the detected ROI in the precuneus depicted significant
positive linear correlation between CSI and the subject’s age
(β = 9.50 × 10−3, r = 0.459), even though the CSIP and
CSIN in the same ROI showed only a slight (not significant)
increment and decrement with age, respectively, i.e., contribution
from a low-significant CSIP increment and a non-significant
CSIN decrement resulted in a highly significant increment trend
in the CSI metric. With the same line of reasoning, we can
explain why the MFG ROI detected by the CSI metric is much
smaller than that detected by the CSIP metric, because the
decremental trend in the CSIP metric was partially canceled
by the CSIN contribution. This can also explain why we didn’t
detect significant CSI decrement with the adult age in the PCC
and R-insula, because both the CSIP and CSIN metrics exhibited
significant decremental trends with age and their contributions
annulled each other. Therefore, it is important to pay attention to
the precise definition of the RFC when comparing the results of
different studies.

Both CSIP (r = 0.506, see Table 1) and CDIP (r = 0.577, see
Table 2) showed age-related enhancement Caudate/putamen
and the association are quite strong. This finding based on
QDA approach are consistent with previous reports (Manza
et al., 2015; Rieckmann et al., 2018) from ROI-based studies
aimed to investigate the aging effect on specific functional
connectivity of in the striatum-cortical system. It is well
known that the striatum-somatomotor connection is primarily
associated with motor performance, especially the “automatic”
performance of already learned movements. It has been
reported that posterior putamen and pallidum decreases in
connectivity to left somatomotor cortex with age (Manza
et al., 2015). This provides a reasonable explanation for the
commonly observed motor deficits as in elderly subjects.
There is also growing evidence support the notion that
striatum-cortical connectivity is potentially important for
memory function at older age. Intriguingly, this is related to
the enhanced RFC with age in the putamen/caudate. Several
studies have reported that increased striatum functional
connectivity in older adults typically reflects less negative
connectivity between two regions belonging to different
networks, and the increased connectivity is often negatively
associated with cognitive performance (Rieckmann et al.,
2018). Therefore, better understanding the RFC change with
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TABLE 2 | The brain regions where the connectivity strength metrics are significantly (p < 0.05) correlated with the subjects’ ages.

RFC Voxel Xcm Ycm Zcm β (103) r p(10−3) Annotation

CDI 736 +0.7 −45.4 +24.2 6.511 0.603 <0.01 Superior amd MFG

663 −6.0 +5.6 −19.3 −13.43 −0.469 <0.01 Caudate/putamen

100 +0.7 +48.4 +30.8 −14.14 −0.325 <0.01 Precuneus

99 +56.3 +16.8 −16.2 −11.04 −0.412 <0.01 L-ITG

86 −45.9 −10.2 +6.6 −10.81 −0.387 <0.01 R-insular cortex

63 −2.7 +33.0 +66.3 11.48 0.306 <0.01 r-postcentral gyrus

49 −58.3 +15.3 −16.8 −10.83 −0.408 <0.01 R-ITG

CDIN 243 −0.0 +52.4 +29.9 −14.78 −0.381 <0.01 PCC

124 −2.3 +28.5 +58.3 11.49 0.354 <0.01 Primary motor cortex

98 −48.4 +47.3 +42.1 −14.41 −0.426 <0.01 R-IPL

96 −40.1 +25.2 +55.8 12.09 0.327 <0.01 R-postcentral gyrus

85 +20.5 −2.2 −20.7 10.52 0.423 <0.01 L-piriform cortex

83 −44.3 −13.1 +3.1 −16.74 −0.375 <0.01 R-insular cortex

56 −27.3 −6.6 −31.4 10.12 0.403 <0.01 R-fusiform gyrus

54 +40.8 +25.1 +57.6 10.00 0.302 <0.01 L-postcentral gyrus

39 +38.1 −12.3 +4.2 −13.85 −0.381 <0.01 L-insular cortex

37 +57.0 +9.2 +30.8 10.72 0.315 <0.01 L-postcentral gyrus

36 +47.6 +19.1 +6.2 8.68 0.376 <0.01 L-STG

36 −7.6 −14.3 +40.1 −11.73 −0.349 <0.01 ACC

31 −47.2 +21.0 +8.2 8.32 0.382 <0.01 R-STG

804 +2.0 −45.3 +24.8 −13.14 −0.476 <0.01 Superior and MFG

485 +1.1 +8.r05 −5.0 5.69 0.577 <0.01 Caudate/putamen

CDIP 92 +55.9 +14.2 −18.2 −10.23 −0.400 <0.01 L-ITG

50 −30.2 −9.1 −33.3 7.53 0.388 <0.01 R-ITG

30 +0.6 +46.2 +33.2 −12.87 −0.303 <0.01 PCC

CDINCDI 23 −28.7 −8.5 −32.1 10.81 0.372 <0.01 R-parahippocampal (CDIN)

7.186 0.376 <0.01 R-parahippocampal (CDIP)

23 +0.2 +47.2 +33.3 −17.27 −0.330 <0.01 PCC (CDIN)

−12.96 −0.303 <0.01 PCC (CDIP)

The volume, center of mass coordinates in MNI space, regression parameter (β), linear correlation coefficient (r), statistical significance (p), and anatomic annotations are
specified. The default is bilateral, while R and L- indicate the right and left hemisphere of the brain, respectively. CDINP indicates the overlapping results between CDIN
and CDIP.

adult age in the striatum-cortical system can be potentially
useful for assessing motor as well cognitive functions in
elderly subjects.

Methodological Issues
The QDA framework proposed in the study is a voxel-wise and
data-driven approach. It has the following two unique features:
(1) It can avoid confounding caused by the cancelation of
the negative and positive correlations by assessing the negative
and positive portions of the CC histogram separately; (2)
It derives different RFC metrics based on the connectivity
strength and density by utilizing the concept of convolutions
with different kernels. The metrics weight all the correlations
of a given voxel with the rest of the brain according to the
amplitudes of the correlation coefficients and disregard the
anatomical distance between the correlation pairs. This permits
a comprehensive characterization of the intrinsic activities of
each voxel without the use of an arbitrary threshold. The QDA
approach can encapsulate the widely used threshold approach as
a special case of the square-well kernel function. The widely used
degree centrality corresponds precisely this square-well kernel

situation which adopts a somewhat arbitrary threshold and every
connection above the threshold are weighted equally. Even the
CSI metrics can be encapsulated under the convolution concept
for a special kernel of the sign function. This provides a unified
view for RFC and can facilitate its further optimization. The
QDA framework uses the time course of each voxel within the
brain as the seed reference to compute voxel-wise whole-brain
correlational coefficient matrix. For whole-brain R-fMRI data
acquired at 4 mm spatial resolution, the correlational coefficient
matrix is in the order of 105 and is currently not practical for
direct visualization and statistic assessment. Particularly, when
data are acquired with higher spatial resolution, e.g., 2 mm,
the matrix size is increased by 8 × 8 times. Therefore, for
data reduction, we derived two types of voxel-wise RFC metrics
from the correlational coefficient matrix without the need for
specifying a particular seed, threshold, model, or mode. As their
names indicated, CSI and CDI are aimed to capture the local
(voxel) connectivity strength and density with rest of brain,
respectively. The QDA metrics can assess the general connectivity
with the rest of the brain without specifying a specific path
or network. The QDA method does not highlight the specific
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FIGURE 7 | The overlapping ROIs in the PCC and right insula cortex where both the CSIP and CSIN metrics depict significant decline with the adult age (A). The one
sample t-test maps for the Pearson’s correlation maps associated the seeds defined as the overlapping ROI in the PCC (B) and insula cortex (C).

connectivity changes between selected brain regions. The precise
neural correlate of R-fMRI signal is currently not well understood
(Hyder and Rothman, 2010). However, it is reasonable to assume
that the R-fMRI signal fluctuations indirectly reflect the slow
modulations of neuronal activities at rest. Furthermore, the
sigmoid function has been widely accepted as the logistic function
of neuronal activation instead of a square-well. With current

FIGURE 8 | Cross-sectional display of the anti-correlation network associated
with the PCC (A) and insula (B) seeds as derived by multiplying the correlation
maps shown in Figures 7B,C and applying a negative threshold at CC ≤ (−0.
5). The crossing points of green lines depict the center of mass for PCC and
insula ROIs.

status of knowledge, we cannot identify a convolution kernel to
reveal a particular feature of the neurophysiology. However, we
can attempt to optimize the kernel to reduce bias and improve
sensitivity of the RFC metrics to pathophysiological changes.

The current results based on the QDA framework should
be interpreted in the context of some technical and biological
limitations. Firstly, at a TR of 2,500 ms, the cardiac and
respiratory fluctuation effects might be aliased into the low
frequency R-fMR signal fluctuations. The regression up-to the
1st order derivative of the head motions and lowpass filtering
could not eliminate the effects of these physiological noises
(Muschelli et al., 2014; Pruim et al., 2015; Bright et al., 2017;
Parkes et al., 2018). Thus, these aliasing effects could reduce the
specificity of the RFC metrics, or even might further confound
the detected RFC differences between the young and elderly sub-
groups. With the more up-to-date acquisition techniques, such
as multi-band simultaneous acquisition of multiple slices and
compress-sensing with high under-sampling factor, it is possible
to use a shorter TR (e.g., 500 ms) and higher spatial resolution for
the data acquisition. Therefore, these physiological effects may be
further mitigated.

Secondly, the resting state is associated with spontaneous
thoughts and cognitive processing, we cannot exclude the
possibility that differences in spontaneous thoughts may exist
between the young and elderly subjects (Wu et al., 2007).
However, considering the overall consistency of our results with
the previous studies, particularly the results from the longitudinal
studies (Fjell et al., 2014; Ng et al., 2016; Staffaroni et al., 2018;
Li Q. et al., 2020), it is unlikely that these differences have major
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FIGURE 9 | Scattered plots of the regression against age for the overlapping results between the CSIN and the CSIP metrics (see the bottom rows of Table 1). The
ROI average of the CSIN metric against the subject’s age for the overlapping ROI in the PCC (A). The ROI average for the CSIN metric against the subject’s age for
the overlapping ROI in the right insula cortex (B). The ROI average for the CSIP metric against the subject’s age for the overlapping ROI in the PCC (C). The ROI
average for the CSIP metric against the subject’s age for the overlapping ROI in the insula cortex (D). The lines show the linear regression results of the RFC metrics
against the subject’s ages.

influence on our findings. These initial findings encourage the
future use of QDA as a tool to analyze longitudinal R-fMRI
data aimed to develop a comprehensive understanding of age- or
pathology-related brain functional changes.

Thirdly, the generalizability, or external validity issue should
be considered. This is due to the non-random recruitment
procedures and relying on a sample of convenience. The sample
size used in this study (N = 227) is moderate, includes unbalanced
young and elderly subgroups reflecting the difficulties to recruit
elderly healthy subjects. The ages of the participants range from
young to old adulthood (reflecting the age of participants in most
neuroimaging studies). The age-related RFC differences observed
in this study were relatively small but quite robust. However,
the results from this cross-sectional study of the cohort cannot
distinguish whether the RFC changes in the brain regions are due
to gradual changes throughout the adulthood or a more sudden
change at later stage in life.

Fourthly, the R-fMRI data were acquired under open-eye
condition. Recent studies indicate that opening versus closing

eyes at resting-state results in RFC difference between V1 with
DMN and SNs (Costumero et al., 2020). This may explain
why we did not detect significant RFC change with age in
the visual cortex.

Negative Cross Correlation in White
Matter and Cerebral Spinal Fluid
As discussed above negative correlation is an important fraction
of the CC histogram irrespective of the tissue type and anatomical
location of the voxel in question. In the published literature,
there is also a rapid growing interest in studying the negative
correlations between the voxels (Fox et al., 2009; Weissenbacher
et al., 2009; Bianciardi et al., 2011; Schwarz and McGonigle,
2011; Gonzalez-Castillo et al., 2012; Gopinath et al., 2015;
Liu et al., 2015; Spreng et al., 2016; Chen et al., 2020). It
is clear that the negative portion of the CC histogram is
more dominant for voxels in CSF (Gruszecki et al., 2018)
and white matter (McColgan et al., 2017; Gore et al., 2019;
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FIGURE 10 | The total volumes of the detected brain regions with significant correlation (p < 0.05, corrected) between the connectivity density index (CDIP and
CDIN) and the subject’s age as a function of the kernels (A). The average regression parameter β for the detected brain regions as a function of the kernels (B). The
negative and positive correlations were assessed separately.

TABLE 3 | The joint overlapping brain regions where the connectivity density metrics of different kernels are all significantly (p < 0.05) correlated with the subjects’ ages.

RFC Voxel Xcm Ycm Zcm β (103) r p(10−3) Notations

CDIN 216 +0.1 +51.9 +29.2 −13.81 −0.376 <0.01 PCC

103 +0.5 +28.2 +57.6 12.16 0.366 <0.01 Paracentral lobule

92 −48.2 +47.0 +42.1 −13.32 −0.431 <0.01 R-IPL

72 −38.7 +26.2 +57.2 11.91 0.326 <0.01 R-post central gyrus

44 +21.2 −4.7 −20.6 9.95 0.430 <0.01 L-PHC

38 −41.9 −12.4 +5.0 −15.16 −0.374 <0.01 R-insula cortex

29 +20.8 −4.0 −20.0 8.75 0.371 <0.01 L-STG

29 −1.5 −14.4 +39.5 −11.66 −0.355 <0.01 Anterior cingulate cortex

28 +44.0 +24.1 +57.1 10.37 0.297 <0.01 L-post central gyrus

20 −45.2 +18.4 +9.6 9.20 0.364 <0.01 R-STG

CDIP 567 +4.2 −46.9 +24.8 −12.20 −0.480 <0.01 Superior and MFG

136 −9.4 +21.2 −22.3 8.53 0.452 <0.01 Putamen

30 +57.0 +15.8 −15.8 −10.09 −0.387 <0.01 L-MTG

The volume, center of mass coordinates in MNI space, and anatomic annotations, regression parameters (β), linear correlation coefficient (r), statistical significance (p),
and anatomic annotations are specified. The default is bilateral, while R and L- indicate the right and left hemisphere of the brain, respectively. CDIN and CDIP indicate the
joint overlaps among the CDIN and CDIP metrics of the different kernels, respectively. The β, r, and p are the average results for the 6 different kernels.

Wu et al., 2019; Li M. et al., 2020). However, the negative
portion cannot be ignored even for voxels in the gray matter
(see Supplementary Materials). To avoid confound caused by
inappropriate preprocessing pipelines, we have carefully tested
and updated our preprocessing pipeline. We did not implement
the global signal regression (GSR) which removes the mean signal
averaged over the entire brain. GSR removal via linear regression
is one of the most controversial procedures in the analysis of

R-fMRI data (Fox et al., 2009; Weissenbacher et al., 2009). On one
hand, the global mean signal contains variance associated with
respiratory, scanner-, and motion-related artifacts. Its removal by
GSR can improve various quality control metrics, which enhances
the anatomical specificity of RFC networks, and increase the
explained behavioral variance. On the other hand, GSR alters
the distribution of regional signal correlations in the brain, can
induce artefactual anti-correlation patterns, may remove real
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TABLE 4 | The linear regression results for the 3 ROIs with significant correlation between CSI and the subject’s age.

ROI CSIP CSIN CSI

β × 103 r p β × 103 r p β × 103 r p

Precuneus 4.93 0.283 < 0.01 3.17 0.175 0.07 9.50 0.459 <0.01

MFG −11.46 −0.441 < 0.01 3.77 0.136 0.11 −9.72 −0.389 <0.01

R-IPL 0.73 0.031 0.61 8.03 0.299 < 0.01 9.57 0.354 <0.01

The CSIP and CSIN results are based on the masks determined solely by the CSI results.

FIGURE 11 | The ROI average of the CSIP, CSIN, and CSI metrics against the subject’s age for the 3 ROIs with significant correlation between CSI and the subject’s
age. The details of the regression results are summarized in Table 4. The columns 1 to 3 are the results for the ROIs in the precuneus, MFG, and R-IPL, respectively.
The rows 1 to 3 are the results for the CSIP, CSIN and CSI metrics, respectively. The ROI masks are solely based on the CSI metric only.

neural signal, and can distort RFC metrics. The brain masked
“global signal” is usually misunderstood, because it is not “global”
and its variance contains dominant contributions from different
domains of the voxels with temporally coherent signal variation.

To limit the study in a reasonable scope, in the discussion of
the adult age effect on RFC we focused on gray matter and did not
discuss white matter and CSF related issues. However, it should
be pointed out that aging effects in white matter (McColgan et al.,
2017; Gore et al., 2019; Wu et al., 2019; Li M. et al., 2020) and
CSF (Sakka et al., 2011; Gruszecki et al., 2018) are also worth
exploring. There is indeed a rapid growing interest in these arenas

in published literature (Sakka et al., 2011; McColgan et al., 2017;
Gruszecki et al., 2018; Gore et al., 2019; Wu et al., 2019; Li M.
et al., 2020), particularly in the context of the age effect for the
glymphatic system.

CONCLUSION

The proposed QDA framework can provide data-driven,
threshold-free and voxel-wise analysis of R-fMRI data and offer
a unified view for RFC metrics which can facilitate further
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development and optimization of the RFC metrics by choosing
appropriate kernel functions. The QDA results for the adult age
effect are largely consistent with previously published results
based on other analysis methods. Moreover, our new findings
based on the separate assessment of the negative and positive
correlations can improve the sensitivity of the RFC metrics to
physiological changes associated with the advancing adult age
and may clarify some of the confounding reports in the literature
regarding to the DMN and sensorimotor network involvement
in normal aging.
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Functional magnetic resonance imaging (fMRI) has become one of the most widely
used noninvasive neuroimaging technique in research of cognitive neurosciences and of
neural mechanisms of neuropsychiatric/neurological diseases. A primary goal of fMRI-
based neuroimaging studies is to identify biomarkers for brain-behavior relationship and
ultimately perform individualized treatment outcome prognosis. However, the concern
of inadequate validation and the nature of small sample sizes are associated with
fMRI-based neuroimaging studies, both of which hinder the translation from scientific
findings to clinical practice. Therefore, the current paper presents a modeling approach
to predict time-dependent prognosis with fMRI-based brain metrics and follow-up data.
This prediction modeling is a combination of seed-based functional connectivity and
voxel-wise Cox regression analysis with built-in nested cross-validation, which has been
demonstrated to be able to provide robust and unbiased model performance estimates.
Demonstrated with a cohort of treatment-seeking cocaine users from psychosocial
treatment programs with 6-month follow-up, our proposed modeling method is
capable of identifying brain regions and related functional circuits that are predictive
of certain follow-up behavior, which could provide mechanistic understanding of
neuropsychiatric/neurological disease and clearly shows neuromodulation implications
and can be used for individualized prognosis and treatment protocol design.

Keywords: prediction modeling, fMRI, treatment outcome, Cox regression, functional connectivity,
neuromodulation implications

INTRODUCTION

Since the initial demonstration of blood-oxygen-level-dependent (BOLD) signal in vivo in early
1990s (Ogawa et al., 1990), functional magnetic resonance imaging (fMRI) has become a
noninvasive neuroimaging technique widely used in research of cognitive neurosciences, as well as
in understanding of neural mechanisms of neuropsychiatric/neurological diseases. For example, in
exploring neurobiological mechanisms of substance use disorder, a highly relapsing chronic brain
disease (Dutra et al., 2008; Koob and Volkow, 2016; Volkow et al., 2016) currently without effective
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treatments, imaging biomarkers based on both resting-state
fMRI (Zhai et al., 2021) and task-evoked fMRI (Luo et al.,
2013) have shown prediction validity of relapse to cocaine use
following treatment. Such neuroimaging-based studies provide
mechanistic understanding of relapse to drug use and suggest
neural targets for the development of neuromodulation (e.g.,
transcranial magnetic stimulation/TMS) treatment protocols.

Over the past three decades, in spite of advances in both
imaging acquisition and analysis techniques, which have greatly
enhanced our understanding of brain function and dysfunction,
two major concerns have been associated with fMRI-based
neuroimaging studies that hinder the translation from scientific
knowledge to clinical practice. One concern is lack of appropriate
validation in fMRI data analyses. A primary goal of fMRI-
based neuroimaging research is to identify biomarkers that
can be used to establish the relationship between brain and
behavior and ultimately perform individualized predictions of
health/prognosis outcomes (Gabrieli et al., 2015; Shen et al.,
2017). However, the term of “prediction” was often misused when
actual results reported were association/correlation that related
brain measures with behavioral assessments/treatment outcome
within samples being tested (Meng et al., 2017; Shen et al., 2017).
A recent review on neuroimaging studies claiming prediction
validity using fMRI data indicates that among 100 studies from
2017 to 2019, over 40% claimed prediction without any cross-
validation (Poldrack et al., 2020). These in-sample correlational
models without proper cross-validation tend to provide inflated
prediction accuracy due to overfitting, resulting in difficulties in
generalizability (Whelan and Garavan, 2014; Shen et al., 2017).
Another concern is the relatively small sample size in fMRI-based
neuroimaging studies (Turner et al., 2018; Szucs and Ioannidis,
2020), partially due to the large financial expenses associated with
fMRI scanning, as well as difficulties associated with recruiting
certain types of patients/participants. Among the 100 studies
examined, more than 70% were with a sample size less than
100, and more than 50% were with a sample size less than 50
(Poldrack et al., 2020). The small sample size nature of fMRI-
based neuroimaging studies can further intensify the problem
of overfitting in prediction analyses (Whelan and Garavan,
2014). Previous studies have suggested the utilization of nested
cross-validation in prediction, which has been demonstrated to
be able to provide robust and unbiased model performance
estimates, and outperform some other commonly used cross-
validation methods (such as K-fold cross-validation) especially
in applications with small sample sizes (Varma and Simon, 2006;
Vabalas et al., 2019).

Therefore, we present here an analytical approach to predict
time-dependent follow-up behaviors by imaging metrics from
resting-state fMRI and demonstrated the approach in a cohort
of treatment-seeking cocaine users. Our prediction modeling
is a hybrid of hypothesis-driven and data-driven approaches
built upon a combination of seed-based functional connectivity
and voxel-wise Cox regression. The seed-based functional
connectivity serves as the hypothesis-driven part, which is
hypothesis specific (e.g., implication for neuromodulation target
selection) and ensures the interpretability of results. The
Cox regression was originally introduced for survival analysis

(Cox, 1972). Due to the mathematical similarity between survival
and the relapse to drug use (time-dependent binary outcome),
the Cox regression model is an ideal statistical tool for probing
brain—relapse relationship. For example, it has been utilized in
predicting cocaine relapse with the brain activation induced by a
stop-signal inhibition task as measured by fMRI (Luo et al., 2013).
Also utilized under the resting-state, the Cox model yielded
high accuracy in predicting cocaine relapse with functional
connectivity (Geng et al., 2017). Therefore, we choose the Cox
regression model for the study of relapse during follow-up after
treatment. The whole prediction modeling pipeline is organized
into a nested cross-validation loop. Detailed procedures are
described below.

MATERIALS AND EQUIPMENT

The prediction method that we proposed here is based on a
voxel-wise Cox regression of resting-state fMRI and treatment
outcome. The whole procedure is cross-validated, potentially
utilizable on novel patients/subjects to predict their treatment
outcome prospectively. Here we list all the materials and
equipment that we used to conduct the prediction modeling: A
functional magnetic resonance imaging (fMRI) dataset acquired
from an MRI scanner and a post-treatment follow-up dataset
of relapse to drug use. Tools for image pre-processing and
functional connectivity analyses include the AFNI (v17.0.061)
and SPM2 software packages. The computational pipeline
of relapse prediction, including voxel-wise Cox regression,
prediction model fitting, cross-validation, and post-hoc analyses,
were developed with Matlab (R2020b, The MathWorks, Inc.,
Natick, MA, United States).

Methods
Participants and Clinical Assessment Procedures
To demonstrate our relapse prediction modeling, we employed
imaging and behavioral data collected from a cohort of
45 treatment-seeking cocaine dependent participants who
underwent and completed psychosocial treatment from local
residential treatment programs using the Minnesota Model
Psychosocial treatment approach (Cook, 1988). Several clinical
measurements were assessed including the Inventory of Drug
Use Consequences (InDUC) which assess the life problems
related to drug use (Tonigan and Miller, 2002), Cocaine Craving
Questionnaire (CCQ-Brief), years of cocaine use, days of cocaine
use in the past 90 days, and days since last cocaine use.
Following discharge from the psychosocial treatment program,
participants were followed up for 168 days or until relapse,
whichever was earlier. Abstinence was verified by weekly phone
interviews and/or in-person urine drug screens. Date of relapse
was recorded as the day of drug use or the day of the first
missed appointment if lost to follow-up. Participants who failed
to maintain abstinence were then discharged from the study.
The study was reviewed and approved by the Institutional

1http://afni.nimh.nih.gov/afni/
2http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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Review Boards of the University of Texas Southwestern Medical
Center and the Veterans Administration North Texas Health
Care System. Written informed consent was obtained from each
participant. Summary of the demographic information of the
cohort is presented in Table 1 (n = 43 after excluding two
participants for excessive head motion during fMRI scanning, see
section “Computational Pipeline of Relapse Prediction” in the
section “Methods”). More detailed information on participants’
inclusion/exclusion, treatment/assessment procedures have been
described previously (Zhai et al., 2021).

Magnetic Resonance Imaging/Functional Magnetic
Resonance Imaging Scanning Parameters
For each participant, a whole-brain BOLD resting-state fMRI
dataset of 6 min was acquired from a 3T Philips MRI scanner
with an eight-channel radio-frequency coil (Philips Medical
Systems, Best, Netherlands). Images were collected in the axial
plane parallel to the AC-PC line using a single-shot, echo-planar
imaging sequence (TE = 25 ms, TR = 1.7 s, flip angle = 70◦,
spatial resolution = 3.25 mm × 3.25 mm × 3 mm with
no gap). Participants were instructed to keep their heads still
and eyes open during the resting-state scan. A high-resolution
anatomical T1-weighted image was also acquired from each
participant using a 3D magnetization-prepared rapid gradient-
echo sequence (TE = 3.8 ms, TR = 8.2 ms, flip angle = 12◦, spatial
resolution = 1 mm× 1 mm× 1 mm).

Computational Pipeline of Relapse Prediction
The relapse prediction modeling that we developed and
demonstrated here was inspired by the connectome-based
predictive modeling proposed by Shen et al. (2017). Generally,
our methodological pipeline was a combination of seed-based
functional connectivity and voxel-wise Cox regression of
functional connectivity and treatment outcome in a nested
cross-validation fashion, which consisted of six logical elements:
(1) image preprocessing; (2) functional connectivity calculation;
(3) voxel-wise Cox regression analysis; (4) thresholding
and generating composite indices; (5) Cox model fitting
for brain-behavior relationship and model evaluation (ROC
analysis); and (6) cross validation and permutation test.
Procedural steps are illustrated in Figure 1 and described
in details below.

TABLE 1 | Demographic, clinical and head-motion assessments.

CD cohort
(n = 43)

Age 43.42 ± 7.19

Sex (M/F) 38/5

Edu (years) 12.49 ± 2.11

Cocaine use (years) 8.28 ± 5.22

Nicotine use (CPD) 11.42 ± 10.36

Mean head motion (mm) 0.09 ± 0.03

CD, cocaine dependent; Edu, years of education; CPD, cigarettes per day.

The first step was image pre-processing that included:
discarding the first five volumes to allow the magnetic resonance
signal to reach steady state, slice timing correction (3dTshift,
AFNI), volume registration (3dvolreg, AFNI), polynomial
detrending (up to the 3rd order, 3dDetrend, AFNI) and head
motion correction (3dTproject, AFNI). Signals from white
matter and cerebrospinal fluid (CSF) were treated as a marker
of non-neuronal noise and were regressed out (3dTproject,
AFNI). A band-pass filter was applied to select low-frequency
fluctuations between 0.012 and 0.1 Hz (3dTproject, AFNI)
(Fransson, 2005). The fMRI data were normalized to standard
MNI image space and resampled to a 2-mm isotropic resolution
(SPM12). Head motion was also evaluated at the frame-by-
frame level to further control for image quality using pair-wise
displacement calculated based on the Euclidean distance
(1d_tool.py, AFNI). Volumes with displacement >0.35 mm were
censored; participants were excluded if their mean head motion
across volumes were greater than 0.2 mm or their percentage
of censored volumes exceeding 20%. Two participants were
excluded due to head motion exceeding this threshold, leaving
43 participants in the subsequent analytical steps.

Step two was to select a seed or region-of-interest (ROI)
based on specific hypothesis and calculate its whole-brain
functional connectivity (Figure 1A). The dlPFC has been utilized
as stimulation target for high frequency rTMS treatment that
reduced craving for nicotine and cocaine (Politi et al., 2008; Li
et al., 2013; Pripfl et al., 2014). Here, we chose an ROI on the
left dlPFC for demonstration due to its promising role in the
treatment of cocaine dependence as stimulation target of high
frequency rTMS (Terraneo et al., 2016), as well as the high validity
in predicting cocaine relapse with its downstream functional
circuits (Zhai et al., 2021). Whole-brain functional connectivity
maps were obtained by calculating the cross-correlation (CC)
between the time series of the seed and that of each voxel
in the whole-brain (3dDeconvolve, AFNI). The CC maps were
then Fisher’s Z-transformed with the inverse hyperbolic tangent
function Z = atanh(cc) (3dcalc, AFNI) as the resting-state
functional connectivity (rsFC) maps for subsequent analyses.

Step three was to conduct the voxel-wise Cox regression
analysis on the rsFC generated in the previous step and the
relapse information (days till relapse) obtained during the follow-
up period (Figure 1B): h (Xi, t) = h0(t)e

∑
j xijbj , where Xi is the

linear combination of the predictor variables/covariates for the
ith participant h (Xi, t), is the hazard rate at time t for Xi, h0(t) is
the baseline hazard rate function, and xijbi within the exponential
term represents the loglinear regression. The voxel-wise beta
coefficient maps (beta map) of all participants were obtained in
this step (Figure 1C), and the whole-brain relative hazard ratio
(HR) maps can further be calculated with the exponential of
the beta values.

Step four was to generate composite indices. All beta/HR maps
were voxel-wisely thresholded at a given threshold (e.g., p< 0.001
as demonstrated here). This is an initial thresholding serving
the purpose of pre-selection of those voxels with functional
connectivity relates to relapse the most, and was arbitrarily
chosen based on empirical experience, similarly as demonstrated
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FIGURE 1 | Schematic diagram of analytical pipeline. Illustration of our analytical procedures using one exemplar seed ROI, adapted from Zhai et al. (2021). First, an
ROI is selected as a seed (A); the whole-brain rsFC of this seed is calculated for each participant (B); a voxel-wise Cox regression is conducted using rsFC and days
until relapse to generate beta maps (C); beta maps of Cox regression is thresholded (D); generation of indexP and indexR by linearly summation of the rsFC values
within the thresholded beta maps for the negative and positive beta voxels, respectively (E); construction of the final prediction model by fitting indexP and indexR
into the Cox model (F); procedures B to F were organized in a nested cross-validation loop, and after each participant is left out once, an ROC analysis evaluates the
final prediction model (G). rsFC, resting-state functional connectivity; ROI, region-of-interest; ROC, Receiver-Operating-Characteristics.

in the connectome-based predictive modeling (Shen et al.,
2017). These thresholded beta/HR maps were subsequently
used to generate a set of “protective circuits” (voxels with
negative beta values/HR value less than 1, indicating less risk
of relapse with stronger functional connectivity), and a set of
“risk circuits” (voxels with positive beta values/HR value greater
than 1, indicating higher risk of relapse with stronger functional
connectivity), as well as two composite indices: indexP and
indexR by linear summation of functional connectivity from all
voxels within the “protective” and the “risk” circuits, respectively
(Figures 1D,E).

Step five was the final Cox model fitting for brain-behavior
relationship using these two composite indices, with age,
sex, years of education (edu), daily cigarette use (CPD)
and head motion during fMRI scan (HM) as covariates:
h (Xi, t) = h0(t)e(indexP × βP + indexR × βR +age × βA + sex × βS

+ edu × βE + CPD + βC + HM ×βH), (Figure 1F), and Receiver-
Operating-Characteristic (ROC) analysis for model evaluation
(Figure 1G). Step three to step five (Figures 1B–F) was organized
into a nested cross-validation loop, where the voxel-wise
Cox regression and thresholding serve the purpose of feature
selection, and the final Cox fitting with the two composite indices
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works as final model generation. The loop was repeated n times
(n equals the number of participants), and each time a new model
was developed from scratch with the n-th participant being left
out. After the nested cross-validation loop was completed, the
thresholds array for the cross-validated ROC analysis for model
evaluation was generated with the actual predictor values (i.e.,
indexR and indexP, as well as other covariates such as age and
years of education etc.) of each participant and the model that
was generated with this participant being left out (Figure 1G).

In the final step, permutation test was performed to
determine statistical significance based on empirical distribution
determined with the permutation. We repeated the entire analysis
10,000 times, each time with the predictor (composite indices)
and outcome (days till relapse) pairs randomly permuted to
generate the data/model specific empirical null distribution for
the area-under-the-curve (AUC) values of the ROC curve. The
p-value of the AUC was then derived based on the ranking of the
actual AUC value in this empirical null distribution.

Furthermore, our prediction modeling can be adapted into
different settings based on specific applications. For example,
in order to evaluate the prediction potential of our composite
indices in early relapse prediction, we generated an early relapse
prediction model with the indexP and indexR to predict cocaine
relapse at an early follow-up cut-off of 30-day follow-up, as well
as an intermediate prediction model with follow-up cut-off at
90-day, using the pipeline described above.

Post-hoc Analyses of Disease Subtyping
We performed several post-hoc analyses to further utilize
our prediction modeling to explore brain mechanisms of
cocaine addiction and to assess individual difference in the
brain (functional connectivity) versus behavioral (relapse)
relationship. First, we binarized the HR maps of all leave-
one-out steps, and then stacked them together to generate
a heat map of relapse relevant functional circuits. This heat
map was further arbitrarily thresholded based on the majority
of leave-one-out steps (e.g., > 85% as demonstrated here)
to demonstrate the group-level protective and risk circuits.
We then extracted the averaged functional connectivity from
each of the 43 participants within the group-level protective
and risk circuits as the input for our post-hoc analyses,
defined as the idxP_ph, and the idxR_ph, respectively, for
the protective and risk circuits (note here the suffix “ph”
stands for post-hoc, to be differentiated from the composite
indices “indexP” and “indexR” used in the abovementioned
prediction modeling section). Linear regression analysis was
conducted to explore the relationship between the idxP_ph
and the idxR_ph. To identify potential subtypes of cocaine
dependence, we also conducted the k-means clustering in
the P-R space (idxP_ph and idxR_ph). The optimal number
of clusters was determined by visual inspection with the
“elbow criterion” at a cluster number so that adding another
cluster only grants minimal returns (variance explained) with
the increment of cost (overfitting). The “elbow curve” was
depicted as

∑
Dwithin/

∑
Dbetween, where

∑
Dwithin is the sum of

within cluster distances and
∑

Dbetween is the sum of between
cluster distances.

(ANTICIPATED) RESULTS

Demographic and Clinical
Characterization
The current cohort of 43 participants included five females and
38 males with a mean (SD) age of 43.4 (7.2). Table 1 lists the
demographic information, clinical and head-motion assessments.
The clinical characterization of cocaine relapse during the follow-
up is illustrated in Figure 2; as shown in the Kaplan–Meier curve,
during the early relapse at cut-off of 30-day, 22 out of 43 (51.2%)
failed to remain abstinent; by the end of the 6-month follow-up
period, 35 out of 43 (81.4%) participants had relapsed.

The Predicative Region-of-Interest of
Cocaine Relapse
The prediction modeling we proposed here will grant the final
results of (1) a specific ROI (e.g., dlPFC) that is identified
predictive of certain behavior (e.g., cocaine relapse), with
prediction accuracy evaluated with the AUC value of the ROC
curve; and (2) a set of protective circuits and risk circuits that
are underlying the prediction. In our previous investigation on
the dlPFC ROIs across the entire surface area of bilateral dlPFC,
three dlPFC loci were identified significantly predictive of cocaine
relapse with their corresponding protective and risk functional
circuits (Zhai et al., 2021). Here we choose the predictive ROI
on the left dlPFC to demonstrate the anticipated results of our
prediction modeling pipeline (Figure 3). As Figure 3A shows,
the demonstrative left dlPFC ROI is locate at MNI coordinates
of [−48, 30, 34]. Figure 3B demonstrates the prediction accuracy
of 83.9% as measured by the AUC value of the ROC curve. The
statistical significance is confirmed by the p-value of 0.0005 based
on the empirical null-distribution generated with the permutation
test. The predictive ROI associated group-level protective and
risk functional circuits are recapped in Figure 3C. More detailed
descriptions and discussions on these functional circuits can
be found in the “predictive ROI-1” section of Zhai et al.
(2021). We further tested whether clinical measurements could
predict cocaine relapse by utilizing the same prediction modeling
method proposed here, and the clinical measurements tested here
included the InDUC, CCQ, cocaine use years, days of cocaine
use in the past 90 days, and days since last cocaine use. None of
these measurements significantly predicted cocaine relapse (see
Supplementary Table 1 for details).

Early and Intermediate Relapse
Prediction of the Predictive
Region-of-Interest
The composite indices (indexP and indexR) of the protective and
risk circuits associated with the predictive ROI can also be used to
build other prediction models such as the early and intermediate
relapse prediction models. By setting up the cut-off follow-up
time at 30 days, an early relapse prediction model (Figure 4A)
predicted cocaine relapse with a relatively lower, but statistically
significant AUC value of 0.714 of its ROC curve. For comparison,
we also built an intermediate prediction model (Figure 4B) that
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FIGURE 2 | Clinical characterization of cocaine relapse. The Kaplan–Meier curve illustrates the survivorship of participants in terms of maintaining abstinence.

FIGURE 3 | Predictive ROI location, model prediction accuracy, and associated functional circuits. Adapted from Zhai et al. (2021), panel (A) shows the location and
MNI coordinates of the predictive dlPFC ROI; the prediction accuracy measured with the area-under-the-curve (AUC) of the receiver-operating-characteristic (ROC)
curve and its corresponding statistical significance is demonstrated in panel (B); and the functional circuits associated with this dlPFC ROI that were used to
generate the composite indexP and indexR for subsequent early relapse prediction is recapped in panel (C). ROI, region-of-interest; ROC,
Receiver-Operating-Characteristics; AUC, area-under-the-curve; dlPFC, dorsolateral prefrontal cortex; IPL, inferior parietal lobule; IFG, inferior frontal gyrus; PCC,
posterior cingulate cortex; FFA, fusiform face area; vmPFC, ventromedial prefrontal cortex.

was capable of predicting cocaine relapse with an AUC value of
0.833 of its ROC curve by setting the cut-off follow-up time at
90 days. Statistical significance was verified with the permutation
test based empirical null-distribution curves, which showed p-
values of 0.0249 and 0.0010 for the early and intermediate relapse
prediction models, respectively.

Post-hoc Analyses of Disease Subtyping
For post-hoc analyses exploring the protective-risk relationship,
we first defined idxP_ph and idxR_ph as the averaged functional

connectivity from each of the 43 participants within the group-
level protective and risk circuits, respectively (note here the
suffix “ph” stands for post-hoc, to be differentiated from the
composite indices “indexP” and “indexR” used in the prediction
modeling section). As Figure 5A shows, the post-hoc indices
idxP_ph and idxR_ph showed significant negative correlation
(R2 = 0.402, p < 0.0001). For potential subtyping of cocaine use
disorder in terms of vulnerability to relapse, we also conducted
the k-means clustering in the two-dimensional space of (idxP_ph,
idxR_ph). Figure 5B shows the “elbow curve” depicted as the
ratio of the sum of within cluster distances to the sum of
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FIGURE 4 | Predict validity of the early and intermediate relapse prediction models. The prediction accuracy using the functional circuits of the identified predictive
dlPFC ROI is illustrated in panel (A) for the early relapse prediction model where the follow-up cut-off is at 30 days, and in panel (B) for the intermediate relapse
prediction model where the follow-up cut-off is at 90 days. ROC, Receiver-Operating-Characteristics; AUC, area-under-the-curve; dlPFC, dorsolateral prefrontal
cortex; ROI, region-of-interest.

between cluster distances from k = 2 to k = 11. Here k = 4 was
selected as the number of clusters as it represents a good balance
between the benefit and the cost based on visual inspection of
the elbow curve. The clustering result is shown in Figure 5C.
Each of the four clusters represents a specific subtype of cocaine
dependent participants. Cluster I is at the bottom-right corner
(green diamond, n = 7, median days till relapse = 168 days) of
the (idxP_ph, idxR_ph) space, Cluster II at the top-left corner
(magenta triangle, n = 15, median days till relapse = 7 days),
and Cluster III and Cluster IV are in the middle (yellow circle,
n = 11, median days till relapse = 25 days; and cyan square,
n = 9, median days till relapse = 60 days). Note here all post-hoc
analyses conducted in the (idxP_ph, idxR_ph) space were with
a sample size of 42, as one participant was excluded since both
post-hoc indices were beyond the three-standard-deviation range.
Corresponding results with this participant included can be seen
in Supplementary Figure 1.

DISCUSSION

We presented here a modeling approach to predict time-
dependent follow-up behaviors by fMRI-based brain metrics, and
demonstrated the utility of the approach in predicting relapse
to drug use following a psychosocial treatment in a cohort of
treatment-seeking cocaine users. This modeling is a combination
of seed-based functional connectivity and voxel-wise Cox
regression organized in a nested cross-validation fashion, which
is suitable for investigation of brain-behavior relationships
reliably in patient cohorts with small-to-moderate sample sizes.

Neural Mechanisms and Individual-Level
Relapse Prediction
As demonstrated in the prediction of cocaine relapse in Figure 3,
our proposed modeling method is capable of identifying a
prediction model in which functional connectivity of a specific

brain region predicts individual’s relapse behaviors with high
accuracy. The nature of the Cox regression results in two
functional brain circuit sets, one protective and one risk that
collectively underlie the high prediction validity. As such, these
two functional circuits could be considered a system-level neural
mechanism of cocaine relapse. The ROC analysis that yielded the
high AUC value is within the nested cross-validation framework,
which indicates the model’s prediction potential on independent
participants. Although the proposed model is built upon the
6-month follow-up data, the identified protective and risk
functional circuits are also capable of predicting early relapse.
As shown in Figure 4, using the indices (indexP and indexR)
from the same functional circuits derived from the 6-month
model, prediction of early relapse (30 day) can also be achieved
with a relatively lower but statistically significant prediction
accuracy (AUC of 0.714).

Based on the post-hoc analyses, the post-hoc protective factor
(idxP_ph) and the risk factor (idxR_ph) are negatively correlated,
suggesting participants with higher protective capability tend to
have lower risk factor, and vice versa. Further clustering analysis
on the (idxP_ph, idxR_ph) space identified four subtypes of
cocaine relapse related participants. Subtype I (N = 7) had highest
values of the idxP_ph and lowest idxR_ph, and held the longest
time till relapse (median of 168 days till relapse). Subtype II
(N = 15), on the contrary, had lowest values of the idxP_ph and
highest idxR_ph, and were all early relapse participants with the
shortest time till relapse (median of 7 days till relapse). Subtypes
III (N = 11) and IV (N = 9) fell between the subtypes I and
II. Participants in these two subgroups showed similar levels of
idxP_ph and idxR_ph with moderate days till relapse (median of
25 and 60 days till relapse, respectively). These results suggest
that using the protective and risk indices, potential subtypes
may be characterized for novel/independent participants by
simply measuring their resting-state fMRI and calculating the
values of these fMRI indices. These imaging metrics may be
used to guide the design of personalized treatment strategies
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FIGURE 5 | Post-hoc results and disease subtyping. Panel (A) shows
significant negative correlation between the post-hoc protective and risk
indices. Panel (B) demonstrates the “elbow curve” for cluster number
selection in clustering analysis for disease subtyping. Panel (C) illustrates four
potential subtypes of cocaine dependent participants as indicated by our
clustering result, Subtype I at the bottom-right corner with longest abstinent
days (green diamonds), Subtype II at the top-left corner with the shortest days
till relapse (magenta triangles), and Subtypes III and IV in-between with
moderated days till relapse (yellow circles and cyan squares). The five solid
stars within the corresponding symbol shapes label the five female
participants in current demonstrative cohort.

specific to individuals (e.g., to promote the protective circuits
for participants with a high risk index but without matched
protective index; or to inhibit the risk circuits for participants
with a strong, intact protective index).

Neuromodulation Implications
As in our demonstration of relapse prediction, a dlPFC
ROI located at MNI coordinates [−48, 30, 34] was found to
be highly predictive with its functional circuits (Figure 3).
The prediction modeling proposed here is capable of
identifying brain ROIs, whose functional circuits are closely
related to certain behaviors/treatment outcomes. This
shows the potential utility of the prediction modeling in
selecting brain sites for neuromodulation-based treatment of
neuropsychiatric/neurological disorders. In neuromodulation
(e.g., TMS) treatment, one of the critical issues is to determine
the effective stimulation site. Intuitively, in a direct search
among M different brain sites with N participants in each site
to evaluate treatment efficacy (a total of M × N participants),
a potential optimal stimulation site would be determined by
comparing the group outcomes of these M clinical studies.
Furthermore, other than the stimulation location, the large
parameter space (e.g., frequency, intensity, etc.) makes such
clinical investigations impractically costly and time consuming
to undertake in a systematic and comprehensive manner, and
no such effort has been made in neuropsychiatric disorders
other than medication-resistant depression (Fox et al., 2012).
An alternative strategy is a two-stage approach combining
neuroimaging-based search for relevant brain areas and the
actual neuromodulation on these limited and specific sites. In
the first stage, imaging data are collected ideally at the baseline
and after a traditional treatment (non-neuromodulation, such
as psychosocial treatment), and then location-specific imaging
measures (e.g., functional connectivity) are identified that are
related to treatment outcome. These locations are therefore
considered as potential treatment sites. Then in the second stage,
these candidate sites are further confirmed for their treatment
efficacy with actual neuromodulation. The first stage can be
done in a systematic and comprehensive manner covering a
large brain area (e.g., dlPFC) while only few most relevant
brain locations being tested in the second stage, thus greatly
reducing the number needed for neuromodulation-based clinical
investigations. Our previous study utilizing this modeling
technique investigated 98 ROIs covering the entire surface of the
bilateral dlPFC and identified three ROIs predictive of cocaine
relapse (Zhai et al., 2021), with one on the left side being spatially
proximal to an actual dlPFC stimulation site that showed
promising treatment efficacy in a clinical study treating cocaine
addiction (Terraneo et al., 2016). This is a perfect example of
potential applications of our proposed modeling approach in the
first stage for identification of potential effective TMS sites, which
can then be used to guide experimental designs in the second
stage for validation of these potentially effective TMS targets.

Limitations
Several limitations should be considered regarding our analysis.
We have a moderate sample size less than 50, and an unbalanced
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sex (five females and 38 males), which makes the dataset less
ideal. However, there are practical difficulties associated with
research on psychiatric diseases such as addiction, especially with
a longitudinal follow-up up to 24 weeks. Combined with proper
modeling and validating method, the current dataset is capable of
providing at least novel hypothesis (i.e., the identified predictive
ROI and its functional circuits) to be further tested clinically (i.e.,
neuromodulation treatment efficacy). Our sample included only
five females and future work should address the possibility of
gender differences.

Conclusion
Demonstrated with a treatment-seeking cocaine addiction
cohort, we presented here a prediction-modeling method
that combines the hypothesis-driven seed-based functional
connectivity and the Cox regression-based prediction with built-
in nested cross-validation to assess treatment outcome (relapse
to drug use). Other than predicting certain behaviors/treatment
outcomes at individual level, specific brain regions, as well
as their functional circuits, relevant to the behavioral/clinical
assessments can also be identified using this modeling method.
Functional connectivity of the brain circuits showing protective
or risk effect on drug relapse may be used for disease subtyping.
Taken together, the prediction modeling method presented here
is capable of identifying brain regions and related functional
circuits that are predictive of certain behavior/treatment
outcome, which clearly shows neuromodulation implications
and can be used for individualized prognosis and treatment
protocol design.
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Background: Advanced imaging techniques such as diffusion and functional MRI can

be used to identify pathology-related changes to the brain’s structural and functional

connectivity (SC and FC) networks and mapping of these changes to disability and

compensatory mechanisms in people with multiple sclerosis (pwMS). No study to date

performed a comparison study to investigate which connectivity type (SC, static or

dynamic FC) better distinguishes healthy controls (HC) from pwMS and/or classifies

pwMS by disability status.

Aims: We aim to compare the performance of SC, static FC, and dynamic FC (dFC) in

classifying (a) HC vs. pwMS and (b) pwMS who have no disability vs. with disability. The

secondary objective of the study is to identify which brain regions’ connectomemeasures

contribute most to the classification tasks.

Materials and Methods: One hundred pwMS and 19 HC were included. Expanded

Disability Status Scale (EDSS) was used to assess disability, where 67 pwMS who had

EDSS<2 were considered as not having disability. Diffusion and resting-state functional

MRI were used to compute the SC and FCmatrices, respectively. Logistic regression with

ridge regularization was performed, where the models included demographics/clinical

information and either pairwise entries or regional summaries from one of the following

matrices: SC, FC, and dFC. The performance of the models was assessed using the

area under the receiver operating curve (AUC).

Results: In classifying HC vs. pwMS, the regional SC model significantly outperformed

others with a median AUC of 0.89 (p <0.05). In classifying pwMS by disability status,

the regional dFC and dFC metrics models significantly outperformed others with a

median AUC of 0.65 and 0.61 (p < 0.05). Regional SC in the dorsal attention,

subcortical and cerebellar networks were the most important variables in the HC vs.

pwMS classification task. Increased regional dFC in dorsal attention and visual networks

and decreased regional dFC in frontoparietal and cerebellar networks in certain dFC

states was associated with being in the group of pwMS with evidence of disability.
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Discussion: Damage to SCs is a hallmark of MS and, unsurprisingly, the most accurate

connectomic measure in classifying patients and controls. On the other hand, dynamic

FC metrics were most important for determining disability level in pwMS, and could

represent functional compensation in response to white matter pathology in pwMS.

Keywords: multiple sclerosis, structural connectivity, functional connectivity, machine learning, predictive

modeling

1. INTRODUCTION

Multiple Sclerosis (MS) is a chronic disease characterized by
inflammatory and demyelinating lesions within the central
nervous system (Weinshenker et al., 1991). One key observation
is that the disease burden in the brain, as measured with
conventional imaging, is not always proportional to an
individual’s disability. Individuals can have identical lesion
volume and very different levels of disability (Barkhof, 2002),
making prognostication in this disease challenging. Advanced
neuroimaging techniques may enable us to better understand the
neuropathological mechanisms of MS, how they cause disability
in MS and how the brain may compensate for this pathology.
Brain connectivity network analysis, or connectomics, provides
a promising tool with which to map the effect of MS-related
pathology and to potentially capture reorganization mechanisms
in response to pathology. Inflammation, demyelination, and
axonal loss in people with MS (pwMS) disrupts the brain’s
structural connectome (SC), which may contribute to some of
the changes observed in the brain’s regional activation patterns,
or functional connectome (FC) (Rocca et al., 2010, 2012, 2018;
Roosendaal et al., 2010; Tona et al., 2014; Schoonheim et al.,
2015).

Previous studies have used SC and FC separately or together
to identify differences between pwMS and healthy controls (HC),
to compare different clinical categories of MS, and to classify
pwMS by disability or cognitive impairment level (Richiardi

et al., 2012; Kocevar et al., 2016; Zhong et al., 2017; Saccà et al.,
2018; Zurita et al., 2018; Has Silemek et al., 2020). It has been
shown that alterations in the SC and/or FC in particular networks

are associated with motor and cognitive impairment in pwMS
(Faivre et al., 2012; Rocca et al., 2012; Basile et al., 2014; Filippi
et al., 2015; Kuceyeski et al., 2015, 2018). SC damage may cause
an upregulation of FC in specific networks as a compensatory

mechanism in the early stages of MS, which then wanes in the
later stages of the disease. In particular, the Expanded Disability
Status Scale (EDSS) threshold of 3 was previously identified
as the cut-off for functional reorganization and adaptation in
MS (Hawellek et al., 2011; Faivre et al., 2012; Tommasin et al.,
2018). Two individuals with the same pattern of SC damage
may have different disability levels depending on where they are
in the trajectory of compensatory FC, thus, FC may be more
informative of disability than SC in this case.

An individual’s FC is usually obtained by correlating regional
Blood Oxygenation Level Dependent (BOLD) signals acquired
over the entire functional MRI (fMRI) scan; however, this “static”
FC derivation does not consider the fluctuations in the brain

network topology that can occur over time (Biswal et al., 1995;
Damaraju et al., 2014). Dynamic FC (dFC) approaches allow
assessment of the varying topology of FC over time by using
sliding windows to assess dynamic FCs (Allen et al., 2014). There
is increased interest in using dFC to investigate pathological
mechanisms in psychiatric disorders, and stroke (Damaraju et al.,
2014; Rashid et al., 2016; Sambataro et al., 2017; Mennigen et al.,
2018; Bonkhoff et al., 2020, 2021). In MS, recent studies have
used dFC to (1) compare clinically isolated syndrome (CIS)
patients to HC (Rocca et al., 2019), (2) analyze relationships with
information processing speed in relapsing-remitting (RR) pwMS
(van Geest et al., 2018), and (3) classify cognitively impaired vs.
preserved pwMS (d’Ambrosio et al., 2019; Eijlers et al., 2019).
However, no study to date has performed a rigorous analysis of
the relative contributions of multi-modal imaging data including
SC, static FC, and dynamic FC in classifying HC vs. pwMS
and/or pwMS by disability status. Understanding the relative
contributions of the various modalities may provide insight into
disability-relevant disease or compensatory mechanisms.

Therefore, the principal aim of the present study was to
compare the performance of either pairwise or regional SC,
FC, and dFC metrics in classifying (1) HC vs. pwMS and (2)
pwMS who had no disability vs. those who had evidence of
disability. The secondary aim was to identify the most important
pairwise and regional connections as well as dFC metrics for the
classification tasks. Diffusion and resting-state functional MRI
were used to compute the SC and FC matrices, respectively. We
hypothesized that models including SC could best distinguish
HC from pwMS, as white matter lesions impacting SC networks
are a hallmark of the disease. Furthermore, we hypothesized
that models containing FC and/or dFC would best distinguish
disability levels in pwMS as this modality likely is sensitive
to functional compensation mechanisms that may underlie
disability in MS. Overall, our goal is to better understand
mechanisms of pathology and resilience in MS, knowledge which
could be used to improve the accuracy of prognoses and even
develop novel therapies to reduce disability.

2. MATERIALS AND METHODS

2.1. Subjects
One hundred pwMS ( median age: 45.5 [36.7, 56.0], 66% females)
with a diagnosis of Clinically Isolated Syndrome (CIS)/MS based
on the 2010 McDonald criteria (Polman et al., 2011) [CIS = 7,
relapsing-remitting MS (RRMS) = 88, primary progressive MS
(PPMS) and secondary progressive MS (SPMS) = 5] and 19 HC
(median age: 45 [35, 49], 55% females) were included in our
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study. Seven people with CIS were included in the group of
pwMS as they are likely an early form of MS, they were all in
the no disability group (EDSS < 2). MRIs and demographic data
were collected (age, sex, and race for both HC and pwMS, clinical
phenotype, and disease duration for pwMS). All subjects with
SC and FC networks available were included in our study and a
power analysis was not performed prior to the statistical analysis.
Participants were excluded if they had contraindications to MRI
or had ever been diagnosed or were currently on medication for
a neurological or psychological disorder (other than a diagnosis
of or medication for treatment of MS for the pwMS group, of
course). The spinal cord lesion category was estimated from the
patient’s clinical radiology report, with 0 indicating those with
no spinal lesions, 1 indicating those with one spinal lesion or 2
indicating those with more than one spinal lesion. The EDSS
is the most frequently used disability scale in MS and captures
mostly themotor functioning. EDSS ranges from 0 to 10 with 0.5-
unit increments, where 0 indicates no disability and the increase
in EDSS indicates higher level of disability. EDSS was used to
quantify disability in our study, where an EDSS of 2 was used
as a threshold to categorize disablity status: no disability (EDSS
< 2) vs. evidence of disability (EDSS ≥ 2). This group division
was based on EDSS values of 0–1.5 representing some abnormal
signs in neurological examination but no functional impairment
is appreciated. This was a cross-sectional study, and the MRIs
and demographics/clinical data were collected the same year.
All studies were approved by an ethical standards committee
on human experimentation and written informed consent was
obtained from all patients.

2.2. Image Acquisition, Processing, and
Connectome Extraction
MRI data were acquired on a 3T Siemens Skyra scanner (Siemens,
Erlangen, Germany) with a 20-channel head-neck coil and a 32-
channel spine-array coil. Anatomical MRI (T1/T2/T2-FLAIR, 1
mm3 iso-voxel), resting-state fMRI (6 min, TR = 2.3 s, 3.75 ×

3.75× 4 mm voxels) and diffusion MRI (55 directions HARDI, b
= 800, 1.8 × 1.8 × 2.5 mm voxels) acquisitions were performed.
Sagittal STIR images were acquired for identification of spinal
lesions (TR = 3.5 s, TI = 220 ms, TE = 45 ms, in-plane resolution
0.43 mm, FOV = 22 mm, slice thickness 3 mm). Multi-echo
2D GRE fieldmaps were collected for use with both fMRI and
diffusionMRI (0.75× 0.75× 2mm voxels, TE1 = 6.69ms,△TE =
4.06 ms, number of TEs = 6). The white and gray matter surfaces
were checked for each subject on Freesurfer and hand-edited with
control points and reconstruction editing if necessary.

White matter (WM) and gray matter (GM) were segmented
and GM further parcellated into 86 regions of interest (68 cortical
and 18 subcortex/cerebellum) using FreeSurfer (Fischl and Dale,
2000). As described elsewhere (Kuceyeski et al., 2016), fMRI
preprocessing included simultaneous nuisance regression and
removal of WM and cerebrospinal fluid (CSF) effects (Hallquist
et al., 2013), followed by band-pass filtering (0.008–0.09 Hz)
using the CONN v18b toolbox (Whitfield-Gabrieli and Nieto-
Castanon, 2012) and SPM12 in Matlab. Nuisance regressors
included 24 motion parameters (6 rotation and translation,

temporal derivatives, and squared version of each) and the top
5 eigenvectors from eroded masks of both WM and CSF. The
mean fMRI signal over all voxels in a region was calculated and
the mean regional time series correlated (Pearson’s correlation)
between every pair of regions to obtain pairwise FC matrices.
Regional FC node strengths were calculated by taking the sum of
the columns in the FCmatrix after removing the negative entries.

Diffusion MRI was interpolated to isotropic 1.8 mm voxels,
and then corrected for eddy current, motion, and EPI-distortion
with the eddy command from FSL 5.0.11 (Andersson and
Sotiropoulos, 2016) using the outlier detection and replacement
option (Andersson et al., 2016). MRtrix3Tissue (https://3Tissue.
github.io), a fork of MRtrix3 (Tournier et al., 2019) was
used to estimate a voxel-wise single-shell, 3-tissue constrained
spherical deconvolution model (SS3T-CSD) and then compute
whole-brain tractography for each subject. The SC matrix was
constructed by taking the sum of the SIFT2weights of streamlines
connecting pairs of regions and then dividing by the sum of the
two regions’ volumes. In addition to the pairwise SC measures,
regional SC node strength was quantified by taking the sum of
each of the columns in the SC matrix.

2.3. Dynamic FC Analysis
Dynamic FC matrices were calculated using a tapered, sliding
window approach in the GIFT toolbox (http://mialab.mrn.org/
software/gift) (Allen et al., 2014; Damaraju et al., 2014). The
BOLD time series that were extracted from 86 regions of
FreeSurfer atlas (same atlas used for static FC and SC analysis)
were used as an input to the GIFT toolbox. As suggested by
Allen et al. (2014) and previous studies (Bonkhoff et al., 2020,
2021), dFC between two regional time courses was computed
using a sliding window approach with a window size of 22 TR
(50.6 s) in steps of 1 TR (2.3 s). A rectangular window of 22 time
points convolved with a Gaussian of 3 TR (6.9 s) was used for
tapering along the edges, resulting in 153 tapered time windows
per subject. Once the dFC matrices were calculated, k-means
clustering was applied to all dFC matrices to identify clusters
of reoccurring dFC states. The elbow criterion, i.e. the ratio of
within-cluster to between-cluster Manhattan (L1) distances, was
used to identify the optimal number of clusters. The following
metrics were extracted from the dFC analysis: (1) mean dwell
time in each state (= how long the individual remains in a
state once they transition to it), (2) transition probability from
one dFC state to another between two consecutive time points,
and (3) the number of overall state transitions in the scan. We
extracted individuals’ cluster centroids for each of the dFC states
as the mean dFC of each dFC assigned to a particular cluster.
Further, we took the node strength of the individuals’ cluster
centroids as a “regional dFC” measure (after removing negative
entries in the dFC). Network-level interpretations were enabled
by assigning each of the 86 gray matter regions to one of the
7 Yeo functional networks, plus a subcortical and a cerebellum
network (Yeo et al., 2011).

2.4. Mass Univariate Analysis
First, demographics and clinical variables were tested for
differences between the groups [(1) HC vs. pwMS and (2) pwMS
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who had no disability (EDSS < 2) vs. evidence of disability
(EDSS ≥ 2)] using Chi-squared test for qualitative variables,
Wilcoxon rank-sum test for quantitative variables. As a post-hoc
analysis, ANOVA was applied to compare the age, EDSS, and
phenotypes between twoMS disability groups A t-test was used to
compare pairwise entries in static FC and dFC summary metrics,
while Wilcoxon rank-sum test was performed to compare SC
values between groups. Only pairwise connections in the SC that
were non-zero in more than half of the controls were tested
for differences between groups to minimize the effect of false
positives in the tractography results. Differences were considered
significant when p < 0.05 after Benjamini-Hochberg (BH)
correction for multiple comparisons (Benjamini and Hochberg,
1995). All statistical analyses and graphs were performed using
R (www.r-project.org), version 3.4.4 and Matlab (https://www.
mathworks.com/) version R2020a.

2.5. Classification Analysis
Logistic regression with ridge regularization was used to classify
(1) HC vs. pwMS and (2) pwMS who had no disability (EDSS
< 2) vs. evidence of disability (EDSS ≥ 2). The classification
models used demographics/clinical information (sex, age, race,
disease duration, clinical phenotype, and spinal lesion burden
category) and one of the pairwise or regional imaging data: SC,
FC, dFC. For the HC vs. pwMS classification, only sex, age,
and race were used as demographics/clinical variables. Figure 1
shows the overall workflow of the study including the input
datasets (SC, FC, and dFC in addition to the demographics and
clinical variables) that were used in the various models.

The models were trained with outer and inner loops of k-
fold cross-validation (k = 5) to optimize the hyperparameters
and test model performance. The folds for both inner and outer
loops were stratified to ensure that each fold contained the
same proportion of subjects in the two classes as the original
dataset. The inner loop (repeated over 5 different partitions of the
training dataset only) optimized the set of hyperparameters that
maximized validation AUC. A model was then fitted using the
entire training dataset and those optimal hyperparameters, which
was then assessed on the hold-out test set from the outer loop.
The outer loop was repeated for 100 different random partitions
of the data (see Supplementary Figure 5). The median of AUC
(over all 5-folds × 100 iterations = 500 test sets) were calculated
to assess the performance of the models. In addition to the
AUC results; sensitivity, specificity, balanced accuracy (average
of sensitivity and specificity), and F1 scores ( TP

TP+1/2×(FP + FN)
)

where TP is the number of true positives, FP is the number
of false positives, and FN is the number of false negatives are
also provided to compare the results of the current study with
previous findings. The classification performance of different
models were compared using a permutation test (David, 2008).
Differences were considered significant when p < 0.05 after BH
correction for multiple comparisons (Benjamini and Hochberg,
1995).

When the data contains class imbalance, models may tend to
favor the majority class. Due to the class imbalance in our data
(19 HC vs. 100 pwMS and 67 pwMS with no disability vs. 33
pwMS with evidence of disability), the over-sampling approach

Synthetic Majority Over-sampling Technique (SMOTE) (Chawla
et al., 2002) was used to obtain a balanced training dataset during
the cross-validation. SMOTE compensates for imbalanced
classes by creating synthetic examples using nearest neighbor
information and has been shown to be among the most robust
and accurate methods with which to control for imbalanced
data (Santos et al., 2018).

We considered feature weights in the ridge classification
method to be the average parameter coefficient over all 500
models (100 partitions of the data × 5-folds). Feature weights
of the pairwise connections were represented using a circle
plot and summarized at a network level, while feature weights
of the regional connections were illustrated via glass brains
and summarized at a network level via circle plots. Important
connectomic features were identified as those that had both large
group differences (via the mass univariate statistical tests) and
large feature weights from the ridge classifier (Tian et al., 2021).

3. RESULTS

3.1. Patient Characteristics
Table 1 shows the subjects’ demographic and clinical information
including sex, age, disease duration, EDSS, and spinal cord lesion
number. Age and sex were not significantly different between
HC and pwMS (corrected p > 0.05 for both). Unsurprisingly,
pwMS who had no disability were younger (corrected p < 0.05)
and had a trend toward shorter disease duration (corrected p =
0.06) compared to pwMS who had evidence of disability. The
phenotype and disability groups were not independent (corrected
p < 0.05), where the pwMS who had CIS phenotype were
included in the no disability group and those who had progressive
disease were included in the evidence of disability group. The
F-values obtained with the ANOVA for the age was 16.65 (p <

9.17e-05), for the EDSS 143.3 (p< 2e-16), and for the phenotypes
7.67 (p < 0.0008). However, the two disability groups did not
have a significant difference in sex ratio, number of spinal cord
lesions, and brain lesion volume (corrected p > 0.05 for all).

3.2. Dynamic FC Results
Four clusters in the dynamic FC analysis was identified as
optimal (see Supplementary Figure 1). Figure 2 illustrates the
4 cluster centroids, or dynamic brain states (top panel), which
are also summarized in the bottom panel by averaging the
pairwise dFC values over Yeo network assignments separately
for both the positive and negative values. All states show strong
positive connections between ventral attention and somatomotor
and between dorsal attention and visual networks, while the
negative values vary more widely across the states. State 1
has more negative connections from ventral attention to visual
and limbic networks. State 2 shows overall smaller magnitude
negative connections and larger magnitude positive connections
compared to other states. State 3 has more negative connections
from fronto-parietal to somatomotor networks. State 4 differs
from other states with larger magnitude negative connections
from dorsal attention to default mode and ventral attention
networks. Figure 2 also depicts the mean dwell time and total
number of state transitions for HC, pwMS, pwMS who had no
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FIGURE 1 | The workflow of the study. Structural connectomes (SC), static functional connectomes (FC), and dynamic functional connectome (dFC) metrics were

used as input, in addition to the demographics/clinical variables, to the classification model (logistic regression with ridge regularization technique). The classification

performance of each model was assessed using the area under the ROC curve (AUC).

TABLE 1 | Subject demographics and clinical information.

Variable HC (n = 19) pwMS (n = 100) p-value pwMS: no disability pwMS: evidence of p-value

(n = 67) disability (n = 33)

Age 45 [35.55, 49.50] 45.50 [36.75, 56] 0.84 40 [35, 50] 56 [46, 58] 0.0001

Female (%) 11 (55) 66 (66) 0.49 46 (69%) 20 (61%) 0.56

Disease duration - 11 [7,16] - 10 [7,15] 13 [9,17] 0.06

EDSS - 1 [0, 2] - 0 [0, 1] 2 [2, 3] <2.2e-16

Number of spinal cord lesions - 1 [0,3] - 1 [0,3] 2 [0,3] 0.46

Phenotype - 7 CIS, 88 RRMS, 5 Progressive MS - 7 CIS, 60 RRMS 28 RRMS, 5 Progressive MS < 2.2e-16

Lesion volume (mm3 ) - 2,065 [717, 4,779] - 1,995 [734, 4,200] 2,482 [453, 7,788] 0.49

Values are presented as median [1st, 3rd quantile] for the continuous variables as the number/percent for sex and phenotype. The HC vs. pwMS as well as two disability groups of

pwMS were tested for differences; p-values shown are corrected for multiple comparisons.

disability, and pwMS who had evidence of disability. A Student’s
t-test was used to compare the dFC metrics between groups.
The pwMS who had disability had significantly higher dwell time
compared to those without disability in State 1 (p = 0.05). While

there was no significant difference in mean dwell time between
groups in other states or in number of state transitions (p >0.05
for both comparisons), the pwMS with disability tend to have
greater number of state transitions compared to HC and pwMS
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FIGURE 2 | The recurring dynamic FC brain states obtained with k-means clustering and the dFC metrics (dwell time and number of transitions). (A) (Top row) Heat

maps show the dynamic functional connectivity centroids for the four states, while [bottom two rows of (A)] the circle plots summarize the dFC centroids at a network

level with the positive and negative dFC entries averaged separately. The color bar of the circle plot is not symmetrical, as to better visualize the network-level values.

(B) The dFC metrics (mean dwell time and number of transitions) obtained for HC, pwMS, pwMS who had no disability, and pwMS who had evidence of disability.

DAN, Dorsal Attention; VAN, Ventral Attention; LIM, Limbic; FP, Fronto-Parietal; DMN, Default-Mode Network; SUB, Subcortex; CER, Cerebellum; VIS, Visual; SOM,

Somatomotor.

who had no disability. The transition probability between states
are presented in Supplementary Figure 2.

3.3. Mass Univariate Group Comparison of
Connectivity Measures
There were no significant differences in pairwise or regional
FC and dFC between HC vs. pwMS, however, 24 pairwise SCs
and 2 regions’ SC node strengths (left and right accumbens)
were significantly different between HC vs. pwMS after multiple
comparison correction, see Supplementary Figure 3. There were
no significant differences in pairwise and regional SC or FC
between pwMS who had no disability vs. had evidence of
disability (corrected p > 0.05 for all comparisons). However,
the regional dFC in the right superior parietal was greater in
pwMS who had evidence of disability compared to those without
disability (corrected p = 0.02; see Supplementary Figure 4).

PwMS with evidence of disability spent significantly more time
in dFC brain state 1 compared to those pwMS with no disability
(corrected p = 0.05), transition probability from state 4 to
3 trended toward greater values in HC compared to pwMS
(uncorrected p = 0.03), and transition probability from state 3
to 2 trended toward greater values in pwMS who had evidence
of disability compared to those with no disability (uncorrected p
= 0.01). There was no significant difference or trend in number
of transitions between HC vs. MS as well as between subgroups
of pwMS.

3.4. Classification Results
Figure 3 shows the distribution of AUC values (over the 500
hold-out test sets) for the models based on pairwise or regional
SC, FC, and dFC separately as well as the model including
dFC metrics for both classification tasks (HC vs. pwMS and
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FIGURE 3 | Classification analysis results. AUC values obtained from the models classifying (A) HC vs. pwMS and (B) pwMS according to their disability level. The

first three violin plots show the AUC results from the models including pairwise connectivity information. The number of the imaging variables was 3,655 for pairwise

SC and FC, while 14,620 (= 3655 × 4 dFC states) variables included in the pairwise dFC model. The next set of three violin plots show the AUC values from the

regional models where regional SC and FC models each included 86 imaging variables and the regional dFC model included 344 (= 86 × 4 dFC states) imaging

variables. The last model that included dFC metrics contained 21 imaging variables. The plots show the median (white dot), 1st and 3rd quartiles (black bar) over the

500 hold-out test sets. Asterisks indicate significant differences (p <0.05, BH corrected) in the distribution of AUC values between different models.

pwMS disability subgroups). Unsurprisingly, the AUC results
were generally higher for HC vs. pwMS classification than the
AUCs obtained for the pwMS subgroup classification. For the
HC vs. pwMS classification, the regional SC model performed
significantly better than all other models, with a median AUC
of 0.89. The regional models better classified HC and pwMS
than pairwise models. The regional dFC model (node strength of
the individual dFC cluster centroids) showed better classification
accuracy than pairwise FC and pairwise dFC cluster centroids.
For the classification of pwMS according to their disability level,
the median AUC values ranged between 0.59 and 0.65, where the
models that included regional dFC and dFC metrics performed
significantly better than other models.

Supplementary Figure 6 shows other performance metrics
(sensitivity, specificity, balanced accuracy, and F1) of all the
models in classifying HC vs. pwMS and pwMS by disability
level, respectively. Similar to AUC results, pairwise and regional
SC models have better performance than other models in
classifying HC vs. MS, while regional dFC and dFC metrics have
better performance in distinguishing between pwMS having no
disability vs. evidence of disability.

3.5. Feature Weights
Figure 4 depicts the scaled feature weights (relative to the
maximum magnitude feature weight) for the pairwise and
regional SC models that had the highest AUCs for the HC vs.
pwMS classification task. Weaker SC between visual and dorsal
attention/cerebellar networks and between somatomotor and
dorsal attention networks, and stronger SC between the dorsal
attention and subcortical networks were associated with being
in the group of pwMS. This largely agreed with the regional
SC feature weights showing weaker SC in regions of the dorsal
attention, subcortical and cerebellar networks were associated
with being in the group of pwMS.

The regional dFC (node strength) model that had the best
performance in classifying the pwMS into subgroups showed
that increased dFC in the dorsal attention and visual networks
of state 2, increased dFC in the default mode network of state
3, decreased dFC in the frontoparietal of state 2 and decreased
dFC in the cerebellum of state 3 were most strongly associated
with evidence of disability (see Figure 5). The univariate results
were in concordance with these results and increased dFC in
dorsal attention and visual networks of state 2 was found in
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FIGURE 4 | Relative feature weights of the SC models for the HC vs. pwMS classification task. The relative feature weights (scaled by the maximum magnitude

feature weight) for the variables used in the two models with the best classification performance in the HC vs. pwMS task: (A) pairwise SC and (B) regional SC (node

strength). The circle plots in (A) illustrate the positive (hot colors) and negative (cool colors) model feature weights, respectively, for the pairwise SC model, averaged

across the Yeo functional networks. The glass brain and radial plot figures in (B) show the relative feature weights from the regional SC (node strength) model, where

the redial plot shows the positive and negative values averaged over the Yeo functional networks. Negative values (cooler colors) indicate those connections where

larger values were associated with greater probability of being in the HC group while positive values (hotter colors) indicate those connections where larger values

were associated with greater probability of being in the pwMS group. DAN, dorsal attention; VAN, ventral attention; LIM, limbic; FP, fronto-parietal; DMN, default-mode

network; SUB, subcortex; CER, cerebellum; VIS, visual; SOM, somato-motor.

FIGURE 5 | Relative feature weights of the regional dFC model for the MS subgroup classification task. The relative feature weights (scaled by the feature weight with

maximum magnitude) of the variables used in classifying pwMS by disability status using (A) regional dFC (node strength) and (B) dFC summary metrics (top 10

important features). The glass brain and radial plots in (A) show the relative feature weights from the regional dFC model and summarize the average of the regional

dFC values over the Yeo functional networks (positive and negatives averaged separately). Negative values (cooler colors) indicate those connections where larger

values were associated with greater probability of being in the HC group while positive values (hotter colors) indicate those connections where larger values were

associated with greater probability of being in the pwMS group. DAN, dorsal attention; VAN, ventral attention; LIM, limbic; FP, fronto-parietal; DMN, default-mode

network; SUB, subcortex; CER, cerebellum; VIS, visual; SOM, somato-motor.
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pwMS who had evidence of disability compared to those without
disability (see Supplementary Figure 4). In the dFC metrics
model, dwell time in state 1, which was characterized by larger
magnitude negative FC from the ventral attention network to
several other networks, was the most important feature. This
agreed with the univariate group comparisons indicating a
significant increase in state 1 dwell time for pwMS with evidence
of disability.

4. DISCUSSION

In this study, we investigated the prediction ability of pairwise
or regional SC, FC and dFC as well as dFC metrics in
classifying HC vs. pwMS and pwMS who had no disability
vs. evidence of disability. Our main findings were that (1)
the regional SC (node strength) model had the highest AUC
when discriminating between HC and pwMS, but the regional
dFC and dFC metrics better distinguished pwMS into groups
defined by disability level, (2) the most important regional SCs
in distinguishing HC from pwMS were found in the dorsal
attention, subcortical, and cerebellar networks, while regional
dFC in the dorsal attention and visual networks were the most
important in classifying pwMS into disability groups, and (3)
mean dwell time in a state characterized by more negative
FC from ventral attention to several other networks was the
most important dFC metric for the classification of pwMS into
disability groups.

4.1. Comparison With Previous Studies
Using SC, Static FC, and Dynamic FC in MS
Previous studies have used statistical methods to differentiate
between pwMS and HC, and pwMS according to their disability
severity or phenotype (Richiardi et al., 2012; Leonardi et al.,
2013; Stamile et al., 2015; Kocevar et al., 2016; Muthuraman
et al., 2016; Ion-Mărgineanu et al., 2017; Zhao et al., 2017;
Zhong et al., 2017; Saccà et al., 2018; Zurita et al., 2018)
showed 82% sensitivity, similar to our results (median sensitivity
= 0.85), in distinguishing pwMS from HC using static FC
and/or lesion load. In one of the most similar studies to
date in sample size, availability of multi-modal data types and
nature of classification tasks, Zurita et al. (2018), showed that
using SC and static FC resulted in high accuracy of 87%
in classifying HC and pwMS but the accuracy of classifying
pwMS according to EDSS dropped to 63%. Here, we show
77% balanced accuracy (AUC of 0.89) in pwMS vs. HC and
60% balanced accuracy (AUC = 0.64) in classifying pwMS by
disability status. In contrast to our results, they found that
static FC was more important than SC in classifying HC and
pwMS. However, they did not investigate dynamic FC and
their dMRI acquisition only had 15 directions compared to
our higher resolution 55 directions acquisition, which likely
means our SC matrices had increased sensitivity to detecting
MS-related damage.

Ours is the first study to use dynamic FC to classify HC
vs. pwMS or pwMS by disability level using machine learning.
However, previous studies have investigated dFC differences

between HC vs. pwMS as well as associations with cognition.
One study showed that 50 CIS patients (47 of which converted
to MS) had similar dFC properties compared to controls at
baseline but one of the dFC measurements, the distance traveled
in dynamic state-space, increased in CIS/pwMS over 2 years to
levels above and beyond HC (Rocca et al., 2019). In another
recent study, dFC metrics were compared between (i) pwMS
and HC and (ii) pwMS with cognitive disability vs. preservation
(d’Ambrosio et al., 2019). There, they showed no differences
between HC and pwMS but pwMS without cognitive disability
showed increased dynamic fluidity compared to pwMS with
cognitive disability by exhibiting longer distance traveled in
dynamic state-space, more dynamic states visited, and more
frequent changes between states. A few limitations of that study
were that the data was collected across 7 sites; the authors discuss
this as having a non-negligible effect on the results. Still, both
of these studies indicate that, at least early on in the disease,
pwMS may compensate for MS-related damage by increased
dynamism of FC.

4.2. Structural Damage to the Dorsal
Attention Network Is Central in
Distinguishing HC vs. pwMS
It has been suggested (Tian et al., 2021) that the parameter
coefficients of the prediction models can be unreliable to assess
the feature importance. Therefore, similar to our recent work that
compared the prediction ability of observed vs. estimated SC and
FC networks in classifying pwMS by disability status (Tozlu et al.,
2021), here we report the important features that had high feature
weight from the classification models and that also showed a
larger difference in the mass univariate group comparisons.

Our study showed that the most discriminative pairwise
SCs in distinguishing HC from pwMS were found from
dorsal attention to subcortical and visual networks. SC node
strength in regions in the dorsal attention network were
also found to be important features in the HC vs. pwMS
classification, as this network had the highest feature weight
in the HC vs. pwMS classification model and the univariate
analysis showed a large difference in this network between
HC vs. MS. Connections between dorsal attention and other
networks (limbic and frontoparietal) also had greater feature
weights compared to other connections in the pairwise FC
model. The prominence of the dorsal attention network
in both analyses (classification and univariate analyses) is
in line with a previous study that compared dFC metrics
between HC and pwMS and found decreased dFC within
dorsal attention in pwMS compared to HCs (Huang et al.,
2019).

4.3. Dynamic FC Metrics May Capture
Compensatory Functional Upregulation in
pwMS
In our study, the univariate analyses showed decreased
pairwise structural connections between dorsal attention and
visual networks in pwMS with evidence of disability. The
univariate analysis as well as the feature weights from the
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classification models showed that increased dFC in the dorsal
attention network was associated with evidence of disability
in MS. Moreover, the right superior parietal region of the
dorsal attention network was the only region which was
significantly higher in the pwMS who had evidence of
disability compared to those without disability. We hypothesize
the dorsal attention network’s increased dFC in pwMS who
had evidence of disability could be the result of either
a pathological or compensatory upregulation of functional
coordination, in response to disease-related damage to SC,
i.e., the “less wiring more firing” phenomena (Daselaar et al.,
2015). This provides further evidence that MS is characterized
by damage to the SC but disability level within pwMS
may be more related to functional compensation, specifically
the level of dynamism of FC that is reflected in the
dFC measures.

4.4. Decreased Connectivity in the
Cerebellum Is Related to Disability
Our recent study that investigated the association between
structural disconnectivity due to paramagnetic rim lesions and
disability in MS showed that the cerebellum is one of the most
important regions for the classification of pwMS by disability
status and, further, that greater damage to the cerebellum is
related to worse disability in MS (Tozlu et al., 2020). Previous
studies have also shown the association between motor/cognitive
disability and altered FC in the cerebellum (Dogonowski et al.,
2014; Pasqua et al., 2020). Our results were in concordance with
these previous findings in that decreased connectivity in the
cerebellum was associated with evidence of disability in pwMS
in all regional models (SC and dFC of states 2 and 3).

4.5. Limitations
The main limitations of our study were the cross-sectional
nature and size of the sample. We were restricted to inferring
cross-sectional relationships of brain networks properties and
disability; a more clinically applicable model would be one
capable of predicting with reasonable accuracy future disability
for better patient management. There were only 33 pwMS who
had evidence of disability and 19 controls which limited the
ability to train robust models accurate in novel data. Future
work including larger, longitudinal datasets from a similar cohort
are required to validate the findings of the current study. EDSS
primarily captures physical disability, so this is likely what is
being mapped in this work. Future studies using more specific
measures of different types of disability including cognition
may allow further insights about brain-behavior relationships.
In addition, the MRI acquisition parameters could be improved
to obtain higher resolution information, including reducing the
TR of the fMRI scan, increasing the duration of the entire fMRI
scan, and increasing the number of b-values in the dMRI scan.
Finally, in our dFC analysis, the BOLD time series was divided
using a fixed window length; however, wavelet transforms may
allow different lengths for different frequency bands and will also
be explored in future studies.

5. CONCLUSION

In conclusion, regional SC proved to be the most discriminative
modality in classifying HC vs. pwMS, and pwMS exhibited
weaker SC within the dorsal attention network, cerebellum,
and subcortex. Furthermore, models including dFC metrics
outperformed others in classifying pwMS into disability status
categories; there, the most important regional dFCs were in the
dorsal attention and visual networks and the most important
dFC metric was dwell time in a state characterized by more
negative FC from ventral attention to other networks. These
results suggest that damage to SC are hallmarks of MS, while
dynamic FC may reveal functional connectivity differences
that are associated with varying levels of disability in pwMS.
Various brain connectivity network approaches may enable more
accurate prognoses and, possibly, a better understanding of
disease mechanisms, eventually leading to the development of
novel therapeutics.
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The debilitating effect of traumatic brain injury (TBI) extends years after the initial
injury and hampers the recovery process and quality of life. In this study, we
explore the functional reorganization of the default mode network (DMN) of those
affected with non-severe TBI. Traumatic brain injury (TBI) is a wide-spectrum disease
that has heterogeneous effects on its victims and impacts everyday functioning.
The functional disruption of the default mode network (DMN) after TBI has been
established, but its link to causal effective connectivity remains to be explored. This
study investigated the differences in the DMN between healthy participants and mild
and moderate TBI, in terms of functional and effective connectivity using resting-state
functional magnetic resonance imaging (fMRI). Nineteen non-severe TBI (mean age
30.84 ± 14.56) and twenty-two healthy (HC; mean age 27.23 ± 6.32) participants were
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recruited for this study. Resting-state fMRI data were obtained at the subacute phase
(mean days 40.63 ± 10.14) and analyzed for functional activation and connectivity,
independent component analysis, and effective connectivity within and between the
DMN. Neuropsychological tests were also performed to assess the cognitive and
memory domains. Compared to the HC, the TBI group exhibited lower activation
in the thalamus, as well as significant functional hypoconnectivity between DMN
and LN. Within the DMN nodes, decreased activations were detected in the left
inferior parietal lobule, precuneus, and right superior frontal gyrus. Altered effective
connectivities were also observed in the TBI group and were linked to the diminished
activation in the left parietal region and precuneus. With regard to intra-DMN connectivity
within the TBI group, positive correlations were found in verbal and visual memory
with the language network, while a negative correlation was found in the cognitive
domain with the visual network. Our results suggested that aberrant activities and
functional connectivities within the DMN and with other RSNs were accompanied by
the altered effective connectivities in the TBI group. These alterations were associated
with impaired cognitive and memory domains in the TBI group, in particular within the
language domain. These findings may provide insight for future TBI observational and
interventional research.

Keywords: default mode network, traumatic brain injury, functional connectivity, effective connectivity,
neuropsychology

INTRODUCTION

Traumatic brain injury (TBI) is one of the most common
causes of debilitating neurodegenerative diseases that affect
more than 10 million people each year globally (Humphreys
et al., 2013; Moreno-López et al., 2016). TBI most commonly
affects people who are in their productive years, therefore
incurring significant economic losses. In addition, TBI also
puts a burden on the public healthcare system, as TBI
survivors often require assistance and hardly return to a
quality life (Majdan et al., 2017). Therefore, research into how
TBI affects the functions of the human brain is crucial to
understanding the mechanism of injury and how they can be
prevented to help manage the TBI survivors to return to the
quality of life.

The debilitating effect of TBI can range from mild cognitive
disruption to adverse reduction in brain function, depending
on the severity of the injury. In severe TBI, the deleterious
effects on the brain were more pronounced in more severe
cases (Khanmohammadi et al., 2018). As for mild TBI, they
are often misdiagnosed (Palacios et al., 2017; Vergara et al.,
2018), thus risks being left untreated. This is concerning because
the effect of mild TBI can be harmful to the integrity of
the brain function and increase the risk of neurodegenerative
diseases later in life, however, small the initial concussion
might be (Vergara et al., 2018). Therefore, all trauma to the
head must receive a proper diagnosis and the integrity of
the brain function assessed properly to prevent premature
neurodegenerative diseases in TBI survivors.

In achieving this, the resting-state fMRI (rsfMRI) is an
indispensable tool to study the extent of functional alterations

caused by TBI. Since its inception in 1995, rsfMRI studies
have been conducted increasingly to study the brain networks
that emerged from seemingly resting conditions; among them
is the default mode network (DMN) (Nakamura et al., 2009).
The resting-state paradigm is relatively easier to conduct,
requiring no explicit tasks and able to accommodate a wide
range of participants across all levels of consciousness and
cognitive abilities.

The total force of trauma to the head often disrupted
the structural integrity of the brain in the form of axonal
injury, thus affecting functional connectivity (FC) and
cognitive performance (Sours et al., 2017; Gordon et al.,
2018; Wooten et al., 2019). However, damaged structural
tracts may create juxtaposed effects toward FCs, in which
it becomes increased especially involving network hubs
(Hillary et al., 2014). Researchers attribute this paradox as
the compensatory effect orchestrated by the brain, mainly
to cope with inefficient information transfer due to the
recruitment of longer tracts (Porter et al., 2017; Wooten et al.,
2019). This functional hyperconnectivity is often resolved
longitudinally, as the brain finds the balance between optimal
performance and network costs (Hillary and Grafman,
2017). Nevertheless, cases of diminished FCs due to trauma
were also reported, especially in the earlier stages of TBI
(Manning et al., 2019).

The FCs can be illustrated as the statistical connections
between cerebral signals across time, which may be
used to draw inferences about functional interactions
between two or more brain areas. On the other hand,
there is another type of brain connectivity termed effective
connectivity (EC) which seeks to describe causal links through
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experimental paradigms or models rather than just looking at
correlations between brain activity (Gaudet et al., 2020). This
enables the direction of interactions between various brain
areas to be deduced.

In this study, we examined the brain responses in healthy
controls (HC) and TBI groups and compare them to find
any significant difference in the functional organization of
the resting-state network, specifically the DMN. Specifically,
we investigated the group activations modeled after the low-
frequency fluctuation of the brain and compare them to look
for significant differences that may account for the TBI effects.
In addition, we also analyzed the FCs of both groups to see
any changes. Finally, we also correlated the FCs with their
performance in psychological tests.

MATERIALS AND METHODS

Participants
Nineteen non-severe TBI participants (mean age 30.84 ± 14.56)
were recruited from the emergency department, Hospital
Universiti Sains Malaysia. Twenty-two matching controls
(mean age 27.23 ± 6.32) were also recruited. All participants
were right-handed Malay males aged between 18 and
65 years. All TBI participants sustained non-severe TBI,
measured using the Glasgow Coma Scale of between 8 and
15, and scanned at the subacute phase (4-6 weeks) of the
injury. The exclusion criteria include any previous TBI
history, psychiatric illness, history of drug abuse, ocular
injuries, and contraindications to MRI. Participants also
gave written consent before being enrolled in the study.
The study protocol and procedures were approved by
the Institutional Ethics Committee (IEC) of Universiti
Sains Malaysia (IEC Code: USM/JEPeM/15110485 and
USM/JEPeM/20080406) and carried out under the latest
version of the Declaration of Helsinki.

Neuropsychological Assessment
A subset of the HC and TBI participants was cognitively assessed
using neuropsychological tests that comprised the Wechsler
Abbreviated Scale of Intelligence 1st edition (WASI; block
design and matrix reasoning) to estimate general cognitive
ability (McCrimmon and Smith, 2013), Rey Auditory Verbal
Learning Test (RAVLT; immediate and delayed recall) to assess
the verbal memory function (Bean, 2011; Khosravi Fard et al.,
2016), Rey Complex Figure Test and Recognition Trial (RCFT;
immediate and delayed recall) to assess the visual memory and
perception (Sargénius et al., 2017), Comprehensive Trail-Making
Test (CTMT) to assess the psychomotor speed and cognitive
flexibility (Gray, 2006; Beratis et al., 2018), and Wisconsin Card
Sorting Test (WCST) to measure the executive functioning
(Kolakowsky-Hayner, 2011). These tests were appropriate to
assess the cognitive domains that are often impaired following
TBI. The results are calculated based on the standard scores
that are corrected for age and education level. In total,
thirteen HC and sixteen TBI participants took part in the
neuropsychological tests.

Magnetic Resonance Imaging Scanning
Parameters
The structural and functional MRI data were obtained using a
3.0-T MRI machine (Philips Achieva, Best, The Netherlands)
equipped with a 32-channel head coil. The structural images
were acquired using T1-weighted imaging, with a Magnetisation
Prepare Gradient Echo (MPRAGE) sequence, a 256× 256 matrix,
and 160 sagittal slices. The structural repetition time (TR) was
set at 2,000 ms, echo time (TE) was set at 30 ms, flip angle (FA)
was set at 8◦, and the final resolution of structural images was
1 mm× 1 mm× 1 mm.

Functional images were obtained using the T2∗ echo planar
imaging (EPI) sequence, with a 96× 96 matrix size and 32 oblique
slices, set parallel to the orbitofrontal cortex to reduce the sinus
artifact. The TR was set at 1,700 ms, TE at 33 ms, and FA at 78◦.
The field of view of functional images was set at 192 mm2 with
slice thickness set at 3 mm with a 0-mm gap. The slice acquisition
was interleaved, and a total of 250 scans were obtained in 7 min.
During the scanning, participants were asked to close their eyes
and remain still without any mental task engagement.

Data Preprocessing
The acquired fMRI data underwent anonymization and
converted from DICOM to NIFTI format for subsequent
data analysis. Before preprocessing, the first ten volumes
of the data were removed to avoid the initial MRI signal
instability and account for participants’ adaptation to the

TABLE 1 | Functionally defined nodes of the default mode network as outlined in
the CONN Toolbox.

Nodes Central coordinate

Medial prefrontal cortex 1 55 −3

Posterior cingulate cortex 1 −61 38

L lateral parietal −39 −77 33

R lateral parietal 47 −67 29

R: right, L: left. Coordinates follow the standard Montreal Neurological Institute
(MNI) template in millimeters (mm).

FIGURE 1 | Three families of the DCM models, where (A) denotes the
possible connectivity directions between MPFC and PCC, (B) denotes the
possible connectivity directions between the LLP and RLP, and (C) denotes
the possible connectivity directions between MPFC, PCC, LLP, and RLP. The
combination of these families yielded 30 possible DCM models that were
compared to find the winning model.
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TABLE 2 | Demographics and neuropsychological characteristics.

Mean HC (SD) Mean TBI (SD) t p2 Effect sizeb

Age 27.23 (6.32) 30.84 (14.56) −-1.00 0.326 0.33

Education (HC: n = 13, TBI: n = 17) 15.54 (1.94) 12.59 (2.83) 3.22 0.003 1.19

Days since injury − 40.63 (10.14) − − −

GCS (median) − 15 − − −

WASI (HC: n = 13, TBI: n = 16)

Block design 51.69 (9.04) 49.69 (6.18) 0.708 0.485 0.26

Matrix reasoning 51.08 (10.61) 43.38 (12.48) 1.765 0.089 0.66

RAVLT (HC: n = 13, TBI: n = 16)

Immediate recall 46.77 (9.05) 40.75 (10.88) 1.595 0.122 0.60

Delayed recall 10.08 (2.78) 8.31 (4.06) 1.331 0.194 0.50

RCFT (HC: n = 13, TBI: n = 16)

Immediate recall 52.38 (11.01) 42 (19.03) 1.742 0.093 0.65

Delayed recall 47.08 (14.67) 40.63 (17.53) 1.059 0.299 0.40

CTMT (HC: n = 13, TBI: n = 16) 85.08 (21.64) 84.13 (17.32) 0.132 0.896 0.05

WCST (HC: n = 13, TBI: n = 16) 37.15 (10.39) 32.69 (15.41) 0.892 0.38 0.33

WASI, Wechsler Abbreviated Scale of Intelligence; RAVLT, Rey Auditory Verbal Learning Test; RCFT, Rey Complex Figure Test and Recognition Trial; CTMT, Comprehensive
Trail-Making Test; WCST, Wisconsin Card Sorting Test; HC, Healthy control; TBI, traumatic brain injury; SD, standard deviation.
aTwo-tailed independent sample t-test at p < 0.05.
bCohen’s corrected d (Hedge’s g).

FIGURE 2 | (A) LFF BOLD activation comparison revealed a significant
hypoactivation area in the TBI group compared to HC with cluster extent
threshold k = 79. (B) Significantly activated areas in the TBI group (correspond
to the middle temporal gyrus) due to hypoconnectivity from PCC as the seed
region. Results are thresholded at voxel-level punc < 0.001 and cluster extent
thresholded at pFDR < 0.05. The color bar represents the T-score.

scanner (Li et al., 2019). Data were preprocessed using Statistical
Parametric Mapping 12 (SPM12)1 software package implemented
in MATLAB (v. R2021a)2 using a standard preprocessing
pipeline. First, functional data underwent slice timing correction
and realignment to correct the motion artifact and then co-
registered to individual T1 anatomical images. The anatomical
images were then fitted into standard space according to
Montreal Neurological Institute (MNI), and the normalized

1www.fil.ion.ucl.ac.uk/spm/software/spm12
2https://www.mathworks.com/products/matlab.html

parameters were applied to the functional data. Lastly, a
Gaussian blur set at 8 mm full width half maximum (FWHM)
was applied to the functional data to obtain better inference
of the neighboring voxels. Artifact Detection Toolbox (ART)3

implemented in MATLAB was used to detect any outlier scans.
The global mean threshold was set at a 3 standard deviation (SD)
limit with a movement threshold of 0.5 mm (Dailey et al., 2018),
corresponding to a conservative 95% confidence interval.

Statistical Analysis
Demography, neuropsychological scores, and correlational
analysis were carried out using Statistical Product and
Service Solutions (SPSS 26). The results of demography
and neuropsychological data were compared between groups
using an independent-sample t-test with a p-value set at
0.05, and Levene’s test for assumption of equal variance was
conducted simultaneously.

In addition to statistical analysis, effect size calculations were
also performed to compare the effect of the sample size of each
group. Due to the difference in group size, corrected Cohen’s
d (Hedge’s g) was used to estimate the effect size and aid in
result interpretation (Gerchen et al., 2021; Pernet et al., 2021).
Following the rule of thumb set by Cohen, an effect size of 0.2
is considered as a small effect, 0.5 as a medium effect, and 0.8 as a
large effect (Lakens, 2013).

Low-Frequency Fluctuations Modeling
The general linear model (GLM) was designed according to the
steps outlined in the technical paper by Di and Biswal (2014).
The low-frequency fluctuations (LFF) were modeled into eight-
block functions that represented the following frequencies: 0.01,
0.02, 0.04, and 0.08 Hz, with a 90◦ offset for each frequency

3https://www.nitrc.org/projects/artifact_detect
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TABLE 3 | LFF statistical analysis with significantly hypoactivated areas in the TBI
group compared to the HC.

Area Coordinate (x y z) Cluster sizea T

R thalamus 0 −24 10 79 4.54

R, right. Coordinates follow the standard Montreal Neurological Institute (MNI)
template in millimeters (mm).
apFDR < 0.05.

(Di and Biswal, 2014). Preprocessed data of each participant were
entered into the GLM and subjected to one-sample t-tests to
obtain the activation of the brain areas. The peak voxel activations
were thresholded at p < 0.001 (uncorrected, punc), while cluster
size activation was adjusted to correct for false discovery rate
(FDR) at p-value < 0.05 (pFDR) (Sours et al., 2017). Afterward,
the GLMs from each group were entered into 2nd-level analysis
to find any significant differences in the activation patterns. For
this purpose, a two-sample t-test was used with similar peak
voxel and cluster size activation threshold (punc < 0.001 and
pFDR < 0.05, respectively).

Functional Connectivity Analysis
The FC analysis was conducted using CONN Toolbox
(v.20b; RRID: SCR_009550)4, open-source software based
on MATLAB/SPM12 for FC analysis of fMRI data (Whitfield-
Gabrieli and Nieto-Castanon, 2012). Preprocessed images
underwent denoising step, which removes signals from the white
matter and cerebrospinal fluids and discards outlier scans caused
by motion artifacts. In addition, a temporal bandpass filtering
was applied to account for the LFF, set between 0.009 and 0.08 Hz.

Following that, seed-based and region of interest (ROI)-based
FC analyses were performed. The DMN consists of four nodes
indicated a priori by the CONN Toolbox. The nodes included
the medial prefrontal cortex (MPFC), posterior cingulate cortex
(PCC), and left and right lateral parietal (LP), outlined in Table 1.
For the ROI-to-ROI analysis, 32 nodes from 8 resting-state
networks were set based on the CONN network a priori groups
implemented in CONN Toolbox as follows: DMN (4 nodes),
sensorimotor network (SN; 3 nodes), visual network (VN; 4
nodes), salience network (SN; 7 nodes), dorsal attention network
(DAN; 4 nodes), frontoparietal network (FPN; 4 nodes), language
network (LN; 4 nodes), and cerebellar network (CN; 2 nodes).
Similar to LFF modeling, multiple comparisons in the cluster
level were corrected using pFDR < 0.05 and voxel-level threshold
set at punc < 0.001 (Sours et al., 2017).

Dynamic Causal Modeling
We analyzed the ECs of the DMN using Dynamic Causal
Modeling embedded within the SPM12 (DCM10.5). The LFF
signal from four nodes of the DMN, precuneus, MPFC, and
bilateral angular gyrus was extracted from the a priori DMN
nodes specified in the CONN Toolbox previously. For this
purpose, we set a sphere of 8-mm radius as the volume of interest
centered on the peak coordinates of each node. In the analysis, the
LFF signals of these DMN nodes were regressed against the LFF

4www.nitrc.org/projects/conn

signals from white matter and cerebrospinal fluids to remove any
effects that may be contributed by these components.

The endogenous connectivities between these nodes were
modeled following the methods outlined by Di and Biswal (2014),
in which the connectivity was varied between three possible
combination families: PCC–MPFC, LLP–RLP, and PCC/MPFC–
LLP/RLP, as outlined in Figure 1 (Di and Biswal, 2014). The
resulting number of models was subsequently analyzed using
cross-spectral density, as resting-state data are appropriately
analyzed using the frequency domain. All models were compared
using Bayesian model selection (BMS) using random-effect
inference to determine the best model. Random-effect BMS is
favorable as it is impervious to outliers, thus ensuring group
heterogeneity (Sadeghi et al., 2020). The probability graph of each
model was plotted, and the winning model was selected according
to the maximum probability among all the models. The winning
model from each group was then averaged using Bayesian
Parameter Averaging, a method of integrating the individual
posterior densities and utilizing the posterior from one subject
as the prior for the successive subject (Stephan et al., 2010).

RESULTS

Demographics and Neuropsychological
Results
The demographic and neuropsychological information and
results are detailed in Table 2. Our cohort of participants
consisted of a homogenous sample in terms of race and gender
(Malay males). Sixteen TBI and thirteen HCs from the sample size
were administered the neuropsychological tests. The independent
t-test revealed no significant difference between TBI and HC in
the WASI, RAVLT, RCFT, CTMT, and WCST domains. However,
medium effect sizes were observed on the matrix reasoning
domain in WASI (t[27] = 1.77, p = 0.089, Hedge’s g = 0.66), both
domains of the RAVLT (immediate verbal recall, t[27] = 1.60,
p = 0.122, Hedge’s g = 0.60; delayed verbal recall, t[27] = 1.33,
p = 0.194, Hedge’s g = 0.50), and the immediate recall domain in
RCFT (t[27] = 1.74, p = 0.093, Hedge’s g = 0.65), which indicated
medium practical differences. These results suggest that the TBI
group performed moderately worse than HC in general cognitive
ability, verbal memory, and visual memory. Other domains and
tests recorded either small or trivial effect sizes.

Brain Structural Evaluations
The T1-weighted structural images were evaluated independently
by three senior neurosurgeons with more than 15 years of
experience from the Department of Neurosciences, Hospital
Universiti Sains Malaysia. No significant structural alterations
were identified in the brain morphometry.

Low-Frequency Fluctuations Activations
Comparison
We compared the BOLD activations to find any difference in
the LFF between HC and TBI groups. The independent sample
t-test showed no significant activations when we applied the

Frontiers in Neuroscience | www.frontiersin.org 5 March 2022 | Volume 16 | Article 833320123

https://scicrunch.org/resolver/RRID: SCR_009550
http://www.nitrc.org/projects/conn
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-833320 March 22, 2022 Time: 19:28 # 6

Abdul Rahman et al. Functional Alterations of the DMN

TABLE 4 | The regions that displayed significant activation in the HC > TBI, based on seed regions of individual DMN nodes.

Seed Activated regions Coordinate (x y z) Cluster size pa Effect sizeb

PCC Middle temporal gyrus 54 −46 10 183 0.013 0.79

PCC, posterior cingulate cortex. Coordinates follow the standard Montreal Neurological Institute (MNI) template in millimeters (mm).
apFDR < 0.05.
bCohen’ s corrected d (Hedge’s g).

cluster-level threshold at pFDR < 0.05. Nevertheless, by using
the lower cluster threshold (punc < 0.05), we found a significant
hypoactivation (see Figure 2A) in the TBI group at the right
thalamus (peak MNI coordinate 0 -24 10, t[39] = 4.54, p < 0.05).
Results are outlined in Table 3.

Functional Connectivity in Healthy
Controls and Traumatic Brain Injury
Groups
We computed seed-based and ROI-based analyses to measure
the FC in both HC and TBI. In essence, the seed-based
connectivity measures the connectivity of a seed region
to other areas of the brain, while ROI-based connectivity
compares the parameter of connectivity between different
regions of interest associated with a particular network. The
parameters of each participants’ FC were then compared
between HC and TBI.

Seed-Based Analysis
The four DMN nodes that were set as seeds are outlined in
Table 1. Figure 2B shows the result of seed-based analysis
of the DMN nodes, which reveals a significantly reduced FC
in the TBI group between the PCC and middle temporal
gyrus (MTG; peak MNI coordinate 54 -46 10, cluster-level
pFDR = 0.013, Hedge’s g = 0.79). The result is outlined in
Table 4.

Region of Interest -Based Analysis
Network-based F-statistics analysis in eight a priori RSNs
revealed no significant difference in FC between groups at
network level pFDR < 0.05. The FC matrices are presented in
Figures 3A,B. However, the independent t-test for individual
nodes FC reveals significant hypoconnectivity in ROI pairs
between DMN and LN in the TBI group, in PCC and right
posterior superior temporal gyrus (pSTG) (t[39] = 2.93, p = 0.006,
Hedge’s g = 0.92), and right LP and right pSTG (t[39] = 2.26,
p = 0.029, Hegde’s g = 0.71). Additionally, the effect size
estimates for two ROI pairs between DMN and FPN indicated
to have potential medium practical differences, thus suggesting
that the TBI group was hypoconnected between left LP and
right lateral prefrontal cortex (LPFC) (t[39] = 1.63, p = 0.112,
Hedge’s g = 0.51) and between right LP and right posterior
parietal cortex (PPC) (t[39] = 1.56, p = 0.126, Hedge’s g = 0.29).
The results are outlined in Table 5, and the FC matrices are
presented in Figure 3C. In addition, based on our findings
in LFF activation, we analyzed the FC between DMN nodes
and thalamus. We did not find any significant difference in

terms of FC between the HC and TBI. Moreover, the effect
size is negligible.

Correlation Between Neuropsychological
Performance and Default Mode Network
Connectivity
We performed correlation analysis between the
neuropsychological performance and the FC in the TBI
group. Our results suggested that the alterations in the
FC within and between the DMN and other RSNs formed
significant associations with the scores of the neuropsychology
assessment. We found that higher scores in the following tests
are significantly correlated with higher FC: (1) T-block with
PCC–left pSTG (R = 0.63, p = 0.008) and left LP–right LP
(R = 0.63, p = 0.009); (2) verbal memory with PCC–left pSTG
(immediate recall R = 0.57, p = 0.022; delayed recall R = 0.53,
p = 0.034), left LP–right LP (immediate recall R = 0.054, p = 0.031;
delayed recall R = 0.511, p = 0.043), and left LP–left IFG (delayed
recall R = 0.52, p = 0.041); and 3) CTMT with PCC–right pSTG
(R = 0.50, p = 0.048), PCC–right PPC (R = 0.58, p = 0.019),
PCC–right LPFC (R = 0.54, p = 0.032), and right LP–right IFG
(R = 0.61, p = 0.012). We also found that higher scores in the
following tests are significantly correlated with lower FC: (1)
matrix reasoning with PCC–VN (R =−0.51, p = 0.042); (2) visual
memory with PCC–VN (immediate recall R = −0.56, p = 0.026;
delayed recall R = −0.58, p = 0.020); and 3) CTMT with MPFC–
PCC (R = −0.51, p = 0.045). The results are outlined in Table 6
(correlation graphs are available in Supplementary Material).

Effective Connectivity Following
Traumatic Brain Injury
The resulting ECs are presented as either excitatory or inhibitory,
characterized by positive and negative values, respectively. Two
types of ECs are reported: the self-connection or intrinsic EC, and
outgoing connections or extrinsic ECs. The detailed statistical
results are presented in Table 7, while Figure 4 visualizes the
endogenous ECs in both HC and TBI. After comparing all
possible models using random-effect BMS, we found that the
full connectivity model is the most optimal model for both HC
and TBI groups, in which all regions mutually influence each
other (see Figures 5, 6). While the full connectivity model was
favorable in the HC group, the connectivity between the left
LP and the PCC did not achieve statistical significance. This
left the HC group with eleven extrinsic ECs versus twelve in
the TBI group. Out of the twelve extrinsic connections, seven
ECs in the TBI group are inhibitory (PCC → MPFC, PCC
→ LLP, MPFC → PCC, MPFC → LLP, MPFC → RLP, LLP
→ PCC, and LLP → RLP), compared to five in HC (PCC
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FIGURE 3 | Functional connectivity matrices within the DMN and between the DMN and other RSNs in (A) HC and (B) TBI groups. Results in (A,B) are thresholded
at voxel-level punc < 0.001 and cluster extent thresholded at pFDR < 0.05, corrected for multiple comparisons. (C) The 2-sample t-test between HC and TBI groups
show functional connectivity matrices that achieve moderate to high effect size. The color bars represent the T-score.
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TABLE 5 | The effect size of the ROI pairs between HC and TBI groups that achieve moderate to high effect as per Cohen’s recommendations.

Inter-DMN connectivity ROI pair Mean HC (SD) Mean TBI (SD) t p2 Effect sizeb

DMN–LN PCC-R pSTG 0.42 (0.22) 0.24 (0.16) 2.93 0.006* 0.92

DMN–LN R LP-R pSTG 0.49 (0.27) 0.32 (0.21) 2.26 0.029* 0.71

DMN–FPN L LP-R LPFC 0.20 (0.23) 0.08 (0.23) 1.63 0.112 0.51

DMN–FPN R LP-R PPC 0.46 (0.29) 0.33 (0.28) 1.56 0.126 0.49

R, right; L, left; pSTG, posterior superior temporal gyrus; LP, lateral parietal; LPFC, lateral prefrontal cortex; PPC, posterior parietal cortex; DMN, default mode network;
LN, language network; FPN, fronto-parietal network.
aTwo-tailed independent-sample t-test.
bCohen’s corrected d (Hedge’s g).
*p < 0.05.

TABLE 6 | The correlation between the ROI connectivity values and
neuropsychological scores in the TBI group.

Domain Inter-DMN FC ROI pair R p2

WASI

Block design DMN–DMN L LP–R LP 0.63 0.009

DMN–LN PCC–L pSTG 0.63 0.008

Matrix reasoning DMN-VN PCC–Visual medial −0.51 0.042

RAVLT

Immediate DMN–DMN L LP–R LP 0.54 0.031

DMN–LN PCC–L pSTG 0.57 0.022

Delayed DMN–DMN L LP–R LP 0.51 0.043

DMN–LN L LP–L IFG 0.52 0.041

DMN–LN PCC–L pSTG 0.53 0.034

RCFT

Immediate DMN–VN PCC–visual medial −0.56 0.026

Delayed DMN–VN PCC–visual medial −0.58 0.020

CTMT DMN – DMN MPFC-PCC −0.51 0.045

DMN-LN PCC–R pSTG 0.50 0.048

LN R LP–R IFG 0.61 0.012

FPN PCC–R PPC 0.58 0.019

FPN PCC–R LPFC 0.54 0.032

R, right; L, left; LP, lateral parietal; PCC, posterior cingulate cortex; pSTG, posterior
superior temporal gyrus; IFG, inferior frontal gyrus; MPFC, medial prefrontal cortex;
PPC, posterior parietal cortex; LPFC, lateral prefrontal cortex; WASI, Wechsler
Abbreviated Scale of Intelligence; RAVLT, Rey Auditory Verbal Learning Test; RCFT,
Rey Complex Figure Test and Recognition Trial; CTMT, Comprehensive Trail-Making
Test; WCST, Wisconsin Card Sorting Test; DMN, default mode network; LN,
language network; VN, visual network; FPN, fronto-parietal network.
ap < 0.05.

→ MPFC, PC → RLP, MPFC → LLP, MPFC → RLP, and
LLP → RLP). Two mutual inhibitory ECs were observed in
the TBI group, between the PCC and MPFC, and between
LLP and PCC, while one mutual excitatory EC was observed
in the HC, between MPFC and RLP. Both groups displayed
right hemispheric lateralization, particularly characterized by
ECs involving the RLP and MPFC. The intrinsic connectivity
of all DMN nodes in both groups displayed self-inhibition, with
the strongest inhibitory value observed in the PCC for TBI, and
in MPFC for the HC group. The RLP displayed the strongest
outgoing ECs in both groups. Also, a statistical comparison of
connectivity from the RLP→ LLP reaches a near-moderate effect
size, suggesting moderately stronger extrinsic excitatory EC in

TABLE 7 | Statistics of the endogenous connectivity parameter of
the winning model.

Connection BPA ECP p2 Effect sizeb

HC TBI

PCC −0.8 −1.28 - -

MPFC −1.28 −0.71 - -

LLP −0.40 0.41 - -

RLP −0.40 −0.70 - -

PCC→ MPFC −0.15 −0.06 0.585 0.17

PCC→ LLP − −0.01 0.160 0.45

PCC→ RLP −0.09 0.02 0.439 0.24

MPFC→ PCC 0.32 −0.26 0.185 0.42

MPFC→ LLP −1.28 −0.71 0.805 0.08

MPFC→ RLP −0.19 −0.04 0.257 0.36

LLP→ PCC 0.01 −0.12 0.213 0.40

LLP→ MPFC 0.10 0.11 0.875 0.05

LLP→ RLP −0.40 −0.41 0.687 0.13

RLP→ PCC 0.05 0.30 0.354 0.29

RLP→ MPFC 0.06 0.26 0.554 0.19

RLP→ LLP 0.40 0.16 0.136 0.48

PCC: posterior cingulate cortex, MPFC: medial prefrontal cortex, LLP: left lateral
parietal, RLP: right lateral parietal, BPA: Bayesian parameter averaging, ECP:
endogenous connectivity parameter, TBI: traumatic brain injury.
a Independent sample t-test of the individual endogenous parameters from each
group, thresholded at p < 0.05.
bCohen’s corrected d (Hedge’s g).

HC compared to the TBI group originating from RLP to LLP
(p = 0.136, Hedge’s g = 0.48).

DISCUSSION

We analyzed the DMN via rsfMRI data in HC and TBI groups
using LFF activations, ICA extraction, FC analysis, and ECs via
cross-spectral density analysis. Our results demonstrated that
compared to HC, TBI participants experienced alterations in
the functional organization of the DMN. In particular, lower
neuropsychological performance, decreased regional activations,
lower FC values, and altered ECs were observed within the TBI
group compared to HC. The neuropsychological test results have
shown that the TBI group performed moderately worse than
HC in the domains of general cognitive ability, verbal memory,
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FIGURE 4 | The endogenous connectivity parameters for HC and TBI groups. The effective connectivity between PCC and LLP did not survive statistical
significance for the HC group. The thickness of the arrow represents the strength (Hz) of the connection. The black arrow denotes positive connectivity value, which
suggests excitation, and the red arrow denotes negative connectivity value, which suggests inhibition.

FIGURE 5 | The expected probability (left) and exceedance probability (right) for the three DCM families specified in Figure 1. The BMS results are shown for the
MPFC-PCC family in the (A) HC group and (B) TBI group, LLP-RLP families in the (C) HC group and (D) TBI group, and bilateral LP and PCC/MPFC families in the
(E) HC group and (F) TBI group.
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FIGURE 6 | The expected probability (left) and exceedance probability (right) for the individual models compared using Bayesian model selection for the DMN
connectivity models in the (A) HC group and (B) TBI group.

and visual memory. Cognitive and memory deficits following
TBI have been well-documented, where studies have shown
impairments in verbal memory, visual memory, and cognitive
domain among the TBI survivors (Caeyenberghs et al., 2014;
Robb Swan et al., 2015; Huang et al., 2017; Lutkenhoff et al.,
2020; Li et al., 2021). However, we did not find any significant
difference between groups on other neuropsychological domains,
which established the asynchrony between impaired connectivity
and cognitive deficits commonly reported in the literature (van
der Horn et al., 2016; Rajesh et al., 2017).

The result of LFF activations showed that the thalamus was
hypoactivated in TBI compared to HC, in line with previous
literature (Leung et al., 2016), particularly in patients with
complaints (Grossman and Inglese, 2016). The thalamus is

implicated in the regulation of awareness and consciousness and
filters information between the brain and the body, essentially
functioning as a relay station (Wang et al., 2014), and damage
to the thalamus has been shown to affect the attention, executive
function, and memory (Lutkenhoff et al., 2020). Previous studies
have demonstrated the structural and FC of the thalamus
with the DMN (Fransson, 2005; Cunningham et al., 2017),
therefore indicating that the thalamus has a key role in DMN
functions (Alves et al., 2019), especially during mindfulness and
consciousness (Wang et al., 2014; He et al., 2015). Studies have
also shown that the FC between the DMN nodes and thalamus
was increased in TBI compared to HC in acute (Sours et al.,
2015), subacute (Tang et al., 2011; Banks et al., 2016), and chronic
stages (Nordin et al., 2016) that may be accompanied by increased
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structural connectivity (Munivenkatappa et al., 2016). Other
studies found diminished FC in the thalamus in the chronic stage
of TBI (Moreno-López et al., 2016; Xiong et al., 2016). However,
despite the thalamic hypoactivation, we found no significant
difference in FC between the nodes of the DMN and thalamus in
our HC and TBI cohorts, and the effect size comparison revealed
a negligible effect.

In terms of the FCs between other brain regions, the TBI
group displayed significantly lower FCs between the DMN and
other RSNs compared to the HC group. This finding is in
contrast with previous research that indicated hyperconnectivity
as a common response to TBI, especially involving network
hubs in the chronic stage (Hillary et al., 2014, 2015; Hillary and
Grafman, 2017; Roy et al., 2017). On that note, decreased FC
in the acute and subacute stages has been established in the
literature (Manning et al., 2019), while diminished FC in PCC
and precuneus regions was found in the subacute mild TBI cohort
(Iraji et al., 2015), corroborating our findings. In the acute stage,
reduced FCs within the nodes of the DMN were also found
(Dall’Acqua et al., 2017), which gradually increased and served
as a compensatory mechanism. The additional connectivity
recruitments culminated in the functional hyperconnectivity
within the first year of recovery after the initial injury (Hillary
et al., 2014), with peak hyperconnectivity at 6 months post-injury
(Roy et al., 2017) before being reduced as the brain is found
to be the most optimal route to balance between performance
and metabolic cost (Hillary and Grafman, 2017; Roy et al.,
2017). Using seed-level analysis, we found that the FC from
the PCC to the MTG is significantly reduced in the HC group.
The MTG corresponds to Brodmann’s area 22 and is involved
in language processing. In addition, ROI-to-ROI analysis also
indicated decreased FC between the DMN and LN, as well
as between the DMN and FPN. Several studies have shown
that TBI may impair the language domain, notably language
comprehension, production, and coherence (Marini et al., 2014;
Shumskaya et al., 2017; Huang et al., 2020). Hence, the impaired
FC between the DMN and LN is corroborated.

Building on our findings in neuropsychology scores and the
FCs, we performed correlation analysis between these two results
and found significant correlations between inter-network FC and
several neuropsychological domains. Our results showed that
lower FCs between DMN and LN nodes significantly correlate
with lower test scores in general cognitive ability and verbal
memory domain in the TBI group. The verbal memory domain
also subserves language components (Acheson and MacDonald,
2009; Schwering and MacDonald, 2020); thus, this correlation
indicates a possible association between diminished FC involving
the LN and lower test scores in the verbal memory tests. On
the other hand, scores in matrix reasoning and visual memory
were negatively correlated with the FC strength between PCC
and visual medial node. This finding suggests that an increase
in FC between the DMN and VN may affect the performance in
visual memory and matrix reasoning. Additionally, correlation
analysis revealed that the PCC was implicated in all significant
correlation results, implying an important role played by the
PCC as the network hub between the DMN and other RSNs
(Hillary and Grafman, 2017).

Finally, the EC of the TBI group also showed alterations
compared to HC. Hemispheric asymmetry was observed in both
groups, with the ECs lateralized to the right hemisphere. The
DMN is established to be asymmetrically organized, determined
by the influence of the parietal regions (Almgren et al., 2018). For
extrinsic ECs, our results showed that the TBI group exhibited
a near moderate decrease in EC particularly from RLP to LLP,
characterized by a lower excitatory EC parameter compared to
the HC. In this case, the lower excitatory influence exerted by
the RLP to the LLP was translated into hypoactivated left parietal
areas. Moreover, the TBI group displayed more inhibitory
connectivity compared to HC. This finding is in line with our
previous study, which found more negative ECs in the TBI group
with higher strength (Abdul Rahman et al., 2020). The extrinsic
inhibitory connections are the negative influence exerted by one
region to another, also known as the baseline inhibition (Stephan
and Friston, 2010), due to the population of inhibitory neurons.
The excess of negative ECs in TBI may signal the higher number
of inhibitory neurons in brain connectivity that play a role in
exerting baseline inhibitions between different regions.

Within the intrinsic ECs, all four nodes displayed self-
inhibition in both groups. Greater inhibitory strengths were
observed in the nodes that exert greater influence, especially
in the MPFC and RLP. This observation is expected, as the
dominant nodes of the network typically exhibit prolonged
and uninhibited activity (Almgren et al., 2018). However,
the greatest self-inhibition parameter in the TBI group was
observed in PCC even though it did not have any dominant
ECs originating from it. This finding may explain the lower
precuneus activation that we found in the TBI group. The
self-inhibition connections represent the decay rate of neural
activity in each area and characterize the region’s susceptibility
to the outside influence, with lesser self-inhibition indicating a
region’s increased sensitivity to the inputs from other regions
(Esménio et al., 2020). Therefore, lower sensitivity toward the
outside influence resulted in lower activity observed in the
precuneus region.

LIMITATION AND CONCLUSION

There are a few limitations to this study that should be considered
when interpreting the findings. First, we rely on admission to
the emergency department for recruitment of our samples, and
the recent outbreak of the coronavirus pandemic has hindered
us to recruit more participants; thus, our sample size remains
small. Consequently, our small sample size may have precluded
statistical significance on multiple comparison corrections at
the cluster level. Nevertheless, while our findings are valid for
the sample that we have recruited, extrapolation to the general
population must be done cautiously and with the support
of future studies with a bigger sample size. Based on our
observation, the effect size analysis of our results suggested
that a bigger sample size can lead to significant results after
the correction for multiple comparisons. Second, at best, these
findings are initial steps in understanding the heterogeneous
nature of non-severe TBI across multiple factors, and we have
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explored these effects against a sample of homogeneous race and
gender among the Malaysian population. Notwithstanding that,
our study is reproducible to analyze other contributing factors
that may change the findings observed in this study, such as the
inclusion of different races and gender, or from the perspective of
education and socioeconomic factors.

In conclusion, TBI resulted in the functional reorganization
of the brain, from the aspect of activity and connectivity. These
aberrations subsequently altered the EC of the DMN, changing
the intrinsic and extrinsic influence patterns exerted by the
nodes. Furthermore, lower performance within verbal memory,
visual memory, and cognitive flexibility was widespread among
the TBI group. Therefore, our observations suggest that these
changes in brain organization and functions were linked to the
debilitating effects of TBI, and this knowledge can be applied in
interventional plans and recovery of TBI survivors.
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Analysis of time-evolving data is crucial to understand the functioning of dynamic

systems such as the brain. For instance, analysis of functional magnetic resonance

imaging (fMRI) data collected during a task may reveal spatial regions of interest,

and how they evolve during the task. However, capturing underlying spatial patterns

as well as their change in time is challenging. The traditional approach in fMRI data

analysis is to assume that underlying spatial regions of interest are static. In this

article, using fractional amplitude of low-frequency fluctuations (fALFF) as an effective

way to summarize the variability in fMRI data collected during a task, we arrange

time-evolving fMRI data as a subjects by voxels by time windows tensor, and analyze

the tensor using a tensor factorization-based approach called a PARAFAC2 model

to reveal spatial dynamics. The PARAFAC2 model jointly analyzes data from multiple

time windows revealing subject-mode patterns, evolving spatial regions (also referred

to as networks) and temporal patterns. We compare the PARAFAC2 model with

matrix factorization-based approaches relying on independent components, namely, joint

independent component analysis (ICA) and independent vector analysis (IVA), commonly

used in neuroimaging data analysis. We assess the performance of the methods in terms

of capturing evolving networks through extensive numerical experiments demonstrating

their modeling assumptions. In particular, we show that (i) PARAFAC2 provides a

compact representation in all modes, i.e., subjects, time, and voxels, revealing temporal

patterns as well as evolving spatial networks, (ii) joint ICA is as effective as PARAFAC2 in

terms of revealing evolving networks but does not reveal temporal patterns, (iii) IVA’s

performance depends on sample size, data distribution and covariance structure of

underlying networks. When these assumptions are satisfied, IVA is as accurate as the

other methods, (iv) when subject-mode patterns differ from one time window to another,

IVA is the most accurate. Furthermore, we analyze real fMRI data collected during a

sensory motor task, and demonstrate that a component indicating statistically significant

group difference between patients with schizophrenia and healthy controls is captured,

which includes primary and secondary motor regions, cerebellum, and temporal lobe,

revealing a meaningful spatial map and its temporal change.

Keywords: PARAFAC2, independent vector analysis (IVA), independent component analysis (ICA), tensor

factorizations, spatial dynamics, evolving networks, time-evolving data
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1. INTRODUCTION

Time-evolving data analysis is crucial in terms of understanding

complex dynamic systems such as the brain. Various

neuroimaging techniques such as functional magnetic resonance

imaging (fMRI) and electroencephalography (EEG) are used

to collect temporal data in order to understand how the brain
functions. The analysis of such temporal data may capture the
underlying patterns as well as their temporal evolution revealing
the underlying mechanisms, and how those differ across different
groups of people, e.g., healthy controls vs. patients. For instance,
the relation between dynamic functional connectivity and
various disorders such as schizophrenia, autism, and Alzheimer’s
disease has been studied with the goal of finding biomarkers
(Preti et al., 2017).

Dynamic functional connectivity (also referred to as time-
varying functional connectivity) has been an important topic
of research to study brain function (Chang and Glover, 2010;
Hutchison et al., 2013a; Calhoun et al., 2014; Preti et al., 2017;
Lurie et al., 2020). The most commonly used approach for
dynamic functional connectivity analysis is the sliding window-
based method (Sakoglu et al., 2010), where correlations between
time courses corresponding to different spatial regions of interest
are used to construct a connectivity matrix for each time
window. Functional connectivity patterns from each window are
then analyzed using various methods such as graph mining to
understand the change in time. Often there is the simplifying
assumption that spatial regions of interest are static, and it is only
the connectivity between those static spatial regions that changes
in time. On the other hand, it has been previously shown that
there are changes in spatial regions as well even in the resting
state (during awake as well as anesthetized states; Kiviniemi et al.,
2011; Hutchison et al., 2013b; Ma et al., 2014).

Our focus here is on the analysis of fMRI signals collected
during a task with the goal of revealing spatial regions of interest
as well as the temporal evolution of those regions (i.e., spatial
dynamics; Iraji et al., 2020). Low-rank data approximations
[matrix factorizations as well as tensor factorizations (Acar
and Yener, 2009; Kolda and Bader, 2009; Comon, 2014), i.e.,
extensions of matrix factorizations to higher-order data] have
proved useful in terms of revealing the underlying patterns
in complex data in many fields including neuroscience, e.g.,
revealing spatial regions of interest/networks (McKeown et al.,
1998; Bai et al., 2017). Recently, various matrix factorization-
based approaches including independent component analysis
(ICA) and principal component analysis (PCA) have been
studied in terms of tracking functional connectivity by arranging
magnetoencephalography (MEG) signals as a connectivity by time
matrix and factorizing the matrix into temporal patterns and
connectivity patterns revealing brain networks (Tabbal et al.,
2021) with the assumption that networks relying on predefined
regions of interests stay the same in time. However, capturing
patterns evolving in time from dynamic data such as evolving
networks, evolving spatial regions or evolving communities
remains a challenging data mining problem (Rossetti and
Cazabet, 2018). Previously, ICA (Comon, 1994) was used
together with a sliding time window-based approach to study the

changes in spatial maps, focusing on the changes within default
mode networks (DMN) in time in the resting state (Kiviniemi
et al., 2011). Similarly, Ma et al. (2014) used independent vector
analysis (IVA) (Kim et al., 2006; Anderson et al., 2012), i.e., an
extension of ICA to multiple datasets, to find time-varying brain
networks during the resting state. These studies focus on resting-
state dynamics, and also are limited due to either the focus on a
single network (Kiviniemi et al., 2011), or not revealing compact
patterns in the time mode explicitly (Kiviniemi et al., 2011; Ma
et al., 2014).

As higher-order tensors are natural data representations for
temporal data, with one of the modes representing time, in this
article, through the use of fractional amplitude of low-frequency
fluctuations (fALFF), we arrange fMRI data collected during a
task as a third-order tensor with modes: subjects, voxels, and
time windows, and use a tensor factorization method called
the PARAFAC2 model (Harshman, 1972; Kiers et al., 1999),
which compactly summarizes the dynamic data by revealing the
underlying networks (spatial regions of interest), their change in
time as well as temporal patterns (see Figure 1).More specifically,
we use the PARAFAC2 model to jointly factorize multiple
matrices in the form of subjects by voxels matrices, Xk for k =

1, ...,K, corresponding to different time windows, coupled in the
subjects mode, where K denotes the number of time windows.
The PARAFAC2 model summarizes the data using low-rank
patterns in the subjects, voxels, and time windows modes, and
the patterns in the voxels mode change from one window to
another revealing the evolving patterns. Patterns in the time
windows mode correspond to temporal patterns, and patterns
in the subjects mode can be used to explore differences between
healthy controls and patients, or for patient stratification.

While the use of tensor factorizations in neuroimaging
signal analysis has been widespread (Cong et al., 2015;
Hunyadi et al., 2017), to the best of our knowledge, their
potential for revealing spatial dynamics has not been explored.
Neuroimaging data, e.g., EEG (Miwakeichi et al., 2004), fMRI
(Andersen and Rayens, 2004), MEG (Becker et al., 2012), local
field potential (LFP) (Geddes et al., 2020) signals, can be
represented as higher-order tensors. Tensor methods can reveal
interpretable patterns from such complex data disentangling
different sources as a result of their uniqueness properties
(Kolda and Bader, 2009), avoiding additional constraints on
the underlying patterns such as orthogonality or statistical
independence. For instance, multi-channel EEG signals have
been arranged as a time by frequency by channels tensor, and
analyzed using the CANDECOMP/PARAFAC (CP) (Hitchcock,
1927; Carroll and Chang, 1970; Harshman, 1970) tensor model
revealing spatial, spectral and temporal signatures of brain
activities (Miwakeichi et al., 2004; Acar et al., 2007; De Vos
et al., 2007). In the case of multiple subjects/conditions, the CP
model has similarly shown promising performance in terms of
revealing the underlying patterns (Möcks, 1988; Mørup et al.,
2006). The higher-order structure of fMRI signals has also
been studied using tensor methods, e.g., by arranging fMRI
signals as a trials by voxels by time tensor, and analyzing the
tensor using the CP model (Andersen and Rayens, 2004), or
analyzing multi-subject fMRI data in the form of a subjects
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by voxels by time tensor using tensor probabilistic independent
component analysis (PICA) (Beckmann and Smith, 2005). Such
CP-based models, for instance when analyzing multi-subject
fMRI data, extract subject-mode patterns, spatial patterns as well
as temporal patterns with the modeling assumption that subject-
mode patterns and spatial patterns are the same in all time
slices (up to a scaling) (Beckmann and Smith, 2005); therefore,
not accounting for spatial dynamics. While brain images are
unfolded and treated as vectors of voxels resulting in third-
order tensors in these studies, higher-order fMRI data as fourth
and fifth-order tensors have also been studied by preserving
the spatial structure (Chatzichristos et al., 2019). Recently, the
PARAFAC2 model, which is more flexible than the CP model,
has been used to study functional connectivity using multi-
subject fMRI signals by letting the temporal patterns change
across subjects (Madsen et al., 2017; Helwig and Snodgress,
2019) assuming common (and static) spatial patterns for all
subjects. In the context of dynamic functional connectivity, Zhu
et al. (2019, 2020) have arranged MEG signals as a time by
frequency by connectivity tensor, where connectivities rely on
predefined anatomical regions, and analyzed the tensor using
a CP model to reveal connectivity factors showing functional
networks. However, none of these studies accounts for evolving
spatial patterns or evolving networks but rather all rely on static
spatial patterns/networks.

This article is an extended version of our preliminary study
(Roald et al., 2020), where we demonstrated the promise of
the PARAFAC2 model in terms of revealing evolving networks
using simulations and real task fMRI data analysis. In this
work, we provide an extensive study comparing the performance
of the PARAFAC2 model with ICA-based approaches, in
particular, joint ICA (Calhoun et al., 2006) and IVA, in terms of
capturing evolving networks using different simulation set-ups
demonstrating the effect of sample size, similar or overlapping
networks, and differences in subject-mode patterns across time
windows. Both joint ICA and IVA are extensions of ICA to
multiple datasets but rely on different modeling assumptions.
Their use in the comparison is attractive as IVA is less
constrained than PARAFAC2 by letting subject-mode patterns
change from one time window to another and has been
previously used for capturing spatial dynamics (Ma et al., 2014)
while joint ICA is similar to PARAFAC2 in the way it models
the subject-mode patterns but differs in terms of constraints
imposed on the evolving networks. We also use our observations
from simulations to guide our analysis of multi-site multi-
subject fMRI data (Gollub et al., 2013) collected during a sensory
motor task. While our preliminary results (Roald et al., 2020)
focused on the analysis of a subset of the data from several
sites using a PARAFAC2 model, in this article, we use the data
from all sites, and study the application of all three methods to
this task-related fMRI data, and compare their performances.
Our experiments demonstrate that (i) PARAFAC2 provides a
compact representation revealing temporal patterns and evolving
spatial networks accurately, (ii) joint ICA is as effective as
PARAFAC2 in terms of revealing evolving networks but does
not reveal temporal patterns explicitly, (iii) IVA’s performance
depends on sample size. We also show its assumptions on data

distribution and covariance structure of underlying networks
in the Supplementary Material. When these assumptions are
fulfilled, IVA is as accurate as the other methods in terms of
capturing underlying networks, and in addition, (iv) IVA can
reveal evolving networks accurately when subject-mode patterns
differ across time windows, (v) in real fMRI data analysis, a
meaningful component indicating statistically significant group
difference between patients with schizophrenia and healthy
controls is captured by all methods revealing a spatial network
of potential interest as well as its change in time. Guided by the
simulations, we discuss the accuracy of estimated components
and their significance in terms of group difference.

2. MATERIALS AND METHODS

2.1. Background
We first briefly discuss modeling assumptions of the three
methods we focus on, namely, PARAFAC2, IVA, and joint ICA.

2.1.1. PARAFAC2
Given a third order tensor, X ∈ R

I×J×K , the PARAFAC2 model
represents each slice, Xk ∈ R

I×J , as follows:

Xk ≈ Adiag(c(k, :))BT
k , (1)

where A ∈ R
I×R, Bk ∈ R

J×R, R is the number of components,
and diag(c(k, :)) is a diagonal matrix with entries of the kth row
of C ∈ R

K×R on the diagonal. Additionally, Bk-matrices satisfy
the constant cross product constraint, BT

k1
Bk1 = BT

k2
Bk2 for

all 1 ≤ k1, k2 ≤ K. The PARAFAC2 model reveals unique
factors (up to scaling and permutation ambiguities) as long
as there are enough slices (K) (see Kiers et al., 1999 for a
detailed discussion on uniqueness conditions of PARAFAC2).
The traditional algorithmic approach to fit themodel is by solving
the following optimization problem using an alternating least
squares (ALS)—based algorithm (Kiers et al., 1999):

min
A,{Bk}k≤K ,C

K
∑

k=1

∥

∥

∥

Xk − Adiag(c(k, :))BT
k

∥

∥

∥

2

F
, (2)

where Bk = PkB, and PT
k

Pk = I so that the constant cross

product constraint is implicitly satisfied; I ∈ R
R×R denotes the

identity matrix, B ∈ R
R×R is common for all Bk, k = 1, ...,K,

and ‖ · ‖F denotes the Frobenius norm. Note that there may be
an additional sign ambiguity in PARAFAC2, where each entry in
diag(c(k, :)) may flip sign arbitrarily (Harshman, 1972), and one
possible solution to fix that ambiguity is to impose non-negativity
constraints on matrix C (Harshman, 1972; Kiers et al., 1999).

If Xks correspond to subjects by voxels matrices at different
time windows, PARAFAC2 reveals subject-mode patterns (A)
that are constant in time, and time-mode patterns (C) shared
between subjects. The number of components R corresponds
to the number of patterns. The PARAFAC2 model also reveals
spatial networks (Bk) that are shared between subjects but may
evolve with time (as shown in Figure 1). This is a more flexible
modeling approach than the most commonly used CP tensor
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model, which represents each slice Xk ∈ R
I×J of a third-order

tensor, X ∈ R
I×J×K , as follows:

Xk ≈ Adiag(c(k, :))BT, (3)

where B ∈ R
J×R representing spatial networks are assumed to

be the same (more precisely, they can only change up to a scalar)
across different time windows. We have previously demonstrated
that the CP model fails to reveal underlying networks accurately
when analyzing data generated using evolving network patterns
while PARAFAC2 achieves to reveal the underlying networks as
well as their change in time (Roald et al., 2020). Similar to CP,
tensor PICA (Beckmann and Smith, 2005) also relies on (3),
with the additional constraint that columns of B, e.g., spatial
networks, are statistically independent. Therefore, both CP and
PICA assume that spatial networks are the same across time
slices, i.e., they do not account for evolving spatial networks as the
PARAFAC2 model does by introducing Bks that allow for spatial
networks to change more than a scalar factor.

Determining the number of components in tensor
factorizations is a challenging task. There are various diagnostic
approaches that can potentially be used to determine the number
of components for PARAFAC2 such as the core consistency
diagnostic (Kamstrup-Nielsen et al., 2012), and split-half analysis
(Harshman and De Sarbo, 1984); both of which are also used to
determine the number of components when fitting a CP model.
However, a good practice is to use such diagnostic methods while
taking into account also the factors and residuals (Bro and Kiers,
2003; Kamstrup-Nielsen et al., 2012). Note that uniqueness
conditions of the PARAFAC2 model may also limit the number
of components. For instance, one of the uniqueness conditions

indicates that K ≥
R(R+1)(R+2)(R+3)

24 , where K and R denote
the number of slices and components, respectively. This is a
sufficient (not necessary) condition for the uniqueness of the
model, and other studies have reported uniqueness using much
fewer slices in practice (Kiers et al., 1999).

While the use of PARAFAC2 is not as widespread as the
CP model, it has shown promising performance in applications
from different disciplines, e.g., chemometrics (Bro et al., 1999),
text mining (Chew et al., 2007), electronic health record analysis
(Afshar et al., 2018; Yin et al., 2020), and neuroimaging data
analysis (Madsen et al., 2017; Helwig and Snodgress, 2019). The
use of PARAFAC2 in time-evolving data analysis, on the other
hand, has been limited, where the model is used to analyze
temporal data by letting the patterns change across subjects
(Timmerman and Kiers, 2003; Madsen et al., 2017), or across
channels (Weis et al., 2010) but not revealing dynamic networks.

2.1.2. Independent Vector Analysis (IVA)
Similar to PARAFAC2, IVA also jointly analyzes multiple
matrices. However, unlike PARAFAC2, IVA (Kim et al., 2006;
Anderson et al., 2012; Adali et al., 2014) extracts statistically
independent components (sources) from each matrix while
taking into account the dependence across the datasets. In many
applications using ICA and IVA, reducing the dimensionality of
the observed dataset prior to analysis, i.e., identifying a signal
subspace where to perform the decomposition enables better

generalization performance decreasing the effect of noise and
artifacts, also improving stability of the decompositions (see, e.g.,
Li et al., 2007). This is typically achieved using a PCA step, where
the dimensionality of the observationmatrixX ∈ R

I×J is reduced
from X ∈ R

I×J to X̄ ∈ R
R×J where R ≤ I.

GivenK dimension-reduced observationmatrices X̄k ∈ R
R×J ,

for k = 1, ...,K, IVA models each dataset as a linear mixture of R
independent sources:

X̄k = ĀkSk, (4)

where Āk ∈ R
R×R corresponds to the nonsingularmixingmatrix,

and Sk ∈ R
R×J denotes the samples of independent sources

for the kth matrix1. Corresponding components in Sk matrices
form, the source component vectors (SCV), which are shown as
matrices assuming a given set of observations, in Figure 1. IVA
estimates the demixing matrices Wk to recover source estimates
through Yk = WkX̄k by maximizing independence across the
SCVs through mutual information minimization (Adali et al.,
2014), which can be shown to be equivalent to maximum
likelihood (ML) estimation. The estimated mixing matrices
are then back reconstructed in the original dimensionality as
explained in Jia et al. (2021), which implies that we effectively
have the generative model shown in Figure 1. Thus, here, we
show the IVA and joint ICAmodels in the original dimensionality
to allow easier comparison with the PARAFAC2 model, which
does not involve such a dimension reduction stage.

By modeling the multivariate probability density function
(pdf) of an SCV, IVA takes the statistical dependence across
the datasets into account, and depending on the chosen pdf,
either, only second-order statistics (SOS), or all-order statistical
information can be taken into account. In this work, we use
IVA-L-SOS where a full multivariate Laplacian pdf model, also
computing the scatter matrices is used (Bhinge et al., 2019b),
hence taking all-order statistics into account. As fMRI sources
tend to be super-Gaussian in nature (Correa et al., 2007;
Calhoun et al., 2013), IVA-L-SOS provides a good match to
their properties.

It can be shown that IVA has very general conditions for
the identifiability of the model. For the case we consider where
sample dependence is not taken into account and all-order
statistics are used, the model is uniquely identifiable as long as
the covariance matrices Rl and Rm of any two SCVs, l and m,
are multivariate Gaussian and do not satisfy Rl = DRmD where
D is any full rank diagonal matrix (Anderson et al., 2012; Adali
et al., 2014). When only a subset of Gaussian components satisfy
the equality, a subspace of their mixtures is identified and not the
specific Gaussian components.

When Xk matrices represent subjects by voxels matrices at
different time windows, IVA captures subject-mode patterns
(Ak) for each time window, and spatial components/networks,
Sk, changing from one window to another. Rows of Sks are
related across the time windows through SCVs in such a
way that mutual information within each SCV, i.e., statistical

1Both ICA and IVA are traditionally introduced using random variable/vector

models. Here to keep the discussion simple across the three models, we use

observations for all three models.
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FIGURE 1 | Illustration of modeling time-evolving data in the form of a subjects by voxels by time tensor using PARAFAC2, IVA and joint ICA. Following the notation in

the literature on ICA/IVA, we use Sk , for k = 1, ...,K, to denote the factor matrix in the voxels mode for joint ICA and IVA, where Sk = BT
k .

dependence, is maximized. Hence, the desire to capture the
relationship among components in different Sks makes IVA
another candidate approach for capturing evolving networks.
IVA has been previously used to study dynamics in multi-subject
resting-state fMRI data (Ma et al., 2014; Bhinge et al., 2019a,b;
Long et al., 2021). For instance, Ma et al. (2014) arranges the data
in a specific time window from a subject as a matrix in the form
of time samples by voxels. Subject-specific temporal and spatial
patterns are identified on a per window basis. This allows study
of both temporal and spatial patterns of dynamics, however, the
complexity of themodel grows with the number of timewindows,
which negatively affects the performance of IVA (Long et al.,
2020). Our approach in this article makes use of the synchrony
across subjects in the task, and decreases the dimensionality of
the problem by collapsing the time dimension through the use
of fALFF as features for each time window (see section 2.2.4 for
more details). As such, this provides an attractive formulation for
dynamic analysis using IVA (Hossain et al., 2022).

2.1.3. Joint Independent Component Analysis
Another approach to jointly analyze multiple matrices, Xk ∈

R
I×J , for k = 1, ...,K, is to concatenate different time windows,

and then analyze the constructed matrix using an ICA model,
which is called the joint ICA (Calhoun et al., 2006) method.
We again write the model using dimension-reduced observations
matrices X̄k ∈ R

R×J , such that we have

[X̄1 X̄2 . . . X̄K] = ĀS, (5)

where Ā ∈ R
R×R corresponds to the non-singular mixing

matrix that is common for all time windows, and S ∈

R
R×JK represents the source signals corresponding to the spatial

networks concatenated in time. Source signals, i.e., rows of S,
are assumed to be statistically independent. ICA reveals unique
components and mixing matrices, up to scaling and permutation
ambiguities (Comon, 1994). When only non-Gaussianity is used
as signal diversity ignoring sample dependence, any signal except
multiple Gaussians can be identified with the model (Cardoso,
2001; Adali et al., 2014). Among various algorithmic approaches,
in our experiments, we use an ICA algorithm based on entropy
bound minimization (ICA-EBM), which uses a flexible pdf
model, and hence can effectively model sources from a rich class
of distributions (Li and Adali, 2010).

Again in Figure 1, we show the model for joint ICA following
back-reconstruction where Xk and A are brought to their
original dimensionality following ICA. Then, with Xk matrices
corresponding to subjects by voxels matrices at different time
windows, joint ICA reveals subject-mode patterns, A, shared by
all time windows, and different spatial components/networks for
each time window, i.e., S = [S1 S2 . . . SK].

For ICA and IVA, a common approach for determining
the number of components is the use of information theoretic
criteria (ITC) such as minimum description length based on
a PCA formulation (Wax and Kailath, 1985). ITC are based
on a likelihood formulation based on the multivariate Gaussian
assumption for the mixtures (a good match to the ICA/IVA
mixing model). Since fMRI data exhibits sample correlation,
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usually a corrected version of the criteria are commonly
employed as in Fu et al. (2014).

2.1.4. PARAFAC2 vs. IVA vs. Joint ICA
Here we recap the modeling assumptions of different methods,
specifically focusing on our application of interest, where Xk

matrices correspond to subjects by voxels matrices at different
time windows k.

• Subject-mode patterns (i.e., Ak): Joint ICA extracts patterns
that are the same in each time window, i.e., Ak = A, for
k = 1, ...,K; PARAFAC2 reveals patterns that are the same
up to a scaling in each time window, i.e., Ak = Adiag(c(k, :))
while IVA is the most flexible one with no constraints on Aks.

• Spatial components (i.e., BT
k
or Sk): In IVA, Sks are more

constrained than PARAFAC2 and joint ICA. In the IVAmodel,
in each Sk, the components are statistically independent, and
across different Sks, the components are related through the
SCVs; in PARAFAC2, there is the constant cross product
constraint, BT

k1
Bk1 = BT

k2
Bk2 for all 1 ≤ k1, k2 ≤ K, while in

joint ICA, there is the assumption of statistically independent
components, and no relation between different Sks except that
the sources in corresponding rows are all assumed to come
from the same distribution.

• Temporal components (i.e., C): Among the three methods, the
PARAFAC2 model is the most compact and reveals temporal
patterns in addition to subject-mode and voxel-mode patterns
while joint ICA and IVA only reveal patterns in subjects and
voxels modes. In joint ICA and IVA, further postprocessing,
possibly with additional assumptions, is needed to reveal
temporal patterns.

2.2. Experiments
By using both real and simulated time-evolving data, we
demonstrate the performance of PARAFAC2, IVA, and joint ICA
in terms of capturing evolving networks. In simulations, we assess
the performance of the methods in terms of how well they reveal
the underlying ground truth. In the analysis of multi-subject
fMRI data collected during a sensory motor task from patients
with schizophrenia and healthy controls, the performance of
the methods is assessed in terms of revealing meaningful
components indicating statistically significant group differences.

2.2.1. Implementation Details
All experiments were performed usingMATLAB. Both simulated
and real data are in the form of third-order tensors consisting
of K frontal slices. The PARAFAC2 model is fit using the
implementation in the PLS_Toolbox 8.6.2 (by Eigenvector
Research Inc., WA, USA). In order to handle the sign ambiguity
in PARAFAC2, non-negativity constraint is imposed in the time
windows mode. For IVA, we first performed rank reduction
on each frontal slice using the true (or given) number of
components, and then used IVA-L-SOS (Bhinge et al., 2019b) to
find the demixing matrices. For joint ICA, the third-order tensor
is unfolded in the first mode. Following rank reduction of the
unfolded data using the given number of components, an ICA

algorithm based on entropy bound minimization (ICA-EBM)2

(Li and Adali, 2010) is used. We fit every method using multiple
random initializations, and use the solution corresponding to the
minimum cost value.

2.2.2. Performance Evaluation
We assess the performance of the methods using the
following approaches:

• Factor similarity score: In order to quantify how well the
spatial components extracted by the methods match with
ground truth components, we use a similarity score defined
as:

SimB =
1

K

K
∑

k=1

1

R

R
∑

r=1

Bk(:, r)
TB̂k(:, r), (6)

where Bk(:, r) and B̂k(:, r) denote the true and estimated rth
column of the factor matrix in the voxelsmode corresponding
to the kth time window, respectively (after fixing the
permutation and scaling ambiguity in the methods). Similarly,
similarity scores for the first and third mode are computed
as follows:

SimA =
1

R

R
∑

r=1

A(:, r)TÂ(:, r), SimC =
1

R

R
∑

r=1

C(:, r)TĈ(:, r)

(7)
Due to different modeling assumptions of each method, all
methods can only be compared in terms of SimB. In addition,
we report SimA and SimC for PARAFAC2, and SimA for
joint ICA.

• Two-sample t-test: Using two-sample t-test on each column
of the factor matrix corresponding to the subjectsmode, i.e., A
in PARAFAC2 and joint ICA, and Ak, for k = 1, ...,K in IVA,
we identify the statistically significant subject-mode factor
vectors in terms of revealing group differences, allowing for
unequal variances for healthy and patient groups.

2.2.3. Simulated Data and Experimental Set-Up
We simulate time-evolving data arranged as a third-order tensor
X ∈ R

I×J×K , with K time slices, with the following underlying
structure (using R = 3 components):

• Subject-mode patterns, i.e., A ∈ R
I×R, are generated such that

one column of A discriminates between two subject groups
each containing I

2 subjects. Entries corresponding to subjects
from different groups are sampled randomly from uniform
distributions with differentmeans. Other columns have entries
randomly sampled from the standard normal distribution. All
columns are normalized to unit norm. The same A with I =

250 is used in the experiments (Figure 2A), where the two-
sample t-test gives the following p-values: 0, 0.88, and 0.35.

• Evolving networks/components are generated as the columns
of Bk ∈ R

J×R (or rows of Sk ∈ R
R×J). We generate

2The implementation of IVA_L_SOS and ICA_EBM in MATLAB are available at:

http://mlsp.umbc.edu/
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FIGURE 2 | True factors used to generate simulated data. (A) Subject-mode factors, where ar indicates the columns of A, for r = 1, 2, 3, and (B) Temporal patterns,

where cr indicates the columns of C, for r = 1, 2, 3. Time, here, is in the resolution of time windows, but may also correspond to time samples depending on

the application.

R = 3 evolving networks: The first one is a network that is
shifting and increasing in density, the second is increasing in
density, and the third one is a random network as shown in
Figure 3A. All columns are normalized to unit norm. See the
Supplementary Material for more details on the generation of
evolving components.

• Temporal patterns, i.e., C ∈ R
K×R, are generated as (i)

a random pattern with uniformly distributed entries, (ii)
an exponential decay pattern, and (iii) a pattern following
a sinusodial function (see Figure 2B). All columns are
normalized to unit norm.

Once factor matrices are generated, the tensor X ∈ R
I×J×K is

constructed based on (1), and a noisy tensor Xnoisy is generated
as follows:

Xnoisy = X + ηN
‖X ‖F

‖N ‖F
, (8)

where N ∈ R
I×J×K has entries randomly drawn from the

standard normal distribution, and η indicates the noise level.
In the experiments, we use η = 0.5. We use PARAFAC2,
IVA, and joint ICA to analyze Xnoisy using the correct number
of components, i.e., R = 3, assuming that it is known, and
assess their performance in terms of revealing the evolving
networks as well as capturing the group difference in the
subjects mode. We modify the underlying factor matrices
for different experimental set-ups of interest and study the
relative performance of the methods in the following cases
(see the Supplementary Material for additional experiments not
specifically focusing on evolving networks):

• Case 1 (Different sample sizes, different network types): Here,
we study the effect of sample size as well as overlapping and
similar networks. In Case 1a, we analyze Xnoisy generated
using different number of dimensions in the voxels mode, i.e.,

J, demonstrating the effect of sample size on the performance
of the methods. We use J = 10, 000 and downsampled
versions with a downsampling factor of 20 (i.e., J = 500) and
60 (i.e., J = 167). Using the same set-up, we also study the
effect of the number of time slices, i.e., K = 20 and K = 50. In
Case 1b, with J = 10, 000,K = 50, we assess the performance
of the methods when evolving networks are overlapping as in
Figure 3B. Finally, in Case 1c, we consider evolving networks
with similar structures, i.e., two of the components are shifting
and increasing in density as in Figure 3C. Matrix A and C are
as in Figure 2.

• Case 2 (Different subject-mode matrices): In this scenario, we

study the effect of different subject-mode patterns in different

time slices. Each Xk matrix is constructed using a different

Ak ∈ R
I×R matrix in (1). More precisely, Ak = A +

γ Nk
‖Ak ‖F
‖Nk ‖F

for odd values of k ≤ K, where γ denotes

the noise level and is set to γ = 0.3, and Nk ∈ R
I×R

is the noise matrix with entries randomly drawn from the
standard normal distribution. For even values of k ≤ K, Ak

are random matrices with entries drawn from the standard
normal distribution. This set-up violates assumptions of joint
ICA and PARAFAC2 in the subject-mode, and is of interest
especially when different subject-mode patterns are possibly
expected in different slices, e.g., task vs. rest windows or
different tasks. Matrices Bk ∈ R

J×R are as in Figure 3A,
downsampled by a factor of 10, i.e., J = 1, 000, and matrix
C ∈ R

K×R with K = 50 is generated in a similar way as
in Figure 2B.

• Case 3 (Strong discriminating component): Compared with
other cases, in this set-up, the main difference is omitting
the normalization of the columns of factor matrices A and
C resulting in higher 2-norm, i.e., a factor of 4, for the
component revealing the group difference. As the evolving
components, we use the Bk matrices in Figure 3A but only the
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FIGURE 3 | True evolving components (R = 3), where each component corresponds to a column of Bk , for k = 1, ..., 50, used to generate simulated data with (A)

evolving networks, (B) overlapping networks, (C) similar networks.

first 15 time slices to match with the number of time slices in
real data.

2.2.4. Real fMRI Data
As a real dataset, we analyze images from the MCIC collection
(Gollub et al., 2013), a multi-site multi-subject collection
of fMRI images from healthy controls and patients with
schizophrenia, collected during various tasks. In particular,
we use data from the sensory motor (SM) task collected
at four research sites: the University of New Mexico, the
University of Minnesota, Massachusetts General Hospital,
and the University of Iowa. During the SM task, the
study participants were equipped with headphones and
instructed to listen for sounds of increasing pitch, with
a fixation period between each sound. The participants
were instructed to press a button whenever they heard
a tone. To ensure that conditions were consistent across
scan sessions and sites, the MCIC consortium performed
meticulous cross-site calibration. For example, the sites had
matching button press devices, the intensity of the auditory
stimuli were calibrated and the quality assurance procedures
recommended by the Biomedical Informatics Research Network
for multi-center fMRI studies (Friedman et al., 2006, 2008)
were followed.

Based on the blood-oxygenation-level-dependent signal from
the SM task, we extracted fALFF (Zou et al., 2008) in sliding time
windows, which yields a time-evolving measure of brain activity
within each voxel. Note that this approach—using the synchrony
across subjects during the task—collapses the time dimension
into time windows using fALLF as a feature representing the
activity in each time window for each voxel for each subject
allowing us to align signals from multiple subjects. The fALFF
is calculated by first discarding the high- and low-frequency
components to remove noise and signal from the vasculature
system. Then, the amplitudes of the frequency components
are computed to get the low-frequency fluctuation which is
divided by the total amplitude of all frequencies in the time
window to obtain the fALFF. To compute the fALFF, we used
the REST software v1.8_130615 (Song et al., 2011). We set the

window size and stride length to 16 seconds, corresponding to
precisely one rest- or task-block in each time window, with no
overlap. The low- and high-frequency cutoff for fALFF were
set to 0.01 and 0.15, respectively. To construct the data tensor,
we used the fALFF values for voxels that correspond to gray
matter as feature vectors for each time window and each subject.
Each such feature vector has 67,747 elements, leading to a
data tensor of size 253 subjects by 67,747 voxels by 14 time
windows. No additional preprocessing is carried out to account
for site effects (see section 3.2 for more information). Out of
253 subjects, 147 are healthy controls and 106 are patients with
schizophrenia.

3. RESULTS

Through numerical experiments, we demonstrate that
PARAFAC2 and joint ICA capture the underlying networks,
their evolution, and reveal the discriminating component
accurately irrespective of the sample size as long as the factor
matrix in the subjects mode stays the same (or differ up to a
scaling) across time windows (Case 1 and 3). For these cases,
while IVA performs well for large sample size, we often observe
that IVA reveals additional components that are statistically
significant in terms of group difference in some time windows
even though that does not match the ground truth—showing that
IVA is more prone to false-positives [i.e., identifying patterns
as potentially important (or markers) for group difference]
compared to PARAFAC2 and joint ICA. On the other hand,
if different time windows have different factor matrices in the
subjects mode as in Case 2, IVA performs better in terms of
revealing the underlying networks. Among the three methods,
PARAFAC2 is the only one that reveals compact temporal
patterns explicitly.

Our analysis of real task fMRI data demonstrates that
all methods (PARAFAC2, IVA, and joint ICA) capture a
component including both primary motor, supplementary
motor, cerebellum, and temporal regions engaged by the task.
This component is also identified as statistically significant
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FIGURE 4 | Case 1a. Evolving components (Bk or Sk , for k = 1, ...,K) captured by each method after fixing the scaling and permutation ambiguity: (A) PARAFAC2,

(B) IVA, (C) joint ICA. All methods recover the underlying evolving components accurately.

FIGURE 5 | Case 1a (K = 20). p-values obtained using the two-sample t-test on the subject-mode patterns (A or Ak ) using different methods as the number of voxels

(i.e., J) changes, where the number of time slices (i.e., K) is set to 20. Based on the true subject-mode patterns, true p-values are 0, 0.88, and 0.35 for component 1,

2, and 3, respectively. For large sample size, i.e., J = 10, 000, all methods can identify that the first component is the statistically significant one in terms of group

difference. As J decreases, in addition to the first component, IVA returns small p-values for other components in some windows corresponding to false-positive

cases while PARAFAC2 and joint ICA work well regardless of the sample size.

in terms of differentiating between healthy controls and
patients with schizophrenia. Additional components show up
as statistically significant in terms of group difference in
IVA in some time windows. However, given the results of
our simulations, where we observe small p-values for non-
discriminating components at some time windows, we discard
those components as potential false-positive markers.

3.1. Simulations
Figure 4 demonstrates the evolving components captured by the
three methods in Case 1a with J = 10, 000 voxels showing that

all methods can recover the true underlying evolving networks
accurately. Table 1 shows the similarity scores [defined in (6) and
(7)] also demonstrating that underlying networks are accurately
captured with a similarity score of 1.00 using all methods.
Furthermore, all methods perform well in terms of capturing
the component discriminating between the subject groups as
shown in the top plot in Figure 5. The first component is
the one that can separate the two subject groups, with all
methods revealing p-values around 0, and p-values for non-
discriminating components are large enough to discard them.
Note that since IVA extracts different Ak matrices, for k =
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TABLE 1 | For each case, dataset sizes (I, J,K), similarity scores (SimA, SimB, SimC) showing the accuracy of the methods in terms of capturing the underlying patterns in

the first (subject), second (network/voxel), and third (time) modes, respectively, and whether methods give false positive (FP) markers, i.e., identifying components that are

not indicating group difference as potential markers with statistically significant group difference.

PARAFAC2 IVA Joint ICA

I J K SimA SimB SimC FP SimB FP SimA SimB FP

Case 1a 250 10,000 50 1.00 1.00 1.00 No 1.00 No 1.00 1.00 No

Case 1a 250 10,000 20 1.00 1.00 1.00 No 1.00 No 1.00 1.00 No

Case 1a 250 500 50 1.00 1.00 1.00 No 1.00 No 1.00 1.00 No

Case 1a 250 500 20 1.00 1.00 1.00 No 1.00 No 1.00 1.00 No

Case 1a 250 167 50 1.00 1.00 1.00 No 1.00 No* (Supplementary Figure 1) 1.00 1.00 No

Case 1a 250 167 20 1.00 0.99 1.00 No 0.99 Yes (Figure 5) 1.00 1.00 No

Case 1b 250 10,000 50 1.00 1.00 1.00 No 1.00 No 1.00 1.00 No

Case 1c 250 10,000 50 1.00 1.00 1.00 No 1.00 No 1.00 1.00 No

Case 2 250 1,000 50 0.99 0.68 0.85 No 0.98 Yes (Figure 8) 0.96 0.74 Yes

Case 3 (R = 3) 250 10,000 15 1.00 0.99 1.00 No 0.99 Yes (Figure 9) 1.00 0.99 No

Case 3 (R = 4) 250 10,000 15 1.00 0.98 1.00 Yes 0.99 Yes (Supplementary Figure 2) 1.00 0.99 No

*Indicates that even though there are no false positives, p-values get quite small.

1, . . . ,K, different p-values are obtained from each matrix and
shown as box-plots.

Sample Size. As we decrease the number of samples/voxels
(i.e., J), we observe differences in the performances of the
methods. While all methods can still capture the evolving
networks accurately (see Table 1), IVA gets smaller p-values
even for non-discriminating components in some slices while
PARAFAC2 and joint ICA can still clearly identify non-
discriminating vs. discriminating components (Figure 5).
We observe that the third component also shows up as
a statistically significant component in terms of group
difference for some time windows using IVA as a false-
positive marker. See Supplementary Material also for K = 50
(Supplementary Figure 1), where IVA performs better but still
returns smaller p-values for some components in some windows.

Different Network Types. In the case of different network
types, i.e., when we have overlapping evolving components
as in Figure 3B, or components evolving in the same way
as in Figure 3C resulting in the same covariance structure as
in Figure 6C, all methods perform equally well in terms of
capturing the underlying components (see the similarity scores
in Table 1). The motivation for having overlapping networks is
to demonstrate the performance of the methods when networks
overlap in space, i.e., voxels mode, which may be expected in
real applications. Even though the networks overlap, the average
correlation of networks, i.e., correlation between columns of
Bk averaged over K slices, is small, e.g., ≤ 0.1 in Figure 3B;
therefore, not affecting the performance of IVA and joint ICA.
Even when there is a larger overlap in space, the correlation is
still not high when network structures are different, e.g., shifting
vs. non-shifting.

Different Subject-Mode Patterns. When the assumption of
the same subject-mode patterns in different time windows is
violated, both PARAFAC2 and joint ICA do not capture the
underlying evolving components as shown in Figures 7A,C,
and with low similarity scores given in Table 1 for Case

2. On the other hand, Figure 7B shows that IVA recovers
the evolving components almost accurately with a similarity
score of 0.98. Furthermore, IVA also captures that there is
a component discriminating between the subject groups in
every other window. Figure 8 shows the p-values obtained
using the Ak matrices corresponding to each one of the
K = 50 time slices indicating the statistical significance of
the first component in terms of group difference in every
other window. For the other components, there are again
some small p-values as we have also previously observed
as a drawback of IVA in Case 1a. Nevertheless, compared
to PARAFAC2 and joint ICA, which cannot reveal subject-
mode patterns changing from one time slice to another,
IVA performs well and can capture such information in one
component.

Strong Discriminating Component. In the presence of a
strong component, which is also responsible for the group
separation, all methods successfully reveal the underlying
evolving components shown by the high similarity scores in
Table 1. In the subjects mode, Figure 9A demonstrates that
PARAFAC2 and joint ICA identify the first component as
the discriminating component successfully while IVA has one
component that is statistically significant in terms of group
difference in all windows and the two other components in
some time windows. This set-up is motivated by the real data,
where we observe a consistent spatial/voxel-mode pattern using
all methods; however, methods differ in terms of subject-mode
patterns as a result of their modeling assumptions. PARAFAC2
and joint ICA can reveal the same subject-mode patterns (up to
a scaling) in all time windows while IVA may reveal different
subject-mode patterns in every time window. In our experiments,
we observe that the flexibility of IVA hurts its performance
resulting in potentially false-positive markers. Finally, Figure 9B
demonstrates the temporal patterns captured by PARAFAC2,
revealing the underlying true patterns accurately. Neither joint
ICA nor IVA can extract temporal patterns in a compact way.
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FIGURE 6 | Covariance matrices of size K by K showing the covariance structure of true components across K = 50 time slices for (A) evolving networks, (B)

overlapping networks, (C) similar networks.

FIGURE 7 | Case 2. Evolving components (Bk or Sk , for k = 1, ...,K) captured by each method: (A) PARAFAC2, (B) IVA, (C) joint ICA. PARAFAC2 and joint ICA fail to

capture the underlying networks while IVA can reveal the evolving components accurately.

When using IVA, one can focus on how the average subject-mode
patterns change from one time window to another (Hossain et al.,
2022); however, that relies on the assumption that the average
would be representative.

3.2. Task fMRI Data Analysis
The fMRI data tensor (constructed as described in section 2.2.4)
is in the form of 253 subjects by 67,747 voxels by 14 time windows.
Before the analysis, the tensor is preprocessed by subtracting
the mean fALFF signal across the voxels mode, and dividing
each voxels mode fiber, i.e., the vector containing the tensor
entries for a fixed subject and a time window index, by its
standard deviation. The preprocessed tensor is then analyzed
using PARAFAC2, IVA and joint ICA in order to capture
patterns/networks in the voxels mode (as well as their change
in time) that can reveal group differences between healthy and
patient groups.

Figure 10A shows the spatial maps captured by a 2-
component PARAFAC2 model. These maps correspond to
columns of Bk for the first time window, i.e, k = 1. In this
article, for all methods, we only show the spatial maps for the first

time window. In order to see evolving spatial maps, we refer the
reader to the videos in the GitHub repository3. The p-values are
7.8 × 10−6 and 7.7 × 10−1 for the first and second component,
respectively. The first component is of particular interest
since it is statistically significant in terms of group difference.
Furthermore, this is a strong discriminating component with a
norm that is almost twice the norm of the second component.
Importantly, this component includes regions expected to be
engaged by the task, e.g., primary and secondary motor and
cerebellum, as well as auditory cortex. These regions have
also been implicated in schizophrenia (Friston and Frith, 1995;
Pearlson and Calhoun, 2007). In Figure 10B, we observe that
the first component has a temporal pattern that follows the task-
rest pattern. This component is consistently observed when we
change the number of components or used data from a subset of
the sites. As previously noted, it is challenging to determine the
right number of components. We fitted the PARAFAC2 model
using R = 2, 3, 4 components. While all models had a high core
consistency value, i.e., ≥ 81%, highly correlated factor vectors

3https://github.com/eacarat/TracingEvolvingNetworks
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in the subject-mode were observed using 3-component and 4-
component models with the spatial maps in Figure 10A being
split into more than one component. Therefore, we focus on the
2-component model, and the fact that the component of interest
was also captured as a statistically significant component using
a 3-component model gives more confidence in the results we
interpret. While we analyze in this article the fMRI data from the
four sites available in the MCIC collection (Gollub et al., 2013),

FIGURE 8 | Case 2. p-values obtained using the two-sample t-test on the

subject-mode patterns (Ak ) using IVA. IVA successfully captures that the first

component is statistically significant in terms of group difference in every other

window. In the other components, in some time windows, there are false

positives marked with a red arrow.

in our previous study we only focused on the analysis of two of
the sites (Roald et al., 2020) to avoid potential scanner differences
and site effects. We observe that despite site effects in the case
of four sites, the individual sites show group effects in the same
direction relying on the same patterns; therefore we get the same
consistent patterns (i.e., spatial maps and the temporal pattern) in
both studies confirming that site effects do not have a substantial
effect on the patterns of interest.

When we analyze the data tensor, i.e., multiple matrices
in the form of subjects by voxels matrices corresponding
to different time windows, using IVA, we also capture a
similar statistically significant sensorimotor component as
shown in Figure 11A, i.e., component 5 with activations
in the same areas as in component 1 in the PARAFAC2
model (Figure 10A). Since methods have different modeling
assumptions, they are not necessarily comparable using the
same number of components. We explore a wide range of
component numbers to see the performance of the methods
using different number of components and compare their best
performances. Regardless of the number of components, i.e.,
R = 2, 10, and R = 40, IVA reveals this component as
a statistically significant component in all but one or two
time windows. Here, we report the results using R = 40
(see the Supplementary Material for the spatial maps extracted
using R = 2, which are also very similar to R = 40
in terms of the component of interest). Only one out of
40 components is statistically significant in most of the time
windows, and that is component 5 in Figure 11A (as also
shown in Hossain et al., 2022 on the same dataset). Figure 11B
shows that except for one time window, component 5 has
a p-value ≤ 0.05. Figure 11A shows component 12, which
seems to match with the second component in PARAFAC2 (see
Figure 10A—Component 2). However, this component is not

FIGURE 9 | Case 3. (A) p-values obtained using the two-sample t-test on the subject-mode patterns (A or Ak ) using different methods. Based on the true

subject-mode patterns, true p-values are 0, 0.88, and 0.35 for component 1, 2 and 3, respectively. All methods identify the first component as the component

differentiating between the subject groups. While PARAFAC2 and joint ICA identify the second and third components as not statistically significant in terms of group

difference, IVA wrongly identifies them as statistically significant in some windows. (B) Temporal patterns, i.e., columns of factor matrix C, extracted from the time

mode using PARAFAC2. True patterns are shown using dashed lines. PARAFAC2 correctly captures the true temporal patterns.
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FIGURE 10 | PARAFAC2 analysis of task fMRI data. (A) Spatial components, i.e., columns of Bk . Here, we plot columns of only B1 corresponding to the first time

window. The corresponding p-values are 7.8× 10−6 for component 1, and 7.7× 10−1 for component 2. The first component includes primary and secondary motor

and cerebellum, as well as auditory cortex expected to be engaged by the task. Spatial maps are plotted using the patterns from the voxels mode as z-maps and

thresholding at |z| ≥ 1.5 such that red voxels indicate an increase in controls over patients, and blue voxels indicate an increase in patients over controls. (B) Temporal

patterns, i.e., columns of matrix C.

FIGURE 11 | IVA analysis of task fMRI data. (A) Spatial components, i.e., rows of Sk . Here, we only plot two of the rows of S1 corresponding to the first time window.

Spatial maps are plotted using the patterns from the voxels mode as z-maps and thresholding at |z| ≥ 1.5 such that red voxels indicate an increase in controls over

patients, and blue voxels indicate an increase in patients over controls. (B) p-values for the two components in each time window. While component 5 is statistically

significant in all but one time window (i.e., time window 3), component 12 is not in any of the time windows.

statistically significant in terms of group difference in PARAFAC2
or IVA4.

When joint ICA is used to analyze the fMRI tensor, as
Figure 12 shows, the sensorimotor component is again captured.
Here, we include the joint ICA results using R = 2 components.
The p-value for the first component is 1.1 × 10−4 while
the p-value for the second one is ≥ 0.05. As we increase
the number of components (e.g., R = 5, 10), joint ICA
still reveals the sensorimotor component as the statistically
significant one in terms of group difference and no other
important component shows up while p-values get higher (results
not shown). Using higher number of components, e.g., R =

4The sign of the test statistic is used to fix the sign ambiguity in the models. Both

component 2 in PARAFAC2 and component 12 in IVA have a small test statistic;

therefore, the uncertainty in the signs and mismatching colors in the maps.

40, we observe that the component of interest splits into
several components.

Note that while we report p-values for comparing
how the methods perform in terms of identifying
potential components of interest, we do not claim that
one is better than the other based on how low the
p-values are.

Based on the results of our experiments on simulated data, we
know that (i) all methods capture the discriminating component
when subject-mode patterns do not change from one time
window to another, (ii) IVA often reveals some components that
are statistically significant in terms of group difference in few
windows—which correspond to false-positive markers. We make
the same observations in our real fMRI data analysis. In order to
see if the same or similar subject-mode patterns are available in
task and rest windows, we analyze only the task windows (i.e., a
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FIGURE 12 | Joint ICA analysis of task fMRI data. Spatial components, i.e., rows of Sk . Here, we only plot rows of S1 corresponding to the first time window. Spatial

maps are plotted using the patterns from the voxels mode as z-maps and thresholding at |z| ≥ 1.5 such that red voxels indicate an increase in controls over patients,

and blue voxels indicate an increase in patients over controls. The p-values are 1.1× 10−4 for component 1, and 1.4× 10−1 for component 2.

FIGURE 13 | PARAFAC2 analysis of (A) only task windows: Spatial components, i.e., columns of Bk , for k = 1, as well as the temporal patterns, i.e., columns of C.
The p-values are 2.1× 10−4 for component 1, and 2.7× 10−1 for component 2. (B) Only rest windows: Spatial components, i.e., columns of Bk , for k = 1, as well as

the temporal patterns, i.e., columns of C. The p-values are 6.6× 10−3 for component 1, and 8.5× 10−1 for component 2. The first component shows statistical

significance in terms of group difference in both task and rest windows; therefore, supporting the modeling assumptions of PARAFAC2 and joint ICA. Spatial maps are

plotted using the patterns from the voxels mode as z-maps and thresholding at |z| ≥ 1.5 such that red voxels indicate an increase in controls over patients, and blue

voxels indicate an increase in patients over controls.

tensor of size 253 subjects by 67,747 voxels by 7 time windows,
for K = 1, 3, 5, ..13) as well as only the rest windows (i.e., a
tensor of size 253 subjects by 67,747 voxels by 7 time windows,
for K = 2, 4, ..14). Figures 13A,B show the spatial maps captured

using a 2-component PARAFAC2model from the task tensor and
the rest tensor. We observe that the sensorimotor component
is statistically significant in terms of group difference in both
tensors; therefore, supporting the argument for similar or same
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subject-mode patterns in different time windows, and making
PARAFAC2 and joint ICA suitable approaches for analyzing such
time-evolving data.

4. DISCUSSION

Overall, all three methods show promising performance in
temporal data mining as long as their modeling assumptions
are satisfied. Our focus here on addressing the problem of
capturing spatial dynamics through the analysis of task fMRI data
falls under a temporal data mining problem, where we expect
similar group differences (in other words, similar subject-mode
patterns) in different time windows. Therefore, PARAFAC2
presents itself as a suitable model providing a compact summary
revealing underlying networks, their change in time as well
as the temporal patterns in the data. In other scenarios, for
instance, when the goal is to analyze multi-task fMRI data,
where different slices correspond to fMRI signals collected
during different tasks (rather than different time windows),
if each task cannot reveal the same group differences, such
data may rather follow the modeling assumptions of IVA
(Lehmann et al., 2022).

One remaining challenge as a future study is the sensitivity
of the methods to the selection of number of components.
In simulations, we have assumed that the true number of
components is known. While there are various approaches
for determining the number of components, often in real
applications, the number of components is overestimated. In our
real data analysis, we have therefore focused on a component that
is consistently observed regardless of the number of components
avoiding the sensitivity problem. In order to see the effect of
overfactoring, for Case 3, we have fitted PARAFAC2, IVA, and
joint ICA using R = 4 components, where the true number
of components is 3. As shown in Table 1, all methods reveal
the evolving networks accurately. However, their performance
differs in terms of how well they identify the discriminating
component. As we have previously observed in Case 3 when
using the true number of components, IVA still identifies
additional components as statistically significant in terms of
group difference in some slices resulting in many false-positives.
In the case of overfactoring, PARAFAC2 also wrongly identifies
the additional component as statistically significant in terms
of group difference. Joint ICA performs well without any
false-positive components. These experiments demonstrate the
sensitivity of the methods to the number of components. Note
that when the number of component is misspecified, how we
select the best run (e.g., the one giving the minimum function
value out of multiple initializations) also needs to be studied
further, and with the current best run selection approach, the
PARAFAC2 model might benefit from regularization in order to
prevent overfitting.

There are several other computational aspects that need more
research. First, the scalability of the algorithms for fitting the
PARAFAC2 model to large-scale data needs to be studied further
for dense datasets. The scalability of PARAFAC2 has previously

been studied for large-scale sparse data (Perros et al., 2017; Afshar
et al., 2018). Another key issue in terms of using PARAFAC2
for time-evolving data analysis is the PARAFAC2 constraint, i.e.,
constant cross-product constraint. In many applications, that
constraint does not have an application-specific justification.
We intend to relax the PARAFAC2 constraint, and incorporate
additional constraints that will make the analysis time-aware in
future studies. While PARAFAC2 ALS algorithm is not flexible
enough to incorporate constraints on the evolving patterns,
recent work introduces an alternating direction method of
multipliers (ADMM)-based algorithm for fitting the PARAFAC2
model enabling imposing constraints in all modes (Roald
et al., 2021). It is also worth mentioning that regardless of
these advances in computational and modeling aspects of the
PARAFAC2 model, the model—as it is—has the potential to
reveal time-evolving connectivity patterns if it were to be used
in previous connectivity studies assuming static networks (Zhu
et al., 2019, 2020).

In this article, we have used different modeling approaches
to reveal evolving maps in time and provided them as videos.
While such videos show the spatial dynamics to some extent,
further work is still needed to quantify and/or better characterize
the temporal change from one time window to another—which
may be achieved using a postprocessing step or by incorporating
relevant constraints into the model.

5. CONCLUSIONS

Analysis of time-evolving data is challenging especially when the
goal is to extract the underlying patterns as well as their evolution.
Such analysis is crucial to improve our understanding of complex
systems such as the brain. In this article, we study a tensor
factorization-based approach called the PARAFAC2 model in
comparison with joint ICA and IVA in terms of analyzing time-
evolving data and capturing the underlying evolving patterns.
Through simulations, we study the performance of these three
methods showing that when subject-mode patterns across
different time slices are the same, PARAFAC2 and joint ICA
perform better in terms of capturing the underlying patterns
and are less prone to false-positive markers. On the other
hand, if subject-mode patterns differ (more than a scaling
factor) from one time window to another, IVA performs the
best. In our analysis of real task fMRI data, we observe
that all methods capture one consistent component, that is
also statistically significant in terms of differentiating between
healthy controls and patients with schizophrenia. IVA identifies
additional components as statistically significant in terms of
group difference; however, those are discarded as potential
false positives. Compared to other methods, PARAFAC2
reveals a compact temporal pattern showing the task-rest
pattern clearly.

Methods studied in this article are of interest in not only
neuroscience but also other fields such as metabolomics to
understand the temporal change in human metabolome (i.e.,
the complete set of small biochemical compounds in the body).
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For instance, through the analysis of longitudinal metabolomics
data as well as data from other sources, it may be possible to
capture early signs of diseases (Price et al., 2017). Recently, tensor
factorizations have been used to analyze dynamic metabolomics
data (Li et al., 2022) but how to capture evolving patterns from
such data is yet to be studied.

DATA AVAILABILITY STATEMENT

The data analyzed in this study is subject to the following
licenses/restrictions:While some of the data are available through
the COINS (COllaborative Informatics Neuroimaging Suite)
database, some of the data are not publicly available (not sharable
per the IRB). Requests to access these datasets should be directed
to https://coins.trendscenter.org/.

ETHICS STATEMENT

Ethical review and approval was not required for this study as
it was deemed ‘not human subjects’ via the institutional review
board. The patients/participants provided their written informed
consent to participate in this study.

AUTHOR CONTRIBUTIONS

EA and TA conceived the project and designed the experiments.
EA conducted the experiments, with MR being involved in
simulated data generation and real data analysis, and KH being
involved in real data analysis. EA, MR, TA, and VCwere involved
in the writing of the manuscript. All authors have given approval
to the final version of the manuscript. All authors contributed to
the article and approved the submitted version.

FUNDING

This work was supported in part by the Research Council of
Norway through project 300489 (IKTPLUSS) and by the grants
NSF-NCS1631838, NSF-HRD2112455, NIH R01MH118695, and
NIH R01MH123610.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2022.861402/full#supplementary-material

REFERENCES

Acar, E., Bingol, C. A., Bingol, H., Bro, R., and Yener, B. (2007).

Multiway analysis of epilepsy tensors. Bioinformatics 23, i10–i18.

doi: 10.1093/bioinformatics/btm210

Acar, E., and Yener, B. (2009). Unsupervised multiway data analysis: a literature

survey. IEEE Trans. Knowl. Data Eng. 21, 6–20. doi: 10.1109/TKDE.2008.112

Adali, T., Anderson,M., and Fu, G.-S. (2014). Diversity in independent component

and vector analyses: Identifiability, algorithms, and applications in medical

imaging. IEEE Signal Proc. Mag. 31, 18–33. doi: 10.1109/MSP.2014.2300511

Afshar, A., Perros, I., Papalexakis, E. E., Searles, E., Ho, J., and Sun, J. (2018).

“COPA: constrained PARAFAC2 for sparse & large datasets,” in CIKM’18:

Proceedings of the 27th ACM International Conference on Information and

Knowledge Management (Torino), 793–802. doi: 10.1145/3269206.3271775

Andersen, A. H., and Rayens, W. S. (2004). Structure-seeking multilinear

methods for the analysis of fMRI data. NeuroImage 22, 728–739.

doi: 10.1016/j.neuroimage.2004.02.026

Anderson, M., Adali, T., and Li, X.-L. (2012). Joint blind source separation

with multivariate Gaussian model: algorithms and performance analysis. IEEE

Trans. Signal Process. 60, 1672–1683. doi: 10.1109/TSP.2011.2181836

Bai, Z., Walker, P., Tschiffely, A., Wang, F., and Davidson, I. (2017). “Unsupervised

network discovery for brain imaging data,” in KDD’17: Proceedings of the 23rd

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining (Halifax, NS), 55–64. doi: 10.1145/3097983.3098023

Becker, H., Comon, P., Albera, L. (2012). “Tensor-based preprocessing of

combined EEG/MEG data,” in 2012 Proceedings of the 20th European Signal

Processing Conference (EUSIPCO), p. 275–279.

Beckmann, C. F., and Smith, S. M. (2005). Tensorial extensions of independent

component analysis for multisubject fMRI analysis. NeuroImage 25, 294–311.

doi: 10.1016/j.neuroimage.2004.10.043

Bhinge, S., Long, Q., Calhoun, V. D., and Adali, T. (2019a). Spatial

dynamic functional connectivity analysis identifies distinctive biomarkers in

schizophrenia. Front. Neurosci. 13, 6. doi: 10.3389/fnins.2019.01006

Bhinge, S., Mowakeaa, R., Calhoun, V. D., and Adali, T. (2019b). Extraction

of time-varying spatio-temporal networks using parameter-tuned constrained

IVA. IEEE Trans. Med. Imaging 38, 1715–1725. doi: 10.1109/TMI.2019.2893651

Bro, R., Andersson, C. A., and Kiers, H. A. L. (1999). PARAFAC2-Part II. Modeling

chromatographic data with retention time shifts. J. Chemometr. 13, 295–

309. doi: 10.1002/(SICI)1099-128X(199905/08)13:3/4<295::AID-CEM547>3.0.

CO;2-Y

Bro, R., and Kiers, H. A. L. (2003). A new efficient method for determining the

number of components in PARAFAC models. J. Chemometr. 17, 274–286.

doi: 10.1002/cem.801

Calhoun, V. D., Adali, T., Pearlson, G., and Kiehl, K. (2006).

Neuronal chronometry of target detection: fusion of hemodynamic

and event-related potential data. NeuroImage 30, 544–553.

doi: 10.1016/j.neuroimage.2005.08.060

Calhoun, V. D., Miller, R., Pearlson, G., and Adali, T. (2014). The chronnectome:

time-varying connectivity networks as the next frontier in fMRI data discovery.

Neuron 84, 262–274. doi: 10.1016/j.neuron.2014.10.015

Calhoun, V. D., Potluru, V. K., Phlypo, R., Silva, R. F., Pearlmutter, B. A.,

Caprihan, A., et al. (2013). Independent component analysis for brain

fMRI does indeed select for maximal independence. PLoS ONE 8, e73309

doi: 10.1371/annotation/52c7b854-2d52-4b49-9f9f-6560830f9428

Cardoso, J.-F. (2001). “The three easy routes to independent component analysis,

contrasts and geometry,” in Proc. ICA 2001 (San Diego, CA), 1–6.

Carroll, J. D., and Chang, J. J. (1970). Analysis of individual differences

in multidimensional scaling via an N-way generalization of “Eckart-

Young” decomposition. Psychometrika 35, 283–319. doi: 10.1007/BF0

2310791

Chang, C., and Glover, G. H. (2010). Time-frequency dynamics of resting-

state brain connectivity measured with fMRI. NeuroImage 50, 81–98.

doi: 10.1016/j.neuroimage.2009.12.011

Chatzichristos, C., Kofidis, E., Morante,M., and Theodoridis, S. (2019). Blind fMRI

source unmixing via higher-order tensor decompositions. J. Neurosci. Methods

315, 17–47. doi: 10.1016/j.jneumeth.2018.12.007

Chew, P. A., Bader, B. W., Kolda, T. G., and Abdelali, A. (2007). “Cross-language

information retrieval using PARAFAC2,” in KDD’07: Proceedings of the 13th

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining (San Jose, CA), 143–152. doi: 10.1145/1281192.1281211

Comon, P. (1994). Independent component analysis, a new concept? Signal

Process. 36, 287–314. doi: 10.1016/0165-1684(94)90029-9

Comon, P. (2014). Tensors: a brief introduction. Signal Process. Mag. 31, 44–53.

doi: 10.1109/MSP.2014.2298533

Cong, F., Lin, Q.-H., Kuang, L.-D., Gong, X.-F., Astikainen, P., and Ristaniemi,

T. (2015). Tensor decomposition of EEG signals: a brief review. J. Neurosci.

Methods 248, 59–69. doi: 10.1016/j.jneumeth.2015.03.018

Correa, N., Adalı, T., and Calhoun, V. D. (2007). Performance of blind source

separation algorithms for fMRI analysis using a group ICA method. Magn.

Reson. Imaging 25, 684–694. doi: 10.1016/j.mri.2006.10.017

Frontiers in Neuroscience | www.frontiersin.org 16 April 2022 | Volume 16 | Article 861402148

https://coins.trendscenter.org/
https://www.frontiersin.org/articles/10.3389/fnins.2022.861402/full#supplementary-material
https://doi.org/10.1093/bioinformatics/btm210
https://doi.org/10.1109/TKDE.2008.112
https://doi.org/10.1109/MSP.2014.2300511
https://doi.org/10.1145/3269206.3271775
https://doi.org/10.1016/j.neuroimage.2004.02.026
https://doi.org/10.1109/TSP.2011.2181836
https://doi.org/10.1145/3097983.3098023
https://doi.org/10.1016/j.neuroimage.2004.10.043
https://doi.org/10.3389/fnins.2019.01006
https://doi.org/10.1109/TMI.2019.2893651
https://doi.org/10.1002/(SICI)1099-128X(199905/08)13:3/4<295::AID-CEM547>3.0.CO;2-Y
https://doi.org/10.1002/cem.801
https://doi.org/10.1016/j.neuroimage.2005.08.060
https://doi.org/10.1016/j.neuron.2014.10.015
https://doi.org/10.1371/annotation/52c7b854-2d52-4b49-9f9f-6560830f9428
https://doi.org/10.1007/BF02310791
https://doi.org/10.1016/j.neuroimage.2009.12.011
https://doi.org/10.1016/j.jneumeth.2018.12.007
https://doi.org/10.1145/1281192.1281211
https://doi.org/10.1016/0165-1684(94)90029-9
https://doi.org/10.1109/MSP.2014.2298533
https://doi.org/10.1016/j.jneumeth.2015.03.018
https://doi.org/10.1016/j.mri.2006.10.017
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Acar et al. Tracing Evolving Networks

De Vos, M., Vergult, A., De Lathauwer, L., De Clercq, W., Van Huffel,

S., Dupont, P., et al. (2007). Canonical decomposition of ictal scalp

EEG reliably detects the seizure onset zone. NeuroImage 37, 844–854.

doi: 10.1016/j.neuroimage.2007.04.041

Friedman, L., Glover, G. H., and Consortium, F. (2006). Reducing interscanner

variability of activation in a multicenter fMRI study: controlling for

signal-to-fluctuation-noise-ratio (SFNR) differences. Neuroimage 33, 471–481.

doi: 10.1016/j.neuroimage.2006.07.012

Friedman, L., Stern, H., Brown, G. G., Mathalon, D. H., Turner, J., Glover, G. H., et

al. (2008). Test-retest and between-site reliability in a multicenter fMRI study.

Human Brain Mapp. 29, 958–972. doi: 10.1002/hbm.20440

Friston, K. J., and Frith, C. D. (1995). Schizophrenia: a disconnection syndrome?

Clin. Neurosci. 3, 89–97.

Fu, G.-S., Anderson, M., and Adali, T. (2014). Likelihood estimators for dependent

samples and their application to order detection. IEEE Trans. Signal Process. 62,

4237–4244. doi: 10.1109/TSP.2014.2333551

Geddes, J., Einevoll, G., Acar, E., and Stasik, A. (2020). Multi-linear population

analysis (MLPA) of LFP data using tensor decompositions. Front. Appl. Math.

Stat. 6, 41 doi: 10.3389/fams.2020.00041

Gollub, R. L., Shoemaker, J. M., King, M. D., White, T., Ehrlich, S., Sponheim,

S. R., et al. (2013). The MCIC collection: a shared repository of multi-modal,

multisite brain image data from a clinical investigation of schizophrenia.

Neuroinformatics 11, 367–388. doi: 10.1007/s12021-013-9184-3

Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Models and

conditions for an “explanatory” multi-modal factor analysis. UCLAWork. Pap.

Phonet. 16, 1–84.

Harshman, R. A. (1972). PARAFAC2: Mathematical and technical notes. UCLA

Work. Pap. Phonet. 22, 30–47.

Harshman, R. A., and De Sarbo, W. S. (1984). “An application of PARAFAC

to a small sample problem, demonstrating preprocessing, orthogonality

constraints, and split-half diagnostic techniques,” in Research Methods for

Multimode Data Analysis (New York, NY: Praeger), 602–642.

Helwig, N. E., and Snodgress, M. A. (2019). Exploring individual

and group differences in latent brain networks using cross-

validated simultaneous component analysis. NeuroImage 201, 116019.

doi: 10.1016/j.neuroimage.2019.116019

Hitchcock, F. L. (1927). The expression of a tensor or a polyadic as a sum of

products. J. Math. Phys. 201, 116019 doi: 10.1002/sapm192761164

Hossain, K., Bhinge, S., Long, Q., Calhoun, V. D., and Adali., T. (2022). “Data-

driven spatio-temporal dynamic brain connectivity analysis using fALFF:

application to sensorimotor task data,” in CISS 2022: 56th Annual Conference

on Information Sciences and Systems (Princeton, NJ).

Hunyadi, B., Dupont, P., Van Paesschen, W., and Van Huffel, S. (2017). Tensor

decompositions and data fusion in epileptic electroencephalography and

functional magnetic resonance imaging data. WIREs Data Mining Knowl.

Discov. 7, e1197. doi: 10.1002/widm.1197

Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A.,

Calhoun, V. D., Corbetta, M., et al. (2013a). Dynamic functional

connectivity: promise, issues, and interpretations. NeuroImage 80, 360–378.

doi: 10.1016/j.neuroimage.2013.05.079

Hutchison, R. M., Womelsdorf, T., Gati, J. S., Everling, S., and Menon, R.

S. (2013b). Resting-state networks show dynamic functional connectivity in

awake humans and anesthetized macaques. Hum. Brain Mapp. 34, 2154–2177.

doi: 10.1002/hbm.22058

Iraji, A., Miller, R., Adali, T., and Calhoun, V. D. (2020). Space: a

missing piece of the dynamic puzzle. Trends Cogn. Sci. 24, 135–149.

doi: 10.1016/j.tics.2019.12.004

Jia, C., Akhonda, M. A. B. S., Levin-Schwartz, Y., Long, Q., Calhoun, V. D.,

and Adali, T. (2021). Consecutive independence and correlation transform for

multimodal data fusion: discovery of one-to-many associations in structural

and functional imaging data. Appl. Sci. 11, 8382 doi: 10.3390/app11188382

Kamstrup-Nielsen, M. H., Johnsen, L. G., and Bro, R. (2012). Core consistency

diagnostic in PARAFAC2. J. Chemometr. 27, 99–105. doi: 10.1002/cem.2497

Kiers, H. A., Ten Berge, J. M., and Bro, R. (1999). PARAFAC2 - part i. a direct fitting

algorithm for the PARAFAC2 model. J. Chemometr. 13, 275–294. doi: 10.1002/

(SICI)1099-128X(199905/08)13:3/4<275::AID-CEM543>3.0.CO;2-B

Kim, T., Eltoft, T., and Lee, T.-W. (2006). “Independent vector analysis: an

extension of ICA to multivariate components,” in Independent Component

Analysis and Blind Signal Separation, eds J. Rosca, D. Erdogmus, J. C. Príncipe,

and S. Haykin (Berlin; Heidelberg: Springer Berlin Heidelberg), 165–172.

doi: 10.1007/11679363_21

Kiviniemi, V., Vire, T., Remes, J., Elseoud, A. A., Starck, T., Tervonen, O., et al.

(2011). A sliding time-window ICA reveals spatial variability of the default

mode network in time. Brain Connect. 1, 339–347. doi: 10.1089/brain.2011.0036

Kolda, T. G., and Bader, B. W. (2009). Tensor decompositions and applications.

SIAM Rev. 51, 455–500. doi: 10.1137/07070111X

Lehmann, I., Acar, E., Hasija, T., Akhonda, M. A., Calhoun, V. D., Schreier, P.

J., et al. (2022). “Multi-task fMRI data fusion using IVA and PARAFAC2,”

in ICASSP’22: Proceedings of the IEEE International Conference on Acoustics,

Speech and Signal Processing (Singapore).

Li, L., Hoefsloot, H., de Graaf, A. A., Acar, E., and Smilde, A. K. (2022). Exploring

dynamic metabolomics data with multiway data analysis: a simulation study.

BMC Bioinformatics 23, 31. doi: 10.1186/s12859-021-04550-5

Li, X.-L., and Adali, T. (2010). Independent component analysis by

entropy bound minimization. IEEE Trans. Signal Process. 58, 5151–5164.

doi: 10.1109/TSP.2010.2055859

Li, Y.-O., Adalı, T., and Calhoun, V. D. (2007). Estimating the number of

independent components for fMRI data. Hum. Brain Mapp. 28, 1251–1266.

doi: 10.1002/hbm.20359

Long, Q., Bhinge, S., Calhoun, V. D., and Adali, T. (2020). Independent vector

analysis for common subspace analysis: application to multi-subject fMRI

data yields meaningful subgroups of schizophrenia. NeuroImage 216, 116872.

doi: 10.1016/j.neuroimage.2020.116872

Long, Q., Bhinge, S., Calhoun, V. D., and Adali, T. (2021). Graph-theoretical

analysis identifies transient spatial states of resting-state dynamic functional

network connectivity and reveals dysconnectivity in schizophrenia. J. Neurosci.

Methods 350:109039. doi: 10.1016/j.jneumeth.2020.109039

Lurie, D. J., Kessler, D., Bassett, D. S., Betzel, R. F., Breakspear, M., Kheilholz,

S., et al. (2020). Questions and controversies in the study of time-

varying functional connectivity in resting fMRI. Netw. Neurosci. 4, 30–69.

doi: 10.1162/netn_a_00116

Ma, S., Calhoun, V. D., Phlypo, R., and Adali, T. (2014). Dynamic changes

of spatial functional network connectivity in healthy individuals and

schizophrenia patients using independent vector analysis. NeuroImage 90,

196–206. doi: 10.1016/j.neuroimage.2013.12.063

Madsen, K., Churchill, N., and Mørup, M. (2017). Quantifying functional

connectivity in multi-subject fMRI data using component models. Hum. Brain

Mapp. 38, 882–899. doi: 10.1002/hbm.23425

McKeown, M. J., Makeig, S., Brown, G. G., Jung, T. P., Kindermann, S.

S., Bell, A. J., et al. (1998). Analysis of fMRI data by blind separation

into independent spatial components. Hum. Brain Mapp. 6, 160–188.

doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1

Miwakeichi, F., Martínez-Montes, E., Valdés-Sosa, P. A., Nishiyama, N.,

Mizuhara, H., and Yamaguchi, Y. (2004). Decomposing EEG data into space-

time-frequency components using parallel factor analysis. NeuroImage 22,

1035–1045. doi: 10.1016/j.neuroimage.2004.03.039

Möcks, J. (1988). Topographic components model for event-related potentials

and some biophysical considerations. IEEE Trans. Biomed. Eng. 35, 482–484.

doi: 10.1109/10.2119

Mørup, M., Hansen, L. K., Herrmann, C. S., Parnas, J., and Arnfred, S. M. (2006).

Parallel factor analysis as an exploratory tool for wavelet transformed event-

related EEG. NeuroImage 29, 938–947. doi: 10.1016/j.neuroimage.2005.08.005

Pearlson, G. D., and Calhoun, V. (2007). Structural and functional magnetic

resonance imaging in psychiatric disorders. Can. J. Psychiatry 52, 158–166.

doi: 10.1177/070674370705200304

Perros, I., Papalexakis, E. E., Wang, F., Vuduc, R., Searles, E., Thompson, M., et al.

(2017). “SPARTan: scalable PARAFAC2 for large & sparse data,” in KDD’2017:

Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (Halifax, NS), 375–384.

Preti, M. G., Bolton, T. A. W., and Van De Ville, D. (2017). The dynamic

functional connectome: state-of-the-art and perspectives. NeuroImage 160,

41–54. doi: 10.1016/j.neuroimage.2016.12.061

Price, N. D., Magis, A. T., Earls, J. C., Glusman, G., Levy, R., Lausted,

C., et al. (2017). A wellness study of 108 individuals using personal,

dense, dynamic data clouds. Nat. Biotechnol. 35, 747–756. doi: 10.1038/n

bt.3870

Frontiers in Neuroscience | www.frontiersin.org 17 April 2022 | Volume 16 | Article 861402149

https://doi.org/10.1016/j.neuroimage.2007.04.041
https://doi.org/10.1016/j.neuroimage.2006.07.012
https://doi.org/10.1002/hbm.20440
https://doi.org/10.1109/TSP.2014.2333551
https://doi.org/10.3389/fams.2020.00041
https://doi.org/10.1007/s12021-013-9184-3
https://doi.org/10.1016/j.neuroimage.2019.116019
https://doi.org/10.1002/sapm192761164
https://doi.org/10.1002/widm.1197
https://doi.org/10.1016/j.neuroimage.2013.05.079
https://doi.org/10.1002/hbm.22058
https://doi.org/10.1016/j.tics.2019.12.004
https://doi.org/10.3390/app11188382
https://doi.org/10.1002/cem.2497
https://doi.org/10.1002/(SICI)1099-128X(199905/08)13:3/4<275::AID-CEM543>3.0.CO;2-B
https://doi.org/10.1007/11679363_21
https://doi.org/10.1089/brain.2011.0036
https://doi.org/10.1137/07070111X
https://doi.org/10.1186/s12859-021-04550-5
https://doi.org/10.1109/TSP.2010.2055859
https://doi.org/10.1002/hbm.20359
https://doi.org/10.1016/j.neuroimage.2020.116872
https://doi.org/10.1016/j.jneumeth.2020.109039
https://doi.org/10.1162/netn_a_00116
https://doi.org/10.1016/j.neuroimage.2013.12.063
https://doi.org/10.1002/hbm.23425
https://doi.org/10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1
https://doi.org/10.1016/j.neuroimage.2004.03.039
https://doi.org/10.1109/10.2119
https://doi.org/10.1016/j.neuroimage.2005.08.005
https://doi.org/10.1177/070674370705200304
https://doi.org/10.1016/j.neuroimage.2016.12.061
https://doi.org/10.1038/nbt.3870
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Acar et al. Tracing Evolving Networks

Roald, M., Bhinge, S., Jia, C., Calhoun, V. D., Adali, T., and Acar,

E. (2020). “Tracing network evolution using the PARAFAC2 model,”

in ICASSP 2020: Proceedings of the IEEE International Conference on

Acoustics, Speech and Signal Processing (Barcelona: IEEE), 1100–1104.

doi: 10.1109/ICASSP40776.2020.9053902

Roald, M., Schenker, C., Cohen, J. E., and Acar, E. (2021). “PARAFAC2

AO-ADMM: constraints in all modes,” in EUSIPCO’21: Proceedings

of the 29th European Signal Processing Conference (Dublin).

doi: 10.23919/EUSIPCO54536.2021.9615927

Rossetti, G., and Cazabet, R. (2018). Community discovery in dynamic networks:

a survey. ACM Comput. Surveys 51, 35 doi: 10.1145/3172867

Sakoglu, U., Pearlson, G. D., Kiehl, K. A., Wang, Y. M., Michael, A. M., and

Calhoun, V. D. (2010). A method for evaluating dynamic functional network

connectivity and task-modulation: application to schizophrenia. Magn. Reson.

Mater. Phys. Biol. Med. 23, 351–366. doi: 10.1007/s10334-010-0197-8

Song, X.-W., Dong, Z.-Y., Long, X.-Y., Li, S.-F., Zuo, X.-N., Zhu, C.-Z., et al. (2011).

REST: a toolkit for resting-state functional magnetic resonance imaging data

processing. PLoS ONE 6, e25031. doi: 10.1371/journal.pone.0025031

Tabbal, J., Kabbara, A., Khalil, M., Benquet, P., andHassan,M. (2021). Dynamics of

task-related electrophysiological networks: a benchmarking study.NeuroImage

231, 117829. doi: 10.1016/j.neuroimage.2021.117829

Timmerman, M. E., and Kiers, H. A. L. (2003). Four simultaneous component

models for the analysis of multivariate time series from more than one subject

to model intraindividual and interindividual differences. Psychometrika 68,

105–121. doi: 10.1007/BF02296656

Wax, M., and Kailath, T. (1985). Detection of signals by information

theoretic criteria. IEEE Trans. Acoust. Speech Signal Process. 33, 387–392.

doi: 10.1109/TASSP.1985.1164557

Weis, M., Jannek, D., Roemer, F., Guenther, T., Haardt, M., and Husar, P.

(2010). “Multi-dimensional PARAFAC2 component analysis of multi-channel

EEG data including temporal tracking,” in Proceedings of 32nd Annual

International Conference of the IEEE EMBS (Buenos Aires: IEEE), 5375–5378.

doi: 10.1109/IEMBS.2010.5626484

Yin, K., Afshar, A., Ho, J. C., Cheung, W. K., Zhang, C., and Sun, J.

(2020). “LogPar: logistic PARAFAC2 factorization for temporal binary data

with missing values,” in KDD’20: Proceedings of the 26th ACM SIGKDD

International Conference on Knowledge Discovery and DataMining, 1625–1635.

doi: 10.1145/3394486.3403213

Zhu, Y., Liu, J., Mathiak, K., , Ristaniemi, T., and Cong, F. (2019).

Deriving electrophysiological brain network connectivity via tensor

component analysis during freely listening to music. IEEE Trans.

Neural Syst. Rehabil. Eng. 28, 409–418. doi: 10.1109/TNSRE.2019.

2953971

Zhu, Y., Liu, J., Ye, C., Mathiak, K., Astikainen, P., Ristaniemi, T., and Cong,

F. (2020). Discovering dynamic task-modulated functional networks

with specific spectral modes using MEG. NeuroImage 218, 116924

doi: 10.1016/j.neuroimage.2020.116924

Zou, Q.-H., Zhu, C.-Z., Yang, Y., Zuo, X.-N., Long, X.-Y., Cao, Q.-J., et al. (2008).

An improved approach to detection of amplitude of low-frequency fluctuation

(ALFF) for resting-state fMRI: fractional ALFF. J. Neurosci. Methods 172,

137–141. doi: 10.1016/j.jneumeth.2008.04.012

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Acar, Roald, Hossain, Calhoun and Adali. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 18 April 2022 | Volume 16 | Article 861402150

https://doi.org/10.1109/ICASSP40776.2020.9053902
https://doi.org/10.23919/EUSIPCO54536.2021.9615927
https://doi.org/10.1145/3172867
https://doi.org/10.1007/s10334-010-0197-8
https://doi.org/10.1371/journal.pone.0025031
https://doi.org/10.1016/j.neuroimage.2021.117829
https://doi.org/10.1007/BF02296656
https://doi.org/10.1109/TASSP.1985.1164557
https://doi.org/10.1109/IEMBS.2010.5626484
https://doi.org/10.1145/3394486.3403213
https://doi.org/10.1109/TNSRE.2019.2953971
https://doi.org/10.1016/j.neuroimage.2020.116924
https://doi.org/10.1016/j.jneumeth.2008.04.012
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact 

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org/

	Cover
	Frontiers eBook Copyright Statement
	Innovative fMRI Data Modeling Methods for Brain-Related Diseases/Disorders
	Table of Contents
	Topological Abnormalities of Functional Brain Network in Early-Stage Parkinson's Disease Patients With Mild Cognitive Impairment
	Introduction
	Materials and Methods
	Participants
	MRI Data Acquisition
	Data Preprocessing
	Regions of Interest Parcelation
	Graph Theory Analysis of the Functional Brain Network
	Statistical Analysis

	Results
	The Small-World Topology of Functional Brain Network in PD-MCI, PD-nMCI, and HC
	PD-MCI Patients versus PD-nMCI Patients (P < 0.05, Two-Tailed)
	PD-MCI Patients Versus the HC Group (P < 0.05, Two-Tailed)
	PD-nMCI Patients versus the HC Group (P < 0.05, Two-Tailed)

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Identifying Mild Hepatic Encephalopathy Based on Multi-Layer Modular Algorithm and Machine Learning
	Introduction
	Materials and Methods
	Participants
	Overview of Methodology
	MRI Scanning Parameters
	Data Preprocessing
	Dynamic Function Network Construction
	Multi-Layer Modular Algorithm
	Connection-Stability Matrix
	Dynamic Nodal Metrics Extracted From Modular Structure

	Group Differences in Dynamic Graph Metrics
	Correlation With Neuropsychological Scores
	Discrimination of Individual MHE From noHE
	Validation

	Results
	Effect of Disease on Network Connection-Stability Matrix
	Correlation Results Between Network Connection-Stability and Clinical Scores
	Effect of Disease on Dynamic Nodal Metrics
	Correlation Results Between Dynamic Nodal Metrics and Clinical Scores
	Classification Results of MHE From noHE

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Seizure Freedom After Epilepsy Surgery and Higher Baseline Cognition May Be Associated With a Negatively Correlated Epilepsy Network in Temporal Lobe Epilepsy
	Introduction
	Surgical Treatment of Temporal Lobe Epilepsy
	Network Analysis in Surgical Planning
	Non-invasive Epilepsy Network Modeling
	Negative Correlation in Network Analysis
	Objective

	Materials and Methods
	Patient Demographics
	Data Acquisition
	Network Modeling
	Neuropsychological Assessment
	Statistical Analysis
	Data Availability

	Results
	Demographics
	Highly Intraconnected Negatively Correlated Epilepsy Networks Are Less Widespread
	Correlation With Improved Baseline Memory Function and Decline in Post-operative Naming Function
	Negatively Correlated Epilepsy Network Connectivity and Seizure Freedom

	Discussion
	Is Negatively Correlated Epilepsy Network Connectivity a Good Sign?
	Is There Is Any Value in Epilepsy Surgery Planning?
	Future Studies
	Limitations

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	Assessing Uncertainty and Reliability of Connective Field Estimations From Resting State fMRI Activity at 3T
	Highlights
	Introduction
	Materials and Methods
	Participants
	Stimuli Presentation and Description
	Resting State
	Data Acquisition
	Data Analysis
	Bayesian Population Receptive Field Mapping Applied to VFM
	Standard Connective Field Mapping of RS Data
	Bayesian Connective Field Mapping
	Spatial Analysis
	Bayesian Analysis
	Beta Threshold

	Results
	CF Models Based on RS-fMRI Data
	Test-Retest Reliability
	Assessing Uncertainty in RS-fMRI Data
	Bayesian CF Thresholding Application

	Discussion
	Comparable CF Estimates Based on Resting-State and Visual Field Mapping at 3T fMRI
	The Effect Size as a New Approach for Voxel-Wise Thresholding of RS Data
	Relationship Between Resting State Signals and Functional Architecture
	Limitations and Future Directions

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Parietal Lobe Reorganization and Widespread Functional Connectivity Integration in Upper-Limb Amputees: A rs-fMRI Study
	Introduction
	Materials and Methods
	Participants
	Clinical Assessments
	MRI Scanning and Image Acquisition
	Data Preprocessing
	Seed Selection Using mALFF and FC Analyses
	Statistical Analysis
	Analysis of Demographic and Clinical Characteristics
	Analyses of ROIs mALFF
	Relationships Between mALFF and Clinical Characteristics
	Analyses of FC


	Results
	Demographic and Clinical Characteristics
	ROIs mALFF
	Correlations Between ROIs mALFF and Clinical Characteristics
	Seed-Based Whole-Brain FC

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

	Effective Connectivity of Right Amygdala Subregions Predicts Symptom Improvement Following 12-Week Pharmacological Therapy in Major Depressive Disorder
	Introduction
	Materials and Methods
	Participants and Study Design
	Image Acquisition and Preprocessing
	Effective Connectivity Analysis of Right Amygdala Subregions
	Predictive Model Definition and Evaluation
	Statistical Analysis

	Results
	Effective Connectivity Analysis
	Longitudinal EC Analyses Following 12-Week Pharmacotherapy
	Predictive Accuracy

	Discussion
	Abnormal Effective Connectivity
	Longitudinal EC Analyses Following 12-Week Pharmacotherapy
	Predictive Power of Effective Connectivity
	Limitation

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Altered Variability and Concordance of Dynamic Resting-State fMRI Indices in Patients With Attention Deficit Hyperactivity Disorder
	Introduction
	Materials and Methods
	Participants
	Behavior and Cognition Assessment
	MRI Data Acquisition
	Data Preprocessing
	Dynamic R-fMRI Indices Calculation
	Concordance Analysis
	Statistical Analysis

	Results
	Clinical and Demographic Characteristics
	Alterations of Variability in ADHD
	Alterations of Volume-Wise and Voxel-Wise Concordance in ADHD
	Negative Correlation With the Non-perseverative Errors
	Validation of the Results

	Discussion
	Altered Variability in Occipital and Frontal Gyrus
	Altered Concordance in Left Middle Frontal Gyrus
	Correlation Between Concordance of Frontal Gyrus and Executive Function
	Clinical Applications
	Limitations

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	A Quantitative Data-Driven Analysis Framework for Resting-State Functional Magnetic Resonance Imaging: A Study of the Impact of Adult Age
	Introduction
	Experimental and Methods
	Participants
	Magnetic Resonance Imaging Data Acquisition Protocol
	Resting-State Functional Magnetic Resonance Imaging Data Pre-processing
	Statistical Analyses

	Results
	The Quantitative Data-Driven Analysis Framework
	Resting-State Functional Connectivity Changes Associated With the Adult Age

	Discussion
	Effects of Adult Age on Resting-State Functional Connectivity
	Methodological Issues
	Negative Cross Correlation in White Matter and Cerebral Spinal Fluid

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Cox Regression Based Modeling of Functional Connectivity and Treatment Outcome for Relapse Prediction and Disease Subtyping in Substance Use Disorder
	Introduction
	Materials and Equipment
	Methods
	Participants and Clinical Assessment Procedures
	Magnetic Resonance Imaging/Functional Magnetic Resonance Imaging Scanning Parameters
	Computational Pipeline of Relapse Prediction
	Post-hoc Analyses of Disease Subtyping


	(Anticipated) Results
	Demographic and Clinical Characterization
	The Predicative Region-of-Interest of Cocaine Relapse
	Early and Intermediate Relapse Prediction of the Predictive Region-of-Interest
	Post-hoc Analyses of Disease Subtyping

	Discussion
	Neural Mechanisms and Individual-Level Relapse Prediction
	Neuromodulation Implications
	Limitations
	Conclusion

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Dynamic Functional Connectivity Better Predicts Disability Than Structural and Static Functional Connectivity in People With Multiple Sclerosis
	1. Introduction
	2. Materials and Methods
	2.1. Subjects
	2.2. Image Acquisition, Processing, and Connectome Extraction
	2.3. Dynamic FC Analysis 
	2.4. Mass Univariate Analysis
	2.5. Classification Analysis

	3. Results
	3.1. Patient Characteristics
	3.2. Dynamic FC Results
	3.3. Mass Univariate Group Comparison of Connectivity Measures
	3.4. Classification Results
	3.5. Feature Weights

	4. Discussion
	4.1. Comparison With Previous Studies Using SC, Static FC, and Dynamic FC in MS
	4.2. Structural Damage to the Dorsal Attention Network Is Central in Distinguishing HC vs. pwMS
	4.3. Dynamic FC Metrics May Capture Compensatory Functional Upregulation in pwMS
	4.4. Decreased Connectivity in the Cerebellum Is Related to Disability
	4.5. Limitations

	5. Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Alteration in the Functional Organization of the Default Mode Network Following Closed Non-severe Traumatic Brain Injury
	Introduction
	Materials and Methods
	Participants
	Neuropsychological Assessment
	Magnetic Resonance Imaging Scanning Parameters
	Data Preprocessing
	Statistical Analysis
	Low-Frequency Fluctuations Modeling
	Functional Connectivity Analysis
	Dynamic Causal Modeling

	Results
	Demographics and Neuropsychological Results
	Brain Structural Evaluations
	Low-Frequency Fluctuations Activations Comparison
	Functional Connectivity in Healthy Controls and Traumatic Brain Injury Groups
	Seed-Based Analysis
	Region of Interest -Based Analysis
	Correlation Between Neuropsychological Performance and Default Mode Network Connectivity
	Effective Connectivity Following Traumatic Brain Injury

	Discussion
	Limitation and Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Tracing Evolving Networks Using Tensor Factorizations vs. ICA-Based Approaches
	1. Introduction
	2. Materials and Methods
	2.1. Background
	2.1.1. PARAFAC2
	2.1.2. Independent Vector Analysis (IVA)
	2.1.3. Joint Independent Component Analysis
	2.1.4. PARAFAC2 vs. IVA vs. Joint ICA

	2.2. Experiments
	2.2.1. Implementation Details
	2.2.2. Performance Evaluation
	2.2.3. Simulated Data and Experimental Set-Up
	2.2.4. Real fMRI Data


	3. Results
	3.1. Simulations
	3.2. Task fMRI Data Analysis

	4. Discussion
	5. Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Back Cover



