About this Research Topic
Nowadays, data mining and modeling methods have developed in different fields, such as nonlinear dynamics, complex networks and control system, artificial intelligence and machine learning, as well as economic and social science. These methods have gained increasing attention among neuroscientists. Introducing these innovative methods to fMRI studies will provide us with more tools to explore the neuropathological mechanisms underlying different brain-related diseases/disorders, including those diseases that do not originate from the brain but affect brain function, such as diabetes, heart failure, and obesity.
The aim of this Research Topic is to provide an interdisciplinary platform for researchers to exchange information and ideas about state-of-the-art methods for fMRI data analysis and their application in the study of various diseases and disorders that are related to the brain.
We welcome original research articles and review articles that focus on one of the two following aspects, or both:
- Methodological advances in the analysis of fMRI (or of other neuroimaging data, such as EEG, MEG, etc., if the innovative method can be applied to fMRI) that allow the extraction and characterization of brain states and their spatial-temporal-spectral features;
- The study of these brain fMRI features in patients affected by various diseases/disorders and their associations with other relevant biological measures, such as behavioral, physiological, or genetic assessments.
Keywords: fMRI, Brain Dynamics, Clinical Neuroscience, Complex System, Nonlinear System, fMRI data modeling
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.