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Editorial on the Research Topic
 Past interactions between climate, land use, and vegetation





Introduction

Climate and land use changes and their respective impact on vegetation composition, plant abundance, plant diversity and biodiversity in general is a challenging topic. For evaluating the current status of climate-land use-vegetation relationships, a baseline is needed. For this purpose, paleoecology, paleoclimatology, history and archaeology should be combined. However, combining data from various disciplines is not straightforward due to differences in the meaning of the data and their spatial and temporal resolutions.

To explore the past interactions between vegetation, climate and land use, Reitalu et al. (2013), Marquer et al. (2017) and Kuosmanen et al. (2018) used statistical approaches (variation partitioning and redundancy analysis) to combine pollen-based vegetation estimates, land use data (anthropogenic land cover scenarios, population density estimates and fire) and climate (climate simulations). These studies underline a potential tipping point related to the human impact on ecosystems around 4,500–4,000 years ago resulting from the spread of agriculture and the rise in human population size. However, the climate influence increased again over the last millennium due to late-Holocene climate shifts and specific climate events that are likely to have influenced both vegetation and land use.

In order to better understand these trends, more studies are needed, in particular by using a large variety of land use and climate variables based on proxies (Figure 1). Many variables based on empirical data (e.g., chironomids and historical information) are unlikely to cover a large spatial scale. In contrast, temperature, drought, and precipitation estimates inferred from tree-ring chronologies are available for regional to sub-continental scales (e.g., Cook et al., 2015; Büntgen et al., 2016; Esper et al., 2016; Ljungqvist et al., 2020; Tegel et al., 2020), although they mostly cover only the last millennium. Dendrochronological studies further provide information about historical land use (e.g., forest management) and tree-growth responses to climate changes. There is, therefore, a great potential for combining tree-ring proxies with pollen-based vegetation data to quantify the effects of climate and land use on vegetation.


[image: Figure 1]
FIGURE 1
 Conceptual diagram showing the potential of multi-proxy/data analyses to assess past interactions between climate, land use, and vegetation (ALCCs, model-derived anthropogenic land-cover change scenarios). Note that single proxies can simultaneously provide information for more than one category, e.g., tree rings can be used to infer past vegetation, climate variability and forest management practices or pollen data can be used to infer past climate and land use. However, for data integration one should use independent variables to avoid circular reasoning, therefore, we do not duplicate the use of proxies/data in this figure. This can be adjusted depending on the study case.


Regarding land-use related estimates at regional scales, the main data so far available are model-derived anthropogenic land-cover change scenarios (ALCCs) that are based on estimates of per capita land use and past population density (Kaplan et al., 2011; Klein Goldewijk et al., 2017). Current efforts exist to collect and format past land-use data at regional scale based on archaeological and historical information (Morrison et al., 2021). However, these products are not yet available.

The aim of the present Research Topic was to bring together scientists working with pollen and/or tree rings, and provide an avenue for vegetation/climate/land use-related studies. This Research Topic is a collection of 21 articles, including primary research articles, perspectives, brief research reports, and reviews that address fundamental questions and provide additional insights into the past interactions between vegetation, climate and land use.



Pollen-based vegetation estimates

Pollen is the major biological proxy to assess past vegetation changes. Plant compositional change and diversity indices derived from pollen data are important estimates to understand how much an ecosystem or a specific vegetation type has changed through time. As an example, Zhang et al. used a Holocene pollen record from the Qingling Mountains (Central-East China) to estimate biome changes and past plant diversity indices. Their results show that climate was the main driver of vegetation composition and diversity during most of the Holocene. It is from ca. 3,000 years ago that human activities potentially started to influence vegetation compositional changes in the region.

Pollen-based land cover modeling (e.g., the Landscape Reconstruction Algorithm, LRA; Sugita, 2007a,b) is a key approach to transform pollen data into land cover reconstructions (e.g., Gaillard et al., 2010; Marquer et al., 2014, 2017, 2020; Trondman et al., 2015; Githumbi et al., 2022), which provide information on plant abundance at a known spatial and temporal scale for comparison with other proxies. Githumbi et al. presented the first continuous whole-Holocene time series of spatially complete maps of past plant cover for Europe as a result of pollen-based land cover modeling. These maps show the major Holocene trends in land cover change from the naturally open vegetation of the early-Holocene, to the mid-Holocene abundance of forests, and finally the late-Holocene human-induced deforestation. At more local scale, Hjelle et al. applied the LRA modeling to assess the vegetation-land use interactions over the last 2,400 years in coastal Norway, and compared the modeling outcomes with shoreline reconstruction and settlement intensity as measured with radiocarbon dates from archaeological sites. They identified a mosaic landscape containing infields and outfields from 2,400 years ago, settlement recession from 350 CE resulting in reforestation, and a new expansion of outfield pastures from 900 CE onwards. This study further underlines the need of studying environmental changes at a local scale, which is directly used and perceived by the inhabitants.

It is important to note that the pollen modeling schemes are dependent on the Relative Pollen Productivity estimates (RPP) used as input parameters. The RPPs present a large range of values depending on the region where they have been obtained (e.g., Broström et al., 2008; Mazier et al., 2012; Wieczorek and Herzschuh, 2020). There are still some unknowns regarding the calculation of RPPs, and several studies are in progress to better understand/estimate these parameters. As an example, Bunting and Farrell found that the RPP calculation can be affected by local differences between locations and habitats in heathlands. It is noteworthy that RPP studies have been largely developed in the northern Hemisphere, particularly in Europe and China. However, these studies are still in progress in the southern Hemisphere and the tropics (Gaillard et al., 2021), where they are needed to increase our understanding of environmental changes, as it has been reported by Piraquive-Bermúdez and Behling.

Pollen data can also be used to assess past climate information. For this purpose, Li et al. have developed a machine learning modeling scheme to reconstruct the history of permafrost. This study demonstrated that the reduction of permafrost in northern Asia during the early-Holocene led to the spread of coniferous trees, and might have decelerated the enhancement of the East Asian summer monsoon by altering hydrological processes and albedo.



Tree rings from historical and archaeological wood

Tree-ring widths of historical and archaeological wood provide information about paleoclimate and forest history in relations to past human societies and climate change. Muigg and Tegel discussed the importance of multidisciplinary studies to get insights into forest history by connecting history and archaeology with paleoclimatology and paleoecology. Tegel et al. presented the potential of dendroarchaeology in Europe by providing an overview of the sources, methods, and concepts of the discipline, which show that several tree-ring chronologies covering most of the Holocene are available from wooden archaeological and historical samples. Dendroarchaeology provides critical information about forests, its products for human use (e.g., fuel, material for tools, weapons, and construction), and about climatic changes. Dufraisse et al. investigated the limits and potential of dendro-anthracology and anthraco-isotopy (based on charcoal from archaeological sites that reflect human activities and forest exploitation) to assess past forest managements and climate.

Multiproxy databases are important tools to assess the interactions between factors of environmental and human-related changes, specifically to study cascading events such as the causes (e.g., climate change) and consequences (e.g., vegetation or societal changes). Many tree-ring data have been made available through the International Tree-Ring Data Bank (ITRDB), however, a large amount are not yet publicly shared since they are only found in local or regional journals (i.e., in non-English speaking countries) or remained unpublished as presented by Solomina and Matskovsky for European Russia. This issue is a common problem for all databases and across disciplines such as for the pollen databases [i.e., the European Pollen Database (EPD), Neotoma and PANGAEA].

The use of large tree-ring datasets can further provide information about the regional patterns of historical building activity, as found by Ljungqvist et al., who based their study on dendrochronological felling dates from historical construction timber collected across Europe that dated from 1,250 to 1,699 CE. This study shows that building activity can be used as an indicator of settlement history and demographic development, i.e. the building boom in northeastern Germany during the 13th century and the cessation of building activity during the Thirty Years' War (1,618–1,648 CE). Seim et al. found similar trends when investigating the role of spruce in historical woodlands in southern Central Europe by comparing felling dates of spruce timbers from historical buildings and pollen-based land cover estimates. This study is the first one to combine tree rings and pollen-based land cover modeling data at similar temporal and spatial scales to answer specific research questions, which were raised by Edvardsson et al., who explored how to combine dendrochronological data and paleoecological records.

Roy et al. reviewed the climate records available for the last 2,000 years based on tree rings but also on fluvio-lacustrine sediment deposits and speleothem archives in South Asia to explore the vegetation response to late-Holocene climatic changes. This study shows how the Indian summer monsoon dynamics might influence vegetation patterns in the Himalayan region.

It is important to note that the reliability of analyzing tree-ring widths for paleoclimate studies can be potentially influenced by historical forest management practices, mainly because the past growing conditions of the trees are largely unknown. Skiadaresis et al. found that the tree growth patterns resulting from management practices can affect paleoclimate reconstructions, however, the use of random regional samples can reduce these uncertainties. Regarding the climate influence on tree growth, Zheng et al. assessed how climate affects the wood production at cellular level in subtropical regions by monitoring the cambial activity. Their studies show the impact of yearly drought stress on wood production. Furthermore, Bing et al. explored the climate response of total ring width, earlywood width, and latewood width in the Southeastern Tibetan Plateau, and Stangler et al. studied the responses of Norway spruce, silver fir and Douglas fir to drought along elevational gradients in Southwestern Germany. Zunde demonstrated the challenge of dendrochronological dating and of interpreting growth patterns in environments, that are affected by geomorphological processes (e.g., on coastal bluffs).



Sedimentary ancient DNA (sedaDNA)

The sedaDNA extracted from lake sediments is a proxy increasingly used in multiproxy palaeoecological studies. Its techniques have been recently developed following the emergence of the DNA meta-barcoding approach (Parducci et al., 2017). As a critical tool, sedaDNA complements the vegetation information obtained from pollen data (e.g., Giguet-Covex et al., 2014), especially in terms of taxonomic resolution of most herbaceous families, as well as agricultural and pastoral activities. SedaDNA not only provides information about plant diversity but even into past livestock farming, i.e., the composition of past domestic herds that cannot be assessed by analyzing spores of coprophilous fungi observed in the pollen samples.

Regarding the plant diversity aspect, Courtin et al. studied the relationships between climate, plant species composition, and plant species richness during the last ca. 35,000 years in south eastern Yakutia (Siberia). For this purpose, they combined pollen and sedaDNA records from a sediment core collected from Lake Bolshoe Toko. Pollen data were used to assess the past vegetation trends and sedaDNA meta-barcoding data to investigate changes in plant richness. Both proxies show similar patterns. The sedaDNA data provide additional information to complement pollen data, e.g., the Late Pleistocene steppe-tundra vegetation was characterized by a higher plant diversity than the Holocene forest, which might result from the role of the Late Pleistocene megaherbivores.

Considering agricultural and pastoral activities, Messager et al. combined pollen data and coprophilous fungal spores with plant and mammal DNA analyses to assess the past vegetation-land use interactions in the western edge of the European Alps (Savoie, France) over the last two millennia. This work revealed an alternance of phases of regional deforestation and afforestation resulting from farming activities. Plant sedaDNA provided information about the plants cultivated in fields, orchards and vegetable gardens over the past centuries. This study underlined the need to further explore the spatial extent of the plant sedaDNA signals and the source area of pollen in order to compare both proxies at the same spatial scale.



Conclusion

This Research Topic highlights the potential of integrative approaches that combine paleoecology, paleoclimatology, history and archaeology, and underlines the various aspects of the past interactions between vegetation, climate and land use. One of the main challenges is still to bring different disciplines and research communities together to get temporally and spatially comparable data. For example, it would be important to use the full potential of large archaeological datasets already available (e.g., https://www.p3k14c.org/; Bird et al., 2022) that make it possible to study the intensity of human settlement across large geographical and temporal scales. Furthermore, this Research Topic opened new questions and provided new tools, approaches and data for future studies.
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Relationships between climate, species composition, and species richness are of particular importance for understanding how boreal ecosystems will respond to ongoing climate change. This study aims to reconstruct changes in terrestrial vegetation composition and taxa richness during the glacial Late Pleistocene and the interglacial Holocene in the sparsely studied southeastern Yakutia (Siberia) by using pollen and sedimentary ancient DNA (sedaDNA) records. Pollen and sedaDNA metabarcoding data using the trnL g and h markers were obtained from a sediment core from Lake Bolshoe Toko. Both proxies were used to reconstruct the vegetation composition, while metabarcoding data were also used to investigate changes in plant taxa richness. The combination of pollen and sedaDNA approaches allows a robust estimation of regional and local past terrestrial vegetation composition around Bolshoe Toko during the last ∼35,000 years. Both proxies suggest that during the Late Pleistocene, southeastern Siberia was covered by open steppe-tundra dominated by graminoids and forbs with patches of shrubs, confirming that steppe-tundra extended far south in Siberia. Both proxies show disturbance at the transition between the Late Pleistocene and the Holocene suggesting a period with scarce vegetation, changes in the hydrochemical conditions in the lake, and in sedimentation rates. Both proxies document drastic changes in vegetation composition in the early Holocene with an increased number of trees and shrubs and the appearance of new tree taxa in the lake’s vicinity. The sedaDNA method suggests that the Late Pleistocene steppe-tundra vegetation supported a higher number of terrestrial plant taxa than the forested Holocene. This could be explained, for example, by the “keystone herbivore” hypothesis, which suggests that Late Pleistocene megaherbivores were able to maintain a high plant diversity. This is discussed in the light of the data with the broadly accepted species-area hypothesis as steppe-tundra covered such an extensive area during the Late Pleistocene.

Keywords: last glacial, Holocene, Lake Bolshoe Toko, paleoenvironments, sedimentary ancient DNA, metabarcoding, trnL, pollen


INTRODUCTION

Climate change affects species’ range dynamics, eventually resulting in certain biodiversity patterns in space and time (Thomas et al., 2004; Dawson et al., 2011). Because of amplified arctic warming (Biskaborn et al., 2019b), northern boreal ecosystems experience stronger climate change than low-latitude ecosystems (Miller et al., 2010) in the same way that high-elevation ecosystems are more impacted than lower elevation ones (Pepin et al., 2015). Accordingly, biodiversity in the northern ecosystems is expected to change at an exceptional pace under current global-warming processes. However, the links between climate, species composition, and species richness are largely unknown in the boreal ecosystems. Models suggest a major switch in vegetation composition in the Northern Hemisphere during the 21st century in the course of warming and boreal forests are expected to advance into the tundra zone (Pearson et al., 2013; Kruse et al., 2016). Whether this northward migration will cause an increase or decrease in plant richness is not yet predicted.

According to the hypothetical Latitudinal Diversity Gradient (LDG), diversity generally decreases with latitude (Hillebrand, 2004). For example, plant diversity in tundra is estimated to be lower than in boreal forests because of harsher habitat and climatic conditions such as permafrost making rooting systems difficult to establish, while there is less sunlight and it is often drier (Beschel, 1970; Kier et al., 2005; Mutke and Barthlott, 2005; Chytrý et al., 2007; Hofgaard et al., 2012). With co-correlation between latitude and temperature, projections based on modern spatial diversity suggest an increase of biodiversity at higher latitudes under future warming. However, the observed LDG for current distribution patterns can be explained by other processes than just the spatial temperature variability (Mittelbach et al., 2007). For example, area effect suggests that diversity decreases toward the poles because diversity and area are correlated (MacArthur and Wilson, 1967; Rosenzweig, 1995), and as area decreases, so does diversity. The LDG has been described as a robust phenomenon since the Paleozoic and has remained stable through glacial and interglacial changes (Ricklefs, 1987; Mittelbach et al., 2007; Mannion et al., 2014). Accordingly, spatial relationships between climate, vegetation type, and richness might yield misleading conclusions when used to predict temporal diversity changes. Inferences from time-series can instead be employed to overcome methodological shortcomings derived from space-for-time approaches.

During the last glacial, most of northern Eurasia and North America were covered by open steppe-tundra communities (Guthrie, 2001). After the late glacial, the treeline advanced northward and uphill populating most of northern Eurasia during the Holocene (MacDonald et al., 2000; Lozhkin et al., 2007). Although the relationship between glacial-interglacial climate change and main vegetation types is generally understood, the detailed changes in plant richness are still to be explored. This lack of information is mainly caused by the fact that paleoecological tools to detect high-resolution species richness changes have only recently been developed.

Vegetation changes are mostly revealed via pollen records, but the interpretation of pollen records in terms of richness changes is challenging due to constraints on taxonomic identification to species levels or the magnitude of pollen counts (e.g., wind pollinated taxa being overrepresented in the samples) (Odgaard, 1999; Birks et al., 2015). These biases can be reduced in modern records by using the highest quality pollen data and pollen productivity estimates (PPEs) where available (Birks et al., 2015). However, when PPEs are missing, it is quite challenging to investigate diversity indices such as richness using pollen records. The relatively new sedimentary ancient DNA (sedaDNA) metabarcoding method can be used to investigate past vegetation changes as a complementary taxonomically high-resolution proxy. Compared to pollen analysis, it typically detects a higher number of plant taxa at a higher taxonomic level and can reliably be used to investigate diversity changes, such as taxa richness (Niemeyer et al., 2017; Zimmermann et al., 2017a, b). The pollen proxy provides a robust estimation of the regional vegetation composition including a long-range catchment signal with wind-transported pollen grains (Moore et al., 1991; Willerslev et al., 2014). Compared to pollen, sedaDNA is predominantly of local origin and thought to be mostly derived from extracellular DNA from various plant tissues (Jørgensen et al., 2012; Edwards et al., 2018). This is an advantage over pollen data, because different pollination strategies influence the amount of pollen production and pollen dispersal capacities. Wind-pollinated plants produce a large quantity of pollen, while insect-pollinated ones produce very little. Moreover, the preservation of some pollen taxa (e.g., Larix, Populus) are strongly affected by sedimentation processes. Thus, to mitigate a record biased toward taxa with high pollen production, sedaDNA analyses provide complementary data. A metabarcoding approach is used to investigate the P6-loop of the chloroplast trnL (UAA) intron, a universal, plant-specific and short barcode marker (Taberlet et al., 2007).

Records from vast continental areas such as Siberia are often rare and mostly cover short time intervals (McKay et al., 2018) and thus do not fully cover the relevant processes involved in vegetation dynamics and related diversity changes. Many Siberian vegetation records spanning the glacial-interglacial transition originate from permafrost archives, which vary considerably in their suitability for taphonomic preservation. SedaDNA taphonomy is still under investigation but as sedaDNA is bounded to sediments (such as clay and silt), it could also leach, especially in permafrost sediments (Edwards, 2020). Therefore, permafrost sedaDNA can strongly fluctuate, hampering diversity inferences. SedaDNA from lake archives, where conditions are more stable, are rare in Siberia.

Our study explores vegetation compositional changes inferred from both pollen and sedaDNA analyses and richness changes inferred from sedaDNA analyses from a sediment core from Lake Bolshoe Toko located in southeastern Yakutia (Siberia). Very little information is currently available from this area. Our main objectives are to fill this knowledge gap by (1) investigating vegetation composition changes in the lake catchment and region and (2) estimating taxa richness changes during the transition between the last glacial and the Holocene interglacial. By investigating past vegetation changes during major climatic transitions, such as the transition between the late Pleistocene to the Holocene, we may understand better how vegetation composition and diversity will change under current global warming.



MATERIALS AND METHODS


Geographical Settings

The study area is located in the Sakha Republic (southeastern Yakutia, Russia, Figure 1). The oligotrophic freshwater Lake Bolshoe Toko (56°05′ N, 130°90′ E, 903 m above sea level) is 15.4 km long and 7.4 km wide, with a maximum water depth of about 80 m and surface area of 82.6 km2 [for details see Biskaborn et al. (2019a)]. The lake lies in a depression of tectonic and glacial origin, on the northern flank of the eastern Stanovoy Mountain Range (Imaeva et al., 2009). At its northeastern margins, the lake is bordered by moraines of three different glacials (Kornilov, 1962).
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FIGURE 1. Study area. (A) Location of Lake Bolshoe Toko in southeastern Yakutia, Siberia. (B) Bathymetrical map with geological information and position of the sediment core PG2133 used for vegetation analyses in the northern part of the basin. Sediment core PG2208 was used to correlate Holocene ages between cores.


According to the data from the meteorological station, “Toko”, located ca. 10 km northeast of Lake Bolshoe Toko, mean annual air temperature is 11.2°C, ranging from −65°C in January to +34°C in July. Annual precipitation varies from 276 to 579 mm (Konstantinov, 2000). However, measurements taken directly at the lake suggest the influence of cold water from the Stanovoy Range that might cause slightly lower summer temperatures and thick ice during winter at the site.

Soil cover in the study area is thin and contains large amounts of gravel. The formation of soil is very slow because of deep seasonal freezing, short summers, and permafrost (Shahgedanova, 2002). The lake area belongs to the Aldan Floristic Region (Kuznetsova et al., 2010). Northern taiga dominates the study area. Forests consist of Larix cajanderi and L. gmelinii often accompanied by Picea obovata, P. jezoensis, and Pinus sylvestris (Konstantinov, 2000; Kuznetsova et al., 2010). The bedrock composition has an important influence on the vegetation: larch (Larix) and pine (Pinus) forest with a moss and lichen cover are especially common on the acidic metamorphic rocks, while in riparian areas small birch forests often form a belt around the mixed forest (Kuznetsova et al., 2010).



Fieldwork and Subsampling

Fieldwork was carried out by a German-Russian expedition in spring 2013. Sediment cores were recovered using a UWITEC piston coring system operated from the ice in the northern and central part of the lake (Figure 1B). This study is based on sediment core PG2133. The ice thickness was about 1 m and the measured water depth at this sampling point (56°04.582′N, 130°54.948′E) was 26 m. The 375 cm core was then cut into 1 m long pieces, transported unfrozen in plastic tubes to the laboratories of the Alfred Wegener Institute for Polar and Marine Research in Potsdam, Germany and stored there at 4°C until the subsampling for pollen and DNA analysis.

In December 2013 the core segments were cut into two halves. One was stored as an archive at 4°C and the other was scanned to correlate any overlaps. The opening and subsampling of the half-core for sedaDNA analysis was performed in the climate chamber of the Helmholtz Center Potsdam - German Research Center for Geosciences (GFZ) at 10°C, where no molecular genetic studies take place to prevent contamination with modern DNA. All surfaces in the climate chamber were cleaned with DNA Exitus PlusTM (VWR, Germany) and demineralized water before working on the core. The sampling tools such as knives, scalpels, and their holders were cleaned before the taking of each sample following the recommendations of Champlot et al. (2010).

About 3 mm of each sample slice that was in touch with the plastic tube or the thin foil that covered the half-core was removed using a sterile scalpel as these parts cannot be considered sterile (Parducci et al., 2017). The samples for analysis were taken with the aid of 5 ml disposable syringes, in which the anterior cap had previously been cut off. A DNA sample was taken every two cm, giving 188 DNA samples over the 375 cm core length. In addition, 188 pollen samples were collected. The collected DNA samples were then stored at −20°C.



Core Splicing and Dating

The studied sediment core PG2133 was retrieved from the lake bottom as overlapping parts including a short core (PG2133-4) by gravity coring for undisturbed surface layers and two overlapping long-cores (PG2133-2, PG2133-3). The overlapping parts were spliced into one composite record by correlation of sediment layers using elemental (Zr) composition. We used geochemical variability in the stratigraphy validated by radiocarbon values to correlate the upper part of this core with the parallel core from the deeper central location PG2208 (Figure 1B). The higher resolution and more reliably dated Holocene part from PG2208 provides a precise delimitation of the Pleistocene-Holocene transition in core PG2133 (Figure 2). The transfer of the age-depth relation from PG2208 onto PG2133 younger than the last reliable tie-point (8400-8440 14C yrs BP, see Supplementary Table 1) is based on the assumption that sedimentation rates at both coring sites after the Late Holocene were stable until today and minor changes would have affected both coring sites in a similar direction.
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FIGURE 2. Age-depth model based on 22 radiocarbon dated samples from sediment cores PG2133, PG2208, and two surface samples (PG2112, PG2119) from Lake Bolshoe Toko, southeastern Yakutia, Siberia. Age-depth model created with the MATLAB software package ‘Undatable’ (Lougheed and Obrochta, 2019) and the IntCal20 calibration curve (Reimer et al., 2020). Modeled ages are expressed as calibrated thousand years (ka) before present. The Holocene part was correlated between sediment core PG2208, retrieved from the deeper central part of the lake, and sediment core PG2133. Correlation was performed using Zr values from XRF core scanner data shown as counts per seconds (cps) and the concentrations of total carbon (wt%). The purple arrows indicate the position of plant remains in photographs of the sediment cores, dated to similar ages found at different depths of both cores. Dashed lines indicate tie points between cores used to report age information from the higher resolution Holocene part from core PG2208 onto PG2133 used in this study.


Accelerator Mass Spectrometry (AMS) radiocarbon analysis was carried out on bulk sediment material and woody plant remains at the Poznań Radiocarbon Laboratory, Poland, and at the MICADAS radiocarbon laboratory, AWI Bremerhaven. In total 49 samples were measured for radiocarbon including 24 samples from PG2133, 23 samples from PG2208, and two surface samples in proximity of these cores. All samples were bulk sediment samples, with the exception of two plant remains of the same age, one from each core used for correlation between 242.5 cm (PG2208) and 53.5 cm (PG2133). The results from Poznań and MICADAS labs are partly inconsistent due to different pretreatment methods. Poznań either measured the humic acid fraction (“SOL”, soluble in NaOH) and/or the humin fraction (“RES”, residual, i.e., alkali-insoluble fraction). MICADAS measured following their standard acid treatment method outlined in detail in Vyse et al. (2020). Due to the large deviation between SOL and RES samples of the bulk samples from Poznań compared to a better down-core consistency of MICADAS samples, we used MICADAS bulk samples and the dating of plant remains from Poznań for age-depth modeling. We excluded samples that are influenced by old organic carbon (Biskaborn et al., 2019a) detected by deviation from an approximate linear relationship. We used the surface samples PG2112 for reservoir correction (1203 yr) of PG2133 and PG2119 for reservoir correction (762 yr) of PG2208 (Supplementary Table 1). For modeling we used the open-source MATLAB software package ‘Undatable’ (Lougheed and Obrochta, 2019), version 1.3.1 with the settings: nsim = 105, bootpc = 30, xfactor = 0.1 and the IntCal20 calibration curve (Reimer et al., 2020).



Sediment-Geochemical Analyses

To gain information on the organic matter chemistry we analyzed 75 samples for total carbon (TC) and nitrogen (TN), and 69 samples for total organic carbon (TOC). Freeze-dried and milled sample material was measured in tin boats using an elemental analyzer (Elementar Vario EL III) for TC and TN. For TOC, where enough material was left, material from the same sample boxes were placed into small crucibles and measured with a Vario MAX C analyzer. The per cent by weight of TOC and TN were used to calculate the TOC/TNatomic ratio following Meyers and Teranes (2002). However, below 80 cm in core PG2133, TN contents were less than 0.1 wt% and could not be detected by the device. Therefore, for these samples with TN <0.1, we used 0.09 as an estimate to calculate the TOC/TNatomic ratios, marking the samples as “uncertain” in the down-core plot (Figure 3).
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FIGURE 3. Sedimentary and geochemical composition of sediment core PG2133 including grain-size distribution, carbon concentrations, and XRF elements. Sand, silt, and clay proportions are reported over the entire PG2133 core. Total carbon (TC), total organic carbon (TOC), and the ratio of TOC to nitrogen (TOC/TNatomic) are reported to indicate input of terrestrial plant material relative to aquatic algae (Meyers, 2003; Biskaborn et al., 2012). The Strontium (Sr) over Rubidium (Rb) ratio and Zirconium (Zr) indicate relative detrital input related to coarse grain size (Biskaborn et al., 2013). The Silicon (Si) over Aluminum (Al) ratio indicates the occurrence of diatom valves (Vyse et al., 2020). The Manganese (Mn) and Iron (Fe) ratio indicate redox dynamics associated with bottom water oxygenation (Melles et al., 2012; Naeher et al., 2013), which with the Potassium (K) over Titanium (Ti) ratio, provides information on physical versus chemical weathering in the catchment (Vyse et al., 2020). Shaded area indicates a gap in the DNA data.


Sediment grain-size distribution was generated using a laser to determine the grain sizes of 65 samples. We removed organic compounds by soaking samples in hydrogen peroxide (3%) for 5 weeks, while the pH was kept neutral using drops of ammonia and acetic acid 3 times per week. After washing by adding water, centrifuging, and decanting, we added sodium pyrophosphate to homogenize samples in an overhead shaker. Particle size was measured by laser diffractometry using a Malvern Mastersizer 3000. We used averaged values after a minimum of 9 measurements. Clay, silt, sand, and gravel fractions were calculated as the sums of the volume percentages using boundaries <2 μm, 2–63 μm, 63 μm–2 mm, and 2–63 mm, respectively.

To gain information on the inorganic elemental composition of the sediments, non-destructive X-ray fluorescence was performed on one half of each core section including overlapping parts using an AVAATECH XRF core scanner at AWI in Bremerhaven. Light elements including Al, Si, K, Ti, Mn, and Fe, were measured at 10 kV using a Rh X-ray tube, 1.2 mA, 12 s count time, and no filter. Heavier elements including Rb, Sr, and Zr, were measured at 30 kV using a Rh X-ray tube, 1.5 mA, 15 s count time, and a thick Pd-Filter. To account for data compositional effects, scanning results originally expressed in counts per second (cps) were additive log-ratio (ALR) and centered log-ratio transformed (Weltje and Tjallingii, 2008) for ratios and single elements, respectively (Figure 3). We used original cps values to correlate between cores PG2133 and PG2208 to prevent differences in XRF device settings between cores influencing other elements included in the CLR transformation and thus bias a core-to-core correlation.



Pollen Analysis

Sixty-seven samples of 3 g (wet weight) were selected for pollen analysis. Standard preparation including KOH, HCl treatment, boiling with HF, and acetolysis was used to concentrate palynomorphs (Faegri and Iversen, 1989). A Lycopodium spore tablet (batch no. 1031; n = 20,848 ± 1460) was added to each sample to calculate pollen concentration (Stockmarr, 1971). Palynomorphs were identified using a light microscope (Zeiss Axioskop 2) under 400–600 × magnification. At least 300 terrestrial plant pollen grains were counted in each sample. Pollen atlases (Sokolovskaya, 1958; Kupriyanova and Alyoshina, 1972, 1978; Moore et al., 1991; Beug, 2004; Savelieva et al., 2013) and pollen reference collections at the Arctic and Antarctic Research Institute (Saint Petersburg) and the Alfred Wegener Institute were used for taxonomic identification of pollen and spores. Non-pollen palynomorphs (NPP) were determined according to van Geel (2001); van Geel et al. (1983), and van Geel and Aptroot (2006). Freshwater algae were determined using Jankovská and Komárek (2000) and Komárek and Jankovska (2003). Only the terrestrial pollen data are presented here, however, all data are archived in DRYAD at “10.5061/dryad.34tmpg4gz”.



Molecular Genetic Preparation

DNA isolation and polymerase chain reaction (PCR) setup were performed in the paleogenetic laboratory of the Alfred-Wegener-Institute Helmholtz Center for Polar and Marine Research in Potsdam, Germany. This lab is dedicated to ancient DNA isolation and PCR setup and is located in a building devoid of any molecular genetic lab work. The lab is cleaned frequently and subjected to nightly UV-irradiation. All laboratory work was performed in a UVC/T-M-AR DNA/RNA cleaner-box (BIOSAN, Latvia). DNA isolations and PCR setups were performed on different days using dedicated sets of pipettes and equipment. Further precautions to reduce contamination included UV-irradiation of 10× buffer, BSA, MgSO4, and DEPC-treated water for 10 min in a UV crosslinker in thin-walled PCR reaction tubes (recommendations of Champlot et al., 2010).

In total, 54 samples were selected for DNA extraction ranging from 1 to 374 cm depth. Six separate extractions were performed, each with nine samples and one control (blank). Total DNA was isolated from approximately 3 g of sample material using the PowerMax® Soil DNA Isolation Kit (Mo Bio Laboratories, Inc., USA) added to 1.2 ml of C1 buffer (PowerMax® Soil DNA Isolation Kit, Mo Bio Laboratories, Inc., USA), 0.4 ml of 2 mg/mL Proteinase K (protK, VWR International, Germany) and 0.5 ml of 1 M dithiothreitol (DTT, VWR International, Germany). This mixture was homogenized for 10 minutes on a vibratory mixer (VortexGenie2, Mo Bio Laboratories, USA) and incubated overnight at 56°C while rotating. All subsequent steps were performed according to the instructions of the manufacturer Qiagen, except for the last step in which 800 μL elution buffer (C6 buffer) was applied to the filter membrane, incubated for 10 minutes at room temperature, and then centrifuged for 3 minutes at 2500x g. This step was performed twice ending up with a final volume of 1.6 ml.

The PCR reactions were performed using the trnL g and h primers (Taberlet et al., 2007). Both primers were modified on the 5′ end by unique 8 bp tags which varied from each other in at least five base pairs to distinguish samples after sequencing (Binladen et al., 2007) and were additionally elongated by NNN tagging to improve cluster detection on the sequencing platform (De Barba et al., 2014). The PCR reactions contained 1.25U Platinum® Taq High Fidelity DNA Polymerase (Invitrogen, USA), 1× HiFi buffer, 2 m MMgSO4, 0.25 mM mixed dNTPs, 0.8 mg Bovine Serum Albumin (VWR, Germany), 0.2 mM of each primer, and 3 μL DNA in a final volume of 25 μL. PCRs were carried out in a Professional Basic Thermocycler (Biometra, Germany) with initial denaturation at 94°C for 5 min, followed by 50 cycles of 94°C for 30 s, 50°C for 30 s, 68°C for 30 s, and a final extension at 72°C for 10 min. The extraction blank and one no template control (NTC) was included in each PCR to identify possible contamination during extraction and PCR set-up. For each extraction sample, two PCR replicates with different primers were performed. PCR success was checked with gel-electrophoresis on 2% agarose (Carl Roth GmbH & Co. KG, Germany) gels were used. The PCR products were purified using the MinElute PCR Purification Kit (Qiagen, Germany), following the manufacturer’s recommendations. Elution was carried out twice with the elution buffer to a final volume of 40 μL. The DNA concentrations were estimated with the dsDNA BR Assay and the Qubit 2.0 fluorometer (Invitrogen, USA) using 1 μL of the purified amplifications. To avoid bias based on differences in DNA concentration between samples, all replicates (except for samples 20, 86, and 106 where only one sample was used) were pooled in equimolar concentrations. All extraction blanks and NTCs (9 extraction blanks and 11 PCR NTCs) were included in the sequencing run, using a standardized volume of 10 μL, even though they were negative in the PCRs. The sequencing results of extraction blanks and PCR controls are reported in the Supplement. Fasteris SA sequencing service (Switzerland) performed the paired-end sequencing on one-tenth of a full lane of the Illumina HiSeq platform (2 × 125 bp).



Processing of SedaDNA Data

Filtering, sorting, and taxonomic assignments of the sequences were performed with OBITools (Boyer et al., 2015). Using the function illuminapairedend, forward and reverse reads were aligned to produce merged sequences. Based on exact matches to their tag-combination, they were assigned to their samples using ngsfilter. Sequences shorter than 10bp were excluded with obigrep and duplicated sequences were merged with obiuniq while keeping the information to which sample the sequences originally belonged. Sequences with fewer than 10 read counts were excluded from the dataset as they are probably artifacts. Obiclean was used to exclude sequence variants probably attributable to PCR or sequencing errors (Boyer et al., 2015). Two reference databases were used for taxonomic assignments (Epp et al., 2015). The first one, ArctBorBryo, is based on the quality-checked and curated Arctic and Boreal vascular plant and bryophyte reference libraries (Sønstebø et al., 2010; Willerslev et al., 2014; Soininen et al., 2015). The second is based on the EMBL Nucleotide Database standard sequence release 133 (Kanz et al., 20051). The sequences were assigned to taxon names based on sequence similarity to each of the reference databases using the function ecotag.

The database that gave the best identity was selected with a priority for ArctBorBryo database if both gave the same identity, as it is a more specific database for boreal species. Only sequences assigned with a best identity of 100% and that are present in at least two replicates or samples are used in this study. The sequence types assigned with a 100% value to an unknown family level were removed. Taxa and sequences from the extraction and PCR NTCs were checked and removed from the dataset if their relative proportion in the controls was greater than 0.5%. The PCR replicates were merged to work with 54 samples. Sequences assigned to the same taxon were merged and those sequences that appeared fewer than 10 times in a sample were removed from it. Sequences were assigned to aquatic, bryophyte, or terrestrial taxa and only the terrestrial ones were selected for this study. Samples at 78, 82, 86, and 106 cm were represented by no terrestrial plant reads after these filtering steps.

Before proceeding to the data analysis, a rarefaction analysis to compare the richness at a similar level of sampling effort was performed based on the minimum number of observed sequence counts (n = 4119 (sample at 96 cm); highest sequence count is n = 329924, from 366 cm).



Statistical Analysis and Visualization

The paleogenetic and palynological datasets are archived in DRYAD at “10.5061/dryad.34tmpg4gz”.


Composition Analysis

To allow visual comparison of the different records and changes of abundance through time, percentage bar plots of taxa were produced for pollen and sedaDNA datasets using the strat.plot function from the rioja R-package (Juggins, 2019). In addition, the summed proportions of tree, shrub, or herb taxa for sedaDNA or tree/shrub and herb taxa for pollen were plotted. A constrained hierarchical clustering approach (CONISS) (Grimm, 1987) was performed with clusters constrained by depth/ages using vegdist from the vegan R-package (Oksanen et al., 2019) and chclust from the rioja R-package. The samples with 0 read counts were excluded from this analysis. Zones were determined by the broken-stick model (MacArthur, 1957; Bennett, 1996) using bstick from the vegan R-package.

A principal component analysis (PCA) was run on the double square-root transformed relative proportions for sedaDNA and square-root transformed pollen data using the rda function in the vegan R-package (Oksanen et al., 2019) to portray the major structure in the multivariate dataset. For the sedaDNA record, samples with 3 or fewer taxa detected were removed before performing the PCA as those samples might not be representative of the vegetation composition. Principle component 1 and 2 (PC1 and PC2) axes scores were extracted and visualized in biplots. For better visibility, only the name of terrestrial taxa that explain most variance are printed.

To allow direct comparison of the records, pollen and sedaDNA taxa were harmonized to the lowest common taxonomic level (e.g., Ericaceae taxa were transformed to Ericales). PCAs were rerun for each record including only those samples that are present in both datasets. To compare the fit between sample and species scores of the first PCA axes for pollen and sedaDNA, Procrustes rotation analyses were performed (Peres-Neto and Jackson, 2001) and the significance of similarity between the datasets was tested by PROTEST (Jackson, 1995).



Richness Analysis

Taxa richness is here defined as the number of different taxa counted per sample. It was measured for each depth/age from the rarefied DNA results with the ChaoRichness command from the iNEXT R-package (Hsieh et al., 2016). To test the significance of the difference in the average taxa richness between different zones determined by the broken-stick model, a non-parametric Wilcoxon rank sum test was performed.

After resampling the two most common families of the DNAZ I to 1000 reads (Saxifragaceae and Asteraceae), the same test was performed to compare the taxa richness within those families and their impact on the DNAZ I richness.

Statistical analyses and age-depth modeling were performed in R v. 3.6.1 (R Core Team, 2019). Statistics were mainly performed using the packages “vegan” version 2.5-6 (Oksanen et al., 2019), “rioja” version 0.9.21 (Juggins, 2019), “iNEXT” version 2.0.20 (Hsieh et al., 2016) and “analog” version 0.17-3 (Simpson, 2007; Simpson and Oksanen, 2016).





RESULTS


Age Model

Modeled dates for PG2133 are expressed as calibrated years before present relative to 1950 CE (cal. yr BP). The Pleistocene-Holocene boundary detected by the main lithological transition found at ca. 80–82 cm revealed an age between 10,765 and 11,924 cal. yr BP (sigma 2 range). The maximum modeled age in the core is 33,478–34,126 cal. yr BP at 370.5 cm composite depth below sediment surface (Figure 2). Accordingly, the mean sedimentation rate during the Holocene was 0.007 cm a–1, and 0.01 cm a–1 during the Pleistocene part of the core. Differences in sedimentation rates between distant sediment cores shown in Figure 2 is common in large lakes (Jenny et al., 2014). The drop in sedimentation rate after the deglaciation period is likely a result of decreased clastic input from the catchment as indicated by decreasing Zr (Biskaborn et al., 2019a). The mean sigma 2 uncertainty ranges in the Holocene and Pleistocene are estimated as 517.6 and 2378.8 yr, respectively. In this study, for simplicity, we use mean values to estimate the timing of transitions between pollen zones.



Sediment-Geochemical Core Composition

The Pleistocene section below 80 cm in sediment core PG2133 reveals organic-poor clayey silt (Figure 3). Here the mean value for gravel, sand, silt, and clay is <0.01, 1.8, 73.3, and 24.9%, respectively. The TC and TOC contents are 0.6 and 0.7%, respectively, with a negligible difference resulting from measurements with different devices (TC-TOC difference over the whole core is mean -0.06 wt%, min. -0.48 wt%, and max. 0.35 wt%). The TN/TOCatomic ratios remain low at around 9.6 (note: this section is based on estimated TN values because the nitrogen values remained under the detection limit, see Materials and Methods section). Zr (both cps values, Figure 2 and CLR values, Figure 3) has generally higher values in the Pleistocene section below 80 cm, with a strong peak that correlates to a small sand peak in the transition zone between 77 and 83 cm. K/Ti has uniformly high values in the Pleistocene, whereas Sr/Rb fluctuates with highest values at the bottom of the core and lowest values at the Pleistocene–Holocene transition. Si/Al is low with only minor excursions in the Pleistocene. Mn/Fe is also low but slightly decreases at 113 cm toward the top of the core.

In the Holocene core section, the grain-size composition is slightly less clayey, but still dominated by silt (mean values: sand 2.9, silt 84.1, clay 13.1%) with increased carbon content (mean value: TC 4.5 wt%) and TOC/TNatomic ratios (mean value: 13.7), which is within the ranges reported from Bolshoe Toko short cores covering the past few decades (Biskaborn et al., 2021). Sr/Rb, Si/Al, and Mn/Fe increase in the early Holocene, whereas K/Ti decreases. Between ca. 30 cm and the top of the core Mn/Fe decreases after a maximum, and K/Ti increases after a minimum. Close to the sediment surface the values of Sr/Rb and Mn/Fe exhibit strong fluctuations, which could reflect the effect of higher water content in the unconsolidated surface sediments.



Pollen Stratigraphy

A total of 111 different terrestrial pollen, spores, and NPP taxa were identified in the 67 samples. Only terrestrial pollen taxa are presented on the pollen diagram (Figure 4) for a direct comparison with the sedaDNA diagram (Figure 5). The entire pollen dataset is presented in Supplementary Figure 1. The pollen assemblages can be subdivided into 3 main pollen zones (PZ) according to CONISS analysis.
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FIGURE 4. Stratigraphic plot of terrestrial pollen with relative percentages of the taxa in each sample as horizontal bars, ratio of tree/shrub taxa vs herb taxa, and CONISS dendrogram. The taxa are sorted at genus level for trees and shrubs and at family level for herbs. Three pollen zones (PZ) are shown derived from the CONISS analysis. Samples from sediment core PG2133 are plotted against calibrated ages given in cal yr BP.
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FIGURE 5. Stratigraphic plot of terrestrial sedaDNA with relative percentages of the taxa in each sample as horizontal bars, ratio of tree/shrub taxa vs herb taxa, and CONISS dendrogram. The taxa are sorted at genus level for trees and shrubs and at family level for herbs. Three sedaDNA zones (DNAZ) are shown, derived from the CONISS analysis. Calibrated ages from the age–depth model are given in calendar years before present (cal yr BP).


PZ I (ca. 374–96 cm, >33,800–12,474 cal yr BP is characterized by rather low pollen concentrations varying between 486 and 19,795 pollen grains per gram (gr g–1) with 6,027 on average. Tree and shrub pollen average 55% (varying from 30.3 to 72.7%). The most common shrub pollen taxa are Alnus fruticosa-type (31.8% on average) and Betula sect. Nanae (16.8% on average). Herb pollen taxa (45% on average, varying from 27.3 to 69.3%) are mostly represented by Artemisia (12.3% on average), Poaceae (11.9% on average), and Cyperaceae (11.4% on average).

Pollen concentration in PZ II (ca. 94–80 cm, 12,329–11,268 cal yr BP) is even lower than in PZ I (2,479 gr g–1 on average, varying from 201 to 9,677 gr g–1). Tree and shrub pollen taxa dominate the spectra of most samples (up to 93.6%, on average 61%), while herb taxa vary from 6.4 to 87.5% (on average 39%). Alnus fruticosa-type (35.3% on average) and Betula sect. Nanae (20.5% on average) are still the most dominant pollen taxa. The most represented herb pollen taxa are Artemisia (15.2% on average) and Poaceae (10.2%), with Cyperaceae (4.4%), Papaveraceae (3%), and Ranunculaceae (3%) also represented.

Pollen concentration drastically increases (up to 558,726 gr g–1, on average 244,074 gr g–1) at the beginning of PZ III (ca. 78–0 cm, 11,112 cal yr BP to present), but gradually decreases after 24 cm (4,373 cal yr BP). Tree and shrub pollen taxa dominate the spectra (on average 90%). The most common shrub pollen taxa are Alnus fruticosa-type (38.1% on average) and Betula sect. Nanae (33.8%). Alnus fruticosa-type percentages are highest between 78 and 72 cm (11,112 to 10,643 cal yr BP). Betula sect. Nanae pollen percentages increase around 72 cm (10,643 cal yr BP) and gradually decrease upward. More tree pollen taxa are also detected in this zone: Larix (1.3% on average), Pinus s/g Diploxylon-type (2.6%) and P. s/g Haploxylon-type (5.6%). The herb taxa are less numerous than in the lower PZs (9.9% on average, varying from 7.1 to 13.4%). They are dominated by Artemisia (3.2% on average), Poaceae (1.6%), and Cyperaceae (1.4%).

The first two axes of the PCA (Figure 6) explain 52.7% of the variance in the dataset, supporting the zonation of the broken-stick analysis. Samples from PZ I are mostly in the left-hand quadrants, represented mainly by Cyperaceae, Poaceae, and Artemisia. The samples from PZ II are spread across PC1 and intermix with samples from PZ I and PZ III. Samples from PZ III are mostly located in the right-hand quadrants and are represented by taxa such as Pinus s/g Haploxylon-type, Betula sect. Albae, Pinus s/g Diploxylon-type, Betula sect. Nanae, and Alnus fruticosa-type as well as Larix, Picea, and Salix.
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FIGURE 6. Principal component analysis (PCA) biplot of terrestrial pollen taxa. Only the names of the 15 taxa explaining the most variance are printed. Samples are colored according to their corresponding zone. The explained variances of the two principal components (PC1 & 2) are shown in brackets.




SedaDNA Composition

In total, 10,172,402 reads were assigned to 3,007 different sequences types with more than 10 counts. 5,364,355 were assigned with 100% identity to 322 sequence types. In total, 8 sequence types were present in the controls. There were three different sequence types with 274,319 (5.1% from total dataset) total reads in 3 of the 9 PCR NTCs and 6 sequence types with 904,427 (16.9% from total dataset) total reads in 6 of the 11 extraction blanks. Two sequence types assigned to Brassicaceae were removed from the dataset as all their reads were present in the controls; as was one sequence type assigned to Taxus baccata for which 91% of its reads were present in one NTC and the rest in only one other replicate. Five other sequence types (assigned to Bistorta vivipara, Salicaceae, Asteraceae, Saxifraga cernua, and Pinus) were kept for the analysis after examination. For Bistorta vivipara, 1 read was present in the controls, for Salicaceae, 7 reads (<0.001%) in 4 controls, and 1 read for Asteraceae and Saxifraga cernua. For Pinus, 388,820 and 1 reads (94%) were detected in 2 extraction blanks, but is also present in 35 other PCR replicates in coherent proportions with no link to the problematic extraction blanks. The sequence type assigned to Convallaria majalis with 14,702 reads was deleted from the dataset as it is a common contaminant and 9 sequence types not even assigned to the family level at best were removed for a total of 633 reads. Furthermore, 64 sequence types with a total of 9,258 reads that appear in only one PCR product were deleted. After the replicates were merged and those with the same assignment merged (54 samples), 181 taxa were detected with 4,159,565 reads in total and 4,157,784 reads when the taxa with fewer than 10 reads were deleted.

In total, 4,133,309 sequence counts were assigned to 153 terrestrial plant taxa across 50 samples: 82 to species level, 55 to genus level, and 16 only to family level at best. The most common families among the dataset that represent 90% of the reads are Salicaceae (52%), Rosaceae (13%), Betulaceae (12%), Saxifragaceae (6%), Ericaceae (4%), Pinaceae (3%), and Asteraceae (2%).

The terrestrial plant sedaDNA dataset can be divided into three zones according to the CONISS clustering and broken stick analysis (Figure 5). Because of the high number of taxa detected using DNA, tree and shrub taxa are plotted at the genus level and herbs at the family level. The detailed dataset is presented in Supplementary Figure 2.

DNAZ I (ca. 374–126 cm, >33,800–14,660 cal yr BP) with 26 samples approximately matches PZ I. This zone is represented mostly by shrub taxa (from 32.3 to 76.6% with 62.2% on average) with Salix (56.2% on average) dominant. Herb taxa also have high proportions (23 to 67.7% with 37.6% on average) with Dryas (18.3% on average) and other Rosaceae (2% on average) as well as Asteraceae (4.4%) represented by Artemisia and Saussurea. Tree taxa are present in DNAZ I at low percentages (0 to 1.6% with 0.2% on average).

DNAZ II (ca. 116–76 cm, 13,901–10,956 cal yr BP) is represented by 8 samples: 4 samples are represented by very few reads and 4 had no sequence types at all but were added anyway. Only a few taxa are found in the zone: Salix and Polygonaceae at 96 cm (12,474 cal yr BP), 2 taxa from Saxifragaceae in the samples at 116 and 80 cm (13,901 and 11,268 cal yr BP, respectively), and Alnus, Salix, and Vaccinium in the sample at 76 cm (10,956cal yr BP). The zone has a high proportion of herbs (up to 100% with 56.8% on average), with Polygonaceae (6.9% on average) and Saxifraga (49.9%) as the most abundant taxa. Shrub taxa are also found (43.2% on average, ranging from 0 to 100%) mostly represented by Salix (40.6% on average), but not a single tree taxon.

The uppermost zone, DNAZ III (ca. 72–0 cm, 10,643 cal yr BP to present) has 20 samples and has more tree taxa than the lower zones (24.9% on average, ranging from 9.3 to 37.5%), mostly Populus (15.7%), Larix (4.3%), Pinus (2.6%), and Picea (1.5%). Shrubs are also highly represented (38.8 to 86.1% with 65.3% on average) with 34.1% Salix on average, 16.8% Alnus, 9.9% Betula, and 2.5% Rhododendron. Some herb taxa (3.7 to 43.3% with 9.7% on average) are also found. The most represented herb taxa are Rosaceae (4.7% on average), Polygonaceae (1%), Crassulaceae (0.6%), Ranunculaceae (0.6%), and Saxifragaceae (0.6%). In DNAZ III, notable variations can be seen and this zone can be divided into two subzones. In the lower part, DNAZ IIIa (72–28 cm, 10,643–5,242 cal yr BP), trees are abundant (30.6% on average) with a high proportion of Populus (21.9%). At 24 cm (4,373 cal yr BP), a peak in Picea (13%) is observed as well as a peak in Rosaceae (26.2%), Crassulaceae (11.3%), and Saxifraga (4.6%). In the upper part, DNAZ IIIb (20–1 cm, 3,432–111 cal yr BP), fewer tree taxa (16.2% on average) are present, with less Populus (6.7%) but more Larix (up to 6.4% vs 3.5% in DNAZ IIIa) and more shrubs (74.9%) such as Salicaceae (44.6%). More Alnus (20% vs 15% in DNAZ IIIa) and less Betula (4.1% vs 14.1% in DNAZ IIIa) are also noticeable.

The first two axes of the PCA (Figure 7) explain 53.7% of the variance in the dataset, supporting the differentiation between DNAZ I and DNAZ III from the broken-stick analysis. Samples from DNAZ I are mostly in the right-hand quadrants and are mainly represented by Dryas, Asteraceae, Plantaginaceae, Boraginaceae, and Papaveraceae. The samples from DNAZ III are mostly located on the left-hand quadrants and are represented by taxa such as Betula, Alnus, Larix, Pinus, Picea, and Populus.
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FIGURE 7. Principal component analysis (PCA) biplot of sedaDNA terrestrial taxa. Only the names of the 15 taxa explaining the most variance are printed. Samples are colored according to their corresponding zone. The explained variances of the two principal components (PC1 and PC2) are shown in brackets.




Comparison Between Pollen and SedaDNA

Results of the Procrustes rotation analyses and PROTEST (Table 1) indicate significant concordance between the pollen and sedaDNA PCA sample scores (m12 = 0.536, p = 0.001) as well as taxa (m12 = 0.7879, p = 0.001). Age residuals between 22,981 and 10,330 cal yr BP are mostly above average (Figure 8A) showing weak similarity for this time between both proxies. The sample dated to 33,815 cal yr BP has the lowest similarity between the sedaDNA and pollen datasets. The sample dated to 4,373 cal yr BP is similarly weak. Taxa residuals of Salix, Populus, and Dryas have the highest above-average values implying very weak similarity for these taxa between the pollen and sedaDNA datasets (Figure 8B). Furthermore, Artemisia, Alnus, Cyperaceae, Ericales, Papaveraceae, Larix, Polygonaceae, Rosaceae, and Saxifragaceae are also well above average and therefore dissimilar between both proxies.


TABLE 1. Results of Procrustes and PROTEST analyses indicate significant fit among all pairwise comparisons of datasets obtained by pollen and sedaDNA analyses.
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FIGURE 8. Procrustes residuals plots. (A) Procrustes residuals plot of the comparison of principal component analysis (PCA) depth/age scores of sedaDNA and pollen data presented as residuals of depth/age scores reflecting dissimilarity between the tested datasets. Dashed lines are the first and third quartiles, while the solid line is the second quartile. (B) Procrustes residuals plot of the comparison of PCA taxa scores of sedaDNA and pollen data presented as residuals of taxa scores reflecting dissimilarity between the tested datasets. Dashed lines are the first and third quartiles, while the solid line is the second quartile.




Taxa Richness Investigation

The test of significance of the difference in the average taxa richness focused on the difference between DNA Zone I and DNA Zone III. DNAZ II was excluded from this analysis for the same reasons as explained before. Furthermore, the three most recent samples from DNAZ I that make the transition to DNAZ II were also removed from this analysis and the visualization.

DNAZ I has on average 38 taxa ranging from 10 to 54 (Figure 9), while DNAZ III has 29 taxa on average with a range of 14 to 46. Taxa richness is significantly higher in DNAZ I (Wilcoxon rank sum test with continuity correction, W = 353, p = 0.001).
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FIGURE 9. Richness count (total and within the most represented families). Red lines indicate average values in the Holocene interglacial while blue lines indicate the average during the last glacial period.


The taxa richness within the two most represented families detected in DNAZ I was also investigated (Figure 9). For Asteraceae, taxa richness is significantly higher in DNAZ I (3 on average) than in DNAZ III (0.8 on average, W = 435, p < 0.001). The same is found for Saxifragaceae with an average of 4.9 taxa in DNAZ I and 2 in DNAZ III (W = 421, p < 0.001).




DISCUSSION


Proxy Validation

While the age-depth model has wide confidence intervals for the lower part of the core, the Holocene part of the model is more precise. According to the age-depth model, the bottom part of the core is dated to a mean extrapolated age of about 35,000 cal yr BP, and the sediments with the highest herb percentages thus accumulated between ca 22,000 and 12,500 cal yr BP, during the Marine Isotope Stage (MIS) 2, known for its harsh climate and herb-dominated vegetation. Therefore, we consider that the lower part can be interpreted at a rough MIS timescale while millennial-scale variation can be inferred in the Holocene interglacial part.

In our pollen assemblages, Alnus fruticosa-type, Betula sect. Nanae, Artemisia, and Poaceae are present at high percentages (Figure 3). All these taxa are known to be high pollen producers with good dispersal abilities (Niemeyer et al., 2015) and mainly originate from the regional vegetation. As these biases are rather similar in all pollen records, pollen data from different locations are principally comparable and relative abundances of major plant taxa can be reconstructed. Accordingly, we assume that our pollen data are also useful to infer major regional-scale vegetation composition changes. On the one hand, typically diverse herb families are mostly underrepresented (e.g., Rosaceae) but on the other hand, our pollen record contains pollen likely originating from long-distance sources (e.g., Pinus during the glacial period). Furthermore, many pollen types can only be identified to family level (e.g., Poaceae, Cyperaceae, Brassicaceae). Therefore, we consider our pollen record as not so suitable for inferring reliable temporal plant richness changes.

SedaDNA in lake sediments originates from sources other than pollen, for example leaves, roots, and seeds (Willerslev et al., 2003). Its source signal is therefore more secure as it originates from the local environment. For instance, the sedaDNA Alnus signal during the last glacial can help to infer the presence of this taxon in the direct vicinity of the lake, while no taphonomic conclusions can be drawn using just the pollen signal. Our study shows that sedaDNA can detect twice as many taxa as palynology can (sedaDNA: 153 terrestrial taxa; pollen: 76 taxa) and to a higher taxonomic resolution. Sixteen DNA sequence types are assigned to family level, 55 to genus and 82 to species level for the sedaDNA data, while 23 pollen types are assigned to family, 35 to genus and 16 to species level, with one assigned only to order level. Therefore, sedaDNA is a more suitable proxy than pollen to investigate diversity changes in vegetation (Parducci et al., 2017; Zimmermann et al., 2017a; Alsos et al., 2018).

Some biases still need to be addressed such as the common poor taxonomic resolution at the chloroplast DNA level of some families (e.g., Salicaceae, Cyperaceae, Poaceae) as using short DNA markers such as the P6 loop can be restrictive, especially for discrimination between long sequence length taxa, and might require the use of family specific markers (Sønstebø et al., 2010; Boessenkool et al., 2014; Alsos et al., 2018). However, this does not explain the very low proportion of graminoids detected in the sedaDNA record compared to the pollen record. Poaceae and Cyperaceae are usually well represented in pollen records, which are biased toward high pollen producers, but they are also easily detected and even dominate sedaDNA records (Zimmermann et al., 2017a, b). In our study we assume that graminoids might not have been present at high levels in the direct vicinity of the lake but that they were more frequent further afield around the lake resulting in the accumulation of graminoid pollen in the lake. The overrepresentation in the sedaDNA records of some taxa such as Salicaceae observed in this study have already been recorded elsewhere (Niemeyer et al., 2017; Zimmermann et al., 2017a, b) and can be explained by both the fact that Salix densely populates the surroundings of lakes or river depressions (many leaves can end up in the lake catchment) and by high PCR amplification due to increased presence of DNA in the leaves.



Vegetation Compositional Changes in Response to Climate Inferred From Pollen and SedaDNA Records

Overall, both pollen and sedaDNA records show similar results in terms of vegetation composition and they both reflect the “typical” vegetation, matching other existing palaeoenvironmental records from Siberia (e.g., Müller et al., 2009; Biskaborn et al., 2016). A more open vegetation composed of a mosaic of steppe-tundra and some woody taxa existed during the Late Pleistocene, became more closed boreal forest (taiga type) during the early Holocene, before reflecting the modern biome repartition with more open vegetation under harsher (colder and wetter) conditions as seen in other records from Siberia and Beringia.



The Steppe-Tundra of the Late Pleistocene

The Late Pleistocene vegetation before ∼14,500 cal yr BP is significantly different from the later periods as inferred from the pollen and sedaDNA data. Both proxies document an open steppe-tundra landscape even though they do not capture entirely the same taxa.

The Pleistocene part of the Bolshoe Toko pollen record is characterized by a high abundance of graminoids (e.g., Poaceae, Cyperaceae) and Artemisia, which agrees with pollen records from northeastern Siberia (e.g., Andreev et al., 2011; Zimmermann et al., 2017a, b). Pollen shrub taxa such as Alnus fruticosa-type and Betula sect. Nanae dominate the major part of the Bolshoe Toko record, but are less common in the northernmost records, although they are rather common in the more southern Lake Baikal area (Shichi et al., 2009), the Verkhoyansk Mountains (Müller et al., 2009), and Chukotka (e.g., Lozhkin et al., 2007; Andreev et al., 2012) records.

The high pollen percentages of Alnus fruticosa-type, Betula sect. Nanae, and Pinus s/g Haploxylon and their constant presence in the DNA record point to the local presence of these shrubs in more protected habitats such as valleys around the study site. These protected habitats also supported Rhododendron as seen by its constant signal in the DNA record despite the extremely continental conditions during the Late Pleistocene. Therefore, the lake vicinity might have ensured sufficient moisture to provide a refugium for shrubs such as Alnus and Rhododendron during the last glacial.

Poaceae is present at high percentages in the pollen records of Bolshoe Toko. Because Poaceae is not represented in the sedaDNA, the strong signal observed in the pollen records might come mostly from long-distance wind-transported pollen. Grasses were not dominant locally around the lake. Generally, graminoids dominate landscapes such as the mammoth steppe (Guthrie, 1990; Zimov et al., 2012). According to the sedaDNA record, the lake vicinity during the Late Pleistocene was mostly covered by forb taxa from Asteraceae and Dryas with shrubby habitats hosting a high proportion of shrub willows. Our sedaDNA-based reconstruction is similar to other sedaDNA reconstructions from western Beringia (Willerslev et al., 2014) and northern Siberia (Zimmermann et al., 2017a).

As our results show, the pollen record is biased toward high pollen producers. It is feasible that the steppe-tundra environment was not dominated by graminoids but by forbs, which have a high representation in the sedaDNA record, supporting the idea that forbs may have a dominant role in full-glacial vegetation (Willerslev et al., 2014; Binney et al., 2017). Frequent occurrence of forbs in the intestines/stomach of megafaunal herbivores suggest that they supplemented their diets with high-protein forbs rather than specializing exclusively on grasses (Willerslev et al., 2014). Furthermore, because forbs may be more nutrient-rich and more easily digested than grasses, this could explain how numerous large animals were sustained (Cornelissen et al., 2004). The presence of abundant megafauna could have caused significant trampling and enhanced gap-based recruitment which would have facilitated the spread of forbs (Owen-Smith, 1987; Zimov et al., 2012).



The Disrupted Pleistocene-Holocene Transition

The sedaDNA results of DNAZ II (116–76 cm, ∼14,000–11,000 cal yr BP) have very low DNA concentrations. The pollen concentrations are also very low in these sediments. Poor sedaDNA signals and low pollen concentrations can indicate sparse vegetation and disturbed soils in the area as otherwise trees and their root systems would have helped to limit erosion by stabilizing the ground. Stronger erosion could lead to an increased sedimentation rate related to increased detrital input as showed by the Sr/Rb ratio and Zr (Figure 3) during times where vegetation was open and scarce (Biskaborn et al., 2013). Indeed, increased water supply to the lake originating from high spring and summer meltwater supply from glaciers in the catchment caused by a warming atmosphere could carry more detrital input, increasing the sedaDNA bound to it or diluting the signal in the sediment as vegetation was scarce. Another hypothesis would be that an increased production of algae (suggested by rising TOC and Si/Al values) could have led to an increased accumulation of organic material at the lake bottom. This could have initiated changes in the redox dynamic associated with bottom water oxygenation and hydrochemical conditions as suggested by a decrease in Mn/Fe (Figure 3). These disruptions affect both sediment deposition and hydrochemical conditions at the bottom of the lake and could lead to drastic changes and a decrease in both pollen and DNA deposition until a more stable ecological trophic system became established in the lake at the beginning of the Holocene.

In the transitional zone between the last glacial and the Holocene, sedaDNA only provides a little information on vegetation composition and no new taxa appear: the few taxa present in the sedaDNA record for DNAZ II were already present in DNAZ I. In PZ II (ca. 94–80cm, ∼12,500–11,300 cal. yr BP), pollen assemblages likely indicate rather unstable environmental conditions at the end of the late glacial. The rapid increase in Artemisia and Poaceae with a decrease of Betula and Alnus (around 12,500 cal. yr BP) might reflect the Younger Dryas cooling. Similar trends have been observed and described for other eastern Siberian pollen records (e.g., Müller et al., 2009; Andreev et al., 2011, 2012 and references therein).



The Boreal Forest of the Holocene

Both sedaDNA and pollen record a change in vegetation from open landscapes to forested ones at the beginning of the Holocene. Tree taxa not detected in the lower part of the core appear in the sedaDNA record: Populus, Pinus, Picea, and Larix. These taxa are detected before the drastic increases in pollen content for Pinus, Alnus fruticosa-type, and Betula sect. Nanae.

During the early Holocene (∼11,500 to 5,000 cal. yr BP), the vegetation around Bolshoe Toko was represented by summer green trees and shrubs such as Alnus, Betula, and Populus, which tallies with other records showing high abundance of deciduous broadleaved taxa during this warm period in central and eastern Siberia (e.g., Kremenetski et al., 1998; Binney et al., 2009 and references therein). In Yakutia today, Populus tremula populations are mainly located on the Lena-Aldan Plateau and more to the south, where they are common in places with sufficient moisture supply (Kuznetsova et al., 2010). The high presence of Populus is therefore a good indicator of a moister environment (Mann et al., 2001). Presence of Betula and Salix confirm that the early Holocene was rather moist. Populus is rarely detected in pollen records as its pollen grains are easily destroyed (Brubaker et al., 2005). However, establishment and high presence of Populus has been reported in pollen records from central and eastern Beringia (e.g., Kaufman et al., 2004 and references therein).

The upper zone (∼4,500 cal. yr BP to present) represents the late Holocene. During this interval, the forest vegetation became similar to the modern vegetation, but with less Populus and Betula and more Larix. More shrub and herb taxa such as Salix, Rhododendron, Polygonaceae, Rosaceae, Ranunculaceae, and Saxifragaceae are present in the sedaDNA record than during the early Holocene. The onset of the late Holocene cooling is marked by an abrupt decrease in the amount of Populus and Betula alongside an increase in taxa from the Rosaceae, Crassulaceae, and Saxifragaceae at 24 cm depth (∼4,400 cal. yr BP). The replacement of Populus forests by shrubby vegetation during the late Holocene is documented in eastern Beringia records (Kaufman et al., 2004). This event could indicate a rapid cooling and most likely represents the 4.2 ka event (Wang et al., 2016). Surprisingly, Picea also increased at that depth, probably reflecting the higher presence of spruce in the lake’s vicinity. Picea may have established in the early Holocene along with other taxa such as Populus, and Picea could have survived when the occurrence of the other tree taxa decreased in the lake catchment. Indeed, when comparing growth and physiology under different soil temperatures for North American species, Picea glauca had a better tolerance for cold soils than Populus tremuloides (Landhäusser et al., 2001).



Changes in Vegetation Richness Through the Pleistocene/Holocene Transition Inferred From the SedaDNA Record


High Plant Richness During the Last Glacial

The results of our vegetation analyses reveal that taxa richness during the Late Pleistocene was higher than during the Holocene (Figures 5, 9). This somewhat contradicts the assumption based on spatial non-forest-to-forest gradients. On average, more taxa are detected by the sedaDNA proxy (36.7) for the Pleistocene vegetation around Bolshoe Toko than for the Holocene (28.8).

The inferred vegetation during the Late Pleistocene matches the description of the mammoth steppes: dry but diverse and covered by vast areas of grasses, forbs, and sedges (Johnson, 2009). Coprophilous fungi spores (mainly Sporormiella) which are usually used to detect the presence of herbivores (Lydolph et al., 2005) are found in the Pleistocene part of the studied core (datasets are archived in DRYAD at “10.5061/dryad.34tmpg4gz”). Mammoth steppe represents a combination of steppe, tundra, and some woody patches (Chytrý et al., 2019). We think that this mosaic, steppe-tundra landscape explains the higher taxa diversity dominating the study area during the Late Pleistocene. Even if we consider that during MIS 2, the observed vegetation composition was open and therefore the effective catchment of the lake was probably bigger than during the Holocene due to higher erosion rates and more efficient transport pathways, the observed high richness as a true signal is plausible and some hypotheses can be discussed to explain it.

The “keystone herbivore” hypothesis suggests that it was the extinction of Pleistocene megafauna (primarily herbivores) that caused the steppe-tundra to disappear (Owen-Smith, 1987). This mammoth steppe supported a large number of wooly mammoths, rhinoceroses, bison, horses, and other large herbivores. It has been suggested that the Late Pleistocene megafauna played a similar role as the modern grazing megafauna in the east African savannah. Gill (2014) and Bakker et al. (2016) provide evidence that herds of large herbivores can maintain areas of open grassland even under a climate that generally supports forest or tundra. Furthermore, modern tropical grassy biomes such as savannah can compete in term of biodiversity with forests (Murphy et al., 2016). Therefore, if the extinct megafauna had been able to maintain a mosaic landscape, it is also probable that they were able to maintain high plant richness as seen in this study.

During most of the Late Pleistocene, a steppe-tundra vegetation covered the unglaciated expanses of northern Eurasia and North America (Johnson, 2009). This biome therefore spanned an area now covered by many modern biomes such as temperate and boreal forests, steppe, and tundra. Such an enormous area could have allowed more taxa to thrive during the Late Pleistocene as the number of species increases with area following one of the most successful predictions in community ecology: the species-area relationship (Holt et al., 1999; He and Legendre, 2002).

We have discussed only a couple of hypotheses here and it is possible that not just one hypothesis can explain the high richness of terrestrial plants observed during the Late Pleistocene in Yakutia. Further investigation is needed to fully understand past vegetation diversity of the Late Pleistocene steppe-tundra.



Higher Richness During the Late Pleistocene Within the Most Represented Families

The diversity analysis within the most represented families in the sedaDNA record (Asteraceae and Saxifragaceae) indicates that families with abundant taxa during the Late Pleistocene are also represented by more taxa during that time. Indeed, if a certain family is present in high abundance, it is likely that such a family thrives under the typical environmental conditions of the last glacial or the Holocene and would show a higher diversity.

As the last glacial landscapes were open and dominated by herbs, families such as Asteraceae or Saxifragaceae were more diverse during that period than during the Holocene. The number of taxa detected during the last glacial for these two families is surprising: up to 11 Saxifragaceae and 6 Asteraceae taxa are counted in one sample. In modern studies, fewer taxa of these two families are usually detected. It is probably a true signal rather than a biased result due to damaged old sequences as otherwise all sequences would be impacted and more taxa would be observed for all the families during the last glacial.

The question of taxa loss in plant communities during the Late Pleistocene/Holocene transition can be addressed. Following the “keystone herbivore” hypothesis briefly discussed above, the extinction of the last glacial megaherbivores could have led to the loss of strong interactions that were limiting plant interspecific competition. An increase in competition between the terrestrial plant taxa could then have led to the loss of some diversity, for example via the extinction of some taxa that were strongly dependent on the herbivore interactions. This could potentially explain why so many plant taxa cannot be identified to species level (in this study), as they are not present in databases built from modern taxa. Investigating these lost taxa would be a step toward understanding the mass extinction that the world is facing with the ongoing global warming.





CONCLUSION

Based on the southeastern Siberian pollen and sedaDNA records gained from the radiocarbon dated sediment core from Lake Bolshoe Toko, this study described the compositional changes in terrestrial vegetation and its species richness between the Late Pleistocene and the Holocene, thereby filling a knowledge gap in the understudied Siberian landscape. It confirmed the strength and complementarity of two palaeo-botanical proxies: the pollen record enabled us to reconstruct a regional vegetation composition, while the sedaDNA data provided a local signal and detected more taxa at higher taxonomic levels, allowing species richness estimates. Our study supports the idea of a southward expansion of the Late Pleistocene steppe-tundra with a specific mosaic of herb and shrub patches, which were replaced by taiga during the early Holocene. Finally, the use of the sedaDNA record to investigate vegetation richness suggests that in southeastern Siberia, Late Pleistocene steppe-tundra supported more taxa and hence a higher alpha diversity than the boreal forests of the Holocene. This could be explained by the active effect of the megafauna shaping their environment during the Late Pleistocene and/or by the extensive area that the steppe-tundra covered at the time.
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Global warming is having a profound influence on vegetation and biodiversity patterns, especially in alpine areas and high latitudes. The Qinling Mountain range is located in the transition zone between the temperate and subtropical ecosystems of central–east China and thus the vegetation of the area is diverse. Understanding the long-term interactions between plant diversity and climate change can potentially provide a reference for future landscape management and biodiversity conservation strategies in the Qinling Mountains region. Here, we use a pollen record from the Holocene sediments of Daye Lake, on Mount Taibai in the Qingling Mountains, to study regional vegetation changes based on biomes reconstruction and diversity analysis. Temperature and precipitation records from sites close to Daye Lake are used to provide environmental background to help determine the vegetation response to climate change. The results indicate that climate change was the main factor influencing vegetation and palynological diversity in the Qinling Mountains during the Holocene. The cold and dry climate at the beginning of the early Holocene (11,700–10,700 cal yr BP) resulted in a low abundance and uneven distribution of regional vegetation types, with the dominance of coniferous forest. During the early Holocene (10,700–7,000 cal yr BP), temperate deciduous broadleaf forest expanded, palynological diversity and evenness increased, indicating that the warm and humid climate promoted vegetation growth. In the middle Holocene (7,000–3,000 cal yr BP), the climate became slightly drier but a relatively warm environment supported the continued increase in palynological diversity. After ∼3,000 cal yr BP, palynological diversity and the evenness index commenced a decreasing trend, in agreement with the decreased temperature and precipitation in the Qinling Mountains. It’s noteworthy that human activity at this time had a potential influence on the vegetation. During the past few centuries, however, palynological diversity has increased along with the global temperature, and therefore it is possible that in the short-term ongoing climatic warming will promote vegetation development and palynological diversity in the area without human interference.
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INTRODUCTION

Climate change has a major impact on the global environment and biota, including humans (Shaver, 2000; Root et al., 2003; Peng et al., 2004; Parmesan, 2007). Global temperatures have risen substantially since the last glacial maximum (Xiao et al., 2020), especially during the past few decades, due to increasing atmospheric greenhouse gas concentrations. As an important component of global biodiversity, plant diversity plays an essential role in maintaining ecosystem stability and environmental protection (Ehrlich and Wilson, 1991; Thomas et al., 2004). However, plant diversity is currently undergoing rapid changes due to climatic warming and the increased frequency of extreme climatic events, as well as the reduction of living habitats (Walther et al., 2002; Wake and Vredenburg, 2008; Barnosky et al., 2011). However, several studies have shown that increased temperatures are conducive to plant growth at high latitudes (Peuelas and Filella, 2001), while at the same time, the vegetation at high latitudes and altitudes is more sensitive to climate change (Pepin et al., 2015; Ellis et al., 2021). Human activities also have important direct impacts on terrestrial ecosystems (Vitousek, 1994; Crutzen and Stoermer, 2000; Crutzen, 2002; Mottl et al., 2021). Humans altered the land surface, ecosystem dynamics and biodiversity by clearing the native vegetation for agriculture and living space, which has led to increased species extinctions, with rates accelerating during the past few centuries and with potentially irreversible effects (Braatz et al., 1992; Pimm et al., 2014; Lewis and Maslin, 2015). Therefore, the long-term paleovegetation and paleoclimatic records is of great significance to explore regional patterns of vegetation and climate change to distinguish the effects of climate change and human activity on vegetation. Such records may also provide a potential analogue of the interaction of climate change and vegetation in the future.

Pollen analysis has been widely used to study the history of vegetation and plant diversity on different timescales (Jackson and Blois, 2015; Birks et al., 2016a, b; Felde et al., 2020), and fossil pollen records can provide important information about the response of vegetation to past changes in climate and land use (Willis et al., 2004, 2010; Rudaya et al., 2020). The Qinling Mountain range is the natural geographic and climatic boundary between North and South China. The area is influenced mainly by the East Asian summer monsoon and the vegetation is highly sensitive to climate change (Liu et al., 2008; Zhang et al., 2021). Mount Taibai, which is the highest peak in the Qinling Mountain range, has numerous alpine lakes, and the pollen assemblages in the sediments of these lakes are a valuable archive of information on climate change and vegetation succession. Previous studies of the sediments have included analyses of biological indicators such as pollen and diatoms to reconstruct changes in vegetation cover and limnological conditions in the Mount Taibai area (Zhao et al., 1999; Zhang et al., 2001; Cui et al., 2003; Li et al., 2008, 2017; Cheng et al., 2017, 2020; Huang et al., 2020). Additionally, organic geochemical indicators have been used to characterize climate change on different timescales (Liu et al., 2005; Wang et al., 2016, 2019). However, these studies were not conducted on open-water lake sediments and were focused on the vegetation of the middle–late Holocene and the modern vegetation; moreover, they were low temporal resolution. Detailed investigations of the response of plant diversity to climate change based on high-resolution continuous sediments is important for biodiversity conservation in the area.

Lake sediments have the advantages of high stratigraphic continuity and resolution, which make them well suited for studies of regional climate and vegetation changes (Chen et al., 2000; Wagner et al., 2000; Rioual et al., 2001). Daye Lake is an enclosed alpine lake above the forest line on Mount Taibai, and here we report the results of a high-resolution biomes and palynological diversity reconstruction from the Holocene sediments of the site. The principal aims of the study were as follows: (1) To investigate the Holocene evolution of vegetation and climate based on the pollen records from Daye Lake in the Qinling Mountains region; (2) to reveal changes in the palynological diversity and infer the plant diversity changes; and (3) to explore the relationship between vegetation and climate change, to provide a basis for predicting possible future changes in the vegetation and plant diversity of the region.



MATERIALS AND METHODS


Study Area

Mount Taibai, with a maximum altitude of 3,767 m a.s.l., is the highest part of the Qinling Mountain range and the highest mountain in central and eastern China. The lithology is granite formed by the large-scale incursion of acidic magma during the Yanshan Movement in the Cretaceous (Tian and Huang, 1990). There are numerous Quaternary relict glacial landforms in the Mount Taibai area, with periglacial landforms generally developed in areas below the snow line of ∼2,600 m a.s.l. (Pang, 1998). However, the snow line has risen above Baxiantai, which is the highest peak of Mount Taibai (3,767 m a.s.l.).

There are pronounced differences in precipitation, temperature, topography, and vegetation distribution on the southern and northern sides of the Mount Taibai. Moreover, diverse temperate and subtropical plant species, as well as numerous medicinal herbs, survive in the region (Pang, 1998). The combination of thermal and hydrological conditions results in a vertical distribution of vegetation belts in the area. The area below 780 m a.s.l. is extensively cultivated and the natural vegetation has been substantially altered by human activities. Above this cultivated zone, the following vegetation zones on the northern slope of Mount Taibai can be defined, with increasing altitude: Quercus spp. (Quercus wutaishanica and Quercus aliena var. acuteserrata) forest (780–2,200 m a.s.l.), Betula spp. forest dominated by Betula albosinensis (2,200–2,730 m a.s.l.), coniferous forest divided into Abies fargesii-forest and Larix chinensis-forest (2,730–3,400 m a.s.l.), and alpine shrubs and meadow (>3,480 m a.s.l.).

Daye Lake (33°57’25.90″ N, 107°45’38.39″ E; 3,615 m a.s.l.; Figure 1) is a small, closed glacier lake with a surface area of 0.5 ha and maximum water depth of 18 m, formed after the retreat of the Quaternary glacier activity, located above the tree line on the northern slope of Mount Taibai. It is mainly supplied by precipitation which is concentrated in summer. The regional climate is influenced by the East Asian summer monsoon, and the annual mean air temperature and precipitation are 8.1°C and 720 mm, respectively. The coldest month (January) and warmest month (July) have respective average temperatures of −4 and 19.3°C, based on a 30–year meteorological dataset (CE 1981–2010) from Taibai county meteorological station (1,545 m a.s.l) (see Figure 2 in Zhang et al., 2021). Based on the lapse rates for the northern slopes of the Qinling Mountains proposed by Ma et al. (2017), the mean annual, January and July temperatures are 2.8, −7.3, and 13.6°C, respectively. Daye Lake is surrounded by alpine shrubland and meadow. The shrub taxa are dominated by Salix cupularis, Rhododendron capitatum, and Spiraea, and the local herb taxa are mainly Ranunculaceae, Brassicaceae, and Poaceae (Zhang et al., 2021).
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FIGURE 1. (A) Location of the study site (DY: Daye Lake) and other sites (S1–S4) in the surrounding region that are mentioned in the text (S1: Daihai Lake; S2: Gonghai Lake; S3: Qinghai Lake; S4: Dajiuhu wetland). The vegetation zones in China (https://geodata.pku.edu.cn) are also shown; (B) digital elevation map of the study area; (C) the picture of the Daye Lake.
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FIGURE 2. AMS 14C dates for core DYH16A from Daye Lake based on the R package rbacon, version 2.5.0 (Blaauw and Christen, 2011) and the resulting age-depth model. The red line represents mean calendar years. The gray shading and the blue line indicate calendar ages with the 95% confidence range and the age errors, respectively.




Sediments and Dating

A 2.35 m–long sediment core (DYH16A) was retrieved from Daye Lake in April 2016 using a UWITEC piston corer. The undisturbed core was transported to the laboratory and subsampled at 1 cm–intervals. Seventeen samples of bulk organic sediments were analyzed by accelerator mass spectrometry (AMS) at Arizona University, United States, and Peking University, China (Table 1). The ages of bulk sediment samples may be influenced by old carbon due to the complexity of carbon sources. Therefore, we used the intercept method after fitting a 2nd-order polynomial curve to get the carbon reservoir age which is comparable to the age difference between pollen concentrates and bulk organic from the surface sample (see the Supplementary Material). Finally, 1540 years was selected as the reservoir age of Daye Lake. A chronological model (Figure 2) was developed using the R package rbacon, version 2.5.0 (Blaauw and Christen, 2011) based on calendar ages before present (BP = 1950 CE) and calibrated with the IntCal20 dataset (Northern Hemisphere) (Reimer et al., 2020). Note that only the top 1.26 m of the core were discussed in this study.


TABLE 1. AMS 14C dates and their calibrated ages from the upper 1.26 m of core DYH16A from Daye Lake.
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Pollen Analysis

The top 1.26 m of core DYH16A at 1 cm–intervals were analyzed in this study. A known number of Lycopodium spores were added to 0.5 g of dried sediment to calculate pollen concentrations (grains g–1). Samples were then treated sequentially with HCl, KOH, and HF, following the procedures described in Fægri and Iversen (1989) and Moore et al. (1991). Pollen identification was carried out under a light microscope at 400× magnification with reference keys (e.g., Wang et al., 1995; Tang et al., 2016). At least 500 terrestrial pollen grains were counted each sample. Pollen percentages were calculated based on the sum of terrestrial taxa, excluding aquatic taxa and spores. Pollen diagrams were draw and constrained incremental sum of squares (CONISS) analysis was conducted using Tilia software of version 2.0 (Grimm, 1987).

A lower-resolution pollen record from the top 1.03 m of the core DYH16A has been published by Zhang et al. (2021) to reconstruct the regional plant abundances based on the REVEALS model. This record spans the past ∼7000 years which the sediment accumulation rate was relatively uniform. The higher-resolution pollen record presented here spans the entire Holocene and extends to the base of the core where the sediment accumulation rate was lower. But the entire core is continuously deposited which can reflect the Holocene changes of vegetation and climate in the region.



Biome Reconstruction

The pollen record from Daye Lake was used for biomes reconstruction in order to explore the vegetation response to Holocene climate change. The procedures used for biomization analysis follow those described in Prentice et al. (1996). First, pollen types (taxa) were assigned to one or more plant functional types (PFTs) (Table 2), and the PFTs were then classified into biomes (Table 3). Finally, the affiliated scores for each biome were calculated based on the pollen percentages and the PFT sets and were then used to represent the abundance of a particular biome. Assignment of the identified pollen taxa from Daye Lake to PFTs and biomes follows Yu et al. (2000) and Ni et al. (2014) for China, together with reference to the modern regional vegetation distribution. Biome definition depends on the influence of the dominant PFTs with the highest scores. Biome affinity scores provide an objective evaluation of the vegetation composition and have been applied to several surface and fossil pollen datasets (Tarasov et al., 1998; Yu et al., 2000; Rudaya et al., 2008; Ni et al., 2014). Biome modeling was conducted using PPPBase software (Guiot and Goeury, 1996), based on three matrixes (PFT × taxon, biome × PFT and biome × taxon matrix) which comprised 51 pollen types, 13 PFTs and 5 biomes in this study (Tables 2, 3).


TABLE 2. Assignment of the pollen taxa from Daye Lake to plant functional types (PFTs) used in the biomization model.
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TABLE 3. Assignment of plant functional types (PFTs) at Daye Lake to biomes.
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Pollen–Based Plant Diversity

The reconstructions of palynological diversity can be used to directly interpret the composition and structure of the vegetation.

In order to reconstruct the palynological diversity history over the Holocene in Qingling Mountains region from different aspects, Hill’s indices (Hill, 1973) and rarefaction analysis (Hurlbert, 1971) are used to estimate the diversity richness including palynological richness, Shannon diversity, and Simpson diversity. Palynological richness is the simple count of the number of taxa which represents the total number of taxa in a community to describe the vegetation community; the number of common taxa is known as the Shannon diversity index; and the number of dominant taxa is a measure of the Simpson diversity (Rudaya et al., 2020; Kulkarni et al., 2021). We also calculated evenness index to reflect the community structure and to assess palynological diversity at the regional scale and variations in vegetation composition (Pielou, 1966). The value of evenness is between 0 (only one species in the pollen assemblage) and 1 (each species with the same abundance in the pollen assemblage), the low value indicates the greater difference in the abundance of the plant types in pollen assemblages (Li and Zhao, 2018). All of these indices were calculated using the “vegan” package, version 2.5–7, in R (Oksanen et al., 2020).




RESULTS


Pollen Assemblages in the Holocene Sediments of Daye Lake

The pollen assemblages from Daye Lake (Figure 3) were conducted with CONISS analysis and divided into five significant zones, i.e., three pollen zones and two subzones, suggested by broken stick model. The zones are described below.
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FIGURE 3. Pollen percentage diagram for core DYH16A from Daye Lake. Only the major taxa are shown (average > 1% and present within at least 70% of the total number of samples). The abundance of arboreal and non-arboreal pollen, the pollen concentration of terrestrial taxa, and the CONISS cluster analysis results are also shown. The dotted shading represents an exaggeration of the scale (×5). Quercus_D: Quercus_deciduous; Quercus_E: Quercus_evergreen.


Zone I (11,700–10,700 cal yr BP). This zone is characterized by the highest percentages of coniferous trees (average of 42.18%). Among them, Pinus, Abies, and Picea have high percentages, with averages of 27.60, 9.18, and 3.23%, respectively, while Tsuga has the lowest (average of 2.17%). Deciduous broadleaf trees are relatively poorly represented (30. 65%). Among the shrub taxa, Ephedra is well represented (average of 1.26%), while Rosaceae, Fabaceae, and Euphorbiaceae are poorly represented. Herbs are dominated by Artemisia which has an average of 21.45%. The pollen concentration is the lowest during the entire Holocene.

Zone II (10,700–3,800 cal yr BP). This zone is characterized by the lowest proportion of coniferous trees (average of 22.66%) among the three zones and the significant increase of deciduous broadleaf trees (from 30.65 to 48.62%). The obvious increase of Corylus/Carpinus (with average values of 18.51%) and evergreen oak (Quercus_evergreen) are at the expense of the decrease of Pinus (from 27.60 to 9.88%). However, the herb pollen proportion decrease, which is largely due to the decreases in Artemisia (from 9.31 to 5.30%) and Amaranthaceae (from 2.18 to 1.32%), whereas shrub taxa such as Rosaceae (from 2.16 to 5.66%) and Fabaceae (from 0.20 to 1.33%) increase. The pollen concentration is relatively high in this zone. Owing to the different trends of Pinus, Abies, Corylus/Carpinus, Fagus, and Artemisia within this zone, two subzones, i.e., Zone IIa (10,700–6,000 cal yr BP) and Zone IIb (6,000–3,800 cal yr BP) is further divided. Zone IIa shows the lowest abundance of coniferous trees (20.49%) and the highest value of deciduous broadleaf trees (51.48%) in the Holocene. In Zone IIb, Artemisia reach the lowest percentages in the entire record (averages of 5.04%).

Zone III (3,800–0 cal yr BP). There is a minor increase in the percentages of coniferous trees and herbs (average of 26.87 and 23.51%, respectively). The abundance of deciduous broadleaf trees and shrubs shows a decreasing trend (average of 40.80 and 6.10%, respectively). This zone can also be further divided into Zone IIIa (3,800–1,200 cal yr BP) and Zone IIIb (1,200–0 cal yr BP). Zone IIIa is characterized by continuous decrease in deciduous broadleaf trees, increase in coniferous trees and herbaceous plant (which is mainly due to increases in Artemisia and Amaranthaceae). However, Zone IIIb is characterized by the increase of coniferous trees, decrease of deciduous broadleaf trees, and a substantial increase in herbs, especially in Artemisia (from 7.99 to 13.62%, the maximum value over the Holocene) and Poaceae (from 2.04 to 3.09%). The pollen concentration in Zone IIIa is high whereas the one in Zone IIIb is low.



Biome Reconstruction From the Holocene Sediments of Daye Lake

The biome reconstruction from Daye Lake (Figure 4) shows that the coniferous forests (CO) vegetation type displays the highest affinity scores during the first stage of the early Holocene (11,700–10,700 cal yr BP). This vegetation reconstruction suggests drought- and cold-tolerant needles communities played a major role in the regional vegetation cover. However, the temperate deciduous broadleaf forests (TEDE) become dominated during the Holocene interval after which suggests a warm and moist environment during the Holocene. There is a pronounced inverse relationship between TEDE and CO throughout the Holocene.
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FIGURE 4. Biome scores for the Holocene pollen record from Daye Lake. The gray curve represents biome changes based on the original scores, and the colored lines are a 5-point smoothing data. Blue curve: coniferous forest (CO); purple curve: temperate deciduous broadleaf forest (TEDE); orange curve: warm mixed forest (WAMF); yellowish-green curve: steppe (STEP). And dominant biomes are also shown.


The Holocene period experiences drastic changes in the biome composition, characterized by a marked increase in TEDE, herbaceous vegetation (STEP) and warm mixed forest (WAMF) scores, which is accompanied by a decrease in the CO scores. The drastic decrease of CO (which is corresponding to the apparent reduce of Pinus, see Figure 3), and the visible increase of TEDE suggests a warm and moist environment during the period of∼10,700 and 6,000 cal yr BP. The period of 6,000–3,800 cal yr BP is characterized by the minimum scores of CO, decreased scores of TEDE, and the lowest scores of STEP, but a visible increased scores of WAMF. CO increase slightly compared with the previous stage from 3,800 to 1,200 cal yr BP. The increasing trends are observed in herbs and WAMF. During the past ∼1200 years, WAMF decrease and STEP increase from low to high values. There is an obvious low value of TEDE between 1000 and 600 years and then the scores increase significantly, whereas conifers show the opposite trend.



Changes in Palynological Diversity Reconstructed From the Holocene Sediments of Daye Lake

Diversity analysis based on pollen records from lake sediments can accurately reflect the richness and composition of the regional vegetation (Stirling and Wilsey, 2001; Birks et al., 2016a). The Shannon and Simpson diversity indexes show similar temporal trends and are positively correlated with evenness (Figure 5). The palynological richness shows an increasing trend, with pronounced fluctuations, throughout the Holocene. Therefore, Shannon diversity and evenness index are employed in the following discussion. During 11,700–10,700 cal yr BP, the palynological diversity increases substantially, corresponding to a trend of increasing evenness. Palynological richness, diversity and evenness index are in increasing trends until 6,000 cal yr BP; however, there is an interval of pronounced low palynological diversity and evenness index during 9,000–8,200 and 7,800–7,000 cal yr BP based on the raw data (gray line in Figure 5). Palynological diversity increases substantially from 6,000 to 3,800 cal yr BP, and then decreases slightly between 3,800 and 1,200 cal yr BP. The decreasing trend is observed from ∼1,200 cal yr BP, which is followed by another increase during the past ∼600 years.
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FIGURE 5. Changes in palynological richness, Shannon and Simpson diversity, and evenness index at Daye Lake during the Holocene. The gray curves are the original data and the colored lines are a 5-point smoothing data. The red line indicates palynological richness based on the total number of taxa, the yellowish-green line is Shannon’s diversity based on the number of common taxa, and the blue and green lines are Simpson’s diversity based on the number of dominated taxa and evenness, respectively.





DISCUSSION


Vegetation Response to Holocene Climate Change in the Qinling Mountains

Climate change is a major factor influencing the distribution and abundance of vegetation (Bartlein et al., 1986; Ma et al., 2013); however, the response of vegetation and plant diversity to climate change shows strong regional variations. For example, temperature is the major influence on diversity in high-altitude mountains and high-latitude regions (Hou, 1983; Zhang et al., 2020), while precipitation is more important in arid and semi-arid regions such as the Loess Plateau of China (Shang and Li, 2010; Sun et al., 2013). Elsewhere, such as in southwest China, temperature and precipitation both have major influences on the vegetation (Wang et al., 2018; Trivedi et al., 2020). In the case of east-central China, the Qingling Mountains region, the relationship between climate change and vegetation over the Holocene need to be investigated.

The Qinling Mountain range is a typical region influenced by the East Asian summer monsoon, where plant growth is influenced predominantly by temperature and precipitation (Gansert, 2004; Zhang et al., 2006). The response of the vegetation at Daye Lake to climate change is manifested by changes in community composition and in the relative abundance of the dominant taxa (Figures 3, 4). Coniferous trees such as Abies and Picea can tolerate low temperatures and drought, and generally grow at high altitudes (Achuff and Roi, 1977; Liu Z. L. et al., 2002). By contrast, deciduous broadleaf forest (e.g., Quercus_deciduous, Carpinus_Corylus, and Ulmaceae) is favored by a warm and moist environment (Wang et al., 2018; Xu et al., 2019; Trivedi et al., 2020). Evergreen trees such as Quercus_evergreen and Cyclobalanopsis are widely distributed in subtropical and tropical regions, especially in locations with high temperatures and precipitation (Srivastava et al., 2021). Herbaceous plants such as Artemisia and Amaranthaceae are drought–tolerant (Kolb and Sperry, 1999; Uotila et al., 2021).

In order to determine the vegetation response at Daye Lake to Holocene climate change, we compared the pollen assemblages, biome scores, Shannon diversity and evenness index with paleoclimatic records from other sites in the region. The cited records in the study comprise the following: monsoon precipitation and temperature reconstructions based on pollen records from Gonghai and Daihai Lakes, both to the north of the Qinling Mountains (Xu et al., 2010; Chen F. H. et al., 2015); temperature and precipitation reconstructions based on records of branched fatty alcohol ratio BNA15 and pollen assemblages from the Dajiuhu wetland to the south of the Qinling Mountains, respectively (Huang et al., 2013; Sun et al., 2019); alkenone-based temperature and pollen-based precipitation records from Qinghai Lake, to the northwest of the Qinling Mountains (Herzschuh et al., 2010; Hou et al., 2016; Figure 6).
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FIGURE 6. Comparison of vegetation changes in the Qinling Mountains region with paleoclimatic records from other sites in China. (A) Pollen-based temperature reconstruction from Daihai Lake (Xu et al., 2010). (B) Pollen–based precipitation reconstruction from Gonghai Lake (Chen F. H. et al., 2015). (C) Temperate deciduous broadleaf forest scores based on the biome reconstruction from Daye Lake. (D) Shannon index of palynological diversity from Daye Lake. (E) Evenness index from Daye Lake. (F) Temperature reconstruction based on the branched fatty alcohol ratio BNA15 from the Dajiuhu wetland (Huang et al., 2013). (G) Pollen-based precipitation reconstruction from the Dajiuhu wetland (Sun et al., 2019). (H) UK37-inferred temperature record from Qinghai Lake (Hou et al., 2016). (I) Pollen-based precipitation reconstruction from Qinghai Lake (Herzschuh et al., 2010).


In the first stage of the early Holocene (11,700–10,700 cal yr BP), coniferous forests with Pinus, Abies and Picea were abundant in the study area, as well as steppe habitats dominated by Artemisia. Deciduous broadleaf taxa were poorly represented in the vegetation (Figures 3, 4). The dominance of coniferous forest indicates that the climate during this period was cold and dry, which is confirmed by the paleoclimatic record from sites elsewhere in the region (Figure 6).

During the early Holocene (10,700–7,000 cal yr BP), there were significant decreases in Pinus and Artemisia, and evergreen trees such as Quercus_evergreen began to appear (Figure 3), and there was a substantial increase in deciduous broadleaf and warm mixed forests. The pollen percentages and biome results indicate that the region was occupied by deciduous broadleaf forests, suggesting that the climate in the early Holocene was warm and humid. At the same time, temperature and precipitation commenced an increasing trend and reached their highest levels in the region of the southern and northern China, and the northeastern Qinghai-Tibet Plateau (Figure 6). However, the climate change at this stage is not stable, and there are fluctuations on a centennial time scale. For example, the abundance of deciduous broadleaf taxa decreased at 9,000–8,200 cal yr BP and 7,800–7,000 cal yr BP in Daye Lake, revealing deteriorating climate, while it corresponded to the declining of temperature and precipitation in Qinghai Lake and Dajiuhu wetland, respectively. And the Gonghai Lake in the northern China also has a low precipitation.

In the middle Holocene (7,000–3,000 cal yr BP), coniferous forest expanded slightly, as indicated by increases in Pinus and Picea pollen percentages, while percentages of thermophilous deciduous broadleaf taxa gradually decreased. The representation of Artemisia reached the lowest level in the profile. The hydrothermal combination at this time were probably worser than during the previous stage; nevertheless, the climate was still conducive to the growth of warm-temperate mixed forest (Figure 4). The substantial climatic differences existed between the northern, western, and southern parts of China at this time. At Qinghai Lake in the northeastern Tibetan Plateau, to the northwest of the Qinling Mountains, there was strong decrease in temperature which reached its lowest level during the Holocene, probably because of intensification of the Westerlies (Hou et al., 2016); while precipitation decreased substantially. However, temperatures at sites to the north of the Qinling Mountains were close to those sites to the south. At Daihai Lake, temperatures reached their highest level during the Holocene, while in the Dajiuhu wetland the temperature remained at a high level. This dipolar pattern of precipitation is a feature of the climate of China on various timescales in north and south of China and is discussed in detail in Chen J. H. et al. (2015). Overall, our results of pollen percentages and biome reconstruction may indicate that the changes of precipitation pattern at Daye Lake during the Holocene were between northern and southern China.

During the late Holocene, especially after 3,000 cal yr BP, Pinus and Artemisia commenced a pronounced increasing trend and there was the increased representation of herbaceous vegetation (Figure 3). The biome reconstruction shows an increase in coniferous forests and herb-dominated vegetation, accompanied by decreases in deciduous broadleaf and warm mixed taxa (Figure 4), indicating a climatic deterioration. It is noteworthy that decreases in temperature and precipitation occurred at other sites adjacent to Qingling Mountains region (Figure 6).



Relationship Between Palynological Diversity and Holocene Climate Change in the Qinling Mountains

Pollen is an important indicator for the reconstruction of past plant diversity. There have been many studies on plant diversity based on the palynological diversity (Xiao et al., 2008; Liang et al., 2019; Rudaya et al., 2020; Mottl et al., 2021). Even though there are several uncertainties involved in reconstructing plant diversity from fossil pollen records. For example, palynological diversity cannot represent the full range of plant diversity due to the limitations of pollen identification, sample size, and the complexity of depositional processes (Odgaard, 2001; Weng et al., 2006; Meltsov et al., 2011; Birks et al., 2016a; Liang et al., 2019). Several taxa can only be identified to family level, and poorly represented entomophilous taxa can lead to the underestimation of plant diversity. However, the vegetation of the Qinling Mountains is dominated by woody plants which are identified mainly at the genus level (4 families + 16 genera of trees and shrubs in Figure 3). And at least 500 pollen grains were counted for each sample in this study to ensure a statistically adequate and representative sample of observations. Moreover, Zhang et al. (2021) suggested that the pollen loading in Daye Lake is predominantly wind–transported, indicating that the palynological diversity reconstructed in this study is representative of the vegetation of the Qinling Mountains region. Nevertheless, several studies have shown that palynological diversity is positively correlated with plant diversity (Odgaard, 1999; Meltsov et al., 2011; Birks et al., 2016a; Felde et al., 2016). Overall, despite these potential limitations of palynological diversity, we assume that the pollen records from Daye Lake can provide a reliable record of changes in plant diversity in the Qingling Mountains region during the Holocene.

The record of palynological diversity at Daye Lake is in good agreement with records of regional climate change (Figure 6), indicating that palynological diversity was highly dependent on the evolution of the regional climate. The low values of palynological diversity and evenness index at the beginning of the early Holocene are consistent with the relatively low temperature and precipitation indicated by the paleoclimate reconstructions. The increased palynological diversity and evenness index during the early Holocene is also consistent with the inferred warm and humid climate, and numerous studies have demonstrated that intervals of warm and humid climate are characterized by high vegetation cover and high palynological diversity in northwest, southwest and Loess Plateau regions of China (Fang et al., 2003; Zhang et al., 2005; Xiao et al., 2008; Zhao and Ding, 2014). Notably, palynological diversity and evenness index at Daye Lake continued to increase during the middle Holocene (7,000–3,000 cal yr BP), even though the precipitation decreased; temperatures remained at a high level (Figures 6A, F), the environmental conditions in the Qingling Mountains continued to favor a high degree of palynological diversity, indicating that the vegetation in the Qinling Mountains was more sensitive to temperature than to precipitation. The palynological diversity also commenced a decreasing trend after ∼3,000 cal yr BP, and it’s clear that the environmental conditions in the area became less favorable for certain plant species, leading to their decreased representation or disappearance. Cheng et al. (2017) also suggested that the alpine timberline on Mount Taibai moved upward to a higher altitude during ∼4,200–2,000 cal yr BP and started to move downward from ∼2,000 cal yr BP. The visible decrease in the palynological diversity of the Daye Lake between 1,200 and 600 cal yr BP may also be resulted from the cold and dry environment which was consist with the sudden decrease in temperature and precipitation in the northern and southern of the Qinling Mountains within the recognizable range of the age error. At the same time, archeological evidence indicated that this period corresponded to the cultural and economic prosperity of the Song Dynasty (Archaeological research institute of Sui-Tang Dynasties of Shanxi Academy of Archaeology, 2018) which revealed the possible influence of human activities on the vegetation. Interestingly, during the past few centuries, palynological diversity increased, accompanied by an increase in temperature and a decrease in precipitation (Figure 6). This seems to support evidence that temperature had been a major factor affedting vegetation evolution in Qinling Mountains region, and that the rising temperatures resulting from global warming had a positive effect on palynological diversity in the region. However, the possible roles played by human activities should also be considered. For example, during the past several hundred years, the increases in Artemisia, Amaranthaceae, and Poaceae pollen percentages in the sediments can be attributed to the development of agriculture in low-altitude areas and open land may be one of the reasons for the increase in palynological diversity (Woodbridge et al., 2021).

Overall, the results of this study indicate that plant diversity in the Qinling Mountains during the Holocene was driven primarily by climate change. The relatively warm and humid environment to the south of the Qinling Mountains has resulted in a higher plant diversity in southern China than in northern China (Sun et al., 2009; Shang and Xing, 2016). Sun et al. (2013) concluded during the warm period of the Holocene, subtropical vegetation in the south expanded and migrated northward into the Qinling Mountains region. The impact of climate on vegetation is also exerted via extreme climatic events such as droughts, floods, and abrupt cooling, which lead to species extinctions and the reduction of biodiversity (Srivastava et al., 2021). Park et al. (2019) showed that in coastal East Asia successive droughts during the ∼8.2 ka caused forest damage and a major reduction of plant diversity. Additionally, Tao et al. (2013) demonstrated that in northwest China the cold and dry climatic event at 4.2 ka resulted in the conversion of grassland to desert, with a greatly reduced plant diversity and vegetation structure. However, the pollen record from Daye Lake seems not to contain clear evidence for the influence of abrupt climatic events on palynological diversity (Figure 6). Notably, climate change will affect the vegetation phenology which will subsequently impact the plant diversity. For example, changes in seasonal temperatures will alter the flowering time of plants, with increases in annual average temperature overall resulting in an earlier flowering time (Hart et al., 2014; Yu et al., 2016).

There is a long history of human impacts on the composition and structure of vegetation, associated with the development of agriculture and the use of fire (Ruddiman, 2003; Rudaya et al., 2020; Kulkarni et al., 2021). In southern China significant agricultural activity began ∼6000 years ago (Cheng et al., 2018), while the large-scale alteration of the vegetation composition and ecosystems has occurred during the past few millennia (Lewis and Maslin, 2015; McMichael, 2021). In the Qinling Mountains, agricultural activity began as early as ∼8000 cal yr BP, associated with cultures such as the Peiligang and Yangshao (Zhang et al., 2018). However, even though a long history of human activities was documented in this area, there is no ambiguous evidence for human disturbance of the vegetation at Daye Lake, possibly due to its high altitude (3,615 m a.s.l.), location above the forest line (Zhang et al., 2021). Liu H. et al. (2002) suggested that the manifest influence of human activities on vegetation is concentrated on the low latitudes in Mount Taibai.

In summary, the temperature of the Qinling Mountains has increased in recent decades due to global warming, which will impact the regional vegetation composition and palynological diversity (Li et al., 2018; Huang et al., 2020). Additionally, the palynological diversity of the Qinling Mountains region may increase with the ongoing climate warming in the future when the direct human interference is absent.




CONCLUSION

Our results show that the climate was the main factor affecting regional vegetation changes and palynological diversity. At the beginning of the early Holocene (11,700–10,700 cal yr BP), the cold and dry climate of the region resulted in predominantly coniferous forest vegetation, with a low palynological diversity and evenness index. During the early Holocene (10,700–7,000 cal yr BP), the warm and humid climate with fluctuations on a centennial time scale promoted the growth and expansion of deciduous broadleaf forest, and there was a corresponding increase in palynological diversity. During the middle Holocene (7,000–3,000 cal yr BP), although the climate became drier, the relatively warm environmental conditions continued to promote vegetation growth and high palynological diversity. During the past ∼3000 years, the temperature and precipitation in the Qinling Mountains decreased substantially, which led to reduction in palynological diversity, and human activities may play a potential role. However, during the past few centuries palynological diversity has increased along with rising temperatures, which may indicate that ongoing warming in the region may have a beneficial effect on vegetation growth and palynological diversity and the natural plant diversity may be in an increasing trend without human interference in the future in the region.
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Tree-ring widths (TRW) of historical and archeological wood provide crucial proxies, frequently used for high-resolution multi-millennial paleoclimate reconstructions. Former growing conditions of the utilized trees, however, are largely unknown. Potential influences of historical forest management practices on climatic information, derived from TRW variability need to be considered but have not been assessed so far. Here, we examined the suitability of TRW series from traditionally managed oak forests (Quercus spp.) for climate reconstructions. We compared the climate signal in TRW chronologies of trees originating from high forests and coppice-with-standards (CWS) forests, a silvicultural management practice widely used in Europe for most of the common era. We expected a less distinct climate control in CWS due to management-induced growth patterns, yet an improved climate-growth relationship with TRW data from conventionally managed high forests. CWS tree rings showed considerably weaker correlations with hydroclimatic variables than non-CWS trees. The greatest potential for hydroclimate reconstructions was found for a large dataset containing both CWS and non-CWS trees, randomly collected from lumber yards, resembling the randomness in sources of historical material. Our results imply that growth patterns induced by management interventions can dampen climate signals in TRW chronologies. However, their impact can be minimized in well replicated, randomly sampled regional chronologies.

Keywords: Quercus spp., hydroclimate sensitivity, forest management, tree-rings, coppice-with-standards, climate reconstruction


INTRODUCTION

Medieval societies in Europe developed the “Coppice-with-standards” (CWS) silvicultural system to ensure a sustainable supply with fuelwood and timber for the growing population. This two-story forest structure combines an understory of even-aged coppice harvested in short rotation for fuelwood and tanning with an uneven-aged partial upper story of standard trees growing at wide spacing for timber production (Mosandl et al., 2010). The earliest historical evidence for this practice dates back to the thirteenth century CE (Hausrath, 1982; Hasel and Schwartz, 2006). Dendroarcheological evidence for CWS management in central Europe during the first millennium CE suggests an even longer tradition, at least since the early medieval period (i.e., 500–1000 CE) (Muigg et al., 2020b). The CWS forest management system was used all over medieval and early modern Europe (Short and Hawe, 2012) until it disappeared in most regions by the mid-twentieth century, when fossil fuels had replaced wood as the primary energy source and modern forestry focused primarily on timber production (Groß and Konold, 2010). A small region in southern Germany (Franconia) (Figures 1A,B) provides one of the few places left in central Europe, where traditional CWS forest stands are still maintained (Albrecht and Abt, 2014).
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FIGURE 1. (A) Location of sampled forest stands for coppice-with-standards (CWS; green) and lumber yards/sawmills (purple). (B) Example of CWS forest structure in Welbhausen (during understory coppice in 2018). (C) Average tree-ring chronologies (raw TRW) and statistics (table) on the detrended tree-ring series. mean age in years; SD, standard deviation; rbar, mean correlation between individual tree series; EPS, expressed population signal and SNR, signal to noise ratio. (D) Climate-growth correlations for all detrended chronologies (using a 30-year spline with a 50% frequency cut off after removing autocorrelation) with hydroclimate parameters for the period 1902–2013. Bars denote upper and lower confidence intervals. Transparent points and bars indicate non-significant correlations. CWS: coppice with standards, HF: high forests, combined: dataset containing both the CWS and HF datasets, random: the random dataset of oak tree ring series collected from lumber yards and a veneer company in the region.


The long tradition of CWS forest management in Europe led to various studies from the fields of forest history and dendroarchaeology (e.g., Bernard et al., 2014; Szabó et al., 2015; Vandekerkhove et al., 2016). As wood samples originating from archeological excavations or historical constructions lack information on site and stand conditions, it is likely that, across Europe, a substantial part of oaks originates from CWS managed forests.

Historical tree-ring chronologies are unique archives of past climate variability and as such are frequently used for multi-centennial to multi-millennial paleoclimate reconstructions with annual resolution (e.g., Büntgen et al., 2011; Tegel et al., 2020). However, forest management interventions that might influence tree growth and its sensitivity to climate variability are typically unknown for such samples. So far, possible influences of management-induced alterations in tree-growth patterns on the suitability of CWS standards for reconstructing climate have not been studied. The aim of this study was to compare climate-growth relationships in CWS standards and trees from nearby high forests (HF) (forests consisting mainly of large, tall mature trees with a closed canopy), to critically evaluate their potential for climate reconstructions. We expected a weaker climate signal in CWS standards compared to oak trees from HF. However, we hypothesized that the hydroclimatic signal of a well replicated regional chronology would not be severely impacted by management-induced growth patterns present in a low proportion of tree-ring series.



METHODS


Study Design and Development of Chronologies

Four datasets of oak [Quercus robur L. and Quercus petraea (Matt.) Liebl.] TRW series were utilized for the purposes of this study (Figure 1A), comprising (a) oak standards from two actively managed CWS forests (CWS dataset), (b) TRW series of oaks, originating from high forests (HF dataset), (c) a dataset containing both previous (CWS and HF) datasets (combined dataset), and (d) a larger dataset of randomly sampled oak trees (random dataset) (see also Supplementary Figure S2).

The CWS dataset consisted of TRW series from northern Bavaria (Germany), sampled by Muigg et al. (2020b). Stem disks were collected from two actively managed CWS forest stands near Weigenheim (WEIG) and Welbhausen (WELB). To detect signals of CWS in the individual TRW series, we first detected growth releases by using the adapted growth averaging method as described by Muigg et al. (2020b). Following the methods proposed in the study by Muigg et al. (2020b), we applied a standardized scanning for growth releases at an average chronological interval of 26–36 years with less than 5 years standard deviation (SD) on the TRW data from WEIG and WELB to select 135 trees that showed the strongest CWS signal (hereinafter referred to as CWS dataset).

The rest of the datasets (HF, combined and random) that were used here for comparison consisted entirely (or partly in the case of the combined dataset) of oak trees (505 trees in total) from nearby lumber yards in Bad Mergentheim (BAME; 210 individuals) and Wittighausen (WITT; 233 individuals) and a veneer company in Lohr (62 samples). The stem disks (CWS, HF, combined and random) used in this study were collected close to the lower crown height following the random sampling approach (Tegel et al., 2010). The HF dataset consisted only of those trees (128 in total) that did not show cyclic and temporally aligned growth release events (cf. Muigg et al., 2020b) and therefore presumably originated from high forests. Additionally, we merged the CWS and HF datasets (combined dataset) to assess the hydroclimate signal of a hypothetical chronology containing a relatively large proportion of trees (ca. 50% in this case) with periodic management-induced growth patterns. Finally, we assembled a “random dataset” (see Tegel et al., 2010) by merging the full TRW datasets of WITT, BAME, and Lohr (in total 505 oaks of unknown management) to simulate the random composition of samples from archeological and historical material (Figure 1A).

All samples were prepared with standard dendrochronological methods (Speer, 2010). TRW was measured with a precision of 0.01 mm using a movable object table (Megatron) and recorded using the program Berlin Muehle 4 1.0 (developed by Tobias Heussner). The TRW series were crossdated with PAST software (Knibbe, 2008). Three different detrending methods were tested on the combined dataset after removing auto-correlation (AR), including a 30-year and a 100-year spline (Cook and Peters, 1981; Büntgen et al., 2012) and a modified negative exponential model. Finally, four average TRW chronologies were developed by using the bi-weight robust mean (Supplementary Figure S1). The datasets used in this study include oaks with individual tree ages over 200 years. However, we limited our analyses to the period 1902–2013 due to the availability of instrumental climate data for the study region (starting in 1902) and the availability of tree ring records (ending in 2013 for the WITT, BAME, and Lohr datasets).

The quality of the developed chronologies (Figure 1C for the 30-year spline) as well as the relationships between hydroclimate variables and growth (Supplementary Figure S1) were tested on the raw TRW data and on different detrending methods after removing auto-correlation. The strongest correlations with hydroclimate variables were obtained when applying a 30-year cubic spline detrending. Hence, this detrending method was chosen for further analyses. The quality of the detrended chronologies was assessed by calculating the descriptive statistics EPS (expressed population signal), rbar (mean interseries correlation) and SNR (signal to noise ratio). EPS is an indicator of how well a chronology represents a theoretical infinite population (Wigley et al., 1984) and is used as an indicator of common variability in detrended tree-ring chronologies. Rbar is the mean correlation between series within a chronology and indicates the common signal strength in chronologies (Speer, 2010). Finally, SNR is a measure of the desired signal in each chronology versus the amount of unwanted information and random variation (Speer, 2010). All four chronologies displayed high EPS, ranging from 0.97 for the CWS and HF chronologies, 0.98 for the combined to 0.99 for the random chronology. Rbar was found to be lowest for the combined (0.283) and highest for the CWS (0.325) chronology.



Climate, Soil Moisture Content, and Drought Indices

We obtained gridded monthly temperature and precipitation data for the study region from the Royal Netherlands Meteorological Institute (KNMI) climate explorer,1 which were available at a 0.5 × 0.5o resolution (CRU TS.03). Based on these data, we calculated the Standardized Precipitation Evapotranspiration Index (SPEI) using the SPEI package in R (Vicente-Serrano et al., 2010). Although we calculated different accumulation periods of the SPEI index (1, 3, 6, and 12 months) we selected the SPEI index calculated over an accumulation period of 6 months since it was found to correlate best with growth of oaks in the region. In addition, we acquired monthly data of modeled soil moisture content in the upper 100 cm of the soil from the NOAA-CIRES-DOE Twentieth Century Reanalysis V3 datasets (Slivinski et al., 2019). Twentieth Century Reanalysis data accessed by the NOAA/OAR/ESRL PSL, Boulder, Colorado, United States, from their Website on 14/3/2021. All the hydroclimatic variables used in the study were available for the period 1902–2013.



Climate-Growth Relationships and Evaluation of Reconstruction Skills

Hydro-climate sensitivity of the four developed chronologies was assessed by computing bootstrapped Pearson correlation functions between the detrended chronologies and monthly as well as seasonal means for all hydroclimatic variables (average monthly temperature, monthly precipitation sums, SPEI-6 and monthly soil moisture index). Correlation functions were computed for the individual months from April to September and seasonal means for spring (March–May), summer (June–August), as well as for the vegetation period (March–September), the period between April and September (AMJJAS) and the whole year. This analysis was performed for the period between the years 1902 and 2013 for which all the hydroclimatic variables were available. Once the strongest relationship between hydro-climatic variables and oak growth in the region was identified, we applied the commonly used split period (early and late, 1902–1957 and 1958–2013, respectively) ordinary least squares (OLS) regression approach to calibrate the reconstructions. The strength of the relationship between reconstructed and observed values was evaluated by the reduction of error (RE) and coefficient of efficiency (CE), with positive values for these statistics indicating that the reconstruction contains useful information (Fritts, 1976; Cook et al., 1994). The uncertainty in the reconstructions was assessed by calculating the root mean square error (RMSE). We used the functions implemented in the treeclim package in R (Zang and Biondi, 2015) to assess the relationships between annual growth and hydroclimate variability as well as to evaluate the reconstruction skills of each developed TRW chronology. All the analyses were performed using R software (R Core Team, 2013).




RESULTS

The average tree age in the four TRW chronologies ranged from 120.4 (SD = 35.6) years for the HF dataset and 155.0 years (SD = 35.3 years) for the CWS dataset. Average tree age of the combined and random chronologies was 138.2 (SD = 39.4) and 140.1 (SD = 36.8) years, respectively.

Climate-growth correlations for the period 1902–2013 revealed not significant correlations with temperature (Supplementary Figure S1B) but significant positive correlations with all hydroclimate variables that were considered in this study (precipitation, SPEI-6 and soil moisture content) in annual and different monthly and seasonal time windows (Figure 1D). Climate growth correlations were overall strongest for the random chronology, followed by HF and combined chronologies and weakest for CWS. Note that correlations with annual precipitation were only significant for the HF and random chronologies, while mean precipitation in the months from April to September showed significant positive correlations with all chronologies except for the CWS. SPEI-6 showed insignificant correlations with growth of CWS for the early months of the vegetation period (April, May) and soil moisture content only showed significant correlations with CWS for June, July and the summer season. A significant positive correlation was observed between average soil moisture content in the spring months and the random chronology. September soil moisture showed insignificant correlations with all four chronologies. The strongest correlations for all four chronologies were found with June precipitation. Hence, this parameter was used to test the reconstruction skills of the developed chronologies for the period 1902–2013 (Figure 2).


[image: image]

FIGURE 2. Different regional June precipitation reconstructions for the period 1902–2013 (split calibration/verification periods 1902–1957 and 1958–2013, respectively) and comparison with instrumental climate data (gray). (A) Random chronology (black), (B) high forest (HF) chronology (blue), (C) combined chronology (orange), and (D) standards (CWS) chronology (green). Highlighted gray areas denote positive and negative hydroclimatic extremes that were used for visually assessing the accuracy of the reconstructions in years with extremely low and high June precipitation.


To compare the skills of the four chronologies in reconstructing past climate variability, we performed reconstructions of June precipitation over the period 1902–2013 and compared the reconstructed values against instrumental records from the region (Figure 2). All four models (OLS regressions) used for reconstructions displayed a significance level of 99.9% (p < 0.001). Robustness over time was tested for all reconstructions by splitting the period 1902–2013 into two equal 56-year sub-periods for calibration (1958–2013) and verification (1902–1957). The strongest correlation for the full period (1902–2013) was obtained for the random chronology (Figure 2A; r = 0.47). The correlation coefficient was slightly lower for the calibration period (1958–2013; r = 0.42) than for the verification period (1902–1957; r = 0.51) but still statistically significant. The skill of the reconstruction in capturing precipitation variability is demonstrated with positive RE and CE of 0.26 and 0.25, respectively. Similar results were obtained for HF and combined chronologies (Figures 2B,C), with full-period correlation coefficients 0.44 and 0.42, respectively. In both cases, the correlation coefficients were lower for the calibration period (r = 0.40 and 0.38, respectively) than for the verification period (r = 0.48 and 0.46, respectively). RE and CE were slightly higher for the combined (0.22 and 0.21) than for the HF chronology (0.21 and 0.20). The lowest correlation coefficient for the full period was observed for the CWS chronology (Figure 2D; r = 0.36). Again, correlations remained significant over time, showing lower values for the calibration period (r = 0.32) than the validation period (r = 0.40). RE (0.16) and CE (0.15) were considerably lower compared to the other reconstructions but still larger than zero and therefore confirming the skills of the reconstruction.



DISCUSSION


Dataset Composition and Sample Size

Four TRW chronologies were created based on datasets, which contained differing proportions of trees with periodic management-induced growth releases (sustained growth increases). The CWS dataset consisted entirely of trees (135 in total) from actively managed CWS stands (see also Muigg et al., 2020b for further information). In a CWS forest, the reduced competition for light, nutrients and water after periodic understory coppice causes an increased growth in the remaining standards, commonly referred to as release (Müllerová et al., 2016). The absence of such periodic and temporally aligned release events in the HF dataset suggests the absence of substantial alterations in the canopies or understories of target trees, indicative of growing conditions in a high forest (Nowacki and Abrams, 1997; Bergès et al., 2000). To obtain such release-free TRW series a large dataset of 505 oak trees sampled in lumber yards and a veneer company in the same region was scanned for the absence of characteristic growth releases, providing a high forest (HF) dataset with a sample size of 128 trees and therefore equally well-replicated as the CWS dataset. The combined dataset, including all CWS and HF trees, consisted of 263 trees. With half of the trees originating from CWS forests we expected a strong influence of management interventions also in this dataset. For the random dataset, the highest replication of 505 samples was achieved by including all available oak trees, randomly sampled from regional lumber yards and sawmills to simulate the sampling conditions characteristic in historical and archeological samples, i.e., lack of stand information. Note that the lack of information on historical management practices also applies for trees from old-grown stands, where different and changing silvicultural measures in the past cannot be ruled out, especially before the onset of modern forestry, i.e., before the second half of the nineteenth century (Hausrath, 1982; Hasel and Schwartz, 2006).



Climate Reconstruction

Not significant climate-growth correlations found with temperature for all four chronologies are explicable with the prevalence of hydroclimate, primarily controlling oak growth in low elevation sites (Büntgen et al., 2010; Tegel et al., 2020). The strong correlations found for June precipitation for all four chronologies, are in accordance with previous studies on the climatic sensitivity of oak growth (e.g., Büntgen et al., 2010). It is, however, striking that the random chronology showed the best correlation results for all climate parameters and seasonal windows, consistently followed by the HF and combined chronologies, while the CWS chronology showed the weakest and, in most cases, not significant correlations (Figure 1D). This provides strong evidence for the prevalence of CWS management-induced signals in the TRW chronology over the climate signal and therefore, raises objections to the suitability of CWS standards for climate reconstructions.

The pronounced differences in the correlation strength with hydro-climate variables as well as in the reconstruction skill among the four chronologies revealed the influence of past forest management on the climate signals present in TRW chronologies. The random chronology showed the strongest correlations with all hydroclimate variables and provided the best reconstruction skills for June precipitation, followed by HF and the combined chronologies, while the CWS chronology showed the weakest correlations with hydroclimate variables and reconstruction skill. This implies that trees from CWS managed forests are less suitable for TRW based climate reconstructions than trees from high forests. However, combining TRW series which are strongly influenced by management interventions with TRW series from high forests improves the strength of the climate signals present in an average TRW chronology, as was observed here for the combined chronology.

It is worth noting here that the chronology with the highest replication (random; 505 samples) provided the strongest associations with instrumental climate data. The importance of sample replication for tree-ring based reconstructions has already been highlighted by earlier studies and for other tree species (Büntgen et al., 2012). However, in our study replication alone cannot explain the observed differences in the correlation strength and reconstruction skills among the developed chronologies. The combined chronology (263 samples) showed weaker correlations with hydroclimate variables and demonstrated a lower performance in reconstructing June precipitation than the HF chronology (128 samples). These results further demonstrate the importance of testing individual TRW series for the presence of strong management signals in TRW series (for instance, see Muigg et al., 2020b).

The reconstruction based on the random chronology was also more accurate in years with extremely low and high precipitation sums than the rest of the chronologies. Several years illustrate that the reconstruction reflected the actual precipitation sums best based on the random chronology, successively less in the HF and combined chronologies, while the least accurate was the CWS chronology. Exemplary years, which are also confirmed by other studies (highlighted in Figure 2) include 1915, 1947, 1976, and 2000 (Brázdil et al., 2016; Hänsel et al., 2019). It is, however, striking that June precipitation in 2003 (highlighted in Figure 2) is most clearly reflected in the reconstruction based on the CWS chronology (Figure 2D) and successively less pronounced in the reconstructions based on the combined, HF and random chronologies (Figures 2A–C).

Large amounts of archeological findings of oak wood demonstrate the preference of the species for various constructions throughout past epochs and enabled the development of long and well replicated oak tree-ring chronologies in Europe, providing one of the most important proxy records for high-precision multi-millennial climate reconstructions. During the recent decade, several oak tree-ring based paleoclimate reconstructions have been published by various authors (Büntgen et al., 2010, 2011; Cooper et al., 2013; Wilson et al., 2013; Dobrovolný et al., 2014; Cook et al., 2015; Prokop et al., 2016; Muigg et al., 2020a; Tegel et al., 2020). Several authors have stressed the importance of enhanced understanding of past climate to predict future climate variability (Hegerl and Russon, 2011; Woodhouse et al., 2016; Tierney et al., 2020). As oak wood has been the preferred raw material for various purposes in historical times, particularly for construction timber, it was regarded as a valuable forest resource and hence, oak forests have been extensively managed (Haneca, 2011). The CWS management system has been applied on oak forests for at least the past 1,500 years (Muigg et al., 2020b), most likely with varying intensities in different regions and periods (Short and Hawe, 2012; Short and Campion, 2014). Other forms of historical forest management have been practiced all over Europe, e.g., simple coppice management (Stajic et al., 2009; Unrau et al., 2018). Samples from archeological excavations and historical buildings lack information on the individual tree stands (Tegel et al., 2010). As the growing conditions of such samples remain unknown, potential effects of historical forest management cannot be ruled out. However, they can be compensated for by massive sample replication (cf. Büntgen et al., 2010). Having said this, uncertain silvicultural treatment in the early phases of modern oak trees, which are commonly used to calibrate climate-proxy relationships, could easily lead to under- or overestimation of past climate variability and therefore need to be considered as a potential bias in future studies. Similar to the CWS system, other management interventions, such as thinning can influence climate-growth relationships (see for example Cescatti and Piutti, 1998; Pérez-de-Lis et al., 2011; D’Amato et al., 2013) and should be also considered in tree-ring based reconstructions. Based on the results of this study, scanning of modern reference datasets for management-induced growth patterns provides an important tool to improve future tree-ring based climate reconstructions.




CONCLUSION

Our results imply that the influence of historical forest management on TRW does affect their suitability for climate reconstructions and should be considered in future paleoclimate reconstructions. It also shows, however, that the negative effects of historical forest management can be mitigated with sufficient sample replication, compensating for the management-induced effects of CWS management and presumably other forms of historical forest management practices. This information is all the more important for future paleoclimate reconstructions in regions with long historical significance and constant human impact on the cultural landscape. Further consideration regarding previous forest management should be given when selecting modern reference material for climate-growth calibration. Historical forest management practices and their influence on tree-ring based reconstructions should be considered in future studies. The field of forest history might provide substantial information for combined studies (Brázdil et al., 2016).
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The scientific field of forest history studies the development of woodlands and their interrelationship with past human societies. During the last decades, the subject has experienced a constant decrease of importance, reflected in the loss of representation in most universities. After 200 years of existence, an insufficient theoretical basis and the prevalence of bibliographical and institutional studies on post-medieval periods have isolated the field and hindered interdisciplinary exchange. Here we present possible new perspectives, proposing wider methodological, chronological, thematic, and geographical areas of focus. This paper summarizes the development of the field over time and recommends content enhancement, providing a specific example of application from Roman France. Furthermore, we introduce a topical definition of forest history. Following the lead of other fields of the humanities and environmental sciences focussing on the past, forest history has to adapt to using other available archives in addition to historical written sources. In particular, historical and archeological timber as well as pollen are essential sources for the study of past forests. Research into forest history can substantially add to our understanding of relevant issues like societal responses to climate change and resource scarcity in the past and contribute to future scenarios of sustainability.

Keywords: forest history, dendroarcheology, environmental history, interdisciplinary research, historical wood utilization


INTRODUCTION

After the Last Glacial Maximum (∼21 ky ago) and from the start of the Holocene (ca. 11.7 ky ago; Figure 1A), forests recolonized large parts of Europe (Figure 1; Giesecke et al., 2017; Marquer et al., 2017). Forests provided the basis for the development of civilizations and have remained a key factor for human societies until today (Küster, 1998, 2010). Throughout the Holocene, forests had to serve multiple purposes for human societies, providing food and raw material, particularly wood, for construction and tools. Furthermore, wood was one of the most important sources of energy for domestic and productive processes until the nineteenth century (Schmidt, 2009; Mosandl et al., 2010). Growing human impact on natural forests evolved with the development of sedentism (Dow and Reed, 2015) and agriculture (Bogucki, 1996; Pryor, 2003; Dow et al., 2005; Pinhasi et al., 2005), when human societies started reaching out for wood resources, settlement areas and farmland. In Europe, this process started during the Early Neolithic period, around 6000 BCE, associated with the Starèevo culture in south-eastern Europe and the Cardial culture in the Mediterranean (Gyulai, 2007; Shennan, 2018) and expanded to areas north of the Alps during the 6th millennium BCE, manifested in the Linear Pottery culture (Tegel et al., 2012; Lipson et al., 2017). The anthropogenic influence has been shaping cultural landscapes ever since (Bradshaw, 2004; Krzywinski et al., 2009; Mercuri et al., 2015).
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FIGURE 1. Chronological overview for possible forest history research in Europe. (A) Classification of Geology (Cohen et al., 2013; Walker et al., 2018), Climatology (Litt et al., 2001, 2007) and Archeology in central Europe (Cunliffe, 2008; Scholkmann et al., 2016). (B) Post-glacial changes of occurrence for the most common European tree taxa, established from pollen records (data from Giesecke et al., 2017). (C) Chronological range of available sources: Historical record (red), tree rings (green), charcoal (black) and pollen (blue).


The invention of metallurgy, most importantly of bronze, starting in Eurasia during the 5th millennium BCE (Radivojević et al., 2013) and iron, developed around 2000 BCE in Anatolia (Souckova-Siegelová, 2001; Akanuma, 2008) and spread to large parts of Eurasia during the early 1st millennium BCE (Pigott, 1999), significantly increasing the demand for wood for charcoal production. The exploitation of woodland resources by human societies has reshaped environments, and vice versa, as environmental conditions have had impacts on economies and societies (Ljungqvist et al., 2021). Woodland areas were cleared in times of prosperity and partially recolonized by forests during times of decline following detrimental climatic or demographic developments (Chew, 2001; Küster, 2010; Ljungqvist et al., 2018). Therefore, forest and human history are strongly interconnected. Over time, human impact intensified with growing populations, reaching a first peak in large parts of Europe during the High Medieval Period (ca. 1000–1300 CE) (Bartlett, 1993). In the following centuries, deforestation increased in large areas due to building activity and the development of proto-industrial sectors, e.g., glass and charcoal production, mining and smelting. Rising economic concerns over wood supplies, beginning in the 18th century, led to the development of modern forestry (Schmidt, 1998, 2002, cf. Hölzl, 2010; Radkau, 2012).

Traditionally, studies of forest history work mainly with historical records and focus on the last few centuries (e.g., Franz, 2020), which is a strong limitation to the most recent periods of human history (Figure 1C). In this paper, we address the potential of dendroarcheological analyses as a source for forest history studies and furthermore, discuss possible interdisciplinary concepts. The combination of (dendro) archeological and palynological data enhances our understanding of demographic changes, settlement dynamics and general vegetation history, providing a wider temporal scope for future studies of forest history.



DEVELOPMENT OF THE FIELD

In Europe, interest in the historical development of forests began with the progression of forest sciences, primarily in Germany, during the eighteenth and nineteenth centuries. Consequently, early forest history studies were predominantly published in German-speaking countries (e.g., Stisser, 1737; Walther, 1816; Behlen, 1831; Pfeil, 1839; Bernhardt, 1872, 1874, 1875; Roth, 1879; Meister, 1883; Schwappach, 1886; Seidenstricker, 1886), but also in France (Baudrillart, 1824) and Italy (Di Bérgener, 1859). The Anglo-American research advanced with the foundation of the Forest History Society (FHS) in 1946 (originally: Forest Products History Foundation, cf. Anderson, 2018).

The forester and conservationist Felix von Hornstein suggested a theoretical and methodological separation between the history of forestry (German: “Forstgeschichte”) and the history of human-nature relationships (German: “Waldgeschichte”) (von Hornstein, 1951). The International Union of Forest Research Organizations (IUFRO) Forest History Group, formed in the early 1960s, provided different definitions for the concepts of forest history sensu stricto, i.e., the history of forestry, and sensu lato, i.e., a synthesis with the history of (natural) forests and human impact (IUFRO, 1973). The forest scientist Kurt Mantel (1990) excluded pre-historic periods from forest history (German: “Forstgeschichte”), whereas Karl Hasel defined it as the study of the changing relationship between forests and human societies over centuries and millennia, yet distinguishing it from history of natural forests (German: “Waldgeschichte”), which is mainly studied with palynological methods (Hasel and Schwartz, 2006).

These definitions of forest history are contradictory, regarding methodological and chronological aspects. As they were all published in German, they were not adopted by the international research community. In the German-speaking countries, however, an increasing separation took place from the 1950s between studies on pre-historic forests (cf. German: “Waldgeschichte”), performed by experts of vegetation history (Firbas, 1949, 1952; von Hornstein, 1951, 1958; Lang, 1994), and historic forests (cf. German: “Forstgeschichte”), studied by historians (Hilf, 1938; Hausrath, 1982; Mantel, 1990). Vegetation history progressed to a modern field of science, including Holocene human impacts (e.g., Berglund, 2003; Marquer et al., 2017; Roberts et al., 2018), whereas “Forstgeschichte” mostly remained within the limits of historiography (e.g., Franz, 2020, cf. Furay and Salevouris, 2017).

Outside Germany, forest history obtained new impetus in the late 1970s and 1980s when it became the interest of geographers and ecologists (e.g., Bertrand, 1975; Rackham, 1976). A first international congress of forest history was held in 1979 in Nancy, France (Schuler, 1982). In 1981 the “Groupe d’Histoire des Forêts Françaises” was founded and, in the following years, aimed for a multidisciplinary approach, combining historical, anthropological and sociological research with ecological and economic aspects (Corvol-Dessert, 2003).

Until the end of the twentieth century, various studies on forest history have been published, analyzing written and iconographic sources and mostly emphasizing on late to post-medieval periods (e.g., Kuonen, 1993; Schmidt, 1998, cf. Rubner, 2002). Earlier periods and millennia-long developments, however, have mainly been the topic of archeological and environmental science studies (Bennett et al., 1990; Bradshaw and Mitchell, 1999; Vera, 2000; Behre, 2002; Bradshaw et al., 2003; Kramer et al., 2003; Rackham, 2003; Whitehouse and Smith, 2004; Lindbladh et al., 2013; Stephens et al., 2019).

At the turn of the millennium, several authors critically addressed the position of traditional forest history and provided suggestions for a new orientation in the twenty-first century, e.g., the adaption of methodological innovations from cultural history research, social sciences, historical ecology, the inclusion of natural sciences or a shift toward a general environmental history (Seling, 1998; Agnoletti, 2000, 2006; Schmidt, 2000; Bürgi et al., 2001; Hürlimann, 2003; Johann, 2006). Several new national publications have come out in recent years (e.g., Agnoletti, 2018; Bonan, 2019; Gallé and Quéruel, 2019; Huth, 2019; Franz, 2020). International publications on the field have been issued in different journals by the FHS, i.e., “Forest History” (1957–1974), the “Journal of Forest History” (1975–1989), and “Forest and Conservation History” (1990–1995), before merging with the journal “Environmental History Review”, published by the American Society of Environmental History, in 1996 (Rothman, 1996). Since then, the quarterly journal “Environmental History” has been co-published.1 Alongside, the FHS has published the monthly magazine “Forest History Today” since 1995.

Nevertheless, the loss of representation of the scientific field in most universities or their integration into institutes of forest policy, especially in the German speaking countries, reflect a constant decrease in the importance of traditional forest history during the last decades (Johann, 2006). Recent advances of environmental history research and particularly dendroarcheological and palynological studies, call for fundamental reconsiderations of theories and methods of traditional forest history.



A TOPICAL DEFINITION OF “FOREST HISTORY”

As demonstrated above, previous definitions of forest history are contradictory and need further consideration. The Food and Agriculture Organization of the United Nations (FAO) defines land areas larger than 0.5 ha with more than 10% crown cover of trees, which are higher than 5 m as “forests” (FAO, 1999). Some traditionally managed or treeline stands might not fulfill the FAO criteria for forests but can still be research subjects of forest history. Hence, a topical definition for the field must consider all types of woodlands.

Therefore, we propose a general definition for the field of forest history as “the investigation of past woodlands and past human-woodland-interaction,” combining research into both natural forests and anthropogenic influences.

Our new definition aims at the inclusion of methods from archeological and environmental sciences (Figure 2). Furthermore, it repeals the temporal limitations of earlier definitions. A prevailing focus on the Holocene is acknowledged, as significant human impact on forests is restricted to the post-glacial period (Figure 1A). However, some sedentary societies had developed long before the invention of agriculture, influencing their local environment more strongly than mobile groups (Dow and Reed, 2015; Arranz-Otaegui et al., 2016; Alenius et al., 2020). Accordingly, the new definition is deliberately not restricted to the Holocene.
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FIGURE 2. Schematic diagram of modern forest history (green), positioned between the scientific fields of history, archeology and environmental sciences (light blue). A selection of overlapping sub-fields is illustrated in light green.




READING FOREST HISTORY FROM DENDROARCHEOLOGICAL SOURCES

A case study from Roman Gaul illustrates the potential of dendroarcheology for forest history research: The city of Divodurum (Mediomatricorum, or Divodurum of the Mediomatrici), today’s Metz in north-eastern France, was one of the largest cities in Roman Gaul with about 40,000 inhabitants (Vigneron, 1986). Archeological excavations on Boulevard Paixhans in 1995 discovered the remains of wooden Roman quay structures (Rohmer, 1996, 1999). Dendrochronological analyses of 53 oak piles specified the structures’ age and allowed the distinction of four construction phases between 119 and 249 CE (Figure 3A; Rohmer and Tegel, 1999). The oldest phase (g 1) exclusively used split wood for the piles felled in 119 CE, whereas roundwood was utilized during the other phases (g 2–g 4), dating between 164 and 249 CE. The trees used as piles of the youngest construction phase were approximately 70 years old, while the trees from older phases show different age distribution, mostly between 80 and 120, with some individuals up to more than 170 years. The temporal proximity of the felling dates for construction g 3 and the initial growth onset of trees from g 4 suggests the successive use of a nearby woodland (Figure 3).
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FIGURE 3. Dendroarcheological case study example Metz, Boulevard Paixhans (Rohmer and Tegel, 1999). (A) Bar graph of single trees grouped by construction phases (g 1–g 4). Presence of pith and sapwood is indicated (black). (B) Detail photography of characteristic growth pattern caused by 3-year cyclic cockchafer outbreaks. Below: Years of outbreaks highlighted. (C) Mean tree-ring width curves for each construction phase (g 1–g 4). Note the onset of g 4 right after the felling of g 3.


All piles were anatomically identified as oak (Quercus spp.) and when synchronized, generate a mean chronology of 346 years (Rohmer and Tegel, 1999), permitting the reconstruction of several stages of work processes and at the same time, the local forest history between 97 BCE and 249 CE:

(1) A local oak dominated uneven-aged broadleaf or mixed forest had been growing during the first century BCE until it was cut in 119 CE for the initial construction phase of a pile row (g 1). As the old-grown trees provided large stem diameters, the timber was split radially, i.e., along the rays, to obtain smaller piles.

(2) Roughly 50 years later, two more rows of piles were assembled (g 2 and g 3). Higher annual growth rates indicate less dense forest stand conditions (Figure 3C). The distribution of felling dates between 164 and 177 CE suggest a decreasing availability of local timber resources (cf. Hughes, 1994).

(3) After the harvest, a coppice-like forest of even-aged oak shoots was growing from the older stools, probably reaching a dense stocking after 20–30 years, as indicated by a visible decrease of annual growth rates (Figure 3C). These were felled after approximately 70 years in 249 CE to provide timber for the last construction phase (g 4).

Characteristic growth patterns in the studied oak samples of phase g 2 and g 3 during the mid-second century CE, identified cyclic cockchafer (Melolontha melolontha L.) outbreaks in 152, 155, 158, and 161 CE (Figure 3B) and provide evidence for the local preponderance of open vegetation (arable land, pasture meadows, orchards), as these insects require such vegetation for their 3–4-year larva stadium (Huiting et al., 2006; Švestka, 2010; Kolář et al., 2013; Billamboz, 2014a). The constantly large proportion of open vegetation, also displayed in local pollen records (Brkojewitsch et al., 2013), indicates a limited amount of local woodland area in Roman times and thus, further supports the model of successive exploitation of consecutive forest generations originating from the same nearby forest area (Rohmer and Tegel, 1999).



DISCUSSION

The short case study demonstrates the possibility to obtain precise information on forest structure and management in the past without the use of written sources and displays the advantage of preventive archeology (Laurelut et al., 2014). Furthermore, it shows the potential of gaining knowledge on forest history from a combination of dendrochronological, archeological, wood anatomical and ecological aspects. As afforestation was not practiced by Roman authorities, except for some sacred districts (Nenninger, 2001), we need to consider a shortage of wood supply in the vicinity of Metz in the mid-second century. For Carnuntum, a roman city of comparable size to Divodurum in today’s Austria (Neubauer et al., 2012), 15,5 ha of forest area were required for the fuelwood for one winter heating season (Lehar, 2017), not including fuelwood for year-round domestic use (e.g., cooking) and production processes (e.g., glass, pottery, metallurgy, lime burning), timber production and other woodworking.

Local to supra-regional shortages of woodland resources occasionally appeared throughout human history and led to different consequences from the abandonment of settlements to shifts in socio-economical strategies. The last severe concerns over supra-regional wood supplies in Europe led to the foundation of forest institutes and the development of forest sciences and modern forestry in the eighteenth and nineteenth centuries (Schmidt, 1998, 2002; Hölzl, 2010). The recent decline of forest history, mentioned above, must be considered in view of a general decline of forest sciences within the last decades (Oesten and von Detten, 2006).

Following the newly formulated definition, forest history is closely connected with environmental history as well as historical ecology and historical geography, when dealing with woodlands and woodland products. Various methods allow for the investigation of past woodlands and human-woodland interactions, for example dendroarcheology, palynology or genetics (Herbig, 2006; Gugerli and Sperisen, 2010; Lindbladh et al., 2013; Billamboz, 2013, 2014b, Marquer et al., 2017; Roberts et al., 2018; Wagner et al., 2018; Dominguez-Delmás, 2020). Other disciplines, such as paleoclimatology, paleoecology, archeology or archeobotany, have developed various data archives (Figure 1C), and successfully compared multiple proxy data to obtain new information (e.g., Jacomet, 2013; Lindbladh et al., 2013; Kimiaie and McCorriston, 2014; Tegel et al., 2020). These archives allow scholars to study the history of past woodlands across the Holocene and beyond, providing essential information to overcome temporal limitations in forest history (e.g., Jahns et al., 2019).

However, previous forest history studies have mostly worked with historical methods and are therefore restricted to periods with evolved textuality (e.g., Bamford, 1956; Appuhn, 2010). It is indispensable for future research to extend the temporal focus by consulting wood itself as a primary source for forest history. The investigation of current vegetation can provide important information on former woodland structures. Living trees in old-growth forests can reach back several centuries to the past (e.g., Martin-Benito et al., 2020). Vast amounts of construction timber from past centuries are preserved in historical buildings, providing information for the last millennium (e.g., Hoffsummer and Mayer, 2002; Seiller et al., 2014; Haneca et al., 2020). Under waterlogged conditions, wooden constructions and objects are preserved for millennia (e.g., Tegel et al., 2012; Rybníček et al., 2020). Archeological excavations constantly unearth wooden structures from past epochs and provide new insights into woodlands in prehistoric times (Billamboz, 2003; Čufar et al., 2015; Tegel and Vanmoerkerke, 2016). Combined approaches hold valuable sources for forest history studies (e.g., Jamrichová et al., 2013; McGrath et al., 2015).

The field of dendrochronology offers millennia-long and annually resolved data yielding extensive information on forest composition, structure and possible management as well as anthropogenic species selection, felling activities, timber transport, wood technology and climate (e.g., Kuniholm, 2001; Baillie, 2002; Briffa and Matthews, 2002; Tegel and Vanmoerkerke, 2014; Tegel et al., 2016; Billamboz et al., 2017; Ljungqvist et al., 2018; Haneca et al., 2020; Muigg et al., 2020). Age/diameter models, also suitable for young individuals with few tree rings, might contribute additional information on forest management (Out et al., 2018). Palynological studies provide vast amounts of data for previous forest vegetation and innovative models for spatio-temporal landscape development on local to supra-regional scales (Waller et al., 2012; Lindbladh et al., 2013; Marquer et al., 2017; Roberts et al., 2018). Archeobotany and anthracology can contribute specific evidence for resource management strategies by comparing on-site and off-site pollen, charcoal and macrofossil data (Jacomet, 2013; Kabukcu and Chabal, 2020). Recent advances in ancient plant DNA research hold great potential for reconstructing the dynamics of reforestation and species distribution (Wagner et al., 2018).

A general geographical scope for the field of forest history must include all areas with woodland vegetation as well as regions where forest products have been imported by humans (e.g., Hellmann et al., 2013, 2015; Shumilov et al., 2020). Despite earlier attempts for an international approach (Johann, 2006) and occasional studies from Asia (e.g., Liu and Cui, 2002; Sheppard et al., 2004) and Africa (e.g., Stahle et al., 1999; Campbell et al., 2017), the current field of forest history has a strong focus on Europe (e.g., Smith and Whitehouse, 2010; Eckstein et al., 2011; Novák et al., 2019; Wiezik et al., 2020) and North America (e.g., Mackovjak, 2010; Anderson, 2018; Gajewski et al., 2019). Considering that only 14% of today’s global forest lie within temperate zones and 61‘ of the world’s primary forests are located outside this area (FAO, 2020), a global perspective should generally be the aim of future forest history research.



CONCLUSION

In the last decades, several disciplines from the fields of humanities have adapted and opened up to novel methodological concepts and research designs, leading to new interdisciplinary sub-fields like “environmental archeology” (Branch, 2015; O’Connor, 2019) or “environmental history” (Simmons, 1993, 2008; Hoffmann, 2014). Other fields have traditionally used a combined historical approach, e.g., “historical ecology” (Crumley, 1994; Balée, 1998, 2006; Bürgi and Gimmi, 2007) and “historical geography” (Baker, 2003; Schenk, 2011; Haffke et al., 2011).

Following their lead, the field of forest history will have to (i) open up to multilateral discussions with adjacent fields of both humanities (history, archeology) and sciences (paleoclimatology, paleoecology), (ii) approach research questions with a multidisciplinary spectrum of methods, (iii) position itself in the context of new research fields, e.g., environmental history, and (iv) integrate itself into the wider research context of paleoenvironmental sciences, following the concept of consilience (Wilson, 1998; McCormick, 2011; Izdebski et al., 2016).
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In this review, we have focused on the following key points: (1) living trees in European Russia and their climatic sensitivity. Species suitable for tree-ring analyses, their age limits, spatial distribution of temperature- and drought-sensitive trees, and the available tree-ring chronologies. (2) Extension of the living-tree chronologies using archeological and architectural samples. Dendrochronological dating of archeological and cultural monuments. (3) Tree-ring-based climatic reconstructions in European Russia. European Russia drought atlas. (4) Climatic and environmental reconstructions in the Northern Caucasus. (5) Dendroecology. We also briefly summarized the problems and prospects of tree-ring research in European Russia.
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INTRODUCTION

The first tree-ring study in the Russian Empire dates back to 1892 CE, when Shvedov (1892) suggested reconstructing the droughts in Odessa using Acacia sp. ring width. In the Soviet time, the center of tree-ring research in the European part of the Soviet Union was located in the Institute of Botany in Kaunas, Lithuania, led by T. Bitvinskas who edited the first publications of tree-ring-width measurements in the series of books “Dendroscales of the Soviet Union.” Most chronologies created for the territory of the European part of the Soviet Union and Russia (e.g., Bitvinskas, 1974; Molchanov, 1976; Lovelius, 1979; Chernavskaya et al., 1996; Pushin et al., 2000; Rumyantsev, 2010; etc.) were and still are usually published in Russian. They were not included in the international databases, not available in the digital form, and, therefore, are rarely used in the global studies. Among rare exceptions is a data set collected along the northern tree line, submitted to the International Tree-Ring Data Bank (ITRDB), and used for the reconstructions of summer temperature in the sub-Arctic regions, including Northern Europe region which covered the north of European Russia, for 950–1960 CE (Schweingruber and Briffa, 1996; Briffa et al., 2001).

Recently, several tree-ring chronologies for European Russia have been included into the ITRDB. They are as follows: 13 chronologies of living trees of pine (Pinus sylvestris), spruce (Picea abies, Picea obovata), and larch (Larix sibirica) (Hughes et al., 2019), two chronologies of oak (Quercus robur) (Khasanov and Sandlersky, 2018), and three chronologies of wood from ancient buildings and archeological materials (Kolchin and Chernykh, 1977; Chernykh and Karpukhin, 2006; Karpukhin et al., 2019). However, even in the 21st century, the space of the European Russia in ITRDB is covered by rare points of tree-ring sites, compared with the nearby regions, especially Fennoscandia and Lithuania (Figure 1). Meanwhile, looking at the new European Russia Drought Atlas (Cook et al., 2020) one will see dozens of sites in this area. Thus, a rich data set presented mostly in the Russian literature is hidden behind the empty space at the map. In this paper, we have provided a brief review of the tree-ring studies in European Russia published in the past two decades.
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FIGURE 1. Location of the tree-ring sites in European Russia. KOLA—summer temperature reconstruction (1600–2004, Kononov et al., 2009), MR–SPEI reconstruction (1790–2014, Matskovsky et al., 2016b), CAU—summer temperature reconstruction (1596–2011, Dolgova, 2016). Long tree-ring chronologies are described in Figure 2. Grayscale shading shows elevation.
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FIGURE 2. Replication of long chronologies in European Russia. Note different axes. For the locations see Figure 1. *Higher length and replication are reported by Tarabardina et al. (2016): 9th–19th centuries, 6,505 dated samples in total.




SPECIES, LENGTH OF CHRONOLOGIES, AND CLIMATIC SIGNAL

European Russia is located within the sub-Arctic and temperate climate zones. It is subdivided into the following vegetation zones: tundra (67°N–70°N), northern and central taiga (60°N–67°N), southern taiga and mixed forests (56°N–60°N), broad-leaved forests (53°N–56°N), forest-steppe (53°N–54°N), and steppe (south to 53°N). Khibiny (up to 1,200 m a.s.l.), Carpathians (up to 2,655 m a.s.l.), Caucasus (up to 5,642 m a.s.l.), and Urals (up to 1,895 m a.s.l.) mountains are bordering the East European plain from the north-west, west, south, and east, respectively. The central and southern regions of the East European plain were traditionally used for agriculture; therefore, the original vegetation is poorly preserved in these areas, especially in the forest-steppe ecotone. In the northern part of the plain only small fractions of undisturbed forests are left due to extensive logging.

The average and maximum length of the sampled tree-ring series are as follows: 171 and 534 years for pine, 137 and 499 years for spruce, 193 and 413 years for larch, 116 and 277 years for oak. Long-living trees are unique and are preserved only in the protected areas such as national parks or by the cemeteries, monasteries, and other sacred places. The living-tree chronologies extend back to the 15–16th centuries in the northern regions [e.g., Solovetsky archipelago (Solomina et al., 2011; Dolgova et al., 2019), Keretsky archipelago (Tishin and Chizhikova, 2011), Arkhangelskaya region (sites from ITRDB; Schweingruber and Briffa, 1996), Murmansk region (Shumilov et al., 2011), and in the mountain areas, namely, in Khibiny (Kononov et al., 2009) and in the Northern Caucasus (Dolgova, 2016)]. In the central and southern parts of the plain they usually do not exceed 200–300 years [e.g., Optina Pustin’: 1717–2010 CE, Zvenigorod: 1763–2014 CE (Solomina et al., 2017), Raifa forest: 1714–2014 CE (Tishin, 2006; Kuznetsova, 2020), Morozovskaya forest: 1741–2014 CE (Matskovsky et al., 2016b; Matveev et al., 2019)]. Tishin (2006) developed 70 tree-ring chronologies for different species in the Middle Volga region (56.6°N 47.8°E–54.4°N 51.8°E), including pine (P. sylvestris), spruce [Picea fennica (Regel) Kom.], oak (Q. robur), and linden (Tilia cordata Mill.), the longest chronologies starting in 1850 CE. Forbes et al. (2010) showed high dendroclimatic potential of the shrub Salix lanata L. in the European Russian Arctic (Nenets Autonomous Okrug).

At the moment, we estimate the number of verified high-quality living-tree ring-width chronologies in European Russia as approaching to 300 sites (e.g., Tishin, 2006; Solomina et al., 2017; Cook et al., 2020). Seventy tree-ring-width chronologies from this area will be released to the ITRDB in 2021 (the publication by Solomina and coauthors is to be submitted to Scientific Data journal).

In most sites, the trees growing in the East European plain show a moderate to low sensitivity to climate (correlation coefficients rarely exceed 0.5) and a mixed climatic signal, except for the northern and southern tree lines (Bitvinskas, 1974; Molchanov, 1976; Graybill and Shiyatov, 1988; Lopatin et al., 2007; Hughes et al., 2019). The analysis of the correlation coefficients of the chronologies with monthly and seasonal and cumulative climatic parameters acquired from the daily meteorological data allowed to identify the boundary between temperature-sensitive and drought-sensitive trees at about 55°N–60°N (Matskovsky, 2013, 2016). The radius of significant correlation between tree-ring-width chronologies decreases from about 1,000–1,500 km in the north to 500 km and less in the center of the plain (Matskovsky, 2013).



EXTENSION OF CHRONOLOGIES BACK IN TIME, DATING

The first long chronology in European Russia was constructed in Novgorod from the Medival wooden pavements from archeological excavations (Kolchin, 1962; Kolchin and Chernykh, 1977). In the recent decades, the chronology was supplemented with the new samples and verified with the Finnish chronology (Tarabardina, 2009). The excavations continue and the chronology is being enriched with the new material (Tarabardina et al., 2016; Petrov and Tarabardina, 2020). So far, it is not connected with the regional living-tree chronologies and is used exclusively for the dating of archeological artifacts, except for one study (Helama et al., 2017), which used these data to make a temperature reconstruction for 1160–1416 CE.

In Karpukhin (2009) one can find a map and the description of 17 archeological tree-ring chronologies for European Russia. Unfortunately, most of those chronologies were not verified by crossdating with living trees. Moreover, they contain measurements made manually, that have not been checked by COFECHA crossdating or skeleton plots. Therefore, they were not used so far for paleoclimatic purposes.

The one exception is the chronology based on the archeological and architectural wood from the Vologda region (from 1085 to 2020 CE), that was recently connected to living trees, revised, and verified by Karpukhin and Matskovsky (2014). So far, it is the longest continuous chronology in the East European plain.

Another long conifer chronology covering the period from 1183 CE was constructed from living pine and spruce trees and extended with wooden samples from the Solovetsky Monastery that was founded in 1436 CE (Solomina et al., 2011; Matskovsky et al., 2013). Other composite chronologies that include archeological and architectural samples are from Smolensk (353 years), Kostroma (534 years), Volga (478 years), and Arkhangelsk (646 years) regions (Solomina et al., 2017; Figure 2).

Three oak chronologies were built with subfossil oak wood excavated from the alluvial deposits of the Zapadnaya Dvina (Daugava) River (649–1382 CE) and the archeological samples from Novgorod (1059–1386 CE) and Vyazma (1074–1306 CE). They have been matched with the chronologies from Polotsk (Republic of Belarus) and from Eastern Europe, as well as dated by radiocarbon (Karpukhin et al., 2020; Khasanov et al., 2021a). Another part of the Zapadnaya Dvina chronology (1346–1762 CE) is to be published soon (Khasanov et al., 2021b). Sochová et al. (2021) recently published a review of oak dendrochronology in Eastern Europe, including Western Russia.

Using the above-mentioned long chronologies, and also those from Belarus (Yermokhin, 2012), a number of unique monuments were dated, such as the Landskrona Fortress in St. Petersburg (1300 CE, unpublished), the chapel of Cyril (1510s CE, rebuilt in 1557 CE) and the Church of the Ordination (1778 CE) in the Cyril-Belozersky monastery (Matskovsky, 2014), the Church of St. Andrew on the Zayatsky Island of the Solovetsky Archipelago (1699 CE, Matskovsky et al., 2013), a number of wooden churches around Onega lake (Karpukhin et al., 2019) and Arkhangelsk region. The Vologda chronology was used for the dating of several medieval icons, including Novgorod icon “The Mother of God Dexiocratussa” (1410 CE) (Voronin et al., 2015; Matskovsky et al., 2016a; Dolgikh et al., 2017).

In Figures 1, 2, we summarize our knowledge on the well-measured (semiautomatic devices like Rinntech and Velmex, CooRecorder program) and well-dated (TSAPWin, CDendro, controlled by COFECHA, based on crossdating with living trees or other well-dated chronologies) long tree-ring-width chronologies in European Russia.



TREE-RING-BASED CLIMATIC RECONSTRUCTIONS IN EUROPEAN RUSSIA

Ring-width and density chronologies of conifers from temperature-sensitive sites in the northern part of the East European plain (e.g., Schweingruber and Briffa, 1996) were used in a regional part of Circum-Arctic temperature reconstruction (Briffa et al., 2001, 2002), but are normally not included into global reconstructions (e.g., Ljungqvist et al., 2012; PAGES 2k Consortium, 2013; Luterbacher et al., 2016; etc.) due to their comparatively short lengths. Additionally, most chronologies submitted to the ITRDB from these regions finish in 1990s and, hence, they are missing the past two to three decades of records.

A 561-year long pine tree-ring width chronology from the northern tree line (Murmansk region) was used to assess the effects of volcanic and solar forcings on tree growth (Shumilov et al., 2011; Kasatkina et al., 2013, 2019). Khasanov (2011, 2013) showed that wood anatomy of oaks may be specifically affected by severe winters, or winter and spring weather anomalies, and reconstructed these anomalies since 1826 CE. Drought-sensitive chronologies in the European Russia were reported for the middle Volga area (Tishin, 2006; Solomina et al., 2017; Kuznetsova, 2020) and Voronezh region (Matskovsky et al., 2016b). Using eight pine ring-width chronologies Kuznetsova (2020) demonstrated the increase in climate sensitivity of pine from the N-W to S-E (57°N, 47°E to 53°N, 52°E) due to the increase in continentality in the same direction. She reconstructed the June–September self-calibrated Palmer drought severity index (scPDSI) for 1825–2013 CE as well as the river runoff in this area. According to this reconstruction, the drought frequency in the second half of 20th and early 21st centuries increased in comparison with the earlier period. Matskovsky et al. (2016b) used the pine drought-sensitive chronology (Matveev et al., 2012, 2019) to reconstruct the SPEI index in June since 1790s. They speculated that prolonged drought in 1890s had led to the agricultural crisis in Central Russia that affected the social stability and was one of the drivers of the revolutions that occurred in 1905 and 1917.

Recently, the chronologies from the East European plain and adjacent regions were used to create the European Russia Drought Atlas, a half-degree gridded reconstruction of summer scPDSI for 1400–2016 CE (Cook et al., 2020). Three principal modes of hydroclimatic variability in the European Russia were identified and the drought frequency and intensity over this period were assessed. Despite this obvious progress, more drought-sensitive chronologies are required to better constrain and verify the model, especially in the early period of the reconstruction.



CLIMATIC AND ENVIRONMENTAL RECONSTRUCTIONS IN THE NORTHERN CAUCASUS

The Caucasus is a high mountain system located around the 43°N. It is the first barrier for the cold air masses occasionally moving southward from the Arctic. Therefore, the climate in the Northern Caucasus is more severe than at its southern slope, but it is still temperate, and relatively mild. The steppe vegetation rises up to 700 m a.s.l., while the forests dominated by oak, beech, spruce, and pine in the Northern Caucasus are located in more humid habitats up to 2,700 m a.s.l. At the upper tree limit, the most common species are pine, birch, juniper, and beech.

Due to rather favorable climatic conditions, a weak and mixed climatic signal in the ring-width chronologies in the Caucasus was observed (Turmanina, 1971, 1988; Solomina, 1999; Grabenko and Solomina, 2018).

At the moment, about 50 chronologies of pine (P. sylvestris), fir (Abies nordmanniana), oak (Quercus petraea), and beech (Fagus orientalis) covering the Northern Caucasus from Adygeya in the west to Osetia in the east (40°N–43°N, 41°N–43°E) reach as far back as the mid-15th century CE (Solomina et al., 2012, 2016; Dolgova, 2016). Several dead wood collections were also assembled, but they did not extend the living-tree chronologies beyond the 15th century. Matskovsky et al. (2019) combined the tree-ring methodology with the 14C dating and dated the beams of the ancient buildings in Ingushetia of 10–11th, 14–17th, and 19th centuries CE this way.

The first reliable temperature reconstructions based on tree rings of pine and fir growing in the vicinity of the upper tree line was based on the minimum Blue Intensity (BI, Dolgova, 2016). The summer of 1596 CE was the coldest in the records (3.6°C colder than the mean in 1961–1990 CE), whereas the 2010 CE summer was the warmest one exceeding the 1961–1990 mean by + 3.6°C. The reconstruction is representative for the neighboring areas (30°N–50°N, 25°E–55°E) and the multidecadal band width correlates with the reconstruction of June–August temperature in the Central Europe by Büntgen et al. (2011). Holobâcă et al. (2016) also reconstructed summer temperature in the Northern Caucasus since 1830 CE but used a less sensitive ring-width proxy. The combination of ring width and density also allowed the reconstruction of Garabashi glacier mass balance (Dolgova et al., 2013).

Tree rings were used to identify the minimum limiting age of the Little Ice Age moraines at a number of glaciers, where the timberline rises high enough and approaches the glacier fronts (e.g., Bolshoy, Azau, Kashkatash, Terskol, and Tsey) (Bushueva and Solomina, 2012; Bushueva et al., 2016; Solomina et al., 2016, 2021).



DENDROECOLOGY

The dendroecological studies in European Russia are neither systematic nor numerous. A few papers discuss the cambium activity, xylogenesis, and seasonal growth of pine in the central and northern parts of the region (Tishin et al., 2016, 2019; Matveev et al., 2020). The negative influence of recreational activity on pine growth in the Kursk region was studied by Evdokimova et al. (2020). Since 1978’s Matveev with coauthors (Matveev and Akulov, 2012; Matveev and Lykov, 2019) have been monitoring the influence of suburban highways on pine growth in Voronezh region. Lopatin et al. (2008) assessed the long-term growth trends of spruce and pine forests in the Komi republic (49°E–57°E, 60°N–67°N), identified positive trends throughout the 20th century in all the studied forest subzones within this area, and discussed the possible role of temperature as the main driving factor. Dendrochronological methods were also used to assess the forest productivity (Baibar and Kharitonova, 2017; Dyakonov et al., 2017) and historical patterns of natural disturbance regimes (Khakimulina et al., 2016; Kilpinen, 2018) in boreal forests. Aakala et al. (2011) identified droughts and bark beetles to be driving the forest dynamics in the past 200 years in the Arkhangelsk region. Several studies were focused on the forest fire reconstructions (Drobyshev and Niklasson, 2004; Kharitonova and Novenko, 2019; Mergelov et al., 2020; Ryzhkova et al., 2020). Lange et al. (2018) found that in Scots pine ring-width and density chronologies at northern sites microsite differences affect the absolute tree growth, but play a minor role for the summer temperature signal. Tishin et al. (2018) studied the adaptation of introduced species like the Manchurian walnut (Juglans mandshurica) and the Amur cork tree (Phellodendron amurense) in the Middle Volga region to the environmental and climatic conditions.



PROBLEMS AND PROSPECTS

The main limitation for the development of dendroclimatic research in the East European plain is the lack of long-living trees. Still the potential to find suitable sites and to use the old wood from architectural and archeological sites is far from being exhausted. Many floating chronologies stored in the archeological archives are not yet connected to the living-tree chronologies. Unfortunately, the wood itself is rarely preserved after processing. Most of the measurements performed in European Russia before 2000s without semiautomatic devices like Lintab or Velmex contain many errors, and the original wood is lost forever. Finally, only few long chronologies that are connected to the living trees are suitable for paleoclimatic research.

For paleoclimatological applications, the problem of weak and mixed signal in ring width of trees growing in most habitats in the central part of European Russia and in the Caucasus can be partly overcome by the use of other tree-ring parameters, such as the maximum latewood density. Its surrogate, BI, was successfully used for the crossdating of samples (Semenyak et al., 2021) and the summer temperature reconstruction in the Caucasus (Dolgova, 2016) and in the Kaluga region (Solomina et al., 2017). Stable carbon isotopes in tree rings proved to be a good proxy for drought reconstructions both in living trees (Brugnoli et al., 2010) and in archeological wood (Panyushkina et al., 2016), but they are still rarely used in European Russia. A promising potential to find subfossil wood in the lakes, peats, rivers, and at the Arctic coast is still almost not explored.

The dendroecological studies focused on the history of forest stands, fire regimes, disturbances, growth dynamics of introduced species, etc., are still very rare in European Russia. Meanwhile, they could help to solve important ecological problems that are valuable for the society. For instance, in the last two decades, a quarter of the conifer forests in the near-Moscow region dried out due to the outbreaks of the bark beetles and climate change. The whole population of boxwood (Buxus colchica) in the Krasnodar region was exterminated by insects (Pyralidae sp.), introduced to Russia together with Italian plants in 2012 CE. What is the contribution of insect outbreaks, climate change, and forest management? Dendroecology can address these complex problems and even suggest possible solutions.
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Monitoring cambial activity is important for a better understanding of the mechanisms governing xylem growth responses to climate change, providing a scientific basis for tree-ring-based climate reconstructions and projections about tree growth under future climate scenarios. It plays an even more important role in investigating evergreen tree growth in regions with less distinct seasonal cycles. Subtropical evergreen forests have been studied in recent years for their sensitivity to climate change, but it remains unclear how xylem growth is driven by subtropical climates. To further understand the climate-growth response strategies of subtropical conifers, we micro-cored Cryptomeria fortunei and Cunninghamia lanceolata weekly in 2016 and 2017 at the humid subtropical Gushan Mountain in southeastern China. Our weekly growth monitoring showed that the vegetation periods of these two species were both approximately 2–3 months longer than trees in temperate and boreal forests. The growth of C. fortunei in 2016 and 2017 and C. lanceolata in 2017 showed a bimodal pattern of xylogenesis, which was induced by summer drought. The results also indicated that the earlier end of the xylem formation was related to the yearly drought stress. These findings provide more specific information about tree growth and evidence of how climate influences wood production at the cellular level in subtropical regions.

Keywords: cambium, subtropical forest, xylem formation, xylogenesis, conifers


INTRODUCTION

A high portion of the carbon in a forest ecosystem is deposited in the xylem, and its dynamics play a crucial role in the forest carbon cycle (Pan et al., 2011; Cuny et al., 2015). Consequently, a better understanding of xylem growth in various ecosystems, which can be characterized by its onset, growth rate, and anatomical features, has helped improve predictions of forest responses to climate change (De Luis et al., 2011; Deslauriers et al., 2017; Ren et al., 2019).

The process of xylem growth, that is, xylogenesis, describes the phenological phases of various cellular development processes involved in wood formation, as well as the factors driving growth rates (Deslauriers et al., 2017). The key parameters of xylogenesis include cell division, cell enlargement, cell wall thickening, lignification, and programmed cell death (Gričar et al., 2015; Rossi et al., 2016; Deslauriers et al., 2017). Previous studies on cambial phenology (both observations and controlled experiments) in temperate and boreal forests have demonstrated the crucial role of temperature in the onset of cambial growth (Rossi et al., 2008, 2016; Begum et al., 2013; Bryukhanova et al., 2013; Chen et al., 2019). In the Mediterranean forests, the onset of xylogenesis is mainly determined by temperature (Gričar et al., 2006; Camarero et al., 2010; Vieira et al., 2014). Moreover, cambial activity may have a bimodal pattern, with a low growth rate in the summer due to heat and drought stress (Balducci et al., 2013; Garcia-Forner et al., 2019). In semiarid alpine forests, low spring precipitation combined with low temperatures delays the onset of the growing season (Ren et al., 2015; Amoroso et al., 2017). The mechanism of xylogenesis cessation is still relatively unexplored (Dox et al., 2020; Marchand et al., 2020). In boreal forests, low temperature or a short photoperiod plays an important role at the end of xylogenesis (Hamilton et al., 2016; Guada et al., 2020). In contrast, the end of xylogenesis in the dry or semidry regions is more related to drought stress (Delzon et al., 2015; Ren et al., 2015; Novak et al., 2016; Zhang et al., 2018; Fonti et al., 2020).

Among the various ecosystems investigated in most previous studies, subtropical forests are underrepresented. However, it has been suggested that subtropical forests are sensitive to climate change (Zhou et al., 2013), and could suffer more frequent or severe heat and drought stresses in the future (Stocker et al., 2013; Liu Q. et al., 2019). The phenology of xylem growth and how it is affected by climatic drivers remain uncertain in subtropical forests (Dhirendra Singh and Venugopal, 2011; Singh and Venugopal, 2011; Pumijumnong and Buajan, 2012; Huang et al., 2018; Rahman et al., 2019; Zhang et al., 2019). Indeed, the xylem growth of subtropical forests exhibits different dynamic patterns as observed in a limited number of existing studies. For example, Yan et al. (2013) revealed a long growing season, which spanned almost a whole year in the subtropics, while Huang et al. (2018) observed an inactive semidormancy period in January. There are also subtropical species (e.g., Cunninghamia lanceolata), which show bimodal growth due to seasonal drought as visible in stem radial variation (Huang et al., 2019).

Additionally, most current studies in the subtropics have only explored the intra-annual variability of tree growth (Huang et al., 2018; Liu et al., 2018), but comparative studies on the interannual differences in intra-annual wood formation are limited (Zhang et al., 2019). Based on the few climate conditions investigated in the existing studies, only limited generalizations could be made regarding xylem growth in subtropical forests and their responses to environmental changes. Therefore, high-resolution monitoring of cambial phenology is needed, especially with more climatic conditions included. This will improve our understanding of xylem growth dynamics in subtropical forests and subsequently help reduce the uncertainty in predicting growth trends in the context of climate change (Huang et al., 2018).

Cryptomeria fortunei and Cunninghamia lanceolata are fast-growing conifer species inhabiting subtropical China and are widely planted because of their high-economic value. In addition, these two species provide important ecological benefits, including carbon sequestration, soil erosion conservation, and diminishing atmospheric pollutants (Tian et al., 2011; Zhao et al., 2017). We aimed to compare the onset and end of xylogenesis as well as the growth rate between C. fortunei and C. lanceolata in relation to climate variables during the two sampling years. We hypothesized that (i) summer drought triggers bimodal growth, and (ii) drought stress induces the earlier end of xylem formation. The results of the present study provide more specific information about subtropical tree growth and could help improve the modeling strategy for the carbon cycle in subtropical forest ecosystems.



MATERIALS AND METHODS


Study Site

This study was conducted in a subtropical evergreen forest on the north-facing slopes of the Gushan Mountains at an elevation of 450 m a.s.l. (26.05°N, 119.38°E) (Figure 1). The forest canopy is dense, and the overstory is dominated by conifer species (C. lanceolata, Pinus massoniana, and C. fortunei) mixed with a small number of Castanopsis carlesii and Schima superba. The soil is classified as Humic Acrisols with high moisture content. The climate is subtropical, with an annual mean temperature of 19.9°C and total annual precipitation of 1,366 mm (according to the records of the near Fuzhou meteorological station from 1954 to 2017). The Western Pacific Subtropical High and the Spring Persistent Rains strongly affect the region, and it usually has wet springs and dry summers. Spring precipitation (April to June) accounts for 40.6% of the annual precipitation, while the typhoon season (from July to September) accounts for 31.8% of annual precipitation, but these percentages have high inter-annual variability. July is usually the driest month with an average precipitation of 137 mm and the highest average temperature of 28.72°C. Extreme high-temperature events most often occurred in July and August (Supplementary Figure 1A).
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FIGURE 1. Location of the monitoring site at the Gushan Mountain (GM) in Fujian province of China.


To assess weather conditions during 2016 and 2017, daily meteorological data, including daily mean temperature (°C), total precipitation (mm), and sunshine duration (h), were obtained from the Fuzhou weather station (Figure 1). There was a comparable mean air temperature of 23.8 and 23.9°C during March to November in 2016 and 2017. However, the mean air temperature from March to June in 2016 was 0.7°C higher than in 2017 (21.4 vs. 20.7°C), and the mean air temperature from July to November was 0.7°C higher in 2017 (Figure 2A and Table 1). From March to November, the sum of precipitation was 1,969.9 mm in 2016 and 1,282.3 mm in 2017. However, the total precipitation from March to June in 2016 was 256.8 mm lower than it was in 2017 (659.9 vs. 916.7 mm). Few precipitation events were observed from July to November in 2017, and the mean precipitation during September to November was 41.5 mm, indicating a serious drought (Figure 2B and Table 1). The lower precipitation from July to November 2017 was consistent with the higher vapor-pressure deficit (VPD) (Figures 2C,D and Table 1).
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FIGURE 2. (A) Mean air temperature and (B) precipitation and (C) vapor pressure deficit (VPD) and (D) sunshine duration during 2016 and 2017 in Fuzhou city (10 km away from the site location).


TABLE 1. Climatic characteristics were observed from the monitoring site from 2016–2017.
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Sample Collection and Preparation

We selected Cryptomeria fortunei and Cunninghamia lanceolata in a subtropical evergreen forest in southeastern China for observation and collected microcore samples for two consecutive years to investigate the intra-annual variability of the xylem growth of these two species. Microcores were collected weekly from C. fortunei and C. lanceolata trees from March to November 2016 and from February 2017 to January 2018. Three healthy and mature trees of each species were randomly selected and micro-cored at breast height (1.3 m) using a Trephor tool (Rossi et al., 2006). The monitored C. fortunei and C. lanceolata trees had an average diameter at breast height of 32.8 ± 1.4 cm and 23.7 ± 1.9 cm, a height of 10.9 ± 1 m and 13.1 ± 0.9 m, and an age of 36 ± 1 years and 24 ± 1 years, respectively. Micro-cores were sampled at least 5 cm apart to avoid wound reactions from nearby sampling points. The cores were 2 mm in diameter and 20–30 mm in length, containing two to five annual rings and a cambium zone with adjacent phloem (Rossi et al., 2006). The microcores were stored in formalin-ethanol-acetic acid solution (mixing ratio: 5:90:5) immediately after sampling in the field (Zhang et al., 2013). In the laboratory, the microcores were dehydrated in an ethanol gradient (70, 90, 95, and 100%), cleaned in a clearing solvent of D-limonene, and embedded in paraffin. Transverse sections (9–12 μm thick) were cut with a rotary microtome (YD315, Jinhua YIDI Medical Appliance Co., Ltd., China) and stained with safranin (3 in 95% ethanol) and Astra blue (0.5 in 95% ethanol).



Microscopic Observations

To assess the dynamics of annual xylem ring formation, we counted the number of tracheids during the stages of enlargement, wall thickening, and maturation on each collected microsection along with three representative radial files (Rossi et al., 2006; Gärtner et al., 2015; Deslauriers et al., 2017). We identified (i) cells in the phase of enlargement when the cell was at least two times larger than the cambial cells, (ii) cells in the phase of wall thickening when the birefringence of the secondary walls appeared under polarized light (Abe et al., 1997), and (iii) cells in the phase of matured when the tracheid walls were lignified and cell protoplasts disappeared (Rossi et al., 2006; Deslauriers et al., 2017) (Supplementary Figure 2). The onset of xylem formation in spring was defined when at least one cell entered the enlargement phase, while the end of the season in autumn was determined when there were no more wall thickening tracheids (Rossi et al., 2006).



Data Analysis

Cambial phenology was computed for days of the year (DOY), corresponding to dates of (i) the onset and (ii) the end of cell enlargement, (iii) the onset, and (iv) the end of wall thickening. Micro-cores were taken from different positions within the tree circumference during the growing season (Rossi et al., 2003). Circumferential variability in cambial activities, including ring width, cell number, cell diameter, and wall thickness, exist at different positions of the stem (Creber and Chaloner, 1984). Thus, standardization of the cell number was required (Oberhuber and Gruber, 2010):

[image: image]

In Equation 1, where nci is the standardized number of xylem cells, ncmi is the measured number; of xylem cells, rwm is the mean ring width of previous rings for all samples, and rws is the ring width of previous rings for each sample. We conducted ANOVA and Tukey’s tests for the timing of the onset of each xylogenesis phase between years and used the results to assess the dynamics of intra-annual xylem ring formation (Queen et al., 2002).

We then fitted the total number of xylem cells (enlargement + wall thickening + mature cells) of each tree and year over the whole growing season with the Generalized Additive Model (GAM). Subsequently, we averaged at the tree and year level to indicate the intra-annual variation in the progress of wood production (Cuny et al., 2013).
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In Equation 2, where y is the total number of xylem cells, x1 is the day of the year (DOY), and f represents the smoothing function. The Poisson link function was used, given that the response variable is a count variable. To fit GAMs, the mgcv package was used within the R statistical software environment (R Core Team, 2013). The non-negative value of the derivative of GAM was used to obtain the rate of cell division (Huang et al., 2018; Yu et al., 2019).

We used Pearson coefficients to evaluate the relationship between growth rate, cambium cells, enlargement cells, and climatic variables. The number of cambium and enlargement cells was chosen during the onset and the end of enlargement, while the growth rate was calculated as the mean value between successive sampling dates. Three climatic variables were included: daily mean temperature, precipitation, and VPD. All factors were calculated as averaged values, except for precipitation for which we used summed values between successive sampling dates (7 days). For C. fortunei, the sample sizes of cambium cells and enlargement cells were 87 and 76 in 2016 and 2017, respectively. For C. lanceolata, the sample sizes of cambium cells and enlargement cells were 58 and 67 in 2016 and 2017, respectively. We also used Pearson coefficients to evaluate the relationship between the duration of wood formation and climatic variables (annual mean temperatures, precipitation, and VPD).



RESULTS


Cambial Phenology

In general, Cryptomeria fortunei had a higher growth rate and longer growth duration than Cunninghamia lanceolata (Table 2). For C. fortunei, the onset of xylogenesis occurred on 8 April ± 1.7 days (mean ± SEs; DOY, 99.3 ± 1.7) and 4 April ± 6.2 days (DOY, 94.3 ± 6.2) in 2016 and 2017, respectively. The cambial cells reached the peak of 4–6 cells soon after the onset and then gradually decreased until they were stable within the range of 2–4 cells. Cell wall thickening started on April 15 ± 5 days (DOY, 106 ± 5) in 2016 and April 13 ± 4.7 days (DOY, 103.3 ± 4.7) in 2017. Growth ended on November 13 (DOY, 318) in 2016 and October 26 ± 8.4 days (DOY, 299.7 ± 8.4) in 2017. The duration of xylogenesis for C. fortunei was thus 218.7 ± 1.7 days in 2016 and 205.3 ± 12.3 days in 2017, which was about 13 days shorter than in the previous year (Figures 3A–D and Table 2).


TABLE 2. Characterization of cambial phenology and seasonal growth patterns (Mean ± 1 SD) of Cryptomeria fortunei and Cunninghamia lanceolata during 2016–2017 in the Gushan Mountain.
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FIGURE 3. Number of cambial, enlarging, wall thickening, and mature cells of Cryptomeria fortunei (A–D) and Cunninghamia lanceolata (E,F) as observed during 2016 and 2017 at the Gushan Mountain. The dots and the bars represent mean cell number and standard errors among the three selected trees, respectively.


For C. lanceolata, the growing season started later, initiating on May 9 ± 22 days [DOY, 130 ± 22 in 2016 and on April 20 ± 4.3 days (DOY, 110.3 ± 4.3)] in 2017. Cambium cells fluctuated within the same range of 2–4 in 2016, whereas, in 2017, they reached a maximum of seven cells in April and then gradually decreased to 2–3 cells. Cell enlargement showed similar trends for both species during 2016 and 2017, showing 1–3 cell layers. Wall thickening started on May 19 ± 21 days (DOY, 140.3 ± 21) in 2016 and May 11 ± 6.5 days (DOY, 131.3 ± 6.5) in 2017. The cambium started its dormancy on 11 November ± 9.7 days (DOY, 285.7 ± 9.7) and 10 October ± 21 days (DOY, 283.3 ± 2.3), in 2016 and 2017, respectively. For C. lanceolata, the duration of xylogenesis was 155.7 ± 12.3 in 2016 and 173 ± 5.9 days in 2017 (Figures 3E–H and Table 2).

The cell wall thickening showed a bimodal pattern, with two peaks of cell activity in spring (April–June) and late summer to autumn (September–November) in both species across the study period except C. lanceolata in 2016 (Table 2 and Figures 3B,C). The duration of xylogenesis was significantly (p < 0.01) different between species, but not between years (Supplementary Table 1). In 2016, C. fortunei and C. lanceolata showed a relatively higher growth rate and increased cell growth in summer. In 2017, both species showed a bimodal pattern of the growth rate, with a relatively high growth rate in spring and a relatively low growth rate in summer (Figure 4).
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FIGURE 4. Monthly growth rates of Cryptomeria fortunei (left) and Cunninghamia lanceolata (right) as observed during the growing season of 2016–2017.




Wood Formation and Climate

Both Cryptomeria fortunei and Cunninghamia lanceolata have obvious inter-annual differences in the relationship between intra-annual growth and climate. Due to the large sample sizes, the correlations are significant, although their values are not that high. For C. fortunei, temperature and VPD showed significant negative impacts on the cambium and the enlargement of cells in 2016, and precipitation showed significant positive impacts on the cambium cells. In 2017, precipitation and VPD had no significant effect on the phase of xylogenesis, while temperature had significant negative effects on the enlargement of cells (Figure 5). For C. lanceolata, temperature and VPD showed significant negative impacts on cambium cells in 2016, and there was no significant correlation between the enlargement of cells and climatic factors. In 2017, temperature and VPD had significant negative impacts on the cambium and the enlargement of cells. Precipitation had no significant impact on the cambium and cell enlargement in C. lanceolata from 2016 to 2017 (Figure 6). There was no significant correlation between climate factors, growth rate, and duration of xylogenesis in the two species in 2016–2017 (Supplementary Figures 3, 4).
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FIGURE 5. Relationships between climate variables and the number of cells in cambium (A–F) and enlargement (G–L) of Cryptomeria fortunei during 2016–2017. Significant correlations (p < 0.05) were shaded red (positive) and blue (negative).
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FIGURE 6. Relationships between climate variables and the number of cells in cambium (A–F) and enlargement (G–L) of Cunninghamia lanceolata 2016–2017. Significant correlations (p < 0.05) were shaded red (positive) and blue (negative).




DISCUSSION


Climatic Control on the Onset and Termination of Cambial Activity

The two species (C. fortunei and C. lanceolata) included in this study started growing between March and April, while temperate and boreal conifer species started in April-May (Cuny et al., 2015; Rossi et al., 2016; Chen et al., 2019). Mediterranean species started between late March and early May (Camarero et al., 2010; Palombo et al., 2018; Antonucci et al., 2019). C. fortunei and C. lanceolata stopped growing from October to November (Camarero et al., 2010; Vieira et al., 2014; Antonucci et al., 2019). In comparison, temperate boreal species (Cuny et al., 2015; Rossi et al., 2016) stopped from September to October. Some Mediterranean conifers stopped in September to mid-November, while some species continued with cell differentiation during the winter (Camarero et al., 2010; Vieira et al., 2014; Prislan et al., 2016; Balzano et al., 2018; Antonucci et al., 2019). Thus, the duration of the growing season of our studied species was approximately 2–3 months longer than that in the temperate and boreal zones, but shorter than that in the Mediterranean zones. Compared to other research in subtropical regions, the later onset and the earlier termination of xylem formation in this study lead to a shorter growing season (Huang et al., 2018), which may be caused by the geographic location and local climate differences.

The onset of cambium activity of the two species in 2017 occurred earlier than in 2016, but this difference was not significant. The temperature has long been recognized as the major trigger for growth initiation in coniferous and broadleaf trees. This is true across temperate and boreal forests, with the physiological threshold daily minimum temperature being more than 4–5°C (Rossi et al., 2008; Li et al., 2016). Higher temperatures in early spring can induce earlier reactivation and differentiation of secondary xylem (Begum et al., 2009, 2017). For example, the higher temperatures in the spring of 2016 compared with 2015 induced an earlier onset cambium of Quercus variabilis on Qinling Mountain (China) (Zhang et al., 2019). Moreover, monitoring results of Taiwan pines at different altitudes in the Lushan Mountains show that trees at low altitude sites will start activity earlier than those grown at high altitudes due to higher air temperatures (Liu X. et al., 2019). In this study, mean air temperatures during the 7 days before the onset of cambium activity of C. fortunei were 18.9°C in 2016 and 16.7°C in 2017. Temperatures for C. lanceolata in the week before the onset of cambium activity were 21.3°C in 2016 and 19.5°C in 2017 (Table 3). However, the increase in temperature in 2016 did not induce the earlier onset of cambium activity. Similar results have been found in other studies in the subtropics (Liu X. et al., 2019; Zhang et al., 2019). Consequently, our results indicate that temperature may not be the only factor influencing wood formation in C. fortunei and C. lanceolata.


TABLE 3. Mean air temperatures and precipitation sums during the week prior to the onset of wood formation of Cryptomeria fortunei and Cunninghamia lanceolata in 2016 and 2017.

[image: Table 3]Trees need water to generate turgor pressure during cell expansion, so precipitation could also drive the onset of cambium activity, and the effect may depend on the geographic location and local climate (Trouet et al., 2012). Previous research has found that, in arid and cold regions, precipitation is a trigger for the onset of xylogenesis in Juniperus przewalskii (Ren et al., 2015, 2018; Zhang et al., 2018). In the present study, total precipitation during the 7 days before the onset of cambium activity in C. fortunei was 14.8 mm in 2016 and 40.1 mm in 2017. In the case of C. lanceolata, the total precipitation measured was 53.6 mm in 2016 and 36 mm in 2017 (Table 3), as cambium activity was not delayed in 2017 despite the lower precipitation before cambium cell division of C. lanceolata. This is consistent with previous studies showing that precipitation has a weak influence on xylem growth resumption for Quercus variabilis in the subtropical region (Zhang et al., 2019). Indeed, the influence of precipitation on the onset of xylogenesis in hot and moist regions remains uncertain. For instance, in tropical regions, the seasonal variability of precipitation regulates cambial activity. Active cambium in several hardwood species has been associated with a rainy season (high rainfall), and dormancy is associated with the dry season (low rainfall) (Rahman et al., 2019). However, Trouet et al. (2012) revealed that the beginning and the end of cambial growth of Brachystegia spiciformis did not coincide with the beginning and the end of the rainy season. It is worth noting that, although both tree species in our study started to onset earlier in 2017, considering the ideal and similar spring hydrothermal conditions in 2016–2017, it is difficult to determine which climatic factors play an important role in initiating cambium activity.

In 2017, the study area experienced severe consecutive droughts in late summer and autumn, and the average monthly precipitation from September to November was only 41.5 mm. Both C. fortunei and C. lanceolata ended wood production earlier in 2017. Worbes (1995) stated that an annual dry season of 2–3-month long and monthly precipitation of less than 60 mm would lead to cambial dormancy in tropical regions, which is consistent with our results. Underwater stress conditions, the extracellular water potential pressure suddenly drops even lower than the osmotic pressure of the enlarged cells. This causes the loss of turgor pressure, and the cell activity in the cambium area is weakened, thereby inhibiting the division of new cells (Abe et al., 2003). During periods of drought, cell wall synthesis and protein synthesis are substantially affected (Choat et al., 2012; Bader et al., 2013). Additionally, irrigation and natural experiments on mature trees found that the unirrigated trees/xericsite finished wood formation earlier than the irrigated trees/dry-mesic site (Gruber et al., 2010; Eilmann et al., 2011), confirming the critical role of water availability in stem growth cessation. Generally, drought-stressed termination of cambium activity has been observed in arid regions such as the Qilian Mountains in northwestern China (Zhang et al., 2021) and the Mediterranean region with summer drought stress (Bader et al., 2013; Garcia-Forner et al., 2019). In 2017, the earlier cessation of the cambium activities of C. fortunei and C. lanceolata indicates that, although in relatively humid subtropical regions, seasonal droughts may also limit tree growth.



Effects of Climate Factors on the Bimodal Pattern of Xylogenesis

Cryptomeria fortunei and Cunninghamia lanceolata showed different intra-annual growth dynamics between 2016 and 2017. We detected a bimodal pattern of xylogenesis and the growth rate for C. fortunei and C. lanceolata in the relatively drier year (2017). It is worth noting that this bimodal phenomenon in the research was more obvious when looking at the number of wall-thickening cells. The process of wall thickening depends mainly on the carbohydrates produced by photosynthesis (Cuny and Rathgeber, 2016). Such bimodal patterns of xylogenesis are in contrast to the studies in temperate and boreal forests where a bell-shaped annual pattern in cambium cell numbers was commonly found (Rossi et al., 2008); Ren et al., 2015; Chen et al., 2019). However, our finding is similar to the studies in the Mediterranean, where a bimodal pattern of cambium activity was reported as a result of distinct seasonal water availability (Camarero et al., 2010; Pacheco et al., 2016).

A warm and humid climate enhances photosynthetic ability, carbon fixation capacity (Kellomäki, 2001), and the activity of enzymes in relation to the photosynthesis of leaves. Consequently, photosynthetic capacity is improved, and the promotion of radial growth of the stem occurs (Strand et al., 2002). This can explain why C. fortunei and C. lanceolata could maintain a relatively high growth rate and cell increment during the summer of 2016, and a higher growth rate during spring in 2017 (Figure 4 and Supplementary Figure 5). In 2017, the high VPD accompanied by high temperatures in the study area from July to August is likely to aggravate the transpiration of the trees, which may lead to a decrease of stomatal conductance and limited photosynthesis (Mathur et al., 2014; Zhou et al., 2015; Ouyang et al., 2018; Grossiord et al., 2020; Song et al., 2020). These conditions may cause a decrease in carbohydrate availability and a decreased growth rate (Michelot et al., 2012; Zhang et al., 2021). Relevant studies based on tree rings and stable carbon isotope have also confirmed the negative effect of summer drought on tree growth on an interannual scale (Li et al., 2019; Bai et al., 2020; Dong et al., 2020).

We found that the percentage of net cell increment to the total xylem cells during 2016–2017 was consistent with the seasonal distribution of precipitation, and the final number of xylem cells was similar even though the precipitation showed such a remarkable difference. This result suggests that xylem growth in the subtropical zone can adjust its physiological activities to deal with environmental changes. Such plastic growth characteristics also offset the influence of climate to a certain extent.



Xylogenesis Difference Between Cryptomeria fortunei and Cunninghamia lanceolata

Marked differences were observed in the responses of xylogenesis to climatic factors between 2016 and 2017, especially in C. lanceolata. The negative effects of temperature (p < 0.01) and VPD (p < 0.01) on the enlargement stages of C. lanceolata were significant in 2017 but not in 2016. Moreover, the positive effect of precipitation on the enlargement stage of C. lanceolata was also enhanced. Both high VPD and low soil moisture are considered characteristics of drought (Liu et al., 2020). When the plant is in a high VPD situation, it increases the absorption of soil water by the root system to cope with the loss of water (Liu et al., 2020). Thus, we can infer that, in the relatively arid 2017, the xylogenesis process of C. lanceolata was affected by high temperature and drought. Lower drought tolerance caused by a smaller root system and less fine roots (Sun et al., 1990) may explain why C. lanceolata was more sensitive to moisture restrictions in 2017 than C. fortunei.

Wood production was determined by the duration of the growing season and the growth rate. The growth rate and duration of the growing season of C. fortunei are much higher than those of C. lanceolata, which explains the much higher number of xylem cells. Previous research found that the growth rate of C. lanceolata will decrease significantly after the mature stage, while C. fortunei can maintain a high growth rate even at the mature stage (Wu et al., 2001). A higher growth rate can increase the competitive ability, survival, and long-term success of a species, especially in severe environmental conditions (Silvertown, 2004; Grotkopp and Rejmánek, 2007). These observations confirmed that C. fortunei had a higher competitive advantage than C. lanceolata in mixed forests (Wu et al., 2001).



CONCLUSION

This study presented 2 years of weekly monitoring of xylem formation in two subtropical conifers (C. fortunei and C. lanceolata). The growing season in the humid subtropics was observed to last 2–3 months longer than in temperate and boreal forests. Observations also highlighted that drought was the dominant factor ruling the earlier end of xylem formation. Drought during summer induced bimodal xylogenesis in drier years. C. fortunei appeared to be less sensitive to drought and thus performed better than C. lanceolata. These findings provide evidence of how climate influences wood production at the cellular level in subtropical regions.
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Supplementary Figure 1 | Distribution of the monthly mean temperature (symbol line) and precipitation (bar) from 1953 to 2017 from the Fuzhou meteorological station (A). Long-term series of annual precipitation (B), temperature (C) and their trends (dashed lines) recorded by Fuzhou meteorological station for the period of 1953–2017.

Supplementary Figure 2 | Phases of cambial phenology in Cryptomeria fortunei (A–D) on DOY 119 (April 29) and Cunninghamia lanceolata (E,F) on DOY 141 (May 21) in 2017. Observed under a bright field (A,B,E) and polarized light (C,D,F), respectively. CZ, cambium zone; EC, enlarging cells; WT, wall thickenings; MC, mature cells.

Supplementary Figure 3 | Relationships between the growth rate and associated climatic factors. Significant correlations of p < 0.05 (∗), p < 0.01 (∗∗) are displayed.

Supplementary Figure 4 | Relationships between duration of xylogenesis and associated climatic factors. Significant correlations of p < 0.05 (∗), p < 0.01 (∗∗) are displayed.

Supplementary Figure 5 | Percentage of net cell increment to the total xylem cells in spring and summer of (A) Cryptomeria fortunei and (B) Cunninghamia lanceolata during the growing season of 2016–2017.
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Although variations in building activity are a useful indicator of societal well-being and demographic development, historical datasets for larger regions and longer periods are still rare. Here, we present 54,045 annually precise dendrochronological felling dates from historical construction timber from across most of Europe between 1250 and 1699 CE to infer variations in building activity. We use geostatistical techniques to compare spatiotemporal dynamics in past European building activity against independent demographic, economic, social and climatic data. We show that the felling dates capture major geographical patterns of demographic trends, especially in regions with dense data coverage. A particularly strong negative association is found between grain prices and the number of felling dates. In addition, a significant positive association is found between the number of felling dates and mining activity. These strong associations, with well-known macro-economic indicators from pre-industrial Europe, corroborate the use of felling dates as an independent source for exploring large-scale fluctuations of societal well-being and demographic development. Three prominent examples are the building boom in the Hanseatic League region of northeastern Germany during the 13th century, the onset of the Late Medieval Crisis in much of Europe c. 1300, and the cessation of building activity in large parts of central Europe during armed conflicts such as the Thirty Years’ War (1618–1648 CE). Despite new insights gained from our European-wide felling date inventory, further studies are needed to investigate changes in construction activity of high versus low status buildings, and of urban versus rural buildings, and to compare those results with a variety of historical documentary sources and natural proxy archives.

Keywords: archeology, cultural heritage, dendrochronology, dendroarchaeology, felling dates, history, historical demography


INTRODUCTION

Variations in building activity reflect changing demographic, economic, and social conditions (e.g., Barras, 2009; Aksözen et al., 2017a,b) and, potentially, provide a broad overview of societal well-being over space and time. However, prior to the modern period building activity rates are poorly documented in Europe, precluding the use of written sources for their assessment. An alternative source for estimating building activity rates are large datasets of dendrochronologically obtained felling dates of historical construction timbers. Such data, derived from the efforts of many to date individual constructions in archeological research and cultural heritage work, when collated into an aggregate dataset, can be highly useful for exploring large-scale changes in building activity (e.g., Ljungqvist et al., 2018).

Recent historical scholarship has increasingly employed data from the natural sciences and archeology to understand macro scale changes not readily detectable or quantifiable using documentary sources or traditional archeological materials. Such studies include pollution data from ice-cores as a proxy for mining activity (e.g., McConnell et al., 2019), numbers of shipwrecks to estimate commerce (e.g., Wilson, 2011), pollen to reconstruct agricultural production (e.g., Izdebski et al., 2016), glacier microfossil records to estimate changes in land use (Brugger et al., 2021), ancient DNA to reconstruct migration patterns (e.g., Margaryan et al., 2020), and anthropometric estimates of the biological standard of living from skeleton-based stature measurements (e.g., Kopke and Baten, 2005). These disparate types of data have the potential to detect and analyze patterns of prosperity and hardship in human history (Fischer, 1996), whereas the heterogeneous character of most documentary sources limits their suitability for such studies (see, e.g., Turchin and Nefedov, 2009).

Inferring variations in building activity from annually resolved and absolutely dated felling dates can reveal information about large-scale societal changes. The very large amount of available data in combination with their exact dating to a calendar year makes felling dates unique among non-documentary sources of human activity. Felling dates have hitherto mainly been used to infer large-scale demographic and societal changes only for those periods and regions lacking written sources from which to reconstruct demographic trends, e.g., among the Ancestral Puebloans in the southwestern United States (pioneered by Douglass, 1921, 1929, 1941; more recently, see Bocinsky et al., 2016; Robinson et al., 2021).

In Europe, there are limited examples in archeological and historical research of using felling dates for reconstructing building activity changes at large spatial scales, but several small-scale studies have provided valuable insights into demographic declines or the timing of societal crises (Baillie, 1982, 1995, 1999; Mallory and Baillie, 1988; Schweingruber, 1988; Wrobel and Eckstein, 1993; Nicolussi, 2002; Eckstein, 2007), and also into past settlement and demographic dynamics in the Swiss Alps (Büntgen et al., 2006), the northwestern Carpathian arc (Büntgen et al., 2013), the north-eastern France (Tegel et al., 2016), in Sweden (Bartholin, 1989, 1990; Lagerås et al., 2016), in parts of Norway (Thun and Svarva, 2018), in eastern Austria (Grabner et al., 2018), and Ireland (Brown and Baillie, 2012; Campbell and Ludlow, 2020).

Using 49,640 precisely dated felling dates, between 1250 and 1699 CE, Ljungqvist et al. (2018) identified variations in European building activity, and attempted to quantify the major drivers behind those variations. They found (a) building activity decreased during periods with multiple or severe plague outbreaks, (b) building activity was significantly lower when grain prices were high, (c) first evidence of the Late Medieval Crisis as early as c. 1300 CE and lasting until c. 1415 CE, and (d) building activity decreased abruptly by about 36 percent of prior levels during the Thirty Years’ War (1618–1648 CE). In sum, Ljungqvist et al. (2018) demonstrated how sudden declines in building activity are sensitive indicators of the onset of a crisis. However, the spatial aspects of the timing, duration, and amplitude of decreased building activity associated with the Late Medieval Crisis and the Thirty Years’ War (1618–1648) were not investigated.

To date, no study has attempted to use dendrochronological felling dates from historical construction timbers to investigate the spatial dynamics of past European-scale building activity. This article aims to fill that gap by assessing regional patterns of construction activity during the 1250–1699 CE period in relation to regional demographic, economic, and social conditions. To do so we apply geostatistical analysis to explore regional differences in the number of felling dates to infer the timing, duration, and intensity of periods of crisis and prosperity at different spatial and temporal scales. This study thereby constitutes a considerable extension in scope, and aim, and geographical coverage, compared to Ljungqvist et al. (2018).



MATERIALS AND METHODS


Felling Dates

We collected 54,045 georeferenced felling dates for the period 1250–1699 from western and central Europe, north of ∼42°N (Figure 1A). This collection is the result of a European-wide collaborative network that includes data from laboratories in Austria, Belgium, Czechia, Denmark, France, Germany, Ireland, Italy, Netherlands, Norway, Poland, Slovakia, Spain, Sweden, Switzerland, and United Kingdom (Table 1). The same criteria as in Ljungqvist et al. (2018) were applied and only data where the last measured tree ring is the terminal ring (so-called waney edge) were used. The determination of the exact year of tree felling is termed waney edge dating (Bannister, 1962). The majority of felling dates were derived from timbers in different parts of buildings such as roof trusses, ceiling joints, basement pillars, etc. A small number of felling dates were obtained from archeological materials (Figure 2).
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FIGURE 1. (A) The geographical distribution of all 54,045 tree felling dates 1250–1699 CE from archeological and historical construction timber displayed using the Lambert conformal conic projection in ArcGIS and displayed with contemporary political boundaries. (B) Number of felling dates per year for each regional dataset [color-coded as in (A)] over the period 1250–1699 CE. The black line shows the significant regime shifts in the number of felling dates using the full dataset.



TABLE 1. List of data contributors of the felling dates, contribution size, the geographical origin of their samples, and key references to the contributed data.
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FIGURE 2. Examples of type of buildings and material used to derive the felling dates from. Top: Half-timbered building in Sonterswil (Thurgau, Switzerland) from the 17th century. Tower of the town wall from Ribeauvillé (Alsace, France) from the 16th century. Log houses in the Lötschental Valley (Valais, Switzerland) from the 18th century. Below: Roof truss of the Chapelle Saint-Denis in Marmoutier (Alsace, France) from the 16th century. Roof truss from the church in Forshem, southwestern Sweden, with a nave from the 12th century and a chancel from the 13th century. Cross section of an oak beam from the Cathedral of Reims (France) from the 13th century.


The tree species used for constructions can vary greatly from region to region. For exterior/exposed applications like bridges and hydraulic engineering, oak (Quercus spp.) and fir (Abies alba Mill.) were used almost exclusively. Conifer species such as fir, spruce (Picea abies L.), pine (Pinus sylvestris L.) and larch (Larix decidua Mill.) were preferred for half-timbering and roof trusses (Tegel et al., 2010). However, the species’ natural distribution also played a decisive role in dictating the application. In the western Euro-Atlantic region, where oak woodlands predominated, this was the species used for construction purposes. In northern Europe, pine was the preferred species for construction timber (e.g., Mills et al., 2017), whereas fir and spruce were mostly used in central Europe (Grabner et al., 2018; Kolář et al., 2021). The natural distribution of larch is limited to the high altitudes of the Alps and parts of the Tatra Mountains (Büntgen et al., 2009), where this species was preferred as construction timber.



Other Datasets Used for Comparisons

Inferred building activity levels were compared with different independent indicators of periods of “crisis” and “prosperity” representative of large spatial scales. The indicators of past economic, societal, and demographic conditions include: (a) atmospheric lead emissions data, an indicator of mining activity (in particular silver production); (b) church construction, an indicator of societies’ available economic surplus as well as demographic trends; (c) grain price data, reflecting the availability of the most important food source and general economic well-being; (d) wine prices, indicating economic conditions and general purchasing power; and (e) consumer price indices, also indicating general purchasing power and thus economic well-being. In addition, we compare building activity levels with reconstructed growing season temperature, soil moisture levels and a reconstruction of southwestern German groundwater levels.

Changes in the amount of atmospheric lead in high-resolution Arctic and alpine ice-cores have been linked to the mining and smelting of raw ores, especially silver, in Europe. Such records have proved to be an indicator of prosperity and crisis (i.e., in times of prosperity, pollution levels were high) over the past two millennia (Hong et al., 1994; Rosman et al., 1997; More et al., 2017; Loveluck et al., 2018; McConnell et al., 2018, 2019; Carvalho and Schulte, 2021). We employ the lead pollution series of McConnell et al. (2019) as proxies for mining activity in western Europe and central Europe.

To a large extent, church building in medieval and early modern times reflected a society’s surplus, although it can be argued the Catholic Church, as an institution and major financial power, was much more resilient to crises that would otherwise affect secular constructions. We employ an independent time-series of urban church building in western Europe, measured in millions of cubic meters per 20-year period, compiled from data of extant church structures (Buringh et al., 2020). The spatial coverage of this time-series is restricted to present-day Italy, France, Switzerland, Germany, the Low Countries, and Great Britain, and it only extends to 1500 CE.

Grain-based foods were by far the most important food source in medieval and early modern Europe (Rahlf, 1996; Bateman, 2015). During medieval and early modern times, the price of grain had a determining effect on the entire economy and the general standard of living (Allen, 2000, 2001). To compare building activity history with the price of grain we used the 300-year detrended European grain price average as published by Ljungqvist et al. (2022). This grain price record consists of 56 series from cities across most of central and western Europe, standardized to z-scores relative to the 1546–1650 period. These data include 25 price series of wheat, 14 of rye, 10 of barley, and of 7 oats. This new price compilation is much more comprehensive than the European grain price average of 19 series from Esper et al. (2017) used in Ljungqvist et al. (2018), and represents a much larger spatial domain. We also calculated an average of multiple wine price series from across Europe (Allen and Unger, 2019), as wine was an important market commodity in much of Europe, and its price level is indicative of the economic conditions on a broad scale (Chilosi and Federico, 2021).

Recognizing that other living costs besides grain and wine affected the population’s purchasing power, and thus economic well-being, we use annual consumer price indices for London (1264–1699), Strasbourg (1386–1699), Krakow (1409–1699) (Allen, 2001), and Stockholm (1290–1699, Edvinsson and Söderberg, 2010) to estimate changes over time in consumer price indices. These indices are highly correlated to changes in real wages (Allen, 2000) and thereby provide an indication of relative societal wealth among ordinary people (De Pleijt and van Zanden, 2016). Despite considerable uncertainties in calculating the annual consumer price indices, we maintain that these indices still capture the economic feasibility to construct new buildings or to undertake major repair of existing ones.

To represent growing season temperature, we used the June–August temperature reconstruction by Luterbacher et al. (2016), as updated by Ljungqvist et al. (2019), resolved on a 5° × 5° grid across Europe. From these data we extracted the grid-cells covering 60°N–40°N by 10°W–30°E. For relative soil moisture availability, we use data from the Old World Drought Atlas (OWDA; Cook et al., 2015). The OWDA is a tree-ring-based reconstruction of annually resolved June–August (JJA) self-calibrating Palmer Drought Severity Index (scPDSI) values (Palmer, 1965; van der Schrier et al., 2011, 2013) resolved on a 0.5° × 0.5° grid across Europe. For obvious reasons, the spatial and temporal extent of both reconstructions is limited by the distribution and length of the tree-ring chronologies available for reconstruction. Consequently, for portions of Europe as one goes further back in time, the quality of the reconstructions decreases (Cook et al., 2015).

For further comparison, we used an annually resolved groundwater level (GWL) reconstruction for the Upper Rhine Valley (Germany and France) derived from tree-ring width data (Tegel et al., 2020). This reconstruction is entirely independent from the tree-ring data used to produce the OWDA. The GWL reconstruction is a proxy for long and short-term hydroclimate variations over western and central Europe, which has been linked to the multi-decadal North Atlantic climate variability (Tegel et al., 2020).



Regional Grouping of the Felling Dates and (Geo)statistical Analyses

Applying quantitative spatial and geostatistical analyses to the felling date data (such as grouping analysis) in ArcMap 10.6 (program package of ArcGIS; ESRI, 2017), produced no distinct regional groups or clusters. Hence, we manually grouped the data, over the period 1250–1699 CE, into seven separate regions in a way that made the most historical sense, acknowledging that any such clustering is to a degree subjective. The seven regions are: (1) the British Isles; (2) the Nordic countries, including Schleswig-Holstein, present-day Germany; (3) France, excluding Alsace, and Basque Country (Spain); (4) the Benelux countries, Belgium, the Netherlands, and Luxembourg; (5) central Europe (north), consisting of Germany, excluding Baden-Württemberg, Bavaria and Schleswig-Holstein, and Poland; (6) central Europe (south), consisting of Alsace, Austria, Baden-Württemberg, Bavaria, Czechia, Slovakia, and South Tyrol (Italy); and (7) Switzerland. The groups are based on natural, geographical, cultural, historical, ecological, social and economic features which, over the period of investigation or at least over longer historical periods, shared close economic relations and cultural unity.

Long-term trends toward fewer available dates in the felling dataset are partly related to a general decrease in the preservation of constructions back in time. This time-dependent constraint must be removed to provide a meaningful construction history. As in Ljungqvist et al. (2018), we thus removed the long-term trends by calculating the ratios between the raw values and 300-year cubic smoothing splines (Cook and Peters, 1981). After removing the long-term trend, the felling date data were transformed to standard normal deviates with a mean of zero and a standard deviation of one.

For correlation statistics all datasets are, when not using the annual values, smoothed using 10-year splines as well as 10-year, non-overlapping, box-car filters. Throughout this study, we use the p < 0.05 significance level for both the Pearson correlation (r) and Spearman rank correlation (rs) coefficients. The fewer available degrees of freedom were taken into consideration when using 10-year smoothed series. For detecting the timing of significant regime shifts, i.e., trends toward increasing or decreasing numbers, we employ the Rodionov (2004) sequential algorithm, as updated by Rodionov (2006) to accommodate autocorrelation, and consider only years with regime shifts significant at the p < 0.05 level. The software is a macro-based implementation for Microsoft Excel (called Regime test shift v6-2). Shifts in the time-series were computed on the mean felling date numbers using the default cut-off length of 20 years and omitting the last 10 years at each end of the time-series.

Heat maps for consecutive 50-year periods between 1250 and 1699, and for periods of 31 years around the Late Medieval Crisis and the Thirty Years’ War, were generated using the software ArcGIS 10.6. Here, the kernel density function in the Spatial Analyst toolbox was applied on the recorded felling date location (i.e., point data) for the above-mentioned periods (DiBiase et al., 2006). We used a search radius of 60 km to estimate the spatial concentrations of the felling dates within the individual periods. The Kernel density maps were reclassified for final comparison. To evaluate the regional impact of the Late Medieval Crisis and the Thirty Years’ War, we calculated the absolute differences in the number of felling dates between the 31-year periods by using the Raster Calculator in the Map Algebra toolbox (Spatial Analyst Tools) in ArcGIS 10.6. Again, the resulting maps were standardized (i.e., reclassified) to make them comparable. Regarding the Thirty Years’ War, only the regions with a population loss of at least 33% (Eickhoff et al., 2012, p. 26) were georeferenced and digitized by us for this purpose.




RESULTS


Patterns of Spatio-Temporal Change in Building Activity

The felling dates show a clear decline just prior to c. 1300 followed by a second decline c. 1340 (Figure 1B). Step-wise increases in building activity subsequently occurred during the late 14th century and throughout the 15th century. This feature is not merely a consequence of increasing data coverage over time, as it is also clearly apparent in the detrended data. Only toward the end of the 15th century did building activity levels become comparable to those of the 13th century. A peak in building activity can be observed in the mid-16th century, followed by a rather pronounced decline. The sharpest, and most distinct decline in building activity coincides with the Thirty Years’ War (1618–1648). By the end of the 17th century building activity reached levels comparable to those of the 13th and mid-16th centuries.

Considerable regional-scale variations in building activity were found. These variations are expressed in the relatively low correlation coefficients between the seven regions (see Figure 3 and Table 2). Exceptions are the strong correlation between the regions central Europe (south) and the British Isles, and between central Europe (south) and central Europe (north). The biggest differences between the regional-scale datasets relate to the timing and duration of the Late Medieval Crisis and the effect of the Thirty Years’ War (1618–1648). On the whole, times of high and low building activity are far from synchronized across regions even though some general patterns can be identified (Table 3). Moreover, the building activity history for the Nordic countries looks rather different from that of the regions on the continent. This may, partly, be related to the lower number of felling dates available for the Nordic countries.
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FIGURE 3. The felling date data 300-year filtered and standardized to z-score values over the entire 1250–1699 CE period for the regional subsets as well as for the full dataset. The red lines show the significant regime shifts in the number of felling dates, using a 30-year cut-off length.



TABLE 2. Annual correlation between the 300-year filtered and standardized regional subsets of felling dates.
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TABLE 3. List, in chronological order, of significant regime shifts in the unfiltered regional subsets of felling dates as well as in the full dataset.
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Clear spatial patterns in the form of changing hot-spots of building activity can be observed for the 50-year periods ranging from 1250–1299 to 1650–1699 (Figure 4). However, as the maps in Figure 4 contain absolute values, with their increasing trends over time, the periods of relative increase and decrease activity are arguably better captured in Figure 3. What is notable is that the different sub-regions, to a large extent, show different and even opposing trends for certain periods. For example, in the British Isles, in central Europe (north) and Switzerland, building activity increases around the 1530s. At the same time in France building activity begins to decline. In general, the different sub-regions show rather similar long-term trends, albeit with different start and end years containing periods of high and low building activity.
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FIGURE 4. Heat-maps of the number of felling dates for each 50-year period covered by our dataset. The maps are shown with contemporary political boundaries.




The Late Medieval Crisis

The decreasing building activity during the Late Medieval Crisis occurs well before the Black Death (1346–1353). The decline in the number of felling dates between 1250–1299 and 1300–1349 is 37%, whereas the declines between 1300–1349 and 1350–1399 are insignificant an 1%. Between 1350–1399 and 1400–1449 building activity recovers by 28% (Table 4). On a 31-year time-scale, the decrease between 1286–1316 and 1317–1347 is 18% whereas between 1317–1347 and 1348–1378, following the establishment and spread of the plague, the decrease is only 12% (Figure 5). In total, the decrease in the number of felling dates between 1286–1316 and 1348–1378 is 28%. The 28% increase between 1348–1378 and 1379–1409, brings building activity levels to nearly the same levels as between 1286–1316 (Table 4).


TABLE 4. Summary statistics for the felling dates for the 31-year periods around the time of the Late Medieval Crisis including the number (n) mean (x̄), median (x̃), and standard deviation (SD).
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FIGURE 5. Changes in the number of felling dates for four 31-year periods around the time of the Late Medieval Crisis. (A) Between 1286–1316 and 1317–1347, (B) Between 1317–1347 and 1348–1378, (C) Between 1348–1378 and 1379–1409. The maps are shown with contemporary political boundaries.


The magnitude and timing of the decrease in building activity during the Late Medieval Crisis is, however, highly variable between regions (Figure 5). The strongest decrease, pre-dating the Black Death, is seen in northeastern Germany and in France. In central Europe (south) this decrease is smaller and first occurs following the arrival of the plague. Considering the timing of significant regime shifts in the 300-year detrended and 10-year low-pass filtered building activity data of the entire dataset, the late medieval decrease in felling dates first appears in c. 1295 and then intensifies c. 1340. The recovery occurs in three phases c. 1383, 1445, and 1487. In more detail, several regions either show periods of declining building activity or an increasing building activity prior to the Black Death (Figure 5 and Table 3). The Nordic countries, dominated by data from Sweden, stand out for their lack of any significant evidence of decreasing numbers of felling dates prior to 1348 and the Black Death (Figure 3). The recovery from the Late Medieval Crisis shows a similar heterogeneous pattern between regions. Both central Europe (south) and central Europe (north), France and Switzerland show increases in the second half of the 14th century followed by new decreases in the first half of the 15th century (Figure 3). Looking at the heat-maps of building activity, the expansion of building activities continues from the 13th century into and throughout the 14th century in Austria, Czechia, and Switzerland. In these southern regions the evidence, as derived from felling date data, for any crisis is not clear. Other regions contain too few felling dates for the period to arrive at any more definitive conclusions (Figure 4).



The Thirty Years’ War (1618–1648)

A distinct decrease in building activity is recorded during the Thirty Years’ War (1618–1648) (Figure 6). The number of felling dates is reduced by 22% between 1587–1617 and 1618–1648, followed by a subsequent increase of 41% between 1618–1648 and 1649–1679 (Table 5). However, the impact of the Thirty Years’ War is very unevenly distributed across Europe, and largely limited to the parts of central Europe directly affected by the conflict. The decrease in the number of felling dates was largest in central Europe (north) (43%) compared to 24% in central Europe (south). However, in central Europe (south) the recovery of building activity first starts in the 1660s. Switzerland also experienced a decrease in the number of felling dates by 16% during the Thirty Years’ War, but this decrease is mainly limited to the c. 1618–1634 period (Table 5). Swiss building activity levels were again close to the long-term average during the latter portion of the Thirty Years’ War, with successive years of unusually high construction levels. Considering the spatial pattern in more detail, the strongest decrease during the Thirty Years’ War occurred in central Germany and portions of eastern Germany (Figure 6).
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FIGURE 6. Changes in the number of felling dates for three 31-year periods of the time of the Thirty Years’ War (1618–1648) to the period 1587–1617 and to the period 1649–1679 CE. The maps are shown with contemporary political boundaries. Regions with a population loss of 66% and above, of 33–66%, and below 33% are shown on the map.


TABLE 5. Summary statistics for the felling dates for the 31-year periods around the Thirty Years’ War (1618–1648) including the number (n) mean (x̄), median (x̃) and standard deviation (SD).
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In regions affected by the Thirty Years’ War, and having an estimated population loss of less than 33%, the decrease in number of felling dates was 31.84% between 1587–1617 and 1618–1648. In contrast, the decrease in number of felling dates was 41.4% in war-affected regions with an estimated population loss between 33 and 66%. Finally, in regions with a population loss exceeding 66%, the decrease in number of felling dates was as high as 68.3% (Figure 6). These differences are statistically significant at a p ≤ 0.01 level. Thus, it is clearly evident that there is a strong correspondence between the magnitude of population loss and the magnitude of decreased building activity, demonstrating the ability of the felling dates to capture not only the timing, but also the extent, of larger demographic changes.



Periods of High Building Activity

Despite small regional variations, common periods of high building activity are detected c. 1250–1295, c. 1445–1520, for a few decades in the mid-16th century, and in the second half of the 17th century (Figures 3, 4). Pre-Late Medieval Crisis construction peaks are absent from Switzerland and the Nordic countries, while occurring earlier in the British Isles, France, central Europe (south), the Benelux countries, and central Europe (north). Regarding the late-15th century period of high building activity levels, this building boom is most evident in the Benelux countries, central Europe (both north and south), and in France where it occurs slightly later. It is absent in the British Isles, Switzerland, and the Nordic countries. The mid-16th century period of high building activity is only distinctive in the Benelux countries, central Europe (north), and Switzerland. Finally, the building activity boom in the second half of the 17th century, following the Thirty Years’ War, is most evident in central Europe (both north and south) and France (Table 3).



Building Activity, Grain Price Level, Economic Well-Being, and Climatic Change

A significant negative correlation, r = –0.29 (rs = –0.29) using annual data and r = –0.55 (rs = –0.59) at decadal time-scales, is found between European building activity levels and the average European grain price level (Table 6). This significant negative grain price–building activity association strongly suggests less construction activity occurred when grain prices were high and vice versa. No other indicator of economic or social well-being shows such a strong relationship with building activity as grain prices. For example, the correlations between European building activity levels and average European wine prices are much weaker and only partly significant with r = –0.20 (rs = –0.22) at annual and r = –0.29 (rs = –0.23) at decadal time-scales (Table 6). Common regime shifts are also detected in the grain prices and the felling date numbers, whereas such a similarity is lacking in the wine price data.


TABLE 6. Correlation between 300-year filtered and standardized subsets for comparison with the entire felling date dataset.
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A positive correlation is also found between European building activity and lead pollution originating from mining in western Europe at both annual time-scales (r = 0.22 and rs = 0.26) and decadal times-scales (r = 0.45 and rs = 0.48) (Table 6). The lead pollution record originating from eastern Europe shows a much weaker positive relationship with building activity levels and is only statistically significant at annual resolution. Decreasing values of lead pollution from western Europe c. 1308 suggests the onset of the Late Medieval Crisis started about a decade later than that indicated by the felling dates (Table 7). A further decrease in lead pollution occurs in 1360, as opposed to the 1340 downturn in the felling dates (Figure 7). The step-wise recovery from this crisis mostly coincides in timing with a recovery in European building activity. Shifts toward decreased lead pollution, originating from western Europe, are seen in 1569 and 1589, signaling the start of the so-called Crisis of the Seventeenth Century (Hobsbawm, 1954; Parker, 2013). Unlike the felling date data, the Thirty Years’ War (1618–1648) is not defined by significant regime shifts in lead pollution. The lead pollution record for eastern Europe shows only five regime shifts, suggesting a later onset and longer duration of the Late Medieval Crisis (Figure 7).


TABLE 7. List of significant regime shifts in the in 300-year filtered and standardized subsets for comparison with the regime shifts in the felling date dataset.
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FIGURE 7. Figure showing the new entire felling date dataset, and the one Ljungqvist et al. (2018) for comparison, together with other datasets indicating general societal well-being and prevailing climate conditions. All data is standardized to z-score values over the entire period and 300-year filtered values. The red lines show the significant regime shifts in the number of felling dates, using a 30-year cut-off length.


A significant negative relationship is found between annual consumer price indices from Krakow and Strasbourg, and European building activity levels; r = –0.30 and r = –0.22, respectively for annual data; and r = –0.50 and r = –0.44, respectively, for 10-year box-car filtered data (Table 6). Interestingly, the Pearson correlations are higher than the Spearman’s implying a rather linear relationship between the two indices (Table 6). The relationship with the London annual consumer price index is considerably weaker and of a more non-linear nature. Correlations with the Stockholm annual consumer price index, despite being the second longest index considered, are weak and insignificant. It should be noted that the Stockholm index also does not show much agreement with the other three consumer price indices. Finally, a positive correlation (r = 0.38, rs = 0.34) is found between church construction rates and European building activity level.

Weak, but in some cases significant, are the associations between climate reconstructions and European building activity levels. The strongest negative correlations are obtained using the tree-ring-width-based southwestern Germany GWL reconstruction (r = –0.14 for annual data, and r = –0.30 for 10-year box-car filtered data). Thus, periods of low GWL s appear to correspond to periods of higher building activity and vice versa. On the other hand, no significant correlations can be found between building activity levels and the tree-ring based drought (scPDSI) reconstruction. The relationship between building activity and reconstructed June–August temperature is negative but does not reach statistical significance. We also analyzed the presence of regime shifts in the climate reconstructions and found little agreement with the regime shifts in building activity.




DISCUSSION


Felling Dates as a Historic Source Material

The results of this study demonstrate that felling dates contain genuine information about variations in past societal well-being at regional and macro-historical scales. The ability to capture the Late Medieval Crisis (Figure 5), the mid-16th century population boom (Clark, 1977; McEvedy and Jones, 1978; Turchin and Nefedov, 2009), the Thirty Year’s War (Figure 5), and the demographic increase in the latter 17th century (Biraben, 1979; Bardet and Dupâquier, 1997; Bulst and Pfister, 1997) demonstrates the usefulness of the felling dates as a historical source material. In particular, the ability of the felling dates to capture relative population losses in regions affected by the Thirty Years’ War confirms their skill as a demographic proxy (Figure 6). No notable population decreases were found in regions known to have been little impacted by the war such as the Netherlands (Parker, 2006; De Pleijt and van Zanden, 2016). However, large numbers of felling dates are needed for establishing statistically significant changes, particularly on smaller spatial scales. Thus, using the felling dates on their own appears to have its limitations, rendering them most useful within a source pluralistic framework (e.g., Myrdal, 2012).

Admittedly, the regional trends in building activity observed here depend heavily on the regional groupings used in this study. The merits of the groupings employed in this study can be debated, and alternatives offered, but data-driven approaches proved unable to deterministically identify statistically defendable and historically consistent alternatives (see Section “Other Datasets Used for Comparisons”). Future studies are needed to possibly disentangle and quantify construction phases at sub-regional to regional scales. We note, for example, the central Europe (north) region is heavily dependent on felling dates from cities along the German Baltic Sea coast (Figure 1A). Thus, the high building activity levels in medieval times derived from these data follow the expansion phases of the Hanseatic League during the 13th century (Jahnke, 2013). High levels of building activity, related to mining activity, in the Ore Mountain Range in German Saxony and Czech Bohemia is particularly evident in the periods 1250–1299, 1350–1399, and 1500–1599. While the first period represents the peak of medieval mining activity, the high level of building activity during the second period suggests this mining district experienced lesser stagnation than most other regions subsequent to the Black Death. The high building activity level in the 16th century in this region coincides with a phase mining industry growth in central Europe as well as elsewhere (Bohdálková et al., 2018).

To some extent, the choice of detrending and filter length influences our results, especially in the detection of statistically significant regime shifts (Table 3). We noted a difference in the number and timing (year) of regime shifts depending on whether the data have been 300-year spline detrended as well as 10-year smoothed. For example, considerably fewer regime shifts were obtained using data without 10-year smoothing, suggesting that for investigation of decadal regime shifts, filters of short lengths are useful.

As expected, a strong agreement (r = 0.83) in the annual felling dates, and in the timing of regime shifts, is found between the slightly different datasets used by Ljungqvist et al. (2018) and the one presented here. The new felling date dataset is slightly larger but only contains data that are georeferenced. In comparison to Ljungqvist et al. (2018), this new dataset reveals lower levels of building activity around c. 1400 CE, c. 1500 CE, and a somewhat less pronounced decline in activity during the Thirty Years’ War. The latter difference can be explained by the larger geographical coverage that includes more regions unaffected by the war. However, the lower rates in construction during the fourteenth and 15th century presented here cannot be readily explained and are unrelated to the inclusion of new data from any particular region. The most important difference is arguably a more step-wise, and slightly later, recovery in building activity following the Late Medieval Crisis. Another noteworthy feature is an earlier onset of the “Crisis of the Seventeenth Century” (Hobsbawm, 1954; Parker, 2013), also evident in the recent felling-date-based study for Czechia by Kolář et al. (2022).



Biases in the Collected Material

Our felling date dataset contains inevitable geographical biases (Figure 1A), and smaller temporal ones (Figure 1B). It is also biased toward artisan and bourgeois houses in urban settings and ecclesiastical buildings. This implies that construction activities in areas where forestry systems such as coppice or coppice-with-standards were in place are not well reflected in our dataset. Other biases may exist as well, particularly the unknown quantity of recycled building timbers distributed over time. The latter is difficult to directly address without more detailed construction and renovation histories for each building. However, we find it reasonable to presume that the proportion of freshly cut to recycled building timber remains approximately the same during both low and high periods of building activity. As noted in Bannister (1962), a clustering of dates, when sufficient in number, helps to distinguish between renovation work and original construction. Thus, large groups of felling dates clustered within a few years of each other suggest new constructions.

For studies such as this, the amount of data available from any particular region and sub-region is largely related to the length of time during which tree-ring dating has been implemented to study historic buildings and to the continuity of those studies. In the southwestern part of Europe, for example, dendrochronological studies on historic buildings are almost absent in Portugal, and while they started in the 1980s for Spain (Richter, 1986; Richter and Eckstein, 1986), little has been published in spite of the abundance of built heritage (Rodriguez-Trobajo, 2008; Domínguez-Delmás et al., 2015, 2017, 2018). An exception is the Basque Country region in the northeast, where dendrochronological techniques are regularly applied in historic buildings since the late 1990s (Susperregi, 2007; Susperregi et al., 2017). Similarly, the southeastern part of central Europe poses a particular problem. For example, Slovenia has little historical tree-ring material prior to c. 1500 CE (Čufar et al., 2008, 2014a,2014b). A large proportion of medieval structures in Slovenia were destroyed during Ottoman attacks in the 15th and 16th centuries and during the subsequent Ottoman–Habsburg Wars (1526–1791 CE) (Murphey, 1999; Dávid and Fodor, 2000) as well as the huge earthquake in 1511 CE (Ribarič, 1979; Čufar et al., 2014b). The situation in Slovenia is, in a certain way, similar to that in Hungary. We have, thus, not been able to include these regions of southeastern Europe. By contrast, though many felling date data exist in Sweden (Bartholin, 1990), only a fraction are accessible in digital form, and only for parts of the country (Meissner et al., 2012; Lagerås et al., 2016).

Compared to most other parts of the British Isles, limited data is available from Scotland (Crone and Mills, 2003; Mills et al., 2017). The timber-framed building tradition, which was so ubiquitous on the Continent and in England and Wales, did not develop to the same extent in Scotland, especially in the countryside (Stell, 2010). The medieval housing stock that survives is primarily high status, the tower houses, mansions, churches and castles of the ruling and ecclesiastical elite, and of these very few retain their original timbers. Of the 45 Scottish buildings with felling dates only seven pre-date 1500. By the 16th century Scottish builders were almost entirely reliant on oak and pine imports from Scandinavia and the Baltic Countries (Crone and Mills, 2012).



Comparison With Other Indicators of Societal Well-Being

The strongest association between European building activity rates and metrics of societal well-being is found with the grain price average for Europe (see section “Building Activity, Grain Price Level, Economic Well-Being, and Climatic Change”). Grain was the main (>70%) calorie source for most of the population (Allen, 2000; Collet and Schuh, 2018), despite some minor regional variation as per the notable focus on dairying in Gaelic Ireland (Campbell and Ludlow, 2020). Considering this, and the fact that grain price levels reflected the interplay of supply and demand (Persson, 1999), it is reasonable to use grain price levels as an indicator for both the availability of food, and the average standard of living (Campbell, 2016). It is known that grain price levels considerably affected real wage levels (Allen, 2001) as well as the long-term demographic development in the medieval and early modern periods (Turchin and Nefedov, 2009; Alfani and Ó Gráda, 2017). Thus, when grain price levels were low the general standard of living was higher, demographic growth was stronger, and there was both a need for new buildings and the resources to fund their construction. Wine price level data show a much weaker, but apparently more linear, association with European building activity than grain prices. This can be explained in two ways. First, there are fewer wine price series than grain price series available for comparison, and their spatial distribution is much more limited (Allen and Unger, 2019). Second, wine was a far less essential commodity than grain, and its price thus reflected general societal well-being to a lesser extent.

The strong positive association between European building activity and lead pollution originating in western Europe, compared to pollution originating from eastern Europe, can presumably be explained by the dominance of felling dates from western and central Europe in our dataset. The many synchronized regime shifts, shared by both European building activity and western European lead pollution levels, suggest that the two datasets, when combined in this manner, may be a defensible measure of large-scale development and relative prosperity.

Some of the reconstructed annual consumer price indices also show strong (negative) associations with reconstructed European building activity levels. However, it is important to emphasize that the reconstructed annual consumer price indices are not independent from the grain price data (see, e.g., Allen, 2001). The Krakow annual consumer price index shows the strongest correlation, followed by the Strasbourg index. This is hardly surprising considering both cities are located in the central European region, the region with the largest number of felling date data. A positive, but insignificant, relationship is also found between the independent church construction series and reconstructed European building activity levels. However, the short period of overlap (1250–1500 CE), and the fact that the church construction series is only available at 20-year time-steps, means that the degrees of freedom are too few to compute statistical significance.

The correlations between European building activity and past temperature and drought are mostly negative and insignificant. The weak relationship between temperature and building activity is surprising considering that temperature has been shown to have a strong negative association with grain prices (Ljungqvist et al., 2022) while this study has revealed a strong positive association between grain price and building activity. However, significant (negative) correlations between building activity and groundwater supply are found for the Upper Rhine Valley watershed (Table 6). The groundwater reconstruction is located in the approximate center of our felling data coverage. The observed association with building activity strongly suggests that drier conditions coincided with higher building activity and vice versa. The likely causal mechanism here is a groundwater connection with grain production (for details, see Ljungqvist et al., 2022). In addition, periods of low building activity correspond to the first two maximum glacier advances during the Little Ice Age in the Alps. The Great Aletsch and Gorner glaciers peaked at c. 1300–1370 CE and 1600–1670 CE (Holzhauser et al., 2005; Holzhauser, 2010). Le Roy et al. (2015) show that Mer de Glace glacier was advancing during the late 13th century and reached very high levels as early as 1280s–1290s, before peaking in the c. 1350s, which is paralleled by late medieval drop in the number of felling dates.



Prospects for Future Research

This study has made evident that the sparse coverage of felling dates in many regions limits robust identification and comparison of spatial patterns to certain portions of Europe. Thus, efforts to collect felling dates from currently sparsely covered regions should be encouraged when it is possible; we acknowledge that not every region has old buildings preserved. This problem could, in theory, be partly mitigated by including all available felling dates, meaning even those without waney edge felling dates, but for which estimated felling dates are available (e.g., when samples contain sapwood rings). We have refrained from doing so for mainly two reasons: (1) The spatial coverage would not be dramatically increased. (2) A degree of annual precision would be lost due to the “smoothing” effect created by introducing dating uncertainties (Bocinsky et al., 2016).

Future studies could address changes in the relative building activity rates of different types of constructions e.g., high status and low status buildings, to investigate social stratification, and their (financial) resilience to sudden social or demographic disruptions. For example, Haneca et al. (2021) demonstrated that the Catholic Church as an institution and financial power was much more resilient to social crises (e.g., recurrent plague outbreaks) compared to the general population. Likewise, it would be interesting to assess urban and rural building activity separately to study the inter-linkage between urban and rural economic and demographic development over time and space. Furthermore, it would be of interest to investigate the changes in the composition of tree species used for construction over time. The use of less preferred tree species would indicate changes in forest species composition, advancing deforestation and resulting in a lack local construction timber. Similarly, changes in the age of the trees used for construction activities could be informative with regard to resource availability (e.g., Baillie, 1982, 1995; Eckstein, 2007). Answering these types of questions, however, would require the collection of more extensive contextual data from each construction, a serious challenge on its own.

Finally, the strikingly strong agreement found in this study between reconstructed building activity history from felling dates and grain prices merits further investigations. Felling dates could be compared with grain prices on regional scales where the grain prices are identified through hierarchical cluster analysis to strongly co-vary. Future studies could strive to compare the association between the number of felling dates and plague outbreaks on local to regional scales [as done for Ireland by Mallory and Baillie (1988) and Baillie (2006), and for Czechia by Kolář et al. (2022)]. Ljungqvist et al. (2018) found that the number of plague outbreaks, at an aggregated scale, showed an even stronger association with the number of felling dates than grain prices. However, this required improved plague data at finer spatial scales. Extant plague datasets contain too many geographical biases, for most parts of Europe, to allow for meaningful regional studies of plague–building activity associations (e.g., Roosen and Curtis, 2018). Furthermore, comparing the number of felling dates with the number of major armed conflicts, or their intensity, on local to regional scales would be of interest, for example for Czechia (Kolář et al., 2022). This would be challenging as the quantification of the number of armed conflicts is prone to bias (see van Bavel et al., 2019; Ljungqvist et al., 2021) and available war datasets do not properly capture the societal costs of the conflicts of interest.




CONCLUSION

This article has demonstrated that large datasets of dendrochronologically dated felling dates from historical construction timbers can serve as useful source material for exploring the spatial dimensions of construction rates. The broader spatio-temporal patterns of building activity rates in western and central Europe were investigated employing 54,045 georeferenced waney edge felling dates spanning the 1250–1699 CE period. Using geostatistical and statistical techniques, we investigated the spatial-temporal dynamics of reconstructed building activity, as inferred from the felling dates, in relation to various measures of demographic, economic, climate, and social conditions. We compared regional similarities and differences in the timing, duration, and magnitude of periods of “crisis” and “prosperity” at different spatial and temporal scales as reflected by changes in building activity. Our conclusions are: (a) in regions with adequate data coverage, felling dates capture major demographic trends, (b) there is a strong negative association between the number of felling dates and grain prices, (c) there is a moderately strong positive association between the number of felling dates and mining activity, and (d) there are more regime shifts detected in regions with dense felling date coverage. Finally, we can demonstrate that quantitative research based on felling dates reflecting building activity offers an important tool to test hypotheses, and better explain causal relationships in demographic developments.
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Relative Pollen Productivity is an essential parameter for quantitative reconstruction of past land cover from pollen records, but published studies have produced a range of different values for the same taxa. Heathland habitats have limited plant diversity and strong spatial patterning, therefore are useful case studies to investigate aspects of pollen dispersal and deposition, but the estimated spatial area “sensed” by pollen records in these habitats also varies widely between studies. In this study, we estimate pollen productivity from two different microhabitats in a heathland ecosystem in order to investigate the role of local environmental conditions in any observed differences. Vegetation survey was carried out using the Crackles Bequest Project method, pollen assemblages from moss samples counted using standard methods, and relative pollen productivity and estimated source area derived using Extended R-Value analysis. Analysis of the data suggests that at least two pollen source areas exist at the sites studied, reflecting scales of landscape organisation. Microhabitat does not appear to have a marked effect on estimates of Relative Pollen Productivity in this heathland system. This study confirms earlier findings that the estimates obtained for some taxa from heathlands are substantially different than those from agricultural landscapes, especially Poaceae. The findings suggest that the factors controlling Relative Pollen Productivity are still not fully understood, and that differences between locations may reflect real, habitat-led differences. Further investigation of this parameter, which is central to reconstruction of past land cover from pollen records whether overtly incorporated via an algebraic model or less explicitly present via ecological narrative, biomisation or modern analog approaches, is clearly necessary.

Keywords: multiple pollen source areas, Relative Source Area of Pollen (RSAP), extended R-value (ERV) analysis, Scotland, Relative Pollen Productivity (RPP), heathland


INTRODUCTION

Reconstruction of past land cover from pollen records is currently an important research area (e.g., Gaillard et al., 2008, 2010), since most research questions about past vegetation are concerned with land cover, not with pollen per se. The translation of pollen records into meaningful measures of past vegetation which can be compared with other data or models, or used to inform ecological understanding, conservation planning, or the context of archaeological sites is challenging since the relationship between pollen assemblages and the vegetation which produced the pollen grains is complex (e.g., Jackson, 1994; Bunting et al., 2013). One approach which is currently producing interesting results and growing in use is the model calibration approach, which uses an algebraic model of the relationship between pollen deposited at a point and vegetation surrounding that point. The model is first calibrated against a modern dataset where vegetation cover and pollen assemblages can be directly measured and compared, then the calibrated model is applied to pollen assemblages from the sedimentary archive to obtain quantitative reconstructions of properties of the unknown past vegetation cover (e.g., Sugita, 2007a,b; Middleton and Bunting, 2009). This approach assumes that the relationship between parent plant and pollen assemblage is constant for a given taxon across the geographic range of the taxon as well as over time, and therefore that modern calibration terms can be used for past situations.

Most work in this area has been built on the development of a simple linear model, the history of which is reviewed elsewhere (e.g., Gaillard et al., 2008). The current model takes the basic form:
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where yik is the pollen influx of taxon i at point k in the landscape, αi is the pollen productivity of taxon i (usually expressed as a relative pollen productivity term rather than an absolute value), ψik is a measure of the abundance and distribution of plants producing pollen classed as taxon i in the landscape around site k within a specified distance often defined by the radius z (e.g., a distance weighted measure of abundance) and ωi is the background pollen influx of type i, that is, the regionally averaged pollen component originating from source plants growing beyond the specified distance, beyond radius z.

The model is calibrated using the Extended R-Value (ERV) method (Parsons and Prentice, 1981; Prentice and Parsons, 1983; see methods) against a modern dataset consisting of paired measurements of yik and ψik collected for a range of locations within a region; the distribution of these sampling points aims to capture a range of values of both yik and ψik, and can then be applied to reconstruct past land cover. This approach produces estimates of productivity expressed relative to a reference taxon, which are termed Relative Pollen Productivity (RPP) values (αi) in this paper. Other authors (e.g., Mazier et al., 2012) use the abbreviation PPE (pollen productivity estimate) to refer to the same output.

Biologically, the assumption that a single measure of RPP can be assigned to a taxon across its range is problematic. In many cases, pollen taxa can be sourced from multiple plant species or genera (e.g., Quercus pollen in the United Kingdom can originate from Quercus robur, Quercus petraea or various non-native ornamental species of oak, whilst Rubiaceae pollen can originate from several different Galium species or from Sherardia arvensis, and Poaceae pollen can come from most wild grass genera). Different taxonomic mixtures of source plants are known to have varying flowering frequencies, flower abundances and other aspects of reproductive biology, as well as growth height and architecture of the flower-bearing structures, therefore are likely to also have variations in pollen production and dispersal. Even within a single species, variations in resource allocation in response to environmental variation is expected to affect flowering—individual plants in stressful environments may flower more or less than individuals of the same genotype grown in less stressful conditions (May et al., 2017). The flowering of species also varies across the geographic range, with some plants showing substantial range in terms of the balance of reproductive strategies between sexual (pollen requiring) and asexual (e.g., vegetative, non-pollen requiring), and others showing reduced occurrence of flowering at range margin positions (e.g., Hicks, 2006; Kuoppamaa et al., 2009; Nielsen et al., 2010). All models are wrong, and this simplifying assumption of constant RPP is not entirely unjustified—the pollen signal reflects quite a wide spatial area, and is therefore likely to average the range of local habitats, and it is possible during vegetation survey to record flowering plants differently from non-flowering ones, especially where there are clear habitat differences (e.g., woodland versus open land) and through analysis of modern datasets identify which members of a palynological equivalent plant taxon group are typically contributing to the pollen signal and which are not.

Synthesis of multiple published sets of RPP values from broad biogeographic regions (e.g., north-west Europe, Mazier et al., 2012; extra-tropical China, Li et al., 2018) show considerable variation between studies, but used these data to recommend standardised sets of RPP values which are then applied throughout the region. The potential reasons for these variations are many. The range of data collection strategies used is considerable—for example pollen samples might come from mosses, soil samples or traps (e.g., Lisitsyna et al., 2012), and vegetation data can be recorded at different spatial intervals and using different methods and measurement types. Data analysis using the ERV method also requires specification of a reference taxon. Poaceae is most often used, since the pollen type is readily identified, found in almost all samples, and originates from a dominant plant taxon. However, the Poaceae pollen type can originate from the majority of wild grass species, and therefore from plants with a wide range of ecological requirements and traits.

Calluna-dominated heathland vegetation communities have previously been used as model systems for exploring controls on estimated values of RPP. Bunting and Hjelle (2010) showed that vegetation survey method can alter RPP estimates markedly by surveying vegetation around sample points in heathland using several different methods, and comparing RPP estimates obtained from the same pollen data when paired with the resulting different vegetation datasets. Heathland systems are particularly suitable for use as model systems for several reasons:


•They have a relatively limited flora and a wide geographic range.

•A widespread, monospecific pollen type (Calluna vulgaris) is available to use as a reference taxon – although the climatic and habitat range of the taxon suggests that it is highly adaptable, and therefore likely to have more intraspecific variation in at least some traits than a species with a narrower niche, it is less variable than the Poaceae family.

•They have a relatively simple vegetation structure with a low canopy, which makes the model assumption of above-canopy pollen transport more robust. An additional advantage is that modern vegetation recording is relatively rapid compared with a multi-layered woodland or a highly diverse meadow, meaning more data can be collected.

•They typically support abundant natural pollen traps (mosses), mostly of the preferred polster/hummock forming growth form (Boyd, 1986).

•These natural pollen traps are mostly found in gaps in the ericaceous canopy, therefore the potential complications caused by gravity deposition from a canopy taxon or dilution of pollen deposition through impaction on overhanging vegetation (Tauber, 1965, 1967) are reduced.

•Wetter parts of heathlands are peat-forming, and heathland areas tend to be characterised by a larger number of surviving sedimentary basins than the landscape as a whole due to both acidic preserving conditions and lower suitability for intensive human activity than surrounding land cover types, meaning that they are likely to be the source of sedimentary archives and Holocene pollen records.



Table 1 summarises published and unpublished estimates of RPP for selected heathland taxa in northern Europe. European reviews (Broström et al., 2008; Mazier et al., 2012) incorporate studies including multiple landscape elements, e.g., grazed and mown grassland, cropland, woodlands of different types, and heaths, and most carried out ERV analysis using a dataset including both tree and herb taxa. Hjelle (1998) studied only herbaceous taxa, but sampled grasslands as well as heathlands and used a rooted frequency vegetation survey method which is known to alter the apparent RPP of some taxa (Bunting and Hjelle, 2010); Bunting (2003); Bunting (unpublished) has presented RPP estimates from heathland systems in western Scotland, and Bunting and Hjelle (2010) presented estimates from coastal Norway, both using just the heathland taxa in their analyses. Clear differences in estimated RPP between these areas are noted (see Table 1), but methodological differences in vegetation survey and differences in site characteristics may also have a major effect (particularly for Moine Mhòr, where Molinia caerulea tussocks dominated part of the site where cutting and draining had created a hummocky heathland in poor condition – the hummocks and apparent hydrological fluctuations are considered to have affected the pollen taphonomy). In this study we chose to estimate RPP within heath communities only in order to investigate the effect of local habitat conditions on RPP without the added complications of additional plant communities which do not support the same taxa.


TABLE 1. Comparison of Relevant Source Area of Pollen and Relative Pollen Productivity (reference taxon recalculated where necessary to Calluna vulgaris) for other studies from heathland dominated landscapes.

[image: Table 1]
All studies where data analysis included only heath taxa produced sub-10m estimates of the Relevant Source Area of Pollen (RSAP – Table 1; sensu Sugita, 1994, the radial distance from the sample point marking the outer limit of the area where changes in the position of plants relative to the sample point affect the pollen assemblage, even if the proportions of plants within the area remain the same). A study of herbaceous pollen types from grazed and mown grasslands in Southern Sweden found an RSAP of 200 m (Broström et al., 2004), and in open community landscapes such as the Chinese steppe RSAPs of around 2000 m are reported (Li et al., 2018). Most of the heathland studies cited in Table 1 either included woodland patches in their analysis or did not collect vegetation data at greater distances, so could not determine whether the RSAP was real or an artefact of sampling strategy. The Lygra study (Bunting and Hjelle, 2010) is an exception where vegetation data to a distance of 1000m from the sampling points were included in the analysis.

This paper has three aims:


1)To estimate RPP for common taxa in a heathland area using the standardised Crackles Bequest Project method of vegetation survey (Bunting et al., 2013);

2)To investigate whether local habitat conditions affect the estimates of RPP obtained;

3)To test the assumption that heathlands have a RSAP of less than 10 m.





MATERIALS AND METHODS


Field Site and Sampling Strategy

The chosen field area is the Coigach peninsula in north-west Scotland (Figure 1). The low lying gently undulating topography minimises possible topographic or altitudinal effects on pollen assemblage formation at the larger scale. The landscape is dominated by heathland, managed by a mixture of low-density extensive grazing of sheep and deer and occasional burning, with small patches of commercial forestry and fragments of native woodland. Sample points were identified using a semi-stratified approach. Sample points were chosen to ensure a gradient of sites across the peninsula (to allow for the possibility of a climatic gradient from coastal to inland locations which might affect results). At each location sampling areas were randomly selected and then sample points were placed within patches of relatively uniform heathland which were identified as being wetter or drier in the field. Sample locations were at least 200 m apart, and moss polsters were collected and placed into sample bags (Bunting et al., 2013). A total of 18 samples were collected.
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FIGURE 1. (A) Location of the field area within Britain; (B) location of the Coigach peninsula and the sampling site at Blughasary (BH); (C) distribution of sampling sites on the Coigach peninsula. BA = Brae of Achnahaird; BF = Bad Fhluich; CM = Cnoc Mòr; MF = Meall an Fheadain; MT = Mòine Tomach; LO = Loch Osgaig; LR = Loch Raa; RM = Rubha Mòr.




Vegetation Survey and Data Processing

Vegetation survey around each sample point (see Figures 1B,C for locations) followed the Crackles Bequest Project protocol (Bunting et al., 2013), using a standardised layout of 21 1mx1m quadrats within 10 m radius (zone A), then community mapping and composition recording between 10 m and 100 m (zone B). All vegetation was recorded as vertical cover estimated by eye. Beyond 100 m (zone C) vegetation maps were extracted from the land cover mapping provided in LCM2015 (Rowland et al., 2017), the closest available date to the fieldwork. Vegetation composition for the LCM2015 communities was extrapolated from the field-mapped communities (see Table 2 for community compositions).


TABLE 2. Correlation of field mapped vegetation communities (Crackles Bequest Project zone B) with LCM2015 classes (used for Crackles Bequest Project Survey Zone C; Bunting et al., 2013).

[image: Table 2]
Vegetation data was stored and processed using the Survey programme (Middleton, unpublished), and extracted in the form of concentric rings for distance weighting using the Prentice-Sugita model and comparison with the pollen data. Fall speeds for Calluna vulgaris, Cyperaceae, Poaceae and Potentilla-type were taken from Mazier et al. (2012), and for Drosera rotundifolia-type, Empetrum nigrum, Myrica gale-type, Pteropsida (monolete) indet. and Vaccinium-type were calculated using Stokes’ Law with Falck’s correction (Gregory, 1973) based on measurements of 30 grains from pollen slides collected in the region. Wind speed was set to 3 m/s. Ring widths for 0–10 m followed the Crackles Bequest Project protocol (Bunting et al., 2013). A ring width of 10m was used for 10–100 m, then 50 m widths were used to 2500 m.



Pollen Analysis Methods

Moss polsters were collected from the centre of each survey area, sealed in ziplock bags and stored at 4°C in the dark. Samples were prepared for pollen analysis using standard methods (Moore et al., 1991) and counted under ×400 magnification, with ×1000 used for critical identifications. A base sum of 1000 total land pollen grains was counted. Taxonomy follows Bennett (1995-present), and identifications were made with the aid of the keys of Moore et al. (1991) and Beug (2004) and the reference collection at the University of Hull.



Sample Grouping

Sample habitat was summarised into a small number of habitats on the basis of the vegetation within the inner 10m survey area, and samples grouped using WinTWINS (Hill and Šmilauer, 2005). Vegetation data from the 21 quadrats in the inner 10m radius area was area-weighted (i.e., weighted according to the area of each ring) to give a single average for each sample as input for grouping. In order to explore how vegetation communities mapped onto pollen assemblages, Principal Components Analysis was carried out using CANOCO v4.5 (Lepš and Šmilauer, 2003) with a square root transformation on the pollen assemblages, using all 45 pollen types recorded.



Extended R-Value Analysis

Calibration of the pollen-vegetation equation (Equation 1) is achieved through regression analysis allowing estimation of the parameters αi and ωi, as long as yik and ψik are both measured independently for each taxon i. However, measuring pollen influx in absolute terms is non-trivial – measuring the length of time that pollen accumulates in natural traps such as lake surface sediments or moss polsters, or running pollen traps for a period of 5-10 years to minimise annual variation (e.g., Räsänen et al., 2004; Lisitsyna and Hicks, 2014), is both difficult and costly. Pollen analysts typically present and handle data as proportions, pik (proportion of taxon i at site k), where [image: image], therefore the values of pik are interdependent. Depending on the methods used for recording vegetation data (ψik), this term can also be interdependent across the taxon set. Where variables are interdependent, single-taxon regression analysis is not effective, and an iterative approach to estimating the values of the parameters αi and ωi is adopted (Parsons and Prentice, 1981; Prentice and Parsons, 1983). This iterative calibration process is generally referred to as ERV analysis. The basic approach is to modify Equation 1 as follows:

[image: image]

where pik is the proportion of taxon i recorded at point k in the landscape, αi is the relative pollen productivity of taxon i, χik is a measure of the abundance and distribution of plants producing pollen classed as taxon i in the landscape around site k within a specified distance (e.g., a distance weighted measure of abundance) and zi is the corrected background pollen term for type i, that is, a term expressing the regionally averaged pollen component originating from source plants growing beyond the specified distance. The term fk is a site-specific correction factor calculated from a combination of α and z values for all taxa present.

Three “models,” variants on Equation 2, have been proposed, and are differentiated by how the site specific correction factor is built into the equation and how the term zi is calculated. Models 1 and 2 assume that the term χik is based on proportion data and is therefore also interdependent for all i (Parsons and Prentice, 1981; Prentice and Parsons, 1983) whilst model 3 assumes that χik is measured independently for each taxon (Sugita, 1994).

Output from ERV analysis comprises a likelihood function score for the best fit solution identified, and estimates of αi and zi for all taxa. By carrying out ERV analysis using χik values obtained from different zones around the sample points k, it is possible to investigate how the fit of the model changes as the spatial area considered changes. When the vegetation survey zone for χik is defined using a radial distance z from point k, and ERV analysis is carried out for multiple values of z, plots of the changes in the likelihood function score are used to estimate a ‘best fit’ distance, a point beyond which adding vegetation data does not improve the fit of the parameterised model to the calibration dataset, which is termed the Relevant Source Area of Pollen (RSAP). This provides a measure of the spatial resolution of the pollen signal, and is used in some reconstruction methods (Sugita, 2007b).

Taxa were selected for ERV analysis on the basis of being present in both pollen and vegetation data for at least 4 locations, and from inspection of scatter plots of their abundance in the pollen and vegetation datasets. Six taxa characteristic of heathlands are included in the final analyses presented here (Calluna vulgaris, Cyperaceae, Myrica gale, Poaceae, Potentilla-type and Vaccinium-type), giving a revised pollen count base sum of 529-964 grains (mean 796 grains). Extended R-Value analysis was carried out using PolERV (Middleton, unpublished), which uses the same analysis code as Sugita’s software (Sugita, 1994). 200 iterations were run at each distance. Calluna vulgaris was selected as the reference taxon, being both monospecific and widely recorded across the landscape. The two primary WinTWINS clusters (wet heath and dry heath) were then separately subjected to ERV analysis using the same method to determine whether estimated RPP values differed under different growing conditions.




RESULTS


Summary of Main Features

Pollen samples and vegetation data were collected from eighteen sites (Figure 1), and the pollen assemblages and vegetation composition are summarised in Figure 2.


[image: image]

FIGURE 2. Pollen percentages and % vegetation cover within 10 m of the sample point for samples collected in this study. Vegetation cover is grouped into palynological equivalents. Sample locations and codes are shown in Figure 1.


The WinTWINS analysis identified three groups of samples (Figure 3), which show geographic overlap (see Figure 1). All samples have high abundance of Calluna vulgaris. Cluster 1A (WinTWINS group 00) has high abundance of Calluna vulgaris, intermediate Cyperaceae abundance, and comparatively low Poaceae abundance, along with the most Erica cinerea of the three clusters. Cluster 1B (01) has the highest Cyperaceae abundance and lowest Calluna vulgaris abundance of the three clusters, with comparatively low Poaceae abundance, and occasional presence of Myrica gale. Cluster 2 (10/11) has relatively low abundance of Cyperaceae, highest Poaceae and high Calluna vulgaris, and most samples also have quite strong presence of Myrica gale. Cluster 2 consists of sites from the wettest parts of the heathland mosaic, and Cluster 1 of samples from drier locations. Cluster 1 is then divided between sites with higher abundances of Erica cinerea which showed some visible signs of soil erosion and/or past peat cutting in the field (1A), and sites with higher abundances of Carex sedges and apparently intact soils (1B).


[image: image]

FIGURE 3. Visual representation of WinTWINS clustering based on % areal cover of vegetation within 10 m radius of the pollen sampling point. Sample locations and codes are shown in Figure 1.




Habitat and Pollen Assemblages

Figure 4 shows the results of PCA analysis of the pollen data, with symbol coding showing the WinTWINS clusters based on the vegetation data. The first two axes together explain 70.4% of the variance with eigenvalues of 0.363 and 0.341, respectively. Axis 1 separates sites with higher proportions of Calluna vulgaris and Drosera rotundifolia from sites with higher levels of Cyperaceae, Poaceae and Myrica gale-type. Cluster 1A samples are more likely to be found at the negative end of this axis and Cluster 1B more likely on the positive end along with most Cluster 2 samples, but there is overlap between the three clusters. This axis appears to be dominated by local wetness, with wetter sites at the right hand side. Axis 2 is dominated by Pinus and Sorbus-type, both background pollen types (in the sense that mature individuals of their source plants were not present within 100m of any survey location), suggesting that this axis is effectively geographical. It separates LR1 and LR2 from the other samples, probably reflecting the relative abundance and proximity of native woodland stands around Loch Raa compared with all other sites.


[image: image]

FIGURE 4. Principal Components Analysis of pollen assemblages (percentage data, square root transformation). Colour/fill of sample locations denotes the WinTWINS vegetation cluster each belongs to. Only the nine most abundant pollen types are shown on the figure for clarity.


Although Clusters 1A and 1B are ecologically separable, we combined them for ERV analysis due to the small number of samples in Cluster 1B. Figure 5 shows scatter plots of the nine most abundant taxa recorded in both the vegetation and pollen datasets (excluding the three arboreal taxa, Betula, Pinus and Sorbus-type). Calluna vulgaris is clearly a suitable reference taxon for Cluster 1, with a clear gradient of values, but may be problematic for Cluster 2, where the gradient of vegetation values is comparatively short. On the basis of scatter plot inspection, Drosera, Empetrum nigrum and Pteropsida (monolete) indet. were excluded from further analysis, and the remaining six taxa were used for ERV analysis as presented in the next section.


[image: image]

FIGURE 5. Scatter plots of pollen proportion (on a base sum of these nine taxa) against distance-weighted plant abundance within 95 m radius of the sampling point for nine taxa considered for analysis. Drosera, Empetrum nigrum and Pteropsida (monolete) indet. were excluded from the final dataset. Blue circles denote samples in Cluster 1, green triangles samples in Cluster 2 (see Figure 3 and text for details).




Extended R-Value Analysis

Likelihood function scores for ERV models 1 and 2 are shown in Figure 6 for all datasets, plotted against two different distance scales. Figure 7 summarises the RPPCalluna estimates obtained (also given in Table 3).
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FIGURE 6. Likelihood function scores for the full dataset and the two clusters, plotted against two different distance scales to show key features (see text for discussion).



[image: image]

FIGURE 7. Comparison of estimates of Relative Pollen Productivity (reference taxon is Calluna vulgaris) obtained using different combinations of sample dataset (ALL = all samples, C1 = Cluster 1, C2 = Cluster 2—see Figure 3 for definition of clusters) and Extended R Value sub-model (ERVm1 = Extended R-Value sub-model 1)—see text for details. Dashed line at 1.0.



TABLE 3. Estimates of Pollen Productivity relative to Calluna vulgaris produced by this study (see also Figure 7).

[image: Table 3]

Likelihood Function Score and Pollen Source Area

The likelihood function score (lfs) plots are not as expected (Figure 6). An ‘ideal’ lfs plot would show a monotonic fall to a clearly defined single asymptote, which is used to identify the RSAP for the studied assemblages. However, these plots show an initial sharp fall within a few metres of the sampled point, then rise abruptly. The whole dataset plot flattens out by around 60 m, then rises gently and steadily to 2500 m. The same pattern is seen with both ERV models for all samples and for the two local habitat clusters.

We interpret this pattern as showing multiple pollen source areas (PSA) within the datasets – that is, multiple distances at which a local “best fit” between vegetation and pollen data is obtained using the ERV model fitting approach. The changes in survey method with increasing distance from the sample point are not considered to be the main cause of these effects, since most PSAs identified are located within a survey method zone rather than at the edge of one. Zone A surveys the area to 10 m, and the first PSA is at a radius of 1–3 m or so, then zone B surveys the area to 100 m and the second PSA has a radius of 55–65 m for all samples and for Cluster 2, and for Cluster 1 of around 125 m.



Estimates of Relative Pollen Productivity and Background Contribution

Table 3 summarises the RPPCalluna values at both of these apparent source areas, and values are plotted in Figure 7.

At PSA1, the shortest source area with the lowest lfs (therefore the best ERV model-data fit), the range of estimated RPPCalluna values is generally greater. Myrica gale-type always has estimated values above 1 and Vaccinium-type values below 1, around 0.2. Cyperaceae estimated values are around 1.5 except for the analysis run using model 2 on the all sample dataset. Poaceae values are unexpectedly low—effectively zero for some distances. Potentilla-type values are the most variable. At PSA2, the pattern of results differs slightly. Cyperaceae is below 1 for the full dataset and for Cluster 1, but averages 1 for Cluster 2. Poaceae again has unexpectedly low values, and Potentilla-type now averages around 1. Vaccinium-type is similar for all clusters.

The proportion of pollen found to come from beyond each PSA is also given in Table 3 (Σzi, the sum of the background term, which differs in mathematical definition between models 1 and 2). As would be expected, values at PSA1 are generally higher than values at PSA2. In several cases the background component has a value of zero, which can be interpreted as showing that all pollen from the selected taxa originated within the PSA distance. The background pollen component is typically on the order of 40-60% at the RSAP for landscapes with mosaic woodland land cover (Sugita, 1994), but here is noticeably lower. This suggests that the pollen signal of these heathland surface samples is strongly local in character, partly as a result of the small size of individual patches within the heath vegetation mosaic.





DISCUSSION


Pollen Source Area(s)

This study set out to calibrate the widely used Prentice-Sugita pollen dispersal and deposition model for common heathland taxa by applying the ERV method to different subsets of a dataset of 18 samples. Standard practice is to carry out ERV analysis at multiple distances, identify the RSAP from a plot of lfs against distance, then use either the values of the RPP coefficients estimated at that distance or a mean of the values estimated at that distance and all greater distances with similar lfs values. The standard lfs curve is monotonic and asymptotic, but in this study analysis produced a more complex curve.

We argue that this is not an artefact of small sample size or data collection strategy, but represents a real phenomenon in the way in which pollen assemblages record the surrounding vegetation which may result from multiple levels of structure within the vegetation mosaic. Bunting et al. (2004) showed that mosaic structure and patch size had a strong effect on RSAP values in simulated vegetation communities, and within this landscape it is possible to identify multiple levels of patterning, from the fine scale variability of individual tussocks, dwarf shrubs and mossy hollows which repeats on a 1-5m scale to the larger scale distribution of wet and dry communities reflecting the undulating meso-scale topography along with large-scale patches of water, woodland, plantation, moorland, road and rock which make up the landscape as a whole. The two pollen source areas identified appear to reflect this landscape characteristic. Different modes of pollen dispersal and deposition may be more or less important at the different PSAs, and may not all be modelled equally well by the Prentice-Sugita model.

This identification of multiple pollen source areas within a single dataset may also explain some of the apparent contradictions in the literature, where very different RSAPs are defined for similar landscapes. Reported RSAP for studies including only heathland communities are between 1 and 5 m (Table 1; a similar distance to that estimated for Empetrum nigrum alone by Tallis, 1997) whilst studies of other open vegetation types (Broström et al., 2004; Li et al., 2018) reported much larger RSAPs. This study suggests that multiple Pollen Source Areas may exist, depending on the scale of study, which may explain much of this apparent contradiction. This idea has significant implications for site selection and reconstruction strategies which we will explore below.

Sugita (1994) found that the estimated background pollen rain component at RSAP is 40–60%, whereas here even the shortest identified PSA has a much lower background pollen component (see Table 3), again suggesting that the pollen signal of the heathland pollen taxa recorded by these surface samples is strongly local in character.

Problems with ensuring consistent mapping of vegetation beyond 100 m were encountered, and extrapolation of community composition is not always sound, especially for the wet heath communities, since not all wet heaths have the Myrica gale-type dominance recorded within the 100 m zone. There is definitely scope to make better use of remote sensed data to improve vegetation mapping (e.g., Middleton et al., 2012) in this wider zone which should be explored in future studies.



Relative Pollen Productivity

RPPCalluna values vary somewhat according to both which definition of the pollen source area is used and which subset of data are used for analysis. Figure 7 visually summarises the variations in estimated RPPCalluna of the studied taxa. Vaccinium-type and Poaceae always have RPPCalluna less than one, and Myrica gale-type always has RPPCalluna above 1. Potentilla-type and Cyperaceae show more variability, with values ranging from 0.7 to 1.9 for Potentilla-type and from 0.6 to 1.5 for Cyperaceae. This range of values is less than that seen in Bunting and Hjelle’s (2010) investigation of the effects of different vegetation survey methods, but still sufficient to make a marked difference in simulated pollen assemblages or reconstructed vegetation cover.

One possible explanation is that these changes are the result of poor study design; sample size for Cluster 2 is small, the scatter plots (Figure 5) show a limited range of vegetation cover for the reference taxon, and Myrica gale-type is excluded from the analysis of Cluster 1. Whilst a larger number of samples would doubtless strengthen our conclusions, we consider that the patterns observed are real properties of the dataset, and should be considered seriously.

A second explanation is that these variations reflect actual differences in the RPP of the affected taxa, or of the reference taxon, in the different habitats represented by the two groups of samples. Calluna vulgaris flowering phenology is known to be altered by moisture availability (Jentsch et al., 2009) and flowering intensity can be affected by even small changes in nitrogen deposition (Phoenix et al., 2012), therefore variations in flowering and hence pollen production between the wetter and drier soil conditions represented in the habitats sampled by Clusters 1 and 2 might be expected. Local-scale changes in the pollen productivity of Calluna vulgaris would affect the RPPCalluna values of all other taxa, especially at PSA1 (since the heterogeneity of patches is most marked at those scales; Clusters 1 and 2 were defined on the basis of vegetation composition within 10m of the sampling point, and sample locations were placed within distinct plant communities). However, RPPCalluna(Poaceae) and RPPCalluna(Vaccinium-type) are consistent across all three datasets and at both distances, which suggests that, if the variation is driven by differential pollen productivity, the difference observed is due to variations in the pollen production of Cyperaceae and Potentilla-type. For Cyperaceae, this may reflect differences in the species present rather than, or in addition to, microhabitat effects. For Potentilla-type, where only Potentilla erecta was recorded in the vegetation communities included in this analysis, the variation is likely to be due to microhabitat effects such as different amounts of flowering in different habitats (taxon presence was mapped on the basis of leaf cover). This could be usefully explored in a future study by quantifying the flowering and pollen production of Calluna vulgaris and other key taxa in contrasting habitats (e.g., Waller et al., 2012 applied a similar approach to explore pollen productivity of selected woody taxa in response to different stages of the coppicing cycle).



Comparison With Other Studies

Results from other published work are presented in Table 1, recalculated where necessary to RPPCalluna, and included graphically in Figure 8 for the four taxa where multiple comparators exist.
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FIGURE 8. Comparison of Pollen Productivity relative to Calluna vulgaris for heathland taxa from multiple studies (see Table 1 for more details). Orange bars—this study, black—north-west European PPE.st2 values (Mazier et al., 2012), grey—single region studies (Table 1). Dashed line at 1.0, note varied y-axis scales, and x indicates that a taxon was not included in the original study.


The value for Poaceae is much lower than the value in the standard north-west European dataset (Mazier et al., 2012, PPE.st2), which is reasonable given that in this landscape grasses are relatively rare and subject to heavy grazing, in contrast to most of the landscapes where RPP studies have been done. It is interesting though not surprising that results from the Assynt dataset (Bunting, 2003) are very similar to this study – sample sites used were within a few tens of kilometres of each other. Bunting (2003) used a different vegetation survey method (maximum distance 4m), and sampled locations were either small basin mires or blanket peat on sloping ground near gullies supporting woodland fragments, but the RPPs seem to be reasonably robust. The range of values for RPPCalluna(Cyperaceae) and RPPCalluna(Poaceae) from previous studies in heathland-rich areas is wide. The highest values come from a Central Swedish montane region (von Stedingk et al., 2008), where Calluna is not a dominant taxon. RPPCalluna(Potentilla-type) values are generally lower than those reported here other than a very high estimate from coastal Norway (Bunting and Hjelle, 2010), and RPPCalluna(Vaccinium-type) values are broadly comparable in all studies where they were reported.



Implications for Palaeoecological Research

A primary implication of this study is that it is important when working with palaeoecological data to be aware that the pollen source area is a multi-faceted concept, and the pollen signal has considerable spatial complexity. In this case, the highly local nature of the signal of heathland taxa may be masked within a pollen assemblage which includes elements found only in the wider landscape, such as trees, or may not be considered during narrative interpretation of records. Separating which parts of the signal originate from local or extra-local pollen sources is a known challenge for pollen records collected from mires (e.g., Bunting and Tipping, 2004), and the clear detection of a strong, short source area within mire type communities in this study emphasises the importance of considering local conditions before interpreting the wider record. Further empirical study of modern surface samples collected from mire basins, rather than just from surface mosses within a heathland landscape, and associated vegetation data from multiple scales, would offer a better insight into how substantial the problem is, and could be coupled with testing the effectiveness of other proxies such as non-pollen palynomorphs in detecting the local and extra-local community types.

This study shows that estimating RPP values remains problematic—whilst standard values have been proposed based on comparison of multiple studies, without better understanding what controls variation in pollen production by plants within the same pollen type, decisions about which values to include or exclude risk missing some important features of the system they aim to quantify. Random sampling has been demonstrated to be more appropriate than selective sampling for RPP estimation via ERV analysis (Broström et al., 2005), but since sedimentary records are by their nature non-randomly located, understanding how local habitat affects pollen production and pollen assemblage characters is important. Ensuring that the full range of growth contexts of a species are sampled improves the likelihood that the RPP estimate will reflect the average value across the whole landscape. A particular concern raised by these findings is that, as the surface hydrology changes due to wetland evolution or regional climate change, the RPP of some of the taxa recorded may also change, presenting an additional challenge for reconstruction of past vegetation. An example of another case where unintended selective sampling may have affected the RPP estimates is Alnus in Europe. Values estimated from extensive alder-carr woodlands in a floodplain system (Bunting et al., 2005) were found to be three times higher than those reported from a non-wetland landscape (Broström et al., 2004).



Further Work

This study illustrates that there is still a great deal to be understood about the natural variability of the parameters used in current models of pollen dispersal and deposition. All models require simplifying assumptions, and all models are to some degree “wrong” (Box and Draper, 1987). All pollen-based land cover reconstructions make some assumption about pollen production, whether overt or covert, and the vast majority assume that production is constant and therefore that changes in pollen proportions at different points in a core sequence imply changes in the abundance or position of the pollen-producing plants rather than a change in the amount of pollen produced by one taxon relative to another. Our findings suggest that the assumption of constant RPP may not be tenable in some cases (see also Theuerkauf et al., 2015). Given the importance of this assumption for both the many uses of pollen dispersal and deposition models and for wider interpretation of pollen records, further research is needed to determine how widespread this phenomenon is, and whether it can be incorporated into reconstruction approaches.

Further research could include replicating the type of study presented here using a wider range of sampling locations within the same type of landscape (to include woodland, grassland etc. as well as types of heath) and a larger number of samples, working with different types of natural pollen traps (e.g., small lakes, valley mires) or studying a different ecosystem which also has a range of habitat types occupied by a similar suite of palynological equivalent plant types. Another approach to this problem is to include studies of actual flowering and pollen production of plants in the field (e.g., Waller et al., 2012), or to carry out experimental studies to determine the effects of environmental factors on pollen production.




CONCLUSION


1)Analysis of heathland pollen data suggests that at least two pollen source areas exist within the dataset, reflecting scales of landscape organisation.

2)Microhabitat does not appear to have an effect on estimates of Relative Pollen Productivity in the heathland system which can be detected over the variation due to differences in source area and data analysis method. Since these RPP values were collected from a single habitat, they should be used with caution for reconstruction of past landscape scale land cover.

3)This study confirms earlier findings of markedly different values of Relative Pollen Productivity for some taxa in Atlantic heathlands, especially Poaceae, which is substantially lower than values estimated from other parts of Europe in agricultural landscapes.

4)The findings suggest that the factors controlling Relative Pollen Productivity are still not fully understood, and that differences between locations may reflect real, habitat-led differences. The assumption of constant Relative Pollen Productivity, with variations seen in the data explained as the result of sampling and methodology, needs to be re-examined. Further investigation of this parameter, which is central to reconstruction of past land cover from pollen records whether overtly incorporated via an algebraic model or less explicitly present via ecological narrative, biomisation or modern analog approaches, is clearly necessary.
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Human evolution was strongly related to environmental factors. Woodlands and their products played a key role in the production of tools and weapons, and provided unique resources for constructions and fuel. Therefore wooden finds are essential in gaining insights into climatic and land use changes but also societal development during the Holocene. Dendroarchaeological investigations, based on tree rings, wood anatomy and techno-morphological characteristics are of great importance for a better understanding of past chronological processes as well as human-environment-interactions. Here we present an overview of the sources, methods, and concepts of this interdisciplinary field of dendroarchaeology focusing on Europe, where several tree-ring chronologies span most of the Holocene. We describe research examples from different periods of human history and discuss the current state of field. The long settlement history in Europe provides a myriad of wooden archeological samples not only for dating but also offer exciting new findings at the interface of natural and social sciences and the humanities.
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INTRODUCTION


Importance of Wood

Since the beginning of mankind people have extracted and processed plant resources. Human cultural development has relied on wood, in particular, for producing tools, building constructions but also as the primary source of energy. Archaeological research, however, has a strong focus on non-biodegradable sources. This is reflected in the so-called three-age system for the rough classification of humans’ pre-history into three main time-periods: the Stone Age, the Bronze Age and the Iron Age, which was established by Thomsen (1836) and is still widely used in modern archeology (Kipfer, 2000). This prevailing focus can be explained by the better preservation conditions of inorganic material. Nevertheless, wood has played an equally, if not the most important role as a raw material in all epochs up to our present time. The key role of wood as an energy source only started to diminish in the latest phase of human history, when fossil fuels became widely accessible as alternative sources of energy (Freese, 2003). The increasing use of coal, petroleum and natural gas during the modern period created the preconditions for the industrial development during the 19th century and accelerated considerably with modern chemistry at the beginning of the 20th century. As a result, forest utilization lost much of its importance since modern societies of the 19th and 20th century allegedly have been relieved from depending on renewable forest resources (Ritchie and Roser, 2017). For a great part of human history, however, the development of societies was dominated by their interaction with woodlands, since they relied on forest products for most aspects of their everyday life (Willerding, 1996).

Sophisticated supply strategies for woodland resources have been developed over time and have substantially contributed to the shaping and advance of societies and cultures. In particular, trees had numerous functions as a valuable and diverse source for construction material, fuelwood, raw material (e.g., for tools, weapons, furniture, jewelry), food (fruits, seed, fodder), tanning and coloring agent, fiber production (e.g., clothing, ropes, nets), and for resin and pitch production (Andraschko, 1996).



Dendroarchaeology

Dendroarchaeology is the study of historical and archaeological wood from various contexts and functions (Figure 1). These investigations are based on tree rings, wood anatomy and techno-morphological characteristics. With the application of dendrochronology [from ancient Greek: dendron (tree), khronos (time), -logia (the study of)], each tree ring can be precisely dated to a calendar year since annual variations in ring widths are strongly linked to annual variations in weather conditions, which allows for the alignment of ring-width patterns of different trees within a region (Douglass, 1909) (see section “Crossdating” for details on the method).
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FIGURE 1. Wood sources for dendroarchaeological research: (A) Subfossil trees from a gravel pit in the Upper Rhine Valley (Leutenheim, France). (B) Neolithic pile excavated underwater in Oehningen-Orkopf, Lake Constance, Switzerland. (C) Water well lining from the Late Bronze Age, excavated in Erstein, France. (D) Post foundation of a Roman building in Vendresse, France. (E) Medieval silver mining gallery in the Black Forest (Schauinsland, Germany). (F) Half-timbered house in Troyes, France. (G) Late medieval roof truss in Langenrickenbach, Switzerland. (H) Modern sawmill in Many, France. (I) Neolithic knife with flint blade and wooden handle from Allensbach, Germany. (J) Late Bronze Age construction timber from Erstein, France. (K) Late Iron Age wooden hammer from Saverne, France. (L) Roman comb and (M) box from Troyes, France. (N) Modern painting and (O) violin.


Comprehensive dendroarchaeological studies combining archeological and dendrochronological methods and data allow valuable insights into the chronological development of cultural processes, the history of ancient woodworking and construction techniques as well as into former forest utilizations and environmental conditions.

Dendroarchaeology, as a relatively young branch of research in archaeology, found its first application in Europe during the 1940s in an interdisciplinary effort to systematically investigate wooden finds from archaeologically excavated pre-historic wetland settlements of the northern pre-Alpine lakes (Rump, 2011). The combination of methods from botany, forestry, timber industry and archaeology helped to optimally process the delicate organic wooden finds (Bräker et al., 1979; Broda and Hill, 2021). For the first time, it was possible to record features and structures as well as the settlement dynamics of prehistoric lakeside settlements with chronological precision (Huber, 1941). As a consequence of the ground-breaking results, wooden remains gained greater attention in archaeological research.



History of Dendrochronological Research

The first description that trees form tree rings was done by Theophrastus (c. 371 – c. 287 BCE), a Greek philosopher and naturalist. Leonardo da Vinci (1452 – 1519 CE), followed by Montaigne (1533 – 1592 CE), were likely the first to recognize that these patterns occur in an annual sequence. The fact that tree rings are suitable for determining the life span of a tree became more generally known in the course of the 17th and 18th centuries, but it was not until the end of the 19th century that Arthur Freiherr von Seckendorff-Gudent began to “overlap” tree-ring sequences of different trees (Wimmer, 2001). Other applications of tree-ring analysis included the evaluation of how tree growth is affected by pollution (Stoeckhardt, 1871). The first attempt to examine the association between tree growth and climate was made by the Dutch astronomer Jacobus C. Kapteyn who matched tree-ring sequences from regions in the Netherlands and Germany (Kapteyn, 1914; Stallings and Schulman, 1937). However, Andrew E. Douglass, an American astronomer defined the science of dendrochronology, as he aimed at using tree rings to demonstrate a connection between the earth’s climate and the 11-year cycle of sunspots (Douglass, 1920). By using the method of crossdating (Figure 2 and see also section “Crossdating”), Douglass was also able to determine the age of dead and decayed tree samples and in 1929, he established a continuous 1229-year long tree-ring chronology extending back to 700 CE. For the first time in history it was possible to date timber from archaeologically excavated cliff dwellings from the 13th century at Tsegi Canyon, Mesa Verde, and Canyon de Chelly with annual precision (Douglass, 1935). Inspired by Douglass’ success, several researchers from Russia, Scandinavia and Germany independently studied European tree species. The further development of dendrochronology in Europe is strongly connected with the pioneering work of the Austrian botanist Bruno Huber, who initiated research on tree rings at the former Royal Saxon Academy of Forestry in Tharandt, Germany, in the 1930s (Eckstein and Wrobel, 1983; Rump, 2011). While Douglass used extreme wide and narrow rings to cross date, Huber adjusted Douglass’ method by measuring and plotting each ring of the tree, owing to the fact that trees from temperate zones show less pronounced year-to-year variability than trees from semiarid zones (Eckstein and Pilcher, 1990). As early as 1941, Huber used this method to date several archaeological sites in eastern, northwestern, and southern Germany (Huber, 1941; Rump, 2011). Huber’s successful dating of the Bronze Age palisades at Wasserburg Buchau, southwestern Germany, marked the beginning of modern dendroarchaeology in Europe (Huber and Holdheide, 1942).
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FIGURE 2. Schematic illustration of the crossdating process. The climatic-related sequences of wide and narrow rings of the wooden samples allow the dating of wood from different sources and the development of millennia-long tree-ring width chronologies. Since the material is not evenly available through time, consequently the number of samples (replication) varies too.


The increasing amount of dendrochronologically dated wood samples enabled further studies including the establishment of the radiocarbon calibration curve (Huber and Jazewitsch, 1958). By successfully dating three Neolithic settlements in eastern Switzerland (Thayngen Weier, Burgäschisee Süd, and Burgäschisee Südwest), Huber established their chronological parallelism and proved for the first time that the so-called Pfyn and Cortaillod cultures (ca. 3900–3500 BCE) had coexisted at the same time (Huber et al., 1963). Furthermore, Huber and his team worked on the development of reference tree-ring width chronologies for central Europe, for example, the first and well-replicated 1000-year long oak chronology for Hesse (central Germany) (Huber, 1963; Huber and Giertz-Siebenlist, 1969). This pioneering work was accompanied by further initial dendroarchaeological investigations mainly in northern parts of Europe (e.g., Kolchin, 1962; Bauch, 1968). The German dendrochronologist Ernst Hollstein played a pivotal role in further implementing dendrochronology in Europe. Since 1960, he sampled living and historical material in western Germany, France and Switzerland and established a 2500-year long oak tree-ring width chronology (Hollstein, 1967, 1980; Rzepecki et al., 2019). Moreover, Hollstein not only introduced wood physical and technological characteristics to determine the time of tree felling, he also investigated the relationship of heartwood and sapwood rings in oaks and thus, established the commonly applied sapwood statistics, enabling more precise estimations of oak felling dates (Hollstein, 1965).

After the death of Bruno Huber, his former research associate Bernd Becker continued his work at the University of Stuttgart-Hohenheim (Germany). He further extended the existing chronologies with a strong focus on subfossil trees, deposited in fluvial gravel, and developed millennia-long tree-ring chronologies for southern Germany that covered most of the Holocene (Becker, 1982). His tree-ring chronologies still provide a crucial basis for dendroarchaeological and paleo-environmental studies in central Europe (Friedrich et al., 2004). Other millennia-long tree-ring width chronologies have also been developed since the late 1970s and 1980s, for example by Pilcher (1976), Baillie (1977), Pilcher et al. (1984), Leuschner and Delorme (1988), and Kuniholm (1994, 1996) which has led to a growing interest of archaeologists in this novel and high-precision dating method (Bannister and Robinson, 1975).

While Hollstein also worked with wood anatomical features, it was the Swiss dendrochronologist Fritz H. Schweingruber who provided the first wood anatomical atlas in three languages, a standard reference for wood identification of central European tree species (Schweingruber, 1978). Moreover, he published a first perspective on the significance of prehistoric wood samples for both archaeological and vegetation scientific studies (Schweingruber, 1976). Fundamental conceptual works for the application of dendrochronology in archaeological and (paleo)ecological research were published in the early 1980s, e.g., by Baillie (1982) and Schweingruber (1983), creating the basis for the practical implementation of tree-ring studies on archaeological wooden finds. Dendrochronology became a standard method applied in archaeological studies during the 1980s, constituting the onset of modern dendroarchaeology in various European countries (Eckstein and Wrobel, 1983).

This development led to the establishment of more dendroarchaeological laboratories across Europe. During this time, first large-scale archaeological projects for different periods implemented the newly established discipline. To mention only a few examples for pre-historic times, on circum-alpine lakes in France, Germany, Italy, Switzerland and Slovenia1, for Iron Age Biskupin, Poland (Reynolds, 1985), and for medieval times in Dorestadt, The Netherlands (van Es and Verwers, 1980), Mikulčice, Czechia (Dvorská et al., 1999), Hedeby and Lübeck, Germany (Eckstein, 1978). In the context of these projects, numerous new laboratories have been founded, frequently by archaeologists who started using dendrochronology (Bernard, 1998). As a consequence, the focus on archaeological research questions intensified toward wood utilization, species selection, resource management and the technical and architectural development of settlements (e.g., Billamboz, 1988). The advances of dendrochronology provoked further interest from the fields of historical building research, however, with a stronger focus on dating and provenancing, and mainly performed by numerous newly founded laboratories all over Europe (e.g., Kuniholm and Striker, 1990; Eißing, 2005; Épaud, 2007; Hoffsummer, 2009; Kyncl, 2016; Domínguez-Delmás et al., 2018). Over the last decades, vast amounts of dendroarchaeological data have been collected from countless archaeological sites and historical constructions as well as from natural depositions in paleo-channels and from living trees all over Europe. The great number of laboratories and their interaction accelerated the development of well-replicated centennial to millennia-long tree-ring chronologies for various European regions, placing Europe in a unique position compared to the rest of the globe (Becker et al., 1985).

However, the state of dendroarchaeological research varies greatly among different countries and regions due to different research foci, political settings and administrative structures.




MATERIAL


Conditions and Forms of Preservation

Wood is an organic matter, easily biodegradable by bacteria and fungi and their enzymes (Blanchette et al., 1990; Pedersen et al., 2020), but under special conditions wooden structures and objects can be preserved for a long time (Figure 3). One such case of wood preservation is the lack of moisture in constantly dry environments. Such conditions prevail mostly in arid regions, e.g., at the Syrian site of Dura Europos, but are occasionally also found in central Europe (Tegel and Muigg, 2015; Tegel and Croutsch, 2016; Baird, 2018). Another form of wood preservation is achieved when constantly low temperatures prevent biodegradation. These preservation conditions are mainly found in permafrost soils, e.g., the Kurgan graves of Pazyryk (Russia), but also in alpine glaciers (Polosmak and Seifert, 1996; Parzinger, 2006; Nicolussi, 2009). Other forms of preservation are associated with the deposition in a biotoxic environment, for example, in the famous Hallstatt saltmines, Austria (Herzig, 2009; Reschreiter and Kowarik, 2019; Haneca and Deforce, 2020; Grabner et al., 2021), and the chemical alterations of the wood tissue through carbonization and mineralization (Chabal, 1997; Tegel et al., 2016a; Haneca and Deforce, 2020). However, the most important form of wood preservation is provided by waterlogged conditions, frequently discovered at archaeological excavations, for example in water wells and other features below the groundwater level (Kretschmer et al., 2016; Croutsch et al., 2020), from pile dwellings in lakes and bogs (e.g., Bleicher, 2009; Tarrús, 2018; Benguerel et al., 2020; Hafner et al., 2021; Pranckënaitë et al., 2021), shipwrecks at the bottom of seas, lakes and rivers (e.g., Domínguez-Delmás et al., 2013; Nayling and Susperregi, 2014; Daly et al., 2021) and paleo-channels (Pilcher et al., 1977; Becker et al., 1985; Leuschner and Sass-Klaassen, 2003; Edvardsson et al., 2016b; Figure 1). Waterlogged wooden objects can be preserved for millennia (Thieme, 1997; Tegel et al., 2012; Rybníček et al., 2020). As wood cells and inter-cellular spaces are filled with water, freshly excavated waterlogged wooden objects display the original shape and surface. However, despite the intact surface, the cell walls are degraded, the percentage of cellulose and hemicelluloses is decreased and the proportion of lignin is increased. In this way the mechanical properties of the wood are reduced (Schweingruber, 1976; Čufar et al., 2008c; Björdal, 2012).
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FIGURE 3. Different types of wood preservation. (A) Dry preserved wood from scaffolding timber from the cathedral Notre-Dame de Reims, France (1211 CE, Tegel and Brun, 2008) and the “pagan wall” on Mont Sainte-Odile, Ottrott, France (7th century CE, Tegel and Muigg, 2015). (B) Wood preserved under wet conditions from a late bronze age well made of oak in Erstein, France (1208 BCE) and from a preboreal pine from gravel quarry at Pont-sur-Seine, France (14C 11000 ± 60 BP). (C) Charcoal from oak (Cuperly, France, 133 BCE) and silver fir (Schauinsland, Germany, 1545). (D) Wood (alder (Alnus sp.; left) and ash (Fraxinus excelsior; right) preserved through mineralization processes on early medieval weapons, found as grave goods in burials (Tegel et al., 2016a).




Wood Sources

The wooden material for dendroarchaeological analysis originates from different sources, including archaeological excavations, historic buildings, museums and private collections, natural deposits, and modern forests (Figure 1).

A great amount of samples is obtained from archaeological excavations and historical buildings. Archaeological excavations regularly unearth well-preserved wooden structures and everyday objects of past societies. Ever since the 19th century, various small to large-scale excavations have unearthed wooden objects. The quality of archaeological documentation and the treatment of these delicate finds varied greatly, depending on the timing of the excavation and the experience of the excavating personal. Improved technical standards for the treatment of archaeological sites and historical buildings were set in the second half of the 20th century, when most European countries passed legislations for heritage protection (Martin and Krautzberger, 2010). By the turn of the millennium, most European countries furthermore ratified international laws for the treatment of archaeological sites, defined by the International Committee for the Management of Archaeological Heritage in the Charta of Lausanne and the Charta of La Valetta (Malta) in 1989 and 1992, respectively (Hönes, 2005).

Since the beginning of modern dendroarchaeology in the 1980s, European laboratories have produced dendroarchaeological data for various regions, different species and with different chronological emphases. Within the last decades, it has become evident that areas with active and well organized departments for preventive archaeology generally show larger quantities of wooden finds than others (Laurelut et al., 2014). The same applies for other forms of physical heritage, e.g., historical buildings. The number of historical constructions and monuments studied, dated and therefore accessible for further dendroarchaeological studies strongly depends on the statutory framework and on how well-equipped and organized regional departments of heritage conservation are. Aside from historical timber, other sources of wood from historical buildings are concealed within cavities in the construction, e.g., between ceilings and floors, and occasionally studied by medieval and post-medieval archaeologists (Lohwasser, 2011; Atzbach, 2012). A special case of historical wood material is found in art objects, e.g., panel paintings, and instruments which are in most cases well-studied and safely stored in museums or private collections (Fraiture and Dubois, 2011).

Modern reference material is available from living trees in forests or recently harvested trees and is used for the development of reference chronologies and calibration with instrumental climate data to study past climate variations (e.g., Büntgen et al., 2011c; Cook et al., 2015; Tegel et al., 2020).




METHODS AND CONCEPTS OF DENDROARCHAEOLOGICAL RESEARCH


Sampling and Documentation

Dendroarchaeology combines typological analyses of surface treatments with internal features of tree growth. Size, cross-sectional shape and tool marks provide information on woodworking techniques and woodland use, whereas annual growth rates allow, besides the chronological classification of wooden objects, the study of the woodland’s history. Knowledge of the utilized wood species further enables syntheses on the development of construction techniques, building history and settlement dynamics. Comprehensive and consistent sampling is a necessary precondition for conclusive results of dendroarchaeological studies. The individual sampling strategy depends mostly on the different research questions that address technological as well as ecological issues and are established in close collaboration with the excavating archaeologists or conservators. Note that any valid scientific statement regarding past forest composition, resource management or wood utilization requires extensive quantities of samples (Büntgen et al., 2012). Ideally, every excavated wooden object should be entirely removed from the soil or sampled and investigated immediately after and before any conservation treatment. Therefore, waterlogged wooden objects should be generally kept in plastic wrap to prevent that cell walls break and the wood collapses due to desiccation. In situ documentation of archaeological artifacts is provided by field archaeologists. Prior to the extraction of a sample, the wooden object is cleaned, if necessary, and documented (e.g., photographed and/or by creating drawings or scans) for the study of tool marks, as distinct techno-morphological features are partially only visible after the excavation (Figure 4). Following the careful investigation of the artifact’s surface, a cross-sectional sample is extracted for tree-ring analyses. Simple preparation techniques are applied to improve the visibility of annual ring boundaries. In most cases, surface treatment with razor blades or cutters is sufficient. Powdered chalk can be used to enhance the contrast of the different cell types and therefore improve visibility of tree-ring boundaries, especially for narrow rings.
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FIGURE 4. Examples of the documentation of archaeological waterlogged wood (Rybníček et al., 2018) by (A) photos of tool marks from slashing tools (axes, adzes) and saws, (B) drawings (Tegel and Croutsch, 2016), and (C) laser scan (Tegel et al., 2012).


Documentation of the cross-sectional shape provides important information about the size and diameter of the trees used for timber and the woodworking process, e.g., the longitudinal splitting of trunks (Figure 5). To secure this information, standardized sketch drawings are prepared. The scale used depends on the size of the wooden object, a scale of 1–5 has been proven effective in most cases (Figure 5). It must be emphasized that the point of sample extraction on the object should be selected by the dendroarchaeologist to prevent sampling in areas of disturbed tree-ring patterns such as branches, cracks, wounds, reaction wood, etc. (Schweingruber, 1976). To maximize the obtained information, samples should ideally include the full tree-ring sequence from the pith to the bark (waney edge).
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FIGURE 5. Documentation of the used trees by (A) drawing the cross-sectional shape on a scale of 1:5 and (B) reconstruction of the origin and attribution to one individual tree trunk by using cross-sectional shapes and highly synchronous tree-ring growth patterns of the individual tree-ring curves.


In historical buildings, documenting the location of the sample on photos or architectural plans is necessary to record the context within the construction and to combine chronological and technological information (Figure 6). By experience, a minimum of 6–10 samples per structural unit are needed. With the exception of art objects (i.e., paintings and sculptures), sample collection for dendroarchaeological research is performed by sawing cross-sections or by coring samples with increment borers (Figure 6). Dendroarchaeological analyses on art objects, instruments and furniture is conducted using either invasive non-destructive methods (i.e., cleaning with a scalpel; Edvardsson et al., 2021) to non-invasive methods (e.g., X-ray computed tomography; Daly and Streeton, 2017; Domínguez-Delmás et al., 2021).
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FIGURE 6. Documentation of the location of historical timber on (A) photograph or (B) construction plans sampled with (C) increment borers and cordless drill. (D) The retrieved cores with (E) sapwood and heartwood (drilled oak disk; left) and waney edge (center and right) with parts of the bark, earlywood vessels (oak; center) and earlywood cells (pine; right) are distinguishable.




Wood Anatomy

The study of wood anatomical features is a crucial step in dendroarchaeological studies for several reasons. Firstly, the taxonomical identification based on these features, holds information of intentional species selection of past societies (Tegel and Croutsch, 2016; Tegel et al., 2016a). Secondly, it is necessary to develop species-specific master chronologies for dendrochronological dating. Thirdly, microscopic examinations of wood anatomical anomalies (e.g., frost rings, light rings or traumatic tissue) can provide important information for paleo-ecological research (Wimmer, 2002; Schweingruber, 2007). Wood anatomical features are studied on transverse, radial and tangential thin-sections under microscopes for taxonomical identification and to determine growth anomalies. Modern and waterlogged wood is usually investigated under a transmitted light microscope after producing thin-sections. Charcoals and mineralized wood are treated in a different way since it is usually not possible to produce thin-sections. Here, samples are broken to provide “clean” surfaces that are studied under a reflected-light microscope. Taxonomical identification can be performed using standard identification keys based on wood anatomical features (Wagenführ, 1966; Grosser, 1977; Schweingruber, 1990; Schoch et al., 2004). Distinctive features are, for example, presence of resin canals, type of rays, crossfield pits for coniferous wood and distribution and size of vessels, type of perforation plates, type of rays, type of axial parenchyma for broad-leaf wood (Schoch et al., 2004; Schweingruber, 2011). Modern equipment like digital microscopes, confocal laser scanning microscopes, improved techniques of scanning electron microscopy, multi-resolution X-ray tomography etc. (e.g., Haneca et al., 2012; Balzano et al., 2019) have significantly facilitated the identification of all categories of wood. This method enables the analyses of tiny and highly degraded samples, which are often difficult to determine by conventional microscope techniques and further provides the advantage of simultaneous photographic documentation. Non-invasive imaging techniques have been developed in recent years and offer new perspectives for the visualization of wood anatomical structures and their analysis.



Crossdating

Growth rings reflect the seasonal to annual radial growth of a tree. Such tree rings are clearly visible on the cross-section of a tree sample. By counting the annual rings, the cambial age of a tree is known. Ring widths vary due to environmental conditions, especially weather conditions, that affect the tree during wood formation but ring-width variations are also influenced by the wood species, location and position of the tree within a forest, stand dynamics, forest management practices and individual factors such as forest pests. By measuring the width of individual tree rings, a chronological sequence (tree-ring series) is obtained that is potentially characteristic for all conspecific trees within a site or even region. This is comparable to a spatio-temporal fingerprint. The method of crossdating enables the chronological placement of a tree-ring sequence, allowing the precise identification of the year in which each tree ring was formed (Douglass, 1941). Therefore, it provides the basis for all further chronological analyses such as the precise dendrochronological dating of wooden objects. Moreover, tree rings provide a valuable archive for past environmental conditions, readable from the variation in tree-ring width and wood anatomical features, such as density fluctuations, vessel sizes, and growth anomalies (Schweingruber, 1996).

Tree-ring widths are usually measured with a precision of 0.01 or 0.001 mm using semi-automatic measuring tables, e.g., LINTAB2 or VIAS3. Programs like for instance Coo Recorder4 which enable tree-ring measurement on images (manual or by automatic recognition of tree rings) are frequently used as well. The tree-ring width measurements are transformed into curves of tree-ring series showing the variation of tree-ring widths over time allowing for their visual and statistical crossdating by using statistical parameters calculated by special programs, e.g., TSAP (Rinn, 2003) or PAST (Knibbe, 2008). Gleichläufigkeit expresses the year-to-year agreement between tree-ring series, i.e., the percentage of synchronous growth changes (Eckstein and Bauch, 1969; Buras and Wilmking, 2015). The quality of a correlation is calculated with t-tests transformed after Baillie and Pilcher (1973) (TBP) and Hollstein (1980) (THO) (Figure 7). The Pearson Product-Moment Correlation (r) (Pearson, 1895), frequently used for linear correlation between two sets of data, requires additional elimination of individual growth trends (Speer, 2010). This so-called detrending method is already implied in the t-test calculation (TBP, THO) to highlight year-to-year variations. However, it is crucial to store the raw tree-ring width data for further investigations. For this purpose, a simple ASCII text code is the best solution, as these are readable, regardless of operating systems, and data can be easily exchanged. The most frequently used file formats are Tucson (.rwl or.tuc) and Heidelberg (.fh). We recommend the use of Heidelberg-format, as this allows to include a wide range of metadata such as the information on pith, sapwood rings, waney edge etc.
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FIGURE 7. Graphical presentation of dendrochronological results (Tegel et al., 2012). (A) Temporal distribution of the lengths of individual tree-ring sequences, and the youngest felling dates per construction, based on the presence of waney edges (annually precise) or sapwood estimation. The inset shows a 3D reconstruction of a wooden lining displaying each tree using a different color. (B) The common signal in the chronology [so-called Expressed Population Signal (dotted gray line)] and the inter-series correlation (dotted black line) calculated over 50 years lagged by 25 years along all individual samples. (C) Single ring-width measurements (green) and their mean (red). (D) Absolute dating of the new Saxon oak chronology (red) against the reference chronology from the Main River Valley (Becker, 1982) after 10-year low-pass filtering [r, correlation coefficient; TBP, T-value (Baillie and Pilcher, 1973); GL, Gleichläufigkeit].


Crossdating must include all statistical approaches and the visual comparison of the measured tree-ring width sequences. The comparison of the tree-ring pattern, i.e., the sequence of wide and narrow rings, between trees allows for the assignment of each tree ring to a precise calendar year. In this way, it is possible to build annual tree-ring width chronologies consisting of numerous tree-ring series from different sources with overlapping lifetimes of the trees (Figures 2, 7). These chronologies cover several centuries to millennia (e.g., Becker and Giertz-Siebenlist, 1970; Hollstein, 1980; Becker, 1993; Grudd et al., 2002; Friedrich et al., 2004; Baillie, 2009; Nicolussi et al., 2009; Seim et al., 2012) and serve as reference chronologies for dendrochronological dating. The quality of a reference chronology strongly depends on high sample replication, which should ideally be equally well-distributed over time. This is necessary to generate robust estimates of past growth rates and significantly improves the dating success (Büntgen et al., 2012). The spatial extent of coherent growth patterns covered by a reference chronology depends on the species and their discrete physiogeographical area and thus, cannot be clearly delimited. For this reason, it has been proven useful to produce local and regional chronologies and further combine them to supra-regional chronologies especially when working on dendroarchaeological material. The use of various dendrochronological databases assists the compilation of individual chronologies which can be (re)assembled for specific research questions. Successful dating of archaeological and historical wood is usually confirmed by several independent reference chronologies. Constant improvement of the replication allows periodic updates and improvement of reference chronologies.



The Accuracy of Dendrochronological Dating

After a successful synchronization with a reference chronology, every tree ring can be attributed to a calendar year. For information on the felling date of a tree and the construction date of a wooden building, respectively, more aspects need to be considered. (1) The state of preservation of the material, (2) the tree species (e.g., for sapwood estimation), and (3) whether the outermost ring (waney edge), i.e., the last ring formed before felling, is present on the specimen.

If the waney edge is present and the stage of its development (e.g., early- or latewood formation) is observable, the exact year and season of the felling of the tree can be determined with the so-called “waney edge dating.”

If the waney edge is missing but sapwood rings are present, the felling date can be estimated for species with distinct sapwood such as oak (Quercus spp.) or larch (Larix decidua) by adding an empirically obtained number of sapwood rings to the last measured sapwood ring. In this “sapwood dating”, the felling date of the tree can be estimated with a precision of approximately 10 years for oaks, for example.

In the case of absent sapwood rings and waney edge (i.e., only heartwood is present), only a terminus post quem (i.e., the earliest possible felling date) can be provided. In the case of oak, a certain number of sapwood rings are added to the last measured heartwood ring, based on the empirically obtained minimum number of sapwood rings.

Regarding the number of missing sapwood rings, different statistically based estimates exist for various regions (Eißing, 2005). For example, British oaks show 10–55 sapwood rings (Hillam and Tyers, 1995), in Western Germany oaks develop 9–33 sapwood rings (Hollstein, 1980) and in Northern Germany 10–30 (Wrobel et al., 1993). The number of sapwood rings for Poland ranges between 9 and 23 (Wazny and Eckstein, 1991), for Southern Pannonia (SI, HR, RS) 5–32 (Jevšenak et al., 2019), for Moravia (CZ) 5–21 (Rybníček et al., 2006), and for the Baltic and Southern Finland 6–19 (Sohar et al., 2012). All of these values are estimates, based on statistical averages. Hence, the exact number of sapwood rings of an individual tree remains unknown and might differ considerably (Figure 8). Apart from the geographical region where a tree grew, its age and growing conditions can also affect the total amount of developed sapwood rings. For example, old and slow growing oak trees generally have more sapwood rings compared to fast growing or younger oak trees (Haneca et al., 2009).
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FIGURE 8. Stem disks of two oak piles from a late Iron Age bridge (Pont-sur-Seine, France) with heart wood, sapwood and waney edge (Leroux et al., 2018).




Contributions to Past Climate Estimation, Wood Utilization, Land Use, Settlement and Building History

Dendrochronological dating of historical and archaeological wood has developed into a standard method in modern archaeology and other disciplines. Nevertheless, tree rings also present a valuable proxy archive for past climate and for the estimation of past wood utilization, land use changes, settlement, and building history. In recent decades, cooperation between dendroarchaeologists and paleoclimatologists have produced various climate reconstructions (e.g., Büntgen et al., 2011c; Cook et al., 2015; Tegel et al., 2020).

Trends in the growth pattern of trees can be caused by various factors and are not attributable to a single reason. To detect or enhance certain climate signals and exclude noise several statistical methods have been introduced (Fritts, 1976; Cook and Kairiukstis, 2013). They all aim for the preservation of short-term (i.e., high frequency) and long-term (low frequency) climate information. This is essential, as low to mid-frequency trends in the tree-ring chronologies allow for the investigation of decadal to multi-centennial climate variability (e.g., Medieval Climate Anomaly, Little Ice Age), whereas high-frequency signals enhance year-to-year variability and are used for extreme year analyses (Büntgen et al., 2011b). However, it remains uncertain to which extend the climate signal is superimposed by age, site-ecological and anthropogenic factors. Since stand conditions of archaeological wood remain unknown, a high annual replication with trees from different sites eliminates non-climate-induced noise from dendroarchaeological tree-ring series (Tegel et al., 2010; Büntgen et al., 2012; Skiadaresis et al., 2021). Moreover, to improve the climate signal of tree-ring chronologies from archaeological wood, several approaches can be applied. First, high spatio-temporal replication and equal age distribution (Esper et al., 2009) of both archaeological and modern reference material can be achieved by applying a “random sampling” approach (Tegel et al., 2010). Secondly, each tree-ring series can be examined for cyclic growth patterns in the high to mid frequency domain that might be associated with insect calamities, e.g., cockchafer outbreaks (Kolář et al., 2013), or past forest management, e.g., coppice-with-standards (Muigg et al., 2020).

To statistically preserve and detect climatic information at different frequencies in tree-ring chronologies, an array of standardization methods is available that can remove non-climate-induced noise such as biological age trends from each individual tree-ring series. Such standardization methods include different statistical models, e.g., smoothing splines, negative exponential curves or regional curve standardization (RCS) (Briffa et al., 1996).

The resulting detrended (i.e., age-trend free) tree-ring chronologies can be correlated with instrumental climate data (in most cases starting from the 20th century), demonstrating the direct relationship between climate conditions and tree growth in a region. Several methods for tree-ring based climate reconstructions have been applied within the last decades including reverse modeling, scaling and regression models (Esper et al., 2005; Büntgen et al., 2021a). Every climate reconstruction is based on the assumption that the climate-growth relationship is stable over time (Fritts, 1976).

Dendroarchaeological material with its species composition, tree age and size as well as abrupt growth changes, vessel size and formation also provides valuable insights into processes of human-woodland-interaction. For example, models of fire clearance, slash-and-burn farming, woodland degradation and forest management concepts, e.g., coppice and coppice-with-standards, have been established in spatio-temporal dimensions (Tinner et al., 2005; Bernard et al., 2006; Conedera et al., 2009; Billamboz, 2014b; Bleicher, 2014; Muigg et al., 2020). The technical evolution of tools and woodworking practices can be studied on artifacts and species selection for their development over time (e.g., Épaud, 2007; Hoffsummer, 2009; Tegel et al., 2016a). Detailed investigations of individual wooden structures allow to develop chaînes opératoires for their construction (e.g., Tegel et al., 2012).

Chronological classification and the identification of felling date clusters are crucial prerequisites for regional to supra-regional studies of settlement dynamics, building activities and demographic development that can be associated with general economic developments and crises (e.g., Thun and Svarva, 2017; Ljungqvist et al., 2018; Seifert, 2018). The combination of quantitative dendroarchaeological research and Geographic Information Systems (GIS) enables spatio-temporal syntheses from local settlement dynamics to large-scale demographic developments (Nicolussi et al., 2013; van Lanen et al., 2016).




SOURCES AND CURRENT STATE OF DENDROARCHAEOLOGY IN EUROPE


Chronologies

Annually resolved and absolutely dated millennia-long tree-ring width chronologies from living and relict wood have been developed in Europe for the Austrian Alps (9111 years; Nicolussi et al., 2009), northern Germany (8000 years; Leuschner et al., 2002), Ireland (6939 years; Baillie, 2009), northern Sweden (7400 years; Grudd et al., 2002), and Finish Lapland (7519 years; Eronen et al., 2002). The initial “Holocene Oak Chronology” by Becker (1993), has been revised and extended by the “Preboreal Pine Chronology” (Spurk et al., 1998; Friedrich et al., 1999, 2004). This composite dataset covers 12.460 years and reaches back to the Late Glacial Period with a continuous coverage, which is unique globally.

Despite the continuous temporal coverage of European chronologies, it has to be noted that there are significant differences regarding regionality, tree species and sample replication. For most regions, at least millennium-long chronologies are available for economically relevant species, but a large number of chronologies have not been comprehensively published so far. In northern and central Europe long chronologies are available for oak (Quercus spp.), silver fir (Abies alba), beech (Fagus sylvatica), spruce (Picea abies), pine (Pinus sylvestris), larch (Larix decidua), and stone pine (Pinus cembra) (e.g., Hollstein, 1980; Jansma, 1995; Neyses-Eiden, 1998; Grabner et al., 2001; Čufar et al., 2008b; Nicolussi et al., 2009; Tegel et al., 2010; Büntgen et al., 2011c,2013, 2014; Kolář et al., 2012; Edvardsson et al., 2016a; Prokop et al., 2016; Sochová et al., 2021).

For southern Europe, multi-centennial long chronologies exist for oak (Quercus spp.), beech (Fagus sylvatica), fir (Abies spp.), juniper (Juniperus spp.), larch (Larix decidua), black pine (Pinus nigra), bosnian pine (Pinus heldreichii), and mountain pine (Pinus uncinata) (e.g., Panayotov et al., 2010; Seim et al., 2012; Szymczak et al., 2014; Tegel et al., 2014; Shindo et al., 2017; Nechita et al., 2018; Sangüesa-Barreda et al., 2018; Belingard et al., 2019; Esper et al., 2021; Roibu et al., 2021).

Many of these chronologies have been developed using living trees from old-growth forests or in combination with samples from historical timbers (Figure 2). Preserved buildings from modern and medieval periods can provide data for the last millennium. Preserved dry wood from older timber structures is extremely rare. To go further back in time, waterlogged wooden finds from archaeological excavations and subfossil trees from gravel pits and paleo-channels are of fundamental importance to extend tree-ring width chronologies. Several periods with low sample replication exist during the Holocene. Some can be linked to regional research gaps, while others are related to supra-regional phenomena, caused by changes in demography, changes in settlement systems during cultural transition periods (e.g., 5th century BCE, i.e., the onset of the Late Iron Age, and 5th century CE, i.e., the transition from Late Antiquity to Early Middle Ages). Such phases can often be linked to crises, whereas times of socio-economic prosperity are associated with increasing amounts of wooden finds (Ljungqvist et al., 2018). In phases of low replication, subfossil trees from natural deposits provide important additional specimens. In some regions, subfossil material even provide the most important source of tree rings (Brown et al., 1986; Eronen et al., 2002; Baillie, 2009).



Subfossil Wood

Trees from past forests can be preserved in natural deposits and can be found in gravel pits, peats and bogs as well as in glacier forefields. The deposition occurs as a result of natural processes, most importantly, erosion. Such trunks allow the establishment of long tree-ring chronologies and provide important information for the history of fluvial and glacial dynamics, the evolution of treelines, peats and riparian forests as well as possible anthropogenic impacts (e.g., Becker, 1982; Krąpiec, 2001; Leuschner et al., 2002; Leuschner and Sass-Klaassen, 2003; Baillie, 2009; Edvardsson et al., 2016b). Due to the generally better preservation of subfossil trees compared to archaeological wood, they have been used for developing the radiocarbon calibration curve and are frequently used for its enhancement (Reimer et al., 2020).

Combined dendrochronological and radiocarbon evidence provide on the one hand, high resolution proxy archives for the investigation of climate variability during the Late Glacial Period and on the other hand, high-precision dating of environmental events such as earthquakes and volcanic eruptions (e.g., Nicolussi et al., 2015; Büntgen et al., 2017), particularly during periods of high climate variability but low data availability, for instance the Younger Dryas cold spell (∼11700 and 12900 cal BP) (Reinig et al., 2018, 2021).

Early to late Holocene glacial and tree line dynamics in high alpine areas have been investigated on regional to global scales (Nicolussi and Patzelt, 2000; Holzhauser et al., 2005; Nicolussi et al., 2005; Le Roy et al., 2015; Solomina et al., 2016).

Subfossil tree trunks preserved in alluvial infills of European rivers are of great interest to document the formation, evolution and destruction of riparian forest vegetation (Pukiene, 2003; Carozza et al., 2014; Vitas, 2017). Significant temporal accumulations of post-glacial trees deposited in river sediments indicate repeated phases of substantial floods and changes of river courses and provide insights into anthropogenic influences and destructions (Becker, 1982).

Subfossil trees from peatlands are important proxies for Holocene palaeohydrology and palaeoclimate, essential to our understanding of long-term changes in hydroclimate and the terrestrial carbon cycle (Edvardsson et al., 2016b). Even though the anthropogenic impact on subfossil trees is limited in most cases, they are substantial data sources that need to be considered for dendroarchaeological studies.



Archaeological Wood

Wooden remains from past human societies are unearthed during archaeological excavations. The oldest man-made artifacts discovered in Europe are ca. 300.000 years old hunting spears from Schöningen, Germany (Thieme, 1997; Conard et al., 2020). Substantial amounts of wooden finds, however, only appear in periods of sedentary cultures, starting from the mid-6th millennium BCE, when first farming societies settled in the fertile loess regions of Europe and systematically used large amounts of timber. Their settlements consisted of longhouses, sometimes over 40 m in length, for year-round habitation that required large timber sizes and technical innovations in carpentry (Tegel et al., 2012). First intensive anthropogenic influence on the natural environment happened during this time when forests were cleared to create agricultural areas. Within the last decades, several water wells from settlements of the 6th millennium BCE have been excavated in Europe. Technological studies revealed the impressive woodworking skills of Europe’s first farmers. Hundreds of timbers from these water wells enabled the development of different tree-ring chronologies and are the oldest dendrochronologically dated archaeological features in Europe so far (Tegel et al., 2012; Rybníček et al., 2018, 2020).

Extraordinary preservation conditions in pile dwellings lead to the excavation of vast amounts of archaeological wood. Early examples from the 6th millennium BCE are restricted to southern Europe (e.g., López-Bultó and Piqué Huerta, 2018; Naumov, 2020; Fermé et al., 2021). In central Europe, pile dwellings appeared in the circumalpine lakes during the 5th millennium BCE and are listed as a UNESCO world heritage “Prehistoric Pile Dwellings around the Alps” since 2011, protecting a total of 111 archaeological sites in six countries5. Here, absolutely dendrochronologically dated structures exist from around 4200 BCE onward providing large amounts of waterlogged woods for dendroarchaeological studies (Billamboz and Schlichtherle, 1982; Lambert and Lavier, 1997; Billamboz and Unz, 2006; Cichocki and Dworsky, 2006; Billamboz, 2014b; Martinelli, 2014; Čufar et al., 2015; Bleicher and Harb, 2017). The combination of archaeological, archaeobotanical and dendroarchaeological data provide detailed insights into pre-historic socio-economies including their social networks, husbandry and forest management (e.g., Billamboz, 2014b; Menotti, 2015; Bleicher and Harb, 2017; Hafner et al., 2020). Pre-historic pile dwellings occurred in several waves, most likely in periods of favorable climate conditions, from the Late Neolithic until the Iron Age period at around 500 BCE (Billamboz, 2003). The documentation and dendrochronological dating of piles enables detailed investigations of settlement structures and development with high temporal precision (Bleicher and Harb, 2018). Many wetland sites are characterized by multiphase occupations with thousands of piles. Therefore, ground plans of single structures are often only recognizable after dendrochronological dating, the identification of wood species and typological studies of cross-sections (e.g., Benguerel et al., 2020). Moreover, wetland sites yield various kinds of wooden objects for every-day purposes, e.g., vessels, tools, weapons, and provide detailed insights into the material culture and technology (e.g., Müller-Beck and Boessneck, 1965; Capitani et al., 2002; Fermé et al., 2021). Outside of wetland areas, such finds are only preserved in single structures with waterlogged conditions like water wells (Croutsch et al., 2019, 2020). In recent years, large-scale excavations of preventive archaeology have also discovered extensive settlement areas with waterlogged conditions in large river valleys with high groundwater levels (Donnart et al., 2019). In particular, for the Roman period the number and quality of archaeological sites increased significantly. Political and administrative efficiency led to high building activities and consequently to large amounts of archaeological wood for the 1st to 3rd century CE for many central European laboratories (Hollstein, 1980; Nicolussi, 1998a,b; Herzig and Berg-Hobohm, 2010; Benguerel et al., 2012; Herzig et al., 2013; Bernard et al., 2014; Čufar et al., 2014; Jansma et al., 2014; Tegel et al., 2016b; Jansma, 2020). The highly developed trade networks and the rising urban development triggered new dimensions of forest resource exploitation (Bernabei et al., 2019). Socio-economic decline at the end of the Roman Empire is reflected by a decrease in building activity and therefore, a limited number of dendroarchaeological evidence in the late 4th and 5th centuries CE (Rzepecki et al., 2019).

In the majority of archaeological sites in Europe, no organic tissue is preserved. Here, dendroarchaeological studies are limited to chemically modified wood, e.g., charcoal or mineralized wood. These highly fragmented finds rarely show traces of the original object surface and hardly provide a sufficient number of tree rings. In most cases, they are not suitable for technological or dendrochronological analyses. However, taxonomical identification is still possible and often the minimum diameter of the used trunk can be estimated. With large charcoal datasets it is possible to answer research questions of local vegetation cover, anthropogenic land use and forest exploitation as well as dendrochronological dating (Cichocki, 2007; Nelle et al., 2010; Deforce, 2017; Blondel et al., 2018; Dufraisse et al., 2018; Moser et al., 2018; Oberhänsli et al., 2019). Mineralized wood provides distinct information regarding wood utilization and selection due to mechanical properties for specific purposes, e.g., weapon production (Tegel et al., 2016a; Haneca and Deforce, 2020).



Wood From Historical Buildings

Large amounts of historical timber, e.g., roof trusses, ceilings joists, buttresses and basement pillars, have survived under dry conditions in buildings that are in many cases still intact, enabling insights into the building history of the last millennium (e.g., Hollstein, 1980; Kuniholm and Striker, 1987; Crone and Fawcett, 1998; Büntgen et al., 2006b; Seiller et al., 2014; Bernabei et al., 2016). In particular, sacral buildings (e.g., churches), but also public and private secular architecture from medieval to modern periods are valuable data sources for dendroarchaeological studies (e.g., Hoffsummer, 2009; Seim et al., 2015; Domínguez-Delmás et al., 2017; Haneca and van Daalen, 2017; Christopoulou et al., 2020b).

The dating of historical constructions is primarily initiated by departments of heritage conservation or heritage inventorization for the protection of architectural monuments or for their documentation in the context of renovation, restoration, re-use or demolition (Gomolka, 1992; Marshall et al., 2004; Harzenetter et al., 2016; Withalm, 2018). It is important for research on building history as well as for studies on urban and rural development (Schmidt et al., 2001; Eißing, 2015; Werlé, 2017; Vitas, 2020).

The position of timbers within their larger constructive context allows to investigate the evolution of new types of constructions and innovative technical solutions. Vernacular architecture shows distinct construction details (e.g., floor plans, room division), often typical for certain periods and regions and therefore, reveals local technological developments and regional differences in building traditions (e.g., Schmidt et al., 1990; Épaud, 2007; Houbrechts, 2007; Susperregi et al., 2017).

The tree species used for historical timbers vary among different regions and within each construction according to their functional purpose. For structural elements with soil (i.e., moist) contact, oak (Quercus spp.) was used almost exclusively. Other species regularly used for timber framework and roof constructions are silver fir (Abies alba), spruce (Picea abies), pine (Pinus sylvestris) and larch (Larix decidua). Sophisticated knowledge of mechanical properties and other characteristics of various tree species by historical craftsmen can be expected (Blau, 1917). The regional preference of a species is strongly affected by its natural distribution (Kolář et al., 2021; Shindo and Giraud, 2021; Sochová et al., 2021; Solomina and Matskovsky, 2021). For example, in the lowlands of western Europe oak was regularly used for all components of vernacular buildings due to the rare occurrence of conifers (Haneca et al., 2009; San-Miguel-Ayanz et al., 2016). Northern Europe’s vernacular architecture was dominated by pine, whereas fir and spruce are more frequently found in central European constructions (Becker and Giertz-Siebenlist, 1970; Eißing and Dittmar, 2011; Seim et al., 2015; Thun and Svarva, 2017; Kolář et al., 2021). Larch is restricted to high elevation areas in the Alps and parts of the Tatra Mountains, where it was also preferentially used (Büntgen et al., 2006a,2013). Larch (from the Alps) was massively used also in the areas dominated by the Venetian Republic Serenissima (e.g., Levanič et al., 2001). The most frequently used species in the Mediterranean region are oak (Quercus spp.), chestnut (Castanea sativa), pine (Pinus spp.), fir (Abies spp.), juniper (Juniperus spp.), and cedar (Cedrus spp.) (Bernabei et al., 2016; Christopoulou et al., 2020a). In the sparsely wooded regions of the Mediterranean, timber import played a particularly significant role (Domínguez-Delmás et al., 2018; Bernabei et al., 2020; Christopoulou et al., 2020a).

There are chronological and regional differences regarding the data basis of historical timber constructions in Europe. Many modern towns and rural villages were just established during the consolidation of high medieval political structures in the 12th-13th century and those urban settlements that had existed before ca. 1200 CE have been affected largely by structural changes during the 13th century and later extensive reorganizations (e.g., Bartlett, 1994; Westphal, 2002; Mitchell, 2013). Therefore, the early centuries of the last millennium are generally underrepresented. The vast majority of all studied timbers are from towns, typically small ones in rural settings that in many cases have lost their importance in modern times. Because of that, old buildings were more likely to survive the destruction caused by later wars and urban renewal in the 19th and 20th centuries than buildings in major cities. Rural farm buildings pre-dating the 17th century are rarely preserved and are therefore only represented to a limited extent. For large parts of central Europe, the Thirty Years’ War (1618–1648) might have greatly decimated older buildings in rural areas (Ljungqvist et al., 2018).



Wood From Objects of Art History, Instruments, and Furniture

Dendroarchaeological analyses can also be applied on wooden art objects like panel paintings, sculptures, furnishing items and musical instruments. The most important research questions for these high-quality objects are precise dating and provenance of the wood and is mainly initiated by art historians in museums or art dealers. As the actual origin of the wood for the highly specialized art sector is unclear in many cases, these sources are not included in paleoclimatological studies. However, wooden art objects provide information on historical species selection and woodworking techniques.

The first dendrochronological analyses of panel paintings in Europe were conducted on works by German medieval painters in the 1960s and ‘1970s by the German biologist Josef Bauch (1968). In the mid-1970s, J. M. Fletcher followed and dated panel paintings done by 15th- to 17th-century English and Flemish artists (Fletcher, 1975). From this point on, dendrochronology has been commonly applied to art objects (Bauch and Eckstein, 1970, 1981; Bauch, 1978; Bauch et al., 1978; Klein, 1986, 1998; Klein and Wazny, 1991; Hillam and Tyers, 1995) and musical instruments (Klein, 1985, 1996; Topham and McCormick, 1998; Beuting and Klein, 2003; Topham, 2003; Beuting, 2009; Bernabei et al., 2010, 2017; Čufar et al., 2017). For musical string instruments, the material is carefully selected, such as spruce trees with hazel growth, an uniformly finely striped texture, which were found to produce the best sounds (Buksnowitz et al., 2007; Brandstätter, 2016; Bucur, 2016).

Non-invasive methods are applied and the tree-ring widths of the planks are measured either directly on the planks of the panel or instrument or on macro-photos (of ca. 5 cm segments) which are taken from the cross section of the panels (Myhr et al., 2007). Even more modern technologies using an industrial CT scanner or X-ray technology allow the analysis of tree rings non-invasively (van den Bulcke et al., 2014; Stelzner and Million, 2015; Daly and Streeton, 2017; Domínguez-Delmás et al., 2021a). Dendrochronological analyses on furniture are less common but similarly important as they highlight woodworking and stylistic changes in the society (Pickvance, 2012, 2015; Klein et al., 2014; Allen, 2015; Domínguez-Delmás et al., 2021b).




APPLICATION AND MULTIDISCIPLINARY FIELDS IN DENDROARCHAEOLOGY


Evolution of Woodworking Technology

Since the Paleolithic, wood has been an important raw material for various purposes, e.g. hunting weapons (Thieme, 1997; Lozovski et al., 2016; Conard et al., 2020). Mobile hunter-gatherer communities of the Upper Paleolithic (50–12 ka BP) and Mesolithic (ca. 15–5 ka BP) periods used wood for the production of tools, weapons and short-lived housing. First important innovations in woodworking technology are recognizable during the Neolithic period (ca. 6000–2200 BCE) when the establishment of a sedentary lifestyle required the processing of larger timber for permanent buildings, which are suitable for year-round habitation. Water wells from this period provide evidence for the utilization of large oak trees, frequently split for the use in block constructions, and sophisticated carpentry techniques for surface treatment and corner joints (Tegel et al., 2012; Rybníček et al., 2018, 2020). Analyses of toolmarks on the preserved timber provide evidence for the use of different tools for specific working steps (Elburg et al., 2015). Different types of construction produced by Neolithic carpenters illustrate the impressive woodworking skills of Europe’s first farmers (Rybníček et al., 2020). In the further course of the Neolithic period, large-scale constructions consisting of hundreds of mature oaks suggest the collaboration of larger communities and provide evidence for socio-economic developments (Donnart et al., 2019). Oak remained the preferred species for construction timber throughout the pre-historic and proto-historic periods in Europe.

New impulses for carpentry techniques were provided with the occurrence of new materials for the production of tools. Bronze first occurred in large parts of Europe during the late 3rd millennium BCE and the technology of iron production spread in the early 1st millennium BCE. The use of metal tools enabled the development of new woodworking techniques and novel types of constructions. Important innovations are the development of new tools, e.g., wood borers and saws that together with other inventions further accelerated the civilization of Europe. Improvements in iron technology in late Iron Age and Roman Europe allowed the development of large saws suitable for longitudinal cutting of trunks, which facilitated the production of planks and boards (Figure 9). This, together with the invention of the carpenter’s plane in Roman times, revolutionized furniture making (Goodman, 1963; Schadwinkel et al., 1986). The use of hydro-power as a mechanical labor force for grain mills was first applied in European Antiquity and further developed in different regions of early medieval Europe (Wikander, 1984; Spain, 2008; Rynne, 2015; Muigg et al., 2018). The mechanics of watermills are entirely made of wood and require extensive mechanical knowledge and high-precision carpentry. These first complex mechanical machines were also adapted for cutting wood, with first sawmills appearing in central Europe around 1200 CE (Finsterbusch and Thiele, 1987; Berthold, 2009). The milling technology spread throughout medieval Europe in the 12th and 13th century and was a main driver for changing economic structures (Jeute, 2015). During the late medieval and early modern periods, the development of craft guilds and the diversification of woodworking professions lead to a great variety of specialized tools (Goodman, 1963; Schadwinkel et al., 1986; Finsterbusch and Thiele, 1987; Greber, 1987).
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FIGURE 9. Longitudinal sawing of planks and boards. (A) Oak board with a characteristic “V” saw mark from the Roman harbor in Reims, France (1st century CE) and (B) sawing marks with a characteristic “V” mark on a beam from a historical building in Le Val-d’Ajol, France (18th century CE). (C) Historical postcard from La Baconničre, France, depicting the sawing process.




Trade of Woods and Goods

As a consequence of the sedentary lifestyle, developed in large parts of Europe during the Neolithic period, forest areas in the vicinity of settlements were intensively exploited, which successively led to a shortage of timber. Therefore, wood had to be harvested from further away and transported to the settlements. Prehistoric settlement patterns are frequently found on lakeshores and riversides, which enabled effortless transport on water by towing or rafting of construction material. Timber from the same forest stand that was found in different dwellings on the northern and southern shore of Lake Constance provides indirect evidence for timber transport (Benguerel et al., 2020).

First proof for local timber transport on water is provided by a Neolithic palisade from La Villeneuve-au-Châtelot (Aube), dated to 3232 BCE, where characteristic recesses in various timbers suggest the assemblage of rafts (Donnart et al., 2019; Figure 10). In contrast to transportation on water, overland transport was a much more tedious process. Since the Neolithic, large amounts of wood were used for road building to enable land transportation in marshy areas (Hayen, 1990; Fansa, 1992; Endlich and Lässig, 2007). First evidence for chariot wheels from Europe date to the late 4th and early 3rd millennium BCE (Höneisen et al., 1989; Velušček and Čufar, 2009; Schlichtherle, 2010). Around 2000 BCE the domesticated horse spread throughout Europe, providing a new type of working animals suitable for faster transportation (Anthony, 1995), which led to the development of new chariot and wheel types during the early Bronze Age (Heussner, 1985; Tegel and Croutsch, 2016). The bronze-age invention of steerable front axles had an impact on the size of wooden roads, which were built narrower than in Neolithic times (Fansa, 1992). During the Bronze Age, chariots were not exclusively used for transportation but also became objects of prestige. The prestigious image of wheel chariots continues through the Iron Age and is visible in elite graves furnished with chariots (Biel, 1995; Laurent et al., 2002).
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FIGURE 10. (A) Oak posts from a Neolithic palisade (3231 BCE) with recesses on the basis used for timber floating or over land transport (Donnart et al., 2019). (B) Recesses on construction wood frequently found in roof trusses (Colmar, Alsace, France, 18th century CE) typical for timber rafting. (C) Detail view on the raft assemblage of a modern reconstructed raft.


Besides chariots, ships were the most important means of transport for timber. These vehicles themselves were entirely or predominantly made from wood and played a pivotal role for the transportation of various other goods.

Simple monoxyle log boats are known in Europe as early as the Mesolithic period and were in use until post-medieval times for fishing and short distance transport in certain regions (Arnold et al., 1995; Lanting, 1997; Kröger, 2014). The oldest archaeological evidence of a raft of combined logs was found in 1922 at the “Wilden Ried” in Upper-Swabia, Germany, dating to the Bronze Age (Ellmers, 1972). However, it can be assumed that such rafts were already used in earlier periods (cf. Donnart et al., 2019). Larger vessels both for inland and maritime navigation required more complex constructions. The oldest examples for such ships found in Europe date to the Iron Age, e.g., from Hjortspring, Denmark (Crumlin-Pedersen and Trakadas, 2003). Archaeological evidence of ships with laced planking for the 6th century BCE in Massalia (Marseille), France, and for the 3rd century BCE in Ljubljana, Slovenia, illustrate the influence of the Mediterranean maritime ship building traditions on European inland navigation vessels (Pomey, 1996; Teigelake, 1998). Different types of ships have developed since the Roman era (Arnold, 1992; Bockius, 2002, 2006) and further technological innovations can be recognized for medieval and post-medieval times (Bridge and Dobbs, 1996; Hakelberg, 1996; Crumlin-Pedersen et al., 1997; Hoffmann and Schnall, 2005; Lemée, 2006; Jansma et al., 2014; Englert and Crumlin-Pedersen, 2015). For all these mobile wooden vessels, their excavation site might differ considerably from their site of construction (Bonde, 1998; Domínguez-Delmás et al., 2019), making them important objects of research for dendroprovenancing (Daly, 2007; Daly and Nymoen, 2008; Bridge, 2012; Domínguez-Delmás et al., 2013).

The same applies for wooden barrels, used as containers for various trading goods and frequently re-used in well linings or latrines at their final destinations in Roman and post-Roman settlements (Ulbert, 1959; van Es, 1972; Greig, 1981; Clerici, 1983; Marličre, 2002; Falk, 2003; Hagendorn and Bouchet, 2003; Bauer, 2009; Robben, 2009; Čufar et al., 2019; Mille and Rollet, 2020). Barrels are elaborately crafted objects that reveal detailed information about the precise wood technology and manufacturing as well as trade systems (Marličre, 2002; Tamerl, 2010). Moreover, brand marks and graffiti found on barrels provide information for epigraphic and other studies (Frei-Stolba, 2017).

Wood itself was an important trading good. First indication for long-distance timber transport was found during the Antiquity for silver fir (Abies alba) for the construction of Roman harbors and bridges in regions outside the natural habitat of the species, e.g., in Mainz and Cologne (Bauer, 2001; Tegtmeier, 2016). Further evidence for Roman long-distance timber transport was found in Voorburg-Arentsburg, Netherlands (Domínguez-Delmás et al., 2014). New dendroarchaeological research shows a combined river and sea transportation of oak planks from regions north of the Alps for a construction in the city of Rome, further illustrating the necessary advanced logistic infrastructure (Bernabei et al., 2019). In post-roman Europe (after the first Millennium CE), growing population and fast urban development accelerated the decline of regional forests (Kaplan et al., 2009; Deforce, 2017) and led to the development of intense timber trade on the continental waterways through sea trade and river systems (Ellmers, 1985; Eißing and Dittmar, 2011). First historical evidence for medieval timber rafting on various large and smaller rivers date from the 12th and 13th centuries (Neweklowsky, 1952; Irsigler, 1992; Henne, 2005; Eißing and Dittmar, 2011), demonstrating the rising importance of timber transport on rivers (Delfs, 1985; Heussner, 2015). The development of extensive rafting infrastructures in mountain regions led to progressive exploitation of new forest areas for both, fuelwood and timber (Neweklowsky, 1959). Proto-industrial glass and salt production emerged to major consumers for fuelwood (Lamschus, 1993; Goldammer, 1998; Grabner et al., 2018). The prevalence of coniferous species in the timber material from historical buildings in large parts of central Europe, noticeable from the 14th century onward, provides strong evidence for extensive timber transport on a continental scale. Occasionally, traces of rafting can be found on timber elements in historical buildings (e.g., Eißing and Dittmar, 2011; Zunde, 2011; Shindo and Claude, 2019; Figure 10B). Regional differences of technical solutions for combining logs, varying for different river systems, hold information on the origin of timber (Eißing et al., 2012).

Selected, high quality timber, especially from oak, for art objects was in high demand also after local old forests were depleted in some regions in western and central Europe already by the 10th century (Deforce, 2017). Consequently, from the mid-14th century, increasing amounts of long-lived, straight-grained oak trees were imported from Poland and the other states around the Baltic Sea (Wazny, 1992, 2002; Bonde et al., 1997; Haneca et al., 2005; Fraiture, 2009). The Baltic timber trade was actively practiced by the Kingdom of Sweden and the Polish–Lithuanian Commonwealth with England and the Low Countries in the 14th to 18th century (Kirby, 2014). The transport was done on ships and mainly with prepared planks, boards, deals etc. (Johansen, 1983; Belasus, 2017).



Forest History

Comprehensive dendroarchaeological datasets established by European laboratories provide information on the anthropogenic impact on forest environments. The natural composition of species in European forests depends on various factors, including soil properties, environmental and climate conditions, the ecological amplitude of different tree species, the timing of species occurrence as well as the inter-species competition within a forest ecosystem (Ellenberg, 1996). However, human societies have influenced the natural forest composition in large parts of Europe throughout the Holocene. First indirect human impact on post-glacial forests might have already happened in the Mesolithic period through hunting pressure on large herbivores as well as facilitating the distribution of species through gathering, e.g., hazelnuts (Küster, 1996). Distinct human impact on forest compositions started at least with the emerge of sedentary societies during the Neolithic period that extracted construction timber and cleared forest areas for agriculture and settlements. Growing populations and successive colonization of suitable areas throughout the pre-historic and historical periods were accompanied by increasing forest exploitation. Hence, there are hardly any natural forests left in the western parts of Eurasia (Malzahn, 2011).

For millennia, people have been using forest resources for various purposes of their everyday life. To cover a constant demand of wood, e.g., for fuel and timber from the same forest areas, local communities had to develop strategies for sustainable resource availability. Large amounts of dendroarchaeological data from pile dwellings at Lake Constance suggest cyclic utilization of local forest stands as early as the late Neolithic period (Billamboz, 2014b). After a first phase of clearing primary forests, several different forms of forest treatment can be postulated from dendrotypological studies on timber size, individual tree age and growth patterns during the Neolithic occupation (Billamboz and Köninger, 2008; Billamboz, 2014a). Coppice-like forest structures are documented for the 36th century BCE in phase IB at the Neolithic pile dwellings at Hornstaad-Hörnle (D), yet without evidence for systematic management (Billamboz and Unz, 2006). Alternating phases of over-exploitation of local forests through harvesting and grazing, subsequent degradation, change of utilized forest area, natural reforestation and clearing display the complex interaction of natural and anthropogenic factors. First evidence for successive use of the same forest stands by local communities is provided by the dendroarchaeological data from Sipplingen-Osthafen (D), where continuous building activities between 2915 and 2864 BCE confirm coppice-like forest management (Billamboz and Köninger, 2008). Similar forest management systems have been studied for Bronze Age and Iron age settlements (e.g., Reynolds, 1985; Andraschko, 1996; Billamboz and Schöbel, 1996). Other possible silvicultural systems, for example coppice-with-standards-like forest structures cannot be ruled out for pre-historic communities. However, such management practices, presupposing intensive large-scale forest clearing and the absence of alternative regional wood sources, require certain demographic conditions, which probably did not occur in most regions of Europe before the Roman period (Lo Cascio, 1994).

The first historical evidence for coppice-with-standard forest management in Europe appear at the beginning of the 13th century CE (Hausrath, 1982). As a result of population growth and urbanization, this silvicultural system was necessary to secure the constant supply of timber and fuelwood for medieval central Europe. Improved administrative structures, crucial for such long-term regulations that required planning by local authorities, led to a surplus of historical evidence, i.e., written sources, during late medieval and early modern periods (Hausrath, 1982). New dendroarchaeological studies, however, provide strong evidence for the existence of this more sophisticated silvicultural practice as early as the 6th century CE and therefore throughout a ca. 1400-year long period from early medieval to modern times (Muigg et al., 2020). Coppice and coppice-with-standards management has played an important role during medieval and early modern times until the use of fossil fuels provided alternatives to fuelwood and allowed the transformation of economic forests to modern high forests (Schmidt, 2002). Before that, countless historically recorded disputes and conflicts of interests illustrate an intensification of resource scarcity in many parts of Europe (Epperlein, 1993; Warde, 2006, 2018). Similar conflicts have to be assumed also for densely populated areas in earlier periods/pre-historic times but cannot be verified due to the lack of historical records. Nevertheless, dendroarchaeological parameters, i.e., changing annual growths, tree age classes and species might display long-term spatio-temporal changes in European forest management regimes (e.g., Haneca and Beeckman, 2005; Deforce and Haneca, 2015; Deforce et al., 2020).



Environmental History (Climate, Anthropogenic Land Use, Deforestation)

Interannual variability in growth increment is one of the fundamental features of dendroarchaeology. Inter- and intra-annual tree ring parameters such as variability in wood density, stable (δ13C and δ18O), and unstable (δ14C) isotopes are also highly suitable natural proxy data for environmental reconstructions, in particular climate, as they provide information with high temporal and spatial resolution. Today, they form the primary basis for palaeoclimatology of the last centuries to millennia (Stocker, 2014). In Europe, dendroclimatological studies have mainly focused on temperature reconstructions based on coniferous species of the high altitudes in the Alps (Büntgen et al., 2006b; Corona et al., 2010), the Pyrenees (Büntgen et al., 2008), the Carpathians (Popa and Kern, 2009; Kaczka et al., 2016), and the boreal forests in Scandinavia (Grudd, 2008; Helama et al., 2009; Esper et al., 2014). Annual tree growth at such treeline sites is primarily controlled by temperature during the short growing season (June–August) and thereby a distinct temperature signal in series of both tree-ring width and maximum latewood density is present (e.g., Esper et al., 2016). Aside from hydroclimatic reconstructions from extreme sites such as the eastern Mediterranean (Akkemik et al., 2008; Klippel et al., 2018) and North Africa (Esper et al., 2007), coniferous species from southern Scandinavia (Helama et al., 2005; Seftigen et al., 2013), Slovenia (Čufar et al., 2008a), Moravia (Brázdil et al., 2002; Büntgen et al., 2011a), and southern Germany (Wilson et al., 2005) provide precipitation reconstructions for central and northern Europe. For hydroclimate-sensitive broadleaf tree species at low elevations in Central Europe, however, only a few studies are available so far (Kelly et al., 2002; Čufar et al., 2008a; Büntgen et al., 2010, 2011c,2021b; Scharnweber et al., 2019; Tegel et al., 2020).

Information relevant for forest ecology can be obtained from the distribution of species in archaeological material. Local to regional differences over time indicate changes in natural woodland societies. Long-term changes of forest ecosystems can be studied in conjunction with palynological records and yield important information on the migration history of species and establishment and consolidation of forest communities (Tinner and Lotter, 2006).

Other wood anatomical characteristics of archaeological wood provide further information to study past ecological conditions. Defoliation leads to growth reactions visible in the anatomical structure of trees, for example abnormal earlywood zones, irregularly shaped, small vessels or slightly thickened latewood tissue cells (Schweingruber, 1996). There are various possible reasons for defoliation events, for example anthropogenic (pollarding, management) or natural (floods, storms, insects) (Figure 11). Even though it is not always possible to attribute an anatomical feature to a specific event, the combination of wood anatomical observations and tree-ring patterns allow further interpretation. For example, a larger earlywood section combined with characteristic tree-ring patterns observable in archaeological wood samples has been attributed to insect calamities (Büntgen et al., 2009; Kolář et al., 2013; Figure 11A). Massive cockchafer outbreaks follow a 3–5-year cycle depending on the region. They occur during the early vegetation period and result in significant defoliation, which is accompanied by a reduced radial growth in combination with a higher amount of earlywood vessels (Kolář et al., 2013; Figure 11A). This leads to a distinct cyclic tree-ring pattern, occasionally found in subfossil trees and archaeological timber (Rohmer and Tegel, 1999; Herzig and Seim, 2011). Distinct growth reduction and vessel anomalies can also be associated with pollarding and flood events, causing partial defoliation (Figure 11B). However, a differentiation is only possible in combination with dendrochronological studies and strongly depends on an attributable tree-ring pattern. Several other wood anatomical features (e.g., frost rings, physical injuries and overgrowth, reaction wood, traumatic resin duct) can be found in archaeological and subfossil material, albeit their specific interpretation relies on the amount of data and the overall context.


[image: image]

FIGURE 11. Tree-ring anomalies. (A) Cockchafer outbreak pattern on a recent oak from Diesenhofen, Switzerland, with cyclic growth reductions every three years combined with higher early wood production. (B) Two years reduction in tree-ring width (red arrows) by pollarding of oak (Quercus cerris, Albania). (C) Stem disk from an oak standard (Welbhausen, Germany) with periodical growth release pattern induced by coppice-with-standard forest management practice.




Dendroarchaeology and Radiocarbon Dating

Another fundamental method for dating in archaeology is based on the partial decay of radioactive isotopes (radiocarbon, δ14C) contained in organic finds. The atmospheric radiocarbon content varies because of changes in upper atmosphere production and global carbon cycling. Therefore, radiocarbon dating and dendrochronology are strongly interconnected, as tree rings provide an important source for calibrating the radiocarbon variability over time. The calibration curve, used as a worldwide standard for radiocarbon (14C) dating over the past ca. 50.000 years, is continuously improving toward a higher resolution and replication (Reimer et al., 2020). Tree rings from dendroarchaeological sources contain high-precision data throughout the Holocene. Recent studies have shown the significance of tree-ring-based calibration also for the Late Glacial Period (e.g., Reinig et al., 2020, 2021).

The interconnection of the two methods of dendrochronology and radiocarbon dating also allows the calibration of millennia-long dendrochronological records. Improved inter-annual radiocarbon measurements enable to observe sudden and anomalous activity shifts, such as significantly increased atmospheric production rates of cosmogenic radionuclides on a global scale (Miyake et al., 2012; Usoskin et al., 2013; Jull et al., 2014; Büntgen et al., 2018). The detection of such events enables to independently validate tree-ring chronologies on both hemispheres and can furthermore contribute to connecting synchronous events with other long-term proxy records, for example isotopes from corals and ice cores (e.g., Liu et al., 2014; Mekhaldi et al., 2015).

Annually resolved chronologies are paramount to precisely date past volcanic eruptions not recorded in historical documents (Büntgen et al., 2017; Hakozaki et al., 2018). Starting from a distinct and well-known event, e.g., the 774/775 CE 14C spike (Miyake et al., 2012), the dating of an unknown event can be established by counting the number of rings to the waney edge. An other prominent example is the precise dating of Viking activity in Newfoundland in 1021 CE by making use of the rapid 14C excursion at 993 CE (Kuitems et al., 2021). In this way, all wooden finds worldwide, which show such rapid 14C excursions, can be accurately dated. This is all the more important for regions lacking dendrochronological reference chronologies.

However, it is paramount for multi-proxy synchronization that the independent dating results from tree rings and radiocarbon are compared on the annual scale, as the common decadal or semi-decadal resolution of radiocarbon dates can lead to misinterpretations (Jull et al., 2021). So far, verified spikes in 14C activity could be observed for 993/994 CE, 774/775 CE, 660 BCE, 813 BCE and 5480 BCE (Mekhaldi et al., 2015; Miyake et al., 2017; Park et al., 2017; Jull et al., 2018; O’hare et al., 2019). Given the great success of recent investigations in identifying and precisely addressing such events, it is to be expected that further intensified research might reveal additional atmospheric 14C spike excursions.




CONCLUSION

Dendroarchaeology is a remarkably wide research field, which can offer essential contributions to a variety of disciplines and should not be restricted to delivering absolute dating (Figure 12). Wooden remains can be found from almost all epochs. Therefore, dendroarchaeologists should generally be open to interdisciplinary approaches and need to stay open-minded toward all areas of palaeo-sciences. A major prerequisite for dendroarchaeological studies is a comprehensive data base, well-replicated over time. The amount of high-quality tree-ring data varies greatly for different regions of Europe, especially south and south-east of the Alps. The development of millennia-long tree-ring chronologies for the main European tree species is an ongoing process and needs to be further developed constantly for more regions within the Old World (Nechita et al., 2018; Christopoulou et al., 2020a; Roibu et al., 2021). Therefore, all available sources of wood should be used: subfossil trees, archaeological finds, historical buildings, art objects and modern trees are essential to build and improve dendroarchaeological records.
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FIGURE 12. Overview of the research discipline dendroarchaeology including research questions, wood sources, analyses and results that are relevant for different research fields and applications.


The diversity of sources requires active cooperation between experts of dendroarchaeology as well as beyond disciplinary boundaries. So far, the most fruitful and close interdisciplinary cooperation have been implemented with archaeologists, historians, physicists, climatologists, geologists and palynologists, providing important contributions to dating, history of technology, radiocarbon calibration, palaeoclimate reconstructions, volcanic activities and vegetation history, just to name a few.

Considering the recent advances in studies of ancient plant DNA, the field of aDNA holds a great potential for combined studies on postglacial migration and climatic adoption of tree species as well as provenancing wooden objects (Wagner et al., 2018; Saleh et al., 2021). Different fields of dendro-sciences have developed various novel approaches, for example by studying density fluctuations, earlywood/latewood ratios and variances of vessel size, allowing to extract further information on the inter- to intra-annual regimes and to combine these different parameters (e.g., Wilson et al., 2017; Mann et al., 2018; Akhmetzyanov et al., 2019; Björklund et al., 2019).

However, these innovative approaches are only partially transferable to archaeological wood. Large differences in quality and type of wood preservation, combined with the inherent lack of stand and tree level information, pose limits to a generalized inclusion in dendroarchaeology. Therefore, total tree-ring width provides the most accurate, most widely used and consequently the most valuable parameter for dendroarchaeological tree-ring studies.
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Our overall understanding of long-term climate dynamics is largely based on proxy data generated from archives such as ice cores, ocean sediments, tree rings, speleothems, and corals, whereas reconstructions of long-term changes in vegetation and associated climate during the Holocene are largely based on paleoecological records from peat and lake sequences, primarily pollen and plant macrofossil data. However, since no proxy can provide a complete picture of the past, it is important to integrate different types of data, and to use methods that can support the paleoecological and paleoclimatic interpretations. Here we review how tree-ring data and dendrochronological approaches can be integrated with stratigraphic records to provide complementary paleoecological and paleoclimatic information. The review includes multiproxy studies in which dendrochronological data have been either compared or integrated with stratigraphic records, mainly pollen records, with the aim to contribute to a better understanding of long-term ecosystem and climate dynamics. We mainly focus on studies from northwest Europe in which tree-ring data and at least one type of paleoecological proxy record from the same site or area has been either compared or integrated. We find that integration of dendrochronological data and paleoecological records from peat and lake sequences is a powerful but underutilized approach to reconstruct long-term ecological and climatic changes. One likely reason for its limited use is the contrasting character of the two categories of data, including their different time resolution and occurrence, making them difficult to integrate. For example, subfossil wood providing annual dendrochronological data usually only occurs sporadically in peat and lake sediments, and the presence/absence of the trees are normally expected to be recorded in the pollen data with multi-decadal or coarser resolution. Therefore, we also discuss methods to compare and integrate dendrochronological and stratigraphic records, as well as the relevant paleoecological and paleoclimatic information provided by dendrochronology, pollen, and peat stratigraphy, with the aim to facilitate new multi-proxy initiatives that will contribute to a better understanding of long-term ecosystem and climate dynamics and thereby a firmer basis for future nature conservation initiatives.
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INTRODUCTION

To distinguish natural long-term climate variability and ecosystem dynamics from anthropogenic effects, reconstructions of paleoecological and paleoclimatic conditions based on both qualitative and quantitative proxy records from the time before industrialization are required (Jansen et al., 2007; Marcott et al., 2013). To obtain more robust and detailed long-term climate and ecosystem reconstructions, improvements of the paleoecological and paleoclimatic methodologies in combination with precise chronological techniques are constantly being made (Wanner et al., 2008; Marcott et al., 2013). Over recent decades, we have thereby increased our knowledge of climate and ecosystem dynamics over the course of the Holocene.

Proxy data generated from natural archives such as ice cores, ocean sediments, tree rings, and speleothems are essential for our understanding of climate dynamics during the Holocene. Many archives consist of organic material, which under oxygen-poor (i.e., usually water saturated) or dry conditions can be preserved for thousands of years, and contain paleoecological records in the form of pollen and other microfossils. In such contexts, often in water-saturated wetlands, lake sediments or deserts, wood remains referred to as subfossil trees can also be found. In the boreal zone, the most common sites to find subfossil trees suitable for dendrochronological studies are peatlands (Leuschner et al., 2002; Eckstein et al., 2009; Edvardsson et al., 2016a), lakes (Eronen et al., 2002; Grudd et al., 2002; Gunnarson, 2008; Helama et al., 2008) and ancient river terraces (Becker, 1983; Friedrich et al., 2004). Dead and decaying trees are also found either as standing or downed boles from dry forest soils and mountainous terrains, and these materials can be referred to as subfossil trees; however, the preservation of stemwood in such conditions may be considerably limited in comparison to water-logged depositional environments (Helama et al., 2020). Dendrochronology is recognized as an accurate dating method, but the growth patterns of the trees also reflect environmental and climate changes that have occurred during the trees’ lifetime (Fritts, 2012; Schweingruber, 2012; Cook and Kairiukstis, 2013). Over recent decades, several multi-proxy reconstructions of climate dynamics during last two millennia have been presented, many of which have included annually resolved tree-ring data (Moberg et al., 2005; D’Arrigo et al., 2006; Mann et al., 2008; Birks et al., 2014; Stoffel et al., 2015). To reach even further back in time, dendrochronological studies using subfossil trees have proved to be important, allowing precise and long-term studies of climate dynamics and environmental changes during the Holocene (Eronen et al., 2002; Leuschner et al., 2002; Helama et al., 2008; Edvardsson et al., 2016a). But records from subfossil trees are not always straightforward to develop or interpret in terms of past climate, especially since deposition, preservation and patterns of tree growth may have changed over time.

In Quaternary sciences, the research fields of paleoclimatology and paleoecology have developed significantly since the early twentieth century. The research disciplines were improved significantly by pollen analysis, which in many aspects was developed by von Post (1918, 1924, 1930). In combination with studies of peat stratigraphy, several abrupt changes associated with rapid climatic shifts could be detected (Granlund, 1932). Another important breakthrough was the introduction of radiocarbon dating (Libby et al., 1949) which allowed for much improved age control on the proxy records. Ever since, climate reconstructions based on radiocarbon dated stratigraphic records from lakes and peatlands have become common in the paleoclimatic literature (Langdon and Barber, 2005; Mauquoy et al., 2008), and are often based on proxies such as peat humification, pollen, and plant macrofossils (Swindles et al., 2013). Despite this, studies that make use of the combined information, which dendrochronology and classical paleoecological proxies provide, are still rare.

In this review, we primarily focus on articles presenting state-of-the-art studies integrating tree-ring based analyses with stratigraphic proxy data. Among the stratigraphic proxies, we will mainly focus on pollen-based climate or vegetation reconstructions, but also include studies based plant macrofossils, peat humification, charcoal fragments, and testate amoebae. Records developed from these proxies provide valuable complementary information about vegetation, land-use and other aspects of landscape and environmental change, as well as climate dynamics. However, inherent differences in properties, methodological issues, and time resolution between dendrochronological and peat- or sediment-based datasets make it difficult to bring these together. This review offers an opportunity to discuss how dendrochronology (tree-ring analysis) and stratigraphic proxy data can be integrated to better characterize long-term environmental and climatic changes, and to address the pros and cons of these approaches.



MATERIALS AND METHODS


Literature Studies

For this review, we focus on available scientific literature on paleoclimatic or paleoecological studies integrating dendrochronology and stratigraphic proxy data such as pollen as a minimum, but preferably also including macrofossil analysis and further analysis of the stratigraphic records (Figure 1). To delimit the study, our review primarily focuses on studies from northwestern Europe. Studies of paleoecology and paleoclimatology have a long tradition in this geographic region, and many modern paleoecological research techniques providing insights to the potential of the field have been applied and developed by researchers active in for example Fennoscandia (Sernander, 1908; von Post, 1918; Iversen, 1941).
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FIGURE 1. Many different proxy records can be obtained from peatlands. From the trees growing on the peat surface as well as subfossil trees preserved in the peat it is possible to create annually resolved tree-ring chronologies. The stratigraphy in the peatland can also be studied, including the composition of mosses and the degree of degradation of the peat. Furthermore, it is possible to analyze changes in the pollen concentrations and composition in the peat as well as if plant macrofossils or charcoal can be observed at different levels in the stratigraphic record.


We searched for relevant publications in electronic databases using various combinations of Boolean search terms to ensure a thorough assessment of the available literature. The databases used were Google Scholar1 and Web of Science.2 We used the following search terms: “dendrochronology” or “tree-ring analysis,” “pollen,” “pollen analysis,” “macro fossil,” “macrofossil,” “stratigraphy,” and “peat.” We also obtained papers directly from colleagues and through reference lists from published studies including major review articles and books on climate and paleoecology during the Holocene.

From our literature search we identified 38 studies which we highlight and discuss in this review (Figure 2 and Table 1). They are primarily multi-proxy studies with focus on dendrochronology using subfossil wood material from sites in northwest Europe. Multiproxy studies such as Jalkanen et al. (2008), Edvardsson et al. (2019), and Theuerkauf et al. (2019), primarily focusing on the last century, were excluded from the review but are still valuable as a basis for describing and understanding the various methods presented and discussed.
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FIGURE 2. Map showing location of the main sites presented in the articles reviewed. The numbers represent the articles presented in Table 1. The white boxes show underutilized areas from which either dendrochronological and paleobotanical studies have been performed without being combined, or there are good opportunities for further studies.



TABLE 1. Multi-proxy studies including tree-ring data (dendrochronology) in combination with stratigraphic proxy data including pollen data, peat stratigraphic data (e.g., content and degree of humification), and other(s) stratigraphic proxy data (e.g., plant macrofossil, charcoal, and testate amoebae).
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Comparison Between Records With Different Precision and Time Resolution

The various proxy records in the reviewed literature (Table 1) have different time resolution (annual to centennial) and margins of errors (0 year up to centuries), which means that it is usually not possible to merge tree-ring and stratigraphic records without e.g., smoothing the age scale on the tree-ring record from annual to decadal. The reviewed records also cover different periods, ranging from recent centuries to the Holocene (Figure 3). Since tree-ring chronologies and stratigraphic proxy records are of significance to both paleoclimatologists and archeologists, the literature contains a mixture of records that quote ages as both calibrated years before present (cal. BP i.e., before 1950 CE) and calendar years (CE/BCE). Consequently, in this review when we refer to dendrochronologically dated tree-ring ages, we quote the age in CE/BCE, whereas the calibrated radiocarbon dates (cal. BP) are given as alternative in brackets, but where an event is known by a BP age, we quote the cal. BP age (calibrated years before 1950 CE) and refer to an approximate BCE age in brackets.
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FIGURE 3. The black lines show the main periods covered by the tree-ring data presented in the 38 reviewed studies (see Table 1). The dashed lines show periods tree-ring data used, but not presented in the studies covers. For most of the studies the paleobotanical data covers longer, sometimes significantly longer, periods. The figures correspond to those in Table 1 and Figure 2.





RESULTS AND DISCUSSION


Dendrochronological Data Types

Tree-ring based paleoenvironmental proxy records can be roughly divided into two categories according to the type of tree-ring data used and analyzed: (i) chronological and (ii) growth comparisons. The first category (“dates as data”) consist of records of sample replication, i.e., the number of overlapping trees from which a tree-ring chronology has been developed (Figures 4A,B). In this form, the dendrochronological data is used to quantify the number of dated tree-ring samples per annum, which can be used to illustrate depositional histories of subfossil trees through time (Gunnarson et al., 2003; Helama et al., 2005, 2010a, 2017a, 2020; Edvardsson et al., 2016a). Such histories can in turn be linked to past climatic and environmental changes that affected the density of tree populations, or their presence/absence, as well as deposition and preservation of trees. Dendrochronological data therefore may be used as records indicative of such changes in the past. The processes leading to changes in the rate of tree deposition and those affecting the preservation potential of trees (i.e., taphonomy) are not universal but vary between sites and regions and, as a consequence, the depositional histories of subfossil trees are linked to a range of climatic and environmental variables, especially to changes in moisture (Gunnarson, 2001, 2008; Gunnarson et al., 2003; Edvardsson et al., 2016a; Helama et al., 2017a) and temperature (Helama et al., 2004, 2005, 2010a). Divergent courses of depositional histories may be obtained for different sedimentary settings in nearby sites, as was evident for the accumulation records of pine in peatland and lake sites in southern Finland (Helama et al., 2017a). Tree deposition records usually show long-term (centennial to millennial) changes in moisture and temperature, but they can also be connected to more abrupt changes, leading to phases of tree establishment and/or die-off (Leuschner et al., 2002; Edvardsson et al., 2012a; Figures 4A,B). In addition to purely temporal comparisons, depositional histories over a larger region or within a range of tree-ring sites may be used for reconstructing the tree population occurrence/disappearance across the sites. Near ecotones, such as altitudinal and latitudinal timberlines, such tree-ring data may be highly indicative of past changes in the location of the treeline and/or timberline (Eronen et al., 1999; Helama et al., 2004, 2010a, 2020), the advances and retreats of which are typically temperature-driven (Harsch et al., 2009). Both short- and long-term changes in depositional histories inferred from dendrochronological data have been compared to records of multiple other proxy types. Compared to studies where subfossil tree remains are radiocarbon (14C) dated (Eronen, 1979; Kullman, 2002), dendrochronological records benefit from the dating precision/accuracy of tree-ring cross-dating (Fritts, 2012; Schweingruber, 2012; Cook and Kairiukstis, 2013) making it possible to juxtapose the lifespans of the studied trees exactly and thus more reliably indicate the past density fluctuations of the tree populations (Helama et al., 2005, 2010a).
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FIGURE 4. Example showing a tree-replication record and a tree-ring width chronology. The example is based on the 1561-year tree-ring chronology from Åbuamossen (Edvardsson, 2013). (A) The horizontal black lines represent individual trees sorted by ending years. Five tree-establishment (EE1–5) and four dying-off (DOE1–4) events are shown in yellow and blue, respectively. (B) Sample replication, number of overlapping samples. (C) Averaged tree-ring width (TRW) chronology (mm). (D) Averaged and standardized TRW chronology (dimensionless indices). The smooth red curves are 20-year low-pass filter splines highlighting the low-frequency patterns of variability. The blue fields are periods of 3 years in a row or longer with depressed growth (TRW indices < 1 SD), whereas the yellow fields show corresponding periods with strong growth (TRW indices > 1 SD). The replication record show population changes, often on a decadal resolution whereas the tree-ring width data show the year-by-year growth variability of the trees.


In the second category of tree-ring based paleoenvironmental studies, tree-ring chronologies provide data in the form of past tree-growth variability, in the form of tree-ring width, maximum late wood density, or other growth-related parameters. These should preferably be linked to a specific climatic variable such as temperature or precipitation. But before such a link is established, the tree-ring width data series usually go through a process named standardization (Cook, 1985; Biondi and Qeadan, 2008; Helama et al., 2017b), also referred to as detrending or indexing. The aim of the detrending is to minimize the influence of trends related to the age and geometry of single trees in the tree-ring data and thereby amplify climate or environment related signals in the data series (Cook and Kairiukstis, 2013). The standardization also means that the raw tree-ring data with millimeter scale is transformed to dimensionless tree-ring indices (Figures 4C,D). However, to obtain the best possible correlation between climate-related parameters and the tree-ring data, parameters other than tree-ring width are sometimes used. Examples of such parameters can be maximum latewood density (Briffa et al., 1988; Matskovsky and Helama, 2014), blue intensity (Björklund et al., 2015), and stable isotopes (McCarroll and Loader, 2004). Furthermore, it is possible to study scars caused by damages to the trees (Stoffel and Bollschweiler, 2008; Edvardsson et al., 2021), wood anatomical changes (von Arx et al., 2016), and trace elements (Hoffmann et al., 1994) that are detected in the annual rings for environmental and climatological studies. The benefit of all such types of tree-ring data is not only the dating precision/accuracy of dendrochronological cross-dating but also the annual resolution inherent to tree-ring archives (Fritts, 2012; Schweingruber, 2012; Cook and Kairiukstis, 2013; Figures 4C,D). Due simply to dendrochronological cross-dating, where the tree-ring variability is rigorously synchronized among all specimens in the chronology, tree rings allow for the development of paleoclimatic records with a high temporal veracity of each reconstructed event. In Fennoscandia, the construction of millennia-long subfossil tree-ring chronologies (Eronen et al., 2002; Grudd et al., 2002; Linderholm and Gunnarson, 2005; Helama et al., 2008) has indeed enabled tree-ring based paleoclimatic reconstructions comparable in length to other proxy records and have thus made it possible to compare dendrochronology (i.e., tree-ring based) and other proxy records over similar timescales (Figure 5).
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FIGURE 5. (A) A map of northern Fennoscandia with sites and proxy records used for the proxy-fusions (Helama et al., 2010c, 2012). Locations of the meteorological station and the lakes used for tree-ring studies (one triangle may indicate multiple nearby lakes) and pollen analysis, with approximate major vegetation zones. (B) Reconstructed July temperatures based on the initial data of pollen (C) and tree-ring data, and (D) the low-frequency comparison of pollen and tree-ring proxy records, shown as raw values and as filtered to exhibit the timescales of centennial, multi-centennial, and millennial components of the variability. (E) Annually resolved July temperature estimates produced by the proxy-fusion (Helama et al., 2012) shown with the temperature regimes and shifts in the reconstructed values. All temperature records (ΔT) are shown relative to the reference period AD 1950–2000.




Historical Overview—Studies of Environmental Changes and Climate Dynamics Based on Subfossil Trees

For close to two centuries, researchers have studied layers of subfossil tree remains discovered in peatlands (Dau, 1829; Steenstrup, 1842; Sernander, 1890; Birks, 2008; Birks and Seppä, 2010; Nielsen and Helama, 2012), but it was not until the late 1960s that serious attempts to develop tree-ring chronologies from such peatland trees were initiated (Pilcher et al., 1977). During the 1970s and 1980s, several multi-millennial tree-ring chronologies were developed from subfossil oak excavated from peatlands in Ireland and Germany (Pilcher et al., 1977, 1984; Leuschner and Delorme, 1984). Apart from being valuable for dating of archeological material, the chronologies can also allowed for detailed paleoclimatological reconstructions and enable construction of radiocarbon calibration curves (Pearson, 1986; Reimer et al., 2020). In Scandinavia, bog oak chronologies with the potential to cover the last 8,000 years are under construction (Edvardsson et al., 2016a, unpublished data).

Oak was the tree species initially used for multi-millennial chronologies from north European peatlands, but the interest in pines later increased, as they proved to have the potential to extend further back than the oak chronologies in some regions (Pilcher et al., 1995; Friedrich et al., 2004). In northwest Germany, extensive work on peatland pines have been performed (Leuschner et al., 2007; Eckstein et al., 2009, 2011), with overlapping chronologies reaching back to 6703 BCE (Achterberg et al., 2018). In Scandinavia and the Baltic countries, pine represents the most common tree species used for dendrochronological studies based on subfossil trees (Pukienë, 1997; Gunnarson, 1999; Helama et al., 2008; Edvardsson et al., 2012a, 2016b). In central and southern Sweden, peatland pines have been used to develop several multi-millennial tree-ring chronologies (Gunnarson, 1999, 2008; Edvardsson et al., 2012a,b; Edvardsson, 2016). In northern Finland, subfossil pines from peatlands and lacustrine sediments have been used for decades for dendrochronological studies (Eronen et al., 1999). Tree-ring analyses of this material yielded a continuous more than 7,600-year long (from 5634 BCE to present) tree-ring chronology (Eronen et al., 2002; Helama et al., 2008). In northern Sweden, nearly as long tree-ring chronology constructed from subfossil pine covers the period 5407 BCE to 1997 CE (Grudd et al., 2002). The suitability of subfossil pines for long-term climate and paleohydrology reconstructions has now been shown in a range of studies (Pilcher et al., 1995; Grudd et al., 2000; Lageard et al., 2000; Boswijk and Whitehouse, 2002; Leuschner et al., 2007; Eckstein et al., 2009; Moir et al., 2010; Edvardsson et al., 2012a; Helama et al., 2017a).



Depositional Environment—Subfossil Trees

Subfossil wood usable for dendrochronological studies is found in both lakes (Eronen et al., 2002; Grudd et al., 2002; Gunnarson, 2008; Helama et al., 2008) and peatlands (Leuschner et al., 2002; Eckstein et al., 2009; Edvardsson et al., 2016a). Depositional processes and preservation conditions are, however, different between the two environments. Wood retrieved from lake sediments primarily represents trees growing at, or within a short distance of, the lake shore that have fallen into the lake. There, tree trunks are either immediately incorporated into previously deposited sediments or gradually embedded through subsequent sedimentation, and constantly oxygen-poor conditions in the lake environment imply a high preservation potential. However, because the tree rings reflect growing conditions in a different environment (on land) and may have formed prior to the surrounding sediments, it is usually difficult to directly relate tree-ring data to changes in lake sediment stratigraphy. The stratigraphic position of wood found in peatlands is, on the other hand, generally indicative of the peatland surface at which the trees were growing, although fallen tree trunks may partly be embedded in peat that was recently formed when the trees died (Edvardsson et al., 2012a, 2014). Consequently, it may be feasible to directly relate tree-ring data to peat-stratigraphic changes. Wood found in peat may, however, also represent trees growing on drier ground in marginal areas of the peatland that either have fallen into the adjacent peatland or become embedded in peat during phases of rapid peatland expansion (Edvardsson et al., 2014). Moreover, peatland wood may experience a gradual change to anaerobic conditions until it is completely buried and no longer affected by changes in groundwater level, which implies a generally lower preservation potential than for wood buried in lakes (Edvardsson et al., 2016a).

An additional challenge when integrating tree-ring data from lake wood with sediment stratigraphy is that Holocene lake sediments often are relatively homogenous, which means that sediment stratigraphy alone provides limited paleoenvironmental and paleoclimatic information. Late-glacial sediments are, by contrast, usually characterized by distinct stratigraphic changes that can be used to infer changes in environmental and climatic conditions, but such sediments are not expected to contain wood from trees as they were deposited in essentially tree-less environments. Still, lakes constitute valuable archives for subfossil wood (Eronen et al., 2002; Grudd et al., 2002; Linderholm and Gunnarson, 2005; Helama et al., 2008), and there are examples of studies successfully integrating dendrochronological data obtained from lake wood with proxy records from the same sediment (Helama et al., 2012).



Linking Peat Stratigraphic Records and Tree Horizons

Largely, peat consists of accumulated litter from the plants that once formed the vegetation at the peatland surface and have become preserved because of predominantly wet and anaerobic conditions, but remains of other organisms also occur as a minor component. Consequently, peat deposits essentially constitute accumulations of plant macrofossils, but they also contain other macro- and microscopic remains of, e.g., charcoal fragments, pollen, and testate amoebae, which makes them excellent for multi-proxy paleoenvironmental and paleoclimatic studies (Chambers et al., 2012). In addition, peat deposits may contain large pieces of wood, sometimes referred to as megafossils, either as scattered finds or distinct horizons rich in tree stumps and trunks. It was noted already in pioneering peat studies in Denmark (Dau, 1829; Steenstrup, 1842) that peat layers containing remains of subfossil wood were generally darker in color and more strongly decomposed compared to other parts of the peat stratigraphy. These differences were ascribed to climatic changes with strongly decomposed peat rich in wood reflecting drier but possibly also warmer conditions. Such climatic inferences were later extended to Scandinavian peat stratigraphies displaying alternating layers with different degrees of decomposition but lacking wood horizons. They were also increasingly based on changes in peat type, i.e., changes in the composition of peat-forming plants identified through plant macrofossil analysis. This resulted in the development of the Blytt-Sernander scheme for postglacial climatic changes (Blytt, 1881; Sernander, 1908; Birks, 2008; Birks and Seppä, 2010). Later, peat horizons characterized by an abrupt transition from well-decomposed to well-preserved Sphagnum peat were frequently observed during extensive peat-stratigraphic studies in southern Sweden, and these were named recurrence surfaces by Granlund (1932) and proposed to represent regionally synchronous and rapid changes toward wetter conditions.

Paleoenvironmental and paleoclimatic studies based on peat largely rely on documentation of peat-forming vegetation and degree of peat decomposition, but this peat-stratigraphic information is usually complemented by proxy records of peat decomposition and bog-surface wetness with high resolution based on analysis of, for example, organic matter bulk density, light transmission/absorption, C/N ratio, plant macrofossils, and testate amoebae (Chambers et al., 2012). Obviously, such records are necessary to integrate dendrochronological data from subfossil wood with peat-stratigraphic records and thereby accurately place tree establishment and degeneration phases into the context of long-term environmental and climatic changes (Edvardsson et al., 2014, 2016a).



Dating and Dating Constraints of Stratigraphic Proxy Records From Lakes and Peatlands

Proxy records from lakes and peatlands are usually dated by radiocarbon dating. Peat can often be radiocarbon dated directly, although care should be taken to avoid dating roots, which can penetrate underlying layers and thus lead to too young ages. Dates for lake sediment are preferably based on terrestrial macrofossils, as dates of bulk sediment or aquatic organisms are often affected by older carbon, which can come both from long residence times of carbon in the lake system (reservoir effect) and from for example carbonate rich bedrock (hard water effect). Young lake sediments (up to ca. 150 years) can be dated using the isotope 210Pb (Appleby and Oldfield, 1983). Once a number of radiometric dates have been obtained from a sediment or peat sequence, they are calibrated and combined into an age-depth model, so that the age of samples taken at other depths can be estimated. The uncertainty on such interpolated ages depends on the number of dates in the core, their individual uncertainties and the shape of the age-depth relationship and is often in the range of centuries (Telford et al., 2004). Although this can be improved by using a high number of dates and Bayesian approaches to age-depth modeling, the maximum precision obtainable is still measured in decades rather than years.

The temporal resolution and accuracy thus differ greatly between dendrochronological data and sedimentary records, often hampering direct comparisons and data integration. Annually laminated (varved) lake sediments, however, provide a possibility to study sedimentary paleoecological proxies, such as geochemistry, isotopes, and microfossils at annual or seasonal resolution comparable to that of tree rings. However, the dating control obtained by varve counting is, unlike in dendrochronological data, usually affected by increasingly large dating uncertainties toward the past (Theuerkauf et al., 2019). This is partly because varves form in soft lake sediments and are therefore less well defined and more easily disturbed than tree rings, and therefore have higher counting uncertainties; and partly because varve formation is highly site specific and influenced by many factors impacting the lake. The most critical drawback for downcore uncertainties in varve dating is the lack of cross-dating (between the sediment cores) which is routinely applied in dendrochronological studies between the tree samples (Fritts, 2012; Cook and Kairiukstis, 2013). Thus, the varves can usually not be correlated regionally between sites, the way tree-ring chronologies can. However, combining varve and tree ring data may provide a way to overcome these problems.



Pollen Analysis—Overview and Comparison to Tree-Ring Records

Pollen analysis is a well-established scientific method used to provide estimates for the quantitative occurrence of various plant species over time in the past (Hicks, 2001). In most environments, enormous quantitates of pollen are spread and deposited, and they are preserved in lakes and peatlands, making them one of the most widely available paleoecological proxies, both in terms of number of sites and the temporal extent of the records. By comparing the pollen composition in stratigraphic records with observations of present pollen-vegetation and climate relationships it is possible to reconstruct the terrestrial vegetation of the past, as well as use the method to reveal past ecological and climatic changes (Bradshaw and Lindbladh, 2005). Usually, large basins contain pollen from extensive areas, and thereby showing large-scale regional vegetation changes (Sugita, 1994, 2007a), whereas pollen records from small basins to a higher degree represent local conditions (Jacobson and Bradshaw, 1981; Sugita, 2007b; Overballe-Petersen and Bradshaw, 2011).

Models for the quantitative relationship between pollen deposition at a site and the surrounding vegetation developed gradually since the 1960s with the calculation of pollen correction factors for different tree species (Davis, 1963; Andersen, 1970). But quantification of past vegetation is complicated by the non-linear relationship between vegetation and pollen percentages known as the “Fagerlind effect” (Fagerlind, 1952) as well as by the differential dispersal of pollen types from the source plants to the pollen sites (Tauber, 1965). But in the 1980s, the Extended R-value model that mathematically solves the Fagerlind effect was developed (Parsons and Prentice, 1981; Prentice and Parsons, 1983) and this was combined with physical models of pollen dispersal- and deposition (Prentice, 1985), resulting in a clearer definition of the pollen source area of different basin types (Sugita, 1994). Many studies on calibrating, testing and applying these models, as well as using the models for quantitative vegetation reconstruction at regional and local scales have been performed (Sugita, 2007a,b; Hellman et al., 2008; Nielsen and Odgaard, 2010; Mehl and Hjelle, 2015; Fredh et al., 2016).

A simultaneous, but only partly related model development has taken place in the field of pollen/climate relationships, where different statistical techniques have been applied to obtain pollen-based climate reconstructions, as recently reviewed by Chevalier et al. (2021). Much of the pioneering work again took place in Scandinavia, where interpretation of pollen assemblages in terms of climate started with von Post (1918). At first, interpretations were qualitative, but Iversen (1941) presented the first quantitative pollen-based temperature reconstructions for the Holocene. Later the use of large calibration datasets of surface pollen spectra and climate data developed, along with multivariate, and lately Bayesian statistical methods to apply them to fossil data for reconstructions of past climate variability, also facilitated by the increasing availability of pollen data through open-access databases (Chevalier et al., 2020). As with vegetation reconstruction, the scale of climatic information that can be obtained from a pollen record depends on the pollen source area of the site, local conditions, and by long distance transported pollen. Human impact can also affect the relationship between vegetation and climate, and potentially lead to biases which are hard to quantify (Chevalier et al., 2020). In substantially impacted landscapes, pollen-based climate reconstructions should be evaluated carefully by comparison to other proxies, such as dendrochronological data.

A major difference between sedimentary-based pollen data and dendrochronological data is obviously their temporal resolution. The relatively low resolution of non-varved sedimentary data combined with dating uncertainties as discussed in section “Dating and Dating Constraints of Stratigraphic Proxy Records From Lakes and Peatlands,” usually makes the comparison of pollen data and the relatively short (typically at most ∼ 100–150 years in length) instrumental climate records impossible. Therefore, pollen and climate data are not usually related on temporal but on spatial scales (Barnekow et al., 2007). Thus, the transfer functions used to transform pollen data into estimates of past climate parameters are typically constructed using a calibration set of spatially collected surface-sediment samples, expected to represent the modern pollen spectra in comparable sedimentary environments (Seppä and Birks, 2001; Seppä et al., 2004). As an example, the calibration dataset used by Bjune et al. (2009) was based on more than three hundred Nordic lakes sampled along contemporary climate gradients (Seppä and Birks, 2001). Although the transfer functions, calibrated and evaluated on spatial scales (Seppä and Birks, 2001; Seppä and Bennett, 2003; Seppä et al., 2004), they are applied backward in time and thus over temporal scales. By contrast, in dendroclimatology, the calibration, verification, and implementation of the transfer function are all applied over temporal scales (Cook and Kairiukstis, 2013).

In an overall comparison between pollen and dendrochronological records, it is obvious that more records covering the Holocene have been constructed from pollen than tree rings, and that pollen records from more geographical areas therefore are accessible. It is simply more realistic to generate long records covering the main part of the Holocene from pollen compared to subfossil trees, and to find sites with sufficient amounts of pollen to reconstruct long records are by far more common than places with subfossil wood. Both pollen and tree-ring records might be affected by humans, an important factor to consider when analyzing both types of data. Both methods can be considered as time consuming, but if multi-millennia-long datasets are to be constructed, tree-ring data is usually the most problematic and sometimes close to impossible. At the same time, the precision of the dates, the annual time resolution and the annual variations of the data series are superior once a chronology has been constructed. The differences between the pollen and tree-ring records mean that many of the studies reviewed that include both proxy records present significantly longer and more coherent data series from pollen than from the tree rings (Pitkänen et al., 1999; Šamonil et al., 2018; Stančikaitë et al., 2019).



Other Stratigraphic Proxies and How They Can Complement Dendrochronology

Plant macrofossils, e.g., seeds, fruits, leaves, and fragments of wood and bark, are a common source of paleoecological and paleoclimatic information in lake-sediment and peat studies (Birks, 2007). In contrast to pollen, macrofossils are usually not transported long distances due to their larger size. Plant macrofossils thereby provide more reliable information on local conditions, but little information on the regional landscape. In addition, they can often be identified with a higher taxonomic precision compared to pollen (Birks, 2007). On the other hand, these advantages are counteracted by the fact that plant macrofossils are less common and more sporadically present in lake sediment and peat sequences. Plant macrofossils are therefore often used in combination with pollen (Birks and Birks, 2000). In lake sediments, plant macrofossils are derived from both limnic and terrestrial plants, whereas in peat they are mainly derived from plants growing on the peatland but may also have been transported by wind over short distances from the surrounding landscape (Birks, 2007). Wood fragments from trees and shrubs encountered during macrofossil analysis usually contain too few annual rings to be used for dendrochronological studies but can be helpful when reconstructing vegetation composition based on finds of subfossil trees and pollen data (Edvardsson et al., 2014).

Charcoal can also be detected in stratigraphic records and can provide concrete evidence of fire frequency and intensity at local to regional scale (Patterson and Backman, 1988). Charcoal records are often used to supplement fire reconstructions based on historical documents or tree-ring data (Whitlock and Larsen, 2002). For example, Edvardsson et al. (2015) dated a fire scar in pine trees growing at the peatland Kerëplis in Lithuania to 1949 CE. Charcoal particles that most likely originate from the same fire could be detected in the upper part of the peat stratigraphy and could thus be dated using dendrochronology. Precise dating of fire scars in trees in combination with charcoal analysis of lake-sediment and peat sequences thereby has a great potential for detailed reconstructions of historical fires in a region (Pitkänen et al., 1999; Stivrins et al., 2019).

Not only plant remains can be preserved in stratigraphic records, also parts of animals can be detected and studied. Insects are extremely diverse and present in a wide range of habitats and have therefore become an essential contributor in many paleoecological, environmental, and archeological studies (Buckland et al., 2018). Paleoentomology is the study of prehistoric insects including beetles, and their diversity in combination with a long evolutionary history as well as the potential to be preserved in stratigraphic records provides an excellent tool for environmental and climatic reconstructions. Apart from a few studies by, for example, Boswijk and Whitehouse (2002) and Kuosmanen et al. (2020), few attempts have been made to integrate dendrochronological data with paleoecological reconstructions based on paleoentomological analyses. However, this approach is considered to have great potential for studies with conservation purposes (Lindbladh et al., 2013).

In many stratigraphic records from aquatic to moist habitats such as lakes, rivers and wetlands, testate amoebae (also referred to as rhizopods, thecamoebians and arcellaceans) can be detected (Charman, 2001; Mitchell et al., 2008). Testate amoebae is a group of single-celled, shelled organisms and useful indicators of moisture conditions (Charman, 2001). Stratigraphic studies of testate amoebae often include analyses of pollen and macrofossils (Mitchell et al., 2008), but a few attempts have been made to also include tree-ring data from subfossil trees. Like pollen and macrofossil records, stratigraphic testate amoebae records are limited by chronological inaccuracies. Despite this, it was possible to combine data from living peatland pines with the recent testate amoebae record to develop a local hydrological reconstruction for the Čepkeliai peatland in Lithuania (Edvardsson et al., 2019). This should encourage more multiproxy studies where not only pollen, plant macrofossils and testate amoebae are used but studies that also include subfossil trees.



Multiproxy Studies


Multiproxy Fusion Studies for Paleoclimatic Reconstructions

There are studies where subfossils of both spruce (Picea abies) and birch (Betula) have been explored for paleoclimatic purposes (Kullman, 1995, 1996; Holtmeier and Broll, 2006), but when it comes to studies over long periods of time based on subfossil trees, Scots pine (Pinus sylvestris L.) is by far the most investigated tree species, both in northern Finland (Eronen et al., 1999, 2002; Helama et al., 2002, 2004, 2005, 2008, 2010a,b,c, 2019, 2020) and Sweden (Sonesson, 1974; Grudd et al., 2002; Gunnarson et al., 2003). A large proportion of these trees have been found in lakes with oxygen-poor sediments and have grown on mineral (riparian) soils or on thick layers of organogenic riparian substrate. Dendroclimatic studies on living pine trees in similar environments in northern Fennoscandia show that temperature most often is a significantly growth limiting factor (Helama et al., 2002, 2012; Linderholm et al., 2015). The subfossil pine material is therefore assumed to be suitable for dendroclimatic studies aiming to reconstruct temperature variability of the past.

During the late 1970s (Eronen, 1979) and early 1980s, studies on the Holocene history of the pine forests of northern Fennoscandia were performed using radiocarbon dated pine trees from northwestern Finnish Lapland and northern Norway (Eronen and Hyvärinen, 1982). Eronen and Hyvärinen (1982) used pollen records from lake sediments and radiocarbon dated subfossil pine trees. The study showed that the tree and pollen records agreed outlining the history of the pine forests of northern Fennoscandia, and showed that pine spread around 7500–7000 cal. BP (∼5550–5050 BCE) and that the extent of the forest was greatest between 7,000 and 4000 cal. BP (∼5050–2050 BCE; Eronen and Hyvärinen, 1982). Since then, many dendrochronological studies using radiocarbon and dendrochronologically dated subfossil pine materials from northern Finland have been conducted, and the materials have constantly been complemented and improved (Eronen et al., 1999, 2002; Helama et al., 2008, 2015, 2019, 2020).

Topical to this review, Helama et al. (2010c, 2012) compared (and integrated) July temperature reconstructions derived independently from pollen and tree-ring width data as previously published for northern Fennoscandia (Bjune et al., 2009; Helama et al., 2009, 2010b). These studies were based on two paleobotanical proxies, namely spectra of fossil pollen and tree rings of subfossil pine trees from the same region (Helama et al., 2010c, 2012). A summary pollen-based July temperature reconstruction was produced by stacking the individual pollen-based reconstructions from 11 sites representing northern Fennoscandia, expressed as sample-specific deviations from the pollen-inferred present-day July temperature at each site (Bjune et al., 2009; Seppä et al., 2009; Birks et al., 2010). The initial tree-ring dataset of Eronen et al. (2002) was processed to remove biological trends from the raw data series using an approach similar to the regional-curve-standardization (Briffa et al., 1996; Helama et al., 2017b), with an exception that the curvature of the growth trend was adjusted for past changes in the pine population density in the study region (Helama et al., 2010a,b). The rationale behind these comparisons was the hypothesis that the two types of proxy data could be connected to climate variability in a timescale-dependent fashion and, accordingly, their climatic signals could be fused in similar manner making use of the low- and high-frequencies from pollen-stratigraphic and tree-ring data, respectively. First, the two independent reconstructions were correlated over the past millennium i.e., since 750 CE (Helama et al., 2010c). It was shown that that the pollen and tree-ring based reconstructions exhibited similar low-frequency (centennial and longer scales) temperature variability, revealed using timescale-dependent filtering techniques. That is, the two proxies did not only show in what direction conditions for various species are changing, it was also demonstrated when changes had happened and at what rate. The same method was used to surmount obvious geochronological discrepancies (see above sections for the discussion on differing dating and resolution issues), thus enabling reconciliation of the proxies where the proxy-fusion was achieved as a sum of the timescale-dependent components of the original reconstructions (for details, see Helama et al., 2010c, 2012). Reconstructions based both on pollen and tree-ring data have been performed, and the results have been correlated and validated against the instrumentally observed temperature data available for the region over the 1802–2002 CE period (instrumental data from Holopainen and Vesajoki, 2001; Klingbjer and Moberg, 2003; Holopainen, 2006). Over longer intervals, the proxy-fusions exhibited the climatic reversals of the “Medieval Climate Anomaly” (during the tenth to thirteenth centuries CE) and the “Little Ice Age” (during the 14th to nineteenth centuries CE), as well as the twentieth century warming, with a decadal temperature amplitude of 2.5°C between the warmest and coolest decades of the study period (750–1998 CE) (Helama et al., 2010c).

Second, the pollen and tree-ring based reconstructions of July temperature variability were compared over the longest possible time interval, that is over the past 7,500 years (Helama et al., 2012). A new, enlarged spatial pollen-climate calibration dataset was used to develop a robust calibration-function model to transform fossil pollen spectra into temperature estimates. Also, this comparison highlighted overall climatic variability from inter-annual to millennial timescales. Two major discrepancies between the two proxies concerned the highest and lowest frequencies of the reconstructed temperatures: the absence of temperature estimates of the shortest term in the pollen-based proxy and, on the other hand, a lack of a long-term temperature trend in the tree-ring based temperatures over the past 7,500 years. Despite the discrepancies, the low-frequency (i.e., long-term) temperatures variations showed similarities, most well expressed as positive temperature excursion between 3000 and 2000 BCE (which they termed “mid-Holocene warmth”) and as a negative anomaly over much of the past millennium (“Little Ice Age”) (Figure 5). Like a previous study (Helama et al., 2010c), the combined i.e., fused temperature record (representing low-frequency signal from pollen data and high-frequency signal from tree-ring data) correlated positively and significantly with the instrumentally observed temperatures with verification statistics indicating real skill in the reconstruction (Helama et al., 2012). On much longer scales, the final fused temperature reconstruction showed a cooling of 0.26°C per millennium and a cooling of 2.0°C since 5500 BCE. Annual resolution of the record allowed the years 1934 and 1937 to be evaluated among the warmest, and the years 1903 and 1910 are among the coldest summers in the context of the late and mid Holocene temperatures. Moreover, the average reconstructed mid and late Holocene climate was found to remain 0.85°C warmer than the twentieth century CE.

These studies indicated that a method of proxy fusion could be successfully used to integrate the proxy-specific reconstructions, as exemplified for past changes in summer temperature in the pollen-stratigraphic and dendroclimatic data from northern Fennoscandia. To do so, the proxies should exhibit similar temporal coverage, be similar in their climatic response, and exhibit coherence at low frequencies (given that the sedimentary pollen data lacks the high-frequency amplitudes). Although the studies from northern Finland proved that both temperature reconstructions were similar in their climate response (Helama et al., 2010c) and that calibration in time, performed on the fused reconstructions, compared reasonably with instrumentally recorded July temperature, it is important to be aware that this connection may not apply everywhere. In the adjacent areas in southern Scandinavia, the conditions appear quite different in comparison to the North as the temperature is not as strongly controlling the radial tree growth of the trees in these more temperate site conditions.

Another study from northern Finland using climate reconstructions from dendrochronological data, which showed the potential to improve the possibilities for quantitative interpretations of pollen data was performed by Mazier et al. (2012). The pollen productivity of trees varies from year to year, depending on climatic conditions (Andersen, 1974), and in northern Fennoscandia is often strongly dependent on summer temperature (Huusko and Hicks, 2009). By combining absolute pollen productivity estimates for pine for warm and cold years, respectively, from pollen trap data (Mazier et al., 2012), with a summer temperature reconstruction based on tree growth parameters obtained from tree rings (Young et al., 2012), it was thereby possible to obtain a more detailed reconstruction of variations in pine tree biomass over the last 1,000 years from high resolution pollen data from a peat core (Mazier et al., 2012). The relative pollen productivity of different species, used in the landscape reconstruction algorithm may also vary depending on climate, although the relationship is still poorly understood (Broström et al., 2008). If this relationship can be quantified, the potential for using independent climate data from tree rings to improve vegetation reconstructions could be even greater, although this of course requires that relative pollen production and tree growth are limited largely by the same climatic variables in the region of study. For northern Fennoscandia, this is likely to be the case in terms of summer temperature, but in other regions the relationship may be more complicated.

Multi-proxy studies covering recent decades show that there still is additional potential to unlock. Once such example is a study from North Germany by Theuerkauf et al. (2019) in which high-resolution pollen data from a varved lake sediment and tree-ring data were used for dating and paleoclimatic interpretation. Theuerkauf et al. (2019) noted that peaks in annual beech (Fagus sylvatica) pollen deposition correlated with minima in beech tree-ring width, a relationship that was used as a link between their varved lake sediments and tree-ring record. The study mainly focused on the period 1980–2017 CE but sets an example how pollen data from a varved sediment record and local tree-ring data can be integrated.



Multiproxy Paleohydrology Studies

A study from southern Finland showed that the replication curves of pine tree-ring chronologies from peatland and lake sites may demonstrate divergent courses of depositional histories (Helama et al., 2017a). This comparison demonstrated that the accumulation of peatland (subfossil) pines was high, but that of lake site subfossil trees low during the Medieval Climate Anomaly, whereas the accumulation of peatland pines was found to decline toward the Little Ice Age during which that of lake site pines increased. The results were confirmed by comparisons of the water level reconstructions based on subfossils of the chironomid midges and cladoceran water fleas (Luoto, 2009; Nevalainen et al., 2011; Nevalainen and Luoto, 2012). Generally, these microfossil-based reconstructions of late Holocene water depth variations showed a lowered water table during the late part of the first millennium CE, coinciding with peatland tree accumulation. Moreover, rising water tables not later than the twelfth century CE were indicated, consistent with the increasing lake site tree accumulation. These results from differing site conditions of subfossil pine accumulation were taken to demonstrate the relative roles of recruitment and preservation potentials, and thus of paleoecological and taphonomic processes, in controlling the tree accumulation in peatland and lake environments, respectively (Helama et al., 2017a). Comparisons between tree-ring and subfossil animal remain (Cladocera, midges, mayfly, and caddisfly mandibles) based reconstructions, of hydroclimatic conditions were also carried out in nearby sites in eastern Finland (Luoto and Helama, 2010; Luoto et al., 2013; Nevalainen et al., 2013). These comparisons showed that the two types of reconstructions could be used for interpretations of multiple paleoclimatic (seasonal) variables such as precipitation, stream flow, lake water depth, the length of the ice-free season and water temperatures. For example, Luoto and Helama (2010) showed that the Medieval Climate Anomaly was characterized by warm and dry summer conditions, whereas their stream flow reconstruction portrayed simultaneously increased values, implying enhanced spring floods after snowy winters. During the Little Ice Age, wetter climate conditions were reconstructed, however, with the stream flow indicating less snowy winters. Overall, their results were explained by the low-frequency changes in the North Atlantic Oscillation producing contrasting seasonal climate regimes over similarly long timescales in the region (Luoto and Helama, 2010).



Comparative Multiproxy Studies

Both climate and vegetation differ significantly between northern Fennoscandia and the area around the southern Baltic Sea. Which species that can be used as well as the type of paleoecological or climatic information that can be obtained therefore differ greatly between south and north. When it comes to dendrochronological studies, tree species such as pedunculate oak (Quercus robur L.) and beech (Fagus sylvatica L.) occur in addition to the previously mentioned Scots pine. Subfossil oaks have been studied in the reviewed literature (Christensen, 2007; Edvardsson et al., 2014), but not to the same extent as in Germany (Leuschner et al., 2002), Netherlands (Sass-Klaassen and Hanraets, 2006), and Ireland (Brown and Baillie, 2012). The most dominant tree species in the subfossil archives is once again Scots pine (Edvardsson et al., 2012a,b, 2014; Edvardsson, 2016). However, in addition to the geographical location, also the stratigraphic context differs between the subfossil pines from southern and northern sites. The subfossil pine material available in southern Fennoscandia that is a couple of thousand years or older comes almost exclusively from peatlands (Edvardsson et al., 2012a,b; Edvardsson, 2016), and similar availability has been noted in the Baltic states (Pukienë, 1997; Edvardsson et al., 2016b, 2018). Moreover, there are examples with pine materials from submerged landscapes in the Baltic Sea (Hansson et al., 2017; Edvardsson et al., 2021). Furthermore, the correlation between temperature records and tree-ring width in these regions are not as strong as in northern Fennoscandia (Helama et al., 2010c; Edvardsson et al., 2015). Pollen based climate reconstruction from this region may also be hampered by the strong human influence on vegetation composition during the late Holocene. In the multiproxy studies from southern Sweden and the Baltic region, the tree-ring and stratigraphic records can therefore not be integrated in similar manner as described in northern Finland (Helama et al., 2010c, 2012). Instead, records from different proxies have almost exclusively been used for comparative studies in which the data series have been placed next to each other to identify any common patterns (Edvardsson et al., 2012a, 2014). Most often, a similar procedure has been performed in studies from Germany (Eckstein et al., 2009, 2011) and Lithuania (Edvardsson et al., 2016b, 2018; Stančikaitë et al., 2019). In its simplicity, this way of comparing data series can be effective in identifying common patterns in the data types. In Edvardsson et al. (2016b), for example, total tree replication was compared to long-term pollen-based summer temperature deviations (Heikkilä and Seppä, 2010), a water-table reconstruction based on testate amoebae assemblages (Sillasoo et al., 2007), and a lake-level reconstruction from ostracods (Sohar and Kalm, 2008). When combined, the records provide a more detailed story of the transition from the relatively warm mid Holocene to the colder and more changeable late Holocene. More remarkable is that the temperature and water-level changes recorded in the stratigraphic archives during the last millennium appear limited, while several major changes were detected in the tree-replication record. For example, complete absence of peatland trees was noted during cold episodes such as the Little Ice Age and the Migration Period, whereas rapid tree colonization events were recorded during relatively warm episodes such as the Roman and Medieval Warm Periods (Edvardsson et al., 2016b).




Underutilized Geographic Areas

As highlighted in Figure 2, there are several geographic regions with potential for new or improved As highlighted in Figure 2, there are several geographic regions with potential for new or improved in depth paleoecological and paleoclimatic studies combining dendrochronology and paleobotanical datasets. A long tradition of vegetation and climate studies based on e.g., pollen and plant macrofossils from lake sediments (Barnekow, 1999; Rundgren and Beerling, 1999; Bigler et al., 2006) and peat records (Kokfelt et al., 2010; Gałka et al., 2017) from the Abisko region, northern Sweden, have resulted in extensive vegetation and climate records covering substantial parts of the Holocene. In parallel, the 7,400-year tree-ring chronology from Torneträsk (Grudd et al., 2002) as well as chronologies from the Scandinavian mountains (Linderholm et al., 2015) have been developed. These types of datasets should be able to be combined for more detailed studies than what has been done so far. In a similar way, it should be possible to combine and continue working on dendrochronological (Edvardsson et al., 2012b) and peat stratigraphic records (Kylander et al., 2013) from southern Sweden. Furthermore, the similar landscape with lakes and peat bogs found in Estonia, Latvia, and western Russia should make it possible to find subfossil trees to construct tree-ring chronologies to compare with the proxy data already existing in these regions. In Denmark, there is an oak material (Christensen, 2007; Edvardsson et al., 2016a) that might well be linked to other local proxy archives (Bradshaw et al., 2005). Belarus, the Netherlands and Ireland are other examples that can be considered as regions with coexisting archives and/or potential for new proxy data for paleoecological or paleoclimatological studies (Figure 2).




CONCLUSION

This review aimed to convince our readers that the benefits of combining, or even better integrating, proxy records generated from tree rings and stratigraphic sequences can result in improved paleoecological and paleoclimatic reconstructions. We also hope the review can inspire to new research initiatives aiming to overcome the difficulties with the proxy integration, and thereby contribute to improved long-term ecosystem and climate reconstructions as well as a firmer basis for future nature conservation initiatives.

The studies reviewed (Table 1) and the examples discussed illustrate the great benefits of the integrated use of tree-ring data and paleoecological records from lakes and peatlands. Several examples show that adding paleoecological records to the tree-ring records can result in substantially longer and more continuous time series, as well as more detailed and robust paleoecological and paleoclimatic interpretations. In parallel, the tree-ring records can generate improved time resolution and dating accuracy to the paleoecological records (Figure 6). But since there are major differences between dendrochronology and the other techniques discussed, comparison or integration must be done with caution. Moreover, the knowledge of how difficult it can be to construct multi-millennium long tree-ring chronologies for such studies is hard to circumvent. However, we have identified areas where there are long tree-ring chronologies completed or under construction that could be integrated into future studies (Figure 2).
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FIGURE 6. (A) A schematic presentation of temporal scales associated with tree-ring data (blue line) and stratigraphic proxy data (red dashed line). (B) The proxy data discussed, namely tree-ring data (blue line), tree replication data (black line with dashes and dots), pollen data (red dashed line), and plant macrofossils (orange dotted line), also differ in the spatial scales at which they best represent paleoecological and paleoclimatic information. The advantages of integrating several types of proxies are that both time scale and geographical coverage can be improved.


One of the most prominent differences between dendrochronology and other methods reviewed is that dendrochronology can be considered both as a dating technique and as an annually resolved proxy for paleoecological and climatic reconstructions, whereas the other proxies discussed generally rely on independent dating, e.g., with radiocarbon, and have varying time resolution depending on local peat or sediment accumulation rates. On the other hand, proxies extracted from a common stratigraphic sequence automatically have a comparable time resolution and time scale. It is therefore relatively easy to directly compare such data series. Moreover, stratigraphic records can often offer uninterrupted multi-millennial paleobotanical, and paleoenvironmental records for studies of vegetation and climate dynamics. In comparison, the relatively short life cycle of the trees growing in the boreal zone makes it practically impossible to create continuous records based on tree-ring data in a similar manner. Consequently, tree-ring data from hundreds of trees per millennium are often needed when long tree-ring chronologies are to be constructed (Figure 4A). This makes the work of constructing tree-ring chronologies like those from northern Fennoscandia (Grudd et al., 2002; Helama et al., 2008) a process that can last for decades. Although there are pros and cons to all the methods covered by this review (Table 2), the examples discussed show that there are ways to integrate them to be able to benefit from the advantage of combining different data and proxies.


TABLE 2. Pros and cons of different proxy data for the assessment of paleoecological and paleoclimatic reconstructions.
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There are several multi-proxy studies covering recent decades, such as Theuerkauf et al. (2019) discussed in section “Multiproxy Studies,” or articles by Jalkanen et al. (2008) and Edvardsson et al. (2019), that set examples how paleoecological sediment records and local tree-ring data can be integrated. Studies like these shows that there still is additional potential to unlock from the paleoecological records. It will of course be a challenge to perform similar studies over several millennia, but it would be worth the efforts if stratigraphic proxy records could be developed with the same dating accuracy as tree-ring archives offer.
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Realistic and accurate reconstructions of past vegetation cover are necessary to study past environmental changes. This is important since the effects of human land-use changes (e.g. agriculture, deforestation and afforestation/reforestation) on biodiversity and climate are still under debate. Over the last decade, development, validation, and application of pollen-vegetation relationship models have made it possible to estimate plant abundance from fossil pollen data at both local and regional scales. In particular, the REVEALS model has been applied to produce datasets of past regional plant cover at 1° spatial resolution at large subcontinental scales (North America, Europe, and China). However, such reconstructions are spatially discontinuous due to the discrete and irregular geographical distribution of sites (lakes and peat bogs) from which fossil pollen records have been produced. Therefore, spatial statistical models have been developed to create continuous maps of past plant cover using the REVEALS-based land cover estimates. In this paper, we present the first continuous time series of spatially complete maps of past plant cover across Europe during the Holocene (25 time windows covering the period from 11.7 k BP to present). We use a spatial-statistical model for compositional data to interpolate REVEALS-based estimates of three major land-cover types (LCTs), i.e., evergreen trees, summer-green trees and open land (grasses, herbs and low shrubs); producing spatially complete maps of the past coverage of these three LCTs. The spatial model uses four auxiliary data sets—latitude, longitude, elevation, and independent scenarios of past anthropogenic land-cover change based on per-capita land-use estimates (“standard” KK10 scenarios)—to improve model performance for areas with complex topography or few observations. We evaluate the resulting reconstructions for selected time windows using present day maps from the European Forest Institute, cross validate, and compare the results with earlier pollen-based spatially-continuous estimates for five selected time windows, i.e., 100 BP-present, 350–100 BP, 700–350 BP, 3.2–2.7 k BP, and 6.2–5.7 k BP. The evaluations suggest that the statistical model provides robust spatial reconstructions. From the maps we observe the broad change in the land-cover of Europe from dominance of naturally open land and persisting remnants of continental ice in the Early Holocene to a high fraction of forest cover in the Mid Holocene, and anthropogenic deforestation in the Late Holocene. The temporal and spatial continuity is relevant for land-use, land-cover, and climate research.

Keywords: land-cover maps, Holocene, reveals, land use, spatial interpolation


1. INTRODUCTION

Anthropogenically-induced climate change has been at the center of global interest for several decades. The reduction of fossil carbon emissions and mitigation of greenhouse gas effects on Earth's climate is currently one of the major challenges faced by human kind (Jia et al., 2019). Many mitigation strategies involve considerable changes in global land use, such as large-scale afforestation of former agrarian lands as well as natural and semi-natural grasslands in order to increase the carbon uptake and storage capacity of terrestrial land cover (Law et al., 2018; Forster et al., 2021). Due to the complex biogeophysical and -chemical processes and interactions between the Earth's surface and atmosphere, changes in natural and/or anthropogenic land-cover can lead to positive (enhancing) or negative (reducing) feedback on climate systems (Strandberg et al., 2014; Davin et al., 2020). Examples of expected land cover and climate changes can be found by studying the interactions of the vegetation and environment during the last interglacial period (the Holocene). The quantitative reconstructions of past land cover are therefore an important information source for disentangling natural and anthropogenic components of land cover change, which in turn help determine the effects of long-term land use on Earth's climate and predict the possible implications of the intended large-scale afforestation effort (Roberts et al., 2018).

Model-based simulations have demonstrated that the amplitude and direction of estimated climate change due to changes in land cover is spatially highly heterogeneous, but can have a considerable impact on temperature and precipitation in some regions (Cherubini et al., 2018). Changes in bio-geophysical forcings due to large-scale de/re-forestation alter the radiation balance by changing the albedo of the Earth's surface (Strandberg et al., 2014; Strandberg and Kjellström, 2019; Davin et al., 2020). In addition to the effect on the carbon cycle and CO2 emissions, other biogeochemical forcings, such as emissions of biogenic volatile organic compounds, derived from land cover, can also have a considerable impact on the Earth's radiation balance by changing the amount of secondary organic aerosols in the atmosphere and hence the reflective properties of cloud cover (Sporre et al., 2019).

Modern observations or potential natural vegetation descriptions derived from climate-driven model simulations have been the main source of the land-cover estimates used in climate models while simulating past or future climate (Strandberg et al., 2014). These choices often lead to over-estimations when modern heavily deforested land cover is applied to past climate simulations. It can also lead to underestimations of forest cover when potential natural land cover is used for simulating future climates without including anthropogenic land cover. Further, past land-cover descriptions in climate models vary greatly due to differences in estimation methods. Studies comparing estimates of past land-cover composition derived using different methods and data sources reveal discrepancies across space and time (Gaillard et al., 2010; Kaplan et al., 2017; Zanon et al., 2018; Chevalier et al., 2020).

Global land use is recognized as an important feature of land-climate interaction. Historically land use is estimated to account for 35% of the anthropogenic atmospheric CO2 (Foley, 2005; Ward and Mahowald, 2015). Studies, such as Strandberg et al. (2014) and Cherubini et al. (2018), have demonstrated regional climate sensitivity to land-use activity. Spatially and temporally continuous data are needed to investigate the interactions between land-use/land-cover change and climate. Regional to continental scale land-use data has mainly been in the form of model-derived anthropogenic land-cover change scenarios (ALCCs), based on estimates of per capita land use and past population density (Kaplan et al., 2011; Klein Goldewijk et al., 2017). Efforts to produce past land-use estimates based on archaeological and historical data have led to the development of a new land-use classification for global syntheses (Morrison et al., 2021). The latter is part of the Past Global Change (PAGES) LandCover6k working group initiative to upscale archaeological information on land use across the world and produce land-use maps for selected time slices of the Holocene, which has previously not been possible due to large differences in terminology. These archaeology-based land-use maps, with the addition of per capita land-use estimates, are used together with pollen-based REVEALS estimates of land cover to evaluate and improve ALCCs (Gaillard et al., 2018; Harrison et al., 2020).

Reliable reconstructions of past land cover are crucial for improving our understanding of past land cover interactions with climate, forming a robust basis for reliable palaeoclimate simulations and future scenario testing. However, developing reliable reconstructions of past vegetation has been a major challenge. Pollen-based quantitative land-cover reconstructions utilize data sources directly linked to actual plant cover and can therefore be considered the most reliable sources of information regarding past vegetation dynamics across the globe. Efforts to improve our understanding of past vegetation using pollen have led to the development of models that can compensate for plant species-specific differences in pollen production, dispersal, and deposition.

The landscape reconstruction algorithm (LRA) with its two models REVEALS (Regional Estimates of Vegetation Abundance from Large Sites) and LOVE (LOcal Vegetation Estimates) was developed by Sugita (2007b) and Sugita (2007a) to translate pollen counts to vegetation cover proportions at both regional and local scales. REVEALS is a generalized form of the R-value model (Davis, 1963) and estimates the mean regional vegetation composition of plant taxa in proportions (dimensionless) for a large region using pollen records from large lakes (> ca. 50 ha). Both REVEALS and LOVE models reduce biases due to inter-taxonomic differences in pollen productivity and basin size (Sugita, 2007a). The REVEALS model was tested and validated in Europe (Hellman et al., 2008a,b; Soepboer et al., 2010; Mazier et al., 2012) and northern America (Sugita et al., 2010). The REVEALS model was used by Trondman et al. (2015) to produce the first generation of gridded pollen-based estimates of plant cover for five selected time slices of the Holocene between 6 k BP and present in a large part of Europe. Recently, Githumbi et al. (ESSD, in review) achieved a new (second generation) set of gridded pollen-based REVEALS plant-cover estimates for 31 taxa, 12 PFTs (Plant Functional Types) and 3 LCTs, at a spatial scale of 1° × 1° (ca. 100 × 100 km) across 30°–75°N, 25°W–50°E (Europe and a part of the Eastern Mediterranean Black Sea Caspian corridor) including reconstructions for 25 time windows covering the Holocene (last 11700 years) at 500-year-steps (Fyfe et al., 2021). The effects of uneven spatial coverage of pollen-based reconstructions can be reduced by using complementary datasets related to land-cover composition with full spatial coverage. We have used a combination of the above-described pollen-based reconstructions and a set of auxiliary variables describing geographic position (latitude, longitude, and elevation) and land-use history (ALCCs from the KK10 model). REVEALS and KK10 were used as inputs as inputs of a Bayesian statistical model developed by Pirzamanbein et al. (2018) in order to produce a set of spatially continuous reconstructions of past land cover applicable as inputs to climate models. KK10 estimates deforestation of Europe using a GIS-based model driven by human population growth according to McEvedy and Jones (1978, p. 368) back to 3,000 years before present and Lemmen (2009) earlier in the Holocene, and constrained by environmental factors that limit suitability of areas for agriculture (Kaplan et al., 2009, 2011). Possible error sources include uncertainty in population and environmental condition estimations since the main assumption is that land is primarily cleared for agriculture.



2. DATA

Altogether 1,128 pollen records containing over 16,000 samples were used. These records were collected from several public databases. The databases include the European Pollen Database (Fyfe et al., 2009); the Alpine Palynological database (ALPADABA; Institute of Plant Sciences, now archived in EPD); the Czech Quaternary palynological database (PALYCZ; Kuneš et al., 2009) and PALEOPYR (Lerigoleur et al., 2015). Pollen data archives from research projects in the Mediterranean region (Fyfe et al., 2018; Woodbridge et al., 2018) and the Eastern Mediterranean-Black Sea-Caspian-Corridor (Marinova et al., 2018) and contributions from individuals were also used. Gridded pollen-based REVEALS estimates were grouped into three major land-cover types (LCTs: B, broad-leaved forest; C, coniferous forest; O, open land) for Europe and 25 time-windows covering the last 11700 years (the Holocene, see Figures 4–6). Similarly to Trondman et al. (2015) the samples were grouped into 100–500 year time-windows [present–100, 100–350, 350–700, 700–1200, 1200–1700 until 11700 calibrated years before present (BP = AD 1950)]. Higher total pollen count per time window ensures a higher quality REVEALS estimate. The records are from 29 European countries and the Eastern Mediterranean Black Sea-Caspian corridor. The gridded REVEALS estimates are available from Pangaea (Fyfe et al., 2021).

Data on the current land cover of Europe (cover proportions for coniferous and broad-leaved forests and total forest cover) were obtained from the forest maps compiled by the European Forest Institute (EFI) using the remotely sensed data (NOAA-AVHRR) and statistical data from national inventories (Päivinen et al., 2001; Schuck et al., 2002; Kempeneers et al., 2012). The dataset was downloaded from the EFI webpage1 and thereafter up-scaled by averaging the original 1 × 1 km resolution to 1° × 1° resolution.


2.1. Covariates

For the spatial reconstruction of the REVEALS-based estimates of LCTs we used the spatial structure in the data (see Section 3) together with four auxiliary variables. The auxiliary variables primarily support the reconstructions in regions with few pollen observations and include the following variables, which can be expected to have causal links to the LCTs:

Geographical coordinates longitude (10°W–56°E) and latitude (36°–71°N) of each gridcell.

Elevation average elevation of each gridcell obtained from the Shuttle Radar Topography Mission (SRTM, Farr et al., 2007)2 and

KK10 Data on anthropogenic deforestation in Europe derived from KK10, provides a fraction of agrarian land cover at 5′ × 5′ spatial and annual temporal resolution (Kaplan et al., 2009). Several different estimates of anthropogenic deforestation exist, among these the standard scenario of KK10 was chosen for its good correlation with REVEALS estimates (Kaplan et al., 2017). To achieve temporal and spatial compatibility with REVEALS land-cover estimates, the KK10 derived data was up-scaled by averaging into 1° × 1° spatial resolution and temporal resolution matching the REVEALS time-windows (see above).

Elevation together with the geographical coordinates capture the large scale geographical variability of the LCTs while the KK10 scenarios provide information about the fraction of open land resulting from human land use. Compared to previous spatial interpolations of LCTs (Pirzamanbein et al., 2014, 2018), we have added the geographical coordinates, but excluded output from a dynamic vegetation model (DVM, such as LPJ-GUESS c.f. Smith et al., 2001). A sensitivity study (Pirzamanbein et al., 2020) indicated limited added value from the DVM.




3. SPATIAL STATISTICAL MODEL

To model the pollen-based land-cover proportions, a Bayesian hierarchical model developed by Pirzamanbein et al. (2018) was used. Figure 1 shows the empirical forward model where the direction of the arrows imply that unknown parameters affect the unknown latent variables which in turn affect the observations, or data. Reconstructions were obtained by inverting the model and computing the posterior of the latent variables given observations.


[image: Figure 1]
FIGURE 1. Hierarchical graph describing the conditional dependencies between observations (white rectangle) and parameters (gray rounded rectangles) to be estimated. The white rounded rectangles are computed based on the estimations. In a generalized linear mixed model framework, η is the linear predictor—consisting of a regression term, μ, and a spatial random effect, X. The link function, f(η), transforms between linear predictor and proportions, which are matched to the observed land cover proportions, L(C,B,O), using a Dirichlet distribution.


We model the pollen-based REVEALS estimates of land cover, L = (C, B, O), as a Dirichlet distribution. The advantage of using a Dirichlet distribution is that it directly captures the limits of compositional data, e.g.: (1) all elements are between 0 and 1, 0 < C, B, O < 1, and (2) the sum of all elements is 1, C + B + O = 1; It has been shown that the Dirichlet distribution outperforms reconstructions obtained using transformed Gaussian observations (see, Pirzamanbein et al., 2018, for details.). The Dirichlet distribution,

[image: image]

has two main parameters: a concentration parameter, α, controlling the dispersion of the observations, and a proportion of land cover in each grid cell, z(s). A link function, f : ℝ2 → (0, 1)3, is then used to map between the proportions, z = (zC, zB, zO) and the linear predictor, η = (ηL1, ηL2) as (zC, zB, zO) = f(ηL1, ηL2). Here we used an inverse additive log transformation (alr−1) (Aitchison, 1982) for f. The alr and its inverse are given by:

[image: image]

Note here that the transformation ensures that the proportions, z, were restricted to values between 0 and 1, and sum to 1 (as required by proportions) while leaving the linear predictor, η, free to take any values in ℝ2. Thus, removing any restrictions on the linear predictor, but reducing the dimension from three components in z to two components in η.

The linear predictor,

[image: image]

consist of a mean structure, μ and a spatially dependent random effect, X. The mean structure was modeled as a linear regression; μ = Bβ, that is, a combination of covariates, B, and regression coefficients, β. The covariates consisted of intercept, geographical coordinates (longitude and latitude), elevation and KK10-derived land cover (Section 2.1 for more detail). While the regression coefficients were estimated from REVEALS data, it is this estimation that made the model reasonably robust to different covariate choices (Pirzamanbein et al., 2020).

The random effect was modeled using spatial statistics in the form of a Gaussian Markov random field (GMRF) (Rue and Held, 2004); the GMRF-formulation provides computational advantages drastically reducing the time needed for estimation (Pirzamanbein et al., 2018). The resulting model for X takes the form of a multivariate Gaussian distribution,

[image: image]

where, Q(κ)−1 is the precision matrix (or inverse covariance matrix) of a GMRF (Lindgren et al., 2011) characterizing the spatial dependence between grid-cells; Σ is a 2 × 2 matrix where the diagonal elements represent the variance of each latent field and the off-diagonal elements represent the covariance between the fields; and ⊗ is a Kronecker-product. The spatial range parameter, κ in Q(κ), determines how similar the LCTs are between near by grid-cells, with smaller values indicating stronger similarity (or large spatial homogeneity) (Figure 2).


[image: Figure 2]
FIGURE 2. Example of compositional distance (Equation 3) and area of confidence region (CRs) for a few selected points and sizes of CRs. Both the compositional data (left—C, Coniferous; B, Broad-leaved; O, Open land) and transformed [right—L1 and L2 are transformed compositional values from Equation (2)] are shown. Note that distances increase toward the edge of the compositional triangle (e.g., when one component goes to 0) due to the additive log transformation.


All parameters (κ and Σ) as well as the spatially interpolated land-cover maps were estimated from data using a Markov Chain Monte Carlo (MCMC; Brooks et al., 2011) algorithm with 100000 samples of which the first 10000 were omitted as burn-in (for technical and implementation details see Pirzamanbein et al., 2018). Samples from the MCMC were then averaged to compute land-cover reconstructions as the posterior expectations, or E(z(C,B,O)|L(C,B,O)).

To evaluate model performance, we used a 6-fold cross-validation (CV; Hastie et al., 2001, Ch. 7.10). The cross-validation divided the observations into 6 random groups. Each time, we used data from five of the groups to estimate parameters and compute the posterior expectations for the remaining group, which had been excluded from the estimation. Using the posterior expectations, we then computed the reconstruction error between the excluded data and the reconstructions. The process was repeated until all six groups had been excluded. Since the selection of the six groups was random, we repeated the entire process three times to reduce any bias associated with the random groupings.

To evaluate the reconstructed maps, 1) we compared results from the spatial model for the most recent time window (100 BP-present (Figure 3B) with EFI-FM (Figure 3C), and 2) used the 6-fold cross-validation method for five time periods; 100 BP–present, 350–100 BP, 700–350 BP, 3200–2700 BP, and 6200–5700 BP. As previously demonstrated (Pirzamanbein et al., 2018), the difference between reconstructed LCT proportions and observed values (either with the EFI-FM maps or in the cross validation) were measured using average compositional distance (e.g., a root-mean-squared-error appropriate for compositional data, see Aitchison et al., 2000, for details.). The compositional distance between two values are defined using the transformed compositions, ηL1 and ηL2, from equation 2 as
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We also computed the area of confidence region (CR) as measure of uncertainties for reconstructions (Figure 3). Both metrics are illustrated for a few selected values in Figure 2.


[image: Figure 3]
FIGURE 3. Validation datasets of major land-cover types (LCTs: B, broad-leaved forest; C, coniferous forest; O, open land), area of confidence region (CR) and compositional distance (CD) estimates. (A) CR (100 BP–present): area of confidence regions for 100 BP–present time-window (smaller values are better, see Figure 2 for examples of CRs); (B) 100 BP–present: reconstructed proportions of LCTs in Europe for the most recent time window; (C) EFI-FM: observed modern LCT proportions according to the European forest institute forest map (Päivinen et al., 2001); (D) compositional distance (EFI-FM vs. 100 BP–present): composition distance between EFI-FM and 100 BP–present reconstructions.




4. RESULTS


4.1. Evaluation of Reconstructed Maps

Below (sections 4, 5), the terms “reconstruction” and “reconstructed” refer to the spatial-statistical model-based land cover reconstructions (maps; see Spatial Statistical Model section) unless it is specified that we refer to pollen-based REVEALS land-cover reconstructions. The compositional distance (CD) between the reconstructions for 100 BP–present time-window and the EFI-FM map are shown in Figure 3D. The result shows the highest CD in north Norway and north-west Caspian sea. For the 100 BP–present time window, the average CD between the reconstructed map and EFI-FM is 1.46 which is similar to the 1.47 and 1.48 errors reported for previous reconstructions (Pirzamanbein et al., 2018, 2020). The values of the area of confidence region (CR-smaller values indicate higher confidence, see Figure 2 for an example.) show that the reconstructions of the remote areas in north-eastern and south-eastern Europe where we have no REVEALS data are of considerably lower quality than the rest of Europe. Therefore, the grid cells where the CR > 9 were omitted from the spatial reconstructions (Figure 3B).

The 6-fold cross-validation results are shown in Table 1 for the five time periods. The average compositional distance (CVerror) are small indicating a model with good predictive performance. In addition, the standard deviation (sd) among different cross-validation groups are also small indicating very similar CVerror across all groups, and thus an unbiased selection of the grouping in the 6-fold cross-validation.


Table 1. Average compositional distance (CVerror) and standard deviation (sd) from three randomly selected six-fold cross-validation for the five time windows; 100 BP–present, 350–100 BP, 700–350 BP, 3200–2700 BP, and 6200–5700 BP.

[image: Table 1]

Most of the available pollen-based REVEALS estimates are located in northern, central, and western Europe (between 42° to 62° N latitude and 10° W to 30° E longitude, see Figures 4–6). This area, due to the high site density, has the lowest compositional errors in the model (Figure 3) and the most reliable reconstructions of land cover.


[image: Figure 4]
FIGURE 4. Composite maps of the reconstructed land cover for eight time-windows (11700–7700 BP). The gray area marks the extent of the continental glacier according to Stroeven et al. (2016). The location of REVEALS estimates is marked by squares. The color-key for land-cover composition (C, coniferous forest; B, broad-leaved forest; O, open land) is presented as a triangular color chart.




4.2. Trends in Reconstructed Land-Cover Change 11700 BP to Present

Spatially interpolated reconstructions are available for 25 time-windows from the present to 11700 calibrated years before present as specified in the data section. These reconstructions are available and can be downloaded (details in the Data Availability Statement section). The reconstructed land-cover maps can broadly be divided into three distinct groups, conforming to the climatic tripartite subdivision of the Holocene (Walker et al., 2018): Early Holocene (11700–8200 BP, Figure 4—early interglacial climate amelioration), Middle Holocene (8200–4200 BP, Figures 4, 5—mid interglacial climate optimum), and Late Holocene (4200 BP–present, Figures 5, 6—late interglacial climate deterioration). The first half of the Early Holocene (ca 11700–9700 BP, Figure 3) was characterized by remnants of continental ice in Fennoscandia (Stroeven et al., 2016) and open land cover, with a gradual increase of trees migrating from southern and central Europe. During the second part of the Early Holocene (9700–8200 BP) the afforestation process continued; at the end of this period most of Europe was covered with forests, broad-leaved trees dominated in western Europe and coniferous trees in eastern Europe. Dominance of open land persisted only in steppe areas of south-eastern Europe and the Spanish highlands. The Early Holocene land-cover across Europe was dominated by open land (0.43 open land, 0.33 broad-leaved forest and 0.23 coniferous forest).


[image: Figure 5]
FIGURE 5. Composite maps of the reconstructed land cover for eight time-windows (7700–3700 BP). The location of REVEALS estimates is marked by squares. The color-key for land-cover composition (C, coniferous forest; B, broad-leaved forest; O, open land) is presented as a triangular color chart.



[image: Figure 6]
FIGURE 6. Composite maps of reconstructed land cover for eight time-windows (3700–100 BP). The location of REVEALS estimates is marked by squares. The color-key for land-cover composition (C, coniferous forest; F, broad-leaved forest; O, open land) is presented as a triangular color chart.


The Middle Holocene (8200–4200 BP, Figures 4, 5) was characterized by a large fraction of forest cover. Trees reached higher altitudes/latitudes than today and most of Fennoscandia was forested. The reconstructions suggest that while broad-leaved trees were the major forest component in western and central Europe, coniferous trees were migrating from the south and north-east and began to dominate in north-eastern Europe at the end of the period. Mixed land cover with a higher input of trees developed in the Spanish highlands and the south-east European steppe. An increase in vegetation openness was observable at the end of the Middle Holocene in the UK. Although it is well known from archaeological data, that agriculture expanded through southeastern and southern Europe during this period, the reconstruction suggests that it had relatively little impact on regional scale vegetation openness. The mean values across the Middle Holocene and grid cells are 0.4 broad-leaved forest, 0.3 coniferous forest and 0.3 open land).

During the Late Holocene (4200 BP–present, Figures 5, 6), the replacement of broad-leaved trees with coniferous trees continued. Mixed broad-leaved and coniferous trees were the dominant land-cover type in Europe for the last millennium. The largest change in land cover during the Late Holocene was a major increase in the proportion of open land cover. Most of central Europe lost ca 50% of its former tree cover and large areas of western Europe essentially became treeless. The mean land cover proportions were 0.4 open land, 0.3 broadleaved forest and 0.3 coniferous forest.




5. DISCUSSION

Our discussion focuses on the main factors to consider when using reconstructed land-cover maps that have been interpolated using the Bayesian hierarchical model presented and give examples of potential use.


5.1. Data and Methodology Considerations

The spatial statistical model developed by Pirzamanbein et al. (2014, 2018, 2020) was specifically designed to work with unevenly distributed proportional data. The statistical model is a development of the earlier work and uses REVEALS reconstructions to produce continuous vegetation maps of Europe during the Holocene. The evaluation of the spatial statistical model is similar to that previously used in Pirzamanbein et al. (2018, 2020). The time-periods for cross validation were selected to allow comparison with the results of these studies. Moreover, the cross-validation is extremely computationally-expensive to run, making some limitation a practical necessity.

The major difference from previous reconstructions is the increased spatial domain due to the increase in REVEALS estimates from 636 sites in Trondman et al. (2015) to 1,128 sites used here (Fyfe et al., 2021). The increased temporal and spatial coverage in these reconstructions demonstrates the method's feasibility, as well as minor changes to the choice of covariates (using DVM outputs as a covariate in the previous study and not using them in this study—see Section 2). Despite these differences, both comparison to EFI-FM and to the cross validation (CV) produces results that are similar to the evaluation of previous models. Both these and previous models (Pirzamanbein et al., 2018, 2020) produce LCTs that are close to EFI-FM for the 100 BP-present time-window (Figure 3). Further, the CV results are similar across all tested times-windows (Table 1) indicating that the good performance for 100 BP-present translates to the other time-windows. The regions in north-eastern Europe and south-east of the Caspian Sea were excluded from the final reconstruction. They were identified as areas of low confidence in Figure 3A, by having an area of confidence region above 9. These regions lack REVEALS records, forcing the model to extrapolate far from observations.

The quality and reliability of the REVEALS estimates of plant cover are expressed by the standard errors (SEs) calculated by the model. The SEs take into account the standard deviations of the relative pollen productivity estimates applied in the REVEALS reconstructions and the number of pollen counted per time window in the pollen record used. The SEs do not include other errors occurring in pollen records such as incorrect chronologies (due to errors on 14C dating or erroneous age-depth models), and errors in pollen identifications. The selection of pollen records for continental REVEALS reconstructions such as the one used in this study is based on careful criteria including the quality of chronologies and pollen identifications (Mazier et al., 2012; Trondman et al., 2015). Nevertheless, such errors can never be avoided and/or tracked completely. If oddities in the final product from the spatial statistical reconstruction cannot be explained by large REVEALS SEs or large cross-validation compositional errors and standard deviations in the spatial statistical reconstruction, it is recommended to examine the individual pollen records used in the REVEALS reconstruction.

In order to evaluate the spatial statistical land-cover reconstructions we have used cross validation and comparison with the EFI-FM dataset (Figure 3). Using datasets from different sources in a comparison raises questions related to differences in temporal and spatial resolutions and on whether the EFI-FM dataset is a fair description of the actual woodland cover of Europe over the last few years and is representative of the last 100 years covered by the REVEALS reconstruction. The accuracy of the EFI-FM dataset varies spatially due to the use of different data sources (Kempeneers et al., 2011). Comparison of the dataset with ground observations indicated some over and underestimations of some taxa depending on the source data used; moreover, the dataset includes a mix of source data with high (25 m) and low (1 km) spatial resolutions. This implies that the EFI-FM data is not of the same accuracy and precision across Europe: for instance, high-resolution spatial data imply higher precision and accuracy of the land-cover data than low-resolution spatial data. Therefore, although the EFI-FM dataset has been agglomerated to the spatial scale of the REVEALS reconstructions (one square degree), it still includes differences in accuracy and precision over space. The latter, and the difference in time represented by the EFI-FM dataset (a few years) and the REVEALS reconstruction (ca. 100 years), implies that the compositional distance between EFI-FM and REVEALS (Figure 3D) is a mixture of (a) differences between REVEALS estimates (and their spatial statistical interpolations) and actual vegetation, and (b) differences due to both errors in the EFI-FM, and different time lengths represented in the two datasets.

The relationship between pollen proportions and vegetation cover is complex: for instance, inter taxonomic differences in plants' pollen production and pollen size and shape imply inter taxonomic differences in number and dispersion distance of pollen (Parsons and Prentice, 1981; Prentice, 1985; Sugita, 1993, 1994). Other factors influencing the pollen-vegetation relationship are the type of the accumulation basin (lake or bog) and its size, wind speed and direction, and local to regional-scale plant composition. This makes wider usage of existing country to continental scale isopollen maps (Huntley and Birks, 1983; Brewer et al., 2017; Birks, 2019) as proxies of land-cover difficult. The Landscape Reconstruction Algorithm and its two models REVEALS and LOVE (Sugita, 2007a,b) is to date the only way to translate pollen assemblages into cover of single plant taxa (species, genus, family and groups of those). The REVEALS model makes it possible to achieve pollen-based reconstructions of plant cover at a regional spatial scale (ca. 100 × 100 km; Hellman et al., 2008a; Li et al., 2020) relevant for environmental and climate studies at the continental to global scales.

Other methods (Modern Analogue Technique (MAT), biomization, and pseudobiomization) have provided estimates of pollen-based woodland cover for the Holocene (e.g., Roberts et al., 2018). But they do not provide detailed reconstruction of past plant cover, for instance for groups of plant functional types such as summer-green trees and evergreen trees, or land-use types such as cultivated land and grazing land (e.g., Trondman et al., 2015). Moreover, a comparison of the results (in terms of woodland cover in Europe through the Holocene) from those methods and REVEALS indicate significant differences for several periods of the Holocene (Roberts et al., 2018). For these reasons, the REVEALS model has the best potential so far to provide reconstructions of past plant cover relevant for palaeoclimate modeling (Gaillard et al., 2010, 2018; Strandberg et al., 2014), and palaeoenvironmental modeling that requires more detailed descriptions of past plant cover, such as the abundance of individual plant species, genus, families, or groups of those. However, to be used in modeling, REVEALS reconstructions achieved at continental scales need to be interpolated into temporally and spatially continuous datasets. The interpolation presented in this paper is one of many possible solutions that can be used (Pirzamanbein et al., 2014, 2018, 2020), and the selected methodology will depend on the type of research question posed (Strandberg et al., 2014; Harrison et al., 2020).



5.2. Relevance of the Interpolated Land-Cover Reconstructions

The availability of rich palaeoecological and archaeological data from Europe covering the Holocene provides a record of vegetation development and human occupation across the continent. These factors and their interactions across space and time have implications for environmental and climatic change (Gaillard et al., 2018; Harrison et al., 2020). The presented land-cover reconstructions (Figures 4–6) show large-scale land-cover changes across Europe during the Holocene, including the reforestation of largely open post-glacial landscapes during the Early Holocene, a maximum of woodland cover and dominance of broadleaved trees during the climate optimum of the Middle Holocene, and large-scale anthropogenic deforestation combined with an increasing share of coniferous trees during the Late Holocene.

Similar general trends in past vegetation change have been inferred from pollen records expressed in pollen percentages or pollen accumulation rates in numerous studies, or using other methods such as biomization and the modern analogue technique (Huntley and Birks, 1983; Davis et al., 2015; Fyfe et al., 2015; Kuneš et al., 2015). However, these reconstructions either do not reconstruct the cover of individual plant taxa or land-cover units, or reconstruct exclusively woodland cover (or its mirror in percentage cover, open land cover (all grasses, herbs, and low shrubs). The ability to quantify the cover of a large number of plant taxa and groups of taxa is the advantage and strong potential of the REVEALS model. It allows us to quantify changes, which is a necessity to study past interactions between vegetation on Earth, anthropogenic impact and climate over long periods and large spatial scales. The dataset of reconstructed Holocene land-cover quantitative changes in Europe presented in this paper is particularly relevant for use in palaeoclimate modeling. Similar reconstructions based on the same dataset of REVEALS land-cover estimates are currently used in a palaeoclimate modeling project studying the biogeophysical forcing of past anthropogenic land-cover change on climate at 6000 and 2500 BP (Githumbi et al., 2019). These land-cover reconstructions will also serve in the detailed study of Holocene dynamics in plant and vegetation cover through time and space for new insights on the factors and processes involved, e.g., disentangling human and climate impacts (Marquer et al., 2017). This can be achieved for instance by using spatial statistical analyses of the land-cover dataset together with independent datasets of archaeology-based land-use and palaeoclimatic changes. Further, the land-cover dataset will be useful for the study of other palaeoenvironmental changes related to plant-cover transformations, such as past changes in biodiversity at a regional spatial scale. It can finally inform on landscape/vegetation characteristics that will help interpreting archaeological findings and their syntheses (Gaillard et al., 2018).




6. CONCLUSION

The need for spatially continuous pollen-based maps of Holocene land cover in Europe is essential for the study of past vegetation-climate interactions at regional and global scales. In this study we applied spatial statistical modeling and REVEALS-based reconstructions of plant cover from pollen data together with information on anthropogenic deforestation from the KK10 scenarios. There is currently no alternative methodology to the REVEALS model to obtain as detailed reconstructions of vegetation cover. Cross validation and comparison of the reconstructed maps for present time with modern forest data (EFI-FM) confirm the reliability and robustness of the spatial statistical model. Comparison with earlier, similar land cover reconstructions using the same model confirms that it can be used and tested in further applications using the same REVEALS dataset but alternative covariates, or REVEALS datasets from other regions and similar or alternative covariates. Such spatially and temporally continuous land-cover data will be invaluable for palaeoclimate modeling and any palaeoenvironmental analyses of causes, effects and processes operating over long time scales and regional to global scales.
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FOOTNOTES

1https://efi.int/knowledge/maps/forest

2Downloaded from https://topex.ucsd.edu/pub/srtm30_plus/srtm30/data/ on 2011-09-03.
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We provide an overview of the Holocene paleoecology of the Llanos ecoregion. A region that captured the attention of researchers for more than 200 years, as it exhibits a high heterogeneity in landscapes and vegetation, where savanna and forest mosaics exist. Located in an area influenced by the seasonal migration of the Intertropical Convergence Zone (ITCZ), it provides a unique area for understanding long-term dynamics of climate, vegetation and human history. Twelve locations have been paleoecologically studied, showing general vegetation and climate changes trends since the Last Glacial Maximum (LGM). During LGM savanna herbs were dominant, indicating dry climatic conditions. The transition of the Holocene was characterized by a slight increase in forest taxa, suggesting a transition to a wetter climate. Between ∼10,000 and 7,000 cal yr BP, grasslands were abundant, and few forest taxa, including Mauritia were also common but rare, pointing to a warm and humid climate. After ∼7,000 cal yr BP, the gallery forest started to expand, suggesting a change to a wetter climate. Mauritia palms increased markedly after 4,000–3,000 cal yr BP, possibly driven by higher mean annual precipitation and/or longer wet season. The start of human occupation remains unclear, but it has been linked to the time of expansion of Mauritia, a period in which fires, possibly of anthropogenic origin, were more frequent. To understand patterns of change in these ecosystems, it is necessary to improve the chronological control of the sediments in future studies and increase the resolution and proxies used to reconstruct their history.
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INTRODUCTION

The Llanos Orientales in Colombia and the Orinoco Llanos in Venezuela, known as the Llanos of the Orinoquia ecoregion, represent the second-largest Neotropical savanna ecosystem covering more than 500,000 km2 with an extension of about 1,200 km. The savanna starts at the foothills of the Colombian Oriental Andes extends along the Orinoco River to the swampy forest and wetlands of eastern Venezuela, almost to its delta (Berrio et al., 2002). In general, two well-defined landscapes exist the high llanos (locally known as llanos arriba), reaching 300 m asl, and the low llanos (llanos abajo) (Gassón, 2002), while the natural vegetation can be summarized in four types: forest, dry savannas, wet savannas, and swamps (Figure 1; Etter, 1998; Rangel-Ch, 2019). These ecosystems harbor a high ecological diversity and provide different services for the local fauna and human populations. Surprisingly the Llanos region has received little conservation attention compared to the Amazonian or Andean adjacent ecosystems (Romero-Ruiz, 2011), with just 5% of its area protected or monitored as part of conservation units. Since the 1980s, the establishment of large-scale intensive agriculture (palm oil—Elaeis guineensis and rice) and increased human population have modified the natural savannas and forest of the Llanos Orientales. Other activities such as cattle expansion, road infrastructure, petroleum activities, mining and illicit crops have contributed to land degradation and turned it into one of the most threatened ecosystems in Colombia (Romero-Ruiz et al., 2012).


[image: image]

FIGURE 1. Location of the Llanos of the Orinoco ecoregion in Northern South America together with the study sites reported in Colombia and Venezuela. At the bottom are photographs of the four vegetation types, from left to right: dry savannas, wet savannas, swamps (Morichal) and forests (photograph credits: Santiago Montes Veira and Francisco Forero Bonell).


The ecoregion is characterized as one of the main areas of wetlands distribution of the Orinoco basin, containing 38 of the 49 types of natural wetlands recognized (Lasso et al., 2014). Climate change is directly impacting wetlands through net loss of wetland areas within sites due to drying (Xi et al., 2021), desertification, erosion, biodiversity loss and ecosystem services (Convention on Wetlands et al., 2021). The lowlands of the Llanos, due to their location, are influenced by the seasonal migration of the Intertropical Convergence Zone (ITCZ), whose variations in amplitude and form seem to be one reason for major climate changes since Holocene times in the Amazon Basin and its surroundings (Behling and Hooghiemstra, 2000; Wille et al., 2003; Jaramillo-J et al., 2019a,b; Minorta-Cely et al., 2019). On the multiple factors (fire, soil types, micro-relief, hydrological regime and human activities) that limit forest expansion to the savannas, fire (natural or anthropogenic) appears to be the most determinant one (Hoffmann et al., 2012).

Altogether, these ecosystems are of special interest as they have a great potential in assessing questions on long-term ecology and climate, conservation, forest and fire management, human-environmental interactions, and biotic responses. Here we present a mini-review on the current state of the paleo-research in the Llanos ecoregion and provide directions on future perspectives in the most extensive savanna of northern South America.



A BRIEF HISTORICAL VIEW

In 1799 Alexander von Humboldt and Aimé Bonpland started their expedition along the Orinoco River in Venezuela; they described and collected valuable information about the savannas and the gallery forest, its composition, ecology, and the seasonal contrast in the Venezuelan Llanos (Wulf, 2015). Later on, Humboldt demonstrated and explained how climate strongly influences the spatial distribution pattern of the vegetation. His view of climate as a primary driver paved the way for ecology to center its attention on environmental variations (Pausas and Bond, 2019).

In the nineteenth century began the archeological investigations in the Venezuelan Llanos and just since 1972 in the Colombian Llanos. Since then, several excavation sites in the ecoregion have been studied (Gassón, 2002), providing essential findings, such as population establishments, migrations and land-use interactions. The later is based primarily on pottery, hunting, fishing, maize and manioc cultivation. In the eastern Colombian Llanos, carbonized wood and nuts of palm trees were found, evidencing human settlements since 9,200 cal BP (Barse, 1990). Due to the proximity to Amazonia, the presence of humans is associated with the initial adaptation to the tropical forests between 9,200 and 7,000 cal BP, and later with the adaptation to savannas and forests between 7,000 and 4,000 cal BP that emerged due to a drier climate in the middle and late Holocene (Barse, 1995).

In the western Colombian Llanos and in the piedmont and the high llanos of Venezuela, evidence of occupation/settlements occurred later, around 3,000 BP. Excavations sites in the Upper Ariari river, a tributary of the Guaviare river, suggest that the river was used as a migratory route between Orinoquia and Amazonia. From 950 BP onward, numerous tropical forest groups expanded into the Llanos, reaching their climax in the Middle Orinoco at around 750 BP, displacing other small groups (Zucchi and Denevan, 1980; Zucchi, 1985a,b). Human-environmental practices, mainly agriculture (maize, rice, manioc, palms), have been common since 3,000 BP, in which forest clearance by burning practices probably happened.

To understand the dynamics of past vegetation and climate and land-use interactions, paleoecologists have used pollen as a proxy for more than 100 years, disentangling questions not just in long-term ecology but also in biogeography (Birks, 2019). Several studies aiming to calibrate pollen dispersal and deposition, produce estimates of pollen productivity and/or apply the calibrated models to quantitative reconstruct past land-cover have been carried out mainly in Europe after presenting the LANDCLIM project: LAND cover—CLIMate interactions in NW Europe during the Holocene (Gaillard et al., 2010) and in China (Li et al., 2010, 2020a,b).

In tropical and sub-tropical areas, only a few attempts have been made toward quantitative land-cover reconstructions; South Africa (Duffin and Bunting, 2008), South America (Piraquive-Bermúdez, 2021), Cameroon (Gaillard et al., 2021) and sub-tropical China (Fang et al., 2019; Jiang et al., 2020). However, several paleoecological archives have been collected in Latin America (more than 1,300 fossil and 4,800 modern samples) and Africa (288 fossil sites and 1,985 modern samples), which will be essential for future quantitative studies in those regions of the world. For instance, twelve sedimentary archives of Pleistocene and Holocene ages have been studied in the Llanos ecoregion (Figure 1 and Table 1), from which 11 are restricted to the west and just one to the eastern part of the ecoregion. Hereafter, we synthesize the current state of the paleo-research in Colombia and Venezuela and provide insights into future paleo-research perspectives.


TABLE 1. Site details with location, coordinates (lon/lat), core length in cm, estimated calibrate bottom ages in yr BP and site elevation in m above sea level (a.s.l.).
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Current State of the Research in the Llanos Orientales of Colombia

More than 150 years later, after the first Botanical expedition to the Orinoco by Humboldt and Bonpland, van der Hammen visited the Llanos Orientales in 1958, aiming, for the first time, to elucidate part of the history and origin of the tropical savannas by palynological investigations to get an idea on the factors determining the existence of savannas (Wijmstra and van der Hammen, 1966). A sediment core was collected from a lake called Agua Sucia (Figure 1), located in a small valley belonging to the incised drainage pattern of the high plain. Agua Sucia sediments date back to around 4,890 cal yr BP, and they might be potentially older, i.e., the base of the core has an extrapolated age of ∼6,500 cal yr BP. Their results suggest that the occurrence of open savanna areas in this region happened at around 3,200 cal yr BP, attributed partly to humans, due to felling and burning practices.

In 1996, almost two centuries later, after Humboldt visited the Orinoco Llanos in Venezuela, Behling and Hooghiemstra carried out an expedition in the Llanos Orientales in Colombia, coring several lakes and swamps along a 500 km long transect, starting at the foothills of the Oriental Andes (Figure 1 and Table 1). Laguna Sardinas, the most eastern study site, located at the border of a low-elevated flood plain, shows that between ∼13,300 and ∼11,700 cal yr BP, savanna vegetation dominated by grassland (Poaceae) and few woody savanna taxa (Curatella, Byrsonima) were present, indicating dry climatic conditions with a marked dry season. The increase of Alchornea and Mauritia palms pointed to a short humid climate from 11,700 to 10,900 cal yr BP. While a marked reduction of forest and gallery forest until 7,340 cal yr BP, together with the substantial increase of savanna herbs, suggests the maximum extension of the grassland and the driest period of the record, probably due to low rainfall rates and/or an extended annual dry season. Between 7,340 and 4,000 cal yr BP the decrease of savanna herbs and the increase of the forest and gallery forest documents a more humid climate than before. The late Holocene (4,000 cal yr BP to the present) vegetation is mainly characterized by the increase of Mauritia, an indicator of climatic conditions (high moisture availability) and human impact (agroforestry practices) (Rull and Montoya, 2014; Rangel-Ch, 2019). In Laguna Sardinas, its occurrence is related to the still humid climate and a possible increase in human activities, which is also reflected by an intensified fire regime (Behling and Hooghiemstra, 1998).

About 110 km from Laguna Sardinas is located Laguna Angel. This record shows that savanna grasslands were dominant between 11,590 and 10,400 cal yr BP, accompanied by forest and gallery forest elements (Alchornea, Moraceae/Urticaceae, and Mauritia), both reflecting a humid period with cooler climatic conditions (Behling and Hooghiemstra, 1998). Until 4,160 cal yr BP, a decline of savanna herbs and an increase of forest and gallery forest suggest an increase in precipitation. The reduction of savanna herbs and the relatively high representation of savanna shrubs and trees until 2,270 cal yr BP have been linked to a wetter climate. In contrast, the increase of Mauritia toward the end and the higher fire regime possibly reflect increased human activities.

Two other lakes were cored at about 270 km of the foothills of the Andes and ∼150 km west from Lagunas Sardinas and Angel. Those are Laguna El Piñal and Carimagua, separated 20 km from each other and in a relatively flat area in the central part of the Colombian Llanos. Laguna El Piñal contains the history from the Last Glacial Maximum (LGM). The Late Glacial/Holocene transition is well preserved, while the mid and late Holocene are incomplete. Between ∼20,400 and 11,000 cal yr BP, very little gallery forest and the dominance of savanna taxa reflected a dry period due to low rainfall rates and long dry seasons. At around 11,000 cal yr BP the gallery forest expanded, indicating wetter conditions, where the precipitation was probably higher and the dry season shorter than during the LGM (Behling and Hooghiemstra, 1999). Laguna Carimagua sediments are younger than those from El Piñal, showing that during the early and mid-Holocene, savanna herbs predominated, reaching their maximum extension in which savanna shrubs and trees were uncommon. At the same time, a high fire activity might have occurred, as observed by a high amount of charcoal particles in pollen slides.

The late Holocene history (1,090 cal yr BP to present) and a comparison of the vegetation development have been reconstructed from sediments recovered within the gallery forest near Laguna Carimagua. The results of the short record, known as Laguna Carimagua-Bosque, revealed that the forest was the dominant vegetation during that period until the present, with a changing landscape from Mauritia swamps and gallery forest to rich gallery forest with a very low representation of savanna shrubs, trees, and grass savanna. Comparing both records, it is likely that the pollen of savanna vegetation is underrepresented in lake sediments when the lake lies within the gallery forest.

A high-resolution record recovered in the western part of the region, Loma Linda which is 100 km distance from the Andes (Figure 2), complements the previous interpretations of the pollen records in the eastern and central part of the Llanos Orientales. Laguna Loma Linda is a lake in the transition zone between the savanna and Amazon rainforest that was part of a former river probably dammed at the beginning of the Holocene (Behling and Hooghiemstra, 2000). During the early Holocene until ∼6,800 cal yr BP, the vegetation was strongly dominated by savanna (Poaceae), suggesting a dry and warm climate. The mid-Holocene was characterized by a marked increase of the gallery forest until ∼3,800 cal yr BP, there savanna trees and shrubs also became more frequent, both indicating a change to a wetter and more stable period. During the late Holocene, the forest started to expand continuously, slowly replacing the savannas. An increasing expansion of the Amazonian rainforest taxa indicates higher precipitation rates. At around 2,500 cal yr BP, grass savanna expanded again, and Mauritia palm stands developed. As the palms are used as the main resource to local communities (food and services), their increase indicates an increased human impact due to agroforestry in the savanna region (Rull and Montoya, 2014).


[image: image]

FIGURE 2. Summary pollen diagrams of the study sites in the Llanos Orientales (available from open source databases); El Piñal (Behling and Hooghiemstra, 1999), Laguna Sardinas and Laguna Angel (Behling and Hooghiemstra, 1998), Las Margaritas (Wille et al., 2003), Loma Linda (Behling and Hooghiemstra, 2000), Carimagua (Behling and Hooghiemstra, 1998), Cheveno and Mozambique (Berrio et al., 2002). Synthetic pollen curves represent different vegetation types: Savanna herbs; main pollen types: Poaceae and Cyperaceae (yellow), savanna trees and shrubs; main pollen types: Byrsonima, Didymopanax and Curatella (orange), Forest and Gallery forest; main pollen types: Arecaceae, Alchornea, Moraceae, Melastomataceae (green), Mauritia swamps (black) main pollen types: Mauritia. Climatic interpretation and characteristics of the identified periods and the climate-based proxy d18O (Cruz et al., 2005) from a stalagmite record in Brazil (Botuverá cave) are plotted; dry and warm (light-orange), wetter (dark blue), wet (light-blue), human impact (pale-orange). Climatic interpretations are based on the original publications. Displayed pollen and d18O data were obtained from Neotoma Paleoecology Database and SISAL, respectively (Atsawawaranunt et al., 2018; Williams et al., 2018).


Berrio et al. (2002) added to the research two more lakes, Laguna Chenevo and Laguna Mozambique, at 175 and 80 km from the Eastern Cordillera, respectively. The first lies in an area where patches of savanna, forest, and gallery forest are frequent, while the second is in an area that regularly floods. The early Holocene (8,460–7,000 cal yr BP) at Laguna Chenevo surroundings was characterized by the dominance of savanna herbs. Besides, forest and gallery forest taxa were common (Alchornea, Mauritia), suggesting a warm and slightly humid climate during that period. Between 7,000 and 2,600 cal yr BP the expansion of the forest and gallery forest occurred, with a progressive increase of Mauritia palms, reflecting wetter conditions. In contrast, the late Holocene documented an increase of charcoal particles, pointing to an intensified fire regime, possibly of anthropogenic origin.

In the western Llanos, Laguna Mozambique revealed that between 3,800 and 650 cal yr BP Mauritia swamp forest and gallery forest taxa were abundant around the lake, together with grass savanna, indicating humid climatic conditions. The following period (650–100 cal yr BP) recorded the decline on grass savanna and the expansion of the forest, suggesting a wetter climate than before. While during the last few hundred years, pollen from Zea mays and Mauritia was recorded, documenting human intervention in the area (Berrio et al., 2002), e.g., increase of cultivated lands.

Almost 20 years ago, the last paleoecological study in the Colombian Llanos was carried out. Wille et al. (2003) analyzed the sediments from Laguna Las Margaritas, located at the south-western part of the Llanos, 75 km from the Eastern Cordillera. With a better age control and a higher resolution, Las Margaritas core (Figure 2) shows that between 11,150 and 9,100 cal yr BP, grass savanna dominated the landscape with a poorly developed gallery forest in which fires were common, indicating a warm climate with low precipitation rates and a long dry season. The gallery forest slightly increased between 9,100 and 7,330 cal yr BP. However, from this period until 5,430 cal yr BP, the forest gradually replaced the savanna ecosystem, suggesting a wetter climate. The raiming savanna changed to a wooded one and, together with the forest, dominated the landscape until 2,500 cal yr BP, thus indicating high precipitation rates. The expansion of Mauritia at 2,500 cal yr BP and the increase of savanna at 1,000 cal yr BP may indicate both natural (moisture) and human impact (cultivation). Moreover, those general trends of change in the savanna region are well supported by climatic proxies and well documented in stalagmite records in South America, suggesting that during the Late Holocene more precipitation occurred compared to the Mid- and Early Holocene (Cruz et al., 2005; Wang et al., 2007; Bernal et al., 2016).



Current State of the Research in the Orinoco Llanos of Venezuela

The western part of the Llanos ecoregion remains almost unknown regarding its paleoecological history. To date, just two pollen records have been studied, Morichal Mapire and Los Briceño (Figure 1). Despite the lack of research, these are the only ones that, besides vegetation, analyzed part of the fire history, providing a better overview of the climate and human impact in the savannas. Nevertheless, the interpretation of the results should be made carefully as, unfortunately, just a few radiocarbon dates were used for the age-depth models.

The first site is called Morichal Mapire, a Mauritia swamp community located in the eastern part of the Venezuelan Llanos. During the early Holocene until ∼8,900 cal yr BP, the vegetation mainly represented by savanna (Poaceae, Cyperaceae) and gallery forest taxa (Cecropia, Phyllanthus, Euterpe/Geonoma-type) suggests that the climate was warm and humid similar to that of today and was, in consequence, suitable for the growth of Mauritia palms. Notwithstanding, its pollen was not detected in the record during this period, allowing the authors to hypothesize that palms populations could have been reduced in the area as a response to the Late Pleistocene arid climates (Leal and Bilbao, 2011). This hypothesis is supported by Rull (1998); however, it might be hampered by diverse ecological traits (pollen dispersion, production, others), making it difficult to draw further conclusions.

During the late Holocene, at the Morical Mapire the presence of Mauritia was recorded since ca. 2,200 cal yr BP, a period in which a marsh dominated by Poaceae accompanied by open palm swamps existed, probably also regulated by the high fire frequency until 1,100 cal yr BP, indicating a wetter climate and possible human impact. During the following years, until 320 cal yr BP, a decrease in Mauritia palms and an increase of an open savanna dominated by Poaceae and Cyperaceae is related to a reduction of water availability in the swamp, suggesting warmer climatic conditions. From 320 cal yr BP, fires became more frequent, and taxa like Cecropia and Schefflera increased considerably, reflecting a period of strong human intervention (Leal and Bilbao, 2011).

The second study site is located to the west, in an archeological region about 40 km eastward from the Andes Cordillera in an oxbow lake called Los Briceño (Leal et al., 2019). Between 4,200 and 3,800 cal yr BP, a savanna-forest mosaic was dominant, accompanied by a gallery forest, indicating a humid climate. Fires, possibly of anthropogenic origin, were also common during this period and may have affected the forest in the surroundings of the lake. Later until 2,100 cal yr BP, shifts between forest-dominated and savanna-dominated periods reflected a drier climate or a more seasonal one. During the late Holocene, the increase of aquatics suggests higher lake levels, indicating the onset of a wetter climate, similar to the present. Together, fire frequency/intensity and the occurrence of Zea mays in the record reflect a clear sign of human activity in the area of Los Briceño.



Paleoecological Trends in the Llanos Ecoregion

The studies conducted in the last decades in the Llanos ecoregion reveal similar paleoclimatic patterns along the Neotropical savanna, which are at the same time supported by d18O data of South America (Figure 2), in which isotope records suggest in general, that for the Late Holocene, the total amount of rainfall was higher when compared to the Mid- and Early Holocene, though its variability was smaller (Cruz et al., 2005; Bernal et al., 2016). Those results evidenced an overall competition between palm forest (Mauritia), savanna herbs, and woody vegetation (forest and gallery forest). The pollen diagrams from the Llanos ecoregion suggest that dry herbaceous vegetation prevailed during the LGM, under arid and semi-arid periods (El Piñal), apparently a consequence of the changes in the amplitude of the ITCZ (Behling and Hooghiemstra, 2000; Berrio et al., 2002; Sánchez et al., 2017). During the onset of the Holocene, a slight increase in forest and gallery forest taxa is recorded (Lagunas El Piñal, Sardinas and Angel), suggesting a transition to wet climatic conditions followed by a dry climate.

Several of those records illustrate the overall changes recorded since the early Holocene, indicating that between ∼10,000 and 7,000 cal yr BP, the dominant vegetation type was savannas (Poaceae and Cyperaceae) and forest and gallery forest taxa (Alchornea, Moraceae/Urticaceae, and Mauritia) were also common but rare, pointing to a warm and slightly humid climate. During the mid-Holocene, after about 7,000 cal yr BP, the gallery forest gradually expanded, suggesting a change to a wetter climate. The proportion of Mauritia palms increased markedly after 4,000 or later after 3,000 cal yr BP, possibly driven by higher mean annual precipitation and/or a longer wet season. The start of human occupation remains unclear. However, it has been associated with the expansion of palm swamps (Mauritia) varying among locations since around 4,000 or 2,000 cal yr BP, a period in which fires, possibly of anthropogenic origin, were more frequent. Palms provide different services (food, construction material); therefore, it is hypothesized, as is still documented nowadays, that Mauritia palms may have been used as a primary resource for humans since the late mid-Holocene (Hooghiemstra and Flantua, 2019).




PERSPECTIVES

Seddon et al. (2014) presented 50 relevant questions divided into six themes to address in paleoecology and Birks (2019) provided an overview of the contributions of Quaternary botany to modern ecology and biography classified into four general components. From both publications, we have taken as a model five topics that we consider most urgent to focus on in the Llanos ecoregion future paleo-research: (1) Long term ecology and climate, (2) Quantitative paleoecology, (3) Conservation, forest and fire management, (4) Human-environmental interactions and (5) Biotic responses. We provide a number of research questions to be answered and the possible directions and challenges that can be encountered while carrying out paleoecological studies in the Llanos.


Long Term Ecology and Climate


1.How climate change influenced the dynamics of vegetation and fire?

2.Are the changes in the vegetation influenced by factors such as organic and inorganic components in the soils?



To address those questions, we suggest that future investigations should prioritize high-resolution multi-proxy studies, including but not limited to pollen, charcoal, geochemistry, sedimentary ancient DNA (sedaDNA), and diatoms, in which detailed chronological analyses is conducted. The latter is of special importance, as good chronological control is essential for further applications such as quantitative paleoecology.

Moreover, interdisciplinary research should be pursued, especially between archeology, paleoecology, fire-ecology, botany and climatology, as they constitute a valuable tool for understanding the natural variability of the Orinoquia.



Quantitative Paleoecology


3.How is the representation of plant diversity in the pollen assemblages captured by modern surface and moss samples among savannas and forest ecosystems?

4.Can we apply pollen productivity estimate values (PPE) to quantitative interpret fossil pollen records from the neotropical savannas of northern South America?

5.How will these ecosystems change under future climatic scenarios?



Reliable paleoecological data is necessary to produce and validate climatic models (paleo-simulations), which will at the same time help improve their capacity in predicting past and future climate change scenarios (Gaillard et al., 2008; Harrison et al., 2020). However, in a relatively little-studied region, there is a lack of knowledge about ecological traits (for example, pollen productivity, dispersal and pollination mode), which are important for testing ecological hypotheses, and a forehand step for elaborating climatic models. Therefore, increasing the coverage and spatiotemporal resolution will improve our understanding of the causes and dynamics of past changes across a broader timescale. Hence, we encourage new research toward land-cover reconstructions by calibrating pollen dispersal and depositional models (ERV-models), estimating pollen productivity (PPE) of the major savanna-forest taxa, testing their reliability and applying the calibrated models to new/old pollen records through the Landscape Reconstruction Algorithm (LRA). However, applying these methods and models is still a challenge for the southern hemisphere and, in general, for the tropics, where the major challenge corresponds to the estimation of reliable PPEs, due to factors such as landscape heterogeneity, the effect of non-stationary vegetation and pollen transport being mainly entomophilous (Gaillard et al., 2021).



Conservation, Forest, and Fire Management


6.What is the role of disturbances, particularly fire, in the savanna-forest ecosystems of northern South America?



According to Birks (2019) they are different applications and contributions of paleoecological studies to the conservation of ecosystems, among them are (1) the assessment of naturalness and fragility of a given ecosystem, (2) evaluation of the conservation status of endangered species through the contribution of information about the causes that lead to the decline of certain taxa, (3) the creation of data as a baseline on the composition and function of ecosystems in the past.

Therefore, by studying Holocene dynamics of fires in the Llanos, their periodicity, magnitude and intensity on a decadal or sub-decadal scale will enable paleo-researchers to communicate the ecological importance of fires to conservation/land-management practitioners and help them to understand past, present and future scenarios under a changing climate, providing guidelines toward conservation directions.



Human-Environmental Interaction


7.How has the vegetation reacted to anthropogenic disturbances during the Holocene in this region?



Understanding and quantifying land-use interactions based on the fossil record should be addressed with the already available archeological information, which is extensive across the region compared to paleoecological studies (Gassón, 2002). We recommend archeological data to be used in conjunction with paleo-vegetation and paleo-fire data to reconstruct past land cover qualitative and quantitative, particularly in an ecosystem in which the absence of the last ∼3,000 cal yr BP in the sedimentary record is common, a period in which agricultural practices rapidly expanded across the region (Berrio et al., 2000, 2002; Hooghiemstra and Flantua, 2019).



Biotic Responses


8.Was the expansion/contraction of Mauritia swamps and in general forest ecosystems synchronous across the region and influenced by the changes in the amplitude and magnitude of the ITCZ?



Among the major types of biotic responses to environmental changes are the distributional range shifts (dispersal and range expansion or contraction). A better overview of these responses in a mosaic of savanna-forest dominated ecosystems will be possible through the study of combined sciences. For instance, independent climatological data is needed, as the already available speleothem data of South America (Deininger et al., 2019), well-dated high-resolution (decadal or sub-decadal) pollen records from different locations, covering, if possible, the Holocene period or part of it and as well detailed fire records.




CHALLENGES OF PALEO-RESEARCH IN THE LLANOS AND FINAL RECOMMENDATIONS

While attempting to carry out paleo-research in the Llanos ecoregion, scientists will encounter different challenges, and this can be (i) difficult or limited access to natural areas due to intern conflicts, both in Venezuela and Colombia (particularly the northern area) and (ii) permit request-bureaucracy, that can take up to some months. Therefore, contacting the national authorities to get information on accessibility and prepare documents with sufficient time prior to starting a research project is highly recommended. Ideally, research projects should be focused on the less explored areas of the Llanos, such as in the Venezuelan side and the Central and Eastern Llanos of Colombia. Finally, we advise on best practices with local authorities and involving local scientists if foreign teams lead the research projects. This will benefit the research development by speeding up times in fieldwork and permit requests, reducing cost, and building up a local team that will be encouraged to continue with similar projects in the southern hemisphere.
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In many societies, livelihood strategies are based on a combination of economic strategies, including natural resources such as trees for wood, leaves, and fruits. Archeological wood charcoals are residues of human activity related to fire. They provide evidence of fuelwood and, in some contexts, timber, handcraft activities, and fruit production. They represent a detailed record of the way ancient woodlands were exploited. However, charcoal analyses are often confined to the study of taxa and their relative frequency, and socio-economic interpretations are thus limited. In the last two decades, dendro-anthracological studies have been developed. Tree-ring widths, radius of curvature, and carbon isotope contents are increasingly used as indicators of wood gathering practices, woodland management and climate. Nevertheless, in the absence of standards, measurement procedures and data processing are very diverse. The challenge for archeological charcoal analyses is thus to improve analytical tools, especially on dendro-anthracological and isotopic aspects, in order to improve the interpretation of archeological assemblages and advance the discipline. As an example, we present a new approach for taxa growing in Western Europe combining (i) different dendro-anthracological parameters, (ii) an anthraco-typological approach based on modern-day wood stands, (iii) identification of anatomical signatures revealing particular forestry practices, and (iv) stable carbon isotopes. This opens the discussion on methodological perspectives and the associated scientific questions focusing on woodland exploitation and climate, and on the interest of a systemic approach for the analysis of charcoal in archeological contexts.

Keywords: archaeological charcoal assemblages, dendro-anatomy, isotope, wood gathering, woodland management, climate


RETHINKING WHAT WOOD MANAGEMENT PRACTICES CAN TELL US ABOUT PAST SOCIETIES


Natural Wood Resources: An Underestimated Key for Studying Past Societies

In archeology, reflection about wood gathering practices for fuel and timber is mainly based on a list of taxa and their frequency and thus often reduced to concepts of selection or opportunism. However, many ethnographic examples show much more complex relationships between societies and the living world. In many societies, livelihood strategies are based on a combination of economic strategies, including wild plant resources (Testard, 2012). Highly sophisticated systems of natural wood resource exploitation linked to different degrees of woodland management have been described in ethnography (see e.g., Kialo, 2007; Michon, 2015; Rostain, 2016). At the tree scale, strategies include harvesting or incipient management such as tolerance (preserving plants) and protection (eliminating competitors) (González-Insuasti and Caballero, 2007). Additional practices, such as coppicing and pollarding, lead to an increase in wood biomass, favoring the production of wood with a specific morphology and the management of edible fruit production (Mosquera-Losada et al., 2012). At the forest ecosystem scale, societies transform their living space by the interweaving of natural silvigenetic dynamics and socially driven actions favoring particular wood resources and their associated products such as fruits and roots (Michon, 2015). Forests have been shaped by societies into humanized, valuable, nourishing spaces in as many different ways as the societies themselves, depending on social organization, know-how and techniques, food strategies and environment (Descola, 2004). Various spatial configurations, from the simplest to the most complex, result from this articulation between forest and society, and particularly from different forestry practices. Therefore the forest can be understood as part of the social space of a community, both shaping and shaped by communities (Paschalis, 2003). Our challenge is to identify such practices and reconstruct the resulting landscape. Furthermore, woodland management practices may constitute a key and as yet underestimated tool for studying the trajectories of past societies. Charred wood preserved as charcoal in archeological sites is the most frequent and informative record of past woodland exploitation. These residues of wood gathered and transported by people are also valuable artefacts reflecting social actions depending on techniques, economic strategies, and the environment (Asouti and Austin, 2005; Picornell-Gelabert et al., 2011; Dufraisse, 2012, 2014; Figure 1).
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FIGURE 1. Archeological charcoal fragments as valuable artefacts reflecting socio-economic organization and environment.




The Memory of the Tree and Charcoal Fragments: Tree-Ring Parameters

To characterize natural and anthropic woodlands four parameters are needed: composition (dominant and secondary species), stand density (number of stems per hectare), structure (distribution of age and diameter classes of trees), and modes of regeneration (seeded or vegetative regeneration) (Rondeux, 1999). The factors influencing growth are therefore multiple, highlighting environmental events and human practices that affect the tree throughout its life. These are recorded within the wood tissues i.e., tree-ring anatomy and density, chemical and isotopic wood composition, and depend on age and tree organ (trunk or branch). To extract information recorded in tree-ring widths from ecological records on living trees or archeological wood remains, different tools from dendrochronology, dendroarchaeology, dendroclimatology, etc., are used (Cook and Kairiukstis, 1990; Schweingruber, 1996; Payette and Filion, 2010).

While carbonization preserves the wood anatomy, allowing the taxonomic identification of wood remains, it also leads to fragmentation, shrinkage and mass loss as charcoal fragments are partially reduced to ashes. Besides, fragments deriving from trunks and/or branches, or even roots, present few rings, often without pith and/or bark, resulting from the exploitation of many indistinguishable individuals. Consequently, in the absence of adequate tools to explore the information contained in charcoal tree-rings, the first dendro-anthracological developments started at the beginning of the 20th century (for a review, see Marguerie et al., 2010).




METHODOLOGICAL ADVANCES IN DENDRO-ANTHRACOLOGY


Methodological Developments During the Last Two Decades

Dendro-anthracological methods have undergone a decisive expansion in the last two decades. Lundström-Baudais (1997) and Ludemann and Nelle (2002) presented a semi-quantitative estimation of the wood diameters guided by a graduated target. Marguerie and Hunot (2007) proposed a systemic approach using large pieces of charcoal, based on a combination of the measurements of tree-ring width, a qualitative approach of ring-curvature, and the presence of bark, pith or reaction wood, and fungal hyphae. But the most outstanding advances involved the development of quantitative tools and significantly benefited from the use of image analysis software. This led to the development of (i) quantitative anatomy, applied to specific problems such as the management and cultivation practices of the olive tree in the western Mediterranean (e.g., Terral and Mengual, 1999; Limier et al., 2018); and (ii) quantitative dendro-anthracology, focusing on estimating the charcoal-pith distance independently of ring morphology variations (Dufraisse and Garcia-Martinez, 2011; Paradis-Grenouillet et al., 2013), or to specific approaches on entire pieces of round wood (Deforce and Haneca, 2015; Out et al., 2020).



From Practices to Paleoenvironmental Reconstruction: Dendro-Anthracological Applications and Current Limitations

The application of dendro-anthracological parameters to archeological charcoal assemblages gives access to valuable information both on wood gathering practices (selection criteria, extraction methods, wood shaping), and woodland management (supply areas, pruning practices). In Western Europe, mainly in France and Germany, dendro-anthracology was developed and applied in different contexts. Ludemann and Nelle (2002) and Paradis-Grenouillet et al. (2015) characterized past wood uses through the study of numerous historical wood charcoal kilns, respectively in the Black Forest and Mont-Lozère. Marguerie and Hunot (2007) systematically added the measurement of ring widths to the identification of charcoal to assess woodland density during the Holocene in Northwestern France. Dufraisse (see e.g., Dufraisse and Leuzinger, 2009; Schlichtherle et al., 2010) studied firewood gathering and woodland management as an indicator of the social organizations and economic contexts of Neolithic societies living along alpine lakeshores. In arid environments, in Turkey, Kabukcu (2018) and Marston et al. (2021) applied dendro-anthracology to describe wood uses and assess their environmental impact. Finally, the production of new datasets combining dendro-anthracology and entomology has revitalized the field of anthracological research (Bouchaud et al., 2021; Toriti et al., 2021).

All the above studies point out that the measurement procedures and data processing lack a methodological standard. In general, the morpho-anatomical characteristics cited in the literature (ring width, radius of curvature, tyloses, etc.) are used without regional and/or specific standard references. For example, the presence of tyloses in vessels occurring with aging and heartwood formation can be used to estimate a minimum logging age for oak (Quercus robur/petraea) through a quantitative approach (Dufraisse et al., 2018a). However, the application of this proxy on other taxa requires modern references, since tyloses are not systematically associated with heartwood formation in all woody species (Tyree and Zimmermann, 2002). Furthermore, specific qualitative or quantitative procedures have to be implemented to apply this approach to archeological charcoals. In other cases, multivariate analyses give a very good overview of the identified taxa and their associated dendro-anthracological parameters and their other attributes (the condition of the wood and the ecophysiological tree-ring attributes). However, they cannot process the combined dendro-anthracological information at the fragment scale. When dendro-anthracological analyses are reduced to one parameter, for example ring curvature, interpretations are limited, in this case to the distinction between small and large diameters, without distinction between branches and stem, whereas the social and economic organizations derived from these two modes of exploitation are quite different.

The challenge for anthracology is thus to improve analytical tools, i.e., modern references, measurement procedures and data processing, especially on dendro-anthracology, that will allow advances in the interpretation of archeological charcoal assemblages.



Example of a Quantitative Dendro-Anthracological Approach to Taxa Growing in Western European: Anthraco-Typology

The objective of the anthraco-typological approach is to improve the use of dendrochronological methods by proposing a battery of quantitative dendro-anthracological tools and transposing them to anthracology’s “dendroecological growth models” (Girardclos et al., 2012) established from modern wood stands, which was previously impossible (Figure 2). In that way, we developed a systematic approach conducted for taxa growing in Western Europe, based on modern-day wood stand references and combining (i) quantitative dendro-anthracological parameters, and (ii) an anthraco-typological approach, capable of processing the information at the fragment scale.
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FIGURE 2. From taxa identification to anthraco-typology and anthraco-isotopy: contribution of dendro-anthracological analysis of archeological charcoal assemblages to characterize wood exploitation practices, woodland management and climate.


Tree-ring width is easily measured from wood charcoal. The main methodological problem is that we do not know where the charcoal fragment was located in the tree (trunk or branch) or the wood section, i.e., the distance from the center of the stem. The first tool developed was therefore the measurement of the charcoal-pith distance [review in Dufraisse et al. (2020)], which consists in repositioning the charcoal fragment in relation to the missing center of the stem, allowing us to better analyze tree-ring widths. This parameter can also help to estimate the diameters of the wood exploited with mathematical models, taking into account charcoal fragmentation (Dufraisse, 2006).

The second tool deals with the sapwood-heartwood distinction, tested on European temperate deciduous oaks (Quercus robur/petraea). As the heartwood of this taxon is formed around 21 ± 18 years according to Lambert (1996), its presence or absence can be a valuable proxy to estimate the age of the wood harvested (Dufraisse et al., 2018a). These two parameters were tested on uncarbonized and carbonized wood to evaluate margins of error, establish correction factors and define discriminating thresholds (Garcia-Martinez and Dufraisse, 2012; Blondel et al., 2018; Paradis-Grenouillet and Dufraisse, 2018).

A protocol for archeological applications was proposed considering charcoal fragment size (from 2 mm transversal section), number of charcoal fragments and charring effects, such as shrinkage, which depends on the carbonization temperature that varies with the archeological context. These quantitative approaches have led to new developments based on combining these dendro-anthracological parameters, now quantified, and therefore on the possibility of mobilizing current or past dendroecological growth models established from current wood stands or archeological uncarbonized woods (Dufraisse et al., 2018b).

An interpretative grid can therefore be established on modern wood stands characterized by dendrochronology. Dendrochronological data are then converted into dendro-anthracological parameters (e.g., tree-ring width vs. age transformed into mean tree-ring widths vs. charcoal-pith distance), considering branches, trunks, and the whole tree separately. First developed on deciduous oaks (Dufraisse et al., 2018b), this approach was successfully extended to pines (Pinus halepensis Miller and Pinus sylvestris L.) (Picornell-Gelabert et al., 2020; Alcolea et al., 2021), in which branch shedding also occurs by natural pruning, since tree-ring widths vs. pith-charcoal distances in branches do not overlap with those in trunks.




TAMING TREES: IDENTIFICATION OF PARTICULAR GROWTH PATTERNS


Trimming Practices and Identification of Ancient Ecological Knowledge

The trimming practices of the trees are determined by the uses to which the trees are put: timber, firewood or fruit production, livestock feed. They also reflect the know-how, tools and cutting techniques, uses and customs of past societies. According to Bernard et al. (2007), the tree is “a technical support for agroforestry practices, an architectural element in the landscape that drives innovation and adaptation […].” These practices are of obvious interest in understanding the development of wooded areas, whether they are systems built for gathering, crafts or for agro-sylvo-pastoral activities. The identification of such practices contributes more widely to the identification and conservation of ancient ecological knowledge.

Many forest management strategies carried out in order to guarantee or increase the availability of resources rely on the natural ability of many tree species to regenerate when cut. To create new shoots and attempt to increase wood and/or fruit production, two main techniques exist: coppicing and pollarding. Coppicing consists in cutting trees close to ground level to promote vegetative propagation by stump shoots. Pollarding consists in cutting back the tree crown in order to produce a close head of shoots (high coppice or branch coppice). Identifying such trees relies on an examination of particular growth patterns.

While the search for particular growth patterns linked to coppicing and pruning is relatively well developed in dendroarchaeology (see for example Bleicher, 2014), very few studies have been conducted in the field of anthracology.



Coppicing and Charcoal Analysis

Coppicing patterns are characterized by a particularly strong juvenile growth in the first 5–10 years followed by a rapid decline (Haneca et al., 2005; Girardclos et al., 2012). Similar growth patterns are sometimes identifiable on charcoal fragments but require the observation of a series of 5–15 rings (Deforce and Haneca, 2015). However, wide rings around the pith cannot always be considered as a fingerprint of coppice (Copini et al., 2010), due to complex criteria such as age and size of the root system (Salomón et al., 2013). To complement this approach, a comparative study between sessile oak stump sprouts and seedlings of the same age and dimensions was undertaken to identify markers appropriate for anthracology and dendroarchaeology (Girardclos et al., 2018). The study showed that the combination of ring width, proportion of earlywood and charcoal-pith distance can be effective on fragments with less than 5 rings.



Pollarding

Only one study focusing on identifying anatomical markers of tree fodder for ash (Fraxinus excelsior) (Haas and Schweingruber, 1993) and one on oak related to fuelwood and timber harvesting (Bernard et al., 2007) exist. The last one showed specific anatomical markers at a scale of 3–5 rings that repeat cyclically during the tree’s life, reflecting cutting rotations. The combination of the tree’s morphological characteristics and the anatomical characteristics of the wood enable these signals to be attributed to human activity (Bernard et al., 2007).

In anthracology, only specific patterns at a scale of 3–5 rings are potentially recognizable. Indeed, “not all anatomical elements of the ring react simultaneously” (Bernard et al., 2007), which would allow the differentiation of leaf/branch removal from simple narrow rings on charcoal fragments. Therefore, the characterization of traumatic growth related to pollarding relies on quantitative anatomy in earlywood and latewood; successive narrow rings are not sufficient to characterize a pollarding signal.




THE DEVELOPMENT OF ANTHRACO-ISOTOPY TO ASSESS PAST CLIMATE


Recent Advances in δ13C Applied to Archeological Charcoal

The development of dendro-anthracology has made it possible to describe wood gathering practices and woodland management and to reconstruct past woody landscapes and assess human impact. However, the main challenge is to disentangle the explanatory factors, which can be anthropogenic (variations in the degree of competition) and/or natural (climate change). Stable carbon and oxygen isotopes have been used in dendroclimatology to reconstruct past environments (Daux et al., 2018). In the field of anthracology, pioneer studies by Jones and Chaloner (1991), February and Van der Merwe (1992), and Vernet et al. (1996) revealed the potential of charcoal carbon isotope compositions to reconstruct past environments, notably paleo-precipitation. Ten years later, Ferrio et al. (2006) proposed a methodological framework to constrain the effect of carbonization and apply stable carbon isotopes to investigate aridity changes.

Since then, archaeobotanical paleoenvironmental studies using δ13C values determined on wood charcoal fragments have proliferated (review in Fiorentino et al., 2015). The only studies combining dendro-anthracology and stable carbon isotopes were carried out in Syria by Deckers (2016) and in France by Baton et al. (2017). In Baton et al. (2017), we tested the relevance of a seasonality index in a well-documented archeological context: Δ13Cseasonality = δ13Cearlywood −δ13Clatewood. As we showed in an experimental context that the carbonization is not significantly different at the scale of a tree-ring (Baton, 2017), this appears to be a promising climate indicator, independent of carbonization intensities.



Charcoal Isotopes and the Effect of Carbonization: A Sufficient Methodological Framework?

Wood carbonization involves morphological, physical and chemical modifications [review in Bird and Ascough (2012)]. While in dendro-isotopy, stable oxygen and carbon isotopes are usually measured on wood cellulose, carbonization does not allow the extraction of cellulose which disappears progressively with increasing temperatures, leading to a progressive decrease in the charcoal 13C content toward that of wood lignin (Jones and Chaloner, 1991; Czimczik et al., 2002; Ferrio et al., 2006).

As the charcoal carbon content (%C) progressively increases through carbonization, Ferrio et al. (2006) suggested correcting the effect of charring on δ13C by using this parameter. However, such a correction may be questioned. First, it is worth noting that %C does not evolve above 500°C (Ascough et al., 2011), whereas domestic hearth fires typically reach temperatures of 600–800°C (Cohen-Ofri et al., 2006), and even higher for charcoal from burned timber (building fires, Deldicque and Rouzaud, 2020). Second, this approach relies on the hypothesis that %C is conserved through time, excluding post-depositional oxidation that potentially yields (i) a higher oxygen concentration in charcoals (Wiedner et al., 2015) and (ii) a relative decrease in %C. Consequently, %C cannot be applied indifferently in all archeological contexts as is currently the case.



Current Limitations and Future Challenges to Apply δ13C on Archeological Charcoals

Besides potential issues related to the determination of carbonization temperatures and/or the effect of post-depositional processes described above, the use of δ13C as a climatic proxy also faces challenges related to wood anatomical parameters. Recent studies in anthraco-isotopy are in most cases conducted without taking into account the heartwood/sapwood, organ, and age while 13C contents differ according to wood composition (Loader et al., 2003) and organs (Leavitt and Long, 1986).

Charcoal sampling can also be considered as a limiting factor. Up to fifteen fragments, each with several rings, per stratigraphic level are often pooled to obtain an average signal, possibly biasing climatic information by smoothing the δ13C variability recorded at the scale of each growth ring (see e.g., Aguilera et al., 2009; Caracuta et al., 2016). In the near future, investigating δ13C at the scale of the individual growth ring should be a way to recover a proper climatic signal provided the carbonization degree and post-depositional processes are constrained. However, comparison with dendro-isotopy references is still not possible so that only relative values can be considered. Given these current limitations, we suggest combining δ13C with anthraco-typology to better constrain the δ13C signal in archeological charcoal (Figure 2). This approach aims (i) to avoid branch measurements whose δ13C variations are less controlled by climate than those of the trunk (Heaton, 1999), (ii) to analyze heartwood and sapwood separately as their 13C content may differ significantly (Baton et al., 2017), and (iii) to combine tree-ring width (and latewood/earlywood width) and carbon isotopes for past climate reconstructions.




DISCUSSION AND PERSPECTIVES


Beyond Botanical Identification: Contribution of Dendro-Anthracology to Characterize Wood Gathering Practices

Recent advances based on a systemic approach combining quantitative tools, anthraco-typology, particular growth patterns and anthraco-isotopy, have pushed back the limits of anthracology. This systemic approach applied to different archeological contexts enables easy reading between dendro-anthracological parameters (Dufraisse and Coubray, 2018; Picornell-Gelabert et al., 2021). Interpretations of tree-ring widths have been refined and hypotheses on the tree organs used have been proposed. It also becomes possible to characterize gathering practices, particularly when forms of wood degradation are integrated (Moskal-del Hoyo et al., 2010). Hypotheses related to social organization, technical systems and subsistence modes can be suggested for Neolithic societies (Coubray and Dufraisse, 2019). Beyond taxonomic identification and dendro-anthracology, the use of diversity indexes and biological/ecological traits of the identified taxon, especially the use of “Ancient Forest Species,” allow hypotheses on the physiognomy of the woodland in terms of maturity, opening, or fragmentation (principles in Hermy and Verheyen (2007); anthracological application in Dufraisse (2014), Coubray and Dufraisse (2019). Subsequently, the state of transformation of these social and humanized forests can be better assessed.



Anthraco-Typology: Perspectives for Future Paleoenvironmental Approaches

The anthraco-typological approach, which aims to be collaborative and open access,1 requires a specific methodological adjustment for each new taxon in terms of both analysis protocol and interpretation (for charcoal-pith distance, Dufraisse et al., 2020). Anthraco-typology is also constrained by the establishment of dendroecological growth models according to taxa, regions and archeological questions. This dataset allows the establishment of thresholds in tree-ring width, heartwood/sapwood, and charcoal-pith distance. Based on this reference data frame, the distinction between trunk and branches becomes possible. While the principle of this approach was validated on only a few taxa (Quercus, Pinus), the reference dataset has now to be enlarged both on new taxa and new wood stands.

When using wood charcoal, this distinction is the first necessary step when considering paleoenvironmental studies based on tree-ring width or isotopes. Thus, anthraco-typology opens up new perspectives in terms of paleoenvironmental analyses on charcoal, allowing the selection of the most appropriate fragments, for example to investigate past environmental conditions (e.g., by excluding fragments from branches or the 1st years of a tree’s life) or for radiocarbon dating to avoid old wood effects (selecting sapwood fragments). Combined with anthraco-isotopy, it is possible to identify potential explanatory factors, especially climatic ones, to interpret woodland evolutions. Moreover, due to the fragmented and incomplete nature of charcoal fragments, combining tree-ring width and carbon isotopes might allow the discrimination of specific growth patterns between climate and human factors.



The Question of Intentional Woodland Management and Perspectives for Anthropological Interpretations

While wood exploitation practices of past societies can be described by wood studies (uncarbonized and charred), some particular growth patterns suggest woodland management since the Neolithic and even the Mesolithic period (Warren et al., 2014; Billard and Bernard, 2016). However, caution must be applied to distinctions made between “opportunistic” collection and “promotional strategies” (Zvelebil, 1994) such as “in-place encouragement” (Smith, 2011), i.e., the distinction between adventitious woodland management (natural regeneration) and formally managed woodland management in the interpretation of archeological material. It remains to be determined, therefore, whether it is a question of using what nature offers (cut down a tree, it grows back from the stump, the stump’s offshoots are exploited) or of setting up a management system to create an ecological niche within which humans are a decisive force (Descola, 2015). Pollarding, which consists in adapting coppicing in height to protect the leaves from livestock or to maintain a tree whose bark is exploited, may be considered as a sign of intentionally managed woodland (Coubray and Dufraisse, 2019).

The characterization of Holocene woodlands by anthracology, until now essentially approached in terms of human and climate impact, can be characterized from another point of view. The tree is “socialized,” landscapes are shaped by human practices and wood charcoal macro-remains constitute the archeological record of these processes. The history of the forest itself is as much about trees as about people. Addressing forest issues necessarily involves an explanation of the human and social dimension of forests. However, there are very few hypotheses for tracing wood harvesting strategies to a higher level of technical, economic or even ancient social function. For example, how should one interpret individual wood collection organized by domestic unit (Schlichtherle et al., 2010)? Was there a gendered division of labor of wood collection as reported in many ethnographic studies (Testard, 2014) and was it determined by the tools and their prohibitions? These anthropological perspectives on forest management have given rise to new approaches, in particular ethnographical references (Zapata Pena et al., 2003; Dufraisse et al., 2007; Picornell-Gelabert, 2020).
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Coastal erosion and slumping of the coastal bluff occur at the present day along certain stretches of the Baltic Sea coastal belt in western Latvia. The coast currently being eroded is regarded as consisting partly of a cover of wind-blown sand formed 250–300 years ago, a period that saw intensive landward aeolian sand transport as a result of forest cutting and forest fires in the coastal belt and other factors relating to human activity. Within the frame of a short-term research project, dendrochronological dating work was undertaken on remnants of pine trunks discovered at various locations on the coastal bluff that appeared to be remains of ancient trees exposed by erosion, with the aim of determining where and when these natural processes had occurred. This study did not succeed in demonstrating dendrochronologically that the apparently ancient tree trunk remnants observable along certain stretches of the coast at the present day are remains of pines buried by sand more than 250 years ago. It has been established that certain of these are remnants of pines that died in the 20th century or even just a few years ago, but in the majority of cases an unambiguous old date could not be obtained. In order to ascertain the possible reasons why dendro-dating had produced such limited results, in the further part of the study a comparison was undertaken of the patterns of variation in annual radial trunk growth of pines growing in the dune belt along the whole of the Latvian seaboard at the present day. Also considered are the previous findings of short-term studies in all three Baltic States concerning the influence of specific environmental factors on the radial growth of pine. It has been established that the reasons why dendro-dating was problematic relate to the specific character and variation in the environmental factors significantly affecting tree growth, as well as the slope processes on the coastal bluffs. It is envisaged that the findings obtained and brought together in this study will be useful in future, when undertaking or planning dendro-dating work for the purpose of tracing the history of dune migration or assessing the radial growth of pines growing in dunes.

Keywords: dendrochronology, coast of Latvia, Scots pine, remains of ancient pine trunks, dunes and dune migration, environmental factors


INTRODUCTION

Coastline retreat, through the erosion and collapse of coastal bluffs, is a process observable at the present day along certain stretches of the Baltic Sea coast of western Latvia (Eberhards, 2003, 2004), and is becoming more pronounced due to changes in the natural environment as well as human activities, which are increasingly impacting on natural processes. With a rise in air temperature, the likelihood, frequency, and duration of sea ice and frozen ground in winter have decreased, progressively shortening the period when the coast is protected from strong wind and water action (Eberhards, 2003). Moreover, coastal erosion is exacerbated on the downdrift side of hydrotechnical constructions along the Latvian coast, which interrupt the natural longshore sediment flow (Eberhards, 2004).

There is reason to believe that the coast being eroded at the present-day partially consists of a covering deposit of sand formed approximately 250–300 years ago. The transport of sand by the wind, and thus also the landward movement of dunes, was the direct result of the destruction of coastal forests. They were cut on a large scale in this period for the needs of shipbuilding and newly developed industries and burned down during the Northern War (1700–1721). The second half of the 18th century saw extensive destruction of forests along the eastern shore of the Baltic Sea’s Gulf of Riga because of tar production for the needs of the Russian fleet (Bušs, 1960). The extent of dune migration is also reflected in accounts of how they gradually buried tree stumps in the forest cuttings as well as the trunks of standing trees, rivers, fields and farms near the coast, and at least in a few cases manor-houses and churches as well (Sarma, 1974; Eberhards, 2003; Stūre, 2009). Measures to halt dune migration commenced only in the first half of the 19th century, when a protective belt was established along the coast, in which further forest-cutting, collection of forest litter and burning were banned, in conjunction with large-scale stabilization and afforestation of the dunes (Sarma, 1974).

When a dune migrated landwards, it would sometimes leave flat ground in its wake, potentially revealing the remnants of previously buried forest, in the form of tree trunks, stumps or just bark cylinders remaining after decomposition of the wood (Bušs, 1960). Occasionally, however, remains of trees or even wooden artifacts once buried under the dunes have also come to light as a result of the erosion of high coasts. There is also evidence that remains of buried forests have been exposed in this way (Veldre, 1991).

Radiocarbon (14C) dating indicates that in certain places under the coastal dunes of western Latvia there is preserved wood not just a few centuries old but also from much earlier periods: thus, a buried sample of pine wood from the SW Latvian coast has been dated to 127–383 calAD (Supplementary Table 1: Bernāti 2007), while an oak trunk likewise buried under sand in the present-day town of Jūrmala on the Gulf of Riga has been dated to 770–471 BC (Supplementary Table 1: Asari-1) [Conventional 14C ages have been calibrated using OxCal v.4.4 (Ramsey, 2009) and the IntCal20 calibration curve (Reimer et al., 2020)].

In 2018, when the program was put together for the research project “People in a dynamic landscape: tracing the biography of Latvia’s sandy coastal belt,” it also included the task of dendro-dating the remains of several ancient Scots pine (Pinus sylvestris L.) trunks discovered on the face of the coastal bluff, presumed to have been exposed through the erosion of the covering sands. It was anticipated that this would make it possible to determine the time when they had been buried by sand, i.e., the time of dune formation or migration. This task directly corresponded to the project goal, namely to trace the main vectors and significant turning points in the long-term development of Latvia’s sandy coastal belt, focusing on resource use and the interaction between human activities and the non-human forces shaping this dynamic and sensitive landscape (Bērzin̨š, 2021).

In the course of implementing this task, a survey was undertaken along several stretches of the coast of western Latvia with a coastal bluff or with major dunes some distance from the shore whose migration has been halted. Exposures were checked for remains of potentially ancient (subfossil) pine trunks. Such remains were discovered at several sites. However, in the course of the project it was not possible to confirm dendrochronologically that the trunk remnants exposed along stretches of the coastal bluff are remains of pines buried by dunes more than 250 years ago, or to determine more precisely the time of dune formation or migration. Such poor results are not typical in dendro-dating, and accordingly the remainder of the study was devoted to exploring the reasons behind this situation. To this end, a comparison was undertaken of the patterns of annual radial growth of living pines along several stretches of the seacoast as well as several pines that had died recently, seeking to ascertain the factors behind the significant differences in growth pattern. The main findings of previous research in Latvia as well as in Estonia and Lithuania concerning the annual growth pattern of pines in the coastal dune belt were also considered.

The rest of this article sets out the study and its results in more detail, with brief conclusions regarding specific issues involved in dendro-dating pines formerly growing in the coastal dune belt and the future potential of such studies.



MATERIALS AND METHODS


Wood Samples and Sampling Sites

Based on previously obtained information concerning various stretches of the coastal bluff in western Latvia where erosion has been particularly active and where remains of seemingly ancient pine trunks had been seen, in 2019 and 2020 a survey of the coastal bluffs was undertaken along these stretches of the coast, with a total length of 46 km (Figure 1). The lengths of the separate stretches of the coastline and their locations are given in Table 1.
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FIGURE 1. Map of the coast of Latvia showing research sites mentioned in the text: (a) surveyed stretches of the coast; (b) sites providing the pine chronologies mentioned in the text.



TABLE 1. Stretches of the coast of western Latvia where remains of ancient tree trunks were surveyed, giving the numbers of wood samples taken (Ø, sawn trunk cross-section; D, sawn sample extending to center of trunk; −, core sample).
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The following additional information may be given concerning the surveyed stretches of the coastline, explaining why the particular stretch of the coast was included in the survey:

Coastline stretch 1 (Figure 1: 1). In the 1930s, many tops of tree trunks were visible, the covering sands having been eroded (Veldre, 1991); however, no such remains were found at the time of the survey.

Coastline stretch 2 (Figure 1: 2). The N endpoint lies opposite Ķupu dune, nowadays located c. 0.4 km inland. This is one of Latvia’s highest dunes (34 m a.s.l.), recorded as having buried a manor-house and, according to other sources, a church as well (Sarma, 1974). No remains of ancient pine trunks were recorded in the survey.

Coastline stretch 3 (Figure 1: 3). Here the coast has experienced major erosion. In the 1990s, a land area up to 50 m wide was lost in the course of just two storms (Eberhards, 2003). Prior to this, a storm in 1957 uncovered part of the wreck of an ancient oak ship buried under a 5 m high dune. Along this stretch of the coast, remains possibly from this same wreck were repeatedly uncovered in later years (Sudmalis, 1958; Zalsters, 1988, 1995).

At the present day, only pines that have toppled from the coastal bluff relatively recently were observed. Single core samples were obtained from six relatively large pines growing along the coastal bluff, the lower parts of the trunks of which had been partially buried by sand. In order not to harm the growing trees, along this and other investigated stretches of the coast only one core sample was obtained from each trunk. In such a situation it is much harder to identify the occurrence of missing rings or compression wood. However, when sampling the dead pines, in many cases a second core sample was taken.

Additionally, core samples were obtained from seven old pines growing on Latvia’s highest dune, Pūsēnu hill. This dune, 37 m above present sea level, is nowadays located c. 540 m inland, on the site of the former Pūsēni farmstead. It first began to develop and migrate landward more than 300 years ago, after the coastal forest was cut and a large forest fire had occurred (Iltnere, 2002). Single core samples were obtained from an apparently rather old pine trunk on the steep slope of the dune and three pines growing close together at the foot of the dune.

Coastline stretch 4 (Figure 1: 4). This includes the geological and geomorphological natural site “Staldzene coastal bluff”: an intensively eroding coastal bluff with a maximum height of almost 20 m (Eberhards, 2003). A unique artifact hoard from the Bronze Age (1500–500 BC) was recovered here in 2001 (Vasks and Vijups, 2004).

The first remains of pine trunks presumed to be ancient, in the form of several trunk remnants c. 1–2.5 m high, were found on the upper part of the coastal bluff (Figure 2), and the top of a stump was discovered on the beach itself. Single wood samples were sawn from the better-preserved four trunk remnants with the largest girth.
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FIGURE 2. Coastal bluff face at Liepene (stretch 5) with remnants of the trunks of apparently ancient pines (tree group 2).


Also, in stretch no. 4, two sawn samples as well as two cores were obtained from a wooden jetty still visible at the shore, which appeared to be of some antiquity. The four piles closest to the shore were sampled. It was envisaged that the tree-ring data might be used to compile a local absolute chronology for pine, covering a period several decades ago. Additionally, at two sites along this same stretch (Table 1: Pine stand 1 and Pine stand 2), single core samples were obtained from five and four pines, respectively, these being relatively old trees growing at the coast near the present coastal bluff.

Coastline stretch 5 (Figure 1: 5). Here the coastal bluff is lower, but along this stretch, too, as in the above-described stretch, coastal erosion is active, as a result of the interruption of longshore sediment drift by the harbor of Ventspils (Rendenieks, 2008).

Potentially ancient trunks and stumps were discovered at four locations, mainly on the upper part of the fairly high bluff. These provided 11 sawn and 8 core samples (Table 1). Samples for 14C dating were obtained from three of the trunk remnants in group 3.

Additionally, core samples were obtained from selected relatively old pines growing on approximately 160 m long, narrow transects oriented perpendicularly to the coastline, beginning approximately from the site of the above-mentioned pine trunk remnants and continuing landward. Transects 1 and 2 were placed relatively close together: transect 1 was opposite the middle of the zone occupied by the first (most southerly) group of trunk remnants, while transect 2 was opposite the N end of this zone. Transect 3 was placed opposite the S end of the zone occupied by the two remains of trunks of group 2; transect 4 was opposite the S end of the trunks of group 3; and transect 5 began opposite the trunk remnants of group 4. Starting from transect 1, the distances between the transects were approximately as follows: 60 m, 710 m, 330 m, and 275 m. They were laid out in an area of forest measuring approximately 1.33 × 0.16 km. Along the five transects, four, seven, ten, seven, and four pines, respectively, were selected for core samples, thus sampling 32 pines in all. The selected pine trees were growing in various conditions: on older coastal dunes, on steep dune slopes and between two dunes.

Coastline stretch 6 (Figure 1: 6). Approximately 20 years ago, several old tree stumps were noted in the beach sand along the eastern part of this stretch, closer to Cape Kolka—the headland separating the Baltic Sea from the Gulf of Riga (Eberhards, 2003). Cores were obtained from 10 of the thickest and best-preserved pine trunks in this part of the stretch, including three samples from a very deeply buried but still living pine. Additionally, single core samples were obtained along this stretch (closest to its W end) from four relatively old pines growing in different locations on the coastal bluff.

Coastline stretch 7 (Figure 1: 7). At the S end of this stretch, where, according to oral information, at least one short trunk remnant had been exposed from the sand, several pine trunk remnants were discovered on the steep face of the coastal bluff, which was up to 6 m high. Core samples were obtained from the remnants of five pine trunks along this stretch.

Altogether, 37 samples from apparently ancient pine trunks and from some pines buried quite deeply by sand were collected along the various surveyed stretches of the coast, together with 81 samples from living pines, the latter to be used for establishing the quality of the dendrochronological signal and for comparison (Table 1).



Reference Chronologies

The absolutely dated reference chronologies utilized in this study, also used to test the quality of the dendrochronological signal, are tree-ring chronologies for present-day pine stands on various sites along the Baltic Sea coast, encompassing the whole of Latvia’s 498 km long seaboard (Kūle and Markots, 2018). This study utilized 13 pine chronologies for 11 sites, compiled from ring-width data of 3–62 individual trees (Supplementary Figure 1). Seven of these chronologies were compiled in this study: Bernāti (Figure 1: A), foot of Pūsēnu hill (B1), Pūsēnu hill (B2), Staldzene (E), Liepene (F), Kolka 2 (G2) as well as Kleisti (I). The remaining six are previously compiled chronologies: the Saka reference (ref.) (D), Kolka 1 ref. (G1), and Engure ref. (H) chronologies (Zunde et al., 2008); and the Nīca ref. (C), Saulkrasti ref. (J), and Ainaži ref. (K) chronologies, complied in the 1970s (Shpalte, 1978). Details of the previously and newly compiled absolute chronologies for pine with which the tree-ring widths series (TRW series) for present-day pines growing in the dune belt were compared are given in Supplementary Figure 1.

The TRW series of the trunk remnants were additionally tested against a number of other absolute chronologies for pine previously compiled by the author for various sites in western Latvia (Ventspils, Liepāja, Aizpute) and from other regions of the country, as well as the Klaipėda pine ref. chronology from Lithuania (unpublished; author: A. Vitas) and the pine ref. chronology for Estonia (Läänelaid and Eckstein, 2003). These chronologies together span the period from the 14th century to the present day.

Like the apparently ancient or partially buried pines discovered in the course of the survey along the coast, the pine stands close to the seacoast where the above-mentioned chronologies were obtained were growing mainly in conditions corresponding to Cladinoso-callunosa and Vacciniosa forest site types.



Preparation and Processing of Dendrochronological Data

Ring-width measurement and dendro-dating of all the wood samples was conducted at the Dendrochronological Laboratory of the Institute of Latvian History, University of Latvia. Ring-widths were measured with a precision of 0.01 mm, using a TimeTable TT59-M-100/5 ring-width measuring device (VIAS Dendrolabor, 2015) in combination with the dendro-data processing software PAST5 (SCIEM, 2014–2015). For cross-dating of TRW series, the programs COFECHA (Holmes, 1983; Grissino-Mayer, 2001), TSAP (Rinn, 1989–1996), and SAKORE V.3 (Zunde, 2001) were also utilized, and tree-ring chronologies were compiled using ARSTAN (Cook and Homes, 1996).

The width of the rings on the sawn trunk cross sections was measured in three radial directions, and cross-dating was performed using series compiled from the means of the three ring-width values thus obtained.

In order to assess the quality of the dendrochronological signal reflected in the TRW series for pines growing in the dune belt at the present day, the TRW series for all of the above-mentioned samples from living pines were compared against each other and against the 10 chronologies listed above. The t-value was chosen as the measure of the quality of the dendrochronological signal: it gives the significance of the correlation coefficient and thus permits evaluation of the degree of similarity between the TRW series. The t-value was calculated using the formula published by Baillie and Pilcher (1973).

The TSAP program, used for cross-dating TRW series, was configured in such a way that for each pair of TRW series being compared it returned the positions for which the similarity between the TRW series gave the five relatively highest t-values. If these five t-values also included a t-value giving the similarity between the two TRW series in synchronous position, then this was taken as the basis for characterizing the similarity between the two TRW series. However, if the t-value corresponding to the synchronous position was not among the five highest t-values, then the t-value was not used for characterizing the similarity of the TRW series. In such cases, its absolute value was most commonly below 2.0, and such a low value cannot be used as an indicator of the possible synchronous position of the TRW series being compared.




RESULTS

In the course of the study, no trunk remains of pines that had died as a result of dune migration occurring 250–300 years ago were identified along the surveyed stretches of the coast. Some of the dendrochronologically dated trunk remnants were remains of trees growing in the relatively recent past, but no dates more than 200 years old have so far been obtained for any of them. Judging from the position of the trunk remnants on the face of the coastal bluff and from the physical characteristics of the wood, some of these may also be thought to be remains of trees growing relatively recently, while several other trunk remnants may indeed be from older trees.

For example, the date of some partially buried living trees and tree trunk remnants along coastline stretch 5, near Liepene (Figure 1: 5), corresponded to the date of sampling, while a couple of the dead pines gave dates 1–2 years earlier. However, the TRW series for some other living trees and trunk remnants located adjacent to one another or nearby differed significantly from one another and from the TRW series of the dated pines, as well as from the series of mean values of the data from these TRW series. Significantly, even though several pine trunk remnants had a large number of rings, their relative date could not be ascertained. This unexpected result suggested that some of the investigated trunk remnants might relate not only to pines growing in different periods but also to trees growing simultaneously whose year-to-year variation in radial growth reflects specific local factors. This hypothesis was tested by comparing the pattern of change in annual radial growth among pines growing in the coastal dune belt at the present day.


Dendro-Dating of Living Trees

The 81 samples from pines growing in present-day stands had from 47 up to 265 annual rings, 68 of the samples having more than 80 rings.

When the TRW series for the living trees in synchronous arrangement were compared among themselves (giving a total of 3,240 pairwise comparisons), in only about 27% of these pairwise comparisons was the t-value for the synchronous arrangement of the TRW series among the five highest t-values obtained in the respective comparison. This means that in approximately 73% of cases the similarity between the pairs of TRW series being compared was rated lower in the synchronous position than in at least five other (non-synchronous) positions. There are some exceptions, namely seven pines growing on Pusēnu hill (Table 1: No. 3b), six growing at Bernāti (No. 3) and five at Staldzene (No. 4b): comparison among the pines growing at each of these sites did show a significantly similar pattern of annual radial growth. The mean of the t-values included in the above-mentioned 27% of pairwise comparisons is only 3.23, although the maximum is as high as 9.4.

A definite tendency whereby individual trees growing close together show a prevailing similarity in their pattern of annual radial growth could not be observed. Such a tendency was seen more clearly when comparing the calculated degree of similarity between the patterns of annual radial growth of all the living pines with the degree of similarity exhibited by pines growing within a relatively small area of the dunes. This is also seen from the pattern of annual radial growth of the 32 selected pines along the five transects in the Liepene area (No. 5e): in 42.3% of the total of 496 pairwise comparisons between TRW series a t-value for similarity in synchronous position was returned, i.e., this t-value was among the five highest t-values (Supplementary Table 2).

Among the 32 sampled pines along the transects, 12 trees gave TRW series not showing a significant degree of similarity to the TRW series for any of the other 31 trees (taking a t-value > 5.0 as indicating a significant degree of similarity). The TRW series for the remaining 20 trees showed a significant degree of similarity with one to four (in one case as many as six) other TRW series for trees of this group. It is noteworthy that a significant degree of similarity in the pattern of radial growth was more commonly found not between trees on the same transect but between trees on different transects. A degree of similarity indicated by a t-value > 5.0 was less commonly obtained in comparisons between TRW series for pines growing close together, i.e., at distances of about 60 m along transects T1 and T2, and more commonly in comparisons between pines of the transects spaced further apart, namely T3, T4, and T5. Moreover, no clear pattern of greater mutual similarity could be observed when considering only those pines growing on dune crests and those growing in the areas between the crests.

In contrast to the TRW series for individual trees, the chronologies ref. (A–K) compiled from these series did in most cases show a statistically significant degree of similarity (Figures 3, 4). An exception is the chronology for the foot of Pūsēnu hill (B2), compiled from the ring-width data of only three pines. This chronology showed a significant degree of similarity only with the pine chronology for the pines growing on the adjacent Pūsēnu hill (B1) and with the chronology for the pines growing at Bernāti (A), fairly nearby (t-values of 6.4 and 6.6, respectively), whereas comparison with the other eight chronologies (C–K) gave low t-values [a t-value of 2.2 when compared with the Saka ref. chronology (D)]. Moreover, the chronologies for pines growing on sandy soils generally showed greater mutual similarity in those cases where the groups of pines they have been compiled from are located relatively nearby, but there were exceptions. For example, the Pūsēnu hill chronology (B2) is less similar to the Saka ref. chronology (D), which relates to pines growing in somewhat nutrient-richer soils (t-value = 2.3), and to the Engure ref. chronology (H), on a site oriented in the opposite direction to the sea (t-value = 2.6). At the same time, the similarity between the Pūsēnu hill chronology (B2) and the pine ref. chronology for the town of Ainaži (K), 265 km distant, is indicated by a t-value of 6.4. In interpreting these values, it needs to be borne in mind that they are affected by the quality and length of the chronologies.
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FIGURE 3. Graphs of detrended TRW series for 32 pines along the five transects (T1–T5), in synchronous arrangement (A). Graph of the chronology (red line) compiled from the TRW data for these pines, overlaid in synchronous arrangement on the graphs of absolute reference chronologies for pine (A–K) (semi-logarithmic scale; B).
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FIGURE 4. Graph of chronology (red line) compiled from TRW series data of pines selected along the five transects and graphs of the absolute reference chronologies (A–K) in synchronous arrangement.


More relevant to the initial aim of the study were results indicating the age of partially buried pines along coastline stretch 5. The core samples obtained from six of these had between 188 and 222 rings. The oldest rings in these cores fall in the period 1794–1806. Considering that the rings closest to the pith were missing from the core samples and that they had been taken relatively high up on the trunk (the root collar being buried quite deep in the sand), these pines began to grow at the same time, in the years before 1790. From this time onwards, young pines were no longer being buried in sand, which indicates that in this particular area dune formation had ceased for an extended period. The trunks of these pines were partially buried by sand later on, by which time they had grown sufficiently and were no longer under threat from sand accumulation.

These six pines, too, showed markedly diverging radial growth patterns. The most pronounced of the few pointer years appearing in the long TRW series for these trees is 1940, explicable in terms of the harsh winter conditions in the early part of that year (Figure 5).
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FIGURE 5. The central section of the graph of TRW series for six pines of group 3 along coastline stretch 5 in synchronous arrangement: before data indexation (top) and after indexation (bottom). The most pronounced pointer year is 1940, when the winter was very harsh. The narrowing of ring widths in 1969–1970 corresponds very well to the time of two very strong autumn storms (1967 and 1969), in the course of which part of the coastal bluff was washed away.




Dendro-Dating of Ancient Trees

The 37 wood samples obtained from the apparently ancient pine trunk remnants and from some pines deeply buried by sand had between 30 and 280 tree rings, and in 21 cases the number of rings exceeded 80. The number of rings in most of the samples can be regarded as sufficient for dendro-dating; however, as mentioned above, dating of the apparently buried and re-exposed pine trunks proved to be problematic.

A statistically more significant degree of similarity (t-value > 5.0) with absolutely dated TRW series as well as with ref. chronologies was obtained for only three of the TRW series from apparently ancient pine trunk remnants. The date of the outer ring of one of the trunk remnants along coastline stretch 4 could be 1902, while that of another could be 1878. Considering the number of rings in these two wood samples (133 and 113, respectively), the two dates may, at first glance, be regarded as probable and credible, because this would mean that the two pines began to grow approximately at the same time: in the 1760s. However, there are also grounds for doubting the two dates: thus, soon after this date the landward migration of dunes along the coast of W Latvia began to occur on a previously unseen scale. Dune migration was successfully halted only after 1835, when dune stabilization measures, involving tree- and shrub-planting, were initiated (Bušs, 1960). Likewise, there is reason to doubt a third possible date (1704), obtained for the outer ring of a pine trunk remnant preserved on the upper slope of Pūsēnu hill, because the dune formed on its present site only 200–300 years ago (Janševskis, 1928).

The three 14C-dated pines, represented by a trunk remnants in coastal stretch 5, most probably died in the period 1725–1785 (Figure 6 and Supplementary Table 1: Liepene I-1, Liepene I-2, and Liepene I-4). The death of these trees may have been caused by the overly deep burial of its trunk in the course of dune migration. However, the calibrated 14C date also indicates a quite high probability that the pine may have died in the 20th century. In this case, too, the TRW series of these trunk remnants did not show a significant degree of similarity to those of other sampled trees or to the chronologies.


[image: image]

FIGURE 6. Graph of calibrated dates of three 14C-dated pine trunk remnants (coastal stretch 5, group 3).


Only the piles of a former jetty structure along stretch 4 have so far been dendro-dated. It has been established that the jetty was built of timber cut in about 1943, i.e., during the Second World War, although it is possible that the jetty is more recent, and was made from re-used timber. The TRW series for the jetty piles were relatively short (50–75 values), but the degree of similarity in synchronous position when compared against previously compiled pine ref. chronologies for Latvia was sufficiently significant (t-value: up to 5.7). The TRW series for the jetty piles showed a low degree of similarity with the TRW series for pines growing in the dune belt. It is highly probably that the jetty timber was sourced not from the coast but from an inland forest.




DISCUSSION: THE MAIN REASONS BEHIND THE PROBLEMS OF DENDROCHRONOLOGICAL DATING OF DUNE PINES

There is a basis for the hypothesis that the most frequent reason for the poor results of dendro-dating of apparently ancient pine stump remains could be the marked divergence in the radial growth pattern of tree trunks growing in earlier times, rather than an overly large difference in absolute age of the trunk remains. Although the time of death of trees buried by dune sands could have differed significantly along different stretches of the coast and at various distances from the coastline, a proportion of the trees within a relatively small area would most probably have died within a short period, or even simultaneously. In the case of trees growing simultaneously within a small area during a period up to the time of their death, the pattern of annual radial growth should, theoretically, have been rather similar, and so it should have been possible to synchronize the TRW series for these trees dendrochronologically. However, it has been found that the degree of similarity between the TRW series for such trees is too low, and this leads to the conclusion that in this particular case the main reason for the limited results of dendro-dating is the often markedly divergent growth pattern of pines in dune conditions.

In comparing the annual radial growth patterns of pines and considering the findings obtained in studies on this topic by other researchers, it was established that there could be several different causes for the differences in the growth pattern of pines growing in the coastal dune belt, which are sometimes very marked, and for the relatively poor results of the work to identify ancient trunk remains of pines by dendrochronology. These mainly relate to the characteristics of the environmental factors significantly affecting tree growth and their variation within the dune belt, and to the slope processes at the coastal bluff.


Differences in the Age of the Dunes

It was hypothesized from the outset that one of the reasons for the differences in the pattern of annual radial growth observed among pines growing in the dunes, seen most clearly among the 32 pines selected for study along the transects, is the difference in age of the dune formations traversed by the transects. There is a definite basis for such a view.

Once a pine trunk is buried by dune sand, the growing conditions for the tree change, also affecting the annual radial growth of the trunk. In a situation where dune formations migrate landwards in different periods, so that the pines growing in their path are partially buried by sand in different years, the impact on the trees’ radial growth brought about by the changed growing conditions will not begin and proceed simultaneously and with equal intensity. Dune migration is a frequent cause of the death of pines; conversely, the cessation of dune formation or migration will eventually create favorable conditions for pine seedlings to grow. Thus, the age of the dunes may affect the age of pines growing even relatively close to one another, as well as the character, timing and duration of the impact of the significant altered environmental conditions on the growth of older pines.

It should be added that not only N of Ventspils (located at the mouth of the River Venta) but also in the environs of Cape Kolka, such dune formations differing in age could actually be quite old. Along these stretches of the coast, intensive erosion is continuing, so that the sea is currently eroding coastal areas with relief consisting of dunes that have migrated relatively far inland in earlier periods. It has been established that over a 100-year period the coast at Cape Kolka has retreated by 350 m, while the coast N of Ventspils has retreated by 100–180 m (Eberhards, 2003).



Specific Climatic and Edaphic Factors

Another very important reason for the for the lack of statistically unequivocal dendro-dating results is to be found in the somewhat specific environmental factors operating in the coastal dune belt. This includes climatic as well as edaphic factors. Climatic factors (mainly air temperature and precipitation) are generally the main interannually varying factors which, since they affect tree growth across relatively large areas, permit the cross-dating of the TRW series characterizing the growth of these trees (Speer, 2010). In Latvia, the radial growth of pine in mineral soils with a moderate soil moisture level is most significantly affected by mean air temperature during the last months of winter and the first months of spring, i.e., from January or February up to mid April (Elferts, 2007; Zunde et al., 2008). It has been established in two studies that the local air temperature in the mentioned period also correlates positively with the radial growth of pine growing at the present day on sandy coastal sites (Elferts, 2007; Matisons and Brūmelis, 2008). However, it should be added that this relationship has been observed and confirmed only using ring-width data for pines exhibiting a fairly similar pattern of annual radial growth (Elferts, 2007; Matisons and Brūmelis, 2008). These two publications do not address the question of why the remaining trees, 26 and 43%, respectively, of the trees included in the studies showed a different or even individual pattern of annual radial growth variation. In contrast to dendroclimatic studies that utilize present-day tree-ring data, when dating samples of historical wood from various sites, the dendrochronologist does not have the possibility of making such a selection, because the task is to establish the absolute age of all the wood samples under study.

At the Baltic Sea coast, especially along Latvia’s west coast, which has a maritime climate, winter and spring air temperature is not such a significant factor for the radial growth of pine as it is in the eastern part of the country. Along Latvia’s western seaboard, in the period 1950–2003, the mean January temperature was −1.9 to −2.4°C, whereas in the eastern part of the country it was as low as −6.2 to −6.7°C (Kḷaviņš et al., 2008). Correspondingly, in the period 1945–2004, SW Latvia had a mean snow cover duration of 66–77 days, whereas in the NE of the country snow cover lasted almost twice as long: a mean 123–134 days (Draveniece et al., 2007). Since the air temperature in winter and spring in the coastal areas is relatively higher and subject to smaller fluctuations than in areas further inland, the impact on the radial growth of pine is reduced. This is even more so in the current period of global warming. The different pattern of radial growth of the pine trunks under study testifies that interannual variation is more frequently determined not by low air temperature but by other environmental factors having a local or even individual character. At the seacoast, these could include soil moisture, relief (aspect) and associated soil warming, as well as the level of solar insolation, the burial of tree trunks by sand, or the converse, namely erosion, and other factors. Other observations have confirmed the absence of a statistically significant correlation specifically between the radial growth of pines growing on dune summits and interannual variation in monthly mean air temperature (Mandre et al., 2010).

In the dunes along the Baltic Sea shore the influence of the precipitation level on tree growth likewise tends to have a highly localized character. In an area with a similar level of precipitation, the moisture content of sand on dune summits differs from that of hollows. It has been found that soil moisture at a depth of c. 20 cm may differ as much as six times between dune summits and hollows (Mandre et al., 2010). This difference is not due solely to water drainage from the dune summits to the hollows and increased evaporation at the summits because of greater exposure to the sun and wind. A greater amount of fine wind-borne sand accumulates on the dune summit and on the windward slope, whereas coarser, heavier sand that the wind cannot set in motion so rapidly and for such a great distance will be deposited in greater amounts in the dune hollows. Water permeates the coarse sand more quickly, reaching a greater depth, and the capillary rise height is relatively low. If the depth of permeation of precipitation is close to or even reaches the groundwater level, then anaerobic conditions can develop in the sand in the corresponding time period, which is unfavorable for tree growth (Bušs, 1960).

The trees growing on dune summits, whose roots are generally better oxygenated, tend to suffer from nitrogen deficiency. Nitrogen is absent from the mineral component of the sand, being present only in the organic remains in the sand, which accumulate in greater amounts in the dune hollows (Bušs, 1960).

Thus, even in seemingly uniform dune sands the growing conditions for trees may differ markedly. The growing conditions vary even more markedly in the case of pines whose trunks are partially buried by sand. It has been established that pines that have been deeply buried by sand react less strongly to marked temperature changes, and accordingly it is in some cases quite difficult to cross-date their TRW series (Vitas, 2004; Matisons and Brūmelis, 2008; Mandre et al., 2010).



Problem Factors in the Cross-Dating Tree-Ring Width Series

Most of the core samples from pine trunk remnants proved unsuitable for dendro-dating. In many cases the wood was at least partly decayed, and in some samples the wood was very resinous or showed very dense galleries created by wood-boring insects. The sawn samples revealed that in some samples the ring width varies considerably between different parts of the trunk circumference, and in such a case the ring widths, as measured on a core sample only about 5 mm in diameter, may give a very erroneous indication of the mean annual radial growth around the circumference of the trunk in any given year.

When tree ring width measurements were obtained from the sawn samples, it was found that several of these lack the outer part of the wood, so that a considerable number of rings have been lost. Because of decay of the outer part of the trunk and abrasion by wind-blown sand, the sapwood as well as the outer part of the heartwood was missing around almost the whole circumference of the trunk remnants. It appears very likely that burial of the lower part of the pine trunk by a thick layer of sand is the reason for a drastic reduction in annual radial growth at least in the case of some of these pines. For example, on one of the sawn samples the wood of the outer part of the trunk was preserved in a very narrow sector. Here, 80 rings were present in a thickness of about 1 cm. In such a case, where the radial growth in this direction was only a mean 1 mm in 8 years, there is a very high probability that one or more rings are missing. In any case, such thin tree rings provide only a very weak and imprecise reflection of the climatic signal.

The missing rings, i.e., the absence of the rings in the wood samples often further exacerbate the problem of cross-dating of TRW series of deeply buried pines (Vitas, 2004; Matisons and Brūmelis, 2008). It is concluded that missing rings are more frequent in pines growing on dune summits, because the annual rings of these pines are generally narrower due to the unfavorable growing conditions (Mandre et al., 2010). It should be added that due to the effect of prevailing onshore winds, predominantly one-sided exposure to light and the stresses caused by one-sided burial under sand, the radial growth of pines growing at the seacoast is commonly asymmetrical. Under the conditions of lateral pressure, reaction (compression) wood will be formed on the opposite side of the trunks of coniferous trees, with widened rings that generally give a poorer reflection of the dendrochronological signal (Janecka et al., 2016). Reaction wood was observed in several of the sawn samples.

Many of the pines that had died recently were affected by wood degradation under the bark, while the trunk remnants were also in many cases rotten inside. Accordingly, for precise dating of ancient pine trunks it is important to try to obtain sawn slices instead of drilled (core) samples, since the quality of the latter may be markedly impaired for the above-mentioned reasons. Sawn slices permit easier identification of missing rings, as well as improving the general quality of the dendrochronological signal, as reflected in the TRW series.

The cross-dating of TRW series from the presumed ancient pine trunk remnants was also complicated by the absence of reliable indicators that several trunk remnants could be of equivalent age. In contrast to the wall of a log structure, for example, where the timbers are very likely to have been made from trees cut the same year, and accordingly the relative date of each successive timber is to some degree predictable, it was difficult or even impossible to assess in advance the chronological relationship between pine trunk remnants identified separately and at different levels on the coastal bluff, especially since in some cases part of the sapwood layer had been abraded by the action of wind-blown sand. Because of the greater differences in date among the ancient tree trunks, there is an increased risk of subjective error when comparing the (generally short) TRW series and seeking to identify which of several possible datings is the true one. And when determining the relative date of just a small number of wood samples, it is harder to maintain the principle of replication, so important in dendrochronology (Fritts, 1976; Speer, 2010).



Coastal Erosion Processes Active at the Present Day

The initially prevailing view was that the trunk remnants seen in certain places on the face of the coastal bluff most probably represent the upper parts of the lower sections of pine trunks preserved under the cover of sand, in at least partially anaerobic conditions, and exposed on the face of the bluff by erosion (Figure 7). Remains of tree trunks buried by sand in this way and subsequently exposed could be from very ancient trees. However, it was noted in the course of the survey of the coastal stretches that the lower part of the trunk of a pine that has died fairly recently may actually resemble the trunk remnant of an ancient tree, and indeed such a remnant of a recent pine can end up on the face of the coastal bluff or be exposed here in at least three different ways.
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FIGURE 7. Trunk of a surviving pine partially re-exposed at the coast between Mazirbe and Kolka (stretch 6) as a result of coastal bluff erosion after burial by sand (photograph). Burial of the lower part of a pine trunk and subsequent re-exposure of its stump (scheme).


Self-sown and planted pines on lower coastal dunes, for example on former foredunes, may, once they have grown, be partially buried by one or more additional layers of sand. Under such conditions, some of the partially buried pines may die, and the above-ground parts of the trunk may decay, whereas the lower part of the trunk, covered and preserved by relatively younger sand layers, may subsequently be exposed on the partially eroded face of the coastal bluff (Figure 8A).
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FIGURE 8. (A) Re-exposure of pine trunks on the face of the coastal bluff long after burial (photograph from Liepene, stretch 5, tree group 3; scheme). (B) The face of the coastal bluff with pines remaining in vertical condition, having partially slumped down the face along with the soil (photograph from Staldzene, stretch 4, not sampled; scheme).


It was observed at some sites that partial erosion of the coastal bluff had been followed by a time interval during which the sand forming the bluff had repeatedly collapsed due to the effect of desiccation and wind action, and partly also due to precipitation and the weight of ice. This had also been followed from time to time by the slumping by various amounts of the undercut soil, along with the trees rooted in this soil. In several cases the pine trunk had retained its vertical position after slumping (Figure 8B), and as erosion continued the trunks of some trees, initially resting against the face of the bluff after the slump, had been pushed back into a vertical position by the weight of the slumped soil and sand. Continued erosion of the coastal bluff, along with a further supply of sand from the seaward side, increasingly buried the lower section of the slumped tree trunk. The remains of such stumps, once re-exposed, may likewise be reminiscent of the trunk remnants of trees buried by sand in ancient times. Moreover, a soil surface that has slumped from the top of the coastal bluff along with the trees rooted in it may in some cases be mistaken for a former soil surface at this level that has been covered by a thick layer of sand.

It is also necessary to mention the trunks of living as well as dead pines of relatively recent origin observed on stretches of the face of the coastal bluff that have not been impacted by coastal geological processes for an extended period of time. Along such stretches of the coastal bluff, regeneration not only of the herb layer but also of pines is sometimes seen. Having grown larger, some of these pines have died because of the rather unfavorable conditions, but in contrast to the above-described examples, the trunk has generally been preserved in its full length (Figure 9).
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FIGURE 9. Pines growing on the face of the coastal bluff at the coast between Mazirbe and Kolka (stretch 6, not sampled), where erosion has ceased for an extended period. All photographs by the author.


The date of death of pines growing on the face of the coastal bluff or very close to it may differ considerably, and thus may not indicate the actual date when the particular stretch of the bluff was eroded. Pine trees may die prematurely when the bluff retreats almost up to the site where they have been growing, whereby moisture from precipitation along with dissolved nutrients is no longer retained in the soil but is instead drained away to the face of the bluff. This promotes desiccation and subsequent collapse of the topsoil, as well as the death of the trees, because of the reduced soil moisture as well as the exposure of roots on the bluff face.




CONCLUSION

The study revealed the complexity and difficulties of dendro-dating individual trunk remnants of pines that have grown in dunes. Compared with pines growing in inland areas, the annual radial growth of pines in the coastal dune belt is relatively less affected by any particular large-scale climatic factor, whereas local as well as individual environmental factors have a proportionally greater impact. Accordingly, the pattern of year-to-year variation in annual radial growth is more idiosyncratic. However, it is concluded that the tree-ring chronologies compiled from mean TRW series data for successfully cross-dated pines growing in a small area can be synchronized with other chronologies. This gives grounds for the hope that, once a major concentration of ancient pine trunk remnants is discovered in the dune belt (i.e., corresponding to a former forest tract), dendro-dating could be much more productive. Trunk remains from biologically old trees offer a better chance of obtaining a relative as well as an absolute dendro-date. Additionally, it would be useful to initially obtain approximate dates for a number of apparently ancient trees by 14C dating.

The realization that the annual radial growth pattern of dune pines is rather heterogeneous permits the conclusion that, for example, the dendro-dating of local timber used for wooden buildings in Riga in the 13th and 14th century has in many cases proceeded with more difficulty, when compared with the dating of timber floated down the River Daugava, such as was more commonly used for Riga buildings in later times, not only because of the greater variation in soil conditions in the environs of Riga, and because the later floated timber was coming from forests growing in more continental climatic conditions (Zunde, 2020), but also because the local timber was being sourced also from the dunes near Riga, where the radial growth pattern of the pines was more idiosyncratic.

Observations along the surveyed stretches of the coast as well as the dendro-dates of pines partly exposed on the coastal bluff face and of some exposed trunk remnants show that the majority of pine trunk remnants discovered in the course of survey are not hundreds but, at most, a couple of decades old. Several badly degraded trunk remnants, generally of small diameter, might be from an earlier period, but these were not sampled because of the poor preservation and the small numbers of annual rings. Some tree stumps discovered on the beach itself, only up to about 1 m above the sea level and only visible briefly, sometimes with only the top of the stump exposed, could likewise be earlier in date. The lower-lying ones were soon covered with a new layer of beach sand, suggesting the possibility that there might be a greater number of tree stumps deeper in the moist sand. Such finds could potentially be investigated in future research.

Knowledge of the age of long-lived trees growing in dune conditions at the present day could provide important insights into the history of dune migration. At least in the case of the Latvian coastal belt, pines 250 years and older can indicate the approximate date when dune migration ceased in a specific area.

To what extent the pattern of tree-ring width variation can be used to characterize the timing and degree of burial of a tree trunk in sand and its subsequent re-exposure–this remains a question for future in-depth study. However, as shown in this study and in previous research, the development of pines growing in dunes is affected by several important, relatively pronounced and in many cases unstable local environmental factors. Significant changes in the radial growth rate during the life of a pine tree were identified only in the case of a small number of trees, and moreover these do not relate to the same chronological interval. Accordingly, a causal link with changes in the level of the sand partially burying the tree trunk could not be demonstrated. It is concluded that, in order to answer these questions, further research should also seek to obtain a clearer understanding of how environmental factors other than burial by sand affect the growth of dune pines.

Since it has been established that the degree of similarity between tree-ring chronologies for pines growing in the coastal dune belt and in inland areas of Latvia is sufficient to permit them to be synchronized, it transpires that future attempts at absolute dating of potentially ancient pine trunk remnants should make use of a larger sets of tree-ring data from this kind of material. Ancient pine trunk remnants along the coastal bluff providing wood samples of sufficiently good quality for dendro-dating generally occur only in relatively small numbers. Accordingly, better success could be expected if, instead of seeking to relatively date trunk remnants exposed at any one time along a fairly long stretch of the coast, dating were to be undertaken on trunk remnants that are exposed in the course of a number of years along shorter stretches of the coast, as the coastal bluff retreats. There is reason to believe that the pattern of annual variation in ring-width of pines growing at approximately the same level, which are progressively exposed during an extended period, should exhibit a higher degree of similarity. In this way, relative chronologies might be compiled for pines growing in stands covering fairly small areas, and this would considerably increase the chances of synchronization with relative chronologies for other small-scale pine stands in the dunes as well as with absolute chronologies for pines relating to nearby inland areas.
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Supplementary Figure 1 | TRW series and absolute tree-ring chronologies for living pines utilized in the study. (A) TRW series for living and recently dead pines. (B) TRW series for pine timbers from jetty structure. (C) TRW series for pine trunk remnants. (D) Absolute tree-ring chronologies for living pines. aUndated pine TRW series (not in synchronous arrangement). bRelatively dated pine TRW series. cPreviously compiled absolute tree-ring chronologies for pine. dAbsolute tree-ring chronologies for pine compiled in the course of the study. eNumber of TRW series used to compile chronology. fNumbers of investigated coastal stretches/sites.

Supplementary Table 1 | Previously and newly obtained 14C datings utilized in the study.

Supplementary Table 2 | T-values indicating the degree of similarity between the tree-ring series of pines selected along the transects, extracted from the overall matrix. The empty cells indicate cases where the similarity of the pairs of TRW series in synchronous position shows a t-value which is not among the five highest t-values for the similarity between the two TRW series (i.e., the five highest t-values are fortuitous).
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As the recent permafrost thawing of northern Asia proceeds due to anthropogenic climate change, precise and detailed palaeoecological records from past warm periods are essential to anticipate the extent of future permafrost variations. Here, based on the modern relationship between permafrost and vegetation (represented by pollen assemblages), we trained a Random Forest model using pollen and permafrost data and verified its reliability to reconstruct the history of permafrost in northern Asia during the Holocene. An early Holocene (12–8 cal ka BP) strong thawing trend, a middle-to-late Holocene (8–2 cal ka BP) relatively slow thawing trend, and a late Holocene freezing trend of permafrost in northern Asia are consistent with climatic proxies such as summer solar radiation and Northern Hemisphere temperature. The extensive distribution of permafrost in northern Asia inhibited the spread of evergreen coniferous trees during the early Holocene warming and might have decelerated the enhancement of the East Asian summer monsoon (EASM) by altering hydrological processes and albedo. Based on these findings, we suggest that studies of the EASM should consider more the state of permafrost and vegetation in northern Asia, which are often overlooked and may have a profound impact on climate change in this region.

Keywords: pollen, Random Forest, Siberia, East Asian summer monsoon, permafrost


INTRODUCTION

Permafrost is defined as ground that remains entirely frozen for at least two consecutive years (Washburn, 1973; Brown et al., 2002). It occurs across approximately 17% of the Earth’s land surface and 24% of the Northern Hemisphere land (Zhang et al., 1999), and is highly vulnerable to the increasing global temperature. With the background of global warming, it is indisputable that the permafrost is thawing and will further degrade in the future (Intergovernmental Panel on Climate Change, 2013, 2019; Biskaborn et al., 2019), especially at high latitudes, where temperatures have risen more than average due to polar amplification (Miller et al., 2010). As a carbon reservoir, permafrost will release greenhouse gases, such as CO2 and CH4, as it thaws, which will enhance the greenhouse effect and therefore produce a positive feedback to climate warming (Knoblauch et al., 2018; Natali et al., 2021). Permafrost thawing also changes hydrology and geomorphology, such as the development of thermal karstification, coastline erosion, and liquefaction of the ground, affecting a wide range of permafrost regions (Anisimov and Reneva, 2006). Estimating the extent of permafrost degradation has become a vital component of predicting future warming.

Since the observational record is insufficient to meet our understanding of permafrost degradation (temporal restriction; Boike et al., 2019; Vasiliev et al., 2020), the challenge is how to capture the long-term behavior of permafrost in response to changing climate. Scrutinizing past permafrost variability during a long-term period may provide us with a useful insight into the potential conditions of permafrost in the future. However, palaeo-permafrost and palaeo-periglacial evidence, which can directly reveal the formation and development of past permafrost, is not easily found and has been subjected to various controversial interpretations (Jin et al., 2019). Several proxies such as the formation history of speleothems and thermokarst lakes have been used to reconstruct the evolution of past permafrost (Vaks et al., 2013, 2020; Brosius et al., 2021; Li et al., 2021), but due to the scarcity of research materials, these proxies are inevitably problematic in the continuity of space-time distribution and quantitative research. Therefore, other suitable indicators to reconstruct past permafrost conditions are desirable. In previous permafrost reconstruction, pollen, as one of the most common and mature proxies in investigating past vegetation changes, was often only used as a supplementary means to judge the status of regional permafrost conditions by reconstructing palaeo-temperature and palaeo-flora (Streletskaya et al., 2013; Jin et al., 2019). Although the high variability of the modern vegetation cover over the entire Asian continent, over the long course of geological and biological evolution, an ecological balance has been formed between vegetation and permafrost (Chang et al., 2012), and some plants can be used as indicators of permafrost in different area (Brown, 1963; Tyrtikov, 1973; Black, 1976), such as larch-pumila forest and larch-Ledum forest in the Greater and Lesser Hinggan Mountains of China (Zhang, 1983), or the bryophyte forest in the northern taiga of western Siberia (Guo et al., 1998). Therefore, we can use pollen as a potential tool to track past permafrost and its relationship with global climate.

Current global warming is triggering a strong and rapid positive feedback to the phenomenon of greening in the Arctic (Elmendorf et al., 2012; Myers-Smith et al., 2020), but research at long-term scales has suggested that permafrost can cause a disequilibrium between vegetation and climate to persist for several millennia (Herzschuh et al., 2016), implying that, in addition to climate, vegetation changes are also subject to the extent and state of permafrost (Tchebakova et al., 2006). Thus, the question arises of whether the changes in vegetation and state of permafrost are the result of passive acceptance of the effects of climate change. Previous studies have shown that the interplay of climate, vegetation, and permafrost is complex. Under the warm and wet 127 ka climate, for example, a 10% increase in EASM precipitation in the dry region in north China contributed to vegetation feedback (Zhang and Chen, 2020). A numerical simulation model also confirms that changes in the global frozen soil have profound impacts on the East Asian climate (Xin et al., 2012).

As an important part of the global climate system, the fluctuation in EASM intensity will influence the distribution of precipitation and the evolution of the ecological environment in the monsoon region (Wang, 2006; Clift and Plumb, 2008) – a topic that has been extensively studied at a suborbital scale (Xiao et al., 2004; Chen et al., 2015; Liu et al., 2015; Kang et al., 2020; Xu et al., 2020). These studies unanimously find that there is a lag (∼4 ka) between EASM intensity and solar radiation in the early Holocene. Although this lag is generally considered to be related to the decrease of the Northern Hemisphere land-ice volume, associated with the weakening of the Atlantic meridional overturning circulation (Barber et al., 1999; Carlson et al., 2008; Yu et al., 2010), much of the research focuses on ice sheets in North America and Europe, discarding northern Asia, particularly Siberia and the central and northern Mongolia regions, which have abundant ice stored underground in the form of permafrost (Karlsson et al., 2012; Wang et al., 2021).

Here, we constructed a Random Forest (RF) model using modern pollen data and permafrost distribution in northern Asia, and then applied the trained model to reconstruct the permafrost history of the late Quaternary based on fossil pollen data (Cao et al., 2020). The objectives of this study are to (1) assess the relationship between pollen and permafrost and the reliability of the trained model; (2) reveal the permafrost changes in northern Asia during the Holocene; and (3) explore the potential impact of variations in the permafrost on the early-to-middle Holocene East Asian monsoon system.



DATA AND METHODS


Pollen and Permafrost Data

A total of 2,212 modern pollen assemblages published previously (Figure 1) for northern continental Asia (east of 50°E and north of 45°N) are included in our analyses: most of them are extracted from topsoil, moss samples, or lake core-top samples. The Chinese and Mongolian modern pollen data primarily come from Cao et al. (2014), while Siberian data primarily come from Bordon et al. (2009) and Natalia et al. (2020). Other data include records for the northern and central Yakutia (Müller et al., 2010), the Russian Far-East (Tarasov et al., 2011), and the Khatanga River region (Niemeyer et al., 2015; Klemm et al., 2016). The fossil pollen records (Figure 1) were obtained from lacustrine sediments and peat from the same area of northern Asia, and comprise 6,873 fossil pollen assemblages from 199 records (Cao et al., 2020). For these modern and fossil pollen data, pollen names were taxonomically harmonized at the family or genus level generally and pollen percentages were re-calculated based on the total number of terrestrial pollen grains, following the method described by Cao et al. (2013, 2020). Based on calibrated radiocarbon dates, an age-depth model was established for each record using a Bayesian approach (further details are described in Cao et al., 2013). In this study, we selected records between 12.5 and 0 cal ka BP, covering the Holocene.
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FIGURE 1. Distribution of the 2212 modern pollen sites (green circles) together with the 199 fossil record sites (beige crosses) and permafrost extent in northern Asia.


Modern permafrost data was downloaded from the open database Circum-Arctic Map of Permafrost and Ground-Ice Conditions (version 2) (Brown et al., 2002), which maps the distribution of permafrost in the Northern Hemisphere from 20°N to 90°N. Based on the estimated percentage of area, the permafrost extent is divided into continuous permafrost (90–100%), discontinuous permafrost (50–90%), sporadic permafrost (10–50%), isolated patches (<10%), and no permafrost. For easier classification, we merged the three transitional states between continuous permafrost and no permafrost into one category of non-continuous permafrost. The resulting three states of continuous permafrost, non-continuous permafrost, and permafrost-free are used throughout our research. Using this distribution map of permafrost, conditions prevailing at the modern pollen sites are assigned.



Modeling the Response of Permafrost to Pollen Taxa

We fitted a logistic regression model to estimate the probability of the presence of permafrost in northern Asia by relating modern pollen percentages from 74 pollen taxa shared by modern and fossil pollen records to the permafrost data. To obtain more reliable regression results, we only selected samples from regions with permafrost-free and continuous permafrost. The association between the pollen percentage (predictor variable) and the presence of permafrost (response variables) was assessed by the Wald test. A p-value less than 0.05 is considered statistically significant. The logistic regression was implemented using the glm function in the stats package in R version 4.0.3 (R Core Team, 2020).



Random Forest

Random Forest is a machine-learning algorithm that can be used to solve regression and classification problems (Breiman, 2001). RF operates by constructing a multitude of decision trees. Although factors such as the number of trees in RFs may bias the regression results to some extent (Strobl et al., 2007; Arlot and Genuer, 2014), RFs have been successfully used in the field of earth science to predict future species distributions, and to reconstruct local and even global past tree species distributions (Prasad et al., 2006; Benito Garzón et al., 2007; Lindgren et al., 2021; Qin, 2021).

Our RF model was trained on 74 pollen taxa from the 2,212 modern samples that were matched to permafrost conditions. For the 2,212 samples, 70% of samples served as the training set for RF, while the remaining 30% of samples served as a test-set. We conducted three separate training runs using RF to assess the stability of the model and selected the training model with the highest overall statistical accuracy and Kappa value. The trained RF was then applied to down-core palynological records from 199 boreholes, sampled in northern Asia to reconstruct past permafrost conditions. These steps were implemented collectively using the R version 4.0.3 built-in package randomForest (version 4.6-14; Liaw, 2018).




RESULTS


Response of Different Pollen Taxa to Permafrost

Pollen data from topsoil together with current permafrost extent offer a unique opportunity to understand the relationship between the presence of permafrost and the occurrence of specific pollen taxa. Among the 74 pollen taxa analyzed, 20 taxa significantly correlate with the presence of permafrost (P < 0.05). Alnus (shrub), Betula (shrub), Larix, and another 13 taxa are positively correlated with the presence of permafrost, while Abies, Pinus (Diploxylon), Picea, and another 7 taxa are negatively correlated with the presence of permafrost (Supplementary Figure 1). Using Larix and Abies as examples, the probability of permafrost being present increases as the percentage of Larix pollen increases but decreases as the percentage of Abies pollen decreases (Figure 2). This suggests that the variability of pollen taxa can reflect shifts between the presence or absence of permafrost and thus be used to reconstruct permafrost conditions.
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FIGURE 2. Logistic regression curves for Larix and Abies.




Random Forest Performance

Based on assessments of the test-sets of three separate training runs, the RF model has great stability with a mean accuracy of 0.84 and a mean Kappa value of 0.76 (Table 1) and almost no variance between the runs. Mean Decrease Accuracy and Mean Decrease Gini of a taxon indicate the importance of that taxon to the accuracy of permafrost state classification. Of the 74 taxa used in our classification model, 30 had a Mean Decrease Accuracy value of more than 10 and 29 had a Mean Decrease Gini value of more than 10 (Figure 3). Obviously, these taxa play a key role in classifying the state of permafrost.


TABLE 1. Summary of the Random Forest training runs.
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FIGURE 3. Importance of pollen taxa in pollen-based permafrost classification model for test-set measured by the Mean Decrease Accuracy and Mean Decrease Gini.


The precision and recall rate are two important statistical metrics to evaluate the classification quality, measuring the fraction of relevant instances among the retrieved instances and the fraction of relevant instances that were retrieved, respectively. The precision and recall rate of our RF classification for different states of permafrost differ slightly (Table 2) being best for continuous permafrost and worst for non-continuous permafrost.


TABLE 2. Summary of precision and recall rate for the classification of permafrost state.

[image: Table 2]


Temporal and Spatial Variability of Permafrost Conditions

To gain an understanding of the overall condition in different time periods, we take the most frequently reconstructed state of each record in each 1000-year window. For different time slices of the Holocene, the distribution of permafrost changed significantly, especially in the early-to-middle Holocene (Figure 4 and Supplementary Figure 2). From 12 to 5 cal ka BP, in addition to Asia north of 60°N, which is currently the main distribution area of continuous permafrost, the vast northern Asia region south of 60°N, such as the West Siberian Plain, southeastern Siberia, Lake Baikal region, and Kamchatka peninsula, sporadically experienced continuous permafrost state. Focusing on the West Siberian Plain, despite the widespread permafrost conditions before 9 cal ka BP, no continuous permafrost was reconstructed for this region at 7 cal ka BP. The main distribution of non-continuous permafrost between 12 and 5 cal ka BP is found in northern Asia south of 60°N, especially in the Tianshan-Altai region and the Mongolian Plateau region. However, there is no obvious spatial pattern in the distribution of sites with non-continuous permafrost. In contrast to the area north of 60°N, a permafrost-free state is frequently reconstructed from sites in the area south of 60°N. Additionally, on the West Siberian Plain between 9 and 7 cal ka BP, permafrost-free states increased significantly.
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FIGURE 4. Temporal and spatial changes in permafrost state (continuous permafrost: white circles; non-continuous permafrost: beige circles; permafrost free: green circles) reconstructed for northern Asia from 12 to 5 cal ka BP.


The percentages of the three states at different time slices portray the evolution of permafrost in northern Asia during the Holocene (Figure 5). Continuous permafrost is always the highest among the three states throughout the Holocene, ranging from 41.6 to 67.1%. Continuous permafrost clearly decreases in the early Holocene (12–8 cal ka BP), with the rate of decline slowing down after reaching 48.8% at 8 cal ka BP. A slight increase in this state is observed in the most recent 1 ka. The proportion of non-continuous permafrost ranges from 19.0 to 24.7%, with an average value of 21.5%. Although the proportion of non-continuous permafrost has a stable trend during the Holocene, there was a slight increase at 1 cal ka BP followed by a decrease. In corollary, the percentage of permafrost-free state shows a sharply increasing trend from 12 to 8 cal ka BP and a gradually increasing trend after 8 cal ka BP until the late Holocene when it decreased. The decrease during 2–1 cal ka BP is caused by the formation of more non-continuous permafrost, while the decrease during 1–0 cal ka BP is caused by an increase in continuous permafrost.
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FIGURE 5. Temporal variation of relative extent of permafrost state in northern Asia (the numbers on the bars indicate the number of samples).





DISCUSSION


Reliability of Pollen-Based Permafrost Reconstructions

Reconstructing past permafrost conditions using pollen data is credible as confirmed by logistic regression and statistical metrics from test-set. The relationship between pollen taxa and permafrost has been identified by logistic regression, and the results presented here imply that we can reconstruct the history of permafrost using pollen data. Additionally, the high average accuracy (0.84) based on the test-set means that the state of permafrost down-core can be reconstructed with a reasonably low error, while the Kappa statistic (up to 0.76) also suggests a substantial classification quality of the RF model (Landis and Koch, 1977). The precision and recall rate of continuous permafrost reach 0.90 and 0.88, respectively, indicating a good ability of the model. Although some of the samples in the test-set were mismatched by our trained RF model, it is worth noting that these misallocated samples are mainly distributed in marginal regions where the permafrost is in a state of flux (Supplementary Figure 3) and the pollen taxa show transitional characteristics. Overall, the classification results of samples within the different permafrost states are very reliable.

The synchrony of changes in permafrost conditions with the Northern Hemisphere climatic signal and consistency with other permafrost proxies in northern Asia further support the reliability of pollen-based permafrost reconstructions (Figure 6). The freezing and thawing of permafrost have a close relationship to climate, and our reconstruction demonstrates the variation in permafrost state in northern Asia could depend on suborbital variations in summer solar insolation (Laskar et al., 2004). During the early Holocene, permafrost thawed rapidly (Figure 6C, from 12 to 8 cal ka BP), coinciding with a sharp increase in Northern Hemisphere temperature and North Atlantic air temperature after the Younger Dryas (Figures 6A,B; Andersen et al., 2004; Shakun et al., 2012; Marcott et al., 2013). After the northern hemisphere temperature reached a maximum in the middle Holocene, the rate of permafrost thawing in northern Asia slowed as the temperature and summer solar insolation decreased. The decreasing trend in proportion of permafrost-free during the late Holocene (Figure 6D) can also be explained by variation in the Northern Hemisphere temperature anomalies (Figure 6B). Continuous permafrost expanded during 2–0 cal ka BP when the stacked temperature anomalies show a return to under 0°C. The temporal and spatial variation of permafrost in western Siberia is very significant, which is consistent with the traditional research results of permafrost. Research on the palaeo-permafrost and palaeo-periglacial evidence shows that the severe freezing conditions that developed during Last Glacial time persisted of western Siberia in early Holocene, but until the Holocene optimum (7.5–4 cal ka BP), the southern boundary of surficial permafrost receded northward to near the Arctic Circle (Supplementary Figure 4; Velichko et al., 1984). Additionally, thermokarst lake formation history (Figure 6H), which can indicate permafrost degradation on a large scale, has recently been published for northern mid- to high-latitudes (Brosius et al., 2021) and the result of northern Asia suggests a rapid permafrost thawing period during the early Holocene (12–8 cal ka BP) and a relatively slow decreasing rate of thaw in the mid-late Holocene (7–2 cal ka BP): this result is consistent with our reconstruction based on pollen data.
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FIGURE 6. Comparison of the northern Asian permafrost reconstruction with various other regional and global environmental signals. (A) 60°N summer insolation (red line, Laskar et al., 2004) together with North Greenland ice core δ18O records indicative of North Atlantic air temperature (blue line, Andersen et al., 2004). (B) Northern Hemisphere temperature anomaly (Marcott et al., 2013). (C) Percentage of continuous permafrost reconstructed from Holocene pollen assemblages (this study). (D) Percentage of permafrost-free conditions reconstructed from Holocene pollen assemblages (this study). (E) Percentage of evergreen conifer tree taxa in Northern Asia (modified from Cao et al., 2019). (F) Stacked normalized magnetic susceptibility from Loess sections showing the intensity of the EASM (Kang et al., 2020). (G) Precipitation trends in north China during the Holocene (orange dots, Herzschuh et al., 2019) and reconstructed precipitation from Lake Gonghai in northern China (blue line, Chen et al., 2015). (H) Normalized frequency of lake formation in northern Asia (modified from Brosius et al., 2021).




Effect of Permafrost State on Vegetation in Northern Asia

A reanalysis of vegetation turnover (Figure 7), including evergreen conifer tree, summer-green conifer tree, summer-green broad-leaved tree, and non-tree vegetation from northern Asia based on pollen records (Cao et al., 2019) is instructive for our understanding of the relationship between permafrost and vegetation. Although an early-to-middle Holocene (12–7 cal ka BP) decreasing trend is observed in the non-tree vegetation component, the other vegetation components do not show a corresponding increasing trend. It was not until 8 ka that evergreen conifer species, dominated by pine and spruce, increased significantly, which is consistent with the increase of permafrost-free conditions. A re-analysis of the spatiotemporal distribution of the four vegetation types (Figure 8) shows that summer-green conifers (larch) were the main trees in northern Asia in the early Holocene, and the transition from summer-green conifer trees to evergreen conifer trees occurred around 8 cal ka BP, especially on the Western Siberian Plain (G2, G3, G8, G9), which coincided with the establishment of permafrost-free conditions.
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FIGURE 7. Temporal variation in relative percentage of four vegetation types in northern Asia.
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FIGURE 8. Temporal changes in relative percentage of vegetation types for northern Asia during the early Holocene (10–7 cal ka BP; G*: site group; modified from Cao et al., 2019).


It is reasonable to assume that the presence of permafrost in the early Holocene inhibited the spread of dark coniferous taiga. Despite increases in temperature, permafrost could not thaw deeply enough across Siberia to support dark coniferous taiga (dominated by pine) during the early Holocene. Traditional proxy-based climate reconstructions in the Northern Hemisphere suggest abrupt warming occurred at the onset of the Holocene, followed by a long-term cooling trend throughout the middle-to-late Holocene (Shakun et al., 2012; Marcott et al., 2013), which should be consistent with afforestation. However, the turnover of vegetation is not simply driven by changes in climate as traditionally thought, such as seed dispersal strategy of specific species (Travis et al., 2013), competition to the existing dominant vegetation (Meier et al., 2012), the existence of permafrost (Tian et al., 2018; Cao et al., 2019), and extensive fires (Schulze et al., 2012), which may affect the progress of plant migration. Research in northeast Asia has challenged the general view that the vegetation-climate lag is last no more than a few centuries, suggesting that during the Plio-Pleistocene, interglacial vegetation was influenced by the persistence of permafrost, mainly reflects conditions of the previous glacial period, lagging the climate by several millennia (Herzschuh et al., 2016). Therefore, compared with other non-permafrost regions, the extensive and deep permafrost in our study area, northern Asia, may have a profound impact on vegetation. Previous studies have demonstrated that larch can survive on permafrost with an active layer depth of less than 40 cm (Osawa et al., 2010), while pine requires at least 1.5 m of active layer to grow (Tzedakis and Bennett, 1995). In Alaska, permafrost with a shallow active layer is assumed to limit the northward extent of Picea (Lloyd, 2005). A pollen-based biochemical study also finds that during the early Holocene, only larch forests could survive on these shallow active-layer permafrost regions in northern Asia (Tian et al., 2018). A large amount of heat is needed to thaw permafrost and it takes time for deep permafrost to thaw (Galushkin, 1997; Vaks et al., 2013). However, our studies have not taken all relevant geoecological causal chains and their interactions into account. Our knowledge of permafrost and vegetation delay is thus still limited.



Potential Relationship Between Permafrost and the East Asian Summer Monsoon

The freezing and thawing of permafrost can change the hydrological processes, and the turnover in vegetation controlled by permafrost could affect the land-surface albedo. The thawing of frozen soil will lead to changes in the ice/water ratio, altering the thermal and hydraulic qualities of the soil, and also affecting ground surface temperature (Xin et al., 2012). Numerical simulations with a supercooled soil-water model show that the thawing of frozen soil has a great impact on winter and spring soil moisture as well as temperature in Eurasia (Li et al., 2011; Xin et al., 2012). Landscapes with trees generally have a lower albedo than landscapes without trees and this difference may be magnified when there is snow cover. The albedo values of tundra and grassland when covered by fresh snow, can reach 0.76 and 0.65, respectively, while the average albedo value of three other vegetation types with trees is only 0.27 (Schaeffer et al., 2006). In addition, larch, being a deciduous coniferous species, lacks a canopy in winter and has a poor ability to cover snow compared to evergreens (Betts and Ball, 1997), with a peak winter albedo value of up to twice that of evergreen coniferous forest (dark taiga forest; Shuman et al., 2011).

A series of global atmospheric circulation models has suggested that the Eurasian snow cover has a significant effect on the Asian summer monsoon (Yang and Xu, 1994; Liu and Yanai, 2002; Wu et al., 2009; Xu et al., 2021), with a recent study showing that when there was excessive spring snowmelt in Siberia between 1981 and 2014, the EASM was weaker, resulting in less summer precipitation in north China (Xu et al., 2021). The inter-decadal variation of snow cover and summer monsoon can essentially be attributed to altered soil hydrology and albedo, which affect the surface and atmospheric temperature and soil moisture, leading to changes in thermal contrast and atmospheric circulation and thus regulating the intensity of the Asian summer monsoon rainfall (Cohen, 1994; Liu and Yanai, 2002; Jacob et al., 2005). Given the rapid thawing of permafrost and the high albedo caused by sparse evergreen coniferous trees in northern Asia during the early Holocene (Figures 6C–E), similar hydrological and atmospheric responses may have occurred, reducing the intensity of the early Holocene EASM (Figure 6G; Chen et al., 2015; Herzschuh et al., 2019; Kang et al., 2020). This mechanism, however, requires a mechanism model for further validation.




CONCLUSION

Reconstructed permafrost in northern Asia during the Holocene using an RF model based on pollen data largely corresponds with inferences from climate proxies and other permafrost reconstructions. Our reconstruction indicates a sharp thawing trend in the early Holocene (12–8 cal ka BP), a relatively slow thawing trend in middle-to-late Holocene (8–2 cal ka BP), and a freezing trend of permafrost after 2 cal ka BP in northern Asia. Additionally, permafrost degradation was clear on the West Siberian plain during 8–7 cal ka BP. The spatiotemporal consistency of the records of permafrost and evergreen coniferous trees variation suggests that the presence of permafrost in the early Holocene could inhibited the spread of vegetation. Furthermore, permafrost and permafrost-controlled vegetation types may affect the intensity of the EASM by influencing hydrological processes and albedo. This study reminds us that it is necessary to pay more attention to environmental factors in northern Asia, as they have potential impacts on climate change in the East Asian monsoon regions.
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We reviewed the available climate records for the past 2 millennia based on the analyzed sediment and speleothem archives from different regions of South Asia. Speleothem records from the core-monsoon regions of the Indian sub-continent have revealed the Little Ice Age (LIA) as a climatically dry phase, whereas the same from the western and central Himalaya recorded LIA as wet. Moreover, the sediment-derived vegetation proxy records [pollen-spores and stable organic carbon isotope (δ13Corg)] from the western Himalaya also reported LIA as a dry phase. Heterogeneous results by different proxies during LIA enhanced our interest to understand the response of the proxies toward the primary precipitation sources, Indian summer monsoon (ISM) and winter westerly disturbances (WDs), over the Himalaya. We emphasize that in the Himalayan region, the vegetation predominantly responds to the ISM dynamics, whereas speleothem also captures the WD effect.
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INTRODUCTION

The late Holocene is essential in understanding the hydroclimatic conditions with emphasis on the climate anomalies of the last 2 millennia. Medieval Warm Period (MWP) and Little Ice Age (LIA) were observed in the Northern Hemisphere primarily impacting the European landmass and parts of the North Atlantic (Crowley and Lowery, 2000). Globally, the MWP is documented between 900 and 1300 C.E. (Graham et al., 2011) and the LIA is between 1500 and 1850 C.E. (Grove, 2001). However, the time intervals of their respective peak warm and cold phases and the regional hydroclimatic variability remain globally debated (Bradley et al., 2003; Wanner et al., 2008; Mann et al., 2009). Chen et al. (2019) highlighted the anti-phased hydrological variations between the arid central Asia and mid-latitude monsoonal Asia on different timescales of the Holocene. Dixit and Tandon (2016) provided a synoptic view of the late Holocene hydroclimate intricacies based on the 57 records from different regions of the Indian subcontinent. They found poorly documented MWP and LIA signals, either due to age constraints or poor temporal resolution of the studied archives.

The Himalayan region, under the influence of Indian summer monsoon (ISM) and winter westerly disturbances (WD; Polanski et al., 2014; Dimri et al., 2016), remains highly dynamic hydroclimatically and ecologically. The region is unique for inferring the climate and monsoonal variability in time and space. Fluvio-lacustrine sediment deposits, tree-rings of climatically sensitive tree taxa, and cave deposits (speleothem) are the most extensively used archives for past climate reconstructions. A good number of climate reconstructions from the Himalaya have used sediment archives with the pollen-spores and organic carbon isotope (δ13Corg) as major proxies (Roy et al., 2022 and references therein). Only a few sedimentary records with climate reconstructions at centennial to decadal time resolution could capture the MWP and LIA anomalies (Phadtare, 2000; Kar et al., 2002; Chauhan, 2006; Dixit and Bera, 2013; Bali et al., 2015; Rawat et al., 2015; Srivastava et al., 2017; Ali et al., 2018; Shah et al., 2020; Sharma et al., 2020; Roy et al., 2022). The speleothem and tree-rings provided the high-resolution decadal to annual-scale climate records of the past few centuries, with speleothem records extending beyond the late Holocene. But such high-resolution long-term climate records are less from the Himalayan and other regions of the Indian subcontinent. This is due to the limited existence of old forest patches and less number of explored speleothem sites. However, the biotic and abiotic proxy-based hydroclimatic records from different regions of the Indian subcontinent lack the comparative proxy response analysis toward precipitation dynamics.

The regions of Himalaya and peninsular India experienced wet conditions due to strong ISM during MWP (Dixit and Tandon, 2016 and references in Supplementary Table 1). The sediment archives from different precipitation zones of Himalaya and south India inferred moist conditions between 1.8 and 0.5 ka (Supplementary Table 1 references). The oxygen isotope (δ18O) records of speleothem from caves of the western and central Himalaya (Sanwal et al., 2013; Kotlia et al., 2015, 2017; Liang et al., 2015; Sinha et al., 2015) and in central India (Sinha et al., 2011a) also exhibited decisive phase of summer monsoon between ∼1.15 and 0.65 ka. The increasing strength of the ISM during MWP was attributed to the northward shifting of the inter-tropical convergent zone (ITCZ; Haug et al., 2001) caused by the higher solar insolation (Fleitmann et al., 2003; Gadgil, 2003) coupled with the oceanic circulations (Berkelhammer et al., 2010; Liang et al., 2015).

Subsequent to the moist MWP phase, the sediment derived pollen-spores and δ13Corg records from the Himalaya reported a dry climate between ca. 0.8 and 0.2 ka bracketing the LIA phase (Supplementary Table 1 references). On the other hand, the speleothem studies from ISM dominant regions of the central and western Himalaya such as Dharamjali cave (Sanwal et al., 2013), Sainji cave (Kotlia et al., 2015), Panigarh cave (Liang et al., 2015), and Chulerasim cave (Kotlia et al., 2017) revealed wet conditions during the LIA. Presently these sites receive around 70% of precipitation during the summer monsoon and have an influence of the winter precipitation through westerly disturbances. Hence, there is an observed contrast between the climatic signals produced by the plant archives (pollen-spores and δ13Corg) and the cave deposits (speleothem). Most of the tree-ring records do not extend back to the MWP time interval but a few older tree-ring chronologies from the Asian region recorded frequent drought conditions during the last millennium (Cook et al., 2010). These records highlight the proxy response heterogeneity toward the Asian summer and winter monsoon precipitation systems. The earlier records suggested a considerable variability in the latitudinal monsoon precipitation during the LIA due to the rapid southward migration of the ITCZ (Newton et al., 2006; Kotlia et al., 2012; Sanwal et al., 2013). We carried out a comparative study of the past 2 millennia of climate records to understand the response behavior of proxies toward the monsoon systems so as to assess the role of WD and ISM in the Himalayan region. For this, we reviewed the speleothem and sediment (pollen and δ13Corg) studies from different regions of Himalaya (Figures 1A,B and Supplementary Table 1) and discussed the possible mechanisms behind the observed proxy response heterogeneity.
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FIGURE 1. (A,B) Locations of archives as mentioned in Figure 2. Detailed information about the sedimentary and cave archives can be found in the Supplementary Table 1. Maps are modified after Chen et al. (2019); they have been plotted by using GeoMapApp v.3.6.10.




PROXY RESPONSE TO HYDROCLIMATIC VARIABILITIES DURING THE LAST 2 MILLENNIA

We compared the late Holocene climate records of sediment derived pollen and δ13Corg proxies from different monsoonal zones of Himalaya (Figure 2). The limited number of studies available from the WD dominated Trans-Himalaya, such as Tso Kar Lake (Demske et al., 2009) and Tso Moriri Lake (Leipe et al., 2014) showed the commencement of moist conditions, respectively, since ca. 1.3 and 1.1 ka due to the strengthening of the southwest monsoon. Moist conditions existed till ca. 0.5 ka followed by dry conditions since ca. 0.4 ka leading to decline in agro-pastoral activities (Leipe et al., 2014). The pollen and δ13Corg of peat deposits from WD dominant Lahaul-Spiti region also revealed moist conditions ca. 1.16–0.65 ka and cool-dry condition ca. 0.65–0.35 ka (Rawat et al., 2015). However, from the Lahaul-Spiti region, Mazari et al. (1996) and Chauhan et al. (2000) recorded warm-moist conditions ca. 1.5–0.9 ka. The regions of western and central Himalaya under the high ISM precipitation domain with the additional influence of winter precipitation through WD such as Rohtang (Bhattacharyya, 1988), Kinnaur (Chakraborty et al., 2006), Dokriani valley (Phadtare, 2000), Gangotri valley (Kar et al., 2002; Roy et al., 2022), Nachiketa (Roy et al., 2022), and Pindar valley (Bali et al., 2015), recorded the increase in moisture since ca. 1.8 ka. Some studies within the ISM-WD region reported moisture increase even later, such as since ca. 1.2 ka from Kedarnath, Uttarakhand (Srivastava et al., 2017), ca. 1.3 ka from Parvati Valley, (Chauhan, 2006), and ca. 1.4 ka from Dewar Taal, Uttarakhand (Chauhan and Sharma, 2000). Hence in the western-central Himalaya, we could observe a variability in the commencement of the moist phase prior to the last millennium. The WD dominant regions were distinctly moist since ca. 1.3 ka, whereas the ISM-WD influenced regions remained variable where most studies showed moist trends since ca. 1.8 ka and few reported the same since ca. 1.4 ka or after (Figure 2 and Supplementary Table 1). Moreover, available studies from the ISM dominated eastern Himalaya also showed a maximum strengthening of ISM rainfall ca. 1.3 ka (Nautiyal and Chauhan, 2009; Agrawal et al., 2015; Ali et al., 2018; Ghosh et al., 2018).
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FIGURE 2. Climatic episodes in sedimentary records of (S1) Demske et al. (2009); (S2) Leipe et al. (2014); (S3) Mazari et al. (1996); (S4) Rawat et al. (2015); (S5) Chauhan (2006); (S6) Bhattacharyya (1988); (S7) Chakraborty et al. (2006); (S8) Phadtare (2000); (S9) Srivastava et al. (2017); (S10) Kar et al. (2002); (S11) Chauhan and Sharma (2000); (S12) Bhattacharyya and Chauhan (1997); (S13) Bali et al. (2015); (S14) Ghosh et al. (2018); (S15) Nautiyal and Chauhan (2009); (S16) Prasad et al. (2014); (S17) Veena et al. (2014). All inferences are derived based on pollen assemblages additionally with δ13Corg (*), Environment magnetism (∧), Other geochemical proxies (+), and other biotic proxies (#) as indicated in the figure. Palaeoclimate data of cave deposits; (C1) δ18O Sainji Cave (Kotlia et al., 2015); (C2) δ18O Panigarh Cave (Liang et al., 2015); (C3) δ18O Dharamjali Cave (Sanwal et al., 2013); (C4) δ18O Sahiya Cave (Sinha et al., 2015); (C5) δ18O Wah Shikar Cave (Sinha et al., 2011b); (C6) δ18O Dandak Cave (Berkelhammer et al., 2010). The 22 years average Total Solar Irradiance (TSI) dataset from Steinhilber et al. (2012) and sunspot minima activities: Oort (Om), Wolf (Wm), Spörer (Sm), Maunder (Mm), and Dalton (Dm) compared with the datasets. C1–C4 are influenced both by ISM and WD whereas C5–C6 are from ISM dominant regions.


Contemporary to this phase the speleothem records from the Himalayan caves (Sinha et al., 2007, 2015; Sanwal et al., 2013; Kotlia et al., 2015) also retrieved strong ISM precipitation from ca. 950 to 1,250 C.E. (ca. 1.0–0.7 ka). The moist phase corresponding to MWP existed till ca. 0.8 ka as recorded by the majority of the sediment and cave records from Himalaya. This phase is also comparable to the terrestrial and marine records from core monsoon regions of peninsular India. Pollen and phytolith assemblage dataset from the Pookode Lake, Kerala (Veena et al., 2014) inferred dry climate ca. 2–0.4 ka interrupted by moist conditions between ca. 1.4 and 0.8 ka. Marine records from the Arabian Sea and Bay of Bengal (Gupta et al., 2003; Tiwari et al., 2006; Chauhan et al., 2010; Ponton et al., 2012) also recorded strong ISM precipitation ca. 950–1,250 C.E. However, a study from Lonar Lake located in the Indian core monsoon region (Prasad et al., 2014; Mishra et al., 2018) discussed the weak influence of ISM between ca. 810 and 1,300 C.E.

Subsequent post-MWP weakening of ISM as evident in the Himalaya and peninsular India is responsible for the high-intensity monsoon mega-drought (MMD) events since ca. 1300 C.E. (ca. 0.65 ka). The sediment records of the Himalayan region showed that the region experienced the weakest ISM between ca. 0.6 and 0.3 ka (Figure 2 and Supplementary Table 1), corresponding to the LIA. A network of tree-ring width reconstructions (Cook et al., 2010) also pointed to a general weakening of the Asian monsoon during the last millennium, responsible for mega-droughts in the Asian region. The annual precipitation reconstruction since ca. 1330 C.E. based on the tree-ring data of Himalayan cedar (Cedrus deodara) from the Lahaul-Spiti region, western Himalaya, showed drought conditions during the 14th and 15th century C.E. (Yadav et al., 2011). High-intensity MMD events ca. 1300 C.E. (ca. 0.65 ka) were observed as well in the records from the Arabian Sea (Gupta et al., 2003; Tiwari et al., 2006) and Andaman (Laskar et al., 2013). The speleothem records of Jhumar and Dandak caves located in the Indian peninsular region (C5b, C6 in Figure 1) and Wah Shikar Cave in north-eastern India (C5 in Figure 2) also observed the MMD events between ca. 1250 and 1450 C.E. Subsequently, 1400–1700 C.E. was persistently drier with monsoon breaks followed by the moist conditions with an active summer monsoon in peninsular India (Sinha et al., 2011b). Contrary to this, the speleothem records of Sainji cave (Kotlia et al., 2015), Panigarh cave (Liang et al., 2015), and Dharamjali cave (Sanwal et al., 2013) from the central Himalaya (C1, C2, and C3 in Figure 2) experienced wetter conditions around 1450–1750 C.E. (Figure 2). This anti-correlation between the speleothem records of peninsular India and the Himalayan region during the LIA has been attributed to the additional role of WD precipitation in the Himalayan region (Sanwal et al., 2013; Liang et al., 2015; Kumar et al., 2019). Variability in the hydroclimate records by the sediment proxies and cave deposits is thus evident from the Himalayan region for the LIA time period (ca. 1300–1800 C.E.). Here the speleothem records of caves located in the ISM and WD influenced region showed wet conditions and the sediment-based pollen and δ13Corg proxy data recorded the dry climatic conditions (Figure 2).



POSSIBLE MECHANISMS BEHIND HYDROCLIMATIC VARIABILITIES AND PROXY RESPONSES

Precipitation over the Indian sub-continent received from different moisture sources (Polanski et al., 2014) shows great diversity due to the seasonal shifting of the ITCZ. The climate of peninsular India is predominantly influenced by the ISM. The northward shifting of the ITCZ controls the ISM due to low pressure over the Indian landmass after drawing moisture from the Bay of Bengal (BoB) and the Arabian Sea (AS). Earlier studies have found the role of the North Atlantic sea surface temperatures (Berkelhammer et al., 2010) and the solar irradiance in governing the Indian monsoon system by controlling the north-south migration of ITCZ (Agnihotri et al., 2002; Fleitmann et al., 2003; Kathayat et al., 2016). The strength of the ISM is determined by the variations in solar irradiance that controls the frequency of the El Niño and La Niña events over time (Terray and Dominiak, 2005). The eastern Himalaya is strongly influenced by the BoB branch (Mooley and Parthasarathy, 1982). The western and central Himalaya receives summer precipitation from the AS and BoB branches from June to September and from extra-tropical WD from December to February (Sinha et al., 2015; Dimri et al., 2016). Moreover, total annual precipitation over the Himalaya shows an inverse correlation with precipitation over the core monsoon areas of the Indian subcontinent (Kripalani et al., 2003). This inverse relationship between the winter/spring and the summer monsoon precipitations is clearly visible over the peninsular India and the Himalayan region by the speleothem δ18O records for the LIA phase (Dimri et al., 2016; Dixit and Tandon, 2016; Kumar et al., 2019). Drought conditions in the core monsoon area of the south Asian region were the result of more frequent El Niño events during the LIA (Sinha et al., 2011a; Shi et al., 2017). But the same triggered more “monsoon breaks” in the Himalayan foothills thus bringing in the higher winter precipitation as recorded by the cave deposits in the Himalaya (Kotlia et al., 2012, 2015, 2017; Sanwal et al., 2013). The high El Niño conditions during the LIA (Henke et al., 2015) also reduced the flow of warm ocean water to higher Northern latitudes causing cooling of the North Atlantic Ocean and the Eurasian landmass. This resulted in high snow-cover over Eurasia and the Himalaya due to the strengthened WD. Enhanced winter-time precipitation over northwest India is observed within a phase of the warm equatorial sea-surface temperature and vice-versa (Dimri, 2013; Yadav et al., 2013). Managave et al. (2021) also reconstructed cool-wet conditions ca. 1300–1560 C.E. and ca. 1650–1800 C.E. based on tree-ring δ18O from Lahaul-Spiti region of Himalaya, comparable to a demonstrated expansion of Himalayan glaciers between ca. 1300 and 1600 C.E. by Rowan (2017).

The pollen and δ13Corg data recorded dry LIA in the Himalayan region when the ISM (WD) was weak (strong). Vegetation primarily gets affected by hydroclimatic changes, which is evident in the present vegetation distribution across the Himalayan arc (Champion and Seth, 1968; Rawat, 2017). Moisture availability during the growth season of vegetation (spring to pre-winter months) is vital for the annual phenological activities of plants (Pangtey et al., 1990; Rawal et al., 1991). The interannual climate variations could affect the phenological activities of the plants as they depend on climatic factors such as air and soil temperature, precipitation, solar radiation, snow cover, etc. (Walker et al., 1995; Bijalwan et al., 2013). The strong and weak phases of WD and ISM over the mountain regions could alter the growth period of vegetation by affecting the phenological cycle of seasonal ground vegetation. The enhanced WD during the LIA brought in more winter precipitation to the Himalayan region in the form of snow resulting in relatively cool conditions with an increased number of snow stand days. This might have created prolonged freezing soil conditions, thus shortening the growth cycle of warm and moist ground vegetation. The weak ISM precipitation resulted in low soil-moisture during summers that remained suitable to support the growth of dry steppe taxa. On the other hand, the wetter conditions corresponding to LIA phase indicated by speleothem records of caves (C1, C2, C3 in Figure 2) located in the ISM-WD influenced zone could be the result of “amount effect” as the δ18O of rainfall is also influenced by the rainfall amount (Kotlia et al., 2017). The LIA time-period ca. 0.5–0.25 ka with higher precipitation due to strong WD maintained comparatively lower δ18O values (Sanwal et al., 2013; Kotlia et al., 2015) due to higher humidity with minimum evaporation under reduced kinetic fractionation (Kotlia et al., 2015). Sinha et al. (2015) also highlighted the role of humidity, evaporation and soil moisture saturation conditions influencing the 18O fractionation as a classic amount-effect. Also, wet signals in the speleothem records (C4 in Figure 2) during MWP were the effect of strong monsoon circulation with an enhanced flux of isotopically depleted moisture from the BoB branch and a reduced flux of isotopically enriched moisture from AS branch (Sinha et al., 2015). In the Himalayan region, vegetation thus responds to the weak (strong) ISM by the expansion of dry (moist) taxa. Vegetation, therefore, highlights the ISM dynamics, whereas speleothem could provide the signatures of winter precipitation dynamics as well.

Pollen assemblage could also refer to land-use activities. Land use could further be influenced by climate change as has been the case for the agricultural pattern in some regions (Li et al., 2008; Demske et al., 2009; Yang et al., 2012). The Himalaya remains inhabited since the Neolithic time period with 80% of agriculture being practiced in terraced fields (Mittal et al., 2008; Demske et al., 2016). Primary crops cultivated include Cerealia and species of Amaranthus, Chenopodium, Moraceae, Rumex, Solanum, Viburnum, Fagopyrum, Polygonatum, Rhododendron, etc. (Tiwari et al., 2010; Joshi et al., 2018). Amaranthaceae, a ruderal community (Behre, 1981) is intermediate between cultivated and grazed areas; both indicate human activities (Court-Picon et al., 2005). Some studies (Li et al., 2014; Mishra et al., 2018) showed that at times the pollen inferred climate dataset could be an artifact of the possible human interferences and not completely reflect the climate-induced vegetation dynamics. It is difficult to dissociate the respective parts of climate and land-use on a vegetation dataset based on pollen, as vegetation, land-use and climate are greatly interconnected in the region over the last centuries to millennia. The present review discusses the climatic aspects while further works should be done to explore the land-use as a proxy for change. Comparison between the regional pollen assemblages, other environmental proxies and regional land-use/archeological data could help to differentiate the climate and human signals on vegetation.



CONCLUSION

A comparison between the responses of sediment based biotic proxies (Pollen and δ13Corg) and speleothem (δ18O) records toward the Indian monsoon system showed heterogeneity among proxies even within the Himalayan region. The pollen and δ13Corg records derived from sedimentary archives inferred dry climate during the LIA attributed to weak ISM precipitation. Whereas speleothem records showed wet climatic conditions due to the enhanced winter precipitation resulting from the strong WD. Thus, vegetation could be taken as an indicator of ISM variations while speleothem records the WD variability as well. Moreover, the comparison of the sediment records also represented temporal incongruence for the MWP among the sites within the Himalayan region. This could be the response time to capture the signals of changes in climate variability at different precipitation regimes. However, errors in the interpolated ages due to less number of absolute dates or a small sample size in most of the available sediment-based proxy studies could also be the factors for diluting the finer scale climate signals and hence decadal to centennial-scale incongruence amongst the proxy records.

Assessment of the heterogeneous behavior of various proxies toward the different monsoonal systems on the spatial and temporal scales is important to significantly facilitate understanding of the monsoonal complexities over the South Asian region. This requires more high-resolution decadal-scale climate datasets generated from biotic and abiotic proxies of sediments and other archives from different monsoonal regimes of the South Asian region. The influence of land use on vegetation patterns should also be explored and quantified.
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Over the last two millennia, European Alpine ecosystems have experienced major changes in response to the important, yet fluctuating, impact of human activities. This study aims to reconstruct the environmental history of the last 1800 years on the western edge of the Alps by analyzing sediments from Lake Aiguebelette, a large lake located in the perialpine area. We have combined analyses of pollen and other palynomorphs, such as coprophilous fungal spores, together with sedimentary DNA (from plants and mammals) in order to reconstruct both vegetation and land-use histories. A sedimentological and geochemical analysis was also conducted in order to gain an understanding of changes in erosion dynamics in response to landscape modifications that were influenced by climate and human activities. This work highlights alternating phases of anthropization and agricultural abandonment allowing forest recovery. While pollen reflects the major phases of regional deforestation and afforestation related to the dynamic of farming activities, plant DNA provides precise information on the plants cultivated in fields, orchards and vegetable gardens over the past centuries. The combination of mammal DNA and coprophilous fungal spores completes this work by documenting the history of pastoral practices.
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INTRODUCTION

Current landscapes result from millennial-long evolutions of environments under the joint influence of human activities, climate changes, and ecosystem responses (Kaplan et al., 2009; Ellis et al., 2013; Mottl et al., 2021). In the European Alps (Mottl et al., 2021), this evolution of ecosystems during the Holocene has greatly expanded and accelerated in the last few millennia, as shown by numerous paleoecological and paleoenvironmental records (Tinner et al., 1996; Schmidt et al., 2002; Giguet-Covex et al., 2011, 2014; Doyen et al., 2013, 2016; Walsh et al., 2014; Bajard et al., 2016, 2017; Andrič et al., 2020; Dietre et al., 2020; etc.). These records highlight the growing impact of agricultural intensification both at low altitude (Doyen et al., 2013, 2016; Simonneau et al., 2013; Rapuc et al., 2021) and in Alpine pastures (Giguet-Covex et al., 2014; Rey et al., 2017) in a period when populations were growing and agricultural techniques were being improved. The last two millennia were also marked by major shifts in climatic conditions, such as the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA) (Büntgen et al., 2011; Le Roy et al., 2015). At the same time, important socio-economic/cultural shifts occurred, among which the fall of the Roman Empire, the agricultural and economic revolution of the Middle Ages (e.g., invention of the plow) or the current agricultural decline (Mazoyer and Roudart, 1997; Ferault and Le Chatelier, 2012) and introduction of “exotic plants” are likely to have a significant impact on landscape evolutions. How have human impacts and climatic variations modified and driven the trajectories of ecosystems over the last two millennia?

Although the identification of cultivated plants is a direct indicator of past agricultural strategies, the whole vegetation history can also be a reliable indicator of such strategies and associated agrarian practices (e.g., expansion of ruderal, nitrophilous plants, weeds, changes in forest composition due to clearance, etc.) (Behre, 1981; Brun, 2007). Moreover, analysis of non-pollen palynomorphs (spores of coprophilous fungi such as Sporormiella sp.) provides indirect and robust information about past pastoral pressure (Ejarque et al., 2011; Etienne et al., 2013; Doyen and Etienne, 2017). Therefore, palynological analyses are traditionally used as a fundamental tool to reconstruct agro-pastoral activities and paleoenvironmental dynamics. For the Alps, pollen analyses are commonly used to reconstruct the vegetation and land-use history (de Beaulieu et al., 1992; Tinner et al., 1996, 2003; Haas et al., 1998; Guiter et al., 2005; Finsinger and Tinner, 2007; David, 2010; Schwörer et al., 2015; Thöle et al., 2016; Pini et al., 2017).

In perialpine areas (the regions located immediately around the Alpine range), past vegetation cover and land-use have already been documented through pollen from lake sediments (Clerc, 1988; Lotter, 1999; Tinner et al., 1999; Doyen et al., 2013, 2016; Rey et al., 2017; Andrič et al., 2020). In these regions, farming activities are more developed and diversified than in the inner Alpine areas which are not always suitable for growing cultivated plants. Indeed, previous studies have described the development of mixed agro-pastoral activities comprised of cereal growing, fruit tree growing and grazing, that have shaped the regional vegetation and driven soil erosion dynamics (Jacob et al., 2009; Doyen et al., 2013, 2016; Simonneau et al., 2013). Nonetheless, pollen analysis presents some limitations in reconstructing plant cover, especially in foothill areas (Muller et al., 2006). Pollen assemblages deposited in lake sediment include pollen grains from both local and regional sources, a fact which limits the reconstruction of local vegetation and land-use. The low taxonomic resolution of most of the herbaceous families and the low dispersal capacity of insect-pollinated plants, represent important limitations to the precise identification of past plant communities and their intrinsic diversity. Spores of coprophilous fungi are robust proxies of past livestock farming but they cannot indicate the composition of past domestic herds. Consequently, the reconstructions of paleoecological trajectories and of the nature of past agro-pastoral activities are open to improvement.

In order to enhance our knowledge of past human-influenced environmental trajectories, it is possible to combine palynological data with plant and mammal DNA analyses. Lake sediment DNA (sedaDNA) analyses from plants was recently made possible thanks to the emergence of the DNA metabarcoding approach (Parducci et al., 2017), which takes advantage of the development of high-throughput sequencing techniques (Taberlet et al., 2012). This emerging indicator of past biodiversity has been successfully applied in various ecosystems ranging from tropical to boreal environments (Boessenkool et al., 2014; Epp et al., 2015; Alsos et al., 2016; Bremond et al., 2017; Sjögren et al., 2017; Ficetola et al., 2018; Tabares et al., 2020), including the Alps (Pansu et al., 2015; Bajard et al., 2017; Giguet-Covex et al., 2019). Lake sedaDNA analyses have also been successfully applied in different contexts to identify mammals (Giguet-Covex et al., 2014; Etienne et al., 2015; Graham et al., 2016; Pedersen et al., 2016; Sabatier et al., 2017; Ficetola et al., 2018; Brown et al., 2021). The combination of these micro-fossil and DNA-based approaches offers a new and more detailed image of past vegetation and of agricultural and pastoral activities (Giguet-Covex et al., 2014) at the local scale. Indeed, because plant DNA in lake sediments comes from the watershed (or parts of the watershed; Parducci et al., 2017; Sjögren et al., 2017; Alsos et al., 2018; Giguet-Covex et al., 2019), it potentially represents a key indicator allowing us to decipher the different pollen origins (regional/local) and to better reconstruct the spatial distribution and modification of vegetation at the catchment scale. Pollen and sedaDNA have already been used in combination in several studies (Parducci et al., 2005, 2013; Giguet-Covex, 2010; Jørgensen et al., 2012; Pedersen et al., 2013; Niemeyer et al., 2017; Sjögren et al., 2017). These studies have revealed the benefits of applying both methods since the results of DNA analysis provide invaluable information about past vegetation and complement the results of pollen analysis.

Therefore, in order to investigate the question of the influence of climate variations and/or human activities over the last two millennia in the perialpine area, we propose to study the Lake Aiguebelette sediment archive sequence, by combining different approaches in a multiproxy analysis: (i) sedimentological and geochemical analyses to trace the evolution of soil erosion and (ii) palynological (pollen grains and spores of Sporormiella sp.) and lake sedaDNA analyses targeting plants and mammals with a view to documenting past changes in both vegetation communities and agricultural/livestock farming activities/practices. Taken together, these proxies will provide a full picture of agricultural activities, their effects on the landscape (vegetation cover and soil erosion) and, ultimately, will give us a better understanding of the history of local livelihood strategies and land use over the past 1800 years, a period that witnessed deep social-economical mutations and significant climate changes.



STUDY SITE


Physical Setting

Lake Aiguebelette (374 m a.s.l., 5.5 km2) and its watershed (58.9 km2) are located in Savoie (France), in the northern perialpine area. The lake is bordered by the southern fringe of the Jura mountain range. It is of glacial origin and was formed after the retreat of the glacier at the end of the Würm period (Coutterand, 2010). Its catchment area ranges in altitude from 374 to 1441 m a.s.l. The geological substratum is mainly composed of Jurassic to lower Cretaceous limestone and marls, Miocene marine sandstone and Quaternary deposits composed of moraine and limestone screes in the southern part of the lake and along the limestone cliff (Eastern part) (Figure 1). The lake, which is the 7th largest natural lake in France, is composed of three main basins, respectively 30, 46, and 71 m of water depth. The main tributaries are the Gua, the Leysse de Novalaise and the Tuilerie rivers. The outlet of the lake, the Tiers, flows into the Guiers River, which itself is a tributary of the Rhône.
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FIGURE 1. (A) Location, geology and (B) land cover of the Lake Aiguebelette catchment.


The lake water hosts a rich sub-aquatic macroflora including taxa such as Nymphea alba, Nuphar lutea, Najas sp., Potamogeton sp., and Myriophyllum spicatum. The lake shores are occupied by riparian forests dominated by alder (Alnus glutinosa), swamps and reed beds. The eastern side of the catchment (the slopes of the Epine range) is covered by forests dominated by fir (Abies alba) and beech (Fagus sylvatica). A thin belt of white oak (Quercus pubescens) and box tree (Buxus sempervirens) can be found on the well-exposed outcrops of the limestone massif. On this side, just a few small patches of pasture occur at the present time. The western part is mainly occupied by grasslands, cereal fields and pastures. While the farming activities are not as intense as in past centuries, this region is still an agricultural region. Forests composed of oak, hornbeam (Carpinus betulus), maple (Acer spp.) and hazel (Corylus avellana), are also well represented in this part of the watershed (Figure 1). Chestnut trees (Castanea sativa) are widespread in the forests growing on the molasses. This region was formerly known for its fruit production and while orchards were numerous in the last centuries, only a few are still in existence today (Figure 1).




MATERIALS AND METHODS


Coring

Several sediment cores were retrieved from the deepest part of the lake (71 m depth, 45,5506N; 5,80128E). In 2008, a 170-cm long sediment core (AIG08-04) was collected using an UWITEC gravity corer with hammer. The upper part of this core, dated with short-lived radionuclides was then correlated with new cores. In 2016, AIG16-08 (N° IGSN TOAE0000000168) and AIG16-06 (N° IGSN TOAE0000000166), measuring 256.5 and 125 cm respectively, were sampled using an UWITEC gravity corer with hammer.



Sedimentological and Geochemical Analysis

In the laboratory, the core was split, photographed, and logged in detail, and all physical sedimentary structures were noted as was the vertical succession of facies. From these two cores and the correlation of their sedimentary structures we were able to create a master core (AIG16-MC) measuring 261.6 cm in length (0–45.5 cm from AIG16-06, and 40.2–256.3 cm from AIG16-08). Following the standard procedure (Heiri et al., 2001), loss on ignition (LOI) analysis was performed on 179 samples taken along the AIG16-MC core in order to estimate organic matter (OM) and carbonate contents in the sediments. The non-carbonate ignition residue (NCIR) was obtained by subtracting the LOI at 550 and 950°C from the initial dry weight. X-ray fluorescence (XRF) analysis was performed on the surfaces of the split sediment cores at 1-mm intervals, using a non-destructive Avaatech core scanner (Richter et al., 2006). The relative geochemical compositions (intensities), expressed in counts per second, were obtained at various tube settings: 10 kV at 1.5 mA for Al, Si, P, S, K, Ca, Ti, Mn, and Fe; 30 kV at 1 mA for Cu, Ni, Zn, Br, Sr, Rb, Zr, and Pb with each run lasting 30 s. Principal component analysis (PCA) was performed on the geochemical results using R software (R Core Team, 2018) to identify principal sediment end-members, which were then used to better constrain each sedimentological facies and to select the best elements for tracing the erosion dynamic (e.g., Sabatier et al., 2010). Relative abundances of elements are expressed as centered log-ratio (CLR) to avoid dilution effects due to water (e.g., Weltje et al., 2015). The following elements (n = 15) were used to calculate the geometric mean: Si, P, S, K, Ca, Ti, Mn, Fe, Zn, Br, Rb, Sr, Zr, and Pb. For the same potential matrix effects, element ratios are expressed as logarithms (ln) of XRF count ratios that are linearly related to the log ratios of corresponding absolute concentrations (Weltje and Tjallingii, 2008).



Chronology

The core chronology is based on four AMS 14C dates, which were obtained on selected terrestrial plant macroremains (Table 1), and short-lived radionuclide measurements. Clam (Blaauw, 2010), written for the open-source statistical software ‘R’, was used to calibrate the 14C ages with the Intcal20 calibration curve (Reimer et al., 2020) in order to construct an age-depth model. For short-lived radionuclides, a continuous sampling step of 10 mm was applied over the first 22 cm of AIG08-04 to determine 210Pb, 226Ra, and 137Cs activities. The analysis was carried out on well-type, germanium detectors located at the Laboratoire Souterrain de Modane following the procedure described by Reyss et al. (1995). For each sample, the 210Pb excess activities were calculated by subtracting the 226Ra-supported activity from the total 210Pb activity. The age model was then computed using a Constant Flux Constant Sedimentation model on the R package serac (Bruel and Sabatier, 2020).


TABLE 1. 14C dates for Lake Aiguebelette related to AIG16 master core depth.
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Pollen and Sporormiella sp. Spore Analysis

Forty-eight sediment subsamples of 1 cm3 were taken at a mean temporal interval of ca. 40 years for pollen and Non-Pollen Palynomorph (NPPs) analyses. As far as possible, event layers were avoided during the sampling in order to avoid the taphonomic problems caused by the different origins of such sediment deposits. Samples were prepared using the standard procedure described by Faegri and Iversen (1989). Lycopodium clavatum tablets were added to each subsample (Stockmaar, 1971) in order to calculate Sporormiella sp. (HdV-113) spore concentrations. Pollen grains were identified using atlases of European and Mediterranean pollen grains (Reille, 1992; Beug, 2004). The identification of Sporormiella sp. is based on several published photographs (van Geel and Aptroot, 2006; Cugny et al., 2010) and follows the nomenclature established by Miola (2012). Sporormiella spores were counted following the procedure described by Etienne and Jouffroy-Bapicot (2014) and expressed in accumulation rates (no.cm–2.yr–1). At least 500 pollen grains of terrestrial plants (TLP: Total Land Pollen) were identified. Pollen counts were expressed as percentages of TLP, excluding pteridophytes, aquatic plants and Cannabis/Humulus pollen-type from the total pollen sum. Pollen data have been divided into six Local Pollen Assemblage Zones (LPAZ) by constrained cluster analysis (CONISS) using Tilia software (Grimm, 1987). In order to identify the main changes in plant community composition according to the cultural periods, a non-metric multidimensional scaling (NMDS) was performed using the Bray-Curtis dissimilarity indices with the metaMDS function from the VEGAN package v2.5.6 in R (Kruskal, 1964; Legendre and Legendre, 2012; Oksanen et al., 2013). This analysis was performed including three dimensions and a color code was used to distinguish the main cultural periods.



DNA Analysis: From the Sampling to the Data Treatment

Twenty-four sediment slices, each 1 cm-thick, were taken with a temporal interval fluctuating between 15 and 120 years (mean 75 years). As in the case of pollen, event layers were avoided during sampling. The edges were removed to avoid contaminations and were used to determine the sediment water content. This measurement allowed the estimation of the dry sediment quantity used for the DNA extraction. This quantity varies between 1 and 4.4 g of dry sediments. The protocols applied for the sampling and the DNA extractions are described in detail on Protocols.io1. To summarize, we mixed the wet sediments with a phosphate buffer (for 1 g of dry sediment we added 2 ml of phosphate buffer) for 15 min in a falcon tube. After a first centrifugation, supernatant was transferred to Amicon ®ultra-15 10k centrifugal filters (Millipore) and centrifuged again to concentrate DNA and increase the detectability of DNA fragments of interest (Bremond et al., 2017; Capo et al., 2021). Between 500 and 700 μl of DNA extract were recovered and 400 μl was used as starting material for the DNA extraction, using a NucleoSpin ® Soil kit and starting at binding step (Macherey-Nagel, Düren, Germany). Then, all of the DNA extracts were quantified by using the Quantifluor ® ONE dsDNA system from Promega. Four extraction controls were performed.

The extracted DNA was then amplified using primers g and h for plants (Taberlet et al., 2007) and MamP007 (in combination with a human-specific blocking primer) for mammals (Giguet-Covex et al., 2014). For each sample and marker, nine PCR replicates were performed in order to improve the detection of rare taxa and the robustness of the data (Ficetola et al., 2015). Two negative PCR and two positive PCR controls were included. For the plants, the positive PCR controls contained 0.18 ng of DNA from a subtropical/tropical plant from the Melastomataceae family. For the mammals, the positive PCR controls contained 0.18 ng of DNA extracted from a marsupial (Didelphis marsupialis) that does not exist in Europe. The sequencing runs were performed by 2 × 125 bp pair-ends sequencing on an Illumina HiSeq 2500 platform. The sequences were filtered using the OBITOOLS software2 (Boyer et al., 2016) and following the procedure described in Giguet-Covex et al. (2019). Reference databases used for the assignations were built from the EMBL database with the ecoPCR program (gh database created from release r126, mamP007 database from release r133). For the plant DNA, only DNA sequences with a > 95% similarity with a sequence in the reference database were kept. For mammals, after having removed all sequences assigned to Hominidae, only DNA sequences with a > 97% similarity with a sequence in the reference database were kept. Additional filtering steps, relating to low or stochastic detections (minimum of five reads per PCR and in two sample replicates or one replicate but in two consecutive samples) and potential contaminations (based on the extraction and PCR controls and exotic assignations), were performed (Giguet-Covex et al., 2019). For the mammals, only one taxon was frequently detected in the negative controls (in 31 over 53) and excluded from the dataset. It is also assigned to an exotic taxon, the Meleagris gallopavo. Among the six remaining taxa, two were assigned to water birds (Fulica atra and Anas platyrhynchos), two to fish (Salvelinus sp. and Rutilus sp.), one to an exotic rodent (Thryonomys swinderianus) and one to a marine worm (Phascolosoma esculenta). These last two taxa are the most detected in the sediment record and because they were not frequently detected in the controls (in less than 5 over 53), we checked the suspicious assignments with Blast. The results proposed a 100% of identity with Sus scrofa for the rodent and with Bos taurus for the marine worm, which is highly plausible in our context. In this manuscript, we use only these mammals to document the past farming history. However, we note that the detection of taxa other than mammals with the primer pair MamP007 has already been demonstrated (Annelida, Lammers et al., 2018). Moreover, when we blast the primers, bony fish can also clearly be amplified. For the plants, no taxa were frequently detected in the controls (no more than four positive controls over 53). However, over the five sequences detected in four controls, two correspond also to exotic taxa (Cedrus sp. and Caricaceae) and were excluded from the dataset. The other excluded exotic taxa are Grubbia rosmarinifolia, Passiflora sp., Araceae, Millettieae, Musaceae, and Persicaria sp.

The results for each taxon are presented in numbers of positive PCR replicates, and for plants, we also integrated the sum of DNA reads. To highlight changes in groups of plants associated (or potentially associated) with human activities, we also calculated the proportion of DNA reads [log-transformed reads due to the exponential multiplication of the DNA sequences during the PCR; Log(N reads + 1)] represented by each of these groups, i.e., (1) trees and shrubs, (2) ruderal and nitrophilous plants related to pastoral activities and/or hay meadows (Urtica sp., Plantago sp., Rumex sp., Rhinanthus alectorolophus, Dactylis glomerata) and (3) cultivated taxa (fruit trees, cereals, hemp, hops, several garden plants, and associated weeds). Based on the sum of the DNA reads from the sample replicates, we determined the number of detected taxa. A taxon was considered in the calculation when the number of reads was higher than 45 (i.e., 5 reads × 9 replicates). As in the case of pollen data, a non-metric multidimensional scaling (NMDS) was performed using the Bray-Curtis dissimilarity indices with the metaMDS function from the VEGAN package v2.5.6 in R. For this analysis, we summed the number of reads of three PCR replicates to finally have three replicas per sample and so decrease the stochasticity of the PCR success. This analysis was performed including three dimensions and a color code was used to distinguish the main cultural periods.




RESULTS AND INTERPRETATIONS


Sedimentary Units

The description of AIG16-MC led to the identification of different units characterized by thin laminae and interrupted by event deposits. The regular millimetric laminae are made up of an alternation of beige, grayish and green laminae. At certain depths, we observed homogenous olive-gray deposits topped by light gray mm-thick clay caps. The base of these deposits is sharp and presents high organic debris content but no visual grain size variation. Along the entire core, we observed 14 of these event deposits, with homogeneous facies ranging between 0.3 and 2.3 cm in thickness. These events are considered as instantaneous deposits (Sabatier et al., 2017) and were removed from the age-depth modeling. The origin of these deposits is currently being investigated (flood vs. earthquake induced deposit), but their nature (sudden erosive event) and composition mean that they fail to combine all data types for paleoecological studies. They were therefore not sampled and were omitted from the discussion regarding environmental variations.

The identification of each sedimentary unit (U1, U2, and U3) is based on sedimentary characteristics such as color, grain size and sediment structures with lamination frequency and LOI contents (Figure 2). Unit 1 (U1: 0 to 21 cm) is characterized by a silty to clayey sediment with regular alternation of millimetric laminae. Mean organic content (LOI550) and carbonate content (LOI950) are relatively high with 9.3 and 23.3%, respectively. Two dark laminae appear in this unit. Unit 2 (U2: 21 to 141.2 cm) is composed of brown silty-clay sediment and presents an irregular and low presence of rhythmic lamination. Mean organic (8.6%) and carbonate (16.3%) contents are relatively low. This unit comprises 9 event deposits. It evolves progressively downwards into a more laminated and darker sediment. Unit 3 (U3: 141.2–261.6 cm) is composed of an alternation of light olive gray millimetric to sub-millimetric silty/clayey laminae. Mean organic (10.4%) and carbonate contents (19%) are slightly higher than those of U2. Five instantaneous deposits were identified in U3.
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FIGURE 2. Sedimentological description of AIG16-MC including photography, lithological facies and units, dry density measurements, LOI analyses and selected XRF core scanner elements (centred-log ratios) reflecting the minerogenic fraction (Ti as proxy for the non-carbonated detrital compounds and Ca for the carbonated fraction).




Geochemistry

A PCA analysis was performed on the following raw elements, measured with the Avaatech XRF core scanner: P, K, Ti, S, Ca, Fe, Mn, Br, Zr, Rb, Zn, Sr, and Pb. The first axis explains 43.4% of the total variance and the second, 22.3% (Figure 3A). Five different end-members can be identified. With negative loading on the first PCA axis, Ca, S, and Br form an end-member (EM1) reflecting the autochtonous biogenic production made up of bio-precipitated calcite and lacustrine organic matter, as Br content is related to lake organic matter (Lefebvre et al., 2021). With positive loading on PC1, there are the carbonated and silicated coarse detrital components characterized by Sr and Zr, respectively (EM2). With positive loading on both the first and second axes, we find the siliciclastic fine detrital component made up of K and Ti (EM3). With negative loading of the first axis and positive of the second axis, the redox-dependent elements Fe and Mn are grouped together (EM4). Between this end-member and that of biogenic production, there is a last end-member (EM5) corresponding to elements typical of lead (Pb) and nutrient (P) pollution. The silicium (Si) has a positive loading on the second PCA axis. Its position between the detrital and biogenic components suggests a mixed origin, from both clastic inputs and diatoms. The first unit (U1) is mostly characterized by the pollution end-member, i.e., EM5. In the second unit (U2), the geochemical signature is dominated by the inputs of coarse carbonated and silicated detrital particles, but it also contains fine silicated particles, as indicated by the PCA analysis and the bi-plots (Figure 3B). In unit 3 (U3), some depths are characterized by very low detrital inputs and are dominated by autochtonous production (especially bio-induced calcite), while others are slightly enriched in fine and silicated detrital inputs and redox-dependent elements as indicated by the PCA analysis and the bi-plots (Figure 3). Based on the PCA results and in order to better qualify the erosion dynamic, we selected three ratios, (i) ln(Ti/Ca) reflecting the silicated relative to the carbonated detrital inputs, (ii) ln(Sr/Ca) reflecting the carbonated detrital inputs relative to the bio-precipitated calcite, and (iii) ln(Zr/Ti) reflecting the coarse relative to the fine silicated detrital inputs, and we compared them with each other (Figure 3B). The significant and high correlation (r2 = 0.81, p < 0.0001) between ln(Ti/Ca) and ln(Sr/Ca) suggests a common origin for the silicated and carbonated detrital materials. ln(Zr/Ti) and ln (Sr/Ca) (r2 = 0.81, p < 0.0001) are also correlated, but the lower correlation suggests the contribution of a distinct source of coarse silicated materials.
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FIGURE 3. Geochemical patterns from AIG16-MC. (A) Results from the PCA. Five end-members corresponding to sediment fractions of different origins or related to different sedimentary processes are highlighted. (B) Biplots comparing Zr/Ti (proxy of coarse and silicated detrital inputs) with Sr/Ca (proxy of the carbonated detrital fraction) on the left side and Ti/Ca (proxy of silicated detrital inputs) with Sr/Ca (proxy of carbonated detrital inputs) on the right side.




Chronology

The excess 210Pb downcore profile plotted on a logarithmic scale revealed well constrained linear trends providing a mean sedimentation rate of 2.44 ± 0.1 mm.yr–1 for the upper 22 cm (Figure 4). The 137Cs profile presented two peaks, at 4.5 and 9.5 cm, which correspond respectively to the Chernobyl accident in 1986 AD and the maximum of Nuclear Weapon Tests (NWT) in the Northern Hemisphere in 1963 AD in this region (Sabatier et al., 2014). This interpretation is confirmed by the 241Am peak attributed to the NWT (Appleby, 1991; Figure 4). The first 137Cs fallout is observed at 13.5 cm and corresponds to 1955 AD (Robbins and Edgington, 1975). Ages were then calculated using the CFCS model thanks to serac R package (Bruel and Sabatier, 2020) to provide a continuous age-depth relationship (Figure 4).
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FIGURE 4. Age-depth model based on radiocarbon (blue) and short-lived radionuclides (green) for the entire AIG16-MC sediment sequence. The age-depth model based on radionuclides is derived from serac package with from left to right: 210Pbex, 137Cs and 241Am activities and CFCS age model.


A total of four terrestrial organic macroremains were dated by 14C dating (Table 1). The 14 deposits interpreted as event deposits (ED), representing a total of 9.9 cm, were removed. The remaining 251.7 cm were used to build an event-free sedimentary record (Goldberg, 1963; Wilhelm et al., 2012). We then calculated an age depth relationship by a smooth spline interpolation using the R code package “Clam” (Blaauw, 2010). The vertical bars represent the age of event deposits (Figure 4). This sediment sequence from Lake Aiguebelette covers the last 1816 ± 65 yr cal BP. The mean sedimentation rates estimated from the event-free sediment record vary between 3.2 and 0.9 mm.yr–1 with a higher sedimentation rate over the upper 60 cm (last 230 years).



Pollen and Sporormiella sp.

The NMDS analysis applied to pollen data (Figure 5A) highlights the difference (along the first axis) between samples corresponding to Roman and Early Middles Ages periods, and samples corresponding to the subsequent periods. In fact, samples dated to the Roman period and the Early Middle Ages are characterized by an abundance of trees, such as Fagus and Ulmus (Figure 5B), which drastically declined after 1050 cal CE (Figure 6). The samples dated to the High Middle Ages seem to represent a transition period (middle of the first Axis, Figure 5A), while samples dated to subsequent periods are marked by the amount of herbs (Figure 5C) and cultivated taxa they contain, apart that is from the very last samples (Contemporary), which are marked by the expansion of Populus, Fraxinus and the introduced taxon Ambrosia (Figure 5C).
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FIGURE 5. Temporal trajectory of plant composition as revealed by a non-metric multidimensional scaling (NMDS) analysis from pollen data (stress value = 0.14). (A) Sample distribution in the NMDS plot. The color code represents the different cultural periods. (B) Distribution of arboreal pollen taxa (AP) and taxa related (or potentially related to) human activities in the NMDS plot. (C) Distribution of all other taxa in the NMDS plot.
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FIGURE 6. Pollen diagram from core AIG 16-MC presented as a percentage of the pollen sum. + Sporormiella sp. concentrations and accumulation rates. The exaggeration curves are x5.


Based on the pollen diagram (Figure 6), it is possible to describe 6 main palynozones, defined according to the CONISS analysis. As the age model is defined, all pollen data are presented relative to the chronology.


LPAZ 1 (120–550 cal CE)

The vegetation was dominated by arboreal pollen (Figure 6), AP/TLP percentages fluctuated between 80 and 95%. Four tree taxa recorded percentages above 10%: Alnus increased from 10 to 35%, Corylus and Quercus decreased from 20 to 10% and Fagus oscillated between 12 and 20%. Percentages of Betula, Pinus, Ulmus, Fraxinus, and Carpinus were all within a range of 1–10%. Other trees and shrubs remained below 1%.

Among herb taxa pollen, Poaceae dominated and decreased from 10% to 2% before slightly increasing to 10%. Several ruderal weeds were recorded (Plantago lanceolata, Rumex-type, Urticaceae, Artemisia, Chenopodiaceae, Plantago major/media) and all percentages decreased from 250 cal CE before finally increasing at the end of the zone. In each subsample, Cerealia-type and Secale-type were identified with percentages under 1%, while hemp pollen was recorded in some samples. The accumulation rate as well as the concentration of Sporormiella sp. stayed at low values (Figure 6).



LPAZ 2 (550–900 cal CE)

Alnus, the dominant taxon, decreased from 35 to 20% and reached its highest percentages of around 45% from 740 AD and then decreased once again from 800 AD (Figure 6). Percentages decreased and increased once again at the middle of the zone for Betula, Corylus, and Carpinus; and at the end of the zone for Ulmus and Tilia. Percentages of Quercus and Fagus remained at the same order of magnitude as in the previous zone. Juglans percentages exceeded 1% and rose to 4% around 650 cal CE. At the same period, peaks of Cerealia-type, Secale-type, Poaceae, ruderal plants (Rumex sp. and Urtica sp.) and Cannabis/Humulus were also recorded. The concentration and the accumulation rate of Sporormiella sp. also showed a small peak at 50 no.cm–2.yr–1 around 700 cal CE.



LPAZ 3 (900–1300 cal CE)

Alnus decreased to 14%, increased to around 25–35% and then decreased again to 9% at the end of the zone (Figure 6). Quercus remained stable at around 15%, except for a peak of 34% at 1270 cal CE. From 1050 cal CE, Fagus decreased from 16 to 7%, as did Ulmus and Tilia although to a lesser extent; at the same time, we observe an increase in Juglans and Castanea percentages.

In this zone, open areas were expanded (AP/TLP decreases from 90 to 75%), with an increase of Poaceae (to around 10%), ruderal plants and Cannabis/Humulus. A diversification of prairie and ruderal plants was also recorded. An important increase in Sporormiella sp. (accumulation rate and concentration) was recorded from 1200 cal CE (Figure 6).



LPAZ 4 (1300–1760 cal CE)

Quercus increased and became the dominant taxon with percentage values of around 20% and 35% (Figure 6). Juglans and Castanea percentages reached their highest values (13%). The percentages of Juniperus also increased. Most herb taxa remained at the same order of magnitude. Poaceae pollen grains were slightly more abundant than in the previous zone. It should be noted that at 1300 cal CE, a significant decrease in AP/TLP (to 45%) and peaks of Cerealia-type, Poaceae and Cichorioideae percentages probably correspond to an assemblage of spores and pollen grains brought into the lake by a flood. This sample is an outlier in the NMDS analysis due to the high values for Cichorioideae (Figure 5A). It will not be included in the environmental interpretation. Excluding this particular sample, in general Cerealia-type and Secale-type present values that are somewhat higher than those observed in LPAZ 3. Percentages of Cannabis/Humulus reached their highest values. Around 1350 cal CE, the accumulation rate and concentration of Sporormiella sp. reached its highest values (180 no.cm–2.yr–1) before decreasing to low values and then increasing again from 1550 cal CE (Figure 6).



LPAZ 5 (1760–1900 cal CE)

Quercus progressively decreased from 20 to 7% (Figure 6). The proportion of herbs increased (mean of AP/TLP decreased from 65 to 60%) mainly with the increase of Poaceae from 15% to 24%. The concentration and the accumulation rate of Sporormiella sp. remained relatively high (Figure 6).



LPAZ 6 (1900 cal CE to the Present Day)

Many tree taxa recorded an increase in their percentages, like Salix, Alnus (from 8 to 17%), Betula, Pinus, Fraxinus (from 1 to 12%), Fagus, Carpinus and Populus (Figure 6). On the other hand, Juglans and Castanea decreased from 10 to 1% and from 7 to 4% respectively. Among the herbs, Poaceae decreased from 30 to 15%. Cumulative percentages of ruderal plants decreased from 10 to 5% at the end of the zone, mainly due to decreases in Plantago lanceolata and Rumex-type. Cerealia-type and Secale-type decreased also, from 4 to 1%, while Cannabis/Humulus percentages decreased sharply. The accumulation rate of Sporormiella sp. decreased before increasing again in the recent period (Figure 6).




Plant DNA

The filtering procedure yielded 2,305,749 DNA reads and 235 unique sequences. We grouped all unique sequences with identical assignments and finally obtained 174 plant taxa including 23 aquatic taxa. Within the 151 remaining terrestrial taxa, five were assigned to moss or ferns, six to fruit trees and shrubs, 17 to cultivated fields (cultivated plants and weeds) and vegetable gardens, five to plants associated with pastoral activity and/or hay meadows, 93 to herbaceous plants and 25 to trees and shrubs.

In order to highlight the main changes in plant community composition, an NMDS analysis was performed, and samples were grouped by different cultural periods (Figure 7). The most important shift appeared along the first axis and separated the Roman period and the Early Middle Ages from the following periods (Figure 7). It should be noted however, that the end of the Roman period can be distinguished (Figure 7). Unlike the pollen data, the samples related to the High Middle Ages are clearly closer to those related to the following periods. Hence, we can summarize the NMDS analysis into two main phases. Before 1050 cal CE (Roman period and Early Middle Ages), the plant community composition was characterized by the presence of many trees, shrubs, (e.g., Pinus sp., Aquifoliaceae, Ulmaceae, Fagus sp., Picea sp., Alnus sp., Betulaceae, Hedera helix, and Tilia sp.) and a number of herbaceous taxa, some of which were growing in forest or forest edge environments (e.g., Veronica montana and Dipsacus sp.). From 1050 cal CE (High Middle Ages to nowadays), the plant community composition shifted to cultivated plants and plants associated with pastoral activities as well as different herbaceous taxa. This tipping point also corresponded to the period after which the proportion of tree and shrub DNA reads decreased (Figure 8). A new increase only occurred in the last 50 years. In contrast to the pollen data, the proportion of DNA reads was always dominated by herbaceous taxa. The number of terrestrial taxa also strongly increased since 1050 cal CE, from 43 taxa on average (min = 20; max = 60) to 78 (min = 60; max = 90).
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FIGURE 7. Temporal trajectory of plant composition as revealed by a non-metric multidimensional scaling (NMDS) analysis from lake sedaDNA data (stress value = 0.14). (A) Sample (each replicates) distribution in the NMDS plot. The color code represents the different cultural periods. (B) Distribution of taxa related to (or potentially related to) human activities in the NMDS plot. (C) Distribution of all other taxa in the NMDS plot.
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FIGURE 8. Main plant and mammal DNA results illustrating the evolution of forest cover (% of DNA reads from trees and shrubs), the number of taxa detected and the diverse farming activities (pastoralism, livestock farming, fruit tree cultivation, cultivated fields with cereals or other plants and garden plants). Blue areas highlight main phases of agricultural development.


Before 1050 cal CE, two phases characterized by a small increase in the number of taxa and a decrease in the proportion of DNA reads from trees and shrubs were recorded, around 250 cal CE and between 500 and 800 cal CE (Figure 8). During these phases of the Roman period and Early Middle Ages, we see the development of plants associated with pastoral activity (Plantago sp., Urtica sp. and a few Rumex sp.). Fruit trees (Vitaceae, Juglandaceae, and Maleae) were recorded (Figure 8). In the first phase, Vicia faba and Humulus sp. were also detected. However, this phase was only represented by one sample.

From 1050 cal CE, a general trend toward a progressive intensification and diversification of agropastoral activities can be observed. In detail, from 1050 cal CE, Castanea sp., Cannabis sativa and Vicia faba appeared, while Vitaceae, Prunus sp. and Humulus sp. increased considerably (high N replicates). Then at 1300 cal CE, Pisum sp. and Avena sp. were introduced. Moreover, some plants associated with pastoral activities (Lathyrus pratensis, Dactylis glomerata, Rhinanthus alectorolophus; Figure 7) appeared or began to be detected in large quantities (Rumex sp.). At that time, Cannabis sativa and Humulus sp. decreased. Cannabis sativa, Prunus sp. and Castanea sp. showed a new increase from 1500 to 1900 cal CE. During this period, Avena sp. and Pisum sp. decreased while Fagopyrum sp. started to be detected and Vicia faba appeared again. Finally, from 1850 cal CE, new taxa, i.e., Phaseolus, Beta vulgaris, Cynara cardunculus, and Apium graveolens, which we can see today in vegetable gardens were recorded. In this phase, most of the fruit tree taxa (Vitaceae, Juglandaceae, Prunus sp.) and Humulus sp. decreased and other crops (Fagopyrum sp., Cannabis sativa, and Vicia faba) disappeared.



Mammal DNA

Two taxa could be related to livestock farming activity, Bos taurus and Sus scrofa. They were detected almost throughout the record, but increased considerably from 1250 cal CE (Figure 8) as did the accumulation rate of Sporormiella sp. (Figure 6). These increases occurred when plants associated with pastoral activities (i.e., hay meadows or pastures; Dactylis glomerata, Rhinanthus alectorolophus) appeared or were detected in more PCR replicates (Rumex sp., Plantago sp.). However, the proportion of DNA from plants associated with pastoral activities remained relatively stable throughout the record. From this date, the DNA detection of Bos taurus presented an increasing trend until the present day, while Sus scrofa showed an important peak around 1350 cal CE and a long-lasting decrease between 1650 and 1950 cal CE.




DISCUSSION


Interpretative Framework of DNA and Pollen Records: Taphonomic Benefits and Drawbacks of Each Method

Pollen and DNA analyses have been combined in numerous paleoecological studies and for a variety of biomes (e.g., boreal, arctic, alpine, tropical, semi-arid). Both convergent and divergent results have been recorded (e.g., Parducci et al., 2013, 2017; Sjögren et al., 2017; Clarke et al., 2018; Giguet-Covex et al., 2019, in revision; Liu et al., 2020; Tabares et al., 2020). For instance, in boreal and arctic environments, it has been shown that pollen and DNA records were more similar in lakes with large catchment areas compared to those with smaller catchments, as these catchments cover a more regional scale pollen source (Alsos et al., 2016; Clarke et al., 2018). In our context, plant DNA and pollen records provided very similar stories, but essentially for taxa associated with agricultural and pastoral activities, i.e., for taxa growing in open areas and where soils are worked, trampled and therefore are more exposed to erosion processes. In contrast, for trees and shrubs, i.e., in areas where erosion is more reduced, we observed almost no concordance (Supplementary Figure 4). It has been demonstrated that extracellular DNA (i.e., the DNA fraction targeted in the study) is quickly bound to particles such as clays, which protects the molecules from microbial degradation (Blum et al., 1997; Kanbar et al., 2020). This mechanism means that we can expect to find good DNA records, in terms of spatial representativeness, in erosive contexts and periods (Giguet-Covex et al., 2019). In contrast, in forested areas (and during forested periods) where erosion is more limited, a poor spatial representativeness of taxa is to be expected which explains the poor similarities between the DNA and pollen records for several forest taxa. Moreover, the proportion of forested lands may be underestimated by the proportion of DNA reads from trees and shrubs. This assumption is verified at least for the most recent sample (25% in the 1990s compared to the 55% shown by the Corine land cover data, see Figure 1), where pollen analysis revealed 70% arboreal pollen (a bit overestimated).

Given the taphonomic processes outlined above and because the landscape and erosion dynamic can change markedly, especially in man-made contexts, changes in tree/shrub taxa compositions must be interpreted with caution, while the evolution of anthropogenic taxa can be considered as robust. However, while it is difficult to use DNA as a proxy of tree cover, it can be very useful for confirming the presence of a specific tree/shrub taxon in a watershed. Indeed, taxa detected by DNA are necessarily present in the catchment area and probably close to the lake border and main tributaries (especially riparian species) (Sjögren et al., 2017; Alsos et al., 2018) and at the edges of open areas.

In contrast to sedaDNA data and as shown for the most recent sample, percentages of tree and shrub pollen grains are often overestimated relative to the real forest cover. This phenomenon is accentuated when the landscape becomes more open because of the increase in long-distance pollen inputs (Crump et al., 2019). Indeed, because most tree pollen grains are transported by winds, the eternal question is: is the pollen the echo of a regional vegetation pattern or of local changes? This obstacle can be overcome with different approaches. When they are preserved in lake sediment, the macrofossil remains, combined with pollen can help to disentangle local and regional vegetation. Another solution would be to use current modeling approaches to modulate the overrepresentation of tree pollen, based on pollen productivity estimates (Sugita, 2007a,b). The overestimation of the forest cover in pollen assemblages is accentuated by the poor representation (or the absence) of low pollen-producing entomophilous taxa such as forbes (Clarke et al., 2018). However, these entomophilous taxa are better represented in lake sedaDNA datasets (Parducci et al., 2017; Clarke et al., 2018, etc.). They are also often key ecological taxa or informative taxa relating to agricultural or pastoral activities and practices.



New Insights Into Paleoecological Interpretations and Human History Based on the Combination of Pollen and DNA Analyses

The different abilities of DNA, coprophilous fungal spores and pollen grains to mirror the development of trees, crops, vegetable cultivation and pastoral activities, makes their combination particularly effective for the reconstruction of past human activities and impacts.

The ability of DNA analysis to detect entomophilous taxa is a major bonus in paleoecological studies. It offers the opportunity to identify cultivated fruit trees, such as Prunus sp. (potentially plums and or cherries) and Maleae (potentially apple and/or pear). For instance, in the Aiguebelette record, the development of orchards is highlighted during medieval times and in the modern period (Figure 8). While Vitis was not identified through pollen analysis, numerous DNA sequences of Vitaceae are recorded for the Middle Ages (Figure 8).

DNA analysis also offers a new perspective for the identification of vegetable crops, such as beans. At Aiguebelette, this allows us to identify the local cultivation of Vicia faba from 1050 cal CE and Pisum sp. from 1350 cal CE (Figure 8). The present study brings to light this cultivation for the first time in a natural archive. It is worth noting that this interpretation of our dataset is consistent with documented medieval practices (Colardelle and Verdel, 1993; Ruas, 1997; Ferault and Le Chatelier, 2012). DNA approaches also allow the detection of new species, such as Apium graveolens, Beta vulgaris, Cynara cardunculus or Phaseolus sp, from 1900 cal CE in local cultivation.

In many pollen records from Western Europe, the Cannabis/Humulus pollen type is widely recorded from the last two millennia (Doyen, 2012). Most of the time, it is interpreted as the signal of hemp cultivation, but actually it is not easy to determine whether it reflects the growing of hemp and/or hops. This question can be resolved using DNA analysis because the technique allows us to distinguish between Humulus sp. and Cannabis sp. In the Aiguebelette sequence, the DNA analysis confirms that the high percentages of Cannabis/Humulus pollen type from 1050 cal CE reflect hemp cultivation (and certainly hemp retting in lake water). At the same time, the DNA analyses also demonstrate an important increase in Humulus (Figure 8), revealing that hops were grown too, probably for brewing. An identical decline in Cannabis/Humulus pollen percentages and Cannabis sp. DNA is concomitantly recorded from approximately 1850 cal CE and reflects the cessation of hemp cultivation in the watershed.

In paleoecological studies, cereal growing is usually recorded by two pollen types, namely “Cerealia-type” and “Secale-type.” Unfortunately, the plant DNA primers used for amplifications are not sufficiently resolutive for the Poaceae family (Yoccoz et al., 2012; Parducci et al., 2017), which means that the information provided by DNA about cereal cultivation is very limited. That represents a real weakness of sedaDNA analysis based on the gh primer, but this could be overcome by using a Poaceae-specific primer targeting the internal transcribed spacer region 1 (ITS1) of nuclear ribosomal DNA (Ait Baamrane et al., 2012; De Barba et al., 2014). Nevertheless, DNA approaches highlight the cultivation of more sporadically cultivated plants such as Avena sp. (oat) and Fagopyrum sp. (buckwheat), which display their highest values between 1650 and 1850 cal CE at Aiguebelette.

The evolution of pastoral pressure is generally described in pollen diagrams using the evolution of several herbaceous taxa, combining apophytes directly favored by pastoralism (Plantago lanceolata, Rumex acetosella, etc.) and other taxa which contribute to both pasture and hay meadows (Poaceae, Anthemideae, Cichorioideae, etc.). The analysis of strict coprophilous fungal spores (i.e., Sporormiella sp., Podospora sp.) archived in lacustrine sediments provides a more specific and very useful indicator of the abundance of herds at the watershed scale (Etienne et al., 2013). The DNA analysis is fully complementary as it provides information about the livestock composition (Giguet-Covex et al., 2014). In the Aiguebelette sequence, the pollen curves of Plantago and Rumex reveal that grazing occurred throughout the record but they do not allow us to identify specific periods of increasing pastoralism, except for the last century (Figure 6). However, the curve of Sporormiella concentrations and accumulation rates, and mammal DNA from cattle and pigs match well and highlight phases of intensified livestock farming which are discussed below (Figure 9).
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FIGURE 9. Synthesis of human and environmental histories recorded at Aiguebelette (this study) and regional climatic variations based on tree ring analysis (Büntgen et al., 2011).




Multi-Proxy and Multi-Record Approaches for a More Comprehensive History of Land-Use in Perialpine Areas

Pollen studies have been performed on two lake systems located only a few tens of kilometers away from Lake Aiguebelette within the same geographical and geomorphological context (Supplementary Figure 5): Lake Moras (43 km, Doyen et al., 2013) and Lake Paladru (20 km, Doyen et al., 2016). These three records (including Aiguebelette) display similar dynamics for the main tree taxa, as well as for the main agricultural and pastoral pollen indicators (Figure 10). These similarities can be explained by two main hypotheses: (i) the three lakes record the same regional pollen deposition due to overlapping RSAP (Relevant Source Area of Pollen) and their fairly large lake surface areas; (ii) the local environmental dynamics, agro-pastoral activities and socio-cultural histories were very similar within this small geographical region (i.e., they had similar trajectories).
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FIGURE 10. A compilation of key pollen taxa curves from 3 records: Aiguebelette (curve A), Paladru (curve P) and Moras (curve M). (Plantago lanceolata pollen curve is 4x exaggerated in light orange).


The aim of the following sections is to put into perspective the history of the vegetation and anthropogenic activities in this area based on the pollen records from lakes Paladru, Moras and Aiguebelette, and to potentially identify the local specificities of the Aiguebelette socio-ecosystem trajectory. In that context, analyzing DNA and coprophilous fungal spores, as well as sedimentary processes ongoing in the Aiguebelette watershed, is particularly relevant for deciphering the local history of the Aiguebelette basin. This combination of data will also help us to discuss the role of cultural and climatic forcing on the erosion dynamic in the watershed of Lake Aiguebelette.


The End of the Roman Period, Late Antiquity (150–500 cal CE)

The three pollen sequences record a decline in agriculture and an increase in tree cover (Figure 10). The DNA record from Aiguebelette reflects the same trend at the local scale and provides new data on what crops were declining in the area. Indeed, the DNA reveals the existence of orchards (apples or pears and plum or cherry trees) and the cultivation of broad beans (Vicia faba) and probably hops, during Antiquity, but all declined from the IInd century (Figure 9). Like the pollen records, the DNA data from Aiguebelette records a recovery of forests, probably due to a decrease in human impact. The rise in pioneer trees, such as Betula and Alnus, recorded by pollen, probably indicates the recolonization of abandoned pastures, attested to by the decline in Poaceae and taxa associated with pastures (Plantago, Rumex and Urtica in pollen and DNA records, Supplementary Figure 3). This phase of low human activity and forest recovery is accompanied by low detrital inputs as shown by low ln(Ti/Ca) and ln(Sr/Ca) and low silicated detrital flux (Figure 9). However, a small increase in ln(Zr/Ti), which represents a proxy of the silicated coarse detrital inputs, is recorded and may have been caused by the increase in precipitation recorded in Europe (Figure 9; Büntgen et al., 2011).

In the western Alps, the period of prosperity, characteristic of classical Antiquity (e.g., several sites have been identified to the south of Lake Aiguebelette, Nieloud-Muller, 2019), is followed by a phase of declining human impact and reforestation (Giguet-Covex et al., 2011, 2014; Doyen et al., 2013; Bajard et al., 2016). It is also well-recognized in other pollen records from the perialpine region (Clerc, 1988), as well as from other regions of the Alps. On the Swiss Plateau, pollen studies document a reduction in agricultural activities around the VIth century, accompanied by a short period of renaturation (Tinner et al., 1996, 2003). In Western Europe, this phase is a period of political turmoil, corresponding to the demise of the Roman Empire and the “Barbarian invasions,” also called the “Migration Period.” It is sometimes considered to be the greatest historical crisis to have occurred in central Europe. This socio-economic destabilization implied a reduced anthropogenic impact on the vegetation due to less farming activity and reduced tree harvesting (Rösch, 1992; McCormick, 2001). Additional hypotheses (other than socio-economic) have already been proposed to explain the decline in farming. Among these, the decrease in temperature and the rise of precipitation, from the mid-IIIrd century to the VIth century (Büntgen et al., 2011), could have significantly impacted agricultural production (Figure 10). An additional cause of the general degradation of production conditions might be the over-exploitation of farmland from the late Iron Age to the end of the Roman empire, which in turn would have generated the first major destabilization of the arable lands by erosion (Giguet-Covex et al., 2011, 2014; Doyen et al., 2013; Arnaud et al., 2016; Bajard et al., 2016).



Beginning of the Middle Ages (500–1000 cal CE)

In the three regional pollen records (Figure 10), the pollen values for grasses (and to a lesser extent for Plantago and Rumex) reflect an intensification of grazing. The local pastoral activity is confirmed at Aiguebelette by the DNA values of Plantago and Rumex, by the reappearance of coprophilous fungus spores (Sporormiella, Figure 9), and by a small increase in the detection of Bos taurus, all highlighting greater pastoral pressure in the watershed. This phase is also characterized by a similar decreasing pattern for Alnus pollen curves for the three regional records (a decrease from 500 to 650 cal CE, an increase from 650 to 800 cal CE and a main decrease from 800 to 950 cal CE) that could be interpreted as the result of human impact on wetlands and lake edges occupied by alder. It should be noted that the variations in Alnus are not easy to interpret because this tree grows in specific areas (swamps on waterlogged soils) directly connected to the lake. The very high quantity of Alnus DNA reads all along the sequence (higher values among all taxa, Supplementary Figure 2) reflects this specific situation. However, the DNA data records a slight decrease in Alnus reads from 800 to 1000 cal CE (Figure 8), probably confirming the decline of Alnus in the Aiguebelette watershed. In the pollen records, other trees such as Fagus and Quercus (Figure 6) are not affected by deforestation at this time, showing that it is possible that the humid lowlands previously occupied by Alnus may have been subjected to human pressure. The decline of swamps due to human impact has already been observed in the region (Clerc, 1988; Bernigaud, 2012). These areas could have been used for cultivation and pastures and probably to manage hay meadows, because of their waterlogged soils (Mazoyer and Roudart, 1997).

At the same time, the rise of both Cerealia and Secale reflects the development of cereal cultivation. A similar increase in cultivation has been observed in the Early Middle Ages on the Swiss Plateau (Tinner et al., 2003; Soepboer et al., 2010). The diversification of farming activities is attested by the DNA record which reveals the growing of fruit trees, such as apple and/or pear, plum and/or cherry and walnut trees, in the Aiguebelette area. Viticulture also developed during this phase. According to pollen records (Figure 6), it seems that walnut trees were cultivated in the region. The DNA data from Aiguebelette display significant values for Juglandaceae confirming local cultivation of walnut. The end of this phase (700–1000 cal CE) is characterized in all three pollen diagrams by an important re-extension of alder groves. This marked increase in Alnus could reflect the decline in human activities in the lowlands (Berger, 2010; Bernigaud, 2012), allowing the rise in Alnus.

Between 550 and 800 cal CE, i.e., during the maxima of landscape opening and farming activities, a first and low increase in erosion is evidenced principally by ln(Ti/Ca) (Figure 9). This phenomenon is also recorded at lakes Paladru (Simonneau et al., 2013; Doyen et al., 2016) and Annecy (Jones et al., 2013) and may have been slightly accentuated by a trend of increasing summer precipitation as reconstructed from tree rings in central Europe (see Figure 9, Büntgen et al., 2011).



From 1000 to 1350 cal CE, the End of the Middle Ages

From 1000 cal CE, the three regional pollen sequences show a diversification of farming practices, with the development of cereal and hemp growing (Figure 10). The DNA analysis at Aiguebelette also shows an important increase in Cannabis and Humulus, revealing that hemp was widely cultivated for textiles and was processed (retting) at Aiguebelette. DNA data show that hops were also abundant. The DNA from Humulus could come from natural hops growing in the surrounding wetlands, but its significant presence in the record could also reflect its cultivation for brewing. The production of beer during the Middle Age is already well known from historical archives (Poelmans and Swinnen, 2011).

The rise of Plantago, Rumex and Poaceae in pollen diagrams can be interpreted as the result of the expansion of pastoral activities. Both Plantago and Rumex, but mostly Urtica, are well-recorded by DNA analysis (Supplementary Figure 3). The Sporormiella accumulation rates (Figure 9) and the records of cow and pig DNA, which increase progressively up to a maximum value recorded at 1350 cal CE, confirm the importance of livestock farming activities at the end of this period in the Aiguebelette watershed.

The DNA record attests to the cultivation of various fruit trees, including walnuts, apples and/or pears, plums and/or cherries, grapes and chestnuts (Figure 8). Today grapes are not grown in the Aiguebelette area, but the historical existence of grapevines in Savoie is well-documented in written records relating to monastic and castle lands. These sources suggest an expansion of this activity before the XIIth century in some areas like the Combe de Savoie and the upper Arve Valley (Passy) (Soudan, 1978; Mouthon and Carrier, 2010). Grapevines were often planted alongside fruit trees, especially chestnuts, which acted as trellises or were planted with other trees to form hedges. Vitaceae DNA has also been detected in another nearby catchment, but at a higher altitude, between the XIth and XVIIth centuries (La Thuile in Bauges Massif; Bajard et al., 2017). The DNA record in Aiguebelette also shows the cultivation of fava beans (Figure 8). This result agrees with the medieval practice of legume growing (Colardelle and Verdel, 1993; Ruas, 1997; Ferault and Le Chatelier, 2012). The records for grape, hemp, cereals, hops, legumes and fruit trees reveal a transition toward a polyculture mode of farming in the Aiguebelette basin from the High Middle Ages onward.

At that time, all of these activities had an impact not only at the local scale (decrease in the DNA from trees and shrubs, Figure 9) but also affected regional forests. Indeed, the sum of tree pollen recorded in the three pollen sequences reflects an overall decrease in tree cover. At the regional scale, beech seems to have been considerably impacted by deforestation as early as 1050 cal CE (Figure 10). The abrupt decrease in the Alnus pollen curve, recorded between 1200 and 1300 cal CE, probably reflects other important forest clearances, but occurring in the lowlands and on the river banks.

From the Xth to the XIth century, the European population grew rapidly (Fossier, 1984), and this demographic explosion induced both an expansion and an intensification of farming activities (Mazoyer and Roudart, 1997; Ferault and Le Chatelier, 2012). The technical advances (plow, three-field rotation system, etc.) introduced to improve production (Leturcq, 2004; Ferault and Le Chatelier, 2012) caused growing disturbance to the environment (Rasmussen, 2005; Enters et al., 2008; Doyen et al., 2013, 2016). These farming activities had an impact on the forests around Aiguebelette, but the exploitation of trees for charcoal production (Crook et al., 2002; Py et al., 2012) and for the construction timber should also be considered. Another impact of the rising human activity is the increase in erosion, as evidenced first by the increase in silicated detrital flux (Figure 9), and then from 1200 cal CE, by the increase in fine silicated particles [ln(Ti/Ca)] as well as coarse particles [carbonated with ln(Sr/Ca) and sometimes silicate with ln(Zr/Ti)]. The contribution of coarse carbonated particles increases markedly for the first time in the record, showing new source(s) of eroded material and suggesting the exploitation of new areas (possibly on sandstone or molasses deposits Figure 1). The marked increase in erosion and the changes in erosion signatures occurred at a time when farming activity was highly developed, as shown by the mammal DNA and Sporormiella sp. records as well as the DNA and pollen indicators for cultivation. In the watershed of lakes Paladru and Annecy, new phases of soil erosion are also recorded (Jones et al., 2013; Simonneau et al., 2013; Doyen et al., 2016). Combined human activities (i.e., opening up of the landscape and agricultural developments) and climatic degradation, which included greater precipitation, undoubtedly contributed to this increase in erosion (Büntgen et al., 2011).



From 1350 to 1900 cal CE

In the regional pollen records, a short agro-pastoral decline occurs from the XIVth century (Figure 10). According to the pollen and DNA data, at Aiguebelette several cultivated plants (cereal, hemp, etc.) were less abundant from 1350 to 1500 cal CE. This period coincides with the recolonization of trees such as Corylus and Alnus and the main rising phase of oak, and also with a phase of decreased erosion as revealed by all geochemical indicators (Figure 10). The decrease in human impact at that time can be attributed to at least three main factors: (1) the effect of the second plague pandemic (Black Death); (2) the political instabilities affecting western Europe in the XIV-XVth centuries; (3) wetter and colder summers during the XIVth century, as attested by tree ring-based climate reconstructions for central Europe (Büntgen et al., 2011).

The next phase, spanning from 1500 to 1900 cal CE, is marked by renewed deforestation and a re-expansion of agro-pastoral activities in pollen diagrams (Figure 6), although it also corresponds to the Little Ice Age (Büntgen et al., 2011). The accumulation rates as well as the concentration of Sporormiella (Figure 9) indicate a constant high level of grazing throughout this period in the Aiguebelette watershed. As regards crop husbandry, cereals were still being grown in the watershed and Pollen and DNA attest to the introduction of buckwheat from around 1650 cal CE (Figures 6, 8). DNA results indicate an increase in fava bean and hemp growing. Both markers show that arboriculture reached its peak (Figures 8, 9). During the XIXth-XXth centuries, the Aiguebelette region was a region of apple production dedicated to fruit exportation (Dagenais, 1939). From 1500 cal CE, the arboreal pollen curves decrease continuously. The lowest values are recorded between the XVIIIth and XIXth centuries. Tree harvesting increased to meet the growing fuel needs of emerging industries.

In this phase, two periods of intense erosion are recorded by the geochemical tracers: from 1500 to 1650 cal CE and from 1700 to 1950 cal CE (Figure 9). These two phases may reflect a response to increased livestock farming, cultivation and summer precipitation (reconstructed from tree-rings in central Europe), especially between 1700 and 1800 cal CE (Büntgen et al., 2011).



From 1900 cal CE to the Present Day

From cal CE 1900 onward, all of the regional pollen records indicate a significant environmental change with an increase in total tree pollen, except for walnut which declines in regional pollen records (Figure 10). The proportion of tree taxa in the DNA records also increases (Figure 9). The number of positive DNA replicates of Juglans is also in decline (Figure 8), confirming the reduction of walnut cultivation in the Aiguebelette watershed. While nut production was progressively disappearing from the Aiguebelette watershed, DNA data show that orchards, composed of cherry or plum and apple trees, were still in activity at the beginning of the XXth century.

The drastic decline in Cannabis in both pollen and DNA records reflects the abandonment of hemp production in the area, a pattern that is also observed in the other pollen records (a bit earlier at Moras). The cultivation of cereals decreases slightly in the pollen records but to a lesser extent around Lake Aiguebelette than around Lake Paladru. Nowadays, the watershed of Aiguebelette is a rural terroir, still exploited, but cereal growing represents only a small portion of the agricultural activity (only 5.65% of the watershed area). The XXth century saw the appearance of new crops in the Aiguebelette area with DNA records revealing the development of vegetable gardens where Phaseolus, Cynara cardunculus, Apium graveolens, Pisum, and Beta vulgaris were grown.

The general decline in cultivation and reforestation observed at Aiguebelette are also recorded in many Alpine and perialpine lakes (Doyen et al., 2013, 2016; Bajard et al., 2016) through pollen and historical documents (Crook et al., 2002; Andrič et al., 2010). The decrease in erosion recorded at Aiguebelette (lowering of all erosion proxies from 1950, Figure 9) is a probable consequence of the lower human impact and of soil reforestation.

While cultivated plants seem to be less represented in regional pollen records, pastoralism indicators such as Rumex and Plantago are still well represented. At Aiguebelette, the mammal DNA (especially cattle) and Sporormiella spores demonstrate the continuation of grazing in the watershed after cal CE 1950. This persistence of grazing agrees with the high values in Poaceae recorded by pollen. This result probably illustrates the cattle rearing that is still a feature of the Aiguebelette area today, with most of the farms in the area being devoted to dairy farming for the production of milk for cheese.





CONCLUSION

This work highlights the excellent complementarity between the analysis of pollen grains, coprophilous fungal spores and environmental DNA and their value for reconstructing the history of vegetation and agropastoral practices. By combining these markers, it has been possible to reconstruct the pace, nature and sometimes the intensity of anthropization in the Lake Aiguebelette watershed over the last 1800 years.

The preliminary geochemical analysis carried out here to better understand the environmental impact of the agro-pastoral activities and climate reveals a pattern of erosion that fits very well with the dynamic of anthropization reconstructed using biotic proxies. A finer analysis of the potential sources of sediments (geochemical characterization of the watershed) would probably help to identify the different areas under human pressure throughout the record.

While the pollen seems to provide a vegetation history very similar to that recorded in two other regional lakes (Moras and Paladru), the results of the DNA analysis provide information on the agricultural activities carried out within the watershed. These results add greatly to our knowledge of the history of this terroir and encourage us to carry out the same type of analysis on the two other sites, to see how the exploitation of their terroirs differed (or not) from that of Aiguebelette.
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Spruce is the most cultivated tree species in modern forestry in Central Europe, since it has the ability to grow on many soil types with profitable biomass accumulation. However, even-aged and uniform spruce forests are affected by recurring droughts and associated biotic stressors leading to large-scale diebacks across Central Europe causing controversies among foresters and nature conservationists. We investigate the role of spruce in historical woodlands by using 15666 spruce timbers from historical buildings and on the basis of pollen-based land cover estimates using the REVEALS model from 157 pollen sites in southern Central Europe. Start and end dates of the spruce timber samples and their dendrological characteristics (age, growth rates and stem diameters) were used to obtain information on past forest structures. Tree rings and REVEALS estimates are combined at a spatial scale of 1° × 1° resolution, grouped in four sub-regions, and a temporal resolution of 100-year time windows starting from 1150 to 1850 CE. We found that spruce dominates the species assemblage of construction timber with almost 41% and that the harvest age varies little through time, whereas a declining trend in growth rates and stem diameters are observed toward times before modern forestry. Temporal and regional differences in spruce abundance and building activity were found highlighting periods of (i) land abandonment and forest expansion in the 14th century, (ii) increased wood consumption during the 16th century due to population increase and beginning industrial developments, (iii) a forest recovery during and after the Thirty years' war, and (iv) afforestation efforts from the 1650s onwards. Furthermore, this study shows that spruce was constantly present in the study area in most studied sub-regions for the last 800 years. We demonstrate the need of combining tree-ring and pollen data to identify spatiotemporal patterns in spruce abundance and utilization.
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INTRODUCTION

Norway spruce (Picea abies (L.) H. Karst.) is considered native to the boreal and subalpine conifer forests and covers mountain regions in Central Europe and vast areas in northern and eastern Europe (Caudullo et al., 2016). Its natural distribution ranges from the Balkan peninsula in the southeast, to the Scandinavian peninsula in the northwest, and east-west from the French Alps to the Ural Mountains. East of the Ural Mountains, Norway spruce (Picea abies spp. abies) is replaced by Siberian spruce (Picea abies spp. obovata), however, hybrid forms exist. In the Balkan peninsula, Serbian spruce (Picea omorika (Pančić) Purk.) is endemic and occurs in small populations in Serbia and Bosnia and Herzegovina.

In Europe, Norway spruce naturally dominates forests in the montane and subalpine zones. The altitudinal range spans from sea level in northern and eastern Europe to above 2300 m above sea level (asl) in the Italian Alps (Jansson et al., 2013). Spruce can grow and achieve good yields and high wood qualities at different site conditions and soil types but it is mostly found on acidic soils. However, the species prefers deep nutrient-rich and moist soils. It can occur as a pioneer species and as a partially shade-tolerant species it can be a natural main or secondary tree species. Spruce can compete with Scots pine (Pinus sylvestris L.) on dry conditions, European beech (Fagus sylvatica L.) and European silver fir (Abies alba Mill.) on cool conditions at mid elevations (800–1800 m asl), and with European larch (Larix decidua Mill.) and Swiss stone pine (Pinus cembra L.) at high elevations (1800–2100 m asl) (Caudullo et al., 2016).

Norway spruce likely spread from two late-glacial refugia, one in western Russia (region of Moscow) and one in the Alps and the Carpathians (Huntley and Birks, 1983), toward Fennoscandia (Russian population), and toward western and northern Europe (eastern European population), respectively (Björkman, 1996; Giesecke and Bennett, 2004; Seppä et al., 2009; Jansson et al., 2013; Giesecke et al., 2017). For the regions of Bavaria, southern Germany, and Bohemia, Czech Republic, first Holocene pollen of Norway spruce (and hereafter referred to as spruce) were recorded 10500 to 10000 years ago at high elevations (> 900 m asl), whereas the species appeared to be dominant in the forests at high- and mid-elevations (ca. 700–900 m asl) over the past 9000 years (Carter et al., 2018). According to pollen-based land cover models and in particular the REVEALS model (Sugita, 2007; see method chapter), the abundance of spruce in the Bohemian and Bavarian Forests increased to more than 50% of the total regional land-cover from 9000 cal. years BP (Carter et al., 2018). In southernmost Germany, at the borders between Germany, Austria and Switzerland, the grid-based REVEALS reconstructions show a regular increase of spruce abundance to 17% at about 6700–7200 cal. years BP (see grid 4 in Marquer et al., 2017). This is further supported by the work from Burga and Hussendörfer (2001) who first observed spruce pollen between 7500–6500 cal. BP in eastern Switzerland, and from Latałowa and van der Knaap (2006) who recorded the first spruce pollen from 7000–6000 cal. years BP in south-western Germany (southern Black Forest) and north-eastern Switzerland (Thurgau). In the southern Black Forest first pollen evidence starts 9000 BP, together with silver fir and beech, but spruce became a minor component of the forest after 3000 BP (Knopf et al., 2019). REVEALS reconstructions also show relatively low abundances (maximum of ca. 8 %) of spruce through the Holocene for the southern Black Forest and northern Switzerland (Marquer et al., 2017, grid 5) and the central and northern Black Forest (Marquer et al., 2017, grid 3), except for the last centuries when the abundances greatly increased (Marquer et al., 2017). Traditional pollen data demonstrate that the species colonized central and western Switzerland (south-western Jura mountains) at around 4500 cal. BP (Burga and Hussendörfer, 2001) while at the same time, it further expanded to central and eastern Germany (6000–5000 BP) (Latałowa and van der Knaap, 2006). During 3000–2000 BP it was established in the Vosges Mountain, France (Kalis, 1984; Burga and Hussendörfer, 2001; Latałowa and van der Knaap, 2006). In the northern Black Forest, spruce expanded much later, after the late medieval period (Rösch, 2012), whereas in the eastern Black Forest with a rather continental climate, spruce was established before silver fir and beech but was later replaced by those (Sudhaus, 2005). During 1000–0 BP the species was found in western Germany, Luxemburg, eastern Belgium, and northern Germany and only low occurrences throughout were observed in northern and eastern Germany, Poland, Denmark, Belgium (Latałowa and van der Knaap, 2006). Lang (1994) estimated for spruce a general migration rate of 60 to 130 meters per year. So far, our understanding of the history of spruce abundance mainly relies on traditional qualitative pollen data and only a few REVEALS reconstructions, which more realistically captures plant abundance in landscapes (Marquer et al., 2014).

In Central Europe, especially in Germany, spruce has been cultivated since the beginning of the 18th century and planted outside its natural distribution range in the lowlands (Spiecker, 2003; Jansen et al., 2017; Schmidt, 2017), which lead to a transformation of natural forests (Jansson et al., 2013). Nevertheless, a planned afforestation of coniferous species, including spruce, was conducted around Nuremberg (Bavaria) in as early as the 14th century (Warde, 2006; Enderle et al., 2021). Systematic large-scale spruce afforestation, however, was practiced from the 19th century onwards (Schmidt-Vogt, 1977; Schmidt, 2017).

Spruce wood has favorable mechanical properties such as good strength and elasticity, in relation to its low weight (mean density is 470 kg/m3) (e.g., Karopka, 2017). It is therefore suitable for a variety of purposes from construction timber to the production of furniture and instruments. With its long fibers (tracheids), it is furthermore important for manufacturing paper of high strength. This universal use in tandem with its fast growth made spruce the most commonly planted tree species in many European regions. Today, the importance of spruce in future silviculture is intensively discussed since the species suffers severely under recent climate change.

To better understand the history of spruce quantitative information are needed. For this purpose, new REVEALS reconstructions with a higher temporal resolution have been performed at a grid cell scale of one degree for southern Germany, north-eastern France, northern Switzerland, Austria, northern Italy, and western Czech Republic (Supplementary Figure S1) for centennial time windows. Results were compared with tree-ring data, i.e., start and end dates and tree growth characteristics, of absolutely dated spruce timber. This combination of tree rings and REVEALS reconstructions aims at providing new insights about a long-term context of spruce abundance and distribution, and its role in Central European forests in terms of forest structure and wood utilization.



MATERIALS AND METHODS


Tree-Ring Data

We compiled 18031 dendrochronologically dated and georeferenced spruce timber samples, predominantly from historical buildings, covering areas within and outside the present species' natural distribution range in southern Germany, Switzerland and north-eastern France (Figure 1). From this data, we used start dates, the year of the first measured ring, and end dates, which is the year of the last measured ring. End dates were used as the majority corresponds to felling dates, that is, the last measured ring has a waney edge, and thus is the last formed ring before tree felling (Supplementary Figure S2). From this compilation, a total of 15666 end dates cover the 1150–1850 period and the region 7° to 13° E and 47° to 51°N, which were used for further analysis. We assume that the majority of the utilized spruce trees originate from regional forests. The study period is restricted to 1150–1850 due to insufficient and thus non-representative data replication before and after this time span.


[image: Figure 1]
FIGURE 1. (A) Location of spruce tree-ring (turquois dots) and pollen data (black dots) used in this study. The elevation map (see legend for color) is superimposed by the natural distribution of Norway spruce (Picea abies) (orange areas) (source: http://www.euforgen.org/species/picea-abies/). (B) Start dates and (C) end dates with significant shifts in their temporal distribution (regime shifts) from historical spruce timber for the region within (orange bars, yellow line) and outside (gray bars, black line) the natural distribution of spruce. (D) Main tree species used as timber in constructions during the period 1150 – 1850.


To demonstrate the significance of spruce for construction wood, the end dates of all other important timber species for the same region and period (4086 pines, 9212 firs, 9315 oaks and 33 beech trees) were used for comparison.

Start and end dates were aggregated into periods of 100 years for comparison with the pollen-based land cover data. All data were made available by the authors whereas the data compilation for spruce was complemented with tree-ring data from Wilson et al. (2004), which was accessed from the International Tree-Ring Databank (ITRDB).



REVEALS: Pollen-Based Vegetation Estimates

The study area covers similar regions as the temporally continuous Holocene REVEALS reconstructions for Europe published by Marquer et al. (2017) and more recently by Githumbi et al. (2021). These reconstructions provide quantitative estimates of the regional plant abundance based on pollen records at a 1° × 1° spatial scale and for time slices of 500 years, except for the three most recent time slices covering the last 700 years. For a comparison with information based on tree rings (annual resolution), the temporal resolution of the pollen-based reconstructions should be increased (i.e., smaller time slices). Several tests have been performed to get a good compromise between an increase of the temporal resolution and a reliable pollen count per time slices. The higher the pollen count is, the lower the uncertainties in the REVEALS reconstructions are. The results show that an increase of the temporal resolution from 500 years to 100 years is reasonable. The minimum number of pollen grains per time slice is 400.

For the REVEALS runs, we used 157 pollen records (see Supplementary Table) selected from the NEOTOMA database (https://www.neotomadb.org/) and European Pollen Database (http://www.europeanpollendatabase.net/index.php). These pollen archives were grouped into 31 grid-cells of 1° × 1° (Supplementary Figure S1). REVEALS has been applied at a temporal resolution of 100 years per time slice for the last 2000 years. We considered 25 plant taxa and all available pollen records (mainly from lakes, bogs and mires) distributed within the 1° × 1° area of each grid. Note that pollen records from multiple sites (lakes or bogs; small and large) are suitable for reliable REVEALS reconstructions (Trondman et al., 2016). The age-depth models are all published and the site selection included the presence of a minimum of three radiocarbon dates. The radiocarbon dates can be situated within the time interval 1150 to 1850 and/or a larger time interval. In general, the higher the number of dates to build an age-depth model, the better the chronology is. All chronologies are transformed to years CE/BCE for the comparison with the tree-ring data.

The aim of the REVEALS model is to correct the non-linear nature of pollen-vegetation relationships when expressed as percentages, by considering the inter-taxonomic differences in pollen productivity, dispersal, and depositional characteristics. The methodological protocol for running REVEALS follows the ones used in the LANDCLIM I and II projects (Gaillard et al., 2010; Trondman et al., 2015; Marquer et al., 2017; Githumbi et al., 2021). The Relative Pollen Productivity estimates and Fall Speeds of Pollen used for the 25 plant taxa are those of the standard 2 published by Mazier et al. (2012) (Table 1). The spatial extent of the reconstruction (Z max) is fixed at 50 km radius around the central point of each grid cell, mean wind speed is 3 m/s, atmospheric conditions are defined as neutral (no turbulences) and a Gaussian Plume Model (GPM) is used as pollen dispersal model. The pros and cons of using a GPM as dispersal scheme for pollen can be found in Marquer et al. (2020). The resulting REVEALS estimates are the plant abundance of each of the 25 plant taxa expressed as proportion of the total land cover for each grid, the related standard errors are also provided by REVEALS. We used the REVEALS model version LRA.REVEALS.v6.2.4.exe (Sugita, unpublished).


Table 1. Taxa and groups of taxa used for the REVEALS reconstructions.
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Statistics and Comparative Analysis

The locations of the tree-ring spruce data were mapped using ArcGIS 10.6 (ESRI, 2017). The numbers of the dendrochronologically obtained start and end dates for each timber were aggregated for each year from 1150 to 1850. For the two sub-sets of data, i.e. within and outside the species' distribution limit, significant temporal changes in the number of start and end dates were assessed by using the sequential algorithm developed by Rodionov (2004, 2006), which considers autocorrelation and significant shifts at the 95% significance level. The Regime test shift software (version 6-2) is a macro code which runs in an Excel environment. Shifts, i.e., changes in trends, are identified using a cut-off length of 50 years by excluding the 10 first and last years of each series.

To investigate past forest structures and harvest times, the mean tree age, the average growth rates (AGR), and mean tree diameter were calculated using the tree-ring width information of each timber. It has to be noted that the exact location of the sampling within the stem is unknown in historical material.

For the comparison, REVEALS estimates, as well as start and end dates of the spruce tree-ring data were mapped with a grid resolution of 1° × 1° for 100-year periods from 1150 to 1850 CE. Since the spatial distribution of the REVEALS estimates and tree-ring data do not entirely overlap (see Figure 1), we grouped the data into four larger sub-regions, enabling a direct comparison. For the four sub-regions (Northwest: 7°-10°E, 49°-51°N; Northeast: 10°-13°E, 49°-51°N; Southwest: 7°-10°E, 47°-49°N; Southeast: 10°-13°E, 47°-49°N) and the entire study region, REVEALS land-cover categories have been defined and end dates for the main construction timbers were calculated for 100-year periods beginning at 1,050 CE.

The REVEALS land-cover categories are spruce (Picea), other conifers (Abies, Pinus and Juniperus), broadleaves (Alnus, Betula, Carpinus, Corylus, Fagus, Fraxinus, Quercus, Salix, Tilia, Ulmus), open land (Artemisia, Calluna, Cyperaceae, Filipendula, Gramineae, Plantago lancelota, Plantago media, Plantago montana, Rumex acetosa) and arable land (Cerealia, Secale). We use the pollen types Picea, as it is not possible to identify the different species within this genus based on pollen morphology. However, as Picea abies is the only species present in our study region, it can be assumed that the pollen type Picea refers to Picea abies. Regarding tree-ring data, while spruce was kept separately, we developed the category conifers comprising of fir and pine and broadleaved species which includes predominantly oak and a few beech samples.




RESULTS


Spatiotemporal Variations in Spruce Construction Timber

Within the study area, the majority of spruce tree-ring samples were obtained for southern Germany (southern Baden-Württemberg and Bavaria), and northern Switzerland with clusters around Basel, Zurich and Lake Constance, and north-eastern Switzerland (Figure 1A). The number of spruce timbers used for buildings slightly increased from the beginning of the 15th century, in particular outside its natural range, and remained stable until around the 1520s (Figures 1B,C). A new increase in the spruce utilization followed until the Thirty years' war (1618–1648), after which spruce as construction material was highly abundant. Generally, a higher number of spruce samples were recorded outside compared to within its natural distribution range. The general trends in construction activity are similar and the number of end dates lag by a few decades the number of start dates (Figures 1B,C). Following the period after the Black Death (1347–1351), an increase in the establishment of spruce can be observed particularly outside its natural distribution, which lasted about 50 years. An increase in spruce establishment occurred after ca. 1450, which remained high outside the species' distribution until the 1600s (Figure 1B). During the Thirty years' war, a reforestation occurred resulting in an increase in the spruce establishment across the entire study region.

Comparing the different species used in constructions from 1150 to 1850, spruce dominated the entire dendrochronological dataset with 40.9% (Figure 1D). Other frequently used species for construction in southern Germany and northern Switzerland were oak and fir with almost identical proportions of 24.3 and 24%, respectively, followed by pine (10.7%) and only few beech timbers (0.1%). Conifer wood (75.6%) clearly outweighed deciduous species (24.4%) in construction timber throughout the study period.



Spatiotemporal Variations in Spruce Timber Quality

For the entire study region, the utilized timber showed similar median (maximum) ages throughout the period 1150 to 1850 ranging from 70 (150) years during the period 1150–1250 to 62 (120) years during the period 1750–1850 (Figure 2A). For the period 1350–1450, the youngest spruce trees with a median (maximum) age of 55 (98) years were harvested. During this period, also the highest mean AGR (2.2 mm/year) was observed, whereas growth rates were otherwise constant from 1250 onwards (mean AGR during 1250–1850 is 1.9 mm/year) (Figure 2B). Only during the period 1150–1250, spruce grew on average 1.2 mm per year. Also, mean stem diameters are lowest (18.5 cm) during that early but low replicated period (Figure 2C). A general decreasing trend in median (maximum) stem diameter is found from 25.1 (44.5) cm during 1250–1350 to 22.7 (37.4) cm during 1750–1850.
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FIGURE 2. Temporal distribution of (A) tree age, (B) average growth rates (AGR), and (C) tree diameter for the dendrochronologically dated spruce timber shown for 100-year periods and for the four sub-regions [northwest (NW), northeast (NE), southwest (SW) and southeast (SE)] and the entire study region. Numbers of spruce samples for each 100-year period is indicated by numbers (in italic) in (C).


There are regional differences in mean tree age, AGR and mean tree diameter across the sub-regions and periods. For the north-western sub-region, except for the early 1350–1450 period, mean tree ages likely increased from 58 years from 1450–1550 to about 70 years during 1650–1850. This coincided with a general decreasing trend in mean AGR from 2 (1350–1450) to 1.65 mm/year (1750–1850), whereas the mean stem diameters remained at a constant level of about 21.6 cm (mean for 1350–1850).

For the north-eastern sub-region, mean tree ages remained stable during the period 1250–1850 with lowest ages during 1350–1450 (median of 56 years, maximum of 98 years) and highest ages during 1750–1850 (median of 71 years, maximum of 134 years). At the same time, mean (to a lesser extent also median) AGR values are slightly declining from 2.1 mm/year (1250–1350) to 1.8 mm/year (1750–1850). Median (maximum) stem diameters are constant throughout at ca. 22 (36) cm except for the early 1250–1350 period (median of 25.4 cm).

Similar trends as for the entire region are observed for the south-western sub-region. Here too, median (and maximum) ages for the spruce timbers were found to be declining from the period 1250–1350 (median 60 years, maximum 133 years) toward the period 1750–1850 (median of 56 years, maximum of 99 years). Mean AGR is increasing from the period 1150–1250 (1.1 mm/year) to the period 1350–1450 (2.5 mm/year) and subsequently declining until 1750–1850 (2.1 mm/year). Except for the period 1150–1250, mean stem diameters become smaller from the period 1250–1350 (26 cm) to the period 1750–1850 (23 cm).

For the south-eastern sub-region, except for the early periods from 1150 to 1350 where an increase in mean (median) age of up 124 (108) years, a comparable low mean (median) AGR of 1.2 (1) mm/year, and increasing mean (median) stem diameters of 25.7 (25) cm are observed, the timber properties barely vary until 1850 (mean age = 66 years, mean AGR = 1.9 mm/year, mean stem diameter = 23.8 cm) (Figures 2A–C).



Temporal Changes in Spruce Cover and Building Activities

REVEALS estimates for spruce and the main land cover categories are compared to spruce utilization (i.e., end dates of the dated timber) for the study area and four sub-regions from 1050 to 1950 (Figure 3). Regarding the entire study region, spruce abundance varies between 10 and 15% of the total regional land cover from 1050 onwards, whereas an increase in the last 200 years is observed (Figure 3B). At the same time, abundances of other coniferous and broadleaved trees show a declining trend from almost 60% to ca. 35% while areas of open land increased from ca. 30 to 50% (Figure 3B). Arable land varied slightly over time and decreased between 1850 and 1950. Regarding the tree-ring data, an increase in the number of end dates is observed for all species from 1250 onwards, whereas spruce accounts for almost half of all timber. A strong increase in the number of timbers is found from 1650 onwards.


[image: Figure 3]
FIGURE 3. (A) Study area and its four sub-regions [northwest (NW), northeast (NE), southwest (SW) and southeast (SE)] for which (B–F) REVEALS estimates for spruce (left panels) are compared to the number of end dates from dendrochronologically dated spruce timber (right panels). REVEALS estimates for other coniferous and broadleaved plant covers, open land and arable land are also shown.


Taking regional variations into account, different trends can be observed for the four sub-regions (Figures 3C–F). For the north-western sub-region, spruce abundance and spruce timber was not found prior to 1550 (Figure 3C), whereas increasing building activity was recorded from 1250 onwards. Other coniferous and broadleaved species were used as building material in this region which is generally dominated by open and agricultural land cover.

The north-eastern sub-region displays strong changes in the vegetation cover from over 70% forest cover during 1050–1150 to ca. 80% open land during 1850–1950 (Figure 3D). Only during the period 1550–1650, the open land vegetation has almost the same extent as during the most recent period with ca. 60%. Agricultural activity showed a steady increase until 1750–1850 and decreased to ca. 5% during 1850–1950. Spruce timber was first used during the 1250–1350 period in low quantities (47 samples), followed by a continuous utilization as construction timber in buildings until 1850. After the Thirty years' war, the spruce consumption almost doubled, whereas spruce timber accounted for circa half of all other tree species.

In the south-western sub-region of the study area including the Black Forest and northern Switzerland, the forest cover remained rather stable over time with its lowest extent during 1650–1750 (Figure 3E). The forest species composition changed, however, and the abundance of deciduous trees declined from ca. 30% during 1050–1150 to 20% during 1850–1950 while conifers increased from ca. 37 to 49% at the same time. The extent of the open and agricultural areas varied only slightly. The abundance of spruce doubled from 1650–1750 to 1850–1950. The amount of spruce among construction timber was low in the 1250–1350 period but sharply increased already during the 1350–1450 period. Spruce made up ca. 30% of all construction timber until 1650–1750 and ca. half of it during the 1750–1850 period.

For the south-eastern sub-region, a declining trend in spruce cover was found from ca. 19% during 1050–1150 to around 13% during 1850–1950, which was accompanied by a decrease of the other coniferous and broadleaved trees, though less evenly, and an increasing trend in the extend of open land (Figure 3F). An increase in open land appeared to be severe particularly during 1250–1350, 1650–1750, and 1750–1850. From 1650 onwards, a sudden increase in spruce consumption is found in the tree-ring data, which accounted for ca. 85% of all timber since then.



Spatiotemporal Distribution of Spruce Abundances in Land Cover and Constructions

Gridded maps for seven 100-year periods from 1150 to 1850 show the abundance of spruce cover in comparison to arable land, the establishment of spruce trees in forests based on start dates, and the utilization of spruce trees for construction based on end dates (Figure 4).
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FIGURE 4. Gridded maps for seven 100-year periods from 1150 to 1850 showing regional abundance of spruce (REVEALS, left) in comparison to the regional abundance of arable land (REVEALS, second left), and the establishment of spruce trees in forests based on start dates (second right) and its utilization in buildings based on end dates (right).


In the early period 1150–1250, spruce was highly abundant with a coverage of 30 to 40 % in Switzerland and Austria, and in the Bavarian Forest, whereas arable land was highest in northern Switzerland (northern region close to Lake Constance), northern Black Forest, Harz mountain and eastern Germany/western Czech Republic (Figure 4). Spruce was already established in low quantities in the lowlands of the Alpine foothills, northern Switzerland and Bavarian Forest which was consequently found in building material in these regions.

In the period 1250–1350, while the arable land cover further increased across the study region, spruce started growing in higher abundances in northern Switzerland and southern Germany, in particular around Basel, Lake Constance and central Bavaria (Nuremberg). An increase in start dates are detected in these regions during the period 1350–1450, which is then followed by an increased use of spruce timbers for construction purposes in the subsequent investigation period.

Spruce cover increased to levels of ca. 25% locally in the north-eastern part of the study area during the period 1450–1550, while at the same time, arable land increased in most areas. Tree-ring data for spruce for this period are most abundant in northern Switzerland and in Bavaria with the highest concentrations found around Nuremberg and the Lake of Constance.

During the period 1550–1650, spruce cover increased in the southern and eastern grid cells, particularly in northern Italy and around the Bavarian Forest, for example, whereas arable land remained high but showed regional variations. At the same time, spruce establishments and tree fellings further increased and expanded toward central and western Germany.

During the periods 1650–1750 and 1750–1850, the abundance of spruce continued to be high across the study region, which is accompanied by a high intensity of land use, i.e., arable land, except in the Alpine region. The numbers of newly established and harvested spruce remained high especially in Germany (south of 50°N) and northern Switzerland.




DISCUSSION


Tree-Ring Data

The majority of the studied timber are from historical buildings of the last millennium which are still standing. Roofs and half-timbered constructions dating prior to 1200 are rarely preserved, since older buildings or parts thereof were constantly replaced by younger constructions in the course of the centuries. Many of these simpler constructions, often made entirely from wood, were replaced during different waves of urban and rural development. Most of our data originate from roof framings and half-timbered constructions with only a few samples from foundations of buildings and infrastructures, which were excavated from archaeological contexts. Since different parts of timber constructions require different physical properties of the utilized species, we observe a selection of decay-resistant oak timber for structures in moist conditions (e.g., foundations) compared to the use of the lighter conifers for roof framings. In the upper floors and roofs of buildings, oak, if present, was only used for short structural elements, whereas the long-fibred conifers were preferred for the long structural beams often exposed to bending forces (Marstaller, 2012). In particular, the long straight stem growth of fir and spruce, combined with the relatively low gross density (i.e., low weight), make them ideal construction material for larger buildings, especially roofs and rooms of an unprecedented widths; likely causing a change from the basilica style to hall constructions for the larger churches during the late 15th century (Marstaller, 2012).

Our dataset captures the most important timber species on an evenly high spatial distribution (Figure 1) and, apart from a period of low replication prior to 1300, is representative for the entire study region. The number of spruce timbers used for buildings also reflect the general variations of building activity over time (Ljungqvist et al., 2022). However, it has to be noted that some species might be generally underrepresented in different regions such as beech in southern Germany or spruce in north-western Switzerland due to difficulties in dating. The large amount of tree-ring data also mitigate possible biases concerning correct ages or stem diameters, which is also addressed by Shindo et al. (2022).

Historical records (i.e. written sources) could provide insights into past forest history and composition, however, most available documents do not differentiate between taxa, making it impossible to distinguish between coniferous species (Sperber, 1968). Moreover, they hardly contain information on forest structures and management practices prior to the 16th century (Mantel, 1990). Also, the quantity and quality of historical records is not stable over time and becomes more fragmented for earlier periods (Muigg and Tegel, 2021). Here, tree-ring data provide the respective spatial and temporal coverage, thereby complementing the data from other sources.



REVEALS Reconstructions

The pollen archives used in this study essentially correspond to sediment cores retrieved from lakes, bogs and mires. Such sedimentary basins are not present everywhere, and are not distributed uniformly, as they depend on geomorphology and climate characteristics. Our results clearly show that most of the pollen data come from the Alps and south-western Germany, and a large gap in the data can be observed in south-eastern Germany. Basically, we observe the opposite geographical pattern than with the tree-ring data that are mostly located in the lowlands where the building activities mainly took place. In large urban, agriculture and cultivated areas, potential sedimentary basins for pollen analyses are lacking or have been most of the time disturbed.

The transformation of pollen data into land cover by using the REVEALS modeling scheme provide a spatial scale of pollen reconstructions, i.e., grids of one degree. REVEALS estimates correspond to the regional pattern of land cover change, where a region is represented by one grid cell. On the contrary, the tree-ring data refer to the grouping of local information (each building) for each grid. Consequently, we are focusing in this study on the regional changes in land cover and abundance of spruce timber.

There are pros and cons of using REVEALS at a grid cell scale of 1° × 1°. In particular, some sites located near the border of another grid could be more influenced by the vegetation pattern of the neighboring grid than the one the site is attributed to. This is of little concern when many sites are situated in the grid, large lakes are present and/or when the sites are uniformly distributed within it. However, it could be an issue, if only one small site is located in a corner of a grid. Nevertheless, the use of a grid pattern is generally reliable, in particular because we group many sites per grid (Supplementary Table S1) which reduces the uncertainties in the reconstructions (Trondman et al., 2016; Marquer et al., 2017).



Combination of Tree Rings and REVEALS Reconstructions

By combining tree ring and REVEALS estimates, we are grouping two different proxies at a same temporal and spatial scale. This is possible because we use a grid pattern, covering locations of both pollen and tree-ring data, as well as sub-regions to minimize the effect of the differences in the spatial availability of both proxies, and time slices of 100 years. As mentioned above, REVEALS reconstructions correspond to the regional plant/land cover, i.e., 1° × 1° grids, whereas the grouping of the tree-ring data also provided the regional pattern in building activity using spruce. The exact provenance of the timber from historical buildings is unknown and the material is not always of local/regional origin depending on topography and available transport routes. While large-scale long-distance overland transportation might be excluded due to excessive financial and logistical (infrastructural) expenses, riverine timber transport in form of rafting and log driving was widely used in our study area (Keßler, 1960; Keweloh, 1988; Eißing, 2010). Archaeological finds can trace riverine transport, both on large rivers like Rhine, Main, and Danube and their smaller tributaries, as far back as into Roman times (Ellmers, 1985). Early written evidences for timber rafting is documented for the Rhine river from the 13th century, e.g., 1208 in Koblenz, located at the confluence of Rhine and Moselle river, western Germany (Ellmers, 1985), or for the Lech river in Bavaria, which was used for timber transport from Tyrol, Austria (Filser, 1989). From the 14th century onwards, sophisticated rafting infrastructures on rivers was established in central Europe (Keweloh, 1988). Therefore, it is likely that some of the timber in our dataset have been transported from different locations, e.g. higher altitudes, on established waterways such as the river Rhine, Main, Danube and smaller tributaries thereof. While the proportion of rafted timber remains unknown, it can be assumed that coniferous wood, because of its lower density and better floating properties, was more frequently rafted than hardwood species. There are also regional differences as timber import was very important for urban centers without extensive municipal forest, and for periods of increased demand, e.g., for Augsburg, Bavaria, during the mid-16th century when the population increased (Watanabe, 2017), or for settlements in the Swabian Alb at the beginning 17th century (Marstaller, 2008). Nevertheless, considering the existence of locally, i.e., easily accessible and nearby, exploitable forests in rural areas, large parts of timber, especially in vernacular buildings, were harvested from local woodlands. Depending on terrain, different techniques were applied to transport the felled trees out of the forests (Johann, 2021).

To secure local wood supply and building development, cities placed great importance on the ownership or the right to use forests belonging to the urban municipality and implemented regulations even as early as the 13th century for example for the city forest Sihlwald near Zurich (Irniger, 1991) or the municipal forest of Nuremberg, Bavaria (Mantel, 1968).

For more than 700 years, spruce has been significantly used in Central Europe both within and outside its natural distribution area, and in the foothill zones (mid-elevations; ca. 700 to 900 m asl) and lowland areas (<700 m asl) (Kolár et al., 2021). Although the exact provenance of spruce timber remains unknown, the use of 1° × 1° grids (i.e., respectively covering an area of 100 km2) is likely to reduce this bias; one can assume that in general spruce timber would be collected and used for construction in a same grid.



Spruce History in Central Europe

Spruce became the main timber species in building constructions from the 14th century onwards (Figure 1C). Using the REVEALS reconstructions, which provide quantitative information about the spruce cover, our results show that spruce abundance over the entire study region varies between 10 and 15% from 1050 CE onwards while an increase is observed over the last 300 years. The last two centuries correspond to large scale forest conversion toward spruce monoculture, while other coniferous and broadleaved trees show a decline from almost 60% to ca. 35%. The tree-ring data reveal a strong increase in the number of spruce timbers from 1650 onwards. After the Thirty years' war, open and arable land unused by the reduced population seems to have favored the distribution of spruce in lowland areas. This is particular evident when looking at regional differences within the study area (i.e., the four sub-regions) (Figure 3). For example, the north-eastern sub-region shows comprehensive changes in land cover from ca. 70% forest cover (1050–1150 CE) to ca. 80% of open land (1850–1950). In this region, spruce timber was first moderately used (1250–1350) and then it was continuously utilized as construction timber in buildings until 1850, in particular after the Thirty years' war when the spruce consumption almost doubled. In the south-western sub-region, the forest cover remained rather stable over time, although the abundance of deciduous trees declined from 1050 to 1950 while conifers, except silver fir or yew, increased at the same time. For the south-eastern sub-region, spruce cover was decreasing from 1050 to 1950, which was accompanied by an increase in the extend of open land. On the contrary, spruce consumption increases through time. In the north-western sub-region spruce was generally less used, compared to other coniferous and broadleaved species.

While humans likely modulated the abundance of spruce in our study region, detrimental climate conditions, as they were prevailing during the Little Ice Age, could have a beneficial effect in the expansion of spruce. Since spruce can tolerate colder climate conditions, it can outcompete other species such as fir (Schmidt-Vogt, 1977).

Similar tree ages were obtained for all investigated 100-year periods (except the low replicated early sub-periods) and across the four sub-regions, whereas in most sub-regions a declining mean AGR and stem diameter was found until 1850 (Figure 2). Despite that not all samples retained the piths, the similar temporal distribution of samples with pith and without pith (Supplementary Figure S2) and the aggregation into 100-year periods provides representative insights into timber quality characteristics.

In the 20th century, rotation cycles for spruce range between 80 and 140 years and are scheduled when the economic yield is highest and stems reached target diameters (Faustmann, 1849; Moog and Borchert, 2001; Beinhofer and Knoke, 2007). This is in accordance with our spruce data for the entire study area, when maximum ages are around 150 years during the period 1150–1350, 98 years during 1350–1450, 114 years during the period 1450–1650, and up to 120 years during 1750–1850 (Figure 2). Regional and temporal differences exist reflecting the regional forest structure, which is influenced by environmental factors and site conditions as well as by economic demands due to population increase. For example, our data show that in early periods, old spruce forest stands were available in the south-western region including the Black Forest. In comparison, relatively young spruce trees were used during the construction boom in the period 1350–1450 in the south-eastern region, likely indicating a high demand for constructions and thus, shorter harvest times. In the north-western region, older trees were available after the Thirty years' war (Figure 2). The changes in growth rates can likely be related to changes in exploitation of the regional forests.

Mean stem diameters show a slightly decreasing trend from around 30 cm (75% of all data) and a maximum of 44 cm during 1250–1350 to 26 cm (3rd Quartile) toward the most recent period 1750–1850, which is accompanied by a decrease in AGR. The decrease in AGR is likely a result of changing forest management, e.g., forests with higher stand density, or the intense practice of litter raking which caused the soil conditions to deteriorate and which was practiced until the 20th century (Bürgi et al., 2013; Vild et al., 2018). Here, clear-cutting further depleted the soils of humus and nutrients and in addition with forest grazing and game browsing led to a large-scale change in tree species, from hardwoods to spruce and pine.

Since spruce does not play a significant role in traditional forestry by supplying by-products such as fruits for pig masting or leaves for leaf litter raking (Stuber and Bürgi, 2002), its economic importance is attributed to its fast growth, straight stem and favorable mechanical properties for its use as timber.

Considering their use as timber, trees had to have a certain size and age. Therefore, it is likely that the trees come either from high forests or from the canopy layer of coppice-with-standards (CWS) forests. Especially for northern Switzerland, spruce, alongside oak, played an important role as dominant standards in this CWS forest management type (Bader et al., 2015). CWS forest structures allowed to simultaneously generate different wood products, from timber to fuelwood, which was important for subsistence economies, and found to have been applied in the Early Middle Ages and likely before (Muigg et al., 2020). Spruce can rejuvenate well in the understorey of sparse oak-dominated CWS forests. The observed increase in spruce abundance from the mid-14th century might be linked to an outgrowing of spruce over its competitors and a selective cutting of dense forests dominated by oak, beech or fir, and/or the growing promotion of the species for timber in evolving timber-framed architecture. Moreover, oak coppice was intensively extracted for fuelwood and tanning, whereas spruce was spared for the production of quality timber, forming soon upper forest layers and even dominant stands (Schmidt-Vogt, 1977). This development might have also favored the high abundance of spruce in subsequently formed CWS stands (Bader et al., 2015).

On the other hand, the 14th century was a period of desertification in which cultivated areas, i.e., arable and open land, were abandoned (Figures 3B, 4 period 1350–1450) (Abel, 1976). The more tolerant spruce was able to grow on nutrient depleted open lands and could establish forests. Lindbladh et al. (2014) described the processes when the agricultural practice of slash-and-burn cultivation (i.e., the land underwent a rotation of clear cutting, farming, grazing and natural forest regeneration) ceased in southern Sweden supporting the natural spread of spruce without active forest management. Especially, the removal of grazing pressure on spruce seedlings and the selection of species, contributed to the establishment of spruce forests (Lindbladh et al., 2014). This slash-and-burn management practice as well as other forms of agro-forestry were common across the study area (Mantel, 1968). During the early modern period (16th century), wood consumption intensified due to the development of large-scale consumers for various products (i.e., salt extraction, glass production and mining), resulting in severe forest degeneration. The 16th century was known as the era of forest regulations (Hasel, 1985), which subsequently led to a strong change in the forest composition thereby favoring spruce in the study area until present-day.

Today, however, spruce is confronted with multiple problems, including drought extremes, subsequent bark beetle infestations and large-scale dieback (Marini et al., 2017; Hlásny et al., 2021). This led to urging questions about the suitability of spruce in modern and future forests in the light of climate change. For this reason, spruce is now at a crossroad as to whether it is still suitable for future European forestry. More structured and mixed forest stands might hold an opportunity for this species, that has been crucially important for centuries. Additionally, such multi-aged and mixed forest stands are urgently needed for the future promotion of biodiversity (Oettel and Lapin, 2021).




CONCLUSION

Throughout the last millennium spruce was commonly used as timber in southern Germany and northern Switzerland, both within and outside its natural distribution area and for a region with regionally differing political and demographic histories. By investigating more than 38000 dendrochronological samples, coniferous wood (75.6%) is the dominating timber in constructions compared to hardwood species (24.4%). From this, spruce is the most abundant species (40.9%), followed by fir (24%) and pine (10.7%). We combined pollen and tree-ring data to investigate the abundance of spruce in the land cover in tandem with the utilization of spruce timbers in historical buildings at regional scale. It was shown that the spatial coverage of pollen and tree-ring data in some parts of the study area are still insufficient, thus (i) highlighting the complementarity of both archives to study the history of spruce in Central Europe and (ii) by developing sub-regions we could gain insights into the regional spruce abundance and utilization.

Besides identifying differences in the abundance of spruce across regions and during the past millennia we found an intense use and afforestation of spruce from the 1650s onwards.

Regarding future forestry, we highlight that spruce, long before its extensive monocultured planting, was valued as an important timber and should be included to generate diverse and resistant forests.
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Human impact on long-term vegetation and biodiversity changes is often discussed on a general level, connecting palynological data to archaeological time periods. In the present paper we present environmental change during the last 2,400 years on a coastal peninsula in Norway using pollen data from three sites: one lake and two bogs, in addition to 621 radiocarbon dates and in-context pollen samples from archaeological sites. Locally, a close relationship between palynological richness reflecting high landscape, habitat and floristic diversity, and the summed probability distribution of radiocarbon dates was found. During the settlement period 400 BCE–550 CE, concordant with maximum number of dates from archaeological contexts, a mosaic landscape containing infields and outfields developed. Cereals were cultivated and animals were grazing in heathlands that could provide both summer grazing and winter fodder. Additionally, seashores and wetlands were used for grazing. Settlement recession from 350 CE and abandonment following the 536 CE climate event, resulted in vegetation successions toward reforestation, abandonment of arable fields, and marshes turning into ombrotrophic peat. At the same time the distance to the sea, and to species rich shoreline meadows, continued to increase due to continuous postglacial land uplift in a flat landscape. A new increase in the summed probability distribution 900–1250 CE, is reflected in expansion of outfield pastures, heathlands in particular, a management that continued up into modern time. The local development is supported by the results on a regional scale, indicating overall climatic and social causes for observed vegetation changes. Both palynological richness and pollen-based landcover reconstructions indicate reforestation and less habitat diversity in the sixth century. On a regional scale, reforestation in the fifteenth century following the late medieval crises, is more pronounced than on the local scale, although both reflect exploitation of outfield resources.
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Introduction

Human impact on landscapes, vegetation, and biodiversity is today visible locally as well as globally. During the last century, changes in the agricultural systems, demography, and increased pressure on land-area, have to a large extent changed what were sustainable cultural landscapes created through long-term management systems (Emanuelsson, 2009; Krzywinski et al., 2009). From early agriculture and traditional land-use practices creating new habitats and increased biodiversity, both species and habitat diversity, representing our natural and biocultural heritage, have been declining since the inception of modern agricultural practices and areal changes (Brondizio et al., 2019). Human impact is today considered the main driver of accelerating ecosystem transformations globally (Nogué et al., 2021).

Several paleoecological studies have shown the gradual transition from climate being the main driver of ecosystem change, to increased impact by human activity. In northern Europe this has especially taken place the last 6,000 years, after the introduction of agriculture (Odgaard and Rasmussen, 2000; Gaillard et al., 2010; Nielsen et al., 2012; Birks et al., 2016a; Marquer et al., 2017; Kuosmanen et al., 2018; Alenius et al., 2021). By establishment of farming societies, new habitats developed, and floristic diversity increased (Odgaard, 1999; Berglund et al., 2008; Overland and Hjelle, 2009; Birks et al., 2016a; Fredh et al., 2017; Halvorsen and Hjelle, 2017; Woodbridge et al., 2021). Working on longer time scales, palynological richness is a commonly used diversity measure, and although all pollen or spore types cannot be identified to species level and interspecific variation in pollen production and dispersal exist, a good correlation between species richness and palynological richness has been found (Odgaard, 1999, 2001; Meltsov et al., 2011; Birks et al., 2016b; Reitalu et al., 2019). The influence of human activity on long-term changes in habitat and species diversity, is often discussed on a general level, connecting palynological data to archaeological time periods, reflected in increasing and often stepwise impact from the Stone Age, through the Bronze Age, Iron Age and Middle Ages. With the assumption that establishment of farming societies resulted in opening-up of the landscape and development of new vegetation types through grazing, mowing and cultivation, landscape openness may be considered a proxy to habitat diversity, especially when combined with diversity measures. Here we apply pollen-based landscape reconstructions (Sugita, 2007a,b) which give an overall pattern of landscape openness (Gaillard et al., 2010; Nielsen et al., 2012; Fyfe et al., 2013; Kuneš et al., 2015; Hjelle et al., 2018) and the importance of different habitats in the landscape (Mehl et al., 2015; Alenius et al., 2021). We combine different approaches; palynological richness and landscape reconstructions and relate these to the summed probability distribution (SPD) and kernel density estimate (KDE) of radiocarbon dates (Bronk Ramsey, 2017) from archaeological contexts as the measure of human activity. SPD of radiocarbon dates has shown to be a good proxy for population size, demographic development, and the development of arable farming (Woodbridge et al., 2014; Solheim and Persson, 2018; Tallavaara and Pesonen, 2020; Bergsvik et al., 2021; Solheim, 2021).

Whereas climate and human impact have been drivers of vegetation change during the Holocene, relative sea level changes have also contributed to large changes in land areas. In Norway, strong isostatic land uplift since deglaciation has caused mostly continuous postglacial land emergence from the sea. This created new habitats for light-demanding species at the same time as it influenced potential harbor conditions.

The investigated archaeological sites are dated from 800 BCE to 1350 CE, covering two periods of special interest: The possible climate deterioration 560 CE (Büntgen et al., 2016), and the start of the Little Ice Age. Generally, there was a gradual development toward colder climate, culminating in the Little Ice Age, after the medieval climatic optimum 800–1100 CE (Sejrup et al., 2016). Both periods are also connected to plagues; the Justinian plague in Europe in the mid-sixth century and the late medieval crisis including the Black Death in 1349.

In the present study, we will combine palynological and archaeological data with the aim to connect vegetation development directly to activity and settlement and to discuss human impact on different spatial scales. To reflect differences in the spatial scales, we combine pollen data from one large lake, two bogs and in-context samples from archaeological sites. The pollen data are compared to radiocarbon dates of charcoal from archaeological contexts to link vegetation types, habitat and palynological diversity, and the intensity of human impact through time. The results are discussed in relation to local sea level changes and general climate development. We ask the following questions: Is settlement size and intensity decisive for habitat diversity and palynological richness in the Iron Age? Is the development on a local scale also visible on a more regional level?



Materials and methods


Study area

The study area is at Ørland (Figure 1), on the western part of a peninsula northwest of Trondheim in Central Norway (Ystgaard, 2019). The area is relatively flat having a plateau around 11 m asl with some higher hills reaching up to 150 m asl. The ground consists of a glacial till at depth, overlain by thick deposits of marine and littoral origin. The marine, calcareous sediments give a rich soil well-suited for agriculture, and farms with meadows and fields are characterizing much of the modern landscape, including the excavated fields. The western part was prior to modern farming covered by open heathlands and wetlands, where the two sites Stormyra and Ryggamyra are found, whereas low mountains are found in the central and eastern part, also separating the large lake Eidsvatnet from the study area in the west. Eidsvatnet is surrounded by agricultural land and mixed pine forests which are increasingly dominating the vegetation toward the east.
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FIGURE 1
Map of study area. (A) The peninsula with Ørland and its surroundings, (B) detailed map showing the localities for pollen analysis in relation to large burial mounds, Iron Age graves and medieval churches. Illustration: Magnar Mojaren Gran, NTNU University Museum.


The study area is located within the south boreal vegetation zone and has an oceanic climate with mean winter temperature −2°C (January), mean summer temperature 14°C (July) and yearly precipitation 1,000–1,500 mm (Moen, 1999).

In this low-lying and flat landscape, postglacial land uplift has resulted in significant changes in available land for settlements up until medieval time, and still does although slowly, as revealed through investigations of local changes in relative sea level (Romundset and Lakeman, 2019). This development has not only affected the available land, but also the potential harbor area through time. The archaeological excavated area is located within the agricultural land on marine sediments at Vik, c. 11 m asl. and covers 117,000 m2. The distance from the excavation area at Vik to Stormyra, Ryggamyra, and Eidsvatnet, is c. 1, 1.5, and 10.5 km, respectively. The excavations revealed eight concentrations of Iron Age and early medieval settlements (Ystgaard et al., 2019), nine settlement phases were identified, and the importance of the area in these periods is seen also through a high number of burial mounds and four medieval churches in the wider study area (Figure 1B). Based on results from coring of isolation lakes at Ørland peninsula and its surroundings (Romundset and Lakeman, 2019), compared with minimum-limiting dates from archaeological sites, a new shoreline displacement curve (Figure 2A) and reconstructions of the landscape development have been made (Figure 2B). These show the available land during the Iron Age and early medieval settlement phases identified at Vik; the time also covered by the pollen diagrams.
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FIGURE 2
Shoreline changes at Ørland through time. (A) The new shoreline displacement curve for the period 6,000 calibrated years BP to present, (B) the shoreline at Ørland in different settlement phases, with the excavated areas at Vik marked. In-context pollen samples are analyzed from areas A, D, and E. Illustration: Magnar Mojaren Gran, NTNU University Museum.




Pollen data

Three sites are investigated (Figure 1B): the lake Eidsvatnet (63.7388N 9.8375E, 64 ha) and the two bogs Stormyra (63.71558N 9.62232E, 78 ha) and Ryggamyra (63.7185N 9.6355E, 4 ha). Additionally, some pollen samples collected from dated archaeological contexts at Vik (soil profiles and water holes, Figure 2B and Supplementary Figure 1), are included. Field and laboratory methods are described in Overland and Hjelle (2019). Compared to the 2019 publication, one diagram from a large bog, Stormyra, has been analyzed, and analysis of additional samples from Eidsvatnet and Ryggamyra has been carried out. This has resulted in 42 pollen samples from Eidsvatnet (sum pollen 704–1,210, mean 1,041; sum pollen and spores 831–1,341, mean 1,215), 32 from Ryggamyra (sum pollen 107–1058, mean 556; sum pollen and spores 109–1,069, mean 577) and 28 samples from Stormyra (sum pollen 421–1,190, mean 758; sum pollen and spores 437–1,198, mean 796). The three pollen diagrams are zoned based on CONISS cluster analysis (Grimm, 1987) in the Tilia program (Grimm, 2019). The pollen samples from archaeological contexts—agricultural layers, water holes, wells, refuse pits—reflect accumulation within a certain period. These features have, either by radiocarbon dates or stratigraphic relationships, been related to the identified Vik settlement phases based on archaeological data. In several pollen samples the preservation is bad, resulting in large variations in the pollen sums (sum pollen 102–1,152, mean 651; sum pollen and spores 113–1,170, mean 669).

18 radiocarbon dates based on macroscopic plant and animal remains from the three cores (Eidsvatnet 9, Stormyra 4, Ryggamyra 5) were calibrated using Clam age-depth modeling and the IntCal20. 14C calibration curve (Blaauw, 2010; Reimer et al., 2020). The best age estimated make the basis for vegetation reconstructions in 100-year time intervals and comparisons with the summed probability distribution of radiocarbon dates from archaeological contexts.

Pollen diversity through time was investigated by palynological richness, using Hill (1973) number N0 (Birks et al., 2016b; Felde et al., 2018). This estimated number is based on rarefaction, which is the minimum pollen sum for each data set (Birks and Line, 1992). The aim of the investigation was to identify trends over time for each site, and each data set was therefore analyzed separately, based on the lowest sum of pollen and spores for the respective data set. Samples from the same archaeological contexts were combined prior to this analysis. To compare palynological richness during the Vik settlement periods, pollen data from archaeological contexts (individual samples), bogs and lakes were also analyzed using the same sum (n = 109). Additionally, the samples from each of the three sites were combined into 100-year time intervals, to make direct comparisons between the palynological richness, land-cover estimates and summed probability distribution (SPD) of radiocarbon dates. The lowest pollen sum, 406, was used for these analyses. The analysis was carried out in R version 4.1.1 R Core Team, 2021. Also, a DCA (Detrended Correspondence Analysis) was carried out to identify the main gradients in the pollen data. Pollen and spores from terrestrial and vascular plants were included in the analysis.

The Landscape Reconstruction Algorithm (LRA), consisting of two sub-models, was used to reconstruct regional (Sugita, 2007a) and local (Sugita, 2007b) vegetation cover within 100-year time intervals. In REVEALS (Regional Estimates of VEgetation Abundance from Large Sites) the regional vegetation within a radius of 50 km was estimated based on the pollen data from Eidsvatnet. For local vegetation reconstruction, estimates of regional vegetation is needed to be able to differ between regional and local pollen deposition. As Eidsvatnet is found next to pine forests on the eastern part of the peninsula and Stormyra is situated on the open western part, the regional vegetation cover used as input parameter in LOVE (LOcal Vegetation Estimates), was based on pollen data from both Eidsvatnet and Stormyra. When subtracting the background pollen in LOVE, the local vegetation within 1,500 m around Ryggamyra was estimated (see Overland and Hjelle, 2019 for more details). This area also includes the archaeological excavated areas.

22 taxa, contributing to 71–100% of the pollen sums (Eidsvatnet 91–98%, mean 96%; Ryggamyra 76–100%, mean 91%; Stormyra (71–99%, mean 94%), were included in the reconstructions. When testing the Landscape Reconstruction Algorithm in western Norway, the pollen productivity estimates obtained from that region (Hjelle and Sugita, 2012) gave improved estimates of vegetation cover when linked to maps of actual vegetation, compared to using mean values from Europe (Hjelle et al., 2015). We propose that the same is the case for our study region and have used the Norwegian estimates when available. In other cases, mean values from Europe (Mazier et al., 2012) were applied (Table 1).


TABLE 1    Relative pollen productivity (RPP) and their standard errors, fall speed of pollen (FSP), and taxa included in the four land-cover categories.
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Archaeological data

Excavations at Vik revealed a dynamic settlement landscape, with settlement emerging as soon as the land rose from the sea and became habitable c. 600 BCE. Seven farms were established, inhabited, and deserted between 500 BCE and 1250 CE. The farm economy was based on mixed farming, combining animal husbandry and crop cultivation with fishing, and foraging for seashells in the nearby sea and along the seashore (Mokkelbost, 2019; Storå et al., 2019). The number of buildings and other features such as waste deposits and cooking pits indicate intensive settlement and high activity c. 400 BCE–350 CE, followed by reduced activity and an almost complete decline between c. 550 CE and 900, and a new settlement establishment phase c. 900–1250 CE, followed by a decline toward the end of the thirteenth century (Ystgaard et al., 2019). Interpretational frames for the fluctuations in activity may be found in over-regional economic and political circumstances (Solberg, 2000; Hedeager, 2008), in supra-regional climatic events (Büntgen et al., 2016; Sejrup et al., 2016; Stamnes, 2016), and in the local transformation of the landscape following the postglacial land uplift (Romundset and Lakeman, 2019), including also local vegetation/habitat changes.

In the present paper, the distribution of 14C dates from archaeological contexts is used as an indicator of settlement intensity, and 621 radiocarbon dates are used in a summed probability distribution (SPD) and kernel density estimate (KDE) to give an indication of time periods of high and low activity (Bronk Ramsey, 2017).

Sampling for 14C dating was highly prioritized, and samples were collected to date and chronologically assess structures such as post holes and cooking pits, contexts such as buildings and waste deposits, and environments such as farmsteads. Well preserved archaeological contexts with as low risk for contamination as possible were prioritized for sampling. Charcoal from species with low own age, were selected for dating. Dates were calibrated using the IntCal20. 14C calibration curve (Reimer et al., 2020). A summed probability distribution and kernel density estimate was created according to Bronk Ramsey (2017). Sources of error connected to the sampling, dating, and summing of the radiocarbon dates relate to taphonomic processes, prehistoric practices, sampling practices, and the calibration curve. The excavated area had been subject to plowing both in prehistoric and modern times, leaving only the lower parts of earth-dug construction parts of cooking pits and buildings. Cooking pits and buildings are parts of cultural practices that change over time. Cooking pits were most widely used in the Iron Age up until the sixth century and indicate feasting practices more than they reflect relative population size (Gundersen et al., 2020). Prehistoric building practice in Scandinavia included earth-dug, roof-carrying constructions during the Bronze and Iron Ages, while new construction principles where roof-carrying constructions rested on foundations above ground were introduced from the sixth century. At approximately the same time, farmsteads were re-located to the sites of present farmsteads. This correlates with the abandonment of the practice of using open-air cooking-pits (Grønnesby, 2016; Sauvage and Mokkelbost, 2016; Gundersen et al., 2020; Løken, 2020). The relation between new building techniques, re-location of settlement, the abandonment of cooking pits and a potential depopulation in the fifth and sixth centuries is a matter of discussion. The excavation focused on settlement prior to 1537 CE, according to regulations in the Norwegian Cultural Heritage Act. Therefore, activities post-dating 1537 CE are not represented in the archaeological dataset. Several of the prehistoric dates fall within the plateau in the calibration curve 800–400 BCE, which hinders a nuanced chronology within this age period (van der Plicht, 2004).




Results


Chronology

The age-depth models indicate a relatively constant sedimentation in Eidsvatnet with estimated ages of 25–108 years between analyzed samples (Figure 3). Also, the accumulation rate in Stormyra is relatively constant with 24–92 years between analyzed samples. In Ryggamyra, there is a marked increase in organic matter at 149 cm (c. 200 BCE), following the change from sedimentation in water to peat formation. This may result in some uncertainties in dates given for samples correlated to Vik settlement phase 2 or 3. Estimated sample ages at Ryggamyra give 21–145 years between analyzed samples. Based on radiocarbon dates from archaeological contexts, mainly post-holes and cooking pits, the botanical data are related to six settlement phases identified at Vik, and three later periods in the historical development at Ørland (Ystgaard et al., 2019, p. 30).
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FIGURE 3
Age-depth models for the three pollen diagrams, (A) Eidsvatnet, (B) Stormyra, (C) Ryggamyra. Smooth spline in CLAM, R-code for classical age-depth modeling version 2.2 (Blaauw, 2010). Calibrations by IntCal20.14C (Reimer et al., 2020), using 95% probability.




Summed probability distribution and kernel density estimate

The summed probability distribution and kernel density estimate of radiocarbon dates show a low, but relatively constant number of dates in phase 1, c. 800–400 BCE (Figure 4). In phase 2, c. 400–50 BCE, the number of dates reach a maximum, followed by a decrease, but still with a high number of dates. The highest number of dates are found in phase 3, the period covering c. 50 BCE–350 CE and especially c. 100–200 CE. Phase 4, c. 350–550 CE, marks a recession phase, but has still quite high number of dates. In phase 5, c. 550–900 CE, and especially around 650 CE, the number of dates is at a minimum. Phase 6, c. 900–1250 CE, reveals a new period with increased number of radiocarbon dates, followed by a decrease toward the end of the thirteenth century.
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FIGURE 4
Summed probability distribution (SPD) and Kernel density estimate (KDE) of radiocarbon dates from Vik archaeological excavations.




Pollen and archaeological data

The results of pollen analysis from the three sites (Supplementary Figures 2–4), archaeological contexts (Supplementary Figure 5), and archaeological data are summarized in Table 2. The local pollen assemblage zones (PAZ) are in some cases in accordance with the Vik settlement phases, whereas in other cases changes in vegetation happen independently from the archaeological based zonation at Vik. Below, the results are presented in relation to the settlement phases 1–7.


TABLE 2    Summary of pollen data in relation to the local settlement phases at Vik.
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Phase 1, c. 800–400 BCE (Bronze Age/Pre-Roman Iron Age)

Some settlement traces are found in Vik and the zone is covered by the pollen diagram from Stormyra. Sedge rich wetlands, partly with open water, dominated. Both grazing indicators and cereals are present, indicating the existence of grass-dominated pastures and cultivated fields.



Phase 2, c. 400–50 BCE (Pre-Roman Iron Age)

Farm settlement is documented through buildings and cooking pits. Pollen analysis from agricultural soil reveal (moist) grasslands, cultivated fields and seashore vegetation. The vicinity to the sea as well as a mixture of habitats—wetlands, grasslands and cultivated fields are reflected in Ryggamyra and Stormyra, with increase in grasslands on behalf of deciduous trees/shrubs, dwarf-shrubs and sedges, with time. Eidsvatnet was isolated from the sea during phase 2, and a change from species rich seashore communities to increased influence of the regional forest vegetation is observed. Calluna heathlands existed both locally at Vik, and at the regional level.



Phase 3, c. 50 BCE–350 CE (Pre-Roman/Roman Iron Age)

Settlement concentrations are found in all excavated areas. A mosaic of open vegetation types existed; species rich meadows and fertilized cereal fields dominated the dry ridge, whereas wetlands increased in importance in the outlands north of Vik. Both lime rich grasslands/seashore communities and nutrient-poor heathland/wetlands may have been grazed, and coprophilous fungi indicate presence of animals and probably the use of manure. Hordeum, and probably Cannabis, were cultivated. On a regional level, a first maximum in openness is found at the transition phase 3/phase 4.



Phase 4, c. 350–550 CE (Migration period)

Traces of settlement at Vik is low and the number of charcoal dates are decreasing through the period. Cereal cultivation and a mosaic of vegetation types are still indicated in the pollen data. At Ryggamyra, the highest percentages of sedges are found, and coprophilous fungi indicate grazing activity. Microscopic charcoal has high values both at Ryggamyra and Stormyra, and cultivation of Hordeum is indicated in both pollen diagrams. At a regional level, the high degree of openness and increase in Juniperus, Calluna and grassland taxa may indicate an expansion in the use of outfield areas for grazing.



Phase 5, c. 550–900 CE (Merovingian period/early Viking Age)

No buildings are found at Vik in this period and the number of charcoal dates are at a minimum. Regionally there is a reforestation. In Ryggamyra the values of microscopic charcoal are low, and a succession is initiated from a wetland influenced by agricultural activity to a Betula and Salix shrubland on ombrotrophic peat. In Stormyra there is a slight increase in Betula, a top in Pedicularis and an increase in Sphagnum. There is also a sharp drop in charcoal in the end of the phase, together with a change to more Empetrum dominated heathland at the expense of Calluna, which may be due to a reduction in heathland management.



Phase 6, c. 900–1250 CE (Late Viking Age/early medieval period)

Medieval farm established at Vik, with at least two and possible six houses. Mowing took probably place and there is regional woodland clearance and increase in outfield grazing activity. Ryggamyra sees a reduction in Betula, and increase in dwarf shrubs, particularly in Calluna, and Sphagnum. There is presence of Cerealia and coprophilous fungi, suggesting local outfield grazing, but low levels of charcoal. In Stormyra there is higher values of Calluna and charcoal in the mid part of the phase, then an increase in Betula and a reduction in charcoal in the later part.



Phase 7, c. 1250–1850 CE (High and late medieval period/modern period)

The open landscapes of phase 6 continued into phase 7 until marked changes are observed in the mid-fourteenth century. Regionally the period 1380–1550 CE sees a reforestation probably in the aftermath of the Black Death (1349 CE), followed by new opening-up of the landscape. In Ryggamyra there is an increase in charcoal and coprophilous fungi from c. 1400 CE. Stormyra is a peatland with Cyperaceae and dwarf shrubs.




Palynological richness and gradients in the data

Palynological richness is given individually for the lake, two bog diagrams and for archaeological contexts (Figures 5A–D). To compare palynological richness from the different sites directly, the minimum pollen count of 109 (Ryggamyra) was used (Figure 5E). Estimates based on higher counts give the same pattern but higher estimated richness, as presented in the pollen diagrams from the individual sites. Generally, a higher diversity is estimated at Ryggamyra compared to Stormyra and Eidsvatnet during the settlement phases at Vik, followed by a reduction at Ryggamyra after settlement abandonment around 550 CE reaching a minimum in the ninth century. Stormyra does not show the same connection to the settlement phases. This may be due to the coring point more centrally located in the bog than the coring point at Ryggamyra, resulting in longer distance to and less direct human impact. It may also be that an unknown settlement contemporaneous with the Vik settlement existed at Ryggen, close to Ryggamyra. In contrast to Ryggamyra, the estimated palynological richness at Stormyra increase through settlement phases 1–4 and reaches its maximum, as well as a level comparable to Ryggamyra and Eidsvatnet at the end of phase 4. This indicates that natural bog development was an important driver of diversity changes, but also that decreased human activity in the sixth century, had an effect. A weak decreasing trend is estimated for the last settlement period c. 900–1250 CE. This indicates that it may well be a settlement at Ryggen, simultaneous with the Vik settlement, that is reflected in the estimated diversity and high degree of concordance with SPD at Vik in the Early Iron Age. The estimated palynological richness from Eidsvatnet show less variation than Ryggamyra and Stormyra, with a maximum around 300 CE, 700 CE and from c. 1000–1300 CE when the estimated richness is higher than for the two other sites. This may be connected to the Iron Age and medieval settlements in the larger surroundings of Eidsvatnet (cf. Figure 1B). The highest palynological diversity is estimated for archaeological contexts; a waterhole in area E used as waste pit/latrine, and a waterhole in Field E also containing waste. Both contexts have several pollen sources, reflecting both the utilization of plants and a diverse cultural landscape. The palynological richness from different soil profiles are comparable to the levels in Ryggamyra during the settlement phases.
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FIGURE 5
Palynological richness (N0) in relation to settlement phases (A) Eidsvatnet, (B) Stormyra, (C) Ryggamyra, and (D) archaeological contexts. (E) Palynological richness and Detrended Correspondence Analysis (DCA) sample scores for the four datasets treated simultaneously.


The distribution of samples along the first and second DCA axes (Figure 5E), show the complete difference in pollen composition in lake sediments and archaeological contexts. The pollen samples from Eidsvatnet and archaeological contexts are found on different ends of the axes, whereas Ryggamyra and Stormyra are partly overlapping, as well as the samples from the Early Iron Age settlement phase in Ryggamyra and some samples from soil profiles; samples also having comparable palynological richness.



Reconstructions of vegetation cover

The REVEALS-estimated regional vegetation cover based on Eidsvatnet (Figure 6A) differ from the estimates based on Stormyra (Figure 6B). The main difference is the local dominance of Cyperaceae and Vaccinium in the pollen assemblages from Stormyra, resulting in high estimated vegetation cover. Eidsvatnet, with the absence of local plants, have higher representation of tree pollen in all time periods than Stormyra. For reconstruction of the local vegetation based on pollen data from Ryggamyra, geographically closer to Stormyra than to Eidsvatnet, pollen data from both Eidsvatnet and Stormyra were used to estimate the regional vegetation cover (Figure 6C) needed for the model.
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FIGURE 6
Land cover reconstructions on a regional scale using (A) Eidsvatnet, (B) Stormyra, (C) Eidsvatnet and Stormyra combined, and (D) land cover reconstructions on a local scale. For original pollen data, see Supplementary Figures 2–4.


The reconstruction of vegetation cover on and around Ryggamyra using LRA, indicates c. 20% trees and shrubs 400–300 BCE (phase 2), in a landscape dominated by grasslands. An expansion of open-land communities took place in the following centuries, with maximum cover of grasslands 200–100 BCE. Between 100 BCE and 100 CE (phase 3), maximum cover of cultivated fields is estimated, and an expansion of heathlands is indicated. This reflects a cultural landscape with infields and outfields, with a transition from dryland to more wetland with time (Figure 6D). From c. 5% cover of trees and shrubs 500–600 CE, trees and shrubs reach nearly 40% cover 600–700 CE (phase 5) and contribute to 90% of the land-cover 800–900 CE. Around 900 CE expansion of heathlands starts, reflecting a changed use of the area. Whereas cereal cultivation and meadows characterized the Early Iron Age landscape, coastal heathlands dominated the area from the Late Iron Age onwards.

In contrast to the complete open landscape estimated for Ryggamyra in the Early Iron Age and medieval time, the REVEALS estimated regional vegetation cover indicate presence of woodlands, but with fluctuations through time. Eidsvatnet, reflecting the vegetation cover without over-representation of local taxa, indicate a decrease from nearly 60% cover of trees and shrubs c. 1 CE, to around 40% c. 200 CE (Figure 6A). In this period the cover of both grasslands and cereal fields increased. Reduced openness is indicated 200–300 CE and 500–700 CE, whereas a marked opening of the landscape took place 900–1000 CE and in the following centuries. The most dramatic increase in forest cover took place in the fifteenth century CE, reaching nearly 60%. From the seventeenth century a semi-open landscape (<30% forest cover) with grass dominated meadows and pastures, and heathlands, have existed regionally.



Summed probability distribution in relation to land cover and palynological richness

The period with high number of radiocarbon dates is characterized by maximum cover of meadows, pastures, and cultivated fields (Figure 7A). Concordant with the decrease in SPD c. 550 CE, shrubs and trees quickly expand. The new increase in SPD is followed by expansion of heathlands, whereas a decrease in heathlands and increase in sedge dominated vegetation is indicated after the decrease in SPD in the fourteenth century.
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FIGURE 7
Summed probability distribution (SPD) shown in relation to (A) REVEALS estimated vegetation cover Eidsvatnet, (B) LOVE estimated vegetation cover Ryggamyra, and (C) palynological richness (estimated number) in 100-year time intervals at the different sites.


On a regional level, there is a less clear trend following the development in the SPD from Vik, although trees and shrubs increase in periods with few radiocarbon dates (Figure 7B). The highest cover of grasses and forbs (herbaceous flowering plants that are not grasses or sedges) are found immediately after isolation, c. 300 BCE and reaches a new maximum c. 300 CE. Between c. 600 CE and 900 CE, there are less fluctuations in the vegetation communities than before and after. Meadows, pastures and cultivated fields reach > 30% c. 1350 CE and decrease to 20% cover c. 1450 CE, when a marked increase in conifers take place. A smaller but marked increase in conifer cover is also estimated for the sixth century CE.

The comparison of summed probability distribution of radiocarbon dates and palynological richness at the three sites (Figure 7C), indicate high richness at Ryggamyra and increasing richness at Stormyra during the Early Iron Age settlement period. At Eidsvatnet, the highest richness is observed in the Late Iron Age and medieval time, simultaneous with increase in SPD at Vik and increased settlement in the larger Ørland area.




Discussion


Information gained from different basin types and deposits

The investigation covers the past c. 2,300 years, a time when farming societies were well established in Norway (Solberg, 2000; Diinhoff et al., 2013; Iversen and Petersson (eds), 2016) and to a high degree also shaped the vegetation and landscape in northern Europe (e.g., Odgaard and Rømer (eds), 2009; Kaland, 2014; Marquer et al., 2014, 2017; Fredh et al., 2018; Hjelle et al., 2018; ter Schure et al., 2021). Our results, based on a pollen diagram from one lake, two bogs and different archaeological contexts compared to the summed probability distribution of radiocarbon dates from archaeological contexts, clearly show the local impact of settlements in the Iron Age and early Middle Ages. It demonstrates the different patterns given by data from different basin types and contexts, and the effect of natural processes taking place concordant with the settlement development. The different basins investigated reveal the natural settings; todays open landscape at the western part of the peninsula existed in the Iron Age, probably due to exploitation from the very beginning of dry-land formation that hindered forest development, whereas the eastern part with higher-lying areas had been forested and continued to be so up into modern time. Vicinity to the seashore is reflected in the estimated high cover of meadows/grasslands and high palynological richness following the land-uplift and isolation. With time and with longer distance to the sea, the distance to these species rich communities increased, and distance to human impact as well as types of activity and management became decisive for the vegetation and diversity development.

Estimates of vegetation cover and palynological richness based on the Ryggamyra data reflect the development in the vicinity of the bog and changes in the curves show a high degree of concordance with decrease or increase in number of radiocarbon dates. This conformity with the summed probability distribution/kernel density estimate is in lesser extent found in Eidsvatnet, reflecting the vegetation within a larger area. However, some trends seem to be general and are visible on both spatial scales. These are reflecting a more overall pattern and probably causes of change, e.g., the late medieval crisis (see discussion below). Through the Early Iron Age Vik settlement period, higher palynological richness is estimated from Ryggamyra than from Stormyra and Eidsvatnet, most likely due to short distance to and influence from a contemporaneous settlement at Ryggen, whereas the highest richness in medieval time is estimated for Eidsvatnet. When bog development expanded at Ryggamyra, local vegetation types with relatively low plant diversity developed, resulting in local over-representation in the pollen assemblages and in the estimated cover. In contrast, the lake reflects several vegetation types and activities in the surrounding landscape, without having the local overrepresentation in the pollen assemblages. Since the entomophilous taxa Empetrum and Vaccinium have high values in the two bog diagrams, they were included in the reconstructions. They are, however, overrepresented in the regional and local estimates of vegetation cover (cf. Mazier et al., 2012; Nielsen et al., 2012; Fyfe et al., 2013; Overland and Hjelle, 2019). On the other hand, by including these, the heterogeneity of the heathland communities, not dominated only by Calluna, is illustrated.

The highest richness estimated is from the waterlogged archaeological contexts, interpreted as secondary use of wells and water holes. These pollen assemblages reflect the vegetation at the site and in the vicinity, but also additional sources of pollen, i.e., the use of different plants and the waste produced through habitation and activity. This shows that a high diversity of plants was exploited. The higher diversity and difference in species composition compared to the soil profiles, indicate that plants growing in vegetation types in some distance to the site were collected. Pollen can also be present within the settlement, and in the agricultural layers, as result of for instance animal dung and manuring. Fertilization of cultivated fields by material brought in from the outfields, may be an additional pollen source for the agricultural layers and contribute to similarities with pollen assemblages from Ryggamyra.



Human activity as main driver of habitat and species diversity

During the Vik settlement period, a mixture of cultivated fields, ruderal communities, grazed and may be also mown meadows, existed in the vicinity of the settlement, as well as wetlands and shrub communities at longer distance. This reflects a marked differentiation in use of landscapes; production in infields and exploitation of outfields to optimize available resources, resulting in a mosaic of vegetation types.

The reconstructed vegetation cover at Ryggamyra indicate between 70 and 40% grasslands and fields during the Vik settlement phases, with a decline toward <20% starting around 400 CE, at a time when there also is a reduction in number of radiocarbon dates. From around 100 CE sedge dominated wetlands became more important in the landscape than grasslands. A marked reduction in radiocarbon dates after 550 CE is probably the direct cause of an increase in trees and shrubs. Pioneer taxa such as Salix and Betula quickly expanded into the abandoned ground. The correlation between radiocarbon data from Vik and palynological data from Ryggamyra suggest that a local population decline took place. Also, the wetlands were overgrown, and the succession resulted in 90% trees and shrub cover prior to the next increase in SPD c. 900 CE. At that time clearance took place and the former shrubland turned into grazed heathlands, a vegetation type that at Vik had its maximum extent during the early and high Middle Ages. Although present along the coast from the introduction of animal husbandry around 6,000 years ago, the management system with year-long grazing, burning, and mowing of heather, expanded in the Iron Age and Middle Ages (Kaland, 1986, 2014; Prøsch-Danielsen and Simonsen, 2000; Hjelle et al., 2009, 2012, 2018), clearly also seen at Frøya (Paus, 1982), an island west of the investigation area at Ørland. An estimated reduction in heathland cover in the fifteenth century probably reflects the medieval crisis, with population reduction following the Black Death, probably resulting in less regular burning and maintenance of the heathlands.

As indicated both from the pollen percentage data and the landscape reconstructions, a high diversity of vegetation types existed in the area until c. 550 CE, when wetlands became dominant. The high habitat diversity is also reflected in high palynological richness/species diversity, which decrease when the number of charcoal dates decrease. The minimum around 900 CE at Ryggamyra may, however, be explained by the influence of a high pollen producer such as Betula in the close vicinity to the investigated site. Several investigations have shown that insect pollinated taxa, and thereby a higher number of herbs, are better represented in records from lakes and bogs in periods of open landscapes than in forested periods (e.g., Odgaard, 1999; Overland and Hjelle, 2009; Meltsov et al., 2013). When the number of charcoal dates again increase, also palynological richness increase and stabilize on a lower level than in the Early Iron Age settlement phase. This indicates lower plant diversity in the Late Iron Age and early Middle Ages heathland vegetation compared to the grasslands and cultivated fields in the Early Iron Age, although some grasslands were present also in the Late Iron Age and early Middle Ages. The high diversity in these, probably mown and grazed meadows, is reflected in the palynological richness estimated from Eidsvatnet.

On a regional level the highest cover of grasses and forbs, >40%, is found around 250 BCE in Eidsvatnet, immediately after isolation from the sea and again in historical time reflecting traditional semi-natural grasslands. The high cover in the Pre-Roman Iron Age probably reflects a combination of seashore meadows and human-induced grasslands at that time. If so, this shows the local impact on the pollen assemblages in a large basin which theoretically covers the vegetation within a radius of c. 50 km (Sugita, 1994, 2007a). The dominance of grassland communities is followed by increase in trees and shrubs and fluctuations in communities through time, but without the close relationship to the SPD from the excavation area at Vik; high cover of grasslands is in Eidsvatnet estimated also for periods with low SPD at Vik. On the other hand, the large number of Iron Age burial mounds and four medieval churches in the region reflects well-developed societies which influenced on the vegetation. The importance of these settlements is also visible in the estimated palynological richness. The Late Iron Age and early/high Middle Ages are periods with high diversity reflecting cultivation, mown meadows, outfield pastures including both grasslands and heathlands, as well as more natural communities such as seashore meadows and woodlands. Semi-natural grasslands are one of those habitats depending on grazing, as well as the positive effect of long-time use (Reitalu et al., 2010; Natlandsmyr and Hjelle, 2016). This indicates that human activity was the main driver of biodiversity and habitat diversity both on a local and a regional scale. The results from Vik in the Early Iron Age and Eidsvatnet in the Late Iron Age and Middle Ages, indicate the high diversity in the traditionally managed infield/outfield vegetation communities. Compared to these, the managed heathlands have lower diversity. The increase in heathlands at Vik from 900 CE, and the increase in both grasslands and juniper-rich outfields regionally, both reflect the importance of grazing and the need for fodder. This indicates the value of animal husbandry in the economy. At the same time the estimated cover of cultivated fields also shows the importance of cereal cultivation in the economy.



Crises in the society; vegetation changes from the sixth to the fourteenth centuries

In general, in Norway re-location of settlements and population decrease starts at the end of the fourth century due to a combination of economic, political, climatic stress or the Justinian plague, ending in a marked change in the archaeological data in the sixth century (Solberg, 2000, p. 197; Myhre, 2002; Gjerpe, 2021). Alternative explanations are volcanic eruptions around 536–540 CE, resulting in a dust veil and colder climate, that could be the origin of the myth of the “Fimbul winter”—years with no summer—in the Nordic Mythology (Gräslund and Price, 2012; Büntgen et al., 2016; Nordvig and Riede, 2018). A co-effect from cultural transition and environmental crisis is expected to have taken place, both forming a transition of the settlement pattern (Gundersen, 2019). At Ørland, the period is visible in the archaeological record as abandonment of the excavation areas at Vik; no house remains could be dated to this period and the SPD/KDE curves show low values, which together with the palynological data suggest that a local population decline took place. In the fifth to sixth century Vik, isostatic uplift combined with the very flat local landscape had turned the earlier bay into wetlands. The result was abolition of the settlement’s harbor. When the climate deterioration following the 536 and 540 CE events, struck, Ørland societies were already under pressure, and the climatic events may have acted as a final tipping point for site abandonment (cf. Solheim and Iversen, 2019; Gjerpe, 2021).

Another aspect, the changes in local settlement pattern at Vik may have forced changes in land use practices in later time periods. Reduced human impact following c. 536 CE, in combination with more long-term sea level changes, may have had a pronounced effect on the local hydrological situation, influencing the trophic status of wetlands. This is visible in both Ryggamyra and Stormyra, but most pronounced in Ryggamyra which underwent a succession from minerotrophic wetland to raised bog following the abandonment phase. In Stormyra the period marks a change in vegetation from Cyperaceae rich wetland and Calluna heathland, to more Empetrum and Vaccinium and nutrient poor peat with Pedicularis and Sphagnum. Pollen data, with LOVE estimated vegetation cover, in Ryggamyra suggests that the early Iron Age settlement made use of infield meadows and pastures (grasslands), whereas in the medieval period the settlement relied on heathlands. This change in local agricultural potentials may have been caused by a combination of significant local isostatic uplift making the area Vik landlocked, and increased peat development on soils of poor drainage, that partly could be a response to local abandonment. With settlement abandonment at Vik, and possibly also other places at Ørland, the previous infields turned into successional stages toward forests. Also the regional estimates of vegetation cover indicate an increase in shrubs and pioneer trees followed by increase in coniferous forests.

After dominance of grasslands and cultivated land on a regional level from the tenth to the fourteenth century, there is another abandonment phase in the late medieval period, that has larger effect regionally. An abrupt decrease in meadows and pastures is followed by increase in deciduous trees and especially conifers in the fourteenth/fifteenth centuries, reflecting the climate deterioration (Sejrup et al., 2016) and late medieval crises in the society, (Svensson, 2019) with a marked reforestation following the Black Death in 1349 (Thun and Svarva, 2018). It was not until around 1600 CE that the open land again became dominant.




Conclusion

The combination of palynological and archaeological data indicate a significant human impact on long-term vegetation and biodiversity changes in Ørland. Fluctuations in human and livestock populations correlate to fluctuations in vegetation and biodiversity in many respects.

Archaeological and palynological data indicate a decline in human and livestock populations in the sixth century on both a local scale in Vik and on a regional scale. In the fifth to sixth century a correlation between radiocarbon data (SPD) from Vik and palynological data from Ryggamyra suggest that a local population decline did take place. At the same time isostatic uplift led to the abolition of the settlement’s harbor, suggesting that when the climate deterioration following the 536 CE and 540 events struck, Ørland societies were clearly already under pressure. In the late Middle Ages, a marked forest regeneration took place on a regional scale. Reasons behind these population declines appear as combinations of over-regional societal changes, local geographical changes, as well as supra-regional climatic events, however in different cultural historical settings, as well as geographical/vegetational settings.

Species diversity, shown as estimated palynological richness, on a local level follow the SPD in general. In the Early Iron Age, the species diversity estimated from bog diagrams is at its maximum connected to settlement with infields (meadows, pastures, cultivated fields) and short distance to seashore communities. Low SPD, settlement abandonment and decreasing species diversity is associated with local trees and shrub vegetation. The increase in SPD in the Late Iron Age/medieval time, associated with one farm settlement and heathland management, gave increased species diversity, but to a lower level than in the Early Iron Age. However, the highest species diversity estimated from our data, is the Late Iron Age/medieval water hole at the farm settlement. This reflects high local activity and several pollen sources.

On a regional level, the trend is quite constant species diversity until the Late Iron Age when it increases and reach a maximum around 900 CE. The species diversity remains high until the most pronounced reduction around 1400 CE. Two centuries later, the species diversity reaches its previous high level. Our SPD data reflects local settlement, whereas species diversity estimated from the lake reflect human activity on a regional scale. However, periods with high diversity are connected to a diverse cultural landscape.

From the regional estimated species diversity and estimated forest cover, the late medieval crises are more profound than the 536 CE event.

Although postglacial land uplift and climate changes have influenced settlement, habitat types and food production, human activity has had a final decisive role for the floristic diversity and landscape development.
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SUPPLEMENTARY FIGURE 1
Profile drawings for analyzed pollen samples from archaeological contexts. D and E followed by a number refer to the excavation areas at Vik (Figure 2B).
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Percentage pollen diagram Eidsvatnet.

SUPPLEMENTARY FIGURE 3
Percentage pollen diagram Stormyra.

SUPPLEMENTARY FIGURE 4
Percentage pollen diagram Ryggamyra.

SUPPLEMENTARY FIGURE 5
Pollen samples from archaeological contexts. (A) Samples from agricultural layers in field A (see Figure 2B), (B) samples from field D (see Supplementary Figure 1 for information on context), and (C) samples from field E (see Supplementary Figure 1 for information on context).
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The snow cover extent (SCE) on the southeastern Tibet Plateau (SETP) has an important impact on the dynamics of the East Asian winter monsoon and the runoff changes of the first and third largest rivers in Asia, namely, the Yangtze River and the Yarlung Zangbo River. Unfortunately, the shortness of instrumental SCE data of a few decades limits our ability to understand its long-term variability before the industrial era. Here, we developed Abies faxoniana tree-ring total ring width (TRW), early-wood width (EWW), and late-wood width (LWW) chronologies for the past four centuries at Little Qamdo Village (XQDV), Markam County, on the SETP. The most significant positive correlation (r = 0.62, p < 0.01) was found between the EWW chronology and SCE from March to May (SCE3–5). The SCE would affect the onset of the growing season through soil moisture, restricting the early-wood growth of trees. Thus, we presented a reconstruction of SCE3–5 via EWW chronology since AD 1660 for SETP. We observed two abrupt changes from low to high around the years 1685 and 1998 for our reconstructed SCE3–5. In addition, we found that the positive anomalies of the reconstructed SCE3–5 after 1988 cohered with the distinct increase of the East Asian winter monsoon.

Keywords: Tibetan Plateau, tree-ring early-wood, climate reconstruction, snow cover extent, East Asian winter monsoon


INTRODUCTION

Variations in SCE have strong impacts on climate change. The expansion of SCE increases surface albedo and reduces absorbed shortwave radiation. When the snow melts, it increases the latent heat sink at the expense of sensible heat, resulting in cooling in the snow-covered regions. Moreover, snow is also a critical component of the hydrological system in middle/high altitude regions, acting as a reservoir of water and a buffer control for river discharge and associated environmental processes (Groisman et al., 1994; You et al., 2002; Barnett et al., 2005; Zhang, 2005; Li et al., 2008; Räisänen, 2008; Zuo et al., 2012; IPCC, 2013; Qin et al., 2014; Huang et al., 2016).

In turn, snow cover extent (SCE) is highly sensitive to the current warming trend. Due to global warming, the beginning of the snow accumulating season (the end of the snow-melting season) will occur later (earlier) in most of the snow-covered regions, and the SCE will decrease except for very few exceptions (Masahiro et al., 2005). For example, the monotonic trend analysis of Northern Hemisphere SCE over the period of 1972–2006 with the Mann–Kendall test reveals significant declines in SCE during spring over North America and Eurasia, with lesser declines during winter and some increases in fall SCE (Déry and Brown, 2007). In particular, a number of studies have attributed the cause of diminishing spring SCE to Northern Hemisphere warming (Brown et al., 2010; McCabe and Wolock, 2010; Brown and Robinson, 2011).

Snow cover extent in China is primarily situated in the northeastern China, the northern part of Xinjiang Province, and the Tibetan Plateau (TP; Wang, 2012; Wang et al., 2012; Li, 2013; Xi and Zhang, 2013). The southeastern Tibetan Plateau (SETP) is one of the regions with a considerable volume of cryospheric extent (e.g., snow, ice, glacier, and permafrost) outside the polar regions (Liu and Chen, 2000; Qin et al., 2006; Kang et al., 2010; Yang et al., 2011; Immerzeel and Bierkens, 2012; Yao et al., 2018). Besides, as the product of snowfall in winter, the climatic effect of snow cover extent on the TP is also reflected in the coupling of its temporal and spatial variability as well as the circulation situation in winter and summer (Wang and Li, 2012; Wang et al., 2015).

As an important part of the global atmospheric circulation, the influence of the East Asian winter monsoon on the snow on the TP cannot be ignored (An, 2000; Mohtadi et al., 2011). On the one hand, since the terrain on the TP is tall and complex, the way the East Asian winter monsoon affects the region is therefore different from that of the eastern region of China. On the other hand, the spatial distribution of snowfall on the TP is quite different. Studies by Xu et al. (2005) and Xiu-zhong et al. (2010) found that the TP showed a basic distribution of lower SCE in the central hinterland and higher SCE in the surrounding areas. Zhu (2007) have revealed that there is higher SCE on the TP in winter and spring when the East Asian winter monsoon is stronger using both numerical simulation and data analysis. Wang et al. (2015) found there was a significant correlation between winter snowfall on the TP and the East Asian winter monsoon during 1961–2010, noting that since the beginning of the 21st century, the East Asian winter monsoon has been weakening and slowing down. The winter snowfall on the TP, meanwhile, has also shown a falling trend.

The spatiotemporal characteristics and extremity of the above effects in the long-term perspective are not known due to the lack of long-term SCE data from the SETP. The ground and satellite-based SCE records for the region are only a few decades long (Li, 1996; Pu et al., 2007), limiting a sufficient time window to assess the natural variability in SCE in the long-term perspective, and thus proxy data are required for the study of past SCE change.

Several studies have used tree-ring chronologies as a predictor to reconstruct SCE worldwide (Woodhouse, 2003; Timilsena and Piechota, 2008; Anderson et al., 2012; Masiokas et al., 2012; Ram and Mahendra, 2013) and the only reconstructed SCE record on the SETP is 300 years in length, providing the variation of SCE on an inter-decadal scale (Fang et al., 2016). However, almost all of these studies were based on the analysis of total ring-width (TRW) sequences, which were usually sensitive to a climate signal covering several months (Fritts, 2001; Speer, 2010). As a matter of fact, the increase in SCE may delay the growing season, restricting the early-wood growth of trees (Vaganov et al., 1999). Besides, SCE also affects soil moisture, which is an important factor limiting the growth of trees in cold and arid areas (Li et al., 2009; Fan et al., 2010). Thus, tree-ring early-wood variations may be an ideal material for reconstruction of SCE. Moreover, the analysis of the early-wood width (EWW) and late-wood width (LWW) chronologies helps us further understand the seasonality of climate changes and their impact on biomass production (Villanueva-Diaz et al., 2007; Griffin et al., 2013; Dannenberg and Wise, 2016; Torbenson et al., 2016).

The objectives of this study are to (1) identify the SCE3–5 sensitive proxy to reconstruct SCE3–5 variability over the past four centuries on the SETP based on the TRW, EWW, and LWW chronologies from Abies faxoniana trees and (2) further explore the relationship between our reconstructed SCE3–5 history and the East Asian winter monsoon.



MATERIALS AND METHODS


Study Areas

The study area is located at Xiao Qamdo Village (XQDV) (98.7°E, 29.3°N), Markam County, on the SETP (Figure 1), which is in the transition zone between the TP and the Western Sichuan Plateau. The mountainous area has a continental plateau climate with high altitude, low temperature, less precipitation, large evaporation, and various climate types (Ye, 1981). Due to the special physical and geographical conditions, the ecosystem in the region has obvious vulnerability characteristics. The Abies faxoniana is the dominant forest species growing along an elevation gradient from 3,607 to 3,618 m a.s.l. in our study area, and the 50 tree-ring samples in this work were collected in October 2019 from 26 Abies faxoniana trees. Our sampling site is located at the upper limit of the forest, where tree growth is usually sensitive to temperature (Fritts, 1976).
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FIGURE 1. The snow cover distribution and the locations of tree-ring sampling site and meteorological station in this study. The map on the right shows the snow cover on the Tibet Plateau derived by Yan et al. (2021). Blue represents the low snow cover, and red represents the high.




Tree-Ring Data

Tree-ring samples were collected and prepared for analysis based on the technique described by Stokes and Smiley (1968) and Fritts (1976). Following the surfacing, samples were scanned using an Epson® Expression 10000 flatbed scanner at resolutions between 800 and 1,200 dpi, depending on the image clarity. Higher resolution images were required to enable the distinction of narrow rings in periods of suppressed growth if the coarser-resolution was deemed inefficient for this purpose. Dating, measuring, and visual cross-dating of annual rings were carried out using the program WinDENDROTM Density (version 2008b). EWW and LWW measurements were aided by the distinct size differentiation of early-wood and late-wood vessels in Abies faxoniana tree samples. Early-wood and late-wood measurements were based on a defined boundary of 40% of the minimum to maximum relative pixel density in the reflectance values, where the onset of late-wood growth was noted as having denser and compacted vessels that were darker in nature (Supplementary Figure 1). Some early-latewood boundaries were adjusted manually to correct for errors in the automatic detection process.

COFECHA was used to verify cross-dating and provide chronology statistics that describe the strength of intercorrelation between tree-ring samples at the study site (Table 1; Holmes, 1983). The chronologies were computed as the robust mean value of the normalized, detrended, and standardized TRW, EWW, and LWW available each year, using the computer programs ARSTAN (Cook and Holmes, 1986). The TRW, EWW, and LWW measurements were standardized to remove the biological growth trend as well as other low-frequency variations due to stand dynamics. In our study, the chronologies were developed with conservative methods by fitting a negative exponential curve or a straight line to any slope. A cubic spline with a 50% frequency-response cutoff equal to 67% of the series length was also used in a few cases when anomalous growth trends occurred. The reliability of each standard chronology was evaluated by the expressed population signal (EPS) and mean series intercorrelation (Rbar) (Cook and Kairiukstis, 1990). Both Rbar and EPS were calculated for a 50-year moving window with 25-year overlaps along the chronology. The reliable part of the chronologies was defined by a threshold of EPS 0.85 (Wigley et al., 1984). The standard (the detrended index chronology) TRW, EWW, and LWW chronologies were produced and were subsequently used throughout the analyses (Fritts, 1976).


TABLE 1. Statistics for each chronology at XQDV.
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Climate Data

Monthly maximum (Tmax), minimum (Tmin), temperature (°C), and monthly total precipitation (Pre) (mm) records for the period of 1954–2018 were obtained from the nearest meteorological station (Qamdo meteorological station; 31.15°E, 97.17°N, 3307.1 m a.s.l.; Figure 2). The gridded SCE (%) database with weekly resolution covering the northern hemisphere (20°–90°N1; Robinson et al., 2012) was also derived from the Climate Research Unit (CRU)2. The SCE on the TP is mainly distributed in the northwest and southeast, with the largest in the northwest. The spatial range of SCE data used in this study is 93° to 98°E and 29° to 31°N, which belongs to the second largest SCE area on the TP. The time span of the database is from 1966 to 2018, and the spatial resolution is 2° × 2°, mainly compiled based on the snowfall and snow depth data monitored by satellites and stations. These data were reduced to annual and seasonal means and totals.
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FIGURE 2. The pattern of monthly maximum (Tmax), minimum (Tmin), temperature (°C), and monthly total precipitation (Pre) (mm) for the period of 1954–2018 and the gridded snow cover extent (SCE) (%) for 1966–2018.


After comparing and analyzing 18 East Asian winter monsoon indexes affecting East Asia, Wang and Chen (2010) classified the East Asian winter monsoon indexes into four categories, namely, East–West pressure difference, low-level wind field characteristics, high-level wind shear, and East Asian Trough, and pointed out that most of the main East Asian winter monsoon indexes showed that the East Asian winter monsoon entered a weakening stage in the 1980s. Other studies have also proved the characteristics of this weakening trend (Zhu, 2008; Liu et al., 2013). For the sake of objectivity, the East Asian trough location index (CW) and the Siberian high-intensity index (SH) during the period of 1961–2010, developed by Wang et al. (2015), are selected to illustrate the linkage of the SCE to the SETP and large-scale circulation in our study.



Methods

To evaluate the relationship between climatic variables and the TRW, EWW, and LWW indices for Abies faxoniana, we used correlation analyses, applied with the software Dendroclim (Biondi and Waikul, 2004). All statistical procedures were evaluated at a level of significance at P < 0.05. SCE modeling was conducted using the transfer function approach (Fritts, 1976; Cook and Kairiukstis, 1990). Multiple stepwise linear regression was used to develop a linear model to estimate the dependent SCE variable from a set of potential tree-ring predictors.

Based on the correlation analysis, a linear regression model was developed to reconstruct SCE3–5 via the EWW chronology. In view of the short period of instrumental SCE records used in the reconstruction model, we used the leave-one-out verification method (Michaelsen, 1987) to test the robustness of the calibration model. The evaluative statistics included Pearson’s correlation coefficient (r), the t-value derived using the product mean test (PMT), the raw sign test (ST) and the first-difference sign test (ST1), and the reduction of error (RE) (Cook et al., 1999).

We performed the Mann–Kendall (M-K) abrupt test method (M-K method) on the reconstructed SCE3–5 time series with the trend package in the R program (Yi et al., 2011). The M-K method can determine the time of our reconstructed SCE3–5 mutation according to the two output sequences (UF and UB): if the UF value is greater than 0, it indicates that the sequence shows an upward trend; if the UF value is less than 0, it indicates a downward trend; when the upward or downward trend exceeds the confidence level (α = 0.05), it indicates that the upward or downward trend is significant; if the UF and UB sequences intersect and the intersection is fallen in the confidence level, the time corresponding to the intersection is the time when the mutation starts.




RESULTS


The Total Ring Width, Early-Wood Width, and Late-Wood Width Chronologies at Xiao Qamdo Village

The TRW, EWW, and LWW chronologies were obtained from Abies faxoniana trees at XQDV and spanned the intervals of 1668–2018, 1660–2018, and 1680–2018, respectively (Table 1). The three standardized chronologies showed a good coherence of variability over the common period of 1680–2018 (r = 0.95, P < 0.001 for EWW vs. TRW; r = 0.84, P < 0.001 for LWW vs. TRW; r = 0.80, P < 0.001 for EWW vs. LWW), exhibiting similar growth patterns. The three chronologies revealed sustained high growth patterns in the early-1700s, late-1700s, mid-1850s, mid-1950s, and 2010s, and suppressed growth patterns in the early-1800s, late-1800s, and early-1900s (Figure 3). Based on inter-series correlation and between-tree correlations (Table 1), it appears that LWW chronology may be less sensitive and responsive to climatic fluctuations. The peak correlations (r = 0.95, P < 0.001) were found between the EWW and TRW chronologies (Supplementary Figure 2), which is reasonable as the EWW accounts for most of the TRW.
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FIGURE 3. Standard tree-ring indices and the sample depth at XQDV for (A) LWW (1680–2018), (B) EWW (1660–2018), and (C) TRW (1668–2018). Chronologies are smoothed by a 20-year running average (red curves). Yellow shading indicates years of suppressed growth (below the mean), and green shading indicates periods of rapid growth above the mean.




Climate Response of Total Ring Width, Early-Wood Width, and Late-Wood Width Chronologies

The EWW chronology was significantly positively correlated with monthly SCE for the months of current March (r = 0.52, P < 0.001) and April (r = 0.62, P < 0.001), and the month combination from current March–May (r = 0.59, P < 0.001) during 1979–2013. Interestingly, a significant positive correlation between the EWW chronology and the month combination of the monthly minimum temperature during the pre-growing season was also detected, although the significant correlation was not as high as that with SCE. The strong significant positive correlation between the TRW chronology and monthly minimum temperature occurs in the single month of current December (r = 0.84, P < 0.001), and the month combination from the previous November to current May (r = 0.44, P < 0.01). In contrast, the climate signal reflected by LWW seems to be much weaker because it only shows a significant positive correlation with the monthly minimum temperature in August (r = 0.33, P < 0.01; Figure 4).
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FIGURE 4. Correlation between (A) EWW, (B) LWW, and (C) TRW chronologies and climatic variables (SCE, Tmin, and Tmax) at XQDV. ** Indicates the significance at the 99% level of confidence and * indicates the significance at the 95% level of confidence.




Snow Cover Extent Reconstructions From Early-Wood Width and Validation

A highlight of our study is the SCE signal recorded in the EWW chronology (Figure 4A). The EWW data was used to reconstruct the SCE3–5 by identifying the particular months/seasons climate variables. The confidence intervals of correlations are at the 95 and 99% confidence levels. Based on the results of the correlation analysis, a linear regression model between the EWW index and the SCE3–5 for the period of 1979–2013 was developed as follows:

[image: image]

(r = 0.62, R2 = 38.4%), where SCE3–5 represents the snow cover extent data from current March to May.

On the whole, the reconstructed and instrumental SCE3–5 data were in agreement (Figure 5A). According to the test results of the leave-one-out in Table 2, the r value between the reconstructed and the instrumental series is 0.62. ST1 does not reach 95% significance levels, while ST reaches 95% significance levels, indicating that the reconstructed series is more consistent with the instrumental series in low-frequency variation than in high-frequency variation (Liu and Shao, 2000; Figure 5B). The RE value (0.215) is far greater than 0, indicating that the reconstruction results are stable and reliable (Cook et al., 1999). Therefore, based on this model, variations of SCE3–5 in the study area were reconstructed for the period of 1660–2013 CE (Figure 5B).


[image: image]

FIGURE 5. The reconstructed SCE3–5 at XQDV, SETP. (A) A comparison between the raw instrumental data and the raw reconstruction data (1979–2013) and (B) the reconstructed SCE3–5 since 1660 CE and its 20-year moving average. The horizontal light-blue line indicates the mean value of the reconstruction during the period of 1660–2013, and the red broken lines indicate the mean ± 1σ (standard deviation).



TABLE 2. Statistical test parameters of the reconstructed SCE3–5 on the SETP.

[image: Table 2]


Characteristics of SCE3–5 Over the Past Four Centuries

For the SCE3–5 reconstruction in the reliable period (1660–2013; Figure 5B), SCE3–5 varied between 0 and 1.8%, with a mean of 0.7 ± 0.3%. A year in which the SCE3–5 exceeds the standard of mean ± 1σ (standard deviation) is defined as an abnormal year (Cai et al., 2020). Accordingly, there are 51 years of abnormal high SCE3–5 in our reconstruction results, of which 15 years (29.4%) fall in the period of 1998–2013; and 49 years of abnormal low SCE3–5, of which 9 years (18.4%) fall in the period of 1867–1878 (Figure 5B). The top 10 highest SCE3–5 years are 2010, 1719, 1715, 2011, 1720, 1721, 1854, 2006, 1853, and 1718. The top 10 lowest SCE3–5 years are 1897, 1887, 1867, 1937, 1885, 1813, 1670, 1703, 1668, and 1709 (Figure 5B). Moreover, the 20-year FFT indicates that the high SCE3–5 periods in the past four centuries occur during the period of 1700–1750, 1830–1860, and 1983–2013, and the low SCE3–5 periods occurs during the period of 1660–1700, 1790–1830, and 1860–1940 at the study area (Figure 5B).

The M-K abrupt test shows that the UF(k) curve values are mainly positive from 1680 to 1880, indicating that the reconstructed SCE3–5 shows an increasing trend during these 200 years. Especially during the period of 1720–1800, the UF(k) statistic exceeds the critical value of the 0.05 significance level (the upper limit is 4.5), and the uptrend is more significant. The UF(k) curve values are mainly negative from 1881 to 2000, indicating that the reconstructed SCE3–5 shows a decreasing trend during these 120 years. Especially during the period of 1920–1945, the UF(k) statistic exceeds the critical value of the 0.05 significance level (the lower limit is –3), and the downtrend is more significant. The two curves of UF(k) and UB(k) intersect around 1685 and 1998, respectively, and the intersection is between the critical values. It can be therefore judged that the time points of the two mutations are around 1685 and 1998, respectively (Figure 6B).
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FIGURE 6. (A) Interannual variation of the anomalies of the East Asian trough location index (CW), Siberian High index (SH), and the reconstructed SCE3–5 values for 1961–2010 on the SETP, and (B) the M-K abrupt test of reconstructed SCE3–5 values during the period of 1660–2013. The green horizontal dotted lines indicate the 0.05 significance level.


Cross-field correlations using the EWW chronology and the reconstructed SCE3–5 developed for the SETP region with gridded CRU scPDSI 4.05 early data (available at http://climexp.knmi.nl; Schrier et al., 2015) were generated for 1955–2013 to understand linkages with regional droughts. The positive correlations between the EWW chronology and reconstructed SCE3–5 with the corresponding months’ CRU scPDSI were observed on the SETP (P < 0.01; Figure 7). The correlation fields showed distinct dipole arrangements with positive relationships over 35° to 45°N, 75° to 100°E and negative relationships over 20° to 35°N, 75° to 85°E (Figure 7).
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FIGURE 7. (A) Spatial correlation between the reconstructed SCE3–5 and the corresponding months’ gridded PDSI data for 1955–2013. (B) Same as (A) but between EWW and March-April-May gridded PDSI data for 1955–2013. The images were generated using the climate explorer program.




Linkage of East Asian Winter Monsoon With SCE3–5 on the Southeastern Tibet Plateau

An inverse correlation between CW and SH was identified (r = –0.51, P > 0.01) (Figure 6A). It can be seen from Figure 6A that both the winter season monsoon index and the reconstructed SCE3–5 values on the SETP had a distinct change around 1988. SH showed a weakening trend for the period of 1961–1987 and then gradually increased in the following 22 years (1989–2010) (Figure 6A). The East Asian trough moved eastward from 1961 to 1988 and slowly moved westward from 1989 to 2010 (Figure 6A).

Furthermore, in order to reveal the relationship between our reconstructed SCE3–5 on the SETP and the East Asian winter monsoon, Figure 8 shows the correlation coefficients between SCE3–5 and the 700 hPa zonal wind and 500 hPa geopotential height field. The reconstructed SCE3–5 and 700 hPa zonal winds have significant characteristics of positive and negative alternating changes in the meridional direction (Figure 8A). This zonal distribution is not only affected by the position change of polar front and subtropical jet stream in winter but also related to the intensity of subtropical jet stream. The distribution area where the 500 hPa geopotential height field and the reconstructed SCE3–5 are significantly correlated (99%) have obvious monsoon characteristics (Figure 8B). The significant correlation region is mainly located in the East Asian trough, which is greatly affected by sea and land. The regions of Eurasia and the American continent that shifted slightly eastward are non-correlated areas, and the area dominated by the ocean is a positively correlated area. However, it is also positively correlated in Asia and Africa, especially in East Asia south of Mongolia. In our study site, the reconstructed SCE3–5 is significantly negatively correlated with 700 hPa zonal wind and is significantly positively correlated with 500 hPa geopotential height field.


[image: image]

FIGURE 8. Correlation coefficients between SCE3–5 at the study site and (A) 700 hPa zonal wind and (B) 500 hPa geopotential height field. The shaded area passed the test at a 99% confidence level.





DISCUSSION


Climate-Growth Relationships and SCE3–5 Reconstruction

The summer monsoon is not strong enough to bring sufficient precipitation into SETP in the early growing season, during which the growth of ring-width is often the most critical (Gou et al., 2013). Abundant snow melt water plays an important role in promoting the growth of tree-ring at this time (Fang et al., 2015). Climatic conditions before the growing season might affect ring-width growth during the growing period (Fritts, 1976; Camarero et al., 2010). Thicker snow cover can delay spring snowmelt, storing additional water for early-wood growth, which leads to a wider ring (Fang et al., 2015; Li et al., 2019). Thicker snow cover can increase soil moisture content, compensating for water loss caused by drought in spring (Fan et al., 2010). Water deficit in the early stages of the growing season suppresses the rapid expansion of tracheids and cell division in the cambium of trees (Fritts, 1976; Akkemik, 2003). In addition, the thicker snow cover plays an insulating role in maintaining the temperature constant. A higher temperature might benefit the radial growth of spruce trees during the growing season for the growing season is advanced, and there may be less winter damage to the shallow roots of the spruce trees (Liang et al., 2006; Song et al., 2007; Zhu et al., 2009; Zhang et al., 2010, 2015; Zhou et al., 2016; Li X. X. et al., 2017).

Similar to the fact that the change of SCE around the Arctic affects the growth of trees by regulating temperature (Vaganov et al., 1999; Fang et al., 2016), our study also found a significant negative correlation between the reconstructed SCE3–5 and surface temperature (Supplementary Figure 3), and the significant positive correlations between the reconstructed SCE3–5 and EWW and CRU scPDSI on the SETP (Figure 7), indicating that the decrease of SCE is mainly modulated by temperature, and then restricted tree growth by reducing soil moisture. During spring, our study area is drier than the circumpolar region (Fan et al., 2010; Fang et al., 2010), and this period is often the most critical for the growth of tree-ring width (Gou et al., 2013). Therefore, the abundant snowmelt water occurred in the study area during spring plays a very important role in promoting the growth of tree-rings.



Comparison With Other Tree-Ring-Based Reconstruction

The change of SCE is not only affected by air temperature but also affects the degree of regional drought. Therefore, we compared our reconstructed March–May SCE series on the SETP with two tree-ring-based reconstructions obtained from the surrounding research region, i.e., the April–June scPDSI reconstruction (Li J. B. et al., 2017) and winter temperature reconstruction (Huang et al., 2019), on the SETP, respectively. All the consequences were smoothed using the 11-year moving average (Figure 9). It has been shown that the long-term changes of March–May SCE are positive correlated with April–June scPDSI (r = 0.52, P < 0.001, n = 354) and winter temperature (r = 0.34, P < 0.001, n = 348), respectively. Similar common variations, such as the warm-wet periods (corresponding to the high SCE periods) during 1710–1730, 1840–1860, and 1990–2010, as well as the cold-dry periods (corresponding to the low SCE periods) during 1760–1770, 1800–1830, 1860–1890, 1900–1930, and 1960–1990 were found in three series (Figure 9). The pluvial conditions observed during 1948–1958 and 1986–1996 for cold arid western Himalaya (Ram and Mahendra, 2013) are consistent with the high SCE3–5 reconstructed in this study.
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FIGURE 9. Comparisons of the (A) reconstructed April–June scPDSI on SETP (1660–2013 CE) (Li J. B. et al., 2017), (B) reconstructed SCE3–5 from this study (1660–2013 CE), and (C) reconstructed winter temperature on the SETP (1660–2010 CE) (Huang et al., 2019). The heavy black curve corresponds to the 11-year average smoothing series. Shade bars indicate the common fluctuation periods.




Linkage of East Asian Winter Monsoon With SCE3–5 on the Southeastern Tibet Plateau

In this study, we focus on the analysis of filtered low-frequency SCE3–5 series, and the reconstructed SCE3–5 values on the SETP were mainly negative anomalies from 1961 to 1987 (the relatively low snowfall), while positive anomalies from 1988 to 2010 (the relatively high snowfall). This indicates that (1) when the East Asian Trough is eastward, the westerly airflow in the high latitudes over East Asia is relatively zonal, corresponding to the ground where the Siberian High is weaker, and the cold air is generally easterly, which is conducive to winter snowfall on the TP. That is, CW (SH) has a positive (negative) correlation with snowfall on the southeast TP; (2) when the East Asian tough is westward, the meridional circulation is dominated in the mid-high latitudes over East Asia, the Siberian High over the ground is relatively strong, and the TP has less snowfall. That is, CW (SH) has a negative (positive) relationship with snowfall on the southeast TP. The transition point of the positive and negative anomalies of the reconstructed SCE3–5 is close to the sudden change time of the East Asian winter monsoon Index (in the year 1986; Figure 6A). The M-K abrupt test shows that the reconstructed SCE3–5 series on the SETP has two abrupt changes from low to high around the years of 1685 and 1998 (Figure 6B), which further convinces us that there is a distinct negative correlation between the reconstructed SCE3–5 on the SETP and the intensity of the East Asian winter monsoon on the interannual scale. Previous studies have shown that the intensity of the Siberian High is stronger during 1960–1970s and weaker during 1980s. The strongest and weakest periods of the Siberian High in recent centuries fell in the 1960s and late 1980s–1990s, respectively (Gong and Wang, 1999). This is the reason why the SCE3–5 we reconstructed on the SETP and the Siberian High were relatively poor after 1996.

A study by Shen et al. (2011) revealed that the lower SCE occurred in the periods of 1840–1880 and 1920–1960, and the higher SCE occurred in the intervals of 1800–1840, 1880–1920, and after 1960, with snow accumulation data from several ice cores on the TP during the last two centuries. A partial disparity existed between our SCE3–5 reconstruction and the finding by Shen et al. (2011), which was mainly because our reconstruction spanned from current March–May, while Shen et al. (2011) concentrated on the annual SCE. Interestingly, the high- and low-value periods in our reconstructed SCE3–5 series are highly consistent with the annual maximum snow depth reconstructed with tree-rings in the north of Tian Shan Mountain, China (Qin et al., 2016). The possible reason is that the SCE on the SETP is controlled by atmospheric circulations (Bamzai, 2003; Shaman and Tziperman, 2005; You et al., 2011; Cohen et al., 2012). Previous studies have also shown an obvious jump in the winter temperature on the TP since 1987 (Wang et al., 2012). There was a simultaneous jump signal between the East Asian winter monsoon circulation around 1986 and the reconstructed SCE3–5 values on the SETP, which indicated a significant correlation between the East Asian winter monsoon and winter-spring snowfall.

The reasons for the abrupt change of SCE3–5 on the SETP from low to high in the late 1980s are the weakening of the East Asian winter monsoon, the enhancement of winter westerly on the southern TP and the increase of snowfall caused by an active westerly disturbance on the interdecadal scale (Liu et al., 2003). The mid-high latitude trough and ridge changes in the northern hemisphere have disturbed the subtropical westerly jet and the positive westerly anomaly on the southern side of the European trough strengthens the subtropical westerly jet. When the westerly airflow encounters the large terrain of the TP to the west, part of it flows eastward and northward and part of it flows to the TP, then the strong southwesterly air brings the warm and humid air in the subtropical region to the TP, forming an atmospheric circulation background that is conducive to the increase of SCE on the TP. Such warm and humid airflow will reduce the formed SCE already, which is also the reason why the 700 hPa zonal wind is negatively correlated with the SCE on the SETP. There is a positive correlation between the SCE3–5 reconstructed by EWW chronology and the geopotential height at 500 hPa, indicating that when the SCE is large, it corresponds to the high pressure near the ground (Fang et al., 2016). The atmospheric circulation system and the complex local topography on the SETP together lead to produce such variation in our reconstructed SCE3–5 history on the SETP (Hu and Liang, 2013).




CONCLUSION

We developed TRW (1668–2018), EWW (1660–2018), and LWW (1680–2018) Abies faxoniana chronologies, respectively, at Xiao Qamdo Village, Markam County, on the SETP and found peak correlation (r = 0.586, P < 0.01) between EWW chronology and SCE from March to May. Hence, we reconstructed the SCE3–5 on the SETP for the past 354 years, and identified a simultaneous jump signal between the East Asian winter monsoon circulation around 1986 and our EWW-based SCE3–5 reconstruction on the SETP, which indicates the combined effects of the weakening of East Asian winter monsoon, the enhancement of winter westerly on the SETP and the disturbance of westerly activity.
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The conifer tree species Norway spruce (Picea abies), silver fir (Abies alba) and Douglas fir (Pseudotsuga menziesii) are important elements in tree species composition and forest management of Central European forests, but their potential to thrive under anticipated climatic changes is still debated controversially. This study contributes a multivariate analysis of resilience components based on increment cores sampled at breast height of Norway spruce, silver fir and Douglas fir trees growing along elevational gradients in Southwestern Germany. We aimed to gain novel insights into the species-specific and elevational response of tree growth and wood density variables during the extreme drought events of the years 2003 and 2018. Our results for Norway spruce corroborate projections of its ongoing decline during climate change as the reductions of wood density and biomass production indicated high drought sensitivity at all elevations. Moreover, resilience indices of mean tree-ring density, maximum latewood density, tree-ring width and biomass production were even lower after the drought of 2018 compared to the previous drought of 2003. Silver fir, a potential substitute tree species for Norway spruce, showed unexpected results with resistance and resilience indices being significantly lower in 2018 compared to 2003 indicating that silver fir might be more vulnerable to drought than previously expected, especially at low elevations. In contrast, the superior growth rates and higher levels of drought tolerance of Douglas fir were especially pronounced during the drought of 2018 and visible across the entire elevational gradient, even though high coning intensity was present for all investigated tree species as a possible confounding factor to exacerbate the drought stress effects in the study region.

KEYWORDS
carbon sequestration, wood density, drought, conifers, resistance, resilience


Introduction

Norway spruce (Picea abies (L.) Karst.), silver fir (Abies alba Mill.) and Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) form important elements in tree species composition and forest management of Central European forests (San-Miguel-Ayanz et al., 2016; Spiecker et al., 2019). Due to their high productivity and favorable wood technological properties for timber construction (Kohnle et al., 2011; Henin et al., 2019), their lumber offers high substitution potential to replace energy-intensive materials such as steel or concrete and serves as medium to long-term carbon storage (Leskinen et al., 2018).

According to the most recent National Forest Inventory, Norway spruce is the most widespread tree species in Germany and covers 25% of the national forest area (BMEL, 2014). Despite its paramount importance for the current forest and wood sector, growth and vitality of Norway spruce is projected to decline with further climate change (Vitali et al., 2018; Brandl et al., 2020), due to its high drought sensitivity and susceptibility to biotic and abiotic stressors (Bolte et al., 2009; van der Maaten-Theunissen et al., 2013; Vitali et al., 2017). These risks are especially high, when spruce is planted on sites located outside the dry-warm borders of its climate envelope (Kahle, 2006; Hartl-Meier et al., 2014). Silver fir is a native tree species of the potential natural vegetation of predominantly mountainous forest ecosystems in Central Europe (Vitasse et al., 2019). It has been frequently proposed as a potential substitute tree species for Norway spruce as it is presumably more drought tolerant, better adapted to the changing climatic conditions and might even benefit from global warming at high elevation sites (van der Maaten-Theunissen et al., 2013; Hartl-Meier et al., 2014; Vitali et al., 2018; Vitasse et al., 2019). In contrast, more recent studies demonstrated surprisingly low growth resistance as well as unexpected vulnerability and mortality of silver fir in response to the extreme drought anomaly in 2018 (Schuldt et al., 2020; Larysch et al., 2021). Douglas fir is a highly productive tree species originating from the Pacific Northwest of North America and has been successfully introduced and managed in Central European forests since the 19th century (Kohnle et al., 2019; van Loo and Dobrowolska, 2019). Previous studies provided evidence of the superior capacity of Douglas fir to cope with extreme drought conditions and its simultaneous potential to maintain higher growth rates than co-occurring conifers (Eilmann and Rigling, 2012; Vitali et al., 2017). However, survival probability of Douglas fir in the context of anticipated climatic changes is critically discussed and its suitability to replace Norway spruce on low elevation sites is debated (Vejpustková and Čihák, 2019; Brandl et al., 2020; Maringer et al., 2021).

For the assessment of short-term responses of tree growth to extreme climatic events such as the summer drought anomalies in 2003 or 2018, the analysis of drought tolerance indices as introduced by Lloret et al. (2011) became increasingly popular during the last decade (Montwé et al., 2015; Vitali et al., 2017; Schmied et al., 2022). The concept is usually based on the relationships of tree-ring growth before, during and after the extreme event. Based on these relationships, indices of resistance, recovery and resilience are calculated to evaluate and compare drought stress tolerance of tree species (Diaconu et al., 2017). Additional growth variables such as maximum latewood density are frequently integrated in dendroecological analyses due their well-known sensitivity to growing season temperatures (Conkey, 1979; Büntgen et al., 2007; van der Maaten-Theunissen et al., 2012). However, their integration into the analyses of drought tolerance indices still bears great potential to provide novel insights into short-term tree growth responses to extreme climatic events (Schwarz et al., 2020). Wood density is a key parameter with paramount importance for carbon sequestration and woody biomass production as well as for wood quality including various wood technological properties such as hardness and mechanical stability or calorific value (Wassenberg et al., 2015a). In addition, wood density has been frequently associated with the resistance of the xylem hydraulic architecture against embolism and hydraulic failure during drought (Martinez-Meier et al., 2008; Rosner et al., 2014; Luss et al., 2019).

This study contributes a dendroecological analysis based on increment cores sampled at breast height of Norway spruce, silver fir and Douglas fir trees in the Black Forest in Southwestern Germany. By means of semi-automatic image analysis and measurements of intra-annual density profiles, we developed time series of tree-ring width, mean tree-ring density and maximum latewood density as well as stem radial biomass increment from 108 sample trees growing along three elevational gradients. Using this data, we performed a multivariate analysis of drought tolerance indices to gain novel insights into the species-specific and elevational response of tree growth and wood density variables to the recent extreme drought event of the year 2018 and aimed to validate previous conclusions on drought tolerance and suitability of silver fir and Douglas fir to replace Norway spruce on potentially drought-prone sites in Central Europe. The year 2018 was chosen for investigating drought stress tolerance as it was classified as one of the most severe drought events ever recorded in Central Europe (Schuldt et al., 2020), similar to the millennial drought year 2003, which we also included as baseline reference into the analysis (van der Maaten-Theunissen and Bouriaud, 2012; Vitali et al., 2017).

We hypothesized that:


I.Norway spruce shows lower drought tolerance than silver fir and Douglas fir, in particular at low elevations.

II. Species-specific differences in drought responses are similar for both drought events, 2003 and 2018.

III. Before, during and after drought events, Douglas fir shows superior growth rates and higher wood density compared to silver fir and Norway spruce.





Materials and methods


Selection of study sites and sample trees

Study sites and sample trees were selected in winter 2018/2019 along three elevational transects within the northern part of the Black Forest, a mountain range located in Southwestern Germany (Figure 1). The three replications were established along the mountains Teufelsmühle (48° 45′ 14′′ N, 8° 24′ 30′′ E), Hornisgrinde (48° 36′ 25′′ N, 8° 12′ 9′′ E) and Kniebis (48° 28′ 53′ N, 8° 16′ 33′′ E) with each tree species sampled at four research plots arranged at largely equidistant elevational levels. Research plots were selected in managed forest stands with low inter-specific competition located predominantly on northwest-facing slopes. Soil types at the research plots are predominantly cambisols with medium skeleton content and loamy soil textures. In each of the 36 investigated plots, three mature and vital sample trees without visible damages were selected from the dominant and co-dominant crown class with a total sample size of 108 trees (3 transects x 3 species x 4 plots x 3 trees). The elevational transects represent ecological gradients from relatively dry and warm low elevation sites to cool and moist high elevation sites. Detailed information on the climatic conditions and the average stand- and tree-level characteristics for each species and elevational level are presented in Table 1.


[image: image]

FIGURE 1
Location of the study region in Southwestern Germany with the three established elevational transects in the Black Forest.



TABLE 1    Sample size and mean values (with standard deviations in parentheses) of elevations, stand basal area, diameter at breast height (DBH), tree height, tree age at breast height (t1.3) and slope for all sample trees grouped by species and elevational level.
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Sampling and preparation of increment cores

One increment core of 5 mm diameter was extracted at breast height (1.3 m) from each sample trees using Haglöf borers (Haglöf Sweden AB, Långsele, Sweden) after the growing season 2020. Increment cores were sampled perpendicular to the direction of the slope to avoid compression wood. After drying, the increment cores were fixed in LC45 cable conduits (Hermann Kleinhuis GmbH + Co. KG, Linz am Rhein, Germany), mounted on glass plates and their cross-sections were prepared with an ultra-precise diamond fly cutter (Kugler F500, Kugler GmbH, Salem, Germany) producing highly smooth surfaces for subsequent wood density measurement with high-frequency (HF) densitometry (Spiecker et al., 2000; Schinker et al., 2003; Wassenberg et al., 2015b).



Measurements of tree-ring width and wood density

Image sequences with a resolution of 35.57 pixel mm–1 were taken of the prepared surfaces of the increment cores using a black and white camera mounted above a high-precision motorized linear positioning table moving in the radial direction from pith to bark (Wassenberg et al., 2015b). Tree-ring widths were measured on the stitched images perpendicular to the orientation of the ring boundaries using an in-house semi-automatic image analysis system of the Chair of Forest Growth and Dendroecology. Cross-dating of the measured tree-ring chronologies was conducted using the software package PAST4 (Knibbe, 2004). Intra-annual wood density profiles were measured in high resolution using HF densitometry, which measures the relative density variations (in mV) based on the propagation of an electromagnetic stray field emitted by an HF probe with a radial integration width of 175 μm (Schinker et al., 2003; Wassenberg et al., 2015b). The HF probe moved over the wood surface on the exact same track as the acquired image sequences and recorded wood density variations from pith to bark every 26 μm. Data points measured in close proximity to adjacent tree-ring boundaries that contained signals of earlywood as well as latewood cells were removed from the individual intra-annual profiles according to the radial integration width of the HF probe (Wassenberg et al., 2015b). For tree- ring widths smaller than twice the radial integration width of 175 μm, we removed all points before the first local minimum and after the last maximum of the intra-annual profiles instead (Sprengel et al., 2020). HF densitometry measurements were finally converted from voltage to air-dry volumetric density in g cm–3 using daily updated linear calibration functions (average R2 > 0.93) developed according to guidelines presented by Wassenberg et al. (2014).



Environmental data

For characterization of the average climatic conditions of the selected research plots during the climate normal period 1981-2010, data of the meteorological variables precipitation and air temperature were available in a 250 x 250 m grid (Dietrich et al., 2019). As the higher resolution data of Dietrich et al. (2019) did not contain the post-drought years 2019 and 2020, we used environmental data in monthly resolution provided in a 1 x 1 km grid by the German Meteorological Service (DWD, 2022) to classify the climatic conditions and highlight periods of environmental stress during the pre-drought, drought and post-drought years of 2003 and 2018. To detect potential anomalies, the monthly mean values of air temperature, precipitation sums, climatic water balance and relative plant available water were calculated as deviations from their corresponding 30-year mean values and illustrated together with the 2.5 and 97.5% percentiles based on the baseline climate period 1991–2020 (Figure 2). The corresponding absolute values of the same environmental variables for the 30-year mean and the two drought events are presented in Supplementary Figure 1.
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FIGURE 2
Monthly deviations from the 30-year mean values (1991–2020) of (A,B) air temperature, (C,D) precipitation sum, (E,F) climatic water balance and (G,H) relative plant available water for the drought years 2003 (left column) and 2018 (right column) together with the mean values of the corresponding two pre-drought and post-drought years. Data were derived for each study site based on a 1 x 1 km grid of the German Meteorological Service (DWD, 2022) and subsequently averaged for the entire elevational gradient. Shaded areas represent the 2.5 and 97.5 % percentiles of annual deviations from the 30-year mean for the baseline climate period 1991-2020.




Analysis of drought tolerance indices

All calculations and statistical data analyses were conducted in the R-programming environment (R Core Team, 2022). Besides the annual values of tree-ring width and maximum latewood density, we also calculated for each tree-ring the mean tree-ring density ([image: image]) and estimated the annual stem radial biomass increment for the sampled increment cores using Equation 1:

[image: image]

where rbi is the annual stem radial biomass increment in gC (grams carbon) of tree i in year t, DC represents the 0.5 cm diameter of the sampled increment core, RW denotes tree-ring width (in cm) and [image: image] represents the corresponding mean air-dry tree-ring density (in g cm–3), respectively, whereas CC represents carbon concentration, specified to be 50 % (Lamlom and Savidge, 2003; Thomas and Martin, 2012). We performed an analysis of drought tolerance indices as introduced by Lloret et al. (2011) to quantify and compare multivariate growth responses of the investigated tree species between the extreme drought years 2003 and 2018. We used the years 2001 and 2002 as pre-drought reference period to the drought year 2003, whereas the years 2004 and 2005 were defined as post-drought period as recommended by Vitali et al. (2017). For the drought event 2018, we also used the previous two years as pre-drought reference to exclude the immediate effects of the heat wave of the summer in 2015 from the analysis (Muthers et al., 2017). For definition of post-drought years, only the tree-rings of the years 2019 and 2020 were available as increment cores in the three replications were sampled before the growing season 2021.

Besides tree-ring width (trw), we included mean tree-ring density ([image: image]), maximum latewood density (mxd) and stem radial biomass increment (rbi) in a multivariate analysis of resilience components and calculated the drought tolerance indices resistance (Rt), recovery (Rc) and resilience (Rs) as follows:
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where Dr represents for the drought year j (2003 or 2018) the raw values of the measured variable k (trw, [image: image], mxd or rbi) of tree i, whereas PreDr and PostDr denote the average values of the two pre-drought and two post-drought years, respectively. The raw data that were used to calculate the Lloret-indices for each variable are presented in Supplementary Figures 2–5.

The drought tolerance indices were tested for significant differences between species using bootstrapped t-tests for unpaired samples with 10,000 replications with a Satterthwaite approximation to the degrees of freedom (Efron and Tibshirani, 1993; Kohl, 2020). Bootstrapped p-values were adjusted using the false discovery rate to account for multiple inference (Benjamini and Hochberg, 1995). The same statistical procedure was used when testing for significant differences of raw measurements between tree species during the pre-drought, drought and post-drought years as the Lloret-indices only represent relative values and occlude different absolute growth levels. To test for significant differences of the Lloret-indices between the drought years 2003 and 2018, bootstrapped t-tests for paired samples were used to account for non-independence of repeated measurements. For visualization of all results, we calculated sample means with bias corrected and accelerated (bca) confidence intervals based on bootstrapping the sample mean 10,000 times.

To examine if drought tolerance indices of the investigated species varied with increasing elevation, we subsetted the data on the tree species level and formulated linear mixed-effects models with random intercepts as follows:
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where y represents the values of the response variable (Rt, Rc, or Rs) of tree i located within site j and transect k, β0 is the intercept, β1E denotes the fixed effect of the z-transformed elevation, bj and bj,k are random effects on the site and transect level, whereas e denotes the residual error term. The linear mixed-effects models were fitted using the package lme4 (Bates et al., 2015) and bootstrapped on the observational level with 10.000 replications followed by calculating the 95 %, 99 % and 99.9 % confidence interval (CI) of the bootstrapped coefficients. The drought tolerance indices were considered significant if at least 95 % of the bootstrapped β0 coefficients were either above or below 1. The effect of elevation was considered significant if at least 95 % of the bootstrapped β1 coefficients were either above or below 0. The effect of elevation was considered to vary significantly between tree species when at least 95 % of the differences between species-specific bootstrapped β1 coefficients were either above or below 0. To account for multiple inference when testing between tree species, we used a Bonferroni correction to adjust the bootstrapped 95 % confidence interval (CIadj = 1 – 0.05 / 3). In addition, we used the MuMIn package and quantified and averaged for all bootstrapped models the variance explained by the fixed effects ([image: image] = Marginal R2) and the variance explained by fixed and random effects combined ([image: image] = Conditional R2) (Barton, 2020).

As mast years with intense reproductive effort might reduce the proportion of net primary production available for vegetative growth of trees, fructification is discussed as potential confounding factor influencing the results of the analysis of resilience components (Seifert and Müller-Starck, 2009; Hacket-Pain et al., 2017; Hirsch, 2019). For a better interpretation of the Lloret-indices and as complement to the inferential statistics described above, we used data of the forest monitoring program of the German province of Baden-Württemberg (Meining et al., 2020), which records the annual fructification intensity of individual forest trees in an 8 x 8 km sampling grid using an ordinal scale from 0 (absent) to 3 (abundant). For a robust assessment, we calculated for the time period 2001-2020 and the entire Black Forest study region for each of our conifer species the mean and mode of the annual fructification (i.e. coning) intensity (Supplementary Figure 6).




Results


Characterization of the growing conditions in the pre-drought, drought and post-drought years

Growing season air temperature averaged for the pre-drought years 2001 and 2002 and post-drought years 2004 and 2005 did not show any conspicuous anomalies. In June and August of the drought year 2003 distinct temperature anomalies occurred, and July temperature was above average as well (Figure 2A). With the exception of April and May, no temperature anomalies were identified in the drought year 2018. However, monthly mean temperatures were generally above average during the complete growing season 2018 (Figure 2B). Negative precipitation anomalies were detected in June, August and September of 2003 and in July, September, October and November of 2018 (Figures 2C,D). In both drought years monthly precipitation sums were below average for the complete growing season. Monthly precipitation sum in July averaged for the post drought years 2019 and 2020 was also clearly below average (Figure 2D). The monthly climatic water balance showed negative anomalies in June and August 2003 as well as in July, September, October and November of 2018 (Figures 2E,F). The monthly climatic water balance in July averaged for the post-drought years 2019 and 2020 was clearly below average as well (Figure 2F). Relative plant available water in 2003 was below average during the whole growing season and distinct negative anomalies were detected between July and September (Figure 2G). Relative plant available water in 2018 was well below average in July and negative anomalies were increasing until November. For most of the growing season, the average conditions of the post-drought years 2019 and 2020 also showed plant available water below the long-term average, although distinct negative anomalies were not detected (Figure 2H).

During the 2001–2005 period all tree species, and in particular Norway spruce, showed the highest intensity of coning in the post-drought year 2004. Douglas fir showed stronger coning intensity than silver fir and Norway spruce in the pre-drought year 2016. During the time period 2001-2020, the highest mean coning intensities were documented in the drought year 2018 for all investigated tree species (Supplementary Figure 6).



Differences of drought tolerance indices between species and drought years

In this chapter we present the species-specific drought tolerance indices in respect to the drought events of 2003 and 2018, independent from elevation. All mentioned differences of the average values in the text below are significant between species and drought events (p < 0.05).

Mean tree-ring density ([image: image]) of Norway spruce showed lower resistance to the 2003 drought compared to silver fir and Douglas fir, whereas in 2018 [image: image] of both, silver fir and Norway spruce were reduced in comparison to Douglas fir. Resistance of [image: image] of Norway spruce and silver fir was significantly lower in 2018 compared to 2003 (Figure 3A). Maximum latewood density (mxd) of all species showed high resistance to the 2003 drought and even an increase in mxd of silver fir in comparison to the other species was detected. Silver fir and Douglas fir also showed a substantial resistance of mxd to the 2018 drought, whereas mxd of Norway spruce was significantly reduced in comparison. Resistance of mxd of Norway spruce and silver fir was lower in 2018 compared to 2003, whereas no significant difference was documented for Douglas fir (Figure 3B). Tree-ring width (trw) of Norway spruce showed lower resistance than silver fir and Douglas fir in 2003 and 2018. Silver fir and Douglas fir showed lower resistance of trw in 2018 compared to 2003, whereas the low resistance of Norway spruce did not differ significantly between the drought years (Figure 3C). Resistance patterns of stem radial biomass increment (rbi) were quite similar in comparison to trw, with the exception of the better resistance of rbi of Douglas fir in comparison to silver fir in the year 2018 (Figure 3D).
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FIGURE 3
Resistance (A–D), recovery (E–H) and resilience (I–L) indices of mean tree-ring density, maximum latewood density, tree-ring width and stem radial biomass increment of Norway spruce (PCAB), silver fir (ABAL) and Douglas fir (PSME) for the two extreme drought events of the years 2003 and 2018. Error bars indicate bootstrapped 95% confidence intervals of the sample means based on 10,000 replications. Different lowercase letters above the error bars indicate significant differences between tree species within drought events. Different uppercase letters above the error bars indicate for each species significant differences between both drought events (p < 0.05).


Recovery of mean tree-ring density ([image: image]) after the drought 2003 was higher in Norway spruce compared to Douglas fir, which in turn was higher than silver fir. Recovery of [image: image] of Douglas fir after the 2018 drought event showed lower values in comparison to Norway spruce with no significant differences between silver fir and Douglas fir. No significant differences between drought events were detected for any of the investigated species (Figure 3E). Recovery of maximum latewood density (mxd) after the 2003 drought event was higher in Norway spruce compared to Douglas fir, which showed better recovery than silver fir. Recovery of mxd after the 2018 drought was lower in silver fir and Douglas fir compared to Norway spruce. No differences in recovery of mxd were detected between drought years for any tree species (Figure 3F). Tree-ring width (trw) of Norway spruce showed higher recovery values than silver fir and Douglas fir after the 2003 drought. After the drought of 2018, recovery values of trw of silver fir were lower also in comparison to Norway spruce and Douglas fir. Douglas fir showed a better recovery after 2018 in comparison to the post-drought years of 2003 (Figure 3G). Recovery patterns were similar for stem radial biomass increment (rbi) and trw. However, recovery values of Douglas fir rbi were higher than silver fir after 2003 and after 2018 (Figure 3H).

Resilience of mean tree-ring density ([image: image]) of Norway spruce and Douglas fir after the 2003 drought reached higher values in comparison to silver fir. Douglas fir showed higher resilience compared to silver fir and Norway spruce after the drought of 2018. All species showed lower resilience after 2018 compared to the resilience after 2003 (Figure 3I). No differences between species were detected regarding resilience of maximum latewood density (mxd) after the 2003 drought. In contrast, Douglas fir showed higher resilience values after the 2018 drought compared to Norway spruce and silver fir, who both also showed lower resilience in 2018 compared to 2003 (Figure 3J). No differences in the resilience of tree-ring width (trw) were detected between species after the drought in 2003. However, Douglas fir showed higher resilience of trw compared to Norway spruce after 2018, whose resilience was also higher in comparison to silver fir (Figure 3K). Resilience of stem radial biomass increment (rbi) showed similar patterns as trw with the exception that Douglas fir showed a higher resilience than silver fir after 2003 and that no differences between silver fir and Norway spruce were detected after 2018 (Figure 3L).



Effects of elevation on drought tolerance indices

This chapter describes the effects of elevation on the drought tolerance indices of the investigated species for the 2003 and 2018 drought events. All mentioned elevational trends (i.e., β1 coefficients) or differences in elevational trends between species were significantly different from zero based on bootstrapped 95% confidence intervals.

Resistance of mean tree-ring density ([image: image]) increased significantly with elevation for silver fir in 2003 and 2018 and for Douglas fir in 2018 (Figures 4A,B and Supplementary Table 1). Recovery values of [image: image] were significantly increased at lower elevations for silver fir after 2003 and for silver fir and Norway spruce after 2018 (Figures 4C,D), whereas silver fir also showed higher resilience of [image: image] at lower elevations after the 2003 drought (Figures 4E,F). Elevational trends of the resistance and recovery of [image: image] were significantly different between Norway spruce and silver fir (Figures 4A,C and Supplementary Table 2), whereas elevational response of recovery values of [image: image] between Douglas fir and silver fir was significantly different in respect to the 2003 drought event (Figure 4C).
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FIGURE 4
Resistance (A,B), recovery (C,D) and resilience (E,F) indices of mean tree-ring density of Norway spruce (PCAB), silver fir (ABAL) and Douglas fir (PSME) in response to elevation for the two extreme drought events of the years 2003 (left) and 2018 (right). Transparent ribbons indicate bootstrapped 95 % confidence intervals of predictions of linear mixed-effects models based on 10,000 replications. For illustration, data points were averaged on the stand level. Asterisks on the right side of the panels indicate if slopes of the regression lines are significantly different from zero based on bootstrapped confidence intervals: 95% “*”, 99% “**”, 99.9% “***”. Marginal R2 and conditional R2 of the linear mixed-effects models are listed in Supplementary Table 1.


No significant effects of elevation on the resistance, recovery and resilience of maximum latewood density (mxd) were detected for Norway spruce and Douglas fir (Figures 5A–F and Supplementary Table 3). Silver fir showed lower resistance with decreasing elevation in 2018 (Figure 5B), but also considerable recovery of mxd during the post-drought years at the same sites (Figure 5D). Silver fir showed also increased resilience of mxd with increasing elevation in 2003 (Figure 5E).
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FIGURE 5
Resistance (A,B), recovery (C,D) and resilience (E,F) indices of maximum latewood density of Norway spruce (PCAB), silver fir (ABAL) and Douglas fir (PSME) in response to elevation for the two extreme drought events of the years 2003 (left) and 2018 (right). Transparent ribbons indicate bootstrapped 95 % confidence intervals of predictions of linear mixed-effects models based on 10,000 replications. For illustration, data points were averaged on the stand level. Asterisks on the right side of the panels indicate if slopes of the regression lines are significantly different from zero based on bootstrapped confidence intervals: 95% “*”, 99% “**”, 99.9% “***”. Marginal R2 and conditional R2 of the linear mixed-effects models are listed in Supplementary Table 3.


Resistance of stem radial biomass increment (rbi) increased significantly with higher elevation for silver fir in 2003 and 2018 and for Norway spruce fir in 2018 (Figures 6A,B and Supplementary Table 4). Increased recovery values of rbi were detected at lower elevations for silver fir and Douglas fir after the 2003 drought and for silver fir and Norway spruce after the 2018 drought (Figures 6C,D). Silver fir showed increased resilience of rbi with increasing elevation after the drought in 2003 (Figure 6E). However, no significant effects of elevation on resilience of rbi were detected after the drought in 2018 (Figure 6F). Elevational trends of the resistance of rbi were significantly different between Norway spruce and silver fir in 2003 (Figure 6A and Supplementary Table 2). Significant differences of the elevational response of the recovery of rbi after 2018 were also detected between Douglas fir and Norway spruce (Figure 6D). The effect of elevation on the resilience of rbi after 2003 was also significantly different between Douglas fir and silver fir (Figure 6E). Elevational trends and significance levels of drought tolerance indices of tree-ring width mostly pointed into similar directions as with rbi (Supplementary Figure 7 and Supplementary Table 5).
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FIGURE 6
Resistance (A,B), recovery (C,D) and resilience (E,F) indices of stem radial biomass increment of Norway spruce (PCAB), silver fir (ABAL) and Douglas fir (PSME) in response to elevation for the two extreme drought events of the years 2003 (left) and 2018 (right). Transparent ribbons indicate bootstrapped 95 % confidence intervals of predictions of linear mixed-effects models based on 10,000 replications. For illustration, data points were averaged on the stand level. Asterisks on the right side of the panels indicate if slopes of the regression lines are significantly different from zero based on bootstrapped confidence intervals: 95% “*”, 99% “**”, 99.9% “***”. Marginal R2 and conditional R2 of the linear mixed-effects models are listed in Supplementary Table 4.




Growth rates and wood density before, during, and after drought years

Douglas fir constantly showed the highest values of mean tree-ring density ([image: image]), whereas silver fir showed higher [image: image] than Norway spruce only during the pre-drought and drought of 2003 (Supplementary Figures 8A–C). Douglas fir showed higher values of maximum latewood density (mxd) than silver fir during the pre-drought of 2003 and post-droughts of 2003 and 2018 as well as higher values of mxd than Norway spruce during the 2018 drought. Norway spruce showed higher mxd values than silver fir during pre-drought and post-drought years of 2003 and 2018 (Supplementary Figures 8D–F). Norway spruce showed in most cases significantly lower levels of tree-ring width (trw) and radial biomass increment (rbi) compared to silver fir and Douglas fir (Supplementary Figures 8G–L). Silver fir and Douglas fir showed competitive levels of trw and rbi during the pre-drought, drought and post-drought years of 2003, whereas for the time period around 2018, growth levels of silver fir dropped much closer to Norway spruce.




Discussion

Several studies reported higher resistance and resilience of secondary growth of silver fir and Douglas fir to the extreme drought event of 2003 in comparison to Norway spruce (van der Maaten-Theunissen, 2012; Uhl et al., 2013; Vitali et al., 2017). The high drought sensitivity of Norway spruce is often attributed to the limited potential of its shallow root system to access water reserves located in deeper soil layers during extensive drought periods (Vitali et al., 2017). Norway spruce originates mainly from mountainous, subalpine and boreal regions, but was frequently planted in the Black Forest region on sites outside its natural distribution, where it is maladapted and located far beyond its ecological optimum (Schmidt-Vogt, 1987). In contrast, silver fir is generally recognized as an integral component of the potential natural vegetation of large parts of the Black Forest region (Konnert and Bergmann, 1995; Kohnle et al., 2011). On well drained soils, its taproot system has the potential to exploit deeper soil water reserves, thus enabling silver fir to endure longer drought periods better than Norway spruce (Aussenac, 2002; Vitasse et al., 2019). It is also suggested that silver fir was widely distributed during warm periods of paleoclimates and its current distribution range partly also includes Mediterranean sites (Aussenac, 2002; Vitasse et al., 2019). Due to its potentially lower drought sensitivity and presumably more positive responses to global warming, Vitali et al. (2018) recently projected net increases of tree-ring growth of silver fir until the end of the 21st century while largely outperforming Norway spruce and even Douglas fir.

Indeed, our hypotheses that Norway spruce would show a more severe and negative growth response than silver fir and Douglas fir was partly confirmed by its low resistance indices for the 2003 drought year. Here, tree-ring width (trw), radial biomass increment (rbi), mean tree-ring density ([image: image]) and maximum latewood density (mxd) of silver fir and Douglas fir showed almost exclusively higher values compared to Norway spruce, which corresponds to results of previous studies in the Black Forest region (Vitali et al., 2017). Also, in 2018 we detected higher resistance of trw of silver fir in comparison to Norway spruce, but we could not substantiate these findings for [image: image] or rbi. In addition, [image: image] of Norway spruce and silver fir, mxd of Norway spruce as well as trw and rbi of silver fir and Douglas fir showed considerably lower resistance in 2018 compared to 2003. The strong decrease of resistance indices of silver fir in 2018 compared to 2003 is in agreement with previous findings of low drought resistance, impaired xylem cell differentiation processes and reduced woody biomass production in the study region during 2018 (Larysch et al., 2021, 2022). In agreement with previous findings with respect to the 2003 drought (Vitali et al., 2017), we could also substantiate higher drought resistance of [image: image], trw, and rbi of silver fir in 2018 with increasing elevation. However, it must be noted that resistance was considerably more reduced at high elevation sites in 2018 compared to 2003. Norway spruce also showed increased drought resistance of trw and rbi with increasing elevation in 2018. Nevertheless, resistance values were considerably reduced across the entire elevational gradient, which is consistent with previous conclusions of high drought sensitivity and low climatic stability of Norway spruce even at high elevation sites in the Black Forest region (van der Maaten-Theunissen et al., 2013; Vitali et al., 2017).

A possible explanation of the decreased drought resistance of all species in 2018 might be the high coning intensity in the same year of all investigated species, which likely had caused substantial reallocations of carbohydrates due to the sink strength of cone production while simultaneously decreasing the proportion of net primary production available for vegetative growth of trees (van der Maaten-Theunissen, 2012; Hacket-Pain et al., 2017; Hirsch, 2019). In contrast, Seifert and Müller-Starck (2009) did not detect trade-offs between cone production and vegetative growth of Norway spruce during and after mast years. This is partly confirmed by our results for Norway spruce, which did not show a lower resistance of trw and rbi in the mast year 2018 compared to 2003. Besides the fact that resistance indices of trw and rbi of Norway spruce were the lowest in both drought years, the lower resistance of [image: image] and mxd of spruce in 2018 compared to 2003 indicates that resource availability for latewood production was considerably compromised by the multiple stressors of cone production, water deficit, depleted carbohydrate reserves and increased respiratory demands during the extreme summer drought of 2018 (Teskey et al., 2015; Hacket-Pain et al., 2017; Arend et al., 2021). Previous studies have shown that the rate of cell wall thickening of conifers was significantly reduced during periods of intra-seasonal drought, but endogenous control can potentially compensate reduced cell differentiation rates by prolonging their duration (Balducci et al., 2016; Stangler et al., 2021; Larysch et al., 2022). We hypothesize that such compensatory mechanisms became ineffective during latewood formation of 2018 and that drought stress in late summer and autumn might have caused a premature cessation of xylem cell differentiation phases (Gruber et al., 2010; Saderi et al., 2019; Larysch et al., 2021). In addition, the temporal development of drought conditions followed slightly different patterns in the years 2003 and 2018. Consequently, latewood formation in 2018 might have been more compromised by drought as in this year the most extreme anomalies of soil moisture deficits were detected during autumn (Figure 2H), which is the time where cell wall thickening and lignification of the last latewood cells of the investigated species in the study region can be expected (Miller et al., 2022).

Recovery of trw and rbi after the 2003 drought was higher in Norway spruce compared to silver fir and Douglas fir, which is only partly in agreement with previous research identifying no differences in recovery between spruce and Douglas fir (Vitali et al., 2017). Recovery of silver fir was lower after both drought years and for almost all investigated variables in comparison to Norway spruce. In contrast to 2003, the low recovery after the 2018 drought eventually resulted also in significant reductions of the resilience indices of silver fir for all investigated growth variables. Our findings document the inability of silver fir to fully recover from the 2018 drought as well as the significantly lower resilience of all investigated variables of silver fir and Norway spruce in the post-drought years of 2018 compared to the post-drought years of 2003. Contrary to the resilience patterns after 2003, we also could not identify improved resilience of trw and rbi of silver fir with increasing elevation in 2018, but even lower resilience values compared to Norway spruce at low elevation sites. These results largely falsify our hypothesis and challenge previous findings and generalized conjectures of the potentially lower drought sensitivity of silver fir in comparison to Norway spruce based on the drought of 2003 (Uhl et al., 2013; van der Maaten-Theunissen et al., 2013; Vitali et al., 2017). Our results also correspond closely with the assessment of the effects of the extreme drought of 2018 on forest ecosystems in Austria, Germany and Switzerland by Schuldt et al. (2020), who documented legacy-effects with severe impairment of the physiological recovery as well as unexpected mortality of silver fir even on less drought-prone sites. This suggests that the findings of our study might also apply beyond the stands and study region we have investigated. The decline in vitality of silver fir was also reflected by missing tree-rings and impending decline of four of our sample trees after the 2018 drought, a phenomenon which was not constrained to low elevations and generally not detected for Norway spruce or Douglas fir (Supplementary Figure 4).

Another possible explanation for the weak resilience and recovery of silver fir after the 2018 drought could be its inability to fully recover when post-drought years include below average water availability and transient drought conditions as well (Figure 2). A possible solution would be to combine several years into a single drought event (Schwarz et al., 2020), which was not feasible in our study as the increment cores were sampled already 2 years after the 2018 drought. To maintain comparability with previous research in the study region (Vitali et al., 2017), we also stayed close to the original concept of drought tolerance indices (Lloret et al., 2011), although methodological innovations when calculating such indices should be considered in future studies (Schwarz et al., 2020). Independent of these considerations, Douglas fir showed generally the highest resilience for all investigated variables following the 2018 drought. Therefore, in agreement with our hypotheses, our results confirm the superior capacity of Douglas fir to absorb drought stress periods while maintaining high levels of productivity, wood density and carbon sequestration across all elevations (Eilmann and Rigling, 2012; Vitali et al., 2017).



Conclusion

This study presented a multivariate analysis of resilience components in respect to the extreme drought years 2003 and 2018. As expected, our results for Norway spruce corroborate projections of its ongoing decline during climate change as the reductions of wood density and biomass production indicated high drought sensitivity at all elevations. Moreover, resilience indices of mean tree-ring density, maximum latewood density, tree-ring width and biomass production were even lower after the drought of 2018 compared to the previous drought of 2003. Silver fir, a potential substitute tree species for Norway spruce, showed unexpected results with resistance and resilience indices being significantly lower in 2018 compared to 2003. We conclude that silver fir might be more vulnerable to drought than previously expected, especially at low elevations. Silver fir might also be increasingly susceptible to the effects of climate change if drought events coincide with fructification years and if post-drought years include periods of transient water stress as well. Future research should explore the potentially non-linear growth responses of silver fir to the effects of temperature and water availability. We speculate that the tipping point from positive to negative impacts of global warming on productivity of silver fir might be reached earlier than previously projected. In contrast, superiority in growth rates and growth resilience of Douglas fir was especially pronounced during the drought of 2018, even though high coning intensity was present for all investigated tree species as a possible confounding factor to exacerbate the drought stress effects in the study region.
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