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Editorial on the Research Topic

Resistance and Tolerance in Food-Borne Pathogens: Mechanisms, Public Health Impact, and

Control Measures

Foodborne pathogens are exposed to many stress conditions present in animal hosts and the
environment surrounding farms at the stage of primary production and encounter artificial
stressors, including disinfectants and non-optimal growth conditions, during food processing,
storage, and cooking. Foodborne pathogens can cause foodborne illnesses only when they
successfully overcome stress conditions along the farm to fork continuum (Begley and Hill, 2015;
Oh et al., 2018; Zhang F. et al.). Most foodborne infections are self-limiting; however, serious
cases of illness require antimicrobial chemotherapy. With the increasing prevalence of antibiotic-
resistant foodborne pathogens being detected, the efficacy of antimicrobial chemotherapy
is significantly compromised, leading to serious patient outcomes. Bacterial tolerance to
environmental stress and resistance to antibiotics significantly affect food safety and public
health. Although stress tolerance and antibiotic resistance in bacteria may be considered totally
different topics, there are some overarching features for both. For instance, oxidative stress is a
general tolerance mechanism that affects the lethality of antibiotic treatment (Poole, 2012). Thus,
understanding stress tolerance and antibiotic resistance in foodborne pathogens can provide a
holistic perspective for food safety from farm to fork and beyond, including clinical treatment
of foodborne illnesses. The Research Topic “Resistance and Tolerance in Food-borne Pathogens:
Mechanisms, Public Health Impact, and Control Measures” aims to extend our knowledge of how
these mechanisms influence food safety and public health.

Two articles about stress tolerance in Listeria monocytogenes were published. Zhang H. et al.
reported that L. monocytogenes 1/2b isolates were the predominant strain types isolated from
processing facilities of ready-to-eat meat in China irrespective of the observed hygiene levels based
on aerobic plate counts and coliform detection.Whole genome sequence analysis suggested that the
isolates clonally expanded possibly by forming biofilms, confirming the importance of sanitation
procedures for the control of L. monocytogenes. Interestingly, the findings of Li et al. showed that
the use of organic acids increases the transcriptional levels of genes associated with acid and bile
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stress response and virulence. Exposure to acetic acid and lactic
acid, both common organic acids used in the food industry,
increase the virulence of L. monocytogenes based on testing
using the Galleria mellonella infection model. Organic acids are
frequently used for the control of Listeria contamination by the
food industry. However, organic acids can potentially influence
Listeria’s stress tolerance and virulence.

With respect to various in vivo stresses encountered by
microbes, foodborne pathogens also rely on effective and
complex tolerance strategies to survive and establish successful
infection in the host. One such study is focused on the
resistance of Vibrio vulnificus to nitric oxide (NO), an
important antimicrobial effector produced by the host innate
immune system to counteract invading pathogens (Choi et
al.). The investigators identified a NO-responsive transcriptional
regulator NsrR, a strong repressor of hmpA that encodes an
NO dioxygenase required for resistance of V. vulnificus to
nitrosative stress. Further molecular studies found that NsrR
could delicately cooperate with other two regulatory proteins,
Lrp and CRP, to tightly control the transcription of hmpA,
consequently contributing to the survival of V. vulnificus under
host-derived nitrosative stress (Choi et al.).

Several articles in the eCollection ascertained that antibiotic
resistance is highly common in the food supply chain worldwide.
The article by Lopez-Chavarrias et al. provides a good
demonstration of the high prevalence of antibiotic-resistant
Campylobacter in healthy livestock in Spain (Lopez-Chavarrias
et al.). Approximately 94.5% of Campylobacter coli isolates
and 91.1% of Campylobacter jejuni isolates from broilers were
resistant to ciprofloxacin, a fluoroquinolone drug of clinical
importance in human health, and 66.6% of C. coli from pigs
were resistant to erythromycin. Consistently, tetracycline and
fluoroquinolone resistance are prevalent in C. jejuni isolates
from patients in the United States. Notably, campylobacteriosis
associated with fluoroquinolone resistance was significantly
associated with international travel (Rodrigues et al.). Barbieri
et al. reported that mcr-1 is highly prevalent in Escherichia
coli isolates from healthy and sick poultry with colibacillosis
in Brazil due to the agricultural application of colistin, a
last-resort antibiotic to treat Gram-negative infections (Liu
et al., 2016). In addition, multi-drug resistance in Yersinia
enterocolitica 4/O:3 derived from fresh pre-washed spinach was
found to be the cause of the consecutive foodborne yersiniosis
outbreaks in Sweden in 2019. Molecular characterization of

the multidrug-resistant Y. enterocolitica outbreak strain revealed
that this foodborne pathogen harbored the Tn2670 transposon
with resistance determinants against quaternary ammonium
compounds, the heavy metal mercury, phenicols, streptomycin,
and sulfonamides and an additional plasmid carrying tetracycline
resistance gene. Interestingly, neither the Tn2670 transposon
nor the tetB resistance plasmid has previously been reported
in foodborne Yersinia nor in isolates derived from ready-to-
eat products, suggesting that horizontal gene transfer events
occurring in the environment, agriculture, or animal husbandry
have promoted the selection of Y. enterocolitica carrying
multi-antibiotic and metal resistance determinants (Karlsson
et al.).

An article included in this collection discussed potential
intervention measures to control antibiotic resistance in
the food supply chain using bacteriophages (phages). Kim
et al. discovered that some phages preferentially infect E.
coli based on the phylogenetic group and constructed a
highly effective phage cocktail targeting poultry isolates of E.
coli producing extended-spectrum β-lactamases (ESBL) that
frequently contaminate retail poultry. Although antibiotic-
resistant, non-pathogenic E. coli does not develop an infection
in animals and humans, antibiotic resistance can be transferred
to pathogenic bacteria. The phages strongly inhibited ESBL-
producing E. coli on chicken skin at refrigeration temperatures,
suggesting that phages have potential application for use
in retail raw chicken to reduce antibiotic resistance (Kim
et al.).

Humans are continuously exposed to antibiotic-
resistant microorganisms through the consumption
of food, and the chances of exposure to antibiotic-
resistant microorganisms will continue to pose a challenge
and potentially increase in prevalence if foodborne
pathogenic bacteria can survive stress conditions in the
pathway from farm to fork. These articles highlight
the concern about food chain contamination as a
potential reservoir for transmission and dissemination of
antimicrobial resistance, raising concerns for food safety and
public health.
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Antimicrobial resistance has become a major public health threat. Food-related
Staphylococcus species have received much attention due to their multidrug resistance.
The cfr gene associated with multidrug resistance has been consistently detected in
food-derived Staphylococcus species. In this retrospective study, we examined the
prevalence of cfr-positive Staphylococcus strains isolated from poultry meat in different
geographical areas of China from 2011 to 2016. Two cfr-positive Staphylococcus
delphini strains were identified from poultry meat in China. Comparative and whole-
genome analyses were performed to characterize the genetic features and overall
antimicrobial resistance genes in the two S. delphini isolates 245-1 and 2794-1. Whole-
genome sequencing showed that they both harbored a novel 20,258-bp cfr-carrying
Tn558 transposon derivative on their chromosomes. The Tn558 derivative harbors
multiple antimicrobial resistance genes, including the transferable multiresistance gene
cfr, chloramphenicol resistance gene fexA, aminoglycoside resistance genes aacA-aphD
and aadD, and bleomycin resistance gene ble. Surprisingly, within the Tn558 derivative,
an active unconventional circularizable structure containing various resistance genes
and a copy of a direct repeat sequence was identified by two-step PCR. Furthermore,
core genome phylogenetic analysis revealed that the cfr-positive S. delphini strains
were most closely related to S. delphini 14S03313-1 isolated from Japan in 2017
and 14S03319-1 isolated from Switzerland in 2017. This study is the first report of
S. delphini harboring a novel cfr-carrying Tn558 derivative isolated from retail food. This
finding raises further concerns regarding the potential threat to food safety and public
health safety. The occurrence and dissemination of similar cfr-carrying transposons from
diverse Staphylococcus species need further surveillance.

Keywords: Tn558, cfr, Staphylococcus delphini, unconventional circularizable structure, multidrug resistance
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INTRODUCTION

In recent years, resistance in bacteria has spread worldwide
and presents a serious threat to human health. Linezolid is
an oxazolidinone antibiotic and is considered as the last-
resort antibiotic for the treatment of infections caused by
multidrug-resistant (MDR) Gram-positive pathogens, including
Staphylococcus species (Wilson et al., 2008). The antibiotic targets
the P site in the peptidyl transferase center of the 23S ribosomal
RNA of the 50S ribosomal subunit, acting on this target and
blocking protein synthesis (Aoki et al., 2002). In fact, due to
the synthetic nature of the drug, resistance to this antibiotic is
rare. However, the cfr gene could mediate resistance to linezolid
(Long et al., 2006). This gene encodes a methyltransferase that
catalyzes the posttranscriptional methylation of adenosine at
nucleotide position 2503 (Escherichia coli numbering) in 23S
rRNA, which replaced the target of binding for linezolid (Corinna
et al., 2005; Giessing et al., 2009; Anna et al., 2016). However,
due to overlapping binding sites, cfr methylation also confers
resistance to four other classes of antimicrobial agents and results
in the PhLOPSA multiresistance phenotype, including resistance
to phenicols, lincosamides, oxazolidinones, pleuromutilins, and
streptogramin A compounds (Long et al., 2006; Anna et al., 2016).
Interestingly, cfr is often associated with erm, fexA, lsa(B), and
tet(L), which can assist in co-selecting the cfr gene and in its
spread (Shen et al., 2013; Mendes et al., 2014).

Generally, the cfr gene is often associated with mobile
genetic elements (MGEs) (plasmids, integrative, and conjugative
elements or transposons), which have great potential for
dissemination (Shen et al., 2013). Tn558 is one of these
bacterial transposons and was first identified on the plasmid
pSCFS2 harboring the antimicrobial resistance gene (ARG)
fexA from Staphylococcus lentus (Kehrenberg and Schwarz,
2005). Currently, this transposon is often harbored with cfr,
and derivatives of Tn558 usually carry other acquired ARGs
(Kehrenberg et al., 2007; Li et al., 2018). Therefore, this
transposon plays an important role as vectors in the spread of
transposon-borne ARGs.

Members of the genus Staphylococcus are widespread in nature
and play vital roles in disease causation in humans and animals
(McGavin and Heinrichs, 2012; Vrbovská et al., 2020). Among
these species, Staphylococcus delphini is a pathogen that causes
animal and human infections (Magleby et al., 2019; Ruiz-Ripa
et al., 2019). It belongs to the Staphylococcus intermedius group
and was first described in purulent skin lesions of dolphins
(Varaldo et al., 1988). S. delphini is further separated into
two subgroups, groups A and B, based on the phylogenetic
analysis of the sodA, hsp60, and nuc genes and DNA–DNA
hybridization (Sasaki et al., 2007). Although this staphylococcal
species is poorly documented due to misidentification with
S. intermedius, it has been isolated from humans and a wide
range of diseased animals, including domestic pigeons, camels,
horses, magpies, cinereous vultures, and mustelids, which serve
as the natural hosts of S. delphini group A (Devriese et al., 2005;
Sasaki et al., 2007; Sledge et al., 2010; Guardabassi et al., 2012;
Sudagidan and Aydin, 2012; Stull et al., 2014; Magleby et al., 2019;
Ruiz-Ripa et al., 2019).

In this retrospective study, we examined the prevalence of
cfr-positive Staphylococcus isolates in poultry meat from 2011
to 2016. We determined the complete genome sequence of cfr-
positive S. delphini and described their phenotypic and genotypic
profiles. This is the first report of a Tn558 derivative-embedded
cfr in S. delphini isolated from retail food.

MATERIALS AND METHODS

Bacterial Isolation
From July 2011 to June 2016, we collected 4,300 retail food
samples from supermarkets, fairs, and farmer markets, covering
most of the provincial capitals of China (Supplementary
Figure 1), and isolated 1,581 Staphylococcus strains, including
Staphylococcus aureus, Staphylococcus argenteus, S. delphini,
Staphylococcus epidermidis, and other staphylococci from 1,063
positive samples from all the sampling sites (Wu et al., 2018a,b).
During the retrospective study of cfr-positive Staphylococcus
species among these isolates, the cfr-positive strains 245-
1 and 2794-1 were isolated from frozen duck wings in
Guangzhou 2013 and frozen duck legs in Kunming 2014,
respectively. The isolates were further identified as S. delphini
by the MALDI-TOF/MS system (Bruker, Bremen, Germany)
(Decristophoris et al., 2011).

PCR Detection
The presence of the resistance gene cfr was identified by PCR and
Sanger sequencing (Kehrenberg et al., 2009). The presence of the
two direct repeats (DRs) and circular intermediate translocatable
units (TUs) was detected by PCR and inverse PCR (the primers
and conditions are shown in Table 2). To minimize the detection
of artificial products, a high-fidelity polymerase (PrimeSTAR
GXL DNA Polymerase, Takara, Dalian, China) and an 8-min
elongation step were used (Tansirichaiya et al., 2016). The
amplicons obtained by PCR and inverse PCR experiments were
subjected to Sanger sequencing.

Antimicrobial Susceptibility Testing
Minimum inhibitory concentrations (MICs) were determined
using a standard broth dilution method according to the
CLSI guidelines with S. aureus ATCC 29213 as a quality
control strain (Weinstein and Clinical and Laboratory Standards
Institute, 2018). The MICs for all of the following antimicrobials
were determined: FFC, florfenicol; CHL, chloramphenicol; CLI,
clindamycin; TIA, tiamulin; LZD, linezolid; K, kanamycin;
ERY, erythromycin; FOX, cefoxitin; VAN, vancomycin; RIP,
rifampicin; and DAP, daptomycin. The MIC breakpoints of
each antibiotic, except florfenicol, were used as recommended
by the current CLSI guidance (Weinstein and Clinical and
Laboratory Standards Institute, 2018). For florfenicol, the
results were interpreted according to the Veterinary CLSI
(VET01-A5).

Whole-Genome Sequence and Analysis
Genomic DNA for whole-genome sequencing was extracted
from the cfr-positive strains using a genomic extraction
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kit (Magen Biotech, Guangzhou, China) according to the
manufacturer’s instructions. Whole-genome sequencing of
the cfr-positive strains was performed using the Illumina
HiSeq Xten platform (800-bp paired-end reads with 100-
fold average coverage) and a PacBio Sequel II sequencing
instrument (100-fold average read depth). The chromosome
sequences were assembled into one scaffold using the
software SMRT Portal, version 3.2.0. The genomic DNA
annotation was performed in Prokka NCBI-BLASTP/BLASTX
(Torsten, 2014). The single-nucleotide polymorphisms
(SNPs) between strains 245-1 and 2794-1 were identified
with Snippy software1.

The acquired antibiotic resistance genes were identified by
ResFinder 3.02 and were further verified through a BLAST
search against the Comprehensive Antibiotic Resistance Database
(Ea et al., 2012). The genetic environment of the cfr gene
was analyzed using BLAST3, followed by visualization of the
comparative cfr multiresistance region (MRR) with Easyfig,
v2.2.2 (Sullivan et al., 2011).

Phylogenetic Analysis
All publicly available draft genome sequences of S. delphini strains
were acquired (22 strains with at least 50 × read coverage),
and core SNP alignments were produced via Snippy using the
S. delphini 8086 complete genome sequence (ASM30811v1) as a
reference (see text footnote 1). The maximum-likelihood (ML)
phylogenetic tree was constructed with RAxML-NG based on
the ML optimality criterion (Kozlov et al., 2019). The locations
of recombined regions on each branch were detected, and this
tree was reconstructed by ClonalFrameML (Didelot and Wilson,
2015). FigTree, v1.4.3, was used to finalize the tree visualization
(Morariu et al., 2008).

Nucleotide Sequence Accession
Numbers
The complete genomic sequences of 245-1 and 2794-1 have
been deposited in GenBank: 245-1 (GenBank ID: CP063368) and
2794-1 (GenBank ID: CP063367).

RESULTS

Phenotypic Characteristics of
cfr-Positive S. delphini
In this study, 245-1 and 2794-1 displayed the same MDR
profiles. Antimicrobial susceptibility testing showed that
these strains were resistant to chloramphenicol, florfenicol,
tiamulin, clindamycin, and linezolid, exhibiting a high level of
resistance to florfenicol (MIC = 256 µg/ml), chloramphenicol
(MIC > 128 µg/ml), and tiamulin (MIC > 128 µg/ml).
Moreover, the isolates were susceptible to vancomycin,
daptomycin, and rifampicin (Table 1).

1https://github.com/tseemann/snippy
2https://cge.cbs.dtu.dk/services/ResFinder/
3http://blast.ncbi.nlm.nih.gov/Blast.cgi

Basic Genomic Information for
cfr-Positive S. delphini
To understand the molecular characteristics and resistomes
of the two strains of S. delphini, they were submitted for
whole-genome sequencing. Basic information related to the
complete genome sequence of cfr-positive S. delphini is shown
in Figure 1. The chromosomes of 245-1 and 2794-1 consisted
of 2,708,646 bp with 2,486 predicted ORFs along with 102
RNAs and 2,707,963 bp with 2,486 predicted ORFs along with
102 RNAs, respectively. The genome analysis of the complete
chromosomal DNA revealed that there were 166 variants between
the chromosomes of 245-1 and 2794-1, and there were multiple
ARGs located on their chromosomes, including fexA (conferring
resistance to chloramphenicol), aacA-aphD and aadD (resistance
to aminoglycosides), ble (resistance to bleomycin), and the
multiresistance gene cfr (resistance to phenicols, lincosamides,
oxazolidinones, pleuromutilins, and streptogramin A).

Core Genome Phylogenetic Analysis of
cfr-Positive S. delphini
To further investigate the potential sources of cfr-positive
S. delphini 245-1 and 2794-1, we performed a core genome
phylogenetic analysis of all publicly available draft genome
sequences of S. delphini strains. The phylogenetic analysis shows
that 245-1 and 2794-1 are most closely related to S. delphini
14S03313-1 (GCA_002374125.1) isolated from Japan in 2017
and 14S03319-1 (GCA_002369675.1) isolated from Switzerland
in 2017 (Figure 2). This phylogenetic analysis did not reveal
the origin of 245-1 and 2794-1, indicating that the scarcity
of genomic sequences may be the constraint, and further
genomic sequencing is needed to identify the source of the
cfr-positive strains.

Genetic Environment of cfr Located on a
Novel Tn558 Transposon Derivative
Genomic mining revealed that the cfr gene, along with four other
ARGs, namely, fexA, aacA-aphD, aadD, and ble, was located on
a 20,258-bp (62,847–83,104 nt on the chromosomes of 245-1
and 2794-1 in Figure 1) MRR on the chromosomes. Further
BLAST analysis showed that the ARGs aacA-aphD, aadD, ble,
and cfr were flanked by two DRs oriented in the same direction
within the MRR and that the two DRs both belonged to Tn558
(Figure 3). The presence of the two DRs was further identified
by PCR assays followed by sequencing of the amplicons (primers
shown in Table 2). Both DRs were 1,326 bp in size, except
for 18-bp exchanges in DRB compared to DRA. DRA contained
partial fexA (430 bp) and orf138 sequences, while DRB comprised
partial orf1 (430 bp) and orf2 sequences. Further analysis revealed
that the single-nucleotide exchange TAG (orf138)→ TAC (orf2)
caused the termination codon to mutate to a Tyr codon, resulting
in an extension of the open reading frame that transformed
orf138 to orf2.

To further determine whether these unknown DRs in
245-1 and 2794-1 could mediate the formation of circular
intermediate TUs, inverse PCR (P3, P4) was performed, followed
by sequencing of the amplicons. Two identical PCR products
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TABLE 1 | Phenotypic and genotypic characteristics of Staphylococcus delphini.

Bacterial isolate MIC (µg/mL) Resistance genes

FFC CHL CLI TIA LZD K ERY FOX VAN RFP DAP

245-1 256 128 4 128 8 16 0.25 0.5 1 <0.015 0.25 cfr, fexA, ble, aacA-aphD, aadD

2794-1 256 128 4 128 8 16 0.25 0.5 1 <0.015 0.5 cfr, fexA, ble, aacA-aphD, aadD

29213 8 8 0.0625 0.25 4 1 0.125 4 0.5 0.0078 0.5 NONE

FFC, florfenicol; CHL, chloramphenicol; CLI, clindamycin; TIA, tiamulin; LZD, linezolid; K, kanamycin; ERY, erythromycin; FOX, cefoxitin; VAN, vancomycin; RIP, rifampicin;
DAP, daptomycin.

FIGURE 1 | Circular representation of the cfr-positive Staphylococcus delphini 245-1 and 2794-1 genomes. From the outer to the inner circles in the chromosome
circular map: slot 1 (ARGs) and slots 2–9 (slot 2, genome size; slot 3, forward strand gene, colored according to the cluster of orthologous groups classification; slot
4, reverse strand gene, colored according to the cluster of orthologous groups classification; slot 5, forward strand ncRNA; slot 6, reverse strand ncRNA; slot 7,
repeat; slot 8, GC content; and slot 9, GC skew).

(1,824 bp) were acquired from 245-1 and 2794-1, including
a copy of DRB, orf138, and part of fexA, as determined by
sequencing (Figure 3). The TUs (13,613 bp) resulted from
the recombination between DRA and DRB, including multi-
ARGs and one copy of DRA. The PCRs (P1, P2) containing
one copy of DRB detected the remaining structures after the
excision of unconventional circularizable structures (UCSs) on
chromosomes, and the results were consistent with the inverse
PCR results (Figure 3). Importantly, the remaining structures
were Tn558. These results confirmed the excision and cyclization
of the structure (Figure 3). Further BLAST analysis revealed that
the left 1fexA-UCS exhibited 99.88% nucleotide identity to the
corresponding region of the plasmids pWo28-1 (KX982171.1)
and pWo28-3 (KY601170.1) from Staphylococcus sciuri and the
plasmid pJP2 (KC989517.1) from Staphylococcus rostri lacking
DRB (Figure 3).

The sequence alignment analysis showed that the cfr MRR
consisted of a Tn558 homologous region (6,644 bp) and a 13,613-
bp region (Figure 3). This arrangement is a novel derivative
of the Tn558 transposon. Compared to the fexA, orf138, tnpC,
tnpB, and tnpA genes in Tn558 (Kehrenberg and Schwarz, 2005),

a closer inspection of the Tn558 derivative showed that several
nucleotide exchanges were identified in fexA (14 bp), tnpB
(20 bp), and tnpA (14 bp), except for orf138. To further explain
the genetic environment of the cfr MRR in this study, the
plasmids pWo28-1 (KX982171.1) and pWo28-3 (KY601170.1)
from S. sciuri and plasmid pJP2 (KC989517.1) from S. rostri
are also shown in Figure 3. Analysis of the regions flanking
the Tn558 derivative insertion in the chromosome identified a
reading frame encoding a putative protein of 114 aa (62,844–
62,846 and 83,105-83,443 nt on chromosomes 245-1 and 2794-1)
that shared 98.54% nucleotide identity with a 148-aa DNA repair
protein from Macrococcus canis (CP021059.1) (Gobeli et al.,
2017). Additionally, a minicircle of Tn558, an indication of Tn558
having transposition activity, was identified via PCR (primers
shown in Table 2) and sequencing of the derivative.

DISCUSSION

Naturally, S. delphini is widely susceptible to clinically relevant
classes of antibiotics. In a previous study from Denmark,
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FIGURE 2 | Maximum-likelihood (ML) core genome phylogeny of cfr-positive Staphylococcus delphini 245-1 and 2794-1 based on the ML method.

FIGURE 3 | Schematic presentation of the environment of the cfr gene on chromosomes 245-1 and 2794-1 and the formation of translocatable units (TUs)
mediated by direct repeats (DRs). The TUs derived from the region between DRA and DRB and the remaining structures after the excision of unconventional
circularizable structures on chromosomes. Areas shaded in gray indicate homologous regions of ≥99% nucleotide sequence identity. Arrows indicate the
orientations of the open reading frames, and the colors are based on their predicted gene functions. Frames with blue represent DRs. “Delta” represents a truncated
gene. The figure is drawn to scale.

among 55 S. delphini isolates recovered from mink, only some
isolates were resistant to tetracycline (51%), penicillin (47%), and
erythromycin (20%), whereas all the isolates tested susceptible to

a vast majority of the antimicrobials assayed, including cefoxitin
(Nikolaisen et al., 2017). In 2019, Magleby et al. also reported
the first human case of S. delphini infection and found that
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TABLE 2 | Primers used for detecting antibiotics resistance genes, the circular forms and the structures not included in the corresponding region of the unconventional
circularizable structures.

Primer Sequence (5′ to 3′) Product size (bp) Annealing temperature (◦C) Purpose

Tn-F CGGTGCCTAATCATTCGTATGC 872 55 Detection of minicircle form
of Tn558

Tn-R CGCTTAACCGGTTCTATGACTTCA

P1 GAAAAACGGTTGGCACGGTA 1824 65 Detection of the formation of
translocatable units (TUs)
between DRA and DRB

P2 CTTCATCTTCCCAAGGCTCTGT

P3 GGCAGAATCCGTAGGAAGCA 1817 65 Detection of remaining
structures after the excision
of UCSs on chromosomes

P4 CCCTCGTTCAGAGGACGTAT

A-F TCGTCCCATTGCTAGTCGTT 1683 55 Detection of DRA

A-R AAAACTTCATCTTCCCAAGGCT

B-F TGCCTGGAATCGAAAAACGG 1680 55 Detection of DRB

B-R CCCTCGTTCAGAGGACGTATT

cfr-F TGAAGTATAAAGCAGGTTGGGAGTCA 746 58 Detection of cfr

cfr-R ACCATATAATTGACCACAAGCAGC

Primers Tn-F/Tn-R were used for detecting the formation of minicircle of Tn558 derivative; primers P1/P2 were used for detecting the formation of translocatable units
(TUs) between DRA and DRB; primers P3/P4 were used for detecting the remaining structures after the excision of UCSs on chromosomes; primers A-F/A-R, B-F/B-R
were used for detecting DRA and DRB; primers cfr-F/cfr-R were used for detecting resistance gene cfr.

the isolate exhibited low MIC values for all the antimicrobials
assayed, including oxacillin (Magleby et al., 2019). Remarkably,
the multiresistance gene cfr was shown to encode Cfr, an
RNA methyltransferase that affects the binding of at least five
chemically unrelated antimicrobial classes, namely, phenicols,
lincosamides, oxazolidinones, pleuromutilins, and streptogramin
A antibiotics, ultimately leading to a multidrug resistance
phenotype (Long et al., 2006). Thus, the emergence and the global
spread of the multiresistance gene cfr reduce the efficacy of a
number of antibiotics in the control of Gram-positive bacteria.
In this study, we identified the cfr gene in two food-related
S. delphini strains. To the best of our knowledge, this study is the
first report of the cfr gene existing in S. delphini. Furthermore, the
cfr gene was located in an MRR with a number of antibiotic genes
(fexA, aacA-aphD, aadD, and ble). The coexistence of cfr and
other ARGs limits the choice of antibiotic therapy and may lead
to the co-selection of these genes even without direct selection
pressure, thereby increasing the retention and dissemination of
these ARGs in Staphylococcus.

In this study, MRRs, including cfr and other ARGs, were
confirmed as novel derivatives of the Tn558 transposon. Tn558 is
a 6.6-kb bacterial transposon. It was first identified on the plasmid
pSCFS2 harboring ARG fexA from S. lentus, and then numerous
derivatives harboring numerous ARGs were found (Kehrenberg
and Schwarz, 2005; Kehrenberg et al., 2007; Li et al., 2018). With
a few exceptions, cfr is often harbored in the Tn558 transposon
as coexisting with other ARGs, such as fexA, mecA, erm(A/B/C),
tet(K/L/M), and drf (K/G) in the plasmids pSCFS3, pSCFS6, and
pSCFS7 in previous studies (Witte and Cuny, 2011), but in this
study, the derivative of the Tn558 transposon harbored cfr, fexA,
aacA-aphD, aadD, and ble on the chromosomes. In addition,
the additional DRs within the Tn558 derivative further confirm

the particularity of this transposon. As previously reported for
Tn558 derivatives, there are no inverted repeats at the ends
and no duplication of the target sequence at the integration
site of the Tn558 derivative. The typical 6-bp core sequences
5′-GATGTA-3′ at the left-end junction and 5′-GATCCA-3′ at
the right-end junction were replaced by 5′-CATCCT-3′ and 5′-
TAAGCT-3′ in the novel derivative. The disappearance of target
duplication and the alteration of the typical core sequences
may have occurred during the transposition process (Diaz-
Aroca et al., 1987; Murphy, 1990). Moreover, the reading frame,
including the insertion site of the Tn558 derivative, is similar
to the protein containing the Tn558 site, and the excision of
TUs in this Tn558 derivative could lead to the formation of
Tn558, indicating that the DRA and DRB in this study may
be involved in the evolution of Tn558 and that this derivative
may be the ancestor of Tn558 (Kehrenberg and Schwarz, 2005).
Although multiple conjugation assays failed, the presence of a
circular Tn558 structure is indicative of the functional activity,
suggesting that this novel Tn558 derivative is a transposable
element and may mediate the transfer of the cfr gene in the
process of transposition (Kehrenberg and Schwarz, 2005).

Generally, the cfr gene often coexists with other ARGs on
transposons or plasmids and is often in close proximity to
insertion sequences (ISs), such as IS21-558, IS256, or ISEnfa4,
which play a crucial role in the mobility of cfr (Witte and
Cuny, 2011; Wendlandt et al., 2015). These mobile structures
have been detected among several Gram-positive bacteria, such
as staphylococci, Enterococcus faecalis, Macrococcus caseolyticus,
Jeotgalicoccus pinnipedialis, Bacillus spp., and Streptococcus suis,
as well as in Gram-negative bacteria, such as E. coli and Proteus
vulgaris (Shen et al., 2013). However, mobile structures can
form UCSs (Palmieri et al., 2013). UCSs lack recombinase genes
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and can be excised in circular form due to the extensive DRs
flanking the DNA segment undergoing excision (Locke et al.,
2012; Palmieri et al., 2012, 2013). Thus, they are very important
for the horizontal transmission of ARGs. In this study, the ARGs
aacA-aphD, aadD, ble, and cfr, bracketed by DRs, formed a novel
genetically mobile structure. The particular genetic structures
identified by the analysis were referred to as UCSs. Two-step
PCR results indicated that this structure can be looped out and
excised from the chromosome, leading to the formation of Tn558
(Figure 3), which suggests that the DR is active and involved in
the mobility of the Tn558-carried cfr gene in this study. Further
BLAST analysis revealed that the left 1fexA-UCS exhibited
99.88% nucleotide identity to the corresponding region of the
plasmids pWo28-1 (KX982171.1) and pWo28-3 (KY601170.1)
from S. sciuri and plasmid pJP2 (KC989517.1) from S. rostri
lacking DRB (Figure 3). Therefore, the DRA and DRB in this
study, similar to ISs, might facilitate the dissemination and
accumulation of ARGs in Tn558 (Palmieri et al., 2013; Harmer
et al., 2014). Of course, the functions of these two unknown DRs
still need to be further studied and explored in the future.

Unconventional circularizable structures are widely
distributed in Gram-negative and Gram-positive bacteria and
play an important role in the dissemination of ARGs (Palmieri
et al., 2013; Chanchaithong et al., 2019). The DRs in UCSs are
usually long and are more than 100 times longer than the att sites
functioning in traditional MGEs (Frost et al., 2005). The DRs
may contain genes, such as erm(B), mef, (macrolide efflux), and
ofr138 in this study, but they are not involved in transposition
(Locke et al., 2012; Hao et al., 2019). The exact mechanism of
mobilization has not been determined, although hypotheses have
been proposed (Azpiroz et al., 2011). This transfer mechanism
may be similar to that of IS26 via site-specific recombination,
including a multistep process that requires the formation of a
TU, precise excision of the TU, and integration targeting the
preexisting DR (Harmer et al., 2014; Harmer and Hall, 2015).
The endogenous instability of UCSs endows the encompassed
niche adaptation determinants with the ability to be transferred.
Moreover, they are often carried by MGEs, which prompts the
updating of MGEs (such as the derivative of Tn558) and further
accelerates the spread of UCSs. Furthermore, the presence of
DRs on this novel cfr-carrying Tn558 derivative may accelerate
the spread and persistence of ARGs among staphylococci and
exacerbate the threat of superbugs, such as methicillin-resistant
S. aureus. The proliferation of the transferable ARG cfr kidnapped
by transposons or other MGEs has impaired the efficiency of
oxazolidiones in clinical settings and threatens public health
(Li et al., 2018).

CONCLUSION

To the best of our knowledge, this study is the first
report of S. delphini harboring a novel cfr-carrying Tn558
derivative. The constant occurrence of the cfr gene in new
staphylococcal host species underlines its strong transmissibility
and wide distribution. This finding raises further concerns
regarding the potential threat to food safety and public health
safety. The occurrence and the dissemination of similar cfr-
carrying transposons from diverse Staphylococcus species need
further surveillance.
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Listeria monocytogenes is the etiologic agent of listeriosis, which remains a significant
public health concern in many countries due to its high case-fatality rate. The
constant risk of L. monocytogenes transmission to consumers remains a central
challenge in the food production industry. At present, there is very little known about
L. monocytogenes contamination in ready-to-eat (RTE) processing plants in China. In
this study, L. monocytogenes in an RTE meat processing plant in Shanghai municipality
was characterized using pulsed-field gel electrophoresis (PFGE) and whole genome
sequencing (WGS). Furthermore, the biofilm formation ability of the pathogen was
also tested. Results revealed that L. monocytogenes isolates were present in 12
samples out of the 48 samples investigated. Most of them (66.7%, 8/12) were identified
from the processing facilities irrespective of observed hygiene levels of aerobic plate
count (APC) and coliforms. Coliforms were present in only one processing area. ST5
(1/2b) isolates were predominant (83.3%, 10/12) and were identified in two dominant
pulsotypes (PTs) (three in PT3 and seven in PT4, respectively). Results of the core-
genome multi-locus sequence typing (cgMLST) showed that ST5 in three PTs (PT1,
PT3, and PT4) had 0–8 alleles, which confirmed that clonal transmission occurred in
the RTE meat processing facilities. In addition, the biofilm formation test confirmed
that the isolates from the processing facilities could form biofilms, which helped them
colonize and facilitate persistence in the environment. These results indicated that
common sanitation procedures regularly applied in the processing environment were
efficient but not sufficient to remove L. monocytogenes isolates, especially biofilm of
L. monocytogenes. Furthermore, the ST5 isolates in this study exhibited 12 alleles
with one ST5 clinical isolate, which contributes to the understanding of the potential
pathogenic risk that L. monocytogenes in RTE meat processing equipment posed to
consumers. Therefore, strong hygienic measures, especially sanitation procedures for
biofilms eradication, should be implemented to ensure the safety of raw materials.
Meanwhile, continuous surveillance might be vital for the prevention and control of
listeriosis caused by L. monocytogenes.
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INTRODUCTION

Listeria monocytogenes is an important foodborne pathogen,
which can cause severe human listeriosis, particularly in older
adults, newborns, pregnant women, and immune-compromised
individuals (Lomonaco et al., 2009). Listeriosis remains a
significant public health concern due to the high case-fatality
rate (Thomas et al., 2015). Various types of meat, especially
ready-to-eat (RTE) meat products, are often vehicles of listeriosis
outbreaks (Currie et al., 2015; Jensen et al., 2016; Thomas
et al., 2020). A risk assessment report from the United States in
2003 attributed 90% of listeriosis cases to the consumption of
contaminated RTE deli meats (Richard Whiting, 2003). In the
United States, L. monocytogenes must not present in RTE foods
at any point (USDA FSIS, 2003). A similar requirement in China
is that L. monocytogenes is not detectable in 25 g or 25 ml RTE
food according to GB29921 (GB29921-2013, 2013).

L. monocytogenes survives well in the environment and can
even colonize food production facilities for extended periods
(Leong et al., 2017). L. monocytogenes is known to colonize
niche areas such as drains and hard-to-clean surfaces, which
allows the bacteria to survive or even proliferate and thus make
it challenging to completely eradicate it (Ferreira et al., 2014).
An epidemiological investigation of listeriosis outbreaks revealed
significant lack of hygiene in processing facilities (Angelo et al.,
2017). Several reported outbreaks caused by L. monocytogenes
have been linked to contaminated food-contact surfaces, packing
lines, and processing environments (McCollum et al., 2013;
Angelo et al., 2017). A high prevalence of L. monocytogenes
in food processing environments is often reported. However,
a smaller number of studies have evaluated the incidence and
identified the potential of L. monocytogenes contamination in
RTE meat processing plants (Nastasijevic et al., 2017). The
risk of L. monocytogenes transmission to consumers remains a
central challenge for the food industry (Almeida et al., 2013;
Malley et al., 2015).

Molecular typing of L. monocytogenes isolates can help to
establish links between isolates from different sources and assist
in tracing the original source of contamination (Chen et al.,
2013). It has been reported that certain serotypes and clonal
complexes (CCs) are more commonly encountered in clinical
cases (Chenal-Francisque et al., 2011; Maury et al., 2016). In
China, ST87 and ST8 were the most prevalent types of isolates
from patients (Li et al., 2019). However, ST9 was the most
common type of isolates from foods (Wang et al., 2012).

Pulsed-field gel electrophoresis (PFGE), as the “gold standard”
typing method, has been used to characterize clusters of
L. monocytogenes isolates through the National Molecular
Tracing Network for Foodborne Disease Surveillance (TraNet)
in China (Li et al., 2019). Whole genome sequencing (WGS)
is a powerful tool for obtaining genomic data, which can help
to determine sequence types (STs), serogroups, virulence, and
resistance gene profiles (Li et al., 2017). More importantly, several
molecular typing methods have been developed using WGS data
such as core-genome multiple locus sequence typing (cgMLST)
and single nucleotide polymorphism (SNP). Recently, WGS has
been used to determine the contamination and/or colonization

routes of pathogens within food processing environments (Food
and Agriculture Organization of the United Nations, 2016; Wang
et al., 2016). The aim of this study was (1) to identify the
transmission routes of L. monocytogenes using PFGE and WGS
via tracking L. monocytogenes isolates in an RTE meat processing
plant in Shanghai, as well as (2) to provide a basis for measures to
prevent and control the transmission of L. monocytogenes in RTE
meat processing plants.

MATERIALS AND METHODS

Processing of RTE Meat Products
An RTE cooked meat product processing plant in Shanghai was
used to investigate L. monocytogenes contamination in RTE-
processing environments and products as well as to track its
transmission route. The plant is the one of the most important
companies producing RTE meat products in Shanghai, and the
RTE meat products are common food in Shanghai. The RTE meat
products were processed as follows. Firstly, frozen meats were
bought from trade companies as raw materials. Secondly, water
thawing took place, and meats were pickled in a pickling liquid
with many accessory materials including oil, salt, sauce, vinegar,
herbs, and spices. Thirdly, the pickled meat products were boiled
to produce intermediate products. These intermediate products
were eventually processed by activities such as weighing and
cutting into shapes to create end products. Finally, end products
were packaged and transported to retail stores to be eventually
purchased and used by consumers.

Sampling
As shown in Table 1, a total of 48 samples were collected during
one visit in July 2019, including 21 processing environmental
samples, 10 processing facility samples, 3 raw materials, 3
accessory materials, 8 intermediate products, and 3 end products.
After the cleaning and sanitation procedures were complete,
the processed environmental samples and facility samples were
collected from associated surfaces using pre-moistened swabs
(Table 1). Air samples were collected using Anderson six-
stage sampler. The raw materials were frozen meat products
bought from trade companies. Intermediate products during the
processing stage included pickled products and boiled products.
The end products were RTE meat products, which were destined
for retail and consumption. Samples of these products were
delivered to the laboratory within 2 h, in a cold chain. Here,
the levels of aerobic plate count (APC) and coliforms were
determined, as well as the presence of L. monocytogenes.

Microbiological Analysis
Enumeration of APC and coliforms were determined according
to the food safety national standards GB4789.2 (2016) and
GB4789.3 (2016), respectively. L. monocytogenes was determined
according to the food safety national standard GB4789.30 (2016).
Regarding the standard, environmental swabs and raw and
accessory materials were placed into L. monocytogenes Broth 1
(LB1) for pre-enrichment at 30◦C for 24 h. Afterward, 100 µl
LB1 was placed into L. monocytogenes Broth 2 (LB2) at 30◦C for
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TABLE 1 | Sampling locations in an RTE processing plant and detection of
L. monocytogenes isolates.

Sampling Samples source/No. of
samples

Samples source/No.
of L. monocytogenes

Processing
environments

Waterb/2; power switchesb/2;
doorknobsb/1; floorsb/3;
wallb/1; worker’s hand and
shoesb/3; mopsb/3; air
samples from different
roomsd,e/6

–

Processing
facilities

Conveyor apparatusc/2; cutting
boardsd/2; knivesd/1; weighing
toolsd/2; inside surface of
facilitiesd/1; outside surface of
facilitiesd/1; packing bagd/1

Cutting boards/2;
conveyor apparatus/1;
knives/1; weighing
tools/2; inside surface
of facilities/1; outside
surface of facilities/1

Raw materials Thawing meat productsa/3 –

Accessory
materials

Pickling liquida/3 Pickling liquid/3

Intermediate
products

boiled productsb/5; cooled
productsc/3

–

End products RTE meat productsd/3 RTE meat product/1

Production unit:athawing room.
bThermal processing room.
cCooling room.
dPackaging room.
eSterilization room.

24 h. One inoculation loop of LB2 was streaked on Polymyxin
Acriflavine Licl Ceftazidime Esculin Mannitol Agar Plate
(PALCAM). The isolates were identified as L. monocytogenes by
standard biochemical tests (catalase; fermentation of dextrose,
xylose, rhamnose, and mannitol; β-hemolysis; motility; and
gram-staining). The positive control strain used in this study was
L. monocytogenes ATCC 19114.

PFGE
PFGE for L. monocytogenes was performed with the PulseNet
International protocol (Centers for Disease Control and
Prevention, 2013). Based on the protocol, L. monocytogenes
isolates were embedded into agarose plugs. Afterward,
slices of the agarose plugs were digested using AscI (Takara,
Dalian, China) for 3 h at 37◦C. XbaI-digested Salmonella
Braenderup H9812 DNA was used as a molecular size marker,
and electrophoresis was conducted using the CHEF-DRII
apparatus (Bio-Rad Laboratories, Hercules, CA, United States).
Images were captured using the Gel Doc 2000 system
(Bio-Rad) and were converted to TIFF files, which were
analyzed by the BioNumerics software (version 7.7 Applied
Maths, Kortrijk, Belgium). Finally, clustering was performed
using the unweighted pair group method with arithmetic
mean (UPGMA).

WGS
Genomic DNA was extracted using the DNeasy Blood &
Tissue Kit (QIAGEN, Germany) according to the manufacturer’s
protocol except that the cells were pre-lysed with lysozyme for
30 min at 37◦C and the proteinase K treatment was extended

to 30 min. A Qubit Fluorometer (Invitrogen, United States)
and a NanoDrop Spectrophotometer (Thermo Fisher Scientific,
United States) were used to determine the concentration,
quality, and integrity of the DNA. Sequencing libraries were
generated using the TruSeq DNA Sample Preparation Kit
(Illumina, United States). Afterward, genome sequencing was
performed using the Illumina Hiseq platform (Illumina).
Finally, the reads were trimmed and assembled using the
CLC Genomics Workbench v7.0 (CLC Bio, Aarhus, Denmark),
and the assembled contigs were exported as FASTA files for
further analysis.

Ten ST5 L. monocytogenes isolates from foods and three
isolates from patients were analyzed using WGS to be compared
to 10 isolates in this study.

Serotypes, MLST, and Pathogenic Island
Determination
Serotypes of L. monocytogenes isolates were identified using
a commercially available L. monocytogenes antiserum test kit
(Denka Seiken, Tokyo, Japan).

Multi-locus sequence typing (MLST) was defined by the
Pasteur scheme (Burall et al., 2011) and based on the sequence
analysis of the seven housekeeping genes, which were extracted
from WGS data using the BioNumerics software.

The virulence associated genes extracted from WGS data
using BioNumerics software were put into the Virulence Factor
Database (VFDB) (MOH Key Laboratory of Systems Biology of
Pathogen, Institute of Pathogen Biology, Beijing, China)1 in order
to identify LIPI-1, LIPI-2, LIPI-3, and LIPI-4.

cgMLST Characterization
cgMLST typing was conducted based on the profile of 1,748
coding loci in the BigsDB Pasteur cgMLST2. Cluster analysis
was conducted by applying a complete linkage using the
BioNumerics software.

Biofilm Formation
The biofilm formation test was conducted according to Pang and
Yuk (2018) with minor modifications. Stainless steel (304, Tull
Metals Company, Atlanta, GA) coupons (2 cm × 1 cm × 0.2 cm)
were soaked in an acetone solution for 3 h. After being wiped
clean, these coupons were soaked in 70% (v/v) ethanol overnight
and then rinsed with distilled water. After being air-dried
and autoclaved at 121◦C for 15 min, the coupons were ready
for use.

Biofilm was developed on sterile coupons in tryptic soy broth
with yeast extract (TSBYE). Firstly, the L. monocytogenes were
inoculated into TSBYE and cultured overnight at 26◦C. Secondly,
the inoculum was washed two times with 0.9% sodium chloride
and then added to 5 ml TSBYE at the final concentration of
105 CFU/ml for use on the coupons (one coupon in one tube).
Afterward, the inoculated TSBYE samples were incubated at
26◦C. After incubation for 24 and 48 h, the coupons were
removed and placed into 5 ml 0.9% sodium chloride and vortexed

1http://www.mgc.ac.cn
2http://bigsdb.pasteur.fr/listeria/listeria.html
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for 10 s. Next, the liquid was discarded, and the coupons were
placed into a centrifuge (12,000 rpm) with 10 ml 0.9% sodium
chloride and glass beads. Finally, after vortexing for 2 min, the
liquid was used to enumerate the biofilm cells.

Statistical Analysis
Each set of experiments was repeated three times, and its mean
values (APC, coliforms) and standard deviation were calculated
using the SPSS software (17.0, IBM, United States).

RESULTS

APC and coliforms testing in various samples revealed the
hygiene levels within the RTE meat processing plant. APC
levels were the highest in raw and accessory materials, while
coliforms levels were the highest in one processing facility
(Table 2). The level of APC in air samples from processing rooms
was 33 CFU/plate.

The L. monocytogenes isolate occurrence rate was 25% (12/48)
(Table 1). Briefly, eight (8/12, 66.7%) L. monocytogenes isolates
were detected in the processing equipment, which included
nearly all production area that had direct contact with products,
e.g., the cutting board, conveyor apparatus, knives, inside
and outside surfaces of the equipment, and weighing tools
(Table 1). The presence of L. monocytogenes was confirmed in
all RTE processing facilities irrespective of the observed hygiene
levels (Table 2).

The PFGE analysis of the comprised AscI divided the 12
isolates into 4 pulsotypes (PT1–4) (Figure 1). PT3 and PT4 values
were similarly high (97.9%). They accounted for 83.3% (10/12)
of the isolates. Two PTs (PT1, PT2) were presented by only one
single isolate. Seven isolates in PT3 and PT4 were processing
facility samples, two were from accessory material, and one was
from an end product.

The molecular typing using WGS data showed that 11 of
12 L. monocytogenes isolates belonged to ST5 (1/2b) with LIPI-
1 (Listeria pathogenicity island-1). These ST5 isolates were
compared with 10 other ST5 (1/2b) isolates from food products
and patients using cgMLST. Nine clusters (CL1-CL9) were
obtained (Figure 2). The L. monocytogenes isolates of three PTs
(PT1, PT3 and PT4) and one clinical isolate belonged to CL8 and
had 0–12 alleles based on cgMLST. However, >70 alleles were
found between the isolates in CL8 and other CLs.

After incubation at 26◦C for 24 h, the minimum of attached
cells of LM19047 isolates was 5.39 Log CFU/cm2, and the

TABLE 2 | Hygiene levels in different production units within the
meat establishment.

Samples source Hygiene level indicators

APC Coliforms

Raw and accessory materials 6.15 × 105 CFU/g <10 CFU/g

End product 4.6 × 105 CFU/g 3.5 × 102 CFU/g

Processing facility – 2.4 × 103 CFU/cm2

Air samples in processing rooms 33 CFU/plate –

maximum of attached cells of 60 LM19060 isolates was 6.50 Log
CFU/cm2, which were statistically different (p< 0.05) (Figure 3).
However, with increasing biofilm age, the attached cells of
LM19047 isolate increased up to 6.21 Log CFU/cm2, and that of
LM19060 decreased to 5.69 Log CFU/cm2. The ability of biofilm
forming of other isolates at different time was different (Figure 3).

DISCUSSION

Hygiene indicators (APC and coliforms) are used to reflect
specific food establishment practices and temporal influences
(Weatley et al., 2014). APC was confirmed in only one
processing facility, while only one end product was confirmed
with APC and coliform (Table 2). Furthermore, the mean
level of APC in air samples in RTE processing rooms was
33 CFU/plate, which can be permitted in the food processing
environment. These results indicated that good hygiene practices
were implemented in this plant.

Contrarily, 8 of the 12 L. monocytogenes isolates were
confirmed in 8 processing facilities, which presented the
predominant contamination scenarios. These findings
were similar to a previous study that was conducted on
L. monocytogenes colonized under these scenarios in a meat
establishment (Nastasijevic et al., 2017). The confirmation of
L. monocytogenes was irrespective of the observed hygiene
levels (for example, in contrast with the confirmation of
L. monocytogenes in processing facilities, only one processing
facility was confirmed with APC). Therefore, it was still difficult
to remove L. monocytogenes isolates in this plant although good
hygienic practices were implemented.

L. monocytogenes isolates were confirmed in accessory
materials, intermediate products, and an end product, but not
in raw materials, which suggested that L. monocytogenes isolates
might be introduced to these products from processing facilities
by cross-contamination. A similar contamination model reported
that when L. monocytogenes entered into food processing plants,
recontamination and persistence frequently occurred (Chambel
et al., 2007). L. monocytogenes isolates were able to survive
in niche areas of the facilities and could adapt to stress
factors such as low temperature and low pH (Melo et al.,
2015). Furthermore, L. monocytogenes isolates could persist in
processing equipment for a long time (Unnerstad et al., 1996).
As a result, contamination could exist for an extended period.

The epidemiological data showed that 12 L. monocytogenes
isolates were detected in the same RTE meat processing plant
at the same time, 10 of which shared an indistinguishable PT
(PT3 and PT4, respectively) (Figure 1). Furthermore, the PFGE
pattern of L. monocytogenes isolates in PT3 was highly similar
to those in PT4, which might suggest the same ancestor. These
results indicated clone transmission of L. monocytogenes isolates
occurred in processing facilities in this plant.

Though PFGE is a useful tool for the characterization of the
subtypes of L. monocytogenes isolates, it lacks discriminatory
power to distinguish among closely related bacterial strains,
which is essential for source tracking (Lomonaco and
Nucera, 2014). Thus, WGS was used for obtaining better
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FIGURE 1 | Relationships of the L. monocytogenes isolates based on PFGE. The 12 L. monocytogenes isolates were analyzed by PFGE using AscI.

FIGURE 2 | Minimum spanning tree of cgMLST data for 20 L. monocytogenes isolates. The multiplication by 10 in the tree represents the number of different alleles
among isolates. The corresponding data, including the name of the isolate (key), MLST type (ST), MLST clonal complex (CC), source, year, Listeria pathogenicity
island (LIPI-1, LIPI-2, LIPI-3, and LIPI-4), and cluster are shown alongside the dendrogram to the right.

information about the genetic similarity between isolates. The
indistinguishable L. monocytogenes isolates with the same
PFGE pattern could be differentiated by cgMLST (Figure 2),
which has a higher discriminatory power. cgMLST analysis of
L. monocytogenes isolates in three PTs (PT1, PT2, and PT3)
showed 0–8 allelic differences (Figure 2), these isolates could be
identified as the same clone (Ruppitsch et al., 2015). Furthermore,
seven of them were from processing facility samples, two from
accessory materials, and one from an end product, which
confirmed the clone transmission of L. monocytogenes isolates in
the processing environment. Furthermore, in-house evolution
occurred in L. monocytogenes isolates with one or eight alleles,
which suggested that these L. monocytogenes isolates might
have existed for a long period and also might be persistent in
processing environments.

WGS data showed that most L. monocytogenes isolates (11/12)
were ST5, CC5, 1/2b (Table 2). Our previous study indicated that

the predominant L. monocytogenes isolates from both food and
clinical isolates were ST5 in Shanghai, China (data unpublished).
Similarly, ST5 was the most predominant ST in RTE meat
product in Nanjing, China (Wang et al., 2015). Wang et al.
reported that the ST5 had been identified as an important ST
in China (Wang et al., 2012). There is no obvious difference
between the distribution of the frequency of CC5 in foods and
patients in France (Maury et al., 2016). The ST5 strains have
been globally disseminated in geographically distant areas, e.g.,
Austria, Canada, Australia, Switzerland, and Finland (Schmid
et al., 2014; Buchanan et al., 2017; Meier et al., 2017). Several
outbreaks caused by L. monocytogenes have been linked to ST5
isolates (Buchanan et al., 2017). It is worth noting that 1 clinical
isolate has 12 alleles with L. monocytogenes isolates obtained in
this study belonging to CL8, which were from the RTE meat
processing plant. Although there is a lack of epidemiological
data confirming the relationship between them, the results
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FIGURE 3 | Population (Log CFU/cm2) of 12 L. monocytogenes isolates biofilms at 26◦C on 24 and 48 h. Mean values at the different incubation time and different
isolates with different lowercase letters are statistically different (p < 0.05).

suggested the potential risk of pathogenicity that these isolates
pose to the consumers. Further studies are needed to uncover the
pathogenicity of ST5.

ST5 isolates have been previously reported to be dominant
in heavily contaminated food processing environments even
after efforts on intensifying hygienic measures (Muhterem-
Uyar et al., 2018). A further study indicated that ST5
plasmids harbored an efflux pump system (bcrABC cassette)
and heavy metal resistance genes, which possibly provide
a higher tolerance to disinfectants (Muhterem-Uyar et al.,
2018). These L. monocytogenes isolates might exist in biofilm
formation. L. monocytogenes biofilms could be formed on many
different surfaces during food processing operations and provide
a protective environment for bacterial survival and thereby
increase the risk of subsequent contamination (Colagiorgi
et al., 2017). Once established, L. monocytogenes biofilms act
as permanent sources of contamination and dispersal in the
environment and can lead to cross-contamination (Markkula
et al., 2005). In this study, 12 L. monocytogenes isolates from
the plant could form biofilm stainless steel coupons, which
presented typical food-contact surfaces in food processing plants
(Figure 3). These findings suggested that L. monocytogenes
isolates in the processing equipment could not be cleaned due
to biofilms formation, and L. monocytogenes biofilms might
be persistent in the plant. Therefore, continuous surveillance
and prevention strategies against L. monocytogenes should be
implemented in this RTE meat processing plant to ensure
food safety.

CONCLUSION

In this study, cross-contamination of L. monocytogenes in an
RTE meat plant has occurred. The food processing facilities

were heavily contaminated by ST5 (1/2b) isolates even though
good hygienic measures had been implemented in this plant.
The molecular typing and epidemiological data confirmed that
clone transmission occurred in the plant. Furthermore, the clone
had a strong ability to form biofilm in food-contact surfaces,
which might be the reason that it could not be eradicated in
the processing facilities. Furthermore, the ST5 (1/2b) isolates in
this study had potential pathogenicity for having 12 alleles with
clinical isolate. Therefore, continuous surveillance and effective
measures to eradicate L. monocytogenes should be taken to
ensure food safety.
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Colisitin-associated resistance in bacteria of food producing animals has gained
significant attention with the mcr gene being linked with resistance. Recently, newer
variants of mcr have emerged with more than nine variants currently recognized. Reports
of mcr associated resistance in Escherichia coli of poultry appear to be relatively limited,
but its prevalence requires assessment since poultry is one of the most important and
cheapest sources of the world’s protein and the emergence of resistance could limit our
ability to treat disease outbreaks. Here, 107 E. coli isolates from production poultry were
screened for the presence of mcr 1–9. The isolates were collected between April 2015
and June 2016 from broiler chickens and free-range layer hens in Rio de Janeiro, Brazil.
All isolates were recovered from the trachea and cloaca of healthy birds and an additional
two isolates were recovered from sick birds diagnosed with colibacillosis. All isolates
were screened for the presence of mcr-1 to 9 using PCR and Sanger sequencing
for confirmation of positive genes. Additionally, pulse field gel electrophoresis (PFGE)
analysis, avian fecal E. coli (APEC) virulence associated gene screening, plasmid replicon
typing and antimicrobial resistance phenotype and resistance gene screening, were also
carried out to further characterize these isolates. The mcr-1 gene was detected in 62
(57.9%) isolates (61 healthy and 1 APEC) and the mcr-5 gene was detected in 3 (2.8%)
isolates; mcr-2, mcr-3, mcr-4, mcr-6, mcr-7, mcr-8, and mcr-9 were not detected in
any isolate. In addition, mcr 1 and 5 positive isolates were phenotypically resistant to
colistin using the agar dilution assay (> 8ug/ml). PFGE analysis found that most of
the isolates screened had unique fingerprints suggesting that the emergence of colistin
resistance was not the result of clonal dissemination. Plasmid replicon types IncI2, FIB,
and B/O were found in 38, 36, and 34% of the mcr positive isolates and were the most
prevalent replicon types detected; tetA and tetB (32 and 26%, respectively) were the
most prevalent antimicrobial resistance genes detected and iutA, was the most prevalent
APEC virulence associated gene, detected in 50% of the isolates. Approximately 32%
of the isolates examined could be classified as APEC-like, based on the presence of 3
or more genes of APEC virulence associated path panel (iroN, ompT, hlyF, iss, iutA). This
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study has identified a high prevalence of mcr-1 in poultry isolates in Brazil, suggesting
that animal husbandry practices could result in a potential source of resistance to the
human food chain in countries where application of colistin in animal health is practiced.
Emergence of the mcr gene and associated colisitin resistance in production poultry
warrants continued monitoring from the animal health and human health perspective.

Keywords: mcr, colistin, Escherichia coli, antimicrobial resistance, poultry E. coli, broiler, layer

INTRODUCTION

In 2019, poultry was the most consumed meat worldwide,
representing 38.6% of the world’s production (OECD, 2021). The
United States is one of the largest producers and consumers of
chicken meat, responsible for 19.9% of the world’s production
and 17.0% of world’s consumption; Brazil, is the third largest
poultry producer at 13.7%, and the fourth largest consumer at
10% (USDA, 2019).

To meet the demand for chicken, developments in
production including genetic improvement of stock, nutrition,
poultry health, and handling have contributed to market
expansion, resulting in the exponential growth of the poultry
sector (FAO, 2013).

Escherichia coli is a Gram negative mesophilic member of
the enteric microbiota of mammals and most birds. Pathogenic
strains of E. coli are divided into groups according to clinical
symptoms and mechanisms of pathogenicity, that vary in their
incubation periods and duration of the disease (Kaper et al.,
2004).The production of virulence factors and the mechanisms
by which these factors lead to disease, allow the classification
of pathogenic E. coli strains into groups or pathotypes that
include intestinal strains (InPEC) and extra-intestinal (ExPEC)
strains. In birds, extra-intestinal disease associated with the avian
pathogenic E. coli (APEC) pathotype has been defined (Kaper
et al., 2004; Nolan et al., 2020).

APEC is the etiologic agent of colibacillosis, and the disease
can present itself two forms: acute, which is characterized by
septicemia and high mortality, and subacute, being characterized
by hepatitis, pericarditis, airsacculitis, salpingitis, and egg yolk
peritonitis in layers (Barbieri et al., 2017; Nolan et al., 2020).
It is estimated that 15 to 20% of the isolates from the poultry
microbiota can be considered potentially pathogenic because
they harbor certain virulence factors capable of causing disease
(Knöbl and Ferreira, 2009). In addition to having a high
prevalence, colibacillosis causes high rates of mortality and
carcass condemnation at slaughter, leading to great losses for
the poultry industry in Brazil. Ferreira and colleagues (Ferreira
et al., 2012), analyzed data from the Animal Products Inspection
Coordination, and identified colibacillosis (19.8%) as the primary
cause of bird carcass condemnations in 2010 in South Brazil
(Ferreira et al., 2012).

In Brazil as elsewhere, antimicrobial resistance among E. coli
has gained significant attention especially in light of production
losses and the potential exposure of consumers to AMR strains.
Poultry farms have been reported as sources of isolates harboring
extended spectrum beta lactamase (ESBL) resistance (Mesa et al.,
2006; Smet et al., 2008); high rates of resistance to tetracycline

(Miles et al., 2006; Barbieri et al., 2013), quinolones (Bezerra
et al., 2016), and trimethoprim/sulfonamides (Braga et al.,
2016; Bezerra et al., 2016). In order to reduce the potential
risks of AMR- associated with animal production, the use of
β-lactams, sulfonamides and tetracycline for farm animal use
in Brazil were banned as feed additives, and only approved for
therapeutic purposes with prescription (MAPA IN-26, July 9,
2009) (MAPA, 2009).

Colistin is a broad-spectrum antimicrobial member of the
polymyxin family that act on Gram negative bacteria, including
many species of Enterobacteriaceae. The two polymyxins used
therapeutically include polymyxin B and polymyxin E. Colistin
was widely used as a growth promoter in Brazil until 2016
(MAPA, 2017). However, it also has important human impact
because of the emergence of Enterobacteriaceae producing
carbapenemase enzymes that has resulted in reliance on colistin
human treatment (CDDEP, 2015).

Since the first report of mcr-1 (colistin) associated resistance
in E. coli from animals and humans in China (Liu et al.,
2016). Researchers worldwide have assessed historical isolates
to identify potential emergence dates for mcr and associated
colisitin resistance and current reports have identified isolates
as far back as 1980 may have harbored the gene (Shen et al.,
2016). mcr associated resistance has been identified in a range of
Enterobacteriaceae from humans and animals (Fernandes et al.,
2016a; Haenni et al., 2016; Irrgang et al., 2016; Nordmann et al.,
2016; Teo et al., 2016; Veldman et al., 2016).

For many years, resistance to colistin was not considered
a problem because clinical resistance was chromosomal and
restricted to hospitals. In 2015, Liu and colleagues (Liu
et al., 2016) found mcr-1 was localized to an IncI2 a
plasmid identified as pHNSHP45, that demonstrated high
in vitro transmission capacity between E. coli and other
Enterobacteriaceae including E. coli ST131, Klebsiella pneumoniae
ST11, and Pseudomonas aeruginosa.

It is believed that, regardless of selection pressure, plasmid
containing mcr-1 will likely be maintained in Enterobacteriaceae
populations, facilitating ease of dissemination to the human
population. The high prevalence of the mcr-1 gene in Escherichia
coli from meat cuts (14.9%) and birds (4.9% to 28%) suggests
that the gene is widely disseminated in farm animals where
colisitin is used and can be subsequently transmitted to man,
because colisitin as an antimicrobial is rarely used in humans
(Liu et al., 2016).

Escherichia coli -related virulence factors include adhesins,
invasins, toxins, iron uptake systems (siderophores), which are
involved in colonization, and survival in the host (Kaper et al.,
2004). The use of molecular techniques for detecting these genes
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has allowed the characterization of bacterial virulence (Johnson
et al., 2008; Barbieri et al., 2015).

Johnson and colleagues (Johnson et al., 2008), studied
the prevalence of 46 virulence genes in APEC and avian
fecal E. coli (AFEC) (fecal commensal avian) strains, and
found that the siderophore Salmochelin receptor virulence
gene (iroN), a gene encoding in the episomal external outer
membrane protein (ompT), gene encoding hemolysin (hlyF), the
increased serum survival gene (iss), and aerobactin siderophore
receptor gene (iutA) had a significantly greater prevalence
in APEC compared to AFEC strains. Most APEC harbored
three or more of these genes, demonstrating their presence
can be used to identify potentially pathogenic strains for birds
(Johnson et al., 2008). Other virulence factors of APEC include
acquisition of iron through siderophores and other means
that appear to play an important role in the pathogenicity of
strains, especially in septicemia associated organisms allowing
APEC to survive in serum where the iron concentration
is extremely low (Janssen et al., 2001; Caza et al., 2008)
directly influencing their pathogenesis (Gao et al., 2012).
The genetic determinants involved in the pathogenicity of
the APEC strains are, however, not yet fully understood
(Maluta et al., 2016).

The overall goal of this study was to assess E. coli isolates
recovered from the feces and trachea of healthy broilers in Brazil
for the presence of colistin-associated resistance by mcr and
other resistance determinants and to characterize all isolates for
virulence and associated resistance traits. In addition, PFGE was
performed to determine any potential genetic relatedness though
DNA fingerprint analysis.

MATERIALS AND METHODS

Isolate Collection
The analysis consisted of one hundred and seven E. coli isolates
collected between April 2015 and March 2016 from two broiler
and one layer farms located in the Rio de Janeiro area of Brazil.
All isolates were recovered from the trachea and cloaca of healthy
birds. An additional two isolates were recovered from sick birds
(Blepharitis B46; celoma cavity B157). All isolates were recovered
from 30 to 41-day-old broiler chickens and free-range layer hens
at 62 weeks-of age as detailed in Supplementary Table 1.

A total of 120 swab samples, 60 from cloaca and 60 from
trachea, were collected on two broiler chicken farms (1 and 2)
and 30 samples from the laying hens at farm 3.

Swab samples were collected from the cloaca or trachea of
healthy birds and placed in Stuart media (Absorve R© Jiangsu,
China) for transportation. At the lab, all swabs were plated
on MacConkey (MAC, HiMedia R©, Mumbai, India) agar and
Eosin Methylene Blue agar (EMB, HiMedia R©) with incubation
at 37◦C for 18–24h. All suspect colonies (1 colony per sample)
were confirmed as E. coli using MALDI-TOF MS (LT Microflex
Bruker, Bruker, Germany). E. coli positive strains for MALDI-
TOF were confirmed using a polymerase chain reaction (PCR)
targeting the 16S DNA as described previously by Lamprecht
et al. (Lamprecht et al., 2014). All strains were stored at –80◦C

in Luria-Bertani (LB) (BD DifcoTM, Sparks, United States) broth
with 20% glycerol until use.

mcr PCR Analysis
All isolates were screened for the presence of the mcr-1 to 9 gene
using protocols recently described elsewhere (Supplementary
Table 2) (Liu et al., 2016; Xavier et al., 2016; Borowiak et al.,
2017; Carattoli et al., 2017; Yin et al., 2017; Kieffer et al., 2019;
Yang et al., 2019). DNA was extracted from all strains using the
boil prep method and PCR reaction preparation as described
previously (Barbieri et al., 2013). All PCR amplifications were
carried out under the following conditions 94◦C for 10 min
followed by 30 cycles of 94◦C for 30 sec; 58◦C for 30 sec and 72◦C
for 2 min; with a final extension of 72◦C for 10 min.

Polymerase chain reaction products generated were subjected
to electrophoresis in 2% (w/v) agarose gels (LE Agarose, Lonza,
GA, United States) in 1X TAE buffer and run at 120V for 2 h.
A Hi-Lo molecular weight marker (100 bp; Minnesota Molecular,
MN) was used as the size standard; we used a laboratory strain
(7-49-1) as a positive control for mcr-1 (Barbieri et al., 2017)
and DNAse/RNAse free water was used as the negative control.
Gels were stained in 0.25% ethidium bromide (Fisher Scientific,
Asheville, NC), and bands corresponding to each gene present
were recorded using a UV Imager (Omega Fluor, Aplegen,
Pleasanton, CA).

Sixty-two PCR products positive for the gene mcr-1 and 3 PCR
products positive for mcr-5 were selected for sequencing. The
full gene PCR product was treated with ExoSAP-IT R© (Affymetrix,
Santa Clara, CA) to remove primer and remaining DNTPs
following manufacturer’s protocols and submitted to Iowa State
University’s DNA facility for Sanger sequencing of the forward
and reverse strands. Sequences generated were imported into
Geneious R© software and aligned to compare across the isolates
positive for the fragment.

Antimicrobial Resistance Analysis
The antimicrobial susceptibility of all E. coli isolates was
examined using the disk diffusion method according to the
Clinical and Laboratory Standards Institute (CLSI) guidelines
(CLSI, 2017), using Escherichia coli strain ATCC 25922 as a
control. The 8 antimicrobial agents tested included: amoxicillin
(AMO; 25 µg), ceftazidine (CAZ; 30 µg), cefoxitin (CFO; 30 µg),
cefotaxime (CTX; 30 µg), aztronam (ATM; 30 µg), imipenem
(IPM; 10 µg), cefepime (CPM; 30 µg), and a combination of
amoxicillin and clavulanic acid (AMC; 20+ 10 µg).

The breakpoints used were obtained from CLSI (CLSI, 2017)
for all antimicrobials (Supplementary Table 3A).

Colistin Antimicrobial Susceptibility
Analysis
To assess the role of colistin resistance in strains positive for the
mcr gene all strains were subjected to antimicrobial susceptibility
analysis to colistin sulfate (Alfa Aesar, Ward Hill, MA) using
the agar dilution assay. Overnight cultures of each strain were
grown on Tryptone Soya Agar (TSA) plates and colonies selected
were adjusted to an OD 0.5 Mc Farland in sterile water using an
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nephelometer (Sensititre); then 10 µl of the suspension was added
to 11 µl of Mueller Hinton (MH) broth and mixed well using a
vortex. 10 µl of this suspension was used to spot inoculate the
agar dilution plates (Turlej-Rogacka et al., 2018).

The agar dilution plates tested antimicrobial resistance to
colistin in doubling dilutions at the following dilution range 0.5
to 32 µg/ml. Once all plates were inoculated as appropriate, they
were allowed to dry and incubated at 37◦C for 18h. Plates were
observed for growth and minimum inhibitory concentrations
(MIC’s) were defined as the lowest concentration of antimicrobial
to inhibit growth of the test strains.

Antimicrobial Associated Resistance
Genes Screening
All isolates were tested for the presence of the antimicrobial
associated resistance genes: silP; intI1; pcoD; sulI; ISEc12; aad;
aac3-VI; qacE11; blaTEM; aac3-VI; tetB; tetA; groEL; aph(3)IA;
dfr17 (Zhao et al., 2001; Brinas et al., 2002; Maynard et al., 2004;
Grobner et al., 2009) using multiplex PCR and primers described
in previous studies of our lab (Supplementary Table 2).

Plasmid Replicon Detection
Plasmids potentially associated with virulence and/or resistance
in these test isolates were assessed using the plasmid replicon
typing protocols as described by Carattoli et al. and Johnson
and Nolan (Carattoli et al., 2005; Johnson and Nolan, 2009);
in addition, IncI2 (Zhao and Zong, 2016) using standard
multiplex PCR protocols and primers as described previously (see
Supplementary Table 2).

Genotyping Avian E. coli for iroN, ompT,
hlyF, iss, and iutA
Escherichia coli strains were genotyped by multiplex PCR as
previously described (Johnson et al., 2008). Reactions were
performed as follows: denaturation for 2 minutes at 94◦C; 25
cycles of 30 s at 94◦C, 30 s at 63◦C and 3 min at 68◦C, followed by
a final extension step of 10 min at 72◦C. PCR products were run
on a 2% agarose gel as described above. APEC O1 strain was used
as the positive control and sterile water in place of DNA for the
negative control.

Phylogenetic Typing
Samples of the DNA stock from each strain were also subjected
to phylogenetic typing using the revised protocols described by
Clermont et al. (Clermont et al., 2013). Here, a 25 µl PCR reaction
volume as described above with the following PCR conditions:
denaturation for 4 minutes at 94◦C followed by 30 cycles of 5s
at 94◦C; 30s at 64◦C (group E), or 63◦C (quadruplex) or 66◦C
(group C) and 30s at 72◦C with a final extension at 72◦C for
5 min. Polymerase chain reaction products were run on a 1.5%
agarose gel as described above.

Pulsed Field Gel Electrophoresis
Analysis
All strains were subjected to molecular subtyping using
PFGE. Isolates were analyzed using the method of Ribot et al.

and Hussein et al. (Ribot et al., 2006; Hussein et al., 2013).
Preparation, lysis, washing of plugs, and XbaI restriction
were performed according to the PulseNet protocol.
Salmonella Braenderup H9812 was used as the size standard.
Macrorestriction patterns were compared using the BioNumerics
Fingerprinting software (Ver 6.6, Applied Math, Austin, TX).
The similarity index was calculated using the Dice coefficient,
with a band position tolerance of 1% and an optimization of 0.5%.

Statistical Analysis
Data was analyzed using non-parametric tests due to asymmetry
in the distribution of genes or other traits used for analysis.

For analysis of the association between the presence of two
single genes or antimicrobial resistance traits (Supplementary
Table 4A) were tested by use of the chi-square test.

For the analysis of virulence and resistance genes harbored
by strains examined in the study the number of genes were
treated as quantitative variables and the data was analyzed using
non-parametric tests also due to asymmetry in the distribution
of these genes. Direct comparisons (where possible) between
two groups (Supplementary Tables 4B,C) were made using the
Mann-Whitney U test.

All statistical analysis was performed using GraphPad Prism
(Version 7.0d) for MAC OS X (GraphPad, La Jolla, CA) or
IBM SPSS Statistics (Version 26.0) for MAC OS X (IBM
Corp., Armonk, NY). Statistical significance was accepted when
p < 0.05.

RESULTS

Isolate Distribution
A total of 175 suspect E. coli strains were isolated from farm 1, 2,
and 3; 80/175 from farm 1 (45.7%), 83/175 (47.4%) from farm 2,
and 12/175 (6.5%) from farm 3.

Escherichia coli isolates were confirmed using the MALDI
TOF MS technique for 107 isolates, with scores of 2.0 to 2.495.
E. coli positive strains for MALDI-TOF were confirmed using a
PCR targeting the 16S DNA. A total of 107 E. coli isolates were
used for the study. Based on distribution profile by collection
site, it was observed that in farm 1, a total of 26/107 (24.3%)
of the isolates came from the cloaca, while 20/107 (18.7%) were
recovered from the trachea. On farm 2, 27/107 (25.3%) of the
isolates were isolated from the cloaca and 21/107 (19.6%) came
from the trachea. On farm 3, 8/107 (7.5%) of the isolates came
from the cloaca while 3/107 (2.8%) were recovered from the
trachea. Two additional E. coli isolates were included in this
analysis recovered from sick birds diagnosed with colibacillosis
on necropsy (Blepharitis B46 farm 1; celoma cavity B157 farm 3)
(Figure 1 and Supplementary Table 1).

Antimicrobial Resistance Analysis
Data from resistance analysis based on the disk diffusion assay
are shown in Figure 1 and Table 1. Data are presented based on
source of origin (cloaca vs. trachea) and farm (Figure 2A).

On farm 1, 100% (26/26) of the E. coli strains recovered
from the cloaca showed phenotypic resistance to colistin (COL),
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FIGURE 1 | Pulsed-field gel electrophoresis (PFGE) profile of 107 avian Escherichia coli isolates. The PFGE dendrogram was constructed by the unweighted-pair
group method with arithmetic averages. The scale indicates levels of similarity within this set of isolates based upon XbaI enzyme restriction digestion of total
bacterial DNA. The column Sample shows isolate designation; the column flock, indicates the farm the isolate came from (1–3); the column Age, days or weeks old
of the bird; bird shows type of bird; Sample Site, site of bacterial isolation; the subsequent columns depict the antimicrobial resistance and PCR results for virulence
genes (VAGs) tested, with presence indicated in black and absence indicated in white; Phylo, phylogenetic group.
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TABLE 1 | Prevalence of genes tested in all samples and in mcr positive samples.

All samples mcr positive

n % n %

Antimicrobial Resistance

Colistin COL 102 95.33 62 100.00

Imipenem IPM 7 6.54 3 4.84

Amoxicillin AMC 10 9.35 4 6.45

Ciprofloxacin CIP 41 38.32 22 35.48

Cefoxitin CFO 16 14.95 7 11.29

Gentamicin GEN 45 42.06 28 45.16

Sulphonamides and trimethoprim SUT 76 71.03 45 72.58

Amoxicillin and clavulanic acid AMO 40 37.38 23 37.10

Antimicrobial Associated Resistance Genes

Colistin resistance mcr1 62 57.94 62 100.00

Silver resistance silP 7 6.54 6 9.68

Integrase intI1 11 10.28 8 12.90

Copper resistance pcoD 15 14.02 10 16.13

Sulfa resistance sulI 17 15.89 9 14.52

Transposase ISEc12 14 13.08 6 9.68

Aminoglycoside resistance aadA 12 11.21 7 11.29

Gentamicin resistance aac3-VI 8 7.48 6 9.68

Quarternary amonium resistance qac delta1 17 15.89 12 19.35

Ampicillin resistance blaTEM 16 14.95 9 14.52

Gentamicin resistance aac3-VI 13 12.15 9 14.52

Tetracycline resistance tetB 24 22.43 16 25.81

Tetracycline resistance tetA 30 28.04 20 32.26

Chaperone groEL 30 28.04 21 33.87

Gentamicin resistance aph(3)IA 22 20.56 12 19.35

Trimethoprim resistance dfr17 29 27.10 16 25.81

APEC Minimal Predictors

Salmochelin siderophore receptor gene iroN 24 22.43 15 24.19

Episomal outer membrane protease
gene

ompT 36 33.64 19 30.65

Putative avian hemolysin F hlyF 33 30.84 17 27.42

Episomal increased serum survival
gene

iss 42 39.25 23 37.10

Aerobactin siderophore receptor gene iutA 53 49.53 31 50.00

3 or more predictors 33 30.84 20 32.26

Plasmid Replicon Genes

Plasmid replicon typing incI2 34 31.78 23 37.10

Plasmid replicon typing T 0 0.00 0 0.00

Plasmid replicon typing P 11 10.28 4 6.45

Plasmid replicon typing A/C 1 0.93 0 0.00

Plasmid replicon typing FIC 2 1.87 0 0.00

Plasmid replicon typing B/O 30 28.04 21 33.87

Plasmid replicon typing Y 1 0.93 0 0.00

Plasmid replicon typing FIB 39 36.45 22 35.48

Plasmid replicon typing FIA 3 2.80 1 1.61

Plasmid replicon typing FIIA 0 0.00 0 0.00

Plasmid replicon typing W 0 0.00 0 0.00

Plasmid replicon typing K/B 5 4.67 2 3.23

Plasmid replicon typing L/M 16 14.95 10 16.13

Plasmid replicon typing Hl2 8 7.48 6 9.68

Plasmid replicon typing N 13 12.15 9 14.52

Plasmid replicon typing HII 8 7.48 7 11.29

Plasmid replicon typing X 1 0.93 0 0.00

Plasmid replicon typing II 24 22.43 14 22.58

(Continued)

TABLE 1 | Continued

All samples mcr positive

n % n %

Phylogenetic Typing

Phylotype group A 21 19.62 12 19.35

Phylotype group B1 41 38.32 22 35.48

Phylotype group B2 0 0.00 0 0.00

Phylotype group C 2 1.87 1 1.61

Phylotype group D 13 12.15 9 14.52

Phylotype group E 12 11.21 6 9.68

Phylotype group F 16 14.95 10 16.13

73% (19/26) to Sulfa-trimethoprim (SUT), 57% (15/26) to
ciprofloxacin (CIP), 57% (15/26) to AMO, 30% (8/26) to
gentamicin (GEN), 15% (4/26) to CFO, 11% (3/26) to AMC and
7% (2/26) to imipenem (IMP). Of the 21 strains of E. coli from
trachea 95% (20/21) showed phenotypic resistance to COL, 76%
(16/21) to SUT, 38% (8/21) to AMO, 28% (6/21) to CIP, 28%
(6/21) to GEN, 19% (4/21) to CFO, 14% (3/21) to IMP and 4%
(1/21) to AMC (Figure 2A).

On farm 2, 92% (25/27) of E. coli strains from cloaca were
resistant to COL, 77% (21/27) to SUT, 51% (14/27) to GEN, 37%
(10/27) to AMO, 22% (6/27) to CIP, 22% (6/27) to AMC and
18% (5/27) to CFO. Of the 21 strains originating from trachea
95% (20/21) showed resistance to COL, 85% (18/21) to SUT, 80%
(17/21) to GEN, 33% (7/21) CIP, 28% (6/21) AMO and 14% (3/21)
CFO (Figure 2A).

On farm 3, 87% (7/8) of the E. coli from the cloaca were
resistant to COL, 25% (2/8) to CIP, 12% (2/8) to SUT, while in
strains from trachea 100% (4/4) showed phenotypic resistance
to COL, 75% (3/4) to CIP, 25% (1/4) to IMP, 25% (1/4) to
SUT (Figure 2A).

Phenotype analysis of multidrug resistance found 18.7%
(Nordmann et al., 2016) of the isolates were resistant to five
antimicrobial agents or more; 19.6% (Haenni et al., 2016) were
resistant to 4; 27.1% (Caza et al., 2008) were resistant to 3; 17.8%
(Shen et al., 2016) were resistant to 2 and 14.0% (MAPA, 2009)
were resistant to 1 and only 2.8% (FAO, 2013) isolates were
susceptible to all agents tested (Table 2, and Supplementary
Table 3). Of note, however, 3 strains was found to be resistant to
7 different antimicrobials (Table 2). The most frequent profile of
resistance were COL, present in 15 isolates; COL, SUT present
in 11 isolates and COL, SUT, GEN present in 12 isolates. No
isolates were resistant to all eight antimicrobials tested (Table 2,
Supplementary Table 3).

Among the strains of E. coli that displayed resistance to
AMC, AMO, and CFO in the disk diffusion test, 52/107
(48.59%) were assessed for β-lactamase activity. 12/52 (23%)
strains that presented phenotypic profiles compatible with those
of ESBL producers, representing 11% of the total evaluated
strains (12/107). In addition, two strains showed an AmpC
production profile (2/52; 3%) and five (5/52; 9%) showed results
compatible with the coproduction of both ESBL and AmpC
enzymes, representing 2% (2/107) and 4% (5/107), of all strains
examined. When the prevalence per farm was assessed, 27%
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FIGURE 2 | Gene prevalence separated by organ and farm (A) Prevalence of Antimicrobial Resistance; (B) Prevalence of Genes Encoding Antimicrobial Resistance;
(C) Prevalence of Genes Encoding Virulence Factors; (D) Prevalence of Plasmid Replicon Genes.
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TABLE 2 | Antimicrobial resistance profiles among isolates examined.

Profile Number of Strains

COL, SUT, GEN, CIP, AMO, CFO, AMC 3

COL, SUT, GEN, CIP, AMO, CFO 3

COL, SUT, GEN, CIP, AMO, IPM 2

COL, SUT, GEN, CIP, AMO 5

COL, SUT, GEN, CIP, CFO 1

COL, SUT, GEN, CIP, IPM 1

COL, SUT, GEN, CIP 4

COL, SUT, GEN, AMO, CFO, AMC 1

COL, SUT, GEN, AMO 1

COL, SUT, GEN, AMO 3

COL, SUT, GEN, CFO 3

COL, SUT, GEN, AMC 1

COL, SUT, GEN 12

COL, SUT, CIP, AMO, CFO, AMC 1

COL, SUT, CIP, AMO, CFO 1

COL, SUT, CIP, AMO, AMC 1

COL, SUT, CIP, AMO 6

COL, SUT, CIP, IPM 1

COL, SUT, CIP 6

COL, SUT, AMO, IPM 1

COL, SUT, AMO 5

COL, SUT, CFO 1

COL, SUT 11

COL, GEN, CIP 2

COL, GEN, AMO, CFO, AMC 1

COL, GEN, AMO, AMC 1

COL, CIP, AMO 1

COL, CIP 3

COL, AMO, AMC 1

COL, AMO 2

COL, IPM 2

COL 15

SUT, GEN, AMO 1

SUT, CFO 1

Susceptible 3

amoxicillin (AMO), ceftazidine (CAZ), cefoxitin (CFO), cefotaxime (CTX), aztronam
(ATM), imipenem (IPM), cefepime (CPM), and a combination of amoxicillin and
clavulanic acid (AMC).

(13/47) of the E. coli strains from farm 1 showed beta-lactamase
production, 61% (8/13) ESBL, 15% (2/13) AmpC, and 23% (3/13)
co-production of both enzymes, while on farm 2 10% (5/48)
showed beta-lactamase production, with 60% (3/5) ESBL only
and 40% (2/5) displaying enzyme coproduction. On farm 3, 8%
(1/12) displayed an ESBL production profile only.

Using the Mann-Whitney U test, to compare antimicrobial
resistance prevalence with farm of isolation we found some
significant relationships (p < 0.05) between certain groups,
including antimicrobials such as GEN and SUT in cloaca vs.
trachea; IPM, GEN, SUT, and AMO in broiler vs. free range;
IPM, CIP, and GEN in farm 1 vs. farm 2; GEN, SUT, and
AMO in farm 1 vs. farm 3; IMP, GEN, and SUT in farm 2
vs. farm 3 (Supplementary Table 4B). Similarly, using the chi-
square test (Supplementary Table 3A), that allows comparison
between the presence of two antimicrobial resistances analyzed

in all strains, significant associations were observed for some
specific antimicrobials such as AMO and a number of other
antimicrobials including AMC, CIP, CFO, and SUT (p < 0.05).

Colistin Antimicrobial Susceptibility
Analysis and mcr Analysis
Among the 107 E. coli strains evaluated, 102 (95.33%) were
resistant to colistin using the agar dilution assay (> 8ug/ml). We
found that the mcr-1 gene was detected in 62 (57.94%) isolates
(61 healthy and 1 APEC); and the mcr-5 gene was detected in 3
(2.8%) isolates; mcr -2, 3, 4, 6, 7, 8, and 9 were not detected in any
isolate. However, 35% (37/102) displayed phenotypic resistance
to colisitin without genotype confirmation of the presence of
mcr-1 (Figure 1 and Table 1).

Using the Mann-Whitney U test, to compare mcr prevalence
with farm of isolation we found significant relationships
(p < 0.05) between certain groups, including mcr-1 detection on
farm 1 vs farm 2 and farm 2 vs. farm 3 (Supplementary Table 4B).

The sequence analysis of the 62 isolates harboring mcr-1 (61
healthy and 1 APEC) found that 54 isolates had the exact same
sequence compared with mcr-1 in GenBank (KU886144.1) and
8 isolates have an amino acid change (H452Y) at position 452
(NG_052663.1) (Figure 3). The sequence analysis of the 3 isolates
with mcr- 5 have the identical sequence to mcr-5 in GenBank
(NG055658.1) (Figure 4).

Antimicrobial Associated Resistance
Genes Screening
Among the 107 E. coli strains evaluated, 94 (88%) harbored some
antimicrobial resistance-associated gene. One antimicrobial
resistance gene was detected in 18% (19/107) of the E. coli
examined, two genes were detected in 17% (18/107); three
genes in 16% (17/107); four genes in 15% (16/107); five genes
in 7% (8/107); six genes in 6% (6/107); seven genes in 5%
(5/107); eight genes in 2% (2/107); nine genes in 2% (2/107)
and ten antimicrobial resistance genes in 0.9% (1/107) of strains
examined (Figure 1 and Table 1).

Regarding resistance to the aminoglycoside gentamicin, there
was a correlation between phenotypic and genotypic resistance
in 40% (18/45) of the strains evaluated. The aadA gene was
significantly (p < 0.05) associated with the phenotypic resistance
observed with 75% (9/12) of the strains that had the gene,
expressed resistance in the disk diffusion assay, but resistance
was not statistically associated with the aac3-VIb genes with 50%
(4/8) positive, aphAI (FAO, 2013) with 50% (11/22) positive
and aac3-VIa with 38% (5/13) positive. It was also noted
that some isolates harbored more than one gene associated
with gentamicin (aminoglycoside) resistance (Figure 2B and
Supplementary Table 4A).

Sulfa-trimethoprim was the second antimicrobial with the
highest prevalence of phenotypic resistance in the disk diffusion
assay (71%; 76/107), with phenotypic and genotypic correlation
in 15.78% (12/76) of the strains evaluated. 12/17 (71%) strains
that had the sul1 gene and 20/28 (71%) of the strains that had the
dfr-17 gene showed phenotypic resistance to SUT. However, 64%
(49/76) showed phenotypic resistance and but did not harbor
either of the two genes (Figure 1 and Table 1).
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FIGURE 3 | Protein Alignment of mcr-1 positive strains examined in this study.

The blaTEM gene was detected in 15% (16/107) of E. coli
strains examined, however, only 25% (4/16) of strains that had the
gene were considered to produce ESBL in phenotypic tests, this
can be explained because there are extended spectrum variants
of the gene that were not assayed by the PCR assays used in our
analysis. The prevalence of resistance-related genes is shown in
Table 1.

The gene that encodes the integrase enzyme (intl1) was
detected in 10% (11/107) of E. coli strains and 13% (8/62) of
mcr-1 positive strains. The presence of the gene encoding the
transposase enzyme (ISEc12) was also detected in 13% (14/107)
of E. coli strains and 10% (6/62) of the positive mcr-1 strains.
tetA and tetB (32 and 25%) were the most prevalent antimicrobial
resistance genes in mcr-1 positive isolates.

Using the Mann-Whitney U test, to compare antimicrobial
resistance prevalence with farm of isolation we found some
significant relationships (p < 0.05) between certain groups,
including antimicrobial resistance genes such as dfr17 on farm
1 vs. farm 2; (Supplementary Table 4B). Similarly, using the chi-
square test (Supplementary Table 4A), that allows comparison
between the presence of two antimicrobial resistances analyzed
in all strains, significant associations were observed for some

specific antimicrobial resistance genes such as qac11 and several
other antimicrobial resistance genes including sulI, ISEc12, and
aadA (p < 0.05).

Plasmid Replicon Detection
Among the seventeen plasmid incompatibility groups tested,
the three most prevalent included IncI2, B/O, and FIB with
32% (34/107), 28% (30/107), and 36% (39/107) prevalence,
respectively. (Table 1 and Figure 2D). When the prevalence of
these plasmids was correlated with the presence of the mcr-1
gene, a greater occurrence of this resistance gene was observed
in the strains where these plasmids were detected separately
and concomitantly (Supplementary Table 4A). Significant
associations were observed for the detection of mcr-1 and the HII
plasmid replicon (p < 0.05).

IncI2, FIB, and B/O (37, 35, and 34%) were the most prevalent
replicon types detected in the mcr-1 positive isolates. We could
not confirm that the mcr-1 gene was contained on the plasmid,
integron or transposon as this analysis was beyond the scope
of the current study, however, the occurrence of these elements
in positive mcr-1 strains can be considered a risk factor, since
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FIGURE 4 | Protein Alignment of mcr-5 positive strains examined in this study.

the mcr-1 gene can move to these mobile genetic elements,
facilitating the dispersion of the gene. Such characteristics were
observed in the B48 strain, where the genes mcr-1, intl1, ISEc 12,
and plasmids IncI2, and FIB were detected simultaneously.

Using the Mann-Whitney U test, to compare plasmid replicon
prevalence with farm of isolation we found some significant
relationships (p < 0.05) between certain groups, including
plasmid replicon such as II in the cloaca vs. trachea; IncI2, FIB,
and B/O in broiler vs. free range birds; P, FIB, and HII on farm
1 vs. farm 2; IncI2 and FIB on farm 1 vs. farm 3; IncI2 on farm
2 vs. farm 3 (Supplementary Table 4B). Similarly, using the chi-
square test (Supplementary Table 4A), that allows comparison
between the presence of two plasmid replicons analyzed in all
strains, significant associations were observed for some plasmid
replicons such as HII and a few other plasmid replicons including
P, HI2 and L/M (p < 0.05).

Genotyping Avian E. coli for iroN, ompT,
hlyF, iss, and iutA
Within the group of virulence genes used to characterize strains
such as APEC, the gene with the highest prevalence was iutA,
followed by iss, ompT, hlyF, iroN with 49, 39, 33, 30, and 22%,
respectively (Table 1 and Figure 2C). Of the 107 strains of E. coli
analyzed, 31% (33/107) were characterized as APEC-like, as they
harbored three or more virulence genes of the path panel. These
strains, however, were not isolated from lesions of diseased birds
but rather healthy birds.

The highest prevalence of strains characterized as APEC-like
occurred on farm 1 (40%; 19/47), 38% (10/26) of cloaca and 42%
(9/21) of trachea, on farm 2, 25% (12/48) of the strains were
considered APEC-like, 22% (6/27) of the cloacal strains and 28%
(6/21) of the trachea (Figure 2C). On farm 3, 16% (2/12) of the
strains were considered potentially pathogenic, with a greater
proportion detected in the trachea (25%; 1/4) compared with the
cloaca (12%; 1/8). iutA, was the most prevalent APEC virulence
associated gene in mcr-1 positive isolates, present in 50% of the
isolates and just considering mcr-1 positive isolates, 32% could be
classified APEC-like (Figure 2C).

Phylogenetic Typing
Most strains were classified as belonging to phylogenetic group
B1 (38%; 41/107), followed by group A (20%; 21/107), group F
(15%; 16/107), group D (12%; 13/107), group E (11%; 12/107)
and group C (2%; 2/107). None of the isolates were identified as
phylogenetic group B2 (Table 1).

Thirty-four strains were considered APEC-like, with 9 (26%)
and 7 (20%) distributed in phylogenetic groups B1 and F,
respectively. The mcr-1 gene was detected in 62 strains, 22 (35%)
belonging to phylogenetic group B1 and 10 (16%) belonging to
phylogenetic group F.

The prevalence of other phylogenetic groups and the
correlation between the characterization as APEC-like and the
presence of the mcr-1 gene can be seen in Table 1 and
Supplementary Table 4D.
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Pulsed Field Gel Electrophoresis
Analysis
When evaluating the results obtained by Pulsed-field Gel analysis,
there was great genetic diversity within the strains of E. coli
examined. However, there was 100% identify between isolates
B74, B75, B80, between B66 and B100 and between B39 and
B42 (Figure 1).

Strains B74, B75, and B80, were isolated from trachea of
birds on farm 2, were resistant to COL, GEN, SUT, and positive
for the resistance genes mcr-1, blaTEM, tetA, tetB. Variability
was observed in the presence of the genes intl-1, pcoD, sulI,
aadA, aac3-VIb, qacE1. As for plasmids, all were positive for
the replicons B/O and FIB, and only the B80 strain was positive
for I1. As for the presence of virulence genes, iroN and iutA
were detected in the three strains. Regarding the classification of
the phylogenetic group, all three were classified as phylogenetic
group F (Figure 1).

Strains B66 and B100 were isolated from the cloaca of birds
on farm 2, both showed phenotypic resistance to COL and SUT,
with only strain B66 showing resistance to CIP. The B66 strain
harbored the tetA resistance gene, while the mcr-1 gene was
detected only in B100. As for the detection of plasmid replicons,
IncI2, L/M, HI2, N, HII were detected only in the B100 strain.
Virulence genes were not detected in either strain and both
strains classified as phylogenetic group B1 (Figure 1).

Evaluating the profile of strains B39 and B42, it was found
that both were isolated from the trachea of birds on farm 1
and presented phenotypic resistance to COL, however, the mcr-
1 gene was detected only in B42, while the tetA gene was detected
in both. The IncI2 plasmid and B/O plasmid replicons were
detected in both strains, however, plasmid replicons FIB and II
were present only in B42. As for virulence genes, iss and iutA
were detected only in the B42 strain and both strains classified
as phylogenetic group B1 (Figure 1).

DISCUSSION

When analyzing the phenotypic resistance against the tested
antimicrobials, it was found that E. coli from all three farms
studied showed a high prevalence of colistin resistance (100%
farm 1 cloaca, 95% farm 1 trachea, 92% farm 2 cloaca, 95%
farm 2 trachea, 87% farm 3 cloaca, 100% farm 3 trachea). When
evaluating E. coli from a Vietnamese broiler farm, Nguyen et al.
(Nguyen et al., 2016) found 22% of isolates were resistant to
colistin. Similarly, Fernandes et al. (Fernandes et al., 2016b) who,
when evaluating a collection of E. coli strains collected from
broiler chickens between 2000 and 2016 in Brazil, found that
40% were resistant to colistin. In a recent study carried out in
Iran by Azizpour & Saeidi (Azizpour and Saeidi Namin, 2018) it
was observed that 68.5% were resistant to colistin. Thus, our data
appears to show that the colisitin resistance in poultry continues
to persist in Brazil.

High levels of resistance were also found to the antimicrobial
SUT on farms 1 (73% cloaca, 76% trachea) and 2 (77% cloaca
and 85% trachea), we believe that such high levels may be related
the historical context of a high density of breeders and the

previous use of this class of antimicrobials in poultry flocks in the
mountain region of Rio de Janeiro. However, the values observed
on farm 3 (12% cloaca, 25% trachea) were considerably lower
when compared to farms 1 and 2, which may be related to the low
density of poultry producers and the recent trend toward organic
and free-range poultry breeders in the northern region of the
state. High levels of resistance to SUT (80%) were also observed
by Azizpour & Saeidi (Azizpour and Saeidi Namin, 2018).

E. coli strains also showed resistance to gentamicin. Isolates
from farm 1 displayed resistance in 31% of cloaca strains and
28% in trachea strains and farm 2, 52% in those that were present
in the cloaca and 81% in trachea strains, however, on farm 3,
no resistance was observed to this drug. These levels are also
similar to those reported by Nguyen and collaborators (Nguyen
et al., 2016) where 42% of E. coli from broilers were resistant.
An additional survey carried out during visits to the farms of
the current study found that the growth promoter enramycin
was verified as in use on farms 1 and 2 and colistin on farm
3, enramycin is a polypeptide antibiotic. Thus, the resistance
verified in phenotypic tests could be explained by the use of
enramycin as a growth promoter, as observed by Costa et al.
(Costa et al., 2017).

On examination of ciprofloxacin resistance data, the following
results were noted 58% and 28% of the strains (cloaca and
trachea, respectively) from farm 1 were resistant, on farm 2,
22% of the cloaca strains and 33% of trachea, in addition to
25% of cloaca and 75% of trachea in strains belonging to farm
3. Nguyen and collaborators (Nguyen et al., 2016) found that
73% of 90 isolates examined displayed resistance to ciprofloxacin
when studying E. coli of avian origin in Vietnam. Abdi-Hachesoo
et al. (Abdi-Hachesoo et al., 2017), when researching resistance
to quinolones in broiler chicken farms in Iran, found 80% of
strains of E. coli isolated were resistant from 30-day-old broilers,
results similar to those were observed by Azizpour & Saeidi
(Azizpour and Saeidi Namin, 2018) who noted a prevalence of
77% in broilers. Ciprofloxacin belongs to the quinolone class,
as does enrofloxacin, which is widely used in therapeutic and
prophylactic forms in the field. In the survey carried out on
the farms during visits, farm 1 and farm 3 had a history of
recent use of enrofloxacin. Farm 1 used the antimicrobial in
the production batch prior to the survey and on farm 3, the
use of the drug occurred in the last three months prior to
collection, on both farms (farms 1 and 3) it was used to contain
an outbreak of colibacillosis. This antimicrobial has, however,
seen considerably limited use in some regions of the world for
example in the US where it is no longer approved for use in
poultry (FDA, 2005) and this is also the case for the European
Union (EU) (EU, 2018).

Considerable levels of resistance to amoxicillin were also
observed, with E. coli strains from cloacal isolates from farm 1
showing the highest prevalence (57%) followed by trachea strains
on farm 1 (38%), cloaca on farm 2 (37%), trachea from farm 2
(28%) and trachea from farm 3 (25%), no resistance was observed
in the cloacal strains of farm 3. This resistance may be related to
the production of beta-lactamase as it was observed that 52/107
(48%) strains of E. coli were suspected of producing this enzyme
based on the results of the disk diffusion test.
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The most prevalent gene detected in this study was mcr-1
which was detected in 58% (62/107) of all strains examined,
all of which showed phenotypic resistance to colistin, but
39% (40/102) were resistant in the phenotypic test and did
not show the presence of any mcr-associated gene when
examined genotypically, demonstrating the need for future
studies regarding the genetic variability of mcr and other
potential causes of resistance (Yin et al., 2017).

The implementation of IN-45 as of 22 November 2016 in
Brazil, prohibits the use of colistin as an additive in feed, is an
attempt by the Ministry of Agriculture, Livestock and Supply
to reduce the levels of resistance to colistin found in the field.
However, it is too early to say whether such a measure will have
an effect, since the use of the therapeutic form is currently still
approved for use.

Transposons are genetic elements that move in the
genome through the action of the enzyme transposase. This
movement can occur both within the chromosome and between
chromosome and plasmid. Transposons can contain integrons,
facilitating the transmission of resistance genes between bacteria.
The detection of the intl1 gene is correlated with the presence of
integrons, which are genetic elements that contain a site-specific
recombination system capable of integrating, expressing specific
DNA elements, called gene cassettes (Hall and Collis, 1995).
Integrons consist of three elements: the gene encoding tyrosine
recombinase (integrase, encoded by the intl gene), required
for recombination specific site of the gene cassettes within the
integron, the site specific recombination site attI and an open
reading frame (Gillings, 2014) qacE11 and sulfonamides.

The presence of the gene encoding the transposase enzyme
(iseC12) was also detected in 13% (14/107) of the E. coli strains
examined and 10% (6/62) of the positive mcr-1 strains. The
transposons are recognized by integrase; and the promoter (Pc)
located upstream of the integration site, is necessary for efficient
transcription and expression of the gene cassette present in the
integron. Most cassettes present in integrons already described
encode resistance determinants, and these genetic elements
appear to play an important role in the spread of antimicrobial
resistance in Gram negative bacteria (Ploy et al., 2000).

In the strains B75 and B93, which were positive for the
intl1 gene, the concomitant presence of the resistance genes
to quaternary ammonia (qacE11) and sulfonamides (sulI) was
observed, such characteristics are related to the presence of the
class 1 integron, which is conserved in its region downstream the
referred genes (Recchia and Hall, 1997).

The high prevalence of APEC-like strains observed on farm
1 could be associated with the occurrence of a collibacilosis
case, due to omphalitis, in the first week of life of the animals
that made up the batch analyzed in the second collection. The
disease was controlled with antimicrobial treatment and disposal
of the carcasses of dead animals. Despite these management
approaches, it was found that 31.1% (19/61) of cloaca isolates
were classified as APEC-like strains (Table 1 and Figure 2C). This
data contrasts with another study of E. coli cloaca isolates from
Brazil (de Oliveira et al., 2015) where 53% of the isolates were
classified as APEC-like strains.

When the results of phylogenetic group analysis were
compared – most of the isolates in the current study classified as

B1 (38%) and A (20%). These results are considerably different
from those observed by Rocha et al. (Rocha et al., 2017) who
examined APEC and UPEC strains and found that the most
common phylogenetic group in APEC was phylogenetic group
D (31%) and phylogenetic B2 was most prevalent in the UPEC
strains (53%). In the studies by Rocha et al. (Rocha et al., 2017)
phylogenetic group B1 was present in only 6% of the UPEC
strains. In studies of APEC from Brazil (Barbieri et al., 2015;
Braga et al., 2016), they found the majority of their collections
classified as phylogenetic groups D with only 7.6% (Barbieri
et al., 2015) and 13.3% (Braga et al., 2016) classified as B1. In a
study of AFEC (cloacal swabs) from Egypt the most frequently
detected phylogenetic groups were A (46.6%) with 33.3% of
isolates examined classifying as B1 (Hussein et al., 2013). In
a study of retail meat E. coli from 2013 from Brazil the most
frequent phylogenetic group found was B1 (37.2%) while a 2007
study found phylogenetic group D was most common with a
prevalence of 34.5% (Koga et al., 2015).

When PFGE data was assessed, we found significant diversity
in the fingerprint profiles of all E. coli examined. These data
are comparable to other works (Bergeron et al., 2012; Hussein
et al., 2013; Barbieri et al., 2015; Braga et al., 2016; de Oliveira
et al., 2020) showing that often disease outbreaks are linked to
more than one strain of organism. Pulsed field gel electrophoresis
is known as a standard tool for pathogen subtyping and has
significant application in the identification of outbreak strains,
but it is generally found not to be useful for APEC because of the
great diversity of strains linked with disease, and in particular the
diversity of strains on a single farm that are linked with disease
make it difficult to use in tracing the source of the outbreak. Of
note in this study, however, strains with the same profile were
found between isolates B74, B75, B80 that were isolated from
trachea of different birds on farm 2; between B66 and B100 that
were isolated from the cloaca of different birds on farm 2; and
between B39 and B42 were isolated from trachea of different birds
on farm 1 (Figure 1).

CONCLUSION

The evaluation of the bacterial microbiota present in samples of
cloaca and trachea of broilers found a high prevalence of E. coli in
both the cloacal sample and tracheal swabs of birds at the various
farms.

When assessing antimicrobial resistance in isolated strains,
it was noted that the resistance profile varied according to the
breeding system and history of antimicrobial use on each farm.

E. coli strains were found with phenotypes suggestive of ESBL
and AmpC beta-lactamase production.

Phenotypic resistance to colistin was the most prevalent trait
among the E. coli isolates examined, which was accompanied by
a high prevalence of detection of the mcr-1 gene. Correlations
were also observed between the presence of the mcr-1 gene
and the plasmids HII, IncI2, B/O, and FIB. Although it cannot
be confirmed that the mcr-1 gene is located on plasmids, the
occurrence of both in the same individual isolate is considered
a risk factor, since plasmids can carry the resistance gene and
favor its dispersion.
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High genetic variability of E. coli strains was observed with
prevalence of the phylogenetic group B1, related to commensal
strains. However, the analysis of the virulence profile detected a
high number of APEC-like strains, highlighting the importance
of monitoring, cleaning, and disinfecting the environment,
control of people and vehicles and the sanitary condition of
the sheds between flocks, in order to avoid future infections,
occurrence of colibacillosis and consequent economic losses.
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The foodborne pathogen Yersinia enterocolitica causes gastrointestinal infections
worldwide. In the spring of 2019, the Swedish Public Health Agency and Statens
Serum Institut in Denmark independently identified an outbreak caused by Yersinia
enterocolitica 4/O:3 that after sequence comparison turned out to be a cross-border
outbreak. A trace-back investigation suggested shipments of fresh prewashed spinach
from Italy as a common source for the outbreak. Here, we determined the genome
sequences of five Y. enterocolitica clinical isolates during the Swedish outbreak using
a combination of Illumina HiSeq short-read and Nanopore Technologies’ MinION long-
read whole-genome sequencing. WGS results showed that all clinical strains have a
fully assembled chromosome of approximately 4.6 Mbp in size and a 72-kbp virulence
plasmid; one of the strains was carrying an additional 5.7-kbp plasmid, pYE-tet. All
strains showed a high pathogen probability score (87.5%) with associated genes
for virulence, all of which are closely related to an earlier clinical strain Y11 from
Germany. In addition, we identified a chromosomally encoded multidrug-resistance
cassette carrying resistance genes against chloramphenicol (catA1), streptomycin
(aadA1), sulfonamides (sul1), and a mercury resistance module. This chromosomally
encoded Tn2670 transposon has previously been reported associated with IncFII
plasmids in Enterobacteriaceae: a Shigella flexneri clinical isolate from Japan in 1950s,
a Klebsiella pneumoniae outbreak from Australia in 1997, and Salmonella enterica
serovar Typhimurium. Interestingly, we identified an additional 5.7-kbp plasmid with
tetB (encoding an ABC transporter), Rep, and its own ORI and ORIt sites, sharing
high homology with small tetB-Rep plasmids from Pasteurellaceae. This is the first
time that Tn2670 and Pasteurellaceae plasmids have been reported in Y. enterocolitica.
Taken together, our study showed that the Swedish Y. enterocolitica outbreak strains
acquired multi-antibiotic and metal-resistance genes through horizontal gene transfer,
suggesting a potential reservoir of intraspecies dissemination of multidrug-resistance
genes among foodborne pathogens. This study also highlights the concern of
food-chain contamination of prewashed vegetables as a perpetual hazard against
public health.
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INTRODUCTION

Yersinia enterocolitica is a foodborne zoonotic bacterium of
global importance, able to cause severe gastrointestinal infections
among people of all ages (Scallan et al., 2011; Batz et al., 2012;
Bancerz-Kisiel and Szweda, 2015). Yersinia is grouped under
Yersiniaceae where Yersinia pestis, Yersinia pseudotuberculosis,
and Y. enterocolitica are recognized as important human
pathogens (Smego et al., 1999; Adeolu et al., 2016). Y.
enterocolitica is divided into six biotypes (1A/B-5) depending
on physio- and biochemical properties and additionally into
approximately 50 serotypes depending on antigenic variation of
the lipopolysaccharides (Jagielski et al., 2002).

While yersiniosis historically has been associated with
consumption of undercooked pork products or un-pasteurized
milk, the growing trend of ready-to-eat (RTE) vegetables in
industrialized countries has been linked to sporadic outbreaks
of Y. enterocolitica (Lee et al., 2004; Sakai et al., 2005; Much
et al., 2009; Macdonald et al., 2011; Rahman et al., 2011). As
discussed during the amplified implementation of the Hazard
Analysis and Critical Control Point (HACCP) system in the
1990s, in the raw food industry, RTE products were highlighted as
products without any pathogen elimination step (Motarjemi and
Käferstein, 1999). Even without pathogen elimination, HACCP
remains a good resource to reduce risks in food production,
but intensification and mass distribution have nonetheless
permitted quick nationwide spread of introduced contaminants.
International trade has correspondingly introduced longer food-
supply chains and countless wholesalers, increasing the risk of
breaking the cold chain with consequential growth of foodborne
pathogens (Motarjemi and Käferstein, 1999; Söderqvist et al.,
2017a,b). Wholesalers in the European Union are required
to regularly sample RTE vegetables for Escherichia, Listeria,
and Salmonella, but Yersinia remains continuously absent
from routine testing (EU commission 2073/2005) and its
AMR surveillance occurs only through rare ad hoc reports
(Fàbrega et al., 2015).

In the spring (February–April) of 2019, the Swedish Public
Health Agency (PHAS) and Statens Serum Institut (SSI) in
Denmark independently identified an outbreak with the same
genotypic cluster of Y. enterocolitica 4/O:3. Whole-genome
sequencing (WGS) comparisons were made using the respective
outbreak sequences, resulting in a cross-border outbreak being
declared. The outbreak reached 57 positive cases, mainly in
a younger age group (15–39) (National Veterinary Institute
(SVA), 2019). A Danish case–control study recognized fresh
spinach as the cause behind the outbreak, and a traceback of
common producers identified an Italian supplier behind shared
market batches (Espenhain et al., 2019). Following the first
outbreak, a second outbreak (April–May) occurred with an
additional 30 cases. Y. enterocolitica in the second outbreak was
of identical bioserotype and sequence type (ST) type but clustered
separately on single nucleotide polymorphism (SNP) analysis. No
food-related origin could be established for the latter outbreak
(National Veterinary Institute (SVA), 2019).

Whole-genome sequencing is now routinely used in outbreak
investigations to identify ST types, clusters, pathogenomics, and

resistance genes, but typically this high-throughput resource is
limited to short-read data (Lynch et al., 2016; Nutman and
Marchaim, 2019; Adzitey et al., 2020). Short-read libraries are
precise and cost-efficient but do rarely provide long enough
contigs for molecular epidemiological identification of moveable
genetic elements and small plasmids (Koren and Phillippy,
2015). Long-read sequencing technologies can now be used in
combination with short-read data to provide high-quality full-
genome assemblies (Jain et al., 2016; George et al., 2017; Lemon
et al., 2017). To provide insight in resistance and adaptive traits
in Y. enterocolitica causing foodborne outbreaks, we combined
Illumina HiSeq and Oxford Nanopore technologies’ MinION
to generate and close whole genomes for five clinical strains,
isolated in Sweden during the time of the two consecutive
outbreaks in 2019. This is the first report of multidrug-resistant
Y. enterocolitica identified from imported fresh spinach, raising
concerns on food-chain contamination.

MATERIALS AND METHODS

Bacterial Isolation and Identification
A total of five clinical isolates from the spring of 2019 were
characterized. PHAS received isolates from the Swedish clinical
microbiological laboratories for epidemiological typing, and
three of these were used in the study (Espenhain et al., 2019).
Y30 was derived from the spinach-related outbreak (March),
Y108 was isolated from the second outbreak (April), and Y72
was collected during the outbreak periods (April) but did not
cluster with any of the outbreak strains (SNP analysis, PHAS).
Two additional uncharacterized isolates were collected from the
Clinical Microbiology Lab at Uppsala University Hospital from
the same period, Y_Mar (March) and Y_May (May). All five
isolates are in this study referred to as outbreak strains. One
well-characterized strain Y11 (chromosome: FR729477, plasmid:
FR745874) was received from the Leibniz Institute (DSM 13030)
for comparative use. The Swedish strains were delivered in
transport swabs with amies medium charcoal (SARSTEDT),
streaked onto Cefsulodin Irgasan Novobiocin (CIN) agar with
Yersinia supplement and incubated for 24 h at 26◦C. A one-µl
streak of confirmed Yersinia colonies was cultivated in Trypticase
Soy Broth (TSB) for 24 h in shaking incubators at 26◦C. Aliquots
were saved in TSB-DMSO (10%) and stored in −80◦C freezers
until further use. Ethical approval was not required as the
investigation was performed under a mandate of PHAS in its
remit to undertake outbreak investigations regarding national
communicable disease control in the interest of public health.

Whole-Genome Sequencing
Stocks were cultured on Trypticase Soy Agar (TSA) and in
one ml TSB at 26◦C overnight. Genomic DNA was extracted
from overnight cultures with the MasterPure DNA purification
kit (Epicentre, Lucigen) according to the manufacturer’s
instructions. Purified DNA was analyzed and quantified with
2100 NanoDrop Spectrophotometer and Qubit 2.0 (Thermo
Fisher Scientific). DNA short-read libraries were prepared and
sequenced using an Illumina HiSeq 2500 platform (Illumina)
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by Novogene. Long-read libraries were prepared using an in-
house MinION sequencer by Oxford Nanopore Technologies,
run for 24+ hours with base calling in the MinKNOW software
on standard settings. Assembly was performed in CLC Genomics
Workbench 20.0.4 (Supplementary Table 1), and all Illumina
data was deposited at PRJEB42815 (ENA). Obtained MinION
raw reads from one strain (Y72) were fully de novo assembled
into three separate contigs representing the chromosome, the
virulence plasmid, and one additional plasmid. The Nanopore
sequence from Y72 was corrected using the trimmed Illumina
reads for the same strain. The corrected Y72 assembly was used
as a reference for mapping of trimmed Illumina reads for the
remaining four strains (Supplementary Table 2).

Preparing Reference Genomes
Illumina sequences were de novo assembled, and contigs were
sorted by length. The five longest contigs (280–111 kbp) along
with one additional 5.7-kb plasmid and a resistance cassette in
Y72 were compared with genomic data available on NCBI using
BLAST. As only a small set of WGS Y. enterocolitica genomes are
available, the Yersinia EnteroBase V.1.1.21 was used to identify
available sequence data for Y. enterocolitica biotype 4 (Zhou
et al., 2020). A total of 24 scaffold sets for different Yersinia
4/O:3 chromosomes, mainly based on a previous assortment
(PRJEB2116 and PRJEB2117) (Reuter et al., 2014), were collected
to increase phylogenetic resolution of the outbreak strains and
comparative power of the metadata (Supplementary Table 3).
Metadata included biotype, serotype, collection year, isolation
country, isolation host, McNally ST, Achtman ST, wgMLST, and
cgMLST + HierCC V1 (Supplementary Table 3). Based on
high-score BLAST hits, an additional 17 different sequences of
chromosomal and plasmid origin were collected for cassette
comparisons (Supplementary Table 4) along with a set of three
different alignment matches for the 5.7-kb plasmid.

Functional Annotation
Molecular characterization for the outbreak strains and Y11
(six strains) were assessed with regard to pathogenicity
potential, restriction–modification systems, and known virulence
factors. Antimicrobial resistance genes were characterized in
outbreak strains and the generated comparison platform (24
additional strains). Pathogenicity potential was assessed using
PathogenFinder 1.12 with the automatic model selection for
assembled genomes (Cosentino et al., 2013). Antimicrobial
resistance was assessed using ResFinder 4.13 for acquired
antimicrobial resistance genes among “other” species for
assembled genomes (Zankari et al., 2017; Bortolaia et al.,
2020). Restriction–modification systems were identified using
Restriction-ModificationFinder 1.14 for type I–IV restriction
enzymes including putative genes (Roer et al., 2016). Virulence
was assessed using the Virulence Factor Database VFDB5 for

1https://enterobase.warwick.ac.uk/species/index/yersinia
2https://cge.cbs.dtu.dk/services/PathogenFinder/
3https://cge.cbs.dtu.dk/services/ResFinder/
4https://cge.cbs.dtu.dk/services/Restriction-ModificationFinder/
5http://www.mgc.ac.cn/VFs/main.htm

Y. enterocolitica (Chen et al., 2005, 2016; Yang et al., 2008; Liu
et al., 2019).

Phylogenetic Analysis
The 29 strains of Y. enterocolitica biotype 4 and one strain of
biotype 2 (outgroup) were selected and analyzed on EnteroBase
(Zhou et al., 2020). Enterobase’s cgMLST scheme was used to
retrieve all SNPs from all strains. In total, 12,800 positions
were polymorphic, of which about 3,600 were polymorphic
in the ingroup. The alignment of all SNPs was used to infer
a maximum-likelihood tree with IQ-TREE 2.1.2 (Minh et al.,
2020). An extended range of substitution models was tested, and
TVMe+ASC+R3, which had the lowest log likelihood according
to Bayesian Information Criterion (BIC), was selected. This
model assumes different rates for transitions and transversions,
but with equal base frequencies (TVMe); it includes an
ascertainment bias correction (ASC), which is appropriate in
the case of SNP data (Lewis, 2001); it also includes a FreeRate
model of rate heterogeneity across sites, with three categories
(R3). A thousand ultrafast bootstraps (UFBoot) were drawn
(Hoang et al., 2018).

All sequences matching the identified cassette were aligned
to the known common ancestor Shigella flexneri R100 plasmid
(Womble and Rownd, 1988), using the HOXD scoring-based
Whole Genome Alignment plugin in CLC on standard settings
(Chiaromonte et al., 2002). Only sequence regions overlapping
with the Yersinia cassette were extracted (Extract Multiple
Sequence Alignment tool) which corresponded to the R-det-
Tn2670 region of the R100 plasmid. As the 22 sequences shared
different percentages of R-det coverage and the purpose of
the comparison was to see the overall relationship among the
transposon modules, a pairwise comparison (Create Average
Nucleotide Identity Comparison) was generated with Alignment
Percentage (AP) on standard settings. Based on the AP
pairwise comparison, an AP similarity tree was constructed
using Neighbor Joining (NJ), which joins clusters close to each
other and far from other clusters, suitable for sequences with
differential rates of evolution (Saitou and Nei, 1987). The AP
NJ tree was rooted in the Shigella flexneri R100 plasmid. Both
trees were later combined with collected metadata in CLC, and
figure segments for Figures 2, 3 were combined in Serif ’s Affinity
Designer 1.9.1.979.

Antimicrobial Susceptibility Testing
Minimum inhibitory concentration (MIC) tests were performed
in biological duplicates with microdilutions in microtiter 96-well
plates, where the antibiotic was added to the first well and diluted
1:2 per well in 10 consecutive wells. One column per plate was
used as a positive control (no antibiotic), and one was used as
a negative control (no bacteria). Bacterial concentrations of 0.5
McFarland standard units were added as 50 µl to each well. The
starting concentrations were set to 2 × the clinical breakpoint
(CB) for Enterobacterales (EUCAST). If no CB was available,
E-tests were used as indicators for MIC and later adapted to
broth microdilutions. All broth microdilutions were carried out
in standardized EUCAST settings in Mueller Hinton media,
incubated at 37◦C for 16–20 h. Results were only accepted if
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controls were functional and the duplicates did not deviate more
than one dilution.

Growth Rate Measurements
Growth rate was used as an indicator for bacterial fitness
and measured using the Bioscreen C (Oy Growth Curves Ab
Ltd.) turbidity monitoring system. The bioscreen was performed
in 300 µl TSB (1:1,000 dilutions from overnight culture) in
biological triplicates with technical duplicates. Experiments were
run at 26◦C, with continuous shaking at medium amplitude and
195 rpm for 24 h. Measurement was done using a 600-nm brown
filter every 4 min and shaking stop 5 s prior to measurement.
Generation time was derived from the slope of the exponential
growth phase (0.02 < OD600 < 0.12) where R2

≥ 0.98 per sample
and SD≤ 0.001 (slope) across replicates. Data were analyzed and
presented using GraphPad Prism 9.

RESULTS

Comparative Genomics
A total of five time-representative isolates were obtained from
PHAS (Y30, Y72, Y108) and Uppsala University Hospital
(Y_Mar, Y_May) during the time of the two outbreaks. A well-
established clinical strain of the same bioserotype was used as
a control (Y11).

Five strains were assembled to complete genomes,
molecularly typed, and assessed together with Y11 with
regard to pathogenicity and virulence. The genomes from
the outbreaks had an average estimated probability score for
human pathogenicity of 0.875 (chromosome) and were found
matching 95–99 different families. Clinical strains carried similar
known and putative Restriction-Modification systems (n = 4)
as the Y11 strain, with two Type II restriction enzymes and two
methyltransferases. Virulence factors were shared across the
collected strains and included genes for adherence (psa, yap),
invasion (ail, inv), proteases (pla), and chromosomal secretion
systems. There were eight open reading frames (ORFs) for the
O-antigen and 42 ORFs for the cluster I flagella (Supplementary
Table 5). The Swedish outbreak strains differentiated from the
Y11 strain by the presence of a chromosomal Type II Secretion
System protein (yts1O) and genes for antimicrobial resistance
(Table 1 and Figure 1).

Assembled genomes were phylogenetically analyzed based on
maximum likelihood from all polymorphic positions identified

by cgMLST in EnteroBase and rooted using an isolate from
biovar 2/O:9 (IP26766, France, 2002) as an outgroup. The
Swedish outbreak strains clustered together, having the closest
shared node with a swine isolate from the UK (YE213/02,
2002) and a bovine isolate from Germany (YE-150, unknown
collection year) (Figure 1). On a larger scale, the Swedish
cluster grouped with European isolates from Germany, the
UK, and France, including Y11. As inferred by McNally
ST typing, the most common ST-type for 4/O:3 was ST18,
but Hierarchical Clustering of cgMLST (HierCC) confirmed
high similarity multilevel clustering for the Swedish outbreak
strains. Results from ResFinder moreover demonstrated the
global and time-independent presence of previously well-studied
Y. enterocolitica vat(F) and blaA resistance genes, conferring
resistance against streptogramin and β-lactam antibiotics (Pham
et al., 1991; Stock et al., 1999; Seoane and García Lobo, 2000). The
Swedish outbreak isolates also displayed a previously unreported
multidrug resistance pattern (Figure 1).

Resistance Cassette
We report the fully sequenced genome of Y72, showing the
presence of a chromosomal multidrug resistance cassette
harboring determinants against quaternary ammonium
compounds (qacE-delta1), heavy metal mercury (mer operon),
phenicols (catA1), streptomycin (aadA1), and folate pathway
antagonists (sul1) (PRJEB42815). This cassette was shown to be
a known variant of the Tn2670 transposon, originally identified
in the resistance segment (R-det) on a S. flexneri R100 plasmid
in the 1950s (Nakaya et al., 1960). The average coverage of
the transposon was approximately half of the chromosome in
all strains but Y72 where it remained 100% (Supplementary
Table 2). To investigate if carrying Tn2670 might come at a
fitness cost, growth rates were measured to estimate generation
time, but no difference could be observed when grown in TSB
compared to Y11 at 26◦C (Supplementary Figure 1). Tn2670
is a self-transmissible transposon flanked by direct repeats IS1a
and IS1b with two overlapping open-reading frames (ORFs)
that create a transposase after translational frameshifting (Hanni
et al., 1982; Womble and Rownd, 1988; Escoubas et al., 1994;
Partridge and Hall, 2004; Partridge, 2011). As demonstrated in
Figure 2C, Tn2670 carries the identified catA1 (chloramphenicol
acyltransferase) and ybjA (acyl-CoA acyltransferase) as well as
the entire movable Tn21 transposon (Sun et al., 2016). Tn21 is
an independent transposon lined with two indirect imperfect

TABLE 1 | Strain characterization.

Outbreak Biovar/serotype Pathogenicity score (families) Resistance genes Chromosomal secretion systems

Y11 NA 4/O:3 0.89 (96) vat(F), blaA T3SS (21 ORFs)

Y30 First 4/O:3 0.875 (98) sul1, aadA1, catA1, vat(F), blaA T2SS (yts1O), T3SS (21 ORFs)

Y72 Unknown 4/O:3 0.875 (99) sul1, aadA1, catA1, vat(F), blaA, tetB T2SS (yts1O), T3SS (21 ORFs)

Y108 Second 4/O:3 0.872 (95) sul1, aadA1, catA1, vat(F), blaA T2SS (yts1O), T3SS (21 ORFs)

Y_Mar Firsta 4/O:3 0.875 (98) sul1, aadA1, catA1, vat(F), blaA T2SS (yts1O), T3SS (21 ORFs)

Y_May Unknown 4/O:3 0.875 (98) sul1, aadA1, catA1, vat(F), blaA T2SS (yts1O), T3SS (21 ORFs)

aAs identified by this study.
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FIGURE 1 | Phylogeny of the 29 Y. enterocolitica 4/O:3. The maximum-likelihood tree is based on all polymorphic positions identified by cgMLST in 30 genomes,
including and rooted in an isolate from biovar 2 used as an outgroup, and not shown in the tree. Numbers over branches are the percentage of ultrafast bootstraps
supporting that branch; support values <80 are not represented. The scale represents the average number of substitutions per site. Metadata for collection year,
country, host, AMR profile, McNally ST, and cgMLST V1 + HierCC V1 were presented using CLC Genomics Workbench.

repeats, IRtnp (tnp genes for transposition) and IRmer (mer
operon for mercury resistance) (De la Cruz and Grinsted, 1982;
Liebert et al., 1999). Inside Tn21 lies the class I integron In2,
bordered by the indirect imperfect repeats IRi and IRt , which
on its own is not mobile due to a truncated tniB and lack of
additionally required tni genes (Stokes and Hall, 1989; Brown
et al., 1996). In2 can in turn be subdivided into three distinct
regions: the integron as a unit, the “aadA1 cassette,” and an
insertion sequence from a previous integron (IS1326). In2 can
no longer transpose, but the integrase (intl1) can theoretically
incorporate new genes at the attl1 site, the location for adenyl
transferase (aadA1), and dihydropteroate synthase (sul1) for
streptomycin and sulfonamide resistance, respectively (Collis
et al., 1993, 1998). The variant of Tn2670 described here lacks
IS1353, otherwise reported to locate inside IS1326 (Grinsted and
Brown, 1984; Brown et al., 1996) (Figure 2C).

The Tn2670 transposon was compared with available
sequences in NCBI using BLAST and analyzed using alignment
percentage neighbor joining (Figures 2A,B). The transposon
from Swedish strains clustered alone, but surrounded by
Escherichia and Shigella carrying both plasmid-borne and
chromosomally located sequence hits, mainly from plasmid types

IncFII and IncB/O/K/Z. The cassette mainly matched sequences
found in species of enteric bacteria, indicating interspecies
spread and active dissemination of these determinants among
Enterobacteriaceae.

TetB Plasmid
Along with the multidrug resistance cassette, our analysis
revealed an additional plasmid carrying tetracycline resistance
in strain Y72 with a coverage approximately 16 × that of
the chromosome (Supplementary Table 2). The plasmid,
hereafter termed pYE-tet (Figure 3), has a size of 5,681 bp
and sporadically shares an approx. 5-kb segment with smaller
plasmids identified in the family of Pasteurellaceae. The smaller
plasmids have specifically been reported in Actinobacillus
pleuropneumoniae (plasmid p780, MH457196.1), Haemophilus
parasuis (plasmid pHPS1019, HQ622101.1), and Pasteurella
multocida (plasmid pB1001, EU252517.1). These three plasmids
were aligned with pYE-tet in Figure 3. The segment carries a
suggested ORI transfer site (traJ-II), an ORI with four 21-bp
iterons (4 × TTATACGACTAGAAATTTCCTG), a replication
protein (repA), a tetracycline resistance gene (tetB), and five
hypothetical proteins (San Millan et al., 2009; Li et al., 2018).
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FIGURE 2 | Schematic representation of the multidrug-resistant Tn2670 transposon in clinical Y. enterocolitica and of similar mobile elements identified through
BLAST. Segments were generated in CLC Genomics Workbench and combined in Affinity Designer. (A) Alignment Percentage Neighbor Joining relationship tree
based on pairwise comparison of sequence alignments. (B) Sequence alignment of the Tn2670 transposon indicating missing segments. (C) The Tn2670
transposon depicted as situated in the chromosome of Y. enterocolitica Y72. Arrows indicate the orientation of the ORFs. Antibiotic resistance determinants are
portrayed in orange and the mercury resistance operon in purple.

The hypothetical protein nucleotide sequences were run through
BLASTx and gave hits on another replication protein (repB)
(qq: 100%, id: 100%, AXF94983.1), a vbH antitoxin (qq: 100%,
id: 100%, WP_119774164.1), and a gene with partial agreement
to the E. coli zeta toxin (qq: 94%, id: 36%, EFC6518787.1). An
approx. 700-bp segment was identified as a pseudogene for
an IS1ab InsB transposase shared with several families within
the order Enterobacterales, including Morganella morganii
(CP026651.1), Shigella dysenteriae (CP026778.1), Klebsiella
pneumoniae (CP047701.1), S. enterica (CP049986.1), Proteus
vulgaris (CP047346.1), Citrobacter freundii (CP047247.1),
and Enterobacter hormaechei (LC590026.1). The tetB
sequence was shared between both enteric bacteria and
Pasteurellaceae.

Phenotypic Analysis of Y. enterocolitica
Clinical Strains
Minimum inhibitory concentrations were assessed through
broth microdilutions (Table 2). All outbreak strains were
resistant to fusidic acid (>256 µg/ml), rifampicin (8 µg/ml),
ampicillin (32 µg/ml), and erythromycin (64–128 µg/ml).

Matching the characterized genotype was high-level resistance
against chloramphenicol (>32 µg/ml), streptomycin (375–
750 µg/ml), sulfamethoxazole (500 µg/ml), and tetracycline
(32 µg/ml for Y72).

DISCUSSION

In the spring of 2019, the Swedish Public Health Agency and
Statens Serum Institut in Denmark independently identified
an outbreak caused by Y. enterocolitica 4/O:3. Sequence
comparison and epidemiological investigation confirmed this
cross-border outbreak, which was associated with imported
fresh spinach. Here we determined the genome sequences,
predicted virulence and pathogenicity factors, and charted the
antimicrobial resistance profile of five Y. enterocolitica clinical
isolates appearing during the time of the Swedish outbreaks.
In comparison, we included a well-characterized clinical strain
(Y11) isolated in Germany.

Of the five isolates, all expressed the virulence plasmid
of Yersinia (pYV) along with genes commonly associated
with infection, including the myf operon, yadA, ail,
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FIGURE 3 | Schematic illustration and sequence alignment of pYE-tet plasmid in Y. enterocolitica strain Y72. Colors indicate gene category with replication-related
elements presented in purple, antibiotic resistance gene tetB in orange, pseudogene InsB in green, xBLAST-suggested proteins in turquoise, and hypothetical
proteins in yellow. Segments were generated in CLC Genomics Workbench and combined in Affinity Designer.

TABLE 2 | Minimum inhibitory concentrations (µg/ml) against routinely used antibiotics.

FUS RIF AMP CHL STM SMX ERY TET CTX CAZ FOF PIP CIP CST GEN

Y11 >256 8 4 <8 <24 <8 4 <4 <2 <8 <32 <16 <0.5 <8 <4

Y30 >256 8 32 >32 375 500 64 <4 <2 <8 <32 <16 <0.5 <8 <4

Y72 >256 8 32 >32 375 500 128 32 <2 <8 <32 <16 <0.5 <8 <4

Y108 >256 8 32 >32 375 500 64 <4 <2 <8 <32 <16 <0.5 <8 <4

Y_Mar >256 8 32 >32 750 500 64 <4 <2 <8 <32 <16 <0.5 <8 <4

Y_May >256 8 32 >32 375 500 64 <4 <2 <8 <32 <16 <0.5 <8 <4

FUS: fusidic acid, RIF: rifampicin, AMP: ampicillin, CHL: chloramphenicol, STM: streptomycin, SMX: sulfamethoxazole, ERY: erythromycin, TET: tetracycline, CTX:
cefotaxime, CAZ: ceftazidime, FOF: fosfomycin, PIP: piperacillin, CIP: ciprofloxacin, CST: colistin, GEN: gentamicin.

and invA (Bancerz-Kisiel et al., 2018). A predicted
pathogenicity score averaged at 87.5% for chromosomally
encoded genes when compared to 95–99 available
families. All strains carried a Type II restriction enzyme

(M.YenYEP1ORF12551P/M.YenY11ORF26101P) and a Type II
methyltransferase (YenY11ORF26101P) along with a putative
Type II restriction enzyme (M.SmaB3R3ORF2440P) and putative
methyltransferase (Yen002ORF2900P). Our strains from 2019,
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but not Y11, carried a prepilin-like peptidase (aspartic hydrolase),
Yts1O, from the Type II Secretion System Yts1 (occasionally
termed as Yst). The Yts1 Type II Secretion cluster has previously
been linked to increased pathogenicity in Y. enterocolitica, but
interestingly our outbreak strains only carried yts1O, without
any of the remaining operon coding units for the Yts secreton.
The Yts1 and Yts2 clusters have only recently been studied, and
little is known about the function and molecular mechanisms
related to the operons (Iwobi et al., 2003; Shutinoski et al., 2010;
von Tils et al., 2012; Rusak et al., 2017). Prepilin peptidases
share high sequence homology among bacteria and are known
transmembrane proteins allocated to a wide set of functions
including pilus biogenesis and Type II Secretion (Schreiber and
Donnenberg, 2002; Dupuy et al., 2013). The exact role of Yts1O
in the Yts1 cluster, and specifically here as a single enzyme,
remains a pressing question for further investigation.

All five strains showed antimicrobial resistance to
chloramphenicol (>32 µg/ml), streptomycin (375–750 µg/ml),
and sulfamethoxazole (500 µg/ml), and strain Y72 additionally
carried clinically relevant resistance against tetracycline
(32 µg/ml). All outbreak strains, but not Y11, showed
resistance against ampicillin (32 µg/ml) and erythromycin
(64–128 µg/ml). While there is resistance against ampicillin
and erythromycin which are two of the more commonly
reported AMR phenotypes in 4/O:3, tetracycline resistance is
only rarely reported (Fàbrega et al., 2015; Gkouletsos et al.,
2019). Resistance against chloramphenicol, streptomycin, and
sulfamethoxazole correlated well with the presence of catA1,
aadA1, and sul1 resistance genes situated on the chromosomally
located Tn2670 transposon (Figure 2). Moreover, resistance
genes other than vat(F) and blaA appear rare incidents among
4/O:3 Y. enterocolitica (Figure 1; Pham et al., 1991; Stock et al.,
1999; Seoane and García Lobo, 2000). This transposon, originally
derived from the S. flexneri R100 plasmid (belonging to IncFII
incompatibility group), has been shown transferable between
plasmids in vitro by P7 phages (Nakaya et al., 1960; Hanni
et al., 1982; Partridge and Hall, 2004). The internal transposon
Tn21 has been described widely spread among soil bacteria
in both mercury-polluted and unpolluted sites and among
clinically relevant Gram-negative bacteria, but to the best of our
knowledge never before in Yersinia (Pearson et al., 1996; Liebert
et al., 1999; Turner et al., 2003; Herrero et al., 2008; Partridge
et al., 2018). Although both excision and loss rates are higher
for composite transposons like Tn2670 compared to isolated
insertion sequences, it remains intriguing that the transposon
coverage is about half that of the chromosome for all strains but
one (Wagner, 2006; Sun et al., 2016). The fact that this known
resistance cassette has never been reported in Yersinia, while
found in all five independent isolates in this study, may indicate
a new trend of antimicrobial resistance genes in European
foodborne Y. enterocolitica.

The tetracycline resistance observed in strain Y72 was
accompanied by a small tetB plasmid, pYE-tet, sharing genes
with small plasmids from Pasteurellaceae. This pattern of genes
on a small tetB plasmid was first reported in multidrug-resistant
P. multocida (pB1001) from diseased pigs in Spain 2002–2005
(San Millan et al., 2009), later in H. parasuis (pHPS1019) from

Chinese pigs in 2010 (Liu and He, 2010), and most recently
in A. pleuropneumoniae (p780) from Brazilian pigs collected
between 2006 and 2011 (Pereira et al., 2016; Li et al., 2018).
Except for the more diverse zoonotic P. multocida, the previous
carriers of such plasmids have all been bacteria restricted to
swine. All three species colonize the upper respiratory tract of
pigs where they share the same environmental niche as Yersinia
(Oliveira and Pijoan, 2004; Reiner et al., 2010; Wilson and Ho,
2013). The tetB gene found on pYE-tet, pB1001, pHPS1019, and
p780 has previously been speculated to originate from Gram-
negative enteric bacteria, strengthened by previous horizontal
gene transfer events of AMR genes from enterobacteria to
Pasteurellaceae plasmids (Li et al., 2018; Michael et al., 2018).
Both pB1001 and p780 have been described to lack standard
mobilization genes (mob), and even though non-selectively and
stably replicated in Escherichia coli following electroporation,
no actual conjugation has been observed (San Millan et al.,
2009; Li et al., 2018). Detailed work on the p780 plasmids
revealed a 22-bp iteron Rep protein-binding site in ORI; although
slightly different and one nucleotide shorter, this was also
identified in pYE-tet (4 × TTATACGACTAGAAATTTCCTG).
Preceding the ORI is, similar to p780, an ORI transfer site
with a speculated secondary sRNA traJ-II structure with a
nic cleavage site, suggesting specificity to TraJ-RP4 relaxomes
(Figure 3). None of the plasmids encode their own relaxomes,
and RP4 was previously illustrated insufficient for conjugation
of the Pasteurellaceae plasmid in E. coli, leaving the mechanistic
accounts behind plasmid transfer unexplained (Li et al., 2018).

Y30, isolated from the spinach-related outbreak, shared the
same cgMLST as Y_Mar, which might well be related to the same
outbreak. These two strains are in turn more similar to Y_May
than to the two strains Y108 and Y72, supporting the previous
notion that these in fact do not share the same spinach-related
origin (Figure 1; National Veterinary Institute (SVA), 2019). Y72
carries the additional pYE-tet plasmid with a strong phylogenetic
tie to species naturally occurring in the upper respiratory tract
of swine, suggesting that this strain might be derived from an
animal source instead. This proposition remains speculative, but
further investigations on the stability (losing rate) and fitness cost
of pYE-tet could provide valuable insight on time since parting
with the HGT niche. The Swedish isolates may be of different
origins, but all carry the Tn2670 multidrug-resistant transposon,
making it of even greater concern on food safety and public
health. Although harboring an active large cassette (all strains)
and the pYE-tet plasmid with a coverage approximately 16× that
of the chromosome (Y72), no growth rate differences could be
observed as compared to Y11, which lacks all the mentioned
elements. Our results suggest that these mobile elements do not
come at a fitness cost at 26◦C.

Neither the Tn2670 transposon nor the small tetB resistance
plasmid has been reported in foodborne Yersinia or in isolates
derived from RTE products. The results presented here suggest
horizontal gene transfer events in environment, agriculture,
or animal husbandry, permitting Y. enterocolitica to be an
additional foodborne carrier of multi-antibiotic and metal-
resistance determinants. Prospective studies are needed to
elucidate the mechanistic conjugative properties of pYE-tet, the
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stability and potential mobility of the Tn2670 transposon, and the
prevalence of these elements in clinical and food-related Yersinia.
Our study highlights the concerns of food-chain contamination
as potential reservoir for transmission and dissemination of
AMR, raising concerns on food safety and public health.
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Nitric oxide (NO) is an important antimicrobial effector produced by the host innate

immune system to counteract invading pathogens. To survive and establish a successful

infection, a fulminating human pathogen Vibrio vulnificus expresses the hmpA gene

encoding an NO dioxygenase in an NO-responsive manner. In this study, we identified

an Rrf2-family transcriptional regulator NsrR that is predicted to contain the Fe-S

cluster coordinated by three cysteine residues. Transcriptome analysis showed that

NsrR controls the expression of multiple genes potentially involved in nitrosative stress

responses. Particularly, NsrR acts as a strong repressor of hmpA transcription and

relieves the repression of hmpA upon exposure to NO. Notably, nsrR and hmpA are

transcribed divergently, and their promoter regions overlap with each other. Molecular

biological analyses revealed that NsrR directly binds to this overlapping promoter region,

which is alleviated by loss of the Fe-S cluster, leading to the subsequent derepression

of hmpA under nitrosative stress. We further found that a leucine-responsive regulatory

protein (Lrp) negatively regulates hmpA in an NsrR-dependent manner by directly

binding to the promoter region, presumably resulting in a DNA conformation change

to support the repression by NsrR. Meanwhile, a cyclic AMP receptor protein (CRP)

positively regulates hmpA probably through repression of nsrR and lrp by directly

binding to each promoter region in a sequential cascade. Altogether, this collaborative

regulation of NsrR along with Lrp and CRP enables an elaborate control of hmpA

transcription, contributing to survival under host-derived nitrosative stress and thereby

the pathogenesis of V. vulnificus.

Keywords: Vibrio vulnificus, gene regulation, transcriptional regulator, nitric oxide dioxygenase, nitric oxide,

nitrosative stress, stress response

INTRODUCTION

Nitric oxide (NO) is a highly reactive, toxic, and membrane-permeable radical gas. As one of the
major components of the host innate immune system, NO is produced by inducible NO synthase
(iNOS) which is expressed in phagocytes and epithelial cells under infectious conditions (Fang,
2004; Wang et al., 2010). NO produced by iNOS can subsequently be converted into other toxic
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reactive nitrogen species (RNS) such as nitrogen dioxide (NO2),
peroxynitrite (ONOO−), and dinitrogen trioxide (N2O3) which
impose the nitrosative stress on pathogens (Fang, 2004; Stern
and Zhu, 2014). Furthermore, intestinal commensals can reduce
nitrate (NO−

3 ) in the diet to nitrite (NO−
2 ), which interacts with

gastric acid, resulting in RNS that act as antimicrobial barriers
against ingested enteric pathogens (Sobko et al., 2005; Tiso and
Schechter, 2015). RNS can cause damage to cellular components,
including the metal centers of proteins, membrane lipids and
nucleotide bases, and thereby inhibit respiration and interfere
with the DNA replication of pathogens (Fang, 2004). Therefore,
pathogens have evolved sophisticated mechanisms to sense the
increased level of RNS and express the proper genes to overcome
nitrosative stress in a host (Bang et al., 2006; Stern et al., 2012).

To understand the NO-responsive gene expression in
pathogens, numerous transcriptional regulators have been
characterized (Spiro, 2007). Among them, two transcriptional
regulators, NorR and NsrR, are known to have focused functions
on sensing NO in a wide range of bacteria (Stern and Zhu,
2014). NorR directly recognizes NO using its non-heme iron
center and controls the expression of genes for NO detoxification:
norVW in Escherichia coli and hmpA and nnrS in Vibrio cholerae
(D’Autreaux et al., 2005; Stern et al., 2012). Meanwhile, NsrR uses
an iron-sulfur (Fe-S) cluster as a cofactor to directly sense NO
and regulates a variety of genes involved in NO detoxification
and NO damage repair, particularly hmpA in E. coli, Salmonella
enterica serovar Typhimurium, and Streptomyces coelicolor (Bang
et al., 2006; Spiro, 2007; Tucker et al., 2008). The NO-responsive
Fe-S cluster is coordinated to NsrR by three cysteine residues
which are widely conserved in various bacterial NsrR (Tucker
et al., 2010). A recent study showed that both [2Fe-2S] and [4Fe-
4S] clusters can be coordinated to S. coelicolor NsrR (Crack et al.,
2015). Upon exposure to NO, the Fe-S cluster is nitrosylated,
forming the iron-nitrosyl species such as dinitrosyl iron complex
(DNIC), Roussin’s Red Ester (RRE), and Roussin’s Black Salt
(RBS) (Serrano et al., 2016; Crack and Le Brun, 2019). The
resulting apo-NsrR lacking an intact Fe-S cluster shows a distinct
protein conformation from that of holo-NsrR, leading to loss
of DNA-binding activity and the subsequent derepression of its
regulons (Crack et al., 2015; Volbeda et al., 2017). NsrR, as a
homodimer, binds to the consensus NsrR-binding site consisting
of inverted repeats of two 11 bp motifs (AAxATGCATTT; x,
any nucleotide) separated by 1 bp spacing (Partridge et al., 2009;
Crack et al., 2015).

The opportunistic human pathogen Vibrio vulnificus is a
causative agent of foodborne diseases from mild gastroenteritis
to primary septicemia (Jones and Oliver, 2009; Baker-Austin and
Oliver, 2018). During infection, V. vulnificus exploits various
transcriptional regulators to sense host-derived signals and
modulate the expression of its virulence genes (Miller et al., 1989;
Fang et al., 2016). Particularly, a leucine-responsive regulatory
protein (Lrp) and a cyclic AMP receptor protein (CRP) are
widely conserved and well-characterized global transcriptional
regulators in bacteria (Cho et al., 2008; Manneh-Roussel et al.,
2018). Lrp controls diverse cellular functions including amino
acid metabolism, stress resistance, and virulence (Jeong et al.,
2003; Rhee et al., 2008; Lee et al., 2020). The regulatory activity

of Lrp on its regulons can be enhanced, reversed, or unaffected by
the binding of a small effector molecule leucine (Cho et al., 2008).
CRP is a central regulator of carbon and energy metabolism that
forms a complex with cyclic AMP (cAMP) (Kim et al., 2011; Lee
et al., 2020). In the absence of glucose, the intracellular cAMP
level is increased by adenylate cyclase and the resulting cAMP-
CRP complex binds DNA to regulate gene expression (Manneh-
Roussel et al., 2018). In this way, Lrp and CRP coordinate the
expression of genes involved in metabolism and pathogenesis
in response to changing environmental conditions such as
nutrient availability.

Like many other enteropathogenic bacteria, V. vulnificus
is inevitably exposed to host-derived nitrosative stress in the
course of infection. We recently reported that a multidomain
NO dioxygenase HmpA is highly expressed in V. vulnificus
exposed to NO (Kim et al., 2019). HmpA belongs to the
flavohemoglobin family composed of the N-terminal heme-
binding globin domain and the C-terminal NAD- and FAD-
binding oxidoreductase domain, and detoxifies NO by oxidizing
it to a less toxic NO−

3 under aerobic conditions (Bonamore
and Boffi, 2008; Forrester and Foster, 2012; Kim et al., 2019).
Because the in vitro NO-decomposition activity of V. vulnificus
is mostly dependent on HmpA, it has a significant role in
the survival and pathogenesis of V. vulnificus under nitrosative
stress in a host (Kim et al., 2019). Nevertheless, definitive
regulatory mechanisms and transcriptional regulators, by which
V. vulnificus senses NO and induces HmpA, have not been yet
elucidated in detail. In this study, we newly identified NsrR
in V. vulnificus as an NO-responsive transcriptional regulator.
The transcriptome analysis of the wild-type and isogenic nsrR-
deletion mutant (1nsrR) strains revealed that NsrR controls the
expression of 47 genes. Notably, hmpA was the most highly
induced gene by the nsrR deletion, indicating that NsrR acts as
a strong repressor of hmpA. To investigate the exact mechanism
by which NsrR regulates hmpA expression, the hmpA transcript
levels were compared in the wild-type and 1nsrR strains under
nitrosative stress in vitro and ex vivo. Furthermore, the combined
effect of NsrR, Lrp, and CRP on hmpA expression was analyzed at
the molecular level. In conclusion, this study suggests that NsrR
tightly regulates hmpA transcription in response to nitrosative
stress together with Lrp and CRP, contributing to the survival and
overall success of V. vulnificus during host infection.

RESULTS

Genome and Transcriptome Analyses
Identified NsrR in V. vulnificus
We previously reported that NO-induced HmpA encoded by
VVMO6_RS01375 is crucial for survival under host-derived
nitrosative stress and pathogenesis of V. vulnificus during
infection (Kim et al., 2019). Notably, we further found that
the expression of VVMO6_RS01380, which is divergently
transcribed from hmpA (Figure 1A), is also induced by NO
(Kim et al., 2019). VVMO6_RS01380 encodes an Rrf2-family
transcriptional regulator showing an amino acid sequence
homology to E. coliNsrR, S. TyphimuriumNsrR, and S. coelicolor
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FIGURE 1 | Identification of NsrR and transcriptome analysis of its downstream genes. (A) The physical map of nsrR and hmpA on the V. vulnificus MO6-24/O

genome. The open arrows represent the coding regions and transcriptional directions of the genes. (B) The amino acid sequences of various bacterial NsrRs were

retrieved from the NCBI protein database and aligned using the T-Coffee alignment program (Notredame et al., 2000). Identical sequences and conserved sequences

are shaded in black and gray, respectively. Dashed lines represent missing sequences. Conserved helix-turn-helix DNA-binding motif and three cysteine residues

potentially involved in the Fe-S cluster ligation are indicated by a blue open box and red open boxes, respectively. VvNsrR, V. vulnificus NsrR; EcNsrR, E. coli NsrR;

StNsrR, S. Typhimurium NsrR; ScNsrR, S. coelicolor NsrR. (C) The volcano plot depicting the genes differentially expressed by the nsrR deletion (fold change ≥ 2 with

p < 0.05). The red dots and green dots represent the differentially up-regulated and down-regulated genes, respectively.

NsrR (61, 62, and 35% identity, respectively) (Figure 1B).
Moreover, the protein encoded by VVMO6_RS01380 contains
three conserved cysteine residues, C91, C96, and C102, which
are known to be essential for the Fe-S cluster ligation of Rrf2-
family transcriptional regulators (Figure 1B) (Volbeda et al.,
2017). This observation led us to designate the VVMO6_RS01380
gene product as an Fe-S cluster-containing transcriptional
regulator NsrR.

For the comprehensive identification of NsrR-regulated genes
in V. vulnificus, the transcriptomes of the wild-type and 1nsrR
strains were compared by RNA-seq. The transcriptome analysis
revealed that, in total, 47 genes were differentially expressed
by the nsrR deletion: 44 genes were up-regulated and 3 genes
were down-regulated (Figure 1C, Supplementary Table 1). The
overall fold changes of the up-regulated genes were greater
than those of the down-regulated genes. This result implies
that NsrR serves mainly as a repressor rather than as an
activator. Intriguingly, the up-regulated genes included several
genes that are predicted to encode proteins involved in the
defense against nitrosative stress such as NO dioxygenase HmpA,
NO detoxification protein NnrS, NO−

2 reductase large subunit,
NO−

2 reductase small subunit, cytochrome c NO−
2 reductase

subunit c552 NrfA, and NO reductase transcriptional regulator
NorR (Stern et al., 2012; Kim et al., 2019). Among them, hmpA
was the most highly up-regulated gene in the 1nsrR strain
(Figure 1C), suggesting that NsrR is a strong repressor of hmpA

expression. Meanwhile, the down-regulated genes, iscR, iscS, and
iscU, constitute the isc operon (iscRSUA-hscBA-fdx) encoding
proteins required for the biogenesis of the Fe-S cluster (Lim and
Choi, 2014). Taken together, this result shows that NsrR controls
the expression of multiple genes involved in nitrosative stress
responses, especially hmpA.

hmpA Transcription Is Derepressed by
NsrR in Response to NO
To validate the RNA-seq results and examine whether NsrR
mediates the induction of hmpA in response to NO, the
hmpA transcript levels in the wild-type and 1nsrR strains
were compared under nitrosative stress in vitro and ex vivo.
The hmpA transcript level in the wild-type strain was
significantly elevated upon exposure to an in vitro NO
donor, NO/PPNPs (NO-releasing poly(lactic-co-glycolic acid)-
polyethylenimine nanoparticles) (Figure 2A) (Nurhasni et al.,
2015). This result confirms our previous observation that hmpA
is induced by NO (Kim et al., 2019). Additionally, the hmpA
transcript level was dramatically increased in the 1nsrR strain
compared with that in the wild-type strain even in the absence of
NO/PPNPs (Figure 2A), verifying that NsrR negatively regulates
hmpA. Strikingly, the hmpA transcript level in the 1nsrR strain
was not affected by the addition of NO/PPNPs (Figure 2A),
indicating that NsrR recognizes NO and alleviates the repression
of hmpA expression in vitro.
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FIGURE 2 | The effect of nitrosative stress and the nsrR mutation on hmpA transcription in vitro and ex vivo. The wild-type and 1nsrR strains were grown aerobically

to an A600 of 0.5, and then exposed to 0.15 mg/ml NO/PPNPs in vitro (A) or NO-producing RAW 264.7 cells ex vivo in the presence or absence of L-NMMA (B) for

10min. The hmpA transcript levels were determined by qRT-PCR, and the hmpA transcript levels in the wild-type strain exposed to PPNPs (A) or DMEM without

L-NMMA (B) were set to 1. Error bars represent the SD. Statistical significance was determined by the Student’s t-test (*p < 0.05; ***p < 0.0005; ns, not significant).

WT, wild type; 1nsrR, nsrR-deletion mutant.

The role of NsrR in hmpA expression was further investigated
ex vivo using NO-producing murine macrophage RAW 264.7
cells. As shown in Figure 2B, the hmpA transcript level in
the wild-type strain exposed to NO-producing RAW 264.7
cells was considerably elevated compared with that exposed to
Dulbecco’s modified Eagle’s medium (DMEM; negative control).
The extent of the increase in the hmpA transcript level upon
exposure to the RAW 264.7 cells diminished by the addition of
the NO synthase inhibitor L-NG-monomethyl arginine citrate
(L-NMMA) (Figure 2B). This result suggests that the hmpA
induction upon exposure to RAW 264.7 cells is attributable
to NO produced by the murine macrophages. In contrast,
the highly increased hmpA transcript level in the 1nsrR
strain was not altered by the RAW 264.7 cells and L-NMMA
(Figure 2B), confirming that NsrR mediates the derepression
of hmpA under nitrosative stress derived from host immune
cells. The combined results show that NsrR has a critical role
to sense NO and to induce the hmpA expression both in vitro
and ex vivo.

Then, we examined whether the introduction of recombinant

nsrR can reduce the increased hmpA transcript level in

the 1nsrR strain. Introduction of a nsrR-expressing plasmid
significantly decreased the hmpA transcript level, although

it was not comparable with that in the wild-type strain

(Supplementary Figure 1A). One possible explanation for this
lack of complementation is that the recombinant NsrR

expressed from the exogenous plasmid is less functional for
unknown reasons. On the other hand, ectopic expression
of nsrR on the chromosome effectively reduced the hmpA
transcript level comparable with that in the wild-type strain
(Supplementary Figure 1B). Similarly, the HmpA protein levels
in the 1nsrR strain were highly increased compared with

those in the wild-type strain and significantly decreased by
complementation (Supplementary Figures 1C,D). Altogether,
the results suggest that NsrR is a major transcriptional regulator
that recognizes NO and regulates hmpA expression mainly at the
transcription level.

Three Conserved Cysteine Residues Are
Essential for NsrR to Regulate hmpA and
nsrR
As shown in Figure 1B, V. vulnificus NsrR contains three
conserved cysteine residues (C91, C96, and C102) that are
predicted to act as ligands of the NO-responsive Fe-S cluster
(Tucker et al., 2008; Volbeda et al., 2017). To investigate
the role of these three cysteine residues, three different
strains were constructed: a parent strain GR204 chromosomally
encoding 3×FLAG-tagged NsrR (NsrRFLAG), an isogenic nsrR-
deletion mutant, and an isogenic nsrR3CS mutant chromosomally
encoding apo-locked NsrRFLAG (NsrRFLAG

3CS ) (see see Materials
and Methods for a detailed description). The hmpA transcript
andHmpAprotein levels in the1nsrR strain were highly elevated
compared with those in the parent strain (Figures 3A,B),
indicating that NsrRFLAG in the parent strain is still functional
as a repressor of hmpA. Notably, the hmpA transcript and HmpA
protein levels in the nsrR3CS strain were comparable with those
in the 1nsrR strain (Figures 3A,B). Moreover, a similar effect of
the mutation in the three cysteine residues and the nsrR deletion
on hmpA expression was observed in the wild-type background
(Supplementary Figure 1E). These results that NsrR3CS cannot
repress the hmpA transcription reveal that coordination of the
Fe-S cluster by the three cysteine residues is essential for the NsrR
activity to repress hmpA.

Furthermore, the NsrRFLAG
3CS protein level in the nsrR3CS

strain was significantly elevated compared with the NsrRFLAG

protein level in the parent strain (Figure 3B). This observation
prompted us to examine the activity of the nsrR promoter
(PnsrR, determined in Figures 4B,C) in the wild-type, 1nsrR, and
nsrR3CS strains using the PnsrR-luxCDABE transcriptional fusion
reporter. The PnsrR activity in the 1nsrR strain was higher than
that in the wild-type strain (Figure 3C), demonstrating that NsrR
represses its own transcription. Additionally, the increased PnsrR
activity in the nsrR3CS strain was comparable with that in the
1nsrR strain (Figure 3C). This result suggests that NsrR relieves
the repression of its own transcription by the mutation in the
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FIGURE 3 | The role of the three cysteine residues in NsrR on hmpA and nsrR transcription. (A,B) Total RNA and proteins were isolated from the parent and mutant

strains grown aerobically to an A600 of 0.5. (A) The hmpA transcript levels were determined by qRT-PCR, and the hmpA transcript level in the parent strain was set to

1. (B) The cellular HmpA, NsrRFLAG or NsrRFLAG
3CS , and DnaK (internal control) protein levels were determined by Western blot analysis. Molecular size markers (Bio-Rad)

are shown in kDa. Parent, parent strain; 1nsrR, nsrR-deletion mutant; nsrR3CS, strain expressing apo-locked NsrRFLAG. (C) A PCR fragment carrying the PnsrR was

cloned into pBBR-lux to create a reporter plasmid, pGR2025. The wild-type and mutant strains containing pGR2025 were grown aerobically to an A600 of 0.5, and

then used to measure the cellular luminescence. Error bars represent the SD. Statistical significance was determined by the Student’s t-test (****p < 0.00005; ns, not

significant). RLU, relative luminescence unit; WT, wild type; 1nsrR, nsrR-deletion mutant; nsrR3CS, strain expressing apo-locked NsrR.

three cysteine residues and the consequent loss of the Fe-S cluster.
Combined with the previous data (Figure 2), we propose a model
in which holo-NsrR containing the Fe-S cluster represses both
hmpA and nsrR transcription, shifts to the clusterless apo-form
under nitrosative stress, and then alleviates the repression of
hmpA and nsrR transcription.

PhmpA and PnsrR Overlap Divergently With
Each Other
To map the hmpA promoter, the transcription start site (TSS)
of hmpA was determined by primer extension analysis. A single
reverse transcript was produced from the primer extension of
RNA isolated from the 1nsrR strain grown to an A600 of 0.5
(Figure 4A). This reverse transcript observed in the1nsrR strain
was not detected in the wild-type strain (Figure 4A), confirming
that the hmpA transcription is strongly repressed by NsrR. The
5′-end of hmpA was located 57-bp upstream of the translation
start codon of hmpA. Next, the TSS of nsrR was determined
in a similar way. A single reverse transcript was produced
from the primer extension of RNA isolated from the wild-type
strain grown to an A600 of 0.5 (Figure 4B). The 5′-end of nsrR
was located 18-bp upstream of the translation start codon of
nsrR. The putative promoters constituting the TSSs were named
PhmpA and PnsrR to represent the hmpA promoter and the nsrR
promoter, respectively. The sequences for putative −10 and −35
regions of each promoter were assigned based on the similarity

to the consensus sequences of E. coli σ70 promoters (Figure 4C).
Strikingly, these results show that PhmpA and PnsrR overlap with
each other. This overlapping promoter region was termed the
nsrR-hmpA regulatory region for our further research.

NsrR Directly Binds to the nsrR-hmpA

Regulatory Region to Repress hmpA and
Its Own Expression
To investigate whether NsrR directly binds to the nsrR-hmpA
regulatory region, electrophoretic mobility shift assays (EMSAs)
were performed. The addition of NsrR to 6-carboxyfluorescein
(6-FAM)-labeled DNA probe encompassing the nsrR-hmpA
regulatory region resulted in a single retarded band in an
NsrR concentration-dependent manner (Figure 5A). The same
unlabeled DNA fragment competed for NsrR binding in a dose-
dependent manner (Figure 5A), confirming the specific binding
of NsrR. Then, the binding of NsrR3CS to the nsrR-hmpA
regulatory region was compared with that of NsrR. The amount
of the retarded band of the DNA-NsrR3CS complex was reduced
compared with that of the DNA-NsrR complex (Figure 5B).
This result implies that the DNA-binding affinity of NsrR3CS

is considerably lower than that of NsrR, which leads to the
derepression of hmpA and nsrR under nitrosative stress.

To determine the precise location of NsrR-binding site(s) in
the nsrR-hmpA regulatory region, DNase I protection assays were
performed using the same DNA probe. When NsrR was added
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FIGURE 4 | Sequence analysis of the nsrR-hmpA regulatory region. (A,B) The TSSs of hmpA (A) and nsrR (B) were determined by the primer extension of RNA

isolated from the wild-type and 1nsrR strains grown aerobically to an A600 of 0.5. Lanes C, T, A, and G represent the nucleotide sequencing ladders. The asterisks

indicate the TSSs. WT, wild type; 1nsrR, nsrR-deletion mutant. (C) Double-stranded DNA sequence of the nsrR-hmpA regulatory region is shown. The TSS and

putative translation start codon of nsrR are indicated by dashed bent arrows, and those of hmpA are indicated by solid bent arrows. The putative −10 and −35

regions are underlined with dashed lines for PnsrR and solid lines for PhmpA. The putative ribosome-binding sites (AGGA) are boldface. The binding sequences of NsrR

(NSRRB; a white box), Lrp (LRPB; a gray box), and CRP (CRPB1, CRPB2, CRPB3; black boxes) were determined in the later parts of this study.

to the DNA probe, NsrR protected a single region extending
from −2 to +18 (NSRRB, centered at +8.5 from the TSS of
hmpA) from DNase I digestion (Figures 4C, 5C). The sequence
of NSRRB showed about 87% similarity to the 11-1-11 bp
consensus NsrR-binding sequence in E. coli (Bodenmiller and
Spiro, 2006; Partridge et al., 2009). Combined with the EMSA
data (Figure 5A), these results indicate that NsrR concurrently
represses hmpA and its own transcription by directly binding to
the single specific sequence in the nsrR-hmpA regulatory region.

Lrp Represses hmpA in an
NsrR-Dependent Manner by Directly
Binding to the nsrR-hmpA Regulatory
Region
To determine other factors involved in the hmpA regulation,
we further explored various known transcriptional regulators
in V. vulnificus. Among them, the role of Lrp in the hmpA
regulation was evaluated. The hmpA transcript and HmpA
protein levels in the lrp-deletion mutant (1lrp) were significantly

increased compared with those in the parent strain and restored
by complementation (Figures 6A,B). The hmpA transcript level
in the wild-type strain was not altered by exogenous leucine
(Supplementary Figure 2A), suggesting that Lrp negatively
affects the hmpA transcription in a leucine-independent manner.
To investigate the regulatory relationship between NsrR and
Lrp, the lrp-deleted nsrR3CS mutant (nsrR3CS1lrp), in which
both NsrR and Lrp are not functional, was constructed from
the parent strain. Interestingly, the hmpA transcript and HmpA
protein levels in the nsrR3CS1lrp strain were comparable with
those in the nsrR3CS strain (Figures 6C,D). The observation that
Lrp was not able to affect hmpA transcription in the absence of
functional NsrR indicates that the negative effect of Lrp on hmpA
is mediated by NsrR. This result led us to examine whether Lrp
positively regulates the cellular level of NsrR to repress hmpA.
However, both the PnsrR activity and NsrRFLAG protein level
were not affected by the lrp deletion (Supplementary Figure 2B,
Figure 6B).

Next, EMSAs were performed to investigate whether Lrp
directly binds to the nsrR-hmpA regulatory region. The addition
of Lrp to the DNA probe resulted in a single retarded band
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FIGURE 5 | Specific binding of NsrR to the nsrR-hmpA regulatory region. (A,B) A 393-bp DNA fragment of the nsrR-hmpA regulatory region (10 nM) was labeled with

6-FAM, and then incubated with increasing amounts of NsrR (A,B) or NsrR3CS (B) as indicated. For the competition analysis, various amounts of the unlabeled DNA

fragment were added as a self-competitor. B, bound DNA; F, free DNA. (C) The same DNA probe (40 nM) was incubated with increasing amounts of NsrR as indicated,

and then digested with DNase I. The region protected by NsrR is indicated by a white box (NSRRB). Nucleotide numbers shown are relative to the TSS of hmpA.

FIGURE 6 | The effect of the lrp mutation on hmpA transcription and the specific binding of Lrp to the nsrR-hmpA regulatory region. (A–D) Total RNA and proteins

were isolated from the parent and mutant strains grown aerobically to an A600 of 0.5. (A,C) The hmpA transcript levels were determined by qRT-PCR, and the hmpA

transcript levels in the parent strain were set to 1. Error bars represent the SD. Statistical significance was determined by the Student’s t-test (****p < 0.00005; ns, not

significant). (B,D) The cellular HmpA, NsrRFLAG or NsrRFLAG
3CS , Lrp, and DnaK (internal control) protein levels were determined by Western blot analysis. Molecular size

markers (Bio-Rad) are shown in kDa. Parent, parent strain; 1lrp, lrp-deletion mutant; pJH0311, broad-host-range vector; pJH0311::lrp, pJH0311 carrying the lrp

gene (pZW1818); nsrR3CS, strain expressing apo-locked NsrRFLAG; nsrR3CS1lrp, lrp-deletion mutant expressing apo-locked NsrRFLAG. (E) A 393-bp DNA fragment of

the nsrR-hmpA regulatory region (10 nM) was labeled with 6-FAM, and then incubated with increasing amounts of Lrp as indicated. For the competition analysis,

various amounts of the unlabeled DNA fragment were added as a self-competitor. B, bound DNA; F, free DNA. (F) The same DNA probe (40 nM) was incubated with

increasing amounts of Lrp as indicated, and then digested with DNase I. The region protected by Lrp is indicated by a gray box (LRPB). The nucleotides showing

enhanced cleavage are indicated by asterisks. Nucleotide numbers shown are relative to the TSS of hmpA.

in an Lrp concentration-dependent manner (Figure 6E). The
same unlabeled DNA fragment showed competition for Lrp
binding in a dose-dependent manner (Figure 6E), demonstrating
the specific binding of Lrp. DNase I protection assays revealed

that Lrp largely protected a single region extending from −75
to −11 (LRPB, centered at −43 from the TSS of hmpA)
from DNase I digestion (Figures 4C, 6F). Combined with the
EMSA data (Figure 6E), these results indicate that Lrp binds
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FIGURE 7 | The effect of the crp mutation on hmpA and nsrR transcription, and the specific binding of CRP to the nsrR-hmpA regulatory region. (A–D) Total RNA and

proteins were isolated from the parent and mutant strains grown aerobically to an A600 of 0.5. (A,C) The hmpA transcript levels were determined by qRT-PCR, and the

hmpA transcript levels in the parent strain were set to 1. Error bars represent the SD. Statistical significance was determined by the Student’s t-test (*p < 0.05; ***p <

0.0005; ****p < 0.00005; ns, not significant). (B,D) The cellular HmpA, NsrRFLAG or NsrRFLAG
3CS , Lrp, CRP, and DnaK (internal control) protein levels were determined by

Western blot analysis. Molecular size markers (Bio-Rad) are shown in kDa. Parent, parent strain; 1crp, crp-deletion mutant; pJH0311, broad-host-range vector;

pJH0311::crp, pJH0311 carrying the crp gene (pKK1502); nsrR3CS, strain expressing apo-locked NsrRFLAG; nsrR3CS1crp, crp-deletion mutant expressing apo-locked

NsrRFLAG. (E) A 393-bp DNA fragment of the nsrR-hmpA regulatory region (10 nM) was labeled with 6-FAM, and then incubated with increasing amounts of CRP as

indicated. For the competition analysis, various amounts of the unlabeled DNA fragment were added as a self-competitor. B, bound DNA; F, free DNA. (F) The same

DNA probe (40 nM) was incubated with increasing amounts of CRP as indicated, and then digested with DNase I. The regions protected by CRP are indicated by

block boxes (CRPB1, CRPB2, and CRPB3). The nucleotides showing enhanced cleavage are indicated by asterisks. Nucleotide numbers shown are relative to the

TSS of nsrR.

directly and specifically to the nsrR-hmpA regulatory region.
Notably, within the region protected by Lrp, a periodic pattern
of reduced cleavage followed by short regions of enhanced
cleavage was observed (Figure 6F). This pattern known as phased
hypersensitivity implies DNA bending by a multimeric Lrp
(Pul et al., 2007), suggesting that the Lrp multimer induces
a conformation change of the nsrR-hmpA regulatory region.
Moreover, EMSA with both NsrR and Lrp showed that NsrR and
Lrp simultaneously bind to the nsrR-hmpA regulatory region,
rather than displace each other (Supplementary Figure 2C).
Altogether, the combined results propose that direct binding
of Lrp to the nsrR-hmpA regulatory region does not alter the
nsrR transcription but represses hmpA transcription presumably
through the modification of the DNA conformation enhancing
the hmpA repression by NsrR.

CRP Activates hmpA, but Represses nsrR
by Directly Binding to the nsrR-hmpA

Regulatory Region
The role of CRP in the hmpA regulation was also explored.
The hmpA transcript and HmpA protein levels in the crp-
deletion mutant (1crp) were considerably decreased compared
with those in the parent strain and restored by complementation
(Figures 7A,B). In addition, the hmpA transcript level in the

wild-type strain was decreased by exogenous glucose while that
in the 1crp strain was not affected (Supplementary Figure 3A).
These results indicate that CRP has a positive effect on the hmpA
transcription which is relieved in the presence of exogenous
glucose. Then, we compared the hmpA transcript and HmpA
protein levels in the parent strain, the nsrR3CS strain, and the
crp-deleted nsrR3CS mutant (nsrR3CS1crp). Similar to Lrp, the
hmpA transcript and HmpA protein levels in the nsrR3CS1crp
strain were comparable with those in the nsrR3CS strain
(Figures 7C,D), suggesting that the positive effect of CRP on the
hmpA transcription is also mediated by NsrR. Thus, we further
examined whether the effect of CRP on hmpA expression results
from the increased cellular level of NsrR. Notably, the PnsrR
activity and NsrRFLAG protein level were significantly increased
by the crp deletion (Supplementary Figure 3B, Figure 7B),
showing that CRP acts as a repressor of nsrR transcription.
Moreover, the Lrp protein level in the 1crp strain was elevated
compared with that in the parent strain as we observed previously
(Figure 7B) (Lee et al., 2020). Accordingly, we hypothesized that
CRP indirectly activates hmpA through the repression of both
nsrR and lrp in a sequential manner.

To investigate whether CRP directly binds to the nsrR-
hmpA regulatory region, EMSAs were performed. As shown
in Figure 7E, the addition of CRP to the DNA probe resulted
in a single retarded band in a CRP concentration-dependent
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manner. The same unlabeled DNA fragment competed for CRP
binding in a dose-dependentmanner (Figure 7E), confirming the
specific binding of CRP. DNase I protection assays determined
three regions protected by CRP extending from −10 to +10
(CRPB1, centered at −0.5 from the TSS of nsrR), −69 to −31
(CRPB2, centered at −50 from the TSS of nsrR), and −99 to
−88 (CRPB3, centered at −93.5 from the TSS of nsrR) from
DNase I digestion (Figures 4C, 7F). Combined with the EMSA
data showing a single retarded band by CRP (Figure 7E), this
result implies that CRP binds to CRPB1, CRPB2, and CRPB3with
similar DNA-binding affinities. Taken together, the combined
results propose that CRP directly and specifically binds to the
nsrR-hmpA regulatory region to repress nsrR as well as lrp, and
consequently induces the hmpA transcription in a sequential
cascade. In conclusion, the results in this study suggest that
NsrR tightly regulates the hmpA transcription in response to NO,
which could be elaborated by Lrp and CRP.

DISCUSSION

In this study, we newly identified and characterized an NO-
responsive transcriptional regulator NsrR in V. vulnificus
(Figure 1). The transcriptome analysis discovered that 44
genes are negatively regulated and 3 genes are positively
regulated by NsrR (Supplementary Table 1). Notably, our
previous transcriptome analysis of the wild-type strain revealed
that 42 of the 44 genes repressed by NsrR are significantly
induced upon exposure to NO (Supplementary Figure 4A) (Kim
et al., 2019). Among the 42 genes, we further identified that
the induction of nnrS, in addition to hmpA, is mediated by
NsrR in response to NO (Figure 2, Supplementary Figure 4B).
Accordingly, it is possible to propose that NsrR also regulates the
expression of various genes other than hmpA and nnrS by sensing
nitrosative stress. Meanwhile, although iscR, iscS, and iscU were
positively regulated by NsrR (Supplementary Table 1), NsrR did
not directly bind to the promoter region of the isc operon under
the conditions tested (Supplementary Figure 5), indicating that
NsrR controls the isc operon indirectly. Considering that
functional NsrR requires the intact Fe-S cluster, up-regulation
of the isc operon would be advantageous for NsrR to control its
regulons effectively.

Besides nsrR, we found that the expression of norR, encoding
another putative NO-responsive transcriptional regulator NorR,
is induced by NO (Kim et al., 2019). In V. cholerae, NorR
activates hmpA and nnrS by sensing NO, contributing to NO
detoxification and the sustained colonization of host intestines
(Stern et al., 2012). However, NorR did not affect the hmpA
transcription in V. vulnificus under our experimental conditions
(Supplementary Figure 6). Meanwhile, NorR in E. coli is known
to activate the norVW genes encoding a flavorubredoxin to
detoxify NO (D’Autreaux et al., 2005), but we could not find
norVW homologs in the V. vulnificus genome. Although NorR-
regulated genes and their role require further studies, NsrR
appears to be the major transcriptional regulator for V. vulnificus
to respond against nitrosative stress so far.

Figure 8A depicts the regulatory network comprising NsrR,
Lrp, and CRP for the hmpA transcription proposed by this study.
NsrR relieves the direct repression of hmpA losing its Fe-S cluster
and DNA-binding affinity under nitrosative stress (Figures 3, 5).
The strong repression of hmpA by NsrR could allow V. vulnificus
to prevent unnecessary waste of cellular components such as
heme, NAD, and FAD as cofactors of HmpA (Kim et al., 2019).
On the other hand, it could facilitate the rapid and strong
induction of hmpA when the repression by NsrR is abolished,
which may ensure an effective response against nitrosative
stress (Alon, 2007). Thus, it is tempting to suppose that NsrR
has evolved to regulate hmpA transcription by a derepression
mechanism rather than simple activation.

Furthermore, Lrp and CRP elaborate the hmpA regulation by
functional NsrR. Lrp directly binds to the nsrR-hmpA regulatory
region but is not able to repress hmpA in the absence of functional
NsrR (Figure 6). As one of the bacterial nucleoid-associated
proteins, Lrp can modulate gene expression by remodeling the
DNA structure (Dillon and Dorman, 2010). Thus, one possible
explanation for the NsrR-dependent hmpA repression by Lrp
is that the formation of a multicomponent complex containing
Lrp multimers and the resulting conformation change of DNA
enhance the ability of holo-NsrR to repress hmpA. Meanwhile,
this study further demonstrated that CRP acts as a repressor
of nsrR by directly binding to the nsrR-hmpA regulatory region
(Figure 7, Supplementary Figure 3B). In addition, we confirmed
our previous report that CRP directly represses lrp by binding to
its promoter (Figure 7B) (Lee et al., 2020). These results led us to
propose that CRP activates hmpA by the repression of nsrR and
lrp as a sequential cascade.

Particularly, we showed that CRP upregulates the
hmpA transcription in response to low levels of glucose
(Supplementary Figure 3A). During conditions of intestinal
inflammation, NO produced by host cells is rapidly decomposed
to less toxic NO−

3 by diverse detoxifying enzymes of enteric
pathogens including HmpA. The accumulated NO−

3 in the
intestinal lumen can be utilized as an electron acceptor for
anaerobic respiration of pathogens in hypoxic environments
(Vazquez-Torres and Baumler, 2016; Bueno et al., 2018). In
the NO−

3 /NO
−
2 respiration, NO−

3 is converted to NO−
2 that

is harmful to bacteria. Thus, NO−
2 is subsequently reduced to

ammonia (NH3) by an NO−
2 reductase, which can generate

NO as a by-product (Spiro, 2007; Tiso and Schechter, 2015).
Intriguingly, it has been reported that CRP activates the
NO−

3 /NO
−
2 respiration under nutrient-poor or low-oxygen

conditions in E. coli and Shewanella oneidensis (Stewart et al.,
2009; Dong et al., 2012). Accordingly, we could assume that
CRP induces hmpA as well as activates NO−

3 /NO
−
2 respiration

under low-glucose conditions to scavenge the low levels of
endogenous NO during NO−

3 /NO
−
2 respiration. Since the

utilization of host-derived NO−
3 enhances the growth and fitness

of pathogens (Vazquez-Torres and Baumler, 2016), NsrR and
CRP might coordinate nitrosative stress defense systems and
energy production in V. vulnificus for survival during infection.
Altogether, the collaborative regulation by NsrR along with
Lrp and CRP enables the tight and precise tuning of hmpA
transcription by integrating various signals including nitrosative
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FIGURE 8 | A regulatory network controlling hmpA transcription and nitrosative stress defense systems in V. vulnificus. (A) A regulatory network comprising

transcriptional regulators NsrR, Lrp, and CRP controls the hmpA transcription. NsrR directly represses hmpA and nsrR itself. Lrp indirectly represses hmpA

presumably by enhancing the repression activity of NsrR through DNA structure remodeling. CRP indirectly activates hmpA possibly through the repression of nsrR

and lrp in a sequential cascade. (B) Apo-NsrR alleviates the repression of hmpA and nsrR upon exposure to nitrosative stress. On the other hand, apo-IscR relieves

the repression of the isc operon, and the resulting increased apo-IscR directly activates prx3 encoding 1-cysteine peroxiredoxin. The induced NO-decomposition

proteins, HmpA and Prx3, would facilitate the survival of V. vulnificus under host-derived nitrosative stress. The gray dots represent the Fe-S cluster.

stress and nutrient availability, thereby contributing to the fitness
and pathogenesis of V. vulnificus within the host.

Our current understanding of the nitrosative stress defense
systems in V. vulnificus is summarized in Figure 8B. In
addition to NsrR, we previously demonstrated that V. vulnificus
IscR, another Rrf2-family [2Fe-2S] containing transcriptional
regulator, also turns to an apo-form lacking the Fe-S cluster under
nitrosative stress (Lim and Choi, 2014; Choi et al., 2020). Apo-
IscR dissociates from the promoter of the isc operon to express
the isc operon and to facilitate the biogenesis of the Fe-S cluster
(Lim et al., 2014b). In addition, the resulting increased apo-
IscR further activates the expression of prx3 encoding 1-cysteine
peroxiredoxin with an NO-decomposition activity by directly
binding to the prx3 promoter region (Pprx3) (Lim et al., 2014a;
Ahn et al., 2018). The regulatory characteristic of IscR on Pprx3
is distinguishable from that of NsrR on PhmpA in which IscR can
bind to Pprx3 in the apo-form, and the increased apo-IscR protein
level results in prx3 activation. Taken together, these assorted
nitrosative stress defense systems would provide V. vulnificus
with the benefit of having inclusive modulation of various NO-
detoxifying gene expression and the consequent survival under
host-derived nitrosative stress during infection.

MATERIALS AND METHODS

Strains, Plasmids, and Culture Conditions
The strains and plasmids used in this study are listed
in Supplementary Table 2. Unless otherwise noted, the

V. vulnificus strains were grown aerobically in Luria-Bertani
(LB) medium supplemented with 2% (w/v) NaCl (LBS) at 30◦C,
and their growth was monitored spectrophotometrically at
600 nm (A600). When required, 3µg/ml chloramphenicol was
added to the media. To visualize the cellular NsrR protein levels,
V. vulnificus GR204, which carries 3×FLAG-coding sequence
fused to the 3′-end of nsrR ORF on the chromosome, was
constructed as a parent strain (Supplementary Table 2). The
parent strain and its isogenic mutants were used to quantify
the cellular NsrR protein levels. The murine macrophage
RAW 264.7 cells were grown in DMEM containing 10% fetal
bovine serum (VWR, Radnor, PA) and the antibiotics [100
units/ml penicillin G and 100µg/ml streptomycin (Gibco-
BRL, Gaithersburg, MD)] in air supplemented with 5% CO2

at 37◦C. To induce NO production, the RAW 264.7 cells
were suspended in fresh DMEM containing 500 ng/ml E.
coli O111:B4 lipopolysaccharide (Sigma, St. Louis, MO) and
1mM L-arginine (Sigma) (Walker et al., 1997; Choi et al.,
2020).

Generation and Complementation of the
Mutants
For construction of the isogenic deletion mutants, target
genes were inactivated in vitro by deletion of each ORF
using the PCR-mediated linker-scanning mutation method as
described previously (Jang et al., 2016; Choi et al., 2020).
Briefly, the deleted ORF fragment was amplified by PCR

Frontiers in Microbiology | www.frontiersin.org 10 May 2021 | Volume 12 | Article 68119660

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Choi et al. hmpA Regulation by NsrR in V. vulnificus

with appropriate primer pairs (Supplementary Table 3), and
the resulting fragment was ligated into SphI-SpeI-digested
pDM4 (Milton et al., 1996). E. coli S17-1 λpir (Simon et al.,
1983) containing pDM4 with the desired insert was used as a
conjugal donor to an appropriate V. vulnificus strain to generate
the deletion mutant (Supplementary Table 2). The conjugation
and isolation of the transconjugants were conducted using
a method described previously (Choi et al., 2020). The lrp-
deletion mutant ZW181 and the crp-deletion mutant DI0201
were constructed previously (Choi et al., 2002; Lee et al.,
2020).

For construction of the parent strain GR204 encoding
NsrRFLAG on the chromosome, the 3×FLAG-coding
sequence was fused to the 3’-end of nsrR ORF by PCR
using the primer pairs NSRR01-F and NSRR01F-R, or
NSRR02F-F and NSRR02-R (Supplementary Table 3).
The amplified fragment was cloned into pDM4, resulting
in pGR2008 (Supplementary Table 2). E. coli S17-1 λpir
containing pGR2008 was used as a conjugal donor to
the 1nsrR strain as described above to generate GR204
(Supplementary Table 2).

The three cysteine residues in NsrR (C91, C96, and C102)
were replaced with serine to examine their regulatory function
with the minimal structural change of NsrR. For construction
of the nsrR3CS strain DY192, three cysteine residues were
substituted with serine in vitro by using the QuikChange R©

site-directed mutagenesis kit (Agilent Technologies, Loveland,
CO) (Bang et al., 2012; Lim et al., 2014a). The complementary
mutagenic primers listed in Supplementary Table 3 were
used to create pDY1907 carrying the nsrR3CS gene on pDM4
(Supplementary Table 2). E. coli S17-1 λpir containing
pDY1907 was used as a conjugal donor to the 1nsrR strain
as described above to generate DY192, and the nsrR3CS
mutation in DY192 was confirmed by DNA sequencing. For
construction of the 3×FLAG-tagged nsrR3CS strain GR217
(Supplementary Table 2), a similar method was adopted except
using pGR2016 carrying 3×FLAG-coding sequence fused to the
3′-end of nsrR3CS ORF on pDM4 instead of pDY1907.

To complement the nsrR mutation with a plasmid-based
system, the nsrR gene was amplified by PCR using the primer
pair NSRRC-F and -R (Supplementary Table 3). The amplified
fragment was cloned into the broad-host-range vector pJH0311
(Goo et al., 2006) to create pDY1702 (Supplementary Table 2).
To complement the lrp and crp mutation, pZW1818 and
pKK1502 carrying the lrp and crp gene on pJH0311, respectively,
were used in this study (Supplementary Table 2) (Jang et al.,
2017; Lee et al., 2020). The plasmids were transferred into
appropriate mutants by conjugation as described above.

To complement the nsrR mutation by ectopic expression of
nsrR on the chromosome, the nsrR regulatory region and its
ORF was integrated into a cryptic lacZ gene by PCR using
specific primer pairs listed in Supplementary Table 3 (Hall, 1999;
Chodur et al., 2017). The amplified fragment was cloned into
pDM4, resulting in pGR2007 (Supplementary Table 2). E. coli
S17-1 λpir containing pGR2007 was used as a conjugal donor
to the 1nsrR strain as described above to generate GR203
(Supplementary Table 2).

RNA-seq and Transcriptome Analysis
To analyze the effect of the nsrR deletion on the V. vulnificus
transcriptome, total RNA was isolated from biological duplicates
of the wild-type and 1nsrR strains, grown aerobically to an
A600 of 0.5 in M9 minimal media supplemented with 0.4% (w/v)
glucose (M9G) and then exposed to PPNPs for 10min (Nurhasni
et al., 2015; Kim et al., 2019). The RNA was further purified by
removing DNA using TURBODNase (Ambion, Austin, TX), and
mRNA was selectively enriched by depleting rRNA using a Ribo-
Zero rRNA removal kit (Epicenter, Madison, WI) according to
the manufacturer’s instructions. Strand-specific cDNA libraries
were constructed and sequenced using HiSeq 2500 (Illumina, San
Diego, CA) as described previously (Lee et al., 2019). The raw
sequencing reads were mapped to the V. vulnificus MO6-24/O
reference genome (GenBankTM accession numbers: CP002469
and CP002470, www.ncbi.nlm.nih.gov), and the expression level
of each gene was calculated as a reads per kilobase of transcript
per million mapped sequence reads (RPKM) value using EDGE-
pro v1.3.1 (Estimated Degree of Gene Expression in PROkaryots)
(Magoc et al., 2013). The RPKM values were normalized
and analyzed statistically using DeSeq2 v1.26.0 to identify the
differentially expressed genes (fold change ≥ 2 with p < 0.05)
(Love et al., 2014). A heat map was generated by the Matplotlib
python package using the RPKM-fold change for each gene
(Hunter, 2007).

qRT-PCR and Primer Extension Analysis
Relative transcript levels in the total RNA isolated from
the V. vulnificus strains grown under various environmental
conditions were determined by quantitative RT-PCR (qRT-PCR).
In detail, V. vulnificus was grown to an A600 of 0.5 in M9G
and then exposed to either 0.15 mg/ml PPNPs (negative control)
or NO/PPNPs for 10min (Nurhasni et al., 2015; Kim et al.,
2019). Additionally, V. vulnificus grown to an A600 of 0.5 in
LBS was exposed to DMEM (negative control) or RAW 264.7
cells at a multiplicity of infection 10 for 10min in the presence
or absence of 500µM L-NMMA (Sigma), which is a known
NO synthase inhibitor (Nathan and Hibbs, 1991; Choi et al.,
2020). When necessary, V. vulnificus was grown to an A600 of
0.5 in LBS with various amounts of L-leucine (Sigma) or 1%
glucose (Sigma). Total RNA from the V. vulnificus cells was
isolated and quantified using a RNeasy R© Mini Kit (Qiagen,
Valencia, CA) and a NanoDrop Onec Microvolume UV-Vis
Spectrophotometer (Thermo Fisher Scientific, Waltham, MA),
respectively. cDNA was synthesized from 500 ng of the total
RNA with the iScriptTM cDNA synthesis kit (Bio-Rad, Hercules,
CA). Real-time PCR amplification of the cDNA was performed
with the Chromo 4 real-time PCR detection system (Bio-Rad)
and specific primer pairs (Supplementary Table 3) as described
previously (Jang et al., 2017). Relative expression levels were
calculated with the 16S rRNA expression level as an internal
reference for normalization (Jang et al., 2017).

For primer extension analysis, primers HMPAUP-R and
NSRRUP-R (Supplementary Table 3) complementary to the
coding region of hmpA and nsrR, respectively, were end-labeled
with [γ-32P]-ATP and added to the RNA. The primers were
extended with SuperScript II reverse transcriptase (Invitrogen,
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Carlsbad, CA). The cDNA products were purified and resolved
on a sequencing gel alongside sequencing ladders generated from
pDY1706 and pDY1707 (Supplementary Table 2) with the same
primers, respectively. The plasmid pDY1706 was constructed
by cloning the 219-bp hmpA upstream region extending from
−120 to +99, amplified by PCR using a primer pair HMPAUP-F
and -R (Supplementary Table 3), into pGEM-T Easy (Promega,
Madison, WI). Similarly, pDY1707 carrying the 198-bp nsrR
upstream region extending from −113 to +85 on pGEM-T
Easy was constructed using a primer pair NSRRUP-F and -R
(Supplementary Table 3). The primer extension product was
visualized with the Typhoon FLA 7000 phosphorimager (GE
healthcare, Menlo Park, CA).

Protein Purification and Western Blot
Analysis
To overexpress NsrR and NsrR3CS, each ORF of nsrR and
nsrR3CS was amplified by PCR using specific primer pairs
(Supplementary Table 3). The amplified fragments were cloned
into pET-28a(+) (Novagen, Madison, WI) to create pEJ1902 and
pEJ1903, respectively (Supplementary Table 2). The resulting
His6-tagged NsrR and NsrR3CS were expressed in E. coli BL21
(DE3) and purified by affinity chromatography according to the
manufacturer’s instructions (Qiagen). The buffers used for NsrR
and NsrR3CS are as follows: 20mM Tris-Cl (pH 8.0), 500mM
NaCl, and 5mM β-mercaptoethanol; additional 10% glycerol for
a lysis buffer; additional 20mM imidazole for a wash buffer;
additional 250mM imidazole for an elution buffer; additional
50% glycerol for a dialysis buffer. To overexpress Lrp and CRP,
pZW1903 carrying the lrp gene on pET-28a(+) and pHK0201
carrying the crp gene on pRSET A (Invitrogen) were used in
this study (Supplementary Table 2) (Choi et al., 2002; Lee et al.,
2020). The His6-tagged Lrp and CRP were purified as described
previously (Lee et al., 2020).

For Western blot analysis, V. vulnificus cells were lysed using
B-PERTM Bacterial Protein Extraction Reagent with Enzymes
(Thermo Fisher Scientific), and residual cell debris was removed
by centrifugation to obtain clear cell lysates. The protein levels
of HmpA, Lrp, CRP, and DnaK in the clear cell lysates were
determined as described previously (Kim et al., 2019; Lee
et al., 2020). Similarly, cellular NsrRFLAG protein was detected
using Monoclonal ANTI-FLAG R© M2 antibody produced in
mouse (Sigma).

Construction of PnsrR-luxCDABE
Transcriptional Fusion
A 393-bp nsrR-hmpA regulatory region (−262 to +131 from
the TSS of nsrR) was amplified with the primer PnsrR-F
carrying a SacI restriction site and PnsrR-R carrying a SpeI
restriction site (Supplementary Table 3). The resulting DNA
fragment was cloned into the SacI-SpeI-digested pBBR-
lux carrying the promoterless luxCDABE genes to create
pGR2025 (Supplementary Table 2) (Lenz et al., 2004).
pGR2025 was transferred into the V. vulnificus strains by
conjugation as described above. The cellular luminescence
and growth (A600) of each strain grown to an A600 of 0.5 in

LBS were measured using a microplate reader (InfiniteTM

microplate reader, Tecan, Männedorf, Switzerland), and
RLUs were calculated by dividing the luminescence with the
A600 (Lee et al., 2019).

EMSA and DNase I Protection Assay
For the EMSAs, a 393-bp nsrR-hmpA regulatory region (−186
to +207 from the TSS of hmpA, equivalent to −262 to +131
from the TSS of nsrR) was amplified by PCR using 6-FAM-labeled
PnsrRhmpA-F and -R as primers (Supplementary Table 3).
Similarly, a 321-bp isc operon regulatory region [−194 to
+127 from the TSS of isc operon (Lim et al., 2014b)] was
amplified by PCR using 6-FAM-labeled Pisc-F and -R as
primers (Supplementary Table 3). The 6-FAM-labeled DNA
probe (10 nM) was then incubated with purified NsrR or CRP
for 30min at 30◦C in a 20-µl reaction mixture containing 1×
NsrR binding buffer (10mMTris-Cl (pH 8.0), 10mMKCl, 1mM
DTT, and 100 µg BSA; additional 1mM cAMP only for CRP)
and 0.1 µg of poly(dI-dC) (Sigma) as a non-specific competitor.
Similarly, the DNA probe was incubated with purified Lrp or
both NsrR and Lrp for 30min at 30◦C in a 20-µl reaction
mixture containing 1× Lrp binding buffer (50mM Tris-Cl (pH
8.0), 20mM KCl, 1mM DTT, and 100 µg BSA, and 10%
glycerol) and 0.1 µg of poly(dI-dC) (Sigma) as a non-specific
competitor. For the competition analysis, various concentrations
of unlabeled DNA fragment were added as a self-competitor to
the reaction mixture before incubation. Electrophoretic analysis
of the DNA-protein complexes was performed as described
previously (Lee et al., 2020).

The same 393-bp nsrR-hmpA regulatory region was amplified
by PCR using unlabeled PnsrRhmpA-F and 6-FAM-labeled
PnsrRhmpA-R as primers for the DNase I protection assays
(Supplementary Table 3). The binding of NsrR, Lrp, and CRP
to the DNA probe (40 nM) was performed as described above,
and DNase I digestion of the DNA-protein complexes followed
the procedures described previously (Jang et al., 2017). The
digested DNA products were precipitated with ethanol and
eluted in sterilized H2O, and then analyzed using an ABI
3730xl DNA analyzer (Applied Biosystems, Foster City, CA)
with Peak ScannerTM Software v1.0 (Applied Biosystems)
(Hwang et al., 2019).

Data Analysis
Average and standard deviation (SD) values were calculated from
at least three independent experiments. Statistical analysis was
performed by the Student’s t-test using GraphPad Prism 7.0
(GraphPad Software, San Diego, CA).
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Campylobacter jejuni is the leading cause of bacterial gastroenteritis and antibiotic

resistant C. jejuni are a serious threat to public health. Herein, we sought to evaluate

trends in C. jejuni infections, quantify resistance frequencies, and identify epidemiological

factors associated with infection. Campylobacter jejuni isolates (n = 214) were collected

from patients via an active surveillance system at four metropolitan hospitals in Michigan

between 2011 and 2014. The minimum inhibitory concentration for nine antibiotics was

determined using microbroth dilution, while demographic and clinical data were used for

the univariate and multivariate analyses. Over the 4-year period, a significant increase in

the recovery of C. jejuni was observed (p ≤ 0.0001). Differences in infection rates were

observed by hospital and several factors were linked to more severe disease. Patients

residing in urban areas, for instance, were significantly more likely to be hospitalized

than rural residents as were patients over 40 years of age and those self-identifying

as non-White, highlighting potential disparities in disease outcomes. Among the 214

C. jejuni isolates, 135 (63.1%) were resistant to at least one antibiotic. Resistance

was observed for all nine antibiotics tested yielding 11 distinct resistance phenotypes.

Tetracycline resistance predominated (n = 120; 56.1%) followed by resistance to

ciprofloxacin (n = 49; 22.9%), which increased from 15.6% in 2011 to 25.0% in

2014. Resistance to two antibiotic classes was observed in 38 (17.8%) isolates, while

multidrug resistance, or resistance to three or more classes, was observed in four (1.9%).

Notably, patients with ciprofloxacin resistant infections were more likely to report traveling

in the past month (Odds Ratio (OR): 3.0; 95% confidence interval (CI): 1.37, 6.68)

and international travel (OR: 9.8; 95% CI: 3.69, 26.09). Relative to patients with only

tetracycline resistant infections, those with ciprofloxacin resistance were more likely to

travel internationally, be hospitalized and have an infection during the fall or summer.

Together, these findings show increasing rates of infection and resistance and highlight

specific factors that impact both outcomes. Enhancing understanding of factors linked

to C. jejuni resistance and more severe infections is critical for disease prevention,
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particularly since many clinical laboratories have switched to the use of

culture-independent tests for the detection of Campylobacter.

Keywords: Campylobacter, antibiotic resistance, epidemiology, ciprofloxacin resistance, tetracycline resistance,

risk factor

INTRODUCTION

Campylobacter spp. are a leading cause of bacterial gastroenteritis
infections worldwide (1) and represent the most common
cause of foodborne infections in the U.S. since 2013 (2).
While C. jejuni causes a vast majority of human infections,
other species including C. coli, C. upsaliensis, C. lari, C. fetus,
C. insulaeingrae, and C. hyointestinalis, are also important
(3). Collectively, these pathogens were estimated to cause 1.5
million infections in the U.S. each year, contributing to 13,000
hospitalizations and 120 deaths (4). In 2018, the Centers for
Disease Control and Prevention (CDC) estimated the incidence
of campylobacteriosis to be 19.6 cases per 100,000 individuals,
which had increased from 12.0 cases per 100,000 in 2015–
2017, among sites participating in the Foodborne Diseases Active
Surveillance Network (FoodNet) (2).

Clinical manifestations of campylobacteriosis include fever,
abdominal pain, vomiting, weight loss, chills, fatigue, myalgia,
malaise, and acute watery or bloody diarrhea (1). The incubation
period is typically 1–4 days after exposure, and the severity
of symptoms tends to vary by bacterial density and strain
(5). Post-infectious immune sequalae such as Guillain-Barré
Syndrome, Miller-Fisher syndrome, and reactive arthritis, have
been linked to Campylobacter infection as have inflammatory
bowel disease, esophageal and colo-rectal cancers, and extra-
intestinal infections like bacteremia andmeningitis (6). Although
most infections are self-limiting, antibiotics are often needed
for immunocompromised patients or those with more severe or
persistent infections (7).

Water, poultry and livestock are common reservoirs for
C. jejuni (8). Transmission to humans typically occurs via
consumption of contaminated food products, and direct
contact with animal or environmental reservoirs (9). According
to a meta-analysis of 72 studies, the key risk factor for
campylobacteriosis was international travel, yet consumption
of undercooked chicken and direct exposure to Campylobacter
from the environment or farm animals were also important
(10). Regardless, it is important to note that risk factors often
vary by geographic location even across the U.S., with different
FoodNet sites reporting considerable variation in the frequency
of infections (11). In addition, the FoodNet sites were not
selected to be representative of the U.S. population and were
shown to have an unequal representation of all racial and ethnic
groups and contained fewer individuals living below the poverty
level (12, 13).

Campylobacter jejuni has also been designated a serious
antibiotic resistant threat resulting in 448,400 resistant infections
and 70 deaths each year (14). Resistance to ciprofloxacin, a
fluoroquinolone used to treat more severe human infections,
increased in the U.S. from 13% in 1997 to 25.3% in 2015 (14, 15).

Campylobacter jejuni resistance to multiple drug classes has also
increased over time (16) and resistant isolates have been linked
to more severe infections requiring lengthier hospitalizations
(17). Because NARMS does not utilize data from each state
and the Midwest region only receives a subset of Campylobacter
isolates from the Minnesota FoodNet site for testing (18), these
resistance frequencies and trends may not be representative of
those in other locations. Additionally, many clinical laboratories
have shifted to the use of culture-independent tests to detect
Campylobacter infections, which can obscure actual rates of
resistance circulating within patient populations and prevent the
identification of risk factors for resistant infections. Indeed, a
2019 FoodNet report noted that 42% of Campylobacter infections
were detected using a culture-independent test (2). This shift
is concerning and highlights the need for more culture-based
studies to better define the epidemiology of and resistance
phenotypes in this common foodborne pathogen.

Herein, we sought to describe the susceptibility profiles for 214
C. jejuni isolates cultured from patients with campylobacteriosis
during surveillance activities in Michigan (2011–2014) and
to identify risk factors for both susceptible and resistant
infections. We also sought to make comparisons to national
data available through NARMS since Campylobacter resistance
is not monitored in Michigan via NARMS (19). Studies
such as these highlight the importance of using culture-
based diagnostic tests to more accurately monitor resistance
phenotypes and frequencies in distinct geographic locations to
identify potential exposures and risk factors that may be state
and/or region specific.

MATERIALS AND METHODS

Strain Source and Speciation
Campylobacter isolates were recovered from stools of patients
with campylobacteriosis between 2011 and 2014 via an active
surveillance system at four metropolitan hospitals located in
Detroit, Grand Rapids, Ann Arbor, and Lansing, Michigan.
Isolates were transported to the Michigan Department of Health
and Human Services (MDHHS) and stored in 10% skim milk at
−80◦C until use.

Isolates were thawed and cultured on Tryptone Soy Agar
(TSA) containing 5% sheep blood and cefoperazone (20
µg), amphotericin B (4µg/mL), and vancomycin (20µg/mL)
in microaerophilic conditions (20). DNA was extracted and
multiplex PCR was performed to classify the species of each
Campylobacter isolate using a previously described protocol (21).
Briefly, the Kapa2G Taq (Kapa Biosystems; Wilmington, MA)
was used for PCR amplification using the following conditions:
denaturation at 95◦C for 15min followed by 25 cycles of 95◦C
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for 30 s and 58◦C for 1min and 30 s and 72◦C for 8min. Roughly
91 of the 214 (43%) C. jejuni isolates included in the analysis were
characterized previously (22).

Antimicrobial Susceptibility Profiling
The minimum inhibitory concentration (MIC) was determined
for nine antibiotics using microbroth dilution utilizing
SensititreTM Campylobacter Campy AST plates (ThermoFisher;
Waltham, MA) according to the manufacturer’s protocols. The
antibiotics (classes) were: ciprofloxacin (fluoroquinolone),
nalidixic acid (quinolone), azithromycin (macrolide),
erythromycin (macrolide), tetracycline, florfenicol (phenicol),
telithromycin (ketolide), clindamycin (lincomycin), and
gentamicin (aminoglycoside). Campylobacter jejuni ATCC
33560 was used a control. The European Committee on
Antimicrobial Susceptibility Testing (EUCAST) standards were
used, as per the current NARMS protocol, for classifying isolates
as resistant or susceptible (19). NARMS data were extracted
from isolates collected in the same time period for comparison.
Isolates with any ciprofloxacin resistance and any tetracycline
resistance were counted; these two categories were not mutually
exclusive as some isolates had resistance to both drugs. A subset
of data submitted from NARMS Region 5 representing the
Midwest (Ohio, Indiana, Michigan, Illinois, Wisconsin, and
Minnesota and 34 federally recognized tribes) were also included
in this analysis for comparison.

Epidemiological Variables and Data
Analysis
Demographics, exposures, and clinical data were extracted
from the Michigan Disease Surveillance System (MDSS), an
online database containing epidemiological data for notifiable
infections. The sample collection date was used to classify the
season as follows: spring (March, April, May), summer (June, July
August), fall (September, October, and November), and winter
(December, January, and February). Cases reporting a history of
travel in the past month were classified as traveling domestically
(within the U.S.) or internationally. Michigan counties were
designated as urban or rural based on data presented in a
National Center for Health Statistics report (23); all but 10
Michigan counties were considered rural. Cattle densities per
county were obtained from a 2019 report (24), and the high vs.
low categories were developed based on the average number of
cattle in all Michigan herds with data available.

Chi-square tests were used for dichotomous variables to
identify associations between the dependent and independent
variables, while the Mantel-Haenszel Chi-square test was used to
examine trends. Differences in proportions were evaluated using
the Chi-square test for equal proportions and for variables with
small sample sizes, or less than five per cell, the Fisher’s exact test
was used. A p ≤ 0.05 was considered significant for each test,
however, all variables yielding a p≤ 0.20 in the univariate analysis
were included in the multivariate analyses. Potential confounders
such as age, sex, and residence location, were also included in
the forward logistic regression analyses to identify predictors
of each outcome. Odds ratios (ORs) and their 95% confidence
intervals (CIs) were calculated to describe the magnitude of each

association. SAS version 9.4 (SAS Institute, Cary, NC, USA) and
Epi InfoTM version 7 were used.

RESULTS

Recovery of Campylobacter in Michigan
In all, 277 Campylobacter isolates were recovered fromMichigan
residents diagnosed with campylobacteriosis at four large
metropolitan hospitals between January 2011 and December
2014. Approximately 234 (84.5%) of the isolates were viable and
could be speciated using PCR. Among these, 217 (92.7%) were
classified as C. jejuni, while 15 (6.0%) were C. coli; two isolates
(0.9%) were characterized as C. upsaliensis. Given that C. jejuni
was the most common species, the analysis was restricted to these
isolates and cases. Three additional isolates from residents living
outside of Michigan were also excluded from the analysis.

Significant variation in the recovery of C. jejuni was observed
across hospitals (p≤ 0.0001), with most isolates (n= 174; 82.1%)
coming from two sites; the hospital location was missing for
three isolates. The frequency of C. jejuni at each site was 42.9%
(n = 91), 39.2% (n = 83), 7.6% (n = 16), and 9.9% (n = 21).
A significant difference in the recovery of C. jejuni isolates was
also observed over time with 57.5% (n = 123) of the infections
occurring in 2013 and 2014 (p ≤ 0.0001). Differences were also
observed by season since more isolates were recovered in the
summer and fall months (n= 158; 73.8%) compared to the winter
and spring (n = 56; 26.2%) (p ≤ 0.0001). Moreover, a greater
proportion of cases resided in urban (n = 119; 62.0%) vs. rural
(n= 73; 38.0%) areas (p= 0.0009).

Demographics and Exposure History of
C. jejuni Cases
Among the 214 C. jejuni cases from Michigan residents, 110
(54.4%) were male and 53.1% (n = 113) were between the
age of 19 and 65 years; the age was missing for one case
(Supplementary Table 1). Sixty-five (30.5%) cases represented
children between 1 day and 9 years of age. Twenty (30.8%) of
these children were ≤1 year old and 33 (50.8%) were between
1 and 5 years of age. Among the 17 elderly patients over 65
years, over half (n = 11) were between 70 and 87 years of age.
Significantly more cases self-identified as White/Caucasian (n
= 137; 79.7%), though a subset self-identified as Black/African
American (n = 17; 9.8%), Asian (n = 6; 3.5%), or another
race (n = 13; 7.5%). Thirteen (8.8%) cases self-identified as
Hispanic/Latino and 25 (19.1%) self-identified as Arab, however,
up to 83 (38.8%) cases did not indicate their ethnicity.

The majority (n = 88; 59.9%) of cases did not travel in the
month prior to infection compared to 40.9% of cases who did.
Among 59 of the 61 cases reporting their travel location, 18.4%
(n = 27) traveled internationally and 22.4% (n = 33) reported
domestic travel. While more of these cases traveled during the
summer (n = 30; 44.4%) and fall (n = 18; 29.5%) as opposed
to the winter and spring (n = 13; 21.3%), the difference was not
significant (p= 0.26).

Despite the greater proportion of cases reporting animal
contact prior to illness onset (n = 96; 64.0%), multiple
animal species were reported. Among these cases, 88 (91.7%)
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cases reported contact with domestic animals, 13 (13.5%) with
livestock and 11 (11.5%) with birds or poultry. Seventeen cases
(17.7%) reported contact with other animals and three (3.1%) had
contact with reptiles. Furthermore, most (n = 199; 81.5%) cases
drank municipal and/or bottled water and consumed poultry (n
= 115; 87.8%) up to a week prior to symptom onset. Food history
data, however, was not available for up to 38.8% of the cases.

Because significantly more cases lived in urban areas, we also
sought to determine whether any factors were associated with
urban residence (Supplementary Table 2). Importantly, the odds
of hospitalization for urban residents was significantly greater
(n = 34; 73.9%) than rural residents (n = 12; 26.1%), yet no
differences in symptoms were observed. Urban patients were
also significantly less likely to report any travel in the past
month, either domestic or international, and were less likely to be
between 19 and 40 years of age than rural patients. Indeed, 83.6%
(n = 46) of children < 10 years of age resided in an urban area
compared to 16.4% (n= 9) for rural children. Although exposure
to livestock and Arab ethnicity were significantly associated with
rural and urban residence, respectively, the sample sizes were
small for each variable and many records had missing data.

Clinical Symptoms and Association with
More Severe Infections
Among the subset of cases reporting symptoms, diarrhea (95.0%)
was the most common followed by abdominal pain (69.7%),
nausea (41.3%), and fatigue (40.9%). Only 36.2% of cases
reported the presence of bloody diarrhea, while 34.5, 28.7, and
26.6% reported chills, body aches, and headaches, respectively. In
all, 46 (25.3%) patients were hospitalized ranging from 1–11 days
with an average of 3 days.

In addition to urban residence, several other factors were
associated with hospitalization, a marker for more severe
disease, in the univariate analysis (Supplementary Table 3). An
increasing odds of hospitalization was observed as age increased.
Compared to adults between years, adult patients between 41 and
65 years and the elderly over 65 years were significantly more
likely to be hospitalized. The same was true when children <

9 years was used as the reference group. Patients self-reporting
nausea and fatigue were also more likely to be hospitalized as
were patients self-identifying as non-White. By contrast, patients
reporting domestic or international travel in the month prior to
symptom onset were significantly less likely to be hospitalized.
No association was observed for sex, season, source of drinking
water, or any other symptoms, and no differences were detected
when the analysis was limited to only those individuals without a
recent history of international travel.

Controlling for potential confounders such as residence type
(urban vs. rural), sex, season, and age, multinomial logistic
regression identified the oldest age groups, 41–65 years (adjusted
OR: 6.1; 95 CI: 2.37, 15.70) and >65 years (adjusted OR: 10.5;
95 CI: 2.63, 42.19), to be predictors of hospitalization relative
to the younger age groups. International travel in the past
month (adjusted OR: 0.3; 95% CI: 0.07,0.94), non-White race
(adjusted OR: 4.8; 95% CI: 1.62, 14.01), and nausea (adjusted

OR: 2.8; 95% CI: 1.15, 6.68) were also independently associated
with hospitalization.

Antibiotic Resistance Phenotypes and
Frequencies
Resistance was detected in 63.1% (n = 135) of the 214 C. jejuni
isolates and at least one isolate was resistant to each of
the nine antibiotics tested. Tetracycline resistance (n = 120;
56.1%) predominated followed by resistance to ciprofloxacin
(n = 49; 22.9%) (Figure 1A). Fewer than five isolates had
resistance to clindamycin, azithromycin, and telithromycin, and
only one isolate was resistant to gentamicin and another to
phenicol. All isolates with ciprofloxacin resistance were also
resistant to nalidixic acid. Among the 135 resistant isolates,
93 (43.5%) were resistant to one class of antibiotics, whereas
38 (17.8%) were resistant to two. In all, 11 different C. jejuni
resistance phenotypes that varied in frequency (Figure 1B). Five
of these phenotypes included tetracycline resistance, six included
ciprofloxacin resistance, and three phenotypes included both.
The predominant phenotypes were tetracycline resistance alone
(n = 82; 38.3%) and in combination with ciprofloxacin (n =

35; 16.4%). Multidrug resistance (MDR), which is defined as
resistance to three ormore antibiotic classes, was observed in four
(1.9%) isolates.

Fluctuations in resistance frequencies were observed by year.
Although no significant increase in any resistance or MDR was
observed over the 4-year period, notable trends were observed for
some phenotypes (Figure 2). For instance, a significant decrease
in the frequency of isolates with only tetracycline resistance
was observed over time (p = 0.04), while a slight insignificant
increase in ciprofloxacin resistance was observed alone (p ≤

0.24) and in combination with tetracycline resistance (p ≤ 0.50).
Despite the gradual increase in the frequency of any resistance to
ciprofloxacin from 15.6% in 2011 to 25.0% in 2014, the change
was not significant (p ≤ 0.31). The same was true for any
resistance to tetracycline, which decreased from 65.6% in 2011
to 52.5% in 2014 (p= 0.17).

Epidemiological Associations with
Antibiotic Resistant C. jejuni Infections
Several notable associations were identified between
epidemiological factors and the most common antibiotic
resistant phenotypes, ciprofloxacin resistance and tetracycline
resistance. These two predominant phenotypes were classified
as the dependent variables to uncover associations with each
phenotype relative to cases with either susceptible infections or
infections with resistance to all other antibiotics.

Patients with ciprofloxacin resistance (n = 49) were more
likely to travel in the month prior to infection (OR: 3.0; 95% CI:
1.37, 6.68) relative to all other cases (Table 1). More specifically,
they were more likely to report international travel (OR: 9.8;
95% CI: 3.69, 26.09). Patients with tetracycline resistance (n =

120) were also more likely to report international travel in the
past month, however, the difference was not significant (OR:
2.2; 95% CI: 0.85, 5.46). Patients with tetracycline resistance
were also significantly less likely to have an infection during the
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FIGURE 1 | Percentage of the 214 Campylobacter jejuni isolates with (A) resistance to eight different antibiotics and (B) distinct antibiotic resistance phenotypes. AZI,

azithromycin; CIP, ciprofloxacin; CLI, clarithromycin; ERY, erythromycin; FFN, phenicol; GEN, gentamicin; TEL, telithromycin; TET, tetracycline. The multidrug resistant

(MDR) phenotype includes isolates with resistance to CIPAZIERYCLITEL, CIPTETCLI, and CIPTETTEL. All CIP resistant isolates were also resistant to nalidixic acid.

summer or fall months (OR: 0.5; 95% CI: 0.27, 0.97) and to
report contact with livestock (Fisher’s exact test p = 0.04) or well
water (OR: 2.3; 95% CI: 0.95, 5.75); the latter association was
not significant. No association was observed between resistance
to either antibiotic and domestic travel history, hospitalization,
or clinical symptoms including body aches, diarrhea with blood,
fatigue, fever, abdominal pain, and headache.

Because a subset of the isolates had both tetracycline and
ciprofloxacin resistance, we created mutually exclusive categories
to identify risk factors for each. In this analysis, ciprofloxacin
resistance was defined as any resistance to ciprofloxacin even
if resistance to other drugs including tetracycline was observed.
Among the 135 resistant isolates, 49 (36.3%) had ciprofloxacin
resistance. Tetracycline resistance was defined as any resistance
to tetracycline but without the co-occurrence of ciprofloxacin
resistance; 83 (61.5%) isolates had tetracycline resistance without
ciprofloxacin resistance. Individuals with susceptible isolates and
those representing different resistance profiles were excluded

from the analysis. Compared to patients with tetracycline
resistance, those with ciprofloxacin resistant infections were
significantly more likely to report traveling in the past month
(OR: 2.9; 95% CI: 1.20, 7.02) and specifically, international travel
(Fisher’s exact test p <0.0001) (Table 2). Only four (19.1%) of
the 21 patients who traveled internationally had tetracycline
resistant infections compared to 17 (81.0%) of those with
ciprofloxacin resistant infections. A difference was also observed
for hospitalization, which was significantly more common in
ciprofloxacin resistant infections (OR: 2.5, 95% CI: 1.02, 6.14),
while contact with livestock was more common in tetracycline
resistant infections (Fisher’s exact test p = 0.09), yet the latter
association was not significant. No association was observed for
age, sex, race, ethnicity, residence types, season, water source,
cattle density, poultry consumption, or clinical symptoms.

Multinomial logistic regression was performed to identify
predictors of ciprofloxacin resistance relative to tetracycline
resistance while controlling for age, sex, urban residence,
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FIGURE 2 | Changes in the frequency of the most common antibiotic resistance phenotypes among 214 Campylobacter jejuni isolates over a 4-year period in

Michigan. CIP, ciprofloxacin; TET, tetracycline. Multidrug resistant (MDR) isolates were resistant to CIPAZIERYCLITEL, CIPTETCLI, and CIPTETTEL.

season, and international travel. Notably, international travel
in the past month (adjusted OR: 13.0; 95% CI: 3.71, 45.64)
and infection during the summer or fall months were the
only significant predictors of ciprofloxacin resistance (Table 2).
Hospitalization was also more common in patients with
ciprofloxacin resistance than tetracycline resistance, yet the
association was not significant in the model (adjusted OR: 2.4;
95% CI: 0.86, 6.46), which could be due to the small sample size.

Comparing Resistance Frequencies to
National Data Reported Via NARMS
A comparison of resistance frequencies for the NARMS isolates
recovered during the same time period uncovered region-specific
differences for both ciprofloxacin and tetracycline resistance. A
significantly greater proportion of the Michigan isolates were
resistant to tetracycline when compared to the 3,457 isolates from
all regions except Region 5. Although Region 5 covers Michigan
and other midwestern states, the data were generated by
examining only a subset of isolates recovered from theMinnesota
FoodNet site (Figure 3A). No difference in tetracycline resistance
frequencies was observed between Michigan and the Region 5
isolates (n = 585), or for any of the ciprofloxacin resistance
frequencies. However, when our Michigan isolates (n = 214)
were added to Region 5, differences were observed for both
ciprofloxacin and tetracycline resistance across the NARMS
regions (Figure 3B). Notably, Region 5 had significantly more
tetracycline resistance than all other regions combined (OR: 1.6;
95% CI: 1.41, 1.92) as well as a significantly greater proportion
of ciprofloxacin resistance than Regions 2 (OR: 1.6; 95% CI:
1.24, 2.03) and 6 (OR: 2.1; 95% CI: 1.50, 3.00). Relative to
Region 1, however, the proportion of ciprofloxacin resistance was
significantly lower than in Region 5 (OR: 0.6; 95% CI: 0.50, 0.79).
No other differences were observed for ciprofloxacin resistance
by region.

DISCUSSION

Through this study we have detected important trends in the
prevalence of campylobacteriosis and antibiotic resistant C.

jejuni isolated from Michigan patients between 2011 and 2014,
further highlighting the importance of pathogen surveillance
efforts using culture-based methods. Since campylobacteriosis
was not classified as a notifiable infection until 2015 (25),
data about disease frequencies and resistance profiles have
been limited, particularly for states like Michigan that are not
participating in FoodNet or NARMS. In addition, the widespread
adoption of culture-independent tests has hampered the ability
to routinely monitor important phenotypes such as antibiotic
susceptibility profiles. Indeed, it was estimated that 42% of
campylobacteriosis cases identified via FoodNet in 2019 were
diagnosed by culture-independent tests and among these, culture
for Campylobacter was only attempted for 63% of the positive
samples (2).

In the four Michigan hospitals examined herein, we observed

a significant increase in C. jejuni infections over time, which is

similar to national trends (2) and could partly be due to improved

sampling and detection capacity. Seasonal differences were also

observed with a greater proportion (73.8%) of Michigan cases

occurring during the summer and fall. Seasonal variation has

been reported previously with several studies showing a peak

incidence of C. jejuni infections during warmer months; climate,

temperature, increased shedding from animal reservoirs, and/or

seasonal-specific behaviors have all been suggested to contribute
to seasonality (26–28).

Extracting epidemiological data from case records has

also facilitated the identification of factors that increase risk

of campylobacteriosis. Similar to our prior study of 7,182

campylobacteriosis cases reported in Michigan between 2004

and 2013 (29) and those from the FoodNet sites (25, 30), most
infections affected children <10 (30.8%) or adults between 19
and 65 (53.1%) years of age. Despite this bimodal distribution,
the likelihood of hospitalization increased with increasing age.
Cases between 41 and 65 years were significantly more likely to
be hospitalized than those between 19 and 40 years of age as
were cases over 65. The link between older age and more severe
disease has been reported for the FoodNet sites and in our prior
population-based study (29, 31).
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TABLE 1 | Univariate analysis to identify factors associated with any ciprofloxacin resistance (CIP) and any tetracycline resistance (TET) among 214 Campylobacter jejuni

isolates from Michigan, 2011 to 2014.

Any CIP resistance (n = 49) Any TET resistance (n = 120)

Characteristicsa No. (%) OR (95% CI)b p-valuec No. (%) OR (95% CI)b p-valuec

Age (years)

0–9 (n = 65) 14 (21.5) 0.7 (0.31, 1.65) 0.43 39 (60.0) 1.1 (0.53, 2.32) 0.77

10–18 (n = 18) 2 (11.1) – 0.21 6 (33.3) 0.4 (0.12, 1.14) 0.08

19–40 (n = 54) 15 (27.8) 1.0 – 31 (57.4) 1.0 –

41–65 (n = 59) 16 (27.1) 1.0 (0.42, 2.21) 0.94 33 (55.9) 0.9 (0.45, 1.98) 0.87

≥65 (n = 17) 2 (11.8) - 0.21 10 (58.8) 1.1 (0.35, 3.20) 0.92

Sex

Male (n = 110) 23 (20.9) 1.0 – 58 (52.7) 1.0 –

Female (n = 96) 23 (24.0) 0.8 (0.44, 1.62) 0.60 54 (56.3) 1.2 (0.66, 2.00) 0.61

Self-reported raced

White/Caucasian (n = 137) 32 (23.4) 1.0 – 76 (36.5) 1.0 –

Non-white/other (n = 35) 9 (25.7) 1.1 (0.48, 2.67) 0.77 17 (48.6) 0.8 (0.36, 1.59) 0.46

Arab ethnicity

No (n = 106) 27 (25.5) – – 53 (50.0) 1.0 –

Yes (n = 25) 3 (12.0) – 0.19 17 (68.0) 2.1 (0.84, 5.35) 0.10

Season

Winter, Spring (n = 56) 12 (21.4) 1.0 – 38 (67.9) 1.0 –

Summer, fall (n = 158) 37 (23.4) 1.1 (0.54, 2.34) 0.76 82 (51.9) 0.5 (0.27, 0.97) 0.04

Any travel in the past month

No (n = 88) 13 (14.8) 1.0 – 45 (51.1) 1.0 –

Yes (n = 61) 21 (34.4) 3.0 (1.37, 6.68) 0.005 37 (60.7) 1.5 (0.76, 2.86) 0.25

Type of travel in the past month

None (n = 88) 13 (14.8) 1.0 – 45 (51.1) 1.0 –

Domestic (n = 33) 4 (12.5) – 1.0 18 (56.3) 1.1 (0.51, 2.56) 0.74

International (n = 27) 17 (63.0) 9.8 (3.69, 26.09) <0.0001 18 (69.2) 2.2 (0.85, 5.46) 0.10

Type of drinking water

Municipal, bottled (n = 119) 25 (21.1) 1.0 – 60 (50.4) 1.0 –

Any well water (n = 27) 5 (18.5) 0.9 (0.29, 2.48) 0.77 19 (70.4) 2.3 (0.95, 5.75) 0.06

Poultry consumption

No (n = 16) 4 (25.0) – – 10 (62.5) 1.0

Yes (n = 115) 24 (20.9) – 0.75 61 (53.0) 0.7 (0.23, 1.99) 0.48

Any animal contact

No (n = 54) 12 (22.2) 1.0 – 30 (55.6) 1.0 -

Yes (n = 96) 20 (20.8) 0.9 (0.41, 2.07) 0.84 52 (54.2) 0.9 (0. 48, 1.85) 0.87

Contact with livestock

No (n = 137) 31 (22.6) – – 71 (51.8) – –

Yes (n = 13) 1 (7.7) – 0.30 11 (84.6) – 0.04

Cattle density in resident countye

Low <8,400 cattle (n = 23) 3 (13.0) – – 12 (52.2) 1.0 –

High ≥8,400 cattle (n = 82) 21 (25.6) – 0.27 50 (61.0) 1.4 (0.56, 3.63) 0.45

Residence type

Rural (n = 73) 18 (24.7) 1.0 – 45 (61.6) 1.0 –

Urban (n = 119) 25 (21.0) 0.8 (0.41, 1.62) 0.56 62 (52.1) 0.7 (0.37, 1.22) 0.20

Hospitalized

No (n = 136) 27 (19.9) 1.0 80 (58.8) 1.0 –

Yes (n = 46) 14 (30.4) 1.8 (0.83, 3.76) 0.14 21 (45.7) 0.6 (0.30, 1.15) 0.12

aNot all numbers add up to the total number of cases per category due to missing data for some variables or the exclusion of susceptible isolates.
bThe 95% confidence interval (CI) for the odds ratio (OR) is presented; ORs were calculated separately for CIP and TET relative to all other isolates.
cThe Fisher’s Exact Test was used for variables with ≤5 in one cell; no ORs could be calculated.
dSelf-reported race categories in the online Michigan Disease Surveillance System questionnaire were: Caucasian, African American, Asian, American Indian/Alaska Native,

Hawaiian/Pacific Islander, Unknown, or Other.
eCattle density was not known for multiple counties with high case counts.
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TABLE 2 | Epidemiological factors associated with any ciprofloxacin resistance (CIP) vs. only tetracycline resistance (TET) among 135 patients with resistant infections.

Any CIP resistance (n = 49) Only TET resistance (n = 83)

Characteristicsa No. (%) No. (%) OR (95% CI)b p-valuec

Age (years)

0–40 (n = 83) 31 (37.4) 52 (62.5) 1.0 –

≥41 (n = 48) 18 (37.5) 30 (62.5) 1.0 (0.48, 2.10) 0.99

Sex

Male (n = 65) 23 (35.4) 42 (64.6) 1.0 –

Female (n = 59) 23 (39.0) 36 (61.0) 1.2 (0.41, 1.78) 0.85

Residence type

Rural (n = 48) 18 (37.5) 30 (37.5) 1.0 –

Urban (n = 70) 25 (35.7) 45 (64.3) 0.9 (0.43, 1.98) 0.84

Season

Winter, spring (n = 39) 12 (30.8) 27 (69.2) 1.0 –

Summer, fall (n = 93) 37 (39.8) 56 (60.2) 1.5 (0.67, 3.30) 0.33

Any travel in the past month

No (n = 49) 13 (26.5) 36 (73.5) 1.0 –

Yes (n = 41) 21 (51.2) 20 (48.8) 2.9 (1.20, 7.02) 0.02

Type of travel in the past month

None (n = 49) 13 (26.5) 36 (73.5) 1.0 –

Domestic (n = 19) 4 (21.1) 15 (79.0) – 0.76

International (n = 21) 17 (81.0) 4 (19.1) – <0.0001

Type of drinking water

Municipal, bottled (n = 67) 25 (37.3) 42 (62.7) 1.0 –

Any well water (n = 20) 5 (25.0) 15 (75.0) – 0.42

Poultry consumption

No (n = 16) 4 (40.0) 6 (60.0) – –

Yes (n = 115) 24 (35.3) 44 (64.7) – 0.77

Contact with livestock

No (n = 79) 31 (39.2) 48 (60.8) – –

Yes (n = 11) 1 (9.1) 10 (90.9) – 0.09

Hospitalized

No (n = 85) 27 (31.8) 58 (68.2) 1.0 –

Yes (n = 26) 14 (53.9) 12 (46.2) 2.5 (1.02, 6.14) 0.04

Multivariate analysisd Adjusted OR (95% CI) p-value

Age 1.0 (0.98, 1.02) 0.87

Female 0.5 (0.17, 1.40) 0.18

Urban residence 1.0 (0.33, 2.83) 0.95

Summer or fall infection 3.7 (1.03, 13.47) 0.04

International travel only 14.9 (4.00, 55.57) <0.0001

Hospitalized 3.0 (0.78, 11.19) 0.11

Well water 0.6 (0.16, 2.26) 0.44

Livestock contact 0.2 (0.02, 2.25) 0.21

aNumber of isolates may not add up to the total for some variables due to missing data; percentages were calculated using the number with each characteristic as the denominator.
b95% confidence interval for the odds ratio (OR). ORs were calculated for ciprofloxacin resistance relative to tetracycline resistance.
cThe Fisher’s Exact test was used for variables with fewer than 5 in one cell; no ORs could be calculated.
dMultivariate results were generated using forward stepwise logistic regression while controlling for variables with p-values≤0.2 in the univariate analysis as well as potential confounders.

A base model consisted of the following variables: age (continuous), female sex, urban residence, season (fall and summer), and international travel. Each additional variable was added

separately to the base model. The Homer and Lemeshow Goodness-of-Fit test (p > 0.05) was examined to ensure support for each model. Adjusted ORs were calculated and the

Wald Chi-Square test was used to determine significance with 95% Wald Confidence Limits.

Although males and rural residents represented a greater
proportion of the 7,182 campylobacteriosis cases in Michigan
(29), similar distributions were not observed among the cases
at the four hospitals. For instance, no difference was observed

by sex and significantly more cases (62.0%) were from urban
areas, suggesting that the four hospitals may not be entirely
representative of the Michigan population of campylobacteriosis
cases. Such differences are likely due to the structure of the
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FIGURE 3 | (A) Antibiotic resistance frequencies of Campylobacter jejuni strains recovered from four Michigan hospitals (n = 214) in 2011–2014 as compared to the

National Antimicrobial Resistance Monitoring System (NARMS) data for the same time period. Michigan frequencies were compared to NARMS data from Region 5

acquired from Minnesota (representing Ohio, Indiana, Michigan, Illinois, Wisconsin, and Minnesota and 34 federally recognized tribes) and the total national data

(excluding Region 5). (B) Michigan frequencies were added to Region 5 national data (n = 585) leaving a total of 799 strains in the Midwest region for comparison to

NARMS regions 1, 2, 3, 4, 6, and 8. *p ≤ 0.05, **p ≤ 0.0001; χ
2 test. The 10 FoodNet sites representing Connecticut, Georgia, Maryland, Minnesota, New Mexico,

Oregon, Tennessee, California, Colorado, and New York send data captured by the state public health laboratories to NARMS to represent the different regions. Data

from Region 1 (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont), Region 2 (New Jersey, New York, Puerto Rico, and the Virgin

Islands), Region 3 (Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, and West Virginia), Region 4 (Alabama, Florida, Georgia, Kentucky, Mississippi,

North Carolina, South Carolina, and Tennessee), Region 6 (Arkansas, Louisiana, New Mexico, Oklahoma, and Texas), and Region 8 (Colorado, Montana, North

Dakota, South Dakota, Utah and Wyoming) were included in the analysis. Regions 7, 9, and 10 did not have data available for Campylobacter jejuni from 2011 to

2014 for comparison.

surveillance system since we utilized four of the largest health
care systems. Despite having wide catchment areas, each hospital
is in a metropolitan location that can result in differences in
access to health care, particularly for rural residents, supporting
the suggestion that geography as well as patient-specific and
cultural factors can impact care seeking behaviors (11). Indeed,
we observed a lower likelihood of hospitalization among rural
residents in this and our prior study (29), although this
association was not significant after controlling for race, sex,
and age.

Because the likelihood of hospitalization was significantly
greater for cases self-identifying as non-White, urban areas
should be an important focus for reducing disparities in
infections caused by C. jejuni and other enteric pathogens.
Certainly, neighborhood and geographic barriers have previously
been suggested to be important for the acquisition of foodborne
disease (13). Although race, ethnicity, and other socially
constructed categorizations such as socio-economic status,
are not typically collected for foodborne disease surveillance
systems, prior studies have document increased frequencies of
gastroenteritis in minority and low-socioeconomic populations
globally (32–34). Additional studies are needed, however, to
identify specific risk factors, exposures and causal factors within
urban environments that may explain these relationships. Use
of previously reported proxies and markers of poverty such
as urban residence, and social constructs like self-reported
race as we have used, have complex interactions with social
determinants of health (35, 36). We therefore cannot describe
causal factors for hospitalization of C. jejuni without addressing
these shortcomings. We also cannot rule out the possibility that

different strain populations with distinct pathogenic traits are
circulating in the different areas and are partly responsible for
the differences observed.

Since most hospital laboratories in Michigan have switched
to the use of culture-independent tests to detect C. jejuni,
viable isolates are not typically recovered for characterizing
important phenotypic or genotypic traits. Hence, our assessment
of resistance frequencies and trends in the four hospitals over this
4-year period yielded notable results. Resistance was detected in
63.1% of the 214 isolates and to all nine antibiotics comprising
11 distinct resistance profiles. The overall predominance of
tetracycline (56.1%) and ciprofloxacin (22.9%) resistance was
similar in our prior study of 94 isolates recovered in 2011 and
2012 (22). The inclusion of 120 additional isolates recovered
from the same hospitals in 2013–2014, however, allowed for the
detection of several important changes over time, including an
increase in the frequency of fluoroquinolone resistance. This
gradual increase is concerning given that fluoroquinolones are
commonly used to treat human infections and the Food andDrug
Administration (FDA) banned use of these drugs in poultry in
2005 (37). Point mutations in chromosomal genes such as gyrA,
which is critical for DNA replication and transcription, have
been linked to fluoroquinolone resistance (38, 39). Given that
these mutations do not halt transcription, there is no impact on
bacterial survival and hence, these resistant bacterial populations
can persist in the absence of antibiotic selection (40, 41). This
increasing frequency of ciprofloxacin resistance in C. jejuni is
consistent with national trends for older strain sets recovered via
culture-based detection methods (25). Because of the increased
use of culture-independent methods to detect Campylobacter,
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however, actual rates of ciprofloxacin resistance among clinical
isolates in different parts of the U.S. are not well-established.
Additionally, despite the critical role that FoodNet and NARMS
have played in the detection of resistant foodborne pathogens,
neither system is entirely representative of the U.S. population
(12). To represent the entire Midwest (Region 5) that includes
Michigan, for instance, NARMS only receives a subset of isolates
fromMinnesota for testing (18). It is therefore important to note
that the frequencies and trends reported by NARMS may not
accurately reflect those observed in other locations with distinct
geographic features and population traits.

Furthermore, fluoroquinolone resistant C. jejuni infections
have also been reported to increase the duration of illness
(42, 43). Mutations in gyrA have been tied to changes in DNA
supercoiling, which can lead to enhanced colonization of the
chicken gut and an increase in virulence properties such as
motility, biofilm formation and invasion of intestinal epithelial
cells in vitro (44–47). These studies establish a mechanism by
which fluoroquinolone resistant mutations enhance virulence
and support prior associations between resistance and a lengthier
illness duration. Additional support comes from our finding
that patients with ciprofloxacin resistant infections were twice as
likely to be hospitalized than patients with tetracycline resistant
infections, suggesting that the former may be more severe. It is
not clear, however, if a unique patient population, differential
treatment regimens, or distinct bacterial factors account for the
difference in the hospitalization rates observed.

Significant differences in the frequency of tetracycline
resistance, which was highest in this population of Michigan
patients despite the gradual decrease in tetracycline resistance
over time, were also observed. These data indicate that unique
regional factors may impact resistance rates, yet those factors
that contribute to variation across locations are not clear. The
tetracyclines have been used to treat zoonotic and rickettsial
diseases in human medicine (48) and have been used extensively
in livestock and poultry production worldwide. In the U.S., the
FDA reported that tetracyclines were the predominant drug class
used in food-producing animals at the time of this study (2009–
2014), representing an average of 42% of all antibiotics used (49).
Continuous use of tetracycline has selected for resistant strains
and resistance genes that can persist in reservoir hosts and the
environment. For example, TetO has been shown to mediate
resistance to tetracycline in C. jejuni by offering ribosomal
protection by binding to an unoccupied site (39). This protein
is encoded by tet(O), which is commonly carried on the pTet
plasmid but has also been detected in the chromosome (50, 51).
Given the high transmissibility rates of these resistance plasmids
within bacterial populations even in the absence of tetracycline
use (52, 53), it is clear that C. jejuni serves as an important
reservoir for these and other resistance genes. In our prior study,
we demonstrated that tetracycline resistance was more common
in strains belonging to multilocus sequence type (ST)-982, a
lineage that was also common in Michigan cattle (22, 54) and
has been linked to livestock in other locations (55, 56). Together,
these data show the importance of clonal expansion of resistant
lineages and highlight the role that mobile genetic elements play
in dispersion and maintenance of tetracycline resistance.

Although we observed a significant association between
livestock contact and tetracycline resistance, the number of
cases (n = 13) reporting this exposure was low. It is
noteworthy, however, that only one of the cases reporting
contact with livestock had a ciprofloxacin resistant infection
compared to 11 (84.6%) with tetracycline resistant infections.
While increasing frequencies of ciprofloxacin resistant C. jejuni
have been recovered from feedlot cattle throughout the U.S.
(57), our data suggest that different factors are important
for the acquisition of ciprofloxacin vs. tetracycline resistant
infections. Consistent with prior studies (25, 30, 42, 58), we
have demonstrated that international travel in the month prior
to infection is the strongest predictor of ciprofloxacin resistance
in this sample of Michigan patients. Infection during the
summer or fall months was also independently associated with
ciprofloxacin resistance, but we did not observe an association
with poultry consumption as was described in other studies
(42, 58, 59). This difference could be due to the low number
of cases reporting no poultry consumption a week before
symptom onset or the high frequency of missing data since
many patients failed to answer the food history questions,
a common problem with long-term epidemiological studies
(60). In general, however, the identification of risk factors that
have also been described in other studies is encouraging and
indicates that these factors are likely important regardless of the
geographic location.

Collectively, the data presented herein demonstrate the
importance of monitoring antibiotic resistance phenotypes and
frequencies using culture-based methods in multiple geographic
locations. The significant difference that we observed in
NARMS Region 5 relative to other regions after including
our Michigan data with those from Minnesota, illustrates
the need for more comprehensive testing and highlights
the variation across different geographic locations. Future
studies are still needed, however, to link resistance profiles
and patient data to epidemiological data to identify those
exposures and risk factors that are unique to specific states
or regions.
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Antimicrobial resistance (AMR) in Campylobacter spp. (Campylobacter coli and
Campylobacter jejuni) is a concern due to its importance in public health, particularly
when it involves aminoglycosides and macrolides, drugs of choice for treatment of
human cases. Co-resistance to these two antimicrobial classes involves transfer of
genetic elements and/or acquisition of mutations in different genetic loci, which can
in turn spread through vertical or horizontal gene transfer (HGT) phenomena, with
each route having different potential implications. This study aimed at evaluating the
association between the presence of phenotypic resistance to these two antimicrobial
classes in C. coli and C. jejuni recovered from livestock at slaughterhouses in Spain
(as part of the AMR surveillance program), and at assessing the genetic heterogeneity
between resistant and susceptible isolates by analysing the “short variable region”
(SVR) of the flaA gene. Over the 2002–2018 period, antimicrobial susceptibility test
results from 10,965 Campylobacter isolates retrieved from fecal samples of broilers,
turkeys, pigs and cattle were collected to compare the proportion of resistant isolates
and the Minimum Inhibitory Concentrations (MICs) against six antimicrobials including
gentamicin (GEN), streptomycin (STR), and erythromycin (ERY). AMR-associated genes
were determined for a group of 51 isolates subjected to whole genome sequencing, and
the flaA SVR of a subset of 168 isolates from all hosts with different resistotypes was
used to build a Neighbor-Joining-based phylogenetic tree and assess the existence
of groups by means of “relative synonymous codon usage” (RSCU) analysis. The
proportion of antimicrobial resistant isolates to both, aminoglycosides and macrolides,
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varied widely for C. coli (7–91%) and less for C. jejuni (all hosts 0–11%). Across
hosts, these proportions were 7–56% in poultry, 12–82% in cattle, and 22–91% in
pigs for C. coli and 0–8% in poultry and 1–11% in cattle for C. jejuni. Comparison
of the MIC distributions revealed significant host-specific differences only for ERY
in C. jejuni (p = 0.032). A significant association in the simultaneous presentation
of AMR to both antimicrobial classes was observed across hosts/bacterial species.
The flaA gene analysis showed clustering of isolates sharing resistotype and to a
lesser degree bacterial species and host. Several resistance markers associated with
resistance to aminoglycosides and macrolides were found among the sequenced
isolates. The consistent association between the simultaneous presentation of AMR
to aminoglycosides and macrolides in all hosts could be due to the persistence of
strains and/or resistance mechanisms in Campylobacter populations in livestock over
time. Further studies based on whole genome sequencing are needed to assess the
epidemiological links between hosts and bacterial strains.

Keywords: Campylobacter, antibiotics, antimicrobial resistance, aminoglycosides, macrolides, flagellin, genes

INTRODUCTION

Campylobacter coli and Campylobacter jejuni, thermophilic
bacteria of the genus Campylobacter spp., are the most frequently
notified human gastrointestinal zoonotic pathogens in the
European Union (EU) since 2005 (EFSA, 2005, 2006, 2007).
Traditionally, C. jejuni was more frequently isolated from
human cases than C. coli, but in 2017, 24.1% of Campylobacter
confirmed human infections in the EU were caused by C. coli
versus 22.2% due to C. jejuni, thus suggesting this pattern
may vary (EFSA-ECDC, 2019b). Poultry and poultry products
are considered the main source of human campylobacteriosis,
followed by ruminants (beef, dairy cattle, and their manure) and
environmental sources (Ravel et al., 2017; Rosner et al., 2017;
An et al., 2018; Thepault et al., 2018). Consumption of pig meat
has been linked to human cases caused by C. coli (Rosner et al.,
2017). Although the prevalence of Campylobacter spp. in pork is
high, previous studies found it was only associated with 2% of all
human cases (Kittl et al., 2013), while beef has been linked to 19%
of human cases (Boysen et al., 2014).

Treatment of human cases, when necessary, may be
hampered by the increasing threat of antimicrobial resistance
(AMR) observed in recent years (Friedrich, 2019). Macrolides
[erythromycin (ERY) and azithromycin] and fluoroquinolones
[ciprofloxacin (CIP)] are the drugs of choice in human
patients requiring antibiotic treatment, but the latter class
is not recommended for children. When these drugs are
ineffective, systemic administration of aminoglycosides is the
only option left (Bolinger and Kathariou, 2017; World Health
Organization (WHO), 2017). Levels of AMR to aminoglycosides
and macrolides in clinical thermophilic Campylobacter from
humans are increasing (Aarestrup and Wegener, 1999; Bolinger
and Kathariou, 2017; EFSA-ECDC, 2019b), and a similar trend
for macrolides has been observed in isolates from pigs and
broilers (Moore et al., 2006; Wang et al., 2016). In Europe,
the proportion of resistant Campylobacter spp. isolates from
food producing animals and humans vary depending on

the country. Isolates originating from Spain showed higher
levels of resistance to aminoglycosides [gentamicin (GEN) and
streptomycin (STR)], macrolides (ERY), quinolones [CIP and
nalidixic acid (NAL)], and tetracycline (TET) in C. coli from
broilers, turkeys and pigs, and C. jejuni from broilers (EFSA,
2005, 2006, 2007; EFSA-ECDC, 2016, 2017, 2018a, 2019b).
C. coli has traditionally shown higher levels of AMR to most
antimicrobials compared with C. jejuni from both humans and
animals (EFSA-ECDC, 2017, 2018a, 2019b). Therefore, the AMR
problem may intensify if the importance of C. coli as a human
pathogen keeps increasing. C. coli is now as prevalent as C. jejuni
in broilers in some countries (Wieczorek and Osek, 2013), thus,
monitoring of C. coli and C. jejuni AMR levels, particularly
to macrolides and aminoglycosides, is equally important
(EFSA-ECDC, 2018a, 2019b).

Resistance to aminoglycosides and macrolides can be
mediated by multiple mechanisms, including chromosomal
mutations and horizontal gene transferable elements (Davies
and Wright, 1997; Saenz et al., 2000; Moore et al., 2006;
Luangtongkum et al., 2009; Wieczorek and Osek, 2013; Bolinger
and Kathariou, 2017). Antibiotic modifying enzymes (AMEs)
are commonly involved in resistance to aminoglycosides (Saenz
et al., 2000; Wieczorek and Osek, 2013; Garneau-Tsodikova
and Labby, 2016), whereas ribosome methyltransferases (RMTs)
are frequently related to resistance to macrolides (Saenz et al.,
2000; Aarestrup, 2005). Co-resistance to both aminoglycosides
and macrolides, as well as multidrug resistance (MDR) to
additional antimicrobial classes, can be acquired through several
mechanisms such as 16S rRNA RMTs (RmtB, ArmA) encoded
in multi-drug resistance genomic islands (MDRGIs) carrying
erm genes in C. coli (Aarestrup, 2005; Garneau-Tsodikova and
Labby, 2016; Bolinger and Kathariou, 2017) and 23S rRNA
RMTs (Saenz et al., 2000). Additional mechanisms can involve
transferable genomic islands carrying multiple aminoglycoside
resistance genes encoding AMEs in C. coli (Davies and Wright,
1997; Luangtongkum et al., 2009; Qin et al., 2012; Wieczorek and
Osek, 2013) and multidrug macrolide efflux pumps (including
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the resistance enhancing CmeABC in C. jejuni), alone or
in combination with target gene mutations (Aarestrup, 2005;
Wieczorek and Osek, 2013; Garneau-Tsodikova and Labby,
2016; Bolinger and Kathariou, 2017). Although several of these
mechanisms were first discovered in C. coli, evidence of transfer
to C. jejuni was shown thereafter (EFSA-ECDC, 2018a).

Epidemiological studies complemented with genetic analyses
are essential to help understand the mechanisms by which co-
resistance and MDR to aminoglycosides and macrolides may
be emerging in thermophilic Campylobacter from animals and
humans (Luangtongkum et al., 2009; Wieczorek and Osek, 2013).
Here, data from the national surveillance program on AMR in
Campylobacter spp. from broilers, turkeys, pigs and cattle in
Spain were analyzed to assess the prevalence of Campylobacter
species in different animal hosts and the patterns of phenotypic
AMR co-resistance to macrolides and aminoglycosides over
the years. The results of this research can contribute to better
explain AMR co-selection/MDR phenomena between these two
antimicrobial classes in Campylobacter from livestock.

MATERIALS AND METHODS

Study Population
The data analyzed here is based on sample collection, culture
and antimicrobial susceptibility testing (AST) work carried
out during 2002–2018 on isolates retrieved through the
Spanish national veterinary AMR monitoring program for
Campylobacter spp. in poultry (broilers and turkeys), pigs and
cattle, according to EU legislation (EC, 2013). Samples for each
animal species, originating from multiple farms, were collected
at slaughterhouses covering 60% of the national throughput
(Supplementary Figures 1, 2). Broiler samples were retrieved
every year from 2002 to 2014 and every 2 years thereafter, turkey
samples every 2 years from 2014 to 2018, pig samples every year
from 2002 to 2013 and every 2 years thereafter, and cattle samples
every year from 2007 to 2013 and every 2 years thereafter. Pooled
samples collected every year for each host species ranged between
76 and 500 (mean = 228) for broilers, 467 and 500 (mean = 485)
for turkeys, 171 and 384 (mean = 268) for pigs, and 163 and 384
(mean = 261) for cattle (Supplementary Table 1).

In relation to sampling and culture, pools made of samples
from animals belonging to the same farm (from 10 caeca in
poultry or from the caecum content of 2 animals in pigs and
cattle) were collected at the slaughterhouse and transported
refrigerated to the laboratory, where they were processed within
24 h after collection according to ISO 10272-2006-1. Single
colonies with morphology compatible with Campylobacter spp.
were identified as “C. coli,” “C. jejuni,” or “C. spp.” using
API strips (up to 2010) and a multiplex PCR (2010 onward)
(Ugarte-Ruiz et al., 2012).

Regarding AST, the AMR phenotype of Campylobacter
spp. isolates was determined using the two-fold broth micro-
dilution reference method (calculating Minimum Inhibitory
Concentrations – MICs, according to ISO Norm 20776-1:2006)
or diffusion technique (calculating Inhibition Zone Diameters –
IZDs) (Ugarte-Ruiz et al., 2015).

Antimicrobial susceptibility testing results for the six
antimicrobials listed on the AMR surveillance programs for
Campylobacter spp. in the EU (EC, 2013) were available for
isolates from all species and years: CIP, TET, NAL, STR, ERY,
and GEN. For ERY in broilers, IZDs were used up to 2004
(included) and MICs were used thereafter. For STR in broilers
and pigs, IZDs were used up to 2005 (included) and MICs were
used thereafter.

Samples in which information on culture result, molecular
identification and/or AMR typing was missing were excluded
from the analysis. The following information was available for
all samples in the study: host species, Campylobacter growth
result, Campylobacter species, year and AST result. Isolates
were classified as “susceptible” (wild-type strains) or “not
susceptible” (resistant strains) according to epidemiological cut-
off points (ECOFFs) provided by the “European Committee
on Antimicrobial Susceptibility Testing” (EUCAST)1 (Table 1).
Proportions of resistant isolates for each bacterial and host
species and period were defined as very low (<1%), low (1.1–
10%), moderate (10.1–20%), high (20.1–50%), very high (50.1–
70%), and extremely high (70.1–100%), as recommended by
EFSA (EFSA-ECDC, 2019b).

Statistical Analyses
Proportions of resistant C. coli and C. jejuni isolates to each
antimicrobial from the different hosts were compared using
Z-tests, adjusted for multiple comparisons by the Holm-method.
Cochrane-Armitage logistic regressions were used to test for
trends of AMR phenotypic resistance in C. coli and C. jejuni per
antimicrobial and host species, and the relative change in the
proportion of resistant isolates per year was computed along with
its 95% confidence interval. The association in the simultaneous
presentation of phenotypic resistance to STR/ERY, GEN/ERY,
and GEN/STR over the whole study period and in different time
periods (2002–2006, 2007–2012, and 2013–2018) was further

1EUCAST-European Society of Clinical Microbiology and Infectious Diseases,
MIC and zone distributions and ECOFFs http://www.eucast.org/mic_
distributions_and_ecoffs/ (accessed 14/02/2020).

TABLE 1 | Epidemiological cut-offs (ECOFFs) used for interpretation of MICs in
Campylobacter spp. (Source EUCAST).

Antimicrobial C. coli MIC
(>)

Micro-dilution

C. coli DIAM
(<)

Difusion

C. jejuni MIC
(>)

Micro-dilution

C. jejuni DIAM
(<)

Difusion

Gentamicin
(GEN)

2 NA 2 20

Streptomycin
(STR)

4 13 4 13

Erythromycin
(ERY)

8 24 4 22

Ciprofloxacin
(CIP)

0,5 26 0,5 26

Nalidixic acid
(NAL)

16 NA 16 NA

Tetracycline
(TET)

2 30 1 30
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evaluated for each bacterial and host species using relative risks
and chi-squared and Fisher’s exact tests.

In order to evaluate differences in the distribution of MICs
values in C. coli and C. jejuni from the four host species, available
data were represented as “squashtograms.” The existence of
statistical differences in MICs distributions in susceptible and
not-susceptible (here referred to as “resistant”) isolates depending
on bacterial species (for a given host) or on host (for a given
bacterial species) was evaluated using Mann–Whitney U or
Kruskal–Wallis tests followed by Dunn’s post hoc tests, correcting
for multiple comparisons by the Benjamini-Hochberg method.

Molecular Characterization Based on
flaA Sequencing
A subset of 125 isolates including all combinations of hosts,
bacterial species, year of recovery and AMR phenotype, randomly
chosen within each category, was used to assess their genetic
relatedness by comparing the flagellin flaA short variable
region (SVR) gene sequence as described by other authors
(Ugarte-Ruiz et al., 2013; Zhang et al., 2018). Selected isolates
were classified into two categories: isolates with simultaneous
phenotypic resistance to aminoglycosides and ERY (n = 53,
“cases”) and isolates not presenting this simultaneous resistance
(n = 72, “controls”). Amplification of the flaA SVR gene sequence
by PCR was performed as previously described (Ugarte-Ruiz
et al., 2013), and the obtained amplicons were sequenced.
Additionally, the flaA sequence of fifty-one isolates (8 “cases” and
43 “controls”) previously subjected to whole genome sequencing
(GenBank accession codes SRX5575129 to SRX5587545) was
extracted (along with information on the presence of resistance
genes) using a homemade Python script. The resulting 176
sequences were then aligned using MUSCLE (Edgar, 2004) and a
Neighbour-Joining (NJ) phylogenetic tree with 1,000 bootstraps
was built to evaluate the phylogenetic relationship between
isolates. The flaA gene of the NCTC 1168 C. jejuni strain
(1719 nucleotides-long, bacterial chromosome positions 1269232
to 1270950) was used as an external reference. A multiple
correspondence analysis (MCA) of the relative synonymous
codon usage (RSCU) values categorized as > 1 (positive bias)
or < 1 (negative bias) was performed as described before
(Meinersmann et al., 2005). The MCA included, along with the
RSCU of variable codons, other available covariates (bacterial
species, host species, resistance to GEN, ERY, and STR, and clade
as determined in the NJ phylogenetic tree).

Microsoft Access was used for data handling and database
initial analyses. Data were further handled with Microsoft
Excel and imported into “R” version 3.6.3 (R Core Team,
2020). The R packages “FSA” (Ogle et al., 2020), “plyr”
(Wickham, 2011), and “ggplot2,” “dplyr,” “reshape2,” and
“tidyr” (Wickham et al., 2019) were used for the analysis
and visual representation of the data. Information on
resistance-associated markers from the sequenced strains
was extracted using ResFinder (Bortolaia et al., 2020). MEGA-X
(Kumar et al., 2018) and DnaSP6 (Rozas et al., 2017) were
used on imported DNA sequences for the preparation and
analysis of sequence alignments. R packages “BiocManager”

(“coRdon”) (Morgan and Ramos, 2019) and “seqinr” (Charif
and Lobry, 2007) were used for the calculation of RSCUs.
“Corrplot” (Wei et al., 2017), “FactoMineR” (Lê et al.,
2008), “factoextra” (Kassambara and Mundt, 2020), and
“ggtheme” were used for the MCA analysis. All Figures were
generated using R except Figure 1 (Excel) and Figure 6
(MEGA-X).

RESULTS

In total 3,413 independent samples from broilers, 1,455 from
turkeys, 3,750 from pigs and 2,347 from cattle were included in
the analysis, of which 2,000 (58.6%), 1,090 (74.9%), 2,218 (59.2%),
and 1,273 (54.3%) resulted in the isolation of Campylobacter spp.,
respectively (Table 2). The number of samples analyzed, isolates
recovered, and isolates subjected to AST varied depending on
year and host species (Supplementary Table 2).

Over the entire study period, C. coli was the most frequently
isolated species in pig (88.7%; 1,968/2,218) and turkey (74.8%;
815/1,090) samples, while C. jejuni was the most frequent species
in cattle (84.4%; 1,074/1,273). In broilers, the proportion of C. coli
and C. jejuni was very similar (51.2%; 1,023/2,000 and 47.8%;
957/2,000, respectively) (Table 2).

Although there were differences depending on the year, the
proportion of positive samples to C. coli and C. jejuni remained
relatively constant over the whole study period in pigs and cattle,
with one bacterial species being more prevalent than the other
one, while the situation was more variable in broilers (Figure 1).
Significant increasing trends were observed in the proportion of
positive samples for C. jejuni in broilers and turkeys, with annual-
biannual rates of increase of 9.7% (95%CI: 6.16–13.33%) and
26.2% (95%CI: 15.81–37.43%), respectively (Figure 1).

The overall proportion of isolates resistant to CIP, NAL, and
TET was extremely high (>80%) in both C. coli and C. jejuni
from all host species (Table 3 and Figures 2–5), with yearly values
exceeding 70% throughout the study period except in C. jejuni
from cattle (Figure 5). Still, there were significant differences in
the proportion of resistant isolates to these three antimicrobials
depending on the host (Table 3). The proportion of CIP and
NAL-resistant C. coli isolates was significantly lower in cattle
compared with broilers and turkeys (p < 0.05) (and in pigs
compared with turkeys for CIP, p < 0.001). In the case of TET,
C. coli isolates from pigs were significantly more resistant than
C. coli from cattle and broilers (p < 0.001), although resistance
was still above 95% in all species (Table 3). In the case of
C. jejuni, cattle isolates were significantly less resistant to the three
antimicrobials compared with isolates from poultry (p < 0.05).

The proportion of resistance to the remaining three
antimicrobials (STR, ERY, and GEN) was much more
variable (Table 3 and Figures 2–5). In the case of STR,
extremely high (80–91%) or high to very high (∼55%)
levels were found in C. coli from cattle and pigs and
from broilers and turkeys, respectively, with significant
differences between all hosts species except between broilers
and turkeys (pigs > cattle > poultry). In contrast, values
<11% were observed in C. jejuni from all three host species
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FIGURE 1 | Percentage of Campylobacter isolates over total sampled, identified as C. coli, C. jejuni, and C. spp. for each host species throughout study period.

from which this bacterial species was recovered (broilers,
turkeys, and cattle). Although levels of resistance in C. jejuni
were always significantly lower than in C. coli for any
given host species, no significant differences between host
species were observed.

The proportion of resistance to ERY in C. coli was very
high (67%) for pigs, high (35%) for broilers and turkeys, and
moderate (19%) for cattle (pigs > poultry > cattle) (Table 3 and
Figures 2–5). Overall values in C. jejuni from all host species
were < 3% and significantly lower than those from C. coli, again
with no significant differences across hosts.

Finally, the proportion of GEN resistant-isolates was low
(<25%) in C. coli from all species (Table 3 and Figures 2–5),
although the proportion in pigs was again significantly higher
than that observed in other host species (p < 0.001). Resistance
levels in C. jejuni were lower (<2%) and significantly different
from those observed in C. coli from the same host and, once more,
no significant differences between hosts were observed.

Significant (p < 0.05) trends in the proportion of cattle
resistant isolates were observed associated to increasing annual
rates for ERY and C. coli (29.9% although with a wide 95%CI:
−31.36 to 145.77) and STR and C. jejuni (16.7%, 95%CI: 2.89–
32.28) (Figure 5). Significant (p < 0.001) trends in the proportion
of resistant C. jejuni isolates recovered yearly from broilers were
also observed for two antimicrobials, in both cases associated to
decreasing annual rates: STR (−9.9%, 95%CI: −16.13 to −3.14)
and ERY (−27.5%, 95%CI: −44.60 to −5.10) (Figure 2).

Other significant (p < 0.001) trends were found associated
with modest annual rates of increase in C. jejuni in cattle for CIP
(5.22%, 95%CI: 3.91–6.54) and NAL (4.11%, 95%CI: 2.20–6.06),
in C. coli in broilers for TET (1.61%, 95%CI: 0.93–2.29), and in
C. coli in pigs for CIP (0.64%, 95%CI: 0.20–1.09). For the rest
of antimicrobials, host and bacterial species no significant trends
were detected (Figures 2–5).

For any given bacterial species, an analysis of the quantitative
AST results across hosts species revealed significant differences
(p = 0.032) in the distribution of MIC values between
“susceptible” and “not susceptible” isolates only for C. jejuni
strains from turkeys “not susceptible” to ERY (MIC ≥ 256 mg/L)
(Supplementary Excel File 1). In contrast, for any given host
species, no significant differences were observed between MIC
distributions of “susceptible” and “not susceptible” C. coli vs.
C. jejuni isolates.

Co-resistance and MDR Phenotypic
Profiles
The main resistance profiles observed in each bacterial and host
species are shown on Supplementary Table 3. Of all C. coli
isolates from all host species, >85% were resistant to three (CIP-
TET-NAL, TET-ERY-STR) or more antimicrobials and >60%
were resistant to three or more antimicrobial classes (MDR). The
most common resistance profiles for C. coli from each host were
CIP-TET-NAL and CIP-TET-NAL-STR in broilers and turkeys
(18–28% of all isolates in each host species for each profile),
CIP-TET-NAL-STR in cattle (∼50% of all C. coli isolates) and
CIP-TET-NAL-STR-ERY in pigs (∼40% of all C. coli isolates). The
proportion of pan-susceptible isolates for C. coli in all host species

TABLE 2 | Collection period, number of fecal samples and positive samples for
Campylobacter isolation from each host species included in the study.

Host species Broilers Turkeys Pigs Cattle

Years 2002–2018 2014–2018 2002–2017 2007–2017

Sample size 3,413 1,455 3,750 2,347

C. coli 1,023 (30.0%) 815 (56.0%) 1,968 (52.5%) 183 (7.8%)

C. jejuni 957 (28.0%) 273 (18.8%) 33 (0.9%) 1,074 (45.8%)

C. spp. 20 (0.6%) 2 (0.1%) 217 (5.8%) 16 (0.7%)
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TABLE 3 | Percentage of Campylobacter isolates not susceptible (resistant) to each antimicrobial in the four host species throughout the studied period.

Antimicrobials Tetracycline Nalidixic acid Ciprofloxacin Streptomycin* Erythromycin* Gentamicin

Coli (MIC > 2) Coli/Jejuni
(MIC > 16)

Coli/Jejuni
(MIC > 0.5)

Coli/Jejuni
(MIC > 4;

DIAM < 13)

Coli (MIC > 8;
DIAM < 24)

Coli/Jejuni
(MIC > 2)

Jejuni (MIC > 1) Jejuni (MIC > 4;
DIAM < 22)

C. coli (%) Broilers (n = 634) 95.9a 93.3a 94.5a,b 54.7a 34.8a 14.7a

Turkeys (n = 279) 97.5a,b 95.3a 98.2b 55.9a 36.6a 7.5b

Pigs (n = 1,692) 99.1b 91.7a,b 91.7a,c 90.6b 66.6b 22.2c

Cattle (n = 149) 95.3a 86.7b 87.3c 82.0c 19.3c 12.0a,b

C. jejuni (%) Broilers (n = 772) 83.1a 88.5a 91.1a 7.7a 2.9a 1.0a

Turkeys (n = 231) 83.1a 86.1a 88.7a 6.1a 2.6a 0.0a

Cattle (n = 828) 74.1b 63.1b 63.8b 10.2a 1.7a 1.4a

Different superscripts indicate significant differences between hosts for each bacterial species
*Diffusion technique: streptomycin in broilers and pigs (2002–2005) and erythromycin in broilers (2002–2004).

FIGURE 2 | Graphical representation of AMR proportions to each antimicrobial in C. coli and C. jejuni from broilers for 2002–2018. Years in which AST was
performed are indicated in the X axis; dashed lines indicate periods in which AST was not performed every year (no AST performed in C. coli in 2016).

was low (0–4%), and lower than the proportion of resistant
isolates to all six antimicrobials (0–16%).

In comparison, the proportion of C. jejuni isolates from all
hosts resistant to three or more antimicrobials was 54–76%
whereas the MDR proportion was 6–9%. The most common
resistance profile for C. jejuni from all hosts was CIP-TET-NAL,
amounting to between ∼45% of all cattle and 60–70% of all
broiler and turkey isolates. In this case, the proportion of pan-
susceptible isolates (5–15%) was higher than that of resistant
isolates to the six antimicrobials in all species (<1%).

Association Between Resistance to GEN,
STR, and ERY
Overall, a significant association between the occurrence of
phenotypic resistance to aminoglycosides and macrolides was
observed, so that C. coli and C. jejuni from all host species (except
C. coli in pigs and turkeys and C. jejuni in turkeys) resistant to
one of the two aminoglycosides (or to both) were more likely to

be also resistant to ERY (Table 4). This association was stronger
in C. jejuni and/or cattle isolates.

Analysis of flaA and AMR Genes
Over 300 bp (including the 267 bp-long SVR used in the analysis)
of the flaA gene sequence were correctly determined in 168 of
the 176 chosen isolates (all except 2 “cases” and 6 “controls”).
Figure 6 displays the phylogenetic tree constructed using the
selected final 168 isolates (59 “cases” and 109 “controls”) plus
the reference strain. Overall, a total of 127 single nucleotide
polymorphisms (SNPs) located in 100 polymorphic sites were
found, leading to 73 unique flaA SVR gene sequences. The
haplotype diversity (Hd – probability that two randomly selected
sequences are different) was 0.975, and every two sequences
differed on average by 27 SNPs with an overall mean evolutionary
distance (d) between the two sequences of 0.09.

The 168 isolates were classified into five groups based on
the topology of the tree: group 1, including the majority of the
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FIGURE 3 | Graphical representation of AMR proportions to each antimicrobial in C. coli and C. jejuni from turkeys for 2014–2018. Years in which AST was
performed are indicated in the X-axis; dashed lines indicate periods in which AST was not performed every year.

FIGURE 4 | Graphical representation of AMR proportions to each antimicrobial in C. coli from pigs for 2002–2017. Years in which AST was performed are indicated
in the X-axis; dashed lines indicate periods in which AST was not performed every year.

sequenced isolates (n = 100 isolates), group 2 (n = 31 isolates),
group 3 (n = 12 isolates), group 4 (n = 17 isolates), and group
5 (n = 8 isolates) (Figure 6). Groups 2–5 formed separate clades
from group 1 (bootstrap > 60). Groups 2 and 3, consisting mainly
of C. coli strains (28/31 and 10/12, respectively) predominantly
from poultry (>60%), showed similar proportions of isolates
resistant to aminoglycosides and macrolides (“cases”) and of
“controls” (18/31 and 6/12, respectively) (Table 5). Groups 4
and 5 showed a higher proportion of C. jejuni isolates (13/17
in group 4 and 8/8 in group 5) from cattle (9/17 and 8/8), and
the frequency of isolates with simultaneous resistance to both

antimicrobial classes (“cases”) in these groups was much lower
(1/17 and 1/8, respectively) (Table 5).

Only complete RSCU values from the 20 variable codons
among the 168 isolates were included in the MCA analysis. The
first two dimensions identified in the MCA explained 38% of
the total variability observed. Isolates included in each of the
five groups identified in the phylogenetic tree were also clustered
according to the first two dimensions of the MCA (Figure 7).

Different resistance markers involved in AMR against
macrolides and aminoglycosides were found in the isolates
subjected to WGS. Several genes involved in the CmeABC
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FIGURE 5 | Graphical representation of AMR proportions to each antimicrobial in C. coli and C. jejuni from cattle for 2007–2017. Years in which AST was performed
are indicated in the X-axis; dashed lines indicate periods in which AST was not performed every year.

TABLE 4 | Association between phenotypic resistance to gentamicin, streptomycin, and erythromycin in C. coli and C. jejuni isolates from livestock.

Host Bacterial species N Erythromycin-R (%) Antimicrobial Resistance (%) Resistance among EryR (%) p-value RR*

Broilers C. coli 634 34.5 Streptomycin 54.4 68.9 <0.001 1.86

Gentamicin 14.7 24.7 <0.001 1.90

C. jejuni 772 2.5 Streptomycin 7.6 31.6 <0.001 5.58

Gentamicin 1.0 15.8 <0.001 17.90

Pigs C. coli 1692 66.7 Streptomycin 90.7 90.7 0.953 1.00

Gentamicin 22.0 25.0 <0.001 1.18

Turkeys C. coli 279 36.6 Streptomycin 56.0 66.7 0.008 1.58

Gentamicin 7.5 10.8 0.156 1.48

C. jejuni 231 2.6 Streptomycin 6.0 33.3 0.045 7.75

Gentamicin 0.0 0.0 1 17.85

Cattle C. coli 149 19.5 Streptomycin 82.6 96.6 0.028 5.92

Gentamicin 12.1 31.0 0.002 3.27

C. jejuni 828 1.7 Streptomycin 10.3 78.6 <0.001 32.05

Gentamicin 1.4 28.6 <0.001 27.20

*Relative risk of presenting resistance to erythromycin in isolates resistant to streptomycin/gentamicin.

efflux pump (cmeB, cmeC, and cmeR) were present in 39–40/40
sequenced C. jejuni isolates and missing in 10–11/11 C. coli
strains, while the cmeA gene was present in 34/40 and 4/11 of the
C. jejuni and C. coli strains, respectively, but their presence was
not associated with ERY resistance (Supplementary Excel File 2).
Among the 12 ERY-resistant isolates, three presented mutations
associated with macrolide-resistance in the 23S rRNA encoding
gene and other three carried the erm(B) gene, while no resistance
marker was found in the remaining six isolates. Regarding
aminoglycoside-resistance associated genes, seven different genes
were found in one or more strains (between 0 and 3 per strain),
and their presence was associated with resistance to STR and/or
GEN except in one susceptible C. jejuni strain from cattle
(Supplementary Excel File 2). No apparent association between a
specific flaA gene group and the presence of any of the resistance
markers was observed.

DISCUSSION

Antimicrobial resistance is becoming a major problem for
the treatment of diseases caused by zoonotic bacteria such as
thermophilic Campylobacter. The mechanisms by which AMR
can spread in a bacterial population (vertically or horizontally)
has enormous implications, since it can determine the speed
at which AMR phenotypes disseminate. Of particular concern
are genetic traits conferring MDR (Magiorakos et al., 2012),
particularly when transmitted together. Hence, it is of paramount
importance to explore the genetic mechanisms implicated in
AMR in C. coli and C. jejuni from the different hosts involved in
the epidemiology of infection in humans (EFSA-ECDC, 2020). As
described elsewhere, this study of isolate-based phenotypic data
versus aggregated data has also proven to be a reliable means
of gaining insight into such mechanisms (Alvarez et al., 2020),
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FIGURE 6 | Phylogenetic tree of the short variable region (SVR) of flaA genes from 168 selected Campylobacter isolates, combining bacterial species, host, year of
recovery and AMR phenotype, obtained by the Neighbour-Joining method [Group 1 = black; Group 2 = blue; Group 3 = red; Group 4 = green; Group 5 = violet;
NC002163 = Reference strain; B = Broilers; T = Turkeys; P = Pigs; C = Cattle; G = Gentamicin; E = Erythromycin; S = Streptomycin; SUSC = susceptible isolates;
aminoglycosides/macrolides co-resistant strains (“cases”) in bold; strains subjected to WGS in orange].

and the assessment of phenotypic susceptibility patterns found
here can guide the genetic analysis in a “top-down” approach
(Sheppard and Maiden, 2015).

The annual proportion of Campylobacter positive samples
found in our samples from broilers collected over a 17-year
period (ranging from 26.2 to 76.7%) was higher than values
reported by EFSA from EU member states (26%) (EFSA-ECDC,
2019a) and mostly higher than values reported in other regions
of the world such as China (30.2%) (Tang et al., 2020). The
proportion of Campylobacter positive samples in cattle from
2007 to 2017 (37–69.5%) was also much higher than values

reported by EFSA for 10 EU countries (1.5–3.5%) (EFSA-ECDC,
2018b, 2019a), although country-specific studies in Finland
(Hakkinen et al., 2007), and Lithuania (Ramonaite et al., 2013)
reported values more similar to the ones found here (39.6
and 80%, respectively). Similarly, the percentage of pig samples
from which Campylobacter isolates were retrieved in our study
(33.4–80%) was in the range of results reported for Greece
(49.1%) (Papadopoulos et al., 2020), much higher than previously
reported by EFSA for 8 EU countries (2–7%) (EFSA-ECDC,
2018b, 2019a) and lower than reported in a Danish study (92%)
(Boes et al., 2005). However, the percentages we found in turkeys
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TABLE 5 | Numbers and proportions of isolates included in each of the groups formed from the phylogenetic analysis based on phenotypical AMR susceptibility,
bacterial species, host species, and case/control categories.

Group # 1 2 3 4 5 Total

N (n = 100) (n = 31) (n = 12) (n = 17) (n = 8) (n = 168)

GEN-R 22 (22.0%) 11 (35.5%) 3 (25.0%) 0 (0.0%) 1 (12.5%) 37 (22.0%)

ERY-R 45 (45.0%) 26 (83.9%) 8 (66.7%) 1 (5.9%) 2 (25.0%) 82 (48.8%)

STR-R 58 (58.0%) 19 (61.3%) 8 (66.7%) 10 (58.8%) 1 (12.5%) 96 (57.1%)

Coli 54 (54.0%) 28 (90.3%) 10 (83.3%) 4 (23.5%) 0 (0.0%) 96 (57.1%)

Jejuni 46 (46.0%) 3 (9.7%) 2 (16.7%) 13 (76.5%) 8 (100.0%) 72 (42.9%)

Broilers 37 (37.0%) 12 (38.7%) 5 (41.7%) 4 (23.5%) 0 (0.0%) 58 (34.6%)

Cattle 27 (27.0%) 7 (22.6%) 3 (25.0%) 9 (52.9%) 8 (100.0%) 54 (32.1%)

Pigs 14 (14.0%) 4 (12.9%) 1 (8.3%) 2 (11.8%) 0 (0.0%) 21 (12.5%)

Turkeys 22 (22.0%) 8 (25.8%) 3 (25.0%) 2 (11.8%) 0 (0.0%) 35 (20.8%)

Cases 33 (33.0%) 18 (58.1%) 6 (50.0%) 1 (5.9%) 1 (12.5%) 59 (35.1%)

Controls 67 (67.0%) 13 (41.9%) 6 (50.0%) 16 (94.1%) 7 (87.5%) 109 (64.9%)

In bold = predominant proportions within each group and category.

FIGURE 7 | Distribution of the 168 isolates subjected to flaA gen sequencing according to the first two dimensions of a multiple correspondence analysis (MCA)
performed considering information on the RSCU of variable codons, bacterial and host species, resistance to gentamicin, erythromycin, and streptomycin, and clade
as determined in the NJ phylogenetic tree (observations are colored according to the clade).

(65.4–85.9%) were similar to an EU report comprising 5 countries
(71.6%) (EFSA-ECDC, 2019a) but lower than found in a German
study (90–100%) (Ahmed et al., 2016).

As expected, the host species were strongly associated with
the Campylobacter species retrieved in positive samples, although
proportions found for each bacterial species may vary depending
on isolation protocols used. The predominance of C. coli in pig
samples found in our study is in agreement with previous studies
from Denmark (Boes et al., 2005). However, and even though this
bacterial species has been traditionally associated with pigs, it is
becoming more common in poultry (Miller et al., 2006). In our
collection, C. coli was in fact the predominant species in turkey,
while a more balanced distribution between C. coli and C. jejuni
was reported in turkey samples from Germany (Ahmed et al.,
2016). In broilers, a close to 50/50 distribution for C. coli/C. jejuni,
as the one found here, was also observed in samples from China
(Tang et al., 2020). However, EFSA reported a predominance
of C. jejuni with 2,452 Campylobacter positive samples from 16

countries (EFSA-ECDC, 2019a). In cattle, a study from Denmark
(Nielsen et al., 1997) found similar proportions for each bacterial
species (6.8% C. coli, 90.9% C. jejuni, and 2.3% C. spp.) than our
study (14.4% C. coli, 84.4% C. jejuni, and 1.2% C. spp.).

As presumed, the level of resistance to the antimicrobials used
in our study was closely linked with the Campylobacter bacterial
species found, with higher levels of resistance in C. coli than
in C. jejuni in agreement with previous research (Pergola et al.,
2017; Alvarez et al., 2020). The lack of barriers to horizontal
gene transfer (HGT) in C. coli may explain the higher levels of
MDR observed in this bacterial species compared to C. jejuni
(Pearson et al., 2015).

Out of the six antimicrobials assessed here, high to extremely
high levels of resistance were found for three of them (CIP,
NAL, and TET) in C. coli, while in C. jejuni they ranged
between medium to very high. For CIP and NAL these levels
were consistently higher than those described for isolates from
food animals in other European countries with the exception of
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C. jejuni in turkeys (equal levels to Italy, Poland and Portugal at
70%) and cattle (equal levels to Italy at 80%) (EFSA-ECDC, 2020).
For TET in C. jejuni in cattle, levels in Spain (85%) were between
levels reported in Austria, Denmark and the Netherlands (60%)
and levels reported in Italy (95%) (EFSA-ECDC, 2020).

Resistance levels to the remaining three antimicrobials
analyzed in this study were much more variable, yet again
consistently higher than in other European countries across hosts
and bacterial species. The exceptions were C. jejuni from turkeys
(15% ERY in Portugal vs. 2.6% in Spain; 20% STR in Poland vs.
6.1% in Spain) and cattle (10% ERY in Italy vs. 1.7% in Spain)
(EFSA-ECDC, 2020).

Overall, a significant association between the presentation
of phenotypic resistance to ERY (macrolide) and STR and
GEN (aminoglycosides) was consistently found for both C. coli
and C. jejuni from most host species (Table 3). When the
association between antimicrobial pairs was analyzed stratifying
by time-periods (2002–2006, 2007–2012, and 2013–2018) certain
categories were not significantly associated, probably due to
being smaller sample sizes (data not shown). Unsurprisingly,
STR-resistant isolates had a significantly higher probability of
being also resistant to GEN, which was expected given that
they belong to the same antimicrobial class (aminoglycosides)
and therefore share resistance mechanisms, mostly based on
natural transformation, homologous recombination and sharing
of MGEs (Davies and Wright, 1997; Luangtongkum et al., 2009;
Qin et al., 2012; Wieczorek and Osek, 2013).

Campylobacter is considered a high-risk pathogen in terms
of AMR due to the high levels of HGT and the association of
AMR genes in MDRGIs. Some authors argue that the transfer
of MDRGIs is likely to lead to co-selection phenomena after
their genetic mobilization. This could explain why Campylobacter
adapts so quickly in its interaction with the host, constantly
obtaining improved phenotypes (Sheppard and Maiden, 2015).

The erm(B) gene, previously described only in Asia (Qin et al.,
2014) and possibly originating from Gram-positive bacteria,
was found in Spain in one C. coli from broiler in 2015
(Florez-Cuadrado et al., 2016) and two C. coli from turkeys
in 2017 (Florez-Cuadrado et al., 2017). This was the first
European report of this gene, associated with other genes in
MDRGIs bearing resistance to ERY, CIP, TET, and NAL, and
involved in AMR to STR (and present in isolates that may be
susceptible to GEN). The three erm(B)-carrying strains, included
in this study, were found in isolates showing simultaneous
resistance to aminoglycosides and were clustered in different
clades (1, 2, and 3). However, given the very limited number of
ERY-resistant sequenced strains no conclusions can be drawn
regarding their association with specific genetic populations.
The inclusion of erm(B) genes in plasmids encoding additional
resistance genes to other antibiotics in C. coli from food
animals could pave the way to rapid dissemination of macrolide
resistance (EFSA-ECDC, 2018a, 2019b). Besides, reported
resistance levels to ERY in humans have been consistently
higher for C. coli than for C. jejuni (EFSA-ECDC, 2018a),
and similar reports have been made in poultry (Pergola et al.,
2017) in agreement with our findings. Since macrolides are
one of the three “Critically Important Antimicrobial” classes

used for the treatment of human campylobacteriosis (along
with fluoroquinolones and aminoglycosides) (World Health
Organization (WHO), 2017), a more in-depth knowledge into
their resistance mechanisms is warranted.

The increasing rates of resistance to ERY in C. coli and to STR
in C. jejuni of cattle origin described here suggest this host species
could play an increasingly important role in the epidemiology
of AMR in Campylobacter. A nationwide case-control study
carried out in Luxembourg identified beef consumption as an
important source of infection for C. coli (Mossong et al., 2016),
thus suggesting that cattle may be a relevant reservoir for this
foodborne pathogen.

MICs values in isolates classified as “susceptible” or “not
susceptible” may indicate the presence or absence of different
AMR determinants in the bacterial genome. The significantly
higher MICs values observed in this study for ERY in turkey
resistant isolates (Supplementary Excel File 1) could indicate
the presence of the transferable erm(B) gene. However, out
of the 12 ERY-resistant isolates subjected to WGS, only three
carried the erm(B) gene (and had MICs ranging between 32
and 256 ug/ml), and additionally, mutations in the 23S rRNA
encoding gene were found in just three isolates (Supplementary
Excel File 2). This suggests that other mechanisms may be
involved in the observed increased MICs in certain isolates, such
as mutational resistance affecting the expression of the CmeABC
efflux pump in C. jejuni (Zhang et al., 2017). This, linked with
the high proportion of ERY-resistant isolates found in C. coli
from turkeys in other European countries (EFSA-ECDC, 2017,
2020) further highlights the need of clarifying the resistance
mechanisms present in resistant isolates from this host. In
fact, EFSA recommends investigating the molecular mechanisms
of macrolide resistance, especially in isolates resistant to high
concentrations of ERY, in order to detect chromosomal mutations
or the presence of the transferable erm(B) gene (EFSA-
ECDC, 2019b). Furthermore, these same guidelines recommend
searching for ERY resistant genes, not only in resistant strains
presenting concomitant resistance to aminoglycosides or a MDR
phenotype, but also in susceptible isolates. Thus, an in-depth
characterization of resistant isolates would be needed to confirm
this hypothesis. The integration of phenotypic and genomic
analyses may allow predicting differences in resistance levels
beyond resistance thresholds (Bolinger and Kathariou, 2017;
EFSA-ECDC, 2019b).

Phylogenetic studies based on flaA SVR gene sequencing have
been used in the past to study the epidemiology of Campylobacter
spp. from different sources (Zhang et al., 2018). Previously,
studies based on the flaA gene sequence had not found a
relationship between AMR and specific genotypes (Corcoran
et al., 2006). However, in our strain collection five distinct groups
were identified, two of which were associated with an increased
proportion of simultaneous resistance to aminoglycosides and
macrolides (groups 2 and 3), predominantly formed by C. coli
isolates from broilers and turkeys (Table 5). In contrast, isolates
in groups 4 and 5 were primarily C. jejuni of cattle origin.
The existence of “cattle specialist C. jejuni lineages” has been
previously speculated, implying that adaptation of C. jejuni
to cattle could be associated with the presence of genetic
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elements favoring its survival in the intestine of cattle (Sheppard
and Maiden, 2015) and with a significant gene gain and loss
(Mourkas et al., 2020). Interestingly, cattle C. jejuni showed the
strongest association between resistance to aminoglycosides and
macrolides (with RR > 25), but only 2 co-resistant isolates (out
of 7 co-resistant C. jejuni cattle isolates sequenced) were classified
into groups 4 and 5.

Among its limitations, the sample size used in the first part
of this long study period (2002–2008) was relatively small.
Furthermore, AST in the first years (2002–2005) was based on
determining IZDs and MICs depending on the antimicrobial
considered. Therefore, conclusions based on data from that
period must be interpreted carefully. In addition, only 1.5% (168)
of the total number of isolates were subjected to the flaA gene
analysis, and only 51 of them were analyzed by WGS.

Nevertheless, our findings confirm that high resistance
levels in Campylobacter spp. from food producing animals
were consistently observed, and that resistance to macrolides
and aminoglycosides was strongly associated across hosts and
bacterial species. Further studies based on WGS would be needed
in order to determine the genetic determinants behind this
resistance and the possible existence of more prevalent lineages.

In this study, C. coli isolates, more prevalent in pigs
and poultry (especially turkeys), showed significantly higher
resistance levels than C. jejuni strains. The significant association
in the simultaneous presentation of phenotypic resistance to
aminoglycosides and macrolides, confirmed in C. coli isolates
independently from host species of origin, suggests the possible
circulation of resistance genes against both antimicrobial classes.
Such resistance mechanisms could have been transmitted
together, or else, have disseminated via resistant clones in
the studied livestock species. The genetic analysis revealed the
presence of some isolates more genetically related with resistant
phenotypes in poultry and others with susceptible phenotypes in
cattle. In order to test these hypotheses it would be necessary to
characterize the resistance mechanisms present in isolates from
the different species by means of a thorough molecular analysis
of their whole genome.
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Organic Acid Exposure Enhances
Virulence in Some Listeria
monocytogenes Strains Using the
Galleria mellonella Infection Model
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Prior research has suggested that the use of organic acids in the food industry may
unintentionally enhance pathogenicity of Listeria monocytogenes strain N1-227 and
R2-499. This study explored the connection between habituation to L-lactic acid or
acetic acid and virulence in L. monocytogenes strains N1-227 and R2-499 using
selected gene expression analysis and the in vivo Galleria mellonella wax worm model
for infection. Expression of transcription factors (sigB and prfA) and genes related to acid
resistance (gadD2, gadD3, and arcA) and bile resistance (bsh and bilE) or to virulence
(inlA, inlB, hly, plcA, plcB, uhpT, and actA) was investigated by quantitative real-time
PCR (qRT-PCR), while in vivo virulence was assessed by following the lethal time to
50% population mortality (LT50) of G. mellonella larvae after injection of untreated and
habituated L. monocytogenes. Twenty minutes of habituation to the organic acids at
pH 6.0 significantly increased expression of key acid and bile stress response genes in
both strains, while expression of virulence genes was strain-dependent. The expression
of transcription factor sigB was strain-dependent and there was no significant change
in the expression of transcription factor prfA in both strains. Habituation to acid
increased virulence of both strains as evidenced by decreased LT50 of G. mellonella
larvae injected with Listeria habituated to either acid. In summary, habituation of both
L. monocytogenes strains to organic acids up-regulated expression of several stress
and virulence genes and concurrently increased virulence as measured using the
G. mellonella model.

Keywords: organic acid, acid resistance, bile resistance, virulence, gene expression, Listeria monocytogenes,
Galleria mellonella

INTRODUCTION

The genus Listeria is comprised of Gram-positive, non-spore-forming, rod-shaped, facultative
anaerobic bacteria which can be found ubiquitously in the environment (Mélanie et al., 2006;
Gahan and Hill, 2014; Lani and Hassan, 2016). Among Listeria species, only L. monocytogenes and
L. ivanovii are pathogenic (Robinson and Batt, 1999); L. ivanovii primarily infects animals while
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L. monocytogenes shows pathogenicity toward both humans and
animals (Liu, 2006). During food production, L. monocytogenes
can experience several stresses such as low pH and high salt.
The ability of Listeria to adapt to these adverse conditions plays
a crucial role in food contamination and food-borne infection
(Lani and Hassan, 2016).

In response to stress, L. monocytogenes may induce an
acid tolerance response and other stress responses mechanisms
that allow it to overcome these hurdles (Glass et al., 1995;
Silva et al., 2012; Melo et al., 2015). L. monocytogenes is
able to utilize a variety of regulators (over 100 different
transcriptional regulators have been identified) to survive and
grow in different environments (Glaser et al., 2001; Gaballa et al.,
2019). Among those regulators, the alternative sigma factor B
(σB) and the listeriolysin positive regulatory factor A (PrfA) are
two essential transcriptional regulators for stress response and
for host infection.

σB, encoded by sigB, is a general stress responsive transcription
sigma factor in L. monocytogenes and many other Gram-positive
bacteria (Kazmierczak et al., 2005; Chaturongakul et al., 2008).
In L. monocytogenes, σB regulates numerous genes that are
associated with acid, bile and other physiological stressors (Sue
et al., 2004; Zhang et al., 2011; Smith et al., 2012; Melo et al.,
2015). The acid stress response systems in L. monocytogenes
include the glutamate decarboxylase (GAD) system and an
arginine deiminase (ADI) system. The GAD system, which
involves genes encoding three glutamate decarboxylase enzymes
(gadD1, gadD2 and gadD3) and two gamma aminobutyric acid
(GABA) antiporters (gadT1 and gadT2), plays a significant
role in pH homeostasis in L. monocytogenes (Cotter et al.,
2001; Melo et al., 2015). Expression of the GAD system
results in the decarboxylation of glutamate into γ-aminobutyrate
with consumption of intracellular protons (Cotter et al., 2001;
Karatzas et al., 2012). Additionally, the arginine deiminase
(ADI) system also contributes to the stabilization of the
bacterial cytoplasmic pH (Melo et al., 2015). The ADI
pathway involves the enzymes arginine deiminase, ornithine
carbamoyltransferase and carbamate kinase, which are encoded
by arcA, arcB, and arcD, respectively (Melo et al., 2015).
With respect to bile resistance, one of the most important
mechanisms in L. monocytogenes involves the ability to detoxify
individual conjugated bile acid through bile salt hydrolase (BSH)
(Dussurget et al., 2002; Begley et al., 2005). Another novel
bile resistance system in L. monocytogenes is the bile exclusion
system (BilE), which acts to exclude bile from bacterial cells
(Sleator et al., 2005).

The listeriolysin positive regulatory factor A (PrfA),
encoded by prfA, is a bacterial transcription factor that
controls and coordinates the expression of key virulence
genes in L. monocytogenes associated with cell invasion and
the intracellular infection cycle (Kazmierczak et al., 2006;
Scortti et al., 2007; de las Heras et al., 2011). Cell invasion
is mediated by two surface proteins, internalin A and B
(InlA and InlB); after entering the cell, L. monocytogenes
are entrapped in a phagocytic vacuole from which they
escape by lysing the membrane of the vacuole through the
combined actions of the pore-forming toxin listeriolysin O

(LLO, encoded by hly) and two phospholipases, PlcA and
PlcB (Mélanie et al., 2006). Multiplication and invasion
within host cells can then occur with the involvement
of the permease UhpT (a hexose phosphate transporter)
and the surface protein ActA (propel bacteria through the
cytoplasm) (Chico-Calero et al., 2002; Mélanie et al., 2006;
Cossart and Toledo-Arana, 2008).

Acid stress resistance has been well studied and observed in
various microorganisms such as Escherichia coli (Goodson and
Rowbury, 1989) and Salmonella (Foster and Hall, 1990). Prior
research by our group has suggested that the use of organic acids
in the food industry may unintentionally enhance virulence of
some L. monocytogenes strains (Zhang et al., 2014). Those results
showed that habituation of two L. monocytogenes strains, N1-
227 and R2-499, to organic acid under mildly acidic conditions
(pH = 6.0) induced acid and bile resistance, which indicated
these treatments could promote virulence by enhancing survival
during passage through the gastrointestinal tract (Zhang et al.,
2014). It also suggested the increased acid and bile resistance
was specifically due to organic acid exposure rather than a
decrease in environmental pH (Carpenter and Broadbent, 2009;
Zhang et al., 2014). Similar responses were not observed in
that study with other pathogenic strains of L. monocytogenes
(Zhang et al., 2014), so R2-499 and N1-227 were selected for
further study to explore the genetic basis for inducible acid and
bile resistance, and to determine if it affected virulence in an
in vivo model.

Virulence of Listeria spp. is frequently assessed using a murine
model (Lecuit, 2007). However, this model has limitations
for studying human pathogenicity of L. monocytogenes
because the interaction between InlA and mouse E-cadherin
(identified as InlA receptor in human) is poor, which makes
L. monocytogenes entry into epithelial cells less efficient
(Mengaud et al., 1996; Lecuit et al., 1999). The larvae
of Galleria mellonella have also been used as a model for
L. monocytogenes virulence (Joyce and Gahan, 2010; Mukherjee
et al., 2010, 2013; Banville et al., 2012; Ramarao et al., 2012;
Schrama et al., 2013). Compared to the mammalian model
and other alternative models, the G. mellonella model
offers several significant advantages, including structural
and functional similarities with the mammalian immune
system (Hoffmann et al., 1999; Strand, 2008). Additionally,
the infection process can be performed over a range of
temperatures (from 15◦C to above 37◦C), which enables
use of the G. mellonella model to study the virulence of
L. monocytogenes human pathogens at 37◦C (Jones et al., 2010;
Rejasse et al., 2012).

To better understand the molecular basis and potential
consequences of induced acid and bile resistance in organic acid
habituated strains, we used quantitative real time polymerase
chain reaction (qRT-PCR) to measure the expression of key
transcription factors and some of their target genes related to acid
or bile resistance or virulence in L. monocytogenes strains N1-
227 and R2-499 after habituation to lactic acid or acetic acid at
pH 6.0. Additionally, the G. mellonella infection model was used
to analyze the in vivo virulence of control and acid habituated
L. monocytogenes strains.
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MATERIALS AND METHODS

Bacterial Strains and Growth Conditions
Original cultures (Table 1) were stored as frozen stocks at
−80◦C in tryptic soy broth (TSB, pH 7.4; Becton, Dickinson and
Company, Sparks, MD) supplemented with 20% v/v glycerol.
Prior to use, cultures were first propagated on tryptic soy agar
(TSA; Becton, Dickinson and Company, Sparks, MD) plate and
incubated at 37◦C for 24 h. A single colony from the TSA plate
was transferred into TSB and incubated overnight at 37◦C with
shaking (220 rpm).

RNA Isolation
Overnight cultures of each strain were harvested by
centrifugation (2,500 × g for 10 min; Sorvall RT1, Thermo
Scientific, Germany) at 4◦C, and then diluted to an optical
density at 600 nm (OD600) of 0.03 in TSB. Cells were acid
habituated as described by Zhang et al. (2014). A 1% inoculum
(v/v) of diluted overnight cultures was transferred into 50 mL
of standard TSB (pH 7.4) and incubated at 37◦C for 4 h with
shaking (220 rpm) to reach mid-log phase as determined by
Zhang et al. (2014). The cultures were collected by centrifugation
(2,500 × g for 10 min) at 4 ◦C and then suspended in 50 mL of
either standard TSB (pH 7.4, baseline control) or TSB without
dextrose (pH 6.0 adjusted with HCl, Becton, Dickinson and
Company, Sparks, MD) containing 0 (pH control) or 4.75 mM
of either L-lactic acid (Sigma Chemicals, St. Louis, MO) or acetic
acid (Johnson Matthey Company, Ward Hill, MA). The cultures
were incubated at 37◦C for 20 min with shaking (220 rpm).
After incubation, 100 mL of RNAprotect Bacteria Reagent
(Qiagen, Inc., Valencia, CA) was added to each sample. Cells
were incubated at room temperature for 10 min then collected
by centrifugation (9,500 × g for 10 min). The supernatant was
discarded and cell pellets were suspended in 900 µL of lysozyme
solution (Sigma-Aldrich, 20 mg/mL in Tris-EDTA buffer) that
contained 20 units of mutanolysin (Sigma-Aldrich). Samples
were incubated for 30 min at 37◦C on a shaker incubator at
220 rpm, then 20 µL of proteinase K (Omega Bio-Tek Inc.,
Norcross, GA) (20 mg/mL) was added and the samples were
returned to the shaker/incubator for 30 min. Total RNA was
isolated using an Aurum total RNA mini kit (Bio-Rad, Hercules,
CA) following the vendor’s recommended procedures. Residual
DNA was removed using The Ambion R© DNA-freeTM DNase
Treatment and Removal Reagents. RNA samples were then
purified using the GeneJET RNA Cleanup and concentration

TABLE 1 | Listeria monocytogenes strains used in this study.

Strain Ribotype Lineage Serotype Source

FSL R2-499 DUP-1053A II 1/2a Human isolate
associated with the US
outbreak linked to
sliced turkey, 2000

FSL N1-227 DUP-1044A I 4b Food isolate associated
with the US outbreak,
1998–1999

Micro Kit PCR purification kit (Thermo Fisher Scientific,
Lithuania). The amount and quality of the RNA were measured
using a NanoDrop Spectrophotometer (Thermo Fisher Scientific,
United States) and TapeStation System (Agilent, Santa Clara,
CA), respectively.

cDNA Synthesis and Real Time
Quantitative PCR (qPCR)
cDNA was synthesized from total RNA using random primers
(Invitrogen, Carlsbad, CA) and SuperScript II reverse
transcriptase (Invitrogen). The qPCR was carried out using
cDNA as template in an Opticon II thermal cycler (MJ Research,
Reno, NV) using HotStart-ITTM SYBR Green qPCR Master Mix
with UDG kit (Affymetrix, Inc.). Each reaction was performed
in triplicate and the relative gene expression of targeted genes
was calculated by the Pfaffl Method and normalized by the
baseline control (Pfaffl, 2001). The primers used in this study are
listed in Table 2 and rpoB was used as a housekeeping gene to
normalize the gene expression data (Bookout and Mangelsdorf,
2003; Tasara and Stephan, 2007). The amplification efficiency for
each primer was tested by plotting the cycle threshold (Ct) value
with different template concentrations and fitting the data to a
regression line (Bookout and Mangelsdorf, 2003; Ruijter et al.,
2009). The amplification efficiency for all the primers reached
90% or above (Li, 2020).

Galleria mellonella Wax Worm Model
The in vivo virulence of L. monocytogenes strains was determined
using the Galleria mellonella wax worm model described by
Ramarao et al. (2012). A 1% inoculum (v/v) of freshly prepared
L. monocytogenes cells was transferred into 50 mL of either
standard TSB (pH 7.4, baseline control) or TSB without dextrose
(pH 6.0 with HCl) containing 0 (pH control) or 4.75 mM of
either L-lactic acid or acetic acid and incubated at 37◦C for
4 h with shaking (220 rpm). The mid-log phase cultures were
collected by centrifugation (2,500 × g for 10 min) at 4◦C. The
bacterial cells were then re-suspended with sterile PBS solution
(pH 7.4) and diluted to an optical density at 600 nm (OD600)
of 0.25. Ten microliters of 108 cfu/mL L. monocytogenes, either
control or acid habituated, was injected into the haemocoel
of the wax worms using an automated syringe pump (KDS
100, KD Scientific; 20 larvae per treatment; see Figure 1 for
schematic experimental design and injection order. Injection
was done in two biological repetition). A PBS-only control
injection was also included. The larvae were placed in petri
dish (5 per dish) and incubated at 37◦C. Larvae survival was
evaluated every 24 h for 5 days after injection. The larvae were
considered dead when they showed no movement in response to
finger touch. Lethal times until 50% population mortality (LT50)
for each treatment were then determined by Probit analysis
(Bliss, 1934, 1935).

Enumeration of Listeria monocytogenes
in Galleria mellonella Wax Worms
L. monocytogenes in G. mellonella larvae was enumerated at
5, 10, 15, and 20 h after injection. At each time point, 5
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TABLE 2 | Primers used in this study.

Protein Function Gene Sequence (5′– > 3′)

General stress-responsive sigma factor B Required for the expression of
L. monocytogenes stress response factors

sigB F TGTTGGTGGTACGGATGATGG

R ACCCGTTTCTTTTTGACTGCG

Arginine deiminase Catalyze L-arginine to L-citrulline arcA F GCGTGATTGCGGAGGTTTTG

R CCCCATCATTCCACTGCTCT

Glutamate decarboxylase β Convert glutamate to GABA gadD2 F ATCGATATGCGCGTTGTTCCA

R ATACCGAGGATGCCGACCACA

Glutamate decarboxylase γ Convert glutamate to GABA gadD3 F TTCCGCATTGTTACGCCAG

R TCTTACTTGGGGACTTCGAC

Bile salt hydrolase Detoxify conjugated bile acid Bsh F TTTGTTGTTCCACCGAGCCTA

R GGGCGGAATTGGCTTACCTG

Bile exclusion protein Exclude bile from cell bilE F CATCAACGGAGCCTGTCGAA

R TCCAGATGACGCGCTAAGAA

Positive regulatory factor A Required for the expression of
L. monocytogenes virulence factors

prfA F CGATGCCACTTGAATATCCT

R CTTGGCTCTATTTGCGGTCA

Internalin A Host cell invasion inlA F CTATACCTTTAGCCAACCTGT

R GGTTGTTTCTTTGCCGTCCAC

Internalin B Host cell invasion inlB F CTGGACTAAAGCGGAAAACCTT

R TCCAGACGCATTTCTCACTCTT

Listeriolysin O Phagosome lysis hly F ATGCAATTTCGAGCCTAACC

R ACGTTTTACAGGGAGAACATC

Phosphatidylinositol-specific phospholipase C Phagosome lysis plcA F ACCGTATTCCTGCTTCTAGTT

R ACACAACAAACCTAGCAGCG

Phosphatidylcholine phospholipase C Phagosome lysis plcB F TAGTCAACCTATGCACGCCAA

R TTTGCTACCATGTCTTCCGTT

Actin assembly-inducing ptotein Stimulates actin-based intracellular bacterial
motility

actA F TTATGCGTGCGATGATGGTG

R TTCTTCCCATTCATCTGTGT

Hexose phosphate transporter Intracellular bacterial growth uhpT F TTCAGCACCACAGAACTAGG

R GCATTTCTTCCATCCACGAC

RNA polymerase beta subunit Housekeeping gene rpoB F CTCTAGTAACGCAACAACCTC

FIGURE 1 | Galleria mellonella schematic experimental design of one biological repetition.

larvae were collected and homogenized in 9 mL of sterile
peptone physiological solution (PPS) in a stomacher. Serial
dilutions were made by pipetting 1 mL of diluted sample into

9 mL PPS, then 100 µL of diluted samples was spread on
Palcam agar (L. monocytogenes selective media; Oxoid Limited,
Hampshire, United Kingdom). Plates were incubated at 37◦C
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FIGURE 2 | Relative gene expression of acid and bile stress response related genes in 20 min habituated Listeria monocytogenes strains (A) N1-227 and
(B) R2-499 cells in comparison with non-habituated cells (baseline control, TSB pH 7.4, ). Habituated treatments include as follows: TSB pH 6.0 (pH control, ),
TSB at pH 6.0 with 4.75 mM of acetic acid ( ) and TSB at pH 6.0 with 4.75 mM of L-lactic acid ( ). Error bars represent standard error of mean for two biological
trials with three replicates for each trial. Different letters indicate that treatments are significantly different (p < 0.05) as determined by one-way ANOVA with Tukey’s
post-hoc tests; *ns, Non-significant.

for 48 h then L. monocytogenes colonies were enumerated.
Microbiological count data were expressed as log10 of colony-
forming units per larvae.

Statistical Analysis
The data collected in this study (relative expression ratio of
target genes compared with reference genes in three biological
repetitions, the survival rate of G. mellonella larvae and the
enumeration of L. monocytogenes in Galleria mellonella wax
worm in two biological repetitions) were continuous outcome
variables for every categorical treatment variable (acidification
treatments of L. monocytogenes). Significant differences in
each outcome between treatments were assessed using one-
way analysis of variance (ANOVA) followed by Tukey’s test
to compare means of the gene expression outcome variables

between treatments. Differences were considered significant at
P < 0.05.

RESULTS

Influence of Acid Habituation on
Expression of Acid and Bile Stress
Response Genes
Increased expression of gadD3 was observed for strain N1-227
in the pH control relative to the baseline control (P < 0.05,
Figure 2). Additionally, acetic acid or lactic acid habituation
resulted in significant upregulation of gadD3 as compared to the
pH control in both N1-227 and R2-499 (P < 0.05). No significant
change of gadD2 expression was observed for both strains in the
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FIGURE 3 | Relative gene expression of virulence related genes in 20 min habituated Listeria monocytogenes (A) N1-227 and (B) R2-499 cells in comparison with
non-habituated cells (baseline control, TSB pH 7.4, ). Habituated treatments include as follows: TSB at pH 6.0 (pH control, ), TSB at pH 6.0 with 4.75 mM of
acetic acid ( ) and TSB pH 6.0 with 4.75 mM of L-lactic acid ( ). Error bars represent standard error of mean for two biological trails with three replicates for each
trail. Different letters indicate that treatments are significantly different (p < 0.05) as determined by one-way ANOVA with Tukey’s post-hoc tests. *ns, Non-significant.

pH control compared to the baseline control. However, similar to
gadD3, acetic acid or lactic acid habituation induced significant
and dramatic expression of gadD2 in comparison with pH control
in both strains (P < 0.05). The qPCR results for both strains
also showed no significant changes in the expression of gene
encoding arginine deiminase (arcA) in the pH control relative to
the baseline control, and that acetic acid or lactic acid habituation
significantly increased arcA expression in both strains (P < 0.05,
Figure 2).

In contrast, transcription of genes related to bile tolerance was
variable between the strains. Habituation to lactic acid or acetic
acid significantly increased bsh gene expression in comparison
with the pH control for both strains (P < 0.05). However, the
pH control had no significant effect on bsh expression relative
to the baseline control in strain N1-227 (Figure 2). Changes
in the expression of bilE were also strain-dependent. For strain

N1-227, bilE was significantly overexpressed (P < 0.05) when
cells were habituated to acetic or L-lactic acid, whereas no
significant changes were observed in strain R2-499. Finally,
qPCR data showed habituation to L-lactic acid or acetic acid
significantly (P < 0.05) induced sigB expression in strain N1-
227 cells compared to the baseline control (Figure 2A). However,
no significant change on sigB expression was observed between
treatments in strain R2-499 (Figure 2B).

Influence of Acid Habituation on
Expression of Virulence Genes
As was observed with stress genes, qPCR results showed
similarities and differences between strains with respect to
virulence gene expression in response to organic acid habituation
(Figure 3). The transcription level of prfA or uhpT was not
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TABLE 3 | Lethal times until 50% population mortality (LT50) for Galleria mellonella
larva injected with Listeria monocytogenes strains habituated to various acid
treatments.

Strain Treatments LT50 (Hours) (95% CI)

N1-227 Baseline 40.72 (32.58–50.90)a

pH control 34.23 (26.28–44.59)a

Acetic acid 19.76 (15.50–25.19)b

L-lactic acid 17.14 (13.58–21.65)b

R2-499 Baseline 37.23 (31.22–44.39)a

pH control 29.83 (22.79–39.04)a

Acetic acid 17.14 (13.10–22.42)b

L-lactic acid 14.01 (10.97–17.88)b

Different letters within a strain indicate that treatments are significantly different
(p < 0.05) as determined by Probit analysis.

significantly impacted by pH or acid exposure in either strain.
However, expression of inlA, inlB and hly increased in both
strains when the pH was decreased. Both strains showed
significantly (P < 0.05) increased expression of inlA and inlB in
organic acid habituated cells compared to the baseline control
or pH control (Figure 3). Furthermore, hly expression was
significantly (P < 0.05) increased in R2-499 cells habituated to
acetic acid or L-lactic acid relative to baseline control and pH
control. However, significant (P < 0.05) overexpression of hly in
strain N1-227 compared to baseline control was only observed
with the pH control and acetic acid habituation treatment.

The qPCR results showed the expression profile for the other
virulence genes (plcA, plcB, actA) was also strain-dependent
(Figure 3). No significant changes were observed in plcA
expression for strain N1-227 (Figure 3A), while organic acid
habituation significantly (P < 0.05) increased expression of this
gene in strain R2-499 compared to baseline control and pH
control (Figure 3B). All three acid treatments (pH control and
organic acid habituated cells) significantly (P < 0.05) induced
plcB expression compared to the baseline control in strain
N1-227, whereas significant induction in strain R2-499 was
only observed with the acetic acid treatment. Conversely, no
significant differences were recorded in actA expression for strain
R2-499, and only acetic acid habituated N1-227 cells showed a
significant (P < 0.05) increase in the expression level of this
gene (Figure 3).

Effect of Habituation to Organic Acid on
Galleria mellonella Survivability
The lethal time to 50% population mortality (LT50) of each
treatment for both strains (Table 3) was determined based on
the survival of G. mellonella over 5 days post-injection (see
Supplementary Figure 1). For both N1-227 and R2-499, the
LT50 of larvae injected with L. monocytogenes habituated with
HCl (pH control) was lower than that of larvae injected with
non-habituated L. monocytogenes (baseline control) and LT50
values decreased considerably more when larvae were injected
with organic acid habituated L. monocytogenes (Table 3). The
shortest LT50 results were noted with organic acid habituated

L. monocytogenes R2-499, which suggests this strain may be more
virulent than N1-227.

To test whether the previous organic acid habituation affected
the survival or growth of L. monocytogenes in G. mellonella
larvae, post-injection bacterial cell numbers were determined
over time. The number of L. monocytogenes cells showed a
slight decrease for the first 5 h and then remained constant
through the 20 h sampling period (see Supplementary Figure 2).
Other researchers have also reported that L. monocytogenes
cells decreased in number for the first 2 h post-injection
(Joyce and Gahan, 2010; Schrama et al., 2013). No statistically
significant differences were observed between treatments for
either L. monocytogenes strain, indicating that the enhanced
virulence observed in organic acid habituated cells is not due to
enhanced survival or growth in the larvae.

DISCUSSION

The qPCR experiments showed organic acid habituation
impacted the expression of genes encoding important acid
and bile stress response mechanisms in both strains of
L. monocytogenes. The GAD system serves as a key mechanism
of L. monocytogenes survival in acid environments (Cotter et al.,
2001; Melo et al., 2015). Karatzas et al. (2012) proposed a
model wherein GAD-mediated acid resistance consists of two
semi-independent systems: An intracellular system that involves
GadD3 acting on intracellular glutamate and an extracellular
system that involves GadD2 decarboxylation of glutamate
imported by the antiporter GadT2. Interestingly, the differential
induction of gadD3 vs. gadD2 in strains N1-227 and R2-499
suggests that gadD3 may play a more prominent role in acid
protecting in N1-227, while gadD2 serves as primary defense
mechanism in R2-499. Additionally, the fold-change in bilE
expression was lower than that of bsh in both strains, which might
be a consequence of cell growth phase. Sue et al. (2003) showed
that bilE expression is growth phase-dependent, with highest
expression level observed in stationary phase cells, and this study
used cells collected at mid-log phase.

Infection of host cells by L. monocytogenes can be divided
into three stages that require specific virulence factors: Initial cell
invasion (InlA and InlB), escape from vacuole (Hly, PlcA, and
PlcB) and cell-to-cell spread (ActA and UhpT) (Cossart et al.,
1989; Mélanie et al., 2006; Schnupf and Portnoy, 2007; Joyce
and Gahan, 2010; Hamon et al., 2012). It has been reported that
L. monocytogenes is able to sense different environments and
host cell compartments and regulate virulence gene expression
accordingly (Freitag and Jacobs, 1999; Gaballa et al., 2019). Other
researchers have found that inlA and inlB are induced prior to
the cell invasion, while hly, plcB, and plcA are overexpressed
within the phagosome and uhpT and actA are expressed in the
cytosol (Bubert et al., 1999). In this study, inlA and inlB showed
a similar expression pattern in both strains in response to acid
exposure (Figure 3). Significant induction of other virulence
genes in response to pH or acid was also observed but the patterns
were strain-dependent. Additionally, although the transcription
level of prfA was not significantly altered by acid exposure, hly
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transcription is PrfA-dependent (Kazmierczak et al., 2006; Scortti
et al., 2007; de las Heras et al., 2011). The observed induction
of hly may therefore reflect post-transcriptional control of PrfA
activity in these cells.

In summary, RT-qPCR demonstrated that habituation to
L-lactic or acetic acids induces statistically significant increases
in the expression of several genes associated with acid and bile
stress resistance in two L. monocytogenes strains that are known
human pathogens. While many of these changes were strain-
specific, induction patterns for several stress and virulence genes,
including gadD2, arcA, bsh, two internalin genes ilnA and ilnB,
in response to acid habituation were similar between N1-227
and R2-499. Future studies might explore the role of nucleotide
polymorphism in promoter sequences or in DNA binding motifs
in gene expression patterns.

Organic acid habituation also enhanced in situ virulence
of both L. monocytogenes strains as evidenced by a reduced
the LT50 value in the in vivo G. mellonella infection model.
Our finding that HCl or organic acid habituation enhanced
virulence of both strains in the G. mellonella model stands in
contrast with the report of Schrama et al. (2013), who observed
acid or salt adaptation reduced the infectious ability of some
L. monocytogenes. However, factors such as different strains
and stressors may have contributed to this discrepancy. Our
prior research suggests this difference is likely due to strain-
specific variation among L. monocytogenes (Zhang et al., 2014),
and illustrates the need for further study to determine how
widespread this phenomenon is among pathogenic and non-
pathogenic strains of L. monocytogenes.

Taken together, these results suggest that exposure to organic
acids can increase the pathogenicity of some L. monocytogenes
strains by enhancing their ability to survive passage through
the gastrointestinal tract while simultaneously priming them
for intracellular virulence. While our prior results indicate
that this phenomenon may not be universally shared among
strains of L. monocytogenes (Zhang et al., 2014), the fact that
it does occur in pathogenic strains associated with foodborne
outbreaks (Table 1) underscores the potential for organic acids
to have unanticipated consequences on food safety and public
health. To fully understand the broader impact, future studies
are needed to determine how widespread this phenomenon is
among additional strains of L. monocytogenes, including both

known human pathogens and strains not currently recognized
as pathogenic, and to examine the impact of food systems and
conditions encountered during processing and storage such as
refrigeration temperatures.
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Antimicrobial resistance (AMR) is a critical challenge worldwide as it impacts public
health, especially via contamination in the food chain and in healthcare-associated
infections. In relation to farming, the systems used, waste management on farms, and
the production line process are all determinants reflecting the risk of AMR emergence
and rate of contamination of foodstuffs. This review focuses on South East Asia
(SEA), which contains diverse regions covering 11 countries, each having different
levels of development, customs, laws, and regulations. Routinely, here as elsewhere
antimicrobials are still used for three indications: therapy, prevention, and growth
promotion, and these are the fundamental drivers of AMR development and persistence.
The accuracy of detection of antibiotic resistant bacteria (ARB) and antibiotic resistance
genes (ARG) depends on the laboratory standards applicable in the various institutes
and countries, and this affects the consistency of regional data. Enterobacteriaceae
such as Escherichia coli and Klebsiella pneumoniae are the standard proxy species
used for indicating AMR-associated nosocomial infections and healthcare-associated
infections. Pig feces and wastewater have been suspected as one of the hotspots
for spread and circulation of ARB and ARG. As part of AMR surveillance in a One
Health approach, clonal typing is used to identify bacterial clonal transmission from the
production process to consumers and patients – although to date there have been
few published definitive studies about this in SEA. Various alternatives to antibiotics
are available to reduce antibiotic use on farms. Certain of these alternatives together
with improved disease prevention methods are essential tools to reduce antimicrobial
usage in swine farms and to support global policy. This review highlights evidence for
potential transfer of resistant bacteria from food animals to humans, and awareness and
understanding of AMR through a description of the occurrence of AMR in pig farm food
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chains under SEA management systems. The latter includes a description of standard
pig farming practices, detection of AMR and clonal analysis of bacteria, and AMR in
the food chain and associated environments. Finally, the possibility of using alternatives
to antibiotics and improving policies for future strategies in combating AMR in a SEA
context are outlined.

Keywords: antibiotic resistance, alternatives to antibiotics, one-health, pig production, policy, slaughtering
process, South East Asia

INTRODUCTION

Antimicrobial resistance (AMR) in bacterial species and strains
is a critical global threat, and has been monitored in
animals, humans and the environment through international
collaborations aimed at AMR reduction (Gerbin, 2014; Lechner
et al., 2020; Singh et al., 2021). The main factors contributing to
the emergence of AMR are overuse and misuse of antimicrobials,
and the lack of quality control of antimicrobials and active
pharmaceutical ingredients in the market (Simba et al., 2016;
Tangcharoensathien et al., 2018; Barroga et al., 2020). Also, the
multi-faceted nature of the problem includes misconceptions
about antibiotic types and AMR; lack of diagnostic facilities;
limited availability of alternatives to antibiotics as a means
to establish antibiotic-free farms; and insufficient training of
veterinarians on AMR and antibiotic prescribing (Lekagul et al.,
2021). Low- and middle-income countries (LMICs), including
those in South East Asia (SEA) are crucial in the global
response to AMR due to their diverse medicine regulation
and access to antimicrobials. Furthermore, folk conceptions or
unexpected practices around antimicrobials in these regions can
complicate AMR communication efforts and entail unforeseen
consequences (Haenssgen et al., 2019). Nevertheless, it is
encouraging that countries such as Denmark and the Netherlands
that both have massive pig production in recent years have
achieved tremendous reductions in antimicrobial usage while
sustaining peak production (Dall, 2019). Comparable results
have been accomplished in Belgium, France, Sweden, and the
United Kingdom (More, 2020). In Brazil, one of the biggest
pork producers in the world, the increased demand for meat
production has led to ongoing environmental problems, such
as soil and water contamination by pathogenic and/or resistant
microorganisms (Silva et al., 2015; Brisola et al., 2019). In Russia,
relatively high levels of MDR Escherichia coli that are resistant to
critically important antimicrobials such as colistin, cefotaxime,
and ciprofloxacin have been recorded (Makarov et al., 2020).
A study in New Zealand also found that the widespread use of
oral antimicrobials within pig production was a significant risk
factor for development of AMR and MDR E. coli (Riley et al.,
2020). The rate of antibiotic resistance differs considerably from
country to country, depending upon the amount of usage. In
the EU, the lowest levels of AMR E. coli isolates were found in
countries where lower antimicrobial usage was practiced, such
as in Norway, Sweden, and Finland, whereas countries with high
levels of use such as Spain, Portugal, and Belgium had relatively
higher levels of AMR E. coli (Holmer et al., 2019).

Nosocomial infections or healthcare-associated infections fall
under the political concerns of the World Health Organization
(WHO). Nosocomial infections account for 7 and 10% of all
infections in developed and developing countries, respectively
(Khan et al., 2017; World Health Organization [WHO], 2019).
Enterobacteriaceae such as Escherichia coli and Klebsiella
pneumoniae have been identified as the most common resistant
bacteria found in healthcare-associated infections (Malchione
et al., 2019; Shrestha et al., 2019). The possibility that AMR
colonization in humans can be related to livestock and
environmental sources was shown in a recently published
One Health AMR risk assessment (Opatowski et al., 2020).
WHO emphasizes the importance of antimicrobial classes
(agents) that are used in humans being targeted for antimicrobial
susceptibility surveillance in livestock, including aminoglycosides
(gentamicin), carbapenems (meropenem), cephalosporins (3rd,
4th, and 5th generation: ceftriaxone, cefepime, ceftaroline,
ceftobiprole), glycopeptides (vancomycin), amoxicillin-
clavulanic-acid, polymyxins (colistin), and quinolones
(ciprofloxacin). Due to high prevalence and incidence of
AMR rates in the pig industries in South-East Asian (ASEAN)
countries, a regional database of AMR surveillance has been
developed (Nguyen N. T. et al., 2016; Nhung et al., 2016;
Lugsomya et al., 2018a,b; Mobasseri et al., 2019; Vounba et al.,
2019; Khine et al., 2020; World Health Organization [WHO],
2020; Dawangpa et al., 2021). It is important to emphasize that
SEA is a diverse region, where different levels of development,
customs, laws, and regulations among different countries in the
region. Pork is one of the most common protein sources and is
widely produced for local consumption, with some export also
occurring. Hence it is an important target for AMR surveillance.

Antimicrobial resistance surveillance through the pig
production cycle, covering from the neonatal to the slaughtering
periods has demonstrated the possibility of transmission of AMR
bacteria in the food chain, and has provided a modicum of
comparative evidence for nosocomial infection through genetic
fingerprinting of isolates using multi-locus sequence typing
(MLST) and whole-genome sequencing (Mather et al., 2018).
A plasmid carrying mcr-1 conferring colistin resistance was first
identified in China in 2014 (Liu et al., 2016). To date, up to 10
types of the mcr gene family harbored in Enterobacteriaceae
have been reported in clinical samples and in animals and
human carriers (Xu et al., 2021). Colistin has been extensively
used in pig production, often as a growth promoter until the
2017 prohibition of its use under regional policy. However, a
high prevalence of colistin-resistant Klebsiella pneumoniae was
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found in healthy people living in rural communities in Thailand,
Vietnam, and Laos with no history of colistin therapy (Olaitan
et al., 2014; Yamaguchi et al., 2020). A 10–22% prevalence
of the mcr-1 and mcr-3 genes has been reported in E. coli
isolated from pig and chicken farms in Vietnam and Thailand
(Malhotra-Kumar et al., 2016; Khine et al., 2020) and in Klebsiella
pneumoniae from farmed pigs in Malaysia (Mobasseri et al.,
2019). The clonal similarity of a colistin-resistant E. coli isolate
from a local pig with a human isolate was demonstrated in
Laos (Olaitan et al., 2015). Overall, these occurrences confirm
the interchangeability of colistin-resistant bacteria between
humans and farm animals that use colistin as a feed additive.
Cross-species transmission is a suspected course of distribution.

Similar clonal types of multidrug-resistant Salmonella
Typhimurium and E. coli have been found in humans and
pigs in SEA and in the United States (Oloya et al., 2009;
Nhung et al., 2016; Mather et al., 2018; Sudatip et al., 2021).
Pigs and the environment can be potential sources for the
dissemination of AMR to humans; however, there have been a
few longitudinal studies monitoring linkages of AMR strains
among pigs, the environment, and consumers/patients. Genetic
similarity between bacterial clones from farmed pigs and
pork was not found in any comprehensive monitoring study
in Thailand (Lugsomya et al., 2018b). To our knowledge,
to date there has been no unequivocal direct evidence of
transmission of AMR bacteria to human patients from farms or
the slaughtering process in SEA.

This article aims to improve awareness and understanding of
AMR through a description of the occurrence of AMR in pig farm
and food chains under AMR management systems in SEA: this
includes a description of standard farming practices; detection
of AMR and clonal analysis of bacteria; AMR in the food
chain, wastewater, and associated environments, the possibilities
of AMR transfer from farming and slaughtering practices to
humans. Finally, the possibility of reducing AMR by using
alternatives to antibiotics and improving policies are discussed.

STANDARD FARMING SYSTEMS IN SEA

Asia is the largest producer of pigs in the world (58.4%), and
within SEA the top three pig producing countries are Myanmar,
Vietnam, and the Philippines. In contrast, Thailand exports the
most pork raised under a high standard of farming and food
safety conditions (FAOSTAT, 2019). Pig production systems
in SEA vary greatly, from backyard pigs held in small-scale
often peri-urban farms to semi-commercial units and large
intensive units. For example, 80% of pig farms in Cambodia
involve smallholders, while 80% in Thailand are intensive farms.
However, even pig farming in peri-urban areas operates under a
high standard of biosecurity similar to that in large commercial
approved farms (World Organization of Animal Health, 2020).

According to the ASEAN Good Animal Husbandry Practice
Guidelines (ASEAN GAHP), pig farms should be located in
areas with an appropriate clean water source, with physical
barriers to reduce the risk of contamination arising from
visitors and animal access. Quarantine pens should be located

in a separate area and must be prepared for sick pigs and
pig carcass to limit pathogen spread. Housing and equipment
providing good hygiene and ventilation with easy-to-clean
pig manure systems are recommended, along with good
personal hygiene management for workers, including a pre-
entry farm protocol which includes facilities for showering
and hair washing, and changing into protective farm clothes
and footwear before accessing the animal housing. Wastewater
and manure should be kept in a closed area well away from
the animal house, and the farm should possess a treatment
system that limits odor and hazards such as biogas. Moreover,
a veterinarian must authorize a program of vaccination and
antimicrobial and chemical use for disease prevention and
treatment. Vaccination is a potential method to prevent
certain infectious diseases and is established as an important
alternative to antibiotics (Founou et al., 2016). In many
countries the governments produce and promote vaccines
against the Foot and Mouth Diseases virus and Classical
Swine Fever virus, as these are very important pathogens.
While commercial and autogenous vaccines against pathogenic
bacteria are alternatives to control infections, their efficacy varies
considerably. To date, vaccines against bacteria such as E. coli,
Lawsonia intracellularis, and Actinobacillus pleuropneumonia
have been commercialized and used worldwide (FAO, 2014;
Founou et al., 2016).

In 2013 the total amount of antimicrobials used for food-
producing animal in SEA was 2,950 tons: antimicrobial
classes included penicillin (666 tons), tetracyclines (484
tons), quinolones (321 tons), sulfonamides (317 tons) and
macrolides (281 tons). Thailand consumed the largest amount
of antimicrobials (531 tons in 2013), and the amount has
subsequently increased (3,816.3 tons in 2018), probably due
to the growing number of food-producing animals (Van
Boeckel et al., 2017; Ministry of Public Health, 2020). In
practice, antimicrobials are used for three indications: therapy,
prevention, and growth promotion. Therapeutic use involves a
short duration of treatment with a high dose of antimicrobial
given only to sick pigs. Prophylactic administration is used to
prevent disease occurring where it is routinely expected to occur
(e.g., to control diarrhea after weaning), and the same amount
and duration of administration is applied to all susceptible
pigs during this period. Lastly, growth promotor use involves
administering a lower than recommended therapeutic dose,
long-term for all pigs on-farm (FAO, 2014). The intention is to
improve growth rate by controlling subclinical infections and
improving digestive efficacy. Antimicrobial growth promotion
use has been banned in Thailand and Vietnam (Coyne et al.,
2019), while Indonesia, Myanmar, and Timor-Leste policies
promote a decrease in antimicrobial use in response to WHO
announcements (Cardinal et al., 2020). Furthermore, the use of
colistin as a feed additive has been restricted in Malaysia and
Thailand (Olaitan et al., 2021), and nitrofuran has been banned
in the Philippines and Thailand (Islam et al., 2014).

Implementation of standard biosecurity and management
systems in pig farms is an essential part of veterinary preventive
medicine, and promotes improved pig production, and reduced
antimicrobial consumption in pigs, leading to fewer AMR
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bacteria on pig farms which otherwise might enter the food chain
(Founou et al., 2016).

ANTIMICROBIAL USAGE AND
RELATIONSHIP TO ANTIMICROBIAL
RESISTANCE

The key driver of resistance in bacterial population is considered
to be the extensive use of antimicrobial agents which created
a selection pressure on susceptible bacteria (Aarestrup et al.,
2008; Koningstein et al., 2010; Lunha et al., 2020). Frequency,
amount, duration, and combined use of antimicrobial agents
are important factors related to the emergence of both ARB
and MDR bacteria (McEwen, 2006; Martinez and Baquero,
2009). Additionally, there have been many reports on a positive
association between the amount of antimicrobial use and the
prevalence of ARB in both animals and human (Lazarus et al.,
2015). A recent study from Thailand reported the detection of
high frequencies of ARB isolates from pigs, particularly resistance
against tetracycline, which is also reported as an antimicrobial
agent that has had long term and extensive use in livestock both
in Thailand and throughout SEA (Van Boeckel et al., 2017; Lunha
et al., 2020). Nevertheless, it is very important that monitoring of
AMU using standardized systems for monitoring programs for
AMR data is continued, and that the quantification and temporal
trends in AMU are continued to be recorded in order to obtain
evidence between the linkage of AMU and AMR so as to further
support policy and decision makers to understand and fight
against AMR (Aarestrup, 2005; Magouras et al., 2017).

DETECTION OF AMR AND CLONAL
ANALYSIS

At present, the main approaches to detect antibiotic resistance
bacteria (ARB) and antibiotic resistance genes (ARG) from
bacteria in hosts and environments are primarily categorized into
the conventional culture-based methods, and molecular biology-
based methods. Clone typing by core-gene multilocus sequence
typing (MLST) is used to determine the molecular epidemiology
of bacteria in the family Enterobacteriaceae.

Conventional Culture-Based Methods
This approach requires isolating and growing the
microorganisms of interest on a nutrient medium. For samples
from wastewaters and associated environments the membrane
filtration method is frequently applied along with selective media
supplemented with the antibiotics of interest for isolation, and
enumeration of individual ARB (Rizzo et al., 2013). The antibiotic
resistance pattern of individual pure isolates can be further
investigated by performing antibiotic susceptibility testing,
which depends on the phenotypic traits of individual isolates. The
frequently applied resistance susceptibility testing methods are
of four types, including diffusion methods (Stokes method and
Kirby-Bauer method), dilution methods (Minimum inhibitory
concentration such as broth and agar dilution), diffusion and

dilution methods (E-test method and gradient diffusion method),
and automated instrument methods (such as Vitek 2 system by
bioMérieux and Sensititre ARIS 2X by Trek Diagnostic Systems)
(Jorgensen and Ferraro, 2009; McLain et al., 2016; Benkova
et al., 2020). The results from antibiotic susceptibility testing
should be interpreted following standardized values, which
allow qualitative assessment distinction between susceptible,
intermediate, and resistant isolates (Clinical & Laboratory
Standards Institute: CLSI Guidelines; EUCAST: AST of bacteria;
Jorgensen and Ferraro, 2009).

Nevertheless, the conventional culture-based methods are
time-consuming and somewhat labor-intensive. Investigators
are required to constantly attain a reliable and up-to-date
interpretation of the resistance susceptibility testing. Besides,
only a minority of bacteria are culturable and suitable for the
conventional culture-based methods, which are presumed to be
only a tiny fraction of the total bacteria present (Kummerer, 2004;
Bouki et al., 2013; Rizzo et al., 2013).

Molecular Biology-Based Methods
This approach allows the identification of deoxyribonucleic acid
(DNA) targets with and without the requirement to culture
individual isolates. Methods such as Polymerase Chain Reaction
(PCR) amplification and use of DNA probes are well known
for detecting resistance genes and genetic elements. With the
application of multiplex PCR, various ARGs can be screened
and detected simultaneously (Luby et al., 2016; Anjum et al.,
2017; Preena et al., 2020). In comparison, quantitative PCR
(qPCR) has been applied as a quantifying method for tracking
and tracing ARGs from various pathogenic bacteria in different
environments from municipal wastewater to surface water.
However, the nucleic acid extraction method and its product
quality are critical for PCR gene detection, since wastewater
and sludge samples contain much indeterminate substance
(Obst et al., 2006; Lupo et al., 2012; Rizzo et al., 2013).
Additionally, several typing methods are used for determining
and characterizing the diversity of resistant strains and clones
of individual isolates, such as pulsed-field gel electrophoresis
(PFGE), restriction fragment length polymorphism (RFLP),
random amplified polymorphic DNA (RAPD), and amplified
ribosomal DNA restriction analysis (ARDRA) (Hamelin et al.,
2006; Faria et al., 2009; Li et al., 2009; Brooks et al., 2014;
Papadopoulos et al., 2016). Unfortunately, there is limited
availability of specific primer sets, especially for PCR and qPCR
methods. These molecular techniques often encounter an absence
of standardization and validation of interlaboratory tests (Rizzo
et al., 2013).

Most recently, molecular high throughput (HPT) and next-
generation sequencing (metagenomic analysis, transcriptome,
and resistome) are among the techniques that facilitate studies
of the microbial community and their diverse genomes and gene
expression without a requirement for culture. Moreover, these
techniques are very valuable since they can compute numerous
target genes without knowledge of the bacteria or genes in the
samples, are not limited by specific primer sets, and are even
faster to perform than the conventional molecular methods such
as PCR and qPCR (Rizzo et al., 2013; Limayem et al., 2019; Lira
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et al., 2020). They also provide a deeper insight into antibiotic
resistance conditions related to both vertical and horizontal gene
transfer occurrences (Von Wintersdorff et al., 2016).

Therefore, molecular biology-based methods make possible
the detection of ARB and ARG that cannot be cultured and
express in individual isolates and provide faster detection of
ARB and ARG with high specificity and sensitivity compared
with conventional culture-based methods. Nevertheless, these
methods cannot separate between living and non-living
microorganisms. They are also less useful for identifying
ARB and resistance patterns compared to the conventional
culture-based methods.

Clonal Analysis of AMR Strains
Bacterial strains identified using DNA fingerprinting techniques
can be assigned as clones representing the ancestor’s phylogenetic
root tree. In general, bacteria are highly diverse genetically,
even at the species-level, because of inter-and intraspecies gene
interchange leading to diversification of genotype in a particular
niche of a bacterial clone (a clonal complex). For AMR, clonal
relations are used as a tool to indicate the phenomenon of
bacterial transmission or “spillover” between sources: humans to
animals, animals to the environment, or environment to humans
or vice versa (Spratt, 2004). The diversification of bacterial clones
depends on the extent of gene recombination and varies by
bacterial type. Some species, e.g., Salmonella enterica members,
are stable clones, whereas in some species, e.g., Helicobacter
pylori, these may be transient or genetical diverse without
phenotypical change (Selander et al., 1990; Kennemann et al.,
2011). Index genetic parameters are used to assign the clones and
clonal complexes. In the 1980s to 2000s, the best results were
achieved using pulsed-field gel electrophoresis and multilocus
sequence typing (Schwartz and Cantor, 1984; Maiden et al.,
1998). Since the Whole Genome Sequencing (WGS) era, WGS-
based strain typing has been increasingly used to analyze bacterial
pathogens and AMR bacteria in the public health field and for
implementing disease control strategies (Snitkin et al., 2012;
Harris et al., 2013; Walker et al., 2013). Core genome MLST
(cgMLST) has become a standard tool for WGS-based strain
typing as it has high accuracy and epidemiological concordance.
Outcomes from cgMLST are analyzed by comparison of
shared common genes sets from genomes within the same
species, which can be used to determine the source and
routes of transmission, trace cross-contamination of healthcare-
associated pathogens, and identify antibiotic-resistant lineages or
subpopulations (Dekker and Frank, 2016; Mellmann et al., 2016;
Nadon et al., 2017). From each species-specific cgMLST scheme,
there is the joint-calculated parameter called the “relatedness
threshold.” If cgMLST allelic mismatches between two bacterial
stains are less than (or equal to) the relatedness threshold,
there are clonal relations between them (Miro et al., 2020).
The relatedness threshold is calculated using an algorithm
in the Ridom SeqSphere + online package (Calibrating the
cgMLST Complex Type Threshold1). The relatedness threshold

1https://www.ridom.de/u/Server_Database_Initialization.html

of clonality from cgMLST diversity depends on insight of species-
specific population genetics (i.e., the relative impact of mutation
and recombination on genetic variation) (Schurch et al., 2018), as
shown in Table 1.

For clonal relationships, the horizontal genetic transmission
of mobile genetic elements (plasmids, integrative conjugative
elements, transposons) and their relatedness are important
parameters indicating the transmission of AMR characteristics
(Conlan et al., 2014, 2016; Sheppard et al., 2016). There are
not many reports of clonal typing during AMR surveillance in
a One Health approach. Epidemiological data and sources of
bacterial strains defining clonal relationships in Thailand and
Vietnam are shown in Table 2; however, insights into bacterial
clonal transmission from the production process to consumers
and patients remain incomplete.

POSSIBILITY OF AMR TRANSFER FROM
PIGS TO HUMANS

Humans can be exposed to antibiotic-resistant bacteria, both
pathogenic and commensal bacteria, by direct transmission
or through food or the environment. AMR problems are
global issues since resistant bacteria can occur from any
sector and spread intra-species, inter-species, and across borders
(Kempf et al., 2013; Daniel et al., 2015). Certain antibiotics,
particularly the Critically Important Antimicrobials to human
medicine are applied in livestock farming. Inappropriate use
of antibiotics in animals accelerates selective pressure and is
a cause of antimicrobial cross-resistance in human medicine
(Marshall and Levy, 2011). Moreover, the genes encoding
antibiotic resistance in bacteria from animals can be transferred
to bacteria that are pathogenic to humans (Archawakulathep
et al., 2014). Many studies have reported the emergence of
ARB from pigs and spread to humans; for example, quinolone
resistant Salmonella spreading from pigs to human in Taiwan,
and nourseothricin resistant E. coli from pigs to pig farmers,
families, municipal communities, and patients with urinary
tract infections (Witte, 1998; Aarestrup, 2005). Since livestock
farms are a hotspot for resistant bacteria, workers on farms
and in the food chain are potentially exposed to AMR
bacteria from animals.

TABLE 1 | Relatedness criteria used for the cgMLST schemes for clinically
relevant bacteria.

Species Relatedness
threshold
cgMLST
alleles

References

Acinetobacter baumannii ≤8 Higgins et al., 2017

Campylobacter coli, C. jejuni ≤14 Cody et al., 2013; Llarena et al., 2017

Enterococcus faecium ≤20 de Been et al., 2015

Escherichia coli ≤10 Dekker and Frank, 2016

Klebsiella pneumoniae ≤10 Snitkin et al., 2012

Salmonella enterica ≤4 Vincent et al., 2018

Staphylococcus aureus ≤24 Bartels et al., 2015
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TABLE 2 | Lists of clonal relationships of AMR strains from South East Asia Countries in the One Health paradigm.

Year Countries Bacteria Source and
epidemiological data

Molecular typing Conclusion of
genetic relativeness

References

2018 Thailand E. coli Isolates from pig in the
finishing period and
pork from the same
pigs

PFGE,
MLST,
plasmid replicon typing

Similar pulsotypes and sequence type
(ST) from 2 pairs of strains from pig and
pork.

Lugsomya et al., 2018b

Similar plasmid Inc group (Frep-HI2 and
FIB-FIC-Frep) from 2 pairs of strains
from pig and pork.

2019 Thailand E. coli Isolates from pigs and
healthy humans from
the same province

MLST 4 STs of ESBL producing E. coli shared
between humans and pigs (ST10,
ST70, ST117, ST685).

Seenama et al., 2019

2019 Thailand Salmonella
Rissen

Isolates from pigs, pork
from slaughterhouses
and markets from the
same region

cgMLST, A close similarity (percentage was not
defined) from cgMLST between pig and
pork sources from slaughterhouses and
markets.

Prasertsee et al., 2019

2020 Thailand Salmonella
Weltevreden

Isolates from beef from
a fresh market and
isolates from patients in
the same province

cgMLST,
in silico plasmid typing

A high similarity from cgMLST between
patient and beef sources.

Patchanee et al., 2020

Same plasmid oriT type (MOB F) and
plasmid incompatibility group (IncFII) of
mcr-1 plasmids from patient and beef
strains.

2021 Vietnam E. coli Isolates from pigs,
chickens and patients

MLST,
in silico plasmid typing

No evidence of clonal transmission
between strains from a different host.

Nguyen et al., 2021

The IS6 elements flanking
ISEcp1–blaCTX-M–orf477/IS903B
structures shared between strains from
different hosts.

AMR IN LIVESTOCK

The AMR situation is critical in LMICs, including in the SEA.
Although there is social and economic progress in those regions,
the average population is still in poverty (Singh, 2017). Moreover,
inadequate sanitation, poor quality control in slaughterhouses,
and conditions where people live adjacent to animals (backyard
farming) accelerate the spreading of resistant pathogens and ARG
(Cook et al., 2017). Self-medication is cheaper in those regions,
and antibiotics are easily accessible over the counter, leading to
an increase in antimicrobial use not only by farmers but also by
people without proper diagnosis (Nguyen et al., 2013). The major
potential pathways for spreading of resistant bacteria and/or
genes between food animals and humans could be horizontal
transmission or clonal transfer of resistant bacteria (Lipsitch
et al., 2002; Chang et al., 2015). An association between clonal
types of human cephalosporin-resistant E. coli with those from
food animals linked through food products has been reported
(Lazarus et al., 2015).

Additionally, a study in Denmark found the possible
transmission of sulfonamide resistant E. coli via the food chain
to a healthy human who did not receive antibiotic therapy
(Hammerum et al., 2006; Wu et al., 2010). The occurrence of
resistant bacteria carrying mobile genetic elements in livestock or
food of animal origins is concerning. The spread of antibiotic-
resistance genes via horizontal gene transmission could lead

to acquisition of multidrug-resistant (MDR) bacteria. MDR
infections in humans can cause treatment failure and high
mortality, especially if resistance is to a drug of last resort.
Worrisomely, there are growing cases of colistin-resistant
Enterobacteriaceae and sporadic cases of carbapenem-resistant
cases in pigs from some Asian countries.

A study in Vietnam found that almost half of the pig farms in
Bac Ninh province had colistin-resistant E. coli, and farmworkers
also harbored such bacteria (Dang et al., 2020). Moreover,
colistin-resistant E. coli have been detected in humans from
rural areas of Vietnam (5–71.4%) (Trung et al., 2017; Kawahara
et al., 2019). The mcr genes are currently globally distributed
and are mostly detected from livestock origins followed by
from humans and meat products. In SEA, mcr-1 positive
E. coli has been detected in Cambodia, Vietnam, Malaysia,
Singapore, and Thailand (Olaitan et al., 2016; Paveenkittiporn
et al., 2017; Runcharoen et al., 2017; Srijan et al., 2018). On the
other hand, K. pneumoniae isolates harboring mcr-1 genes have
been reported in Laos and Singapore (Rolain et al., 2016; Teo
et al., 2016). Moreover, ESBL-producing K. pneumoniae clones
ST307, ST2958 and ST2959 that were resistant to β-lactams,
aminoglycosides, fluoroquinolones, macrolide, lincosamide
and streptogramins, rifampicin, sulfonamides, trimethoprim,
phenicols and tetracycline, have been observed to be shared
between both pig and human-sources within and across
abattoirs. K. pneumoniae has been suggested to be a potential
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unheeded reservoir of resistance in the food chain that impacts
on public health (Founou et al., 2018).

In addition to enteric bacteria, livestock-associated methicillin
resistant Staphylococcus aureus (LA-MRSA) is another resistant
bacterium of substantial health concern. LA-MRSA has been
found worldwide, predominantly among people involved in
livestock farming (Smith et al., 2009; Frana et al., 2013).
These bacteria can be transmitted to humans in proximity
to MRSA-harboring animal skin, especially from pigs (Smith
and Pearson, 2011). There are several reports regarding the
occurrence of MRSA cases in Asian countries, including in
Malaysia (5.5%), China (15%), and Northern Thailand (2.53%)
(Patchanee et al., 2014). The spa type t4358-SCCmec V is the
most abundant clone in Malaysia, whilst it is t337-SCCmec IX
in Thailand. In northeastern Thailand patients were identified
whose MRSA pulso type pattern (PFGE) was related to that of
MRSA discovered in a diseased pig in the same area (Lulitanond
et al., 2013). A similar case providing evidence for the potential
for transmitting resistant clones from pigs to humans occurred
where an isolate from a human and two isolates from pigs

shared SCCmec IX-S. haemolyticus (Sinlapasorn et al., 2015).
The occurrence of livestock associated ARB in SEA is shown in
Table 3.

Unfortunately, the role of farm animals in the emergence
and dissemination of resistant bacteria or genes to humans is
still controversial (Marshall and Levy, 2011). Further studies
focusing on genomic data of resistant bacteria and nation-
wide epidemiological approaches are required to explore the
transmission of AMR from animals to humans.

AMR IN THE FOOD CHAIN

As discussed, possible transmission routes of ARB and ARGs
to humans may be from direct contact with colonized animals
or from the consumption of foodstuffs that are contaminated
with ARB/ARGs along the food chain (Founou et al., 2016;
Thapa et al., 2020). There are different potential pathways for
contamination of ARB and ARGs along the food chain. ARB
may disseminate to crops and plants from the utilization of

TABLE 3 | Reported occurrence of livestock associated ARB in SEA.

Bacterial
species

Antimicrobial resistance pattern Livestock sources Country References

Escherichia coli Tetracycline, trimethoprim/sulfamethoxazole,
chloramphenicol, gentamicin, ampicillin, colistin

Swine Thailand Lugsomya et al., 2018b; Lunha et al.,
2020

Vietnam Hounmanou et al., 2021; Nguyen et al.,
2021

Singapore Guo et al., 2021

China Olaitan et al., 2016

Escherichia coli Ampicillin, ciprofloxacin, gentamicin, colistin,
ceftazidime

Poultry Vietnam Nguyen et al., 2021

Escherichia coli Ceftazidime, cefotaxime, cefotaxime with clavulanic
acid

Cattle Malaysia Kamaruzzaman et al., 2020

Klebsiella
pneumoniae

Colistin, β-lactam, aminoglycosides, fluoroquinolones,
phenicols, tetracycline, sulfonamides, trimethoprim,

bleomycin

Swine Laos Rolain et al., 2016

Singapore Teo et al., 2016

Malaysia Mobasseri et al., 2021

Methicillin-
resistant
Staphylococcus
aureus

Erythromycin, ceftriaxone, cefoxitin, ciprofloxacin,
gentamicin, tetracycline,

trimethoprim-sulfamethoxazole, clindamycin,
quinupristin-dalfopristin, tigecycline, cephalexin, fusidic

acid, oxytetracycline, penicillin

Swine China Cui et al., 2009

Hong Kong Guardabassi et al., 2009

Malaysia Neela et al., 2009; Khalid et al., 2009

Thailand Patchanee et al., 2014

Salmonella spp. Ciprofloxacin, sulfisoxazole, phenicols, nalidixic acid,
ampicillin, tetracycline, sulfamethoxazole trimethoprim,
norfloxacin, ciprofloxacin, amoxicillin, chloramphenicol

Poultry Malaysia Goni et al., 2018

Thailand Prasertsee et al., 2019; Vidayanti et al.,
2021

Singapore Zwe et al., 2018

China Xu et al., 2020

Vietnam Ha et al., 2012; Ta et al., 2014;

Salmonella spp. Ampicillin, streptomycin, florfenicol, tetracycline,
sulfamethoxazole/trimethoprim, gentamicin

Swine China Yi et al., 2017
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contaminated irrigation water, mostly from manure discharges
of both human and animals and from irrigated soil (Gatica and
Cytryn, 2013). Whilst livestock products such as pork, beef and
poultry can be contaminated with ARB during the slaughtering
processes, aquaculture products may become contaminate with
ARB and ARGs that have already been circulating in aquatic
environments (Bridier et al., 2019; Amarasiri et al., 2020).
The phenotype of AMR bacteria may be influenced by food
preservation stresses such as decreasing pH to under 5.0, or
increasing salt to more than 4.5%, which has been shown to
increase phenotypic antibiotic resistance in E. coli, S. enterica
serovar Typhimurium, and S. aureus (McMahon et al., 2007). In
addition, contamination by ARB and ARGs may occur during
transportation and distribution of food products, or occur as a
post-contamination event after food processing, or from a cross-
contamination as a result of inappropriate food handlings which
are among the most common contamination pathways along the
food chain (Verraes et al., 2013; Holzel et al., 2018).

AMR IN WASTEWATER AND
ASSOCIATED ENVIRONMENTS

Alarmingly, there have been increasing reports about the
existence of AMR in the environment, especially resulting from
the activities of both humans and animal industries (Prestinaci
et al., 2015). The concern focuses mainly on the increase in
ARB and ARG resulting from the dissemination of antibiotics
in the environment (Kraemer et al., 2019; Serweciñska, 2020).
Wastewater has been suspected as being one of the hotspots
for the spread and circulation of ARB and ARG (Rizzo et al.,
2013; Pazda et al., 2019). Human and animal excreta have been
demonstrated to contain large amount of antibiotics which are
distributed to municipal wastewater where the antibiotics are
absorbed into sewage sludge (Nagulapally et al., 2009; Singer
et al., 2016). Sludge (biosolids) is produced from the wastewater
treatment processes in the wastewater treatment plant, and
contains a large amount of non-degraded fat, oil, and protein.
This composition contributes to poor retrieval of water-soluble
antimicrobial agents such as ciprofloxacin from sludge (Gerba
and Pepper, 2009; Singer et al., 2016; Serweciñska, 2020).
Therefore, it is no surprise that ARB and ARG have been detected
mainly in samples from wastewater and associated environments
such as groundwater and surface water (Barancheshme and
Munir, 2018; Amarasiri et al., 2020; Sabri et al., 2020).

AMR IN THE SLAUGHTERING PROCESS

The risk of AMR bacterial contamination in the food chain
is associated with AMR commensal bacteria circulating on
carcasses at slaughterhouses (EFSA, 2016). In addition, the direct
exposure of workers to resistant bacteria can happen throughout
the production cycle to the slaughtering process and during food
preparation (You et al., 2016). The exposure of slaughterhouse
workers to extended spectrum beta lactamase (ESBL)-producing
Enterobacteriaceae has received global attention (Wadepohl et al.,

2020). Substantial data relating to the association between
ESBL producing Enterobacteriaceae in pigs, farmworkers and
slaughterhouse workers has been reviewed (Alali et al., 2008;
Hammerum et al., 2014; Huijbers et al., 2014; Dohmen et al.,
2015). In the Netherlands, workers were most likely to be
exposed to ESBL producing E. coli with bla CTX−M−1 in the early
slaughtering process (before chilling of carcasses), at a prevalence
of 4.8% (Dohmen et al., 2017). In comparison, a 4.5% prevalence
of ESBL/AmpC producers was found in residents living in
the vicinity of livestock farms in the Netherlands (Wielders
et al., 2017). Exposure to ESBL carriage is especially high in
the slaughtering process, particularly during removal of visceral
organs and handling of the throat area where there is massive
colonization with enteric bacteria (Lowe et al., 2011; Lăpuşan
et al., 2012). Moreover, a high percentage (50%, n = 59) of MDR
E. coli have been recovered from slaughterhouse workers, where
the rates in Nigeria were more elevated in butchers than in
cleaners (Aworh et al., 2021). In slaughterhouses in Thailand,
ESBL-producing E. coli were detected in 76.7% of pig feces,
33.3% of fresh pork samples, and 75% of workers (Boonyasiri
et al., 2014). In a comparative study between Thailand and
Cambodia, the prevalence of ESBL-producing E. coli in pig rectal
and carcass swabs were similar, at only 5.3–5.6%. Among these,
ESBL-producing E. coli containing blaTEM−1 and blaCMY−2 were
found in both countries, but the blaCTX−M−15 gene was detected
only in the Thai isolates (Trongjit et al., 2016).

The occurrence of multidrug-resistance bacteria circulating
in slaughterhouses also has been reporting in many studies in
SEA. Salmonella spp. are frequently used as an indicator of
pathogen and AMR carriage, reflecting management standards.
In Thailand, salmonella isolates with high levels of resistance
to tetracycline, ampicillin, sulfonamide-trimethoprim, and
streptomycin, at approximately 63–82%, can be found in pigs,
workers, and the environment from farms to slaughterhouses
(Tadee et al., 2015; Phongaran et al., 2019). Salmonella Rissen
was found to be a common serovar in a comprehensive survey
of pig farms, slaughterhouses, and retail outlets in Northern
Thailand (Phongaran et al., 2019). Moreover, Wu et al. (2019)
compared AMR salmonella contamination in pig rectal swabs
and carcasses between slaughterhouses with and without a
hazard analysis critical control point (HACCP) system. Both
systems had a high level of indirect contamination, but the
HACCP system decreased salmonella contamination in carcasses
and reduced the number of AMR patterns (Wu et al., 2019). In a
comparison between pig slaughterhouses in Thailand and Laos,
the prevalence of salmonella contamination of pig carcasses in
the two countries were 30.9 and 53.3%, respectively. Salmonella
spp. from both countries were highly resistant to sulfonamide
(98.3%), ampicillin (91%), and tetracycline (92.5%). These
isolates contained class1 integrons carrying resistance cassette
dfrA12-aadA2. Interestingly, five Salmonella isolates from Thai
pig carcasses were producers of extended-spectrum 2-lactamase
(ESBL) and harbored blaCTX−M−14, whereas isolations from
Laos were negative. The study reflected differences in the
hygienic procedures of slaughterhouses and antibiotics uses in
the two countries (Sinwat et al., 2016). In Vietnam, salmonella
isolated from pork slaughterhouses and retail shops were
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highly resistant to ampicillin, tetracycline, and chloramphenicol
(Nguyen D. T. et al., 2016), and Salmonella Rissen isolated from
a pig carcass in 2013 showed phenotypical colistin resistance,
with a plasmid-mediated mcr-1 gene (Gonzalez-Santamarina
et al., 2020). In the Philippines, 46.7% of pig tonsil and jejunum
samples from three below-standard slaughterhouses were
positive for Salmonella enterica, rates higher than those from
five national accredited slaughterhouses, although there was
no significant difference in prevalence. Most isolates (n = 183)
were resistant to nitrofurantoin (93.4%), ampicillin (67.8%),
and sulfa-trimethoprim (80.3%) (Calayag et al., 2017), even
though nitrofurantoin use in livestock had been banned for a
decade. However, it needs to be determined whether the source
of contamination was from farming practices or occurred in the
slaughtering process. The occurrence of ARB in the slaughtering
process is summarized in Table 4.

Overall, the risk of bacterial contamination in the slaughtering
process and of pig products is critical, and there is still a lack
of comprehensive monitoring throughout the system. Operation
under HACCP programs and good manufacturing and sanitation
practice (GMP) are intended to control meat safety (Samelis,
2006; Wu et al., 2019), but a reduction in salmonella and
AMR bacteria prevalence is not relevant to its implementation
in SEA. Decontamination applications post-slaughter aim to
reduce bacterial contamination in pork, and include physical
applications such as hot water washing, chilling, freezing, and
high-pressure processing. Secondly, chemical applications such
as treatment with organic acid solutions, or electrolyzed or
ozonated water are recommended. Lastly, biological applications
include bacteriophages and wrapping film with postbiotics
containing lactic acid bacteria. However, all applications must
take into account meat quality and the physiology of the end
product (Bolumar et al., 2020; Li et al., 2020; Shafipour Yordshahi
et al., 2020; Aydin Demirarslan et al., 2021).

ALTERNATIVES TO ANTIBIOTICS

The use of antibiotics on farms increase the possibility of
the AMR transmission from livestock production systems
to consumers. There have been many attempts to replace
antibiotic use on farms. This review outlines two applications
for reduction of antibiotic use, including for growth promotion
and disease prevention. An overview of possible antibiotic
alternatives for growth promotion derived from previous
studies is presented in Supplementary Table 1 (Cha et al.,
2012; Kim et al., 2014; Yoon et al., 2014; Zeng et al., 2014;
Devi et al., 2015; Gois et al., 2016; Hossain et al., 2016;
Lee et al., 2016; Peng et al., 2016; Sbardella et al., 2016;
Tang et al., 2016; Upadhaya et al., 2016; Wan et al., 2016;
Lan et al., 2017; Lei et al., 2017; Ma et al., 2017; Pan et al.,
2017; Wu et al., 2017; Huang et al., 2018; Lei et al., 2018;
Samolińska et al., 2018; Sayan et al., 2018; Seo et al., 2018;
Xu et al., 2018; Pei et al., 2019; San Andres et al., 2019;
Wang et al., 2019; Duarte et al., 2020; Petry et al., 2020; Ren
et al., 2020; Satessa et al., 2020; van der Peet-Schwering et al.,
2020; Wei et al., 2020; Zhang et al., 2020; Sun et al., 2021;

Wang et al., 2021). These vary considerably from chemical
compounds, biologically active substances, and microbially
derived products. These could perform several functions,
including eliminating pathogenic microbes, modulating gut
microbial communities, strengthening intestinal integrity,
enhancing growth performances, or diminishing morbidity
from other causes (Cheng et al., 2014; Liao and Nyachoti, 2017;
Zeineldin et al., 2019).

Although these alternatives could be used as antibiotic
replacements in terms of in-feed growth promotion, they are
not suitable for therapy. In addition, proper disease prevention
measures, including vaccination and enhanced biosecurity, are
needed to help reduce antibiotic usage. Vaccines trigger a
protective immunity that simulates the effects of a natural
infection without the negative consequences. Vaccination has
been successfully used in animals (Rose and Andraud, 2017).
In livestock production, vaccination has been extensively
used for disease prevention caused by pathogenic bacteria
or viruses, and as such it is an important substitute for
antibiotic usage (Meeusen et al., 2007). Remarkably, even
protection against viral infections may reduce antibiotic use
by decreasing the risk of misdiagnosis and treatment of
secondary bacterial infections (Potter et al., 2008). For example,
vaccination against Porcine Circovirus Type 2 (PCV-2), which
is an immune-suppressive viral infection leading to secondary
bacterial infections, resulted in a significant diminution of
antibiotic use in swine farms (Raith et al., 2016). Similarly,
vaccination against Porcine Reproductive and Respiratory
Syndrome (PRRS) virus on pig farms reduced antibiotic
consumption (Van Looveren et al., 2015). Amongst important
bacterial pathogens of swine, vaccination against Lawsonia
intracellularis, which causes severe ileitis, has been reported to
reduce oxytetracycline medication in pigs (Bak and Rathkjen,
2009), whilst immunization against the respiratory pathogen
Actinobacillus pleuropneumoniae also reduced administration of
antibiotics (Kruse et al., 2015).

Biosecurity and farm management are essential parts
of disease prevention that can enhance health status and
significantly diminish the risk of exposure of pigs to pathogens
(Postma et al., 2016b). These practices have been applied in
varied species, production systems, and for different pathogens
(Dahiya et al., 2006). Practices such as all-in all-out housing
systems, reduced stocking rates, increased ventilation and
improved waste management all help to improve the health
status of farms. Improvements in biosecurity have been widely
accepted as an effective tool for protecting from introduction of
diseases into farms (Lewerin et al., 2015). Postma et al. (2016a)
found that better biosecurity resulted in a lower antibiotic
usage from birth to slaughter in pig herds. Similarly, Raasch
et al. (2018) and Caekebeke et al. (2020) reported the same
relationship between increased biosecurity in pig farms and
reduced antibiotic use.

In summary, various means are available to reduce antibiotic
use on farms. The addition of some alternatives and improved
disease prevention in practice are important tools to reduce
antimicrobial usage in swine farm and support global policy.
Their increased use in the SEA region is to be encouraged.
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TABLE 4 | Phenotypic AMR in organisms isolated from difference sources.

Reference Country Organism Host Source No.
sample

% positive of
sample

Prevalence of AMR

Boonyasiri
et al., 2014

Thailand ESBL
producing

E. coli

Pig rectal swab Farm 400 76.70%

Carcass swab Slaughterhouse 18 33.30%

Pork Market 15 61.50%

Stool of
workers

Farm 30 77.30%

Stool of
workers

Food-factory 544 75.50%

Trongjit et al.,
2016

Thailand Escherichia
coli

Carcass swab Slaughterhouse 88 85.20% AMP (87%), TRI (82%), SUL (67%), and 5.7%
(10/175) was ESBL-producing E. coli that

contained blaCTX−M15, blaTEM−1, blaCMY−2

Carcass
swab/Pork

Fresh market 87 35.60%

Pig rectal
swabs

Slaughterhouse 85 ND

Cambodia Escherichia
coli

Carcass swab Slaughterhouse 20 55% AMP (78%), TRI (64.3%), SUL (70.5%), and
4.5% (5/110) was ESBL-producing E. coli that

some contained blaTEM−1, blaCMY−2

Carcass
swab/Pork

Fresh market 90 40%

Pig rectal
swabs

Slaughterhouse 82 ND

Tadee et al.,
2015

Thailand Salmonella
spp.

Pigs Farm 86 ND TET (82.56%), AMP (81.40%), and STR
(63.95%)

Farm worker

Slaughterhouse
worker

Slaughterhouse

Environment Farm and
slaughterhouse

Phongaran
et al., 2019

Thailand Salmonella
spp.

Pig feces Slaughterhouse 562 37.54% AMP (69.05%), TET(66.19%), and SXT
(35.71%)

Wu et al., 2019 Thailand Salmonella
spp.

Pig rectal swab Slaughterhouse 360 61.11% in
HACCP,

17.22% in
non-HACCP

slaughterhouse

Rectal of HACCP; AMP (76.36%), CHL
(11.82%), STR (60.00%), SXT (17.27%), TET
(85.45%). Non-HACCP; AMP (61.29%), CHL

(3.23%), STR (29.03%), SXT (38.71%), and TET
(64.52%)

Carcass swab 360 12.78% in
HACCP,

36.67% in
non-HACCP

slaughterhouse

Carcass swab of HACCP;AMP (95.65%), STR
(95.65%), TET(95.65%).Non-HACCP;AMP

(69.70%), CHL (1.52%), STR (45.45%), SXT
(15.15%), and TET (69.70%)

Sinwat et al.,
2016

Thailand Salmonella
spp.

Pig rectal swab Slaughterhouse 185 34% AMP (100%), TET (91.4%), STR (74.3%), SPE
(87.1%), SUL (100%), TRI (55.7%)

Carcass swab Slaughterhouse 184 30.90% AMP (96.7%), TER (91.8%), STR (75.4%), SPE
(86.9%), SUL (100%), TRI (52.5%) and 5
isolates was ESBL-producing strains with

blaCTX−M−14

Carcass swab Fresh market 180 60.50% AMP (96.4%), TET (91.4%), STR (81.3%),
SPE(80.6%), SUL(100%) and 8 isolates was
ESBL-producing strains with blaCTX-M-14

Worker Slaughterhouse 52 13.40% AMP (68%), TET (84%), STR (68%), SPE (88%),
and SUL (100%)

Butchers Fresh market 50 4%

Patients Hospital 78 17.90%

Laos Salmonella
spp.

Pig rectal swab Slaughterhouse 129 38.70% AMP (95%), TET (89.8%), STR (84.7%), SPE
(57.6%), and SUL (91.5%)

(Continued)
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TABLE 4 | Continued

Reference Country Organism Host Source No.
sample

% positive of
sample

Prevalence of AMR

Carcass swab Slaughterhouse 137 53.30% AMP (91.5%), TET (97.6%), STR (96.3%), SPE
(67%), and SUL (100%)

Carcass swab Fresh market 112 72.30% AMP (91.3%), TET (93.8%), STR (96.9%), SPE
(69.8%), SUL (95.8%), and TRI (56.6%)

Worker Slaughterhouse 36 25% AMP (62.5%), TET (100%), STR (87.5%), SPE
(81.3%), SUL (100%), and TRI (62.5%)

Butchers Fresh market 8 0.00%

Patients Hospital 36 11.10%

Nguyen N. T.
et al., 2016

Vietnam Salmonella
spp.

Pork Slaughterhouse 30 69.70% AMP (54.2%), TET(627%), and CHL (508%)

Retail stores 69

Gonzalez-
Santamarina
et al., 2020

Vietnam Salmonella
spp.

Pig carcass Slaughterhouse 1 ND AMP (blaTEM-1b), GEN and TOB [aac(6”)-Iaa,
aac(3)-IId, ant(3”)-Ia], and COL (mcr-1)

Calayag et al.,
2017

Philippines Salmonella
spp.

Pig tonsil Slaughterhouse 240 46.7% of total,
44.0% of

accredited
slaughterhouse,
46.7% of locally

registered
slaughterhouse

NI (93.4%), AMP(67.8%), and SXT(80.3%)

Jejunum 240

ND, no data; AMP, ampicillin; AUG, amoxicillin-clavulanic acid; CHL, chloramphenicol; CIP, ciprofloxacin; CTX, cefotaxime; NA, nalidixic acid; NOR, norfloxacin; STR,
streptomycin; SXT, sulfamethoxazole-trimethoprim; TE, tetracycline; SPE, spectinomycin; SUL, Sulfamethoxazole; TRI, Trimethoprim; GEN, gentamicin; TOB, tobramycin;
COL, colistin; NI, Nitrofurantoin.

POLICY AND STRATEGIES ON AMR IN
FOOD ANIMALS IN THE ASSOCIATION
OF SOUTH EAST ASIAN NATION
(ASEAN)2

The importance of AMR as a human security threat has
been recognized worldwide since the 1990s. In response the
World Health Organization arranged a series of consultative
meetings and developed recommendations for action. The
culmination of this work was the 2001 WHO global strategy
for containment of AMR (Sack et al., 2001). Later, in 2015, the
Global Action Plan on AMR (GAP-AMR) was adopted by WHO
member states at the World Health Assembly, the Food and
Agricultural Organization Governing Conference and the World
Assembly of World Organisations for Animal Health (World
Health Organization [WHO], 2015). Member States committed
to develop multi-sectoral national action plans on AMR and
endorsed a ‘One Health’ approach to facilitate collaboration
among various sectors and actors in the defense of human,
animal, and environmental health. Through global political
declarations, a common direction to tackle AMR was seen across
countries and sectors (United Nations [UN], 2016).

Most countries in the ASEAN region have taken action
to tackle AMR through the development of their National

2The scope of this article covers 11 member countries of the Association of
Southeast Asian Nations (ASEAN). They are: Brunei Darussalam, Cambodia,
Indonesia, Lao PDR, Malaysia, Myanmar, the Philippines, Singapore, Thailand,
and Vietnam.

AMR action plan. According to the Global Database for the
2019, Tripartite AMR Country Self-assessment Survey (TrACSS),
all eleven countries in the ASEAN region have developed a
National action plan (NAP) which the government has approved
(World Health Organization [WHO], 2018). The One Health
approach has been adopted as a key principle for multi-
sectoral coordination, and it was enshrined in all NAPs (Chua
et al., 2021). Other policies for controlling and optimizing
the use of antimicrobials have been developed through legal
provisions and program implementation, including surveillance
of AMR and antimicrobial consumption in both humans and
the animal sectors.

Reviews of policy interventions that address AMR in food
animal production indicate that there are many existing
regulations for controlling veterinary medicines, including
antimicrobials, in ASEAN countries. However, they are relatively
varied across countries (Goutard et al., 2017). Policies of
banning antibiotics for growth promotion in food animals
have been enforced in some countries, such as Singapore and
Thailand (Chua et al., 2021) while others have yet to enforce
the ban. Thailand has restricted the use of antimicrobials
for growth promotion since 2015 (Sommanustweechai et al.,
2018). In 2019, some antimicrobial classes were assigned the
highest priority, with critically important antimicrobials for
human medicine only being available for food animals through
veterinary prescription (notably polymyxins, third and fourth
generation cephalosporins, macrolides, and fluoroquinolones)
(Scott et al., 2019). However, a few SEA countries, including
Vietnam and Myanmar, have neither laws nor regulations on the

Frontiers in Microbiology | www.frontiersin.org 11 July 2021 | Volume 12 | Article 689015112

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-689015 July 21, 2021 Time: 17:27 # 12

Sirichokchatchawan et al. Reducing AMR Transmission in SEA

prescription and sale of antimicrobials for animal use (World
Health Organization [WHO], 2018). In terms of antimicrobial
stewardship programs, NAPs in most countries in the Region
cover both human and animal health sectors, except for
Cambodia and Malaysia. Indonesia and Thailand set codes of
practices for control of veterinary drug use. Likewise, Brunei has
set up national guidelines for prudent use of antimicrobial in
livestock (Goutard et al., 2017).

Surveillance on AMR and antimicrobial consumption
is a vital component of GAP-AMR. The WHO Global
Antimicrobial Resistance and Use Surveillance System (GLASS)
and Organisation for Animal Health global database on
antimicrobials in animals were established to help provide
evidence on the emergence of resistance and trends in
antimicrobial use globally (World Health Organization [WHO],
2017). The 2019 TrACSS reported that most countries in the
ASEAN region have a national surveillance system for AMR
in food animals, with only a few countries such as Laos and
Myanmar having inadequate laboratory capacity to perform
AMR surveillance. Only Thailand and Malaysia have established
systems for monitoring antimicrobial consumption in animals,
in which are recorded data on the total quantity of antimicrobials
sold for/used in animals nationally, by antimicrobial class,
by species, method of administration, and by type of use.
Malaysia and Thailand share their reports with the OIE
annually (Chua et al., 2021). Thailand has successfully published
One Health Reports on AMR, antimicrobial consumption,
and public knowledge and awareness on AMR in 2017 and
2018, contributing to an evidence-based policy decision (NSC,
2020a,b). The 2019 version will be launched in April 2021.

Despite existing national commitments, implementation of
AMR policy remains a significant challenge, particularly with the
monitoring of AMR and AMU in the human and animal sectors.
The monitoring systems are hampered by lack of institutional
capacity, inadequate investment in human resources, and
the need to strength data platforms for routine monitoring.
Significant financial boosts are required to support these areas.

CONCLUSION

This paper addressed the cross-species transmission of AMR and
ARGs in the SEA. The importance of pig production in SEA
has encouraged particular attention to this industry, but similar
problems occur with other animal industries (chicken, fish etc.).
Due to the limited number AMR studies, it is difficult to quantify
the extent of the problem in the region, although some countries
have better data available than others. Certainly, there is reason

to believe that transmission of resistant bacteria and ARGs from
pigs at the farm and through the slaughtering process provide
risks to the human population, either through direct contact
or via contaminated environments or pork products. Efforts
should be made to reduce antimicrobial use at the farm level by
improving farm hygiene and the use of alternatives to antibiotics.
The AMR policy in the region has been implemented, although
progress in this area has varied considerably between different
countries due to different implementation’s capacities. Additional
funding to support AMR surveillance and improved control in
SEA is required.
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Antimicrobial-resistant (AMR) commensal Escherichia coli is a major reservoir that
disseminates antimicrobial resistance to humans through the consumption of
contaminated foods, such as retail poultry products. This study aimed to control AMR
E. coli on retail chicken using a broad host range phage cocktail. Five phages (JEP1,
4, 6, 7, and 8) were isolated and used to construct a phage cocktail after testing
infectivity on 67 AMR E. coli strains isolated from retail chicken. Transmission electron
microscopic analysis revealed that the five phages belong to the Myoviridae family. The
phage genomes had various sizes ranging from 39 to 170 kb and did not possess
any genes associated with antimicrobial resistance and virulence. Interestingly, each
phage exhibited different levels of infection against AMR E. coli strains depending on
the bacterial phylogenetic group. A phage cocktail consisting of the five phages was
able to infect AMR E. coli in various phylogenetic groups and inhibited 91.0% (61/67) of
AMR E. coli strains used in this study. Furthermore, the phage cocktail was effective in
inhibiting E. coli on chicken at refrigeration temperatures. The treatment of artificially
contaminated raw chicken skin with the phage cocktail rapidly reduced the viable
counts of AMR E. coli by approximately 3 log units within 3 h, and the reduction was
maintained throughout the experiment without developing resistance to phage infection.
These results suggest that phages can be used as a biocontrol agent to inhibit AMR
commensal E. coli on raw chicken.

Keywords: bacteriophage, cocktail, antimicrobial-resistant Escherichia coli, raw chicken, phage cocktail

INTRODUCTION

Escherichia coli is the most common enteric bacteria inhabiting the gastrointestinal tract of
a wide range of animals and humans (Kaper et al., 2004). Due to the ubiquitousness in the
intestines, commensal E. coli is likely to be exposed to orally ingested antibiotics and develops
antimicrobial resistance in food-producing animals and may act as a donor and a recipient
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of antimicrobial resistance genes (Poirel et al., 2018).
Antimicrobial-resistant (AMR) commensal E. coli is frequently
isolated from food-producing animals and their meat products
(Szmolka and Nagy, 2013). Although commensal E. coli does
not cause AMR infection in humans, AMR commensal E. coli
is considered a major reservoir for disseminating antimicrobial
resistance to humans. For instance, extended-spectrum β-
lactamases (ESBL)-producing E. coli is highly prevalent in retail
poultry (Saliu et al., 2017). ESBL are β-lactamase enzymes
conferring resistance to all β-lactam drugs except carbapenem
and mainly located on conjugative plasmids, enhancing their
rapid spread in E. coli populations and pathogenic bacterial
species in the Enterobacterales order (Rupp and Fey, 2003).

AMR bacteria in food-producing animals can be transmitted
to foods during processing and subsequently to humans
through the consumption of contaminated foods. According
to the Centers for Disease Control and Prevention (CDC),
approximately 1 in 5 AMR infections in the United States are
associated with food and animals (CDC, 2013). Since meat and
poultry are the major food commodity implicated in 35% of
foodborne illnesses in the United States (Painter et al., 2013;
Dewey-Mattia et al., 2018), antimicrobial resistance originating
from food-producing animals poses a serious public health
concern. Particularly, AMR bacteria are frequently isolated from
retail raw chickens (do Monte et al., 2017; Schrauwen et al., 2017;
Wang et al., 2017). Our previous studies also showed that ESBL-
producing E. coli is highly prevalent in retail poultry (Park et al.,
2019). In addition, we isolated from retail chicken a pan drug-
resistant E. coli possessing a plasmid harboring mcr-1, which
confers resistance to colistin, one of the last resort antibiotics to
treat Gram-negative infections (Liu et al., 2016; Kim et al., 2019).

To mitigate the public health risk of antimicrobial resistance,
it is important to control the sources that are involved in the
spread of antimicrobial resistance. Especially, AMR commensal
E. coli in chickens is an important target to control because
it is highly prevalent and capable of transferring antimicrobial
resistance to pathogenic bacteria, such as pathogenic E. coli and
Salmonella (Nhung et al., 2017). Among non-antibiotic-based
intervention measures for the control of AMR commensal E. coli,
bacteriophages (phages) are considered an ideal antimicrobial
alternative because phages specifically infect only target bacteria
with completely different antimicrobial mechanisms from those
of existing antibiotics (Sulakvelidze et al., 2001; Skurnik and
Strauch, 2006; Endersen et al., 2014). Whereas antibiotics affect
bacteria other than pathogens, moreover, phages can selectively
infect only the target bacteria (Altamirano and Barr, 2019;
Nogueira et al., 2019). However, the strict host specificity
of phage infection is rather a disadvantage because the host
range is generally too narrow to inhibit bacteria with wide
genetic diversity (Bert et al., 2010; Talukdar et al., 2013; Park
et al., 2019). To overcome the limitations, phages are generally
used in a cocktail by mixing phages capable of infecting a
range of different hosts (Nilsson, 2014). In this study, we
isolated phages that preferentially infect the major phylogenetic
groups of E. coli isolates from retail chickens and developed
a phage cocktail that effectively inhibited AMR E. coli on
chicken carcasses.

MATERIALS AND METHODS

Phage Isolation and Stock Preparation
Sixty-seven AMR E. coli strains (E1–E67) were isolated from
retail raw chicken in our previous study (Park et al., 2019). The
AMR E. coli strains and E. coli MG1655 were routinely cultured
at 37◦C in Luria-Bertani (LB) media (Difco, United States).
Phages were isolated from food (retail chicken and duck
carcasses), sewage, and animal (chicken and pig) feces as
described previously (Kim and Ryu, 2011). Briefly, the samples
were homogenized by vortexing in sodium chloride-magnesium
sulfate (SM) buffer (100 mM NaCl, 8 mM MgSO4

.7H2O, and
50 mM Tris.HCl, pH 7.5). After centrifugation at 10,000 × g
for 5 min, the supernatant was filtered through a 0.22 µm pore
sized filter (Millipore, United States). Five milliliters of filtered
samples were mixed with the equal volume of 2 × LB broth
and 100 µl overnight culture of the AMR E. coli strains. After
incubation at 37◦C overnight, the culture was centrifuged and
filter-sterilized. To confirm the presence of phages, supernatants
were serially diluted and spotted on 0.4% LB soft top agar
containing an overnight culture of AMR E. coli strains. After
incubation at 37◦C overnight, a single plaque was picked and
eluted with 1 ml SM buffer. This step was repeated at least three
times for each plaque.

To propagate phages, the incubation time was determined
based on the lysis activity of each phage. The purified lysate was
added to the culture of exponentially grown propagation host
strains (JEP1: E. coli MG1655, JEP4: E. coli E15, JEP6: E. coli
E55), and the mixture was incubated at 37◦C for 4 h (JEP1, 4, and
6) in LB broth. Also, the purified lysates of JEP7 and JEP8 were
incubated with the overnight culture of propagation host strains
(JEP7: E. coli E61, JEP8: E. coli E63) overnight in LB broth. Phage
propagation was performed with three different culture volumes
(4, 40, and 250 ml LB broth), and then the culture was centrifuged
and filtered. Phage particles were precipitated by mixing with
polyethylene glycol (PEG) 6000 (Junsei Chemical Co. Ltd., Japan)
and 1 M NaCl. Finally, CsCl density gradient ultracentrifugation
(Himac CP 100b, Hitachi, Japan) with CsCl step densities (1.3,
1.45, 1.5, and 1.7 g/ml) at 78,500 × g was conducted at 4◦C for 2 h.
After centrifugation, a blue band of viral particles was collected
and dialyzed twice for 1 h in 1 L of SM buffer. The concentrated
phage stocks were stored at 4◦C until used.

Determination of Phage Host Range
A total of 67 strains of AMR E. coli were used to assess the
host ranges of eight phage infections. Each strain was incubated
at 37◦C overnight with shaking (200 rpm), and then 100 µl of
each bacterial culture was added to 5 ml of 0.4% LB soft agar
and mixed. The mixture was overlaid on a 1.5% LB agar plate
and dried at room temperature for 20 min. Subsequently, 10-
fold serially diluted by SM buffer of each phage lysates were
spotted onto a prepared bacterial lawn and incubated at 37◦C
for 12 h. After incubation, the formation of single plaques was
recorded to determine the phage sensitivity of each strain. The
efficiency of phage infection of each strain was compared to that
of the host strain.
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Transmission Electron Microscopy
Analysis
The CsCl-purified phages were morphologically characterized
with transmission electron microscopy (TEM) analysis. Briefly,
10 µl of purified phage (ca. 1 × 1010 PFU/ml) was placed on
carbon-coated formvar/copper grids (200 mesh) and negatively
stained with 2% aqueous uranyl acetate (pH 4.0) for 10 s.
The phages were observed with energy-filtering TEM (LIBRA
120, Carl Zeiss, Germany) at 120-kV accelerating voltage
at the National Instrumentation Center for Environmental
Management (Seoul, South Korea). The phages were identified
and classified using the International Committee on Taxonomy
of Viruses (ICTV) classification (King et al., 2011).

DNA Purification and Whole-Genome
Sequencing of Phages
To extract genomic DNA from phages, bacterial nucleic acids
were removed by DNase I and RNase A (1 µg/ml each) at
room temperature for 30 min. The virions were then lysed
by incubating with a mixture [final concentration of 50 µg/ml
proteinase K, 20 mM ethylenediaminetetraacetic acid (EDTA),
0.5% sodium dodecyl sulfate (SDS)] at 56◦C for 1 h. After
lysis, DNA was purified by phenol-chloroform extraction and
precipitated by ethanol. The library was constructed with the
Illumina TruSeq DNA library prep kit using purified genomic
phage DNA. It was sequenced using the Illumina Miseq
platform (300 bp paired ended) and assembled with GS de
novo assembler software (Roche, Switzerland) at Sanigen Inc.,
South Korea. Prediction of open reading frames (ORFs) was
performed using the combination of Glimmer3 and GeneMarkS2
software. The complete genome sequences of JEP1, 4, 6, 7, and
8 were deposited in GenBank with the accession numbers of
MT740314, MT740315, MT764206, MT764207, and MT764208,
respectively. The presence of genes associated with antimicrobial
resistance and virulence in the phage genomes was examined with
ResFinder 4.11 and VirulenceFider 2.02, respectively.

Phylogenetic Analysis of Phages
Phylogenetic analysis of the five phages was performed in
comparison with sixty E. coli phages in the Myoviridae
family, which were reported in a previous study (Korf et al.,
2019) using VICTOR3 that performs based on genome-BLAST
Distance phylogeny (GBDP) method. The phage sequences were
obtained through the NCBI nucleotide databases4. All pairwise
comparisons of the amino acid sequences were conducted using
the GBDP method (Meier-Kolthoff et al., 2013) under the
settings recommended for prokaryotic viruses (Meier-Kolthoff
and Göker, 2017). The resulting intergenomic distances were
used to infer a balanced minimum evolution tree with branch
support via FASTME including SPR postprocessing for formulas
D4 (Lefort et al., 2015). The branch support was inferred from

1https://cge.cbs.dtu.dk/services/ResFinder/
2https://cge.cbs.dtu.dk/services/VirulenceFinder/
3https://victor.dsmz.de
4http://www.ncbi.nlm.nih.gov/nuccore

100 pseudo-bootstrap replicates each. Trees were rooted at the
midpoint (Farris, 1972) and visualized with FigTree (Rambaut,
2006). The taxon boundaries at the species, genus, and family
levels were estimated with the OPTSIL program (Göker et al.,
2009) using the recommended clustering thresholds (Meier-
Kolthoff and Göker, 2017) and an F value (fraction of links
required for cluster fusion) of 0.5 (Meier-Kolthoff et al., 2014).

Phage Inhibition Assays
The infection efficiency of the phage cocktail was evaluated with
mixed cultures of E. coli strains which were randomly selected
from the major phylogenetic groups (A, B1, B2, and D), including
mixed culture 1 (E20, E41, E55, and E59), mixed culture 2 (E3,
E43, E55, and E59), mixed culture 3 (E17, E41, E52, and E59),
and mixed culture 4 (E20, E45, E52, and E59). The each strain was
incubated at 37◦C with shaking (200 rpm) overnight. The mixed
culture of the E. coli strains was prepared by transferring 1% (v/v)
of each strain to fresh LB broth. Then, a single phage or the phage
cocktail was added to the bacterial suspension at a multiplicity
of infection (MOI) of 1. The optical density at 600 nm (OD600)
was measured with the SpectraMax i3 multimode microplate
reader (Molecular Devices, Sunnyvale, CA, United States) for
12 h. The infection assay was also performed at 4 and 25◦C.
After cultivation to an OD600 of 0.5, the mixed culture of AMR
E. coli strains (E20, E41, E55, and E59) was diluted in LB broth
and added to 4 ml of LB broth at 105 CFU/ml. The infection
was initiated by adding the 10 µl phage cocktail (approximately
108 PFU/ml; MOI 103), and the SM buffer was used as a control.
The cultures were incubated with shaking (200 rpm) at food
storage and handling temperatures (4 and 25◦C), and samples
were taken at 3, 6, and 24 h postinfection for bacterial counting.
Viable counts were determined by 10-fold serial dilution in PBS
and plating on LB agar plates.

Inhibition of AMR E. coli on Raw Chicken
Skin by Phage Cocktail
Raw chicken skin samples were purchased from retail stores, and
the skin was cut into a 2 cm × 2 cm square with a sterilized razor.
For decontamination, the chicken skin samples were immersed in
70% ethanol overnight and UV-treated on both sides for 30 min
in a biosafety cabinet. Mixed culture 1 (E20, E41, E55, and E59),
which was used in the phage inhibition assay, was prepared as
mentioned above and diluted to 8 × 106 CFU/ml in PBS. Then
50 µl of the mixed culture of the E. coli strains was spotted onto
a 2 cm × 2 cm chicken skin to achieve the final inoculum level
of approximately 5 log CFU/cm2 on a chicken skin sample. The
same volume of PBS was added as a negative control. Samples
were dried in a biosafety cabinet for 30 min. Then 100 µl of the
phage cocktail (MOI = 103) or SM buffer (control) were spotted
onto chicken skin samples and incubated at 4 and 25◦C. At 3,
6, and 12 h of incubation, each sample was mixed with 10 ml
0.1% buffered peptone water (BPW) and vortexed for 2 min in
a 50 ml tube. After removal of the chicken skin, the mixture was
centrifuged at 10,000 × g for 5 min, and pellets were resuspended
with 10 ml of BPW. Viable counts were determined by 10-fold
serial dilution in PBS and plating on LB agar plates.
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RESULTS

Determination of the Host Range of
Phages Infecting AMR E. coli Isolates
From Raw Chicken
A total of eight E. coli phages were isolated from meat, sewage,
and animal fecal samples (Table 1 and Supplementary Table 1)
and used in phage infection assays with 67 AMR E. coli isolates
from retail chicken (Figure 1A and Supplementary Tables 2, 3).
Among the eight E. coli phages, five phages (JEP1, 4, 6, 7, and 8)
were selected for the construction of a cocktail mainly because of
their host range (Figure 1A and Table 2). Importantly, the design
to construct a phage cocktail was mainly based on the differential
infection frequencies depending on the phylogenetic group of
E. coli (Figure 1B). For instance, JEP4 phage infected 73.7%
(28/38) of AMR E. coli strains in phylogroup A, whereas JEP1
and JEP7 phages effectively infected the strains in phylogroups
B1 [69.3% (9/13) and 76.9% (10/13), respectively] (Figure 1 and
Table 2). The three phages (JEP1, JEP4, and JEP7) showed similar
inhibition frequencies against E. coli strains in phylogenetic
group D (Figure 1 and Table 2). A cocktail was constructed
to target various phylogenetic groups of E. coli based on the
infection pattern dependent on the phylogenetic group. E. coli
isolates in phylogenetic groups A, B1, B2, and D could be
inhibited by JEP4, JEP1 & 7, JEP6, and JEP1, 4 & 7, respectively
(Figure 1B and Table 2). In addition, JEP8 was included in
the cocktail to inhibit E. coli isolates in the minor phylogenetic
groups (i.e., E and F) (Figure 1B and Table 2). The cocktail
consisting of the five phages infected 91.0% (61/67) of AMR
E. coli strains isolated from retail chicken (Figure 1 and Table 2).

Characterization of the Five E. coli
Phages
The morphology and genome sequences of JEP1, 4, 6, 7, and 8
phages were analyzed. Based on the TEM analysis, the five phages
exhibited the typical morphological features of the Myoviridae
family, such as a big head and an inflexible/contractile tail
(Figure 2A and Table 1). The phages had various genome
sizes ranging from 39 kb (JEP4) to 170 kb (JEP6) (Table 1),
and genes associated with antimicrobial resistance and virulence
were not found in the phage genomes (data not shown). The
phylogenetic association of the five phages was analyzed with
previously reported E. coli phages in the Myoviridae family

(Korf et al., 2019). JEP1 & JEP4 and JEP6 & JEP8 belonged to
the same genus clusters, and JEP7 belonged to a different genus
cluster (Figure 2B). At the species level, the five phages were
clustered into different groups, indicating that the five phages are
phylogenetically distinct from each other.

Inhibition of AMR E. coli With the Phage
Cocktail
Mixed cultures of AMR E. coli strains were treated with the
phage cocktail to evaluate infection efficiency because retail raw
chicken is normally contaminated by multiple strains, not a
single. E. coli strains were randomly selected from the major
phylogenetic groups A, B1, B2, and D, combined in a single
culture, and treated with each single phage or the phage cocktail.
The treatment of mixed cultures with single phages did not,
or only marginally, reduce the growth of mixed cultures of
E. coli. However, the phage cocktail substantially inhibited the
growth of the mixed cultures (Figure 3). In mixed cultures 2
(Figures 3B) and 4 (Figure 3D), for instance, single phages did
not cause any growth reduction compared to the non-treated
negative control, whereas the phage cocktail markedly reduced
the growth of E. coli strains in mixed cultures. These results
indicated the phage cocktail was effective at simultaneously
inhibiting multiple strains of E. coli belonging to different
phylogenetic groups.

Because raw chicken products are preserved normally at
refrigeration temperatures and sometimes exposed to room
temperatures during handling, we evaluated the infection
frequency at 4 and 25◦C. At 25◦C, the treatment with the phage
cocktail significantly reduced the level of AMR E. coli strains
at the beginning of infection (approximately 0.35 log CFU/ml
after 6 h; P = 0.0378), but further incubation did not make
a difference in the viable counts of E. coli compared to the
non-treated control (Figure 4A). However, the level of AMR
E. coli was significantly reduced at 4◦C within a few hours,
and the reduction was maintained during the entire course
of the experiment (Figure 4B). We examined the inhibition
efficiency of the phage cocktail on raw chicken skin. To mimic the
situation of food contamination, raw chicken skin was artificially
contaminated with the mixed culture of AMR E. coli strains.
Compared to LB media (Figures 4A,B), interestingly, the phage
cocktail reduced AMR E. coli more significantly on chicken
skin at both 4 and 25◦C (Figures 4C,D). When raw chicken

TABLE 1 | Morphological and genomic features of the five phages used in the cocktail.

Phage Isolation source Morphological features (nm; n = 3) Genomic features

Head Tail Size (bp) GC (%) ORFa tRNA Accession No.

JEP1 Retail chicken 79.6 ± 1.9 101.0 ± 3.8 143,610 43.54 223 5 MT740314

JEP4 Chicken feces 106.3 ± 5.5 102.9 ± 2.6 39,195 47.05 61 0 MT740315

JEP6 Pig feces 109.1 ± 1.7 110.3 ± 2.3 170,340 35.31 274 7 MT764206

JEP7 Retail duck 103.9 ± 5.2 95.2 ± 2.4 52,936 45.94 71 0 MT764207

JEP8 Retail chicken 96.1 ± 2.5 95.9 ± 3.5 165,295 40.47 272 0 MT764208

aOpen reading frame.

Frontiers in Microbiology | www.frontiersin.org 4 August 2021 | Volume 12 | Article 699630124

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-699630 August 25, 2021 Time: 14:31 # 5

Kim et al. Control of Antimicrobial-Resistant Bacteria Using Bacteriophage

FIGURE 1 | Host range of the five phages. (A) The phage infection of 67 strains of AMR E. coli isolated from retail chicken. The antimicrobial resistance patterns of
the E. coli strains and the infectivity of five phages are indicated. CIP, ciprofloxacin; KAN, kanamycin; GEN, gentamicin; CHL, chloramphenicol; STR, streptomycin;
TET, tetracycline; CTX, cefotaxime; AMP, ampicillin; and phylogroup U, Unknown. (B) Association of the phylogenetic groups of AMR E. coli with the infection
frequency of the five phages. The experiment was repeated three times. Statistical analysis was performed using the chi-square test with GraphPad Prism
(*P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant).

TABLE 2 | Infection frequencies of the five phages used in the cocktail.

Phage Phylogenetic group of ESBL-producing E. coli Total (n = 67)

A (n = 38) B1 (n = 13) B2 (n = 4) D (n = 4) E (n = 6) F (n = 1) Ua (n = 1)

JEP1 3 (7.9%) 9 (69.3%) 0 (0.0%) 3 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 15 (22.4%)

JEP4 28 (73.7%) 1(7.7%) 0 (0.0%) 3 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 32 (47.8%)

JEP6 11 (28.9%) 3 (23.1%) 3 (75.0%) 2 (50.0%) 3 (50.0%) 0 (0.0%) 1 (100.0%) 23 (34.3%)

JEP7 8 (21.1%) 10 (76.9%) 0 (0.0%) 3 (75.0%) 2 (33.3%) 0 (0.0%) 0 (0.0%) 23 (34.3%)

JEP8 7 (18.4%) 2 (15.4%) 0 (0.0%) 0 (0.0%) 3 (50.0%) 1 (100.0%) 0 (0.0%) 13 (19.4%)

Total 34 (89.5%) 12 (92.3%) 3 (75.0%) 4 (100.0%) 6 (100.0%) 1 (100.0%) 1 (100.0%) 61 (91.0%)

aunknown.

skin samples were treated with the phage cocktail at an MOI
of 103 at 25◦C, the mixed culture of AMR E. coli strains was
rapidly reduced by 2.19 log CFU/cm2 and 2.58 log CFU/cm2

after 3 h and 6 h, respectively (Figure 4C). After that, the
mixed culture of AMR E. coli strains continued to grow on
chicken skin (Figure 4C). At 4◦C, however, the treatment of
raw chicken skin with the phage cocktail significantly reduced
the level of AMR E. coli strains within 3 h and continued to
reduce the viable counts of AMR E. coli by 3.17 CFU/cm2 and
3.28 log CFU/cm2 after 6 and 24 h, respectively (Figure 4D).
The results showed that the phage cocktail is highly effective

in inhibiting AMR E. coli on chicken carcasses especially at
refrigeration temperatures.

DISCUSSION

Since bacteria develop phage resistance rapidly (Labrie et al.,
2010), phages are normally treated in a cocktail using those
that recognize different host receptors (Tanji et al., 2004; Gu
et al., 2012; Yen et al., 2017). This is because, if bacteria develop
resistance to one phage, another phage in the cocktail, which
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FIGURE 2 | The morphological and genomic features of phages. (A) Transmission electron microscopy (TEM) images of the five phages. (B) Phylogenetic analysis
showing the relationship between the five phages and 60 Myoviridae family phages that were reported in a previous study (Korf et al., 2019).
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FIGURE 3 | Phage inhibition of mixed cultures of AMR E. coli strains in LB broth at 37◦C. The four mixed cultures used in the assay included: (A) Mixed culture 1
consisting of AMR E. coli strains E20, E41, E55, and E59, (B) Mixed culture 2 consisitng of E3, E43, E55, and E59, (C) Mixed culture 3 consisiting of E17, E41, E52,
and E59, and (D) Mixed culture 4 consisting of E20, E45, E52, and E59. The reduction in the OD600 of the mixed culture of AMR E. coli strains was measured after
treatment with single phages or the phage cocktail. The data present the means and the standard errors of the mean (SEM) of the results of three experiments.
Statistical analysis was performed using a Student’s t-test compared to the control in the same sampling (12 h) with GraphPad Prism (**P < 0.01; ***P < 0.001).

recognizes a different receptor, still can infect the bacteria.
However, the identification of the host receptor of a phage
requires a series of experiments involving mutagenesis, which is
often labor-intensive and time-consuming. Without identifying
the host receptors of E. coli phages, in this study, we constructed
a phage cocktail that can effectively infect E. coli isolates
from retail chicken using phages that preferentially infect the
major phylogenetic groups of E. coli. The Clermont phylotyping
classifies E. coli into four major (A, B1, B2, and D) and
two minor groups (E and F) (Clermont et al., 2013). The
phylogenetic group of E. coli is related to certain pathotypes
and the host origin. For instance, phylogroups A and B2
normally predominate in human strains, while E. coli isolates
from chicken mostly belong to phylogroups A and B1 (Unno
et al., 2009; Kluytmans et al., 2012; Xu et al., 2014; Coura et al.,
2015). Consistently, in our previous study, AMR E. coli strains
isolated from retail chicken dominantly belonged to phylogroups
A and B1 (Park et al., 2019). In the cocktail, we included
three phages (JEP1, JEP4, and JEP7) that infected the major
phylogenetic groups of E. coli isolates from chicken (i.e., A and
B1) (Figure 1B and Table 2), and the phage cocktail infected
91.0% of the tested AMR E. coli strains (Figure 1A and Table 2).
The same approach can be used to construct phage cocktails
to target other pathogenic bacteria demonstrating unique
phylogenetic features. For example, extraintestinal pathogenic
E. coli (ExPEC) predominates phylogroups B2 and D (Picard
et al., 1999; Cortés et al., 2010). Based on this, cocktails can

be constructed using E. coli phages that preferentially infect
phylogroups B2 and D.

The association of phage infectivity with the phylogenetic
group of E. coli may be related to the prevalence of phage
receptors. Phages initiate infection by binding to host receptors
on the bacterial surface. Phage receptors in E. coli, which
have been reported thus far, include the ferrichrome outer
membrane transporter FhuA (Raya et al., 2011), the major
outer membrane protein OmpC (Morita et al., 2002), surface
glycoconjugates (Kudva et al., 1999), and the O antigen of
lipopolysaccharide (LPS) (Perry et al., 2009). Bacteria often
develop phage resistance by hindering this critical step of
infection using various mechanisms, such as the alteration of
phage receptors through spontaneous mutations (Uhl and Miller,
1996), the removal of receptor genes by an insertion sequence
(Kim and Ryu, 2011), and the interruption of phage access to host
receptors (Kim and Ryu, 2012). The prevalence of host receptors
can be related to the phylogenetic group of E. coli because
the distribution of genes encoding outer membrane proteins,
fimbriae, or capsular proteins is different depending on the
phylogenetic group (Johnson et al., 2002). Also, the phylogenetic
group of E. coli is related to the type of the core oligosaccharide
of LPS, a common host receptor for phage infection (Amor et al.,
2000; Dissanayake et al., 2008). At this stage, further studies are
required to examine this possibility.

Phages have been used for the control of foodborne pathogenic
bacteria on chicken carcasses. A previous study demonstrated
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FIGURE 4 | Phage inhibition of the viability of a mixed culture of AMR E. coli isolates (E20, E41, E55, and E59) in LB broth (A,B) and on raw chicken skin (C,D). The
viable counts of a mixed culture of AMR E. coli strains in LB broth without (control) and with the phage cocktail at 25◦C (A) and 4◦C (B). The levels of AMR E. coli
isolates on chicken skin without (control) and with the phage cocktail at 25◦C (C) and 4◦C (D). The data show the means and the standard errors of the mean (SEM)
of the results of three experiments. Statistical analysis was performed using a Student’s t-test compared to the non-treated control with GraphPad Prism (*P
< 0.05; **P < 0.01; ***P < 0.001).

that the treatment with a phage cocktail significantly reduced
the number of Listeria monocytogenes on chicken carcasses
(Cufaoglu and Ayaz, 2019). Atterbury et al. reported that
Campylobacter jejuni phages effectively infected C. jejuni on
chicken skin at 4◦C (Atterbury et al., 2003). The results in
this study showed that phages effectively inhibited E. coli on
chicken skin particularly at 4◦C (Figures 4C, and D). For the
control of bacterial contamination of food, temperatures are an
important factor affecting the efficacy of phage infection (Seeley
and Primrose, 1980; Tokman et al., 2016). The increased efficacy
of phage infection at refrigeration temperatures is probably
because low temperatures may reduce the emergence of phage-
resistant bacteria due to the reduced growth rate of E. coli at 4◦C
compared to 25◦C and the limited function of the restriction-
modification systems involved in the degradation of phage DNA
injected into the host (Dodds et al., 1987; Kim et al., 2012).
Additionally, the temperature is a critical environmental factor
that determines the viability of phages. Since phages stored at
4◦C are more stable than those stored at ≥10◦C (Olson et al.,
2004), differential phage sensitivity at different temperatures may
also affect phage infectivity at 4◦C even though the phages were
tested at refrigeration temperatures relatively for a short time
(24 h) in this study. Regardless of the underlying molecular
mechanisms, the increased lytic activity of the phage cocktail
on foods (i.e., chicken) at low temperatures may enable the

phages to inhibit AMR E. coli on raw chicken effectively because
raw chicken products are distributed in the cold chain. Given
this, the broad host range phage cocktail in this study can
be used to control AMR commensal E. coli on retail chicken
products. To achieve practical application of phages to food,
additionally, further studies are needed to develop methods
to make phages maintain their infectivity long enough in the
food supply chain.
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