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Editorial on the Research Topic

From Ecology to Cancer Biology and Back Again

Application of evolutionary concepts to the study of cancer progression transformed cancer
research in the 1970’s (Cairns, 1975; Nowell, 1976) and inspired novel approaches to therapy.
This work provided the framework for foundational discoveries in cancer genetics including those
related to tumor cell heterogeneity, inherited risk of cancer, and synthetic lethality. Of the four
classically defined forces of evolution (mutation, gene flow, genetic drift, and selection), however,
only mutation is firmly classified in the field of genetics. The remaining three are ecological: gene
flow depends on the movement of individuals, genetic drift on how population sizes vary in time
and space, and selection on interactions with the biotic and abiotic environment.

Researchers are increasingly applying the ecological principles that underlie evolution to study
cancer biology, appreciating that understanding the complex ecology of the tumor is essential to
successfully treat this lethal disease. Conversely, the conceptual framework and quantitative tools
from cancer biology have the potential to transform the understanding of the complexity of ecology
itself, opening new ways to address the ecological challenges that define our times.

This Research Topic, therefore, was curated to support two goals.

1) Integrate ecosystem, behavioral, and physiological ecology into the study of cancer. The
evolution that leads to resistance and metastasis is driven not only by the heterogeneity and
phenotypic interactions that are the purview of ecology focused on the species level, but also by
the flows of energy, materials and nutrients, and the changing phenotypes of individuals.

2) Use the insights of cancer ecology to rethink ecology itself, in particular by using modern
molecular and genetic tools to address core questions and to apply them to forecasting
and restoration.

FROM THE CORE ISSUES IN ECOLOGY TO CANCER AND BACK

AGAIN

Many of the papers in this Research Topic focus on the core issues that have defined the science of
ecology since its founding: persistence of species, the maintenance of diversity and coexistence, and
the distribution and abundance of species and their interactions.

Interactions among cancer cells and those between cancer cells and host cells display many
ecological processes, including niche construction, resource exploitation (Huntly et al.; Kareva
and Brown; Somarelli; Wu), predator-prey interactions (Peplinski et al.; Somarelli), source-sink
population dynamics (Cunningham et al.), game-theoretic interactions among different cancer cell
types (Kareva and Brown; Noble et al.; Pressley et al.), and hijacking of signaling mechanisms,
including those governing metabolic pathways and immunological defenses (Bukkuri and Adler).
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These interactions often involve the tradeoffs that support
coexistence of different tumor cell types (Huntly et al.; Kareva
and Brown). In relation to ecological management, control of
tumors parallels the control of invasive species (Neinavaie et al.)
and combinations of approaches may be designed to drive the
extinction of cancer (Gregg).

FROM PHENOTYPES TO ECOLOGY AND

BACK AGAIN

Advancing technological methodology has enabled the
identification of individual cell phenotypes, including
physiological states that determine cell behaviors and
interactions among cancer cells and between cancer cells
and the tumor microenvironment. This concept underpins
tumor microenvironment research, and highlights the power of
ecological concepts to understand tumor biology, progression,
and lethality (Bissell and Hines, 2011; Myers et al., 2020).
In ecology, dormancy plays a key role in the life histories of
organisms that deal with unpredictable environments, and this
phenotypic state is often observed clinically prior to cancer
recurrence (Kostecka et al.; Miller et al.). While these similarities
are informative, there are key differences between cancer cell
and animal dormancy, with cancer cells often altering rather
than simply slowing metabolism. These reversible metabolic
changes may help cancers survive fluctuating resources and
promote expensive but flexible glycolysis over or simultaneous
with oxidative phosphorylation (Huntly et al.). These metabolic
differences reveal themselves in scaling relationships between
size and metabolism, with tumors showing strong and consistent
scaling relationships that differ from healthy tissue, such as a high
volumetric scaling factor that reflects the high resource needs of
tumors (Brummer and Savage). These changes in metabolism
can interact with ecological factors to alter the foraging behavior
and growth of mice with cancer (Makin et al.). Differences in
cell phenotypes can generate novel interactions. For example,
one cancer cell population can exploit another one, increasing its
fitness to the detriment of the other (Noble et al.).

FROM ECOLOGY TO EVOLUTION AND

BACK AGAIN

Despite the underlying stochasticity of mutation, some aspects
of cancer are quite predictable, with cancers showing convergent
evolution on the hallmarks of cancer by quite different
mechanisms due to selection driven by the ecology of the cancer
(Somarelli). On the other hand, predicting cancer evolutionary
dynamics at the patient level remains quite challenging.
Although numerous genome sequencing studies have offered
some understanding of the cancer clonal makeup, the lack
of phenotypic characterization of the tumor composition can
make interpretation difficult (Plutynski). The ecological factors
that drive cancer evolution can provide the crucial bridge. As
an example, the rapid evolution induced in human-dominated
ecosystems by harvesting and habitat change parallels the
selection placed on cancer by treatment, generating the full
range of qualitative and quantitative resistance (Pressley et al.).

Resource availability also creates strong selection, with evidence
supporting roles of high availability of glucose, iron, or phosphate
promoting aggressive cancer growth (Wu). Cancer cells are
well-known to tolerate low oxygen levels, and this potential
may reflect the role of hypoxia in shaping cell differentiation
during development, and argue that cancer cells might face
challenges in overcoming the evolutionary legacy to retain stem
like characteristics during normoxia (Carroll et al.).

Studies of evolution often focus on mutations. However,
polyploidization and chromosomal instability lead to the
accession of the polyaneuploid cancer cell (PACC) state that
enables dormancy, treatment escape, and relapse initiation
(Kostecka et al.). Changes in cell motility and collective behavior
underlie metastasis, the deadliest phenotype of solid tumors.
Parallels between metastasis and invasion in ecology may
elucidate how metastatic cells colonize and adapt to foreign soil
(Neinavaie et al.), pointing a way to understand and predict
their spread.

FROM EVOLUTION TO THE PREVENTION

AND TREATMENT OF CANCER AND BACK

AGAIN

Application of ecological and evolutionary principles has the
potential to directly transform cancer patient care in diagnostics
(Maley et al., 2017) and novel treatment strategies (Pienta
et al., 2008; Amend and Pienta, 2015; Whelan and Gatenby,
2020). Indeed, many successful anti-cancer treatment strategies
(e.g., bone marrow transplant in leukemias, immunotherapy
checkpoint inhibitors in many solid tumors) are truly tumor
ecology-informed therapeutic strategies. Specific application of
an eco-evolutionary framework will identify other avenues for
treatment innovation. Elucidating how metabolic needs shape
cancer evolution implicates patient diet and lifestyle in cancer
risk (Wu) and suggests dietary therapies that could complement
chemotherapy and other conventional treatments (Gregg). Eco-
evolutionary principles open up new therapeutic opportunities
based on competition (Pressley et al.; Somarelli), dormancy
(Kostecka et al.), predation (Peplinski et al.), and positive cell
interactions (Noble et al.).

FROM QUESTIONS TO CONCLUSIONS

AND BACK AGAIN

Several themes and challenges emerge from this collection. First,
the study of cancer cells in a tumor gives new insight into the
regulation of healthy systems (Bukkuri and Adler). The cancer
cells in a tumor demand and use resources like individuals in
ecology (Cunningham et al.; Wu), and those resources include
signaling molecules like hormones that mirror signals between
individuals as in populations of plants (Kareva and Brown).
Placing cancers in the larger biological context of evolution
and development makes sense of properties like tolerance of
hypoxia (Carroll et al.). Like species, cancer cells can, at least
hypothetically, go extinct well-before their hosts (Gregg).

Second, heterogeneity matters. Individuals, cells, locations,
and times differ (Huntly et al.), and these differences feedback
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to affect each other (Gregg). The mechanisms underlying
heterogeneity, can be genetic and heritable (Neinavaie et al.) or
plastic and epigenetic (Gregg). Third, evolution and ecology are
intimately linked. As in nature, evolution in cancer is driven by
ecological interactions among cancer cells and between cancer
cells and cells of the host, including fibroblasts, immune cells,
the associated vasculature, and many other components of the
tumor microenvironment.

The levels of selection created by population sub-structuring
are critical from the perspective of the patient and the treating
oncologist. For example, the success of temporal escape through
dormancy depends on the behaviors of the individual cancer cells
(Kostecka et al.; Miller et al.). Rates of evolution determine the
ability to respond to novel selection regimes, and, in addition
to mutation rates, these rates emerge from population dynamics
(Pressley et al.). The efficiency of selection depends on population
size and population structure. As in ecology, it is important to
consider that observed traits may not be adaptive, but rather may
result from drift and past competition.

The type of data and feasible experiments in ecology and
cancer biology differ. With cancer patients, interventions and
measurements must be carefully designed to minimize potential
harm, while in ecological systems we are often constrained by
feasibility, environmental protection, and funding. Laboratory
and greenhouse systems sacrifice realism for control and may
simulate pulsed resource environments that select for “cream-
skimmer” phenotypes (Huntly et al.). Prior hypotheses can lead
to publication bias of finding mainly what we are looking for
(Wu). Ultimately, cancer biology rigor and ecological rigor are
different but can and should be combined in cancer ecology
(Plutynski). Both fields bring qualities that the other lacks:
cancer biology is focused on molecular and cellular mechanisms
underlying observed phenotypes, while ecologists unravel causal
networks in complex systems that have been shaped by their
evolutionary history.

Finally, as in all science, we must think about the goals
and appropriate scale of inquiry of any biological investigation,
whether the ultimate aim is fundamental understanding,
forecasting, or treatment of disease. If we observe ecological
phenomena like facilitation and competition (Noble et al.) or
predation (Peplinski et al.) in cancer, do we need to understand
the molecular details to effectively harness these phenomena for
developing new treatment strategies? As genetic and molecular
methods continue to unify the sciences, we think that the cross-
talk between the methods, questions, and approaches between
cancer ecology and traditional ecology will continue to increase
to the benefit of both fields.
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The Hallmarks of Cancer as
Ecologically Driven Phenotypes
Jason A. Somarelli*

Department of Medicine, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States

Ecological fitness is the ability of individuals in a population to survive and reproduce.
Individuals with increased fitness are better equipped to withstand the selective
pressures of their environments. This paradigm pertains to all organismal life as we know
it; however, it is also becoming increasingly clear that within multicellular organisms exist
highly complex, competitive, and cooperative populations of cells under many of the
same ecological and evolutionary constraints as populations of individuals in nature. In
this review I discuss the parallels between populations of cancer cells and populations
of individuals in the wild, highlighting how individuals in either context are constrained
by their environments to converge on a small number of critical phenotypes to ensure
survival and future reproductive success. I argue that the hallmarks of cancer can be
distilled into key phenotypes necessary for cancer cell fitness: survival and reproduction.
I posit that for therapeutic strategies to be maximally beneficial, they should seek to
subvert these ecologically driven phenotypic responses.

Keywords: ideal free distribution, metastasis, tumor microenvironment, fitness, niche construction theory

THE HALLMARKS OF CANCER AS ECOLOGICAL FITNESS
PARAMETERS

Cancer is a breakdown in multicellularity that is driven by genetic mutation, leading ultimately to
unchecked growth (Aktipis et al., 2015). This unchecked growth of populations of monoclonally
derived cells, coupled with continued genetic instability/mutation, epigenetic dysregulation,
and stochastic variation in gene expression and post-transcriptional regulation, often creates a
genotypically- and phenotypically-diverse population of cancer cells. In the context of solid tumors,
this diverse population of cancer cells resides within a complex and dynamic ecosystem that is
spatially distinct in its inhabitants, resources, and geography. Cancer cells must interact with
this ecosystem to ensure their survival [reviewed in Somarelli et al. (2020)]. The phenotypic
traits necessary for the continued presence of cancer in the body are known as the cancer hallmarks,
which were eloquently described in two landmark papers by Hanahan and Weinberg (Hanahan and
Weinberg, 2011; Figure 1).

Interestingly, while these hallmark phenotypes are observed across all cancers, the
underlying genetic/epigenetic mechanisms that drive these phenotypes are remarkably
heterogeneous. Indeed, efforts by The Cancer Genome Atlas1 and other consortia2,3,4 to
genomically characterize multiple cancer types have illuminated this tremendous genetic

1https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
2https://platform.stjude.cloud/
3https://www.rarecancergenome.org/
4https://depmap.org/portal/
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FIGURE 1 | The cancer hallmarks as ecological fitness parameters. Population diversity is driven by genome instability and mutation. Cancer cell fitness is governed
by a series of survival phenotypes and the ability to reproduce (proliferation and replicative immortality).

and non-genetic diversity. The convergence of genotypically
diverse individuals on a few key phenotypic traits is observed
in ecological systems in the convergent evolution of phenotypes
from genetically distinct species (Gatenby et al., 2011; Fortunato
et al., 2017). Classic examples of this convergent evolution
include the evolution of flight in insects, birds, and mammals
(Chin and Lentink, 2016), the loss of sight and pigment in
cave-dwelling fishes (Protas et al., 2006; Niven, 2008), and the
evolution of fins and flippers in fishes and tetrapods (Fish
and Lauder, 2017). Like these examples in nature, cancer cells,
too, are constrained by their environments to converge on
distinct phenotypic features that ensure their fitness within
the ecology of the body. In this way, the cancer hallmarks
represent the ecological fitness parameters of pro-survival and
pro-reproduction (proliferation) phenotypes (Figure 1).

CANCER CELLS EXIST WITHIN AN
ECOLOGICAL SYSTEM

At its essence, what underlies the cancer hallmarks is an
evolutionary fitness paradigm that describes key phenotypes

necessary for survival and reproduction. In natural systems,
the continued success of a species is defined by the fitness
of its individuals. Fitness is the ability of an individual to
survive and reproduce. At the population level, genetic
and non-genetic variation within populations improves
population-level fitness by increasing the likelihood that
some individuals will survive and reproduce within a given
ecological niche (Takahashi et al., 2018). An ecological niche
includes all of the environmental conditions with which
the individual interacts as well as the role played by the
individual to shape its environment (Fath, 2018). Environmental
conditions with which individuals interact include both biotic
(e.g., predator/prey) and abiotic (e.g., geographic features)
factors. These interactions dictate whether an individual
maintains its fitness. Put simply, fitness is dependent upon a
core set of phenotypes necessary for survival and successful
reproduction. These core phenotypes can be achieved in myriad
ways. For example, resource acquisition can be accomplished
by altering food intake, migrating to new habitats/niches,
or altering metabolism during periods of resource scarcity
through hibernation or dormancy. Survival also includes diverse
predatory escape/avoidance tactics.
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Just as individual fitness is governed by interactions between
individuals and their environments, cancers are also dependent
upon the same core fitness phenotypes. With few exceptions
(Andreoiu and Cheng, 2010), the vast majority of cancers
originate from mutations within a single cell. Continued
mutation of this clone during subsequent cell divisions leads
to genetic diversity within a growing population of cancer
cells. This genetic diversity is acted upon by selection for
individual cells that can survive a specific ecological niche.
Within solid tumors, the environment is spatially and temporally
varied in the same way any natural environment would be,
with multiple species co-existing within a dynamic, spatially
diverse landscape (Figure 2). Like the natural world, the
tumor is not merely a homogeneous cluster of cancer cells.
Rather, the tumor is a pseudo-organ, comprised of both
cancer and non-cancer cells co-existing together (Figure 2).
These non-cancer cells, such as fibroblasts and other stromal
cells (Sahai et al., 2020), endothelial cells (Hida et al.,
2018), nerve cells (Banh et al., 2020), and immune cells
(Binnewies et al., 2018) – which are often dysfunctional –
contribute substantially to the tumor ecology by altering the
resources and spatial geography of the tumor. In addition
to the cells themselves, the local geography of the tumor is
determined by vasculature, extracellular matrix components,
resource availability, and tissue boundaries (Figure 2). This
complex tumor environment shapes the survival phenotypes of

resource availability and predation as well as the reproduction
phenotype (Figure 2).

THE ECOLOGY OF THE TUMOR
SELECTS FOR CELLS THAT CAN
SUCCESSFULLY FORAGE, AVOID
PREDATION, MIGRATE, AND
REPRODUCE

Resources, such as pro-survival signals, oxygen, and glucose are
non-uniformly distributed throughout the tumor environment
by the geography of the landscape and its non-cancer inhabitants
(Milosevic et al., 1999; Rijken et al., 2000; Heaster et al.,
2019; Zaidi et al., 2019). Neovascularization signals create a
new blood supply that provides cancer cells with the oxygen,
glucose, and growth factors that the cancer cells need for
survival and reproduction. In addition to spatial heterogeneity
in vasculature, resource distribution is also governed by the
presence of non-cancer cells, many of which secrete signals in
the form of growth factors, signaling ligands, or deposition of
extracellular matrix components. Resource depletion can induce
migratory/invasive properties (Yang et al., 2008; Chen et al.,
2011; De Saedeleer et al., 2014). This relationship between
resource depletion and migration is akin to the ecological

FIGURE 2 | Cancer cell survival within the dynamic ecology of the body is driven by resource acquisition, predator-prey interactions, and geography. Cancer cells
within solid tumors maintain their survival through alterations in resource acquisition (cell-intrinsic and -extrinsic signals, dormancy, migration/dispersal) and niche
construction. Cells must also avoid predation by the immune system through immune evasive and immune suppressive responses. These parameters are shaped by
geography and resource distributions within the tumor or metastatic landscape. MDSC, myeloid-derived suppressor cell; PD-L1 is an immune evasive checkpoint
molecule; WNTs and TGF-β are soluble immunomodulatory signals.
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concept of the ideal free distribution in which individuals
within a population redistribute in a given environment to
equalize resource intake rates (Fretwell and Lucas, 1969).
While the ideal free distribution concept is most often studied
in the context of vertebrate animal behavior, this concept
also applies across species – from invertebrates (Kelly and
Thompson, 2000) to single-celled organisms (Moses et al.,
2013) – in response to the resource distributions within
ecosystems. A deeper understanding of how this ecological
concept can be applied to solid tumor biology may help
identify new treatments to inhibit metastasis by shifting tumor
ecology toward an environment that inhibits pro-migratory
phenotypes. For example, spatio-temporal knowledge of the
resource limitations and carrying capacity of the tumor
environment may improve timing of intermittent therapies to
inhibit migration/invasion programs in response to resource
depletion or maintain drug sensitivity. Consistent with this
notion, monitoring of spatial tumor hypoxia is being applied
to adaptive radiation therapy strategies (Gerard et al., 2019),
and monitoring the timing of metabolic reprogramming during
therapy has been used to define targeted vulnerabilities to
prolong treatment response in preclinical models of breast cancer
(Goldman et al., 2019).

Ecological systems are shaped not only by resource
distribution, but also by the predatory-prey interactions
within the environment (Friman et al., 2008). Predator-prey
relationships have profound consequences for evolutionary
fitness. Predators can influence fitness of their prey by inducing
physiological, morphological, or behavioral responses (Schmitz,
2017) and by inducing evolutionary selective forces on the
prey population (Schmitz and Trussell, 2016). While cancer
cells cannot exhibit behavioral changes per se, the profound
influence of predators on population structure occurs not
only in ecological contexts, but also in cancer. For example,
cytotoxic T cells shift the ecological balance toward cancer
cell prey that are able to thwart this predatory-like behavior
of the immune system. Cancer cells escape immune predation
through (1) increased expression of checkpoint molecules that
enhance cancer cell tolerance (Pardoll, 2012) and (2) secretion of
immunosuppressive factors that alter the phenotype of immune
cells (Ben-Baruch, 2006). The factors produced by the cancer cells
shift the relationship between cancer cell and immune cell from
a predator-prey to a commensal interaction in which the cancer
cell benefits from the newly established relationship by surviving.

The fitness parameter of reproduction in the context of cancer
is proliferation by way of mitotic cell division. To divide, a
cancer cell first needs to survive. However, while survival is
a pre-requisite for this reproductive cell division, additional
signals are also necessary to ensure reproductive success; as
in nature, survival alone does not guarantee reproduction
(i.e., cell division). Indeed, disseminated cancer cells have
been shown to remain undetectable for decades (Recasens
and Munoz, 2019; Shen et al., 2020). The reasons for the
lack of clinical detection are numerous, including a technical
limit on detection (Hori and Gambhir, 2011), activation of
cellular pathways related to dormancy and hibernation (Klein,
2020), immune surveillance (Swann and Smyth, 2007), and

growth constraint due to limited resources [reviewed in Klein
(2011)]. In some cases, however, a subset of disseminated
cancer cells can reawaken their proliferative capacity and
cause a clinically detectable relapse. This reawakening can be
promoted by a change in environment. For instance, resource
depletion within the tumor, such as hypoxia, lactate production,
reactive oxygen species, or the presence of inflammatory
cytokines can lead to p38/MAPK-mediated stress signaling
(Kyriakis and Avruch, 1996). The p38/MAPK pathway is
intimately connected to cell cycle arrest (Takenaka et al., 1998).
Interestingly, p38 activation also promotes cellular migration
(Hamanoue et al., 2016), which may enable dormant cancer
cells to escape resource depletion in the primary tumor
for the more resource-rich environment of the metastatic
niche. This trade-off between proliferation and migration
is analogous to the competition/dispersal trade-off observed
in ecological contexts in which habitat stability (Pellissier,
2015), population density (Matthysen, 2005), and carrying
capacity (Laroche et al., 2016) affect dispersal dynamics, with
higher density, lower resource availability, and lower carrying
capacity promoting dispersal. Integrating these parameters of
tumor ecology into models of cancer metastasis may improve
our understanding of the (1) timing of metastasis and (2)
clonal heterogeneity expected in a given patient. Advances
in genomic profiling of liquid biopsies (Gupta et al., 2017,
2020; Armstrong et al., 2019; Ignatiadis et al., 2021) provide
a powerful system to monitor competition/dispersal tradeoffs
longitudinally and adjust treatment to minimize dispersal. This
competition/dispersal theory has also illustrated how genetically-
and phenotypically-similar species can co-exist within an
ecological niche (Yawata et al., 2014). Applying these models to
cancer may provide insight into the cancer cell phenotypes that
may be most likely to co-exist within tumors and could help
identify rational treatment combinations.

The switch from stress signaling in the primary tumor
to a more favorable environment in a metastatic site may
induce reawakening of proliferative signals through a shift in
the ratio of activated, phosphorylated (phospho) ERK:phospho-
p38 signaling (Aguirre-Ghiso et al., 2003). For example,
reduction in TGF-β signaling (Bragado et al., 2013) and
urokinase plasminogen activator signaling (Aguirre-Ghiso et al.,
2003) in metastatic sites leads to a decrease in phospho-p38
levels and increase in phospho-ERK. Remarkably, the balance
between phospho-ERK-mediated proliferation/reproduction and
phospho-p38-mediated cell cycle arrest/dormancy in cancer
cells is also observed in hibernating animals. Cardiac muscle
from hibernating thirteen-lined ground squirrels (Ictidomys
tridecemlineatus) exhibits a significant upregulation in phospho-
p38 during torpor and a low phospho-ERK: phospho-p38 ratio
(Childers et al., 2019). Likewise, skeletal muscle samples from
hibernating bats display a significant increase in phospho-p38
(Eddy and Storey, 2007). Hibernation is an adaptation that
trades immediate reproduction under resource scarcity for a later
chance at reproduction in times of greater resource availability
(Willis, 2017). In the same way, cancer cell dormancy is a fitness
tradeoff that limits immediate reproduction to ensure survival in
response to resource depletion.
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CANCER CELLS AND NICHE
CONSTRUCTION

An ecological niche is the interaction between an organism and
its environment. While this interaction is most often discussed
from the perspective of the influence of the environment
on the organism, the concept of a niche also includes the
influence of the organism on its environment. The ability of
the organism to re-shape its environment to create a more
optimal niche is referred to as niche construction (Laland et al.,
2016). This concept of niche construction is defined by the
following properties: (1) the organism significantly modifies
its environment, and (2) these environmental modifications
impact the selection pressures of the organism (Odling-Smee
et al., 2013). For example, dam building by beavers dramatically
alters the landscape, creating ponds and lakes where streams
once were. This alteration in the landscape not only creates
new habitat for the beavers and other species, but it also
provides a selective force on beaver traits, such as their
social behaviors and disease vulnerabilities (Naiman et al.,
1988). Notably, this selective force outlasts the beavers who
built the dam, providing a selective advantage beyond the
current generation.

Like beavers, cancer cells also substantially modify their
environments in my, and in doing so influence their selection. For
instance, tumor cells alter the geography of their environments
through deposition and proteolytic cleavage and clearance of
extracellular matrix components (Winkler et al., 2020). These
proteolytic enzymes, such as matrix metalloprotease 2 and 9,
are prognostic for poorer clinical outcomes in several cancer
types (Grignon et al., 1996; Sier et al., 1996; Li et al., 2017;
Huang, 2018). Mechanistically, these proteases alter matrix
stiffness (Das et al., 2017), facilitate migration by creating
space (Krause and Wolf, 2015), and increase pro-survival
signaling (Augoff et al., 2020). In addition to remodeling their
geography, cancer cells also remodel their nutrient sources.
For example, in this issue, Wu et al. describe the process
whereby tumors accumulate high concentrations of proliferation-
limiting resources. Likewise, secretion of pro-angiogenic factors,
such as vascular endothelial growth factor, fibroblast growth
factors, epidermal growth factor, and platelet-derived growth
factor, mediates formation of new vasculature (Bergers and
Benjamin, 2003). In addition, tumor cells exert pressure on
other cell types within the habitat of the tumor. Release
of soluble factors by cancer cells can induce fibroblasts to
switch from tumor suppressing to tumor permissive [reviewed
in Alkasalias et al. (2018)]. Cancer cells can also signal to
the immune predators in the tumor through expression of
immune checkpoints on the cancer cells, such as PD-L1 and
CTLA4 (Pardoll, 2012), or through secretion of soluble immuno-
suppressive factors, such as TGF-β (Wojtowicz-Praga, 2003),
IL-10 (Kim et al., 2006), and soluble WNTs (Liang et al.,
2014; Sun et al., 2017). This communication between cancer
cells and immune subsets can lead to a restructuring of the
immune landscape within the tumor toward a more tumor-
tolerant environment.

Niche construction is not restricted to the local environment
of the tumor. Systemic dissemination of signals also primes
the pre-metastatic niche toward a cancer cell-permissive
environment (Peinado et al., 2017; Doglioni et al., 2019).
Signaling factors secreted by cancer cells can remodel distant
sites for successful metastasis (Psaila and Lyden, 2009). The
production of these secreted factors is also influenced by the
local environment, thereby connecting local resource depletion
and cell-to-cell crosstalk with distant niche construction in
pre-metastatic organs. In mouse models of breast cancer, for
example, tumor hypoxia led to the expression of lysyl oxidase,
which induced recruitment of CD11b+ myeloid cells to remodel
the collagen matrix of pre-metastatic lungs (Erler et al., 2009).
Similarly, in preclinical models of lung adenocarcinoma and
melanoma metastasis, conditioned media from tumor cells
increased secretion of fibronectin in the pre-metastatic niche,
which facilitated recruitment of tumor cell-promoting bone
marrow-derived cells (Kaplan et al., 2005). Similar to secreted
growth factors from tumor cells, exosomes carrying cargo
throughout the body facilitate tumor cell seeding at pre-
metastatic sites. These exosomes can harbor proteins (Costa-Silva
et al., 2015; Hoshino et al., 2015), microRNAs (Rana et al., 2013;
Zhou et al., 2014; Fong et al., 2015), and long non-coding RNAs,
with impacts on the ecological niche, including extracellular
matrix remodeling (Mu et al., 2013), angiogenesis and vascular
permeability (Grange et al., 2011; Zeng et al., 2018), and immune
cell populations (Liu et al., 2016; Wen et al., 2016). Unguided by
an ecological perspective, many of the therapies that target these
niche construction mechanisms have not been as successful as
intended, and there is a remaining need to define the responses
induced by cancer cells to remodel their niches, both locally and
distally, at an individual patient level.

The most effective way to prevent the building of a dam is
to remove the beavers before they cut down any trees. In the
same way, early detection of cancer has been one of the most
effective ways to improve cancer survival (Loud and Murphy,
2017). Despite their limitations, screening programs, particularly
for colorectal, breast, cervical, prostate, skin, and other cancers
have dramatically improved outcomes for cancer patients (Shieh
et al., 2016; Loud and Murphy, 2017). While it has not been
formally proven exactly how early detection has such a benefit,
it is attractive to speculate that early removal of cancer cells
prevents their (1) continued evolution toward more aggressive
phenotypic states and (2) continued niche construction to create
a permissive ecological landscape.

THERAPY ALTERS THE CANCER CELL
ECOLOGICAL NICHE, INDUCING
RESPONSES THAT ARE BOTH
BENEFICIAL AND DETRIMENTAL TO
PATIENTS

Therapy substantially modifies the cancer cell population
heterogeneity, fitness landscape, and ecology of the tumor
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FIGURE 3 | Therapy alters the cancer cell ecological niche. Cellular responses to resource depletion in the face of therapy can induce epithelial-mesenchymal
transition (EMT) and migration, altered resource acquisition, and angiogenesis (upper L). Therapy-induced cellular damage can promote continued growth and
tissue remodeling, providing growth factors and tissue space for remaining cancer cells to reoccupy the altered niche (bottom L). Removal of drug-sensitive cells
from an ecological niche can allow drug-resistant cells to take over the new niche (top R). Immune checkpoint inhibition induces in the immune system a switch
from a commensal to predatory.

(Figure 3). Whether by selection of a subclone with pre-
existing resistance or the acquisition of a resistance mechanism
in response to treatment, therapy often [though not always
(Ding et al., 2012; Bashashati et al., 2013)] induces a strong
selective bottleneck that enriches for resistant phenotypes within
cancer cells. This can have profound impacts on population
structure, as has been demonstrated in numerous cancer types
through genomic profiling of longitudinal samples (Johnson
et al., 2014; Gupta et al., 2017, 2020; Somarelli et al., 2017;
Armstrong et al., 2019; Caswell-Jin et al., 2019; Roper et al.,
2020). In addition, therapy-induced enrichment of resistant
phenotypes can also promote additional aggressive features of
cancer, such as altered resource acquisition (Lue et al., 2017;
Xu et al., 2019; Gremke et al., 2020), dormancy (Kurppa
et al., 2020; Ware et al., 2020), migration/invasion phenotypes
(Takeuchi et al., 2015; Ware et al., 2016; Shah et al., 2017;
Jolly et al., 2019), and immune evasion (Baghdadi et al., 2016;
Ware et al., 2020).

In addition, the reshaping of the cancer cell population
structure by therapeutic challenge can also alter the fitness
landscape of the cell population in which removal of a drug-
sensitive population allows drug-resistant cells to repopulate a
newly vacant ecological niche (West et al., 2018; Figure 3).
This ecological concept, known as competitive release, can be
explained mechanistically by differences in energy expenditure
within drug-sensitive and drug-resistant populations. In the case

of cytotoxic chemotherapy, resistant cells expend substantial
energy in response to the drug [reviewed in Silva et al. (2012) and
Kam et al. (2014)]. This energy expenditure renders resistant cells
less fit than sensitive cells. When the drug is removed, sensitive
cells are able to outcompete the resistant cells for space within
the newly available ecological niche.

While the goal of systemic therapy is to target the cancer
cells, the therapy can also have unintended consequences
on non-malignant cells within the ecological system, some
of which can promote further aggressive features of the
cancer cells. For example, treatment-induced damage to cells
within the tumor microenvironment has been shown to
release secreted factors that enhance cancer cell survival (Sun
et al., 2012; Li et al., 2021). Likewise, chemotherapy can
also remodel the surrounding geography of the extracellular
matrix, leading to increased cancer cell survival (Bandari et al.,
2018; Figure 3). Chemotherapy can also alter the immune
landscape by damaging hematopoietic stem cell niches (Gardner,
1999), leading to immune suppression (Wu and Waxman,
2018). Chemotherapy has also been shown to suppress immune
function through secretion of immunosuppressive factors, such
as IL34 (Baghdadi et al., 2016) and granulocyte macrophage
colony-stimulating factor (Takeuchi et al., 2015). Therapy-
induced cancer cell phenotypic plasticity also induces a host of
immunomodulatory signaling pathways (Alumkal et al., 2020).
Unlike the mostly unintended effects of chemotherapy on the
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“species” of immune cells within the tumor and the body,
however, immunotherapy is specifically designed to reprogram
the interaction between cancer cells and the immune system from
a commensal to a predatory relationship (Figure 3). Ongoing
and future work aimed at modeling these interactions using
ecological frameworks (Griffiths et al., 2020) could improve
trial design, predictive and prognostic power, and identify new
mechanisms or treatment strategies aimed at prolonging the lives
of cancer patients.

LEVERAGING ECOLOGICAL
RESPONSES TO GUIDE NOVEL
THERAPEUTIC STRATEGIES

Viewing cancer from an ecological perspective can impact
treatment paradigms. For instance, adaptive therapy in which
treatment doses and schedules are adjusted based on the
differential fitness of resistant and sensitive populations in the
context of a drug has significantly prolonged tumor control
in preclinical models of breast and ovarian cancers (Enriquez-
Navas et al., 2016), with ongoing clinical trials in prostate
cancer (Zhang et al., 2017) and other cancers [discussed in
Cunningham et al. (2020)]. While these strategies have the
potential to provide novel concepts to control disease, it is also
imperative that we have a clear understanding of the relative
fitness differences across resistance mechanisms and in different
contexts. Adaptive therapy regimens may need to take into
consideration both the frequency and relative fitness of resistance
genotype/phenotype relationships (Schaper and Louis, 2014).
For example, the “arrival of the frequent” (Schaper and Louis,
2014) suggests that frequent, but less fit phenotypes can become
fixed in a population while other, rare phenotypes exist with
increased fitness.

While the predominant focus of adaptive therapy has
been on differential fitness and competition within cancer
cell populations, other benefits of adaptive therapy may exist
that are related to the tumor microenvironment. Lower drug
doses may prevent toxicity to immune predatory cells. In the
context of dying tumor cells, reduced lymphopenia may improve
systemic immune response to localized and disseminated
cancer cells. Similarly, lower drug concentrations within the
tumor microenvironment may reduce the induction of a
migratory/invasive phenotype in response to drug-mediated
resource depletion.

In addition to adaptive therapy, strategies to target the
tumor microenvironment and alter tissue ecology could be
leveraged for novel combinations to inhibit both cancer cell-
intrinsic and cell-extrinsic survival signals (Jin and Jin, 2020),
alter tissue structure/geography (Erler et al., 2009; Juarez
et al., 2012), and enhance immune predation (Opzoomer
et al., 2019). Another approach may be to capitalize on
dormancy as a response to therapy-mediated resource-depletion.
For example, by using sequential treatment paradigms to
first force cells into persistence/dormancy-like phenotypes,
and then target these persistent cells with a secondary agent

(Cipponi et al., 2020; Shen et al., 2020), it may be possible
to prolong survival for patients with therapy-resistant or
micrometastatic disease.

CONCLUSION

The range of possible genetic solutions available to cancer
cells in order to ensure survival and proliferation is vast.
These innumerable possible solutions are constrained by the
ecology of the individual patient, as well as the fundamental
needs for survival and proliferation under stress, resulting
in a set of phenotypic hallmarks. The hallmarks, at their
essence, represent the phenotypic solutions for maintaining
fitness within the ecological niche of the body. Ecologically
informed therapeutic strategies can take advantage of these
phenotypic responses required for fitness by using novel
treatment approaches. To do this, the landscape of fitness
parameters for each patient should be defined in order to identify
rationale combinations or targets that control multiple aspects
of cancer cell fitness. Beyond genetic drivers alone, therapeutic
strategies should also consider the following in defining the
fitness landscape of each patient: (1) identifying key resources, (2)
defining the reproduction vs. dormancy/survival axis for tumors,
(3) characterizing population heterogeneity, (4) quantifying
dispersal likelihood, and (5) defining the predator/commensal
state of the immune system. Broader partnership between
ecologists and cancer researchers/physicians will help inform
these strategies and could lead to further breakthroughs and
innovation that capitalize on advances in spatially resolved
genomics, measurements of the temporal dynamics of cancer
cell populations, and an emerging arsenal of therapies that
target both cancer cells and their habitats. Coupling these
emerging technologies with ecologically informed models of
cancer may enhance our ability to treat cancer as a chronic, but
controllable illness that will substantially prolong the lives of
cancer patients.
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*Correspondence:

Daniel J. Wu

danjwu@cs.stanford.edu

Specialty section:

This article was submitted to

Behavioral and Evolutionary Ecology,

a section of the journal

Frontiers in Ecology and Evolution

Received: 14 January 2021

Accepted: 08 April 2021

Published: 05 May 2021

Citation:

Wu DJ (2021) Oversupply of Limiting

Cell Resources and the Evolution of

Cancer Cells: A Review.

Front. Ecol. Evol. 9:653622.

doi: 10.3389/fevo.2021.653622

Oversupply of Limiting Cell
Resources and the Evolution of
Cancer Cells: A Review
Daniel J. Wu*

Department of Computer Science, Stanford University, Palo Alto, CA, United States

Cancer prevention is superior to cancer treatment—indeed, understanding and

controlling cancer risk is a key question in the fields of applied ecology and

evolutionary oncology. Ecological cancer risk models offer the dual benefit of being

generalizable across cancer types, and unveiling common mechanisms underlying

cancer development and spread. Understanding the biological mechanisms of cancer

risk may also guide the design of interventions to prevent cancer. Ecological

considerations are central to many of these mechanisms; as one example, the

ecologically-based hypothesis of metabolic cancer suppression posits that restricted

vascular supply of limiting resources to somatic tissues normally suppresses the evolution

of somatic cells toward cancer. Here we present a critical review of published evidence

relevant to this hypothesis, andwe conclude that there is substantial evidence that cancer

risk does increase with an abnormal excess of limiting cell resources, including both

dietary macronutrients as well as certain micronutrients.

Keywords: evolutionary oncology, cancer ecology, cancer prevention, resource oversupply, limiting resources

1. INTRODUCTION

Cancer is the result of an evolutionary process. This is a process fueled by mutation and shaped by
ecology (Reynolds et al., 2020), making the assessment and reduction of cancer risk an important
problem in the fields of applied ecology and evolution. Consequently, a evolutionary approach
to cancer modeling can improve models for individualized risk assessment, which are currently in
need of improvement (Louro et al., 2019). Moreover, forming a theoretical account of the ecological
mechanisms of cancer risk can guide the design of evolutionarily-enlightened interventions to
prevent cancer.

The difference between indolent and aggressive cancers may sometimes lie not within the
tumor itself, but rather in the tissue micro-environment where the tumor is growing. The ecology
of the tissue microenvironment is central to understanding and intercepting cancer risk in two
ways: Firstly, while mutations are stochastic and unpredictable, ecological effects on evolutionary
trajectories are deterministic and predictable (Lenski, 2017; Barrick et al., 2020)—especially in cases
of convergent evolution, such as the cellular evolution of cancer (Fortunato et al., 2017). Secondly,
unlike mutation, tissue ecology is a modifiable source of cancer risk; understanding it can help us
to not only predict the risk of cancer, but also take proactive steps to reduce it.

In this review, we focus on resource supply and limitations in the tumor microenvironment.
Based on systems biology simulation models, it was proposed that in the somatic ecology of tissues,
an abnormal excess of limiting energetic resources may increase cancer risk in the affected tissues
(Wu et al., 2019). Indeed, a consortium of scientists identified responses to energetic resource
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limitations as one of two primary ways to classify neoplasms
(Maley et al., 2017). Here, we broaden the scope of this ecological
idea to include not only energetic resources, but any resources
that can be limiting for cell proliferation. We undertake a critical
review of published empirical evidence relevant to testing this
broader hypothesis.

2. MECHANISM

A foundational principle of ecology is Liebig’s Law, which states
that growth is controlled not by the total amount of all resources
available, but by the scarcest (limiting) resource type (Egli and
Zinn, 2003; Shapiro et al., 2018). For a given population, a
resource type is limiting if an increase in its availability increases
growth. Both in classical species ecology, and in somatic cell
ecology, there is only one limiting resource type per population,
but this is may vary over time, or between tissues. The single
resource that is likely to be limiting for most somatic cells at
most times is energy for biosynthesis, growth, and division.
This is, however, not a universal rule; other limiting resources
may include micronutrients, growth signals, oxygen, and many
others. The relation between cancer development and resource
oversupply is an extension of Leibig’s law; cancer cells are treated
as organisms whose growth is unlocked by resource surplus.

Heretofore, in considering cancer risk, much attention has
been focused on the driver mutations in somatic cells that
are believed to trigger oncogenesis. However, it has become
clear that such mutations often do not drive oncogenesis, but
instead remain safely “parked” in normal tissues (Tomasetti,
2019; Nam et al., 2020; Solary and Laplane, 2020). These
observations support the notion that cancer prevention can be
viewed as an attempt to change the selective pressures within
tissues to prevent or delay cancer (Maley et al., 2011). It is still
unknown what selective pressures might direct driver mutations
toward malignancy; this is a fundamental open question in
the science of cancer prevention. One potential explanation
is the hypothesis of metabolic cancer suppression, which is
based on known epidemiology of cancer risk. According to this
hypothesis, restricted vascular supply of resources to somatic
tissues normally limits resources critical to cell proliferation,
and thereby suppresses cellular evolution toward cancer, even
in the presence of driver mutations (Figure 1). Under this
framework, the importance of driver mutations is attributable
only to their impact on cellular fitness in the context of
the tumoral microenvironment. This accords with an earlier
mathematical model (Beerenwinkel et al., 2007), which suggested
that the waiting time to cancer depends strongly on the selective
advantage (s) conferred by oncogenic driver mutations, with the
average waiting time proportional to 1

s .
In computer simulations, cancer driver mutations quickly

caused cancer in microenvironments that were oversupplied
with limiting cell resources, but had little effect in tissues
with normally restricted supplies of those resources (Wu et al.,
2019). These ecological effects on cancer risk are consistent with
our general understanding of how ecology shapes evolution.
Several authors have noted that both in classical species

FIGURE 1 | Resource oversupply unlocks clonal expansion—aggressive

clones (red) flourish in an abundant environment (green).

ecology and in the tissue ecology of somatic cells, it is only
populations in resource-rich environments that typically evolve
the rapid-proliferation life histories that rely on rapid resource
consumption (Alfarouk et al., 2013; Ducasse et al., 2015).
Therefore, according to the hypothesis of metabolic cancer
suppression, even cell resources that are healthy and essential in
normal quantities can become carcinogenic in excess.

The eco-evolutionary effects of resource availability are
difficult to observe in healthy tissue that is evolving toward
cancer, but have been observed in cancer itself. Cancer cells that
could gain a fitness advantage by exploiting a given resource
typically evolve to do so only when that resource is available
in their local microenvironment. For example, in breast cancer,
elevated expression of estrogen receptor can increase cell fitness
and proliferation, but only in the presence of adequate estrogen,
which is supplied through vascular delivery. Cell phenotyping has
shown that within a breast tumor, there is a strong correlation
between cells’ access to vascular delivery, and with their evolved
expression of estrogen receptor (Lloyd et al., 2014). Such local
effects on the evolution of cancer cells, as described above,
suggest that even when a limiting resource is at normal levels
in blood, vascular abnormalities creating excess local blood
flow might increase cancer risk in the locally affected tissues.
There are published observations suggesting that local vascular
abnormalities increasing blood flow do, in fact, increase localized
cancer risk in humans (Feinmesser et al., 1997; Lapidoth et al.,
2006; Blatt et al., 2019). However, such local tissue effects are
unlikely to be generally important to cancer prevention and
control. In contrast, systemic excess of resources that are often
limiting for cell proliferation affect more tissues and organs, and
do so in many more people. Such systemic excess is likely to be
important to cancer prevention and control, and it will be the
focus of this review.

3. LIMITING RESOURCES

Although there are few empirical studies investigating the effect
of general limiting resources on cancer development, there is
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TABLE 1 | Some examples of evidence supporting the importance of limiting

resources in cancer control.

Limiting resource Cancer type References

Glucose Prostate Marrone et al. (2019)

Gallbladder Navarro et al. (2019)

Colorectal Yang et al. (2016)

Pancreatic Zhang et al. (2020)

Growth Factors Prostate Watts et al. (2019)

Breast Lloyd et al. (2014)

Colorectal Yamamoto et al. (2017)

Ovarian Brokaw et al. (2007)

Micronutrients Prostate Perez-Cornago et al. (2020)

Skin Whitnall et al. (2006)

Bladder Torti et al. (1998)

Renal Ba et al. (2011)

a rich body of literature investigating the carcinogenic effect
of specific resources which are likely to be limiting (Table 1).
We consider these studies here, not to offer a comprehensive
consideration of all of the possible limiting resources within the
tumor microenvironment, but instead to illustrate the myriad
ways in which resource limitations may arise and be subverted.

3.1. Glucose
The single class of resources that is likely to be limiting for
most somatic cells at most times is energy; used for biosynthesis,
growth, and division. This energy is supplied primarily by
blood glucose, the supply of which is tightly regulated in
normal physiology. In accordance with Liebig’s law, researchers
hypothesize that glucose oversupply may be associated with
cancer risk.

In support of this hypothesis, it has been found that while
hyperglycemia and diabetes were not significantly associated
with total prostate cancer incidence, glycemia values above
the normal range were associated with increased risk of lethal
prostate cancer, and with prostate cancer mortality (Marrone
et al., 2019). Similarly, a study of the aggressiveness of gallbladder
cancer using circulating glucose-to-lymphocyte ratio (GLR) as
an indicator of glucose availability, found that preoperative GLR
was an independent predictor of survival (Navarro et al., 2019).
A similar effect of blood glucose on cancer aggressiveness was
reported for colorectal cancer (Yang et al., 2016), and also for
pancreatic cancer (Zhang et al., 2020).

These consistent effects of glucose level on cancer risk
are understandable through an eco-evolutionary perspective
of carcinogenesis as the Darwinian evolution of somatic cells
into cancer cells. Abnormally elevated glucose in the cell
microenvironment alters the selective forces on cells in two ways:
Firstly, excess glucose directly selects for cells with abnormally
accelerated growth and proliferation that disproportionately
benefit from this energetic windfall. Secondly, this hyperglycemic
microenvironment allows neoplastic cells to gain a further
fitness advantage over normal cells by generating energy
through anaerobic glycolysis. While less efficient in glucose

use than aerobic cellular respiration, this glycolytic pathway
is an allelopathic strategy—it generates an acidic and toxic
microenvironment that is more toxic to competing normal cells
than to the cancer cells themselves (Gillies et al., 2008). In doing
so, this destructive cell phenotype removes both competitive
and physical barriers, thereby accelerating clonal expansion.
These considerations, supported by empirical evidence and
mathematical modeling, led some to conclude that elevated
glucose consumption is a necessary cell phenotype for the
formation of metastatic cancers (Gillies et al., 2008).

3.2. Inorganic Micronutrients
In addition to oxidizable energy substrates such as glucose,
several inorganic trace nutrients, such as iron and phosphate, are
also potentially limiting for cell proliferation, and are also over-
consumed by rapidly dividing cells. According to Liebig’s law, in
those patients and tissues in which energy is the limiting resource,
these trace nutrients are not limiting, thus their availability will
not greatly affect cancer risk. However, in those patients with
elevated blood glucose, cell proliferation is unlikely to be limited
by energy availability, and so may be limited instead by crucial
inorganic trace nutrients. In areas experiencing the current
epidemic of obesity and metabolic syndrome, this situation may
be common.

Iron is critical to cell proliferation because of its key
roles in energy production and the biosynthesis of DNA
and RNA. Like glucose, iron homeostasis is highly regulated,
and its dysregulation has been associated with carcinogenesis
(Weinberg, 1996; Torti and Torti, 2013). Both infections and
neoplasms consist of rapidly dividing pathogenic cells, and
host physiology defends against both infections and neoplasms
by sequestering the iron required for rapid cell proliferation
(Weinberg, 1984). Hosts respond to both infections and
neoplasms by lowering their plasma iron levels; consequently,
we expect that iron supplements enhance both microbial and
neoplastic cell growth. Long-established animal experiments
have demonstrated that experimental oversupply of iron by tissue
injection can induce cancer at the injection site (Richmond,
1959). This is despite the fact the fact that physiological levels
of iron are neither mutagenic nor carcinogenic (Weinberg,
1984). Substantial evidence from multiple studies suggests that
abnormal iron excess is closely associated with tumorigenesis in
multiple types of human cancer (Chen et al., 2019). In humans,
excess tissue accumulation of iron due to food additives and
iron supplements may be contributing to increased risk of cancer
generally (Davoodi et al., 2016).

A second inorganic cell nutrient implicated in oncogenesis
is phosphate. Evidence suggests that excess cellular phosphate,
associated with dysregulated phosphate metabolism, acts as a
growth-promoter in various human and experimental models
of tumors (Brown and Razzaque, 2018). In a prospective
study of multiple serum biomarkers potentially indicating risk
of prostate cancer in a large cohort of men, phosphate was
the only biomarker significantly positively correlated with
prostate cancer during long term follow-up (Perez-Cornago
et al., 2020). In an example of cancer niche construction, the
phosphate proclivities of tumors are reflected in their tendency
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to accumulate more phosphorus in their microenvironment
compared to normal tissue. In mouse models of spontaneous
cancer, in vivo measurements of several aspects of the chemical
tumor microenvironment revealed that the greatest difference
of tumor tissue compared to normal tissue was not the well-
established chemical differences in oxygen and pH, but rather,
differences in extracellular concentration of inorganic phosphate
(Bobko et al., 2017). Levels of inorganic phosphate (Pi) weremore
than two-fold higher in tumor microenvironments vs. normal
tissue. Moreover, Pi concentration was the only parameter that
allowed for discrimination between non-metastatic and highly
metastatic tumors (Bobko et al., 2017).

3.3. Growth Factors
In addition to the nutrients discussed above, other candidates
for resources limiting to cell proliferation include various
endogenous signals. Similarly to nutrients, endogenous signaling
molecules are received only through vascular delivery, and are
often are taken up faster by hyperproliferating cells.

For example, insulin-like growth factors (IGFs) have been
implicated in the etiology of several cancers. Epidemiological
evidence implicates IGFs in risk for prostate, breast, colorectal
cancer, and possibly thyroid cancer—IGF1 is consistently
positively associated with an increased risk of these cancers
(Watts et al., 2019). Estrogen is another endogenous signaling
molecule that can be a limiting proliferation resource for some
female reproductive cancers, in particular estrogen receptor
positive (ER+) breast cancer. Within an ER+ tumor, estrogen
dependence and uptake may vary from 1 to 100% of cells. It
has been hypothesized that expression of estrogen receptors
is positively selected only if estrogen is present in the
microenvironment, and further, that tumor regions with higher
blood flow would contain larger numbers of ER+ cells than
areas of low blood flow (Lloyd et al., 2014). By examining the
spatial distribution within tumors of ER+ and ER- cells relative to
blood vessel area, the authors found a strong positive correlation
between vascular area and ER expression. The authors concluded
that ER expression, specifically by well-vascularized tumor cells,
resulted from different selection pressures in well-vascularized
regions. These results suggest that an abnormal excess of
circulating estrogen could also lead to abnormal cell proliferation
and to increased cancer risk.

That hypothesis has been supported by two unintended
observational “experiments” on patterns of reproductive cycling
in women. The first natural phenomenon involving abnormally
increased estrogen exposure in women (relative to ancestral
conditions) resulted from the introduction of agriculture and
birth control. In the ancestral environment that humans are
adapted to, women undergo relatively few ovulatory cycles with
their accompanying surges of endogenous estrogen. In contrast,
contemporary American women start cycling younger and cycle
more often, resulting in about triple the lifetime ovulatory
cycles as were typical of pre-agricultural women. Based on a
theoretical model, this translates into a risk of breast cancer
by age 60 that is about 100 times as high as that of pre-
agricultural women, and this model prediction is consistent
with the available epidemiological data (Eaton et al., 1994). The

second phenomenon resulted from the introduction of hormone
replacement therapy (HRT) to treat the symptoms of menopause.
Multiple observational studies have showed an increased risk
of breast cancer with multi-year use of HRT (Franceschini
et al., 2020). These authors argue that this increased cancer risk
has resulted not only from abnormally extended exposure to
estrogen, but also from use of some older drugs with excessively
high levels of estrogens. The combined weight of this evidence
suggests that, as in the case of the nutrients discussed above, it
may not be correct to consider estrogen to be carcinogenic per se,
but rather to consider an abnormal excess of estrogen exposure
to be carcinogenic.

4. DISCUSSION

In conclusion, a large body of evidence indicates that cancer risk
does increase with an abnormal excess of limiting cell resources,
including both exogenous dietary factors, and endogenous
signaling molecules. Among dietary factors, this effect is most
widely investigated in energetic macronutrients, which can upset
the normal energy balance and create hyperglycemia, but the
supporting evidence is also strong for at least two limiting
micronutrients: iron and phosphate. The idea that normal and
necessary nutrients could sometimes have a carcinogenic effect
may seem paradoxical, but it should not be too surprising—
when pathology is plotted as a function of various physiological
measurements or dietary inputs, the result is often a U-shaped
response curve, with pathology increasing as physiology becomes
abnormally extreme in either direction.

Ideally, a systematic review of an association between resource
oversupply and cancer outcomes should compare the number of
studies that reported a positive association vs. those that found
a negative or no association (Pati and Lorusso, 2018). While we
have, to our best knowledge, included an unbiased sample of
all relevant literature, few empirical studies have been designed
specifically to test the hypothesis we examine. Instead, much of
the available evidence is observational, or was incidental to the
focus of the reported study. We found no published negative
reports regarding association between dietary excess and cancer
outcomes, but this could reflect either a limited literature, or
a reporting bias toward positive association. We are optimistic
that if the hypothesis addressed here gains plausibility, there will
soon be more empirical research directly targeted at investigating
resource oversupply.

4.1. Exogenous and Endogenous
Resources
It is difficult to disentangle the role of endogenous signals
from that of exogenous resources, because levels of the two are
often highly correlated. Limiting resources are closely regulated
physiologically, so that extreme levels of intake will cause a rapid
increase in regulatory signaling molecules.

However, there is a fundamental difference between the
constraints on carcinogenesis resulting from limited signaling
molecules compared to that of limited exogenous nutritional
resources—the latter has a more fundamental and robust causal
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effect. Indeed, the evolution of independence from endogenous
signals and factors that would normally limit proliferation
is considered a canonical hallmark of cancer (Hanahan and
Weinberg, 2000). Therefore, restricted levels of endogenous
signals can only transiently impede the evolution of cancer. In
contrast, conservation of energy dictates that cells cannot evolve
away from dependence on energy and materials for growth
and proliferation. Thus, restricted levels of exogenous limiting
resources offer a more robust and important obstacle to somatic
cell evolution toward cancer. As an example of this difference
between the risks from exogenous resources vs. endogenous
signals, normal somatic cells do not proliferate in the absence
of insulin or of insulin-like growth factor 1 (IGF1). However,
evolving cancer cells can evade this dependence, often through a
single mutation. Tumors with this property have been described
as resistant to caloric restriction, but in fact, animal experiments
have only established their resistance to low serum levels of
insulin and IGF1, and not to low levels of glucose itself (Kalaany
and Sabatini, 2009). The problem of disentangling the effects of
endogenous signals vs. exogenous resources is especially acute
for glucose. Hyperglycemia, with its comorbidities metabolic
syndrome and obesity, increases cancer risk not only through
oversupply of glucose to tissues, but also through abnormal
levels of IGF1, leptin, adiponectin, steroid hormones, insulin,
and sirtuins (Hursting and Berger, 2010). As a mechanism of
cancer risk, and as an opportunity for cancer prevention, serum
glucose may prove to be the most important of these multiple
intercorrelated risk factors.

4.2. Aggressive and Indolent Cancers
A key difficulty in cancer screening is the onerous diagnostic
task of distinguishing between indolent cancers and clinically
aggressive cases that demand immediate treatment (Srivastava
et al., 2016). This problem is especially pressing for prostate
cancer, which simultaneously proffers many cases of aggressive
and dangerous disease, as well as many cases of over-diagnosed
and over-treated tumors (Da Huang et al., 2020). Efforts
at molecular characterization have not yet found mutations
or other cell-intrinsic markers of cancer aggressiveness, and
detailed consideration of tissue ecology may help. Indeed, it
has been shown that the aggressiveness of prostate cancer is
associated with circulating levels of several limiting cell resources,
including glucose (Marrone et al., 2019), iron (Choi et al.,
2008), and phosphate (Bobko et al., 2017). Given that resource
oversupply may act as the “enabler” of carcinogenic mutations
and clonal expansion, monitoring and analysis of the tumor
microenvironment offers a promising method by which to
identify clones which are likely to be aggressive.

4.3. Caloric Restriction and Dietary
Regimens
Consistent with the hypothesis that excess blood glucose drives
oncogenesis, a recent review concluded that the internal tissue
environment determines whether cancers progress to advanced
disease, and that glucose availability is an important component
of this somatic ecology (Holly et al., 2019). Furthermore, a
meta-analysis comparing people with and without diabetes found

that diabetes was associated with substantial premature death
from several types of cancer, independent of other major risk
factors (Collaboration, 2011). These included cancers of the
liver, pancreas, ovary, colorectum, lung, bladder, and breast.
A prospective study also found blood glucose to predict risk
of breast cancer (Muti et al., 2002). This work suggests that
controlling blood glucose levels by managing caloric intake
and increasing physical activity is likely to confer protective
benefits formany types of cancer in economically developed areas
(Giovannucci, 1999). Indeed, caloric restriction dietary regimens,
which restrict energy intake to minimal survival levels, have
strong cancer preventive effects in animal models. Observational
data reflect a similar effect in humans. Across species, calorie
restriction appears to be the most potent, broadly acting dietary
regimen for suppressing carcinogenesis (Hursting et al., 2010).

4.4. Aging
It is not immediately clear why cancer incidence increases
sharply with age, given the evidence (reviewed in section
1), that while cancer driver mutations do accumulate
with age, they are not enough alone to initiate cancer.
An ecological factor that may explain this trend is that
hyperglycemia increases with age, increasing positive
selection for mutated neoplastic cells that can use excess
glucose for rapid proliferation (Golubev and Anisimov,
2019). Similarly, age-related metabolic shifts which remove
resource restrictions have been linked to epithelial cancers
(Holly et al., 2013). In general, the process of aging appears
to loosen the tightly orchestrated biological controls on
tissue nutrition and resource supply, thereby creating
intermittent excess.

4.5. Micronutrients
Oversupply of limiting cell resources does appear to be
an important biological mechanism of cancer risk. This is
well-established for energetic macronutrients—the case for
micronutrients is less well-established, but also holds potential.
The highly-processed foods that now constitute the majority of
calories consumed in developed nations not only cause excessive
energy intake and tend to increase average daily blood glucose
levels (Hall et al., 2019), but also contain additives that can
create excessive intake of the limiting micronutrients iron and
phosphate. Of all the micronutrients, phosphate may be the
most promising candidate for managing cancer risk. Dietary
phosphorus deficiency is uncommon and usually observed only
in rare inherited disorders, or near-total starvation. There would
be little health risk in reducing dietary intake, especially by
avoiding the extra phosphate that is an additive in many
processed foods and beverages (Erem and Razzaque, 2018).
Excess phosphate is implicated in risk of both lung cancer (Jin
et al., 2009), and prostate cancer (Perez-Cornago et al., 2020),
and high dietary phosphorus intake is associated with all-cause
mortality (Chang et al., 2014).

4.6. Prevention and Intervention
An excess of limiting cell resources offers excellent opportunities
for management of individual cancer risk, because in many cases
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it may be measured non-invasively. For example, inexpensive
wearable monitors of serum glucose are widely available.
Similarly, measurement of urinary phosphate is routinely used
to manage kidney disease, and standard test kits might be
repurposed for managing cancer risk. In addition to addressing
cancer risk, evaluating tissue ecology may also be helpful in
the difficult diagnostic task of distinguishing between indolent
cancers and clinically aggressive cases that demand immediate
treatment (Srivastava et al., 2016). As this association between
excess resources and increased cancer risk appears to be
robust across cancer subtypes and stages, we expect that
ecologically-informed risk management will be an important

element of cancer prevention research, and ultimately, of better

patient outcomes.
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Recently several authors described a family of models, according to which different
cancer types and subtypes fall within a space of selective trade-offs between archetypes
that maximize the performance of different tasks: cell division, biomass and energy
production, lipogenesis, immune interaction, and invasion and tissue remodeling. On
this picture, inter- and intratumor heterogeneity can be explained in part as a product of
these selective trade-offs in different cancers, at different stages of cancer progression.
The aim of this Perspective is to critically assess this approach. I use this case study to
consider more generally both the advantages of using ecological models in the context
of cancer, and the challenges facing testing of such models.

Keywords: multi-task, evolution, cancer, ecology, testing, genomics

INTRODUCTION

Cancer evolves; that is, populations of cancer cells change over time in distribution of genotypic
and phenotypic features, and relative survival is due in part to interactions with the surrounding
environment. This idea is not new, and has indeed led to an active research program (Nowell, 1976;
Merlo et al., 2006; Greaves and Maley, 2012). If cancers evolve, then investigating the ecologies of
cancers, and selective trade-offs at work in these different local microenvironments, will be centrally
important to explaining how and why cancers progress slowly or quickly, respond to treatment,
or fail to do so.

What, however, does it mean to explain or describe cancer’s “ecologies” or “ecological
dynamics”? While several scientists have proposed general theoretical frameworks and
mathematical models for predicting and explaining cancer’s evolutionary dynamics (Michor et al.,
2004; Frank, 2007; Wodarz and Komarova, 2014), relatively few have drawn upon ecological theory
(F. Adler and Gordon, 2019). However, Maley et al. (2017) describe what they call the “Evo-” and
“Eco-Index” of cancers – that is, a taxonomy of various features that enable various patterns of
evolutionary and ecological change in cancers over time. Thus, for instance, a major component
of the “Evo-index” of a tumor is extent of heterogeneity, which enables a population of cancer
cells to respond to selection. The “Eco-Index,” in contrast, consists in a “profile” of “hazards” and
“resources” (what can kill a cell, or resources required for cell maintenance and growth), which
might be expected to select for the particular life history strategies (Aktipis et al., 2013). High levels
of hazard or fluctuating resources might tend to yield rapid reproduction and little investment in
maintenance and survival. Low hazards and a steady supply of resources, in contrast, might predict
an expansion of the carrying capacity of the habitat, and competition for limiting resources.
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International sequencing efforts have now provided data that
allows cancer researchers to test some of these hypotheses (Hutter
and Zenklusen, 2018). These sequencing efforts demonstrated
that cancers are enormously heterogeneous. Cancers arising in
different cell types, tissues, or organs vary in the extent and type
of mutations most common. This “inter-tumor” heterogeneity is
often contrasted with “intra-tumor” heterogeneity: the extent of
genetic variation within a single population of cancer cells. In
order to optimize treatment, we need to better understand why
variation arises between cancers, and among cell lineages in a
tumor, both in space, and over time.

Hausser and Alon (2020) apply multitask evolution to
genomic data, in service of identifying the specific trade-offs
at work in different cancers, and among cell lineages (Hausser
et al., 2019, p. 2). They predicted that, given trade-offs among
various tasks of cancer cells in a tumor, both space, and over time,
selection among these trade-offs could also yield “archetypal”
genomic profiles. For instance, early on in the development of
a tumor, one might expect genetic profiles associated with rapid
growth, whereas later on, there may be genetic profiles associated
with immune resistance, or capacity for invasion and metastasis.

To identify the trade-offs at work in cancer progression,
they use a Pareto-optimal modeling strategy, drawing upon
gene expression profile data (transcriptomic data) from TCGA
and METABRIC databases. Using PCA (principal component
analysis), they reduced the number of dimensions in the data,
identifying the most common variants across tumors. They then
subject this reduced dataset to ParTI (Pareto task inference).
ParTI has been used to illustrate the role of selective trade-
offs between tasks in a variety of other systems. The “Pareto
front” represents gene expression profiles for which performance
cannot be improved without decreasing performance in another
task: gene expression profiles along a Pareto front are “Pareto
optimal.” When there are three or more tasks, one can generate
a polyhedron, where the vertices represent the “archetypes” – or,
“specialists” at specific tasks.

They showed that different cancers seem to have distinctive
optima, or gene expression profiles associated with trade-offs
among different tasks. For instance, in glioma, the trade-offs
were between cell division, invasion and tissue remodeling, and
immune interaction, with a cluster close to the cell division
archetype. In contrast, in liver cancer, the trade-offs appear
to be between biomass and energy production, cell division,
and invasion and metastasis, with a cluster closer to biomass
and energy production. Moreover, they found that, depending
upon stage or grade, different cancers within a type (e.g., breast
cancers) seemed to display gene expression of higher frequency
coinciding with one or another Pareto optimum, suggesting
that selective trade-offs likely change from early stage tumors
to invasive metastatic disease. Such selective trade-offs might be
driving change in the distribution of tasks in cell populations in
a tumor over time, and thus, changes in the distribution of gene
expression profiles. Such information could, they argue, be linked
with clinical data, and drug sensitivity data, in service of more
effective therapy.

There were some limitations to their analysis, however. They
“could not reliably detect polyhedra for seven out of 15 cancer

types; these seven cancer types showed gene expression that fell
in a cloud without detectable vertices.” That is, fully half of
the cancer types they analyzed did not fall within the archetype
framework. As they note, future research could determine what
might explain lack of fit, where one option is simply that “trade-
off theory is not applicable such as a lack of strong selection,”
or, perhaps, “too many tasks (many archetypes) that cannot be
resolved given the noise.” (Hausser and Alon, 2020, 250) Below,
this example will be considered as a case study for generating
important insights about what we ought to look for when testing
hypotheses about cancer’s eco-evolutionary dynamics.

CANCER GENOMIC DATA AS A SOURCE
OF BIAS

Hausser et al., generated their archetypes by drawing upon
TCGA and METABRIC data, reducing the dimensions of the
data using PCA (principal component analysis). It’s worth briefly
considering how these data were generated, to consider whether
either the data themselves, or the reduction in of dimensions of
the data (or both), might bias the results they found.

The TCGA “pipeline” had several stages. First, tumor samples
and healthy cells are taken from each patient, typically at first
diagnosis – i.e., early stage cancers. Though, how early this may
have been in the progression of disease likely varied significantly
across cancers – for instance, pancreatic cancers tend to be
diagnosed later than prostate or breast cancers. Second, at least
during the first 5 years during which TCGA was conducted,
whole exome sequencing was not an option. So, initially, the
second stage of the pipeline involved targeted sequencing of
genes known (already) to be tumor drivers: genes, mutation to
which were already known to be common in cancers of this
or that type (Hutter and Zenklusen, 2018). The third stage
involved comparing frequency of different mutations within
cancers of a particular type or subtype. During the last half
decade of sequencing efforts, whole exome sequencing and
“mutation calling” algorithms, systematically generated data on
which mutations were common or rare in different cancer types.
These algorithms were designed to exclude certain genes not
known or believed to be relevant to cancer phenotype, and thus
weighted some genes as likely more significant than others, based
on functions known or likely typically associated with the cancer
phenotype – e.g., if a gene was associated with mitosis, etc.

In other words, the driver mutations identified by TCGA
as more or less common in cancers of this or that type were
identified by algorithms designed to detect mutations to genes
known to be associated “hallmark” functions of cancer cells (e.g.,
TP53, APC, etc.) (Hanahan and Weinberg, 2011). Genes typically
thought to have no role in “hallmark” features of cancer cells
were (by and large) ruled out as “noise.” Thus, one concern
that any analysis of cancer genomic data may have when using
such data to test hypotheses about selective trade-offs is that
cancer genomic data (at least that data published in the consensus
genome papers) were already filtered by algorithms designed
to identify mutations to genes associated with the “hallmarks”
of cancer. Thus, it is no surprise that data drawn from TCGA

Frontiers in Ecology and Evolution | www.frontiersin.org 2 May 2021 | Volume 9 | Article 66626227

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-666262 May 14, 2021 Time: 17:52 # 3

Plutynski Testing Multi-Task Cancer Evolution

would generate “archetypes,” or show relatively high frequency
of mutation and/or gene expression for these five major tasks.
Hausser and Alon’s (2020) discovery that glioma and bladder
tumors, for instance, fit a polyhedron model, with axes that are
represent trade-offs among gene expression for specialization in
cell division or immune interaction, in other words, may in part
be not entirely unexpected. Further, their analysis reduced the
dimensions of the data, and averaged gene expression patterns
within any given cancer type or subtype – such a process may
have led to loss of important information, such as about unique
gene expression profiles distinctive to particular cancers, or
subpopulations of cells within cancers. This could well explain the
lack of fit with the models, for a proportion of the cancers studied.

STANDARDS OF EVIDENCE IN TESTING
ECOLOGICAL MODELS IN CANCER

A second general concern one might have has to do with
standards of evidence for testing hypotheses about trade-offs.
In a classic discussion, Stearns (1989) gives a brief overview of
what information is required to test hypotheses about life history
trade-offs in whole organism biology:

That trade-offs can be measured and analyzed at the level of
the genotype, the phenotype and what lies between (intermediate
structure) . . . It is not a question of either genetic correlations
or phenotypic correlations or physiological trade-offs but of how
such measurements combine to deliver information about potential
evolutionary responses. A study conducted at just one of these
levels is likely to be of as little use as the information on the nature
of the elephant delivered by one blind man holding its tail ...
Knowledge of all three of these levels is necessary to understand
how a trade-off works (Stearns, 1989, p. 259).

Stearns gives several examples of tests of hypotheses about life-
history trade-offs – for instance, trading off between growth and
reproduction. In all these models, there is a quantitative measure
of the traits in question in a given population, their effects on
fitness, and in some cases, experimental manipulation of the
population to test these hypotheses.

According to Stearns, for a genuine test of an ecological
hypothesis about trade-offs, it is important to give quantitative
measures of how trade-offs between phenotypic traits negatively
covary. Moreover, in principle, one should also establish that
there was sufficient variation within the initial population for
both traits to be subject to selection. If manipulation of the traits
is possible, experimental manipulations should be conducted to
test hypotheses about these proposed trade-offs. Ideally one must
give ecological information about how and why traits are likely to
trade off, and not only demonstrate how they negatively covary.
Testing requires some quantitative measure of fitness, a function
that describes how fitness depends on variable phenotypes (and
trade-offs among them), and a set of alternative phenotypic
profiles that describes options for manipulating the variables
at work in these fitness trade-offs. How does Hausser et al.’s
theoretical framework perform in this regard?

They do cite indirect evidence that there are plausibly selective
trade-offs likely at work in cancer. Some resources, such as ATP,

are needed for both growth and metastasis, and are limited in
supply (Broxterman et al., 1988), metabolic constraints were
also reported (Jerby et al., 2012), harsh conditions cause cancer
cells to become quiescent (Gade et al., 2017), and proliferation
is stimulated more favorable microenvironments (Wang et al.,
2017a,b). Hausser et al., cite several papers that they claim
support the general view that cancer cells face fitness trade-offs
(Hatzikirou et al., 2012; Aktipis et al., 2013; Gillies et al., 2018;
Gallaher et al., 2019).

However, a closer look at these papers indicates that they
show not that cancer cells do as a matter of fact face trade-offs
between various traits in a given environment, but only that this
is a plausible hypothesis. For instance, Aktipis et al. (2013) write,
“The exact nature of tradeoffs between these mechanisms has yet
to be determined in most cases.” Gallaher et al.’s (2019) is an
ingenious simulation, using agent-based modeling to represent
how these trade-offs could evolve in a population of cancer cells.
However, the paper presupposes, rather than documents, the
trade-offs in question. Likewise, Gillies et al. (2018), discussion
is about how it is plausible that various trade-offs are at play
in the EMT (epithelial-mesenchymal transition), associated with
changes in blood flow in the tumor, not a test of this hypothesis.
While they provide evidence suggesting that this hypothesis is
a plausible explanation of patterns and processes of changes
in tumors, it is not an attempt at systematically testing the
hypothesis. Hatzikirou et al. (2012), also cite experiments with
cultures of glioma cells (Giese et al., 2003) that have shown
a “relationship between migratory and proliferative behavior,
indicating cell motion and proliferation are mutually exclusive
processes since highly motile glioma cells tend to have lower
proliferation rates.” (Giese et al., 1996a,b; Godlewski et al., 2010).
However, the Hatzikirou et al. (2012) do not themselves conduct
any experiments; the paper is simulation of how the trade-off
is likely to play out in glioma. So, such studies do not provide
the kinds of tests of life-history trade-offs Stearns takes to be
exemplary; much of the evidence is indirect, at best.

On the one hand, one might argue that holding cancer
researchers to the same standards of testing trade-offs typical in
whole organism ecology is inappropriate. After all, cancers are
often discovered well after the selective processes in question
occurred. Unlike in whole organism biology and ecology, we
cannot do a controlled study of exactly how and how much cancer
cells vary with respect to these trade-offs in situ. Simulations are
as close to tests of such hypotheses as can be provided (Parke,
2014). In the best case scenario, and perhaps with advances in
sampling of tumor biomarkers, we may be able to describe the
dynamics of cancer’s evolution, during the course of treatment.
Just as in testing any evolutionary hypotheses for which the
evidence is long in the past, we can use experimental or computer
simulations of close enough evolutionary processes (Vasi et al.,
1994; Sniegowski et al., 1997).

On the other hand, it does seem worth considering whether
ecological models and evidence in cancer should be held to
lesser standards of. In order to test hypotheses that selective
trade-offs are at work, or that various optima explain the
presence or absence of this variant distribution in a population,
whole organism ecologists are typically expected to generate a
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function relating fitness and variable phenotypes (and trade-
offs among them), and describe a how these fitness trade-offs
can be varied to yield quantitative differences in outcome.
Hausser and Alon (2020) do not provide anything this precise,
nor do they experimentally test the link by manipulating these
variables. Determining whether such fitness trade-offs are at work
might require more precise, quantitative measures. Such context-
specific information may be rather important to have, especially
in treatment contexts.

Indeed, as Hausser et al. suggest, local selective (i.e., ecological)
conditions may vary significantly across cancers. Arguably,
different tumor microenvironments present quite distinctive
challenges, and thus different selective “tasks” for different
cancers, and different trade-offs, other than those they consider.
It seems one important avenue for future work is to consider
more seriously the role of local ecology – and potentially
also, a role for niche construction. While it seems plausible
that cancer cells from a variety of tissues and organs have
relatively similar “driver” or hallmark gene expression profiles,
it’s also plausible that local conditions vary significantly (cf.,
Pong and Gutmann, 2011).

CONCLUSION

Multitask evolutionary theory is potentially a quite fruitful
theoretical framework for generating and testing hypotheses
that may explain the massive heterogeneity within and across
cancer types and subtypes. It seems plausible, as Hausser
et al., argue, that a variety of selection processes, and thus
fitness optima, are universal to all cancers, and that there are
trade-offs among various gene expression profiles. However, a
significant portion of the cancers Hausser et al. studied did not
fall within the archetypal framework. There are many possible
explanations – ranging from the way the data were generated,
to the means of analysis. I’ve argued here that it is worth
exploring how cancers’ dynamics might be governed by different
ecological conditions, in different tissue microenvironments.
Another consideration is drift; selection optimizes only given
sufficient variation to act upon. Drift may play a significant
role in some cancers’ dynamics, limiting variation available for
selection. Cancer stem cells may effectively function as genetic
“bottlenecks,” governing the variation available for selection in
a tumor (Laplane, 2018; Lyne et al., 2020). Such bottlenecks

could be limiting the possible scope of evolutionary change
in some cancers.

I’ve also described two other reasons to be cautious in
interpreting their results in light of the data used. When we
set up an analysis of genomic data, we should be careful to
assess whether the options are “forced” by the data or model
considered. There are two ways in which this forcing could have
come about here; first, their framework required that cancer types
or subtypes be subject to trade-offs in ways that force the choice
between “generalists” or “specialists.” Second, the “tasks” that
they identify were arguably “baked in”: they are the very same
tasks that cancer genomics researchers have been seeking to link
to cancer drivers: the “hallmarks” of cancer. That said, it’s not
implausible that different cancer types in very different tissue
microenvironments have distinctive ecological conditions, and
thus selective trade-offs, at play.

Life history trade-off hypotheses may be easy to develop, but
tests of such hypotheses can be forbiddingly difficult to carry
out. As attested by Stearns (1989), examples of successful tests
in whole organism biology often required decades of field work
and experimental manipulation. On the one hand, it is widely
agreed that life history theory, hypotheses about adaptation to
local environments, and adaptive optima, can be fruitful. On the
other hand, to establish exactly how various trade-offs are at work
(such as a limited supply of energy, time, biomass, or nutrients),
we should in principle give quantitative measures of each traits’
relative effects on fitness. Even better, we should demonstrate how
they change over time, drawing upon some form of experimental
manipulation. Please see the attached figure for a summary of key
parameters of relevance to testing hypotheses about ecological
trade-offs in cancer.
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Cancer research has transformed our view on cellular mechanisms for oxygen sensing.
It has been documented that these mechanisms are important for maintaining animal
tissues and life in environments where oxygen (O2) concentrations fluctuate. In adult
animals, oxygen sensing is governed by the Hypoxia Inducible Factors (HIFs) that are
stabilized at low oxygen concentrations (hypoxia). However, the importance of hypoxia
itself during development and for the onset of HIF-driven oxygen sensing remains poorly
explored. Cellular responses to hypoxia associates with cell immaturity (stemness)
and proper tissue and organ development. During mammalian development, the initial
uterine environment is hypoxic. The oxygenation status during avian embryogenesis is
more complex since O2 continuously equilibrates across the porous eggshell. Here,
we investigate HIF dynamics and use microelectrodes to determine O2 concentrations
within the egg and the embryo during the first four days of development. To determine
the increased O2 consumption rates, we also obtain the O2 transport coefficient (DO2)
of eggshell and associated inner and outer shell membranes, both directly (using
microelectrodes in ovo for the first time) and indirectly (using water evaporation at
37.5◦C for the first time). Our results demonstrate a distinct hypoxic phase (<5% O2)
between day 1 and 2, concurring with the onset of HIF-α expression. This phase
of hypoxia is demonstrably necessary for proper vascularization and survival. Our
indirectly determined DO2 values are about 30% higher than those determined directly.
A comparison with previously reported values indicates that this discrepancy may be
real, reflecting that water vapor and O2 may be transported through the eggshell at
different rates. Based on our obtained DO2 values, we demonstrate that increased O2

consumption of the growing embryo appears to generate the phase of hypoxia, which is
also facilitated by the initially small gas cell and low membrane permeability. We infer that
the phase of in ovo hypoxia facilitates correct avian development. These results support
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the view that hypoxic conditions, in which the animal clade evolved, remain functionally
important during animal development. The study highlights that insights from the cancer
field pertaining to the cellular capacities by which both somatic and cancer cells register
and respond to fluctuations in O2 concentrations can broadly inform our exploration of
animal development and success.

Keywords: hypoxia, embryogenesis, eggshell membrane, diffusion coefficient, oxygen consumption rates (VO2),
evolution, HIF-α, cancer

HIGHLIGHTS

- O2 and HIF dynamics in ovo and in tissue during day 0–4 of
avian embryogenesis.

- Early phase of in ovo hypoxia, despite the eggshell being
permeable to O2.

- Hypoxia induced by early avian development facilitates correct
avian development.

- Determination of the O2 diffusion coefficient over eggshell and
associated membranes.

- Increased O2 consumption rates, a small gas cell, and early
membrane properties facilitate the establishment of hypoxia
within the porous eggshell.

INTRODUCTION

Oxygen is fundamental for the viability of adult vertebrates.
However, the perceived causality between sufficient O2 and the
existence of animal life overshadows a less intuitive relationship
between low oxygen concentrations (hypoxia) and animal
development and evolution.

Hypoxia promotes cell immaturity (stemness), which is key
during cell migration, tissue formation, and tissue homeostasis
(Simon and Keith, 2008). For example, mammalian blood and
immune cells are continuously replenished from hematopoietic
stem cells that reside in the hypoxic (<2%) bone marrow (Mantel
et al., 2015); conditions that would be deemed severely hypoxic
by marine biologists (Hofmann et al., 2011). In contrast, higher
O2 concentrations promote cell differentiation and less versatile
cell fate spectra (Vaapil et al., 2012). These insights challenge the
conventional view that high O2 concentrations are permissive
of the development and evolution of complex organisms, such
as animals. Rather, a dualistic view on O2 appears appropriate
since mechanisms for harnessing hypoxia – in niches, phases, or
through cellular capabilities – might have been beneficial traits
during animal evolution (Hammarlund, 2019).

The cancer field has profoundly expanded our understanding
of hypoxic cell signaling in mammalian tissues by focusing on
the Hypoxia Inducible Factors (HIF). This family of transcription
factors regulates hypoxic responses, such as angiogenesis, during
both tumor and animal development and are noted in all
bilateral animal phyla (Semenza, 2012; Mohlin et al., 2017;
Hammarlund et al., 2018). HIF-α subunits are constitutively
translated but only stabilized during hypoxia, to then lead to
a response. This linkage is exemplified by the HIF stabilization
in muscle cells during anaerobic workout, which induces the

formation of new blood capillaries that subsequently enhance
oxygenation of the tissue (Iyer et al., 1998). A complete hypoxic
response therefore relies on the combination of environmental
hypoxia and a cellular HIF response. As of today, these
two components are often observed and discussed separately.
Hypoxia and HIF are also viewed differently in different
scientific fields. Contrasting views are held by the cancer field,
where hypoxia represents stress, and the field of Earth history,
where hypoxia represents an ancestral normalcy. Developmental
biology provides an arena in the middle, in which studies can
decipher how and when life orchestrates sensing and responses
to fluctuations in O2.

It remains generally unexplored when and how environmental
hypoxia and HIF responses are established and interact
during early animal development. Considering that a hypoxic
environment is inferred to be important for proper mammalian
development and that HIF responses are inferred to be
critical for vertebrate organ development (Tian et al., 1998;
Dunwoodie, 2009; Niklasson et al., 2020), avian development
offers a conundrum by occurring within a porous, O2-permeable
membrane (the calcareous eggshell). The early embryo is an
almost planar and two-dimensional (2D) piece of tissue (e.g.,
5 cell layers thick at HH8, Hamburger and Hamilton, 1951),
where most cells will be exposed to ambient O2 concentrations
within the egg. How, then, are its hypoxia-dependent processes
first established? One such hypoxia-dependent process is the
development of blood vessels. In theory, vascularization should
be hampered by the eggshell being permeable to O2. Still, as early
as embryonic day (E) 2–3, the avian vascular system develops
underneath the porous eggshell (Mortola, 2009).

Here, we hypothesize and explore the potential existence
of an early phase of environmental hypoxia within chicken
eggs and investigate whether such a phase, combined with
HIF stabilization, facilitates correct development of the embryo.
To address these questions, we determine O2 transport over
the eggshell through two technically independent methods.
We also determine O2 dynamics within the gas cell above
the developing embryo (in ovo) and in the embryonic tissues
(ex ovo) through microelectrode measurements. We note a
phase of severely hypoxic conditions evolving in the first or
second day of embryogenesis (E1-E2) and estimate how this
phase is driven by increased O2 consumption rates (VO2). We
further demonstrate the increase of HIF-α protein levels in
the embryo at the phase of hypoxia and how incubation of
eggs at normoxia (21%) over the first 4 days negatively affects
avian embryogenesis.
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MATERIALS AND METHODS

Direct Determination of O2 During Early
Embryogenesis, in ovo and in Tissue
Domestic Lohman Brown chick (Gallus gallus) eggs were
delivered fresh to the laboratory (fertilized and unfertilized). O2
concentrations within the gas cell of the eggs (in ovo) during
the first 4 days of incubation and development were quantified
using Clark type O2 microelectrodes, with an internal reference
and guard cathode maintaining low O2 levels in the internal
electrolyte (Revsbech, 1989). Microelectrodes with tips of 5–10
µm were utilized (Unisense Ox-10). The dimensions of fertilized
eggs were measured, a small hole (∼2 mm) was drilled through
the shell in the blunt end of the egg without rupturing the
inner membrane, and the eggs were mounted with the blunt
end down on a stand next to a micromanipulator with the
microelectrode (Figures 1A,B). The hole was covered (Parafilm)
to avoid leakage and enable an additional sensor calibration at
the end of the experiment. The microelectrode was introduced
into and upward through the egg to a position in the gas cell
∼1–2 mm below the upper eggshell surface. The gas cell is
normally positioned at the blunt tip of the egg, but in our setup
moved to the pointed tip (and the hole drilled in the blunt
tip). To maintain 37.5◦C around the egg during measurements,
heating wires connected to a thermostat were placed on the
stand and the whole setup was insulated with a Styrofoam box
(Supplementary Figure 1). Microelectrode data were recorded
using the SensorTrace Suite Software. Temperature (T), and
relative humidity (RH) inside the incubator were recorded with
a HOBO MX temp RH logger, and software. The microelectrode
continuously recorded the change in O2 concentrations within
the egg’s gas cell during incubation. To calibrate the electrode
after the measurements, two holes (0.2 mm) were drilled through
the eggshell at the pointy end of the egg, into which first (a)
100% air, and then (b) 100% N2 was injected with a gas-tight
glass syringe. The microelectrode readings during injections
served as calibration points for (a) ∼21% and (b) 0% O2.
After opening the egg, the development of the embryo and the
position of the tip of the glass electrode were noted. In parallel,
microelectrodes were used to record O2 concentrations within
embryonal tissues (ex ovo), sampled from the first four days
of incubation and development (Figure 1C). The oxygenation
status of the embryonal tissue was determined using the same
experimental setup as described in Niklasson et al. (2020). At
each developmental stage between HH10 and HH24 as defined by
Hamilton-Hamburger (HH) (Hamburger and Hamilton, 1951),
embryos (n ≥ 3) were extracted and O2 was immediately
measured in four positions. In each embryo, O2 levels were
determined in the sacral region (tail), the head, the heart, and the
vagal region (back).

HIF Protein Levels
Fertilized eggs were incubated for 2–5 days after which
embryos were harvested for determination of protein expression.
Upon opening the eggs, the developmental stage of embryos
HH was determined using morphological features and the

number of somites. Embryos and allantois were dissected and
separated. The samples were subsequently pooled for different
developmental stages (three replicates of 10–35 embryos for
each sample). Samples were kept on ice, homogenized in
a cooled tissue lyser (100 µl urea lysis buffer mixed with
protease and phosphatase inhibitor cocktails) and stored at
−80◦C. Determination of protein expression was performed
using western blotting. Cell lysates (70 µg) were separated by 10%
SDS-PAGE (BioRad), transferred to nitrocellulose membrane,
blocked with blocking buffer (BioRad), and imaged on a Biorad
Chemidoc, using antibodies for HIF-1α (NB100-479 at dilution
1:500) and HIF-2α (ab199 at dilution 1:4000), normalized to
b-actin (12004163).

Exposing Early Avian Development to
Normoxia
A hole (∼2 mm) was carefully drilled in the blunt end of
fertilized eggs. The hole was drilled at an angle to prevent it from
becoming covered by dried albumen during incubation, and shell
membrane covering the holes was removed (Supplementary
Figure 2). These eggs and control eggs were incubated in a
humidity chamber to maintain full RH inside the eggs at 37.5◦C
for 2, 3, 4 and 5 days (n = 20–40 in each group and day, see
Supplementary Table 3). At each endpoint, the developmental
stage (HH; by morphology and number of somites) and
the diameter of the surficial vascular system (allantois) were
noted. Viable embryos were checked for possible developmental
abnormalities. To simulate a 21% O2 excess and test whether
delayed development was caused by the drilled hole rather than
the normoxia, some eggs (n = 20) were incubated unopened at
40% O2 for 3 days. To test the effect of environmental hypoxia,
eggs were also incubated for 1 to 3 days at 10% O2 while opened
(n= 20) and unopened (n= 20).

Quantification of the O2 Diffusion
Coefficient of Eggshell
To fully understand O2 dynamics within the egg, we determine
the O2 transport across the eggshell. O2 diffusion across the
eggshell is driven by differences in O2 concentration on its in-
and outside. Under quasi-steady state conditions, the diffusive O2
flux (F) can be expressed by Fick’s first law of diffusion (1).

F = −DO2
dC
dz

(1)

Where F is the diffusive flux of O2 (mol m−2 s−1), DO2 the
diffusion coefficient of O2 in the eggshell material (m2 s−1), and
dC
dz the O2 concentration gradient (mol m−4) across the eggshell.
Here, we assume that a majority of the resistance is in the eggshell
proper. Eq. 1 can be approximated as Eq. 2.

F = −DO2
C − Camb

1z
(2)

Where C is the O2 concentration in the gas cell inside the egg,
Camb the constant O2 concentration imposed on the outside
of the egg, and 1z is thickness of the eggshell. Using this
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FIGURE 1 | Experimental setup for the direct quantification of O2 concentrations in the egg and embryo. (A) During incubation, microelectrodes were logging
measurements in ovo and temperature was maintained in a Styrofoam bell jar. (B) The microelectrode mounted on the micromanipulator entered the egg from
below. (C) Microelectrodes determined O2 concentrations within the embryo tissues ex ovo immediately upon opening, as described in Niklasson et al. (2020).

approximation in a mass balance equation for the gas cell inside
the egg, we get Eq. 3.

V
dC
dt
= −ADO2

C − Camb

1z
(3)

Where A (m2) is the eggshell area around the gas cell and V (m3)
is the volume of the gas cell. Eq. 3 has the analytical solution Eq. 4.

C − Camb

Ci − Camb
= exp

(
−

ADO2

V1z
t
)

(4)

Where Ci is the initial O2 concentration in the gas cell (t = 0).
From rearranging Eq. 4, we get Eq. 5.

C = Camb + (Ci − Camb) exp(−aDO2t) (5)

Where a is a known constant equal to Eq. 6:

a =
A
1zV

(6)

DO2 (the value sought) is a simple fitting constant that can
be determined by least-square fitting of experimental data. We
determined DO2 based on empirical data from two independent
approaches, one direct (using the microelectrodes) and one
indirect (based on water vapor).

Direct Quantification Using Microelectrodes in ovo
We used microelectrodes to determine DO2 of the eggshell.
Microelectrodes with tips of 5–10 µm were custom made
and calibrated at the Hadal Center at University of Southern

Denmark. The microelectrode was mounted on a motor-driven
micromanipulator and introduced into and upward through
the egg, as described above. The upper part of the egg was
covered with a glass bell jar, sealed well below the gas cell
(Supplementary Figure 3). The bell jar was connected to air or
100% N2 that passed through two gas washers to maintain 100%
RH (Supplementary Figure 4). The lower rim of the bell jar was
sealed to the egg with a paste, through which a needle allowed
gas escape. Microelectrode data were logged (Pyrofix software), as
was temperature (HOBO MX temp RH logger). The setup settled
for about 10 min with flow of air (∼21% O2) while logging the
microelectrode data. Subsequently, a switch was turned to quickly
replenish the air with 100% N2. The microelectrode continuously
recorded the change in O2 concentrations within the egg’s gas cell.
After reaching 0% O2 in the gas cell, the switch was turned again,
and the bell jar quickly re-filled with air. This was repeated 4–
6 times per egg (n = 9). Calibration was performed as described
above. After calibration, the top of the egg was opened, and height
(max from eggshell at the pointy end to yolk) and diameter of the
gas cell were measured with a caliper.

Indirect Quantification via the Water Diffusion
Coefficient for the Eggshell
To complement the direct microelectrode approach, we
quantified the H2O diffusion coefficient (DH2O) for the eggshells
and converted this value to DO2. Unfertilized eggs (n = 59) were
weighed on arrival and incubated for 3 to 9 days at 37.5 ± 0.2◦C
and 22.8 ± 0.2% RH. During this time, they were weighed
at the same time every day. At the end of the experiment the
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width, heights and shell thickness of the eggs were measured
using a caliper. The water evaporation rate over the entire
eggshell area was assessed from the weight loss during the four
days of incubation.

To calculate the diffusion coefficients, we made the
following assumptions: (a) the weight change is constant
between weight measurement points (interpolated linearly),
(b) the diffusion coefficient is constant over time, (c) only
water evaporates and across the entire eggshell area, (d)
RH inside the egg is 100%, and (e) eggshell thickness is
uniform. Assuming equal temperature inside and outside
and 100% RH inside the egg, the water vapor concentration
difference over the eggshell was calculated using the Arden
Buck relation. To calculate the water vapor diffusion
coefficient of eggshell, we re-applied (2). Assuming that
the concentration gradient is in steady state, (2) can be
rewritten as (7):

DH2O = −
1N1z
1CA1t

(7)

Where 1N is water loss (moles), 1z is eggshell thickness
(m), 1C is concentration difference of water vapor over
the eggshell (mol m−3) which is derived from RH, A
is the whole area over which water vapor can diffuse
(m2), and 1t is time between measurements (s). 1N can
be calculated from the weight loss measured over time.
The area of each egg A was estimated by dividing its
area into two ellipsoids, using its measured dimensions
(Supplementary Figure 4B).

By measuring multiple eggs, an average value of the DH2O of
eggshell could be determined, allowing the conversion to DO2.
At 310K and 1 atm, DO2 (O2 in air) = 0.2196 cm2 s−1 and
DO2 (water in air) = 0.2267 cm2 s−1, yielding a ratio of 0.9686
(Higgins and Binous, 2013).

Determining O2 Consumption
The chick embryo’s oxygen consumption (VO2) creates an O2
pressure gradient, resulting in the flux of oxygen across the
eggshell (Mortola, 2009). To assess the O2 dynamics within
the intact gas cell of the egg over time, we must combine the
recording of O2 concentrations with our assessments of the
continuous influx of O2 over the porous eggshell. We here ignore
O2 that is supplied to the gas cell from the egg white. Although O2
is also transported from the egg white to the gas cell, we evaluate
that the significantly slower diffusion of O2 in liquid compared to
gas allows us to ignore the O2 contribution from the egg white.
Thus, to determine the influx of molar O2 over time, we assumed
that O2 only diffuses into the gas cell of the egg from the outside.
The gas cell is located at the top of the egg in the setup used here.
The transport into the egg gas cell is estimated using Eq. 8.

J = −
DO2A1C
1z

(8)

Where J is diffusive transport (mol s−1), DO2 is the diffusion
coefficient (m2 s−1), A is the area of the gas-cell eggshell area
(m2), 1C is the difference in O2 concentration (mol m−3),

and 1z is the eggshell thickness (m). The area increases over
incubation, and to estimate this, we measured the increase of
gas-cell volume inside the eggs over incubation. The volume
of the gas cell was regularly measured by breaking the eggs
open underwater, one side at a time, and funneling the
air to an upside-down graduated cylinder filled with water.
The evacuated gas was measured with that measuring flask.
Overall, these estimates of the molar flow of O2 over the
eggshell, allow us to evaluate overall VO2 during the first days
of embryogenesis.

RESULTS

In ovo O2 Measurements During
Incubation Using Microelectrodes
Oxygen concentrations in the gas cell of unfertilized eggs were
in equilibrium with air for up to 4 days in the incubator
(Supplementary Figure 5 and Supplementary Table 1). By
contrast, fertilized eggs exhibited lower and variable O2
concentrations in the gas cell during this time (Figure 2A
and Supplementary Table 2). At E1 or E2, O2 decreased to
10–50% of the starting levels. The distinct decrease in O2
concentrations lasted for 6–24 h, after which O2 levels increased
but remained below the initial values until the end of the
experiments (by E5 at the latest). All embryos had developed
and were alive by the end of the experiment. Out of four eggs
incubated over E3, three recorded a slight increase in gas-cell O2
concentrations at E3.5.

Measurements of tissue oxygenation over the same time
period demonstrated an overall decrease from near fully
saturated at developmental stage HH10 (∼30 h or E1) to
20–30% of full saturation at HH 15 (∼E2), corresponding
to atmospheric O2 concentrations of 4–8% (Figure 2B). At
developmental stage HH24 (∼E4), O2 is<10% of full saturation,
corresponding to atmospheric O2 concentrations of 2% or less.
The trend of tissue O2 decreasing from nearly fully saturated
to what corresponds to <2% of atmospheric O2 concentrations
is observed in the tail (sacral region), heart, back (vagal
region), and head.

HIF Protein Levels
HIF expression was investigated in both whole-embryo lysates
and surrounding allantois. HIF-1α and HIF-2α expression
increased between the HH10 and HH14 developmental
time points in the embryos. HIF-1α expression was
threefold and HIF-2α expression was fourfold higher in
HH14 than HH10. Expression of HIF-1α was high in
allantois at all stages, whereas HIF-2α was only expressed
at HH10 (Figure 2C).

Exposing Early Avian Development to
Normoxia
To test the importance of the hypoxic phase, eggs were
incubated with a drilled hole such that early development
occurred under atmospheric O2 (21%). Embryogenesis under
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FIGURE 2 | O2 concentrations near and in the embryo as well as HIF-α expression. (A) During incubation of fertilized eggs (n = 7), the gas cell saw a decrease in O2

concentrations. (B) Tissue O2 within the embryo measured ex ovo immediately after opening (full saturation under 21% atmospheric O2 = 1). From HH10
(approximately E1) to HH24 (approximately E4), oxygenation in the sacral region (gray diamonds), head (blue circles), heart (green triangles), and vagal region (orange
squares) demonstrate a decrease in O2 (black bars represent standard error). (C) HIF expression based on whole-embryo samples. Expression of HIF-1α and HIF-2α

is lower in samples from developmental stages HH10 and HH12 than in samples from stage HH14. In samples of the allantois, HIF-1α is strongly expressed from
HH10 to HH14, while HIF-2α expression is detectable at HH10 but absent thereafter.

atmospheric O2 for up to 5 days led to increased death
rates of the embryos, compared to endogenous conditions.
Average death rates for embryos incubated for 2–5 days
were 7.5% for control and 59.8% for those with an opening
(Figure 3A). Viable embryos in the opened eggs were
significantly delayed in their development (Figure 3B) and
their vascular system (allantois) was significantly smaller
(Figure 3C) than that of embryos in the intact eggs (for
statistical tests see Supplementary Table 3). The vascular
systems of embryos in eggs with an opening to air (21%
O2) were morphologically deformed compared to those of
control embryos (Figure 3D and Supplementary Figures 6, 7).
Embryos incubated for 3 days at 40% O2 in unopened eggs
demonstrated a similar delay in development as for opened
eggs, that is significant (Supplementary Table 4). Embryos in
opened and unopened eggs that were incubated at 10% O2

were at a similar developmental stage at E1 but all dead at E3
(Supplementary Table 4).

Quantification of the O2 Diffusion
Coefficient of Eggshell
To understand the generation of the observed hypoxia, O2
diffusion and flux over the eggshell was investigated. Continuous
measurements of O2 inside the gas cell after shifting ambient
O2 levels from 21 to 0% demonstrated that O2 diffuses out
of the gas cell over the eggshell within ∼20 min (Figure 4A
and Supplementary Table 5). The eggshell thickness was on
average 0.4 mm (0.39·10−3

± 0.04·10−3 m) and its area on
average 71 cm2 (7.1·10−03

± 0.3·10−03 m2). Based on these
data, DO2 was determined as 3.37·10−09 0.14*10E−9 m2 s−1

(Figure 4B, crosses).
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FIGURE 3 | Developmental effects of exposure to atmospheric O2 during early embryogenesis. (A) The death rates (%) and developmental stage (HH) in treated
(perforated) and control groups at day 2–4 of incubation. (B) The delay in developmental stage of living embryos is significant. (C) The surficial vascular system
(allantois) diameter of embryos in the control group and the perforated group after 2 and 4 days of incubation. (D) Normal avian development after 3 days of
incubation (upper) and after full access to atmospheric O2 (lower). Scale bar: 2 mm. Error bars represent standard deviation. The asterisks denote a significant
difference obtained through Mann-Whitney U tests for HH stages (discrete) and Welch’s t-test for allantois size (continuous): *p ≤ 0.05; ***p ≤ 0.001. For Day 2:
Ncontrol = 33, Nperforated = 16, U = 34.5. For Day 3: Ncontrol = 23, Nperforated = 5, U = 2. For Day 4: Ncontrol = 14, Nperforated = 9, U = 27. For Day 5: Ncontrol = 16,
Nperforated = 11, U = 14.

During the first 4 days, unfertilized eggs kept at 37.5◦C
lost on average 0.58 (±0.04) g day−1 corresponding to a
loss of ∼1.3% (Supplementary Figure 8 and Supplementary
Tables 6, 7). The corresponding water diffusion coefficient
(DH2O) was on average 10.27·10−9

± 0.25·10−9 m2 s−1. The
value of DO2 was determined as 9.95·10−9

± 0.24·10−9

m2 s−1 (Figure 4B, circles). The indirectly determined
DO2 values were largely constant for the first 4 days of
incubation (Figure 4C).

Determining O2 Consumption
We used the indirectly determined DO2, the gas-cell
volume increase (Supplementary Table 8), and the direct
measurements of O2 concentrations within the gas cell
of eggs that were viable for 4 days or more (n = 4)
to determine O2 consumption within the eggs. Using
the indirectly determined DO2 allows an estimation of
flux of oxygen into the egg. When the hypoxic phase is
generated inside the eggs, VO2 increases 3–7 times, from
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FIGURE 4 | Quantifications of DO2. (A) The loss of O2 from the gas cell of the egg when N2 surrounds the egg, as measured with microelectrodes in ovo. (B) A
comparison of DO2 values obtained through direct (crosses; n = 9) and indirect (circles, n = 59) methods. The average is marked (blue line), as is the significance
(p < 0.05) as obtained through the Welch t-test (gray field). (C) The indirectly determined DO2 (based on water evaporation over four days) is also reported for each
day (1–4) and overall (n = 59). Horizontal lines denote the mean value for each time interval and the error bars represent the standard deviation from the mean.

∼2·10−8 to 6–14·10−8 mol s−1 (Figure 5). Flux was
also estimated using the directly determined DO2 values
(Supplementary Figure 10).

DISCUSSION

We observed a distinct phase of hypoxia during early chick
embryogenesis, despite the eggshell being a membrane permeable
to O2. The phase of hypoxia associates with HIF-α stabilization
and appears to be important for normal development of
the embryo and the vascular system. The fact that the
eggshell is permeable, combined with the observed low O2
concentrations within the gas cell, lead us to infer that
the hypoxic phase must have resulted from increased O2
consumption rates (VO2). Below, we discuss the estimates
of O2 diffusion, the presence and role of a hypoxic phase
during early avian development, and the broader implications
of our findings.

A Distinct and Critical Phase of
Environmental Hypoxia During Avian
Embryogenesis
Hypoxia developed in the gas cell during E2-E4, after which O2
levels increased but remained below air saturation (Figure 2A).
To our knowledge, the presence of hypoxia in the uppermost
liquid of eggs (through embryo, allantois, albumen or yolk)
has been measured only once before, at time points during
E0-E4 (Lomholt, 1984). After removing the eggshell and outer
membrane, these measurements were discrete and blindly aiming
through the inner membrane to unknown positions in the liquid.
O2 levels were found to decrease when hitting the liquid (and
possibly the embryo or allantois), down to 10% of initial levels
(Lomholt, 1984). In the tissues of similarly early embryos in our
study, oxygen levels follow on the observed phase of hypoxia
(Figure 2B). The decrease is notable in vagal and sacral regions,
as well as in the heart and head, and is similar to an earlier
observation that O2 levels in the trunk region decrease within
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FIGURE 5 | Influx of O2 (mol s−1) during incubation of Eggs #3 (A), #4 (B), #5 (C), and #7 (D). These estimates were based on our indirectly determined DO2 value.
The surrounding field (pink) reflects error propagation for our uncertainties (D, A, z, and V).

the same time interval (Niklasson et al., 2020). Previously, O2
levels in both tissue and blood have been measured at E4-E6
and noted to be at 20–30% of full saturation (Meuer et al.,
1992). Therefore, our observations of hypoxia in the gas cell and
embryonal tissues are consistent with previous observations and
add resolution to the first four days of embryogenesis. In the
following, we will discuss to what extent the phase of hypoxia
matters for embryo development.

Developmental challenges related to hypoxia have been
thoroughly investigated, but the focus has generally been on
the later stages of development. For example, eggs exposed to
hypoxia at E15-E18 (hatching occurs at E21) result in chicks
with decreased hatch size (e.g., Visschedijk et al., 1980; Metcalfe
et al., 1981). By contrast, observations from early development
indicate a different role of hypoxia. Firstly, embryos at E1-
E2 have been noted to ‘tolerate’ hypoxia better (measured
through survival after exposure to decreasing O2 levels) than
those at E3-E4, which has led to the suggestion that the early

embryo utilizes anaerobic metabolism (Grabowski and Paar,
1958; Kučera et al., 1984). This would be consistent with
observations that mitochondria cristae remain poorly developed
at ∼E1.5 (Scully et al., 2016) and agrees with the timing of
the hypoxic phase that we observe here. Secondly, the nascent
vascular systems in chick embryos younger than ∼E3 and zebra
fish embryos younger than ∼E4 do not primarily provide O2
transport, since blocking their hemoglobin (with CO) does
not affect development (Cirotto and Arangi, 1989; Pelster and
Burggren, 1996). Thirdly, hypoxia and HIF-α are associated
with the correct development of organs and vascular systems
in e.g., chicken, quail, xenopus, and zebra fish (Naňka et al.,
2006; Ota et al., 2007; Barriga et al., 2013; Scully et al., 2016;
Niklasson et al., 2020). For example, measurements of O2 levels
within early zebra fish embryos (∼26 h after fertilization), right
before vascularization, demonstrate hypoxic conditions (<2%)
(Kranenbarg et al., 2003), or severely hypoxic, depending on
context. By contrast, development in eggs under hyperoxia
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(100%) leads to an underdeveloped chick embryo vascular system
(Höper and Jahn, 1995), similar to what we also note when eggs
are opened to normoxia (21%) (Figure 3). That both 21% and
100% O2, in this regard, have similar effects on development
suggests that both indeed are hyperoxic compared to a phase
of critical hypoxia. Fourthly, the necessity of hypoxia (in the
tissue of quail embryos) appears to precede the expression of
HIF1A and angiogenesis (Naňka et al., 2006). We note that
hypoxia in both the egg gas cell and chick embryo tissue
also precedes HIF-α expression in the embryos. Expression of
both HIF-1α and HIF-2α proteins increased after the onset
of the distinct hypoxic phase (Figure 2C). During the phase
of hypoxia, the expression of particularly HIF-1α shifts from
being predominantly expressed in the allantois (HH10-HH12)
to being predominantly expressed within the tissues (HH14).
Previously, HIF-1α has been observed to be expressed primarily
in the allantois at E0-E2 and within the embryo tissues
during later stages (E4-E6) (Meuer et al., 1992; Ota et al.,
2007). Our data therefore complement and corroborate previous
studies observing that hypoxia determines the stabilization
of HIF-1α in particular, and directs proper chick embryo
development in general.

In summary, our results align with earlier work finding
that both hypoxia and HIF-α responses are prerequisites for
proper development. We furthermore propose that the phase
of environmental hypoxia is a prerequisite to kick-start the
genetically determined cellular hypoxia-response machineries.
Without the initial phase of hypoxia, avian embryos might risk
dying from lack of ‘lack of oxygen’.

Increased O2 Consumption Rates (VO2)
and Properties of the Eggshell Generate
Hypoxia
The phase of hypoxia that we observed in the gas cell is not
induced by hypoxia in the external environment. Air and O2
continuously permeate through the porous eggshell. This means
that transient hypoxia must be coupled to increased VO2 within
the embryo itself. The lower the gas-cell O2 that we measured
at E2-3, the higher the embryo’s VO2. That O2 is necessary is
indicated by our incubations at 10% O2, where no embryos
survive from E1 to E3. That also the biologically induced phase
of hypoxia is important is indicated by incubations at hyperoxia
(at 21% O2 with perforated eggshells or at 40% O2 with intact
eggshells) where death rates are higher and development delayed
(most pronounced around E3). To determine how this critical
phase of hypoxia is generated, we investigated oxygen diffusion
across the eggshell.

The oxygen diffusion coefficient (DO2) of eggshell (and its
outer and inner membranes) constitutes a necessary component
to calculate the rate by which O2 diffuses into the egg
during the phase of hypoxia. Our DO2 values obtained through
microelectrodes (directly in ovo) are ∼30% lower than those
obtained through water evaporation (indirectly via water vapor)
(Figure 4B). This discrepancy could be due to several factors and
we start by comparing our values to those reported in previous
work. To our knowledge, only two previous investigations using

microelectrodes have aimed to directly determine O2 flux across
the eggshell. Most other efforts have focused on the evaluation of
the conductivity of water, which can be converted to DO2 values
(see Table 1, also for references and notes on our conversions).

The directly determined values of DO2 range from 0.03·10−8

to 1.11·10−8 m2 s−1, our value being in the middle (Wangensteen
et al., 1970/71; Kayar et al., 1981). Wangensteen et al. (1970/71)
report the highest DO2 value (see SI for conversions), which
differs in that it represents flux through the eggshell only. In
the given study, a cap of the eggshell was removed, cleaned
of its inner and outer membranes, and mounted on a board
where gases could be altered and measured on the inside of
the cap (Wangensteen et al., 1970/71). Since high DO2 values
represent higher permeability, this value can be ascribed to the
lack of membranes. Kayar et al. (1981) report the lowest DO2
value, which was also obtained by measuring diffusion across a
removed cap of eggshell, fluxing the inside with N2 and then
measuring the rate by which O2 concentrations increased on
the inside. However, the given study differs from others by
(i) how eggs were incubated at 37◦C until manipulation and
measurements, and (ii) how the inner and outer membranes
were removed sequentially to discriminate their and the eggshell’s
respective values of DO2 over time. This study concludes that
the permeability of the inner membrane increases 10-fold at E4-
E6 (Kayar et al., 1981). That inner membrane properties change
after the first days of development is supported by how, in quail
eggs, the membrane thins from 74 nm at E2 to 35 nm at E10
(Yoshizaki and Saito, 2002). Our directly determined DO2 value
is 10 times higher than those determined by Kayar et al. (1981)
at E3-E4 and similar to the value they obtained at E7. Part
of the difference could be ascribed to a technical challenge in
our setup regarding how to precisely determine the geometrical
parameters of the gas cell. After drilling holes into the gas cell
and calibrating the microelectrode, egg white was prone to exit
the egg along the microelectrode. This loss of egg white may have
led to an overestimation of the gas-cell volume and the eggshell
area covering it, as well as to a lower DO2 value. However, even if
we adjust the gas-cell volume to 1/3 of the measured value (and
adjust gas-cell area correspondingly), the resulting manipulated
DO2 value (∼0.15·10−8 m2 s−1, Supplementary Figure 9) is
still higher than the DO2 for E3-E4 reported in the study by
Kayar et al. (1981). Therefore, it could also be possible that the
temperature or the developing embryo influences the properties
of the inner membrane during early embryogenesis, and that this
influence is reflected in the uniquely low E3-E4 DO2 values of
Kayar et al. (1981). Due to the uncertainty as to why these directly
determined DO2 values differ, we also determined DO2 indirectly
via water vapor.

Most efforts to determine the value of DO2 have been indirect
and based on estimated water flux across the eggshell. In these,
weight loss over time combined with differences in water vapor
pressure over the eggshell is used to calculate water conductivity
(G), expressed as e.g., mg × day−1

× torr−1 (Wangensteen and
Rahn, 1970; Ar et al., 1974; Paganelli et al., 1975; Rahn et al.,
1975; Ar and Rahn, 1985; Seymour and Visschedijk, 1988;
Wagner-Amos and Seymour, 2002). To compare available data,
we assumed values for the eggshell area and thickness in
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TABLE 1 | Comparison of water and oxygen diffusion coefficients of chicken eggshell.

Publication Indirect/direct DH2O (m2/s)× 10−8 DO2 (m2/s)× 10−8 Shell area (cm2) Temp (◦C) at exp. Note

This study Direct 0.34 ± 0.01 22 With membranes

Wangensteen et al., 1970/71 Direct (K)* 0.83–1.11 25 No membranes

Kayar et al., 1981 Direct (K)* 0.03–0.04 37 E3-E4

0.23–0.31 37 E7

This study Indirect 1.23 ± 0.2 0.99 ± 0.24 71 37.5 With membranes

Paganelli et al., 1975 Indirect (G)** 0.58–0.77 0.56–0.74 66.4 24.5 Avg A for all eggs

Seymour and Visschedijk, 1988 Indirect (G)** 0.67–0.89 0.65–0.86 68*** 25

Ar et al., 1974 Indirect (G)** 0.76–1.01 0.73–0.98 68*** 20–25

Rahn and Paganelli, 1990 Indirect (G)** 0.11–0.14 0.10–0.14 68*** Several bird species

The directly determined DO2 values are first converted (marked *) from oxygen permeability measurements (K) to water conductivity (G) and then into DO2. The indirectly
determined DO2 values are converted (marked **) from water conductivity measurements (G). The conversions have been made using the eggshell area reported in the
given publication or a “standard” area of 68 cm2 (marked ***). For the conversion of G to DO2, eggshell thickness (z) of 0.3 mm and also 0.4 mm are used, which leads to
the range in those DO2 values. Wangensteen et al. used their diffusive permeability of the eggshell (K; expressed as cm3 STP× sec−1

× cm−2
×mm Hg−1) to describe

diffusion of both O2 and water vapor (Wangensteen and Rahn, 1970 and Wangensteen et al., 1970/71). In a follow-up study, water vapor conductivity (G) divided by the
total area of the egg is reported to equal the K value (Paganelli et al., 1975), which allows us to compare their value (K’) to our DO2. The conversion from G to DO2 is made
by using the data available in each publication. G is multiplied by the partial pressure difference and then converted to moles/day. The partial pressure difference, using
the ideal gas law, is converted into moles/cm3. These two can then be used in Eq. 6 to calculate a DO2 value. Since most of these publications lack data on total eggshell
area and eggshell thickness, assumptions have been used for these parameters. For the directly determined DO2 values, the area cancels itself out and is therefore left
out of the table.

previous studies (if not stated in the respective publications).
Additionally, we converted reported values of DH2O to DO2 to
be able to directly compare to our obtained value (Table 1).
Although experimental setups differ in terms of temperature
and avian species, our indirectly obtained DO2 value is largely
consistent with those determined previously based on water
evaporation. While the general consistency of the indirectly
determined DO2 values is encouraging, the discrepancy in the
DO2 values determined directly (by recording O2 flux) and
indirectly (based on water evaporation) lingers. It is impossible
that this reflects a real difference in the membrane properties, and
that water and O2 are being transported through the membrane
at different rates during early embryogenesis. The properties
of the inner membrane may change through incubation or
embryogenesis, and it is known that the permeability of the
membrane with respect to O2 changes around E4 (Kutchai and
Steen, 1971; Kayar et al., 1981). Thus, our initial assumption
that the majority of resistance is in the eggshell proper does not
appear to hold. The possibly different and changing diffusive
properties of eggshell versus membranes require further studies.
Although beyond the scope of this paper, the indication that
egg membrane properties may play a discriminatory role
for transporting gases (O2 and H2O) at different rates later
in embryo development is noteworthy. Nevertheless, because
of the consistency between our indirectly determined DO2
value and those reported by others, we use this value when
calculating the influx of O2 during early embryogenesis and
the hypoxic phase.

Defining the DO2 of eggshell allowed us to estimate the
theoretical maximum influx of O2 per time unit (F) at the
beginning and end of incubation. At day zero, the eggshell
area covering the gas cell (normally at the blunt end of the
egg) constitutes ∼5% of the total eggshell area (3.8·10−04

m2). At E20, the chick is fully developed and O2 can be
transported across the entire eggshell area (7.1·10−03 m2).

Based on calculation (8) and our indirectly determined value
of DO2, the flux of O2 can, theoretically, increase from
0.8·10−07 mol s−1 at E1 to 15·10−07 mol s−1 at E20. This
theoretical 20-fold increase of flux can be compared to empirical
data (via e.g., respirometry) reporting a fivefold increase
in chick-embryo VO2 between E1 (0.7·10−07 mol s−1) and
E20 (3.7·10−07 mol s−1) just before hatching (Bartels and
Baumann, 1972; Mortola, 2009 and references herein). This
would support previous observations that, rather than limited
O2 supply, late stages of development are sensitive to the
build-up of CO2 that also initiates hatching (Tazawa et al.,
1988; Mortola, 2009). Here, however, the early and dramatic
increase in the chick-embryo VO2 is of particular importance
in that it may be facilitating the observed phase of gas-
cell hypoxia.

Logging O2 concentrations within the gas cell and estimating
the continuous influx of O2 over the porous eggshell allow us to
visualize the dramatic increase in VO2 that induces the hypoxic
phase at E2 (Figure 5). The magnitude of the increase in VO2
estimated in the present study, based on O2 data from the gas cell,
is largely consistent with the VO2 increase observed previously
based on respirometry data of the early chick embryos (Bartels
and Baumann, 1972). Respirometry data reflect a doubling of
VO2 between HH4 or ∼E0.75 (0.7·10−07 mol s−1) and HH8 or
∼E1.25 (1.4·10−07 mol s−1). Although increased VO2 is detected
in the gas cell at ∼E1, the most dramatic increase occurs slightly
later. VO2 roughly doubles from about 0.6·10−07 mol s−1 at E1-
E2 to 1.4·10−07 mol s−1 at E2-E3 (Figure 5). That an increase in
chick-embryo VO2 precedes the gas-cell O2 dynamics reported
here, and both being of a corresponding magnitude, makes us
infer that increased cell proliferation in the growing embryo is
indeed inducing the observed hypoxic phase. This conclusion
is supported by the fact that a fourfold increase in protein
synthesis is known to occur between HH4 and HH8 and that
neither egg yolk nor white was found to bind O2 to a higher
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FIGURE 6 | Our interpretation of data presented here and in previous work. Increased oxygen consumption rates within the embryo (VO2) together with physical
parameters of the eggshell and gas cell generate a distinct phase of hypoxia in the gas cell and tissues within the first two days of avian development. The presumed
O2 status at the end of embryogenesis (E21) is depicted with a box (dashed) that spans over (in the gas cell) normoxic and (in tissue) hypoxic (or physiologically
normoxic) conditions. Environmental hypoxia assists the embryo in growing from the 2D shape and enables HIF-driven angiogenesis. The phase of
hypoxia-dependent development continues until hypoxia and hypoxia-responses are regulated internally within the embryo’s 3D-shape, and the phase of
normoxia-dependent development ensues. The dimension of the embryo at HH10 and HH18 are approximate. Scale bar is 1 mm.

degree during incubation (Kučera et al., 1984). Based on our
measurements, hypoxia becomes less pronounced at E3.5 in
three out of four experiments and while the onset and degree
of hypoxia vary between eggs, the timepoint at which hypoxia
lessens does not (Figure 2A). We ascribe the observation that
the degree of hypoxia seems to consistently lessen at E3.5 to
the previously described change in the properties of the inner
membrane at this stage (Kayar et al., 1981; Yoshizaki and Saito,
2002). Thus, membrane properties and gas-cell dimensions,
as well as variations in the O2 consumption rates during

early incubation, appear to be coupled to the induction of
the hypoxic phase.

Hypoxia as a Requirement for Early
Vertebrate Development
We report a distinct phase of hypoxia during early avian
development that we believe to be generated by a combination
of eggshell properties and variations in the embryo’s VO2.
This hypoxic phase appears to be critical for normal chick
development.
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These findings are relevant since they challenge the thinking
on the importance of oxygen. In previous studies, it is commonly
explored how the embryo is able to access enough oxygen through
the eggshell (e.g., Kayar et al., 1981). Indeed, all the while, avian
embryogenesis within a porous eggshell posed a conundrum for
the exact opposite reason – how to generate sufficiently low O2
concentrations. These findings may also suggest that the timing
of the hypoxic phase occurs at a critical transition when the
embryo evolves from a planar fetus shape to a 3D form. After
this transition, the embryo’s internal cells and chemistry become
more sheltered from the immediate impact of the chemistry in
the surrounding environment. We suggest that this transition
reflects a divide between the first phase of embryogenesis, which
is coupled to hypoxia dependency, and a second phase that is
somewhat de-coupled from environmental hypoxia (Figure 6).

The latter phase of vertebrate development, which requires
access to normoxia, accords well with the well-understood
relationship between oxygen and animal development (e.g.,
Künzel et al., 1992). This phase likely comprises most of the
development. For example, chicken hatch size has been observed
to increase when incubation takes place under hyperoxic
conditions (100% O2) – if these are imposed after E3 (Cruz and
Romanoff, 1944). This would suggest that the phase of hypoxia
observed by us plays its role for the time we observed it (up until
E3), after which an excess of O2 can become beneficial for growth.
So far, investigations into how vertebrate development requires
certain levels of O2 have overshadowed those into hypoxia-
dependency. However, many studies have also pointed toward a
necessity for an association between environmental hypoxia and
the genetically determined hypoxic responses. The necessity of
either hypoxia or HIF-α for development is demonstrated during
the early stages of bird, fish, reptile, and mammal development
(Grabowski and Paar, 1958; Lomholt, 1984; Meuer and Baumann,
1988; Kranenbarg et al., 2003; Niklasson et al., 2020). A full review
of the complex impacts of hypoxia during development is beyond
the scope of this paper. Here, however, we suggest it plausible that
if the combined properties of the membrane and growth rates
during avian development generate hypoxia, similar dynamics
to govern hypoxia may be operating during the development of
other vertebrates as well.

Hypoxia Connects Animal and Tumor
Evolution
That hypoxia would be present broadly during animal
development resonates with how animals diversified on
Earth under an atmosphere that was likely low enough in O2
to be defined as “hypoxic” by modern standards (Hammarlund
et al., 2018). The generation of hypoxia during development
also resonates with how hypoxia is necessary to the function
of cellular mechanisms that sense fluctuations in oxygen. The
success of those eukaryotic clades that diversified on Earth’s
surface – animals, plants and fungi – has been associated with
functionally similar cellular mechanisms for sensing oxygen
fluctuations (Hammarlund et al., 2020). Considering this
framework, it appears less surprising that cancer cells can use
both hypoxia and HIF-mechanisms to their advantage. Indeed,
to view hypoxia as a necessity and ancestral norm can challenge

how we interrogate the varying roles of oxygen over tumor
evolution. While a long-standing focus has been to explore
how cancer cells cope with tumor hypoxia, it may be a larger
enigma how circulating cancer cells can cope with oxygenated
conditions in the blood stream. Future work should further
elucidate how, when, and to what extent hypoxia is essential for
animal development and health.
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Advanced metastatic cancer is currently not curable and the major barrier to eliminating
the disease in patients is the resistance of subpopulations of tumor cells to drug
treatments. These resistant subpopulations can arise stochastically among the billions
of tumor cells in a patient or emerge over time during therapy due to adaptive
mechanisms and the selective pressures of drug therapies. Epigenetic mechanisms
play important roles in tumor cell diversity and adaptability, and are regulated by
metabolic pathways. Here, I discuss knowledge from ecology, evolution, infectious
disease, species extinction, metabolism and epigenetics to synthesize a roadmap to
a clinically feasible approach to help homogenize tumor cells and, in combination with
drug treatments, drive their extinction. Specifically, cycles of starvation and hyperthermia
could help synchronize tumor cells and constrain epigenetic diversity and adaptability
by limiting substrates and impairing the activity of chromatin modifying enzymes.
Hyperthermia could also help prevent cancer cells from entering dangerous hibernation-
like states. I propose steps to a treatment paradigm to help drive cancer extinction that
builds on the successes of fasting, hyperthermia and immunotherapy and is achievable
in patients. Finally, I highlight the many unknowns, opportunities for discovery and that
stochastic gene and allele level epigenetic mechanisms pose a major barrier to cancer
extinction that warrants deeper investigation.

Keywords: epigenetics, evolution, cancer, fasting, fever, stochastic gene expression, metabolism, adaptive
therapy

INTRODUCTION

Cancer is a disease that results from fundamental biological processes and mechanisms that enable
diversity, adaptation and evolution (Merlo et al., 2006; Maley et al., 2017; McGranahan and
Swanton, 2017). Stage IV metastatic cancer is currently not curable, and clinical treatment regimens
are typically palliative, aiming to maximize patient quality and duration of life. Malignant cells
arise most frequently in tissues with high cell division rates and from cell populations that have
the capacity for cell division (i.e., reproduction) (Tomasetti et al., 2017). Tumor cell populations
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in a single 1 cm3 tumor can reach 107–109 cells, with a doubling
rate of every ∼15 days for a rapidly growing tumor and every
100 or more days for a slow growing tumor (Tubiana, 1989; Del
Monte, 2009). Thus, a metastatic patient with multiple lesions
and circulating tumor cells can have tens of billions of actively
dividing malignant cells. With an average cell cycle time of ∼48
h and mutation rate of 1.14 mutations per genome per cell
division (Werner et al., 2019), every gene in the cancer cell
genome is affected by coding and non-coding genetic mutations
multiple independent times in a patient with years of metastatic
disease. All enemies are at the gate. Nonetheless, cancer cell
evolution converges on a handful of specific driver mutations
that are the major genetic drivers of malignancy (McGranahan
et al., 2015; Tomasetti et al., 2015; Tokheim et al., 2016;
Reiter et al., 2018). This observation led to the proposal that a
curative combinatorial treatment strategy attacking these driver
mutations could be developed (Reiter et al., 2019). However,
while the identification of core genetic driver mutations in
cancer is foundational and exciting, understanding epigenetic
mechanisms driving cancer cell diversity and adaptability is
another major barrier. Epigenetic mechanisms contribute to the
evolution of multi-drug resistance (MDR), preventing us from
curing metastatic cancer (Easwaran et al., 2014; Baylin and Jones,
2016; McGranahan and Swanton, 2017; Guo et al., 2019). The
development of cancer cell subpopulations with MDR, or the
ability to enter dormant, persistent states that evade treatment
and immune predation, ultimately lead to disease progression
and patient death (Recasens and Munoz, 2019; Shen et al., 2020).
No single drug, new or old, will ever overcome these evolutionary
forces and cure the disease. Currently, many chemotherapies and
endocrine therapies target the reproductive capabilities of cancer
cells by affecting cell division processes or signaling pathways
that control cell division and tumor growth. Immunotherapies
are distinct in that they enhance immune cell predation on
cancer cells. However, the field lacks interventions aimed at
solving the fundamental problem of how to constrain cancer cell
diversity, adaptability and evolvability. Interventions that could
homogenize cancer cell populations and constrain adaptability
would help enable a chance at a cure using existing drugs.

Recent articles propose innovative treatment regimens for
curing metastatic cancer that are inspired by the factors
that drive the extinction of species in nature (Gatenby and
Brown, 2018; Gatenby et al., 2019, 2020; Reed et al., 2020).
Species extinctions often involve such complex interactions
between unrelated stressors, rather than single catastrophic
events. Central to these ideas are the application of aggressive,
unpredictable, successive and combinatorial chemo, endocrine
and immunotherapy treatment strikes that fragment cell
populations and continue even after the cancer becomes clinically
undetectable. Combinatorial approaches that are designed
to be curative would benefit from interventions that help
constrain cancer cell diversity and adaptability during drug
treatment strikes. Here, I discuss how epigenetic gene regulatory
mechanisms and allele-specific expression effects create cellular
diversity and enable adaptability in cancer, creating barriers to
its extinction. I highlight opportunities to learn from ecology,
evolution, biochemistry, metabolism, genomics and conserved

responses to bacterial infection to develop clinically relevant
strategies to constrain cancer cell diversity and adaptability. My
goal is to lay the conceptual groundwork and areas for further
study to devise feasible treatment programs to make cancer
cell populations more vulnerable to combinatorial chemotherapy
strikes designed to cure metastatic disease.

STOCHASTIC GENE REGULATORY
EFFECTS ARE IMPORTANT DRIVERS OF
CELLULAR DIVERSITY AND
ADAPTABILITY

Previous decades have largely focused on cancer genetics and
the identification of important genetic mutations. Less is known
about gene regulatory and epigenetic mechanisms in cancer,
though it is emerging as a major field of study and a new area
for therapy development. From ecology and species evolution,
we know that protein-coding genes are relatively well conserved
across species, while gene regulatory mechanisms and cis-
regulatory elements (CREs) are rapidly evolving. Changes to
gene regulatory network (GRNs) play the major roles in the
development of new phenotypes in different lineages (Davidson
and Erwin, 2006; Wray, 2007; Carroll, 2008; Davidson, 2010).
Recent reviews have covered the emerging and likely important
roles that epigenetic mechanisms also play in cancer initiation
and progression, metastasis, and drug resistance (Guo et al.,
2019), as well as opportunities for targeting these mechanisms
to treat the disease (Bennett and Licht, 2018; Cheng et al.,
2019; Hogg et al., 2020). Epigenetic mechanisms and stochastic
changes to GRNs and gene expression enable a dynamic
range of phenotypic possibilities for a population of cells
or organisms.

Pioneering studies in bacteria first showed that isogenic cells
held in constant conditions occupy a wide-range of different
states due to stochastic gene expression and transcriptional
bursts (Li, 2002; Ozbudak et al., 2002). Subsequent studies of
eukaryotic cells reached similar conclusions (Blake et al., 2003).
It is now well established that, at baseline, cells exist in flux,
creating molecularly diverse populations through stochastic gene
expression (Kærn et al., 2005; Levine et al., 2013), transcriptional
bursting and transitions between active, reversibly silent and
irreversibly silent chromatin states (Singer et al., 2014; Bintu
et al., 2016; Figure 1). This has the important effect of creating
diversity for adaptability and “bet hedging” so that at least some
cells are in the right molecular state to receive and correctly
respond to unpredictable signals from the environment (Raj and
van Oudenaarden, 2008; Feinberg and Irizarry, 2010; Raj et al.,
2010; Balázsi et al., 2011). In the context of stressors, this diversity
may help prokaryotic and eukaryotic cells survive acute insults
by helping to ensure that at least some cells exist in a state that is
resilient to the stressor.

This type of stochastic epigenetic cellular diversity has been
proposed to have important roles in cancer evolution and drug
resistance (Pujadas and Feinberg, 2012). However, we currently
have little understanding of the mechanisms involved or how
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FIGURE 1 | Schematic depiction of how stochastic gene expression and epigenetic regulation creates mosaics of cells in different molecular states. Studies by Bintu
et al. (2016) show that histone acetylation is dynamic and mediates short-term epigenetic memory, while histone and DNA methylation is more stable, mediating
long-term epigenetic memory. These stochastic gene expression and epigenetic effects contribute to cellular diversity and may enable enhanced tumor cell diversity
and adaptability.

to modulate or constrain the effect. Few studies have directly
examined chromatin dynamics at the cellular level over time.
Chromatin biochemical modifications are diverse and new forms
are constantly being discovered. Major epigenetic mechanisms
involved in stochastic epigenetic diversity likely include histone
acetylation, DNA methylation and histone methylation. A brief
overview of these mechanisms is described below, but I refer the
reader to excellent recent reviews for further detail (Campbell and
Wellen, 2018; Dai et al., 2020; Trefely et al., 2020).

In brief, histone tails are biochemically modified
post-translationally to regulate gene expression. The
chromatin modifiers (writers) that establish these marks
use metabolic intermediate molecules, including acetyl-CoA
and S-adenosylmethionine (SAM). Acetyl-CoA is the metabolite
used by histone acetyltransferases (HATs) to place acetyl
groups on lysine residues of the N-terminal tails of H3 and
H4 canonical histones. Acetyl groups are a subtype of acyl
organic molecules distinguished by the inclusion of a –CH3
group. In the absence of acetylation, the positive charges on
H3 and H4 histones combine with the negative charge on the
surface of H2A histone fold domains to enable the formation

of nucleosomes and compact chromatin. One effect of H3 and
H4 lysine acetylation is to change the overall histone charge to
neutral, which reduces histone affinity, creating open chromatin
sites in which transcriptional regulatory proteins can bind. The
creation of these open chromatin sites through lysine acetylation
is important for the activation of non-coding enhancers, gene
promoters, gene bodies and alternative exon usage through
splicing variation (Rajagopal et al., 2014). In addition to
promoting open chromatin states, bromo-domain containing
chromatin “reader” proteins recognize lysine acetylation and
bind to promote gene expression. Recently, other histone
acylations have been uncovered, which also have activating
effects on gene expression (Dai et al., 2020). On the other hand,
histone deacetylation by histone deacetylases (HDACs) promotes
gene silencing and the formation of heterochromatin. Acetyl
groups are added to histone tails by HATs, which are divided
into three groups, including GNAT, MYST, and p300/CBP. The
HDACs that remove acetyl groups in mammals are divided
into 4 groups, including the zinc-dependent class I, II, and IV
HDACs, and the NAD-dependent class III HDACs, which are
also known as sirtuins.
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In addition to Acetyl-CoA dependent chromatin acetylation
dynamics, SAM dependent chromatin methylation dynamics are
primary players in orchestrating cellular epigenetic states and
GRNs. De novo DNA methylation is performed by DNMT
(DNA methyltransferase) 3a and DNMT3b, and maintenance of
DNA methylation is performed by DNMT1, which recognizes
hemi-methylated DNA. DNA methylation frequently occurs on
cytosines located in sets of CpG dinucleotide repeats called
CpG islands, which are located near transcription start sites.
Methylation of these regions contributes to gene silencing.
Removal of the silencing can be achieved by active DNA
demethylation, which is primarily regulated by the TET family
of DNA demethylase enzymes, as well as by passive DNA
demethylation due do inhibition of DNMT1 in dividing
cells, which causes the methylation mark to be lost over
successive cell divisions.

Methylation also occurs on histone tails, including lysine
and arginine residues, which alters the affinity of histone-
methylation reader proteins to bind and affect gene expression.
Some forms of histone methylation are associated with gene
activation, such as H3K4, H3K79, or H3K36 methylation. On
the other hand, H3K9, H3K27, and H4K20 methylation are
associated with gene silencing and different methylation states,
including mono-, di- or tri- methylation of the same amino
acid residue can have different effects on gene expression.
Histone methylation is mediated by histone methyltransferases.
For example, the EZH2 (enhancer of zeste 2) enzymatic subunit
of the polycomb repressor complex 2 (PRC2) catalyzes the
formation of H3K27me3, while KRAB (Kruppel associated box)
domain containing zinc finger protein transcription factors can
catalyze the formation of H3K9me3. Both of these chromatin
modifications have potent silencing effects and important roles
in the formation of stable heterochromatin.

Building on this understanding of epigenetic gene regulation,
a pioneering study by Bintu et al. created an elegant reporter
assay to study the temporal dynamics of histone acetylation, DNA
methylation and histone methylation at the cellular level (Bintu
et al., 2016). They compared the cellular repression induction
and reactivation kinetics for DNA methylation (DNMT3B),
H3K9me3 (KRAB), H3K27me3 (EED-EZH2 component of
PRC2) and H3/H4 histone deacetylation (HDAC4). Their results
show that DNMT3B, KRAB, and EED-EZH2 induce stable
chromatin changes that cause permanent epigenetic memory.
DNMT3B in particular showed slow induction kinetics, but
caused stable and permanent epigenetic memory in affected cells.
These results are consistent with previous work showing that
DNA methylation is a relatively stable biochemical mark. In
contrast, HDAC4 effects are highly dynamic, such that activation
of HDAC4 caused the induction of faster chromatin changes
than the other enzymes tested and the effects are transient
and rapidly reversible. The rapid and dynamic roles of histone
acetylation in these hamster ovary cell lines are consistent with
previous work in yeast, which showed that histone acetylation
and deacetylation states can switch within minutes (Katan-
Khaykovich and Struhl, 2002). Overall, these results suggest that
reducing the enzymatic activity of HATs and HDACs could
constrain short-term, dynamic stochastic cellular diversity and

adaptability. Further, reducing the activity of enzymes controlling
DNA and histone methylation could help constrain long-term,
stable stochastic cellular diversity and adaptability (Figure 1).
Below, I next discuss how stochastic epigenetic effects not only
occur at the gene level, but also at the allele level, which
potentially further create primary epigenetic and gene expression
barriers to cancer “extinction.”

STOCHASTIC GENE REGULATORY
EFFECTS AT THE ALLELE LEVEL AS A
POTENTIAL DRIVER OF TUMOR CELL
DIVERSITY AND ADAPTABILITY

Stochastic gene regulatory effects also occur at the allele level,
which could further contribute to cancer cell diversity and
evolvability. Indeed, the diploid and, in some cases, polyploid
nature of eukaryotic cells creates added cellular epigenetic, gene
expression and genetic diversity. The advantage of diploidy
over haploidy has typically been proposed to be to mask the
effects of partially recessive mutations (Orr, 1995). Interestingly,
however, periods associated with catastrophic extinction events,
such as the comet or asteroid strike and volcanic eruptions at
the Cretaceous–Paleogene boundary, were previously shown to
be associated with evolutionary bursts of new species with whole
genome duplication events (Madlung, 2012; Van de Peer et al.,
2017). In other words, increased ploidy was associated with
improved survival during a mass extinction event. Polyploidy
is proposed to have been beneficial because it increases allelic
diversity and species adaptability (Fox et al., 2020). In mammals,
most cells are diploid, though specialized cell-types, such as liver
hepatocytes, are polyploid. It has been observed that normal
diploid cells in the body can increase their ploidy in response
to stress (Fox et al., 2020). For cancer, tumor cell acquisition of
polyploidy or aneuploidy are major features of the disease that
are thought to contribute to rapid tumor evolution (Krajcovic
and Overholtzer, 2012; Coward and Harding, 2014). Typically,
increases in ploidy are considered to drive increased genetic
variation, however, through allele-specific epigenetic regulatory
effects, increased ploidy could also promote increased epigenetic
variation (Figure 2).

Previous in vitro studies of cell lines have suggested the
existence of random monoallelic expression (RME) for thousands
of autosomal genes in mice and humans due to non-genetic
mechanisms (Gimelbrant et al., 2007; Eckersley-Maslin et al.,
2014; Gendrel et al., 2014). RME in cell lines is mitotically
heritable and has been shown to be regulated by levels of the
insulator protein, CTCF, in some cases (Chandradoss et al., 2020).
However, the prevalence of widespread autosomal RME that is
clonal (mitotically heritable) is currently debated and little is
known about the existence of such effects in vivo (Reinius and
Sandberg, 2015; Rv et al., 2021; Vigneau et al., 2018). Some have
suggested that bona fide clonal RME is rare on the autosomes and
that most observed cases are linked to transcriptional bursting
and low expression (Deng et al., 2014; Reinius et al., 2016; Larsson
et al., 2018; Symmons et al., 2019). Nonetheless, stochastic
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FIGURE 2 | Allele-specific epigenetic and expression create complex and
diverse cellular states. (A) Classic biallelic (allele co-expression) and no
expression states typically associated with autosomal genes, and clonal
random monoallelic states (RME) typically associated with random
X-inactivation in females. (B) Newly described stochastic differential allele
expression (DAE), which causes biallelic and stochastic allelic expression
states at the cellular level for thousands of autosomal genes in mice. (C) DAE
interacts with heterozygous mutations in diploid and polyploidy cells to create
widespread cellular diversity and potential for adaptability to different
conditions. This phenomenon could be a major blocker to cancer cell
extinction.

allele-specific expression for some autosomal genes appears stable
at the cellular level. For example, one study directly imaged allelic
expression at the cellular level over time for Bcl11b in T cell
lineages (Ng et al., 2018). The authors found that monoallelic (or
biallelic) expression states can be stable at the protein level for
at least one hundred hours in single cells, amounting to several
days (Ng et al., 2018). This type of allele-specific regulatory effect
might be sufficient to have biological consequences, affecting gene
dosage and/or the cellular effects of a single mutated allele.

Focusing on the in vivo context, we previously uncovered
hundreds of genes in mouse tissues that display stochastic
differential allelic expression (DAE) at the cellular level (Huang
et al., 2017). We found that DAE affects the cellular expression of
heterozygous mutations such that mosaics of mixed cells arise in
tissues in which some cells monoallelically express the mutated
allele, some express the wild-type allele and others are biallelic
and express both parental alleles (Huang et al., 2017). Stochastic
DAE may be an important feature of diploid (or polyploidy)
genomes that increases cellular diversity and adaptability to stress
(Huang et al., 2018; Kravitz and Gregg, 2019).

With regard to nomenclature, we differentiate stochastic DAE
from bona fide RME, because RME is typically used to describe
clonal, mitotically-heritable and stable monoallelic states, such
as random X-inactivation, olfactory receptor or protocadherin
monoallelic expression states (Lomvardas and Maniatis, 2016;
Monahan et al., 2019; Figures 2A, 3). In the case of stochastic
DAE, we found that some cells are monoallelic and others are
biallelic, and the temporal stability of each allelic state and the
clonal relationships between cells are not yet known (Figure 2B).
Mechanistically, stochastic DAE and clonal RME likely involve
different epigenetic mechanisms, including different roles for
short-term (e.g., histone acetylation) versus long-term (e.g.,
methylation or CTCF) epigenetic memory (Figure 3). This new
area is expected to reveal important allele-specific gene regulatory
mechanisms that enable increased phenotypic variability and
adaptable metabolic phenotypes (Huang et al., 2018; Kravitz and
Gregg, 2019). Currently, we do not understand the nature of these
different allelic effects in tumor cells or how they may change
and contribute to tumor initiation, metastasis, evolution and drug
resistance, and affect patient survival.

Given that polyploidy and aneuploidy are linked to cancer
progression and evolution, and appear to predict worse outcomes
(Coward and Harding, 2014; Krajcovic and Overholtzer, 2012),
it is possible that cancer cells benefit from increases in
ploidy by increasing cellular diversity through stochastic allele-
specific epigenetic and gene expression effects. Previous studies
found that progenitor versus differentiated cellular states are
associated with dramatic differences in RME, suggesting these
mechanisms have roles in defining different cellular proliferative
versus differentiated states (Miyanari and Torres-Padilla, 2013;
Eckersley-Maslin et al., 2014; Gendrel et al., 2014; Jeffries et al.,
2016; Branciamore et al., 2018; Ng et al., 2018). Recent studies
have also begun to show how stochastic allele-specific epigenetic
effects can interact with allele-specific genetic variants to create
allelic diversity (Onuchic et al., 2018; Zhang S. et al., 2020). In
summary, the studies above show the enormous potential for
stochastic epigenetic and gene expression effects to drive cellular
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FIGURE 3 | A decision classification tree for different subtypes of allele-specific epigenetic and expression effects according to heritability, clonality and stability. The
decision tree shows that different allele-specific expression effects arise according to genetic, genomic imprinting, clonal RME and stochastic DAE. Each of these
increases cellular diversity and adaptability and are potential barriers to eliminating metastatic cancer in patients.

diversity in cancer and the different potential forms of these
effects at the gene and allele levels. Next, I discuss findings that
show that stochastic epigenetic effects are, in fact, the primary
drivers of tumor cell evolution and drug resistance, which
motivates discussions for new studies and clinical solutions.

HOW DOES STOCHASTIC EPIGENETIC
VARIATION ENABLE CANCER CELL
EVOLUTION?

Intra-tumor cellular epigenetic and gene expression
heterogeneity is proposed play the primary roles in the
acquisition of drug resistance in cancer compared genetic
mutations (Flavahan et al., 2017; Marusyk et al., 2020). A leading
model in the field is that stochastic and semi-stable changes
to gene expression and chromatin states cause drug-resistant

phenotypes to arise dynamically within tumor cell populations.
In this model, stochastic epigenetic and phenotypic cellular
diversity creates an ecosystem in which a drug treatment can
“discover” a pre-existing tumor cell in a state that enables
it to tolerate the drug and persist. This epigenetic state is
therefore advantageous for survival and proliferation compared
to other tumor cell states in the microenvironment. Not
only will this cell survive, persist and continue to reproduce,
but its advantageous chromatin state can become enhanced,
stabilized and mitotically heritable through further induced
chromatin and gene expression changes. This evolutionary
process drives the formation of dangerous new lineages of drug
resistant tumor cells.

Support for this model of tumor evolution and drug resistance
is strong. Indeed, epigenetic stochasticity has been shown to be
a central driver of cellular phenotypic variability and mechanism
of plasticity (Jenkinson et al., 2017). A seminal paper by Sharma
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et al. showed that individual tumor cells stochastically and
transiently acquire and then relinquish chromatin-mediated
drug resistant states (Sharma et al., 2010). Moreover, they
showed that chromatin-modifying agents selectively ablated
the resistant cell population. Subsequently, others found that
the histone demethylases, KDM5A and KDM6B, regulate
phenotypic heterogeneity in estrogen receptor positive breast
cancer (Hinohara et al., 2018). High KDM5B activity promotes
increased intra-tumor gene expression heterogeneity, creating
pre-existing cell populations that increase chances for drug
resistance (Hinohara et al., 2018). Further, studies of DNA
methylation dynamics in chronic lymphocytic leukemia (CLL)
found that stochastic epimutations form the basis of intratumor
cellular methylome variability (Landau et al., 2014). More
recently, single-cell DNA methylome analyses in CLL revealed
that the cellular inheritance of stochastic DNA methylation
epimutations reveal a lineage tree for the cellular evolution of
the disease and that epigenetic drift occurs rapidly following B
cell transformation and greater proliferation rates (Gaiti et al.,
2019). Moreover, increases in stochastic epigenetic diversification
in CLL appear to contribute to a larger diversification of gene
expression and cellular molecular identities in the disease (Gaiti
et al., 2019; Pastore et al., 2019). Thus, primary roles for stochastic
and dynamic cellular epigenetic and gene expression variability
in the selection, formation and evolution of drug resistant tumor
cells are now well supported (Huang et al., 2009; Huang, 2013;
Pisco et al., 2013; Knoechel et al., 2014; Flavahan et al., 2017;
Liau et al., 2017; Shaffer et al., 2017; Risom et al., 2018; Marusyk
et al., 2020). We now have a maturing conceptual framework
for understanding “mutation-independent” evolution and the
primary roles that epigenetic and gene expression diversity
play in the development of new phenotypes (Huang et al.,
2009; Huang, 2011, 2012, 2021). One of the most glaring facts
supporting this model is that genetic mutations are not required
for cells to “evolve” into different cell lineages during organismal
development—this diversity is entirely grounded in epigenetic
and gene expression changes (Huang, 2012).

The major implication of all of the findings in the above
sections is that uncovering ways to constrain tumor cell
epigenetic regulatory activity and dynamics will help constrain
cancer cell diversity, adaptability and evolution during treatment.
Placing constraints on cellular acetylation and methylation
dynamics could be especially effective, but no single molecular
target will solve this problem because of redundancy and
adaptability. Next, I discuss clues for how to effectively constrain
cellular epigenetic diversity and dynamics in a clinically relevant
manner that could be feasibly integrated into a chemotherapy
treatment regimen.

EVOLUTIONARY SOLUTIONS TO
STOCHASTIC POPULATION DIVERSITY
AND ADAPTABILITY

Since both prokaryotic and eukaryotic cells use stochastic gene
regulatory mechanisms and transcriptional noise for promoting
cellular diversity and adaptability, we can potentially learn

solutions to constrain these effects by analyzing how vertebrates
evolved solutions to prokaryotic infections. The numbers of
bacteria involved in an infection can exceed the population
sizes that cancer cells reach in a body, yet the body can
drive them to extinction. To achieve this, vertebrates evolved
a highly conserved set of sickness responses that help to
effectively eliminate infections in combination with activation
of the immune system (Hart, 1988; Aubert, 1999; Dantzer
and Kelley, 2007). This combinatorial response involves: (1)
fasting (loss of appetite), (2) fever, (3) sleepiness and fatigue,
(4) social withdrawal and irritability, and (5) altered motivations
(inhibited foraging and exploration) (Hart, 1988; Aubert, 1999;
Adelman and Martin, 2009). This adaptation for infection turns
out to be highly relevant to cancer elimination. A history
of the immunotherapy field reveals that interest in immune
system predation on tumor cells began with early observations
of tumors disappearing in patients following a bacterial
infection with a high fever (Dobosz and Dzieciątkowski, 2019).
Subsequently, William Coley showed that cancer patients enter
spontaneous remission after a streptococcal skin infection (i.e.,
erysipelas). Moreover, bacterial infections can induce complete
remission in several cancer types (Dobosz and Dzieciątkowski,
2019). So far, this work has largely inspired the development
of targeted immunotherapies that aim to improve immune
cell detection and killing of cancer cells, but there may
be more to learn.

Vertebrate sickness responses are typically proposed to
function for diverting energy from activities peripheral to
surviving infection to immune responses that combat the
infection (Hart, 1988; Aubert, 1999; Dantzer and Kelley, 2007).
However, if the goal was only to increase resources for immune
defense, namely boost the concentrations of the substrates
and cofactors needed to support biochemical reactions for
effective immunity, one might instead expect the animal to
display increased appetite and caloric intake, rather than fasting.
Recently, fasting, and the associated shift to ketone metabolism,
was shown to reduce the damaging effects of reactive oxidative
species (ROS) generated by bacterial inflammation, indicating
an important function for this component of the sickness
response that is different from the energy conservation model
(Wang et al., 2016). However, as I discuss below, fasting may
have additional benefits that involve constraining capabilities
for stochastic cellular diversity and adaptability by limiting the
availability of key substrates and cofactors.

From the perspective of preserving energy for the immune
attack, coupling fasting with fever during sickness responses
might seem to be counterproductive. How fever offers a
protective mechanism against pathogenic microbes is a long-
standing mystery (Evans et al., 2015). Fever is currently
thought to create conditions that are inhospitable for microbe
proliferation by raising the body’s temperature above optimal
growth conditions, while potentiating the immune response
by increasing neutrophil activity and lymphocyte proliferation
and activation (Hart, 1988; Evans et al., 2015). However, with
the possible exception of unique immune cells, fever could
constrain biochemical reaction kinetics in cells and thereby
further constrain capabilities for creating a range of different
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stochastic cellular states. By constraining the diversity and
adaptability of microbes, immune cell predation would be more
effective. As I discuss below, fever could especially help block
dangerous hypometabolic hibernation-like states that enable
disease persistence.

Thus, by combining fasting and fever with increased
immune predation, the body has not only evolved an effective
combinatorial strategy for driving the extinction of invading
microbes, but apparently also cancer. We now know that
nutrients and metabolic processes affect epigenetic gene
regulatory mechanisms, suggesting an important link exists
between fasting, fever and the epigenetic mechanisms that enable
cellular diversity and adaptability. Noticeably, the vertebrate
sickness response combines the starvation, climate change and
predation conditions that frequently cause species extinctions in
the wild. It is a highly effective recipe for this outcome.

COMBINING FASTING AND
HYPERTHERMIA TO CONSTRAIN
CANCER CELL DIVERSITY AND
ADAPTABILITY DURING
CHEMOTHERAPY STRIKES

The benefits of fasting for cancer and other diseases have been
carefully reviewed elsewhere (Nencioni et al., 2018; de Cabo
and Mattson, 2019; Caffa et al., 2020; Tajan and Vousden,
2020; Zhang J. et al., 2020). Pre-clinical (Lee et al., 2012;
Brandhorst et al., 2015; Wei et al., 2017; de Cabo and
Mattson, 2019; Caffa et al., 2020), and early clinical studies
(Caffa et al., 2020; de Groot et al., 2020), show benefits
for coupling fasting or fasting-mimicking diets (FMDs) with
chemotherapy and/or endocrine therapy, including enhanced
treatment efficacy, reduce side effects and the prevention of drug
resistance. The beneficial effects of fasting in cancer have so
far been largely attributed to reductions in circulating glucose,
insulin, IGF-1, PI3 kinase, mTOR and leptin signaling, which
reduces growth signals that can drive cancer cell proliferation
and survival. Beneficial effects of increased autophagy and
stem cell activation are also apparent. Different durations
and patterns of fasting induce different biological effects in a
cell-type dependent manner. It has been suggested that the
induction of a starvation response, in which cellular autophagy is
strongly activated, is important for deriving anti-cancer benefits
(Brandhorst et al., 2015; Nencioni et al., 2018). Important for
this article, is that starvation and nutrient deprivation affect
epigenetic mechanisms. Such effects could help constrain tumor
cell diversity and adaptability. Starvation states can affect the
availability of essential substrates and cofactors necessary for
enzymatic modifications to chromatin and chromatin binding
transcriptional regulatory proteins. Starvation states also block
global protein translation by inhibiting mTOR complex 1
(mTORC1), which in turn limits cellular capabilities for intra and
intercellular signaling and gene expression dynamics (Holcik and
Sonenberg, 2005; Wullschleger et al., 2006). Indeed, starvation
state translational and transcriptional programs involve a

shift to specific stress response mechanisms that are essential
for cell survival.

POTENTIAL FOR STARVATION STATES
TO CONSTRAIN STOCHASTIC DNA AND
HISTONE METHYLATION AND
LONG-TERM CELLULAR EPIGENETIC
MEMORY

To my knowledge, no study has yet determined whether
starvation reduces stochastic epigenetic dynamics within a cell
over time, epigenetic diversity across populations of cells, or
capabilities for epigenetic and gene expression adaptability in
response to new and additional stressors (e.g., chemotherapy
strikes). However, there are reasons to expect such effects. An
enzyme’s Km is the concentration of a substrate needed for
the rate of its catalytic reaction to be half of the maximum
rate (Vmax) and can further depend on the concentration
of necessary cofactors. Relative to their Km, the physiological
concentrations of the substrates and cofactors needed for HAT,
HMT, and DNMT mediated chromatin-modifying reactions are
low (Reid et al., 2017). As a result, the kinetics of histone
acetylation and methylation biochemical reactions are sensitive
to changes in these substrate concentrations and inhibited by
reduced cellular concentrations of nutrient-derived cofactors
and substrates (Su et al., 2016; Reid et al., 2017; Figure 4A).
This differs from phosphorylation and ubiquitination reactions
that are not as responsive to metabolic changes because their
substrate, ATP, does not reach cellular levels low enough to limit
enzymatic activity (Locasale and Cantley, 2011). Consequently,
starvation limits the availability of essential SAM and Acetyl-
CoA substrates needed for methylation and acetylation dynamics,
respectively, while simultaneously activating nutrient stress
response epigenetic and gene expression programs for survival.
This may constrain the range of different epigenetic states cells
can occupy, in addition to the other anti-cancer benefits of
fasting/FMD/starvation (Figure 4B).

SAM is an essential cofactor for histone and DNA
methyltransferases and is an intermediate of one-carbon
metabolism derived from dietary methionine and synthesized
through the methionine and folate metabolic cycles (Figure 5).
Dietary methionine restriction causes significant alterations
to cellular DNA methylation, histone methylation and gene
expression (Mentch et al., 2015; Su et al., 2016), though we know
less about effects on cellular epigenetic diversity or temporal
dynamics. Recent work in mice found that a methionine-
restricted diet rapidly altered methionine and sulfur metabolism,
inhibiting tumor growth and increasing tumor susceptibility to
chemotherapy and radiation (Gao et al., 2019). These results
suggest decreased capabilities for tumor cells to adapt to the
treatment strikes. However, further studies are needed to
determine whether a methionine-restricted diet can help prevent
the development of drug resistance either by reducing cellular
epigenetic diversity and/or adaptability over time. Starvation or
FMD cycles in mice have been shown to significantly improve
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FIGURE 4 | Physiological concentrations of Acetyl-CoA and SAM are rate limiting for HATs, DNMTs, and HMTs and affect chromatin modifications. (A) Dietary
changes that limit cellular SAM and Acetyl-CoA substrate concentrations are expected to reduce biochemical reactions mediating chromatin acetylation and
methylation dynamics because these substrates lie within concentrations that are enzymatically rate limiting. (B) The hypothesized benefits of starvation periods or
fasting-mimicking diets (FMD) are summarized and could include decreased acetylation and methylation reaction kinetics that help impair tumor cell diversity and
adaptability.

survival, increase time to progression and even restore drug
responsiveness to previously resistant tumors (Lee et al., 2012;
Brandhorst et al., 2015; Caffa et al., 2020). Currently, we do
not fully understand the mechanisms involved or to what
degree methionine-restriction alone can achieve the benefits of
starvation or FMD treatments.

POTENTIAL FOR STARVATION STATES
TO CONSTRAIN STOCHASTIC HISTONE
ACETYLATION AND SHORT-TERM
EPIGENETIC MEMORY

Methionine-restriction is not expected to directly alter histone
acetylation dynamics. However, nutrient deprivation or

inhibition of glycolysis causes significantly decreased acetyl-CoA
levels, which in turn reduces histone acetylation (Wang et al.,
2009; Lee et al., 2014; Mariño et al., 2014; Cluntun et al., 2015).
Acetyl-CoA abundance is a key factor controlling gene expression
by affecting chromatin structure to create open chromatin sites
for gene activation. In addition, Acetyl-CoA abundance affects
the acetylation of transcription factors by altering their stability,
subcellular localization, or abilities to bind to DNA (Choudhary
et al., 2014). Acetyl-CoA is produced from pyruvate through the
tricarboxylic acid (TCA) cycle or by beta-oxidation of fatty acids
(Campbell and Wellen, 2018). Little is known about the effects
of starvation, fasting or FMD on histone acetylation dynamics
at the cellular level or over time within a cell. One study tested
whether a high fat diet (HFD) affects acetyl-CoA levels and
global histone acetylation in mice, uncovering tissue specific
effects after a 4 week HFD (Carrer et al., 2017). They found that
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FIGURE 5 | A summary of how starvation-triggered nutrient deprivations converge on epigenetic pathways for short-term and long-term epigenetic memory.
Nutrient deprivations that affect glucose, acetate, serine and methionine levels are predicted to impact the efficiency of cellular chromatin modifying reactions.
Acteyl-CoA reductions are expected to most strongly affect epigenetic dynamics for short-term memory, while changes to methionine and SAM will affect epigenetic
mechanisms mediating longer-term epigenetic effects. Adapted from Reid et al. (2017).

white adipose tissue showed significantly decreased Acetyl-CoA
and histone acetylation for specific lysine residues. Thus, diet
can affect global histone acetylation in a tissue dependent
manner (Figure 5).

AMP-activated protein kinase (AMPK) is phosphorylated
in response to starvation and inhibits anabolic glucose, lipid
and protein synthesis pathways, and activates autophagy and
mitophagy for the breakdown of cellular macromolecules (Herzig
and Shaw, 2017). Cellular lipid stores are consumed through
lipid metabolic pathways and, in an attempt to increase glucose
uptake, AMPK promotes increased glucose transporter functions.
Along with this energy stress response, AMPK inhibits the HAT,
p300, and glucagon release during fasting causing the activation
of class II HDACs and localization to the nucleus to activate

transcriptional stress responses. Finally, sirtuins are activated
in response to nutrient stress and use NAD+ as a substrate
for deacetylation. I refer readers to a previous review detailing
how Acetyl-CoA levels are dynamically responsive to nutrient
availability, affecting histone acetylation and gene expression
(Sivanand et al., 2018). Additionally, starvation blocks global
protein translation by inhibiting mTOR complex 1 (mTORC1),
which in turn limits cellular capabilities for intra and intercellular
signaling and gene expression dynamics (Holcik and Sonenberg,
2005; Wullschleger et al., 2006). Recently, it has been further
shown that fasting effects on gene transcription and translation
depend upon the nature of the specific nutrients that are
deprived (Gameiro and Struhl, 2018). Currently, we know almost
nothing about how global or specific nutrient deprivations
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affect stochastic cellular epigenetic diversity and adaptability,
indicating an important area for study.

In a baseline fed state, diverse epigenetic writers, readers
and erasers are available with readily available substrates and
co-factors. However, after ∼3 days of fasting, the human body
transitions into an early starvation state designed to preserve
cellular proteins and this involves a major switch to ketone
metabolism, which shifts epigenetic regulatory processes and
triggers protective stress responses (Dai et al., 2020). It is
reasonable to expect that this can help to constrain and inhibit
biochemical reactions that promote cellular epigenetic diversity
and adaptability, but remains to be tested. New single cell
omics technologies, including single cell RNASeq and ATAC-
Seq can help test these predictions directly. The implication
of identifying interventions that can constrain cellular diversity
and adaptability is that we can couple these interventions with
chemotherapy strikes and improved drugs to increase chances
for a cure and complete disease elimination. If such constraints
can be induced, we should expect that the type and duration of
nutrient deprivations can be tailored to different cancer types,
stages and lesion locations.

HOW COULD CHANGES TO BODY
TEMPERATURE HELP CONSTRAIN
CANCER CELL DIVERSITY AND
ADAPTABILITY TO FACILITATE TUMOR
CELL EXTINCTION?

As described above, chromatin methylation and acetylation
biochemical reaction kinetics can be controlled by limiting their
substrates and cofactors through nutrient deprivation. However,
another important factor constraining these biochemical
reactions is body temperature, which controls reaction kinetics
(e.g., Kd, dissociation constant). Whole organism metabolic
rate scales with the 3/4-power of body mass and increases
exponentially with temperature, up to ∼40◦C when catabolic
processes increase (Gillooly et al., 2001). Body temperature
profoundly affects metabolic rates and vice versa. A 1% increase
in body temperature has been linked to a 10–15% increase in
metabolic rate in endotherms (Evans et al., 2015). On the other
hand, decreasing body temperature slows biochemical reaction
kinetics. Most physiological processes and biochemical reactions
function optimally at ∼37◦C (98◦F). What temperature state
might best help to drive cancer cell extinction?

As noted above, the body responds to microbial infections
through a combination of fasting and fever, and the overall
sickness response can eliminate cancer in patients. A high-
grade fever in an adult is an oral temperature of > 39.4◦C
(103◦F), which can begin to promote catabolic processes and the
denaturation of enzymes. In contrast, reducing body temperature
slows cellular reaction kinetics and decreases the metabolic rate
(Evans et al., 2015). For example, hibernation (torpor) involves
a profoundly decreased metabolic rate in order to survive harsh
environmental conditions with low nutrient availability (Carey
et al., 2003). For torpor to occur, a first step is to trigger

a decrease the hypothalamic set point for body temperature,
and then in turn drop the body temperature for the induction
of torpor and decreased metabolic rate (Gillooly et al., 2001;
Geiser, 2004). A tumor in a hibernating animal stops growing
during hibernation, but then resumes growth after torpor
(Lyman and Fawcett, 1954). Dangerous, transient hypometabolic
hibernation-like states can also occur in human cancers and these
subpopulations of persistent, dormant cancer cells are major
causes of mortality, disease recurrence and treatment failure
(Recasens and Munoz, 2019; Shen et al., 2020). Recently, it was
shown that most cancer cells have the capability to enter a
dormant (or diapause) state (Recasens and Munoz, 2019). Out
of the many adaptive phenotypes cancer cell subpopulations
might occupy, this hypometabolic state is one of the most
dangerous. Previous studies have shown that chronic cold stress,
which depresses metabolic rate and immunity, is associated with
elevated risks for cancer (Bandyopadhayaya et al., 2020). Cold
stress is associated with accelerated tumor growth and treatment
resistance in mice, which appears to involve enhanced tumor cell
survival pathways as well as suppressed anti-tumor immunity
(Kokolus et al., 2013; Messmer et al., 2014). This suggests that
increased temperature could help prevent cancer cell dormancy
and hibernation-like states in the body (Figure 6A).

So far, thinking in the cancer field has primarily focused on
uncovering molecular targets that might help block cancer cell
dormancy using targeted drugs (Recasens and Munoz, 2019).
However, transiently elevating body temperature and metabolic
rates might be effective, particularly when coupled with fasting
and chemotherapy. Moreover, the activation of the immune
system, which occurs in response to elevated body temperature,
might beneficially boost anti-tumor immunity (Evans et al.,
2015). There is clinical evidence and multiple independent
studies showing that hyperthermia has therapeutically beneficial
effects in cancer patients (Hildebrandt et al., 2002; van der
Zee, 2002; Wust et al., 2002; Jha et al., 2016). Efforts to
use hyperthermia clinically have included local delivery of
microwaves or radiowaves, as well as approaches to use arrays of
antennas to heat entire body parts. For metastatic patients, whole
body heating approaches using radiant thermal isolation systems
have been developed that can achieve systemic temperatures
of 41.8–42.0◦C. Perfect thermal isolation is sufficient in-and-of
itself to raise the body temperature from 37.5 to 42 in a 70 kg
patient in 180 min (Wust et al., 2002). In mice, simply raising
the ambient temperature from 22◦C to 30◦C causes measurable
improvements in tumor sensitivity to chemotherapy treatment
(Eng et al., 2015). The benefits of hyperthermia are thought to
include immune activation and the enhancement of anti-tumor
immunity, increased blood perfusion and drug delivery into
tumor sites, and cytotoxic effects on tumor cells growing in low
pO2 and low pH conditions. Effectiveness for hyperthermia for
different cancers has been reported in some randomized clinical
trials (Jha et al., 2016).

In addition to beneficial immune activation, perfusion and
drug uptake effects, fever/hyperthermia promotes increased
cellular metabolic rates and biochemical reaction kinetics, and
then at ∼40◦C, causes enzyme denaturation and a rapid decline
in reaction kinetics. Such effects could be applied precisely to help
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FIGURE 6 | Fever/hyperthermia is predicted to block cellular hypometabolic states and constrain epigenetic diversity and adaptability by impairing enzyme activity.
(A) Cold stress depresses metabolic rate and promotes hypometabolic states, while warming increases metabolic rates. Warming could help block hibernation-like
states in cancer cell subpopulations. (B) Fever/hyperthermia triggers rapid decreases in biochemical reaction rates due to denaturation of enzyme active sites. Thus,
fever-level body temperatures may help inhibit the activity of chromatin-modifying enzymes and block epigenetic diversity and adaptability. (C,D) Compare the effects
of hyperthermia versus hypothermia and suggest that hyperthermic treatments could have multiple beneficial effects for cancer elimination. (E) Plot shows that
combining starvation/FMD with fever/hyperthermia could be a potent intervention constraining tumor cell epigenetic diversity and adaptability. (F) A hypothesis for
the benefits of combining starvation/FMD with fever/hyperthermia.

prevent cancer cells from occupying dangerous hypometabolic
states, and at > 40◦C, to help narrow the dynamic range of
biochemical reaction kinetics in cells and thereby the diversity
of epigenetic states cancer cells can occupy (Figures 6B–D).
Overall, high-grade fever/hyperthermia may reduce cancer cell
diversity and adaptability. When applied in combination with
starvation/FMD, cells are struck with the combination of limited
substrates and cofactors plus a forced increase in metabolic
rates and enzymatic denaturation (Figures 6E,F, 7). In patients,
simple approaches to transiently increase body temperature and
metabolic rate could be vigorous exercise, which is difficult
for patients, or dry sauna treatments (Hussain and Cohen,
2018). Dry saunas begin to raise core body temperature within
15 min (Zalewski et al., 2014). More aggressive approaches
could involve pyrogen treatments, like LPS (lipopolysaccharide).
Further studies are needed to test whether mimicking the
vertebrate sickness response with a fasting+ fever combinatorial

therapy has the effect of helping to constrain tumor cell
epigenetic diversity and adaptability and making cancer cells
more vulnerable to chemotherapy treatment strikes.

TIMING THE STRIKE—CELLULAR
SYNCHRONIZATION THROUGH
STARVATION AND TEMPERATURE
CHANGE CYCLES

For decades, scientists have used nutrient withdrawal or
temperature changes to synchronize the proliferation of dividing
bacterial, yeast or mammalian cells in culture for experiments.
The removal of serum from culture media causes cells to
withdraw from the cell cycle (Pardee, 1974; Zetterberg and
Larsson, 1985; Balsalobre et al., 1998). Then, the subsequent
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re-introduction of serum triggers the cell population to
synchronously re-enter the cell cycle, homogenizing the cell
population. Repeated serum removal cycles can synchronize
the division of 80% of cells in culture (Bánfalvi, 2011; Tian
et al., 2012). Similarly, reducing and then increasing the ambient
temperature can synchronize dividing cells in culture (Rieder
and Cole, 2002; Bánfalvi, 2017). This suggests that cycles
of starvation, re-feeding and increased temperature could be
combined in patients and timed with chemotherapy treatments
to help reduce cellular diversity by synchronizing tumor
cell populations for maximum killing during a chemotherapy
treatment strike (Figure 8). Different schedules might be
developed for different phases of treatment for complete
elimination of metastatic disease.

For a treatment regimen to have the potential to be curative,
it is predicted that the treatment needs to achieve NED (no
evidence of disease), thereby eliminating the majority of the
disease, and then continue with diverse strikes to ultimately
eliminate the remaining, yet undetectable disease (Gatenby et al.,
2020). If patients are to be cured, maintaining health for a rich,
long life must be integral to the approach and the functionality
of the immune and digestive systems should be preserved. Thus,
the major initial objectives are to (1) maximize tumor cell
killing to reach NED as quickly as possible and with as few
drugs as possible, and (2) to reach NED with paradigms that
protect the long-term health and quality of life of the patient
as much as possible (Figure 9A). By reaching NED quickly,
safely and efficiently, the tumor cell population is fragmented and
vulnerable to extinction with continued treatments (see below).
Ideally, the approach involves delivering successive combinations
of treatment strikes using different drugs that attack different
mechanisms and switching to each new treatment prior to
progression. Switching treatments at the disease nadir, but prior
to progression potentially helps to preserve drug efficacy for
future use if needed.

Toward achieving these goals in actual patients, coupling
starvation and hyperthermia cycles with strikes of cytotoxic
chemotherapy infusions is expected to enhance tumor cell
killing by (1) sensitizing the tumor to treatment, (2) reducing
growth signals driving tumor proliferation (e.g., glucose, insulin,
IGF1, leptin), (3) impairing capabilities to sustain metabolically
demanding drug resistance mechanisms, (4) disrupting the
Warburg effect, (5) boosting anti-tumor immunity through
hyperthermia, (6) improving vasodilation and drug delivery to
tumor cells, and finally, (7) constraining capabilities for cellular
epigenetic diversity, adaptability and dormancy during treatment
(Figure 9B). Moreover, starvation appears to protect normal cells
from the cytotoxic effects of chemotherapies by reducing division
and metabolic activity, while a majority of tumor cells continue
to divide and be affected, resulting in differential sensitivity to
chemotherapy treatment (Lee et al., 2012). Thus, integrating
starvation and hyperthermia cycles into the first phase of attack
and applying the chemotherapy strikes during the starvation
response could help the patient reach NED quickly and with
fewer drugs and treatment cycles. Moreover, it may help protect
the health of the patient during the aggressive treatment or even
enable a more aggressive regimen to achieve NED.

FIGURE 7 | Schematic depiction of the hypothesized effects of combining
starvation/FMD and fever/hyperthermia on tumor cell epigenetic diversity.
(A) At baseline, enzyme kinetics are optimal and all possible stochastic
epigenetic cellular states can be occupied in a population of cells.
(B) Starvation limits essential substrates and cofactors for chromatin
modifying enzymes, constraining epigenetic dynamics the number of states
that a cell can occupy. (C) Fever/hyperthermia denatures chromatin modifying
enzymes, inhibiting their activity and constraining the number of different
epigenetic states that a cell can potentially occupy. (D) The combination of
starvation and fever/hyperthermia creates a state that severely constrains
cancer cell potential for epigenetic diversity.

Once NED is achieved, the next major challenge is to eliminate
any persistent, hibernating tumor cells that entered dormancy
and have evaded treatment, but will cause disease recurrence in
the future (Figures 9A,C). During this stage, when the tumor
cell population is fragmented and vulnerable, chemotherapy and
hyperthermia strikes might be best timed with the re-feeding
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FIGURE 8 | Cycles of transient starvation/FMD are predicted to help
synchronize tumor cell division and further reduce heterogeneity. At baseline
tumor cells are dividing at different rates and are in different stages of the cell
cycle. Following starvation, the division of tumor cells that are sensitive to
environmental nutrient concentrations is stalled. Many tumor cells are not
sensitive to nutrients and continue to divide and are sensitive to
chemotherapy. Subpopulations of tumor cells that are sensitive to nutrients,
may stop division and enter persistent, hypometabolic states during
starvation. However, upon re-feeding, nutrient sensitive tumor cells are
expected to synchronously enter the cell cycle, as is observed for some
cancer cell lines in vitro upon serum-induced cell cycle activation. This
activation is expected to make the cell population more homogeneous and
vulnerable to chemotherapy.

phase following a starvation cycle to help activate dormant
cancer cells and make them sensitive to treatment. Re-feeding
after starvation appears to drive progenitor cells, stem cells and
tumor cells into a rebound of increased, synchronous cell division
(Stragand et al., 1979; Brandhorst et al., 2015), though more
studies are needed. As noted above, cells in culture synchronously
re-enter the cell cycle upon the return of serum or shift from
cold to warm temperature. However, while this approach is
predicted to help activate and sensitize persistent, hibernating
tumor cells to chemotherapy treatment, it is also expected to
increase unwanted damage to healthy cell populations that also
enter the cell cycle upon re-feeding. Therefore, this hypothetical
approach for eliminating hibernating tumor cells might be best
applied in a limited and strategic manner when NED has been
reached and there is a chance to now cure the disease with
continued aggressive therapy.

Finally, I propose a third and final phase of adjuvant attack
during NED that uses remaining drugs in the clinical arsenal
that are designed for continuous chronic delivery and have low
side effects, such as oral chemotherapies (e.g., Capecitabine) or
targeted therapies (e.g., aromatase inhibitors and/or Palbociclib,
etc.). Frequently, these would be the first line therapies, but would
be delivered chronically until progression. Instead, here they are
delivered in this final adjuvant phase to drive disease extinction.
The continuous chronic delivery is potentially advantageous for
treating slow dividing and dormant tumor cells. Importantly
however, this chronic drug treatment is now coupled with
randomized and unpredictable starvation, fasting, dietary and
hyperthermic metabolic switches

(Figure 9D). The idea is that by inducing randomized
and different metabolic states during treatment, the metabolic,
epigenetic and gene expression states of the tumor cells are
forced into flux and occupy many different molecular states
during the chronic drug treatment. Selection for drug resistance
is strongly driven by the application of chronic, unchanging
treatment conditions and unpredictable environmental changes
are primary factor in driving extinction (Gatenby et al., 2019,
2020). Therefore, by enforcing randomized metabolic switching,
one aims to (i) force any drug resistant cellular states to be
transient and disrupted before a dangerous new resistant cell
lineage becomes stable, (ii) drive dormant tumor cells into
states of vulnerability to the treatment, and (iii) stochastically
“screen” different molecular states in the remaining tumor cell
population to uncover those that sensitize different cells to the
drug. Randomly perturbing metabolic pathways during chronic
treatment over time likely offers one of the best chances of driving
tumor cells throughout the body into different molecular states
that break evolutionary trajectories and expose drug-sensitive
vulnerabilities that ultimately lead to extinction. Devising optimal
approaches to do this is an important area for study and we
already have an understanding of different dietary and fasting
strategies for metabolic switching that the field can start with
(Nencioni et al., 2018; Tajan and Vousden, 2020).

Most importantly for clinical applications, there are reasons
to believe that this type of program will be tolerable and safe
and easily to integrate into the care setting. Pre-clinical studies
of FMD in mice involved treatments that are typically chronic in
patients, including fulvestrant and palbociclib, and are safe and
effective (Caffa et al., 2020). Further, in FMD clinical studies of
patients taking drugs during the fasting and re-feeding periods,
the approach appears safe (de Groot et al., 2020). Nonetheless,
the starvation-to-re-feeding pulse with drug strikes warrants
further investigation. The addition of hyperthermia during
re-feeding, which will increase perfusion and drug delivery,
might be best reserved for drugs with low probabilities of
causing neuropathy. The timing of starvation + hyperthermic
interventions might also be most effective when timed with
the known pharmacokinetics of the drugs to maximize the
tumor cell-killing window. For example, palbociclib reaches peak
plasma concentrations 6–12 h after oral administration and a
steady state in the body after 8 days of treatment, suggesting that
starvation, re-feeding and/or hyperthermic interventions are best
done 8 days into the typical 21 day treatment cycle and 6–12 h
after taking a dose. One question is whether the re-feeding period
can be optimized with specific nutrients intended to activate
cancer cell populations that especially depend on glucose, amino
acid or fatty acid metabolism, or other nutrients. Additionally,
supplementing fasting, hyperthermia and chemotherapy strikes
with small molecule drugs that impair major metabolic pathways,
like inhibitors of heat shock proteins, ubiquitin mediated protein
degradation, mTOR signaling or others, may increase the
epigenetic homogenization of tumor cells and/or help disrupt
epigenetic and gene expression states of drug resistance. These
general concepts need to be tested for safety and efficacy in
mouse models and tested for associations with effects on tumor
cell synchronization and constrained epigenetic diversity using
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FIGURE 9 | A three-phase paradigm for combining starvation/FMD/diet with hyperthermia and drug treatments to promote metastatic disease extinction. (A) The
schematic depicts two phases of combinatorial treatment to eliminate the disease. In Phase I, the goal is to rapidly drive the disease to NED using combinations of
drug treatments, starvation and hyperthermia. In Phase II, the goal is to activate, sensitive and kill persistent and dormant tumor cells in the body that will lead to the
recurrence of the disease in the future. In Phase III, the goal is to drive the disease to extinction by combining a continuous drug treatment that enables a high quality
of life with randomized starvation, intermittent fasting, dietary and hyperthermic interventions that cause unpredictable and different metabolic states to eliminate
remaining disease and prevent recurrence. (B) In Phase I, by delivering drug treatment strikes during starvation periods (day 4 of starvation or FMD), tumor cells are
sensitized to treatment and healthy cells are protected, improving drug efficacy and protecting patient health and quality of life. By including hyperthermia (HT) during
drug treatment strikes, drug penetration into tumor sites may increase, hypometabolic states may be blocked and tumor cell diversity and adaptability are expected
to be impaired. (C) In Phase II, the drug strikes and HT are applied during the re-feeding period after a starvation/FMD cycle, where the goal is to flush out persistent
hypometabolic cancer cells and drive them into cell division, homogenize them and kill them with treatment. (D) In Phase III, continuous oral chemo or targeted
therapies are used in combination with randomized and unpredictable metabolic switches to disrupt the epigenetic and gene expression cancer cell landscapes to
break emerging drug resistant phenotypes and stochastically induce drug sensitive states over time, ultimately leading to complete disease extinction.
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recent paired single cell RNASeq and ATAC-Seq technologies.
Finally, treating patients that have reached NED by scan and
tumor markers leaves the clinician in the dark regarding how
to gage the efficacy of such treatments. Circulating tumor DNA
might be a more sensitive and effective marker during this phase
to help define the bona fide extinction of the disease.

CONCLUSION

Stochastic epigenetic and gene expression states are primary
drivers of the evolution of drug resistance in patients. Moreover,
the diploid/polyploid genome of tumor cells likely enables
profound epigenetic, allelic and gene expression diversity at
the cellular level through stochastic DAE and clonal RME.
These gene and allele level epigenetic and gene expression
effects are barriers to the elimination of metastatic disease.
To create clinical solutions, we need an understanding of the
short-term and long-term epigenetic mechanisms involved, their
regulation by different metabolic mechanisms and their roles
in the initiation and persistence of cancer and the evolution of
drug resistance. No single drug will solve the cancer evolution
problem. Here, I have attempted to draw on the fields of
evolution, ecology, infectious disease, epigenetics, metabolism,
biochemistry, genomics and oncology to synthesize a clinically
feasible path forward to help homogenize tumor cell populations
and constrain cellular epigenetic diversity and adaptability
in patients. The rationale for pursuing this objective is to
improve the efficacy of combinatorial chemotherapy strikes to
cure metastatic disease. I propose an approach that involves
combining cycles of starvation and hyperthermia to synchronize
tumor cell division and constrain tumor cell epigenetic diversity
and adaptability by transiently limiting essential nutrients,
substrates and cofactors and impairing the optimal enzymatic
activity of chromatin modifying enzymes when drug treatment
strikes are delivered. I then propose inducing unpredictable
different metabolic states during continuous oral drug treatments
to drive the disease to extinction. In addition, I speculate that
strategic increases in body temperature may help block cancer
cells from entering dangerous hypometabolic, hibernation-
like states during treatment, which are major barriers to
disease elimination. Whether these manipulations can actually
reduce tumor cell epigenetic diversity, stochastic variability
and adaptability and improve outcomes is not known and
remains to be tested using state-of-the-art single cell genomics
methods and pre-clinical studies. Nonetheless, based on simple
biochemical principles, it is reasonable to expect that carefully

timed, transient starvation and hyperthermic cycles will limit
the range of molecular states tumor cells can occupy during
chemotherapy infusion treatments. Further, given the evidence
that drug resistance is a stochastic and dynamic molecular state
that cells are able to move in and out of, rather than a genetically
hardwired state, it is also reasonable to expect that unpredictable
switches of metabolic states over time during continuous
treatment can help to disrupt drug resistant epigenetic and
gene expression states and induce drug sensitive states in tumor
cells. This especially important when the available drugs in the
arsenal are limited.

In summary, to achieve cancer cell extinction, I propose a
three-phase paradigm. In Phase I, starvation and hyperthermia
cycles are timed with chemotherapy strikes in a manner that
is anticipated to protect the patient and enable aggressive
treatments that help to rapidly drive metastatic disease to NED.
In Phase II, chemotherapy treatment strikes and hyperthermia
are timed with the re-feeding phase after a starvation cycle,
where the goal is to help activate, sensitize and eliminate
persistent, hibernating cancer cells and help completely wipe
out the disease. In Phase III, continuous chemo or targeted
therapies that enable improved quality of life are combined with
randomized and diverse metabolic state switches using different
starvation, fasting, dietary and hyperthermia treatments to drive
extinction. This paradigm integrates knowledge from different
fields, including the ability of the vertebrate infection response to
eliminate cancer. There are many unknowns and opportunities
for study in this area to help patients.
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Dormancy is a key survival strategy in many organisms across the tree of life.
Organisms that utilize some type of dormancy (hibernation, aestivation, brumation,
diapause, and quiescence) are able to survive in habitats that would otherwise be
uninhabitable. Induction into dormant states is typically caused by environmental stress.
While organisms are dormant, their physical activity is minimal, and their metabolic
rates are severely depressed (hypometabolism). These metabolic reductions allow for
the conservation and distribution of energy while conditions in the environment are
poor. When conditions are more favorable, the organisms are then able to come out
of dormancy and reengage in their environment. Polyaneuploid cancer cells (PACCs),
proposed mediators of cancer metastasis and resistance, access evolutionary programs
and employ dormancy as a survival mechanism in response to stress. Quiescence, the
type of dormancy observed in PACCs, allows these cells the ability to survive stressful
conditions (e.g., hypoxia in the microenvironment, transiting the bloodstream during
metastasis, and exposure to chemotherapy) by downregulating and altering metabolic
function, but then increasing metabolic activities again once stress has passed. We can
gain insights regarding the mechanisms underlying PACC dormancy by looking to the
evolution of dormancy in different organisms.

Keywords: hibernation, dormancy, polyaneuploid cancer cells, cancer, evolution

INTRODUCTION: DORMANCY, AND CANCER

Metastatic cancer is resistant to almost all known systemic therapies and remains largely incurable
(Pienta et al., 2020b). The inability to cure metastatic cancer leads to more than 10 million deaths
globally per year (Bray et al., 2018). This resistance to therapy appears to be mediated, at least
in part, by dormancy, a common survival strategy for many different organisms. Cancer cell
dormancy occurs when cancer cells enter reversible cell cycle arrest known as quiescence (Yeh and
Ramaswamy, 2015; Gao et al., 2017; Jahanban-Esfahlan et al., 2019; Recasens and Munoz, 2019).
These dormant cancer cells lack proliferative and apoptotic markers but are still metabolically
active and able to maintain essential cellular processes without continuous growth (Gao et al.,
2017). Dormancy allows cancer cells the ability to survive new environments, initiate metastasis,
become resistant to therapy, and evade immune detection (Recasens and Munoz, 2019). Cancer
progression occurs when a dormant malignant cell gains the ability to re-enter cell cycle and restart
uncontrolled proliferation. The ability to lay dormant during chemotherapy, stay metabolically
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active, and eventually reinitiate proliferation enables cancer cell
survival and results in observed therapy resistant recurrence
(Pienta et al., 2020c, 2021).

New evidence suggests that the dormant cancer cell capable of
surviving stress by entering a quiescent state is the polyaneuploid
cancer cell (PACC) (Lopez-Sánchez et al., 2014; Pienta et al.,
2021). PACCs [also referred to as polyploid giant cancer cells
(PGCCs), multinucleated cancer cells, blastomere-like cancer
cells, and osteoclast-like cancer cells] are enlarged cancer cells
that have undergone whole-genome multiplication of their
aneuploid genome (Erenpreisa et al., 2000, 2008; Mosieniak and
Sikora, 2010; Zhang et al., 2014, 2015; Fei et al., 2015; Chen
et al., 2019; Pienta et al., 2020c). Polyaneuploid cancer cells have
been observed in cell lines, in patients, and in mouse models
across virtually all cancer types (Virchow, 1860; Illidge et al.,
2000; Erenpreisa et al., 2008; Puig, 2008; Zhang et al., 2013,
2014; Ogden et al., 2015; Mittal et al., 2017; Niu et al., 2017;
Mirzayans et al., 2018; Amend et al., 2019; Chen et al., 2019).
Polyaneuploid cancer cells are capable of forming in response to
many different environmental/applied stressors such as hypoxia,
lack of nutrients, changes in pH, chemotherapy, or radiation
(Illidge et al., 2000; Makarovskiy et al., 2002; Erenpreisa et al.,
2008; Puig, 2008; Lopez-Sánchez et al., 2014; Mittal et al., 2017;
Mirzayans et al., 2018; Amend et al., 2019; Chen et al., 2019;
Lin et al., 2019). PACCs can form by endoreplication, failed
cytokinesis, and fusion (Illidge et al., 2000; Mirzayans et al.,
2018; Amend et al., 2019; Chen et al., 2019; Lin et al., 2019).
Cancer cells with the ability to become a PACC have the capability
to alter metabolic functions to enter quiescence to avoid DNA
damage, potentially providing a mechanism of therapy resistance.
When stress is lifted, PACCs exit quiescence and can repopulate
an aneuploid population by neosis (cell budding). A better
understanding of cancer cell and PACC dormancy is critical in
the quest to cure cancer. This review focuses on what we can learn
from dormancy observed in ecology to better understand how
polyaneuploid cancer cells alter their metabolism and survive in
a dormant state while under stress.

DORMANCY: A METABOLIC STRATEGY
FOR SURVIVAL

Dormancy is a broadly used term to describe inactivity or
lethargy (Navas and Carvalho, 2010). During dormancy, physical
activity in organisms is minimal and metabolic rates can be
altered or severely depressed (hypometabolism) (Navas and
Carvalho, 2010; Mayer, 2016). Dormancy can be a response to
various conditions such as circannual rhythm, temperature, or
availability of resources (i.e., food and water) (Harlow, 1995;
Lehmer et al., 2001; Navas and Carvalho, 2010). Dormancy
can occur over short periods of time (less than a day), multiple
days, an entire season, or, in extreme cases, even many years
(Navas and Carvalho, 2010). While dormant organisms are
physically inactive, they can still be aroused by disturbances
without any major changes in their physiological state. There
are many different forms of dormancy including hibernation
(winter dormancy) (Geiser, 2013), aestivation (summer or

dry season dormancy) (Storey and Storey, 2012), brumation
(winter dormancy observed in ectotherms) (Wilkinson et al.,
2017), diapause (period of suspended development in an
insect, invertebrate, or mammal embryo in unfavorable
conditions) (Denlinger, 2000; Tougeron, 2019), and quiescence
(opportunistic inactivity observed in plants and cells) (Table 1)
(Navas and Carvalho, 2010). During all of these dormant
conditions organisms alter their metabolism to better survive
unfavorable circumstances in their environment.

Hibernation
One of the most well-known and commonly recognized forms
of dormancy is hibernation (Geiser, 2013). Hibernation can be
split into two categories: obligate hibernation and facultative
hibernation (Chayama et al., 2016). Obligate hibernation, the
more common form of hibernation, occurs when a mammal
hibernates at the same time every year (e.g., arctic ground
squirrels and dwarf lemurs) (Chayama et al., 2016). The other
form of hibernation, facultative hibernation, occurs only when
an organism faces stress in their environment (e.g., black-
tailed prairie dogs) (Lehmer et al., 2001; Chayama et al., 2016).
Hibernation is characterized by a reduction in body temperature,
energy expenditure, and other physiological functions in
mammals (Geiser, 2013). These changes in metabolic functions
allow for the conserved resources to be utilized throughout
a multiday torpor (inactivity). Multiday torpor was originally
hypothesized to only occur in winter due to the cold weather,
however, it has since been revealed that it is most likely due
to the lack of resources available during winter rather than the
weather itself (Geiser, 2013). Hibernating species have evolved
the ability to enter torpor to conserve energy by reducing their
metabolic states in order to survive. Without evolving the ability
to hibernate, many organisms would not have survived the
environments they live in.

Obligate Hibernation
The majority of ground squirrels are obligate hibernators,
including the arctic ground squirrel. Obligate hibernation allows
arctic ground squirrels to survive harsh winters in Alaska despite
sub-zero temperatures, frozen soil, little to no food available,
and near complete darkness (Loren and Barnes, 1999). Obligate
hibernators, like the arctic ground squirrel, have endogenously
timed annual dormancy in winter where they generate energy
reserves during the warmer months and then that energy is
conserved through a large reduction of basal metabolic rate, heart
rate, blood flow, and temperature while they hibernate (Loren
and Barnes, 1999; Singhal et al., 2020). Arctic ground squirrels
can hibernate for up to 8 months out of every year and during
this hibernation they lower their body temperature to adopt the
lowest body temperature ever measured in a mammal (-2.9◦C)
(Loren and Barnes, 1999; Buck et al., 2008; Richter et al., 2015;
Singhal et al., 2020; Rice et al., 2020). Arctic ground squirrels
recycle broken down nutrients while in hibernation to enable
survival (Rice et al., 2020). Muscle is broken down and the
free nitrogen generated can be converted into necessary amino
acids (Rice et al., 2020). Using those amino acids, the squirrels
can synthesize new proteins necessary for continued survival
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TABLE 1 | Metabolic characteristics of dormancy in nature and in PACCs.

Type of dormancy Ecologic example Organism metabolic characteristics PACC metabolic similarities

Obligate hibernation Arctic ground squirrel • Occurs annually (winter)
• Metabolic depression
• Recycling of broken-down materials for energy

• High autophagy levels: recycling of
broken-down intracellular contents
for energy

Facultative hibernation Black-tailed prairie dog • Only occurs under stress
• Metabolic depression
• Low lipid peroxidation rates

• Only occurs under stress
• High lipid levels

Aestivation Helix aspersa • Metabolic depression
• Reduction in macromolecule synthesis and degradation

• Altered metabolism

Brumation Tiger salamander • Can occur annually or under stress (depends on the species)
• Metabolic depression

• Altered metabolism

Diapause Bombyx mori • Only occurs under stress
• Metabolic depression
• Low behavioral activity
• Slowing of growth
• Reproductive functional arrest

• Slowing of growth
• Low motility
• Halt in cell division

Quiescence S. cerevisiae • Occurs under stress
• Widened cell wall
• Sequestering protein
• Transcriptional shut down
• Increase in size
• Halt in cell division

• Enlarged cell structure
• High lipid levels
• Halt in cell division

during their torpor without needing to ingest new nutrients from
the environment (Rice et al., 2020). Additionally, arctic ground
squirrels often wake from their hibernation while conditions
in Alaska are still harsh and still have enough energy reserve
leftover to sustain life until conditions improve and they are able
to successfully forage for food (Loren and Barnes, 1999). This
means that they strictly only dispense energy while in hibernation
when completely necessary so as not to waste energy. This annual
hibernation to avoid the harsh winters allows arctic ground
squirrels to survive and populate a habitat which they would
otherwise be unable to survive in.

Facultative Hibernation
Black-tailed prairie dogs, facultative hibernators, are unlike
obligate hibernators as they only enter a shallow torpor in
times of stress rather than entering an annual multi-day torpor.
This shallow torpor is most commonly induced when black-
tailed prairie dogs are severely cold or deprived of food and
water (Harlow, 1995; Lehmer et al., 2001; Harlow and Frank,
2001). Similar to obligate hibernators, black-tailed prairie dogs
experience a drop in body temperature and metabolic rate
during their short term torpor (Geiser, 2013). The physiological
advantages for adapting to be a facultative hibernator are still
not well known, but it is hypothesized that natural selection
likely favored facultative hibernation as black-tailed prairie
dogs have lower lipid peroxidation rates, allowing them to
conserve fat for extended periods of time (Harlow and Frank,
2001). Black-tailed prairie dogs share a common ancestor with
white-tailed prairie dogs yet white-tailed prairie dogs remained
obligate hibernators while black-tailed prairie dogs evolved to
be facultative hibernators (Harlow, 1995). Some hypotheses of
why black-tailed prairie dogs evolved to be facultative hibernators
include (1) a lengthened growing season and a higher abundance

of food in the great plains reducing the need for long term
hibernation, (2) a lack of refuge from their most common
predator, the black-footed-ferret, forced them to evolve to
hibernate less, and (3) the black-tailed prairie dog conserves fat
rather than protein during fasting which could reduce its ability
to successfully hibernate for long periods of time (Harlow, 1995).
While the true reason for this evolution is still unknown, it is
interesting to note that evolving to be facultative hibernators
has allowed black-tailed prairie dogs to only hibernate when
absolutely necessary for survival, not on an annual basis.

Aestivation
Aestivation, while similar to hibernation, occurs during the
warmer months of the year instead of during the winter
(Navas and Carvalho, 2010). Aestivation is also known as
“light” hibernation as these organisms are able to wake from
their dormant state very quickly after the stress is removed.
Ectotherms, organisms that are dependent on external sources
of body heat (i.e., “cold-blooded”), undergo an intrinsic
metabolic depression in which their metabolic rate declines
to about 10–20% of their resting metabolic rate at the same
body temperature, while endotherms, organisms capable of
the internal generation of heat (i.e., “warm-blooded”) undergo
a fundamental physiological change in body temperature,
reduction in metabolic rate, and water loss (Navas and Carvalho,
2010). Helix aspersa, commonly known as the garden snail, is
an example of an ectotherm that performs aestivation (Pedler
et al., 1996). When overheated or underfed these snails are able
to create a seal on their shell to prevent any residual moisture
from leaving their body (Pedler et al., 1996). The snails then
enter aestivation for long or short periods of time to survive
whatever harsh conditions they have encountered (Pedler et al.,
1996). During this period the snail only allocates energy to the
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most necessary processes for survival. For example, energy is
not allocated to reproductive efforts. While hibernation during
winter is the most common form of torpor known, aestivation
provides animals with a survival strategy during the summer
months. The utilization of dormancy and an altered metabolism
to survive harsh heat, drought, and lack of food allows these
animals to live and populate in an environment that would
otherwise be deadly to them.

Brumation
Brumation is winter dormancy performed by ectotherms
(Wilkinson et al., 2017; Kundey et al., 2018). While (obligate or
facultative) hibernating mammals may experience regular small
arousals from torpidity during the winter months, ectotherms
undergoing brumation are dependent upon the temperature
of their environment and stay dormant until temperatures
rise again (Wilkinson et al., 2017; Kundey et al., 2018). An
example of an ectotherm that undergoes brumation is the tiger
salamander (Kundey et al., 2018). If temperature is constant
and within a normal range for the salamanders they will not
undergo brumation at any point during the year. However, if
the salamanders live in an area where the temperature drastically
drops at any point in the year they automatically enter brumation
to survive the temperature change (Kundey et al., 2018). Tiger
salamanders are also able to enter into aestivation during summer
on days that are extremely hot, but their aestivation periods are
typically much shorter than their brumation periods (Kundey
et al., 2018). Additionally, multiple studies have shown that
entering and exiting brumation does not result in any change
in memory retention, meaning that as soon as tiger salamanders
come out of brumation they remember exactly where to find food
and how to find a mate (Wilkinson et al., 2017; Kundey et al.,
2018). Tiger salamanders’ unique adaptions to enter brumation
allow them to survive harsh winters or summers that would
otherwise eliminate them from the environment.

Diapause
Diapause is a form of developmental arrest in insects that
is equivalent to hibernation in mammals (Denlinger, 2000).
Diapause is characterized by low metabolic activity, low
behavioral activity, morphogenesis and reproductive functional
arrest, and the slowing of growth (Denlinger, 2000; Tougeron,
2019). Diapause is obligatory in some species of insects and
facultative in others (Denlinger, 2000). Diapause is induced by
abiotic cues that indicate the onset of adverse conditions in
the environment (Denlinger, 2000; Antonova-Koch et al., 2013).
While diapause most commonly occurs during the winter, it can
also occur during summer in months of extreme heat when there
is a lack of resources (Denlinger, 2000). The arrest induced by
diapause occurs in species-specific life stages (Antonova-Koch
et al., 2013; Tougeron, 2019). For example, in the silk moth
Bombyx mori, diapause occurs early in embryonic development,
while in the gypsy moth Lymantria dispar, diapause occurs at
the completion of embryonic development (Denlinger, 2000).
Diapause allows insects at different life stages to halt growth
and activity in adverse environments to enhance their survival.
Without evolving to perform diapause, insects may have only

been able to populate very specific regions of the world making
them susceptible to predation and overcrowding.

Quiescence
Cellular quiescence, also known as the G0 stage in cell
cycle, is defined as reversible proliferation arrest. Unicellular
organisms as well as individual cells of various prokaryotic and
eukaryotic microorganisms can survive in a quiescent state for
long periods of time (days, months, or years) without added
nutrients (Gray et al., 2004). Unicellular organisms and cells
in complex organisms utilize and spend a part of their life in
quiescence (Sagot and Laporte, 2019). Entry into quiescence is
associated with dramatic decreases and changes in metabolic
activities (Sagot and Laporte, 2019). While metabolism may slow
and change while these cells are in a non-proliferative state,
these cells are not completely inactive as they still perform
basic maintenance for survival. Unicellular organisms are more
frequently quiescent and can remain in a quiescent state waiting
for signals such as temperature, oxygen, or nutrients to exit
quiescence and begin proliferating again (Sagot and Laporte,
2019). An example of an organism that regularly utilizes
quiescence is Saccharomyces cerevisiae, a species of yeast (Wloch-
Salamon et al., 2017; Sagot and Laporte, 2019). When stressed
or nutrient deprived it has been shown that around 75% of a
stationary-phase culture of S. cerevisiae will enter into a quiescent
state (Wloch-Salamon et al., 2017). S. cerevisiae quiescent cells
differ from non-quiescent cells in the same culture as they
develop a widened cell wall (Aragon et al., 2008), increase storage
of carbohydrates (Aragon et al., 2008), sequester proteins (Suresh
et al., 2015), cluster telomeres (Tjaden, 2015), and undergo
transcriptional shut down (McKnight et al., 2015). Additionally,
it has been shown that cell volume influences quiescence exit
efficiency (Sagot and Laporte, 2019). S. cerevisiae cells exiting
quiescence must reach a critical size before they are able to
enter the S phase of cell cycle and thus larger quiescent yeast
generally emit buds faster than smaller quiescent yeast (Laporte
et al., 2018). Quiescence is a unique form of cellular dormancy
that allows unicellular and multicellular organisms the capability
to survive stress in many various forms by essentially shutting
down reproductive efforts and lowering metabolic functions
until the stress is removed. Saccharomyces cerevisiae provide a
unique model that can be used to better understand cancer cell
metabolism during dormancy.

DISCUSSION: UNDERSTANDING
DIFFERENT TYPES OF DORMANCY
PROVIDES INSIGHT INTO DORMANT
PACC METABOLISM

All types of hibernation give organisms a mechanism of survival
in unfavorable environments. Common themes for all types of
dormancy are lowered levels of activity, little to no reproductive
efforts, lowered intake of nutrients, and reduced metabolic
rates. PACCs require a survival mechanism and altering their
metabolism while in a dormant state is a possible mechanism
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to survive stresses such as chemotherapy. Understanding and
comparing the different types of dormancy in nature provides
insight into how altered PACC metabolism during dormancy is
helping these cells survive and provides a possible opportunity
for therapeutic intervention.

Throughout evolution, organisms have adapted many
different metabolic strategies for survival. A hallmark of cancer
is reprogramming energy metabolism (Hanahan and Weinberg,
2011). One of the most well characterized metabolic changes in
cancer cells is the Warburg effect: that cancer cells preferentially
utilize glycolysis to generate the majority of their ATP, even while
in aerobic conditions (Warburg, 1930; Hanahan and Weinberg,
2011). When cancer cells are stressed their metabolic signatures
can be further altered. Cancer cells undergoing stress such as
starvation, radiation, or chemotherapy are known to have an
altered metabolism compared to their non-stress counterparts,
with evidence of accumulation of lipids and an increase in
autophagy to survive (Hanahan and Weinberg, 2011).

To study the metabolism of dormant cancer cells under
stress, the dormant population must first be identified. Upon
treatment of a cancer cell population with chemotherapy, an
emergence of physically enlarged cells with high genomic content
are observed in vitro (Erenpreisa et al., 2008; Zhang et al., 2014;
Amend et al., 2019; Pienta et al., 2020a,c). These cells, defined
as PACCs, exhibit temporary polyploidization of their aneuploid
genome while simultaneously altering their metabolism to
survive environmental stress (Pienta et al., 2020a,c). Following
polyploidization, PACCs halt cell proliferation, entering a
dormant state (Pienta et al., 2021). Eventually, when stress is
removed, PACCs exit the dormant state and generate progeny
to establish a recurrence (Puig, 2008; Zhang et al., 2013; Amend
et al., 2019). PACCs are a transient state of cancer cells that are
hypothesized to utilize dormancy and an altered metabolism for
survival (Pienta et al., 2020a,c). While under stress, PACCs appear
to utilize different metabolic functions to survive, but the exact
PACC metabolic signature has yet to be defined (Sirois et al.,
2019). Cellular quiescence is associated with low metabolic rates,
altered glucose metabolism, lipid accumulation, and an activation
of autophagy to provide nutrients for survival (Valcourt et al.,
2012). The quiescent state in PACCs can be compared to
dormancy in organisms that are able to remain in an inactive
state for long periods of time under stress for enhanced survival.
Comparing dormant PACC metabolism to the metabolism of
other dormant organisms across the tree of life may provide
valuable insight into PACC biology and survival mechanisms.

Different types of dormancy have evolved for survival of
organisms across multiple kingdoms of life. The key component
in all different types of dormancy is altered (though not
necessarily diminished) metabolic activity for prolonged survival
without further intake of necessary nutrients. Similarities can be
observed between all types of dormancy and PACC dormancy
(Table 1). For example, while in obligate hibernation, the arctic
ground squirrel recycles cellular components for energy so that
intake of nutrients during hibernation is unnecessary. Facultative
hibernation highlights that dormancy is not exclusively an annual
or periodic event but can occur near-immediately as needed
for survival. Quiescence allows yeast the ability to exit the

active cell cycle during stress to conserve resources until the
stress is removed and they can begin proliferating again. All
of these strategies are key survival mechanisms that cancer
cells seem to access.

Obligate hibernators hibernate annually every winter. During
obligate hibernation arctic ground squirrels can recycle and reuse
select cellular components to make up for their lack of nutrient
intake. Arctic ground squirrel skeletal muscle is broken down and
the free nitrogen generated is converted into necessary amino
acids which are synthesized into proteins that are essential for
continued survival during hibernation (Rice et al., 2020). This
metabolic survival mechanism can be compared to elevated
autophagy in cancer cells (Table 1). When cancer cells are
stressed, autophagy is induced. Autophagy is the process in which
cells engulf and break down portions of their cytoplasm to be
recycled for future use. This process can generate a high level of
fatty acids and energy for the cells. PACCs that enter quiescence
due to chemotherapy treatment are under high levels of stress and
are hypothesized to have increased autophagy levels (Dudkowska
et al., 2021). High levels of autophagy could give PACCs
a metabolic advantage during quiescence by slowly breaking
down cellular components for energy instead of importing
nutrients from the toxic environment. This metabolic “recycling”
allows arctic ground squirrels and PACCs the ability to better
survive dormancy without exerting excess energy to obtain more
resources and limiting risk from the harsh environment.

Facultative hibernation allows mammals the advantage of
entering torpor only when it is necessary. This allows mammals
to continue foraging, hunting, and mating until the moment they
become too stressed by changes in their environment and they
must decrease metabolic activities and enter torpor to survive.
Black-tailed prairie dogs have been shown to have lower lipid
peroxidation rates while undergoing torpor (Harlow, 1995). This
implies a storage of lipids and fats, but not a high usage of
them, indicating the hibernating black-tailed prairie dogs are
either using other sources of energy to survive, slowly breaking

FIGURE 1 | PACCs accumulate lipid droplets. This image shows a single
PACC with a high level of lipids (black arrow) surrounding the nucleus.
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down these lipids for energy to ensure they have enough energy
for long term survival, or they are sequestering toxins in these
lipids to protect other cells in the body from damage. Cancer
cells mimic facultative hibernation when conditions are bad (e.g.,
chemotherapy is introduced to the environment) by forming
PACCs which are in a metabolically depressed quiescent state
(Table 1). While in a quiescent state, PACCs appear to have high
number of lipid droplets that are not quickly degraded (Figure 1)
(Sirois et al., 2019). These lipids could be sequestering toxins
or they could be saved as energy reserves for when PACCs exit
quiescence and proliferate again. PACCs and black-tailed prairie
dogs only enter dormancy when absolutely necessary to survive
stressors that would otherwise destroy the rest of the population.
The ability to only lay dormant when absolutely necessary
allows PACCs and black-tailed prairie dogs to live and inhabit
environments that may have been deadly to them otherwise.

Quiescence is a key survival strategy for many unicellular
organisms. Quiescence allows yeast to survive nutrient deprived
and other harsh environments. Quiescent cells are found all
throughout the human body and are vital for normal tissue
homeostasis (Coller, 2011; Yao, 2014). Infrequent cell cycle
(entering and exiting quiescence) has been described as a
fundamental mechanism that can contribute to the evolution
of therapy resistance in cancer (Coward and Harding, 2014;
Donovan et al., 2014). Cellular quiescence can provide metabolic
adaptions as well as protection against stress and toxicities
which is important for long-lived cells and, unfortunately, for
cancer cells (Yao, 2014). It is hypothesized that PACCs enter
into quiescence and alter their metabolism as a survival strategy
when they encounter stress (e.g., hypoxia, chemotherapy or
radiation) and then re-enter the cell cycle when the stress
is lifted (Erenpreisa et al., 2008; Lopez-Sánchez et al., 2014;

FIGURE 2 | Parallel relationships between black-tailed prairie dogs, S. cerevisiae, and PACCs. (A) Black-tailed prairie dogs in a normal, non-stressed environment
are active in the environment. When stress (snow) is applied the black-tailed prairie dogs enter facultative hibernation. When the snow goes away the black-tailed
prairie dogs are able to exit their dormant state, become active again, and reproduce. (B) S. cerevisiae are first shown in a normal environment. When stressed
(starved) they enter into a quiescent state and some become enlarged. When stress is released they are able to exit quiescence and repopulate utilizing budding.
(C) Cancer cells in a normal environment are constantly proliferating. When stress (chemotherapy) is applied many of these cells undergo failed cytokinesis or
endoreplication and become PACCs. PACCs are larger than the original cancer cells and enter into a quiescent non-proliferative state, and contain high levels of lipid
droplets. When stress is released PACCs are able to undergo various forms of division (i.e., restart reproductive efforts) such as neosis or asymmetrical division to
produce new, smaller progeny that are the same size as the original cell population.
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Pienta et al., 2020b). Some parallels of yeast and PACC quiescence
seem to be that larger quiescent yeast cells are more successful at
survival and exiting quiescence while PACCs utilize larger size
to house additional cellular machinery to metabolize toxins as
well as access additional nutrients though autophagy (Table 1).
Additionally, quiescent yeast sequester proteins and undergo
transcriptional shut down to survive. Similarly, PACCs appear to
have high levels of lipids (Sirois et al., 2019) which means they are
most likely harboring fat to use during their dormant state as well
as not proliferating to save energy.

Analyzing parallel relationships between dormant organisms
can give us insight into how PACCs survive dormancy. Figure 2
demonstrates the parallel relationships between two different
types of organisms that utilize dormancy (black-tailed prairie
dogs and yeast) and PACCs. Black-tailed prairie dogs feed on
grass around their burrows to put on weight for winter months
when food is scarce and potential hibernation may occur. Only
when a stressor is introduced (snow/no food) will the black-tailed
prairie dogs actually begin facultative hibernation for survival.
When the environment is favorable again the black-tailed prairie
dogs are able to exit their temporary torpor and resume normal
daily activities and reproductive efforts (Figure 2A). Similarly,
when S. cerevisiae are starved, the majority of the population
becomes quiescent and some individuals become enlarged. As
stated earlier, recovering, larger S. cerevisiae are more successful
at exiting quiescence. The budded progeny of S. cerevisiae
return to the same size as the original S. cerevisiae population
(Figure 2B). Lastly, when in a stable environment, cancer
cells are continuously proliferating. However, when stressed
with chemotherapy, typical cancer cells become PACCs through
failed cytokinesis, fusion, or endoreplication (Erenpreisa et al.,
2008; Amend et al., 2019; Lin et al., 2019; Chen et al., 2019).
Polyaneuploid cancer cell are identified as large cells with a high
of genomic content. Under stress PACCs are the majority of
the population and enter into a quiescent state to survive. In
this quiescent state PACCs contain high levels of lipids (Sirois
et al., 2019), they do not reproduce (Pienta et al., 2021), and
they are physically enlarged, similar to the enlarged S. cerevisiae.
When stress is released, PACCs are able to undergo division (i.e.,
restart reproductive efforts) in the form of neosis (cell budding)
to produce new, smaller progeny that are the same size as the
original cell population (Figure 2C) (Sundaram et al., 2004;
Zhang et al., 2013; Amend et al., 2019).

All three of these examples demonstrate dormancy aiding
in the survival of these groups. During dormancy all of these
groups alter their metabolism to better survive in a dormant state.
Whether it be black-tailed prairie dogs that only enter torpor

when absolutely necessary for survival, or S. cerevisiae growing
in size to aid in their eventual repopulation, there are parallels to
PACC metabolism.

CONCLUSION

Despite increasing knowledge regarding molecular mechanisms
that drive cancer cell dormancy and their potential targets, the
best therapeutic approach to targeting dormancy still remains
unclear. Evolution provides examples of how various organisms’
metabolic activities are altered during dormancy to enhance
survival. Learning from models in nature like arctic ground
squirrels (breaking down and reusing nutrients), black-tailed
prairie dogs (low lipid peroxidation rates), and yeast (larger
size assists with exiting quiescence) can help us elucidate PACC
metabolism during dormancy. Learning more about PACC
metabolism in dormancy may be the key to learning how to
target these cells while in a dormant state. For example, the next
steps point to targeting lipid metabolism or autophagy initiation
which may be key factors to PACC survival in a quiescent state.
Disrupting PACC metabolism in a quiescent state will ultimately
lead to apoptosis of these cells. Successfully targeting these
cells will provide a critical therapeutic opportunity to reduce
metastatic chemotherapy-resistant tumor burden.
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All biological systems depend on signals for coordination: signals which pass information

among agents that run the gamut from cells to organisms. However, their very importance

makes signals vulnerable to subversion. How can a receiver know whether a signal is

honest or deceptive? In other words, are signals necessarily a reliable indicator of agent

quality or need? By drawing parallels to ecological phenomena ranging from begging by

nestlings to social insects, we investigate the role of signal degradation in cancer. We

thus think of cancer as a form of corruption, in which cells command huge resource

investment through relatively cheap signals, just as relatively small bribes can leverage

large profits. We discuss various mechanisms which prevent deceptive signaling in the

natural world and within tissues. We show how cancers evolve ways to escape these

controls and relate these back to evasion mechanisms in ecology. We next introduce

two related concepts, co-option and collusion, and show how they play critical roles

in ecology and cancer. Drawing on public policy, we propose new approaches to view

treatment based on taxation, changing the incentive structure, and the recognition of

corrupted signaling networks.

Keywords: signaling, corruption, deception, cancer, evolution, behavioral ecology, targeted therapy

1. INTRODUCTION

In an influential 1996 speech, the President of World Bank, James Wolfensohn, described
corruption as a cancer standing in the way of equitable development (Wolfensohn, 2005). Without
giving any biological details, he used the term “cancer” to stand in generically for a bad thing that
will expand if uncontrolled and is difficult to root out. In response, he prescribed what can be seen
as an international version of precision medicine: specific homegrown solutions for each country,
complemented by support from the World Bank for anticorruption fighters and withdrawal of
international support from corrupt governments.

In economic contexts, corruption is often defined as “the abuse of public office for private gain”
(Wedel, 2012), with the focus on the use of government offices with control of a limited resource
to demand bribes or tariffs from a second party (Levin and Tsirik, 1998) but can be extended to
include corruption such as embezzlement involving only a single individual (Boisvert et al., 2014).
Mathematical analysis began with Rose-Ackerman (Rose-Ackerman, 1975) who studied bribes
using game theory and emphasized the role of information availability and reliability. Despite some
special cases where corruption might “grease the wheels of commerce” by correcting distorted
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markets, the effects of corruption are widely agreed to be
destructive (Wei, 1999), as argued by Wolfensohn. Corruption
concentrates wealth and power in the hands of those with
access, reducing resources for the environment and the poor
(Joly, 2017).

The causes of corruption are perhaps as complex as those
of cancer, involving internal forces that parallel growth and
mutation, outside influences like colonialism that parallel
carcinogens or oncogenic viruses, and a history that parallels how
these forces develop in a tumor (Wedel, 2012). Incompetence
can create supply gaps to be filled by corruption, excessive or
ambiguous regulation might promote their evasion, recessions
can increase need and increase incentives for corruption, and
low pay or education of government officials might increase
temptation (Levin and Tsirik, 1998). Corruption occurs within
a complex social system, just as cancer occurs within the tightly
knit environment of a tissue, and is promoted by a lack of
transparency and accountability (Levin and Tsirik, 1998), but
also by the very social pressures that make societies function
(Kolokoltsov and Malafeyev, 2017). Once established, corruption
can spread like a contagion (Nekovee and Pinto, 2019) or, of
course, like a cancer.

Direct approaches to combating corruption address these
causes by promoting greater transparency or increasing pay and
training (Levin and Tsirik, 1998). More systemic approaches
look to institutions. The benefit of modular network structures
that can contain corruption in more isolated cells must be
balanced against the risk that isolated units could receive less
oversight (Luna-Pla and Nicolás-Carlock, 2020). In some cases,
disrupting the structure of established corruption networks
might even improve their functioning (Duijn et al., 2014).
Fighting corruption, like fighting cancer, must thus deal with the
Law of Unintended Consequences (Fisman and Golden, 2017).
As anyone who watches crime movies knows, the most difficult
corruption to detect and control goes all the way to the top, a
modern variant of the ancient question “But who will guard the
guardians?” (Hurwicz, 2007).

Here, we ask whether the metaphor of corruption as a cancer
can be inverted, and whether thinking of cancer as corruption
might provide new approaches to treatment. This thinking seeks
to extend the many ideas derived from cancer ecology (Pienta
et al., 2008; Gatenby et al., 2009; Korolev et al., 2014; Kareva,
2015) to a behavioral ecology framework that sees cancer as a
breakdown of the reliability of signaling and information transfer
needed to coordinate complex biological systems.

2. COMMUNICATION AND SIGNALING IN
BIOLOGICAL SYSTEMS

Coordination of complex biological systems, from cells and
tissues to societies, depends on reliable communication. This
communication underlies behaviors ranging from the intricate
intracellular signaling cascades that coordinate cell growth,
movement, and division (Alberts et al., 2014) to the “ballerina
dances” that male birds-of-paradise use to court females
(Wilts et al., 2014). Communication requires signals, pieces of

TABLE 1 | Glossary of key terms.

• Condition-dependent handicap: Low quality individuals must pay a greater

price to signal than high quality individuals

• Condition-dependent payoff: High need individuals receive a greater benefit

from signaling than low need individuals

• Corruption: Abuse of public office for private gain, or more broadly, a violation

of the public trust

• Deception: A difference in the receiver’s interpretation of a signal, upon which

it acts, and the state of the signaler

• Information: Stimulus that has meaning in some context for its receiver, here

typically the need, quality, or state of an individual

• Signal: A medium that transfers information from one individual (the signaler)

to another (the receiver)

information transmitted from a signaler to a receiver (Table 1
provides precise definitions of key terms used throughout this
paper). Signals can be chemical (cytokines in the immune
system), aural (begging calls of nestlings), or visual (skin coloring
of venomous snakes or body movements of courting birds).
Following (Otte, 1974), we define a signal as a trait that plays an
adaptive role through conveying information to other organisms.
Traits like body size do convey information, but we treat as
signals only whenmodified to alter perception through structures
like frills (Shine, 1990). We discuss the blurry line between
physical constraints and signals later.

Communication depends on the response of the signal
receiver. When a signal is reliable, the receiver can accurately
ascertain information about the state of the signaler. Drawing
upon (Searcy and Nowicki, 2005), we classify a signal as reliable
if: (1) a characteristic of the signal is consistently correlated
with some attribute of the signaler or environment and (2) if
receivers gain some benefit from having information about the
attribute. For instance, if the call of a male frog is consistently
correlated with its size and if knowing the size of male frogs
allows females to choose appropriate mates, the male frog call is
reliable. We define deception functionally, obviating the need to
assume cognitive underpinnings for deceptive behavior (Hauser,
1996). Again, following (Searcy and Nowicki, 2005), we define
deception as when (1) a receiver registers Y from a signaler, (2)
the receiver responds in a manner that benefits the signaler and
is appropriate if Y means X, but (3) it is not true that X is the
case. For example, in great tits (Møller, 2010) and many other
birds, alarm calls are sometimes given in the absence of predators
to induce competitors to move away from a food source.

More broadly, deception can be categorized into three classes:
exaggeration (use of a signal that differs from the corresponding
condition), lies (use of the wrong signal), or withholding
information (not signaling when appropriate) (Vehrencamp,
2009). Each of these is context-dependent. For example, if
every frog were to sing as if it were larger than its true size,
receivers could adjust their interpretation to accurately assess
them, canceling the effects of exaggeration andmaking deception
a function of the social environment. In this context, we think
of corruption as being of the network of communication itself,
such as when a government official conceals information to
demand bribes for access. One can think of counterfeit money
as a deceptive signal of value that corrupts the trust in the “legal
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tender” upon which the economy depends. Before taking on the
broader concept of corruption, we focus on the mechanisms
by which deception is deterred in ecology and in tissues. We
then describe how cancers can evolve to evade these checks
and relate these strategies to those used in ecology. Finally, we
describe how viewing cancer through the lens of corruption,
combined with appropriate mathematical models, can inspire
new treatment strategies.

3. DECEPTION DETERRENCE

Deception degrades the reliability of the communication system,
endangering the coordination on which complex systems
depend. The fable of The Boy Who Cried Wolf provides
a proverbial example. However, conflicts of interest between
signallers and receivers can favor degrading reliability, as
with alarm calls. How then can biological systems maintain
the integrity of communication (Searcy and Nowicki, 2005;
Vehrencamp, 2009)?

We review key mechanisms from behavioral ecology and
discuss their application to tissues. First, and perhaps most
obvious, biological systems can reduce or remove conflicts of
interest (Krakauer and Pagel, 1996). The high relatedness of
sterile worker ants within a colony and the segregation of
germ and somatic tissue play similar roles: individual ants
or cells gain no benefit from behaviors that fail to aid the
centralized reproduction of the collective. However, the ability
of many worker ants to lay unfertilized male eggs creates such
a conflict, creating a challenge for colony functioning (Monnin
and Ratnieks, 2001). Avoiding such genetic conflicts within the
nest favors loss of kin recognition and the use of colony odor
to distinguish nestmates from non-nestmates (Lenoir et al.,
2001). To avoid attack, workers emerge with minimal odor, and
are tolerated by older workers while they come to smell like
their colony. Slave-making ants use this necessary acceptance of
ambiguous workers to take over a colony. A queen from a slave-
making species can infiltrate a host colony, kill the existing queen,
and lay her own eggs to be taken care of by the accepting workers
(Buschinger, 2009).

In evolutionary ecology, costly signaling is perhaps the best-
known deterrence mechanism; a signal constrained in this way
is called a handicap signal (Vehrencamp, 2000). With condition-
dependent handicaps, low quality individuals pay a greater cost
to signal than high quality individuals. If the benefit for a
given signal intensity is identical for all signalers, the optimal
signaling level that maximizes the difference between signal
benefit and cost will be greater for high quality individuals
(Figure 1) (Grafen, 1990).

Ecologists have established many cases of this mechanism.
Territorial song by male birds is an energetically expensive and
time-consuming signal of physical state and territory quality.
Males with higher quality territories have more access to food,
and thus pay a lower cost to sing more frequently because
they need to dedicate less time to foraging. Experiments across
bird species have confirmed this prediction by modifying food
availability in male territories and quantifying changes in song

frequency (Hoi-Leitner et al., 1995; Manica et al., 2014). For
females, this signal then conveys reliable information about
which males can provide the best access to food and potentially
greater investment in offspring care (Rytkonen et al., 1997).
Signals play a key role in the other component of sexual selection,
male-male competition. In red deer, energetically costly roaring
contests use muscles and actions similar to those used in fighting
and thus provide reliable information to assess male fighting
condition (Clutton-Brock and Albon, 1979). In our own bodies,
cells may also use costly signals to display their phenotypic state
to other cells in competitive environments. During development
of the neural system and of eggs, for example, costly signals
identify the healthiest cells that should be maintained for the
good of the body despite the lack of a conflict of interest
(Krakauer and Pagel, 1996; Madan et al., 2018).

Costly signals of need follow a similar logic if the greatest
benefits accrue to those with the greatest need. If all signalers
pay the same cost to signal but differ in their benefit curves, we
expect the signaler with the higher benefit curve to maximize
fitness by signaling at a higher intensity (Figure 2). Birds provide
the well-studied example of begging by nestlings. A starving
nestling should receive a greater benefit from a morsel of food
than a well-fed nestling and will thus beg more intensely from
its parents who receive a reliable signal of need. Experimental
manipulation of hunger by artificial feeding or short-term
food deprivation in a variety of bird species has shown that
begging reliably signals short-term need (Sacchi, 2002; Watson
and Ritchison, 2018), with birds that were deprived of food
begging at significantly higher rates than those that were not
(Cotton et al., 1996; Kilner et al., 1999). In our cells, a similar
low benefit mechanism may help suppress uncontrolled cell
proliferation. Cells require growth factors to divide, and can
signal for these dependent on need. The larger array of internal
controls, including cell cycle checkpoints (Kastan and Bartek,
2004; Barnum and O’Connell, 2014), programmed cell death
(Elmore, 2007; Fuchs and Steller, 2011), and oncogene-induced
senescence (Gorgoulis and Halazonetis, 2010; Zhu et al., 2020)
mean that the effects of growth factors saturate. Like a fully fed
nestling, a cell that takes up massive amounts of growth factor
would grow no faster, removing selection for deceptive signaling.

These cost-benefit mechanisms are complemented by
enforcement. We thus distinguish the energetic or production
costs characteristic of condition-dependent handicaps from
externally imposed costs through punishment or retaliation.
With repeated interactions, if receivers can identify and
remember the sources of deceptive signals, they can discriminate
against them in the future and reduce or reverse the benefits
of deception (Searcy and Nowicki, 2005). This individually
directed skepticism can enforce signal reliability because the
benefit a signaler receives from one deceptive interaction can
be outweighed by the cost of lower receiver responses in the
future (Maynard-Smith, 1991; Silk et al., 2000). As we have
seen, some animals use false alarm calls to lure competitors
away from food. In an experiment with Richardson’s ground
squirrels, when the alarm calls of one squirrel were consistently
paired with the approach of a badger and the calls of another
squirrel were not, receiver squirrels displayed much higher
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FIGURE 1 | Lower signaling costs support higher signal intensities for high quality signalers (inspired by Johnstone, 1977). The black curve represents the fitness

benefit of signaling for a signaler. The blue curve represents the fitness cost of signaling for a low quality signaler: the cost of signaling increases rapidly with signal

intensity. The red curve represents the fitness cost of signaling for a high quality signaler: the cost of signaling increases more gradually with signal intensity. Signalers

will signal at an intensity that maximizes the difference between benefits and costs (indicated by blue and red stars). Because the cost curve is less steep for high

quality signalers, the intersection point will occur at a higher signal intensity.

FIGURE 2 | Higher signaling benefits support higher signal intensities for needy signalers (inspired by Johnstone, 1977). The black curve represents the fitness cost of

signaling for signalers. The blue curve represents the fitness benefit of signaling for a low need signaler: the benefits of signaling quickly saturate with signal intensity.

The red curve represents the fitness benefit of signaling for a high need signaler: the benefit of signaling saturates more gradually with signal intensity. Signalers will

signal at an intensity that maximizes the difference between cost and benefits (indicated by blue and red stars). Because the benefit curve saturates less quickly for

high need signalers, the intersection point will occur at a higher signal intensity.

levels of vigilance to the alarms of the honest squirrel than to
the dishonest one (Hare and Atkins, 2001). Similar results have
been seen in vervet monkeys (Cheney and Seyfarth, 1988) and

food calls in domestic chickens (Evans and Evans, 2002). One
could speculate that the lack of alarm calls in the gregarious
zebra finch could be the endpoint of this breakdown, where
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TABLE 2 | Mechansisms of maintaining signal reliability in ecology and in tissues.

Prevention mechanism Ecological example Tissue homeostasis

Eliminate conflict of interest High relatedness Segregation of germ plasm

Signal costs Song output Signaling complexity

Signal benefits Begging Checkpoint controls

Enforcement Testing through conflict Immunological surveillance

Physical constraints Vocalization frequency PAMPs and TLRs

birds have abandoned such calls to be replaced by visual cues
(Butler et al., 2017).

Instead of removing the benefit of deception, receivers could
directly retaliate against deceptive signalers. For example, the
highly variable black clypeus patterns on the female paper
wasp Polistes dominulus strongly predict body size and social
dominance (Tibbetts and Dale, 2004). Specifically, wasps with
no marks or single marks are less aggressive and defer to the
more aggressive wasps that have “broken” facial patterns (Clark
and Kimbrough, 2017). However, the reliability of this signal is
constantly tested in contests between wasps. Experimental results
show that wasps with experimentally altered clypeus patterns
(deceptive signalers) received considerbly more aggression from
rivals and were less able to establish dominance relationships,
suggesting that a mismatch between signal and state causes social
punishment (Tibbetts and Dale, 2004; Tibbetts and Izzo, 2010).
The constant testing of host tissues for self-antigens such as
MHC and proteins like decay-accelerating factor that regulates
the complement system quickly identifies any cells that fail to
provide appropriate signals. Immunological memory serves as
a form of repeated interaction. When a tissue is exposed to an
antigen on several occasions, the host produces memory B and
T cells that enable a more rapid and effective adaptive immune
response to subsequent antigen insults (Janeway et al., 2001).

Most simply, physical constraints can prevent deceptive
signaling (Vehrencamp, 2000) if signal intensity is tightly
correlated with the quality being signaled, and cannot be
faked (Maynard-Smith and Harper, 2003). For example, the
frequency of vocalization depends on the size of vocal folds
in vertebrates, which in turn depends on body size. This size-
frequency allometry has been experimentally confirmed across
many mammalian species, from primates to carnivores (Morton,
1977; Schmidt-Nielsen, 1984; Bowling et al., 2017). If body
size is a marker for male quality, females can use vocalization
frequency signals to choose the best mate (Glaudas et al.,
2020). Similarly, song repertoire size in great reed warblers is
an index of age, with older males having a greater repertoire
size (Hasselquist, 1994). However, no correlation is perfect,
and any trait that allows a signaler to sound larger without
being larger would be favored, leading to a shift in the whole
signal. In the context of tissue homeostasis, pathogens may carry
signals (pathogen-associated molecular patterns or PAMPs) as
seemingly essential parts of their physical structure, such as LPS
in the cell wall of gram negative bacteria or a production of
double-stranded RNA during replication of most RNA viruses
(Maverakis et al., 2015). These PAMPS are reliably recognized

by innate mechanisms of the immune system, such as toll-like
receptors (TLRs), triggering an immune response. (Kumar et al.,
2011). Of course, pathogens have no interest in signaling their
presence, and have evolved many ways to modify or conceal
these signals. Similarly, as we will see, cancer cells may modify
their cell surface markers to hide from immune cells. More
simply, pathogens, by definition, damage their hosts and this
physical damage creates an unambiguous signal. A summary of
these prevention mechanisms and examples in ecology and tissue
homeostasis is captured in Table 2.

4. ORIGINS OF CORRUPTION AND THE
MAINTENANCE OF CANCER

When signaling systems include conflicts of interest between
signalers and receivers, the reliability of communication
is in constant flux. Cancers emerge by corrupting these
control measures perhaps first and foremost by creating a
conflict of interest within a tissue. Even when control begins
to unravel, as seems inevitable with aging (Martincorena
et al., 2015), mechanisms based on costs, benefits, repeated
interactions, enforcement, and constraints can maintain effective
communication. But breakdown of the systems through
systematic deception or evasion is always possible. In this
section, we outline the ways cancers have evolved to partially or
completely circumvent each of these deterrencemechanisms, and
relate these evasion strategies back to ecology.

We begin by proposing that evasion of high cost and low
benefit mechanisms is central to the rise of corruption in cancer.
For costs, we propose that there are three main types: internal
regulation, external enforcement, and energetic costs. Internal
regulation refers to internal controls that cells have to govern
proliferation such as cell-cycle checkpoints and oncogene-
induced senescence. External enforcement describes interactions
of cancer cells with other agents in their microenvironment, most
notably immune cells. Energetic costs refer to the actual costs cells
incur to grow and divide, including ATP, pathway intermediates,
and synthesis of critical molecules. We here focus on the
energetic costs of cells and consider internal regulation and
external enforcement later. Assume there are two agents identical
in quality, but differing in the cost of signaling (Figure 1). The
individual with a lower signaling cost would be expected to signal
at higher intensities and benefit from this cost differential in a
deceptive fashion. Similarly, if one individual receives a higher
benefit from signaling, we expect this individual to signal at
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a higher intensity (Johnstone, 1977; Grafen, 1990). In cancer,
we hypothesize that both of these cases occur, resulting in an
“exaggeration” evasion mechanism.

In order for a cell to divide or secrete growth factors for
example, the coordination and contribution of a multitude of
signaling components are needed. These components are tightly
regulated through both environmental and intracellular factors
to ensure that the cell does not divide at an inappropriate time.
However, in cancer, due to the presence of oncogenes, these
signaling components can be overexpressed or constitutively
active, removing the need to meet certain intracellular or
extracellular conditions and leading to uncontrolled levels of
proliferation. For example, MYC codes for c-Myc, which induces
cellular proliferation (Dang, 2012; Tansey, 2014). Normally, it
becomes activated upon receiving mitogenic signals like serum
stimulation, Wnt, Shh, or EGF via the MAPK/ERK pathway
(Campisi et al., 1984). However, in many cancers, most notably
in Burkitt’s lymphoma, Myc is constitutively expressed. This
removes the need for the cells to receive external serum
stimulation or expend energy to produce these signals, leading to
increased expression of many downstream genes that govern cell
proliferation (Finver et al., 1988). Similar situations occur with
NFκB and STAT3, key players in cell proliferation, apoptosis,
migration, and angiogenesis. Normally, these are activated by
a plethora of cytokines and growth factors; however, due to
constitutive activation in cancer, the cells do not need to invest in
the production of these cytokines and growth factors to activate
them, reducing the cost of proliferation, movement, and blood
vessel recruitment (Garcia et al., 2001; Nagel et al., 2014). More
generally, cancer cells seem to operate with a greater degree of
modularity; rather than having tightly integrated gene signaling
networks, pathways may act more independently of each other,
and thus avoiding some of the energetic costs involved in growth
and division.

Quite generally, cancers escape by removing the controls that
create saturating benefits. When cells lose tumor suppressors
such as Rb, they can grow more quickly for a given amount of
nutrient or growth factor, while a normal cell would be prevented
from dividing too quickly. Cancer cells that acquire mutations
to signal at higher intensities would then grow more quickly,
creating selection for deception (Vehrencamp, 2009). One can
see these cancer cells as exaggerating their phenotypic state and
need for growth and division factors. Cancer cells can also evade
saturating benefits by modifying their metabolic pathways. Most
cancers exhibit the Warburg effect, the use of glycolysis rather
than oxidative phosphorylation to generate ATP (Liberti and
Locasale, 2016). Although glycolysis is less efficient at generating
ATP, it creates more intermediates for biosynthetic and anabolic
purposes (e.g., through the pentose phosphate pathway) and
greater metabolic flexibility (e.g., catabolism of macromolecules)
when nutrients are limited (Vander Heiden et al., 2009). This
production of proteins, amino acids, and lipids is crucial for
proliferation. Unlike normal cells whose proliferation is partially
constrained, intrinsically and extrinsically, by the rate at which
they can produce molecules needed for growth and division,
cancer cells can rapidly produce those needed molecules. One
example of subversion of enforcement of honesty through the

saturating benefit mechanism in ecology, cowbirds lay their eggs
in the nests of other often smaller birds, and continue to beg and
grow far beyond their hapless nestmates (Dearborn, 1998).

Even the most tightly knit societies, such as social insects,
have interaction intensity vastly exceeded by that of cells in
a body. Due to the huge number of cells in the body or in
a tumor, individual cells are not encountered multiple times
and remembered. However, the whole tumor does present
novel antigens in the context of damage, triggering an immune
response. Cancers capitalize on one essential feature of this
response, T cell exhaustion. If the immune system indefinitely
attacked every repeated challenge, autoimmunity would be
almost unavoidable in the face of low level inflammation.
When faced with slow-growing tumors, immune cells interact
repeatedly with antigens on the surface of cancer cells, promoting
the progressive loss of function of effector T cells (Wherry, 2011;
Schietinger and Greenberg, 2014). In addition, when chronically
exposed to antigen, tumor-specific T cells develop an increased
expression of many inhibitory receptors such as PD-1 and
CTLA-4 and an altered cellular metabolic and transcriptomic
profile. As a result, these T cells have lowered proliferation,
effector cytokine secretion, and cytolytic activity, aiding tumor-
immune escape (Jiang et al., 2015; Catakovic et al., 2017; Zhang
et al., 2020). Tumor cells amplify these natural controls in at
least two ways, first by reducing expression of class I MHC
(Vinay et al., 2015) (a form of deception through withholding
information) and through production or induction of production
of immune suppressing signals like PDL1 (Cha et al., 2019). As
described earlier, slave-making ants and certain beetles capitalize
on the tolerance workers show to bland-smelling intruders
(Geiselhardt et al., 2007).

Finally, cancers find ways to evade even the physical
constraints that prevent deception. Normally, immune cells
circulate through the body, detect, and destroy malignant or
premalignant cells in a process called immune surveillance
(Swann and Smyth, 2007). They do so by identifying tumor-
specific antigens that are present on a cancer cell’s surface, which
triggers killing of the cancer cell through such mechanisms
as release of cytotoxic molecules like granzymes and perforin
(Tsukumo and Yasutomo, 2018). Tumors use many signal
corrupting mechanisms to avoid the immune system, including
the release of immunosuppressive cytokines (Seliger, 2005)
and recruiting regulatory T cell function (Zindl and Chaplin,
2010). Cancer cells can also mask their identity through the
modification of antigen presentation (Vinay et al., 2015). In
particular, cancer cells can downregulate MHCI expression (the
molecule used to present antigens to the immune system) or lack
the requisite costimulatory molecules for antigen presentation.
In this way, the cancer cell becomes invisible to the T cells, which
cannot recognize it as “non-self.”

Cancer cells can also gain a competitive advantage over
neighboring cells by modifying their expression of certain
membrane proteins. Cell selection based on “fitness fingerprints”
is used in development and maintenance to identify and
eliminate cells with low fitness relative to their neighboring
cells (Madan et al., 2018). The membrane bound protein Flower
has different isoforms termed “Win” and “Lose” to signal cell
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TABLE 3 | Mechanisms of evasion in ecology and cancer.

Prevention mechanism Evasion mechanism Ecological example Cancer example

Eliminate conflict of interest Mutation Worker reproduction Uncontrolled growth

Signal costs Exaggeration Cowbird begging Oncogenes

Signal benefits Exaggeration Cowbird begging Loss of tumor suppressors

Enforcement Withholding information Social insects T cell exhaustion

Physical constraints Lies Flock foraging Immune-evasion markers

quality. Cells that express high levels of Lose isoforms are
marked as low fitness and, if surrounded by cells expressing
high levels of Win isoforms, are eliminated (Madan et al., 2019).
This process allows the body to delay aging (Merino et al.,
2015), prevent developmental malformation (Merino et al., 2013,
2015), and replace old tissues during regeneration (Moreno
et al., 2015). However, this cell selection mechanism can be
hijacked by premalignant cancer cells, which upregulate Win
isoform expression regardless of cell quality, to gain a competitive
advantage at the expense of neighboring stromal cells that express
the Lose isoform, increasing the cancer cell’s proliferative and
metastatic potential (Madan et al., 2019).

Cancer cells avoid a different physical constraint through the
loss of contact inhibition. Non-cancerous cells initiate cell cycle
arrest and reduce proliferation and mitogen signaling pathways
when cellular density is too high and cells are in contact with
each other, regardless of their cellular metabolism or extracellular
factors (Levine et al., 1965). However, this response is weakened
in cancer cells, allowing them to proliferate uncontrollably
and grow on top of each other, leading to the high density
characteristic of solid tumors (Pavel et al., 2018). We summarize
of the evasion strategies associated with each of these prevention
mechanisms along with examples in ecology and cancer in
Table 3.

5. COUSINS OF CORRUPTION

Two related concepts enhance the danger of cancer corruption:
co-option and collusion. co-option means diverting resources
or assistance in roles different from usual, and instead adopting
them for one’s own sake. Cancer cells can co-opt normal cells in
the tumor microenvironment to work for them. Viewing cancer
as “the wound that never heals” (Hua and Bergers, 2019) reveals
this process: the chronic inflammation that often accompanies
cancer progression brings with it a variety of inflammatory agents
which can lead to the infiltration and activation of different
myeloid cells such as macrophages that contribute to growth
(Schmid and Varner, 2012; Stegelmeier et al., 2019). Thus, the
physical damage that should be an unambiguous signal of danger
is not concealed but is instead turned to the tumor’s own
advantage. As part of this process, some cancer cells release
cytokines that promote polarization of nearby immune cells to
a pro-tumor role, dampening the anti-tumor immune response
and stimulating cancer cell survival and proliferation (Cheng
et al., 2019; Strauss et al., 2020). Immune cells can promote
cancer progression through an “angiogenic switch” by producing

proteases, proteins that break down the extracellular matrix, that
in turn can activate latentmolecules to drive angiogenesis (Ribatti
et al., 2007; Baeriswyl and Christofori, 2009). Furthermore, recent
evidence in the context of breast cancer suggests that metastatic
cancer cells can induce regression of normal non-cancerous
cells in their local environment into a stem-like state, further
promoting tumorigenesis (Ombrato et al., 2019). In ecology,
some forms of sexual selection co-opt prior preferences, such as
those of female birds for brightly-colored fruit, to create attractive
males (Ryan et al., 1990). As we have seen, brood parasitism
provides an example of how one species co-opts another. Brood
parasites like cuckoos and cowbirds manipulate a host to care for
their offspring, leaving them with time and energy to spend on
feeding and producing more offspring (Dearborn, 1998). Egg-
dumping is common within species, where individuals again
co-opt the parental care instincts of others (Yom-Tov, 1980).

When corruption becomes systemic, multiple individuals
can work together in complementary roles and collude to
garner resources and subvert the signaling environment. Cancer
cells, both within and among tumors, can “collude” by
exchanging information, such as RNA, DNA, and proteins,
through exosomes and other mechanisms (Li et al., 2006; Hough
et al., 2017; Maziveyi et al., 2019). Although far from fully
understood, the proteins, metabolites, and nucleic acids delivered
in this way are thought to facilitate survival, differentiation,
and proliferation, promote angiogenesis and wound healing,
contribute tometastasis andmigration, and reprogrammetabolic
profiles of receiving cells (Kalluri and LeBleu, 2020). For
example, cancer cells in hypoxic conditions secrete exosomes
with increased angiogenic and metastatic potential to engineer a
more favorable environment or move to a new one (Park et al.,
2010). Exosomes from tumor cells mediate the metastasis of
cancer to distant organs through uptake by resident cells that
prepare the pre-metastatic niche (Hoshino et al., 2015). Poly-
aneuploid cancer cells (PACCs) are a recently discovered form of
collusion in cancer. During times of microenvironmental stress,
aneuploid cancer cells can fuse together to form PACCs, entering
a state of quiescence or reversible therapy-induced senescence to
protect their genome and avoid apoptosis (Pienta et al., 2021).
Due to their high levels of genomic content, PACCs that enter
the cell cycle and divide into non-polyploid cells can produce
new phenotypic variants of cancer cells that contribute to cancer
heterogeneity and lethality (Bukkuri et al., under review; Bukkuri
et al., under preparation).

In ecology, “collusion” is usually seen as cooperation that
does not subvert the existing order, such as food sharing among
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TABLE 4 | Hallmarks of cancer and escape mechanisms viewed through the lens

of corruption.

Hallmark of cancer Escape mechanism

Deregulating cellular energetics Modification of costs and benefits within cells

Sustaining proliferative signaling False signals of need

Evading growth suppressors Evasion of signals of control

Avoiding immune destruction Evasion of enforcement: false or concealed

information

Enabling replicative immortality Evasion of physical constraint through

telemorase

Tumor-promoting inflammation Increasing access to resources through signals

of need

Activating invasion & metastasis Corrupting distant tissues and colluding to

enhance invasion

Inducing angiogenesis Exaggerated signals of need

Genome instability and mutation Corruption of control systems maintaining cell

integrity

Resisting cell death Evasion of control signals

vampire bats (Carter and Wilkinson, 2013). Coalitions of males
working together to oust an existing leader is perhaps closer to
the human sense of the term, but hardly subverts an already
violent social order (De Waal and Waal, 2007). The “dear
enemy” effect, where neighboring territory owners cooperate by
reducing aggression (Temeles, 1994) is not a breakdown of the
territorial system itself, but a modification through cooperation
that can even enhance defense against intruders (Detto et al.,
2010). One could view sexual reproduction as a form of genetic
collusion. Similar to the mixing of genetic material in the
PACC state through cell fusion that produces increased heritable
variation, many asexually reproducing species engage in sexual
recombination when under stress, ranging from the crustacean
Daphnia magna that produces males and sexual eggs when
facing high population density, starvation, or bacterial infection
(Kleiven et al., 1992; Mitchell et al., 2004) to the perennial herb
Trifolium repens that increases investment in sexual reproduction
when subject to herbivory. As an interesting parallel with cancer,
this response was observed solely in sensitive plants and not
resistant ones (Griffiths and Bonser, 2013). This view of cancer
as a corruption of the signaling system aligns remarkably well,
although not perfectly, with the established hallmarks of cancer
(Hanahan and Weinberg, 2011) (Table 4).

6. TREATMENT: CARROT OR STICK?

Does viewing cancer through the lens of signaling and corruption
help us design treatments? Our goal is to re-establish the broken
control system, either through some form of punishment (the
stick) in parallel with strengthening enforcement mechanisms,
or restoring the incentive structure created by costs and benefits
of signaling so that the corrupt behavior is no longer beneficial
(the carrot).

6.1. The Stick: Punishing Corruption
One way to abolish corruption is by punishing corrupt behavior
directly, including regulation and taxation. Regulation takes

many forms in the body, both within and across cells, such as
the immune system detecting cancer cells by their novel antigens
and destroying them. Immunotherapies, drugs that boost the
immune system, can restore regulation often weakened through
deceptive signals by the cancer. In this section, we focus instead
on taxation. In society, taxes are a tool of the public sector to
guide behavior in socially preferred ways, which has no direct
parallel in the self-organized and decentralized body. We here
think of taxation as having been guided by natural selection that
has evolved policies to control corrupt actors much as laws and
societies constantly develop and learn to achieve the same ends.
In both cases, corrupt actors almost by definition are not playing
by the rules, and can findways to change their strategy to evade or
subvert the strategies, as the constant effort to suppress new forms
of tax fraud illustrates. However, such fraud requires altered
behaviors, such as hiring clever lawyers and fixers, that create
inefficiencies that parallel the costs of developing drug resistance.

We begin with two brief examples of the unintended
consequences of anti-corruption efforts in public policy (Fisman
and Golden, 2017). Due to rampant cheating on high school
exit exams in Romania, security cameras were introduced to
monitor students and teachers. Although cheating overall was
reduced, the policy disproportionately impacted the poorer
students because more affluent students were able to bribe
the enforcers individually without having to engage in more
detectable collusion like poorer students (Borcan et al., 2017).
In Ghana, the placement of observers at select polling locations
did succeed in reducing fraud at these locations, fraudulent
activity increased in neighboring, unobserved polling locations.
These examples illustrate two key points: (1) anti-corruption
measures can disproportionately impact certain groups and (2)
anti-corruption efforts are always under threat of subversion
by corrupt actors who find a way to modify their behavior to
evade them.

A related challenge arises with the use of targeted therapies
to treat cancer. Targeted therapies, from monoclonal antibodies
to small molecule inhibitors, have been at the forefront of the
precision medicine revolution, promising effective treatments
tailored to each patient’s unique genetic profile. In contrast
to chemotherapy that affects all rapidly dividing normal and
cancerous cells, targeted therapies attack pathways specifically
associated with the patient’s cancer. This reduces side effects and
should bemore potent than standard chemotherapy. Like specific
anti-corruption policies however, targeted therapies only attack
a specific form of corruption, and cancer cells can modify their
corruption strategy throughmutation or plasticity to avoid effects
of the drug, creating an opportunity to evade the treatment.
In a simple graphical model, an untreated cancer might grow
most quickly with a particular pathway tuned to an intermediate
value (Figure 3). Chemotherapy (blue line) reduces growth of
all cells below that needed for replacement (dashed gray line).
Targeted therapy (red line) lowers growth of the most rapidly
growing phenotype even further, but leaves a window of escape
for corrupt cells.

As an example, trastuzumab is a targeted therapy for
HER2+ breast cancer (Slamon et al., 2001). Despite being
initially highly effective, the majority of patients still experience
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FIGURE 3 | Hypothetical fitness landscape in response to therapy. The black curve represents the fitness of the cancer cells in the absence of therapy, which is

maximized for an intermediate value of some pathway trait. Targeted therapy, represented by the red curve, greatly diminishes the fitness of cancer cells with

intermediate trait values. However, in so doing, it leaves room for cancer cells with more extreme trait values to survive. The blue curve depicts the effects of

chemotherapy, which broadly reduces the fitness of all cells below a critical threshold, although not as dramatically as the targeted therapy on cells with intermediate

trait values.

disease progression within 1 year (Ellis and Hicklin, 2009).
This resistance emerges through a disturbingly wide array
of mechanisms: (1) mutation of the HER2 target to prevent
binding of the drug, (2) upregulation of downstream signaling
pathways, (3) upregulation of alternate growth factor signaling
pathways, and (4) inhibition of immune-mediated mechanisms
(Pohlmann et al., 2009). Imatinib was one of the first targeted
therapies, proving highly effective against BCR-ABL, a gene
highly overexpressed in almost every case of chronic myeloid
leukemia (Ellis and Hicklin, 2009). In this case, resistance
could be caused by (1) amplification of the BCR-ABL target,
(2) mutations in the BCR-ABL domain to prevent binding of
the drug, and (3) the emergence of BCR-ABL independent
pathways for signal transduction (Milojkovic and Apperley,
2009). Although targeted therapies can more efficiently kill
cancer cells while sparing healthy cells, they disproportionately
affect sensitive cells and provide opportunities for evolution of
new strategies that bypass the drug’s target molecule. Traditional
chemotherapy which simply targets rapidly dividing cells may
thus be more effective at keeping up with the cancer cell’s
evolution, recalling Haldane’s wonderful remark “It is much
easier for a mouse to get a set of genes which enable it to resist
Bacillus typhimurium than a set which enable it to resist cats”
(Lederberg, 1999).

In this context, we propose viewing cancer treatment as a
form of taxation. In order for cells to continue to survive and
proliferate under treatment, they must pay some cost, or tax, by
developing a mechanism of drug resistance. This can take forms
that include spending energy to upregulate production of the
target molecule or utilizing a less energetically efficient signaling
pathway to grow and divide. In economic terms, targeted
therapies act on elastic goods, goods that can be easily replaced by
alternatives if prices rise. Because targeted therapies focus on one
small aspect of complex, multi-agent signaling pathways, cancer
cells can evade the tax by shifting to an alternative. In contrast,
standard chemotherapies affect all rapidly dividing cells, agnostic
of the specific form of corruption of cancer cells. Thus, cancer
cells are left with the option of dividing less, exactly as we hope,
or mutating to defend against the drug’s effects, such as through
drug anti-porters (Lage et al., 1999; Tawbi and Buch, 2010; Jiang
et al., 2011), defective apoptotic pathways (Bedikian et al., 2006),
or the upregulation of survival signals (Lev et al., 2003). To
continue our economic analogy, chemotherapy acts on inelastic
goods, such as gasoline, whose consumption does not change
much as a function of price. Rather than switching to an alternate
pathway, standard chemotherapy forces cells to pay a price to
continue using the same pathways for growth and division. A
narrowly targeted tax is more effective when it works, but is easier
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to evade, while a broad tax affects the whole economy but is
more difficult to avoid. With cancer, these arguments for and
against traditional chemotherapy or targeted therapies depend
on how quickly the cancer can evolve or alter behavior to escape
treatment (Bukkuri et al., under review).

6.2. The Carrot: Changing Incentives
An alternative approach to prevent corruption changes the
incentive structure to remove the benefits of corrupt behavior.
In cancer, there are many ways to change the incentive structure
to reduce the benefit of rapid proliferation. We discuss three
approaches: oncogene-induced senescence (OIS), traditional
chemotherapy, and the sucker’s gambit. Although OIS can play
both pro- and anti-tumor roles (Gorgoulis and Halazonetis,
2010; Liu et al., 2018), we focus on its role in suppressing
excessive cell proliferation by arresting the cell cycle upon
recognition of aberrant oncogenic signaling (Zhu et al., 2020).
This effectively removes, or even reverses, any incentive to divide
faster. This layer of control must be weakened by mutation or
aging before oncogenes are selectively favored, and therapies
that could restore or replace these controls could thus obviate
the growth advantage of cancer cells. Chemotherapy that targets
rapidly dividing cells provides a crude way to replace these
controls, but at the cost of significant off-target side effects and
evolution of resistance. The most explicit therapeutic use of
this approach is the sucker’s gambit (Merlo et al., 2006), which
changes the selection pressures and incentive structures to select
for phenotypes which are easier to treat. For example, increasing
the concentration of glucose in a microenvironment changes
the underlying incentive structure to favor cancer cells with
high levels of GLUT1 receptors. Following this, administering
glucose starvation or GLUT1 inhibitor treatment can force
these cells to pay high and sometimes lethal costs for the
production and maintenance of these receptors (Bukkuri and
Brown, under review). Because cancer cells are short-sighted,
successive administration of therapies that impose opposite
evolutionary selection pressures on cancer cells can be effective.
In ecology, conservation biologists seek to avoid “ecological
traps,” where species choose poor habitats when faced by novel
species or habitat modifications (Schlaepfer et al., 2002), but such
traps could tempt unwanted species and help with their control.

Treatment necessarily alters the benefit structure, and ideally
can be used to sucker cancers into traps. One goal of modern
therapies is to weaken the benefits of evolving resistance or
evasion of therapy. We see analogies to education and public
policy realms. Campbell’s law states that the more a quantitative
social marker is used for social decision making, the more
it becomes subject to corruption that distorts the very social
process it is intended to monitor (Campbell, 1979). For example,
standardized testing can provide valuable information on student
performace, but only when teaching is aimed at general
competence. However, these quantitative measures soon became
goals of the teaching process, subject to corruption that can
actively degrade learning (Campbell, 1979). Schools and teachers
face immense pressures to produce high test scores, particularly
when tied to funding and bonuses (Nichols and Berliner, 2007),
leading to “teaching to the test” (Popham, 2001) and elimination

of subjects like social studies, music, foreign languages, and art
from curricula (Byrd and Varga, 2018). These high stakes tests
promote cheating, as discussed in the last subsection (Nichols
and Berliner, 2007), and high-priced preparatory classes taken
by students from more privileged backgrounds (Alon, 2009;
Buchmann et al., 2010). Alternatives include more individualized
assessments like portfolios (Kamenetz, 2015). We propose that
the way that we assess cancers and choose treatments might be
susceptible to Campbell’s law. What if cancers start “growing to
the test” and conceal their true size or state because it evades
our treatment, almost the same way that cancer can evade
immune responses?

7. DISCUSSION

If thought of narrowly as bribery, corruption provides a
poor model for cancer. However, we argue that corruption
is less about transfer of resources and more about breaking
the communication system and disrupting the reliability of
communication. In this sense, corruption is a violation of public
trust (Wedel, 2012), the trust in signal integrity that any complex
system relies on for coordination.

Evolutionary ecologists have identified five mechanisms that
maintain the integrity of signaling systems: reduction of conflict
of interest, costly signaling, saturating benefits, enforcement, and
physical constraints. Each of these is paralleled in the body,
and thus must be degraded by a surviving cancer. We propose
examples of each of these mechanisms in ecology and in the
body, and how they can be subverted. This approach provides an
alternative view of the hallmarks of cancer.

We think this view proposes several directions for therapy,
all of course building on prior work and ideas. First,
rather than focusing on a single corrupted signal, we could
use comprehensive approaches to recognize cancer through
disrupted signaling (Krakauer and Pagel, 1996). Potentially
dangerous lying, for example, can be recognized through the
“too many details” that liars pile on to convince themselves and
others (De Becker and Stechschulte, 1997). Cancer cells do not
send off a carefully orchestrated set of consistent signals, but a
welter of chemical noise that could be recognized through its
very incoherence (Sur et al., 2019). From this recognition, we
might be able to find ways to treat the resulting corruption of
the communication network. The disappointing performance of
VEGF inhibitors in effectively controlling cancer as monotherapy
(Comunanza and Bussolino, 2017), for example, could reflect the
challenge of placing such signal-disrupting therapies in the full
context of the network.

By viewing cancer therapy as a public policy problem, we
propose two main ways to combat corruption in our body:
punishing corruption directly (the stick), changing the incentive
structure so corrupt behavior is not favored (the carrot). As
punishment, we focus on treatment as a form of taxation,
showing how the very specificity and effectiveness of targeted
therapies might make them subject to escape: the cancer
equivalent of tax evasion. We advocate for careful consideration
of the evolvability of the cancer when deciding whether to
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administer traditional chemotherapy or targeted therapies. In
the case of altering the incentive structure, we describe how
oncogene-induced senescence and traditional chemotherapy can
change the incentives for cancer cells to proliferate rapidly.
We highlight how a sucker’s gambit therapeutic strategy can
combine these two approaches, tempting cancers with a carrot
and then slamming them with a stick to promote maximal
therapeutic efficacy.

Cancer treatment might benefit from other lessons from the
challenges of fighting corruption in the economic and political
spheres. Wedel (Wedel, 2012) describes the history of the
anticorruptionmovement that emerged at the end of the cold war
and found expression in Wolfensohn’s speech to the World Bank
in 1996. Of its four central assumptions, we find it remarkable
that three (except for the focus on public rather than private
sector corruption) have close parallels with cancer treatment, and
propose that questioning these assumptions might provide new
guidance for treatment.

1. Corruption happens to “the Other.” Anticorruption efforts
generally focus on distant nations with very different cultures
from the centers of economic power. Not only do those of
us fortunate enough to not have faced cancer tend to think
“it can’t happen to me,” but one can imagine that the body
itself sees an incipient cancer as happening elsewhere, rather
than permeating the entire system. Treatment that revives the
control mechanisms throughout the body, including sites of
potential metastases, could stop the spread of cancers.

2. Corruption is about bribery to individuals, often at lower
levels, rather than the system, and is illegal. Cancer treatment
focuses on cells within the tumor itself, and on ways that
cancers “break the rules” rather than on how they reshape the
body at all levels. Like much corruption, such as campaign
contributions, what cancers do is perfectly legal, and focusing
on consequences and mechanisms of corruption could be
more effective than a limited set of broken rules.

3. Corruption can be measured. This simple assumption reflects
the famous saying by business management guru Peter
Drucker, “If you can’t measure it, you can’t improve it.”
Indices, often derived from polls of business and political
leaders with their own biases, make corruption easy to
publicize in the media and compare across countries. As we
have seen, indices are subject to Campbell’s Law, effectively
corrupting the evaluation mechanism itself. Treatments based
on indices like specific biomarkers are subject to the same
logic, favoring tumors that evade the evaluation mechanism
itself (Staňková et al., 2019). More flexible cancer treatments
can anticipate the evasion that can emerge when we use a
specific marker to trigger treatment.

These approaches to corruption depend on the complexity of the
signaling system. Ants in small colonies with individual foragers
require and have fewer layers of control than those with extensive
division of labor, just as smaller organisms like mice require and
have fewer layers of cancer control than humans and elephants.
We expect all aspects of control, ranging from costs, benefits, and
enforcement to the modular structure of networks to also differ.
It is possible that the challenges of extrapolating treatments from
mice to humans are due as much to differences in these structural
aspects as they are to differences in molecular details.

A different sort of modification of network functioning
emerges with aging. The simultaneous degradation of signaling
and of the full set of control systems likely causes the rapid
increase of most cancers with age (DeGregori, 2018), and our
treatments need to reflect this slow corruption of the integrity of
the system. The danger of corruption in increasingly entrenched
bureaucracies could reflect a similar process. As institutions
develop into ever more complicated structures, corruption itself
may become more unequal because only the privileged and
well-connected can even figure out how to be corrupt.

In the long run, these general ideas need to be made
concrete with mathematical models that build on the literature
of corruption (Rose-Ackerman, 1975) and take a more
comprehensive view of cancer that includes resources, signaling,
and enforcement mechanisms in a framework that generates
unexpected novelty (Adler and Gordon, 2019). When these
models are linked to specific cancers, mechanisms, and
treatments, they can be used to propose improved approaches to
therapy that seek to restore balance to the whole patient.
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Dormancy is an inactive period of an organism’s life cycle that permits it to survive
through phases of unfavorable conditions in highly variable environments. Dormancy
is not binary. There is a continuum of dormancy phenotypes that represent some
degree of reduced metabolic activity (hypometabolism), reduced feeding, and reduced
reproduction or proliferation. Similarly, normal cells and cancer cells exhibit a range
of states from quiescence to long-term dormancy that permit survival in adverse
environmental conditions. In contrast to organismal dormancy, which entails a reduction
in metabolism, dormancy in cells (both normal and cancer) is primarily characterized by
lack of cell division. “Cancer dormancy” also describes a state characterized by growth
stagnation, which could arise from cells that are not necessarily hypometabolic or
non-proliferative. This inconsistent terminology leads to confusion and imprecision that
impedes progress in interdisciplinary research between ecologists and cancer biologists.
In this paper, we draw parallels and contrasts between dormancy in cancer and other
ecosystems in nature, and discuss the potential for studies in cancer to provide novel
insights into the evolutionary ecology of dormancy.

Keywords: dormancy, cancer, hypometabolism, quiescence, adaptation

INTRODUCTION

“You keep using that word. I do not think it means what you think it means.” From the character
Inigo Montoya, Princess Bride.

Most living organisms, from microbes to blue whales, experience temporal environmental
fluctuations. These fluctuations induce periods of stress due to extreme temperatures, lack of
resources, or disease. Dormancy, an evolutionary adaptation, enables organisms to survive through
stressful conditions, in part by decreasing metabolic activity to conserve energy. However, there is
a broad range of dormant states across taxa, which vary based on how long an organism remains
in dormancy, whether dormancy is induced prior to or in response to stress, the magnitude of the
response, etc. Despite attempts to devise a universal framework for animal dormancy (Wilsterman
et al., 2020), precise definitions remain challenging. Dormancy is further complicated by diverging
conceptualizations in other fields.
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Cancer dormancy often refers to a period of time, from
months, years, or even decades, between treatment of a primary
tumor and metastatic relapse. This could be due to isolated non-
proliferative cells that disseminated from the primary tumor
(cancer cell dormancy) or small non-expanding populations of
cancer cells (tumor mass dormancy). Although both of these
categories could result in clinically undetectable cancer, they
describe different biological mechanisms. This creates confusion
within the field about what is meant by “cancer dormancy,” and
between fields about how cancer dormancy relates to organismal
dormancy in other species. Furthermore, additional terminology
has been used to describe cancer cells that survive treatment or
other cellular stresses such as drug-tolerant persisters, hypoxia-
resistant cells, and polyaneuploid cancer cells (PACCs). These
descriptors and cell states add to the confusion owing to their
overlapping characteristics with dormant cancer cells, such as
cellular quiescence. Furthermore, this babel of terms and cell
states can stifle the exchange of ideas between cancer biologists
and other evolutionary ecologists.

In this paper, we take a critical look at the concept of tumor
cell dormancy, in its many guises. Although we are not the first
to point out the confusion associated with tumor cell dormancy
(Vallette et al., 2019; Phan and Croucher, 2020), we aim to help
clarify terminology by comparing it to key characteristics of
dormancy in nature. This is not to imply that cancer is not a part
of nature. It is. Rather we will use “in nature” as shorthand to
describe all natural systems other than cancer. In what follows,
we first examine how the term dormancy and related concepts
are used in organismal biology. We then examine the history
of the terms in cancer biology, with a focus on how those
uses compare to what the terms mean in the context of whole
organism biology and ecology. Finally, we discuss the mutual
benefit of studying dormancy as it applies to ecology and cancer
biology, and how experiments in cancer may help provide novel
insights into mechanisms that drive dormancy from cells to
organisms. Overall, we hope this paper provides a starting point
for ecologists to help understand the terminology used in cancer
biology and facilitate cross-disciplinary work on dormancy, while
simultaneously convincing cancer biologists of the benefits of
conceptualizing cancer dormancy using insights from ecology.

DORMANCY IN ORGANISMAL BIOLOGY

Dormancy is often used as an “umbrella” term indicating a
spectrum of inactive states characterized by reduced metabolism,
or hypometabolism, as adaptations to survive periods of reduced
resource availability or other adverse environmental conditions.
Dormancy also refers to specific states of hypometabolism in
both animals and plants (Table 1). The terms “dormancy”
and “torpor” are often used interchangeably in the organismal
literature. Dormancy encompasses many different hypometabolic
states that have evolved across widely divergent taxa. These
hypometabolic states exist along a continuum of metabolic
expenditure (Figure 1). From the extreme state of essentially
zero metabolic expenditure exhibited by bacterial endospores
and cysts, dormant states include seed dormancy, estivation,

TABLE 1 | Definitions of terms used in reference to states of reduced activity
and/or metabolism in cancer, microbiology, animals, and plants.

Term Definition

Aestivation
(estivation)

In insects, a state of reduced metabolic activity and reduced
physical activity in response to arid conditions and high
temperatures. In lungfish, a period of reduced feeding,
respiration, and movement in response to prolonged drought
and heat.

Brumation Winter dormancy of ectotherms like reptiles and
amphibians that is induced by low temperature.

Cyst A thick-walled, dormant structure produced by some bacteria
and protozoa capable of enduring challenging environmental
conditions, such as desiccation or high temperatures.

Diapause In insects, a state of delayed or suspended development or
growth, accompanied by reduced metabolic activity, that is part
of a developmental program and not triggered directly by
adverse environmental conditions.

Dormancy A state of hypometabolism used by animals and plants to
survive through adverse environmental conditions. Often used
interchangeably with torpor. In animals, dormancy can be of
short duration with only slight decreases in body temperature
and metabolic activity (shallow dormancy), or of long duration
with great decrease in body temperature and metabolic activity
(deep dormancy). In plants, dormancy is a state in which
seeds or other tissue reduce metabolic activity and cease
growth during hostile environmental conditions, such as winter
or drought. In cancer, may refer to tumor mass dormancy or
tumor cell dormancy. Tumor mass dormancy occurs when
cancer cell proliferation is balanced by cell death, resulting in a
non-expanding population of cancer cells. This could happen
due to poor vascularization (angiogenic dormancy) or control by
the immune system (immune-mediated dormancy). Tumor cell
dormancy is a state in which cells are quiescent and are often
assumed to have low metabolism.

Encystment Production of a resistant stage known as a cyst in some
bacteria, protozoa, plankton, and some invertebrates,
such as flatworms.

Endospore A resistant, dormant and non-reproductive structure produced
by some bacteria in the Firmicute family that ensure survival
through hostile environmental conditions.

Hibernation A state of greatly reduced activity, body temperature, metabolic
rate, usually entered seasonally.

Hypo-
metabolism

A state of reduced metabolic activity that includes a
coordinated suppression of most cell functions; may vary in
duration.

Quiescence In insects, a temporary reduction in metabolic activity and a
slowing or halt to development in response to adverse
environmental conditions. In plants, a repression of division in
undifferentiated cells in a plant’s meristem (tissue from which
new cells are formed). In cells, a reversible, non-proliferative
state during which cells are in the G0 phase of the cell cycle.

Resting egg An invertebrate egg that undergoes a period of dormancy
during which it is highly resistant to environmental conditions.

Torpor A state of lowered body temperature and metabolic activity
generally in response to challenging environmental conditions;
may be of short duration (hours), as in nightly torpor of
hummingbirds, or of long duration (days to weeks), as in
hibernation of many ground squirrel species. Often used
interchangeably with dormancy.

Where the word has different meanings contingent upon the organism or biological
application (bold), we include separate definitions for each. “Sharp lines and precise
definitions” for many of these terms do not exist, and many of these states may be
considered as part of a “coherent physiological phenomenon” (Schmidt-Nielsen,
1997, p. 279).
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FIGURE 1 | Continuum of metabolic states in organisms and cancer cells, from lowest (“deep dormancy”) to highest (“active”). The states below basal metabolic
rate (BMR) represent hypometabolic states. The metabolic continuum of cancer cells (teal) likely falls within a narrower range of metabolic states in organisms (black).
Created with BioRender.com.

diapause, quiescence, and hibernation. These diverse states
are difficult to place into well-defined categories with sharp
boundaries, and terminology can be confusing (Schmidt-Nielsen,
1997; Lee, 2009). Some of the characteristics that differentiate
these states include (1) whether an organism enters dormancy
prior to (obligatory) or in direct response to (facultative) an
environmental stress, (2) the duration of the response (3) the
reduction in metabolic activity, and (4) how resistant the state
is to predation or stress. Dormancy may be of short duration
(hours), as in the shallow or daily torpor of hummingbirds, or
of long duration (days to weeks to months to years), as in the
deep torpor associated with hibernation in mammals or seed
dormancy in plants (Melvin and Andrews, 2009). While the
manifestation of these states differs considerably among taxa,
dormancy shares various core elements across numerous taxa
(Melvin and Andrews, 2009; Villanueva-Cañas et al., 2014).
Shared elements include an integrated down-regulation of cell
functions, including cross-membrane transport, intermediary
metabolism (biochemical reactions that provide the cell with
metabolic intermediates), gene expression and protein synthesis,
and utilization of stored energy reserves. In the following, we
describe a subset of dormant states in organisms in order to give a
broad overview of the terminology, and include a more complete
set in Table 1. Although dormancy clearly is an adaptation
to minimize energy expenditure during adverse environmental
conditions, it comes with some costs, including the cost of
arousal through endogenous heat production and vulnerability
to predators (Withers and Cooper, 2010).

Most plant species produce seeds that exhibit a period
of complete metabolic dormancy following dispersal from
the mother plant (Bewley, 1997; Baskin and Baskin, 2004).
In temperate regions and deserts, many plants themselves
enter a dormant stage (Rohde and Bhalerao, 2007), in which
photosynthetic and other metabolic activity cease or are reduced
to very low levels. In winter dormancy, woody plants like trees

and shrubs typically drop their leaves, and many herbaceous
plants survive the winter below ground as roots while letting their
aboveground biomass whither.

Many microorganisms, including bacteria and protists,
differentiate into a metabolically inactive and highly resistant
state when faced with starvation or inhospitable environmental
conditions (Sadoff, 1975). The most resistant state, produced
by some bacteria, is known as an endospore. The endospore
may exist for centuries, during which time they “exhibit
complete metabolic dormancy and extreme resistance to multiple
environmental insults” (Mury and Popham, 2014). A similar
resistant state, known as a cyst, resting egg, or resting stage,
is also common in a variety of protists (Corliss, 2001; Ross and
Hallock, 2016), and phyto- (Ribeiro et al., 2011; Ellegaard and
Ribeiro, 2018) and zooplankton (Gilbert, 1974; Ricci, 2001).

Among insects, estivation is a dormant state that manifests
as quiescence, a short period of moderately depressed metabolic
rate triggered by unfavorable environmental conditions (Masaki,
2009); or diapause, a prolonged period of suppressed metabolism
and arrested development (Denlinger, 2009; Lee, 2009). Diapause
may be facultative or obligatory, and generally is expressed in
a particular life stage, which varies among taxa. Depending
on the taxa, the egg, larval, or adult life history stage may
undergo diapause.

Perhaps the type of dormancy that is most familiar among
people generally is hibernation (deep torpor)— classically
exhibited by ground squirrels (e.g., Punxsutawney Phil of the
movie Groundhog Day) and carnivores like bears. Hibernation
in this sense appears inextricably tied to endothermy, as
hibernation involves a shallow to a deep decline in body
temperature (Lyman et al., 1982). In its most extreme
manifestation thus documented, the arctic ground squirrel
(Urocitellus parryii) drops its core body temperature from 37
to −1.9◦C during its nine month hibernation (Barnes, 1989).
Because many species inhabiting subtropical and tropical
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regions exhibit hypometabolism generally associated with winter
dormancy, many investigators now believe that hibernation is
a flexible phenotypic response to scarce resources and energy
conservation instead of a direct response to cold temperatures
(Martin and Yoder, 2014).

QUIESCENCE AND DORMANCY IN
NORMAL CELLS

As with whole organisms, quiescence and dormancy are terms
commonly used to describe a growth arrested state in mammalian
cells including hematopoietic stem cells, lymphocytes, and
fibroblasts. Quiescence is a reversible, non-proliferative state in
response to nutrient deprivation (e.g., glucose, insulin, amino
acids), mitogen or growth factor deprivation, loss of adhesion, or
contact inhibition (Valcourt et al., 2012; Yao, 2014). Quiescence
is essential for tissue homeostasis and regulation of the immune
and wound healing response (Valcourt et al., 2012; Fiore et al.,
2018). Gene expression, metabolism, and cell cycle re-entrance
dynamics vary widely among quiescent clonal cell populations
depending on the signal that initiated quiescence. As with
dormancy in organisms, quiescence describes a collection of
diverse states (Yao, 2014). However, cellular quiescence may
not include hypometabolism, or a shutting down of metabolic
functions outside of proliferation.

Hematopoietic stem cells (HSCs) regulate hematopoiesis, the
production of billions of blood cells each day. In vivo mouse
studies suggest that there are two populations of HSCs that
control homeostasis and are maintained in adjacent “niches”.
Short-term (“active”) HSCs are capable of self-renewal and divide
frequently to replenish blood cells daily. Long-term HSCs may
divide only five or so times per lifetime, or they can be activated
to proliferate in response to injury. These long-term HSCs have
been termed “dormant” (Wilson et al., 2008; Li and Clevers,
2010). Dormant HSCs exhibit a decreased metabolism as a
result of reduced ribosomal biogenesis and DNA replication
and are highly dependent on autophagy for survival (Wilson
et al., 2008; Valcourt et al., 2012). Maintaining dormant HSCs
is evolutionarily advantageous because it decreases the risk for
oncogenic mutations and helps prevent stem cell depletion
(Wilson et al., 2008).

Further down the hematopoietic lineage, lymphocytes,
components of the adaptive immune response, are maintained in
a quiescent state until activation by antigen presentation (Bryder
et al., 2006). Quiescent lymphocytes are small in size and have
few membrane glucose transporters, especially in the absence
of growth factors (Valcourt et al., 2012). Quiescent lymphocytes
depend on autophagy to obtain carbon sources for ATP
production, which is synthesized by oxidative phosphorylation
(Valcourt et al., 2012). Upon activation, glucose transporters
increase and lymphocytes produce ATP by glycolysis (Valcourt
et al., 2012). Lymphocyte quiescence prevents cell exhaustion and
autoimmune disease.

Human dermal fibroblasts are maintained in a quiescent
state that is characterized by their secretion of extracellular
matrix. Wounding induces fibroblast activation and proliferation

to coordinate wound-healing. Quiescent and activated dermal
fibroblasts have similar metabolic rates, which suggests that
hypometabolism is not necessarily associated with cellular
quiescence (Valcourt et al., 2012). Unlike HSCs and lymphocytes,
quiescent fibroblasts are not dependent on autophagy for
survival and uptake glucose at rates comparable to proliferating
fibroblasts (Valcourt et al., 2012). Multiple external cues,
including contact inhibition and mitogen withdrawal, induce rat
embryonic fibroblast to enter a non-proliferative quiescent state
(Kwon et al., 2017). Fibroblasts that remain quiescent for longer
move into a deeper quiescence and require greater stimulation or
more time to reenter the cell cycle following serum stimulation
(Kwon et al., 2017). As in organismal dormancy, quiescence in
fibroblasts is heterogeneous and may entail a reactivation cost in
deeply quiescent cells. However, unlike in organismal dormancy,
deeply quiescent cells may remain metabolically active.

QUIESCENCE AND DORMANCY IN
CANCER CELLS

Mechanisms that regulate quiescence in normal cells provide
insights into the pathways that promote quiescence in cancer
cells. Cancer cells simply use or repurpose the processes,
epigenetics, and genetics of normal cells. In normal cells, the
trigger to divide or go quiescent is regulated by the availability of
mitogenic growth factors, nutrients, and space. Loss of sensitivity
to anti-growth signals is a hallmark of cancer (Hanahan and
Weinberg, 2000) and a key aspect of tumorigenesis. Yet, the
natural history of carcinogenesis and cancer eco-evolutionary
dynamics do not always conform to continuous monotonic
growth. The cancer cells making up a tumor live within a
highly dynamic and interactive microenvironment consisting of
fibroblasts, endothelial and inflammatory cells, growth factors,
cytokines, vasculature, and lymph vessels. Collectively these
constitute the tumor ecosystem. Fluctuations or interruptions
in blood flow across a tumor or within regions of a tumor,
lack of nutrients or space, or adverse interactions with normal
cells can force cancer cells, and sometimes the tumor population
as a whole, to pause rapid proliferation (Zahl et al., 2008;
Almog, 2013; Hahnfeldt, 2013). Following treatment, a patient’s
cancer may remain clinically undetectable for months, years, and
perhaps even decades (Aguirre-Ghiso, 2018). The disease seems
to persist in a cell-arrested or non-proliferative state that is often
referred to as “dormancy.”

In 1934, Willis (1934) suggested “dormant” tumor cells as
those that disseminated from the primary tumor and remain
in a growth-arrested state. Twenty years later, Hadfield (1954)
proposed that dormant tumor cells are in a temporary state of
mitotic arrest. More recently, experimental models of dormancy
have revealed that tumor dormancy may result from a balance
between cell proliferation and death so that the tumor mass (i.e.,
small population of cancer cells) maintains a constant size. This
balance may result from poor vascularization that limits nutrient
availability to cells (Gimbrone et al., 1972; Wheelock et al., 1981)
or from control by the immune system (Weinhold et al., 1979;
Wheelock et al., 1981).
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Cancer dormancy is thus divided into two categories (see
Figure 2): (1) non-proliferative cancer cells persisting over a
long period of time without dying (cellular dormancy) and (2)
populations of cancer cells with cell proliferation balanced by cell
death (tumor mass dormancy) (Enderling et al., 2012; Aguirre-
Ghiso, 2007). Both of these categories may result in clinically
undetectable cancer. The mechanisms producing them, however,
are distinct and may present unique therapeutic opportunities.
While dormant cancer cells are often assumed to have a
lower metabolism, few studies have empirically quantified their
metabolic activity (Endo et al., 2014; Carcereri de Prati et al.,
2017). On the other hand, population-level dormancy includes
metabolically active, proliferating cells. Because this concept
of tumor population-level dormancy diverges from organismal
dormancy, we do not further discuss it herein.

While the concept of cellular dormancy is often used in the
context of disseminated cancer cells, drug-tolerant persisters and
PACCs also exhibit a state that is stress resistant, quiescent, or

dormant (Vallette et al., 2019; Pienta et al., 2020a). Because of
their potential parallels to organismal dormancy, we consider
these cells in our discussion below.

Disseminated Tumor Cells
Disseminated tumor cells (DTCs) are cancer cells that have
detached from the primary tumor and spread to other locations
in the body through the circulatory system. DTCs may exist,
undetected, in a non-proliferative state for extended periods,
referred to as cancer cell dormancy. The microenvironment
within the target organ in which the DTCs survive appears to
play a critical role both in regulating the apparently dormant
state of the DTCs, and their re-awakening into a proliferative
state (Linde et al., 2016). Dormant DTCs may elude detection and
attack by the adaptive immune system, and later be “reawakened
by innate immune cells (neutrophils) responding to non-tumor
inflammation” (Aguirre-Ghiso, 2018). Following reawakening,
the active DTCs proliferate into metastases. Whether DTCs

FIGURE 2 | Characteristics of cancer dormancy. Cancer dormancy describes either a small population of cells or individual cell dormancy. Small population level
dormancy could either imply that the tumor mass maintains a constant size through balanced birth and death (turnover), or the tumor mass consists of a group of
dormant cells (no turnover). Each dormant cell in the group may have the same characteristics of individual cell dormancy (black dotted arrow). Imposed
response represents a form of dormancy that results from the absence of an environmental factor (a germination cue) required to break dormancy (e.g., the
absence of oxygen in hypoxic environments, like waterlogged soils). Parallels between organismal dormancy and cancer dormancy exist at the individual level in
which dormancy is an adaptive response. Organismal dormancy (red dashed ring) is a state characterized by reduced metabolism, no feeding, and a
reactivation cost. In organisms, depth of dormancy increases as metabolic activity, body temperature, and sensitivity to growth signals decreases (deeper
dormancy = darker teal). Cancer cells may have additional traits associated with quiescence or dormancy (purple boxes). Exogenous factors that prevent cancer
cells from feeding include lack of resources or glucose transporters. The different aspects of dormancy depicted do not imply a series of physiological processes but
the different depths of dormancy attained by different organisms.
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detach early or late in the evolution of the primary tumor
could also impact their potential to respond to dormancy cues,
with late DTCs having greater metastatic growth potential either
due to their later stage of evolution or the creation of pre-
metastatic niches by early DTCs (Sosa et al., 2014). The processes
of dissemination, dormancy, and reawakening may have critical
clinical and therapeutic relevance.

The metastatic spread of cancer bears great resemblance to
seed dispersal in plants or spores of microbes. The “seed and
soil” hypothesis proposed by Paget (1889) suggests that the
pattern of spread of the DTCs (“the seeds”) within the body of
a patient is due to the preferential growth and survival of DTCs
within certain microenvironments (“the soil”), which could
explain why particular cancers only metastasize in certain organs
(e.g., prostate-to-bone). In plants, seeds (or microbial spores)
disperse over short or long distances. Dispersed seeds can either
immediately germinate or remain dormant. Delayed germination
is beneficial to the plant. When seeds do not germinate at the
same time they reduce competition, sib-sib competition, and
spread the risk. Furthermore, dormancy and dispersal allow seeds
to escape from unfavorable conditions or arrive at favorable
conditions in time and space.

Similar to plant seeds, DTCs colonize microenvironments
that may be favorable or unfavorable for growth. Like many
cases of seed or spore dispersal, the vast majority of circulating
tumor cells die and never become DTC’s, but a tiny fraction
may (Luzzi et al., 1998; Chambers et al., 2002; Lloyd et al.,
2017). Microenvironments colonized by DTCs that are “non-
permissive” for growth (e.g., hypoxic regions), activate stress
signaling pathways that induce the DTC to enter quiescence
(Aguirre-Ghiso, 2007). DTCs also colonize microenvironments
where stem cells are found (stem cell niches) where signals that
control HSC dormancy induce their dormancy. Because dormant
HSCs can be found in hypoxic regions, these microenvironments
may not be mutually exclusive (Lévesque et al., 2010). Although
dormant DTCs are often assumed to be in a hypometabolic
state, confirming this assumption is hampered by limited in vivo
models. Insights into the metabolic state of the subset of DTCs
located in hypoxic regions may be inferred from the metabolism
of hypoxia resistant tumor cells.

Hypoxia Resistant Tumor Cells
While DTCs may become dormant in certain regions of
an organ that are hypoxic, cancer cells of actively growing
tumors also experience hypoxia through temporal variations in
intratumoral blood flow and instability of vasculature (Gillies
et al., 2018). Although many tumor cells die in hypoxic
environments, some survive by entering a state referred to
as dormancy. Because few in vitro models of tumor cell
dormancy exist, understanding the properties of these dormant
cells is challenging. Existing evidence suggests that these cells
undergo cell-cycle arrest in the G0/G1 phases or greatly reduce
proliferation (Carcereri de Prati et al., 2017).

Hypoxia-resistant cells have a lower metabolism, as indicated
by an 80% decrease in glucose consumption and lower pyruvate
and lactate production (Endo et al., 2014; Carcereri de Prati et al.,
2017). During chronic hypoxia, hypoxia-resistant cells upregulate

autophagy to obtain nutrients despite the lower consumption
of glucose (Carcereri de Prati et al., 2017). When hypoxia-
resistant cells are reoxygenated, their proliferation rate returns
to normal after a short delay. The reversibility of their decreased
proliferation (Endo et al., 2014; Carcereri de Prati et al., 2017)
thus requires metabolic activation and cell remodeling. Hypoxia-
resistant cells are more resistant to chemotherapy, either because
of their low proliferation rate or because the drug cannot reach
the hypoxic regions of the tumor. While some cancer cells enter
quiescence or proliferate more slowly under chronic hypoxia,
cancer cells may utilize anaerobic glycolysis under acute hypoxia,
increasing glucose uptake and lactate production (Endo et al.,
2014). Hence, the duration of hypoxia influences the metabolic
activity of cancer cells in hypoxic environments.

Polyaneuploid Cancer Cells
Polyaneuploid cancer cells are aneuploid (have abnormal number
of chromosomes) and undergo whole genome doubling in
response to stress (Pienta et al., 2020a). These correspond to
what others have described as polyploid giant cancer cells and
persister cells (Illidge et al., 2000; Puig et al., 2008). They form
from the fusion of 2N cells or from failed cytokinesis resulting in
poly- or mono-nucleated polyaneuploids. This reversible state is
also characterized by G0 cell cycle arrest (quiescence), increased
cell size, and increased metabolic activity (distinguishing it
from other quiescent states that are hypometabolic) (Pienta
et al., 2020a). Once the stress is removed, and this can be
months, PACCs re-enter the cell cycle and bud off non-polyploid
(2N) progeny. They themselves do not proliferate as PACCs
begetting PACCs. Such highly metabolic, resource uptaking, non-
proliferative life history states have been found in a variety
of taxa including bacteria (Valderrama et al., 2019), protists
(Parfrey and Katz, 2010), fungi (Anderson et al., 2015), and
plants and robustly permit survival to microenvironmental and
therapeutic stress (Pienta et al., 2020a). It has been proposed
that PACCs serve a decisive ecological role of allowing for
increased storage, cell function, metabolic rate, and protection
from stressors such as hypoxia, pH, metabolites, oxidative
stress, and therapeutics. Evolutionarily, they increase heritable
variation, permit self-genetic modification, and new functionality
(see Table 1 from Pienta et al., 2021). The stress response in
PACCs is reminiscent of organisms that undergo facultative sex
such as Daphnia magna (“water fleas”), which can reproduce
sexually and asexually based on environmental conditions.
In good conditions, D. magna reproduce asexually to create
clones, whereas under adverse conditions (e.g., cold or dry)
they reproduce sexually to produce resting/diapausing eggs
that are wrapped in a tough protective shell until conditions
improve (Gerber et al., 2018). Sexual reproduction during adverse
conditions permits genetic recombination, which, by increasing
genetic diversity, may increase survival in a possibly altered
environment following “awakening” from diapause.

Drug-Tolerant Persisters
In cancer biology, “drug-tolerant persisters” refer to a
subpopulation of cancer cells that are reversibly tolerant to
treatment due to non-mutational mechanisms such as epigenetic
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reprogramming (Sharma et al., 2010). This terminology is
analogous to bacterial “persister cells,” a small subset of
antibacterial tolerant cells. Bacteria persisters form either
stochastically or in response to antibiotic treatment, are slow
dividing or growth arrested, and resume growth and drug
sensitivity once the antibiotic is removed (Fisher et al., 2017).
While there is no single definition of drug-tolerant persisters,
four properties distinguish this state from cancer cell dormancy:
(1) slow proliferation, (2) decreased sensitivity to treatment, (3)
restoration of drug sensitivity and cell proliferation following
treatment, and (4) contribution to genetic resistance (Shen S.
et al., 2020). Slow-proliferation may not be sufficient for persister
cells to survive therapy; evasion of therapy may also necessitate
minimizing glucose consumption, changing their cell identity
via the epithelial-to-mesenchymal transition, or interacting with
other cell types in the tumor microenvironment (Shen S. et al.,
2020). Most of these studies use 2D cultures, where drug-tolerant
persisters are rare and result from stochastic epigenetic states
(Sharma et al., 2010). However, recent studies suggest that in
3D cultures, treatment persistent residual tumors emerge and
adopt a program similar to embryonic diapause, a reversible
state of paused development in epiblasts that is triggered by
adverse conditions (Dhimolea et al., 2021; Rehman et al., 2021).
Similar to embryonic diapause, these “treatment persistent
organoids” are characterized by quiescence or slow-cycling,
downregulated metabolic and biosynthetic activity, increased
cell adhesion, and increased autophagy (Dhimolea et al., 2021;
Rehman et al., 2021). Thus, treatment persistent organoids
may use an evolutionarily conserved mechanism that promotes
survival under stress. An open research question concerns the
degree to which persister cells in cancer and other microbial
systems are polyaneuploid and vice-versa. Possible differences
relate to whether these non-reproductive cells are polyploid
or not, whether such cells are hyper- or hypo-metabolic, and
whether such cells facilitate surviving unfavorable conditions as
well as accelerating evolutionary changes such as drug resistance
(Pienta et al., 2020b). For those studying these phenomena in
yeast and bacteria, cancer may provide an ideal complementary
experimental model organism (see section “Comparison of
Dormancy in Other Organisms and in Cancer”).

Comparison of Dormancy in Other
Organisms and in Cancer
Although direct parallels are few, many characteristics of
quiescent cancer cells overlap with characteristics of dormant
states in organisms (Figure 2). One similarity is that the duration
of the response varies, with the longest duration associated
with DTCs in cancer (months to decades) and endospores
in organisms (centuries). While few studies in cancer have
quantified some of the key traits of organismal dormancy
including hypometabolism and reactivation cost, there is some
evidence of these characteristics in hypoxia-resistant tumor cells
(Endo et al., 2014; Carcereri de Prati et al., 2017). Like cysts and
endospores, cancer cells may morphologically change in response
to stress: hypoxia-resistant cells can have a longer shape and
higher volume of cytoplasm compared to cells in non-resistant

populations (Carcereri de Prati et al., 2017), drug-tolerant
persisters may change their cell identity through epithelial-to-
mesenchymal transition, and PACCs morph from a 2N state into
a polyploid state (Pienta et al., 2020b).

On the other hand, even though hypoxia-resistant tumor
cells have a lower metabolism, they may still be taking up and
metabolizing nutrients since there is not a complete depletion
of glucose consumption. This is in contrast to organisms, which
are in a non-feeding state when they are dormant. Furthermore,
some quiescent cancer cells such as PACCs may not be in
a hypometabolic state. Lastly, in comparison to hibernators,
whether cancer cells acquire and store energy prior to dormancy
is not known, though they often rely on autophagy for survival
(Carcereri de Prati et al., 2017). While the cardinal characteristic
of organismal dormancy is hypometabolism, the primary feature
of cancer cell dormancy is non-proliferation. Dormancy in
cancer is only loosely associated with hypometabolism and lack
of feeding, and the continuum of metabolic states in non-
proliferative or slowly dividing cancer cells likely falls within a
narrower range compared to organisms (Figure 1).

Yeast (Saccharomyces sp.) may provide some of the most direct
comparisons between cancer cell and microbial cell dormancy
(Hohmann and Mager, 2007). For instance when used for
producing ethanol, the yeast must be able to tolerate and respond
to temperature, oxidative, ethanol, and osmotic stressors (Saini
et al., 2018). In response, yeast can exhibit the continuum of
maintaining proliferation and activity under stress, reducing
proliferation or switching to sexual reproduction (form haploid
spores through meiosis that can combine to form the diploid
state), changing metabolic state (i.e., via activation of heat shock
proteins), forming PACC-like polyploids, or reducing metabolic
activity and engaging in autophagy.

Evolutionary Ecology of Dormancy
Strategies
Variability in environmental conditions is common to all
ecosystems, creating favorable and unfavorable periods for
growth and survival. Natural ecosystems outside of cancer
frequently experience temporal fluctuations in temperature and
precipitation; in cancer, unpredictable patterns of blood flow
cause temporal variations in nutrients, growth factors, pH,
oxygen, and immune infiltration. Under these circumstances,
dormancy is an adaptation that generally serves four possible
functions: (1) bet-hedging, (2) avoiding over-crowding, (3)
avoiding sib-sib competition, and (4) hunkering down and
surviving unfavorable times (Simpson, 2007; Shefferson et al.,
2018). The first three functions can select for a dormancy
fraction where some of the population remain in an active state
while others remain dormant. The fourth represents predictive
dormancy where the organism or cancer cells have time to
respond to the unfavorable conditions, and furthermore, can
assess when conditions have improved. Cancer cells do exhibit
predictive dormancy, may exhibit bet-hedging, and at present,
there have been no experiments, to our knowledge, that would
show whether cancer cells engage in dormancy to avoid over-
crowding or sib-sib competition.
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All of the above are in response to temporal variation. What
of spatiotemporal variation? Venable and Brown (1988) used
a mathematical model to predict how dormancy and dispersal
traits in the seeds of annual plants co-adapt. As temporal
autocorrelations decrease dormancy should be favored. In the
absence of spatial autocorrelations and when spatial variability is
on a smaller scale dispersal is favored over dormancy. Dormancy
and dispersal can complement or substitute for each other,
though not entirely. Snyder (2006) explores whether the presence
of dormancy reduces the need for dispersal (Snyder, 2006). In
terms of dispersal, cancer cells do exhibit stochastic and directed
movement (chemotaxis) (Roussos et al., 2011; Sung and Weaver,
2017). But these movements, while large in relation to normal
cells, are virtually sedentary compared to motile protists with
cancer cells showing migration speeds of 0.4 µm per minute
(Shen Q. et al., 2020), close to a body length per hour. This
is one to three orders of magnitude slower than the speed
of amoeboid cells (Van Haastert, 2011; Ildefonso et al., 2019).
Dissemination in the blood as circulating tumor cells represents
a long range dispersal that leads to highly improbable success.
The extent to which cancers rely on dispersal as an adaptation
to avoid spatiotemporal variability should be investigated in
the context of dormancy. Regardless, dormancy should provide
a prime adaptation for managing environmental uncertainty
in cancer cells.

Most of our examples from nature and cancer have involved
the use of predictive dormancy to respond to predictable or
stochastic environmental variability. Ample evidence in terms
of arrested cell cycles, PACCs, persister cells, and shifts toward
autophagy show that cancer cells will cease proliferation and
enter into some form of dormancy under harsh conditions.
What of bet hedging? Bet-hedging is a strategy that evolves
in unpredictably varying environments where expected fitness
(arithmetic mean fitness) is sacrificed to reduce the temporal
variance in fitness (geometric mean fitness) (Brockmann, 1987;
Philippi and Seger, 1989) and was first proposed to explain why
some plant seeds immediately germinate while others lie dormant
(Cohen, 1966).

There can be “diversifying bet-hedging” where fractions of
the population remain in different states regardless of current
conditions. These states (e.g., fixed dormancy and germination
fractions in annual plants) tradeoff fitness during good times
and fitness during bad times (Childs et al., 2010; Starrfelt
and Kokko, 2012). The bacteria Bacillus subtilus, like desert
annuals, shows some stochastic sporulation regardless of nutrient
conditions (Grimbergen et al., 2015). Similar examples can be
found for the social amoeba Dictyostelium discoideum (Martínez-
García and Tarnita, 2017), a marine amoeba Flabellula baltica
(Fenchel, 2010), and in budding yeast Saccharomyces cerevisiae
(Bagamery et al., 2020).

Diversifying bet-hedging in cancer does occur. PACCs have
been identified as a small but ever-present fraction of the
cancer cell population even in the absence of a major stress
such as therapy, nutrient deprivation, or hypoxia (Lin et al.,
2020). Cell culture experiments of dormancy show that during
serum deprivation, a small proportion of cancer cells remained
proliferative. Furthermore, when serum was replenished, a minor

(but non-zero) proportion of cells remained non-proliferative
(Barney et al., 2020). Some of these differences could arise
due to the stochasticity in gene expression which generates
phenotypic differences in cells that have the same genotype
(Viney and Reece, 2013). Protein synthesis can promote rapid
divergence so that sister cells are no more similar to each other
than randomly chosen cell pairs (Spencer et al., 2009). Simons
and Johnston (1997) suggest developmental instabilities as a
source of diversifying bet-hedging, and the genetic instability
of cancer cells may provide for bet-hedging through offspring
with diverse heritable traits. Miller et al. (2020) explore
how diversifying bet-hedging might promote coexistence of
different cancer cell types as has been suggested for microbes
(Jones and Lennon, 2010).

Conservative bet-hedging strategies involve a single state for
the population where its trait value enhances survival under bad
conditions while sacrificing opportunities during favorable times
(Haaland et al., 2019, 2020). While most organisms’ traits are a
likely compromise between variable conditions, it can be hard
to determine when such traits strictly tradeoff arithmetic with
geometric mean fitness. Simons and Johnston (2003) provide
an example with Indian tobacco Lobelia inflate where flowering
time, while suboptimal in most years, serves well during bad
years. Putative traits in cancer have not been studied in detail
within the context of conservative bet-hedging. Pseudohypoxia
has been proposed as such a case. Here, the cancer cells maintain
high HIF-1 expression as a response to hypoxic conditions
even under normoxia (Pressley et al., 2021). Other traits could
include those associated with the maintenance of high levels
of membrane pumps and metabolism to respond quickly to
stochastic variation in the presence of toxins, low pH, damaging
levels of oxygen free radicals, and even drug therapy. These
traits are straying from dormancy per se but represent potentially
critical forms of bet hedging. Dormancy strategies likely best fall
into diversifying bet-hedging.

DISCUSSION—FROM ECOLOGY TO
CANCER AND BACK AGAIN

Cancer cells exist in a highly dynamic ecosystem where they
experience both competition and cooperation with nearby cells.
Increased understanding of the ecology and evolution of cancer
is leading to new treatment strategies, like adaptive therapies
that exploit cancer cell competition (Gatenby et al., 2009; Silva
et al., 2012; Zhang et al., 2017). Similarly, better understanding
dormancy from an ecological perspective may help devise new
approaches to target these cells by exploiting the mechanisms that
promote their awakening, maintenance, or eradication. Many
advances have been made through interdisciplinary approaches
between ecologists and cancer biologists. For such efforts
to be fruitful, however, collaborators must possess a mutual
understanding of technical terms such as “dormancy” and speak
a common language. We believe that if the cancer biology
community adopted a more precise definition of dormancy that
also includes issues of reduced feeding, metabolism, robustness,
stress tolerance, and reactivation costs rather than just lack of
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proliferation, then it would ease the journey of ecologists trying
to contribute to cancer research.

For the evolutionary ecologist interested in testing models
and ideas pertaining to dormancy, cancer provides diverse
experimental approaches. Cancer research can provide a rich
spatial and temporal resolution of data not typically attainable in
other natural or laboratory systems. In contrast to field studies,
experiments can be replicated within the same cancer under
a more controlled setting. Cancer biology may thus provide
multiple avenues for testing both ecological and evolutionary
theories of dormancy that are difficult to address otherwise.
For example, cancer cell dormancy occurs de novo across a
vast array of cancers, including multiple myeloma, prostate
cancer metastasis to the bone, and breast cancer metastasis to
the bone, lung, and brain (Phan and Croucher, 2020). This
broad occurrence of dormancy could allow for the exploration
of differences in how dormancy is regulated between cancers
or metastatic sites, and whether those mechanisms resemble
known regulation mechanisms found across taxa in organismal
dormancy. Because cancers evolve rapidly, experimental cancer
systems provide opportunities to test hypotheses regarding the
environmental characteristics that select for the evolution of
dormancy as an adaptation. Studying the evolution of cancer
cell dormancy may provide novel insights into the evolution of
dormancy at the organismal level.

Research on cancer brings an array of technologies for
conducting experiments in mice (Lee et al., 2018), in organoids, as
3-D spheroids, or more traditional 2-D culture techniques. RNA
sequencing (RNA-Seq) technologies permit measuring single
cell expression of genes associated with cellular metabolism,
proliferation, and cell membrane activity (Recasens and
Munoz, 2019). Methylation profiling (Ferrer et al., 2020) and
whole-genome or targeted genome sequencing can identify
heritable differences between cancer cells within a cell line
or between cell lines with diverse ecological properties (e.g.,
contrasts between breast cancer cells lines such as the highly
glycolytic MDA-MB-231 and the non-glycolytic MCF-7). The
Seahorse XF extracellular flux analyzer can measure single
cell metabolism of cancer cells in different metabolic states,
from different clones, or different cell lines (Bhatia et al.,
2021). Immunohistochemical staining of cell cultures of
histology preparations can identify metabolic markers of cell

proliferation, metabolism, and other cellular properties that
may be relevant to dormancy. Finally, selection experiments
in the lab on cancer cell lines generally produce significant
heritable changes within months. In this way, the technologies
and resources available for cancer research may facilitate
research on the evolutionary drivers of dormancy, just as
understandings of dormancy in nature can add conceptual
and terminological rigor to the insights gained from studying
cancer dormancy.
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Intratumoral molecular cancer cell heterogeneity is conventionally ascribed to the
accumulation of random mutations that occasionally generate fitter phenotypes. This
model is built upon the “mutation-selection” paradigm in which mutations drive ever-
fitter cancer cells independent of environmental circumstances. An alternative model
posits spatio-temporal variation (e.g., blood flow heterogeneity) drives speciation by
selecting for cancer cells adapted to each different environment. Here, spatial genetic
variation is the consequence rather than the cause of intratumoral evolution. In nature,
spatially heterogenous environments are frequently coupled through migration. Drawing
from ecological models, we investigate adjacent well-perfused and poorly-perfused
tumor regions as “source” and “sink” habitats, respectively. The source habitat has
a high carrying capacity resulting in more emigration than immigration. Sink habitats
may support a small (“soft-sink”) or no (“hard-sink”) local population. Ecologically, sink
habitats can reduce the population size of the source habitat so that, for example,
the density of cancer cells directly around blood vessels may be lower than expected.
Evolutionarily, sink habitats can exert a selective pressure favoring traits different from
those in the source habitat so that, for example, cancer cells adjacent to blood vessels
may be suboptimally adapted for that habitat. Soft sinks favor a generalist cancer
cell type that moves between the environment but can, under some circumstances,
produce speciation events forming source and sink habitat specialists resulting in
significant molecular variation in cancer cells separated by small distances. Finally, sink
habitats, with limited blood supply, may receive reduced concentrations of systemic
drug treatments; and local hypoxia and acidosis may further decrease drug efficacy
allowing cells to survive treatment and evolve resistance. In such cases, the sink
transforms into the source habitat for resistant cancer cells, leading to treatment failure
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and tumor progression. We note these dynamics will result in spatial variations in
molecular properties as an alternative to the conventional branched evolution model
and will result in cellular migration as well as variation in cancer cell phenotype and
proliferation currently described by the stem cell paradigm.

Keywords: cancer heterogeneity, cancer vascularity, branching clonal evolution, source-sink habitats, cancer
ecology, cancer evolution

INTRODUCTION

Regional variations in the molecular properties of cancer
cells have been well established and are usually ascribed
to accumulation of genetic changes, often called branched
evolution, as each mutation initiates a new species (Fisher
et al., 2012; Gerlinger et al., 2012; Zhang et al., 2019). This
conceptual model is built upon the gene centric view of
evolution, summarized as “mutation-selection,” in which cancer
cells experience random mutations at a rate higher than normal
cells and each mutation is then subject to selection by the overall
tumor environment. Though most mutations are deleterious,
the rare mutation that increases fitness will allow increased
proliferation producing a genetically distinct subpopulation and,
therefore, observable regional genotypic variations.

However, this paradigm (Archetti, 2013; Scott and Marusyk,
2017; Hinohara and Polyak, 2019) tends to neglect the role
of spatio-temporal heterogeneity in environmental selection
forces as a driver of evolution. In general, the fitness of any
cancer cell is defined by the interaction of its phenotype
with local environmental conditions. As conditions change
in space so will the optimal phenotype of the cancer cells.
Thus, natural selection may favor genetically and molecularly
distinct cancer cells phenotypically suited to the local habitat
type. But, these local habitat-specific cancer cell populations are
not completely isolated. They are connected and more or less
coupled through migration, the dispersal of individuals between
habitats (Figure 1). Here we explore migration as a previously
unrecognized driver of intra-tumoral evolution (Winker, 2000).

Initially described by Pulliam (1988), local movement of
individuals can connect adjacent habitats with very different
properties. For example, a “source habitat” has favorable
environmental conditions and, therefore, a positive per capita
population growth rate. Within tumors, a source habitat might
be one that is well perfused with a large carrying capacity.
In contrast, a “sink habitat” has unfavorable environmental
conditions in which net mortality exceeds reproduction resulting
in a higher within-habitat death than birth rate. In tumors,
this would correspond to a region with little or no blood flow
resulting in environmental conditions that, in the absence of
migration, supports few if any cancer cells. When physically
adjacent, these disparate habitats can be coupled through
migration; and, within these metapopulations, a large fraction
of individuals may reside in habitats that are, in the absence
of migration, insufficient to maintain a net positive growth
rate. Furthermore, consistent movement between habitats
may alter the evolution of cancer cell phenotype resulting
in habitat specialization or a single generalist cancer cell

type whose adaptations balance exposure to both habitats
(Holt and Gomulkiewicz, 1997).

In nature, it has been demonstrated, both theoretically (Brown
and Pavlovic, 1992) and empirically (Boughton, 1999), that
source-sink dynamics can act both spatially (Holt, 1985) and
temporally (Johnson, 2004) to profoundly influence regional
metapopulations residing in and moving between different
habitats (Gravel et al., 2010). In particular, migration between
habitats can result in speciation and subsequent co-existence of
multiple different species. Thus, in addition to mutation, genetic
drift and natural selection, evolutionary ecologists have come to
recognize migration as a significant evolutionary force (Brown
and Pavlovic, 1992). As noted by Brown and Pavlovic (1992)
“when viewed as a property of the environment rather than a
force of evolution, migration becomes part of the circumstances
to which evolution by natural selection responds.”

Within tumors, the ability of individual cells to migrate
(typically ∼ 5 to 10 µm/h) is recognized as a critical phenotypic
adaptation for survival and cancer progression (Yamaguchi et al.,
2005; Polacheck et al., 2013; Te Boekhorst et al., 2016; Paul et al.,
2017; Staneva et al., 2019)). Migration is typically associated
with epithelial-to-mesenchymal transition, wherein the latter
phenotype is motile (Dongre and Weinberg, 2019). Once it
arrives at a novel location or tissue, the cell can undergo the
reverse: a mesenchymal to epithelial transition. Furthermore, the
cancer stem-cell paradigm (Li et al., 2007; Walcher et al., 2020;
Wang et al., 2020) posits a stem cell niche from which non-stem
cells migrate (i.e., phenotypically distinct and not self-replicating)
into adjacent tumor regions (Borovski et al., 2011). Here we note
that “stem cells” may indeed be cells that occupy a source habitat
and migration of these cells into a sink habitat produces both the
phenotypic variation and reduced proliferative capacity described
in the stem cell paradigm.

The specific source-sink dynamics depend highly on the
characteristics of the sink environment. A black-hole or hard-
sink habitat cannot sustain a viable population in the absence
of continued immigration. Regardless of population size, in a
hard sink, the individuals will experience a negative per capita
growth rate. Within tumors, this would correspond to a region
with little or no blood flow resulting in environmental conditions
with a carrying capacity that is near zero. Migration from the
source habitat can maintain a population within the sink habitat.
The existence of multiple microscopic clusters of viable cells
within macroscopic “necrotic” areas of tumors is well known in
pathology (Jardim-Perassi et al., 2019). Hard sink habitats can
provide some return migrants to the source habitat, influencing
evolution, and even ecologically rescuing a source habitat from a
catastrophic perturbation (Holt et al., 2004).
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FIGURE 1 | (A) A histological section showing spatial variations in intratumoral habitats. Cellular density is high in the upper left indicating a well perfused tumor
region. The lower and right side of the images shows regions in which most cells are necrotic indicating little perfusion. (B) A dorsal window chamber view of a tumor
grown in a mouse expressing endothelial GFP. Tumor cells are shown in white. As with the histological staining there is a clear well perfused vascular edge with a less
dense avascular internal region and a necrotic core. Migration rates of ∼ 5 to 10 µm/h allow for individual cells to traverse within and between these habitats.

Alternatively, the less favorable habitat may act as a “soft”
sink, which can support a viable population, albeit one that is
much smaller than the source habitat. Asymmetries in population
sizes or migration rates means that more individuals move
from the richer habitat to the poorer than vice-versa. Under
density dependent population growth, this means the system
equilibrates to a steady state in which the source habitat is
underpopulated (below its carrying capacity) and the sink habitat
is overpopulated (above its carrying capacity). Source and sink
habitats may exert selection for quite different phenotypic and
genotypic properties; so much so that there is a potential for
speciation and diversification (Cure et al., 2017).

We propose source-sink dynamics contribute to the spatial
variability in molecular properties of cancer cells observed within
and between tumors in the same patient. Some regions of a
tumor and regions of the body represent hard sinks in which a
dispersing cancer cell faces near immediate death upon arrival.
For example, circulating tumor cells may extravasate (exit the
circulating system) into a tissue totally unsuitable for survival
so that a metastases never forms. Within the tumor, necrotic
zones provide a hard sink. Examples of soft sink habitats may
include poorly vascularized tumor regions or perhaps inflamed
but otherwise normal tissue at the tumor edge.

Here, we illustrate the eco-evolutionary dynamics associated
with source sink dynamics in black-hole, hard- and soft-
sink circumstances. We focus on how migration into a sink
habitat influences 1) local and total population sizes, 2) possible
extinction of the entire population, 3) evolution of a trait
that influence fitness in both the source and sink habitats, 4)
speciation under conditions of a soft-sink habitat, and 5) eco-
evolutionary responses to therapy that target the source habitat
or the predominant cancer cell type. Results from goals 1–4
will be familiar to those familiar with the expansive literature
on source sink dynamics (Diffendorfer, 1998). We demonstrate
how source-sink dynamics are applicable to cancers and can

produce the observed spatial variations in genetic and phenotypic
properties of cancer cells, and suggest critical issues in designing
patient treatment strategies.

MATERIALS AND METHODS

Here, we model a source habitat and consider three variations of
an adjacent sink habitat: a black-hole sink, a hard sink, and a soft
sink (Gravel et al., 2010; Borovski et al., 2011; Gerlinger et al.,
2012). In all cases the source habitat will generally be A and the
sink B. When habitat B is a black hole sink, any cancer cell that
migrates from A to B dies instantly. When habitat B is a hard
sink, cancer cells cannot proliferate but they may die off slowly
at some fixed per capita rate. When habitat B is a soft sink, it
can sustain a smaller population of cancer cells than habitat A
and becomes a sink habitat only because of the disproportionate
number of migrants into B than out of B.

Within habitat A and within habitat B when it is a soft sink,
cancer cells directly compete for space and limited resources.
While these cancer cells do not directly compete with cells in
the other habitat, they interact indirectly due to the dispersal of
cancer cells between the source and sink regions. This dispersal
is represented by a per capita migration rate that describes the
probability that an individual in one habitat migrates to the
other. This migration rate can also represent the habitat shifting
underneath stationary cancer cells, such as when vasculature
becomes unstable, shifting the boundary between well perfused
and poorly perfused microenvironments.

The competition of cancer cells within a habitat and migration
between habitats is analyzed using a game theoretic approach
in which a G function couples ecological (population) and
evolutionary (strategy) dynamics (Vincent and Brown, 2005).
This framework is built upon the three principles of Darwin’s
theory of natural selection: there must be heritable variation,
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there must be a “struggle for existence” (i.e., limited resources and
space prevent all populations from growing exponentially), and
heritable variation must influence this struggle. In the G function
approach, one considers a focal (or virtual) cell with strategy
(= heritable phenotype), v, which, along with the strategies (u)
and densities (NA,NB) of competing cancer cell populations,
determines the cell’s expected fitness or proliferation rate. For
example, u may represent expression levels of key proteins
implicated in cellular proliferation. Here, we let u = (u1, ...un)
be the vector of strategies of the n different species where ui
represents the strategy of species i = 1, ..., n. Note that the length
of this vector can change dynamically in time: as species diversify
or go extinct, the vector will correspondingly expand or shrink.
Here, we assume that species are identical except for the values of
their strategies. Let NA =

(
N1

A, ...,Nn
A
)

and NB =
(
N1

B, ...,Nn
B
)

be
the vector of population sizes in the source habitat A and the sink
habitat B, where Ni

A represents the population size of species i in
habitat A. Let FA and FB describe the fitness of a cancer cell in
the source (A) and sink habitats (B), respectively. We assume that
fitness within a habitat is only influenced by the cells within that
habitat where FA (v, u, NA) and FB (v, u, NB).

We assume random migration between the two habitats where
mA is the per capita migration rate of cells from habitat A to
habitat B, and vice versa for mB. We assume these migration
rates are constant but this could be relaxed to include density-
dependent habitat selection (Rosenzweig, 1981; Tarjuelo et al.,
2017) and migration rates themselves could become a component
of the heritable strategy (Morris, 1991; Schmidt et al., 2000).
The number of cells in the source increases as the source cells
proliferate, and through incoming migration from the sink. The
number of cells in the source decreases due to outgoing migration
to the sink. These dynamics also apply, respectively to the sink.
The change in population size of each habitat can be written as:

dNi
A

dt
= Ni

A FA (v, u, NA)|v=ui −mANi
A +mBNi

B

dNi
B

dt
= Ni

B FB (v, u, NB)|v=ui −mBNi
B +mANi

A

To simulate the eco-evolutionary dynamics of cancer cells,
we treat our habitats as different states in the life history of
cancer cells, coupled via migration. This framework allows us to
capture the population dynamics of cancer cells with a population
projection matrix. Each entry in the matrix represents transitions
between the two life history states. An ecologically inclined
reader may notice that this is analogous to the Leslie matrix
for structured populations. Our population projection matrix,
denoted by P, can be written as:

P =
[

FA −mA mB
mA FB −mB

]
Then, we can represent our population dynamics as dNi

A
dt

dNi
B

dt

 = P

(
Ni

A
Ni

B

)

Though we can use this matrix to simulate population dynamics,
we must still construct a fitness function to capture strategy
dynamics. We can define this fitness function as the dominant
eigenvalue of the population projection matrix since this is what
controls (approximates) long-term behavior (Vincent et al., 1993;
Vincent and Brown, 2002). In other words, we have

G (v, u,NA, NB) = max(Re(λi))

where λi are the eigenvalues of P. Then, the evolutionary
dynamics of ui depends on the local gradient of the G function:
how the fitness of the cells change due to perturbations in the trait
value and the rate at which cells can climb this fitness gradient.
Mathematically, the evolutionary dynamics of species i can be
formalized (Vincent et al., 1993) as:

∂ui

∂t
= c ∗

∂G
∂u

∣∣∣∣
v=ui

where c is a measure of additive genetic variance, in accordance
with Fisher’s fundamental theorem of natural selection. The ∂G

∂u
term captures the local gradient of the fitness generating function
at v = ui. To reiterate, a cell’s fitness, G (v, u, NA, NB), depends
on its own strategy, v, the strategies of the other tumor cells,
u, and the population sizes of tumor cells in the source habitat
(A) and the sink habitat (B), NA and NB. The fitness generating
function, G, describes the ecological (changes in total and local
population size, NA, NB), and ∂G

∂u describes the evolutionary
dynamics (changes in the populations heritable strategy values,
u). If at v = ui, G (v, u, NA, NB) = 0 then Ni

A and Ni
B,

the total population size of species i, will increase and vice-
versa for G < 0. The direction of the strategy dynamics can
be seen by the adaptive landscape which plots G versus the
focal cell’s strategy, v, while holding the other cells’ strategies (u)
and population densities (NA,NB) constant. A species strategy
ui will climb the adaptive landscape until the system reaches
a stable point where it is both evolutionarily (∂G/∂u|v=ui = 0)
and ecologically stable (∂Ni

A/∂t = ∂Ni
B/∂t = 0). As u, NA, NB

change, so too does the entire adaptive landscape, sometimes
dramatically (Vincent and Brown, 2005).

We now consider the eco-evolutionary outcomes when the
system starts with just a single species: n = 1. Interestingly, the
eco-evolutionary stable point can occur at either a minimum
or a maximum of the adaptive landscape (Cohen and Brown,
1999). If the stable point is at a maximum of the landscape
where (∂2G/∂u2 < 0), the cancer cells have evolved to their
evolutionary stable strategy (ESS) (Vincent and Brown, 1988).
On this other hand, if the stable point is at a minimum of
the landscape (∂2G/∂u2 > 0), the cancer cells might speciate
(= evolutionary branching, Geritz et al., 1998), creating two
distinct cancer cell types or “species” each with its own
unique strategy u1 and u2. These species will climb to their
respective peaks of the adaptive landscape to reach their own
unique ESS. Hence, when there is just one species: u = u1 and
NA = N1

A, NB = N1
A. When there are more than one species

u, NA, NB becomes vector valued. Each species will have its own
strategy and its own population distribution between the source
and sink habitats.
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The habitat-specific population dynamics dNA
dt and dNB

dt , and
habitat-specific fitnesses FA and FB, for the black-hole sink, hard
sink, and soft sink are described in Box 1. We set rA = rB = 0.025
(many patient’s tumors experience growth at rates of 2.5 % per
day) as the maximum growth rate of each habitat. The functional
forms for carrying capacities and death rates are provided in
Box 1. The strategy of the focal cell, v, influences either its
habitat-specific carrying capacity or habitat-specific death rate:
KA(v), KB(v), and dB(v). For the relationships between KA(v) and
KB(v) and v, we use a quadratic equation. The parabolas were
scaled so that at v = 1, KA(1) = 100 (maximum achievable
carrying capacity in habitat A) and KB(1) = 25 (the less well
perfused habitat can support just 1/4 as many cells when the
cells are best adapted for A). At v = 0 (best adapted for habitat
B), we let both habitats have the same carrying capacity of 50:
KA(0) = KB(0) = 50. Thus, as v goes from 0 to 1 the cancer
cell’s carrying capacity in habitat A goes from 50 to 100, and its
carrying capacity in habitat B declines from 50 to 25 (Figure 2).

To determine the effects of migration on the dynamics of
the evolutionary game, we numerically solved for the ESS.
We consider values for mA and mB in the range from very
slow migration (mA = mB = 10−4) to very fast migration
(mA = mB = 100). We initialize each numerical run of the model
by assuming that the cancer cells originate primarily in the source
habitat A. In this way, we set the population density in habitat
A to relatively full, NA(0) = 95, habitat B to relatively empty
NB(0) = 5, and all cells with the strategy that maximizes fitness
in habitat A, v = 1 at time zero.

Modeling Treatment
The models for the black-hole, hard and soft sinks in Box 1
determine the cancer’s ecological and evolutionary dynamics
in the absence of patient treatment. Within the context of
the soft-sink model, we consider two types of treatment,
habitat dependent and cancer cell phenotype dependent. Habitat
dependent treatments are more effective in the source habitat
than the sink habitat and have been previously modeled
(Fu et al., 2015; Moreno-Gamez et al., 2015). In cancer,
chemotherapeutic drugs perfuse more thoroughly through
regions near the vasculature (source habitat) than habitats

farther from vasculature (sink habitat). The diffusion dynamics
that reduce nutrient concentrations away form blood vessels
also reduces the concentration of systemically delivered drugs
(Perez-Velazquez and Rejniak, 2020).

We additionally present a model for phenotype dependent
treatment, where drug efficacy depends on the strategy of
the cancer cells. This represents a targeted therapy that is
maximally effective for a given strategy value and drug efficacy
then declines as the cancer cells’ strategy deviates from the
therapeutically optimal value.

To consider a habitat-dependent treatment, we add a death
term that represents a habitat-specific therapy-induced death
rate:

dNi
A

dt
= Ni

AFA −mANi
A +mBNi

B − γANi
A

dNi
B

dt
= Ni

BFB −mBNi
B +mANi

A − γBNi
B

where γx represents the fraction of cells that die due to treatment
in habitats A and B. We set γA = 0.05 and γB = 0 due to the
increased delivery of drug to the well vascularized source habitat.

We model strategy dependent treatment as:

dNi
A

dt
= Ni

AFA −mANi
A +mBNi

B − γ (v)N
i
A

dNi
B

dt
= Ni

BFB −mBNi
B +mANi

A − γ (v)N
i
B

where γ (u) captures how effective the treatment is as a function
of the cancer cell strategy, v. Specifically, we use the following
form for γ (v) :

γ (v) = γMexp(−
(
v− vopt

)2

σt
)

where γM represents maximal drug efficacy set here to 0.05, vopt
is the cancer cell strategy at which the drug is maximally effective
(v = 1), and σt is a measure of how “general” the treatment is set
here to 0.05. As the cancer cell’s strategy deviates from vopt , drug
efficacy declines according to a Gaussian curve. Figure 3 depicts
the shape of this functional form.

BOX 1 | Mathematical model of all three sink habitat scenarios including the population dynamics, habitat fitness functions, and the properties of the habitats with
respect to a cell’s strategy.

Black-Hole Sink Hard Sink Soft Sink

Population Dynamics
dNi

A
dt = Ni

AFA −mANi
A

dNi
A

dt = Ni
AFA −mANi

A +mBNi
B

dNi
B

dt = Ni
BFB −mBNi

B +mANi
A

dNi
A

dt = Ni
AFA −mANi

A +mBNi
B

dNi
B

dt = Ni
BFB −mBNi

B +mANi
A

Habitat fitness FA = rA
(

KA(v)−NA
KA(v)

)
FA = rA

(
KA(v)−

∑n
j=1 Nj

A
KA(v)

)
FB = −dB (v) FA = rA

(
KA(v)−

∑n
j=1 Nj

A
KA(v)

)
FB = rB

(
KB(v)−

∑n
j=1 Nj

B
KB(v)

)
Habitat properties KA (v) = aKA × (v − hKA)

2
+ kKA

KA (v) = aKA × (v − hKA)
2
+ kKA

KB (v) = adB ×
(
v − hdB

)2
+ kdB

KA (v) = aKA × (v − hKA)
2
+ kkA

KB (v) = akB ×
(
v − hkB

)2
+ kkB

aKA = −50

hKA = 100

kKA = 1

aKA = −50 adB = 0.01

hkA = −50 hdB
= 0

kKA = 100 kdB = 0.005

aKA = −50 akB = −25

hkA = −50 hkB
= 0

kKA = 100 kkB = 50
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FIGURE 2 | Habitat properties for the source and sink habitats defined in Box 1. The source habitat, which is the same for all three sink habitat analyses, has a
maximum carrying capacity at a strategy equal to 1. This carrying capacity then falls as the strategy moves away from strategy value 1 toward a minimum carrying
capacity of 50 with a strategy equal to 0. For the hard sink dynamics, habitat B is defined by a death rate. Here the death rate is minimized at a strategy equal to 0.
This death rate increases at the strategy moves away from 0 to a maximum death rate of 0.015 at a strategy equal to 1. Lastly, the carrying capacity of the soft sink
habitat B has a maximum of 50 at a strategy equal to 0. As the strategy moves toward 1, the carrying capacity falls to a value of 25.

RESULTS

Black-Hole Sink
The black hole sink supports no population. From the perspective
of the source population, migration to the black-hole sink
represents a per capita death rate, shown in Figure 4. From the
perspective of the cancer patient, any movement of cancer cells
into surrounding tissue or extravasation of CTCs into completely
inhospitable tissues is beneficial.

The ESS for all values of mA is u∗ = 1, as there is no
tradeoff for balancing fitness in the source versus the sink habitat.
With very slow migration rates, mA = 10−4, the source habitat
can maintain a population density very close to its carrying
capacity. As the migration rate increases, the ESS population
size falls until a critical value of mA = rA = 0.025. When the

FIGURE 3 | Targeted therapy efficacy as a function of trait value. Therapeutic
efficacy is maximized when v = 1 and drops off in a Gaussian fashion as trait
values diverge from v = 1.

migration rate is greater rA, the sink habitat will drain the source
population to extinction.

Hard Sink
In a hard sink, the ESS is significantly altered by the migration
rates. Due to cells’ exposure to the sink habitat B where the
strategy that maximizes fitness is u∗ = 0, the ESS u∗ is not always
equal to 1 (Figure 5). In general, when mA is very low, regardless
of the migration rate mB, the ESS is u∗ = 1, as cancer cells mostly
reside in and experience habitat A. When the migration back
to the source, mB, is negligible, we can again see the critical
mA = rA = 0.025 where, the source habitat drains the source
habitat to extinction.

In the absence of migration from the sink habitat to the source,
the hard sink acts like the black hole sink with the exception
that during the transient dynamic to extinction, there can still
be a sizable population in the sink habitat. Such transients are
difficult to detect from histologies of biopsy samples, though
indirectly one may be able to estimate birth and death rates
of cancer cells from immunohistochemical stains such as Ki67
(a proliferation marker) and CC3 (an apoptosis marker of cell
death) (Johnson et al., 2019).

When there is migration from the sink back to the source,
then the eco-evolutionary prospects of the source habitat and
tumor change dramatically. This becomes of interest as cancer
cell movement from necrotic regions (micro-scale or large scale)
or regions of hypoxia is likely within tumor microenvironments,
especially when cancer cells remain relatively stationary while the
habitats themselves form and shift in space.

Of most interest is when the migration rates mA and mB are
such that the source population supports a population in the sink
habitat. Under these migration rates, the ESS is a compromise
between u∗ = 0 and u∗ = 1. A generalist species evolves that
sacrifices carrying capacity in the source habitat for survivorship
in the sink. In this way, the presence of a hard sink habitat
pulls the ESS of the entire population, including those cells
in the source habitat, away from the optimal strategy of the
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FIGURE 4 | Ecological and evolutionary ESS of a black-hole sink. Left panel shows the ESS population density in the source habitat as a function of migration rate.
As migration rate increases, more cells are constantly migrating out of Habitat A resulting in a lower sustainable population. Right panel shows that for every value of
migration rate, the ESS value is equal to 1, as this strategy maximizes the carrying capacity in the source habitat.

source habitat. Survival and reseeding from the sink becomes
ecologically and evolutionarily consequential.

For example, Figure 6 shows how the adaptive landscape,
cancer strategy value, and habitat-specific population sizes

FIGURE 5 | Evolutionary stable strategy in the presence of a hard sink for all
combinations of mA and mB. With both migration rates slow (bottom left
corner) the ESS remains equal to one as the exposure to the sink habitat is
minimal. This is the same for the upper left corner where cells migrate at a
slow rate out of habitat A and quickly migrate back, again minimizing the
exposure to the sink habitat. In the lower right, the population can not survive
as cell migrate quickly out of the source habitat and get ‘stuck’ in the hard
sink, eventually dying before being able to return to the source where
proliferation is possible. In the upper right corner where cells are migrating
back and forth between the habitats quickly, the exposure to the sink habitat
pulls the ESS u* away from 1 and toward the ESS of the sink habitat
which is 0.

change over time for mA = mB = 10−1. When the source habitat
starts out relatively full and the sink habitat relatively empty, all
cells have a strategy maximizing fitness in the source habitat,
the adaptive landscape shows that decreasing the strategy value
will increase overall fitness, G. The cancer cells’ strategy climbs
the adaptive landscape until the slope of the landscape is zero
(∂G/∂u = 0) and the population sizes equilibrates so that fitness
is 0 (G = 0). The ESS at this stable point is u∗ = 0.5358, and
the distribution of individuals between the two habitats is N∗A =
63.18 and N∗B = 58.57.

This generalist strategy of u∗ = 0.5358 allows for a total
population size of N∗ = 121.75 that is greater than the maximum
population that can be sustained by the source habitat alone,
100. For all combinations of mA ≈ mB where both are greater
than ≈ 10−2, the total ESS population size is greater than 100,
reaching a maximum possible N∗ of 124.1 (Figure 7). With a
sufficiently low dB (v) , the sink habitat can even harbor more
individuals than the source habitat. For these reasons, the sink
habitat can influence the ESS by selecting for a population wide
u* < 1. This evolution allows the sink habitat to become a
large reservoir of cells that can repopulate the source habitat
following perturbations such as therapy. Population size alone
cannot be used to infer which microhabitats in tumors are
sources and hard sinks.

Soft Sink
In a soft sink, both habitats can support a population
independently, allowing for positive per capita growth rates in
each habitat when population sizes are small. This creates an
opportunity not available in black hole or hard sinks for the
ESS to contain two species when migration rates are relatively
low. For example, Figure 8 shows the adaptive landscape and
evolutionary dynamics over time for mA = mB = 10−3. Under
the initial conditions, where habitat A is relatively full, habitat B
relatively empty, and all cells have a strategy maximizing fitness
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FIGURE 6 | Ecological and evolutionary dynamics in the presence of hard sink where mA = mB = 10−1. (A) Population dynamics of habitat A and B showing the
quick migration out of the initially large source population to fill the sink habitat followed by dynamics toward the stable population densities. (B) The strategy value
over time decreases away from 1 to a generalist strategy between 0 and 1. (C) The adaptive landscape at the initial conditions, where the source habitat is relatively
full, the sink habitat is relatively empty, and all cells have a strategy maximizing fitness in the source habitat shows that fitness could be greatly increased by
decreasing the strategy value and climbing the adaptive landscape. (D–F) As time progresses the strategy value climbs to an ESS of u∗ = 0.5358. Supplementary
Movie 1 provides a movie of the panels presented in (C–F).

FIGURE 7 | ESS population density of habitat A, habitat B, and the total combined population in the presence of a hard sink. The population is specialized to habitat
A when the migration rate mA is relatively low (lower left quadrant and upper left quadrant of each panel) reaching the carrying capacity of habitat A with relatively low
density in habitat B. When the migration out of the source habitat A is fast and there is low migration back from the sink (lower right quadrant), the population
declines to extinction. When there is a balance of migration rates (upper right quadrant), a generalist strategy allows for cells in both habitat A and habitat B, resulting
in a total ESS population greater than would be available with only the source sink.

in habitat A, the adaptive landscape shows that decreasing the
strategy value will increase fitness. Interestingly, the convergent
stable point is at a minimum of the landscape (∂2G/∂u2 > 0), and
the cancer cells should speciate, creating two distinct populations
or “species” each with its own unique strategy. These species
climb their respective peaks of the adaptive landscape to reach
an ESS with two species.

Each species becomes a specialist on their respective habitat.
In this way, species 1 has a strategy of u∗ ≈ 1 that maximizes
carrying capacity in habitat A, while species 2 has a strategy of
u∗ ≈ 0 that maximizes carrying capacity in habitat B (bottom
left corner of Figure 9). In cancer, this likely explains some of
the heterogeneity in cancer cell types (Lloyd et al., 2016), and is

most likely to promote diversity when habitats are relatively large
and contiguous, thus reducing migration rates between them. In
line with this, secondary tumors in different tissue types from
the primary tumor will evolve cancer cells with quite distinctive
phenotypes appropriate to the specific tissue type (Klein et al.,
2002; Quinn et al., 2021). Such divergences have also been seen in
3-D cancer cell culture experiments (Ruud et al., 2020).

When migration rates are relatively high for both mA and mB,
the rapid movement of cells between habitats selects for a single
generalist species (upper right corner of Figure 9). Interestingly,
when mA and mB are at opposite extremes (consider the upper
left corners and lower right corners of Figure 9) the ESS
tends to specialize on the habitat with high immigration and
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FIGURE 8 | Ecological and evolutionary dynamics in the presence of soft sink where mA = mB = 10−3. (A) Population dynamics of habitat A and B showing habitat
B filling up with migrant cells from the source habitat A, then both cell populations maximizing their respective carrying capacities after speciation. (B) The strategy
value over time, showing a speciation event at around time 1000. These dynamics are seen in the panels (D–G) with respect to the underlying adaptive landscape.
(C) The population densities broken down between both species and habitat. Species 1 is the only species filling both habitats before the speciation event.
Afterwords, habitat B is filled with species 2 having a strategy equal to 0 maximizing fitness in this habitat, while habitat A remains filled with species 1. (D) The
adaptive landscape at the initial conditions, where the source habitat is relatively full, the sink habitat is relatively empty, and all cells have a strategy maximizing
fitness in the source habitat shows that fitness could be greatly increased by decreasing the strategy value and climbing the adaptive landscape. (E) The population
evolves to a minimum in the adaptive landscape. (F,G) Speciation occurs and the individual species climb their respective peaks. Supplementary Movie 2 provides
a movie of the panels presented in (D–G).

low emigration. For example, the upper left corner has high
immigration into habitat A from habitat B, and low emigration
from habitat A to habitat B. Here we see the ESS selects for
u∗ = 1, which is the optimal strategy for habitat A. The same is
true, but opposite for the lower right corner.

The migration rates favoring a single generalist, single
specialist, and speciation to two coexisting specialist species are
shown in Figure 10.

For the adaptive landscape example shown in Figure 8
where mA = mB = 10−3, the total ESS population is N∗ = 144.2,
well above the carrying capacity of the source habitat alone
(Figure 11). In the single specialist regions, the total population is
near or a little above the carrying capacity of the habitat to which
the species is specialized. The region where a single generalist
strategy is the ESS, like that in the hard sink, can also sustain total
populations greater than each of the habitats individually.

It is important to note that if each habitat can support
individuals alone, the definition of the source and sink habitat are
context dependent. There are indeed regions where the migration

rates and populations in each habitat make habitat B the source
where FB > 0 and habitat A the sink where FA < 0.

Consequences of Habitat-Dependent
and Phenotype-Dependent Therapies
Witihin the context of a soft-sink, we set migration values to
mA = mB = 10−3 so as to be in the speciation regime of the
phase portrait, and analyze the eco-evolutionary dynamics of
cancer cells under two types of therapy: habitat dependent and
phenotype dependent. First, we consider habitat treatment under
which all species in habitat A (the source habitat) are subject
to the effects of therapy, regardless of their strategy. Species in
habitat B are not directly affected by this treatment. In ecology,
this is analogous to the application of pesticide to a portion
of farmland. In cancer, it pertains to the pharmacokinetics of
drug delivery through vasculature and the size of the tumor.
The drug may only reach certain areas of the tumor at high
concentrations (source habitats) but is unable to permeate other
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FIGURE 9 | ESS in the presence of a soft sink. Due to the possibility of speciation, the strategy for both species 1 and species 2 are shown independently in the first
two panels, and the differences between them is shown in the right panel. Where the population is specialized to habitat A (upper left quadrant) the single species
ESS converges on u∗ = 1. Where the population is specialized to habitat B (lower right quadrant) the single species ESS converges on u∗ = 0. Where the population
takes a single generalist approach (upper right quadrant) the ESS compromises and converges to a strategy between 0 and 1. Where the population speciates
(lower left quadrant), each species converges to strategy that maximizes fitness in their respective habitats: u∗ = 0 and u∗ = 1.

regions of the tumor (sink habitats), sheltering these cells from
the effects of therapy.

To simulate habitat treatment, we simply eliminate 5% of
the cells in habitat A at each time step in the simulation. This
changes the source habitat into a sink habitat and vice versa.

FIGURE 10 | In a soft sink, migration rates, mA and mB, determine whether
the ESS has a single generalist species, single specialist species, or
speciation resulting in the coexistence of two specialist species. The
population is specialized to habitat A (upper left quadrant) when the rate of cell
migration out of habitat A is low and the rate of cell migration back into habitat
A is high. Alternatively, the population is specialized to habitat B (lower right
quadrant) when the rate of cell migration out of habitat B is low and the rate of
cell migration back into habitat B is high. When the migration between both
habitats in low, the population speciates with each species specializing on one
habitat. In the other regions, the ESS converges to a single generalist species
with a strategy that represents a compromise between the two habitats.

As such, cells in habitat A go extinct, while the cell populations
in habitat B remain at their carrying capacity (Figures 12A,C).
Since habitat A can no longer support any cells, species 1, which
formerly specialized in habitat A, evolves toward a strategy of
v = 0 converging on that of species 2 (Figure 12B). Even as
species 1 evolves toward specializing on habitat B its population
declines, potentially to extinction, as a consequence of species
2 already being a habitat B specialist. The ESS goes from two
specialist species prior to therapy to a single specialist species
following therapy. These changes can clearly be seen in the
adaptive landscapes (Figures 12D–G). Before the application of
therapy (Figure 12D), there exist two peaks on the adaptive
landscape: one at v = 1, habitat A which species 1 occupies, and
one at v = 0, habitat B which species 2 occupies. However, once
therapy is administered, the two peaks of the adaptive landscape
change into a single peak at v = 0, corresponding to being a
habitat B specialist. Species 1 is initially entirely unfit for this
habitat (Figure 12E), but eventually evolves (Figure 12F) and
converges on the strategy at v = 0 (Figure 12G).

Now, consider a phenotype-dependent therapy or targeted
therapy whose efficacy depends on the species’ trait value,
regardless of their habitat. In ecology, the targeted therapy may
be analogous to fish harvesting by humans, with the species’
trait representing fish body size. In cancer, the targeted therapy
(Herceptin) may target a specific protein (HER-2) in a cancer
metabolic pathway. In both instances, one can imagine that the
targeted therapy will not be effective at low values of the trait
(a small fish or a cancer cell with a low expression of the target
protein) but may be highly effective for high values of the trait.

We simulate targeted therapy by using a maximal efficacy of
5% at the cancer cell strategy at which the drug is maximally
effective (v = 1), with efficacy falling as v diverges from 1
(Figure 3). First, consider the overall dynamics in Figure 13A.
We note that the total population (combined over both species)
in habitat B remains remarkably constant for the entirety of the
simulation. Because most of the individuals in habitat B have a
strategy value less effected by the targeted therapy, cancer cells
in habitat B suffer a smaller decline from therapy than those in
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FIGURE 11 | ESS population density of habitat A, habitat B, and the total combined population in the presence of a soft sink. Where the population is specialized to
habitat A (upper left quadrant) the ESS population density reaches the carrying capacity of habitat A, with relatively low density in habitat B. Where the population is
specialized to habitat B (lower right quadrant) the ESS population density reaches the carrying capacity of habitat B, with relatively low density in habitat A. Where
the population evolves a generalist strategy (upper right quadrant) the ESS population can exceed the maximum carrying capacity provided in the source habitat,
with substantial numbers of cancer cells in both habitat A and habitat B. Where the population speciates (lower left quadrant), each species can nearly reach its
maximal carrying capacity within its preferred habitat, allowing the total ESS population to approach N∗ = 150.

FIGURE 12 | Effects of Habitat Treatment. Habitat A can no longer support any cells, and evolution drives species 1 to evolve toward v = 0 to persist in habitat B.
(A) The total population in habitat A crashes to 0, while the total population in habitat B remains at its carrying capacity. (B) Since habitat A is no longer viable,
species 1 evolves its strategy toward v = 0 in an attempt to remain extant in habitat B. (C) Species 1 crashes in habitat A after the application of treatment and is not
able to evolve its strategy fast enough to persist in habitat B. There is little to no change in population density of species 2 in habitat B. (D–G) Depictions of the
adaptive landscape over time. Before application of therapy, there are two peaks in the adaptive landscape, corresponding to the two viable habitats. After therapy is
administered, the peak corresponding to habitat A vanishes and species 1 evolves toward the peak at v = 0. Supplementary Movie 3 provides a movie of the
panels presented in (D–G).

habitat A. Because the targed therapy is most effective against
cancer cells specialized on habitat A, the population in A drops
dramatically immediately after therapy is administered. At least

initially, this therapy that targets a cancer phenotype v = 1has
a similar effect as the habitat-dependent therapy. But, in time,
the effect is dramatically different. Species 1, whether residing in
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FIGURE 13 | Effects of Targeted Therapy. (A) The total population in habitat A drastically declines immediately after administration of therapy, but gradually recovers
as cells evolve viable trait values. The total population in habitat B stays near its carrying capacity. (B) Species 1 evolves a lower strategy to reduce impact of therapy.
Species 2 initially evolves a higher strategy in an attempt to occupy the empty niche in habitat A. Once species 1 becomes viable in habitat A, species 2 evolves its
strategy back down to near v = 0. (C) Transient dynamics: species 1′s population crashes and species 2 attempts to occupy the empty niche in habitat A.
Long-term dynamics: species 1 evolves a lower strategy, allowing it to outcompete species 2 in habitat A and allowing species 1 to persist in habitat B at a lower
level than species 2. (D–G) Depictions of the adaptive landscape over time. Before application of therapy, there are two peaks in the adaptive landscape,
corresponding to the two viable habitats. After therapy is administered, the peak corresponding to habitat A shifts toward the one for habitat B; species 1 evolves
toward this shifted peak. Supplementary Movie 4 provides a movie of the panels presented in (D–G).

habitats A or B, can evolve resistance by having a lower strategy
value that also has the additional benefit of making species 1 more
of a generalist.

Once species 1 evolves a lower strategy, evolutionary
rescue is possible and population size recovers. However, note
this lower strategy reduces the maximal carrying capacity in
habitat A, leading to a lower population equilibrium than
prior to treatment. Now, consider species-specific dynamics
(Figures 13B,C) in which species 1 rapidly declines following
therapy. Initially this leaves an open niche in habitat A
to which species 2 evolves a higher strategy value. Thus,
simultaneously, the strategies of both species 1 and species 2
begin to converge on more generalist phenotypes – species 1 as
a form of therapy resistance and species 2 to take advantage of a
depopulated habitat A.

Eventually, species 1 evolves into a generalist that allows
it to be therapy resistant and to repopulate habitat A though
not at the same abundance as pre-treatment. As species 1
recovers, species 2 is again under selection to be a habitat B
specialist. Interestingly, at the new post-treatment ESS, species
1′s generalist strategy allows it to have substantial population

sizes in both habitats at the expense of species 2. Compared
to the pre-treatment ESS, species 2 is still virtually absent from
habitat A and resides in habitat B at a reduced population
size. While the transient dynamics of the adaptive landscape
(Figures 13D–G) are dramatic, both the pre- and post-treatment
ESSs lead to adaptive landscapes with two peaks. Once therapy
is administered, habitat A’s peak shifts closer to habitat B’s,
capturing a trade-off between maximizing carrying capacity in
the habitat and avoiding effects of treatment.

The source-sink dynamics led to a counterintuitive result
where targeting the phenotype of species 1 actually resulted in
an increased number of this cancer cell type as the cancer cells
evolved toward a new post-treatment ESS. This result happens
because of the strong selection for habitat specialists with or
without therapy. If there was only a weak tradeoff between habitat
specialists then the pre-treatment system could either have a
single generalist species or two specialist species that are not so
extreme in their traits values. If the former, then with therapy,
the single generalist species would evolve further toward being
a habitat B specialist. If the latter, then the habitat A specialist
might evolve so far toward the habitat B specialist or vice-versa
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that one type would go extinct leaving just a single generalist
cancer cell type.

DISCUSSION

Here, we investigate a relatively unrecognized dynamic in
intratumoral evolution – the role of cell migration. Movement
of individual cells can have population effects by coupling
source-sink habitats, which we show can have profound
consequences for tumor biology and treatment. Ongoing
intratumoral evolution is frequently described as “branching
clonal evolution.” That is, cancer cells are subject to genetic
mutations and, when a rare mutation results in increased fitness,
this new molecular clone expands into an observable population
(Greaves and Maley, 2012). However, branching clonal evolution
neglects the striking spatial heterogeneity in local environmental
conditions, governed primarily by changes in blood perfusion,
that are characteristically observed in cancers at macroscopic and
microscopic levels. Thus, the selection forces within a tumor will
vary considerably. Physically adjacent microscopic regions of a
tumor can have dramatically different environmental conditions
(Losic et al., 2020).

In contrast to this conventional “mutation-selection”
sequence, we propose intratumoral evolution is primarily
driven by spatial and temporal variations in environmental
conditions. That is, cancer cells in regions of hypoxia and
acidosis evolve different phenotypic properties than, for example,
those in physiologic environments that may also contain
more “predatory” immune cells. This generates frequency-
and density-dependent selection within and between tumor
microenvironments (Bozic et al., 2012; Soman et al., 2012)
produce local cancer cell phenotypes and corresponding
genotypes most suited to particular microenvironments – either
as generalist or specialist cancer cell types. Thus, mutations
that encode phenotypic adaptations suitable for the local
environment will become frequent in the extant population.
These genetic changes are consequences of evolution by natural
selection, not the cause (Vincent and Brown, 1988).

Furthermore, a cancer biology paradigm that is difficult to
reconcile with evolutionary dynamics is the stem cell hypothesis
which posits self-replicating stem cells (Walcher et al., 2020)
within a specific niche (Borovski et al., 2011; Oskarsson et al.,
2014) give rise to phenotypically variable and non-replicating
cells that populate the remainder of the tumor. Evolutionarily, the
production of non-replicating daughter cells would be extremely
wasteful of scarce resources and likely be subject to negative
selection. However, these observed stem cell dynamics could arise
from the migration of proliferative and phenotypically distinct
cancer cells from source habitats to sink habitats where they
adopt a different phenotype and are much less proliferative.

When migration occurs between a source and sink habitat,
we demonstrate that, even when the sink habitat cannot
maintain a long-term population (e.g., hard sink habitat), it
can act as a reservoir of cells that migrate from the source
habitat thus maximizing the global population. Furthermore, a
harsh sink environment may promote epigenetic modifications

(e.g., increased HIF1a expression resulting in upregulation of
xenobiotic pathways (Vorrink and Domann, 2014)) that promote
resistance to treatment. Thus, the sink habitat may become a
source for cells that are also more resistant to subsequent cycles of
treatment (Lavi et al., 2013).

In contrast, a soft sink habitat can maintain a small, self-
reproducing population. Here, migration from the adjacent
source habitat can increase the population of the sink habitat.
However, unlike a black hole or hard sink habitat, cells that
migrate into a soft sink habitat may proliferate. This is a critical
distinction, because proliferation of the migrant cells in the sink
habitat is determined by their fitness relative to that of competing
native cells. Thus, although the migrant cells are the result of
evolutionary selection in the source habitat, their proliferation
in the sink habitat is governed by phenotypic adaptation to
conditions in the sink habitat. These dynamics can promote
“speciation” so that cancer cells even in adjacent tumor regions
can have significantly different molecular properties.

Thus, migration of cancer cells between source and sink
habitats can produce the clinically observed regional variations
in the molecular properties of cancer cells as an alternative to the
branching clonal evolution paradigm. Both the spatial variations
in the molecular properties of cancer cells in the same tumor
at microscopic and macroscopic scales (Gerlinger et al., 2012;
Greaves and Maley, 2012; Gerashchenko et al., 2013; Losic et al.,
2020) and cancer cell migration (Yamaguchi et al., 2005; Chung
et al., 2010; Huang et al., 2011) have been extensively investigated.
Yet, to date, no experiments have directly tested the source-sink
dynamics described here. Microfluidic co-culture systems may
provide an opportunity. There could be adjacent chambers with
high (source) and low (soft or hard sink, depending) nutrient
availabilities. Hydrogel stiffness could be used to vary migration
rates into and out of chambers. Fluorescent labeling could allow
for measures of migration, population dynamics, and phenotypic
and genotypic changes over time both within and between
chambers (Soman et al., 2012; Mi et al., 2016).

We note coupled source-sink habitats may additionally
have clinical significance by promoting evolution of resistance
following treatment. Thus, while therapy is successful in the
source habitat due to increased drug delivery in the case of
systemic therapy or improved oxygenation that increases the
efficacy of radiation therapy, the source-sink dynamics could
reverse after therapy as the surviving cells in the sink habitat
become a source, allowing reverse migration and recolonization
of the hitherto superior habitat (“rescue effect” in ecology,
(Gotelli, 1991)). Adding therapy to the microfluidic co-culture
experimental system could address these results.

CONCLUSION

In conclusion, the ecological and evolutionary dynamics
produced by source-sink habitats may provide an underlying
explanation to observed spatial variations in genetic and
phenotypic properties of cancer cells, an eco-evolutionary
foundation for the stem cell paradigm, and suggest critical issues
in designing chemotherapeutic and targeted treatment strategies.
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Explaining the emergence and maintenance of intratumor heterogeneity is an important
question in cancer biology. Tumor cells can generate considerable subclonal diversity,
which influences tumor growth rate, treatment resistance, and metastasis, yet we
know remarkably little about how cells from different subclones interact. Here, we
confronted two murine mammary cancer cell lines to determine both the nature and
mechanisms of subclonal cellular interactions in vitro. Surprisingly, we found that,
compared to monoculture, growth of the “winner” was enhanced by the presence of
the “loser” cell line, whereas growth of the latter was reduced. Mathematical modeling
and laboratory assays indicated that these interactions are mediated by the production
of paracrine metabolites resulting in the winner subclone effectively “farming” the loser.
Our findings add a new level of complexity to the mechanisms underlying subclonal
growth dynamics.

Keywords: cancer evolution, intratumor clonal heterogeneity, evolutionary game theory, parasitism, paracrine
signaling, beta-hydroxybutirate, lactate, Lotka–Volterra model

INTRODUCTION

Considering tumors as complex ecosystems has led to the notion that diverse cancer cell subclones
engage in heterotypic interactions reminiscent of those that operate in organismal communities
(Heppner, 1984; Axelrod et al., 2006; Merlo et al., 2006; Tabassum and Polyak, 2015). Mutually
negative interactions are thought to be ubiquitous in cancer (Nowell, 1976; Greaves and Maley,
2012). As in classic ecosystems, cancer cells compete for nutrients and space, and competition
between emergent subclones gives rise to complex temporal and spatial dynamics of tumor
composition and growth (Tabassum and Polyak, 2015). Positive ecological interactions (mutualism
and commensalism) have been observed in cancer models in mice (Calbo et al., 2011; Cleary et al.,
2014) and in drosophila (Ohsawa et al., 2012). In these cases, one subclone acquires new abilities,
such as the capacity to grow or metastasize, only in the presence of another subclone, resulting in
the tumor as a whole progressing toward a more aggressive phenotype. In contrast, the prevalence
within tumors of asymmetric interactions such as amensalism, parasitism and facilitation remains
an open question. Defining the mechanisms of tumor ecology is essential for a better understanding
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of cancer progression and may lead to novel therapeutic strategies
(Gatenby and Brown, 2017; Maley et al., 2017).

To gain insight into molecular and cellular events related
to ecological interactions between cancer subclones, we took
advantage of a model described over three decades ago, based
on two closely related murine cancer cell lines derived from a
single spontaneous mouse mammary tumor (Dexter et al., 1978;
Miller et al., 1988). When cultured separately, the two cell lines
have similar growth rates, yet in co-culture one cell line (the
“winner”) expands at the expense of the other (the “loser”). Our
careful re-examination of this model, combining experiments
with mathematical modeling and parameter inference, indicated
that the cellular behaviors of the two subclones are surprisingly
sophisticated. Both cell lines produce paracrine metabolites
that boost proliferation of the winner and also decrease the
growth rate of the loser. Our results thus unveil a type of
facultative parasitic behavior of the winner subclone. We further
identified beta-hydroxybutyrate and lactate as metabolites that
contribute to these phenotypes and characterized their modes of
action. We discuss our results in the context of how previously
underappreciated ecological interactions may contribute to the
complexity of tumor growth dynamics.

RESULTS

4T07 Cells Have a “Winner” Phenotype
Two cell lines derived from a single mouse mammary
carcinoma – 168 and 4T07 cells – have similar growth rates
when cultured individually, yet the 4T07 clone displays a
dominant phenotype when grown together, either in cell culture
or in orthotopic allografts in vivo (Miller et al., 1988). Several
hypotheses to account for this interesting behavior had been
tested in the original work, but the precise mechanism behind
these competitive interactions has so far not been identified.

We began by verifying that in our hands the lines maintain
their competitive characteristics. To facilitate lineage tracing
we first generated lines stably expressing GFP, the expression
of which did not alter cell growth (Figure 1A). Next, we
followed growth characteristics of 4T07 and 168FARN cells, the
latter being a drug-resistant derivative of the original 168 clone
(Aslakson et al., 1991), in a continuous culture for 3 weeks.
The cells were seeded as 1:1 mix at a density that allowed
them to reach confluence within 3–4 days, at which point they
were harvested and re-seeded in a new well at the original
density. Remaining cells were analyzed by flow cytometry to
determine the proportion of GFP expressing clones in the
expanding population.

The homotypic co-culture (same line with and without GFP)
confirmed that GFP has no impact on cellular proliferation
(Figures 1B, 2B). In contrast, heterotypic co-culture conditions
(two different lines, one expressing GFP) revealed the dominance
of the 4T07 clone (Figures 1B, 2B).

These results confirm the originally described ecological
interaction between the clones: 4T07 gradually dominates the
culture while the 168FARN cells become scarce within 15–
17 days. Importantly, the dominant phenotype is independent

of the starting ratio between the two cell lines (Supplementary
Figures 1A,B).

Co-culture Alters the Proliferation Rates
of Both “Winner” and “Loser” Cells
As originally discussed for the two clones under study (Miller
et al., 1988), the expansion of a single clone in co-culture could
be due to alterations in cell death or changes in the proliferation
rates of either or both clones. We measured apoptosis in the loser
168FARN clone and found identical, very low levels of cell death
under homotypic and heterotypic conditions (Supplementary
Figure 2A). Next, we used time-lapse microscopy to assess the
growth dynamics of both clones in continuous culture. The
cells were seeded at a density that allowed reaching confluence
in 4 days and were photographed every 45 min for the last
3 days. We measured the overall pixel intensity for each frame
(Figure 3A) as a proxy for the growth rate of the fluorescently
tagged cell line. This analysis revealed that under co-culture
conditions, the growth rate of 168FARN decreased, whereas that
of 4T07 increased relative to mono-cultures. To test whether
increased net growth of the winner population is due to the
alteration of proliferation, we estimated the proportion of cells
in the S phase of the cell cycle by performing pulse-chase EdU
staining. The results presented in Supplementary Figure 2B
confirmed that heterotypic co-culture gave rise to significant
decrease in cells actively replicating DNA for the loser clone
and a significant increase in the winner clone. Overall, these
results suggest that the dominant phenotype displayed by the
winner cells in co-culture can be explained by changes in
proliferation that operate in opposing directions on the winner
and the loser cells.

Mathematical Modeling and Inference of
Evolutionary Parameter Values
To gain further insight into the ecological interactions between
the winner and loser cell types we turned to mathematical
modeling. Examination of the growth curves revealed two
distinct phases of evolutionary dynamics (Figures 3A,B). In
phase 1, from 0 to 45 h, the two cell types grew exponentially
in both homotypic and heterotypic cultures, and the growth rate
of 168 was higher than that of 4T07. This first phase can be
regarded as a transition period before the cells start altering and
responding to their new environment. By contrast in phase 2,
from 45 to 72 h, the growth curves were strongly affected by
interactions within and between the two cell types, and 4T07
grew faster than 168. To enable us to determine the mode of the
ecological dynamics in each phase, we opted for a parsimonious,
piecewise mathematical model. Specifically, we assumed a model
with exponential growth in phase 1 and a transition to density-
dependent competitive Lotka–Volterra-type dynamics in phase 2.

By fitting our model to the homotypic growth curves, we
inferred the values of the phase 1 and phase 2 growth rates and
the within-type interaction parameters (see section “Materials
and Methods”). To infer the between-type interactions, we used
additional data from 72-h competition assays, covering a wide
range of initial ratios of the two cell types. Although this latter
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FIGURE 1 | Mutual impacts on subclonal growth. (A) 168FARN and 4T07 parental cells were transduced either with an empty retroviral vector (168P and 4T07P) or
with labeled with a GFP-encoding retrovirus (168G and 4T07G). Cells were seeded in triplicate in six-well plates at a density of 50,000 cells/well and cultured for the
indicated times before harvesting and counting. (B) 105 Cells were seeded at a 1:1 ratio in homotypic (parental and GFP expressing derivative of the same cell line)
or heterotypic (different cell lines, one expressing GFP) co-cultures and harvested and replated at the initial densities (105 cells/plate) at indicated times. The ratios of
GFP-labeled to unlabeled cells were estimated by flow cytometry. The results represent data from three independent experiments and are shown as mean ± SEM.

data set comprises only the initial and final proportions (at the
beginning of phase 1 and the end of phase 2), we were able to infer
the proportions at the beginning of phase 2 by adjusting for the
exponential growth of both types during phase 1. We then used
these inferred proportions and our previously inferred parameter
values to estimate the remaining interaction parameters (see
section “Materials and Methods”). The resulting model gives a
good fit to the competition assay data (Figure 2A, first column)
and is consistent with heterotypic time-lapse data not used for
parameter inference (Figure 3 and Supplementary Figure 6).

The inferred parameter values (Table 1) imply that during
phase 2, 4T07 has a large negative effect on both itself and on
168, consistent with 4T07 producing a harmful diffusible factor.
The negative effect of 168 on itself is only about half as large,
and 168 has approximately zero net effect on the growth of
4T07. This suggests that ubiquitous negative effects of 168 on
4T07 (e.g., likely due to waste products and competition for
resources) are offset by positive effects, such as due to a beneficial
diffusible factor. Also, during phase 2, the intrinsic growth rate
of 168 (that is, the inferred growth rate before accounting for
cell–cell interactions) is approximately 30% lower than that of
4T07, consistent with the conventional hypothesis that producing

beneficial factors is costly. This disadvantage is offset by 168
having an approximately 30% higher carrying capacity (defined
as the upper limit of the homotypic population size). Over phase
2, or any longer period that includes phase 2, the inferred net
growth rate of 4T07 (that is, the growth rate after accounting for
cell–cell interactions) is invariably higher than that of 168, which
means 4T07 will come to dominate numerically, no matter their
initial frequency.

Since we also conducted 96-h competition assays, we were
able to infer the population dynamics during a third phase (72–
96 h). For every initial ratio of the two cell types, the growth rate
difference (also known as the gain function) was on average lower
in the 96-h than in 72-h competition assays (Supplementary
Figure 5). Moreover, this difference did not depend on the initial
ratio, which implies it was not caused by a change in interaction
parameters. A parsimonious way to account for this effect is
to assume a reduction in 4T07’s intrinsic growth rate during
phase 3, as would be expected to result from starvation and/or
the build-up of toxic waste products. Making this adjustment to
our model indeed produces a better fit to the competition assay
data (Figure 2A, middle column, Figures 2B,C). The predicted
dynamics are shown in Figures 3C,D.
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FIGURE 2 | Mean net growth rate differences according to mathematical model and experimental data. (A) Inferred mean net growth rates and mean net growth
rate differences (gain functions) over different time periods, corresponding to different phases within competition assays. Columns correspond to different start times
and rows to different end times of the phase(s) under consideration. For example, the center panel labeled “Phase 2” corresponds to the period between 45 and
72 h. The initial 4T07 proportion (horizontal axis) is measured at the start of the respective period and the growth rate (vertical axis) is averaged over the period.
Phase 1 data are from time-lapse microscopy. Other data points in the first column are from serial competition assays, such that each point corresponds to the slope
of a thin gray line in panel (B). Data points in the middle column are obtained from the competition assay data by adjusting for exponential growth during phase 1
(see section “Materials and Methods”). Curves are the results of our mathematical model (see section “Materials and Methods”) with parameter values inferred from
data (Table 1). (B) 4T07 frequency dynamics across serial competition assays. Thick solid lines are averaged data (means of replicates with similar initial 4T07
proportions) and thick dashed lines are results of our mathematical model with parameter values inferred from data. Thin gray lines are data for individual
experiments. A total of 105 cells were seeded in co-cultures and harvested and replated as indicated. 4T07 parental cells were transduced either with an empty
retroviral vector (4T07P) or labeled with a GFP-encoding retrovirus (4T07G). The ratios of GFP to unlabeled cells were estimated by flow cytometry.
(C) Logit-transformed 4T07 frequency dynamics. This panel shows the same data as panel (B) but with a logit-transformed vertical axis so that the slope of each
curve is equal to the mean net growth rate difference (the gain function, as described in section “Materials and Methods” and Supplementary Figure 7).

Finally, having inferred all the evolutionary parameter values,
we calculated net growth rates of the two cell types, averaged
over different time periods. Over any period that includes phase
2, our model predicts that the net growth rate of both cell types
will decrease non-linearly with increasing initial 4T07 frequency
(pink and blue curves in Figure 2A). However, the net growth
rate of 4T07 decreases faster than that of 168, which is why the
gain function (gray curve in Figure 2A) also decreases. In phase
3, if the initial proportion of 4T07 is high (above 70%), then 168
has a higher net growth rate than 4T07, but in this case both of the
inferred net growth rates are negative. Overall, the interactions
are effectively equivalent to those of a parasite and its host, such
that the “loser” 168 suffers from the presence of the “winner”
4T07, while also enhancing the winner’s fitness.

β-Hydroxybutyrate Secreted by the Loser
Clone Stimulates Winner Clone
Proliferation
To identify the molecular mechanisms at the basis of the altered
growth of winners and losers when in co-culture, we first focused
on the increase in proliferation rate of 4T07 cells. Heterotypic

culture experiments performed at low cell density suggested that
the dominant effect did not require extensive cell–cell contacts
(Supplementary Figure 3). We reasoned that a soluble factor
secreted by 168FARN could induce a proliferation boost in 4T07.
To test this hypothesis, we collected conditioned media from
each line cultured for 3 days and used each medium separately
to grow 4T07 for an additional 24 h. As controls, we either left
the 4T07 medium after the 3 days of conditioning or replaced
it with fresh medium. The results shown in Figure 2A confirm
our hypothesis: the medium conditioned by 168FARN induced
a significant increase in 4T07 proliferation. Importantly, this
effect was not due to differences of medium exhaustion by the
two cell lines, since the addition of fresh medium did not boost
4T07 proliferation.

Since our data strongly suggested that a soluble factor
originating from 168FARN accounted for the increase in 4T07
proliferation, we next sought to define its molecular nature. First,
we separated the 168FARN-conditioned medium into high and
low MW fractions with a 3 KDa molecular cutoff column. The
low MW fraction contains mainly metabolites while the high
one is enriched in proteins. After complementing each fraction,
respectively, with 10% serum or with DMEM to obtain full
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FIGURE 3 | Normalized growth curves of homotypic and heterotypic mixes of subclones. (A) The GFP fluorescence of the labeled subclone was measured by
time-lapse microscopy. Cultures were seeded with 105 cells per well. Log-transformed data were normalized by fitting regression lines and dividing by the inferred
value at 24 h. Vertical dashed lines mark the start of phase 2 (45 h) and phase 3 (72 h). (B) Frequency dynamics. Curves obtained by combining the results of two
competition experiments: one with labeled 4T07 and the other with labeled 168. The initial 4T07 proportion was 25% in both cases. The vertical axis is
logit-transformed so that the slope of each curve is equal to the difference in net growth rates at the corresponding time (see section “Materials and Methods”).
Dotted regression lines are shown to draw attention to the change of slope. (C) Normalized growth curves according to mathematical model with parameter values
inferred from data. The model is described in section “Materials and Methods” and parameter values are given in Table 1. (D) Frequency dynamics according to
mathematical model with parameter values inferred from data.

media conditioned with either low or high MW secretomes,
we used them in a proliferation assay as in Figure 4A. The
results (Figure 4B) of this series of experiments unambiguously
identified the low MW fraction of the 168FARN-conditioned
medium as the source of the pro-proliferative factor. To further
explore its identity, we employed nuclear magnetic resonance
spectroscopy to compare the composition of low MW fractions
prepared from fresh medium and from the 168FARN- and
4T07-conditioned ones (Henke et al., 1996). Two major peaks
specific for the conditioned media corresponded to a very strong
signal for lactate secreted by 4T07 cells, and a significant increase
in a peak identified as β-hydroxybutyrate (BHB) in the 168FARN-
conditioned medium (Figure 5A). BHB is a ketone body mainly
produced by the liver after long fasting periods and which is
used by different tissues as a source of carbon to supplement
the lack of glucose (Newman and Verdin, 2017). In addition,
BHB is also produced by other cell types, such as adipocytes or
cancer cells (Grabacka et al., 2016; Huang et al., 2017; Wang
et al., 2017). To confirm the NMR-based identification of the
BHB peak, we employed an enzymatic assay to measure BHB
concentration in conditioned media from 4T07 and 168FARN
(Figure 5B). The results were in perfect agreement with the
NMR analysis: BHB production is significantly higher in the loser

than in the winner cell clone. To test whether this metabolite
was indeed responsible for the increased proliferation of 4T07,
we next complemented the medium of exponentially growing
4T07 cells with purified BHB. As shown in Figure 5C, BHB
increased the 4T07 proliferation rate to a level comparable to that
obtained with the 168-conditioned medium. We thus conclude
that loser cells increase the winner’s growth rate through the
secretion of BHB.

Presence of the Winner Clone Stimulates
β-Hydroxybutyrate Production by Loser
Cells
After assessing BHB production in homotypic cell culture, we
evaluated its secretion under heterotypic conditions. We grew
168FARN alone or together with 4T07 at a 1:1 ratio, maintaining
the overall cell density constant. Surprisingly, despite the fact that
under heterotypic conditions there are at least 50% fewer loser
cells (which are the main producers of BHB, cf. Figure 5B), the
overall level of secreted BHB was higher than in the homotypic
culture (Figure 5D). This suggests that either the presence of
4T07 increased the production of the metabolite by 168FARN
or, alternatively, that it was 4T07 that produced more metabolite
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TABLE 1 | Mathematical model parameter values inferred from data.

Parameter Phase(s) Inferred
value

Interpretation

rL,1 1 0.044 168 growth rate in phase 1 (per hour)

rW,1 1 0.031 4T07 growth rate in phase 1 (per hour)

rL,2 2 and 3 0.073 168 intrinsic growth rate in phase 2 (per
hour)

rW,2 2 0.102 4T07 intrinsic growth rate in phase 2 (per
hour)

rW,3 3 0.04 4T07 intrinsic growth rate in phase 3 (per
hour)

a 2 and 3 −0.004 Density-dependent effect of 168 on 168

b 2 and 3 −0.010 Density-dependent effect of 4T07 on 168

c 2 and 3 0.000 Density-dependent effect of 168 on 4T07

d 2 and 3 −0.008 Density-dependent effect of 4T07 on 4T07

KL = −rL,2/a 2 and 3 17 168 carrying capacity, relative to initial
population size

KW = −rW,2/d 2 13 4T07 carrying capacity, relative to initial
population size

β = b/a 2 and 3 2.4 Effect of 4T07 on 168, relative to effect of
168 on 168

γ = c/d 2 and 3 0.0 Effect of 168 on 4T07, relative to effect of
4T07 on 4T07

The interaction terms a, b, c, and d are relative to population size, which is, in turn,
relative to initial population size.

when grown in the presence of 168FARN. To distinguish between
these hypotheses, we cultured both lines individually for 3 days,
measured BHB concentration, and then exchanged the culture
medium and quantified metabolite synthesis 24 h later. The
quantification of BHB produced over the last day (Day 4
BHB concentration minus Day 3 BHB concentration) shows
that the 168FARN-conditioned medium had no effect on BHB
secretion by 4T07 cells. In striking contrast, the production of the
metabolite by 168FARN more than doubled under the influence
of the 4T07-conditioned medium (Figure 5E). Thus, the winner
cells stimulate the losers to produce a metabolite that boosts the
former’s proliferation.

Mechanism of β-Hydroxybutyrate Action
We next asked about the mode of action of BHB on the
4T07 cells. BHB can be imported by four monocarboxylate
transporters of the SLC16A gene family, the expression of which
varies in different cell types. We assessed the expression of each
transporter by RT-QPCR and found that MCT2, MCT3, and
MCT4 were barely expressed while MCT1 was highly expressed
(Figure 6A) in 4T07 cells. This result suggests that MCT1 is likely
responsible for the import of BHB in this cell line. Interestingly,
we found that MCT1 is three times more expressed in 4T07
than in 168 cells (which, like 4T07, do not express the other
MCTs – Supplementary Figure 4A), suggesting that the winner
cells are more efficient at taking up this metabolite than the losers
(Supplementary Figure 4B). Finally, incubation of 4T07 with
BHB upregulates MCT1, consistent with a positive feedback loop
that could increase the transport of this ketone body into the
dominant cell line (Supplementary Figure 4C).

FIGURE 4 | Soluble factor secreted by 168FARN cells accelerates
proliferation of the 4T07 cells. (A) 4T07 cells were grown for 3 days at which
point their medium was either left unchanged, or replaced by either
168FARN-conditioned medium or fresh medium, as indicated. Cells were
collected 24 h later and counted. Cell numbers at day 3 were arbitrarily set at
1 in order to include the data from three independent experiments. (B) The
experiment was performed as in panel (A). but the medium conditioned by
168FARN cells was fractionated by membrane ultrafiltration with a 3 KDa
molecular cutoff. After complementing the low and the high MW fractions,
respectively, with 10% serum and DMEM, the media were used to grow the
4T07 cells, as in panel (A). The two fractions were also combined as a control.
ns, not significant; **p < 0.01, ***p < 0.001, all compared to Day 4 point.

β-Hydroxybutyrate can be metabolized and used as a nutrient
to replace glucose (Newman and Verdin, 2017). Experiments
presented in Figure 2A show that fresh medium added at
day 3 did not boost cell proliferation, suggesting that in this
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FIGURE 5 | Identification of soluble metabolites altering the heterotypic growth dynamics. (A) Superimposition of the high-field region of representative 1D proton
NMR spectra recorded at 700 MHz, 293 K and pH 7 on samples of culture media collected after growing 40T7 cells (1) or 168FARN cells (2) for 3 days or of fresh
cell culture medium (3). The arrows indicate the characteristic resonance of lactate and β-hydroxybutyrate. The insert displays a zoom in this spectral region,
revealing the H-alpha resonance of the β-hydroxybutyrate. For all spectra, peak intensities have been normalized on the intensity of the DSS resonance added as
internal reference. (B) Concentration of β-hydroxybutyrate from fresh medium and from conditioned medium from 168FARN or 4T07 was quantified.
(C) Commercially available β-hydroxybutyrate at indicated concentrations was added to 4T07 cell culture at day 3 an the growth allowed to proceed for an additional
24 h. All points are compared to Day 4 point. (D) 168FARN alone (homotypic) or in 1:1 co-culture with 4T01 cells were grown for 4 days and extracellular
β-hydroxybutyrate was measured enzymatically as in Figure 4B. (E) 168FARN and 4T07 cells were cultured individually for 3 days. The medium was then replaced
by the homotypic or heterotypic conditioned one, as indicated, and the culture allowed to continue for an additional 24 h. The β-hydroxybutyrate concentration was
quantified at day 4. ns, not significant; *p < 0.05, **p < 0.01, ***p < 0.001.
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experimental setup the decrease in the carbon source is not
a limiting factor for growth. It is thus unlikely that BHB is
used as an energy resource to increase proliferation rate. BHB
has previously been identified as an inhibitor of class I histone
deacetylases (HDAC) that modulates the expression of genes
involved in reactive oxygen species detoxification (Shimazu et al.,
2013). Subsequently, another group found that adipocytes use
BHB to modulate the expression of a subset of genes involved
in the growth of breast cancer cells (Huang et al., 2017). We
thus hypothesized that BHB might increase the growth rate of
winners through the inhibition of HDACs, thereby modulating
the expression of genes involved either in ROS detoxification
or in the induction of pro-proliferative factors. In support
of this idea, incubation of 4T07 cells either with 168FARN-
conditioned medium or with purified BHB increased H3K9
acetylation, albeit to a lesser extent than butyrate, a bona fide
HDAC inhibitor (Figure 6B).

While we could not detect in 4T07 cells any modification
of expression of ROS detoxification genes reported to be
regulated by BHB in other cellular models (Shimazu et al.,
2013), both BHB and 168-conditioned medium led to significant
transcriptional activation of interleukin-11 (IL-11) and lipocalin
2 (LCN2) (Figure 6C). Both genes have been previously
described to promote cancer cell growth and to be regulated
by BHB through its action on HDAC activity (Yang and
Moses, 2009; Grivennikov, 2013; Huang et al., 2017). Thus,
our data point to the molecular mechanisms involving direct
proliferation signaling.

Lactate Secretion Slows Down Loser
Cell Proliferation
In addition to the positive effect of the 168FARN cells on
the proliferation rate of the 4T07 clone, the data shown in
Figure 2 indicate that the latter negatively influences the
168FARN growth dynamics. The NMR analysis highlighted
strong lactate production (see Figure 5A). This is consistent with
our observation of the media color change during culture of the
two lines, indicating that the winner clone has a glycolytic type
of glucose metabolism leading to a rapid medium acidification
in culture. Because extracellular acidification can be detrimental
for cell growth, we next asked if 168FARN were particularly
sensitive to such growth conditions. We quantified medium
acidification by seeding cells at different densities and measuring
the extracellular pH after 3 days of culture (Figure 7A). As
expected, we found that 4T07 cells acidify the medium faster
and attain a lower pH during culture compared to 168FARN
cells. Indeed, pH ranged from 6.94+/−0.005 (lowest density) to
6.79+/−0.003 (highest density) for the winner line and from
7.38+/−0.008 to 6.92+/−0.006 for 168FARN. To test whether
4T07-mediated extracellular acidification influenced 168FARN
growth, we set up a proliferation assay for 168FARN cells grown
in medium conditioned by the low and the high density grown
4T07 cells. To control for the effect of pH in the conditioned
media, we included a treatment in which the medium from 4T07
was buffered at pH 7.0 by sodium bicarbonate. These experiments
revealed that the medium from the low density 4T07 cells

FIGURE 6 | Extracellular β-hydroxybutyrate leads to increased H3K9 histone
acetylation and altered gene expression in 4T07 cells. (A) Expression levels of
the slc16A family transporter genes in 4T07 were analyzed by RT-QPCR.
Expression of HPRT served as normalization of the data. (B) H3K9 histone
acetylation was analyzed by immunoblotting of extracts of 4T07 cells grown
for 24 h in control, 168-conditioned medium or medium complemented with
β-hydroxybutyrate or with butyrate, as indicated. Total histone 3 (H3)
abundance served as normalization control. (C) 4T07 cells cultured for 3 days
were incubated for 8 h with 4T07- (Ctrl) or 168-conditioned medium or
purified β-hydroxybutyrate (10 mM) added to fresh medium. Total RNAs were
purified and subjected to RT-QPCR with specific primers for LCN2 and IL-11.
**p < 0.01, ***p < 0.001.

(pH 6.94) had no effect on 168FARN proliferation. In contrast,
the medium from the high density 4T07 (pH 6.79) drastically
decreased the 168FARN growth rate. Moreover, buffering the
same medium at pH 7.0 restored the proliferative capacity of
168FARN culture (Figure 7B). We conclude that the loser clone
is indeed highly sensitive to medium acidification. Taken together
our data suggest that the decrease in the growth rate of 168FARN
observed in heterotypic conditions is triggered by 4T07 mediated
extracellular acidification.
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FIGURE 7 | Impact of extracellular pH on the loser clone growth.
(A) 168FARN and 4T07 cells were seeded at the indicated initial densities in
six-well plates and cultured for 3 days. Culture media were removed,
immediately covered with a layer of mineral oil to prevent oxidation and the pH
was measured. (B) 105 168FARN cells were grown for 3 days. Medium was
then replaced by conditioned media from cultures grown at low or high
density, as indicated. Where indicated, 5 mM NaCO3 was used to buffer the
4T07 conditioned medium to pH 7. Twenty-four hours later cells were
harvested and counted. Data are from three independent experiments
conducted in triplicates. ns, not significant; ***p < 0.001.

DISCUSSION

Heterogeneity is a ubiquitous feature of tumors that influences
growth and metastasis, and thus the potential for therapeutic
success. Ecological interactions between subclones are key to
the emergence of this heterogeneity, yet only few empirical
studies have characterized the nature of these interactions or their
underlying mechanisms. These include commensal (Kaznatcheev
et al., 2019; Farrokhian et al., 2020) and cooperative (Cleary et al.,
2014) interactions in vitro, and how such interactions can drive
tumor invasion (Chapman et al., 2014) and metastasis in vivo
(Janiszewska et al., 2019; Naffar-Abu Amara et al., 2020).

Our study extends previous work (Robinson and Jordan, 1989;
Marusyk et al., 2014; Archetti et al., 2015) by demonstrating that

two cell lines derived from the same tumor exhibit a sophisticated
relationship, whereby one (the “winner”) effectively farms the
population of the other (the “loser”). We further identified key
metabolites (BHB and lactate) that regulate these interactions
between the winning and losing clones. Similar to Archetti et al.
(2015), we found that exploitative clonal interactions evolve
through time, but whereas these authors observed a frequency-
dependent change that could explain clonal coexistence, we were
unable to detect this effect. Simple mathematical analysis within
the framework of evolutionary game theory nevertheless shows
that, when accounting for microenvironmental heterogeneity,
our inferred parameter values are plausibly consistent with long-
term clonal coexistence (see section “Materials and Methods”).

Because our in vitro experiments simplify the diverse,
complex interrelationships that predominate in spatially complex
microenvironments, the parameter values we have inferred
may not precisely translate to in vivo contexts. For example,
the scenario of our experimental model, which depends on
microenvironmental acidification by the winner clone, may
be less relevant to micrometastases that are small enough to
maintain physiological pH (De Palma et al., 2017; Beckman
et al., 2020). On the other hand, there is an overwhelming
consensus that in larger tumors (both primary and metastatic),
neoangiogenesis produces abnormal, leaky vessels that give rise
to poor oxygenation and acidic conditions (De Bock et al.,
2011), consistent with our experimental system. That paracrine
signaling is responsible for the effects we observed between
winner and loser cell lines suggests that the spatial arrangement
of these cells could be crucial to their growth and relative
frequencies in situ (Archetti et al., 2015). The effect of spatial
structure would depend on the typical distance that secreted
molecules travel through the complex tumor microenvironment.
Our results indicate that areas of contact or close proximity
between the two subclones will grow faster and therefore come
to dominate spatially isolated populations, producing what is
effectively a mixed 4T07–168FARN “phenotype.” The actual
spatial arrangement of these two subclones in the original tumor
is unknown, but the authors of the study originally isolating
these cell lines note that they may represent only a small sample
of the tumor’s diversity (Dexter et al., 1978). A growing body
of evidence suggests that single, site-specific biopsies may be
of little use in quantifying spatial heterogeneity, due to the
multiscale (local, regional, metastatic) nature of tumor evolution
(Amirouchene-Angelozzi et al., 2017). Computational modeling
indicates that the range of cell–cell interaction and the mode
of cell dispersal are crucial factors determining the pattern of
intratumor heterogeneity and associated characteristics of tumor
growth and evolutionary potential (Waclaw et al., 2015; Noble
et al., 2020). While a comprehensive description of intra-tumoral
ecological interactions is a daunting task, beyond the power
of existing technology, a fuller understanding of their general
features is essential for devising therapies aimed at rendering
cancer a chronic, controllable disease (Gatenby and Brown, 2020;
Viossat and Noble, 2021).

We find that the complex interactions between the 4T07 and
168FARN cells are governed by paracrine signaling emanating
from both clones. This mechanistic conclusion differs from the
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original observations reported by Miller et al. (1988). Indeed,
in the original publication the results concerning the inhibitory
effect of 4T07 conditioned media on 168 cells were inconclusive.
This apparent discrepancy could be due to slightly different
culture conditions used in the two sets of experiments. Indeed,
the medium acidification due to the lactate release by the 4T07
that is responsible for slowing down the growth of 168 cells
reaches the required threshold value only after prolonged culture
(3–4 days under our experimental conditions). It is thus possible
that in the original report the culture time and/or the cell density
were insufficient for the clear visualization of the paracrine effect
of the winners on the losers. Moreover, Miller et al. (1988) did
not investigate the paracrine effect exerted by the 168 on the 4T07
cells. Our results are the first to show the reciprocal effects of both
cell lines on each other, thus highlighting the complexity of their
mutual interactions.

We have identified a ketone body, BHB, which is produced
by loser cells and acts to increase the growth rate of winner
cells. Mechanistically, the competitive advantage afforded by
BHB to the winner clone appears to be mediated through the
HDAC-controlled activation of a genetic program that boosts its
proliferation. Ketone bodies are small lipid-derived molecules,
physiologically produced by the liver and distributed via the
circulation to metabolically active tissues, such as muscle or
brain (Newman and Verdin, 2017), where they serve as a
glucose-sparing energy source in times of fasting or prolonged
exercise. Recently, several studies reported that cell types such
as adipocytes, intestinal stem cells or cancer cells originating
from colorectal carcinoma or melanoma can also produce BHB
(Grabacka et al., 2016; Huang et al., 2017; Shakery et al., 2018;
Cheng et al., 2019). Our results identifying BHB as a signaling
molecule involved in intra-tumoral clonal interactions fall into
the general category of these novel roles for ketone bodies in
cell communication.

However, the link between ketone bodies and tumor
development remains controversial. On the one hand, it was
shown that ketonic diet slows down tumor development in
brain cancer mice models (Poff et al., 2013, 2014). On the other
hand, our results together with other recent data (Huang et al.,
2017) suggest that BHB may favor breast cancer progression.
One unexplored possibility to explain these contradictory
observations is that this ketone body can be used differently by
different cancer cell types, for example as a carbohydrate supply
or as a HDAC inhibitor, ultimately leading to cancer-type and
context specific response.

In our experimental model, BHB increases winner cells
proliferation by activating a genetic program through HDAC
inhibition. Among the genes we discovered to be activated
by the ketone body, IL-11 is an interleukin that displays a
pro-proliferative activity (Grivennikov, 2013). Interestingly, in
a distinct breast cancer cell cooperation model, sub-clonal
expression of IL-11 favors the expansion not only of cells that
express it, but also of other cellular sub-clones (Marusyk et al.,
2014). This suggests that IL-11 acting in either paracrine or
autocrine fashion could lead, respectively, to cooperation or to
competition between subclones, thus participating actively in the
selection and evolution of tumor heterogeneity.

Overall, our experimental data therefore suggest a model in
which the winner line stimulates the production of and benefits
from a compound delivered by the loser line and, conversely, the
loser is negatively influenced by the presence of winners through
secretion of another compound.

We note that while in artificially maintained conditions of
non-constrained growth (in culture) the losers are eventually
eliminated, many additional selective pressures that may affect
clonal fitness operate in vivo. These involve cellular response to
physical cues due to crowding (Vishwakarma and Piddini, 2020)
and interactions with the extracellular matrix (Lu et al., 2012)
as well as response to signaling from the stroma, including its
inflammatory and immune components (Quail and Joyce, 2013).
These elements are expected to influence the outcome of the
direct interactions between the tumoral clones and may change
the nature of their ecological interaction from net exploitation
(in vitro) to mutual benefit (in vivo). Future study should evaluate
whether parasitic effects are observed in vivo, and determine the
extent to which these cell–cell interactions mediate important
tumor characteristics, including growth, drug resistance, and
metastatic behavior.

MATERIALS AND METHODS

Cell Culture
4T07 and 168FARN were a kind gift of Robert Hipskind. All
cell lines were cultured in Dulbecco’s modified Eagle medium
containing 10% fetal bovine serum, 100 ng/mL streptomycin, and
100 U/mL penicillin at 37◦C with 5% CO2.

For co-culture experiments a mixture of GFP-labeled and
parental cells (empty-vector transduced) cells were seeded at the
final density of 105 cells/well in six-well plates, except where
mentioned otherwise. Upon reaching confluence (3–4 days) they
were harvested, diluted to the original density and replated. The
remaining fraction was analyzed by flow cytometry.

Immunoblot Analysis
Cells were lysed in boiling Laemmli buffer supplemented
with protease inhibitors, then sonicated and complemented
with DTT. Protein concentration was determined by BCA
(Thermo Scientific) assay. Fifteen to twenty micrograms of
total protein were loaded onto SDS-PAGE gels and transferred
onto nitrocellulose membranes. The membrane was blocked
with TBST (1× TBS with 0.1% Tween 20) + 5% milk at
room temperature for 1 h and incubated with primary antibody
and then with horseradish peroxidase (HRP)-coupled secondary
antibody (Amersham, Piscataway, NJ, United States). Activity
was visualized by electrochemiluminescence. Antibodies used
in this study are anti-Histone H3 (Cell signaling Technology
#9717) and anti-Acetyl-Histone H3 (Lys9) (Cell signaling
Technology #9649).

Reverse Transcription and Real-Time
PCR
Total mRNA was isolated using a RNeasy mini kit (Qiagen,
Germantown, MD, United States). Reverse transcription
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was performed with random hexamers and M-MLV Reverse
Transcriptase (Invitrogen). Real-time PCR was performed in
triplicates with LC FastStart DNA Master SYBR Green I on a
LightCycler rapid thermal cycler system (Roche Diagnostics,
Mannheim, Germany), according to the manufacturer’s
instructions. Housekeeping gene HPRT was used for
normalization. Primers sequences are available upon request.

Time-Lapse Microscopy
Time-lapse microscopy was performed at 37◦C with 5% CO2,
with images taken at 45-min intervals using an inverted Zeiss
Axio-Observer microscope. The images were processed and
analyzed using ImageJ software.

EdU Staining
Cells were incubated with 10 µM EdU for 2 h, harvested
and processed using the Click-iTTM EdU Alexa FluorTM 647
Flow Cytometry Assay Kit (Thermo Fisher Scientific #C10424)
following manufacturer instructions. Labeled cells were then
analyzed on a FACSCalibur flow cytometer using CellQuest Pro
software (BD Biosciences).

Apoptosis Quantification
To determine the percentage of apoptotic cells with externalized
phosphatidylserine (PS), adherent and floating cells were
collected and labeled with the Annexin V-Cy3 Apoptosis
Detection Kit (Abcam, Cambridge, United Kingdom, #ab14143)
according to the manufacturer’s instructions. Labeled cells were
then analyzed on a FACSCalibur flow cytometer using CellQuest
Pro software (BD Biosciences).

β-Hydroxybutyrate Quantification
β-Hydroxybutyrate concentration was measured by an enzymatic
kit (Sigma-Aldrich MAK041) following the manufacturer
instructions. Briefly, β-hydroxybutyrate present in the culture
medium was determined by a coupled enzyme reaction, resulting
in a colorimetric (450 nm) product, proportional to the
β-hydroxybutyrate concentration. The absorbance was measured
on a spectrophotometer.

Medium Fractionation
In order to separate low molecular weight molecules from the
conditioned culture medium, 5–10 ml were loaded on a Vivaspin
Turbo 15 PES, 3,000 MWCO column (Sartorius VS15T91) and
centrifuged at 4000 × g for 30 min following the manufacturer
instructions. Both fractions were then used for subsequent
experiments and RMN analysis.

RMN Analysis
NMR experiments were recorded at 293 K and pH 7 on an
AVANCE III BRUKER spectrometer operating at 700 MHz
(proton frequency), using a Z-gradient shielded TCI 1H-13C-
15N cryoprobe. Fully relaxed 1D 1H spectra were aquired
with the regular 1D NOESY, using 5 s as relaxation delay.
The samples consisted on 1.5 mL of cell media (fresh
or conditioned by cell culture), lyophilized and dissolved

in 500 µL of deuterated phosphate buffer (50 mM, pH
7). DSS (EURISOTOP©, final concentration: 0.5 mM) was
added as internal reference for chemical shift referencing and
as a concentration standard for spectra normalization. The
assignment of the 1H resonances of the compound of interest
in this study (lactate, β-hydroxybutyrate) was based on chemical
shifts reported on the literature (1) and further confirmed using
2D [1H, 1H] (TOCSY) and [1H-13C] (HSQC, HSQC-TOCSY)
NMR spectroscopy.

Statistical Analysis
Experiments were repeated at least three times. Data are
presented as mean ± SEM. An Independent Student’s t-test
was performed to analyze the assay results; a two-tailed
Student’s t-test was used to compare the intergroup differences.
Significance was accepted for values where P ≤ 0.05 (∗), P ≤ 0.01
(∗∗), P ≤ 0.001 (∗∗∗).

Overview of Mathematical Methods
Our aim is to determine the general nature of the evolutionary
dynamics in a form that can be readily compared to other
systems (as opposed to generating quantitative predictions for
our particular system). Accordingly, we chose to fit a simple,
standard model to each distinct phase of the dynamics, such that
the inferred parameter values have straightforward ecological
interpretations. A key advantage of our method is that it is
generic; in principle, the same method can be applied to any
experimental evolution set-up with two competing populations
of cancer cells, bacteria, or other entities.

This mathematical approach is in the same vein as that of
Kaznatcheev (2017) and Kaznatcheev et al. (2019) but with
three important differences. First, our method can accommodate
a smaller data set and is thus more economical because we
mostly rely on measurements of initial and final proportions in
competition assays, such as can be determined via flow cytometry,
rather than extensive time-lapse image analysis. Second, whereas
Kaznatcheev (2017) and Kaznatcheev et al. (2019) confine their
analysis to exponential or logistic growth phases, we also examine
phases in which cell populations exhibit non-logistic dynamics.
Third, because we consider non-logistic growth phases, we use a
density-dependent rather than a frequency-dependent model.

We note that to make quantitative predictions of outcomes in
different scenarios, we would require a different type of model
with equations describing the dynamics of paracrine factors
mediating clonal interactions. This more complicated model
would include several more parameters and design choices (for
example, how each paracrine factor’s production rate and its
effects vary with its concentration) and would thus be non-
identifiable in the absence of detailed paracrine concentration
measurements. Obtaining such measurements remains as a
challenge for future studies.

Definitions and Mathematical
Relationships
We define the intrinsic growth rate as the exponential growth rate
in the absence of interactions. In the Lotka–Volterra differential
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equations, this parameter is multiplied by the population size
of the respective type. The intrinsic growth rate is the limit of
the net growth rate as the population sizes approach zero (when
interaction terms are negligible).

We define the net growth rate as the actual rate of change of
the population size (i.e., the time derivative), which is the sum of
the basic growth rate and interaction terms.

Supplementary Figures 6, 7 illustrate some of the
mathematical relationships relevant to our methods.

Dynamical Models and Inference From
Homotypic Growth Curves
We describe the exponential phase 1 dynamics as

dL
dt
= LrL,1,

dW
dt
= WrW,1,

where L (loser) and W (winner) are the population sizes
of 168 and 4T07, respectively, and rL,1 and rW,1 are the
respective growth rates.

In phase 2, we assume a density-dependent competitive
Lotka–Volterra model, parameterized in terms of intrinsic
growth rates rL,2 and rW,2 and interaction terms a, b, c and d:

dL
dt
= L(rL,2 + aL + bW),

dW
dt
= W(rW,2 + cL + dW).

In the homotypic case, terms bW and cL vanish and the phase
2 model is equivalent to logistic growth. We combine the
two models and fit to the normalized time-lapse data for the
homotypic growth curves using least-squares with R package
deSolve (Soetaert et al., 2010) to infer the values of rL,1, rW,1, rL,2,
rW,2, a, and d.

In phase 3, we assume the same model as in phase 2
except we replace rW,2 by rW,3 to account for the change
in the 4T07 net growth rate (equivalent to adding a density-
dependent death rate).

Inferring Between-Type Interaction
Terms
To infer the interaction parameters b and c we need data that
covers a wide range of proportions of the two cell types. Since
our time-lapse data is limited to only a few initial conditions, we
fit the model to the outcomes of serial competition assays, and we
employ the heterotypic time-lapse data for validation only. First
we define

l =
L

W + L
, w =

W
W + L

,

s = log
w
l
= log

w
1−w

= logit(w).

The time derivative of the s is then equal to the net growth rate
difference, which in phase 2 is

ds
dt
= rW,2−rL,2 +

(
d−b

)
W + (c−a) L.

In the limit w→ 1, the final term (c−a)L is negligible and we can
obtain b in terms of ds

dt , W, and parameters whose values we have
already inferred, as follows:

ds
dt
= rW,2−rL,2 +

(
d−b

)
W ⇒ b =

ds
dt−rW,2 + rL,2

W
+ d.

To obtain W, we note that in the limit w→ 1,

dW
dt
= W(rW,2 + dW),

which is the logistic differential equation with solution

W(t) =
W(t1)rert

r −W(t1)(ert−1)d
,

where r = rW,2 and t1 is the time at which phase 2 begins.
We can thus use our previously inferred parameter values to
obtain W(t) at every time t in phase 2 (note that if there
were not an analytical solution then we could have solved the
equation numerically).

Since W and ds
dt are linearly related, we can replace them by

their mean values:

mean
(

ds
dt

)
−rW,2 + rL,2

mean(W)
+ d

=

mean
(

ds
dt

)
−rW,2 + rL,2

mean
(

ds
dt−rW,2 + rL,2

b−d

) + d = b.

Using the mean values to calculate b is convenient as our
competition assays reveal only the initial and final values of s.
Specifically, we take the means in the interval [t1, t2], where t2
is the time at which phase 2 ends and

mean
(

ds
dt

)
=

s (t2)−s (t1)

t2−t1
=
4s
4t

.

It remains only to obtain the value of the above expression –
known as the gain function – in the limit w (t1)→ 1.
From competition assay data, we can immediately
obtain s (t2) = log w(t2)

1−w(t2)
for each value of s (0) = log w(0)

1−w(0) .
To infer w (t1) and s (t1), we need to adjust for the exponential
growth of both cell types during phase 1:

s (t1) = s (0) + t1(rW,2−rL,2)

H⇒ logit (w (t1)) = logit (w (0)) + t1(rW,2−rL,2)

H⇒ w (t1) = logit−1 (
logit (w (0)) + t1

(
rW,2−rL,2

))
.

We thus obtain the values of s (t1) and w (t1) in each competition
assay. Finally, we determine by linear regression the relationship
between4s/4t and w (t1) (Supplementary figure 5B) and, from
the equation of the regression line, infer the value of4s/4t in the
limit w (t1)→ 1. We then have everything required to infer the
value of b. By an analogous method (switching L and W, b and c,
and a and d) we also infer the value of c.
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Excluding Results of First-Round
Competition Assays
In our regression to determine the relationship between
4s/4t and w (t1), we excluded data from the first round of
competition assays (days 0–3 in Figures 2B,C) because these
measurements were unusually variable, and this variance was
most likely an experimental artifact. Specifically, setting up the
initial experiment took substantially longer than carrying out
subsequent replatings as additional steps were required before
seeding the cells. Since cells were kept for longer in suspension
before the first round, they will have experienced more stress
and potentially mortality. This means that results of the first
round of competition assays are likely to be less reliable than
results of subsequent rounds. For completeness, Supplementary
Figures 5C,D show linear regression applied to the entire data
set, including the first round.

Carrying Capacities
To find carrying capacities, we note that the phase 2 model can
alternatively be parameterized as

dL
dt
= LrL,2

(
1−

L + βW
KL

)
,

dW
dt
= WrW,2

(
1−

γL + W
KW

)
,

where the parameters are calculated as in Table 1. The carrying
capacities KW and KL are the upper limits approached by the
population sizes of W and L, respectively, during phase 2.

Potential for Coexistence in vivo
In a growing tumor, we expect cell–cell competition to be less
than in our in vitro experiments, because, in the former, resources
are continually replenished and waste materials removed by the
host circulatory system. The evolutionary dynamics will then
mostly depend on the difference in intrinsic growth rates and
interactions mediated by diffusible factors. Furthermore, during
tumor growth, the dynamics may be better described by a
frequency- rather than a density-dependent model. We can then
describe the evolutionary dynamics within the framework of
evolutionary game theory using the payoff matrix(

βL−γ αL−γ

βW αW

)
,

where αL, αW < 0 denote the harm inflicted by W on L and
W, respectively; βL, βW > 0 are the benefits bestowed by L to
L and W, respectively; and γ > 0 is the difference between
the intrinsic exponential growth rates. The relative values of
the entries in the payoff matrix determine which game (for
example, prisoner’s dilemma or hawk–dove) is equivalent to the
evolutionary dynamics.

The parameter values inferred for phase 2 of the competition
assays imply

βW > βL−γ > αW > αL−γ,

in which case the evolutionary dynamics are equivalent to a
prisoner’s dilemma game for which W is the only evolutionarily

stable strategy (ESS). This means that W (4T07) can invade and
stably replace a population of L (168).

If instead αL−γ > αW then the payoff matrix defines a hawk–
dove game that permits coexistence. In this scenario, W harms
itself more than it harms L, and this difference outweighs W′s
higher intrinsic growth rate. This could happen, for example, if
harmful factors produced by W imperfectly diffuse, so that W
cells experience a higher concentration than L cells. At the mixed
ESS, the W proportion is

αW−αL + γ

αW−αL + βL−βW
.

However, if additionally βL−βW > γ (so that L benefits itself
more than it benefits W, and this difference outweighs W′s
higher intrinsic growth rate) then coexistence again becomes
impossible as the game again becomes a prisoner’s dilemma but
with L as the ESS.

In a resource-poor environment, we might describe the
evolutionary dynamics using the payoff matrix(

βL−γ αL−γ

βW−δ αW−δ

)
,

where δ is the reduction in W′s intrinsic growth rate due to
the degraded environment (as inferred for phase 3 of our 96-h
competition assays). This scenario favors L and suggests that L
may be the ESS in a resource-poor environment, such as hypoxic
regions within a tumor.
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Supplementary Figure 1 | (A,B) Growth dynamics of subclones under
homotypic and heterotypic conditions. 105 Cells were seeded at a 3:1 (A) or 1:4
(B) ratios in homotypic (parental and GFP expressing derivative of the same cell
line) or heterotypic (different cell lines, one expressing GFP) co-cultures and
harvested and replated at the initial densities (105 cells/plate) at indicated times.
The ratios of GFP-labeled to unlabeled cells were estimated by flow cytometry.
The results represent data from three independent experiments and are shown
as mean ± SEM.

Supplementary Figure 2 | (A) Apoptosis quantification of subclones under
homotypic and heterotypic conditions. A total of 105 cells were seeded. 168G
cells were co-cultured with either the 168P (homotypic) or 4T07P (heterotypic)
cells at a 1:1 ratio for 4 days and harvested. Apoptosis was quantified by flow
cytometry following Annexin-V staining. ns: not significant. (B) S phase
quantification of subclones under homotypic and heterotypic conditions. A total of
105 cells were seeded. 168G cells were co-cultured with either the 168P
(homotypic) or 4T07P (heterotypic) cells at a 1:1 ratio for 4 days. Before harvesting
at day 4 cells were labeled by a 2 h pulse of EdU and the fraction of cells in the S
phase was determined by flow cytometry. ∗p < 0.05, ∗∗p < 0.01.

Supplementary Figure 3 | Growth dynamics of subclones at low and high
density. Experiments were performed as in Figure 3B. Cells were grown in
heterotypic conditions at a starting ratio of 1:1. Cells were seeded either at low
density (50k) or high density (150k), diluted, and quantified every 3 days. At low
density, cells do not reach confluence before replating. The results represent data
from three independent experiments and are shown as mean ± SEM.

Supplementary Figure 4 | (A) Expression levels of the slc16A family transporter
genes in 168FARN. RT-QPCR analysis was performed on 168FARN RNA for
Mct2, Mct1, Mct3, and Mct4 genes and normalized to HPRT. Relative expression
levels were compared to Mct2. (B) Slc16A1 expression in both subclones.
Slc16A1 RNA levels were monitored by RT-QPCR, normalized with HPRT and
adjusted relative to levels in 168FARN cells. (C) Influence of Slc16A1 expression
by β-hydroxybutyrate. Experiment was performed as in Figure 5B. Slc16A1 RNA
levels were quantified as in panel (A) and adjusted relative to levels in control
condition. ∗∗∗p < 0.001.

Supplementary Figure 5 | (A) Mean net growth rate difference (gain function)
versus initial 4T07 proportion in phases 1 and 2 (purple) and phases 1, 2, and 3
(green). Each point corresponds to the outcome of a competition assay.
Regression lines are shown with 95% confidence intervals. (B) Mean net growth
rate difference versus initial 4T07 proportion in phase 2 (purple) and phases 2 and
3 (green). This data set was obtained from the data shown in panel (A) by
adjusting for exponential growth in phase 1 (see section “Materials and Methods”).
(C) The same as panel (A) but including results for the first round of competition
assays (days 0–3). First-round measurements were excluded from analyses as
they were unusually variable and unreliable due to an experimental artifact (see
section “Materials and Methods”). (D) The same as panel (B) but including results
for the first round of competition assays (days 0–3).

Supplementary Figure 6 | Relationship between population dynamics and net
growth rates. The net growth rate of each cell type (right column) is the derivative
of its log-transformed growth curve (left column). (A) Mathematical model
dynamics. From the dynamical model, net growth rates can be found precisely by
evaluating differential equation terms. The model was parameterized with values
inferred from data (Table 1) and initiated with a 3:1 ratio of 168–4T07. (B)
Empirical dynamics. From time-lapse data, net growth rates can be approximated
as local gradients (difference quotients). In this example, we estimated net growth
rates from smoothed growth curves by calculating difference quotients across a
5-h span. Smoothed growth curves (not shown) were obtained by computing
running medians with a 5-h span. Since we did not use heterotypic time-lapse
data for parameter inference, the resemblance between the two rows of this figure
contributes to validating our model. The data in panel (B) is the same as in
Figures 3A,B.

Supplementary Figure 7 | Mathematical relationships relevant to our methods.
The diagram illustrates several equivalent ways of calculating the mean growth
rate difference (gain function, blue) from the parameterized dynamical model (red).
Also shown is our method of calculating the gain function from competition
assay data (orange).
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In nature, many multicellular and unicellular organisms use constitutive defenses such
as armor, spines, and noxious chemicals to keep predators at bay. These defenses
render the prey difficult and/or dangerous to subdue and handle, which confers a strong
deterrent for predators. The distinct benefit of this mode of defense is that prey can
defend in place and continue activities such as foraging even under imminent threat of
predation. The same qualitative types of armor-like, spine-like, and noxious defenses
have evolved independently and repeatedly in nature, and we present evidence that
cancer is no exception. Cancer cells exist in environments inundated with predator-
like immune cells, so the ability of cancer cells to defend in place while foraging and
proliferating would clearly be advantageous. We argue that these defenses repeatedly
evolve in cancers and may be among the most advanced and important adaptations of
cancers. By drawing parallels between several taxa exhibiting armor-like, spine-like, and
noxious defenses, we present an overview of different ways these defenses can appear
and emphasize how phenotypes that appear vastly different can nevertheless have the
same essential functions. This cross-taxa comparison reveals how cancer phenotypes
can be interpreted as anti-predator defenses, which can facilitate therapy approaches
which aim to give the predators (the immune system) the upper hand. This cross-taxa
comparison is also informative for evolutionary ecology. Cancer provides an opportunity
to observe how prey evolve in the context of a unique predatory threat (the immune
system) and varied environments.

Keywords: predator deterrence, immune evasion, cancer, predator-prey, convergent evolution, armor, spines,
noxiousness

INTRODUCTION

Most organisms experience the risk of mortality from predators. In response to this risk, natural
selection has imbued prey with a strikingly broad range of anti-predator behaviors, physiologies,
and morphologies. One ubiquitous anti-predator defense is fleeing, whether by the legs of a gazelle,
the wings of a grasshopper, the flick of a lobster’s tail, the hydro-jet propulsion of an octopus, or
the flagellum of a single-celled ciliate. Escape into burrows or to refugia inaccessible to predators
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also provides safety for many would-be prey, including marine
species that escape into rocky interstices to escape predatory fish
or into sand to escape shorebirds. Camouflage is another defense
pervasive across taxa, which allows prey as diverse as stick-
insects, octopuses, and nightjars to blend imperceptibly into the
background. In almost all cases, the aforementioned adaptations
entail a tradeoff between safety and foraging (McNamara and
Houston, 1987; Lima and Dill, 1990; Brown and Kotler, 2004).
That is, while fleeing or remaining hidden, an organism must
cease feeding; and while actively feeding, it becomes vulnerable.

An intriguing subset of anti-predator adaptations minimizes
this tradeoff between foraging and safety, allowing prey to carry
on with fitness-enhancing activities even after they are detected
by predators. Such defenses include armor, spines, and noxious
chemicals. Consider a pangolin digging and foraging at a termite
mound. When approached by a lion, it does not have to flee the
scene or take refuge. Instead, it can continue foraging, waiting
until virtually the last moment of the lion’s approach before
curling into a ball and defending itself. This provides the pangolin
with valuable foraging time. It can remain next to the termite
mound and resume foraging as soon as the immediate threat
subsides. Critically, many predators will not even attempt to
attack the pangolin because of the excessive amount of handling
time and effort that would be required to circumvent the armor.
This deterrent attribute of armor, spines, and noxiousness may
be equally or more important to the prey than the capability of
reducing predator lethality in the event of attack.

Here, we focus on the deterrent functions of armor, spines,
and noxiousness, which differ somewhat from some other
classifications of prey defenses which focus on when in the
“predation cycle” a defense is effective (e.g., Jeschke, 2006). We
agree that armor affects the prey search step because it increases
predator handling time, as well as the final meal step because it
decreases predator lethality. Further, we expect that armor will
act as a predation deterrent, which should reduce the likelihood
of attack. This also applies to spiny defenses. While noxiousness,
specifically in the form of toxins, should affect the search step
because it increases predator digestion time (Jeschke, 2006), we
emphasize that toxins and other forms of noxiousness will serve
as deterrents to attack. Warning signals have been identified as
affecting the likelihood of attack (Jeschke, 2006), but warning
signals are only as useful as the dangerous defenses with which
they are associated. As long as predators are foraging optimally,
they should be somewhat or completely deterred from attacking
armored, spiny, and noxious prey.

Just about all major taxa of living things, from bacteria
to single-celled eukaryotes to invertebrates to vertebrates,
have members exhibiting armor, spines, noxious chemicals, or
combinations of these adaptations (Stankowich and Campbell,
2016; Pančić and Kiørboe, 2018; Klompmaker et al., 2019;
Sugiura, 2020). In some cases, possession of one of these
adaptations might mean that the other two are unnecessary or
can be less pronounced. Slugs without shells or spines may be
quite noxious and even poisonous, while snails with shells or
sea urchins with their spines are generally not (Lindquist, 2002).
In other cases, possessing one of these adaptations, such as
armor, may actually amplify the advantages of possessing spines

or noxious chemicals (Rice, 1985). This might explain why so
many species possess two or all three of these adaptations. Across
life forms, armor, spines, and noxiousness display wonderful
examples of parallel and convergent evolution.

Though variations of these adaptations are seen across taxa,
species exhibiting armor, spines, or noxiousness are usually the
exception rather than the rule. This is probably because these
adaptations tend to be permanent and costly, more-so than
strategies such as camouflage, fleeing, and fixed activity schedules
(e.g., nocturnality), which are more common. The production
and maintenance of armor, spines, and noxious chemicals all
incur an extra energetic and nutritional cost. Exaggerated armor
also renders an organism heavier, clumsy, and inflexible. Spines
encumber an organism’s movements by dragging and snagging
on obstacles in the environment. Noxious defenses require
the maintenance of specialized physiologies, organs, or diets
even if the chemicals are not constantly deployed. Since these
defenses are partially to entirely constitutive, if predators are
never or rarely encountered, possessing these defenses would be
excessively taxing and maladaptive. But, if predators are ever-
present, even a costly constitutive defense would be more of
an asset than a burden. By allowing would-be prey to continue
fitness-enhancing activities in the proximity of aware predators,
it essentially gives the prey more enemy-safe space.

Now, consider cancer cells inhabiting their tumor ecosystem.
Cancer cells also suffer a form of predation: from the host’s
immune system. In fact, cancer’s ability to evade the immune
system may be among its most necessary and ubiquitous features.
Immune evasion ranks as a hallmark of cancer (Hanahan and
Weinberg, 2011; Fouad and Aanei, 2017). How does this come
about?

It might seem that upon initiation the cancer cell would
already be immune-evasive, possessing near-identical properties
to its progenitor normal cells. But, in transitioning from being
part of the whole organism to becoming its own unit of selection,
the cancer cell must modify or dispense with several of the
properties of normal cells. In becoming its own organism, it must
resist programmed cell death, ignore anti-growth signaling and
tissue control, and achieve proliferative immortality. Once the
cell has become a cancer, natural selection favors adaptations
that modify or upregulate intra-cellular metabolic pathways, cell-
cell signaling processes, nutrient transporters and membrane
pumps, and self-sufficiency in growth factors (Brown, 2016).
Heritable variation available to natural selection occurs in
cancers via mutations, fixed epigenetic changes, chromosomal
rearrangements, copy number variation, and aneuploidy brought
on by actual cell fusion or by incomplete cell division (Nam et al.,
2020; Pienta et al., 2020b). To be more successful at acquiring
nutrients, occupying space, and outcompeting other cancer cells
they present antigens to the immune system (Houghton, 1994).
In particular, some adaptations of cancer cells result in neo-
antigens, novel proteins, and molecules absent from normal cells
(Lee et al., 2018). Any of these cancer cell adaptations may invite
attack from the immune system. To survive, cancer cells must
evolve effective immune evasion (Vinay et al., 2015).

Studies of anti-predator adaptations in nature and cancer
have developed along somewhat separate lines. Much of this
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difference results from different interests and goals. However,
approaches play a large part. Much research has been dedicated
to understanding how cancer cells become resistant to the
immune system, with the aim of developing immunotherapies
to bolster immune system attacks on cancer (Oiseth and Aziz,
2017). A large portion of this work has focused on genes,
proteins, and metabolic and signaling pathways that permit
cancer cells to avoid detection, attack, or even any response
by immune cells. Such genes, proteins, and pathways provide
targets for developing chemo- and immunotherapies (Esfahani
et al., 2020; Tan et al., 2020). Less has been studied regarding
the categories of “anti-predator” behaviors, physiologies, and
morphologies of cancer cells. Genes or molecular pathways
in cancer may be identified as immunosuppressive without
us having knowledge of why the individual cancer cells are
in less danger because of these adaptations. Our limited
understanding of cancer cell-immune system predator-prey
interactions hinders our capacity to anticipate cancer cell
responses to altered tissue environments, cell communities, and
treatment regimes.

Here we take an ecological perspective on the evolution and
utility of different anti-predator adaptations in nature and in
cancer (cancer is also a part of nature, but for purposes of
terminology we will use “nature” as a shorthand for all other
organisms other than cancer). Our reference to the “ecology
of fear” is based on the premise that fear is an adaptation for
assigning a cost to activities that incur a risk of injury or death.
In response to threatening immune cells, cancer cells may be
able to evolve some degree of fleeing, hiding, or camouflaging
like prey seen in nature, but probably not to the same degree.
Furthermore, we shall argue that cancer cells must be able to
maintain foraging and proliferation activities in the presence of
potentially lethal immune cells. Cancer cells likely enjoy very
little enemy-free space. We argue that cancer cells should and
do evolve the equivalence of armor, spines, and noxiousness. In
fact, these may be some of the most advanced and important
adaptations of cancers, evolving again and again in parallel and
as convergent evolution from patient to patient, from tumor to
tumor within a patient, and perhaps even multiple times among
the cancer cells of a tumor.

In what follows, we begin with a discussion of mammals
because these species are likely familiar to readers across
disciplines; for them, spines, armor and noxiousness are literal
both in terms of form and function. We then proceed to describe
anti-predator defenses in fishes, insects, and microorganisms;
the goal being to transition to taxa that become gradually more
similar to single-celled cancer organisms. In this overview, we
categorize defenses as being armor-like, spine-like, or noxious.
We use these terms because they are easily recognizable in
well-known species (e.g., mammals), and therefore serve as
convenient references–shorthand, if you will–when we describe
systems and traits that are perhaps less familiar to many
readers. We categorize defenses into the categories of armor,
spines, and noxiousness primarily based on their functions,
starting with mammalian examples as a model. We take this
approach to emphasize the convergent functionality (more-so
than appearance) of defenses across taxa.

Next, we briefly detail how the immune system poses threats
to cancer cells in terms of types of immune cells, their activation
and proliferation, and how they actually kill cancer cells. While
the immune system and its cells do not operate under the same
ecological and evolutionary principles as predators in nature, they
do represent a mortality threat to cancer and exert a selection
pressure on cancer cells that is remarkably like that of predators
on their prey. We then seek parallel and similar categories of
adaptations in cancer that can best be described as armor, spines,
and noxiousness. Finally, we note how drawing such parallels
between nature and cancer can enrich studies of anti-predator
adaptations in nature and suggest ways for how drugs and the
immune system can be better deployed to improve patient care.

MAMMALS

Armored defenses take two main forms in mammals, keratinous
scales and osteoderms. Scales are derivatives of hair and are
found only in pangolins (Pholidota) (Figure 1A). Osteoderms
are dermal bone deposits and are (or were) found in plate
form in armadillos, glyptodonts, and pampatheres (Cingulata),
and as small ossicles in ground sloths (Pilosa) (Hill, 2006). Of
these groups, only pangolins and armadillos are extant. Scales
and osteoderms often do not provide impenetrable protection
against predators’ teeth and claws, but they make prey more
difficult and time-consuming to kill and ingest. They function as
effort deterrents.

In mammals, spiny defenses take the form of modified hairs
that are exaggeratedly thick, stiff, and sharp. Taxa with spines
(or foam-cored quills) include echidnas (Tachyglossidae),
tenrecs (Tenrecinae), hedgehogs (Erinaceinae), Afro-
Eurasian porcupines (Hystricidae), and American porcupines
(Erethizontidae), with spines evolving independently in each
lineage. The extremely long quills of Afro-Eurasian porcupines
(Figure 1F) and the barbed quills of American porcupines can
seriously injure and even kill attacking predators (Afro-Eurasian:
Mori et al., 2014; Kerbis Peterhans et al., 2019; Lazzeri et al.,
2020; American: Katzner et al., 2015; Elbroch et al., 2016; Forti
et al., 2018). These structures will therefore deter predators
for risk of physical harm and incapacitation. The relatively
short spines of other taxa may not incapacitate predators, and
instead, may function like armor by making the prey difficult
to handle. Supporting this hypothesis, tenrecs, hedgehogs, and
echidnas, which have relatively short spines, will roll up into a
ball when threatened, a behavior similar to (armored) pangolins
and three-banded armadillos (Tolypeutes tricinctus). Spines serve
jointly as effort and injury deterrents.

Noxious chemical defenses in mammals include venom,
anointed toxins, and foul odors. Slow lorises (Nycticebus sp.)
produce venom by mixing their saliva with an oily exudate from
their brachial glands. They retain the substance in their mouths
for a venomous bite or spread it over their fur (Alterman, 1995;
Nekaris et al., 2013). Other species “self-anoint” their bodies with
toxins or odiferous compounds produced by other organisms.
African crested rats (Lophiomys imhausi) chew the bark of
African poison arrow trees (Acokanthera schimperi), then apply
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FIGURE 1 | Images of species with armor, spines, and noxious chemical defenses. Examples of armor: (A) Temminck’s ground pangolin (Smutsia temminckii)
(Wursten, 2017); (B) scanning electron micrograph of placoid scales on a white shark (Carcharodon carcharias) (Lindsay, 2019); (C) velvet ant (Mutillidae)
(Pemberton, 2009); (D) scanning electron micrograph of coccolithophore (Emiliania huxleyi) (Taylor, 2011); (E) cancer cell being attacked by T-cells (Gartner, 2021).
Examples of spines: (F) Malayan porcupine (Hystrix brachyura) (Villemagne, 2008); (G) lionfish (Pterois sp.) (Mistry, 2019); (H) Lymantria dispar (Materialscientist,
2009); (I) Paramecium tetraurelia with trichocysts (DavidpBowman, 2014); (J) scanning electron micrograph of breast cancer cell (Wetzel and Schaefer, 1980).
Examples of noxious chemical defenses: (K) striped skunk (Mephitis mephitis) (Keck, 2011); (L) thornback cowfish (Lactoria fornasini) (Zerpe, 2018); (M) bombardier
beetle (Brachinus elongatulus) (Hedgcock, 2013); (N) red tide Dinophysis bloom (Dahl, 2019); (O) cancer cells impeding immune cells by creating an acidic
environment (Fox, 2001). Images were cropped but not otherwise altered.

the toxic material to specialized hairs on their flanks (Kingdon
et al., 2012; Weinstein, 2020; Weinstein et al., 2020). Interestingly,
African crested rats also have armor-like traits. Their reinforced
skulls and remarkably tough skin are resilient to “all but the
sharpest of teeth, claws or beaks” (Kingdon et al., 2012).

Odiferous anal-gland secretions and urine are widespread
across mammal species and are often used for scent marking
and communication (Mengak, 2005; Stankowich et al., 2011;
McLean, 2014; Jansen et al., 2020). Skunks (Figure 1K) and
stink badgers (Musteloidea: Mephitidae) and striped polecats
(Musteloidea: Mustelidae) have co-opted anal secretions for
defense (Stankowich et al., 2011). When sprayed on potential
predators, a skunk’s thiol-containing musk causes a burning
sensation in the eyes (Cuyler, 1924; Wood et al., 2002). Skunks,
stink badgers, striped polecats, slow lorises, and African crested
rats all have black and white aposematic coloring which warns
predators of their noxiousness (Stankowich et al., 2011; Nekaris
et al., 2019). Noxiousness serves as an injury deterrent.

Several characteristics unite mammals with armored,
spiny, and noxious defenses. Relative to the mammalian
norm, mammals with spines, armor, and noxious chemicals
exhibit locomotion associated with stability rather than speed
(Lovegrove, 2001). Furthermore, they often have low metabolic

rates (McNab, 1984, 2008; Haim et al., 1990; Stephenson and
Racey, 1994; Lovegrove, 2000). While attributing causation can
be tricky, armor, spines, and noxiousness may both be associated
with and permit slower speeds and lower metabolic rates.
Most intriguing and compelling is that these defenses (unlike
fleeing, camouflage, and escape to refugia) allow the mammal
to maintain feeding activities in the presence of predators that
have detected them, even at close proximity. Approach distance
(or flight initiation distance) describes how close a predator
can get to a prey before it flees. We posit that armor, spines,
and noxiousness significantly reduce approach distances while
discouraging predators from approaching at all. This theme will
be repeated in the following sections.

FISHES

Armor and spines occur early in fish evolution. Extinct
jawless fishes in the clade Osteostraci exhibited a conspicuous
armored endoskeleton headshield, with plates and spines
(Klompmaker et al., 2019). With the evolution of jaws,
gnathostome fish emerged as predators of other fish. Their prey
often evolved armor in defense. Extinct placoderms possessed
articulated armored plates that covered their head and body
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(Klompmaker et al., 2019). Cartilaginous fishes (Chondrichthyes;
sharks, skates, and rays) have armored placoid scales (Figure 1B;
Raschi and Tabit, 1992). Extinct lobe-finned fishes (Sarcopterygii)
were covered in tough bone and keratin and extant coelacanths
(Coelacanthidae) have specialized scales that are resistant to
damage from predators (Quan et al., 2018). Ganoid scales in
Polypteriformes (bichirs) and Lepisosteiformes (gars), and bony
plates in Acipenseriformes (sturgeons) also provide armored
deterrence (Song et al., 2011; Yang et al., 2013; Wishingrad
et al., 2015). Armature is persistent throughout spiny ray-fined
fishes (Percomorpha) such as boxfishes (Ostraciidae), which have
dermal scutes that provide protection from both penetrating
and crushing forces (Yang et al., 2015). Even the seemingly
inconspicuous scales of small mouth bass (Morone saxatilis)
provide protection from predators by resisting punctures (Zhu
et al., 2012). The effort deterrence of armor gives way
to injury deterrence when these features are also spiny or
associated with spines.

Being spiny allow fish to evade predation by threatening
harm, preventing capture, increasing handling time, or otherwise
reducing predator efficiency (Forbes, 1989; Nilsson et al.,
1995; Nilsson and Brönmark, 2000). Head and fin spines and
deep bodies are common defensive traits. Many piscivores are
gape-limited predators, therefore a deep body effectively frees
the prey from these predators. In fact, spines may have evolved
with deepening or widening body shape for this very reason
(Price et al., 2015). Spines may be erected as needed to increase
body depth in groups like triggerfish and filefish (Balistidae
and Monacanthidae). Other Tetraodontiformes (including
porcupinefish, Diodontidae, and pufferfish, Tetraodontidae)
possess a behavioral startle response to predation threats
that includes increasing body size and erecting body spines
(Greenwood et al., 2010; Pleizier et al., 2015). The evolution of
fin spine length in butterflyfish (Chaetodontidae) correlates with
foraging in risky habitats and situations (Hodge et al., 2018).
Spines serve jointly as effort and injury deterrents.

Noxious slimes, venoms and toxins occur frequently
throughout the evolutionary history of fishes. Pre-vertebrates
and jawless fishes (hagfishes, Myxinidae) deploy a noxious
slime that smothers the gills and suffocates would-be predators
(Zintzen et al., 2011). Venom is observed in at least 58 fish
families and serves both predatory and anti-predatory functions
(Smith et al., 2016; Harris and Jenner, 2019). In some species,
modified fin and body spines form hypodermic needles capable
of injecting venom into predators (Harris and Jenner, 2019).
This defense is hypothesized to contribute to lionfishes’ (Pterois
miles and Pterois volitans) (Figure 1G) wide niche breadth
and P. volitan’s expansive range and success as an invasive
species (Harris and Jenner, 2019). Noxious chemical defenses
can take the form of ichthyotoxins which are secreted from
the skin and aid in escape. To reduce parasitic load or when
threatened, pufferfish (Tetraodontidae) release tetrodotoxin
through their skin (Saito, 1985; Munday et al., 2003). Boxfish
and cowfish (Ostraciidae) (Figure 1L) release ostracitoxin as
a poisonous secretion (Thomson, 1964). Notably, both these
families are comprised of relatively slow swimming omnivores
found on coral reefs.

Conspicuous defensive traits such as armor, spines, or
noxious chemicals play a large role in fish behavior and
foraging. Fish without defensive armor mitigate predation
risk with behavioral responses such as fleeing (McLean and
Godin, 1989). Consequently, unarmored fish may reduce the
amount of time foraging and flee sooner than those that are
defended. Armored stickleback (Culaea inconstans) preferred
to associate with non-defended fathead minnows (Pimephales
promelas) in high-risk environments, perhaps because they
were the predator’s less preferred prey (Mathis and Chivers,
2003). Such tradeoffs between foraging and predation risk have
evolutionary consequences. For example, butterflyfish species
(Chaetodontidae) with longer spines have riskier foraging
strategies such as being solitary or venturing farther from the
safety of the reef (Hodge et al., 2018). As with mammals, armor,
spines, and noxious chemicals in fish may permit tenacious
foraging under high risk, permit closer approach distances, and
discourage predators from attacking at all.

INSECTS

Insects have evolved a spectacular array of defenses. Sugiura
(2020) classified insect defenses into chemical, morphological,
physical, and behavioral categories. In a manner similar to the
other taxa we discuss, Sugiura’s morphological and physical
categories include armor and spines, and chemical and behavioral
categories include toxic or noxious exudates, venoms, and
regurgitated gut fluids.

An insect’s exoskeleton acts as armor among other functions
(Davies, 1988). As body armor, the exoskeleton is made of stiff
sheets or lamellates of chitinous and proteinaceous material
connected by a flexible membrane which allows the entire
exoskeleton to move (Waldbauer, 2012). In some insect species,
the chitinous exoskeleton can be so hard that it is all but
impervious to crushing and digestion. A striking example first
observed by Alfred Russel Wallace (Wallace, 1867, 1895, as
seen in Wang et al., 2018b) are the Pachyrhynchus weevils
(Coleoptera: Curculionidae: Entiminae: Pachyrhynchini). The
exceptional strength of mature weevil exoskeletons results from
a thickly sclerotized cuticle, combined with fibrous ridges in the
endocuticle layer of the exoskeleton, apparently unique to these
weevils (Wang et al., 2018a). Such defenses act primarily as an
effort deterrent.

Many insects have evolved defensive hairs (setae) and spines.
The lubber grasshopper (Romalea guttata) has sharp spines on
its hindlegs which deter predators (Eisner et al., 2005). Many
lepidopteran taxa possess hairs and spines. Some of these are
“urticating” or stinging structures, while others, e.g., those of
the mulberry tiger moth (Lemyra imparilis) and the moth,
Lymantria dispar (Figure 1H), provide only a physical deterrence
to predators (Whelan et al., 1989; Sugiura and Yamazaki, 2014)
or parasites (Kageyama and Sugiura, 2016). On at least some
species, the hairs increase in length and/or density in later larval
instars, and these developmental changes appear to increase the
deterrence effect of the hairs (Whelan et al., 1989; Sugiura and
Yamazaki, 2014).
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Insects manifest an extraordinary diversity of chemical
defenses (Eisner, 1970; Blum, 1981; Eisner et al., 2005). These
defenses are found on the surface, in blood, the gut, or
systemically (Eisner et al., 2005). Glandular chemical defenses
may be injected into the enemy or secreted in other ways
(Eisner, 1970). In some species, venoms may be used both
for defense and to acquire prey. Finally, chemical defenses
may be produced endogenously or acquired exogenously
(Eisner et al., 2005). Many herbivorous insects sequester plant
secondary compounds intended for defense against herbivores.
In these cases, specialized herbivores are often better defended
against their own predators than are generalist herbivores
(Zvereva and Kozlov, 2016).

Given their soft bodies, larvae of Coleoptera and Lepidoptera
are particularly vulnerable to physical attack, and, unsurprisingly,
many are well defended by spines (brushy setae) or noxious
chemicals. The unicorn caterpillar moth (Schizura unicornis)
sprays its defensive chemical cocktail from a saclike gland located
behind the head (Eisner et al., 2005). The bombardier beetles
(Coleoptera) (Figure 1M) produce their defensive chemicals,
benzoquinones, which combine explosively when ejected. The
reactants, hydrogen peroxide and hydroquinones, are forced
through a “reaction chamber,” where catalases and peroxidases
drive the chemical reaction, ejecting “their spray at the
temperature of boiling water” (Eisner et al., 2005, p. 159–160).
Their spray repels spiders, ants, frogs, and birds.

Insects commonly have two or even all three forms of
effort/injury deterrents. Velvet ants (Hymenoptera: Mutillidae)
(Figure 1C) possess a suite of formidable defenses, including
aposematically colored, coarse, dense hair (setae), a chemical
alarm signal, stridulatory warning sounds, and potent stings
(Hertz, 2007; Schmidt, 2016). In addition, they are protected
by a round, slippery, and extremely hard exoskeleton (Schmidt
and Blum, 1977; Gall et al., 2018). They can even survive over
20 min in the stomach of a toad prior to rejection by regurgitation
(Mergler and Gall, 2021).

Many insect species flee at the approach of a potential predator
(e.g., cockroaches, houseflies, and grasshoppers), exhibit amazing
camouflage (e.g., peppered moth, stick insects, planthoppers),
or overwhelm their predators numerically with occasional
emergences (e.g., periodical cicada, mayflies) or outbreaks
(swarming locusts). We hypothesize that these species are less
likely to exhibit armor, spines, and noxious chemicals. Such
species should be more likely to cease feeding activities at the
approach of predators. Insects that use effort/injury deterrents
pay a price for their defenses (Flenner et al., 2009) but can
maintain activities in the presence of predators (Witz and
Mushinsky, 1989; Ge et al., 2019). In fact, most insects that seem
“easy” to catch are likely defended with some combination of
armor, spines, and noxiousness (or sheer numbers).

MICROORGANISMS

We see cancer as a speciation event in which a protist evolves
from the cells of its host (Gatenby and Brown, 2017; Gatenby
et al., 2020; Pienta et al., 2020a). From this perspective,

microorganisms provide the closest examples for cancer of
armored, spiny, and noxious defenses, both in form and function.
The term “microorganism” includes archaea, bacteria, protozoa,
fungi, and algae. For this diverse polyphyletic grouping, our
goal is to highlight how and when armored, spiny, and noxious
defenses are seen in unicellular organisms.

Armor-like defenses in unicellular species include reinforced
cell walls (armored plates and sheaths) and robust extracellular
matrices. In phytoplankton (single-celled algae), these provide
effort deterrence from zooplankton grazing (Hamm et al., 2003).
Most species of dinoflagellates have cell walls surrounded by
armor-like cellulosic sheaths known as thecae. Diatoms have
frustules, silicified cell walls (Hamm et al., 2003), which allow
them to survive passage through a predator’s gut (Fowler and
Fisher, 1983). Diatoms thicken their frustule walls in response
to copepod grazing (Pondaven et al., 2007; Grønning and
Kiørboe, 2020). Coccolithophore phytoplankton are named for
their calcium carbonate plates, or coccoliths, which surround
their cell walls (Figure 1D). Heterotrophic protist predators
exhibit significantly reduced population growth rates when fed
calcified rather than non-calcified (less armored) strains of
Emiliania huxleyi coccolithophores (Harvey et al., 2015; Pančić
and Kiørboe, 2018). E. huxleyi have a haplo-diplontic life cycle
and only the diploid cells, which are non-motile, are calcified
(Kolb and Strom, 2013). This is consistent with our hypothesis
of a relationship between armored defenses and less mobile (or
sessile) lifestyles.

Cell and colony size and shape also influence host-grazer
interactions. Prey morphologies that are large or unwieldy
increase handling time for predators and thereby function as
armor despite the lack of a thick outer covering. The presence
of some species of Daphnia (zooplankton grazers) will induce
populations of Scenedesmus phytoplankton to transition into
linked-up colonies with spiny morphologies (van Donk and
Hessen, 1993; Pančić and Kiørboe, 2018). Lürling et al. (1997)
confirmed that Daphnia species grazed Scenedesmus at lower
rates when Scenedesmus formed large, linked colonies. Similarly,
protozoan grazers promote planktonic bacteria with elongated
filamentous morphologies (Jürgens et al., 1994; Pernthaler et al.,
1996; Hahn et al., 1999), which can manifest as individual cells
with strongly elongated shapes or thin chains of multiple cells
(Hahn et al., 1999). Various bacterial species are permanently
or facultatively filamentous, but the increased prevalence of
filamentous bacteria in the presence of protozoan grazers reflects
differential survival, not an induction of filamentous morphology
(Hahn et al., 1999).

Another type of armor-like defense in microorganisms is
observed in biofilms, which adhere together by extracellular
matrices of polymeric substances (polysaccharides, nucleic acids,
and proteins). The exopolymeric matrix constitutes a “biofilm
shield” that is difficult for predators to penetrate, and the
unwieldy masses of cells resist phagocytosis by unicellular
predators (Matz and Kjelleberg, 2005). Phagocyte predators are
less hindered when this shield is broken. For example, neutrophils
have an elevated response (oxidative burst) to Pseudomonas
aeruginosa surface biofilms when they have been mechanically
disturbed (Kharazmi, 1991; Jensen et al., 1992). Biofilms are

Frontiers in Ecology and Evolution | www.frontiersin.org 6 July 2021 | Volume 9 | Article 682504135

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-682504 July 26, 2021 Time: 18:16 # 7

Peplinski et al. Armored, Spiny, and Noxious

effective at defending against suspension-feeding protozoans in
aquatic/marine habitats (Matz et al., 2002; Seiler et al., 2017),
and immune cells such as neutrophils and macrophages in host
systems (Jesaitis et al., 2003; Chandra et al., 2007; Thurlow et al.,
2011; Roilides et al., 2015).

Spines and distinctive adaptations that function like spines
provide microorganisms with safety from predation through both
effort and injury deterrence. Some ciliates and dinoflagellates
produce filamentous trichocysts, silicified needle-like extrusive
organelles (Figure 1I). When triggered, these protists discharge
a barrage of trichocysts outside their cells, creating a spikey
obstruction between the protist and its predator (Knoll et al.,
1991). To avoid injury, a persistent predator must detour
around the trichocyst mass, resulting in increased subduing
time. The dinoflagellate Prorocentrum micans possesses both
trichocysts and armor-like theca (Rhiel et al., 2018). The
diatom Chaetoceros peruvianus produces spine-like extensions
of its already armor-like siliceous frustule. These extensions
(setae) are believed to deter predators by increasing handling
effort (Pickett-Heaps et al., 1994; Smodlaka Tanković et al.,
2018).

Toxins and other noxious chemical defenses are employed by
diverse species of archaea, bacteria, phytoplankton, and yeasts.
Perhaps the most infamous are the neurotoxins of dinoflagellates,
diatoms, and cyanobacteria, which can lead to harmful algal
blooms or red tides. These neurotoxins include chemicals of the
saxitoxin family, commonly known as paralytic shellfish toxins,
as well as spiroimines, goniodomin A, and lytic compounds (Xu
et al., 2017). Most of the noxious chemicals of phytoplankton
are retained in their cells, delivered to predators only upon
ingestion. Some Alexandrium species also produce extracellular
allelopathic compounds (Ma et al., 2009). Harmful algal blooms
can originate from several genera of dinoflagellates, including
Dinophysis, shown in Figure 1N.

Noxious chemical defenses are commonly deployed by yeast
(and other fungi) and bacteria, especially in biofilms. Because
fungi, including yeasts, are generally immobile, high-nutrient
patches are desirable and competition for them can be fierce.
Fungi have thus evolved to produce an array of noxious chemicals
which they employ against bacterial and other fungal competitors
(Künzler, 2018). They also provide injury deterrence against
predators. In yeasts, these substances, known as killer toxins,
are secreted from the cell. Some species of marine bacteria
produce the alkaloid compound violacein, which induces a cell
death program in protozoan predators (Matz et al., 2008). These
bacteria do not excrete the violacein, but retain it in their cells,
making them toxic upon consumption. Matz et al. (2008) found
that violacein production per bacterium was 3–59 times higher
for cells in biofilms than planktonic cells.

As they do for multicellular species, armored, spiny and
noxious defenses allow microorganisms to defend in place, a
behavior that is especially useful when foraging from resource-
rich patches, or when a microorganism is sessile. The advantage
of using effort or injury deterrents to remain active, in place, is
especially evident when considering biofilms. Bacteria can reach
much higher densities in biofilms than in the water column (Matz
et al., 2008). Some researchers have hypothesized that these high

cell densities can be reached because biofilms provide refuge from
predators (Matz and Kjelleberg, 2005), and others have noted that
surfaces tend to concentrate nutrients (Baty et al., 2000; Hall-
Stoodley et al., 2004). We expect that these two conditions are not
coincidental, but closely related. Planktonic bacteria can escape
predators by fleeing, but this is an undesirable strategy when
swimming away from a nutrient-rich patch.

In response to the immune system, do cancer cells evolve some
subset of armor, spines and noxious chemicals as seen among
microorganisms?

THE IMMUNE SYSTEM AS A PREDATOR

The National Cancer Institute describes the immune system as
“a complex network of cells, tissues, organs, and the substances
they make that helps the body fight infections and other diseases”
(NCI, 2021). The human immune system is a marvel with layers
of complexity for the simple purpose of killing pathogens and
pathogen-infected normal cells, and for removing debris and
malfunctioning cells. It involves a large number of cell types,
diverse signaling molecules, and a variety of spatial scales near
and far from the actual location of infection or attack. It provides
both surveillance, memory, adaptability, and attack. Specialized
cells of the immune system, particularly killer T-cells, do threaten
and kill cancer cells. To the cancer cells, they exert selection
pressures just like predators on their prey in nature.

In this section we describe some of the features of the immune
system and highlight the striking differences between cytotoxic
immune cells and most predators in natural systems. Compared
to traditional predators, they should not and do not respond in
the same way to effort and injury deterrents from their pathogen
prey. However, the immune system does drive the evolution of
immune evasion and suppression by the cancer cells within the
patient, and the suite of adaptations deployed by cancer cells can,
in many cases, resemble the effort and injury deterrents described
for the other taxa in function if not always in form.

The cancer cells face threats from the innate and the adaptive
immune system, though the latter likely exerts stronger selection
on the cancer cells’ anti-immune adaptations. But, the innate
immune response of natural killer (NK) cells, macrophages, and
dendritic cells may be crucial for priming the adaptive response
that includes antigen presenting cells (APC) and cytotoxic T-cells.
NK cells can kill from a distance by releasing proteases and
other substances in close proximity to the cancer cell. These
substances puncture holes in the cancer cell’s membrane and
permit additional lethal proteases to enter and kill the cancer
cell. T-cells operate similarly, but they must be in contact with
the cancer cell. Macrophages kill cancer cells by engulfing them
through phagocytosis. In the tumor, macrophages and NK-cells,
through their killing of cancer cells, and APC and dendritic
cells, through their transport of bound antigens to lymph nodes,
can recruit, prime, and activate cytotoxic T-cells. The T-cells
flow through the blood to the tumor from the lymph nodes,
where they can continue to proliferate as well as attach to
cancer cells (Figure 1 in Demaria et al., 2019 provides an
excellent illustration).
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There are three noteworthy features of the interaction of the
immune system with cancer cells. First, while it is not a predator-
prey system in the usual sense, the action of cytotoxic T-cells can
be conceptualized and modeled as a predator (de Pillis et al., 2005;
Kareva et al., 2010; Robertson-Tessi et al., 2012; Kaur and Ahmad,
2014). As a “predator,” T-cells are subsidized in the sense that
new ones can be recruited from the lymph nodes, independent
of killing rate and success (Blank et al., 2016). This could be
compared to house cats (T-cells) preying on song birds (cancer
cells) where the fate of the cat population is uncoupled from the
fate of the song bird population because the cats are supported by
pet food (Lepczyk et al., 2004). Second, as modeled and noted
by Kareva et al. (in review), cytotoxic T-cells do not work on
commission like natural predators. Their proliferation can be
stimulated by the overall presence of the antigen and the number
of cancer cells. But, a given cytotoxic T-cell’s proliferation rate
does not increase with the rate at which it kills cancer cells. In
fact, in a phenomenon known as T-cell exhaustion (Zarour, 2016;
Wang et al., 2018; Philip and Schietinger, 2019), a T-cell may
become injured and incapacitated in the process of attaching
to and killing a cancer cell. Hence, the direct effect of T-cells
on cancer cells, and vice-versa, bears a greater resemblance to
extreme interference competition than predation (Kareva et al., in
review). Third, other immune cells such as regulatory T-cells (T-
regs) act as a break on the proliferation of cytotoxic T-cells. Their
proliferation is stimulated by cytotoxic T-cells even as T-regs
suppress the proliferation of cytotoxic T-cells. In its simplest
guise, T-regs, cytotoxic T-cells and cancer cells form a kind of tri-
trophic level system: T-regs “prey” upon and benefit from T-cells,
and T-cells prey upon and benefit from cancer cells (Dullens et al.,
1986; Eftimie et al., 2016; Walker and Enderling, 2016).

In the previous sections we discussed examples of species that
defend themselves from predators for whom successful foraging
leads to increased individual fitness. Like other organisms, these
predators make foraging decisions that balance nutritional and
energetic rewards against the risk of bodily harm and missed
opportunity costs. We shall refer to these types of predators
as traditional predators. Immune cells fall into a different
category of predator. While they are predators insomuch as they
exert selection on prey (pathogens, cancer cells) as traditional
predators would, cytotoxic immune cells are not traditional
predators. They do not individually benefit from successful
foraging (killing cancer cells). This is because the unit of natural
selection is not the individual immune cell but the entire host
organism. Immune cells’ behaviors serve to benefit the entire
organism, even at the expense of the individual immune cell. In
this way, they may be likened to the soldier caste of a eusocial
species, such as soldier ants, which will walk into the face of
danger for the benefit of the colony.

For systems with traditional predators, armor-like defenses
are effective primarily as an effort deterrent. All else equal,
traditional predators will opt for the easier (unarmored) prey.
This strategy maximizes time and energy efficiency. Soldier-
caste-type predators, meanwhile, may not be deterred from
pursuing difficult prey. Their preference should reflect the needs
of the whole organisms or colony. For example, neutrophils and
macrophages attempt to phagocytize biofilms even when they are

too large to engulf, which frustrates phagocytosis (Leid, 2009;
Thurlow et al., 2011). Prey defenses that incapacitate predators
function as injury deterrents. When alternatives are available,
traditional predators will opt for less dangerous prey. When the
fitness reward from a prey does not counterbalance the risk of
lethal or incapacitating injury to the predator, then the predator
should forgo that prey entirely. Soldier-caste-type predators,
meanwhile, will not be deterred from pursuing dangerous prey,
even if there is a high probability that the soldier will be killed.
Attempts by neutrophils and macrophages to engulf bacterial
biofilms will trigger the bacteria to release cytotoxic chemicals
that are effective in killing the cells (Thurlow et al., 2011;
Hirschfeld, 2014; Scherr et al., 2015). These phagocytes lose
twice, first by the prey’s armored defense and second by the
prey’s noxious defense, yet they still pursue the prey until their
deaths. Figure 2 summarizes how defenses that either increase
subduing-handling time or threaten incapacitation will affect
traditional and soldier-caste-type predators. Though soldier-
caste-type predators will not necessarily be deterred for their own
self-preservation, they can be deterred for the sake of the whole
organism’s or eusocial colony’s wellbeing.

Self-attack, where the attacker misidentifies benevolent cells
or individuals of the (super)organism as threats, is a particularly
relevant concern for soldier-caste-type predators. In eusocial
animal colonies, discernment of colony members decreases
the chance of both self-attack (Michener, 1974; Crosland,
1990; Fishwild and Gamboa, 1992), which is analogous to
autoimmunity, and parasitism, which is analogous to infection
or cancer. Naked mole rats, which are eusocial, use odors to
recognize colony members, with individuals’ odors mixing to
create a unique and dynamic colony scent (O’Riain and Jarvis,
1997). Almost universal among eusocial insects (Breed and
Bennett, 1987; Smith and Breed, 1995), nest mate recognition
is accomplished in a similar way, by picking up the chemical
profile unique to the colony with their antenna. This strategy is
useful for detecting colony threats such as parasites, unless the
parasites can convincingly mimic colony members or the nest
itself. Eusocial stingless bees (Melipona subnitida) will swiftly
attack and kill full adult (post-eclosion) parasitic mantisflies
(Plega hagenella) that enter their colony but will not kill younger
adults (pharates) still in pupa (Maia-Silva et al., 2013). Perhaps
because the pharates convincingly mimic the scent profile of the
nest, the bee workers simply gently remove the pharates with
the nest’s waste, at which point the mantisflies continue their life
cycle (Maia-Silva et al., 2013). Maia-Silva et al. (2013) conclude
that delayed adult eclosion in these mantisflies is an important
adaptation to avoid attack by host bees.

Immune cells depend on antigen recognition to discern
self and non-self. To evade immune cell predation, cancer
cells should disguise themselves as host cells, similar to the
strategy of the parasitic mantisfy pharates. However, this presents
a tradeoff to the cancer cells. Novel adaptations that would
make them more successful at acquiring nutrients, occupying
space, and outcompeting other cancer cells–e.g., modification
or upregulation of intra-cellular metabolic pathways, cell-cell
signaling processes, nutrient transporters, membrane pumps,
and self-sufficiency in growth factors (Brown, 2016)–will also
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FIGURE 2 | Defenses which function to increase predator handling time and/or subduing time (armor and, in some instances, spines) will deter traditional predators
but not soldier-caste-type predators. Defenses which incapacitate predators (noxious chemicals and, in some instances, spines) will also deter traditional predators
but not soldier-caste-type predators. Prey can also fool predators with false signals, pretending to be unsuitable prey (Batesian mimics). For traditional predators,
noxious prey are unsuitable prey. Mimicking noxious prey will deter traditional predators but not soldier-caste-type predators. For soldier-caste-type prey, “self”
cells/individuals from the same organism/superorganism are unsuitable prey. Mimicking “self” cells/individuals could deter soldier-caste-type predators, or simply
increase the time required for proper identification. By delaying proper identification, these mimics are effectually increasing predator subduing time, making this an
armor-like defense. For traditional predators not part of a superorganism, the distinction between self and non-self is obvious so self-mimicry is N/A.

result in conspicuous antigen presentation (Houghton, 1994;
Lee et al., 2018). Having supplementary anti-predator defenses
such as armor, spines, or noxious defenses could allow cancer
cells to incorporate novel adaptations with impunity, even if the
accompanying antigens ultimately increase immune cell attack.

The adaptive immune system creates a coevolutionary arms
race between cancer cells and the host immune system which
bears some similarities to that between traditional prey and
predators (Kareva et al., in review). This arms race reoccurs de
novo within each cancer patient. In traditional predator-prey
models, predators directly convert consumed prey into more
predators (predator biomass), but this is typically not the case
for immune cells (Merlo et al., 2006, Kareva et al., in review).
However, the adaptive immune system will produce cytotoxic
T-cell variants that successfully target invader cells (Merlo et al.,
2006). The direct conversion of prey into predator biomass has
evolutionary consequences because successful predators will have
more offspring, selecting for superior predatory traits. Within the
lifespan of an individual host, cancer cells have the opportunity
to evolve immune evasion over many generations, but the host
does not. The adaptability of the immune system enables the host
to modulate how it attacks the changing cancer cell community.

Cancer cells subjected to NK cells, macrophages, cytotoxic
T-cells and other associated regulator cells find themselves
being the prey, so their immune evasion responses are akin to
standard anti-predator adaptations that emerge from traditional
predator-prey systems. Tumors can be classified as hot versus
cold depending upon the amount of immune infiltration (Maley
et al., 2017; Vareki, 2018), and hot tumors are thought to be
more responsive to immunotherapies that challenge or target
the cancer’s anti-predator adaptations (de Guillebon et al., 2020).
While often novel in form, cancer cells’ anti-predator adaptations
against the immune system function much like armor, spines, and
noxiousness in other species.

ANTI-PREDATOR ADAPTATIONS IN
CANCER

As noted by Fridman (2018), the observation that the immune
system might suppress cancers dates back to 1891 (Coley,
1891). However, the immune system’s therapeutic value did not
become fully appreciated until this century. Not until 2011, did
Hanahan and Weinberg add immune evasion to their original
2000 “hallmarks of cancer” (Hanahan and Weinberg, 2000,
2011). The field of cancer biology has progressed from noting
how cancer cells may have adaptations to avoid the immune
system to accepting that all successful cancer cells possess one
or more evasion strategies. NK cells, macrophages, cytotoxic
T-cells, and more are an ever-present feature of tumors, even in
cold tumors or regions of a tumor where immune infiltration is
weak. Cancer cells must and do maintain feeding, normal activity,
and proliferation while surrounded by threats from immune
cells. Cancer cells cannot truly flee, hide, or remain camouflaged
(entirely unnoticed) from immune attack. For all these reasons,
they need armor, spines, and noxiousness for defense. Though
these adaptations can take on forms quite different from those
in other taxa, they still function to deter “predators,” in this case
predatory immune cells.

As the number of cancer cells grows, natural selection
promotes increasingly effective anti-predator adaptations, thus
tipping the scales in favor of the cancer cells and against the
immune system (Solinas et al., 2009). This temporal progression
toward cancer cells winning the arms race is termed cancer
immunoediting (Shankaran et al., 2001). It has three recognized
phases (Dunn et al., 2004; Pandya et al., 2016). In the first
(elimination phase), the cancer cells are so few and so vulnerable
that the immune system can eliminate them completely (Burnet,
1957; Corthay, 2014). In the second (equilibrium phase), the
number of cancer cells and the sophistication of their immune
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evasion adaptations result in an equilibrium where the tumor
is neither growing nor shrinking or being eliminated by the
immune system (Koebel et al., 2007; Teng et al., 2008). In
the third (escape phase), the number of cancer cells and
their adaptations allow them to thrive and expand their
range (tumor growth and metastases) even in the face of a
fully functioning immune system (Khong and Restifo, 2002;
Grivennikov et al., 2010).

There are three general ways by which cancer cells evade
the immune system (Wildes et al., 2020). First, cancer cells
alter surface membrane molecules that fool cytotoxic T-cells into
perceiving them as unsuitable prey. Second, cancer cells modify
their extracellular environment in a manner that repels immune
cells or renders them less effective. Third, cancer cells release
or present molecules that render immune cells inoperable or
that alter the immune cell composition from one that is tumor-
suppressive to one that is pro-tumor (Mohme et al., 2017).

Whereas natural predators try not to waste time on
unprofitable prey, cytotoxic immune cells go out of their way
to avoid killing healthy, normal cells. Armor–in the functional
sense of increasing handling time–for cancer cells takes the
form of increasing the time required for cytotoxic immune
cells to recognize the cancer cell as prey (non-self), even to
the point of ceasing to see the cancer cells as anything but a
normal cell to be avoided (Figure 2). Cancer cells acquire this
armor by changing surface proteins, altering the expression of
MHC molecules, down-regulating NK cell activating ligands, or
simply forgoing the advantages of antigen presenting membrane
properties (Beatty and Gladney, 2015; Steven and Seliger, 2018;
Anichini et al., 2020). “Armor” by this interpretation is no longer
a barrier that frustrates physical processing by the predator, but
now a barrier that frustrates diagnosis processing by the predator.
This is because only the latter type of barrier will be effective at
deterring predation by immune cells. This defense by the cancer
cells can also be recognized as a form of mimicry.

A fascinating example of an armor-like immune escape
comes from a mouse model of adoptive cell transfer therapy
(ACT) against melanoma. In this model, an infusion of T-cells
specifically recognizes a melanoma differentiation antigen,
gp100, leading the melanoma cells to adapt by decreasing
expression of gp100 and switching to a less differentiated neural
crest phenotype (Landsberg et al., 2012). This response is
mediated by TNFα, released by tumor-infiltrating cells as a part
of a normal immune predation program. A downregulation
of gp100 is accompanied by the expression of the nerve
growth factor receptor (NGFR) and the loss of the expression
of several melanosomal antigens. Thus, the cancer cells
mimic embryological tissue. Even as the immune cells
constantly encounter these cancer cells, they perceive them
as unsuitable prey.

Cytotoxic immune cells are not completely devoid of
behaviors of self-preservation. They will avoid prey perceived
as “self ” and they will avoid toxic circumstances. Spines to
a cancer cell can be literal protrusions that prevent cytotoxic
T-cells from contacting the cell membrane, or, more frequently,
defenses that function like “spines.” Cancer cells do this via
changes to the microenvironment that cause cytotoxic immune

cells to avoid approaching the cancer cells. Literal spines or
protuberances appear in single cell microscopy of cancer cells
(Figure 1J). They may be invadopodia facilitating collagen
degradation within the extracellular matrix (Weaver, 2006;
Augoff et al., 2020), pseudopodia for movement (Guirguis
et al., 1987), or extracellular extensions of intermediate filament
proteins (usually associated with the cell’s cytoskeleton) that may
serve for immune evasion (Sharma et al., 2019).

At present, the role of such true spines and filaments is
poorly studied. How cancer cells generate microenvironments
that repulse immune cells or render them inactive is better
understood. Cancer cells produce hypoxic and acidic
environments that are immunosuppressive (Huber et al.,
2017; Multhoff and Vaupel, 2020; Vito et al., 2020; Figure 1O).
In particular, cancer cells upregulating carbonic anhydrase IX
(CAIX) have been shown to produce both hypoxic and acidic
conditions. Such cancer cells are more aggressive, metastatic,
and immunosuppressive (Pastorekova and Gillies, 2019). In
breast cancer, Lloyd et al. (2016) showed that CAIX-expressing
cancer cells predominated at the edges of tumors where immune
infiltration was highest.

The anti-predator adaptations of cancer cells that most closely
align with those seen in natural predator-prey systems are
noxious defenses. Though, here again, cancer cells exploit some
of the unique regulatory properties of the immune system
designed to minimize injury to self. Antigen expression by a
cancer cell stimulates several signaling cascades within tumor-
specific activated T-cells including regulatory receptors such as
the programmed cell death protein 1 (PD-1) (Pardoll, 2012). As
an extra precaution against T-cells killing the wrong cells, PD-
1 on the T-cell interacts with its ligand PD-L1 on the surface of
normal cells. Frequently, across multiple cancer types and across
patients, cancer cells independently evolve to upregulate PD-
L1, covering their cell surfaces with these transmembrane ligand
binding proteins PD-L1 (Dong et al., 1999; Atefi et al., 2014).
When a T-cell encounters the cancer and the PD-L1 binds to the
T-cell’s PD-1 protein a “no killing” command ensues. In response,
the T-cell may leave the cancer alone, or, in terms of inducing
injury, the T-cell may cease to divide, deactivate, or even undergo
apoptosis (Butte et al., 2007; Francisco et al., 2009). This form of
immune checkpoint adaptation by the cancer cells also manifests
in other death inducing FAS-FAS ligand binding, CD47, and
HLA-G (Pettersen, 2000; Horton et al., 2018; Zhu et al., 2019).
When the cancer cells present receptors that induce death or
deactivation of the T-cells, they possess a noxious defense.

The noxious anti-predator repertoire of cancer cells includes
releasing chemicals that deactivate or induce apoptosis in
cytotoxic cells (e.g., release of NK-cell ligands). The secretion
of interferons and TNFα by infiltrating lymphocytes amplifies
the immune response by attracting cytotoxic T-cells, NK cells,
and macrophages. However, experimental data from both
mice (Spranger et al., 2013) and humans (Rooney et al.,
2015) show that interferons also induce the expression of
indolamine 2,3 dioxygenase (IDO). Increased level of IDO in the
tumor microenvironment leads to metabolic suppression of the
lymphocytes and a reduction of cytotoxic immune cells. Cancer
cells also evolve to release extracellular vesicles (EV) that can
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contain immune checkpoints, signaling molecules that attract
pro-tumor immune cells such as T-regs and M2 macrophages.
These pro-tumor cells suppress the proliferation of cytotoxic
immune cells and even co-feed cancer cells. In effect, the cancer
cells can evolve adaptions to co-opt and hijack the immune
system (Heusinkveld and van Der Burg, 2011; Kareva, 2011).
In this ultimate form of noxiousness, the cancer cells call in
the “enemy” of their “enemy.” Cancer cells have developed
indirect defenses very much akin to plants releasing volatile
chemicals to attract predatory wasps of the plant’s arthropod pests
(Halitschke et al., 2008).

FROM NATURE TO CANCER AND BACK
AGAIN

Looks Can Be Deceiving
We have presented examples of diverse species employing armor,
spines, and noxious chemicals as anti-predator adaptations. It
is evident from this overview that defenses with the same
essential function do not always look similar, and traits that
look similar do not always function similarly. One essential
defense strategy we have described is specialized morphology that
increases predator subduing and/or handling time. In mammals
and other animals, this defense typically looks like armor, that is,
exceptionally durable integument. In other species, this defense
strategy often takes the form of a robust exterior, but sometimes
it does not. For example, filamentous morphology in bacteria
and cancer increases predator handling time even without the
thickening of cell walls (Jürgens et al., 1994; Pernthaler et al.,
1996; Hahn et al., 1999).

Spine-like morphologies are widespread across taxa, but the
function of these morphologies varies. Some species’ spines are
clearly dangerous to predators, such as the exaggerated spines
of porcupines (Figure 1F). In other cases, it is less evident that
spine-like morphologies are capable of hurting predators and
may instead function primarily to increase predator subduing
or handling time. For example, the presence of Daphnia
(zooplankton grazers) triggers Scenedesmus phytoplankton form
linked-up colonies and develop spines (van Donk and Hessen,
1993; Pančić and Kiørboe, 2018). This morphology reduces
predation by small Daphnia, suggesting that the function of the
spines is to make the Scenedesmus colonies larger and thereby
more difficult to handle. This echoes the hypothesis of Price et al.
(2015) that fish spines evolved to thwart gape-limited piscivores.
Spine-like morphologies in cancer may serve multiple purposes
including movement, degradation of extra-cellular matrix, and
to keep cytotoxic T-cells at bay. These functions need not be
mutually exclusive. The protuberances of PD-L1 transmembrane
proteins in cancer cells may be more akin functionally to the
rays of lionfish (Pterois spp.) (Figure 1G). While cancer cells
and lionfish face very different predators, each can result in
the predator’s injury or death. The lesson from this overview
is that defenses functioning like armor and spines (terms based
on mammalian examples) are widespread across nature, but the
function of morphological defenses cannot be assumed from their
appearance alone.

Community Composition
The benefits of armor, spines, and noxious defenses will vary
according to the frequency of defended prey in the system as
well as the type of predator. If all prey of an ecosystem had
100% effective defenses, then their predators would starve and
there would be none. Similarly, if cancer cells within their tumor
exerted 100% effective immunosuppression, there would be no
activated immune response. But, in the absence of any predators
or immune response, natural selection would favor prey and
cancer cells without spines, armor, or noxiousness. Conversely,
if prey were poorly defended or defenses were rare, then the
population size of predators would be abundant, thus favoring
more highly defended prey. Predator-prey systems in nature
should equilibrate on a mix of vulnerable and defended prey;
or prey with some intermediate level of defense. For example,
though North American porcupines (Erethizon dorsatum) are
robustly defended by barbed spines, their defense is not so robust
to be able to thwart specialist predators such as fishers (Pekania
pennanti) (DeWitt et al., 2019).

Because vulnerable prey support the predators that select for
armored, spiny, and noxious prey, and defended prey support
few predators, thus favoring undefended prey, we imagine a
mix of vulnerable and defended prey species in most natural
ecosystems. In particular, defenses such as armor, spines, and
noxiousness seem to be favored when the prey experience high
encounter rates with predators and when they need to maintain
conspicuous feeding activities in the face of these threats. Cancer
cells almost always live in microenvironments with cytotoxic
threats from the innate and adaptive immune system. They
cannot really flee nor hide (entirely escape detection), so armor-
like, spine-like, and noxious defenses should be the norm. While
camouflage, as such, is not an option because immune cells
will encounter just about all cells in the tumor, there can be a
form of serendipitous or perhaps adaptive protection by having
a ring of cancer-associated fibroblasts form a physical enclosure
of cells and extracellular matrix that blocks off immune cells
(Hilmi et al., 2020).

For prey with armor, spines, and noxious defenses that are
targeted by immune systems, it is less straightforward to predict
how the frequency of defended prey in the system will affect
the effectiveness of each defense. Soldier-caste-type predators
will not avoid attacking defended prey just because easier prey
are available. A lot will depend on the feedback between the
frequency of defended cells and the degree of anti-tumor immune
infiltration. If, for instance, defense comes in the form of not
presenting antigens, then cytotoxic T-cells will largely ignore
them and be more available to attack antigen presenting cancer
cells. If all other cancer cells are defended, then it behooves a
cancer cell to conform. In this case, all “armored” cancer cells
become an evolutionarily stable strategy (ESS). If the cancer’s
defense comes in the form of directly or indirectly causing the
inactivation or death of cytotoxic immune cells, then these cancer
cells provide a “public good” that may promote freeloading at
the ESS. A cancer cell surrounded by noxiously defended cancer
cells may need no defense; while a cancer cell surrounded by
undefended ones may do best by being noxious. With noxious
defenses, the ESS community may be a mix of defended and
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less defended cancer cells. The coexistence of immune-evasive
and immune-susceptible cancer cell types is an interesting and
important avenue for research.

Aposematism and Mimicry
Aposematism, or warning signaling, is widespread among
animals with noxious defenses (Berenbaum, 1995; Stankowich
et al., 2011; Wang et al., 2018b) and dangerous spines (Inbar
and Lev-Yadun, 2005). When the prey can induce unacceptable
acute or chronic injury, the interests of the prey and predator
become aligned: the prey does not want to be attacked and the
predator does not want to risk injury. Aposematic signals are
not inherently deterring but are so because they are paired with
dangerous (noxious and/or spiny) defenses. Likely for this reason,
aposematic signals are associated with slow mobility, such as the
slow and non-evasive flight styles of noxious butterflies (Srygley,
1994). Since aposematic prey have dangerous defenses, they do
not need to flee as a primary defense, so speed is unimportant.
Slow movement may also increase the visibility of the warning
signals (Srygley, 1994).

Recognition of aposematic signals will increase with instances
of Müllerian mimicry, when similar-looking noxious species with
shared predators evolve to look even more similar. However,
aposematism also opens the door for Batesian mimicry, where a
non-dangerous prey dishonestly displays the aposematic signal,
taking advantage of predators’ reluctance to pursue dangerous
prey. The Batesian mimic essentially freeloads off the dangerous
prey, reaping the benefits of the defense without incurring the
associated costs.

A variety of anti-immune adaptations by cancer cells amount
to Batesian mimicry, where the normal cells are the model and the
cancer cells are the mimic. For example, cultured melanoma cells
that decrease expression of the melanoma differentiation antigen
gp100 evade detection by introduced T-cells (Landsberg et al.,
2012) by mimicking normal cells. They do this while remaining
cancer cells and not by becoming normal cells. At first glance it
seems odd to classify this type of mimicry as Batesian. Unlike
traditional predators that are working on commission, immune
cells are not deterred from pursuing dangerous prey. However,
a danger which immune cells do avoid is auto-immunity or self-
attack. Cancer cells take advantage of immune cells’ reluctance to
attack host cells by pretending to be host cells. This might seem
like a form of camouflage. It is not. In nature camouflage prevents
predator detection, it does not involve the predator finding the
prey and deciding to pass it by. Cancer cells pretending to be
normal cells do not evade immune cell detection, after all the
immune cells are contacting normal cells and cancer cells alike
to detect the antigens on their surfaces. Rather, what the mimic
cancer cells really evade is accurate identification by immune
cells. In this sense, it would be useful to interpret disguised
cancer cells as Batesian mimicry. They do not imitate dangerous
prey, but they imitate the thing that would be dangerous for
immune cells to attack. Figure 2 outlines these dynamics. One
will note that for cancer cells mimicking normal cells, this
strategy conforms to Batesian mimicry (mimicking the prey that
is dangerous to attack) and armor (increasing predator handling
time). Both perspectives may prove useful for future research.

CONCLUSION

Anti-predator defenses in the form of armor, spines, and noxious
chemicals are found widely across taxa in nature. They are also
displayed by cancer cells. Prey using these modes of defense can
continue activities such as foraging and proliferating even when
predators are numerous and nearby, which can offer a distinct
advantage over strategies such as fleeing, camouflage, or seeking
refuge. Armor-like defenses are those which make prey difficult
and time-consuming for predators to subdue and/or handle.
Noxious defenses make prey dangerous; they can temporarily
or permanently incapacitate predators. Spiny defenses may fall
into either or both functional categories. Traditional predators
will be effort-deterred and injury-deterred from pursuing prey
defended in these ways.

Cancer cells experience incessant predation pressure from
the immune system. By the nature of their morphology
and environment, cancer cells cannot flee, hide, or remain
camouflaged. Armor, spines, and noxious chemicals are thus
their primary recourse for defense. These defense modes take
considerably different forms in cancer cells than in other taxa, but
their essential functions are the same. However, the motives of
the predators are quite different in cancer versus natural systems.
The cytotoxic cells of the immune system are non-traditional,
soldier-caste-type predators which do not work on commission.
They are not deterred from pursuing difficult or dangerous
prey. Because immune cells carefully avoid attacking normal
cells of the whole organism, cancer cells, like Batesian mimics,
frequently capitalize on this reticence by mimicking normal cells.
Furthermore, the regulatory agents of the immune system can
control the deployment, proliferation, and death of cytotoxic
immune cells. Cancer cells “hijack” these communications to
not only suppress cytotoxic immune cells but to amplify pro-
tumor immune cells.

For ecologists, cancer provides replicated worlds for
studying the parallel and convergent evolution of anti-predator
adaptations within different microenvironments of a tumor
(habitat scale in ecology) and separate tumors of the host (biome
scale with the same taxa). The same evolutionary ecology can be
studied in the same cancer across patients (replaying the tape
of life for roughly the same taxa) or different cancers across
patients (replaying the tape of life with different taxonomic
origins; for instance, colon cancer versus liver cancer patients).
Furthermore, cancer research centers often possess technologies
and equipment related to cell culturing, cell sorting, molecular
analyses, mouse model experiments, and histologies that might
be unavailable to ecologists studying natural systems.

For oncologists, empirical and conceptual work on anti-
predator adaptations draws attention to the functional role
that traits play in deterring predation, not just the form. Most
immunotherapies, or cancer therapies in general, take advantage
of a molecular target, or in the case of recent advances like CAR
T-cell therapy, the actual cancer cells themselves as targetable. In
our context, this therapy makes cancer cells distinguishable from
normal cells, thus acting to strip away the cancer cells’ armor or
Batesian mimicry. This can create a bit of tunnel vision where two
things are overlooked. First, the entire context of the cancer cells’
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adaptations, both to their microenvironment and for immune
evasion, might be overlooked. Second, less attention is paid to
how the cancer cells might or will evolve therapy resistance and
effective countermeasures to the therapy.

CAR T-cell therapy can be highly effective in promoting
a complete or partial response in some patients while barely
hindering progressive disease in others (Wagner et al., 2020).
Majzner and Mackall (2018) note that CAR T-cell therapy failure
in solid tumors often results from the cancer cells downregulating
or eliminating the T-cell presenting antigen. In response to issues
of toxicity, T-cell infiltration into the tumor, downregulation
of immunogenicity, and tumor heterogeneity, much research
is going into manufacturing safer, more effective, and more
applicable CAR T-cell products (Rafiq et al., 2020), which is all
well and good. But, little of this work considers the ecological
context of the cancer cells, the cost and benefits of their
current immune evasion strategies, and the ease or difficulty that
they will have in evolving an effective anti-predator response.
The same applies to research on the efficacy of other current
immunotherapies such as Pembrolizumab (anti PD-1 inhibitor,
which works against “spines” and “noxiousness”), Nivolumab
(anti PD-1 inhibitor), and Ipilimumab (CTLA-4 blocker, which
works against “noxiousness”). Often Nivolumab and Ipilimumab
are given together, and any of these immunotherapies may be
at times combined with chemotherapy, radiation therapy, and
surgery. Such therapies act against the current adaptations of
the cancer cells but do not anticipate how the cancer cells will
evolve new forms of immune evasion using armor, spines, or
noxiousness. How easily can they evolve and at what cost to the
cancer cells’ performance?

We feel that incorporating the perspectives of this overview
can provide insights and direct research into the successes
and failures of diverse immunotherapies and, perhaps, suggest
novel therapeutic strategies. These concepts may help with
anticipating rather than reacting to the cancer’s evolution of
immunosuppression and resistance to immunotherapies. Just as
the cancer cells exploit weaknesses in the immune system, so
should the physicians find weaknesses in the current strategies

of the cancer cells and anticipate how they will respond to
various immunotherapies. If the physician is going to use
the immune system for biological control, the therapy regime
must be dynamic and change as the cancer cells’ anti-predator
strategies change. Knowledge from ecology may assist in framing
the anti-predator options available to the cancer cells and suggest
how to anticipate the kinds of armor, spines, and noxiousness
that might occur in response the therapeutic regimens. Most
therapies are given until disease progression, at which point
the cancer cells have long since evolved countermeasures.
With this in mind, physicians can use immunotherapies in
a more dynamic fashion to anticipate and steer the cancers’
evolution while driving down the population of cancer cells
(Cunningham et al., 2012).
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1Department of Integrated Mathematical Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, United States,
2Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, United States,
3Dynamic Game Theory Team, Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht,

Netherlands, 4Department of Integrative Biology, University of South Florida, Tampa, FL, United States, 5 Plant Evolutionary

Ecology Group, University of Tübingen, Tübingen, Germany, 6Department of Biological Sciences, University of Illinois at

Chicago, Chicago, IL, United States, 7Delft Institute of Applied Mathematics, Delft University of Technology, Delft, Netherlands

Rapid evolution is ubiquitous in nature. We briefly review some of this quite broadly,

particularly in the context of response to anthropogenic disturbances. Nowhere is this

more evident, replicated and accessible to study than in cancer. Curiously cancer

has been late - relative to fisheries, antibiotic resistance, pest management and

evolution in human dominated landscapes - in recognizing the need for evolutionarily

informed management strategies. The speed of evolution matters. Here, we employ

game-theoretic modeling to compare time to progression with continuous maximum

tolerable dose to that of adaptive therapy where treatment is discontinued when the

population of cancer cells gets below half of its initial size and re-administered when

the cancer cells recover, forming cycles with and without treatment. We show that the

success of adaptive therapy relative to continuous maximum tolerable dose therapy

is much higher if the population of cancer cells is defined by two cell types (sensitive

vs. resistant in a polymorphic population). Additionally, the relative increase in time to

progression increases with the speed of evolution. These results hold with and without a

cost of resistance in cancer cells. On the other hand, treatment-induced resistance can

be modeled as a quantitative trait in a monomorphic population of cancer cells. In that

case, when evolution is rapid, there is no advantage to adaptive therapy. Initial responses

to therapy are blunted by the cancer cells evolving too quickly. Our study emphasizes

how cancer provides a unique system for studying rapid evolutionary changes within

tumor ecosystems in response to human interventions; and allows us to contrast and

compare this system to other human managed or dominated systems in nature.

Keywords: metastatic cancer, adaptive therapy, evolutionary speed, resistance, game theory, Stackelberg

evolutionary game
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1. INTRODUCTION

Organisms can respond rapidly to contingencies and changes
in their environment. When they cannot extinction may
follow. The Stephens Island wren was flightless and free of
mammalian predators until the lighthouse keeper introduced
Tibbles the house cat (Galbreath and Brown, 2004; Medway,
2004). Extinction of the wren followed shortly thereafter. The
birds either did not or could not muster behavioral responses,
and did not have the time needed to evolve appropriate
responses. Similarly, the introduction of brown tree snakes
(Boiga irregularis) has threatened a number of birds, bats and
reptiles on islands such as Guam leading to dramatic losses
of species diversity (Savidge, 1987; Fritts and Rodda, 1998;
Wiles et al., 2003). On the other hand, many species respond
quickly to dramatic changes in their environment or even
colonize novel environments. Examples include responses to
size selective harvesting of fish (Conover and Munch, 2002;
Salvioli et al., 2021); re-emergence of anti-predator behaviors
with the reintroduction of predators (Laundré et al., 2001); rapid
evolution of body size, behavior and other traits in invasive
organisms (Huey et al., 2000; Whitney and Gabler, 2008; Turner
et al., 2014; Vandepitte et al., 2014; Rollins et al., 2015; Selechnik
et al., 2019) or members of invaded communities (Chapuis et al.,
2017); and shifts in reproduction and migration in animals and
plants in response to climate (Parmesan et al., 1999; Franks et al.,
2007; Geerts et al., 2015).

Rapid evolution may permit species to adjust to rapid
changes in their environments, but rapid evolution can also
be consequential to human welfare and health. For example,
herbicide and pesticide resistance threatens the productivity
of crops (Kuester et al., 2014; Baucom, 2019; Hawkins et al.,
2019). The boll weevil (Anthonomus grandis Boheman) was
reported as a serious pest in U.S. cotton production as far back
as 1892 and developed resistance to insecticides within a few
years in the 1950’s (Perkins, 1980). Today, boll weevil control
involves an integrated pest management (IPM) approach using
pheromone traps and insecticides timed around the weevil’s
reproductive cycles (Shipman, 2017). For upwards of 50 years
now, IPM strategies have employed resistance management plans
which can include application of targeted pheromones and
allelochemicals, leading to a reduction in the use of broad-
spectrum insecticides and ensuring that non-target and beneficial
insects are not adversely affected (Tewari et al., 2014; Brown and
Staňková, 2017; Cunningham, 2019). Similarly, drug resistance
poses direct threats to patient health. Chloroquine resistant
strains of malaria have become particularly prevalent in West
Africa and Papua New Guinea (Wellems and Plowe, 2001).
Antibiotic resistance threatens the advances that have been made
in controlling infectious diseases. The emergence of methicillin-
resistant Staphylococcus aureus (MRSA) strains of pathogenic
bacteria have been the subject of epidemiological, experimental
and mathematical-modeling studies (Robinson and Enright,
2003).

While the idea that cancer progression is an evolutionary
process has been discussed for several decades (Cairns, 1975;
Nowell, 1976), the application of ecological and evolutionary

principles to understanding rapid evolution in cancer has only
recently become a major objective [e.g., the classic by Nowell
(1976) has been cited over 7,000 times in Google Scholar; more
than half of that in the last 10 years]. Cancers provide a unique
study of rapid evolution because within a matter of months
or years, cancer within its host will evolve adaptations for
evading the immune system, increasing vasculature, co-opting
the signaling pathways of normal cells, and gathering scarce
nutrients more quickly and efficiently (Hanahan and Weinberg,
2000, 2011). This trajectory of extremely rapid evolution begins
de novo in each patient. In addition to the rapid evolution
of cancer in the host, resistance to therapy can also evolve
quickly (Dujon et al., 2020; Gatenby and Brown, 2020a). When
metastatic, like the cotton boll weevil, the cancer will evolve
resistance to all available drugs. Cancer then represents a
microcosm for studying and managing rapid evolution that is
replicated across patients (Pienta et al., 2020).

There are some important differences between studying rapid
evolution in ecosystems compared to in human disease, and
cancer in particular. Evolutionary speed in wild populations, for
instance, can be sensitive to sex ratios that determine effective
population sizes (Allendorf et al., 2008), an issue that does not
apply to asexual reproduction through mitotic cell division. For
antibiotic resistance, the fear is not that the current patient will
succumb because of rapid evolution, but that the application
of antibiotics across millions of patients will result in a strain
emerging from a subset of these patients that will go on to
infect others (Ventola, 2015). In contrast, the concern in cancer
is not that a resistant strain will jump from patient to patient.
Instead, the problem lies entirely within the patient and the
eco-evolutionary dynamics that lead to therapy failure.

Here, we are interested in addressing and modeling the
consequences of two features of eco-evolutionary models of
adaptive therapy (AT). These features are the speed of evolution,
and whether the cancer cell population is monomorphic (where
treatment-induced resistance evolves as a quantitative trait) vs.
polymorphic (sensitive vs. resistant cell types where treatment-
induced resistance evolves only in resistant cells, also as a
quantitative trait). In what follows, we elaborate more fully
on the determinants of evolutionary speed (section 2) and the
broader contexts of rapid evolution (section 3). In section 4,
we introduce therapeutic strategies in cancer as a special form
of integrated pest management. We then develop a model of
therapy that includes the ecological dynamics of tumor burden
and the evolutionary dynamics of changes in the composition of
cancer cell types within the patient. We analyze the consequences
of evolutionary speed in determining the efficacy of a standard
form of AT relative to continuous drug delivery at maximum
tolerable dose (MTD) (section 5). Wemodel this in the context of
monomorphic and polymorphic cancer cell populations, and in
the context of having no cost of resistance, a cost of resistance
manifested in intrinsic growth rates, and a cost of resistance
manifested in the carrying capacities. Section 6 concludes by
summarizing the main outcomes of the cancer model and
discussing how our results could be transferable to other fields.
In addition to adding to the modeling results for AT in cancers,
we hope to show evolutionary biologists and ecologists just how
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similar resistance management in cancer is to managing evolving
species (that may be pests or resources), and to show cancer
biologists how the challenge of therapy resistance is kindred to
conservators and managers of biodiversity and pests in nature.

2. DETERMINANTS OF EVOLUTIONARY
SPEED

A better understanding of the evolution of resistance to therapy
in cancer can be informed by theory and examples of rapid
evolution in several ecological contexts. Evolution occurs over
many timescales. The domain of evolutionary science classically
has involved taxa with vertical inheritance, so discussions of
“rapid” evolution by many scholars emphasize the surprisingly
small number of generations over which substantial changes in
heritable phenotypes are observed. Hairston et al. (2005) defined
rapid evolution as “genetic change occurring rapidly enough to
have a measurable impact on simultaneous ecological change.”
While the authors emphasize the change must be genetic, their
analysis is actually based on heritable phenotypic change which
could result from genetic, epigenetic or other forms of non-
genetic inheritance (Bonduriansky and Day, 2009; Jablonka and
Raz, 2009; Keller, 2014; Müller, 2017; Stoltzfus, 2017; Banta and
Richards, 2018; Richards and Pigliucci, 2020; Mounger et al.,
2021). Evolution is known to occur rapidly in wild populations
abruptly subjected to novel selection pressures. Rapid evolution
is well-documented in invasive populations (Bock et al., 2015;
van Kleunen et al., 2018; Mounger et al., 2021), and wild
populations experiencing intensive human intervention related
to urbanization, agro-ecosystem management, wild species
harvest, and pollution (Sullivan et al., 2017).

Researchers have long been interested in the mechanisms that
allow for these rapid responses to environmental challenges. The
frequencies of heritable phenotypes in wild populations may
change within only a few generations when novel environmental
conditions are highly lethal to some portion of existing trait
variation. Sudden ecological and climatic changes are particularly
effective at driving rapid phenotypic change and underlying
change in genetic and non-genetic inheritance mechanisms.
In response to climate change in the UK, for instance, some
populations of the brown argus butterfly (Aricia agestis) have
shifted female preference for host plant species, and exhibited
reduced fitness in ancestral habitats within 10–15 years of the
shift (Buckley and Bridle, 2014). Plenty of evidence suggests that
these responses can be in part dictated by classic expectations of
selection acting on genetic diversity (Hoffmann and Sgro, 2011).
The type of intense selection that induces rapid evolutionary
change, however, may be accompanied by a loss in genetic
diversity and heritable variation.

On the other hand, many invasive species offer important
counter evidence to the assumption that reduced genetic variance
indicates reduced evolutionary potential (Colautti and Lau, 2015;
Dlugosch et al., 2015; Stapley et al., 2015; Estoup et al., 2016;
Selechnik et al., 2019). The population bottlenecks inherent
to invasion have long been assumed to hinder evolutionary
potential creating the “genetic paradox” of invasion (Estoup et al.,

2016; Mounger et al., 2021), but recent studies have shown that
in fact the genetic paradox may not be as severe as initially
thought. This is due to a myriad of genomic possibilities. First,
many invasive populations undergo only modest reductions in
genetic variation due to multiple introductions, hybridization or
de novo mutations (Estoup et al., 2016). But importantly, loss of
genetic diversity measured by molecular markers does not reflect
loss of quantitative trait variation or may reflect selection of fit
genotypes or recombination among founding genotypes (e.g.,
Selechnik et al., 2019). Genetic bottlenecks can also contribute to
performance by purging deleterious alleles, revealing beneficial
cryptic variation or creating new beneficial interactions among
genomic elements (Colautti and Lau, 2015; Dlugosch et al., 2015;
Stapley et al., 2015; Estoup et al., 2016; van Kleunen et al., 2018).

In addition to genetic variants, the plasticity of morphological,
physiological and behavioral traits are clearly important (West-
Eberhard, 1989; Richards et al., 2006; Lankau, 2011; Ledón-
Rettig et al., 2013; Rollins et al., 2015). Theoretical work suggests
putative upper limits on rates of genetic evolution, and that rapid
trait changes result in part from phenotypic plasticity (Kopp and
Matuszewski, 2014). The distinction is complex, since phenotypic
plasticity is genetically based but also underlain by epigenetic
mechanisms that can be independent of genetic differences
(Richards et al., 2006, 2010, 2017; Cortijo et al., 2014; Banta and
Richards, 2018). Furthermore, the molecular-level mechanisms
that contribute to such plastic responses can ultimately lead
to genetic changes or non-genetic inheritance (West-Eberhard,
1989; Bonduriansky and Day, 2009, 2018; Klironomos et al.,
2013; Kronholm and Collins, 2016; Kronholm et al., 2017; Wölfl
et al., 2020). A particularly striking example of the disconnect
between genetic variation and heritable phenotypic response
is in the single octoploid clone of Japanese knotweed that
has spread aggressively through a broad range of habitats in
temperate Europe and North America (Beerling et al., 1994;
Bailey and Conolly, 2000; Grimsby et al., 2007; Gerber et al.,
2008; Bailey et al., 2009; Richards et al., 2012; Zhang et al., 2016).
Several studies have linked the divergence in these populations
to differences in DNA methylation (Richards et al., 2008, 2012;
Zhang et al., 2016). Despite the potential importance of this
type of clonal spread particularly in invasive plant species, our
ability to understand the roles for existing mutations, de novo
mutations, and epigenetics remains constrained by too few
studies (Paun et al., 2019; Richards and Pigliucci, 2020; Mounger
et al., 2021).

Extensive genomics studies in cancer have revealed that
“genetic instability” is a hallmark of cancer (Coffey, 1998;
Duesberg et al., 1998). While no universal driver mutations
of metastases have been identified, Gerstung et al. (2020)
demonstrated by analysis of 2,658 samples of 38 different cancers
types in the Pan-Cancer Analysis of Whole Genomes (PCAWG)
that very early events in cancer are limited to a common set of
drivers. In fact, 50% of early mutations in cancers occur in just 9
genes. Mutations in epigenetic machinery can also be important
in shaping genome dynamics in cancer (Feinberg et al., 2006;
Timp and Feinberg, 2013). In particular, chromatin regulators
are often mutated in cancer. Mutations in the SWI/SNF complex
occur in over 20% of all cancers (Kadoch and Crabtree, 2015).
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Recent studies indicate that specific genetic mutations can
instigate metastases but that completion of the process depends
only on non-genetic changes, specifically epigenetic changes that
complement the genetic mutations (Lambert et al., 2017).

The molecular basis of trait variation can have important
impacts on the speed of evolution as evidenced by studies in
herbicide and pesticide resistance. Hawkins et al. (2019) recently
compared three major pesticide groups (insecticides, herbicides,
and fungicides) to make this point. They argued that fungicide
resistance evolves more often by de novo point mutations in
functional genes, herbicide resistance evolves through selection
on standing variation; and insecticide resistance evolves through
a combination of standing variation and de novo mutations.
The rate at which resistance evolves in these groups depends
on the dynamics within the populations. They argue that de
novo mutation must spread through the movement of insects,
seeds, pollen, or spores, whereas a preexisting allele may already
be present throughout the range. These arguments suggest that
the pathway to resistance can determine the most effective
containment strategy (Hawkins et al., 2019).

3. CONTEXTS OF RAPID EVOLUTION

Humans are selective agents that influence the evolution of
non-human wild populations by harvesting them, attempting
to suppress or extirpate them, and by altering their biophysical
environment (Hendry et al., 2017). These anthropogenic
interventions often induce trait changes more rapidly and to
a greater extent than observed in the evolution of populations
inhabiting more natural contexts (Hendry et al., 2008), although
even natural populations can undergo rapid evolution in real
time (Weiner, 1995; Reznick et al., 2019). Human interventions
drive evolution in traits such as body size in harvested fish
(Olsen et al., 2004; Salvioli et al., 2021), and dispersal traits of
urban plants (Cheptou et al., 2008). Accelerated rates of evolution
may result from shifts in the adaptive landscapes resulting from
anthropogenic changes or from increased variance in relative
fitness among individuals (Fugère and Hendry, 2018). Human-
induced evolutionary change may render populations resistant to
future management and may endow populations with functional
traits that feed back to affect the properties of ecosystems
that benefit people (Rudman et al., 2017). This rapid evolution
of management-resistant traits, and feedbacks on the health
of ecosystems, are analogous to the management of therapy
resistance, tumor burden, and patient well-being in oncological
settings. Like the clinician and cancer, the practitioner/manager
(e.g., in an agroecosystem or fishery) and non-human population
(e.g., of weeds or fish) coevolve, one through rational decision
making and one through selection (Staňková et al., 2019; Salvioli
et al., 2021). Next, we briefly highlight some principles developed
through the study of rapid evolution in anthropogenic contexts
of urbanization, weed management in agrosystems, and wild
animal harvest.

3.1. Urbanization
Urban evolutionary ecology and adaptive cancer therapies
share a common interest in populations responding to large

magnitude environmental changes. Urbanization is characterized
by a host of changes in the biophysical environment, including
accelerated cycling of nutrients and pollutants, altered energy
budgets that induce warming via heat island effects, landscape
fragmentation and the proliferation of impervious surface,
modified soil structure and fertility, redistributions of water,
changes to physical architecture, and homogenization of
ecological communities and the attendant introduction of novel
competitor, predator, and pathogen species (Grimm et al., 2008).
Populations of plants, animals, and microorganisms experience
this wide portfolio of changes under non-equilibrium conditions,
as urbanization generates perpetual changes in environments
rather than stable endpoints (Collins et al., 2000). Cancer
cell populations, likewise, experience dramatic environmental
change either when therapies are imposed on extant tumors, or
during metastasis as cells migrate to distinct areas of the body.
Like the environmental changes that constitute urbanization,
adaptive therapies seek to impose non-equilibrium selection
regimes on cancer populations to disrupt the emergence, or
dominance of resistant cancer cells.

Urban populations can exhibit sufficient trait variation for
rapid evolution. For instance, variation in plant size and
allocation traits among urban plant species often exceeds that of
their non-urban conspecifics (Borowy and Swan, 2020). Urban
environmental conditions alter phenotype frequencies in non-
human wild populations by inducing plastic responses, as well
as through both adaptive and non-adaptive evolutionary changes
(Johnson and Munshi-South, 2017). For instance, acorn ants
(Temnothorax curvispinosus) reared from urban populations
inhabiting environments warmed 2◦C by the heat island effect
show higher heat tolerance and narrower thermal tolerance
breadths than ants reared from rural populations. Yet, even
rural ants can develop higher heat tolerance through acclimation,
indicating both fixed and plastic phenotypic responses to the
urban thermal environment (Diamond et al., 2017).

Landscape fragmentation in cities can isolate small
populations, reducing gene flow and promoting genetic
drift, resulting in potentially non-adaptive genetic differentiation
among populations. Transcriptome differences among distinct
urban populations of white-footed mice (Peromyscus leucopus)
occupying isolated habitat patches in New York, for instance,
suggest that both selection and genetic drift account for
rapid evolutionary responses to urbanization (Harris et al.,
2013). Populations inhabiting urban environments can exhibit
adaptive changes in sexually selected traits when compared
with their conspecific rural counterparts (Yeh, 2004). Important
questions remain about the extent to which urban environmental
properties induce mutation or affect genome-wide mutation
rates, and whether adaptation to urban environments results
more often from mutations that occur after populations are
urbanized or from standing, pre-urban genetic variation (Barrett
and Schluter, 2008). These pressing questions for non-human
populations adapting to urbanization are similarly relevant for
cancer cell populations evolving responses to diverse tumor
microenvironments and therapy-induced selection.

Urban evolutionary ecology investigates not only phenotypic
responses of populations to urban environmental conditions,
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but also examines how these altered populations and their traits
affect urban ecosystem processes (Alberti, 2016). Ecosystems
carry out processes such as primary production of biomass
and organic energy, decomposition and nutrient recycling,
hosting of biodiversity, and societally valued services like storm
energy mitigation, food production, pollutant capture, and
recreation. The degree and manner in which ecosystems carry
out these processes depend strongly on the functional traits
of an ecosystem’s constituent species (Rudman et al., 2017).
These traits are the products of evolution occurring under the
selective regime imposed by ecosystem processes, setting up
reciprocal eco-evolutionary feedbacks between population traits
and the environment in which those traits emerged. Similarly,
through mechanisms such as promoting vascularization, acidic
pH, and cancer associated fibroblasts, cancer cells evolve traits
that alter their environment creating eco-evolutionary feedbacks
(De Groot et al., 2017).

3.2. Agroecosystem Weed Management
Tumor cells and agricultural pests both form undesirable
populations that humans attempt to eradicate or manage through
the application of biocides. Parallels to cancer therapies are
arguably most evident in the battle against weed plants and other
pests in agroecosystems. Pesticides and antibiotics, among other
agricultural technologies, have afforded increases in food supply
necessary for a growing and urbanizing human population. But,
the intensive application of these chemicals select for resistance
in weeds, insect pests, and crop and livestock pathogens
(Pittendrigh et al., 2013; Kuester et al., 2014; Baucom, 2019).
One strategy developed in cropping systems to inhibit rapid
evolution of resistance in weeds is the application of herbicide
mixtures (Wrubel and Gressel, 1994). This mixture approach is
distinct from the sequential use of multiple herbicides, one at
a time, until each has selected for resistance in the focal weed
population. It is also distinct from the application of multiple
herbicides that each target a separate weed species. Instead, this
mixture approach consists of simultaneously applying multiple
herbicides with different modes of action to control a single weed
population. Similar approaches using multi-drug cocktails have
become commonplace in cancer treatments. Toxicity to patients
often dictates the doses and combinations of drugs that can be
safely administered.

Theory and experience reveal several criteria for delaying the
evolution of herbicide resistance in weeds (Wrubel and Gressel,
1994), with parallels comparable to mixed-therapy strategies
in oncology that likewise seek to delay the rapid evolution
of resistance in tumor cell populations. First, both (or more)
herbicides in a mixture must control the same weed population,
as an herbicide having no effect on a focal weed population
will not influence the rate at which it evolves resistance to
another herbicide. Second, both herbicides must be similarly
effective in killing weeds (e.g., lethal to similar percentages of
the focal weed population), and third, both must persist in the
environment for similar durations; failure to meet these criteria
leaves some portion of the focal weed population exposed to
only one of the herbicides and thus prone to rapid evolution of
resistance to it. Fourth, the two herbicides must have different

biochemical targets within the focal weed population, such as
inactivating different proteins or enzyme systems. Fifth, both
must be degraded through different mechanisms; failure to meet
these criteria may induce evolution of cross-resistance. Although
the use of herbicide mixtures effectively inhibits the evolution
of specialist resistance traits, one downside of this strategy
appears to be selection for generalist resistance (Comont et al.,
2020). Whether this outcome is unavoidable or results from
failure to meet the above criteria is unclear, but it does raise
a warning sign for extrapolating biocide mixture approaches to
oncology. Lastly, a desirable property of mixtures is negative
cross-resistance, in which one herbicide selects for alleles that
confer hypersusceptibility to the other herbicide. In cancer, such
negative cross-resistance are known as double-bind therapies in
which drugs should be given sequentially rather than together
(Gatenby et al., 2009a; Basanta et al., 2012; Gatenby and Brown,
2020b).

Pollutants, although not intentionally applied to wild
populations, can mimic pesticides by acting as lethal poisons. As
such, like pesticides, they have the capacity to impose intense
selective pressure and drive rapid evolution. In temperate and
boreal regions, for example, salts used to de-ice roads commonly
run off into freshwater ecosystems. The resulting salinization
of these water bodies raises the question of whether freshwater
populations can adapt to the selective pressure imposed by
this new water chemistry regime. Indeed, populations of the
freshwater cladoceran zooplankton Daphnia, a critical link in
most freshwater lake food webs, can adapt to higher (albeit not
extreme) salinities in 5–10 generations (Coldsnow et al., 2017).

3.3. Harvested Animal Populations
Humans harvest wild animal populations to obtain food, furs
and clothing materials, ornamental features such as horns
and antlers, and collectable specimens (e.g., mollusc shells).
Given these motivations, animals with particular traits or trait
values (e.g., particular morph or size) are often targeted for
harvesting, driving phenotypic change in harvested populations.
Phenotypic responses to harvesting are well-documented in
fishes, from freshwater recreational harvesting (Sutter et al.,
2012) to marine commercial harvesting (Law, 2000), and in
a wide variety of ungulates such as bighorn sheep (Pigeon
et al., 2016) and elephants (Jachmann et al., 1995). More
pervasively, selective harvest and associated phenotypic change
is also documented in a variety of other mammalian and
invertebrate taxa (Allendorf et al., 2008). Harvest reduces the
frequency of desirable phenotypes in populations, quite opposite
to the reinforcement of desired phenotypes under artificial
selection in agriculture and aquaculture (Allendorf and Hard,
2009). While lack of additive genetic variance and plasticity in
targeted traits may limit heritable responses to harvest, harvest is
generally thought to drive evolution through three mechanisms:
reduced local densities that open harvested subpopulations to
immigration and concurrent genetic swamping and loss of local
adaptation, selection on standing variants, and reduced genetic
variation (Allendorf et al., 2008). Molecular genetic monitoring
is recommended to detect harmful genetic change that results
from selective mortality via harvest (Allendorf and Hard, 2009).
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Assessing and monitoring for specific mutations or overall
genetic heterogeneity have become part of personalized medicine
in cancer treatments. Genetic predispositions of the patient and
the presence of specific driver mutations often permit early
detection of cancer, indicate the presence of certain types of drug
resistance, and dictate the course of therapy.

While there is consensus that harvesting changes phenotypic
frequencies in harvested populations, the role of evolution in
these changes remains uncertain, particularly in harvested fish
populations. Harvest may indeed act on heritable variation
and thereby drive evolution, but may also induce ecological
changes (e.g., reduced population densities) that provoke plastic
responses in harvested populations (Kuparinen and Festa-
Bianchet, 2017). Some evidence suggests that adaptation is
localized and occurs rapidly (within a few generations). Age-
structured population models indicate that harvest strategies
that ignore harvest-induced evolution can ultimately depress
sustained yields because they irreversibly select for maturation
at smaller sizes and younger ages (Heino, 1998). Probabilistic
maturation reaction norms delineate the probability (usually
50%) of maturation for different combinations of age and size.
Changes in the shape of reaction norms (as opposed to changes
in location along a reaction norm) indicate evolutionary change,
and, when such shifts coincide with harvest, provide evidence
of harvest-induced evolution (Olsen et al., 2004). Converse
arguments posit that relatively low heritability of relevant life
history traits means that evolutionary responses to fish harvesting
may require long time scales (Law, 2007). Evolutionary responses
to harvesting may be difficult to detect because of counter-
gradient variation, where, for example, alleles for fast growth are
favored in cold environments, and vice versa, thereby reducing
phenotypic variation among populations across environmental
(e.g., climatic) gradients (Jorgensen et al., 2007).

A principle concern for wildlife managers is whether
evolutionary responses to selective mortality via harvest
undermines the ecological sustainability of the harvested
population. Fishing, for example, may select for traits that are
not adaptive with respect to natural and sexual selection regimes,
leaving harvested populations without the phenotypic traits
or variation needed to cope with their environment (Conover,
2000). Adaptive variation needed to recover during fishing
moratoria may be limited in overharvested fish populations.
For instance, overharvested populations of many species exhibit
reduced allelic diversity and heterozygosity (Pinsky and Palumbi,
2014). Moreover, harvesting diminishes traits that correspond
with fitness (weapon size in ungulates, size at maturity, and
boldness in fish), yet when harvest is suspended to permit
recovery, countervailing selection that favors the reemergence
of these traits may be less intense, prolonging population
recovery (Allendorf et al., 2008). This outcome was evident in
northern populations of Atlantic cod (Gadus morhua), in which
harvest selected for a younger age and smaller size at maturity.
Population densities remained depressed even after a decade
of fishing moratorium Olsen et al. (2004). While diminished
sustainability of a wild population is an undesirable outcome
of evolutionary responses to selective mortality, analogous
outcomes in oncological settings would be favorable. Useful

therapies may be those that impose evolutionary trade-offs on
cancer cell populations by selecting for cancer cell phenotypes
that are maladaptive to the natural selection regime imposed by
the immune system, or that intensely select against antagonistic
traits that are only modestly favored during AT holidays. These
are key issues in designing, implementing and modeling AT.

4. MODELING ECO-EVOLUTIONARY
DYNAMICS OF CANCER IN RESPONSE TO
TREATMENT

Similar to human intervention in ecology, therapeutic
intervention in cancer can favorably or unfavorably direct
evolution. MTD is the standard of care in which therapy is
given continuously for a predetermined amount of time. When
MTD is unable to eliminate all cancerous cells it inevitably
selects for the continued proliferation of treatment-resistant
cells (Chabner and Roberts, 2005; Gatenby, 2009; Pepper et al.,
2009; Aktipis et al., 2011; Greaves and Maley, 2012). In contrast,
AT modulates therapy based on tumor dynamics in response
to treatment. When there is a cost to resistance (a disadvantage
to being resistant), therapy-sensitive cells outcompete their
resistant counterparts in the absence of treatment. Therefore,
drug withdrawal during AT suppresses the ability for resistant
cells to dominate the tumor population (Gatenby et al., 2009b;
Zhang et al., 2017; Staňková et al., 2019). The evolutionary
capacity of cancer cell phenotypes to withstand therapy induced
selection regulates the effectiveness of therapy. Specifically, how
fast or slow evolution occurs may play a key role in therapeutic
success. We develop mathematical models to analyze the impact
of evolutionary speed on the success of AT when compared
to MTD.

Combating resistance is prevalent in nature and medicine
when dealing with an evolving population. Resistance
mechanisms to biocides in pest species and therapies in cancer
can be categorized as follows: (1) strictly qualitative (for instance,
the presence of an upregulated or novel metabolic pathway in
the resistant form), which can be modeled using a polymorphic
population where one strain is sensitive while another strain
possesses a resistance trait which is fixed and does not evolve; (2)
strictly quantitative (for instance, the production of binding or
detoxification enzymes, and for cancer and microorganisms an
increase in the number of membrane pumps for eliminating the
toxin), which can be modeled using a monomorphic population
with an evolving resistance trait; or (3) a hybrid combination of
contexts 1 and 2, which can be modeled using a polymorphic
population where one strain remains sensitive while another
strain possesses an evolving quantitative resistance trait. For
example, in the case of abiraterone resistance in metastatic
castrate-resistant prostate cancer there are three qualitative cell
types: those requiring exogenous testosterone, those independent
of testosterone, and those producing testosterone as a public
good (You et al., 2017, 2019; Zhang et al., 2017). While the first
two are strictly qualitative, the last type can also be quantitative in
terms of the amount of testosterone produced. Strictly qualitative
resistance traits have been explored in detail by modelers (You
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et al., 2017; Zhang et al., 2017; West et al., 2018; Cunningham
et al., 2020; Bayer et al., 2021; Kim et al., 2021; Viossat and
Noble, 2021), strictly quantitative less so (Staňková et al., 2019;
Reed et al., 2020; Salvioli, 2020; Wölfl et al., 2020), and the
combination, to our knowledge, has not been explored at all.
Our models can be used to consider all three contexts (strictly
qualitative, strictly quantitative or both). In what follows, we shall
focus on comparing contexts 2 with 3. We do not model context
1 (polymorphic population, strictly qualitative resistance) as
it is a special case of our context 3 (polymorphic population
with resistance evolving as a quantitative trait of the resistant
population). A final key element for all considerations of
evolving pests and managed species concerns a cost of resistance.
A cost of resistance will slow the evolution of resistance, and
render more sensitive types more competitive than less sensitive
types when the biocide is removed. In our models, we consider
what happens when there is no cost of resistance, a cost of
resistance in the intrinsic growth rate, or a cost of resistance in
the carrying capacity.

Our models are generic in the sense that they can frame
biological systems other than cancer and their eco-evolutionary
responses to management by humans. However, we narrow our
model analysis to cancer. We consider the superiority of AT
relative to MTD as measured by time to progression (TTP). We
consider jointly the effects of evolutionary speed, the context
of resistance, and the nature of the cost of resistance. The
model permits any level and spacing of dosing, but we focus on
contrasting a continuous, fixed level of dosing with a form of AT
where the dosing is either on or off depending on the patient’s
tumor burden.

4.1. Our Models
Wemodel the evolution of resistance leading to treatment failure
using ordinary differential equations (ODEs) for a monomorphic
(context 2) and polymorphic (context 3) tumor cell population.
In our monomorphic model, resistance is a quantitative trait.
The resistance strategy exists on a continuum, and all cells can
exhibit some magnitude of resistance u(t), which evolves in
time. In our polymorphic model, we assume the entire tumor
cell population is comprised of two distinct subpopulations,
sensitive and resistant cells. In this model, only the resistant
cell subpopulation has the capacity to evolve resistance as a
quantitative trait uR(t). Table 1 displays all scenarios for each
model and Table 2 indicates all parameters and their definitions.
In the following, we assume that the tumor populations grow
logistically and are suppressed by the presence of therapy and
natural cell turnover.

All models describe Darwinian dynamics of cancer in
response to treatment, with a fitness-generating function, “G-
function” (Vincent and Brown, 2005). A G-function considers
how the fitness of a focal cancer cell using a strategy v in the
population is influenced by the environment and by the strategies
and population sizes of the resident phenotypes. The set of
phenotypic strategies present in the tumor are represented by u.
The population size of cells with a particular strategy is indicated
by x. In the polymorphic context, the vector u = (uR, uS)

T

encompasses the strategy for resistant and sensitive cells and

x = (xR, xS)
T their population sizes. In themonomorphic context

u and x are reduced to scalars as only a single evolutionary
strategy defines the entire tumor population. We assume that the
physician applies a treatment dose m(t) ∈ [0, 1] at time t ≥ 0,
where m(t) = 0 and m(t) = 1 correspond to no dose and MTD
at time t, respectively. For simplicity, the drug is assumed to be
maximally effective at MTD. The efficacy of the drug is reduced
by a focal cell’s resistance strategy v, innate drug immunity k, and
the benefit b of the resistance trait in reducing therapy efficacy.
The G-function is used to derive the evolutionary dynamics
that describe how the resident strategies (i.e., phenotypes) of the
tumor change with time. Note that in this case the fitness function
for a raremutant does not directly depend on the current resident
strategies. Following Fisher’s fundamental theorem of natural
selection, the resistance strategies change in the direction of the
fitness gradient ∂G

∂v with respect to the fitness of a rare mutant
v (Fisher, 1930). This derivative is then evaluated at the current
resident strategies u, giving an equation defining the evolutionary
dynamics for each resident strategy (Table 1) (Vincent and
Brown, 2005). The rate at which the strategies change is scaled
by an evolutionary speed term σ . In our model, large values
of evolutionary speed σ correspond to enhanced phenotypic
variance which could result from increased genetic variance or
phenotypic plasticity. Innate immunity k suggests that prior to
drug exposure cells possess amechanism that inhibits the potency
of treatment. This parameter is the only value that reduces drug
efficacy for the sensitive population in our polymorphic model
as the sensitive cells cannot evolve resistance. Treatment efficacy
is further diminished by the magnitude of the benefit b of the
resistance strategy for the monomorphic population and the
resistant population in the polymorphic model. For a general
introduction to our modeling framework, see Appendix B.

Although resistance decreases treatment efficacy, it may be
that a resistance strategy comes at a cost (Staňková, 2019). When
a cost to resistance is present, resistance confers a selective
advantage during treatment. In the absence of therapy, a cost
of resistance confers a fitness disadvantage. In our model, we
consider that resistance either carries no cost (K(v) = Kmax,
r(v) = rmax), carries a cost in the intrinsic growth rate (r(v) =

rmax e
−g v, K(v) = Kmax), or carries a cost in the carrying capacity

(r(v) = rmax, K(v) = Kmax e
−g v). These costs are relevant when

modeling the monomorphic population, and for the resistant
population when modeling the polymorphic context.

4.2. Case Studies
We analyze the impact of two treatment strategies (MTD andAT)
on TTP. We define TTP as the first time at which the tumor
burden reaches δ = 70% of the maximum carrying capacity
Kmax, during treatment.

The treatment schedule for each strategy is as follows:

• Maximum tolerable dose (MTD):m(t) = 1 for all t;
• Adaptive therapy (AT): Initially, MTD is administered

(m(0) = 1) until the tumor cell population size x reaches
half of its initial density. Treatment is then discontinued until
the tumor recovers to its initial size where treatment is re-
administered beginning a new treatment cycle (Zhang et al.,
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TABLE 1 | Different models analyzed in this paper: The first, second, and third lines of this table describe eco-evolutionary cancer dynamics with no cost of resistance,

cost of resistance in the growth rate, and cost of resistance in the carrying capacity of cancer cells, respectively.

Resistance Monomorphic cancer population Polymorphic cancer population

None G(v, u, x,m) = rmax

(

1−
x

Kmax

)

− d −
m

k + bv

ẋ = x G(v, u, x,m)
∣

∣

v=u

u̇ = σ

∂G(v, u, x,m)

∂v

∣

∣

∣

∣

v=u

G(v,u, x,m) = rmax

(

1−

∑

i∈{R,S} xi

Kmax

)

− d −
m

k + bv

ẋi = xiG(v,u, x,m)
∣

∣

v=ui
where i ∈ {R,S}

u̇R = σ

∂G(v,u, x,m)

∂v

∣

∣

∣

∣

v=uR

uS = 0

r(v) = rmaxe
−gv G(v, u, x,m) = r(v)

(

1−
x

Kmax

)

− d −
m

k + bv

ẋ = x G(v, u, x,m)
∣

∣

v=u

u̇ = σ

∂G(v, u, x,m)

∂v

∣

∣

∣

∣

v=u

G(v,u, x,m) = r(v)

(

1−

∑

i∈{R,S} xi

Kmax

)

− d −
m

k + bv

ẋi = xiG(v,u, x,m)
∣

∣

v=ui
where i ∈ {R,S}

u̇R = σ

∂G(v,u, x,m)

∂v

∣

∣

∣

∣

v=uR

uS = 0

K(v) = Kmaxe
−gv G(v, u, x,m) = rmax

(

1−
x

K(v)

)

− d −
m

k + bv

ẋ = x G(v, u, x,m)
∣

∣

v=u

u̇ = σ

∂G(v, u, x,m)

∂v

∣

∣

∣

∣

v=u

G(v,u, x,m) = rmax

(

1−

∑

i∈{R,S} xi

K(v)

)

− d −
m

k + bv

ẋi = xiG(v,u, x,m)
∣

∣

v=ui
where i ∈ {R,S}

u̇R = σ

∂G(v,u, x,m)

∂v

∣

∣

∣

∣

v=uR

uS = 0

TABLE 2 | Variables and parameters of the model.

Meaning Values

Variables

x Cancer cell population (monomorphic case) In interval [0,Kmax]

xS Sensitive population (polymorphic case) In interval [0,Kmax]

xR Resistant population (polymorphic case) In interval [0,Kmax]

u Resistance strategy (monomorphic case) Non-negative

v Resistance strategy (focal individual) Non-negative

uS Sensitive population resistance strategy (polymorphic case) 0

uR Resistant population resistance strategy (polymorphic case) Non-negative

m Treatment dose In interval [0, 1]

Parameters

rmax Intrinsic growth rate of the cancer cells 0.45

Kmax Carrying capacity 10,000

k Innate cell immunity 2

b Magnitude of resistance benefit 10

σ Evolutionary speed In interval (0, 1]

δ Progression threshold (fraction of K) 70%

g Magnitude of cost of resistance In interval (0, 1]

d Intrinsic death rate 0.01

2017). We will also, at times, consider a 20% reduction in

tumor volume as the switch threshold. While this has not been
tried in any clinical trial, we include it as several authors have

shown that it gives superior results as compared to a 50%

reduction (Kim et al., 2021; Strobl et al., 2021; Viossat and

Noble, 2021).

We first consider the case of a monomorphic tumor cell

population, which has evolved resistance u(t) at time t ≥ 0 in
response to treatment m(t). Here, u(t) = 0 corresponds to no

resistance. We do not impose an upper bound on the resistance
trait, thus u(t) is a quantitative trait achieving non-negative
values. For the sake of simplicity of expressions, we will drop the
time variable t whenever this does not compromise the clarity.
For this case, we always consider initial conditions x(0) = 6,000
and u(0) = 0.

Next, we consider the case of a polymorphic tumor cell
population. We assume that the tumor is composed of distinct
sensitive xS and resistant xR subpopulations of cells. The sensitive
subpopulation utilizes a fixed resistance strategy uS = 0, and
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this value does not evolve with time. The resistant subpopulation,
initially expresses almost no resistance uR(0) = 0.01 and evolves
treatment-induced resistance (uR > 0) over time. The initial
conditions for each subpopulation are xS(0) = 5, 990, and
xR(0) = 10.

We also analyze how different assumptions regarding the
cost of resistance in cancer cells (no cost of resistance, cost of
resistance in cancer cells’ growth rate (r(v) = rmax e

−g v), and
cost of resistance in cancer cells’ carrying capacity (K(v) =

Kmax e
−g v)) impact the success of MTD and AT in terms of TTP.

Altogether, our modeling efforts investigate how the TTP varies
between AT and MTD therapy, dependent on the following:

• The type of cancer population (monomorphic vs.
polymorphic),

• The cost of resistance (none, on r, on K), and
• Evolutionary speed σ .

The models were solved numerically through the odeint
function of the Python 3.6 Scipy package, using three-
stage Adams-Bashforth method with adaptive stepsize and
backward differentiation formula for stiff and non-stiff problems,
respectively. All results were also duplicated in Mathematica, to
validate their correctness.

5. RESULTS

In this section, we begin by investigating how the cost of
resistance impacts tumor burden and TTP during continuous
therapy at MTD. Subsequently, we compare TTP under MTD
vs. AT for each of our eco-evolutionary models introduced
in the previous section. The ability to extend TTP signifies a
greater treatment efficacy and the treatment strategy exhibiting
a longer TTP is deemed superior. We show that in all of our
model scenarios, AT is superior to MTD. The magnitude of this
superiority (increase in TTP compared to MTD) is influenced by
the context (monomorphic vs. polymorphic tumor composition),
evolutionary speed, and to a lesser extent by the cost of resistance.

5.1. A Cost of Resistance Manifested in the
Carrying Capacity Comprises Tumor
Growth the Most
Typically, MTD leads to an initial decrease in the tumor
burden, followed by the evolution of resistance and ultimately
treatment failure. Figure 1 depicts these dynamics for both our
polymorphic (top row) and monomorphic (bottom row) tumor
cell populations exhibiting different resistance costs. For all
cases, MTD results in evolutionary dynamics where there is a
monotonic increase in the level of resistance of the evolving
cancer cell populations. When there is a cost of resistance
(influenced by parameter g), TTP increases, resistance evolves
more slowly, and maximum tumor burden declines. In both
population contexts, when there is no cost to resistance the tumor
burden stabilizes at a population density 4% greater than when
the cost of resistance is expressed in the intrinsic growth rate
r and almost 20% greater than when the cost of resistance is
expressed in the carrying capacity K. Thus, a cost applied to

the carrying capacity compromises tumor regrowth the most,
leading to an extended TTP. As our intuition would suggest,
when the cost of resistance is very high, the population dynamics
stabilize at much lower tumor burdens (Figure A1). Based on
model formulation and parameterization, there are instances
when tumor regrowth stabilizes at a survivable tumor burden that
does not result in progression. In Figure 1, the tumor burdens
of both population contexts recover to reach what we consider
disease progression, however in the monomorphic context, the
initial decrease in the population density is much less than in
the polymorphic context. In some cases, continuous therapy will
not reduce the tumor burden sufficiently to allow for AT. For
the purposes of our investigation, we focus on scenarios where
continuous treatment results in at least a 50% decline in the initial
tumor burden, and where resistance evolution under continuous
therapy will result in a tumor burden that exceeds δ=70% of
the maximum carrying capacity (which we consider to represent
disease progression). With these two stipulations, we restrict
ourselves to conditions where AT can be applied, and where
continuous MTD will eventually result in disease progression.

5.2. AT Improves TTP With or Without a
Cost of Resistance, Where the
Improvement Is Greatest When the Cost Is
Applied to the Carrying Capacity
Independent of the presence of a cost of resistance, AT is superior
to MTD when we do not consider evolutionary speeds. In
Figure 2, we see that in the polymorphic context AT leads to a
clear improvement in treatment efficacy in terms of TTP with
respect to MTD. The left panel exhibits the population dynamics
for this polymorphic population during each treatment schedule
and the right panel displays the strategy dynamics of the resistant
cell type. TTP is represented by red stars which identify when
the tumor burden reaches 7,000. Regardless of the resistance
cost, AT extends TTP compared to MTD. In the absence of
a resistance cost, AT increases TTP by 33%. With a cost of
resistance, AT increases TTP by 34 and 45% when manifested
in the growth rate and carrying capacity, respectively. Drug
holidays during AT lead to disruptions in the strategy dynamics
of the resistant cells, increasing the time it takes for them
to reach levels of resistance that result in disease progression.
We further analyze how therapy influences the frequency of
sensitive and resistant cells within the tumor in Figure 3. Here
we observe the dynamics of each subpopulation and the total
population of cancer cells with MTD (top row) and AT (bottom
row). There is no decrease in the resistant subpopulation when
therapy is not applied, but a drug holiday through adaptive
scheduling decreases the speed of its growth. When therapy is
applied continuously there is no opportunity for the sensitive
subpopulation to regrow and maintain a tumor composition
that is majority drug sensitive. We note that eventually, also
with AT, the resistant subpopulation outcompetes the sensitive
one and the disease progresses. Furthermore, we explore a
parameterization that allows us to compare AT to MTD for a
monomorphic and polymorphic population (Figure A2). The
dynamics are similar to Figure 2, AT remains advantageous for
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FIGURE 1 | The presence of a resistance cost can improve the short-lived therapeutic success of MTD treatment. Drug administration is shown at the top of each

plot in gray. Population dynamics (left) and the evolutionary dynamics (right) are shown in the absence of a resistance cost (black solid line), and when the cost is

manifested in the intrinsic growth rate (blue dashed) and carrying capacity (green dot dashed line) for a polymorphic (top) and monomorphic (bottom) tumor cell

population. The strategy in the polymorphic context is that of the resistant population of cells. Red stars indicate progression defined as x ≥7,000. When a cost of

resistance is imposed on carrying capacity there is a greater extension in TTP. The parameters used in these figures are: m = 1, Kmax = 10, 000, rmax = 0.45, k = 2,

b = 10, d = 0.01, g = 0.1, σ = 0.1.

both contexts. The TTP for all cases is increased significantly due
to a reduction in the cost of resistance (g = 0.01) and benefit of
resistance (b = 1).

5.3. Faster Speeds of Evolution Reduce the
Improvement in TTP Provided by AT
Evolutionary speed σ contributes to the effectiveness of
AT. At faster speeds of evolution, tumor regrowth occurs
quicker, decreasing TTP (Figure A3). The impact of increasing
evolutionary speed on TTP for MTD and AT in a polymorphic
population is shown in Figure 4. At very slow speeds of evolution,
we see significantly longer TTPs for all contexts of resistance,
both for MTD and AT. We observe again that when the

resistance cost is manifested in carrying capacity of resistant
cells, TTP is longer, for both MTD and AT, than when resistance
cost is manifested in intrinsic population growth rate or when

there is no cost. When σ > 0.01 the relative TTP for each

treatment strategy decreases dramatically. Nonetheless, under all
evolutionary speeds and resistance cost scenarios, AT remains

superior to MTD via lengthening TTP (Figure 4).

In absolute terms (TTPAT − TTPMTD) this benefit

declines as evolutionary speed increases, while proportionally
((TTPAT − TTPMTD)/TTPMTD), the benefit of AT increases with

evolutionary speed (Figure 5).
Relative to MTD, AT will extend TTP by a greater proportion

at faster evolutionary speeds due to the already short-lived
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FIGURE 2 | AT is superior to MTD independent of the cost of resistance. Simulations of AT (solid line) and MTD (dashed line) for a polymorphic population are shown

in the absence of a resistance cost (black), and when the cost impacts the intrinsic growth rate (blue) and carrying capacity (green). Population dynamics (left) and

evolutionary dynamics (right) illustrate the advantage of AT compared to MTD. The protocol for AT is to withdraw the drug once the population density ≤ 3, 000 (50%

of the initial population size). Drug administration for AT is shown at the top of each plot in gray. TTP for each is illustrated by red stars. Only the strategy for the

resistant population is shown as the sensitive population has a fixed strategy (us = 0). Regardless of the cost of resistance, AT always corresponds to a longer TTP.

The parameters used in this figure are: m = 1,Kmax = 10, 000, rmax = 0.45, k = 2,b = 10, d = 0.01, g = 0.1, σ = 0.1.

therapeutic success of MTD at those greater speeds. AT does not
confer a proportionally large increase in TTP when TTP under
MTD is relatively long. Under this parameterization, AT relative
to MTD provides a greater proportional improvement in TTP
when a resistance cost is expressed in carrying capacity thanwhen

it is expressed in population growth rate or not at all. However,
when evolutionary speed is fast, this advantage is lost. Since the
original AT trial protocol was introduced, subsequent studies
suggest that withholding therapy sooner provides a greater
benefit. We explore this by removing treatment once the tumor
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FIGURE 3 | Changes in the frequency of sensitive (blue) and resistant (yellow) subpopulations in the polymorphic context during MTD (top) and AT (bottom). At the

top of each plot, drug administration is shown in gray. These dynamics are shown for three different models of costs of resistance: no cost, cost applied to the growth

rate (r cost), and cost applied to the carrying capacity (K cost). AT delays TTP (red star) by maintaining a tumor composition of mostly sensitive cells for a longer time

than MTD. The parameters used in this figure are: m = 1,Kmax = 10, 000, rmax = 0.45, k = 2,b = 10,d = 0.01, g = 0.1, σ = 0.1.

FIGURE 4 | TTP for MTD (black) and AT (blue) as a function of the evolutionary speed for a polymorphic tumor cell population. This is illustrated for each model of cost

of resistance (no cost, r cost, and K cost). At faster speeds of evolution, AT remains favorable but TTP decreases for both AT and MTD. Of the three models of cost of

resistance, the TTP for MTD and AT is shortest in the absence of a cost and greatest when the cost of resistance impacts the carrying capacity K. The parameters

used in this figure are: m = 1,Kmax = 10, 000, rmax = 0.45, k = 2,b = 10,d = 0.01, g = 0.1.

burden drops 20% of initial density (Figure 5B). This change in
protocol amplifies the results shown when using a 50% threshold.
The overall trends remain the same, the relative superiority of AT
is greater at faster speeds of evolution.

5.4. Improvement in TTP Provided by AT Is
Greater for a Polymorphic Population
As previously stated, the AT regimen cannot be applied to
a monomorphic population using the same parameterization.

This is due to an insufficient decrease in tumor burden during
continuous treatment (Figure 1). By reducing the benefit (b is

decreased from 10 to 1) and cost of resistance (g is decreased
from 0.1 to 0.01) we are able to achieve population dynamics

during MTD that satisfy our requirements for AT. In Figure 6,

we compare improvement in TTP when AT is applied to the

polymorphic and monomorphic contexts, and to different forms
of the cost of resistance. As before, having a cost of resistance
in carrying capacity produces a longer TTP than having no cost
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FIGURE 5 | Improvement in TTP (TTPAT − TTPMTD) and proportional improvement in TTP ((TTPAT − TTPMTD)/TTPMTD) as a function of evolutionary speed for a

polymorphic tumor cell population. (A) Therapy is withdrawn once the population density ≤ 3, 000 (50% of the initial population size) and re-administered once the

population ≥ 6, 000 (initial population size). (B) The threshold to remove therapy is reduced from 50% to 20%. Therapy is withdrawn once the population density

≤ 4, 800 (20% decrease from initial population size) and re-administered once the population ≥ 6, 000 (initial population size). The benefit of AT increases at faster

speeds of evolution. A reduction in the magnitude the tumor population decreases before therapy can be withdrawn makes AT more effective. The parameters used in

this figure are: m = 1,Kmax = 10, 000, rmax = 0.45, k = 2,b = 10,d = 0.01, g = 0.1.

or a cost in intrinsic population growth rate (Figure A4). Here
we observe a trend similar to Figure 5 in terms of improvement
in TTP for both population contexts, independent of the cost of
resistance. As evolutionary speed increases the improvement AT
provides decreases.

Our results show that there is a significant difference in
the improvement AT bestows based on tumor composition.
Improvement in TTP with AT is not as advantageous for
a monomorphic population as it is for a polymorphic
population. The proportional improvement of AT is minimal
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FIGURE 6 | The impact of evolutionary speed on the improvement in TTP for a monomorphic and polymorphic tumor cell population compared between different

models of cost of resistance. Compared to Figures 1–5, b is reduced from 10 to 1 and g is reduced from 0.1 to 0.01. Rapid evolution decreases the improvement in

TTP provided by AT independent of a resistance cost. Despite the decline, there remains a greater effectiveness of AT when the population is polymorphic. All

parameter values used in this figure are: m = 1,Kmax = 10, 000, rmax = 0.45, k = 2,b = 1,d = 0.01, g = 0.01.

when the population is monomorphic (Figure 7). At faster
speeds of evolution, the relative superiority of AT decreases
in this population. In contrast, there is a greater proportional
improvement in TTP under AT than under MTD when the
population is polymorphic than when it is monomorphic. The
proportional AT advantage is shown to correlate positively with
evolutionary speed. In the polymorphic case, the proportional
improvement in TTP under AT vs. under MTD is greatest
where TTP under MTD is short (Figure 5). The altered therapy
protocol (Figure 7B), again, shows that the overall results remain
the same. Notably, maintaining the tumor burden at a therapy
switching threshold of 20% its original size allows AT to be more
effective. Although rapid evolution is unfavorable in terms of
delaying TTP, AT is proportionally more successful when the
evolutionary speed is faster.

6. DISCUSSION

6.1. Main Outcomes
In this paper, we model how the speed of evolution of treatment-
induced resistance in cancer cells impacts the patient’s TTP
under two treatment regimens: (i) maximum tolerable dose
(MTD) and (ii) adaptive therapy (AT) following the Zhang
protocol, where MTD is discontinued when the tumor reaches
half of its initial volume and is re-administered only once the
tumor recovers (Zhang et al., 2017). We considered two eco-
evolutionary contexts. In the first, there is a monomorphic
population of cancer cells, with treatment-induced resistance
being a quantitative trait that evolves in accord with standard
models of quantitative genetics and adaptive dynamics. In
the second, the population of cancer cells is assumed to be
polymorphic with a strictly sensitive subpopulation that does not
evolve, and a resistant subpopulation of cancer cells that can
evolve increasing resistance as a quantitative trait.

There is an existing tradition of cancer models that treat
the evolving trait of the cancer cells as quantitative in ordinary
differential equation models (Orlando et al., 2012; Staňková
et al., 2019; Reed et al., 2020; Salvioli, 2020), partial differential
equation models (Lorenzi et al., 2016; Almeida et al., 2019)
and in agent-based models (Gallaher et al., 2018). There is also

a tradition of modeling resistance evolution by presupposing
pre-existing populations of therapy resistant and sensitive
populations (Sun et al., 2016; You et al., 2017; Zhang et al.,
2017; Cunningham et al., 2020; Strobl et al., 2020; Kim et al.,
2021; Viossat and Noble, 2021). In these models, resistance
is a qualitative trait and it does not exist on a continuum.
Our second model and eco-evolutionary context represents a
new approach to the resistance strategy. Like models with a
quantitative trait, we let the resistant population start with a
positive but low level of the resistance trait. This subpopulation
evolved its quantitative trait according to Darwinian dynamics.
Like models with qualitative traits we assumed a sensitive,
non-evolving subpopulation that had only some level of innate
resistance to the therapy. It remains an open empirical question
in all fields that involve managing evolving pests and resources
whether the population under management is (1) polymorphic
with sensitive and resistant subpopulations with fixed values for
their resistance traits, (2) monomorphic with a quantitative trait,
or (3) polymorphic with an evolving resistant population and
a fixed sensitive population. We suspect examples of all three
exist in nature, in disease management, and in pest management.
For the second and third eco-evolutionary contexts (where in
fact the first context mentioned is a special case of the third
one), we considered three different modeling forms for the cost
of resistance: (i) no cost of resistance, (ii) the cost of resistance
manifests as a decrease in the growth rate of cancer cells r, and
(iii) the cost of resistancemanifests as a decline in the cancer cells’
carrying capacity K.

Our first main observation concerns the eco-evolutionary
context with a monomorphic cancer population with a
continuous resistance trait. While AT outperforms MTD, it does
so only very slightly and only at slow evolutionary speeds. Above
a certain rate of evolution, the tumor burden never decreases to
half of its initial volume and as such, AT TTP coincides with that
of standard of care. This outcome is independent of whether or
not the cost of resistance is considered. TTP is slower with a cost
of resistance than without. In terms of the proportional increase
of the TTP when compared to the MTD regimen, AT with no
cost of resistance outperforms AT when the cost of resistance
acts on r (intrinsic growth rate) which outperforms AT when the
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FIGURE 7 | Comparison of proportional improvement in TTP as a function of evolutionary speed for a monomorphic and polymorphic tumor cell population. Three

models of resistance are compared: no cost of resistance, cost of resistance expressed in r, and cost of resistance expressed in K. (A) Therapy is withdrawn once the

population density ≤ 3, 000 (50% of the initial population size) and re-administered once the population ≥ 6, 000 (initial population size). (B) The threshold to remove

therapy is reduced thus from 50% to 20%. Therapy is withdrawn once the population density ≤ 4, 800 (20% decrease from initial population size) and re-administered

once the population ≥ 6, 000 (initial population size). The superiority of AT when the population is monomorphic is minimal and as evolutionary speed increases the

relative benefit of AT declines. A polymorphic population of cells allows for a greater effectiveness of AT. In this case, when the speed of evolution is quick AT provides

a greater proportional benefit. Withdrawing therapy at 20% opposed to 50% improves the proportional increase in the effectiveness of AT. The parameters used in this

figure are: m = 1,Kmax = 10, 000, rmax = 0.45, k = 2,b = 10,d = 0.01, g = 0.1.

cost of resistance impacts K (carrying capacity). The relatively
lackluster benefits of AT under a quantitative resistance strategy
has to do with the fitness gradients of the adaptive landscape.
The slope of the logistic term of the fitness function is either
a drag on evolving resistance when therapy is on or the force
that evolves greater sensitivity when therapy is off. This aspect

of the fitness gradient is always active. Not so for the effect of
therapy. The mortality term from therapy is active and decisive
in evolving resistance when therapy is on, but it becomes neutral,
not negative, when therapy is off. Thus, in general, therapy being
on propels the evolution of resistance more strongly than the
evolution of increased sensitivity when therapy is off. This finding
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parallels a potential frustration in the management of evolving
fisheries stocks, where selection for younger age and smaller size
at maturity (which ultimately reduce yield) imposed by harvest
is much faster and more intense than the reverse process where
natural selection for older age and larger size at maturity during
harvest moratoriums may restore a stock (Allendorf et al., 2008).

The second main observation concerns context with a
sensitive and a resistant subpopulation of cancer cells, where
resistance in the resistant subpopulation evolves. Here, AT
always outperforms the MTD protocol by large margins.
Regardless of AT or MTD therapies, time to treatment failure
(progression) declines as evolutionary speed increases. However
the proportional benefit of AT over MTD increases with high
evolutionary speeds. The model predicted a 5% improvement
with AT at a very low evolutionary speed and about a 55%
improvement with a very high evolutionary speed. This is again
independent of whether or not there is a cost of resistance.
The absolute TTP is for most model parameterization shortest
when there is no cost of resistance, followed by a cost of
resistance in r, and longest when the cost of resistance effects
K. Whether AT or MTD, TTP is fastest when there is no cost
of resistance and slowest when the cost of resistance effects K.
The greater effectiveness of AT over MTD with a polymorphic
population derives from two sources of evolution. First, the
resistant subpopulation of cancer cells evolves similarly to that
of a monomorphic population. Second, there is a change in
the frequency of the sensitive (non-evolving) and resistant
subpopulations with each cycle of switching therapy on and off.
This reservoir of sensitive cells already has the optimal resistance
strategy of uS = 0 when therapy stops, and therefore their
population rebounds faster than if one is waiting for the resistant
cells to evolve greater sensitivity. And when therapy resumes they
are least able to survive.

To summarize, in determining the superiority of AT over
MTD it matters most whether the cancer population is
monomorphic or polymorphic. While a slower evolutionary
speed renders both AT and MTD more effective, the relative
superiority of AT decreases with evolutionary speed in the
monomorphic population, and increases with evolutionary
speed in the polymorphic population. Overall, evolutionary
speed matters more in the context of the polymorphic cancer
population than the monomorphic one. Interestingly the impact
of the cost of resistance on the superiority of AT is not that large.
While having a cost of resistance increases TTP regardless of AT
and MTD, the superiority of AT over MTD is generally greatest
when there is no cost of resistance. This result was anticipated by
others who noted that AT can be effective relative to MTD even
when there is no cost of resistance (Strobl et al., 2021; Viossat and
Noble, 2021).

6.2. Relation of Our Models and Results to
Those Related to Managing/Controlling
Other Evolving Systems
Models analyzed within this paper are generic in the sense
that they can frame any situation where actions of a human
are aimed at controlling, containing, or preserving biological

systems evolving according to natural selection, such as fisheries
(Salvioli et al., 2021), pest systems (Brown and Staňková,
2017; Cunningham, 2019), or parasites systems (Hastings and
d’Alessandro, 2000; Bushman et al., 2018; Scott et al., 2018). In
such systems, the human player impacts the eco-evolutionary
response in the biological system under management, while the
biological system adapts to the human’s actions. The control
corresponding to the AT in cancer treatment can be considered as
the simplest form of evolutionary control of evolving biological
systems, where maximum exploitation/control is paused when
the population of the biological systems shrinks to half of its
initial size. Similarly as we discussed for our model, the impact
of evolution of resistance in other biological systems, such
as in bacteria and virus strains, will depend on the speed of
this evolution (Sandoval-Motta and Aldana, 2016). Our results
imply that when the biological system is monomorphic and the
evolutionary trait is quantitative, there is little difference between
an adaptive and continuous-mortality approach. However, when
the biological system is polymorphic, adaptive approaches may
be more effective at prolonging the evolution of resistance
to the source of mortality than is maintaining a constant
preservation/exploitation strategy all the time.

The applicability and desirability of this outcome for wild
populations depend on the objectives of management. In the
case of harvested (fished, hunted) populations, it seems unlikely
that continuous harvest (the MTD approach) could select for
a resistant population that “progresses” to immunity from the
mortality source and thus to high population density (like a
cancer cell population escaping therapy) before harvest simply
extirpates the population. In this case, an “AT” approach
with harvest moratoria simply allows ecological population
recovery with potentially minimal impact on the selective
landscape and population genetic variation. In the case of
selection inadvertently imposed by human activities (e.g., by
urbanization), rapid evolution and short “TTP” of imperiled
native plant and animal populations is desirable from a
conservation standpoint, and a continuous “MTD” context
is unavoidable given the persistent nature of the selective
agent (e.g., unrelenting land development, pollution in the
Anthropocene). The wild population context most informed by
our contrast of mono- and polymorphic cancer populations is
arguably that of pests and pathogens where, as with adaptive
cancer therapy, humanmanagers directly regulate the application
of the mortality source (biocidal agent) and a management goal
is learning to live with chronic, small, treatment-sensitive pest
populations (Wrubel and Gressel, 1994). While not feasible for
cancer as yet, the benefits of AT can be achieved in space as
is done in some agricultural applications, where the pesticide is
applied to some fraction of the field (e.g., 3/4) while a bit of field is
left untreated so as to maintain a sensitive population (Denholm
and Rowland, 1992; Weisz et al., 1996).

6.3. Other Evolutionary Approaches for
Managing Evolving Resources
In this article we considered a classical protocol for AT
introduced by Zhang et al. (2017). Other types of evolutionary

Frontiers in Ecology and Evolution | www.frontiersin.org 16 August 2021 | Volume 9 | Article 681121163

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Pressley et al. Evolutionary Dynamics of Resistance

therapy, i.e., therapy anticipating and steering evolution of
treatment-induced resistance, exist, many of which are inspired
by ecological literature. Such include double-bind, evolutionary
gambit, extinction therapies, therapies targeting aggregation
effects, or those aiming at tumor stabilization (Gatenby et al.,
2009a, 2019; Brown and Staňková, 2017; Cunningham et al.,
2020). A double-bind therapy works if in evolving resistance
to drug A the cancer cells become more susceptible to drug
B and vice-versa (Gatenby et al., 2009a; Basanta et al., 2012).
An evolutionary gambit, or Sucker’s gambit, involves applying a
treatment that, while promoting or not inhibiting tumor growth,
sets up an evolutionary trap by selecting for cancer cells more
susceptible to the planned therapy (Merlo et al., 2006; Basanta
and Anderson, 2013). While not yet tested, therapies may be able
to exploit aggregation effects. Much of the time, cancer cells, by
detoxifying a therapy or by providing protective groups, provide
a public good to each other. But, there is a flip side. If the
resistance strategy involves pumping the still toxic agent into the
interstitial fluid, then the cancer cells may engage in a game of
“hot potato”; each is under selection to escalate the number of
pumps or other membrane mechanisms for removing the toxin.
It becomes an evolutionary race that is driven by natural selection
but harmful to the entire population of cancer cells (Brown and
Staňková, 2016).

In extinction therapy, the idea is to use a first strike set
of drugs, radiation and/or surgery to render the remaining
cancer cell population fragmented and dispersed in what may be
undetectably small remnant populations. Rather than continuing
these therapies, one immediately switches to second strike
therapies aimed at “kicking the cancer while it’s down.” The
goal is to apply and then swiftly change up therapies before the
cancer cells can evolve resistance. The second strike therapies
may be older, out-of-favor drugs (Dinić et al., 2020) or part of
the broader pool of current therapy options. They just need to
be effective at continuing to drive the cancer cell populations
to smaller and smaller sizes, and ideally offer diverse modes
of action. The triple-drug overkill strategy used effectively for
HIV treatment anticipates this sort of first-strike—second-strike
therapies. Termed “pyramiding” (Palumbi, 2001), similar overkill
strategies are utilized in pesticide management programs. These
treatment strategies apply the maximum application possible, as
the intent is curative or the elimination of the pest. If the curative
intent is unrealistic, focusing on maintaining the disease/pest
burden at acceptable levels becomes a better strategy and should
involve less treatment (“minimum effective dose,” Cunningham,
2019).

Some of these evolutionary strategies have been successful
at managing other evolving biological systems other than
cancer. For example, Guiver et al. (2016) controlled pests
by cycling between different pest management strategies.
Acheson and Gardner (2014) successfully adopted evolutionary
harvesting of lobsters, by releasing the smallest and the
largest individuals. When targeting antibiotic resistance,
Kim et al. (2014), Yoshida et al. (2017), and Imamovic
and Sommer (2013) successfully slowed the evolution of
a resistant strain by cycling between certain combinations
of antibiotics.

It is important to note that an evolutionarily informed
management strategy must consider and constantly update the
eco-evolutionary state of the system under management. Hence,
management differs from metronomic cancer treatments where
predefined periods of treatment are punctuated by predefined
drug holidays (Cunningham et al., 2018). The failure of
metronomic regimens can be seen outside of the cancer domain.
For example, when targeting viruses, applying more frequent but
shorter predefined antibiotic courses favors the resistant strains
(Blanquart et al., 2018). The most advanced evolutionary therapy
optimizes treatment objectives with respect to the predefined
treatment goals, adopting the Stackelberg evolutionary game
theory approach (Staňková et al., 2019; Salvioli, 2020; Wölfl et al.,
2020; Salvioli et al., 2021). If successful, this approach leads to the
best possible evolutionary control.

6.4. Resistance as a Qualitative Trait
In our polymorphic model, the resistant subpopulation carries
a “hurdle” of evolvability, as it starts at initially low resistance
levels and may evolve to a high resistance rate. In that sense, a
limiting case of our polymorphic model is the situation where
the resistance trait evolves to the fitness maximum and resistance
becomes a qualitative trait. There are multiple cancer models
considering such a situation. For example, models of metastatic
castrate-resistant prostate cancer consider three different types of
cancer cells differing in their sensitivity to androgen deprivation
and abiraterone acetate (Cunningham et al., 2011, 2018, 2020;
You et al., 2017; Zhang et al., 2017). For these models, AT extends
patient TTP. Similarly, Strobl et al. (2021) and Viossat and
Noble (2021) demonstrated that AT extends TTP even without
a resistance cost.

6.5. Different Forms of Cost of Resistance
and Its Management
Typically, when a cost of resistance in cancer cells, pests,
viruses or bacteria is considered/studied, it is assumed that
resistance comes at a cost such as a decreased maximum
growth rate. Xu et al. (2014), Kam et al. (2015) and Gallaher
et al. (2018) showed that doxorubicin-resistant MCF-7/Dox
breast cancer cells replicate slower compared to their sensitive
counterparts. Almost a decade earlier, Andersson and Hughes
(2010) demonstrated cost of resistance in laboratory experiments
with different bacterial strains.

Salvioli (2020) considered how the cost of resistance decreases
carrying capacity of cancer cells, focusing on equilibrium
behavior instead of on the transient dynamics. Independently
whether the cost of resistance impacts growth rate or carrying
capacity of the evolving population, it becomes essential to
introduce a resistance management plan that defines how
resistance can be targeted (Staňková et al., 2019). Levy and
Marshall (2004) focused on managing microbial resistance.
They proposed tracking the frequency of resistant bacterial
strains among patients, isolating hospitalized individuals with
potentially dangerous resistant bacteria, and providing such
patients with new therapeutic approaches to specifically target
resistance. While the second suggestion may be difficult to follow
when targeting treatment-induced resistance in cancer, the first
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and third suggestions cannot be followed as usefully in the
treatment of cancer.

On the other hand, while in some cancers, cells may
mutate from being resistant to being sensitive, reversibility
of evolutionary traits is expected to be slow or non-existent
elsewhere, as already shown for antibiotics (Andersson
and Hughes, 2010), fish (Enberg et al., 2009), and pests
(Mallet, 1989).

6.6. Future Research
In this research, we established a modeling protocol and partially
answered the question “What is the best treatment choice based
on the speed of evolution of resistance in cancer cells?”, listed as
one the key questions of ecology and evolution of cancer (Dujon
et al., 2020). We also identified the importance of knowing
whether the resistance mechanism manifests as a quantitative
trait in a monomorphic population or as a resistant vs. sensitive
polymorphic population.

Here we focused on the impact of different modeling
assumptions on the time to progression of MTD when compared
to that of adaptive therapy with a pre-specified schedule.
However, future work can include optimizing the treatment
schedule for the models introduced here with respect to
prespecified criteria, as has been done in other works (Martin
et al., 1992; Carrére, 2017; Muros et al., 2017; Cunningham et al.,
2018, 2020; Almeida et al., 2019; Gluzman et al., 2020;Wölfl et al.,
2020).

Analysis of our modeling results are based on tumor burden.
In many clinical instances neoadjuvant therapy such as surgery is
applied to reduce tumor burden before or after drug exposure.
Changing the population density could ultimately impact the
better choice in therapeutic strategy. In an ideal situation,
neoadjuvant therapy would reduce the tumor burden to a size
such that the subsequent treatment is sufficient in removing all
cancer cells. Our model can be used to explore different initial
population sizes to analyze the consequences of neoadjuvant
therapy. Also, we can use our model to explore timing between
therapeutic strategies.

Our model can further be expanded to consider other tumor
constituents related to tumor growth and progression. For
example, the tumor microenvironment consists of fibroblasts,
endothelial cells, immune cells, and non-cellular components
that are not explicitly included in our model. Parameters in
the model encompass what these cells and factors contribute
to overall tumor dynamics. For example, cancer associated
fibroblasts (CAFs) and tumor associated macrophages (TAMs)
secrete proteins that promote angiogenesis and therefore could
be included in the carrying capacity as the abundance of resources
(blood vessels) place limits on tumor size. The parameters
used in this work were chosen for illustrative purposes. Future

research will focus on validating the model using patient
data and on tailoring the model to describe specific types of
cancer. Stochastic elements, such as mutation of cancer cells
into cells of different type, may be included in our model
as well. Moreover, future research on collectively evaluating
evolutionary speed, the contexts of resistance evolution, and
the role of costs of resistance, might profitably investigate how
alternative evolutionary therapies, such as those stabilizing the
tumor burden (Cunningham et al., 2020), double-bind therapies
(Gatenby et al., 2009a), or those motivated by theories of
extinction (Gatenby et al., 2019) compare to standard of care and
the AT analyzed in this paper.
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Diagnosis of estrogen sensitivity in breast cancer is largely predicated on the ratio of ER+

and ER− cancer cells obtained from biopsies. Estrogen is a growth factor necessary for
cell survival and division. It can also be thought of as an essential resource that can
act in association with other nutrients, glucose, glutamine, fatty acids, amino acids,
etc. All of these nutrients, collectively or individually, may limit the growth of the cancer
cells (Liebig’s Law of the Minimum). Here we model estrogen susceptibility in breast
cancer as a consumer-resource interaction: ER+ cells require both estrogen and glucose
as essential resources, whereas ER− only require the general resource. The model
predicts that when estrogen is the limiting factor, other nutrients may go unconsumed
and available at higher levels, thus permitting the invasion of ER− cells. Conversely,
when ER− cells are less efficient on glucose than ER+ cells, then ER− cells limited by
glucose may be susceptible to invasion by ER+ cells, provided that sufficient levels of
estrogen are available. ER+ cells will outcompete ER− cells when estrogen is abundant,
resulting in low concentrations of interstitial glucose within the tumor. In the absence
of estrogen, ER− cells will outcompete ER+ cells, leaving a higher concentration of
interstitial glucose. At intermediate delivery rates of estrogen and glucose, ER+ and
ER− cells are predicted to coexist. In modeling the dynamics of cells in the same
tumor with different resource requirements, we can apply concepts and terms familiar
to many ecologists. These include: resource supply points, R∗, ZNGI (zero net growth
isoclines), resource depletion, and resource uptake rates. Based on the circumstances
favoring ER+ vs. ER− breast cancer, we use the model to explore the consequences
of therapeutic regimens that may include hormonal therapies, possible roles of diet in
changing cancer cell composition, and potential for evolutionarily informed therapies.
More generally, the model invites the viewpoint that cancer’s eco-evolutionary dynamics
are a consumer-resource interaction, and that other growth factors such as EGFR or
androgens may be best viewed as essential resources within these dynamics.

Keywords: subsistence levels, estrogen dependence, ER+/ER− breast cancer, evolutionary steering,
mathematical model, Liebig’s Law of the Minimum

INTRODUCTION

Food-webs within ecosystems describe the trophic relationship between species of an ecological
community. There can be predators, prey and resources, where different species find themselves
consuming those on a lower trophic level, while being consumed by those on a higher one
(Rosenzweig, 1971; Oksanen et al., 1981). Predators exploit prey, prey exploit resources, and
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resource renewal fuels the food-web. For species on the same
trophic level, competition is often indirect. One individual
competes with another by consuming and depressing
the availability of shared resources. Such ecosystems may
have two, three, four, or possibly even more trophic levels
(Oksanen and Oksanen, 2000).

A key element of consumer-resource dynamics is the
nutritional relationship of resources to the consumer, often
showcased by the “beer and pretzel” example of complementary
resources. To a consumer, two resources may be perfect
substitutes, complementary, hemi-essential or essential (Tilman,
1980). Two nutrients are perfect substitutes if the value
of a given diet is a linear, weighted average of the two
nutrients in the diet. They are complementary if there are
diminishing returns to fitness from consuming more of one
of the resources. They are hemi-essential if (i) a non-zero
amount of each must be consumed, (ii) there are diminishing
returns to consuming more of one, and (iii) consuming more
of one resource increases the value of consuming the other
(Letnic and Crowther, 2013).

Two resources are essential if some ratio of the two must
be consumed to achieve higher reward. That is, increasing
consumption of the first resource has no value if consumption
of the second resource limits the diet’s value, and vice-versa.
Such resources conform to Liebig’s Law of the Minimum (Liebig,
1876). In the context of agriculture, Justus Freiherr von Liebig
(von Liebig, 1840; Liebig, 1876) noted that beyond a certain
point adding more of one nutrient, such as nitrogen, did not
increase yields as some other nutrient, such as phosphorus, was
now the limiting resource. With two resources, at any given time
just one or the other resource is limiting unless they conform
to a specific ratio in the diet. Essential resources impact the
dynamics of both more traditional ecosystems, such as plants or
microbes, as well as the dynamics within the ecosystem of the
human body. Essential resources may characterize the nutrient
or molecular requirements of normal cells, as well as cancer cells
within their host.

While normal cells are not free-living single celled organisms,
they do rely on consumption of blood-born or tissue-generated
nutrients that can serve as fuel, as structural molecules, or as
functional molecules (Thompson, 2011). Some of these nutrients
can be thought of as general resources that are used by all cells in
the human body (Palm and Thompson, 2017; Amend et al., 2018).
These can include glucose, oxygen, and amino acids. Among
these, some are essential, such as the essential amino acids (e.g.,
lysine) that cannot be synthesized from other amino acids or
obtained in another way. Many other molecules can be used as
fuel or metabolically transformed into the building blocks for
structural and functional purposes (Hosios et al., 2016).

Some nutrients can be described as specific resources in that
only a subset of cell types or tissues need and use them. For
instance, in humans only a subset of cells in the liver and brain
can, in general, take up and metabolize fructose; most of our cells
cannot (Oppelt et al., 2017). Furthermore, in some cases, the need
for a specific resource by a subset of cell types has evolved as an
adaption for the whole organism to control the proliferation or
metabolic activity of these cell subsets without impacting other

cells. Hormones are examples of such specific resources that serve
to regulate specific cells within specific tissues; examples of such
resources include estrogen for glandular tissue in the breast and
testosterone for glandular tissue in the prostate that are necessary
for these cells to proliferate. Even as all other nutrients are in
ample supply, proliferation of subsets of cells can be controlled
by regulating the hormone supply. Hormones, therefore, serve
as essential resources relative to the pool of other resources. Yet,
as growth factors, they do not provide fuel or material for the
cell. Nevertheless, specific cells have evolved to be metabolically
wired to require these growth factors as keys (they generally
form a dimer with another molecule within the cell (Duffy, 2006;
Razandi et al., 2004; Lallous et al., 2013) to initiate metabolic
pathways, including the possibility of cell division. They are
used up in the process and metabolically broken down. As such,
they are a faux resource, whose adaptive value is for the whole
organism and not for the individual cell (Tilman, 1982).

Breast cancer cells, at least initially, carry the ancestral trait of
requiring estrogen as an essential resource. The ability of cells
to recognize and utilize estrogen is mediated through estrogen
receptors (ER), which have been an appealing therapeutic target
for patients with breast cancer since their discovery over a century
ago. Beatson (1896) first observed in 1896 that removing the
ovaries can lead to breast cancer remission. Over half a century
later, estrogen and its receptors were confirmed as key actors
in breast cancer (Jensen et al., 1971), marking the beginning of
therapies to interfere with ER signaling to treat the disease.

Once a patient’s breast cancer is clinically detectable, cells of
the tumor can be classified as ER+ (requiring estrogen) or ER−
(lacking estrogen receptors) by immunohistochemical staining of
tumor biopsies. Most primary breast cancers possess both types
of cells coexisting within the tumor. Breast cancers are scored
pathologically as ER+ or ER− based on the percentage of cells
exhibiting the estrogen receptor. Patients with ER+ breast cancer
typically have a more favorable prognosis compared to ER−
patients, with the arsenal of therapeutic interventions expanded
to include therapies that interfere with estrogen production or
estrogen signaling. Women that score as ER− have fewer therapy
options (Hammond et al., 2010).

Ecologically, within a breast cancer tumor we expect to
observe at least three distinct types of communities: all ER+, all
ER− or a community of the two coexisting together. Coexistence
seems to be the norm (Jensen et al., 1971; Harvey et al., 1999;
Caruana et al., 2020). Here, we want to leverage ecological
insights about consumer-resource dynamics and resource
subsistence levels to explore the circumstances favoring ER+ vs.
ER− breast cancer. We explore the possibilities for evolutionarily
steering cancer cell frequencies through nutrient manipulations.
To achieve this goal, we model interactions of cancer cells
with a general (glucose) and a specific (estrogen) resource
subject to Liebig’s Law of the Minimum as a consumer-resource
interaction. We consider nutrient uptake rates, resource supply
rates, and the proliferation and survival consequences to cancer
cells of their nutrient uptake. We identify conditions favoring
ER+ or ER− cancer cells in the tumor microenvironment and
discuss strategies that may impact success of hormone-based
therapeutic interventions.
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MODEL DESCRIPTION

In our modeling framework, we consider two types of consumers.
Consumers using strategy 1, S1, use both specific and general
resources (ER+ cells), while consumers using strategy 2, S2, rely
only on general resources (ER− cells). Evidence suggests that in
some cases these consumer strategies are heritably distinct and
as such are pure strategies that breed true. In other cases, cancer
cells can switch between the strategies.

Let the individuals within the population of cancer cells be
denoted as xα(t), where α represents a mixed strategy of using
S1 with probability α. If α = 1, cells only use S1, and if α = 0, cells
only use S2.

Cells utilizing strategy S1 depend on both the specific
resourceR1(t), such as estrogen, and the general resourceR2(t),
such as glucose, as essential resources to the cell. Parameters
aij (per time) represent the probability of encountering a given
item of the resource, while parameters bijrepresent the conversion
rate of resources into the proliferation daughter cells; we also
assume that there exists some intrinsic cell death rate δ. Finally,
we can describe the fitness (per capita proliferation rate), F1(t),
of cells using strategy S1 based on Liebig’s Law of the Minimum
as F1(t) = min(b11a11R1 (t) , a21b21R2 (t)). Cells that use strategy
S2 depend only on general resource R2(t) and grow at a
rate F2 (t) = a22b22R2 (t). Together, the change over time in a
population with ER+ (xα = 0) and ER− (xα = 1) cancer cells can
be described as:

x′α=1 = xα=1F1(R1, R2)− δxα=1

x′α=0 = xα=0F2 (R2)− δxα=0. (1)

Next, we assume that resources R1(t) and R2(t) have constant
inflow rates R01 and R02, respectively, and are cleared or
consumed by normal cells at rates k1 and k2 per unit of the
resources R1(t) andR2(t), respectively. Resource R2(t) can be
consumed by cells using strategy S1 or strategy S2, while R1(t) can
only be consumed by cells using strategy S1. These assumptions
are captured by the following system of equations:

dxα=1(t)
dt

= xα=1(t) min(a11b11R1 (t) , a21b21R2 (t))

−δxα=1(t)

dxα=0(t)
dt

= xα=0(t)a22b22R2 (t)− δxα=0(t)

N(t) = xα=1(t)+ xα=0(t)

dR1 (t)
dt

= R01 − k1R1 (t)− αxα=0 (t) min(
a11R1 (t) , a21R2 (t)

b21

b11

)
dR2 (t)

dt
= R02 − k2R2 (t)− αxα=0 (t) a21 min

(
a11R1 (t)

b11

b21
, a21R2 (t)

)
− (1− α)xα=1 (t) a22R2(t) (2)

In formulating these dynamics, we assume that cancer cells
using strategy S1 do not overconsume either of the essential

resources. If resource 1 is limiting, then the cancer cell will
consume all encountered items of resource 1 but only some of
the encountered items of resource 2. The amount of resource 2
consumed when it is not limiting is just that amount needed to
fully utilize resource 1. And vice-versa if resource 2 is limiting.

EQUILIBRIUM CONDITIONS

In the absence of consumption by the cancer cells, resources
will achieve a steady state level at R′1 =

R01
k1

for specific resource
R1, and R′2 =

R02
k2

for general resource R2. In consumer-resource
theory, these levels are referred to as resource supply points.
This represents the highest standing crop of resources that is
achievable within the tumor.

Each consumer strategy, S1 and S2, will have a subsistence
level of resource abundance, R1

∗ and R2
∗, below which it will

have negative fitness (declining numbers) and above which fitness
will be positive (increasing numbers). The subsistence level of
resources can be found by setting the fitness of a consumer
strategy equal to zero and solving for the associated R∗.

When α = 1, cells require both resources (ER+ cells), and
thus subsistence levels for both resources are R∗1 =

δ
a11b11

when
R2 ≥

δ
a21b21

, or R∗2 =
δ

a21b21
when R1 ≥

δ
a11b11

. That is, these are
the minimal levels of both resources that an ER+ cell requires for
survival. In consumer resource theory, the graph of this in the
state space of R2 vs. R1 forms an elbow, and it describes the zero
net growth isocline (ZNGI) for a consumer harvesting essential
resources (see Figure 1).

Conversely, for cells with α = 0, which depend only on the
general resource R2, the resource subsistence level is given by
R∗2 =

δ
a22b22

. In the state space of R2 vs. R1, this describes a
horizontal line, and it is the zero net growth isocline of strategy
S2 (Figure 1). Above this line, cells with strategy S2 have positive
fitness and below this line their fitness is negative. By the
definition of this strategy, the fitness of individuals with S2 is
independent of the availability of the specific resource, R1.

In a consumer-resource model there are limits to growth for
the consumers. Consumers, intra- and inter-specifically, compete
with each other. This competition is indirect via depletion of
the standing crop of resources. This means that each species
has a carrying capacity determined by the population size that
depresses resource availability to its R∗. At population sizes
above this level, R will be driven below R∗ and the consumer’s
population growth will be negative, and vice-versa for population
sizes below this level.

Role of Tradeoff
For there to be any possibility for the two consumer strategies
to coexist, their ZNGIs must intersect at positive values of R1
and R2 as shown in Figure 1. The only way for the ZNGIs to
not intersect is if the subsistence level of the general resource is
lower for S2 than for S1. In this case, cancer cells with strategy
S2 will drive the level of the general resource to the point,
where consumers using strategy S1 will starve no matter what the
abundance of the specific resource, R1. Thus, for ER+ cancer cells
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FIGURE 1 | Outcome of consumer resource dynamics as influenced by the resource supply point. The five regions show the qualitatively different outcomes
described by System (Rosenzweig, 1971).

to persist in the tumor, there must be a tradeoff, such that the
ER− cells free of the specific resource pay the price by having
a higher subsistence level on the general resource compared to
the ER+ cells: δ

a21b21
< δ

a22b22
, which means a21b21 > a22b22. It is

noteworthy that if hormone therapy or time permit ER− cancer
cells to break free of this constraint, then all the cancer cells will
be ER− and unaffected and essentially resistant to all forms of
hormonal therapies.

ER− breast cancers or ER+ cell lines such as MCF-7 that
have been selected in the lab to be ER− exhibit a rewiring of
various metabolic pathways (Leung et al., 2010; Nayar et al.,
2019). These can include the MAPK/ERK signaling pathways
that seem to bypass the estrogen receptor pathway in normal
cells of ER+ breast cancer cells (Peng et al., 2017). The rewired
metabolic pathways are associated with upregulation of glucose
transporters, GLUT1, and increased glycolysis (faster but less
efficient use of glucose). Of relevance to our parameter selection,
the relative availability of estrogen and glucose alters glucose
uptake and metabolism by ER+ MCF-7 cells. In support of the
idea that these are essential resources, increased estrogen for
MCF-7 cells results in increased glucose uptake and metabolism
(Kulkoyluoglu-Cotul et al., 2019). This suggests that the MCF-
7 cells had been limited by estrogen, and so had suppressed
utilization of glucose. With more estrogen, the amount of
glucose that could be usefully utilized was thus increased. For
these reasons, we assigned the ER− a higher encounter rate on

glucose than ER+ (a22 > a21), a lower conversion efficiency
(b21 > b22), and a lower overall product (a21b21 > a22b22).
Beyond satisfying these conditions, the selection of relative
magnitudes was arbitrary.

With this tradeoff, ER+ cells have a lower R∗ on glucose
( = general resource) than ER− cells when estrogen has a
sufficiently high resource supply. With a surplus of estrogen, ER+
cells can achieve a higher population size than ER− cells for a
given resource supply of glucose. Furthermore, increasing the
resource supply of glucose will raise the equilibrium population
size of cancer cells. Some evidence supports this prediction. For
instance, when grown as mono-cultures in 3-D spheroids, ER+
MCF-7 cells had higher carrying capacities than ER− MDA-MB-
231 cells (Freischel et al., 2020). Whether biopsies of women with
ER+ breast cancer exhibit higher densities of cancer cells than
those with ER− breast cancer remains, to our knowledge, an open
and interesting question.

The Role of Resource Supply Points
From here onwards we will assume that this tradeoff exists and
that the ZNGIs do cross, as shown in Figure 1. The outcomes of
the consumer-resource interactions now depend on the resource
supply points. Even without competition from consumers using
strategy S1, consumer strategy S1 will be absent if the supply
points of either of the resources is below subsistence level.
Similarly, even in the absence of competition from consumers
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using S1, consumer strategy S2 will be absent if the resource
supply point for the general resource is below its subsistence level.

Region 0 of Figure 1: The cancer cell population cannot sustain
itself and will go extinct if the resource supply points are below
the subsistence levels of both consumer strategies.

Region 1 of Figure 1: Only consumer ER− cells (α = 0) will be
present in the cancer cell population if the resource supply point
of glucose (general resource) is above S2’s R∗ but the resource
supply point of estrogen (specific resource) is below the R∗ of the
ER+ cells.

Region 4a of Figure 1: Only ER+ cells can be present if the
resource supply point is above their subsistence levels of glucose
and estrogen, and the resource supply point on glucose is below
the R∗ of the ER− strategy.

When the resource supply point, R’, is above the subsistence
R∗’s for both the ER+ and ER− strategies, then there are 3 possible
outcomes. In all cases, both strategies could exist in the absence
of the other, but the presence of cancer cells using a particular
strategy can influence resource depletion in a manner that does
not permit both consumer strategies to be present.

Region 2 of Figure 1: A mix of ER+ and ER− cells (0 < α < 1)
becomes the expected outcome, when the ER+ cells are limited
by estrogen and consume so little of the available glucose that
they would leave a standing crop of glucose above the R∗ of
the ER− cells. This outcome becomes likely when the resource
supply point exhibits a high ratio of glucose to estrogen. The
resulting equilibrium sees the coexistence of both cell types and
the depletion of resources to the intersection of the ZNGIs.
Namely, the level of estrogen matches the R∗ of the ER+ cells,
and the level of glucose matches the R∗ of the ER− cells.

Region 3 of Figure 1: With a moderate ratio of glucose to
estrogen, the ER+ cells will still be limited by estrogen. This
means that they leave a level of glucose above their R∗; however,
if this level of glucose is below the R∗ of the ER− cells, they will
slowly and eventually be excluded from the community of cancer
cells. In this region, the cancer will tend toward all ER+ (α = 1).
The standing crop of resources will have estrogen at the R∗ of the
ER+ cells, and the standing crop of glucose will be above that of
the ER+ cells and below that of the ER− cells.

Region 4 of Figure 1: With a low ratio of glucose to estrogen
at the resource supply point, the ER+ cells will be glucose
limited and not estrogen limited. When this happens, they will
drive glucose levels down to their R∗ for glucose. Since this is
lower than the R∗ on glucose for the ER− cells, the ER− cells
will be outcompeted from this community. One should see a
rapid equilibration on a community of just ER+ cancer cells
(α = 1).

All of the qualitatively different regions shown in Figure 1 can
be solved for analytically from the consumer resource dynamics
as summarized in the figure. This analysis allows us to predict
the resource-dependent boundaries between different population
compositions. Specifically, we can predict resource steady state
levels given a fixed population composition with respect to
resource consumption strategy. Next, we perform the inverse
analysis and predict what composition the population will evolve
toward, subject to variations in resource availability and initial
population composition.

INTRODUCING POPULATION
HETEROGENEITY WITH RESPECT TO
STRATEGY SELECTION

In this section we address the question of how a population that
is heterogeneous with respect to resource consumption strategy
will evolve over time with respect to both its initial composition
and properties of cells and the environment, i.e., with respect to
variations in parameters R01, R02, aij, bij as defined in Table 1.
For that, we assume that each individual cell in the population
possesses a strategy parameter of α that belongs to the interval
[0,1]. With this assumption, the population can consist of
individuals that use either the pure strategy (cases analyzed in
the previous section), or any mixture of the two pure strategies.
There is value in allowing for both possibilities: a mix of two
pure strategies vs. a continuum of mixed strategies. In the case
of estrogen receptor status in breast cancer, evidence suggests
cases in which ER+ and ER− are heritably distinct and other cases
where the trait is phenotypically plastic (Polyak, 2007; Dai et al.,
2017; Sahoo et al., 2021).

We can consider the dynamics of any starting distribution of
mixed strategies through the application of the Hidden Keystone
Variable (HKV) method (Kareva and Karev, 2019); the specific
details of transformations necessary to apply the HKV method to
this system of equations are given in Supplementary Appendix.
The final system of equations reads as follows:

dR1 (t)
dt

= R01 − k1R1 (t)− Et
[α]N(t) min(

a11R1 (t) ,
a21b21R2 (t)

b11

)
dR2 (t)

dt
= R02 − k2R2 (t)− Et

[α]N(t) min(
a11b11R1 (t)

b21
, a21R2 (t)

)
− (1− Et

[α])N(t)a22R2(t) (3)

where Et
[α] is the expected value of the strategy parameter that

changes over time as the population evolves, and N(t) is the
total population size of all the cells. Derivations for expression
describing Et

[α] and N(t) are given in Supplementary Appendix.
Using this transformed system of equations we can now calculate
change in population size, expected value and variance of α over
time, thus enabling us to track evolution of the population with
respect to resource consumption strategy subject to variations in
environmental conditions.

RESULTS

Model Analysis
We use equations (Oksanen and Oksanen, 2000) to firstly
demonstrate the existence of the 4 qualitatively different regimes
of coexistence of consumers with the resource, and the resulting
final strategy, that are shown in Figure 1. The results of our
simulations are given in Figure 2. We change the inflow rate
R01 of the specific resource, R1, keeping all other parameter
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TABLE 1 | Variables and parameters used when there are 2 pure strategies,
System (Rosenzweig, 1971), and when there is a distribution of mixed strategies,
System (Oksanen and Oksanen, 2000).

Variables/
parameters

Meaning Initial
conditions/

sample
values

Units

xα(t) Population density of cells
characterized by having a strategy
value of 0 < α < 0

xα(0) > 0 Cells/Vol

N(t) Total population size when there is a
distribution of mixed strategies with
population sizes denoted by xα;

N(t) =
∫
A xαdα

N(0) = 0.1 Cells/Vol

R1(t) Amount of specific resource (i.e.,
estrogen)

R1(0) = 10 Moles/Vol

R2(t) Amount of general resource (i.e.,
glucose)

R2(t) = 10 Moles/Vol

p(t) Auxiliary “keystone” variable necessary
for introducing population heterogeneity
using the Hidden Keystone Variables
(HKV) method (Kareva and Karev, 2019)

p(0) = 0 n/a

q(t) Auxiliary “keystone” variable necessary
for introducing population heterogeneity
using the HKV method

q(0) = 0 n/a

α Strategy value. If α = 1, the cell requires
both resources and grows according to
Liebig’s principle of limiting resources; if
α = 0, the cell only requires general
resource R2. Strategy values 0 < α < 0
represent mixed strategies

0 ≤ α ≤ 1 n/a

a11 Encounter rate of resource R1 by cells
with α = 1

0.1 1/time

b11 Rate of conversion of resource R1 into
cells with α = 1

0.1 x/R1

a21 Encounter rate of resource R2 by cells
with α = 1

0.1 1/time

b21 Rate of conversion of resource R2 into
cells with α = 1

0.05 x/R2

a22 Encounter rate of resource R2 by cells
with α = 0

0.25 1/time

b22 Rate of conversion of resource R2 into
cells with α = 0

0.01 x/R2

δ Natural death rate of cells xα(t) 0.01 1/time

k1 Natural clearance rate of specific
resource R1

0.01 1/time

k2 Natural clearance rate of general
resource R2

0.01 1/time

R01 Inflow rate of specific resource R1 k1 × R1(0) R1/time

R02 Inflow rate of general resource R2 k2 × R2(0) R2/time

µ Parameter of initial distribution −50 < µ <

50
n/a

values constant as reported in Table 1; the initial distribution
is assumed to be truncated exponential on the interval [0,1];
other truncated initial distributions can be chosen subject to data
availability. We then evaluate changes in total population size
N(t) (Figure 2A), changes in the standing crop of the specific
resource R1 (Figure 2B) and the general resource R2 (Figure 2C);
change in the mean value of the cancer cells’ strategy parameter

α (Figure 2D), changes in the variance of α and change in
the population composition over time. Equations used for these
calculations are derived in Supplementary Appendix.

For the set of parameter values given in Table 1, R01 =

5 corresponds to region 4, where over time the population
evolves toward Strategy 1; α→ 1, and therefore all the cells
in the population require both resources (for the case when
R1 represents estrogen, this corresponds to all ER+ cells); the
variance (Figure 2E) tends to 0 over time, confirming that at
steady state, the population is indeed homogeneous with respect
to strategy α. It is easy to confirm that the equilibrium levels of the
specific resource R1 is greater than δ

a11b11
, while the equilibrium

level of the general resource R2 tends toward S1’s R∗ of δ
a21b21

, as
expected (see Figure 1).

Here the model predicts an initially counterintuitive
observation: even though the population is composed solely
of ER+ cells, there exists a surplus of estrogen (resource R1).
However, this makes sense within the framework of Liebig’s
Law of the Minimum: the general resource R2 is limiting, which
results in a surplus of the specific resource R1. This prediction
can also have important diagnostic implications, as will be
discussed later.

Decreasing the value of R01 to 4.5 corresponds to region
3, where final population composition still tends to α→ 1
(Figures 2D,E). However, the final levels of both resources are
different, as can be seen in Figures 2B,C. General resource R2 is
no longer limiting, and thus its equilibrium levels are higher than
in the previous case, while the equilibrium levels of the specific
resource R1 are lower. Notably, final population size (Figure 2A)
is lower in region 3 than in region 4, even though final population
composition is nearly identical. In this region, estrogen is the
limiting resource for the population of ER+ cells.

Further reducing the value of R01 = 1.1 corresponds to region
2, which predicts the coexistence of ER+ and ER− negative
cells as a mixed strategy (Figure 2D). Notably, this population
is heterogeneous at steady state, since its variance over time is
non-zero (Figure 2E). The change in population composition
can also be shown in Figure 2F, which plots distribution of cell
clones with respect to α over time. As one can clearly see, the
population composition changes over time but does not become
concentrated at a single value of α, as happens for the other cases
(not shown). Here, specific resource R1 is limiting for ER+ cells
(Figure 2B), and thus the level of general resource R2 is at the
highest level possible. This level corresponds to the R∗ of the
ER− cells.

Finally, reducing R01 to 0.5, effectively minimizing the level of
specific resource R1 below subsistence levels, predictably results
in a population that consists entirely of ER− cells (α→ 0). This
population has the smallest final population size (Figure 2A) and
is fully limited by the general resourceR2 .

These simulations confirm that the model described by
System (Oksanen and Oksanen, 2000) exhibits the outcomes
predicted and summarized in Figure 1. The simulations show
the consumer-resource dynamics toward these outcomes and
equilibria. The model tracks changes in the strategy distribution
and the final population composition. The simulations verify
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FIGURE 2 | Evolution of the population of consumers over time with respect to resource consumption strategy subject to change in resource availability. Initial values
of R01 were chosen to provide representative plots of the 4 key regions of Figure 1. (A) Change in total population size N(t); (B) Equilibrium level of specific resource
R1 (here interpreted as estrogen) and (C) equilibrium level of general resource R2, here interpreted as glucose, calculated from System (Oksanen and Oksanen,
2000); (D) change in mean strategy α ∈ [0, 1]; (E) change in variance of α over time; (F) a representative plot of change in population composition changes over
time, for R01 = 1.1, corresponding to region 2 of Figure 1. All other parameter values are held constant at values given in Table 1.

that changing the ratio of the resource supply points of the
two resources results in corresponding changes in the standing
crop of the two resources, determining whether the tumor
is expected to have all ER+, all ER− or a mix of both cell
types. We additionally demonstrate that populations with mixed
equilibrium strategy are heterogeneous at steady state (rather
than being composed of a single cell clone). Finally, we note
that final population size of cancer cells is largest when ER+
cells dominate the tumor, i.e., cells with largest values of α.
This last result happens because ER+ dominated tumors occur
when the ER+ cells are limited by the general resource and
not the specific resource. Since ER+ cells are more efficient
on the general resources (lower R∗), they can support a larger
population size than if it were a tumor composed of ER−.
Whether cancers scored as ER+ have a higher overall density
of cancer cells than those scored ER− provides a testable
prediction of the model.

Next, we evaluate how composition of the initial
population affects the steady state strategy distribution.

Final Population Composition Is Invariant
to Initial Distribution of Cell Clones in the
Population
In the previous section we demonstrated that relative levels
of specific and general resources affect final population
composition. Now we evaluate the impact of initial population
composition on final strategy distribution.

For that, we change the value of parameter µ in Equation
(Thompson, 2011) that dictates the initial distribution of mixed
strategies in the cancer cell population to see how populations
with different initial mean values of α change over time. In the
following we hold all other parameters constant at values given
in Table 1 unless indicated otherwise. A representative plot of a
population in region 2 of Figure 1 is given in Figure 3.

As one can see, changes in initial population composition
do not affect the steady state value of α or the variance of the
population; they only affect time necessary to reach the steady
state, which is expected. From this we can conclude that within
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FIGURE 3 | Impact of initial distribution on final population composition. (A) Final mean strategy α and (B) variance are invariant to initial distribution.

the frameworks of the proposed model, it is the relative resource
supply points that will drive the evolution of the population over
time, and thus it may be possible to steer population composition
by manipulating resources.

Evolution of Population With Respect to
Resource Availability
Next, we construct a more integrated picture of the dependence of
population composition and resource availability on final strategy
at steady state. The data were collected as follows: for various
combinations of resource supply rates R01 ∈ [0.1, 20] and R20 ∈

[0.1, 10], the simulation was run until the population reached
a steady state, at which point the corresponding values for total
population size (Figure 4A), specific resource R1 (Figure 4B),
general resource R2 (Figure 4C), average strategy α (Figure 4D),
and average variance of α (Figure 4E) were noted. Additionally,
we plotted the relationship between final population size and final
average strategy at steady state in Figure 4F, showing clearly that
final population size increases as α → 1.

As expected, final population size is predicted to be largest
when both resources are most abundant (Figure 4A). The
resulting equilibrium abundances of the two resources do not
directly depend on the resource supply points but on the resulting
community composition. When the resource supply point of the
general resource is high and that of the specific resource low,
a mixed strategy results. Over this region of coexistence, the
specific resource will equilibrate on the subsistence level R∗ of
consumer strategy 1 (Figure 4B), and the general resource will
equilibrate on the subsistence R∗ of strategy 2 (Figure 4C). As
changing the ratio of resource supply points shifts the system
from mixed strategies to all S1 (α→ 1), the limiting resource
switches from the specific to the general resource. Once this
happens, the general resource will always equilibrate on S1’s
R∗ for that resource (Figure 4C), and the specific resource at
equilibrium will continue to increase (Figure 4B) as the ratio of
the general to specific resource declines. This happens because a

smaller and smaller proportion of the encountered items of the
specific resource will actually be consumed by the S1 cancer cells.

In Figure 4D we can see that indeed there exists a range
of intermediate mixed strategies between regions of evolution
toward pure strategies α→ 0 and α→ 1, in correspondence
with the theoretically predicted regions described in Figure 1.
Moreover, Figure 4E shows that highest variance, and thus
highest degree of population heterogeneity, is observed for
populations with intermediate values of α. This may have
therapeutic implications, since more heterogeneous populations
of cancer cells may indicate a more aggressive cancer in terms
of developing metastases or resistance to therapy (Marusyk and
Polyak, 2010; Rajput et al., 2017; Marusyk et al., 2020).

IMPLICATIONS FOR HORMONAL
THERAPIES OF BREAST CANCER

The direct impact of nutrient inflow rates on population
composition raises the possibility of “evolutionary steering”
(Stanková et al., 2019), aimed at promoting a more
therapeutically susceptible composition of cancer cell types.
Ideally, we would devise strategies to steer the populations
toward a point where neither ER+ nor ER− cells can persist
(Region 0 in Figure 1). However, this cannot be achieved
directly through nutrient manipulation without harming the
host, since the general resources (glucose) are required by all
cells of the body.

An alternative approach involves steering the population
composition toward the ER+ phenotype, which is more
susceptible to therapeutic interventions. Such interventions
include several endocrine-based therapies, such as tamoxifen,
fulvestrant and aromatase inhibitors (AIs). Development of
tamoxifen, initially a contraceptive, has been a critical advance
in breast cancer treatment (Jordan, 2003; Quirke, 2017). It acts
as a selective ER modulator (SERM), interfering with signaling
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FIGURE 4 | Evaluation of population composition and equilibrium values at steady state subject to variation of resource inflow rates. (A) population size N(t); (B)
equilibrium levels of specific resource R1; (C) equilibrium levels of general resource R2; (D) mean strategy Et

[α] ∈ [0, 1]; (E) variance Vart
[α]; (F) mean strategy Et

[α]

vs. population size N(t) at steady state.

between ER and estrogen, although it has been shown to have
both antagonist and weak agonist activity. Fulvestrant acts to
not only block but also downregulate ER without agonist activity
(Osborne et al., 2004). Both are effective in breast cancer, yet
both can select for resistant cancer cells (Riggins et al., 2007;
Mills et al., 2018), namely those that are ER− or resistant
through other mechanisms. AIs are small molecules that block
conversion of precursor compounds into estrogenic molecules
(Smith and Dowsett, 2003). AIs, such as anastrozole, letrozole,
and exemestane, have proven effective as monotherapies (Mauri
et al., 2006) and in combination with tamoxifen (Johnston
et al., 2005; Winer et al., 2005; Early Breast Cancer Trialists’
Collaborative Group (Ebctcg), 2015).

With a range of options available for estrogen-dependent
tumors, it is particularly important to provide therapeutic options
to all patients who can benefit. Breast tumors can harbor a
combination of ER+ and ER− cells, but what fraction of ER+
cells within the tumor is high enough to qualify the patient for
hormone therapies? This question is not as straightforward as
one might believe. One issue concerns inconsistency between
testing facilities in how they classify tumors as ER+ or ER−.
Typically, one or several sections from a biopsy are stained for

ER expression using immunohistochemistry (IHC). Tumors may
show a continuum of expression levels among the constituent
cancer cells, some cells showing no expression at all (ER−
cells). Generally, all cells exhibiting expression “at any intensity”
are reported as positive (Hammond et al., 2010). However,
Layfield et al. (2003) showed that there exists considerable
variability between ER classifications on the same tissue block
when analyzed by different laboratories. Similar discrepancies
have been reported by Goldstein et al. (2003) and Nkoy
et al. (2010) highlighting differences in laboratory protocols
(Ibarra et al., 2010). A nationwide assessment of positivity
rates in the Netherlands (Dooijeweert et al., 2019) identified
limited variability in a more recent analysis, but absolute
variations still existed.

Next, even if there were no inter-laboratory inconsistencies,
another question remains: what level of ER expression within
the tumor is therapeutically relevant? Two main scoring methods
have been used for evaluating the extent of ER positivity: H-score
and Allred score. Allred score (Allred et al., 1998) combines the
proportion of positive-staining tumor cells and the intensity of
staining to give a score between 0 and 8. H-score (Goulding et al.,
1995) aims to capture the full range of staining percentages and
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FIGURE 5 | Impact of possible resource-dependent intervention strategies on predicted tumor composition.

intensities in tumor samples rather than just the average intensity
of the Allred score. H-scores range from 1 to 300. A larger
score corresponds to a higher intensity of staining. A score of
1 corresponds to up to 1% ER+ cells among the cancer cells
within the tumor.

Some studies however suggest that there are actually few
cases of tumors being weakly ER+ vs. entirely ER−. They
suggest that ER staining results in a bimodal distribution of
tumor types (Collins et al., 2005). The lack of consistency in
testing and potential misclassification of weakly ER+ tumors as
ER+ tumors prompted Collins et al. (2005) to perform internal
IHC analysis of immune-stains of 825 breast cancer samples,
estimating proportion of ER+ tumor cells, and grading samples
using the Allred score. The authors showed that in 817 cases
(99.0%), either all of the cancer cells in the tumor showed an
absence of staining (all ER− cells) or over 70% of the cells were
ER+. Thus, 818 cases (99.2%) exhibited Allred scores of either 0
or 7/8. These results prompted the authors to conclude that in
most cases, an overwhelming number of breast cancer patients’
tumors can be classified as completely ER− or unambiguously
ER+, with only a small fraction of tumors showing very small
frequencies of ER+ cells and thus appearing weakly positive. It
is noteworthy that Allred scores of 7 or 8 means there are still a
sizeable frequency of ER− cancer cells within the tumor.

The question of whether even weakly positive tumors should
be treated with endocrine therapies was addressed in 2010 at
the American Society of Clinical Oncology (ASCO)/College of
American Pathologists (CAP) meeting. A panel of experts agreed

on setting a threshold of 1% ER+ cancer cells for reporting
a patient’s breast cancer as ER positive (Hammond et al.,
2010). With regards to scoring, this corresponds to a minimum
Allred score of 3, which can be seen with as few as 1–10%
weakly staining cells, and an H-score of over 1 (Table 10 in
Hammond et al., 2010).

While the main rationale for the 1% cutoff is to expand access
to treatment options to as many patients as possible, it may be
too low for statistically significant efficacy. Morgan et al. (2011)
showed that low levels of expression, defined as H-score ≤ 50,
resulted in lower overall disease-free survival when treated with
only endocrine therapy. Chen et al. (2018) showed that patients
with ER+ staining between 1 and 9% gained no significant benefit
from endocrine therapy, unlike ER+ tumors with over 10%
positive staining. Raghav et al. (2012) also showed that patients
with tumors with 1–5% ER positive expression gained no clinical
benefit from endocrine therapy.

Even though weakly positive tumors are classified as eligible
to receive endocrine therapies, it seems that therapeutic success
would be greater if one could increase the proportion of ER+ cells
in these tumors prior to administering endocrine therapy. Within
the framework proposed here, this may be possible through
resource manipulation.

As we have shown above, the proportion of ER+ cells that
rely on both resources increases with increased estrogen inflow,
or with reduced glucose inflow. Perhaps it might be feasible
to externally increase estrogen concentration to favor ER+ cells
over ER− ones without compromising patient health, but as
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yet, this has not been explored experimentally. Such a therapy
would fall into what has been termed an evolutionary gambit
or suckers gambit (Maley et al., 2004; Gatenby and Brown,
2020). On the other hand, glucose deprivation may be able to
achieve a similar effect (Barbosa and Martel, 2020), priming
the tumor to becoming more receptive to hormone therapy by
favoring an increase in the frequency of ER+ cells relative to ER−
ones (Figure 5).

If the tumor is primarily composed of ER+ cells, then
estrogen deprivation therapies will have initial success but might
eventually drive the tumor toward either all ER− or a mixture
of both ER+ and ER− cells. Adding glucose deprivation or
enhancing the resource supply of estrogen relative to other
nutrients may set up an evolutionary double-bind (Gatenby et al.,
2009), where the resulting resource dynamics force an ER+ tumor
that is highly susceptible to hormone therapy (Figure 5).

DISCUSSION

Here we analyzed a consumer-resource model with two resources
subject to Liebig’s Law of the Minimum to describe evolution
of a heterogeneous population of cancer cells as influenced
by resource availability. We evaluated the impact of a general
resource, such as glucose, and a specific resource, such as
estrogen, on the conditions for coexistence by a phenotype that
requires both, and a phenotype that only requires the general
resource. Our model was intended for breast cancer, where ER+
and ER− cancer cells are frequently found coexisting within the
same patient’s tumor. We solved analytically for conditions under
which the tumor should have pure or mixed strategies (Figure 1).
This involved calculating the subsistence levels of resources (R∗)
for the ER+ and ER− cancer cell strategies, there zero net growth
isoclines (ZNGI), and the effect of the resource supply points of
glucose and estrogen on the composition of cancer cell strategies.

We then confirmed theoretical predictions these results by
showing that if a heterogeneous population can evolve over time,
it will evolve toward the predicted population composition and
resource equilibrium levels. We assessed population evolution
by changes in the mean and variance of a distribution of
mixed strategies, where a given strategy gives the probability of
exhibiting the ER− or ER+ phenotype (Figure 2). We showed
that in this system, population evolution is invariant to initial
distribution of cell clones in the populations, and that over
time the final population composition is dictated only by the
supply of each resource (Figure 3), suggesting that resource
manipulation can be used to impact the composition of the
population (Figure 5).

To test this hypothesis, we varied relative inflow rates for
both the general and specific resource and evaluated where the
population evolved over time (Figure 4). Specifically, in our
simulations we allowed the population to evolve to steady state,
at which point we evaluated composition of the population
(mean strategy and variance of strategies), as well as equilibrium
abundances of resources. In addition to confirming predicted
levels of both resources at a steady state, the model analysis
revealed that the highest variance in the mixed strategies found

among the cell lineages occurs for populations that have a mix of
ER+ and ER− cells.

In Lloyd et al. (2014) examined the frequency of ER+ and
ER− cancer cells from the biopsies of 24 patients; all biopsies
were obtained from the primary tumor. Six exhibited 100%
ER− cells (corresponding to Region 1 of Figure 5), seven had
both phenotypes at 5–10% ER− cells (corresponding to Region
2 of Figure 5) and 11 were 100% ER+ cells (corresponding
to Regions 3 or 4 of Figure 5). The authors found that
ER− tumors exhibit less vasculature. Lack of vasculature may
reduce the inflow of both glucose (and other general resources)
and estrogen, but the level of estrogen may drop below the
subsistence level of the ER+ cells, leaving a higher standing
crop of underutilized general resources, thereby favoring ER−
cells (to our knowledge, this prediction remains untested). The
authors hypothesize that anti-estrogen therapy (e.g., Tamoxifen)
can select for ER−independent cells, while “cyclic introduction
of estrogen may improve survival rate by continually altering,
rather than unilaterally shifting, toward an ER− population.”
The authors suggest that “modulation (and not eradication
or extinction of certain population) may prove to be an
advantageous treatment strategy,” a hypothesis that is supported
by the proposed mathematical model.

The proposed model is built on the underlying theory of
essential resources and Liebig’s Law of the Minimum. For ER+
cells, estrogen may be a hemi-essential resource (it certainly is
not a perfectly substitutable one). Had we modeled estrogen
as a hemi-essential resource for ER+ cancer cells, our results
would remain qualitatively unchanged. The model, however,
would lose much of its analytic tractability as fitness would now
involve the product of consumption rates of estrogen and the
general resource.

Direct evidence for estrogen acting as an essential resource is
that ER+ cells cannot survive and proliferate in the absence of
estrogen, no matter the abundance of other nutrients (Martin
et al., 2003; Comsa et al., 2015). Furthermore, in the absence
of sufficient quantities of other nutrients such as glucose, fatty
acids and amino acids, cancer cells cannot survive or proliferate
regardless of the availability of estrogen. Finally, like other
resources, estrogen becomes depleted and used up by the cells
rather than continuously being recycled (Gudas et al., 1995).

Indirect evidence suggests that estrogen may act as an essential
or hemi-essential resource in line with Liebig’s Law. Mathews
et al. (2020) quantified the effect of long-term glucose deprivation
on various cancer cell lines in vitro. Cell lines were stabilized at
typical human glucose level of 6 mmol/L, with the intervention
group then receiving 3 mmol/L of glucose for 90 days. The
authors observed that glucose deprivation had different effect
on different cell lines, with MDA-MB-231 cell line (ER−), the
highly aggressive triple negative breast cancer cell line, being
most sensitive to the metabolic intervention, while the non-
tumorigenic epithelial cell line MCF 10A (ER+) was least
affected. For the purposes of model validation, more decisive
experiments involving ER+ and ER− cell lines should include
varying resource availabilities, and mono- vs. co-culturing to then
quantify changes in population composition over time (Freischel
et al., 2020). If estrogen and general nutrients function as essential
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resources, then nutrient modulation may be an effective strategy
for cancer modulation.

The potential benefit on cancer therapy of glucose deprivation
through a ketogenic diet has been discussed extensively in the last
several years (Klement, 2017; Weber et al., 2018). Khodabakhshi
et al. (2020) reported results of a randomized controlled
clinical trial, evaluating the effects of ketogenic diet on patients
with breast cancer undergoing chemotherapy. In neoadjuvant
patients, they found that overall survival increased in the
intervention group compared to the control group. In another
trial by the same authors (Khodabakhshi et al., 2021) evaluated
changes in biomarkers of breast cancer patients undergoing
chemotherapy. Patients on a ketogenic diet showed significant
decreases in TNF-alpha and insulin levels after 12 weeks of
treatment, as well as increase in IL-10. All of these changes are
associated with better patient outcomes. Additional experiments
are needed to evaluate relative contributions of different
mechanisms triggered by glucose deprivation in the presence
and absence of estrogen. In addition to manipulating cancer-
cell population composition and density, glucose deprivation
may also influence immune modulation (Chang et al., 2015;
Buck et al., 2017; Klein Geltink et al., 2018) and vasculature
(Lloyd et al., 2014).

Broader Context Within Cancer
The model applies to any cancer that is dependent on specific
growth factors including androgen-dependent prostate cancers.
Epidermal growth factors (EGF) are typical regulators of many
tissue types and they can influence cell proliferation and cell
differentiation. Cancers that are wildtype for EGFR (epidermal
growth factor receptor) require EGF as an essential resource.
Other cancer cells, such as EGFR mutant lung cancer, mutate so
that the receptor is permanently turned on, produce their own
growth factors or stimulate neighboring normal cells, such as
fibroblasts, to produce growth factors for them.

In most of these cases, the growth factor serves as an essential
resource necessary for survival and proliferation. The need for
these growth factors or hormones derives from the ancestry of
the cancer cells. They retain the primitive trait of the normal
cells of that tissue type. The need for these growth factors is part
of the organism-wide homeostatic control of tissue-specific cell
proliferation and activity. Because these hormones and growth
factors are not strictly necessary for the survival of an individual
cell, there can be strong selection, accelerated by therapy, for
a subset of the cancer cells to evolve independence from these.
Cancer cell types that are growth factor independent may either
replace the others or coexist as a mixed strategy of different
phenotypes. We believe our model provides a simple mechanistic
explanation for when growth factor independent cancer cell types
will either outcompete, coexist with, or be outcompeted by the
cancer cell type that requires the growth factor.

Broader Context Within
Consumer-Resource Models
Our model falls well within the class of consumer-resource
models proposed and developed by Tilman (1980, 1982). As

mentioned in the introduction, in these models, resources
can be perfect substitutes, complementary, hemi-essential, or
essential. The resources themselves may be co-occurring and
encountered at random or distributed in separate patches or
habitats (Hunt and Brown, 2018). The nutritional relationship
between the resources and their distribution in space strongly
influence the potential for the coexistence of different consumers
(Vincent et al., 1996).

The analysis of these models has general features described
by the resource supply point of the nutrients (inflows), ZNGIs
of the consumer species, and the depletion of the resource
by the consumers. For models like ours that are non-spatial
and achieve a steady-state, coexistence requires that the ZNGIs
of the consumers intersect, meaning that there is a tradeoff
among consumers between the subsistence levels of the resources.
Furthermore, the resource supply points must lie in an
intermediate range of the state space of resource abundances but
outside of each consumer species’ ZNGI. Finally, the consumers
must deplete the resources along different trajectories. For a
two-resource two-consumer species system, when coexistence
is possible, the equilibrium abundance of resources generally
lies at the intersection of the two ZNGIs; and the equilibrium
population sizes of the two species is what will drive the resource
abundances form the supply point to this intersection.

An extensive theoretical and empirical body of literature exists
in ecology on consumer-resource dynamics, including essential
resources (Abrams, 1987; Fox and Vasseur, 2008). Much of
this work is in the context of phytoplankton under chemostat
(batch or continuous flow) conditions (Harmand et al., 2017;
De Rijcke et al., 2020). The essential resources can be either
light and other nutrients, or the nutrients themselves such as
nitrogen and phosphorus. Model extensions can include resource
pulsing, diffusion gradients within the medium or water column,
and large numbers of consumer species and nutrient conditions
(Dubinkina et al., 2019; Stojsavljevic et al., 2019).

Tumors can be thought of as rather viscous chemostats,
where blood delivers nutrients and removes both residual
nutrients and metabolites. In this work, our system was quite
simple, with two co-occurring essential resources, applicable to
cancers requiring growth hormones or growth factors. More
generally, cancers provide a relatively unexplored opportunity
to apply and test consumer-resource theory (Palmer et al.,
2011; Seynhaeve and Ten Hagen, 2018). Such applications could
include ecological “priming” of tumors to be most receptive
to therapy, although tracking resource dynamics, cancer cell
compositions, and interactions within the tumor is not yet
possible. It can at best be inferred from radiographic imaging
(MRI, PET scans, CT scans). Jarrett et al. (2020) showed the
value of combining MRI and PET scans for inferring cancer
cell densities, the distribution of cancer cells with respect to
expression of HER2, and mathematically modeling breast-cancer
patient responses to neoadjuvant therapies targeting HER2. Their
model, like ours, considers the importance of a growth factor
(Human epidermal growth factor). Unlike ours, they use a logistic
growth model instead of a consumer-resource model; and theirs
explicitly considers space using partial differential equations and
a diffusion term representing cell dispersal.
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Mouse experiments provide greater control and the
opportunity to track dynamics more closely, especially using
window chamber mouse models (Amend et al., 2018). Culture
experiments provide a promising way to compete different cell
lines under different nutrient conditions, particularly when
grown in 3-D spheroids, where nutrients rather than space
become limiting (Freischel et al., 2020). In such experiments
the Seahorse Extracellular Flux Analyzers can be used to measure
cellular metabolic processes, such as ATP production, glucose
consumption, oxygen uptake, lactic acid production and other
nutrient fluxes (Cheng et al., 2014; Zhang and Zhang, 2019).
Such measure may highlight tradeoffs and differences among
cancer cells in uptake and utilization strategies (e.g., glycolytic
vs. non-glycolytic cancer cell types) (Persi et al., 2018; Damaghi
et al., 2021).

As part of the ecological system of the human body, cancer
cells require diverse nutrients, drawing fatty acids, amino
acids, trace nutrients, and macromolecules from the blood and
interstitial fluid. These nutrients serve as both fuel and as building
blocks for structural and functional molecules. Some will be
essential, but many will be substitutable or complementary. There
is much opportunity to apply consumer-resource dynamics to
investigate the ecology, evolution and diversification of cancer
cells within and between tumors of a patient, between patients
with the same cancer or patients with diverse cancers.

CONCLUSION

When a patient is diagnosed with breast cancer, it is standard
approach to classify the tumor and start tumor treatment as
expeditiously as possible, with tumor burden reduction being the
goal of each step of the treatment. However, it may be more

effective to first prime the tumor following the initial assessment
of the frequency of ER+ and ER− cancer cells. The first step in
the treatment cascade could be aimed at modifying the tumor
environment to favor ER+ cancer cells. By developing a long-
term strategy rather than relying on short-term tumor burden
reduction, it may be possible to expand the pool of patients that
can maximally benefit from endocrine-based therapy through
application of ecological principles to cancer.
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The concept of invasion is useful across a broad range of contexts, spanning from the
fine scale landscape of cancer tumors up to the broader landscape of ecosystems.
Invasion biology provides extraordinary opportunities for studying the mechanistic basis
of contemporary evolution at the molecular level. Although the field of invasion genetics
was established in ecology and evolution more than 50 years ago, there is still a limited
understanding of how genomic level processes translate into invasive phenotypes
across different taxa in response to complex environmental conditions. This is largely
because the study of most invasive species is limited by information about complex
genome level processes. We lack good reference genomes for most species. Rigorous
studies to examine genomic processes are generally too costly. On the contrary, cancer
studies are fortified with extensive resources for studying genome level dynamics
and the interactions among genetic and non-genetic mechanisms. Extensive analysis
of primary tumors and metastatic samples have revealed the importance of several
genomic mechanisms including higher mutation rates, specific types of mutations,
aneuploidy or whole genome doubling and non-genetic effects. Metastatic sites can
be directly compared to primary tumor cell counterparts. At the same time, clonal
dynamics shape the genomics and evolution of metastatic cancers. Clonal diversity
varies by cancer type, and the tumors’ donor and recipient tissues. Still, the cancer
research community has been unable to identify any common events that provide
a universal predictor of “metastatic potential” which parallels findings in evolutionary
ecology. Instead, invasion in cancer studies depends strongly on context, including
order of events and clonal composition. The detailed studies of the behavior of a variety
of human cancers promises to inform our understanding of genome level dynamics in
the diversity of invasive species and provide novel insights for management.

Keywords: clonal diversity, epigenomics and epigenetics, genomics, metastasis, non-genetic inheritance,
invasion biology, invasive species

INTRODUCTION

The concept of invasion is provocative across many levels of biology. In the context of biodiversity
and ecology, microbial, plant, and animal species invade non-native ecosystems imposing
ecological and economic problems and challenges on a global scale (Pimentel et al., 2000; Pyšek
and Richardson, 2010; Simberloff et al., 2013; Strong and Ayres, 2013; van Kleunen et al., 2018;
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Bartz and Kowarik, 2019; Cuthbertab et al., 2021). In cancers, a
primary tumor in one tissue can give rise to lineages that disperse
to a wide variety of novel environments in other tissues of the
host (Turajlic et al., 2018; Capp and Thomas, 2020), imposing
a potentially lethal cost on the host (Pienta et al., 2020a; Dujon
et al., 2021). Evolutionary processes are inherent to invasions
as biological entities are exposed to environmental conditions
that may vary from their original environments. The invasive
species may experience population bottlenecks, and be subject
to genetic drift (Bock et al., 2015; Sottoriva et al., 2017; Zahir
et al., 2020). In studies that span the diversity of biological taxa
and known human cancers, comparison of source and invasive
populations of species and cancer cells has shed light on how
rapid evolution can occur (Lee, 2002; Bossdorf et al., 2005;
Prentis et al., 2008; Turajlic et al., 2018; Alexandrov et al., 2020;
Gerstung et al., 2020).

The field of invasion genetics was established in ecology and
evolution more than 50 years ago to understand the genetic
mechanisms underlying invasion in natural systems (Baker
and Stebbins, 1965). But even by 2002, evolutionary genetics
was considered “relatively unexplored” in most invasive species
(Lee, 2002). Despite some level of success in the last two
decades, we have only a limited understanding of how genomic
processes translate into phenotypic diversity across different
taxa in response to complex environmental conditions (Bock
et al., 2015; van Kleunen et al., 2018; Mounger et al., 2021a).
Several studies have concluded that while population bottlenecks
and genetic drift typically have a negative effect on invasion
success, adaptive responses by invasive species are not limited
by reduced genetic variation (Bock et al., 2015; Dlugosch et al.,
2015; Estoup et al., 2016; Colautti et al., 2017). However, the study
of most invasive species is constrained by a lack of information
about complex genome level processes. We lack good reference
genomes for most species. Genomic approaches are expensive,
and typically studies have focused only on DNA sequences as
the mechanism of inheritance (Bock et al., 2015; Richards and
Pigliucci, 2020; Mounger et al., 2021a). Further, information
about the genetic make-up of source populations is often limited,
and what genetic changes occur during the “lag time” (see
glossary in Table 1 for bolded terms) between introduction
and invasion is virtually unexplored (Bock et al., 2015;
van Kleunen et al., 2018).

There are several ways to consider how cancer can be seen as a
process of invasion. This could include the initiation of cancer
as a cell lineage goes from being part of the whole organism
program to becoming its own self-defined fitness function and
unit of selection (Gatenby and Brown, 2017). Furthermore,
once initiated, the expanding population of cancer cells evolves
rapidly, and invades adjacent unoccupied tissue. Finally, some
cells may metastasize to other regions of the same tissue or to
novel organs other than that of the primary tumor. Here, we are
interested in parallels between cancer and biological invasions
with respect to an extant and expanding population of cancer
cells as opposed to cancer initiation itself (Figure 1). In this
context, metastases are described quite similarly to biological
invasions in the cancer literature. There are also comparable
outstanding questions in both fields of inquiry (Table 2). During

the process of metastasis, cancer cells leave the primary tumor
and establish new tumors either in the same or different tissue
(Nowell, 1976). Understanding this process is critical considering
that metastasis is linked to the majority of cancer-related
deaths (Lambert et al., 2017; Birkbak and McGranahan, 2020).
Besides creating lethal burdens or organ failures, the metastatic
disease eventually evolves resistance to all known therapies
(Pienta et al., 2020a).

The process of invasion in diverse cancers provides unique
opportunities for studying contemporary evolution since cancer
studies are fortified with extraordinary resources for studying
genome level dynamics and the interactions among genetic and
non-genetic mechanisms (Turajlic et al., 2018; Gerstung et al.,
2020). Cancer studies have shown that compared to primary
cancer cell counterparts, metastatic samples can have higher
mutation rates, multiple types of mutations, and aneuploidy
or whole genome doubling with attendant non-genetic effects
(Patel and Vanharanta, 2017; Sansregret and Swanton, 2017;
Turajlic et al., 2018; Pienta et al., 2020b, 2021; Patel et al.,
2021). This suggests that these genome level processes can be
important in the invasion process as has also been implicated in
the evolutionary ecology of invasive species (Bock et al., 2015;
Mounger et al., 2021a). At the same time, bottleneck events shape
the genomics and evolution of metastatic cancers (Loeb et al.,
2003; Szczurek et al., 2020; Patel et al., 2021), and clonal diversity
varies by cancer type and the recipient tissues of the metastases
(Turajlic et al., 2018). All the progress in cancer genomics
notwithstanding, the cancer research community has been unable
to identify any common events that provide a universal predictor

FIGURE 1 | A schematic figure that compares the steps of biological invasion
in invasive species (adopted from Theoharides and Dukes, 2007) and cancers
(adopted from Gatenby et al., 2009). Native population and primary tumor (in
light blue) refer to the source of ecological invasion and cancer invasion,
respectively. The first step (green) for invasive species is transport in ecological
invasion, which can be natural or by human-assisted dispersal. This step
resembles two steps in cancer invasion: (1) intravasation and (2) circulation,
where a non-random subset of cancer cells first enters the blood or lymphatic
vessels and then travels to a distant organ(s). The following step in the
ecological invasion (2) introduction (in orange) closely mimics step three in
cancer invasion: extravasation. In invasive species and cancer cells, this step
refers to the introduction to the new site. The final steps in the ecological
invasion, (3) establishment and (4) spread, resembles in cancer (4)
establishment and extension into the adjacent tissue, and (5) colony
formation, angiogenesis, proliferation, and spread.
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TABLE 1 | Glossary of relevant terms used to describe biological invasion in invasive species and cancers.

Angiogenesis – A term that refers to accessing and establishing new vasculature (for example, within a tumor).

Basement membrane – The thin membrane that separates the epithelium (for example, cancer cells) from the underlying tissues (for example, blood vessels).

Biotic resistance – An ecological term that refers to resistance to natural enemies like herbivores or pathogens.

Circulating tumor cells (CTC) – A cancer term that refers to the subset of cancer cells that can be detected in the blood of a patient diagnosed with a primary solid
tumor or metastasis.

Dispersal corridors – An ecological term that refers to a path that links two or more favorable habitats.

Disseminated tumor cells (DTC) – A cancer term that refers to a subset of cancer cells that can be detected in the bone marrow or other organs that dispersed from
the primary tumor or a secondary tumor.

Drivers – A term that refers to specific mutations that can have large effects (for example, leading to cancer development).

Epithelial to mesenchymal transition – A term that refers to a dynamic change in cells from epithelial phenotype to mesenchymal phenotype.

Extravasation – A term that refers to the invasion process of cancer cells exiting the blood vessels in the distal organ for colonization.

Evolution of increased competitive ability – An ecological concept also known as EICA. Proposed by Blossey and Notzold (1995) this hypothesis proposes that
because of release from enemy pressures, some invasive plants reallocate resources and rapidly evolve toward less defended but more vigorous types.

Evolutionarily Stable Strategy (ESS) – A strategy (often equated to a heritable or phenotypically plastic trait) or coexisting strategies (often equated to a polymorphic
population or coexisting species) that when common in the population or community cannot be invaded by rare alternative strategies.

Fecundity – An ecological term that refers to the ability to reproduce.

Genetic instability – A term that refers to an increase in genomic alterations (e.g., mutation) in the majority of cells during division.

Intravasation – A term that refers to the invasion process of cancer cells entering the blood vessels or lymph vessels.

Lag time – A term used in both ecology and cancer studies to indicate the time that elapsed between initial establishment to proliferation.

Metastasis – A term that refers to the movement of a cancer lineage from a primary tumor to establish in another tissue.

Metastatic potential – A term that refers to the ability of cancer cells to leave the primary tumor and inhabit a distant organ.

Oncogenesis – A term that refers to the initial process of cancer initiation.

Oncogenic cell – A term that refers to a cell that expresses genes that potentially can cause cancer.

Propagule pressure – An ecological term that refers to the number of individuals released into a region.

of “metastatic potential,” but recent studies from the Pan-
Cancer Analysis of Whole Genomes (PCAWG) Consortium
have found that very early events in cancer are associated with
predictable sets of so called “drivers” (Gerstung et al., 2020;
but see concerns raised in Plutynski, 2021). Moreover, invasion
in cancer studies depends strongly on context, including order
of events and clonal composition (Birkbak and McGranahan,
2020). These characteristics contribute to disease state, metastatic
potential, location of metastasis, and even response to therapy.
The detailed studies of the behavior of a variety of human
cancers promises to inform our understanding of genome level
dynamics in the diversity of invasive species and provide insight
for management.

Here, we aim to review the concepts related to the process
of invasion and how they can be applied in parallel to the
study of a broad variety of invasive taxa as well as a broad
variety of metastatic (invasive) cancers. We then briefly
review the applications of genomics technologies in these
different fields, highlighting similarities, and differences.
We emphasize that many findings in cancer research
have not yet been replicated or uncovered in invasive
species due to various limitations. We also emphasize
the opportunities and need for research into questions
that have not been answered in either invasive species or
cancer. In order to identify these questions, we explore
parallels in the recent summaries of 11 (Bock et al., 2015)
and 14 (van Kleunen et al., 2018) open questions in the
ecology and evolution of invasive species and 84 outstanding
questions in cancer research (Dujon et al., 2021; see Table 2
for summary).

THE CONCEPT OF INVASION IN
BIOLOGY

Definitions for biological invasions vary with the diverse aims of
ecological studies (van Kleunen et al., 2015, 2018), but similar
language and concepts have also been applied to cancer (Amend
et al., 2016; de Groot et al., 2017; Ibrahim-Hashim et al., 2017;
Pienta et al., 2020a; Dujon et al., 2021). The idea that cancer
progression is an eco-evolutionary process has been discussed for
over 50 years (Cairns, 1975; Nowell, 1976). de Groot et al. (2017)
recently suggested that “studying cancer as an invasive species
provides insight into the necessary phenotypic characteristics of
the metastatic ‘seed’ and how those traits are selected for.” They
further describe similarities in migration to a “distant secondary
habitat” through the use of “established dispersal corridors.” In
the case of cancers, these are blood vessels, lymphatics, and nerves
(de Groot et al., 2017). Many ecological studies argue that the
invasion process depends on the status of communities which
may not be at an Evolutionarily Stable Strategy (ESS) for several
reasons [e.g., empty niches, or anthropogenic induced changes;
(McGill and Brown, 2007; Maron and Marler, 2008; Thuiller
et al., 2010; Pintor et al., 2011)], which also applies in cancer (de
Groot et al., 2017). Other studies have focused on the mechanisms
that allow for individual species to be invasive (Richardson and
Pyšek, 2006). This approach could be compared to the study of
different successful cancer metastases (e.g., Turajlic et al., 2018),
which has even been referred to as a speciation event (Capp and
Thomas, 2020; Pienta et al., 2020a; Dujon et al., 2021). Several
authors in ecology have also emphasized that the process depends
on propagule pressure and time since introduction (Simberloff,
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TABLE 2 | Similarities in approaches to study invasions in cancer and ecology [based on selected questions identified in Bock et al. (2015), van Kleunen et al. (2018),
and Dujon et al. (2021)].

Topic Spread of cancer Spread of invasive species

(A) Questions about invasion that are not related to genomics

Initiation Do some organs develop more tumors? (seed and soil hypothesis)
(Dujon #9)

Are some ecosystems more prone to invasion?*

How does the risk of cancer initiation change with time? (Dujon #10) How does risk of invasion of an ecosystem change with time?*

Environment How does the tumor microenvironment drive tumor progression?
What are the minimum resources necessary for the survival of
cancer cells? Can targeting resources offer therapeutic
opportunities? (Dujon #10, 24–26, 29)

How does habitat suitability benefit invaders? What mechanisms allow
invasive plants to benefit from resource pulses? (#4 van Kleunen) What are
the minimum resources necessary for habitat suitability? Can management
of resources offer opportunities to control invasion?

How does aging alter the tissue microenvironment thereby selecting
for oncogenic cells? (Dujon #26)

How does disturbance change habitat suitability thereby promote invasion?
Which alien species benefit from disturbance, and why? (#3 van Kleunen)

Enemies What are the key dynamics in the interaction of cancer cells and the
patient immune system? (Dujon #28)

Are invasive species less impacted by enemies? (enemy release
hypothesis)*

Other questions NA?* What will be the future global distribution of alien plants? (#1 van Kleunen)
What drives climatic niche shifts in the alien range? (#6 van Kleunen) How
important are phylogenetic and functional diversity?(#8 van Kleunen) Do
alien plants escape or recruit enemies at the range edges? (#9 van Kleunen)
Do natives have novel weapons to resist alien invaders? (#10 van Kleunen)
How important are mutualists compared with antagonists in driving
invasions? (#11 van Kleunen) How frequent is rapid coevolution of aliens
and natives? (#13 van Kleunen)

(B) Questions that can be addressed with genomics

Initiation Are there differences in propagule pressure among cancers? Is it
important?*

How important is propagule pressure? (#1 in Bock; #2 van Kleunen)

What explains the existence and length of lag phases?* What
molecular level processes differentiate benign versus malignant
tumors? (Dujon #18)

What explains the existence and length of lag phases? (#7 in Bock; #5 van
Kleunen)

What is the cell of origin of a tumor? (Dujon #1) or cells of origin for
metastases?

What is the source population of an invasive species?*

Which subclones confer a fitness advantage? (Dujon #5) Which genotypes are more fit?*

Phenotypic plasticity What is the contribution of plasticity to cancer adaptations and how
central is phenotypic plasticity in cancer and drug resistance during
tumor progression and drug treatment? (Dujon #53)

Does phenotypic plasticity evolve in a predictable way? (Bock #8) Which
strategies of adaptive plasticity are most frequent? (Bock #9)

How does patient phenotypic plasticity (e.g., life-history trait
adjustments and compensatory responses) affect evolution of
cancer cells? (Dujon #14)

How does native species phenotypic plasticity (e.g., life-history trait
adjustments and compensatory responses) affect evolution of invasive
species?*

Heterogeneity What is the role of tumor heterogeneity during metastasis (Dujon
#21)? To what extent is tumor heterogeneity a cause or
consequence of oncogenesis (Dujon #28)? What is the role of
eco-evolutionary feedbacks between cancer cells and their tumor
microenvironment?

What is the role of diversity of native species in dispersal/invasion? To which
extent is genetic diversity cause/consequence of invasion? What traits or
trait combinations, if any, best predict invasion success? (Bock #5; van
Kleunen #7)? Are trait changes in introduced populations really adaptive?
(#12 van Kleunen) What is the genetic basis of observed phenotypic
evolution? (#14 van Kleunen)

Models Can we build genetic models that forecast tumor evolution? (Dujon
#60 and #61)

Can we build genetic models that predict invasiveness?*

Immune system What is the role of the immune system in somatic evolutionary
trajectories leading to cancer? (Dujon #39)

Do invasive plants grow faster and/or produce more seeds but become less
well-defended against enemies (EICA Hypothesis).*

How can we best harness a patient’s immune system to tackle
cancer evolution? (Dujon #40)

How can we choose the best biocontrol agents?*

Other questions NA? Why does hybridization sometimes result in increased colonization success
and sometimes does not (Bock #2)? Whether the accumulation of
deleterious mutations limits invasions and/or if compensatory mechanisms
reduce the severity of expansion load (Bock #4)? Why do some invaders
exhibit strong local adaptation and others do not (Bock #6)? Is the genetic
architecture of invasiveness traits different from that of other traits that
differentiate natural populations or species (Bock #10)? To what extent are
genes “re-used” during the evolution of invaders (Bock #11)?

*Not specifically listed in these references.
# = the question number as defined in the referenced publication.
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2009; Bock et al., 2015), which is similar to the concept of “billions
of failures” in circulating cancer cells that lead to very few
successful metastases (de Groot et al., 2017; Tissot et al., 2019).
Likewise, many studies of invasive species report that improved
fecundity could contribute to their rapid spread and population
growth in the invaded range (Bock et al., 2015), which has obvious
parallels in metastatic cancers (Lloyd et al., 2016; Vittecoq et al.,
2018). In both ecology and cancer, the goal is to understand the
causal processes involved in the transport, establishment, spread,
and eventual adaptations of invasive species. However, many
experimental studies of species invasions are limited in scope,
because they provide only a single snapshot of native and invasive
populations. When genomics approaches have been used, only
a very small representation of genome level mechanisms and
dynamics were assayed (Bock et al., 2015; Richards et al., 2017;
Paun et al., 2019; Richards and Pigliucci, 2020; Mounger et al.,
2021a).

Although limited in genomics prowess, ecological studies
across a tremendous diversity of species have developed an array
of theoretical frameworks to understand the process of invasion
and examine fundamental questions in ecology and evolution
(Gurevitch et al., 2011; Bock et al., 2015; van Kleunen et al.,
2018). There is intense pressure to understand the process of
biological invasions due to their ecological and economic effects
(Simberloff et al., 2013; Bellard et al., 2016b; Lodge et al., 2016;
Diagne et al., 2020). These effects arise from three ecological
characteristics of a successful species invasion: rapid increase in
population, local dominance or monoculture, and rapid range
expansion (Gurevitch et al., 2011). Research has resulted in
many proposed causal explanations of these invasion dynamics,
including propagule pressure (Simberloff, 2009; Britton and
Gozlan, 2013), biotic resistance (Levine et al., 2004; Nunez-Mir
et al., 2017), and evolution of increased competitive ability
(Blossey and Notzold, 1995; Rotter and Holeski, 2018). The
variety of support (and lack thereof) for these explanations
makes it clear that no single factor can explain all biological
invasions or contribute to all of them (Catford et al., 2009;
Gurevitch et al., 2011; van Kleunen et al., 2018). However,
efforts to synthesize these explanations have resulted in valuable
conceptual frameworks that relate ecological and evolutionary
processes to the steps and barriers of the invasion process.

These conceptual frameworks describe species invasion as a
process with several steps, or filters, through which non-native
species introduced to a new range must pass before exhibiting
the characteristics of invasiveness (Lodge, 1993; Rejmánek, 2000;
Richardson et al., 2000; Blackburn et al., 2011; van Kleunen et al.,
2018). A species must be (1) transported and (2) introduced to
the novel range via natural or human-assisted dispersal. Then, the
species needs to (3) survive and become established in the novel
range. Finally, an invasive species is (4) able to reproduce and
spread (Figure 1; Theoharides and Dukes, 2007; Blackburn et al.,
2011; Lloyd et al., 2017; van Kleunen et al., 2018).

The metastatic cascade follows closely the same steps of how
invasive species disperse, colonize, and spread with the exception
that the first step of “transport” is typically broken down into two
parts (green boxes in Figure 1; Chen and Pienta, 2011; Lloyd
et al., 2016). Metastasis includes: (1) intravasation (invasion

into the bloodstream or lymphatics system), (2) circulation
and evasion of the immune system, (3) extravasation (exiting
the bloodstream), (4) establishment and angiogenesis, and (5)
spread (accessing and establishing vasculature; Paterlini-Brechot
and Benali, 2007; Gatenby et al., 2009; Hapach et al., 2019).
Intravasation involves cancer cells from an established tumor
entering or falling into the bloodstream. Such cells are not a
random subset of the tumor’s cancer cells, and location within
the tumor will likely matter (Lloyd et al., 2016, 2017; Ibrahim-
Hashim et al., 2017). Those at the tumor’s edge will have access
to larger, normal blood vessels while those in the interior will
experience the disorganized and poorly perfused vasculature
induced by angiogenesis. The cancer cell’s characteristics will also
matter. For instance, the epithelial to mesenchymal transition
in cancer cells generates a more motile phenotype capable of
squeezing between cells including those forming the walls of
blood vessels (Barriere et al., 2015). So, while intravasation
involves accidental dispersers (Joosse et al., 2015), the cancer cells
that enter the bloodstream as circulating tumor cells (CTCs) are
a weighted average of cancer cell types within the tumor.

Ecological studies offer additional conceptual frameworks that
could be explored more thoroughly with genomic approaches in
both invasive species and cancers (see Table 2B). Forecasts of
invasion risk have been made based on the relationship between
phylogenetic distance between the invaders and members of
the invaded community (van Kleunen et al., 2015, 2018).
A related concept is that species may be “pre-adapted” if
the recipient environment is a close match to the native
environment and the breadth of the native range may be a good
predictor of this possibility (Bossdorf et al., 2005; Bock et al.,
2015). These predictions based on phylogenetic distance among
species can be argued to support multiple outcomes leading to
“Darwin’s naturalization conundrum” (Diez et al., 2008; Thuiller
et al., 2010). For example, “Darwin’s naturalization hypothesis,”
argues that invaders that are phylogenetically unrelated to
local communities should be more successful because they
can exploit unfilled ecological niches in native communities
(Rejmánek, 1996; Thuiller et al., 2010). On the other hand,
closely related species might share similar pre-adaptations to
local environmental conditions or have similar biotic or abiotic
requirements (Thuiller et al., 2010). Regardless, phylogeny does
not always reflect trait differences or niche differentiation, and
often the importance of these different components of invasion
potential are unknown (Thuiller et al., 2010; van Kleunen et al.,
2015, 2018). Recent application of genomic techniques to trace
the “life history” of cancers have found parallels in a diversity
of cancer types (Nik-Zainal et al., 2012; Turajlic et al., 2018;
Gerstung et al., 2020), but this type of evolutionary ecology
framework has not yet been fully explored in the study of cancers.

Many studies in both ecology and cancer have demonstrated
that in addition to the importance of pre- or post-invasion
sources of genetic differences, phenotypic plasticity can be
important. A rich literature in evolutionary ecology has explored
several different scenarios for how invasive species may benefit
from phenotypic plasticity, some of which were outlined by
Richards et al. (2006). Plasticity may allow for invasives to be a
(1) “Jack-of-all trades” with positive fitness across many habitat
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types; (2) “Master-of-some” with highly positive fitness in the
most favorable habitats and conditions, or (3) “Jack-and-Master”
that combines both attributes. However, increased plasticity does
not always translate into positive fitness outcomes (Levis and
Pfennig, 2016; Matesanz et al., 2017; He et al., 2021). In fact,
several meta-analyses (Van Buskirk and Steiner, 2009; Davidson
et al., 2011; Palacio-López and Gianoli, 2011; Arnold et al., 2019)
have not supported the hypothesis that plasticity contributes to
the success of invasive species. In either case, the mechanisms
underlying this plasticity will be mediated by genetic and non-
genetic molecular level processes (Richards et al., 2010; Nicotra
et al., 2010; Herman and Sultan, 2011, 2016; Banta and Richards,
2018). While the fine molecular details of plastic responses have
not yet been assessed in any species (Richards et al., 2017; Bock
et al., 2018; Laitinen and Nikoloski, 2019; Richards and Pigliucci,
2020; Sommer, 2020; Mounger et al., 2021a), the potential to do
so is currently greatest in cancers.

Another important concept that has been explored in
evolutionary ecology is the role of propagule pressure, or the
rate of arrival of non-native individuals. Propagule pressure
can be important not only to the initial step of introduction,
but it can influence survival by overwhelming stochastic
processes, and increasing survival, reproduction, and competitive
dominance. High propagule pressure can enhance genetic
diversity permitting the invasive species to persist and thrive
in a new environment (Simberloff, 2009; Rius et al., 2015b).
Invasive species often exhibit a lag time, where extended periods
of time pass between initial establishment and later development
of invasive characteristics (Simberloff, 2009; Aikio et al., 2010;
Bock et al., 2015; van Kleunen et al., 2018). In ecology, the
length of this lag time remains unpredictable and the mechanisms
at work remain unknown, but rapid evolution has occurred
on the scale of <50 years, and evidence shows that local
adaptation occurs in invasive species (Bock et al., 2015). Similarly,
disseminated cancer cells (DTC) that arrive at and survive in
a novel organ may exhibit long lag periods before expanding
from micrometastases into clinically detectable metastatic tumors
(Birkbak and McGranahan, 2020).

Recent evidence from the Pan Cancer Atlas has traced the life-
history of thousands of cancers and found the lag time from so
called “driver events” to detection can be on the order of years
to decades (Nik-Zainal et al., 2012; Alexandrov et al., 2013b;
Gerstung et al., 2020). Extensive research has detailed several
components of the metastatic process. The quantity of CTCs
with potential to seed new tumors depends on survival while
passing through the bloodstream (Box 1: Figure A). This involves
tolerating potentially destructive shearing forces from moving
swiftly through vasculature, as well as avoiding detection and
mortality from the immune system in the blood (Lloyd et al.,
2016). Additional characteristics such as immune evasion and the
ability to be compressed may enhance the chances of a cancer
cell surviving in the blood. Authors have suggested that several
cancer cells traveling together as a raft (Aceto et al., 2014), or
unusually large cancer cells such as those in a polyaneuploid
state (polyaneuploid cancer cells, PACCs) may be able to circulate
longer and more successfully (Pienta et al., 2021). However,
regardless of characteristics, the half-life of a CTC remains

unknown, yet is vitally important. Blood circulates throughout
the human body on average every 45 seconds, and the number of
times a CTC can circulate influences their number as well as their
likelihood of entering other tissues. CTCs can reach 1–10 per ml
of blood (Yu et al., 2011; Alix-Panabières and Pantel, 2021), and
the number of CTCs in the blood correlates with progression free
survival (5 or more CTCs per 7.5 ml of blood represents a poor
prognosis for breast or prostate cancer patients; Rack et al., 2014;
Pantel and Alix-Panabières, 2019).

In addition to these characteristics that might contribute
to the success of CTCs, only a small fraction of CTCs
are able to exit a blood vessel and enter a novel
tissue or novel location in the same tissue type. Actin
dynamics within a cancer cell can permit pseudopodia
facilitating motility and the ability to move through cell
junctions (diapedesis) (Castro-Giner and Aceto, 2020).
The establishment of a successful metastasis from one
or several of such DTCs represents yet another hurdle.
Several characteristics of the DTC may favor success albeit
it is still a very small probability. Actin mechanics can
be critical for degrading and constructing extra-cellular
matrices (Kumar and Weaver, 2009). The establishing
DTC must overcome additional threats from what can
be a tissue specific immune response. To avoid failure,
the DTC or emerging micrometastasis must overcome
Allee effects (Johnson et al., 2019), and access and
establish vasculature (angiogenesis) (Amend et al., 2016;
Lloyd et al., 2016, 2017).

Despite these hurdles that are difficult to trace, the metastatic
cascade is a simpler and perhaps more accessible microcosm
for the evolutionary ecology of invasive species. The patient is
the entirety of the system, i.e., the entire planet for the cancer
(Pienta et al., 2020a). All the living cells within the patient,
including the cancer cells and normal cells are relatively similar
in size. The pathway to invasion in cancer is straightforward,
occurring through the blood or lymphatics. The cancer cell will
face roughly the same supply of resources, types of resources,
and threats from the immune system. However, the different
organs and tissues of the body differ structurally, functionally,
and metabolically in ways that influence their susceptibility to
metastases (Schild et al., 2018). Like in invasion ecology, the
heritable characteristics of the metastasizing cancer cells matter
(de Groot et al., 2017; Pienta et al., 2020a). They can carry
adaptations for dispersal and pre-adaptations for surviving the
rigors of dispersal and avoiding the immune system (Hanahan
and Weinberg, 2011; de Groot et al., 2017). Similarly, ecological
species invasions can be facilitated by dispersal adaptations such
as burrs on seeds that stick to the fur of animals (or artificial
surfaces) or dispersal events prompted by over-crowding. Also,
there is often an association between the habitat characteristics
of the donor and recipient locations (van Kleunen et al., 2018).
This aligns with Paget’s (1889) seed-and-soil hypothesis for
the relationship between the donor tumor’s tissue type and
the recipient tissue where metastases are likely to occur. Some
authors have even suggested that exosomes released by cancer
cells in the primary tumor “prepare the soil” for the metastatic
“seeds” (Rodrigues et al., 2019). A reasonable comparison
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in ecological invasions could be human habitat disturbances
and constructs that favor the invasion of numerous species
(van Kleunen et al., 2018).

Upon successful establishment, the cancer cells can
evolve further adaptations to successfully exploit their novel
environment. From the perspective of the emerging field of
invasion genomics, principles from invasion ecology in natural
systems offer a conceptual framework for metastases. In return,
the extensive, replicated opportunities for measuring DNA
sequence, epigenetic markers, gene expression, and heritable
characteristics of cancer cells means that oncology offers unique
opportunities for evaluating and testing the genomics of species
invasions (e.g., Box 1: Figure A; Turajlic et al., 2018).

GENOMICS OF INVASION

In both species level ecology and cancer, one major goal is to
identify how genomic level processes translate into the ability of
the organism to respond to complex environmental conditions.
The genomic mechanisms that underlie invasions are particularly
intriguing because of classic evolutionary theory that predicts
how the ability to respond to environmental challenges rests on
heritable phenotypic variation which is presumably genetically
based. The fact that invasions by definition have been assumed
to result from just a few individuals creates a so-called “genetic
paradox” for understanding the success of invaders and their
adaptations to new habitats (Allendorf and Lundquist, 2003;

BOX 1 | The invasion processes in cancer and ecology share commonalities but there are also important differences. The cancer metastasis and successful invasion
process consists of a sequence of steps that are like the steps of ecological invasion (see Figure 1). Here, we highlight examples of genetic and epigenetic
mechanisms involved in invasion in cancer and two different ecological systems. (A) Cancer invasion. Cancer cells invade the basement membrane and enter the
blood vessels (intravasation), circulate in the blood and reach a distal organ (e.g., the liver). Genetic as well as epigenetic alterations govern cancer metastasis. One
of the most studied alterations is the reduction of E-cadherin protein expression, which is responsible for the adhesions between cells. Mutations have been found in
the CDH1 gene that codes for E-cadherin, as well as DNA hypermethylation. Specific site of metastasis has been associated with genomic driver mutations that
occurred in the primary tumor: examples from Turajlic et al. (2018) are depicted where metastases from primary kidney tumors metastasized to lung, bone, liver,
brain, pancreas, and muscle (adrenal, parotid, thyroid glands, skin, and soft tissue not shown). (B) Cane toad invasion. A total of 101 cane toads were introduced to
Australia in 1935 from Central and North America. The invasion traveled from the northeast to southern and northwestern regions of Australia resulting in heritable
differences in physiological, morphological, and behavioral traits. After already surviving a bottleneck from the initial invasion, genetic diversity declined between the
initial site of establishment and the leading edge of the invasion (Selechnik et al., 2019). One potentially important alteration is that genes involved in metabolism and
immune function were upregulated (Rollins et al., 2015). Experimental manipulations also support heritable epigenetic changes at the SCNN1G gene could be
involved in the response to predators (Sarma et al., 2020, 2021). (C) Japanese knotweed invasion. This plant was first introduced from Japan to Europe in the 1840s
and then to North America sometime before 1873 (Del Tredici, 2017). The invasive knotweed Reynoutria japonica has been reported to be a single widespread
genotype, however, the molecular characterization of this species has been limited and cannot exclude potentially important single nucleotide polymorphisms
(Mounger et al., 2021a). On the other hand, epigenetic markers have been associated with differences in habitat and climate (Richards et al., 2012;
Zhang et al., 2016).

(Continued)
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BOX 1 | (Continued)
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Estoup et al., 2016). This has been a mystery in both ecology and
cancer research with several hypotheses about how the invaders
overcome the negative consequences of limited genetic variation
(Baker and Stebbins, 1965; Nowell, 1976; Vogelstein et al., 2013;
Estoup et al., 2016).

In this context, both invasive species studies and cancer
studies have largely focused on the importance of sequence
based differences or mutations (Alexandrov et al., 2013b, 2020;
Vogelstein et al., 2013; Bock et al., 2015). However, evolutionary
responses to challenging environmental conditions rely on
heritable phenotypes, regardless of the underlying mechanisms
of inheritance (Jablonka and Lamb, 1998, 1999; West-Eberhard,
2005; Banta and Richards, 2018: Bonduriansky and Day, 2018).
We now have evidence that the structural and functional
dynamics of genomes along with a variety of epigenetic and
other non-genetic effects can contribute to heritable variation
and thus to adaptation and cancer metastasis (Feinberg et al.,
2006; Jablonka and Raz, 2009; Johannes et al., 2009; Feinberg and
Irizarry, 2010; Timp and Feinberg, 2013; Richards et al., 2017;
Bonduriansky and Day, 2018; Kooke et al., 2019; Richards and
Pigliucci, 2020).

Discoveries and Limitations of Genomic
Studies of Diverse Invasive Species
Genetic markers have been used to identify the genetic make-
up of invasive populations, and understand how genome level
processes contribute to invasion of diverse natural ecosystems
(Bock et al., 2015; Colautti and Lau, 2015; Dlugosch et al.,
2015; Rius et al., 2015b; Mounger et al., 2021a). Studies in the
native and introduced ranges have reported that many invasive
populations undergo only modest reductions in genetic variation
due to multiple introductions (Stepien et al., 2005; Dlugosch
and Parker, 2008a; Snyder and Stepien, 2017; Flucher et al.,
2021), hybridization (Fitzpatrick et al., 2009; Scascitelli et al.,
2010; van Riemsdijk et al., 2018, 2020; Quilodrán et al., 2020),
or Allee effects that result from reverse density dependence or
cooperation (Kramer and Sarnelle, 2008; Aikio et al., 2010; Rius
et al., 2015b). For example, sequences of mitochondrial DNA
revealed multiple invasion sources for both dreissenid mussels
and goby species of fish, and that this diversity was correlated
to rapid spread and colonization success in a variety of habitats
(Stepien et al., 2005). Further, invasive populations of zebra
mussels, quagga mussels, round gobies, tubenose gobies, and
Eurasian ruffe (another fish species) that have established in
the Great Lakes had as much or greater genetic diversity as
native populations (Stepien et al., 2005; Snyder and Stepien,
2017). Recently, reduced representation sequencing (Narum
et al., 2013) has provided much more power to inform studies
of invasion by demonstrating, for instance, the absence of strong
population structure which could indicate repeated human-
assisted dispersal across the invaded range such as in the
pavement ant (Tetramorium immigrans) (Zhang et al., 2019).

On the other hand, lower diversity in invasive populations
may reflect that there was a higher diversity of founding
genotypes initially, and selection in the novel habitat filtered out
unfit individuals (Dlugosch and Parker, 2008b; Vandepitte et al.,
2014). Other studies argue that the process of genetic bottlenecks

can purge deleterious alleles, reveal beneficial cryptic variation
or create new beneficial interactions among genomic elements
(Colautti and Lau, 2015; Dlugosch et al., 2015; Stapley et al.,
2015; Estoup et al., 2016; van Kleunen et al., 2018). The invasive
brown rat (Rattus norvegicus) is a globally successful invader, but
recent studies in China discovered that local populations had
experienced severe bottlenecks and then rapidly differentiated
since establishment in the 1970s, including new alleles associated
with lipid metabolism and immunity genes (Chen et al., 2021).

Despite such bottlenecks, loss of diversity measured by
molecular markers does not necessarily reflect loss of quantitative
trait variation (Dlugosch and Parker, 2008b; Estoup et al.,
2016). A series of studies revealed that rapid phenotypic
evolution facilitated the invasion of the widespread red macroalga
Agarophyton vermiculophyllum despite the fact that the species
experienced a severe genetic bottleneck and increased through
clonal spreading (Krueger-Hadfield et al., 2016; Sotka et al., 2018;
Flanagan et al., 2021). The European starling (Sturnus vulgaris)
in North America was founded by only ∼180 individuals,
but local populations seem to have evolved rapidly and now
show the signature of only a moderate population bottleneck
(Hofmeister et al., 2021). European starlings in North America
show higher levels of genetic diversity than invasive populations
in Australia or South Africa (Bodt et al., 2020). This is
somewhat surprising since the invasion in Australia occurred
across multiple introduction sites and the pattern of rapid
differentiation appears to be explained by distance instead of
response to environment (Rollins et al., 2016; Stuart et al., 2020).

Most genomics studies of invasive species lack the resources
required for understanding the single base pair resolution of
how specific genome level differences might translate into
function and the species’ success. However, transcriptomic
studies can now be conducted in almost any system, providing
a measure of variation in gene expression at the level of
mRNA, which contributes to the formation of proteins, cellular
phenotypes and ultimately the organism’s phenotype (Alvarez
et al., 2015). A few studies have identified candidate genes that
were differentially expressed in invasive populations (Hodgins
et al., 2013; Bock et al., 2015). Studies of populations of
the Argentine ant (Linepithema humile) discovered consistent
differences among invaded compared to native populations
in expression of genes related to biogenic amines (which
modulate behavioral traits like foraging and aggression) and
immune function. Unfortunately, they could not associate these
expression differences with behavioral differences in their study.
Furthermore, interpretation of the functional relevance of some
of the differentially expressed genes was limited by the need for
better annotation (Felden et al., 2019).

Hodgins et al. (2015) compared transcriptomes across 35
species of plants in the Asteraceae, including six major invasive
species. They found no support for the idea that there was
consistent selection on genes that contributed to invasiveness
[but see opposite results with a similar approach in the invasive
green crab, Carcinus maenas (Tepolt and Palumbi, 2020)]. In a
rare comparison of sequence variation and expression variation,
a study of two independent invasions of the Pacific Oyster
(Crassostrea gigas) into the North Sea found little overlap between
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differentially expressed genes and outlier loci. This suggested that
differential gene expression did not necessarily correlate with
changes in allele frequencies (Wegner et al., 2020). However,
as is common in ecological genomics, this study suffered from
limited annotation of the transcriptome and limited coverage of
the genome (using reduced representation RADseq). In general,
identifying underlying molecular level “drivers” is so far limited
to very few studies across widely diverse taxa (Bock et al., 2015).

In addition to using transcriptomics approaches, several
authors have argued that epigenetic mechanisms could be
particularly important for invasive species (Ardura et al., 2017;
Hawes et al., 2018; Marin et al., 2020; Mounger et al., 2021a; but
see Eckert et al., 2021). The case has been made particularly for
those invasive species that are clonal or have low genetic diversity.
Epigenetic mechanisms could provide a non-genetic source of
heritable variation (Verhoeven and Preite, 2014; Douhovnikoff
and Dodd, 2015; Liebl et al., 2015; Rollins et al., 2015; Richards
et al., 2017; Sarma et al., 2020, 2021; Mounger et al., 2021b). In
the last 10 years, there has been an explosion of studies of natural
populations and ecological experiments that provide some
level of information about how epigenetic mechanisms (mainly
DNA methylation) may contribute to organismal responses to
environmental challenges (Jablonka, 2017; Richards et al., 2017;
Richards and Pigliucci, 2020; Stajic and Jansen, 2021). But
so far these ideas and approaches have rarely been applied
to the understanding of invasive species (Hawes et al., 2018;
Marin et al., 2020) and they are almost universally limited
in scope (Paun et al., 2019; Richards and Pigliucci, 2020;
Mounger et al., 2021a).

The recent work in cane toads (Rhinella marina) provides one
excellent example of integrating genomic, transcriptomic, and
epigenomic approaches to understand the process of invasion
(Rollins et al., 2015; Selechnik et al., 2019; Sarma et al., 2020,
2021). A substantial bottleneck occurred during the introduction
of only 101 cane toads into Queensland, Australia in the 1930s
(Shine, 2018; Box 1: Figure B). At present, the toads at the edge of
their range are less genetically diverse than those at the initial site
of introduction, but show a wide variety of heritable differences
in physiological, morphological, and behavioral traits (Phillips
et al., 2008; Rollins et al., 2015; Selechnik et al., 2019). In addition,
this team of researchers suspected that toads at the invasion
front encounter more abundant predators than at the original
site of introduction, which may contribute to higher mortality
rates and select for larger toxin glands. By radio-tracking toads,
researchers were able to see that some toads moved long distances
almost every night in the first 2 years, and inheritance of rapid
dispersal became spatially sorted (Shine et al., 2011). Rollins et al.
(2015) argued that this resulted in assortative mating among
individuals at the front of the invasion between fast-moving
individuals which reinforced the evolution of this trait (Shine
et al., 2011). By measuring genome wide levels of gene expression
with RNAseq, they also showed that metabolic enzymes were
upregulated at the invasion front and that many of the most
highly differentially expressed genes involved energy production,
immune function, and parasite resistance (e.g., PSME4 and
RASGEF1B) (Rollins et al., 2015).

Remarkably, these researchers took advantage of this invasion
gradient to experimentally examine the potential role of

epigenetic mechanisms as well (Sarma et al., 2020, 2021). They
exposed tadpoles to alarm cues and found elevated cortisone
levels as well as decreased methylation at the suppressor of
cytokine signaling 3 (SOC3) and the Sodium Channel Epithelial 1
Subunit Gamma gene (SCNN1G) genes. They further tested the
idea that DNA methylation drives this pattern by manipulating
methylation levels with the drug zebularine but could not
associate changes in DNA methylation to the promoter region
of the glucocorticoid (GC) receptor gene (NR3C1). However,
they did find differences in single cytosine methylation in the
promoter region of SOCS3, which may be involved in predator
avoidance behavior (Sarma et al., 2020). This team then examined
the inheritance of changes in methylation by running a breeding
experiment. They showed that some shifts in DNA methylation
in response to alarm cues were inherited by the next generation.
In particular, they showed demethylation within SCNN1G, which
regulates sodium in epithelial cells and may help to maintain the
epidermis (Sarma et al., 2021). While this series of studies has
not dissected every molecular detail of the invasion response, it
is unparalleled in their exploration of various levels of response.
This research team demonstrated the wide variety of questions
that can be addressed with genomics approaches.

In the last few decades, we have gained increased data
about the genetic structure of a variety of invasive species and
how genetic variation is distributed on the landscape (Bock
et al., 2015), but most of our information is limited to markers
distributed across the genome and very few studies can evaluate
the whole genome. Many studies have only described patterns
of diversity and are limited in their ability to address underlying
adaptive processes (Rius et al., 2015a,b). Rius et al. (2015a) report
that the application of next generation sequencing (NGS) to
invasive species started in 2008 and by 2015 resources had been
developed for many species. NGS had even identified candidate
genes like the detoxification gene cytochrome P450 and other
stress related genes. However, how the translation of DNA
sequence to phenotypes unfolds through the invasion process
requires much more fine scale dissection of the entire genome
and other molecular level processes over time (see e.g., Bock
et al., 2018; reviewed in Pigliucci, 2010; Keller, 2014; Müller,
2017; Bonduriansky and Day, 2018; Richards and Pigliucci,
2020). The increasing application of sequencing and other
“omics” technologies within appropriately designed experiments
promises to provide more powerful insight into the molecular
mechanisms underlying responses to selection and adaptation
(Alvarez et al., 2015; Rius et al., 2015a,b; Mounger et al., 2021a),
but it is yet unclear how far we can go with this approach and
in how many unique species. In this context, cancer genomics
studies provide some important insights.

On the other hand, the diversity represented among invasive
species provides information about the potential for novel
function, particularly in organisms with extreme phenotypes
(Castoe et al., 2013; Bock et al., 2018). A study of invasive
Burmese pythons before and after a major freeze event in Florida
in 2010 found evidence for directional selection in genomic
regions enriched for genes associated with thermosensation,
behavior, and physiology. Several of these genes were linked to
regenerative organ growth, which modulates feeding and fasting
responses in pythons (Card et al., 2018). In addition, ecological
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experimental approaches can be quite creative in testing for the
importance of some of these processes by combining genomics
approaches with, for example, the creation of synthetic hybrids
(Rosenthal et al., 2002; Rieseberg et al., 2003; Lai et al., 2006;
Whitney et al., 2015; Nieto Feliner et al., 2020; Irimia et al., 2021),
and synthetic or recent polyploids (Yoo et al., 2014; Nieto Feliner
et al., 2020; Paape et al., 2020; Shan et al., 2020).

Are Clonal Plant Species a Particularly
Useful Comparison to Cancer?
Some of the world’s most successful invasive plants are thought
to spread by clonal reproduction (e.g., Japanese knotweed Box 1:
Figure C), which at first brush might seem like a good analogy
for invasion in cancer considering that cancers arise within a
host who has the same genotype. Mounger et al. (2021a) recently
reported that clonal plants are potentially over-represented
among invasive plant species. This is surprising because asexual
reproduction is predicted to result in slower rates of evolution.
But clonality may also be adaptive under the circumstances faced
by invasive species and serve as useful subjects to investigate
how a single genome can respond to a myriad of environments
(e.g., Geng et al., 2007; Verhoeven et al., 2010; Gao et al., 2010;
Richards et al., 2012; Shi et al., 2018; Chen et al., 2020). A recent
study in the perennial sunflower, Helianthus tuberosus, provided
a powerful combination of approaches to demonstrate that there
had been selection for the ability to increase clonality (Bock
et al., 2018). The authors compared populations of ancestral
lineages with invasive lineages and found support for increased
ability to respond to well watered conditions by producing
more clonal propagules. As such, this is one of the first studies
to demonstrate the process of genetic accommodation during
invasion (sensu West-Eberhard, 2005; see also Sultan, 2015; Levis
and Pfennig, 2016). In this study, the researchers were able to link
the genomic mechanisms of hybrid vigor and two specific QTL to
the increased ability to respond to water content in the invasive
habitat. We know of no study where the genomic level processes
that underlie the success of entirely clonal lineages have been fully
explored. Genetic variation that arises from somatic mutations
in natural clonal lineages, albeit low, cannot be excluded since
several studies have reported that high rates of somatic mutation
may allow asexual species to maintain abundant genetic variation
and adapt to changing environmental conditions (reviewed in
Schoen and Schultz, 2019; see also discussions in Chen et al.,
2020; Robertson et al., 2020).

Japanese knotweed (Reynoutria japonica aka Fallopia
japonica) is one of the most well−known cases of an invasive
clonal plant. A single octoploid clone of R. japonica has spread
aggressively through a broad range of habitats in temperate
Europe and North America (Box 1: Figure C; Beerling et al.,
1994; Bailey and Conolly, 2000; Grimsby et al., 2007; Gerber
et al., 2008; Bailey et al., 2009; Richards et al., 2012; Zhang et al.,
2016). Unfortunately, not much is known about the levels of
diversity in the native populations of China and Japan. In the
United States, replicates of the same clone of R. japonica collected
from different habitats had different DNA methylation patterns
even after they were grown in a common garden in New York
(Richards et al., 2012). Another study across central Europe

showed that individuals from different populations of this same
R. japonica clone harbored significant epigenetic and phenotypic
variation which was associated with climate (Zhang et al., 2016).
However, both studies were based on anonymous molecular
markers (AFLP and methylation sensitive AFLP) which only
survey a small portion of the genome. They cannot detect single
DNA base changes even in the surveyed fragments (Schrey et al.,
2013; Paun et al., 2019). A recent survey of the same samples
in the United States populations suggested that within this
R. japonica clone there were most likely some single nucleotide
polymorphisms (Robertson et al., 2020; see also VanWallendael
et al., 2020), but whether any of these polymorphisms are
functional remains to be evaluated.

As in the knotweed studies, the low genomic resolution of
studies of most organisms precludes pinpointing the actual
accrual of sequence and methylation polymorphisms and
therefore isolating the importance of genetic and epigenetic
variation (Richards et al., 2017; Paun et al., 2019; Naciri and
Linder, 2020). The whole genome sequencing studies that
have been done (almost entirely in model species) reveal the
importance of genomic redundancy, largely resulting from
multiple episodes of whole genome duplication (polyploidy)
followed by reduction processes (Doyle et al., 2008; Wendel
et al., 2016), which play a major role in diversification
and adaptation in plants and some animals (Van de Peer
et al., 2017). Whole-genome studies in the model plant
Arabidopsis thaliana (as in cancers) show that novel epigenetic
variation can be dramatically shaped by de novo sequence
mutation. For example, studies have found that single
nucleotide polymorphisms can change the methylome by
modifying a methyl transferase or a nucleotide context
where methyltransferases act (Becker et al., 2011; Timp and
Feinberg, 2013; Dubin et al., 2015; Feinberg et al., 2016;
Sasaki et al., 2019).

The relevance of somatic mutations has been clearly
documented in cancers (Nik-Zainal et al., 2012; Alexandrov et al.,
2013b, 2020; Gerstung et al., 2020), and in cancer metastases
(e.g., Turajlic et al., 2018). Mutation could contribute to the
rapid generation of genetic or epigenetic variation in natural
clonal lineages of plants, and in organisms more generally
(Vonholdt et al., 2010; Exposito-Alonso et al., 2018; Hawkins
et al., 2019; Schoen and Schultz, 2019; Yoder and Tiley, 2021).
But it may be unclear how comparable mutation in cancers
is to natural populations of plants and animals. Studies across
plant species have reported a range of mutation rates from
e.g., 7 × 10−9 per base per haploid genome per generation
in Arabidopsis thaliana lines (Ossowski et al., 2010; Exposito-
Alonso et al., 2018) and peach (Xie et al., 2016) to 4 × 10−8

in long lived poplar and oak species (Schmid-Siegert et al.,
2017; Hofmeister et al., 2020). Mutation rates across a diversity
of animal species ranged from 3.6 × 10−9 in bumblebee to
1.5 × 10−8 in chimpanzee (Yoder and Tiley, 2021). This is
roughly comparable to the average generational mutation rate for
single-base substitutions in humans 1–1.5 × 10−8 (Rahbari et al.,
2016). Therefore, studies in human cancer could provide insight
into the mechanisms that underlie rapid organismal response
more generally.
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Unlike in most species, cancer studies have unsurpassed
power to document how mutation rate depends on location
and nucleotide context in the genome as well as tissue types
(Alexandrov et al., 2013a, 2020; Rahbari et al., 2016). Studies have
also identified ‘mutational signatures’ that reflect age, mutagen
exposures and DNA repair mechanisms (Alexandrov et al., 2013a,
2020; Rahbari et al., 2016). Although not as finely detailed in
scale, one important study took advantage of herbarium samples
to demonstrate that this type of de novo mutation occurred
during colonization and expansion in the United States of a single
lineage of A. thaliana (Exposito-Alonso et al., 2018). Arabidopsis
thaliana is an annual selfing plant, which is therefore almost
entirely homozygous across its diploid genome. Exposito-Alonso
et al. (2018) discovered de novo mutations that were associated
with genes related to adaptive traits that may have been selected
during the establishment and expansion of this species.

Epimutations occur much more frequently than genetic
mutations, they do not occur randomly across the genome, and
they occur more often in genic regions than in transposable
elements (reviewed in Richards et al., 2017). A recent whole
genome survey of Populus trichocarpa showed epimutation rates
that were very similar to A. thaliana on a per generation basis
in the range of 10−3 to 10−4 (Hofmeister et al., 2020). Another
study in maize showed that the forward epimutation rate was
about 10 times larger than the backward epimutation rate, and
two orders of magnitude larger than that of DNA mutation
rate (Xu et al., 2020). In humans, the epimutation rate appears
to be lower than in A. thaliana but was also estimated to be
over two orders of magnitude greater than the germline genetic
mutation rate (Carja et al., 2017). Unlike the extensive focus
in cancer, how these mutation and epimutation rates translate
into function has not been explored in invasive organisms,
or in clonal plants more generally. Unfortunately, even with
the most accurate sequencing platforms and assembly methods
currently available, the technological challenges of accurately
detecting mutation and epimutation indicate that this type of
information is not yet within our reach for most non-model
species (Yoder and Tiley, 2021).

What We Know About Genomics of
Cancer Metastasis
Even before the era of cancer genomics, extensive studies had
revealed that “genetic instability” was a hallmark of cancer
(Coffey, 1998; Duesberg et al., 1998). Mutations rates are higher
in cells with genetic instability (Weisenberger et al., 2006;
Hanahan and Weinberg, 2011; Loeb, 2011). Such is the case
for cancer cells. The increased genetic variation that results
from this mutation can result in phenotypic variation that has
different fitness benefits for cells based on their ability to divide,
migrate, and survive environmental conditions (Amend et al.,
2016; Lloyd et al., 2016; Ibrahim-Hashim et al., 2017; Somarelli,
2021). The microenvironment of the tumor selects on this
variation in phenotype and determines which cell lines will die,
proliferate, or metastasize. Cancer cells that metastasize start
in the selective environment of the primary tumor, then travel
through lymphatic tissue or blood vessels to a distant organ

(Figure 1 and Box 1: Figure A). During this journey, metastatic
cancer cells must evade immune cells and ultimately compete
with healthy cells for resources when they reach a distal organ
(Lloyd et al., 2016; Amend et al., 2016), all of which is mediated
by genomic processes.

Cancer genomics was launched in 2006, but the sample
information was limited in many cases (Ledford, 2010; Nature,
2020). Early analyses of cancer genomes showed that they carried
thousands to tens of thousands of somatic mutations along with
aneuploidies and genome doubling (˜30% of cases) (Stratton,
2011; Williams et al., 2019). While the vast majority of mutations
were thought to have no biological function, they have been
informative to understand the evolutionary history of cancers.
Researchers have been able to develop algorithms that predict
evolutionary fates of cell lineages based on population genetics
concepts (Nik-Zainal et al., 2012; Williams et al., 2019). Nik-
Zainal et al. (2012) identified a collection of somatic mutations
shared by all cancer cells within a given breast cancer sample
and used this concept to identify discrete clones and subclones.
In order to do so, they examined the details of one patient
(sequenced to 188× depth) and found that in the aneuploid
tumor there were 70,690 somatic mutations genome-wide, many
of which were in fewer than 5% of the reads for a given
location in the genome. Their model predicted that 26,762 of
these mutations (∼38%; including in genes TP53, PIK3CA,
GATA3, MLL3, SMAD4, and NCOR1) along with trisomy 1q
and several other rearrangements were found in every tumor
cell indicating that some ancestral cell carried all of these
somatic mutations. From this point, they could reconstruct the
emergence of additional subclones as well [i.e., their subclone
labeled cluster C represented 65% of the tumor cells, cluster B
represented 18% of tumor cells, and cluster A accounted for 14%
of tumor cells (Nik-Zainal et al., 2012)]. They concluded that
large-scale chromosomal changes did not start to occur until after
at least 15–20% of the point mutations had already occurred.
Hence, instability at the chromosome level was not usually the
earliest source of mutation in this breast cancer. Across the 20
breast cancer samples, they found a dominant subclonal lineage
represented 50–95% of tumor cells, but a considerable proportion
of somatic genetic variation was in only a fraction of tumor cells.

More recent studies of the PCAWG Consortium of the
International Cancer Genome Consortium (ICGC) and The
Cancer Genome Atlas have provided further evidence of the
power of cancer genomics to contribute to our understanding
of shared and unique evolutionary genomic mechanisms
(Alexandrov et al., 2020; Gerstung et al., 2020; ICGC/TCGA
Pan-Cancer Analysis of Whole Genomes Consortium, 2020).
Gerstung et al. (2020) used whole genome sequencing in cancer
samples from 2,658 unique donors across 38 cancer types. They
took advantage of the same approaches as Nik-Zainal et al.
(2012) using sequence data to measure the number of copies of
different alleles. They used this information to define categories
of early and late clonal variants, the order in which variants arise,
and the most recent common ancestor (MRCA) of all cancer
cells in a tumor sample. Using phylogenetic reconstruction of
mutations as a clock they mapped mutation timing estimates
onto approximate real time to reconstruct the evolutionary
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trajectories of cancer to even before the point of diagnosis.
They presented timing and typical sequences of mutations as
well as how drivers and mutational signatures varied across
each cancer type.

Among the many interesting findings, Gerstung et al. (2020)
identified an increase in diversity of mutated driver genes at later
stages of tumor development, and 50% of all early clonal driver
mutations occured in just nine genes (although see concerns
raised by Plutynski, 2021). In many cases, the earliest events
included TP53 mutations, as well as losses of chromosome 17 and
most other highly recurrent cancer genes, such as KRAS, TERT,
and CDKN2A. Whole genome duplication events occurred after
tumors had accumulated several driver mutations, and many
chromosomal gains and losses typically occurred later. This
confirmed a long-held prediction in colorectal cancer called the
“APC-KRAS-TP53 progression model” of Fearon and Vogelstein
(1990). This finding concurs with several previous studies that
had reported that very early events in cancer evolution occur
in a few common drivers, and a more diverse array of drivers
is involved in late tumor development (Jamal-Hanjani et al.,
2017; Hu et al., 2019). Overall, the study showed that the
spectrum of mutations changed throughout tumor evolution
in 40% of samples. There were some common trends among
tumors as they evolved, but they all followed diverse paths.
Other studies demonstrated large differences in the underlying
mutation rate among individual tumors and tumor types and
emphasized that only a handful of mutations occur at appreciable
frequencies across all cancer types; for example, only mutations
in TP53 and PIK3CA occurred at a frequency of greater than
10% across cancer types in one study (Kandoth et al., 2013).
Further, Alexandrov et al. (2013b, 2020) recently evaluated
84,729,690 somatic mutations from 4,645 whole-genomes and
19,184 exomes across most cancer types and made associations
of signatures to exogenous or endogenous exposures, as well as to
defective DNA-maintenance processes. They identified positive
correlations between the age at cancer diagnosis and the number
of mutations attributable to a signature, and that the underlying
mutational process was active throughout the entire evolution of
the lineage from normal cells.

The application of genomics to the study of metastases
is of particular interest for understanding the genomics of
invasions. The genetic and non-genetic alterations underlying
cancer metastasis vary depending on the type of tumor as well as
the stage of metastasis (Nguyen and Massagué, 2007). Genome-
wide analysis of gene-expression in tumors has been applied
to hematological cancers (Golub et al., 1999; Alizadeh et al.,
2000), followed by solid tumors (Ramaswamy et al., 2003) to find
signatures for predicting metastasis. Genes involved in initiation
of metastasis promote invasion of the basement membrane and
entry into the circulatory system. For example, loss of CASp8
(caspase 8) activation can protect cancer cells from apoptosis
during invasion (Stupack et al., 2006). Epigenetic modifications
can also initiate the metastatic state, particularly since mutations
in epigenetic machinery can reshape the epigenome (Feinberg
et al., 2006; Timp and Feinberg, 2013). Chromatin regulators are
often mutated in cancer [e.g., mutations in the SWI/SNF complex
occur in over 20% of all cancers (Kadoch and Crabtree, 2015)].

Further, a study in patients of glioblastoma multiforme evaluating
SNP-genotypes, methylation, copy number variants, and gene
expression data found that whole genome DNA methylation was
the most informative molecular level predictor of survival (Bernal
Rubio et al., 2018).

Recent studies indicated that even when specific genetic
mutations instigated the invasion process, completion of the
process depended only on non-genetic changes, specifically
epigenetic changes that complement the genetic mutations
(Lambert et al., 2017). Metastatic progression depends on the
expression of genes that have specific functions as the cancer
cell first becomes a CTC, then a DTC and finally an expanding
micrometastasis. The expression of such genes during the
metastatic cascade may provide quite different functions than
they do for cancer cells of the primary tumor. Such genes
include EREG that encodes COX2 and MMP1 (Gupta et al.,
2007; Kuramochi et al., 2012; Qu et al., 2016). These remodel
the vasculature in sites of metastasis and simultaneously, facilitate
intravasation and angiogenesis at the primary tumor site (Gupta
et al., 2007). Genes that are not involved in the primary tumor
but facilitate metastasis at distal sites are classified as “metastasis-
virulent”. An example is CXCR4, a cytokine receptor that
mediates cancer survival in a distant organ where its ligand
CXCR12 is abundant in tissue microenvironments like bone
marrow (Müller et al., 2001; Kang et al., 2003).

Metastatic samples can have higher mutation rates, specific
types of mutations, aneuploidy or whole genome doubling and
non-genetic effects compared to primary cancer cell counterparts
(Alexandrov et al., 2013a,b, 2020; Martincorena et al., 2015).
Chromosome instability also creates aneuploidy and promotes
tumor evolution (Ben-David and Amon, 2020) and can result in
dissimilarities between metastatic and primary tumors. However,
a study of 118 biopsies of colorectal cancer with metastases to the
liver or brain showed little divergence between the primary tumor
and metastasis, and that “driver genes” were acquired early in the
process of tumor progression. In fact, cells that “disseminated
early” were more likely to seed metastases when the primary
tumor was still clinically undetectable (Hu et al., 2019). Similar
findings were reported in a study of two breast cancer patients:
primary tumors and associated metastases were similar in gene
expression and somatic mutation patterns (Hoadley et al., 2016).
On the other hand, clones seeding metastasis in breast cancer
in another study disseminated late from primary tumors and
continued to acquire mutations. Further, distant metastases
acquired driver mutations that were not seen in the primary
tumor, including a wider repertoire of cancer genes than early
drivers, e.g., inactivation of SWI-SNF and JAK2-STAT3 pathways
(Yates et al., 2017).

For the purposes of understanding specific genomic response
to invaded habitats, a particularly compelling study was recently
completed on clear-cell renal cell carcinoma (ccRCC) tumors
(Turajlic et al., 2018). Across 463 primary and 169 matched
metastatic regions from 38 patients, Turajlic et al. (2018)
found the number of driver events was lower in metastases
(mean = 9), compared to primary tumors, and that metastases
were significantly more homogeneous than primary tumors:
456 driver events were shared between primary tumors and
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metastases, 230 were only found in primary tumors, and 39 driver
events were only found in metastases. They further determined
behavior of clonal lineages within the primary tumor by dividing
253 clones in the 38 patients into: (1) clones that were not
represented in the metastatic samples (n = 130 clones, defined
as subclonal in the primary tumor and absent in metastasis), (2)
clones that were maintained (n = 38 clones, defined as the MRCA
clones, clonal in both primary tumor and metastasis), and (3)
clones that were selected (n = 85 clones, defined as subclonal in
the primary and clonal in metastasis; or absent in the primary
and present in metastasis). Comparing selected versus unselected
mutations, they found hallmark genomic alterations in ccRCC
metastasis but also report the fascinating finding of specific and
shared mutations associated with metastases across 18 different
invaded tissues (Turajlic et al., 2018; Box 1: Figure A). This type
of detailed information about genomic modifications associated
with the invasion of “habitat types” is unprecedented in ecological
studies and provides information not only about current status
of populations but evolutionary history and therefore potential
prevention. While each patient exhibited some unique features,
this study also demonstrates the remarkable degree of parallel and
convergent evolution in both the primary and metastatic tumors
of different patients of this cancer type.

THE ILLUSIVE UNIVERSAL
PREDICTOR OF INVASIVE
POTENTIAL-MANAGEMENT ISSUES

There are often intensive management responses to both invasive
species and cancer, although the stakes differ in notable ways.
Untreated, metastatic cancer is inevitably deadly (Wells et al.,
2013), while the impacts of invasive species generally include
economic costs ranging from minor to immense (Bradshaw
et al., 2016; Diagne et al., 2021), and disruption of ecological
communities, in some cases including native species extinction
(Bellard et al., 2016a). Another striking difference between
cancer and invasive species is general agreement that cancer
is bad whereas some or even all stakeholders may see an
invasive species neutrally or positively (e.g., burros in the
Grand Canyon, stocking non-native game species, and non-
native biological control agents). Regardless, several of the
similarities and differences in management approaches could be
addressed by a better understanding of the genomic mechanisms
in context.

It is widely argued that the best way to reduce ecological
and economic costs of invasive species is to interfere with the
transport and establishment steps of invasion (Keller et al.,
2007; Bailey et al., 2011). A primary reason is that once species
have become invasive in a new habitat, eradication is rarely
feasible, except on some islands (Parkes and Panetta, 2009; Moon
et al., 2015). Damage or costs related to damage reduction
become recurring (Liebhold et al., 2016). Cancer treatment is
similar with regards to the importance of cancer prevention
and early detection. Ecologists use species traits or ecological
niche models to identify species of concern and locations of
high risk, whereas doctors can use individual traits, such as
environmental exposures, lifestyle, age, or genetic predispositions

to guide cancer surveillance (Dobson, 2013; Katzke et al., 2015;
Bernal Rubio et al., 2018; Hu et al., 2021). But this often applies
to preventing cancer initiation in the first place. With respect to
preventing metastases, there is growing interest in therapies that
target CTCs (Ortiz-Otero et al., 2020) as well as bolstering normal
tissues and the immune system to prevent the establishment of
DTCs (Risson et al., 2020).

Surveillance of invasive species aimed at preventing
introduction of new propagules often lapses after a species
is established. While understandable, this may be unwise.
Further import of new individuals into an already invaded
habitat likely provides additional heritable variation (e.g., Kolbe
et al., 2004), potentially allowing for faster adaptation to new
habitats or increased success in the invaded range. In cancer
treatment, the focus on removing as many of the cancer cells
as possible has the effect of reducing the variation present,
potentially pushing cancer back toward earlier, less invasive
stages, which seems to be effective for about 50% of the cases
(Pienta et al., 2020a). However, this approach also selects for
those few cells that are able to resist therapy and may require
a different management strategy (Ibrahim-Hashim et al., 2017;
Gatenby and Brown, 2020; Pressley et al., 2021). This line of
reasoning suggests increased focus on preventing introductions
may still be appropriate and cost-effective for existing invaders.
Similarly identifying the molecular features associated with
progression to invasions is a major objective in cancer research
(Srivastava et al., 2018). The potential for this type of biomarker
approach was recently highlighted in a study of colorectal cancer
with metastases to the liver or brain. The early mutations in
“driver genes” were associated with seeding metastases. These
key mutations were in an independent cohort of 2,751 colorectal
cancers (Hu et al., 2019) and could be the targets of therapy,
enhancing a personalized medicine approach. Analysis of
multi-omics data and development of new statistics approaches
that can integrate these data will be an imperative to identify the
relative contributions of different molecular level mechanisms
that underlie cancer progression, invasion and response to
environmental challenges more generally (Bernal Rubio et al.,
2018; Hofmeister et al., 2020; Nam et al., 2021; Teschendorff and
Feinberg, 2021; Yoder and Tiley, 2021).

Once invasion has taken place the management regime
diverges between cancer treatment and invasive species
management. Invasive species management tends to focus on
slowing the spread (Sharov et al., 2002) or protecting specific
habitats (e.g., Short et al., 1992), or even tolerance (Schlaepfer
et al., 2011) and resignation (Regulations.gov, 2020). Cancer
treatment initially tends to take a much more aggressive
treatment approach, often combining several methods with
the goal of eradication and long term suppression of tumors
(Blagosklonny, 2004; Yap et al., 2013; Gatenby and Brown, 2020).
These treatments are often expensive and have intense side
effects, but genomic analysis of tumors may provide directly
relevant information for selecting treatments most likely to be
effective (Bozic et al., 2012).

When detected and treated early enough, most cancers are
curable. Cure generally involves surgical resection of the tumor
and/or radiation therapy. So long as the resected or irradiated
tumor contains all of the cancer cells, then knowledge of
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the genomics becomes less relevant. However, identifying the
whereabouts of all of the cancer cells involves some guesswork.
Hence, neoadjuvant drug therapies prior to surgery help ensure a
contained population of cancer cells, and adjuvant drug therapies
after surgery aim to eliminate undetectable surviving fragments
of the primary tumor or micrometastases elsewhere in the
body. Both neoadjuvant and adjuvant therapies can be improved
based on genetic and molecular markers of the cancer cells’
state and heterogeneity (Dressman et al., 2006; Duran et al.,
2020; Oshi et al., 2020). Upon detection or at the start of
a management program, complete elimination of an invasive
species often succeeds or fails based on the ability to find and
cull all individuals. For both cancer and invasive species, if the
management regime does not kill them all, the cancer and pest
species will evolve resistance (Pressley et al., 2021). In cancer,
understanding the genomics of resistance promises insight to
why initial therapies do not or cannot cure the patient.

Despite the limitations for understanding the translation of
genome level processes into traits in most species, genomics
is becoming part of the invasive species management toolbox
because these approaches can provide accurate diagnostics of
invasive species (Cristescu, 2015; Hamelin and Roe, 2020). We
are unaware of any invasive species management regimes that
have been truly shaped by genomic knowledge (see Stewart
et al., 2009), but molecular analyses can provide taxonomic
clarification, evidence of hybridization and cryptic species,
population structure and origin of invasions for management
purposes (Gaskin et al., 2011; Chown et al., 2015). Studies on
knotweed for instance, have shown that closely related taxa had
dramatically different responses to herbicide application and
that the hybrid Reynoutria x. bohemica is particularly resilient
(Bímová et al., 2001). The genomic mechanisms underlying these
differences have not yet been examined. Genomics approaches
are now being used to identify appropriate biocontrol agents
(Sun et al., 2020; van Steenderen et al., 2021; Harms et al.,
2021). For example, specific cochineal insects in the genus
Dactylopius (Hemiptera: Dactylopiidae) are effective biocontrol
agents of some invasive Opuntia cactus species. But the
different Dactylopius species are so morphologically similar that
numerous misidentifications have contributed to failed attempts
at biological control. van Steenderen et al. (2021) report that
nucleotide sequencing of three gene regions (12S rRNA, 18S
rRNA, and COI) and two inter-simple sequence repeats (ISSR)
were effective in identifying the target species Dactylopius
opuntiae and Dactylopius tomentosus and even different lineages
within D. tomentosus. A study of invasive Ambrosia artemisiifolia
found that the genotype of the leaf beetle Ophraella communa
determined potential success as a biocontrol agent, but the
specific genomic mechanisms of that association were not
investigated (Sun et al., 2020).

CONCLUSION

In the last 50 years, foundational concepts in ecological and
evolutionary genetics have been applied to both the study of
invasive species and the study of cancers. We have discussed

many similarities in the application of genomics to cancer
and invasive species (summarized in Table 2 with reference to
questions outlined recently by Dujon et al., 2021 for cancer
and Bock et al., 2015 and van Kleunen et al., 2018 for
ecological invasions). Cancer cells and invasive species alter
their environment and can cause extinctions of other cells or
organisms because they alter the composition of their habitat
or deplete resources. Ecological studies have a stronger history
of describing this process across a diversity of species and
habitat interactions, but the molecular mechanisms underlying
this could be informed by genomics, as we have seen in cancer
studies (e.g., Box 1: Figure A; Turajlic et al., 2018).

There are some important outstanding questions in invasive
species ecology that do not easily find parallels in cancer
studies. For example: van Kleunen et al. (2018) highlighted the
importance of questions like “What will be the future global
distribution of alien plants?,” “How important are mutualists
compared with antagonists in driving invasions?” and “How
frequent is rapid coevolution of aliens and natives?” which have
some parallels in cancer but do not have obvious analogs in
Dujon et al. (2021; Table 2A). These include, for instance, the
cooperative interactions that might occur between DTCs, or
how clusters of CTCs may increase likelihoods of metastases
(Fabisiewicz and Grzybowska, 2017). This aligns with invasions
in nature where success generally increases with the number
of individuals introduced simultaneously to the novel location
(Barney and Whitlow, 2008).

Bock et al. (2015) highlight important questions that can
be specifically addressed with genomics approaches in invasive
species studies like “why hybridization sometimes results
in increased colonization success and sometimes does not,”
“whether the accumulation of deleterious mutations limits
invasions and/or if compensatory mechanisms reduce the
severity of expansion load,” and “the extent of gene re-use
during the evolution of invaders” which are not particularly
relevant in cancers. However, both van Kleunen et al. (2018) and
Bock et al. (2015) emphasize the importance of the outstanding
question: “What explains the existence and length of lag phases?,”
which is also unknown in cancers (e.g., “What molecular
level processes differentiate benign versus malignant tumors?”;
Table 2B) and has great potential for therapeutic targets. Other
major common themes highlighted in the table address questions
about the molecular level mechanisms involved in initiation and
progression, the importance of plasticity at various stages, the
importance of habitat suitability and our ability to use genomics
in predictive modeling. Genomics approaches promise to inform
our understanding about these outstanding questions in both
cancer and ecological studies.

We have argued that the detailed studies of the behavior
of a variety of human cancers can inform our understanding
of genome level dynamics in the diversity of invasive species
and provide predictive frameworks for management. However,
despite the tremendous efforts of the last 15 years, the transitions
from normal to cancerous conditions or from primary tumor
to metastasis (Turajlic et al., 2018; Hu et al., 2019) are still not
well understood. Even normal cells contain many mutations that
accrue with age, and some genic regions have a higher mutation
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rate than others (Martincorena and Campbell, 2015;
Martincorena et al., 2015, 2018; Gao et al., 2019; Goldmann et al.,
2019; Zahir et al., 2020). It is particularly challenging that there
is no discrete boundary between normal ageing processes and
cancer evolution (Lee-Six et al., 2018, 2019; Moore et al., 2020).
In addition, changes in methylation more strongly predicted
survival in patients with glioblastoma multiforme than genetic
polymorphisms and methylation was strongly associated with
age (Bernal Rubio et al., 2018). Further, the microenvironment
of the pre-tumor is also aging and this could contribute to
tumorigenesis and subsequent progression (Zahir et al., 2020).

As with the pre-invasive stage of invasive species in ecology
(Vandepitte et al., 2014), premalignancy in solid tumors has
not been well studied, partly because of the challenge of early
detection (Gerstung et al., 2020; Zahir et al., 2020). Several
researchers have concluded that a comprehensive understanding
of the progression of cancer requires understanding not only at
the molecular level but also at the phenotypic and ecological level
such as physiological, structural, and environmental information
that occurs spatially and temporally (Ibrahim-Hashim et al., 2017,
2021; Zahir et al., 2020; Nam et al., 2021). While this is also
potentially the holy grail for understanding the progression of
invasive species, in the case of cancer, the stakes are higher and
very immediate to the patient. Hence, Zahir et al. (2020) have
reviewed how sophisticated techniques have been developed for
multiplexing genomic, proteomic and transcriptomic analysis
in situ, while preserving the spatial relationships between cells
within their native tissue architecture and immune context.
These include finely dissected spatial transcriptomic profiling
and single-molecule fluorescence in situ hybridization (smFISH),
where transcripts are directly labeled in tissue sections to image
and visualize their subcellular locations. Cancer studies can
also include manipulations to verify functional relationships
thanks to the Cancer Cell Line Encyclopedia (CCLE), application
of CRISPR loss-of-function methods, cell-viability data for
thousands of compounds which define a “cancer dependency
map,” and single cell sequencing technologies (Tsherniak et al.,
2017; Williams et al., 2019; Teschendorff and Feinberg, 2021).

While this outstanding level of resources may never be
available in any invasive species, the enormous amount of data
that is already accumulated and will continue to accumulate
could be combined with the nuanced, and crafty (out of
necessity) approaches of evolutionary ecologists to provide
a better understanding of the translation of genotype to
phenotype. Doing so is likely to improve risk analysis and
management interventions.
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Over 40 years ago, seminal papers by Armstrong and McGehee and by Levins showed
that temporal fluctuations in resource availability could permit coexistence of two
species on a single resource. Such coexistence results from non-linearities or non-
additivities in the way resource supply translates into fitness. These reflect trade-offs
where one species benefits more than the other during good periods and suffers more
(or does less well) than the other during less good periods, be the periods stochastic,
unstable population dynamics, or seasonal. Since, coexistence based on fluctuating
conditions has been explored under the guises of “grazers” and “diggers,” variance
partitioning, relative non-linearity, “opportunists” and “gleaners,” and as the storage
effect. Here we focus on two phenotypes, “cream skimmers” and “crumb pickers,” the
former having the advantage in richer times and the latter in less rich times. In nature,
richer and poorer times, with regular or stochastic appearances, are the norm and occur
on many time scales. Fluctuations among richer and poorer times also appear to be the
norm in cancer ecosystems. Within tumors, nutrient availability, oxygen, and pH can
fluctuate stochastically or periodically, with swings occurring over seconds to minutes
to hours. Despite interest in tumor heterogeneity and how it promotes the coexistence
of different cancer cell types, the effects of fluctuating resource availability have not been
explored for cancer. Here, in the context of pulsed resources, we (1) develop models of
foraging consumers who experience pulsed resources to examine four types of trade-
offs that can promote coexistence of phenotypes that do relatively better in richer versus
in poorer times, (2) establish that conditions in tumors are conducive for this mechanism,
(3) propose and empirically explore biomarkers indicative of the two phenotypes (HIF-
1, GLUT-1, CA IX, CA XII), and (4) and compare cream skimmer and crumb picker
biology and ecology in nature and cancer to provide cross-disciplinary insights into this
interesting, and, we argue, likely very common, mechanism of coexistence.

Keywords: coexistence, biodiversity, foraging behavior, fixed and variable costs, fluctuating environment, cream
skimmer, crumb picker, non-equilibrium coexistence
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INTRODUCTION

Biodiversity, the presence of many phenotypes and species, is
a ubiquitous feature of nature. Species coexist by preferentially
consuming different foods (diet separation), occupying different
times and places (habitat separation), or varying in their
capacities to avoid hazards and exploit opportunities (predation-
based or food-safety trade-offs) (e.g., Pulliam, 1974; Schoener,
1974; Werner and Hall, 1977; Kotler and Brown, 1988; Huntly,
1991; Morris, 2003). Community ecologists construct theories
and models to understand how biodiversity might exist, and
then test empirically what mechanisms do promote coexistence
of different species. Diversity also seems the norm in cancers,
where cancer biologists recognize much variety among the cancer
cells that inhabit tumor ecosystems within patients. Metrics
generally involve genetic and molecular variation, but much of
this can be clustered into what appear to be distinct cancer
cell phenotypes (e.g., Amaro et al., 2016; Yeo and Guan, 2017;
Wooten et al., 2019; Iravani et al., 2021). These types may
coexist within tumor microenvironments, across whole tumors,
or among tumors within a single patient (Lloyd et al., 2016). We
suggest here that the different cancer cell types may equate to
biodiversity in nature. Kotler and Brown (2020) have proposed
cancer community ecology as a parallel to community ecology
in nature to study the mechanisms that promote a diversity of
cancer cell types.

The competitive exclusion principle (Hardin, 1961) has
provided a basis for understanding how species coexist. It states
that no two species can coexist by occupying the same niche at
the same place and time. To add rigor, ecologists have noted
that for two species to coexist there must be at least two (or a
continuum of) limiting factors. These limiting factors can take
the form of resources or hazards. For instance, two consumer
species can coexist if one is more successful at exploiting resource
A, the other is the more successful with resource B, and both
A and B are sufficiently abundant to support the species. The
two species coexist by trade-offs in their abilities to harvest
and use the two resources. Alternatively, the two species can
coexist if the species that is better at exploiting resource A is also
more vulnerable to predation risk, promoting coexistence by a
food-safety trade-off.

An early challenge to the competitive exclusion principle was
the Paradox of the Plankton (Hutchinson, 1961). In many aquatic
ecosystems, the number of limiting resources (e.g., nitrogen,
phosphorus, organic carbon, carbon dioxide) seemed much less
than the number of coexisting phytoplankton species. Subtle
habitat selection, trade-offs in absorbing different sizes and states
of micro- and macro-molecules, and threats from numerous
species of predators have been proposed to reconcile the paradox
(e.g., Litchman and Klausmeier, 2008; Salcher, 2014). However,
Hutchinson suggested that fluctuation in conditions over time
might itself contribute to coexistence of biodiverse plankton.
Fluctuations are reflected in the higher statistical moments of
resource availabilities, the variance and covariance, which can
be viewed as reflecting potentially separate “resources” (Levins,
1979; Chesson and Huntly, 1989; Chesson, 1994). Such resources
could include, for instance, seeds, for a granivore, at high versus

low abundance (Brown, 1989b; Kotler et al., 1993), abiotic
essential nutrients for plankton at different seasonal temperatures
(Descamps-Julien and Gonzalez, 2005), the prey of cold versus
warm water fishes in summer versus winter (McMeans et al.,
2020), or water in a year of early abundant rainfall or of drought
(Chesson et al., 2004, 2013; Hallett et al., 2019).

Armstrong and McGehee (1976, 1980) provided early
mathematical models of how temporal resource fluctuations
could permit coexistence of more species than resources, even
when both rank good and bad times the same (see Koch,
1974). Trade-offs between the relative foraging, recruitment,
or survival success of two species over temporal fluctuations
in environmental conditions make coexistence of two species
on a single resource possible. One species does better than the
other during more favorable periods, while doing worse than
the other during less favorable periods. Various models have
explored behaviors that can underly species coexistence when
resource availability fluctuates over time. These models have
taken a number of forms. including endogenously generated
non-equilibrium consumer-resource dynamics, exogenously
generated seasonal or pulsed resource renewal, and the storage
effect (e.g., Armstrong and McGehee, 1976, 1980; Chesson
and Warner, 1981; Chesson and Huntly, 1988, 1997; Brown,
1989a; Abrams and Holt, 2002; Abrams et al., 2003; Abrams,
2004; Xiao and Fussmann, 2013). All of these models include
times of relatively richer and relatively poorer conditions. The
contrasting phenotypes have been referred to as “opportunist”
and “gleaner” (Grover, 1990), “grazers” and “diggers” (Richards
et al., 2000), or “cream skimmers” and “crumb pickers” (Brown
et al., 1994; Jones et al., 2001; Bonsall et al., 2002). We shall use
the last of these three as has previously been used in the cancer
literature (Gillies et al., 2018; Kotler and Brown, 2020). Here, we
are specifically interested in fluctuations in resource availability
as a mechanism of coexistence in nature and in the potential of
this mechanism to explain some of the variation in coexisting
phenotypes of cancer cells.

In general, coexistence on seasonal or otherwise pulsed
resources can happen in at least two ways. First, the coexistence
of two consumer species is possible if one has the higher foraging
efficiency at high resource abundances, while the other has the
higher efficiency at low resource abundances (Stewart and Levin,
1973; Abrams, 1984). Foraging efficiency in this case is the ratio
of foraging benefits to total foraging costs. Second, foraging costs
may be divisible into fixed and variable costs whereby a forager
can avoid the variable costs of foraging through resting, ceasing
activity, or dormancy. Coexistence on pulsed resources becomes
possible if there is a trade-off between fixed and variable costs
(Brown, 1989a). Under the circumstances, these tradeoffs are
necessary but not sufficient. Coexistence also requires that each
species depletes resources in a manner that is more favorable for
the other species than itself.

We center in this paper on foraging trade-offs that could
promote coexistence of cream-skimmer versus crumb-picker
consumer phenotypes when the environment has pulsed
resource supply followed by depletion through consumption.
We explore the potential for behavioral trade-offs along a
continuum of environmental favorability that make a cream
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skimmer and crumb picker relatively better than the other
during richer and poorer times, respectively. In nature, many
examples of such rich/poor environmental conditions and
cream-skimmer/crumb-picker phenotypes or species have been
identified, including hummingbirds and bees, nectar yeasts,
woodland rodents, large and small desert rodents, annual
and perennial plants, grasses and forbs, slow- and fast-
growing mosses, and various planktonic and intertidal organisms
(Schaffer et al., 1979; Brown et al., 1981; Kotler and Brown,
1990; Wolfe, 1996; Wilson et al., 1999; Descamps-Julien and
Gonzalez, 2005; Cermeno et al., 2011; McNickle et al., 2016;
Letten et al., 2018; Oke and Turetsky, 2020). The basic idea of
cream skimmer and crumb picker trade-offs can generalize to
continua of richer and poorer conditions and to larger numbers
of coexisting species, for which examples include diverse desert
annuals (Angert et al., 2009; Chesson et al., 2013), grassland
plants (Zepeda and Martorell, 2019), plankton (Huisman and
Weissing, 1999; Huisman et al., 2001), and acorn-inhabiting
weevils (Venner et al., 2011).

In cancer ecosystems, variation in environmental favorability
and resource abundances also appears to be the norm. Within
tumors, nutrient availability, oxygen, and pH can fluctuate
stochastically or periodically, with swings occurring on scales
of seconds to minutes to hours and varying among spatial
locations (Michiels et al., 2016; Gillies et al., 2018; Saxena
and Jolly, 2019). Also in cancer ecosystems, diversity or
heterogeneity of cell types within tumors is the norm and
correlates with resistance of tumors to therapies (Marusyk and
Polyak, 2010; Robertson-Tessi et al., 2015; Lloyd et al., 2016).
Despite considerable interest in tumor heterogeneity and how it
may promote coexistence of different cell types, coexistence of
cancer cell types as cream skimmers and crumb pickers has not
been explored. Here, we (1) use consumer-resource models to
examine several types of trade-offs that can promote coexistence,
(2) establish the conditions in tumors conducive for such a
mechanism, (3) propose and explore biomarkers indicative of
cream-skimmer and crumb-picker phenotypes (HIF-1; GLUT-
1; CA IX; CA XII, and others), and (4) and compare actual and
potential examples of these phenotypes in nature around us and
in cancer.

METHODS AND RESULTS: ANALYSIS OF
A CONSUMER-RESOURCE MODEL

Continuous Resource Renewal
We imagine two consumer species (cancer cell
phenotypes) harvesting (nutrient uptake in cancer)
a single resource. We start with continuous resource
renewal and the following consumer-resource dynamics:

1
xi
dxi
dt
= bi

[
aiR

1+ aihiR
− ci

]

dR
dt
= r (K − R)−

∑ xiaiR
1+ aihiR

TABLE 1 | Model parameters, variables, and critical values.

Parameter Definition Units

b Conversion factor of net profit rate into per
capita growth

Per resource

a Per capita encounter rate Per time

h Handling/processing time of one unit of
resource

Time per resource

c Per capita cost of existence Resources per time

r Resource renewal rate Per time

K Maximum amount of resource that may be
present in a system (resource carrying
capacity)

Resources

R0 The amount of resource pulsed in the system Resources

T Pulse time Time

Variable

R Resource density Resource density
or concentration

X Population density Consumer density

Values

R12 Concentration of resource above which the
cream-skimmers exclude the crumb-pickers

Resources

R21 Concentration of resource below which the
crumb-pickers exclude the cream-skimmers

Resources

Ri
* Abundance of resources required to maintain

a consumer population at steady state
(dx/dt = 0)

Resources

xi
* The steady state of a population when R = R*

i Consumers

R′ Resource level at which the net profit rate of
the cream-skimmer is equal to that of the
crumb-picker

Resources

H(R) Harvest rate Resources per time

π Net profit rate Resources per time

where xi are the population densities of consumer
species i = 1,2, and R is the density of
resources (see Table 1 for list of model variables
and parameters).

Net profit rate, the difference between resource harvest
rate and the cost of existence, ci (in units of resources per
time), determines whether the per capita population growth
rate of a consumer species is positive or negative. The
conversion factor of net profit rate into per capita growth,
bi, scales the rate of growth or decline. The consumers
harvest resources by encountering and then handling them,
where ai describes the probability of resource encounter per
unit time (encounter rate, or attack rate), and hi describes
the time taken to handle an encountered resource item. In
cancer cells, encounter rates (per time) and handling times
(time per item or molecule) with extracellular molecules
vary and are mediated by the presence, number, and speed
of carrier and channel proteins (in the case of facilitated
diffusion) or transporter molecules (in the case of active
transport) (e.g., Perfahl et al., 2013; Lisan and Langhans,
2015). Other forms of encounter and uptake that require even
more handling effort include receptor-mediated endocytosis
and pinocytosis involving the formation of vesicles and
engulfment, respectively.
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We assume that the consumers’ harvest rates, H (R), follow
Holling’s (1959) disc equation (type II functional response),
taking the form of a Michaelis Menten or Monod equation:

Hi (R) =
aiR

1+ aihiR

With continuous resource renewal, we have something akin
to a chemostat where the resource flows into the system at
some rate, r, and at some concentration, K. Resources (but not
the consumers) are lost via outflow and consumption by the
consumers. In the absence of consumers, the resource density (or
concentration) would equilibrate at R = K. With consumption,
the resource equilibrates at a lower density. For solid tumor
cancers, the tumor can be viewed as a somewhat viscous
chemostat, with blood flow providing and removing resources
(among other bloodborne normal cells and metabolites).

Each consumer species will have a subsistence level of
resource, Ri∗, above which it experiences a positive growth rate
and below which its population declines. This subsistence level is
species-specific. It is the value of R such that a species’ net profit
rate from foraging is 0:

R∗i =
ci

ai(1− cihi)

This subsistence level increases with handling time, hi, and the
cost of existence, ci, and decreases with encounter rate, ai. Note
that for the resource to have any value to the consumer cihi < 1.

With just a single consumer species, its population size
will achieve an equilibrium, xi∗ (when xj = 0), such that the
equilibrium resource availability has been driven to the consumer
species’ Ri∗:

x∗i = r
(
K
ci
−

1
ai(1− cihi)

)
As expected, the equilibrium number of a single consumer species
will increase linearly with the flow rate of resources into the
system, r, and the concentration of those resources,K. For xi∗> 0,
the incoming resource concentration must be higher than the
consumer species’ Ri∗: K > Ri∗.

Key Results
If the incoming resource concentration is too low, K < Ri∗ for
i= 1,2, then neither consumer species can exist (i.e., the necrotic
zone in a tumor). If the R2

∗ < K < R1
∗, then by default only

consumer species 2 can exist in the community. If K > Ri∗ for
i = 1,2, then the consumer with the lower R∗ will outcompete
the other. Hence, at most, just one consumer species can exist
in this community.

Significance
All of the above are well-known results from consumer-resource
theory. But, they provide the jumping off point for considering
the effect of a pulsed (batch chemostat) rather than continuously
supplied (continuous flow chemostat) resource. All of these
results emanate from three foraging parameters: encounter rate,
handling time, and cost of existence. This consumer-resource
approach is relatively unexplored in cancer (Amend et al., 2018),

and may be quite applicable to 3-D spheroid (Carvalho et al.,
2015; Ravi et al., 2015; Agrawal et al., 2021) and organoid culture
experiments (Lo et al., 2020; Schuster et al., 2020), and to mouse
experiments involving competition between different cancer cell
lines (Di Gregorio et al., 2016; Parker et al., 2020).

Pulsed Resource: Encounter Rate and
Handling Time Trade-Off
Pulsed nutrient renewal is a feature of nature (daily or seasonal
pulses), tumors (intra-tumoral cycles of blood flow, resource
availability, and hypoxia), and cell culture experiments (regular
changes to the growth medium every so many days). We evaluate
these conditions for coexistence in terms of the foraging and
cost parameters (a, h, and c). In doing so, we will refer to the
cream skimmer (species 1) as the species with a higher positively
valued profit than the crumb picker (species 2) at high values of
resource availability, and the crumb picker as vice-versa. Thus,
the crumb picker has the lower R∗. In the absence of such a trade-
off, yet again, the species with the lowest R∗ would outcompete
the other.

A trade-off between encounter rate and handling time can
fulfill the assumptions for coexistence on a pulsed resource. The
cream skimmer has the lower values for handling time and
encounter rate than the crumb picker: a1 < a2 and h1 < h2.
We will assume that they share the same values for conversion
efficiency, b, and cost of existence, c. So long as consuming the
resource is profitable for both (1 > chi), then: (1) the crumb
picker has the lower R∗, (2) the cream skimmer has a higher
net profit rate than the crumb picker at high values of R (as R
gets very large, a consumer’s harvest rate converges on 1/h, and
1/h1 > 1/h2), and (3) the crumb picker has a higher net profit rate
than the cream skimmer at low values of R (as R gets very low, a
consumer’s harvest rate converges on a, and a2 > a1) (Figure 1A).
Thus there will exist a unique R′ where both consumer species
have the same net profit rate:

R′ =
a2 − a1

a1a2(h2 − h1)

We assume that every T time units there occurs a new pulse of
resources that achieves a concentration of R0. The consumers
can deplete this resource, but renewal does not occur until the
next pulse which achieves the same level regardless of leftover
resources from the prior pulse (Figure 2B).

We assume that changes in population sizes of the consumers
occur at the end of each pulse based on the integral of their
net profit rate over the course of the interval. Thus, resource
levels, R(t), change continuously over the interval t = 0 to t = T,
but consumer population sizes do not (semi-discrete consumer-
resource model; Pachepsky et al., 2008):

dR
dt
= −

∑ xiaiR (t)
1+ aihiR (t)

, where R (0) = R0

xi (T) = xi (0) ∗ ebi
∫ [ aiR(t)

1+aihiR(t)−ci
]
dt

There are several immediate results. For coexistence, the initial
pulse size R0 must be greater than the consumer species’ R∗.
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To have the lower R∗, the crumb picker’s R∗ must lie in the
region where it has a higher profit gain than the cream skimmer:
R2
∗ < R′. The cream skimmer’s R∗ may be greater than or less

than R′; but for our simulations we shall assume that both species
R∗’s are less than R′ and in the region of R(t) where the crumb
picker has the higher net profit rate.

At equilibrium population sizes, the integral of a consumer’s
net profit rate must be zero. Hence, there must be earlier times
during the pulse where resource abundances yield positive profits
that are canceled out by later times when resource abundances
yield negative profits. Thus, at a single species x∗:R0 >R∗>R(T).
This generates an interesting result. The equilibrium population
size of a single consumer species must lie along this interval:

R0

cT
>

(
x∗ =

R0 − R(T)

cT

)
>

R0 − R∗

cT

The advantage of this relationship is that R0 is known and R∗ can
be solved analytically while R(T) cannot be solved for analytically.
Additionally, as R0 increases and becomes very large, the leftover
resources at the end of the pulse, R(T), decline and converge on
R(T)= 0 as R0 goes to infinite.

The value of R0 determines the community of consumer
species. When R0 is less than the crumb picker’s R∗, then
neither consumer species can exist. Then there is a critical
value of R0 = R12 > R2

∗ below which either the cream
skimmer is outcompeted by the crumb picker, or it cannot
persist at all. Above this level, R12 > R0, the cream skimmer
will be present in the community, as it is able to invade
a community of crumb pickers at their equilibrium. Then
there is another critical value of R0 = R12 > R21, below
which the crumb picker can invade a community of cream
skimmers at their equilibrium and above which the cream
skimmers will outcompete the crumb pickers (Figures 1B,C).
As R0 increases, the equilibrium population size of crumb

pickers steadily increases, but as soon as the cream skimmer
is present, further increases in R0 lead to an increase in the
cream skimmer population size at the expense of the crumb
pickers (Figure 1C).

We can use simulations to illustrate all of this. We fixed
the parameter values of the crumb picker and then used a
scaling factor to create a continuum of possible cream skimmer
species. To do this, we define a scaling factor µ > 1, where
a1 = a2/µ and h1 = h2/µ. The divergence between the crumb
picker and the cream skimmer increases with µ. As µ increases,
the cream skimmers R∗ increases (this will always be true for
µ > 2; and for all µ > 1, so long as ch2 < 0.5) and the
value of R′, the resource abundance where the cream skimmer
and crumb picker have the same profit rate, increases. As the
cream skimmer becomes more so relative to the crumb picker
(increasing µ), both the upper and lower bounds of R0 that
produce coexistence increase, even as the region of coexistence
expands (Figure 1B). Figure 2 shows an example of coexistence
for µ= 5 and an intermediate value of initial pulse size (R0 = 30)
(see Supplementary Figures 1, 2 for examples of population
dynamics when coexistence is precluded).

Key Results
The species with the higher encounter rate, relative to the
cost of existence, will have the lower R∗ and be the crumb
picker, and the one with the lower handling time, relative to
the cost of existence, will have the higher R∗ and be the cream
skimmer. At intermediate values for pulse sizes, coexistence of
a crumb picker with a cream skimmer species (or cancer cell
type) is expected. At pulse sizes below or above this range,
the crumb picker or the cream skimmer should outcompete
the other, respectively, thus forming single species communities.
As the trade-off in encounter rate and handling time become
more extreme, the range of pulse sizes permitting coexistence

FIGURE 1 | Encounter rate and handling time trade-off with pulsed resource. (A) The crumb-picker has the higher net profit rate than the cream-skimmer at low
values of R. R′ represents the resource level where both species have the same net profit rate. (B) Regions of competitive exclusion and coexistence change due to
initial pulse size R0 and the scale factor µ. (C) For µ = 5, equilibrium populations change as a function of R0. Intermediate values of R0 show species coexistence.
Parameters: a2 = 0.2, a1 = a2/µ, h2 = 2, h1 = h2/µ, b1 = b2 = 0.5, c1 = 0.1, T = 10, x1(0) = 10, x2(0) = 10.
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FIGURE 2 | Encounter rate and handling time trade-off with pulsed resource. (A) Species coexist when R0 = 30 and µ = 5. (B) There is a pulse of resource every
T = 10 units of time. The crumb picker has the lower subsistence level of resource, R*2. (C) Net profit rate of consumers in response to pulse of resource.
Parameters: a1 = a2/µ, a2 = 0.2, h1 = h2/µ, h2 = 2, b1 = b2 = 0.7, c1 = c2 = 0.1, x1(0) = 10, x2(0) = 10.

expands, even as the cream skimmer requires higher pulse sizes
to be present in the community. This result emerges from how
foraging efficiencies change with resource level, H(R)/c. As long
as 1/(h1c1) > 1/(h2c2), then there will always exist a resource
level below which the crumb picker is the more efficient forager
(because of a2/c2 > a1/c1) and above which the cream skimmer is
the more efficient one.

Significance
Variability in resource levels can serve as a consumable resource,
thus permitting coexistence (Levins, 1979; Armstrong and
McGehee, 1980; Chesson, 1994). Here, we place this into a
foraging framework where the cream skimmer benefits more
from the variance of abundances, while promoting a higher mean
level of resources. The crumb picker benefits more from the
mean, while promoting a higher variance in temporal resource
availabilities. Body size in mammals may represent such a trade-
off between cost-adjusted handling times and encounter rates
(Brown et al., 2017). In cancer, most cell culture experiments
include refreshing the growth medium every 3–6 days, creating
regular pulses of resources. The implications of such pulsing
have not been investigated for cancer cells’ uptake dynamics,
competition between difference cell lines, or as a system for
testing for cream skimmers and crumb pickers. The functional
response curves, H(R), of cancer cells have not been measured.
Furthermore, the way a cell line is cultured drives evolution
(Burdall et al., 2003). Based on the possibility of an encounter
rate versus handing time trade-off, it would be interesting to
see whether low resource media (usually in the form of diluted
fetal bovine serum) that is changed frequently selects for higher
uptake rates at low resource levels at the expense of uptake
rates at high levels, and vice-versa for high concentration media
changed infrequently.

Pulsed Resource: Handling Time and
Cost of Existence Trade-Off
Cream skimmers and crumb pickers also can be generated from
a trade-off between handling time, h, and the cost of existence, c.
Here, we will assume that both species have the same encounter
rate with resources, a, but that the cream skimmer has a lower
handling time and higher cost of existence. This will cause the
profit curves as a function of resource abundance to cross at some
value of R. This happens because the cream skimmer has a lower
y-intercept because of a larger cost of existence, yet the cream
skimmer has a higher maximum profit by virtue of the lower
handling time (Figure 3A).

When setting the net profit rate of the crumb picker equal
to that of the cream skimmer to solve for R′, one finds a more
complicated relationship than for the case of a versus h. The
solution is quadratic on R′ (see Supplementary Material). One
solution will always involve negative values for both R′ and the
net profit rate. The other solution is relevant and involves a
positive value for R′, though at R′ the net profit rate may be
positive or negative depending upon the magnitudes of a, h1, h2,
c1, and c2.

If the positive solution for R′ is greater than the crumb pickers
R2
∗ and the foraging efficiency of the cream skimmer is higher

at some level of resource (1/(h1c1) > 1/(h2c2)), then there will
exist an initial pulse size R21 below which the crumb picker
will outcompete the cream skimmer and above which there will
be coexistence. Furthermore, there will also be an R12 below
which coexistence occurs and above which the cream skimmer
outcompetes the crumb picker (Figures 3B,C). Coexistence will
occur when the initial pulse size falls between these two values:
R21 < R0 < R12.

To illustrate these outcomes we scaled the trade-off using a
scaling factor µ > 1 where h1 = h2/µ and c1 = c2 + 0.025 µ.
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FIGURE 3 | Handling time and cost of existence trade-off with pulsed resource. (A) The crumb-picker has the higher net profit rate than the cream-skimmer at low
values of R. R′ represents the resource level where both species have the same net profit rate. (B) Regions of competitive exclusion and coexistence change due to
initial pulse size R0 and the scale factor µ. (C) For µ = 5, equilibrium populations change as a function of R0. Intermediate values of R0 show species coexistence.
Parameters: µ = 5, h2 = 2, h1 = h2/µ, c2 = 0.1, c1 = c2+(0.025*µ), b1 = b2 = 0.5, a1 = a2 = 0.2, T = 10, R0 = 10, x1(0) = 10, x2(0) = 10.

The values for R21 and R12 at first decline and then increase
with the magnitude of the trade-off, µ. Regardless, the region
of coexistence increases with the magnitude of the trade-off
(Figure 3B). Otherwise the patterns of coexistence resemble
closely those for the a versus h trade-off.

Key Results
Like the a versus h trade-off, an h versus c trade-off provides
the necessary conditions for coexistence on a pulsed resource.
While the cream skimmer always has a higher harvest rate than
the crumb picker for all resource abundances, its higher cost of
foraging drives the intersection of the two species profit curves
with resource abundance. The actual conditions require: h1 < h2;
c1 > c2 and (1/h1 – c1) > (1/h2 – c2) where this last term is the
asymptotic maximum profit as the initial pulse size becomes very
large. As the more efficient forager, the crumb picker can always
achieve a higher equilibrium population size when alone than can
the cream skimmer species. This trade-off represents a foraging
speed versus foraging efficiency trade-off.

Significance
Speed versus efficiency trade-offs are ubiquitous in nature. They
can involve different taxa such as reptiles versus mammals, or
strategies of plants of more xeric versus more mesic conditions,
including varying water use efficiencies (Miller-Rushing et al.,
2009; Lanning et al., 2020). An intriguing possibility may be
coexisting pinon pine and juniper (Limousin et al., 2015). The
pine has more roots that extend less far and less deep (Schwinning
et al., 2020) and respond quickly to short pulses of summer rain
(West et al., 2007). Thus the pinon pine (cream skimmer) may
have a lower overall encounter rate with water, but a rapid and
efficient means for handling water and nutrient uptake. A speed

versus efficiency trade-off may be particularly relevant to cancer
cells in the context of the Warburg effect (Gillies and Gatenby,
2007; Bhattacharya et al., 2016). Cells showing this effect maintain
anaerobic glycolysis even in the presence of oxygen. Anaerobic
glycolysis permits rapid, yet inefficient, use of glucose; whereas
oxidative phosphorylation, through mitochondria, represents a
slower but more efficient use of glucose (Epstein et al., 2017).

Pulsed Resource: Encounter Rate Versus
Cost of Existence Trade-Off
A trade-off between encounter rate, a, and cost of existence, c,
provides similar opportunities for coexistence as do the a versus
h or h versus c trade-offs. But, coexistence requires that there be a
positive handling time: h > 0.

With h = 0, the species with the lowest R∗ will outcompete
the other, regardless of the initial pulse size, R0. This is because
relative foraging efficiency is now independent of resource
abundance. It is everywhere given by a/c. The curves of net profit
rate, π, versus resource abundance, R, are straight lines with
y-intercepts of –c, x-intercepts of R∗ and slopes of encounter rate
a. The species with the higher a/c, has the lower R∗ and it will
always outcompete the other (Supplementary Figure 3).

When h > 0 and equal between the two species, a trade-off
between a and c can promote coexistence. The species with the
higher a must have a higher c that is not proportionately larger
than it’s a relative to the other species. Furthermore, the species
with the higher encounter rate and higher cost of existence (all
relative to the fixed h) is in fact the crumb picker (species 2):
a1 < a2, c1 < c2. Coexistence between the two species is possible
if R1

∗ > R2
∗, and a2/a1 > c2/c1 > 0. With these conditions,

the crumb picker has the higher foraging efficiency at very low
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resource abundances (a2/c2 > a1/c1), and the cream skimmer
at high (1/(h1c1) > 1/(h2c2)). Under these conditions, the profit
curves with resource abundance are non-linear, have y-intercepts
at –c, x-intercepts at R∗, and asymptotes at (1/h – c) (Figure 4A;
see Supplementary Material).

For the coexistence of the cream skimmer with the crumb
picker, the species’ profit curves intersect twice at positive values
of R. At very low values of R the cream skimmer actually has the
higher profit. Beyond the first intersection point, R′1, the crumb
picker now has the higher profit, though at this intersection point
both species experience negative profits. At a still higher value
of R, there is the second intersection point, R′2, above which the
cream skimmer retains a higher profit rate than the crumb picker
for all values of R > R′2 (Figure 4A). As the initial pulse size
increases, there is the region where no consumer species can exist
(necrotic zone in cancer; R0 < R2

∗), a region where the crumb
picker outcompetes the cream skimmer (R0 < R21), a region of
coexistence (R21 < R0 < R12), and then a region where the cream
skimmer outcompetes the crumb picker (R0 > R12). Figure 4B
shows how the abundances of resources at which communities
switch from one to another (R21 and R12) decline with a scaling
factor that makes the difference between the cream skimmer and
crumb picker more extreme with respect to a and c. Thus, the
cream skimmer actually becomes favored at lower and lower
pulse sizes as the two species’ trade-off becomes more extreme.
Figure 4C shows how the equilibrium population sizes of crumb
pickers and cream skimmers change with R0.

Key Results
A trade-off between encounter rate and the cost of existence leads
to similar opportunities for coexistence as the a versus h, and h
versus c trade-offs with a twist. When handling times are equal,
it is the species with the higher a and c that is the crumb picker.
Relative to the cream skimmer, the crumb picker’s proportional
increase in a must be greater than its proportional increase in c.
If there is no handling time, then coexistence is not possible. The
species with the higher a/c will always outcompete the other.

Significance
Mechanisms that change encounter rates in plants include
stomatal number, root area, and leaf area. For example, the
widespread desert perennial sagebrush produces short-lived
“extra” leaves in spring, when water pulses into the desert
ecosystem. These leaves increase the encounter rates with light
and CO2, have high photosynthetic carbon fixation but low
water use efficiency, and are shed before water becomes limiting
and costly to use (Evans and Black, 1993). A similar potential
mechanism for cancer cell types could be the number of glucose
transporters (GLUT1) (Younes et al., 1997; Loponte et al., 2019;
Kondo et al., 2021). Upregulating more transporters should
increase a cancer cell’s encounter rate with glucose molecules,
while raising the metabolic costs of producing and maintaining
these transporters. This mechanism could be further enhanced
by (1) changing the functional response, for instance, a Type 3
functional response (Morozov, 2010), where γi > 0:

Hi (R) =
aiRγ

1+ aihiRγ

or, (2) making encounter rates dependent on resource abundance,
ai(R), as might occur when foragers develop a search image
(Dukas and Kamil, 2001).

Environmental heterogeneity and trade-offs in foraging
parameters form the basis for many mechanisms of coexistence.
But, not all trade-offs in foraging parameters will result in
coexistence (see Vincent et al., 1996). For our model, appropriate
trade-offs between any of the three profit parameters can
promote coexistence of a cream skimmer and crumb picker on
a pulsed resource.

Pulsed Resource: Trade-Offs Between
Fixed and Total Costs
Virtually all organisms, including microbes, incur an additional
variable cost, v, when actively foraging or taking up nutrients.
Being inactive allows the organism to forgo this cost while still
incurring some fixed cost of existence, f. Thus, we can break the
cost of existence into these two components: c = v + f. When
actively harvesting resources, the consumer expends both the
fixed and variable costs; but, if the consumer so chooses, it can
rest. When resting it harvests no resources but only expends the
fixed cost. If the consumer’s harvest rate is less than the variable
cost of foraging, it would be best to rest. Hence, be active when
H(R) > v and remain inactive when H(R) < v:

dπi

dt
=

aiR(t)
1+ aihiR(t)

− ci, when foraging

dπi

dt
= −fi, when resting

where π is the consumer’s net profit rate.
In the prior models all costs were fixed costs (v= 0) and so the

consumers never rested. With a pulsed resource and a variable
cost greater than zero, v > 0, there is now a switch density, Rs,
where the forager should become inactive when R(t) < Rs. This
switch can be found by setting the change in profit from foraging
equal to that when resting:

Ris =
vi

ai
(
1− vihi

)
Note that Rs < R∗ for f > 0, meaning that consumers will switch
to resting at a resource abundance less than their subsistence
level. It pays to operate at a loss of profit so long as the harvest
rate covers the variable cost of foraging.

Cancer cells are known to have quiescent states that can
include cell cycle arrest, reduced nutrient uptake, and reduced
metabolic expenditures (Valcourt et al., 2012; Miller et al.,
2021). While quiescence can be induced by nutrient deprivation,
it remains an open research question whether cancer cells
behaviorally shift from active feeding to a non-feeding resting
state in response to the profitability of each activity (White et al.,
2020). If they do, a pulsed resource with a trade-off between fixed
costs and total costs, f versus c, can promote the coexistence of a
cream skimmer and crumb picker.

For this model, we will assume that encounter rates and
handling times are the same for both consumer species. We
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FIGURE 4 | Encounter rate and cost of existence trade-off with pulsed resource, h1 = h2 = 2. (A) The crumb-picker has the higher net profit rate than the
cream-skimmer for R′1 < R < R′2. (B) Regions of competitive exclusion and coexistence change due to initial pulse size R0 and the scale factor µ. (C) For µ = 5,
equilibrium populations change as a function of R0. Intermediate values of R0 show species coexistence. Parameters: µ = 5, a1 = 0.2, a2 = 0.1 µ+a1, c1 = 0.1,
c2 = 0.012 µ+c1, b1 = b2 = 0.5, T = 10, R0 = 10, x1(0) = 10, x2(0) = 10.

identify the cream skimmer as the species with the higher total
cost of existence, c, the lower fixed cost, f, and the higher R∗.
For simplicity, we assume that the crumb picker has no variable
cost and hence remains active all of the time; its switch density is
R2s = 0. Under these circumstances, the profit curve of the crumb
picker as a function of resource availability has a y-intercept
of –c2, an x-intercept of R2

∗, and a profit rate at maximum
harvest rate of (1/h2 – c2). The cream skimmer’s profit curve has
a discontinuity at R1s. Below this switch value, profit as a function
of R is simply –f 1 because it is resting. Above this value, the cream
skimmer is active and has the same curve as the crumb picker’s,
but shifted downwards by c1 – c2, with an x-intercept of R1

∗ and a
maximum profit rate of (1/h1 – c1). The intersection of the crumb
picker’s and cream skimmer’s profit curves, R′, occurs at a value
less than the cream skimmer’s switch density and in the region of
negative profit gain (Figure 5A).

As shown in the simulations, the success of the crumb picker
can be insured so long as R1s > R2

∗. If the cream skimmers
become inactive at a level of resource at which the crumb pickers
still make a positive profit, then there are always profitable
resources to be had, no matter the population size of cream
skimmers or the initial pulse size (so long as R0 > R2

∗). In the
truest sense, the cream skimmers leave “crumbs” that are valuable
to the crumb picker. Thus, there is no pulse size above which the
cream skimmers can competitively exclude the crumb pickers.
There still remains a pulse size, R21, above which the cream
skimmers will be present and coexist with the crumb pickers
(Figure 5B). Above the point where the cream skimmers can
join a community of crumb pickers, the population size of cream
skimmers increases rapidly with pulse size, as that of the crumb
pickers declines to a positive asymptote determined by how many
crumb pickers can be supported from effectively having just R1s
to work with (Figure 5C). The cream skimmers succeed because

their low fixed cost allows them to travel inexpensively through
time from the point of too few resources to the next resource
pulse. If we let t1s be the time at which the cream skimmers
switch from foraging to resting during the intra-pulse period,
we see that it takes fewer resources to support a cream skimmer
than a crumb picker. In the region of coexistence, c1t1s + (T-
t1s)f 1 < c2T.

Key Points
Coexistence of a cream skimmer and crumb picker becomes
highly likely on a pulsed or seasonal resource when (1)
foragers can choose to be active or to rest or remain dormant,
and when there is a trade-off between maintenance efficiency
(H/f = efficiency of traveling through time from one good period
to the next) and (2) foraging efficiency (H/c= ability to profitably
forage resources to a low level). This applies where the forager
will switch from foraging to some form of resting when resource
abundances have become sufficiently depleted.

Significance
In nature, this ubiquitous mechanism of coexistence can apply to
annual or ephemeral plants (cream skimmers) versus perennials
(crumb pickers) (Brown, 1989a), hummingbirds and bees (Brown
et al., 1981), colonial bees versus solitary bees (Schaffer et al.,
1979), mosses (McNickle et al., 2016), phytoplankton (Litchman
and Klausmeier, 2001), and more, and can extend to more
species along resource continua (e.g., Chesson et al., 2004, 2013;
Angert et al., 2009). While the conditions for this mechanism
appear to be met in cancer, it has not been tested or verified.
As discussed, the trade-off between anaerobic and aerobic
metabolism may allow a Warburg phenotype to coexist with
cancer cells that have near-normal metabolism. While expensive,
much of the machinery for glycolysis is variable cost and can be
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FIGURE 5 | Fixed and total costs trade-off with pulsed resource. (A) The cream-skimmer’s net profit rate has a discontinuity at R1s: For R < R1s the cream-skimmer
is resting, for R > R1s the cream-skimmer is active. (B) Regions of competitive exclusion and coexistence change due to initial pulse size R0 and the scale factor µ.
(C) For µ = 10, equilibrium populations change as a function of R0. Parameters: µ = 5, f1 = 0.1–0.009*µ, f2 = 0.1, c1 = 0.1+0.01*µ, c2 = 0.1, b1 = b2 = 0.5,
a1 = a2 = 0.2, h1 = h2 = 2, v1 = c1-f1, v2 = c2-f2, T = 10, R0 = 10, x1(0) = 10, x2(0) = 10.

down-regulated, while the maintenance of mitochondria entails
a high fixed cost. Such a trade-off may manifest between two
of the most studied breast cancer cell lines, MDA-MB-231
(elevated glycolysis) and MCF-7 (normal aerobic metabolism).
Furthermore, cancer cell dormancy has been documented for
many cancer types and can provide the basis for this mechanism
of coexistence (Miller et al., 2020, 2021).

Freischel et al. (2021), in Gause-style competition experiments
using 3-D spheroid cell cultures, found that MDA-MB-231 cells
had a stronger competitive effect on MCF-7 cells than vice-versa,
even as MCF-7 had the higher intrinsic growth rates and carrying
capacities. As cream skimmers, MDA-MB-231 may have a harvest
rate advantage at high resource levels (either through a higher a
or lower h), have a lower foraging efficiency (higher c), and lower
fixed cost (lower f ) as compared to the MCF-7 cells. In these
cell cultures, the medium was changed every 4 days, providing
a new pulse of resources. Such a system holds much promise for
testing for coexistence on a pulsed resource. However, at present
we do not know each cancer cell line’s profit curves with resource
abundance, whether they cease activity when resources become
scarce, or how quickly and thoroughly they depress the resources
of the culture medium prior to the next pulse.

Cream Skimmers and Crumb Pickers in
Cancer: How and Where to Look?
Tumor heterogeneity, both in micro-environmental conditions
and in the genetic and phenotypic composition of the
cancer cells themselves, is the norm. Such heterogeneities
increase with tumor growth and disease spread. Tumor
heterogeneity is generally, though not always (Yu et al., 2017),
associated with a poor prognosis for the patient. Histologies
with immunohistochemical staining provide one method for
identifying cancer cell phenotypes and identifying the diversity
of “Darwin’s finches” comprising the community of coexisting
cancer cell types.

Our model applies to circumstances, likely in tumors, where
the pulsing and depletion of resources occurs on a faster time
scale than the population dynamics of the consumers. Small
scale fluctuations in blood flow, oxygen levels, pH and nutrient
supplies give rise to heterogeneity in the microenvironment
(Gillies et al., 2018). These temporal variabilities can be stochastic
or cyclic (Cárdenas-Navia et al., 2008; Dewhirst, 2009). Scale also
plays a role in how nutrient fluctuations occur in the tumor.
Recently, Pressley et al. (2021) found approximately 4- to 5-
min cycles of O2 levels (and presumably the levels of other
nutrients) at small spatial scales within a pancreatic cancer cell
line subcutaneously implanted into mice. These results indicate
that pulsation and fluctuations of nutrients, the first condition for
the coexistence of cream skimmers with crumb pickers, is met in
many if not all solid tumors. Furthermore, these changes happen
at time scales faster than cancer cell generation times, motivating
the use of our semi-discrete consumer-resource model.

The geno- and phenotypic heterogeneity of cancer cells also
indicate the potential presence of “cream-skimmer” and “crumb-
picker” like cancer cells. Cancer cells expressing hormone
receptors are easily characterized with histology. In breast and
prostate cancers, estrogen positive or testosterone positive cancer
cells require their respective hormones for survival and growth.
The frequent coexistence of estrogen positive or testosterone
positive cancer cells with estrogen negative or testosterone
negative ones that do not require consumption of estrogen or
testosterone, respectively, represents a fairly clear case of diet
choice (Kareva and Brown, 2021). Furthermore, the different
composition of breast cancer cells near vasculature versus
away represents spatial separation akin to mesic versus xeric
habitats and their associated plant communities (Alfarouk et al.,
2013). Finally, coexistence of cell types based on food-safety
trade-offs manifest in the different cell types associated with
“hot” and “cold” regions of tumors based on high and low
immune cell infiltration, respectively (Shembrey et al., 2019;
Gatenbee et al., 2020).
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Non-hormonal cancers also display differing bio-markers
distinguishable in histological studies using a variety of nutrient
receptors and metabolic markers. Commander et al. (2020)
found that clusters of tumor cells could be divided into leader
and follower cells. These two phenotypes displayed distinct
metabolic phenotypes. What they referred to as leader cells relied
heavily on oxidative phosphorylation with decreased glucose
uptake. Conversely, the follower cells relied on glycolysis and
required high glucose uptake. This difference could be identified
using staining for the glucose transporter, GLUT1, where cream
skimmers and crumb pickers would have high and low expression
levels, respectively.

Hypoxia markers such as HIF1-α, CAIX, and CAXII also
show intra-tumor variation between cancer cells and provide
valuable identifiers of cancer stage and prognosis (Chen et al.,
2010, 2018; Ilie et al., 2011; Rademakers et al., 2011). Collective
production of HIF1-α can promote angiogenesis and increased
blood flow to the microenvironment (Yang et al., 2013). To the
individual cancer cells it also permits survival and metabolic
activity under hypoxic conditions (Kaidi et al., 2007). CAXII is
a transmembrane protein often over-expressed in cancers and
associated with buffering intra-cellular pH and also permitting
survival and activity at low oxygen and nutrient levels (Chiche
et al., 2009). We hypothesize that high expression of HIF1-α
or CAXII may identify crumb pickers, and at the very least be
indirectly associated with our models’ foraging parameters.

Diversity of cancer cell metabolism, indicated by upregulated
glycolysis (cream skimmer?) or upregulated oxidative
phosphorylation (crumb picker?), suggests a speed versus
efficiency trade-off. The Warburg effect is likely characteristic of
cream-skimmers. These cells maintain high levels of glycolysis
(anaerobic respiration) even in the presence of oxygen. In
addition to lowering pH, such a strategy increases nutrient
uptake, and decreases handling time; but produces much less
ATP per respired glucose molecule. Such a strategy entails a
low fixed but high variable cost of foraging relative to aerobic
respiration via the mitochondria. The transmembrane protein
CAIX can provide a marker for cells with upregulated glycolysis
(Mboge et al., 2019). CAIX protects against extracellular low
pH by creating a protective buffer around the cell, and reducing
intra-cellular stress caused by the toxic metabolites from
glycolysis. It also may play a role in immune evasion and also
represent a food safety trade-off (Lloyd et al., 2016). Upregulated
CAIX may provide a biomarker of a cream skimmer strategy.

Genomic analyses (whole genome sequencing for mutations
or RNAseq for gene expression) can also identify cancer cell types.
Neftel et al. (2019) found four identifiable types of brain cancer
cells (glioblastoma). While the frequency of the four types varied
with patient and tumor; within a tumor these cell types could
be found coexisting in close proximity. One type exhibited traits
that were mesenchymal (high motility) and highly glycolytic. This
could be a cream skimmer. Any of the other three types might,
with further investigation, fit a crumb picker strategy with a
slower rate of nutrient uptake and use, but at a lower cost. Sasmita
et al. (2018) provide an extensive review of biomarkers and
classification schemes for the different subtypes of glioblastomas
between patients and of the cancer cell types coexisting within a

patient’s tumor. The recognized mesenchymal cell type, and the
proneural and neural subtypes of cells, may correspond to cream
skimmers and crumb pickers, respectively (Verhaak et al., 2010).

Data From Cancer Patients
We used histologies from 10 breast cancer patients that had been
previously stained and scored in Lloyd et al. (2016). Here, we
are interested in whether cells with low and high expression of
GLUT1, HIF1-α, CAIX or CAXII can be found coexisting in close
proximity (unfortunately, the data do not permit examination
of how an individual cell scores simultaneously on all four of
these stains). Figure 6 shows an entire biopsy slide for one of the
patients and how it can be imaged to highlight the whereabouts
of cancer cells. For each of the stains, we identified a subsample in
a region with numerous cancer cells. From this cancerous region
we created a smaller quadrat 150 µm on a side. For each stain,
we found coexisting cancer cells with high and low expression
occurring side by side at this small spatial scale (Figure 7). For
CAIX, CAXII, GLUT1, and HIF1-α, their respective quadrats
had 27 versus 20 (57%), 22 versus 38 (33%), 42 versus 73
(37%), and 11 versus 91 (89%) cancer cells showing high versus
low expression (the bolded numbers and % occurrence are
the putative cream skimmers). This pattern of coexistence was
manifest across most patients.

We reexamined Lloyd et al.’s (2016) data for frequencies of
cell types based on biomarker expression. These data generally
provide 60 500 × 500 µm sample quadrats (10 patients × edge
versus interior habitats of the tumor × 3 replicates per habitat).
CAIX and CAXII data are only available for 9 patients and
thus 54 quadrats. The percentages of cells with high expression
of the stain within a sample are shown in Table 2. High-
expressing CAIX cells, perhaps indicative of cream skimmers,
were virtually absent (<5%), rare (5–10%), and common in 18,
8, and 1, respectively, of the 27 quadrats at the interior of the
tumor (low resources), while 0, 2, and 25, respectively, at the
edge of the tumor (high resources) (Supplementary Table 1).
Low expressing CAIX cells always comprised at least 10% of
the cancer cell population. Low CAXII expressing cells, perhaps
indicative of cream skimmers, always comprised > 10% of the
cancer cell populations both in the interior and edge of the
tumors (Supplementary Table 2). High expressing CAXII cells
(crumb pickers?) always comprised > 10% of cancer cells in
the tumors’ interiors, but at the edge were <1% in 2 samples,
between 1 and 5% in 7 samples, and 5–10% in 6 samples. For
GLUT1, high expression (cream skimmers?) was prevalent at the
edge of the tumor, but not the interior (Supplementary Table 3).
At the edge, of the 30 samples, 7 had < 5%, and 5 samples
had between 5 and 10%. In the interior, of the 30 samples, 9
had < 1%, 9 between 1 and 5%, 8 between 5 and 10%, and only
4 > 10%. For HIF1α, low expression cells (cream skimmers) were
always > 10% of the cells for all samples irrespective of habitat
(Supplementary Table 4). High expression cells (crumb pickers?)
were more common in the interior than edge of the tumor. In
the interior, they comprised < 5% in 3 samples, between 5 and
10% in 5 samples, and > 10% in 22 samples. At the edge, they
comprised < 5% in 5 samples, between 5 and 10% in 10 samples,
and > 10% in 15 samples. Besides opportunities for coexistence of
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FIGURE 6 | For a single invasive breast cancer patient (A), image analysis techniques we used to segment and classify cancer (orange), normal breast tissue (dark
blue) and normal adipose tissue (light blue) regions of interest (B). Black bounding box represents the region of interest evaluated in more detail in Figure 7. All scale
bars = 5 mm.

FIGURE 7 | For an invasive breast cancer patient, CA-IX, CA-XII, Glut-1, and HIF-1α each demonstrate regions of variable biomarker expression. (A–D) display a
larger number of cells wherein (E–H) are expanded views of selected regions of interest (black bounding boxes). (E–H) demonstrate both high (black arrows) and low
(white arrows) expression levels (brown stain) in co-mingled populations of cancer cells. All scale bars = 20 µm.

cream skimmers and crumb pickers within specific regions of the
tumor, the results also speak to the importance of spatial variation
in habitats within tumors in promoting cancer cell heterogeneity
(Hoefflin et al., 2016).

For each of these biomarkers there are significant patient-
to-patient variation and significant differences between habitats
(edge and interior) as originally noted by Lloyd et al. (2016).
Furthermore, if any of these biomarkers are indicative of cream
skimmers and crumb pickers, then patients, habitats or samples

may exhibit examples of just one or the other type, and, in most
cases, the coexistence of both types.

As a caveat, note that such histology data might confound
true differences in cell types because of overlaps between stain
expression and natural variation in the cell’s expression that
might vary between patients and between tumor habitats within a
patient. Furthermore, differences in staining between cells might
represent phenotypic plasticity rather than heritable differences.
Regardless, we do see strong differences between cancer cells in
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TABLE 2 | Average percent positive expression of GLUT-1, CAIX, HIF-1α, and
CAXII in the center and edge of the tumor.

GLUT-1 CAIX HIF-1α CAXII
Patient

number Center Edge Center Edge Center Edge Center Edge

1 0.21 1.84 2.23 15.20 11.42 7.82 43.88 23.14

2 8.35 40.38 4.50 25.40 20.44 11.99 26.48 8.86

3 0.80 14.45 N/A N/A 3.11 1.38 N/A N/A

4 5.90 5.50 1.74 11.72 7.73 8.09 49.96 12.55

5 1.55 4.30 5.25 18.06 19.31 17.31 32.44 3.44

6 5.25 44.30 5.11 16.42 26.63 21.13 50.66 13.86

7 6.05 32.44 6.59 16.73 22.35 4.61 45.09 4.76

8 0.52 21.87 2.37 11.34 9.22 7.13 41.34 5.50

9 23.81 6.11 9.56 23.29 27.67 21.94 47.25 25.60

10 4.24 23.94 3.20 28.93 38.70 36.46 22.61 0.84

Averages were calculated from six regions of interest (ROI), three from the edge
and three from the center of the tumor sample.

these stains, with many having near to complete absence and
others showing very strong expression. And, the mechanism of
coexistence can serve to explain coexisting phenotypes whether
the basis is plasticity or inheritance.

DISCUSSION

Temporal variation in resource abundance, or in environmental
conditions that affect availability of resources to a consumer, can
provide a mechanism of coexistence. These may accompany the
more familiar ones of coexisting species partitioning different
resources or habitats. Here, we developed and operationalized
a model of coexistence on a temporally pulsed resource. We
explicitly considered trade-offs in key foraging parameters that
can be measured or observed, namely a consumer’s encounter
rate with resources, a (a measure of foraging speed at low resource
abundance), handling time, h (a measure of foraging speed at
high resource abundances, where lower is better), and cost of
existence, c (a term that determines foraging efficiency at low,
a/c, versus high, 1/(hc), resource abundances). Additionally, we
considered the trade-off that can occur when the cost of existence
includes a fixed, f (unavoidable cost of being alive), and a variable,
v (avoidable if the organism chooses to be inactive), component.

We imagined a pulsed resource, a reasonable proxy to aspects
of nature and cancer. Every so many time units, the abundance
of resource for the consumers renews to a fixed starting level.
Following the pulse, resource abundance declines as consumers
consume the resource, and this decline continues until the next
pulse. For broad ranges of pulse sizes and trade-offs between
two consumer species in foraging parameters (a, h, and c),
coexistence is possible between a crumb picker (with the higher
a/c) and a cream skimmer (with the higher 1/(hc)). For the fixed
and variable cost model, coexistence occurs when the crumb
picker has the higher combined foraging efficiency (H/c, where
H is harvest rate as a function of resource abundance) and the
cream skimmer has the higher maintenance efficiency (H/f ).
Both consumer species benefit, when alone, from larger pulse

sizes. But, cream skimmers see an increase in their competitive
advantage over crumb pickers as the pulse size increases.
Throughout, we mention examples from nature around us
and suggest putative cancer examples. While well-documented
examples exist in the literature on natural ecosystems, the cream-
skimmer/crumb-picker trade-off, in its several manifestations,
remains untested as a possible explanation for coexisting cancer
cell types within a tumor.

Several realistic additional aspects could hamper or facilitate
coexistence of a cream skimmer with a crumb picker and
might be incorporated into the models we have analyzed here.
These include stochastic variation in the timing and sizes of
pulses, intra-pulse births and deaths within the consumer species’
populations, and some small trickle of resource renewal during
the interval following a pulse. A likely important additional factor
is the value of a resource item to a consumer, e. In effect, we held
this constant at unity for both consumers, but there can be trade-
offs associated with value. A more complete model would allow
for a net profit rate of eH – c. Examples of value-dependent net
profit can emerge from digestive physiology that create a trade-off
between e and h (handling time). For instance, zebra and Canada
geese, relative to wildebeest and cottontail rabbits, respectively,
are cream skimmers. They do not efficiently digest cellulose.
Rather, they consume large amounts of herbage (low h), while
their digestive system absorbs only a small fraction of the caloric
value (low c). Wildebeest (ruminants) and cottontails (hindgut
fermenters) eat less and take much longer to digest the material
(high h), but have a higher digestion efficiency (higher e). Like
the other trade-offs in the consumer-resource model, an e versus
h trade-off can promote coexistence if the crumb picker has the
higher ea/c and the cream skimmer has the higher e/hc. This
may be relevant to cancer in that cancer cells with high glycolysis
(cream skimmers) versus high oxidative phosphorylation (crumb
pickers) may be best represented as having a low e (2 ATPs versus
36 ATPs per glucose molecule) and a low h, in addition to other
trade-offs associated with a, c, or f.

Cancer may provide a good model for testing the mechanisms
we have described. Cancer biologists generally do not measure
the key foraging parameters of the consumer-resource model (see
Amend et al., 2018; Mallin et al., 2020), but some tools for such
measurement are available and can be quite sophisticated. The
Seahorse XF Analyzer (de Moura and Van Houten, 2014) can
analyze the extracellular flux of a small population or aliquot
of cells (normal or cancerous) for oxygen, lactate production,
glucose uptake, etc. While used extensively in cancer research,
this technique has not yet been used specifically to measure things
like a cancer cell’s functional response (H versus R) in terms
of a and h. Furthermore, 2-D and 3-D culture experiments are
generally run as batch chemostats where the culture medium is
removed and replaced every so many days. Careful calibration
with respect to cell type, cell numbers, cell proliferation rates,
initial resource concentration, ending resource concentration,
and pulse frequency could be used to not only estimate model
parameters, but also to test for coexistence when competing
multiple cell lines (Freischel et al., 2021).

Our modeling results have implications for conducting
appropriate cell culture experiments. In general, culture medium,
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rich in fetal bovine serum and sometimes augmented with
additional resources, is changed every few days. The change is
often made with reference to a pH marker to ensure little change
in pH via cell metabolites. Furthermore, in 2-D and some 3-
D cultures, cells are passaged prior to reaching some level of
confluency, meaning they may not reach a true equilibrium
with their resource availabilities. As such, we may inadvertently
be selecting for cream skimmers or species that speedily but
inefficiently turn resources into proliferation. The timing of
nutrient pulses and the passaging of cells in culture experiments
may be far from what meaningfully occurs in patient tumors
or mouse models. Imposing a given pulsing of nutrient renewal
may change the whole ecology of the tumor, which may possibly
undermine the validity of the interpretation of the results. Our
modeling and that of others on consumer resource dynamics
invites researchers to be mindful of the ecological conditions of
their cell cultures and whether the ecology is realistic or useful
for the objectives of the study.

Therefore, it is reasonable to postulate that cell culture
experimentation may be used to further elucidate tangible
differences in cell survival strategies. Under the lens of live cell,
time lapse microscopy, one may observe how resource dynamics
affect cell survival strategies and discern if cells are establishing
heritable variation versus phenotypic plasticity. Non-invasive live
cell microscopy is now possible within incubation conditions
which can facilitate multiple generations of cellular growth to
confluency, splitting and repeating. Future experiments may
be designed to select for cells in resource rich and resource
poor environments and observe cellular population growth upon
changes in resource allocation after multiple passages.

For cancer, one often is interested in implications of
ecological models for cancer therapies. We cannot provide
specific recommendations in terms of cancer therapy based on
the mechanisms we have described for coexistence of cream
skimmer and crumb picker phenotypes. But, more broadly, it
is known that tumors that are heterogeneous, including diverse
cancer cell types, tend to be associated with worse prognoses.
This is generally thought to result from higher levels of heritable
variation among the cancer cells and hence a higher likelihood
that one or several variants will be resistant to therapy. This
may be so. Additionally, therapy failure may result from the
consequences of using one or several therapeutic regimens to
treat a community of cancer cells, not just a single cancer. If
cancer cells are diversifying and filling niches, as in an ecological
community, then therapy may be more effective at killing one
type of cancer cell and not another. Kotler and Brown (2020)
provide thoughts on how therapy strategizing should take into
consideration within-patient mechanisms of coexistence among
cancer cell types.

With respect to cream skimmers and crumb pickers,
a variety of therapies may directly or indirectly influence
competitive balance and treatment efficacy. For instance,
many chemotherapies target rapidly dividing cells, which may
favor crumb-picker strategies among the survivors. Radiation
therapy, use of a variety of therapies, and diets that modify
the tumor microenvironment (anti-angiogenics, bicarbonate
therapies, fasting, ketogenic diets, etc.) may alter the amount and

temporal pulsing of nutrients (Gatenby and Brown, 2020). This
might harm all cancer cells or might simply tip the competitive
scales away from or toward a cream skimmer. Finally, knowing
that some of the tumor microenvironment is composed of
coexisting cream skimmers and crumb pickers may suggest
double-bind therapies (Gatenby et al., 2009; Basanta et al., 2012),
where one begins with a therapy that favors one of these types
and would lead to competitive exclusion of the other. Upon
shifting the cancer community with the first therapy, one then
would apply a second therapy to target the remaining and now
dominant cancer cell type (Maley et al., 2004).

In this study, we examined temporal variation in resource
abundances. Spatial variation can provide an extension of the
mechanisms we discussed (Chesson, 2000a). Spatial variation can
provide both additional trade-off terms (higher travel speed or
lower costs can now define a cream skimmer) and an additional
way that the foraging activities of consumers can create temporal
variability, particularly if a consumer locally depletes resources
faster than they can renew (Richards et al., 2000; Abrams and
Wilson, 2004; Bolin et al., 2018). Examples include freshwater
snails (Chase et al., 2001), sunbirds (Oyugi et al., 2012), and bees
(Aizen et al., 2011). Furthermore, the trade-off between cream
skimmers and crumb pickers can include the ability to accurately
assess local resource abundances, but at a cost of supporting a
higher cognitive ability (Olsson and Brown, 2010). Despite these
examples from the ecosystems around us, we anticipate that this
spatial form of cream skimmer/crumb picker trade-offs is less
likely in cancer, given the limited motility of cancer cells relative
to the scale of spatial variation in resources. Even though cancer
cells have motile phenotypes (with amoeboid, pseudopodial, and
lobopodial movement; Paul et al., 2017; Jun et al., 2020), they
do not move very fast and are quite slow compared to free-
living unicells such as yeast. Travel speeds in a 3-D collagen
matrix were 4.5 µm/h and 2.1 µm/h for a “fast” mesenchymal
and “slow” epithelial cancer cell type, respectively. Populations
of such cancer cells can have mean diameters of 19–25 µm
(Connolly et al., 2020), meaning that it could take at best 4 h
to move one body length, and likely much longer. However,
we could be wrong about how spatial variation is realized by
cancer cells. In reality, biodiversity is affected simultaneously
by more than a single mechanism of coexistence, and these
operate simultaneously over many temporal and spatial scales;
the relative strengths of mechanisms also no doubt vary over
time, and which mechanisms are visible will depend on the
scales at which we sample and analyze information (Chesson and
Huntly, 1993, 1997; Chesson, 2000b, 2009; Chesson et al., 2013;
Letten et al., 2018). The cancer ecosystem provides an interesting
potential model in which to examine the many temporal and
spatial scales and mechanisms that could simultaneously affect
coexistence of cream skimmers and crumb pickers.

In conclusion, we think that a mechanism of coexistence
of cream skimmers with crumb pickers has broad applicability
to all of nature, including cancer. Identifying and studying
this mechanism in cancer would provide (1) direct applications
and tests of ecological principles in a simpler yet complete
ecosystem, (2) applications of consumer-resource models to
the diversification of cancer cells within and between patients,
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(3) explicit uptake and cost parameters that have not been, but
can be, measured for cancer cells, and (4) insights to possible
therapeutic implications.
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Biological allometries, such as the scaling of metabolism to mass, are hypothesized

to result from natural selection to maximize how vascular networks fill space yet

minimize internal transport distances and resistance to blood flow. Metabolic scaling

theory argues two guiding principles—conservation of fluid flow and space-filling fractal

distributions—describe a diversity of biological networks and predict how the geometry

of these networks influences organismal metabolism. Yet, mostly absent from past efforts

are studies that directly, and independently, measure metabolic rate from respiration and

vascular architecture for the same organ, organism, or tissue. Lack of these measures

may lead to inconsistent results and conclusions about metabolism, growth, and

allometric scaling. We present simultaneous and consistent measurements of metabolic

scaling exponents from clinical images of lung cancer, serving as a first-of-its-kind test

of metabolic scaling theory, and identifying potential quantitative imaging biomarkers

indicative of tumor growth. We analyze data for 535 clinical PET-CT scans of patients

with non-small cell lung carcinoma to establish the presence of metabolic scaling

between tumor metabolism and tumor volume. Furthermore, we use computer vision

and mathematical modeling to examine predictions of metabolic scaling based on the

branching geometry of the tumor-supplying blood vessel networks in a subset of 56

patients diagnosed with stage II-IV lung cancer. Examination of the scaling of maximum

standard uptake value with metabolic tumor volume, and metabolic tumor volume with

gross tumor volume, yield metabolic scaling exponents of 0.64 (0.20) and 0.70 (0.17),

respectively. We compare these to the value of 0.85 (0.06) derived from the geometric

scaling of the tumor-supplying vasculature. These results: (1) inform energetic models of

growth and development for tumor forecasting; (2) identify imaging biomarkers in vascular

geometry related to blood volume and flow; and (3) highlight unique opportunities to

develop and test the metabolic scaling theory of ecology in tumors transitioning from

avascular to vascular geometries.

Keywords: metabolic scaling, Kleiber’s law, PET-CT image analysis, quantitative imaging biomarkers, lung cancer
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1. INTRODUCTION

Since Max Kleiber’s finding of the remarkable biological pattern
that organismal basal metabolic rate, B, scales with body mass,
M, as B ∝ M3/4, scientists have worked to both understand
and extend the phenomenon of metabolic scaling (Kleiber, 1932).
Applications of metabolic scaling have permeated the biological
sciences, spanning evolutionary and cellular biology (DeLong
et al., 2010), predator-prey interactions at both the individual
level (Pawar et al., 2012; Hatton et al., 2015) and at the trophic
level (Brose et al., 2006), fish reproduction energetics (Barneche
et al., 2018), forest structure, demography, and dynamics
(Enquist et al., 2009; West et al., 2009), and species distribution
modeling (Harte and Newman, 2014). Explanations for the
origins of metabolic scaling in individual vascular organisms
are numerous, and all center around functional optimization
of a hierarchically branching vascular network that distributes
and delivers resources throughout the body (West et al., 1997;
Turcotte et al., 1998; Bejan, 2001; Banavar et al., 2010). The
phenomenon of metabolic scaling has been studied through
measurements of metabolism at either the whole organism level
(Schmidt-Nielsen, 1984; Mori et al., 2010), or with predictions of
metabolism rooted in vascular theory (Bentley et al., 2013; Lau
et al., 2019; Brummer et al., 2021).

Surprisingly, we could not find a single study that examines
metabolism from both of these perspectives for the same tissue,
organ, or organism (Price et al., 2012). Furthermore, proposed
theories that purport to explain the origins of metabolic scaling
in vascular organisms fail to explain why the pattern persists
in avascular organisms. To address these issues, we present
simultaneous measurements of metabolic scaling in tumors
derived from uptake of metabolic radio-tracers and of the
vasculature that comprises and surrounds the tumors. Recent
efforts to improve and expedite cancer diagnosis, treatment
planning, and tracking responses have producedmedical imaging
and computer vision technologies that offer a unique lens with
which to study metabolic scaling, particularly within tissues that
have undergone the avascular-to-vascular transition. We show
that insight from metabolic scaling theory can be leveraged
to derive vascular-based biomarkers of cancer, potentially
introducing an ensemble of biomarkers indicative of tumor
growth and the distribution and flow of blood.

Radiological images of non-small cell lung cancer (NSCLC)
are predominately analyzed from medical imaging as solid
volumes of tissue absent of surrounding vessels (Gevaert et al.,
2012; Aerts et al., 2014; Zhou et al., 2018; Ardila et al., 2019).
Yet, when viewed at an enhanced scale, these volumes are seen
to be entirely embedded in, and sometimes partially composed
of, networks of vascular tissue that are distinguishable from
surrounding healthy tissues (Figure 1) (Jain, 2005; Rao et al.,
2016; Wang et al., 2017; Alilou et al., 2018). The radiomics
paradigm of personalized medicine uses artificial intelligence
and machine learning algorithms to detect and classify NSCLCs,
and to track individual response to intervention and treatment.
This approach requires large and accurate datasets of all possible
biological features, or biomarkers, associated with disease
(Lambin et al., 2017). The current practice within radiomics

restricts the space of possible features to statistical measures
regarding tumor volume, shape, and intensity variation—the
latter being directly indicative of metabolism. This approach
necessitates the existence of solid masses in order to facilitate
detection, thus setting a fundamental limit on early detection
(Pashayan and Pharoah, 2020). As a way to support existing
metrics and to provide a more comprehensive view of the
tumor environment, we propose a way forward that leverages the
connectivity of the vessels that compose and surround an NSCLC
and that incorporates results and insights from theory on tumor
metabolism and growth. (West et al., 2001; Guiot et al., 2003,
2006; Herman et al., 2011; Milotti et al., 2013; Ribeiro et al., 2017;
Pérez-García et al., 2020).

Established theory predicts average empirical branching
properties at the whole-network level by minimizing energy to
pump and distribute blood and ensuring that vessels efficiently
reach and feed all cells. However, there exists wide variation
around predictions for these average properties. Variation in
measures of vessel branching, connectivity, and scaling have
been shown to serve as biomarkers of disease (Yao et al.,
2011; Huang et al., 2018; Pandey et al., 2018; Apte et al.,
2019). Furthermore, there exist competing theories relating organ
and organismal growth and metabolism to vascular branching
patterns—relationships that result from the optimization of
fluid transport and resource distribution (West et al., 1997;
Zamir, 2006; Savage et al., 2008; Huo and Kassab, 2009a,b;
Banavar et al., 2010; Dodds, 2010). Extensions of these
theories predict the growth trajectories of tumors, incorporating
the angiogenic transition from avascular, diffusion-dominated
growth to vascularized growth that often precedes metastasis
(West et al., 2001; Guiot et al., 2003, 2006; Herman et al., 2011;
Milotti et al., 2013; Ribeiro et al., 2017; Pérez-García et al.,
2020). Yet, no rigorous application of these theories has been
conducted to examine energetic measures of metabolic scaling
in tumors to the underlying vasculature supplying tumor growth
and maintenance. We analyze clinical human NSCLC X-ray
images to identify the vascular branching features most prevalent
with NSCLC presence. We then map these vascular patterns to
variation in the metabolic scaling of tumors as measured from
metabolic imaging techniques of nuclear medicine.

2. MATERIALS AND METHODS

2.1. PET-CT Imaging
As tumors undergo rapid cellular proliferation they subsequently
have higher metabolic demands. The deregulated uptake of
glucose to sustain growth and maintenance in tumors can
be observed with the nuclear imaging technique of positron
emission tomography (PET). The radioactive tracer [18F]fluro-
2-deoxyglucose (18F-FDG) is utilized to measure glucose uptake
in tumors in clinical settings. The standard uptake values (SUV)
of glucose uptake are measured as SUV = r/(a′/w), where r is
the concentration of radioactivity (measured in kiloBecquerels
per milliliter, kBq/mL) detected, a′ is the radioactivity of the full
volume of injected radio-tracer (kBq) adjusted for radioactive
decay since injection, and w is the weight of the patient (g).

Frontiers in Ecology and Evolution | www.frontiersin.org 2 October 2021 | Volume 9 | Article 691830227

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Brummer and Savage Metabolic Scaling in Lung Cancer

FIGURE 1 | Co-registered PET-CT images (A) and sample skeletonization of pulmonary vasculature with tumor (B). (C) Regression on maximum standard uptake

value (SUVmax ) and metabolic tumor volume (MTV ) for all data compiled (black solid line), divided into the histological categories of adenocarcinoma (ADC) and

squamous cell carcinoma (SCC). Regressions demonstrate a significant scaling relationship between SUVmax and MTV with scaling exponents approximately equal to

0.71 (Table 1). **Indicates p < 0.005. Bold symbols represent data with accompanying clinical imaging used in vascular analyses, whereas transparent symbols

represent data collected without original clinical imaging. Data was truncated at MTV ≈ 4cm3 to avoid errors from the partial volume effect.
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Importantly, implicit assumptions are made that tissue imaged
has a density of 1 g/mL, and that, aside from the more highly
metabolic tissues of the brain, liver, and tumors, the radio-tracer
injected is uniformly distributed throughout the body. Thus,
an SUV of 1 can be loosely interpreted as normal (Kinahan
and Fletcher, 2010). Due to the potential for variation between
individuals, imaging machines and imaging protocols, SUV
measures are presently used as a qualitative biomarker for disease
to examine relative metabolic demand.

Advances in medical imaging technology allow for the
simultaneous use of PET and X-ray computerized tomographic
(PET-CT) imaging to extract overlapping images of tissue
metabolism and soft-to-hard tissue presence. When coupled
with computer vision software, collections of two-dimensional
image “slices” can be reconstructed into three-dimensional
volumes from which spatial patterns can be extracted for
disease diagnostics. These technologies are not without
crucial limitations. The two-dimensional image slices have
a finite resolution and thickness, and consequently errors
can occur when examining structures near these resolution-
thickness limits. These errors are broadly categorized as
partial-volume effects (PVE), and require careful consideration
(Soret et al., 2007).

In order to introduce typical imaging metrics, it is important
to first consider any volume or region of interest (ROI) as being
subdivided into a collection of N cubes, or voxels, of uniform
volume. These voxel volumes are determined by the image slice
thickness and resolution. Importantly, CT imaging maps the
spatial distribution of biologic structures, while PET imaging
maps the metabolic uptake of those structures. Any given ROI
will have a total volume V as determined from CT imaging as
the sum of each voxel volume vi within that large volume. Each
voxel volume has its own corresponding SUV measure, SUVi,
determined from PET imaging. Conventional tumor evaluation
involves measuring the following: total, or gross tumor volume
(GTV) as the sum of all voxel volumes vi that comprise the tumor
as observed strictly from CT imaging. Metabolic tumor volume
(MTV) is the sum of all voxel volumes vi that comprise the tumor
with a corresponding SUVi exceeding a conventional threshold
of 2.5. Total lesion activity (TLA) is the summed product of
voxel volume and SUVi, or TLA =

∑

i SUVivi. Tumor size is a
common clinical metric determined from semi-major and semi-
minor tumor diameters. Finally, various summary statistics for
SUV may be computed over a whole ROI, such as maximum,
SUVmax, median, SUVmed, mean, SUVmean, or over a temporal
range, such as peak SUVpeak (Bailey et al., 2005; Valk et al., 2006).
In radiomics studies, this small collection of metrics quickly
runs into the hundreds, as many metrics are analyzed as spatial
distributions with many accompanying statistical features.

2.2. Establishment of Metabolic Scaling
In this work we compiled data from four separate studies of PET-
CT imaging of NSCLC patients (Furumoto et al., 2018; Mattonen
et al., 2019; Chardin et al., 2020; Pérez-García et al., 2020). These
studies consisted of pre-treatment PET-CT scans for 535 patients,
of which 401 were adenocarcinoma and 134 were squamous cell
carcinoma. Imaging acquisition and patient information for each

study can be found in the original publications. The metrics we
chose to focus onwere SUVmax as ameasure ofmetabolism,MTV
as a measure of glucose consuming tumor volume, and GTV as a
measure of total tumor volume that includes glucose consuming
tissue in addition to all other tumor tissues (e.g., metabolically
active but glucose inactive tissues, and necrotic tissues). SUVmax

was chosen over other SUV features as it is less susceptible to
variation in delineation of the tumor ROI.

Measures of maximum standard uptake value (SUVmax)
and metabolic tumor volume (MTV) were graphed on a log-
log scale to identify the existence of a scaling relationship
between these variables (Figure 1). In addition to regressing
on the whole dataset, these data were also categorized by
the histological classifications of adenocarcinoma (ADC) and
squamous cell carcinoma (SCC) to allow for possible variations
in metabolic scaling due to tumor heterogeneity. Standard major
axis regressions were performed as interest is primarily on the
regression slope, and the axes of variation have fundamentally
different units. Of the data collected, a subset have the original
PET-CT imaging available on The Cancer Imaging Archive
(Clark et al., 2013; Prior et al., 2013). For this subset of data,
log-log graphs were analyzed to investigate scaling between
SUVmax and MTV as well as MTV and gross tumor volume
(GTV) (Figure 2). Regression statistics are located in Table 1. To
account for the partial volume effect associated with small voxel
thresholding in PET imaging, we analyzed the data by imposing
a hard threshold on tumors less than 4cm3 in volume. Tumors
smaller than this volume are known to exhibit greater than 10%
error on measurements of SUVmax from PET imaging due to the
partial volume effect (Soret et al., 2007; Kinahan et al., 2009).
After filtering for the partial volume effect, left for analysis were
207 ADC and 109 SCC data points.

2.3. Segmentation of CT Images for
Vascular Measurement
This data is part of the Radiogenomics dataset from Gevaert
et al. (2012) and Zhou et al. (2018) and consists of CT scans
of 211 NSCLC patients with manual annotations delineating
tumor boundaries and PET-CT imaging available for 150 of these
patients. We selected patients with clinical staging of II or greater
to ensure tumors were sufficiently large enough for identifiable
vasculature. Within this group we examined vasculature where
pulmonary vessels could be easily identified as supplying tumors
with blood, resulting in 56 patients.

Image processing prior to segmentation is crucial for
expediency and accuracy. To extract only lung interior regions of
interest, we implemented the watershed technique (Shojaii et al.,
2005; D’Sa et al., 2019) with a black top-hat transform for re-
inclusion of juxtapleural nodes and near-hilar vessels (Singadkar
et al., 2018). This routine is followed by contrast limited adaptive
histogram equalization (CLAHE) (Jin et al., 2001) and iterated
global thresholding (Samet and Yildirim, 2016) to enhance the
signal to noise ratio (Figure 3).

Segmentation of vasculature is accomplished using the open-
source software Angicart, developed by the Savage Lab at UCLA
(Newberry et al., 2015; Brummer et al., 2021). Angicart software
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FIGURE 2 | Regressions for maximum standard uptake value (SUVmax) vs. metabolic tumor volume (MTV) (A) and MTV vs. gross tumor volume (GTV ) (B). Data is

divided by the histological classifications of adenocarcinoma (ADC) and squamous cell carcinoma (SCC). Black solid lines represent regressions on whole datasets.

Summaries of regressions are presented in Table 1. *Indicates p < 0.05, and ** indicates p < 0.005. Standard major axis regression shows that both methods result

in significant and consistent measurements of metabolic scaling exponents.

TABLE 1 | Estimates of metabolic scaling exponents.

Metabolic scaling exponent measurements (θ )

Histology SUV/MTVmeta SUV/MTVsubset MTV/GTVsubset Vascular est.

Adenocarcinoma 0.73 ± 0.09** 0.63 ± 0.23* 0.73 ± 0.21** 0.85 ± 0.03

Squamous cell carcinoma 0.59 ± 0.10** 0.69 ± 0.54 0.62 ± 0.37* 0.87 ± 0.02

Combined 0.71 ± 0.07** 0.64 ± 0.20* 0.70 ± 0.17** 0.85 ± 0.06

Significance of regression based exponents are indicated with asterisks, where * indicates p < 0.05, and ** indicates p < 0.005. Sample sizes are: meta-analysis dataset

NADC = 207,NSCC = 109; subset analysis NADC = 27,NSCC = 10; vascular-based estimates NADC = 54,NSCC = 20. Note that the vascular estimates do not have p-values as

they were calculated directly from vascular data as opposed to regression data. Also, all regressions performed were standard major axis regressions to accommodate differences in

axes’ units as well as the emphasis being on the value of the regression slope (Newberry et al., 2015).

reconstructs digital representations of vascular networks from
medical images of any modality. The segmentation routine uses
a spherical-growth algorithm to map the vascular network. It
is a fully automated software (as defined in Myatt et al., 2012)
that only requires vessels of interest to be brighter on a grayscale
than surrounding tissues. Angicart output consists of vessel
radii, lengths, branching angles, connectivity, and centerline
coordinates. Angicart results have been published for: µCT
mouse lung data, human thoracic CT scans, and pulmonary
vasculature (Newberry et al., 2015; Tekin et al., 2016; Brummer
et al., 2021).

2.3.1. Errors From the Segmentation and

Skeletonization Procedures
Three types of errors in the data acquisition process consisted
of: (1) individual vessels disconnected from vascular trees,

(2) nonvascular tissue misidentified as vascular trees (3)
misidentification of vascular tree roots.

The segmentation procedure can produce disconnected
individual artifacts that Angicart automatically identifies as
singular vessels. As the framework of metabolic scaling theory
relies on vascular networks, such artifacts are simply filtered from
the resulting skeletonization. Similarly, certain non-vascular
tissues that pass the segmentation procedure may result in
erroneous vascular trees. Common examples of such errors are
non-vascular tissues in the hilar and sternal regions of the lungs.
These errors are easily identified and removed manually.

Finally, misidentification of vascular tree roots occurs due
to programming in Angicart intended to identify roots based
on vessel radius, an assumption based on models of healthy
vascular networks. This assumption does not hold in this
study however as pulmonary vascular networks embedded with
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tumors are known to have vessels with unusually large diameters
within the boundary of the tumor (Wang et al., 2017). Thus,
to identify vascular tree roots, we calculated the geometric
centroid of all vessel coordinates for each half of the lungs in
an effort to approximate the location of the hilar vessel roots.
Vascular tree roots were then identified as those nearest to the
centroid position.

2.4. Modeling Vascular Data
Metabolic scaling theory is a first principles model linking
biologic scaling phenomena to hierarchically branching resource
distribution networks. It was initially proposed as a model for
Kleiber’s law—the scaling of organismal metabolism, B, with
body mass, m, expressed as B = B0m

θ (Kleiber, 1932; West
et al., 1997). It has since been applied to a myriad of systems
spanning plant metabolism, forest demography, city scaling, and
organismal growth and development (Enquist et al., 1998; West
et al., 1999, 2001; Bettencourt et al., 2007). Importantly, both
theoretical and empirical studies have demonstrated allometric
relationships based on vascular branching within many different
organs and tissue types, spanning heart, lungs, cerebral arterial
trees, muscle tissue, and the torso (Majumdar et al., 2005;
Huo and Kassab, 2009a; Wright et al., 2013). Despite apparent
differences in absolute metrics such as blood pressure, flow
resistance, and vessel number-density, a crucial component of
vascular branching from the perspective of biological allometries
is that they provide scale-free metrics of different organs and
tissues. Thus, the combination of scale-dependent and organ-
specific metrics (e.g., diameter, length, and pressure at the initial
and terminal generations) and scale-free metrics (e.g., ratios of
vessel diameters and lengths) can provide functional information
related to biologic rates, namely metabolism. Here we summarize
the pertinent variables used to describe vascular branching in
metabolic scaling theory, the mechanistic constraints that predict
values for these variables, and how metabolic scaling theory can
be applied to investigate PET-CT imaging data for NSCLC. For
further background, see (West et al., 2001; Savage et al., 2008;
Herman et al., 2011; Brummer et al., 2017, 2021).

2.4.1. Branching Variables
Metabolic scaling theory idealizes vascular trees as having
cylindrically shaped, pipe-like branching architectures
(Figure 4A). Here, the fundamental units are individual
bifurcations consisting of a parent vessel that divides into two
child vessels. Any vessel can be parameterized by its radius, r,
length, l, and branching generation, j, the latter of which takes the
value j = 0 at the root and j = N for an N generational network.
We next define the following asymmetric scale factors: the
average and difference radial scale factors β̄ = (rj,µ + rj,ν)/(2rj−1)
and1β = (lj,µ− lj,ν)/(2lj−1), and the average and difference length
scale factors γ̄ = (lj,µ + lj,ν)/(2lj−1) and 1γ = |lj,µ − lj,ν |/(2lj−1).

These four scale factors can be constrained through two
optimizations that: (1) maximize the number of capillaries
per unit volume of tissue and (2) minimize the resistance to
fluid flow. Here we outline the conceptual arguments for these
constraints at the single bifurcation level. Maximizing capillaries
per unit volume is done by modeling the system as a space-filling

fractal (Mandelbrot, 1982; Barnsley, 2012). In the context of
vascular branching systems, this can be demonstrated through an
iterative process (Savage et al., 2008). To supply blood to the NN
terminal vessels in generationN, each comprising a blood volume
of vN , the NN−1 vessels of the preceding generation N − 1 must
have a matching volume of blood across all vessels, each with a
blood volume of vN−1. Iterating this argument across multiple
generations results in the expression that NNvN = NN−1vN−1 =

. . . = N0v0. To apply this argument at the level of a single
bifurcation, we approximate the blood service volumes by the
vessel lengths, vN ∝ l3N , allow for asymmetric branching, and
express this iterative argument instead by considering first a
generic parent service volume in generation j − 1 that supplies
all child vessels distal to it, yielding lj−1 = (l3j,µ + l3j,ν)

1/3.

Writing this expression in terms of the asymmetric branching
scale factors yields,

1 = (γ̄ + 1γ )3 + (γ̄ − 1γ )3 (1)

Minimizing the resistance to fluid flow results in two separate
constraints depending on whether the flow is pulsatile—with
resistance Zj ∝ 1/r2j —or laminar—with resistance Zj ∝ l/r4j . In

pulsatile flow, reflections can occur as pulses cross a bifurcation.
Thus, impedance matching across a given bifurcation minimizes
reflections and results in,

1 = (β̄ + 1β)2 + (β̄ − 1β)2 (2)

Of note, Equation (2) preserves the cross-sectional area from a
parent vessel to its child vessels, which results in a constant blood
flow rate across the bifurcation. For laminar flow, resistance due
to friction is minimized, which results in,

1 = (β̄ + 1β)3 + (β̄ − 1β)3 (3)

In Equation (3) the cross-sectional area increases from a parent
vessel to its child vessels, which subsequently slows the rate of
blood flow across the bifurcation. We note that Equation (3) is
a variation on the canonical Murray’s Law (Murray, 1926), only
here the vessels radii have been expressed in terms of the radial
branching scale factors β̄ and 1β .

We also examined the Horton-Strahler length scale factor, γHS,
a measure of length scaling that originates from an alternative
generational labeling scheme first proposed in (Horton, 1945;
Strahler, 1957) and examined in greater detail in (Yekutieli and
Mandelbrot, 1994; Turcotte et al., 1998; Eloy et al., 2017). This
scheme starts with labeling all identified terminal tips as the
starting generation N = 1, and, working upstream toward the
root vessel, advances the generation index only when two equally
labeled vessels merge, as shown in Figure 4B. After labeling,
vessels are redefined by their Horton-Strahler index such that a
“new” vessel does not “begin” unless the Horton-Strahler index
has changed. This relabeling between canonical generation (CG)
labeling and Horton-Strahler (HS) labeling is demonstrated in
Figures 4C,D. In Figure 4E, we compare distributions of the
symmetrically defined length scale factor fromCG labeling γCG =
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FIGURE 3 | Segmentation procedure for CT scans. (a) Initial image. (b) Lung boundary markers determined using watershed. (c) Mask with boundaries re-included

by black top-hat transform. (d) Segmented image. (e) Contrast enhanced image with adaptive mesh (red) overlaid for limited equalization (CLAHE). (f) Final image after

enhancement and de-noising via thresholding. Examples of pixel brightness histograms prior to enhancement (g), after enhancement (h), and with a de-noising filter

(i). (j) Left lung vessel skeletonization output from Angicart following steps described previously. Vessels are colored by canonical generation labeling (see Figure 4).

TABLE 2 | Summaries of vessel network properties.

Metric
Tissue supplied by vessel tree

Sym. MST pred.

ADC SCC Healthy tissue

Number of generations 3.58 ± 0.08 4.02 ± 0.07 5.23 ± 0.16 N

Number of terminal tips 13.84 ± 0.99 14.62 ± 0.44 49.11 ± 4.50 2N

Root length (mm) 18.72 ± 1.26 18.41 ± 0.90 17.59 ± 1.17 l0

Root radius (mm) 1.23 ± 0.03 1.15 ± 0.02 1.12 ± 0.03 r0

Root volume (mm3) 91.84 ± 6.52 70.31 ± 3.33 71.86 ± 5.28 r20 l0

Tip length (mm) 10.26 ± 0.89 9.55 ± 0.77 11.28 ± 0.87 lN = γ̄
N l0

Tip radius (mm) 0.98 ± 0.02 0.97 ± 0.02 0.78 ± 0.01 rN = β̄
Nr0

Tip volume (mm3 ) 31.40 ± 2.79 29.13 ± 2.50 22.35 ± 2.11 r2N lN

Average radial scale factor 0.85 ± 0.02 0.85 ± 0.02 0.75 ± 0.01 β̄ ≈ 0.71

Difference radial scale factor -0.06 ± 0.01 -0.06 ± 0.01 -0.06 ± 0.01 1β = 0

Average length scale factor 1.59 ± 0.22 1.72 ± 0.25 1.73 ± 0.24 γ̄ ≈ 0.79

Difference length scale factor 0.45 ± 0.06 0.49 ± 0.06 0.44 ± 0.06 1γ = 0

Horton-Strahler length scale factor 0.65 ± 0.11 0.73 ± 0.32 0.48 ± 0.07 γHS ≈ 0.79

Volumetric scale factor 2.41 ± 0.36 2.52 ± 0.34 2.05 ± 0.27 ν ≈ 0.79

Measurements are for the vascular networks supplying either adenocarcinomas (ADC), squamous cell carcinomas (SCC), or healthy tissue. These measurements are compared to

predictions from the symmetric metabolic scaling theory, in which all sibling vessels are identical (1β = 1γ = 0). Reported values are geometric means with associated standard errors.

lj/lj−1, which ignores sibling branch variation, to the length scale
factor from HS labeling γHS = lHS,j/lHS,j−1.

Measurements of the branching scale factors, β̄ , γ̄ ,1β ,
and 1γ , were made for all segmented pulmonary vessels.
Additionally, the following branching network metrics were
collected: number of generations and number of terminal vessels
across all identified vascular networks; root-vessel length, radius,
and volume; terminal vessel length, radius, and volume. Two

additional metrics that were collected were the Horton-Strahler
length scale factor and the volumetric scale factor. Summary
statistics for vascular network metrics collected are presented
in Table 2. The volumetric scale factor represents the scaling
of blood volume across a bifurcation, and is defined as ν =

2β̄2
γ̄ + 4β̄1β1γ + 2γ̄ 1β

2. This metric is informative for
examining how vascular based estimates ofmetabolic scaling vary
with network size.
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FIGURE 4 | (A) Canonical generation (CG) labeling for asymmetric bifurcation demonstrates how vessel endpoints are determined by presence of bifurcation.

(B) Horton-Strahler (HS) labeling demonstrating how vessel endpoints are determined by changes in HS label. (C) Example vessel network color coded by different

(Continued)
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FIGURE 4 | vessels labeled according CG method. (D) Same network as in (C), now color coded by difference vessels defined according to HS labeling.

(E) Histogram of length-scale factors calculated using CG labeling (red) or HS labeling (blue). Importantly, metabolic scaling theory predicts that vessel lengths branch

according to lDj−1 = lDj,µ + lDj,ν , where D represents the fractal dimension and should be equivalent to the Euclidean dimension of the space being filled. Estimates of the

fractal dimension using HS labeling fall within the expected range of D ∈ [2, 3], compared to the non-intuitive value of D = −2.47 for CG labeling.

2.4.2. Measurement Procedures
To examine patterns and variations in vascular branching
features between vessels that supply tumor tissue and those
that supply healthy tissue, vessels first had to be categorized
into these two different groups. To identify vessels directly
responsible for supplying tumors, we identified all vessels from
the Angicart segmentation output that intersected with the
manual annotation of the tumor boundary. Next, all parent
vessels to those intersecting the tumor boundary were added to
the group of tumor supplying vessels. This process was iterated
until reaching the vessel root for any given pulmonary vessel
network. For multiple examples of tumor supplying vessels
identified in this manner, see Figure 5. Importantly, some vessels
that comprised these tumor supplying vessel subnetworks had
either sibling or child vessels that did not service the tumor. These
vessels were treated as part of the collection of vessels supplying
healthy tissue.

We used a kernel density estimator (KDE)method to compare
vascular branching scale factor distributions between tumor
supplying and non-tumor supplying networks as reported in
(Brummer et al., 2021). This approach can be interpreted as
a multidimensional extension of the univariate Kolmogorov-
Smirnov test (KS-test) (Duong et al., 2012). We compared two-
dimensional distributions for the constrained scale factor pairs
of (β̄ ,1β) and (γ̄ ,1γ ), shown in Figure 6. The local KDE test
identifies contours within the compared data that are uniquely
responsible for driving differentiation between compared groups
above a user defined threshold. This threshold has a natural
translation into the conventional p-value of hypothesis testing
(Duong, 2013). We chose to search for regions corresponding to
the conventional p-value of 0.05, presented in Figure 6C. This
technique is akin to layer-wise relevance propagation in deep
learning algorithms (Montavon et al., 2019).

2.5. Metabolic Scaling From Vascular
Measurements
By treating total metabolism of the supplied tissue as the sum of
the metabolism of every terminal unit (e.g., cells and capillaries),
Btot = BcapNcap, and examining the total volume, Vtot , of the
vascular network that supplies the volume of cells, one can exactly
express the metabolic scaling exponent, θ , as,

θ =

{

ln(2N )
ln(2N )+ln(1−ν

N+1)−ln(νN (1−ν))
for ν 6= 1

ln(2N )
ln((N+1)2N )−N ln(ν)

for ν ≈ 1
(4)

where N represents the total number of generations within the
network and ν represents the scaling of blood volume across a
bifurcation and is equal to ν = 2β̄2

γ̄ + 4β̄1β1γ + 2γ̄ 1β
2.

The piecewise definition of Equation (4) is required due to
the asymptotic limit when ν ≈ 1, or when the combined

volume of two child branches is equal to that of their parent
branch. Two important assumptions underlying Equation (4)
are that the network is strictly bifurcating (two child vessels for
every parent vessel) and that the degree of asymmetry in the
network does not result in significant self-pruning of vessels at
high generations. This second assumption has the interpretation
that the number of vessels N generations distal from a given
parent vessel is approximately 2N . For detailed analyses of
self-pruning in asymmetric pulmonary vascular networks see
(Majumdar et al., 2005). An important conceptual interpretation
of Equation (4), and metabolic scaling theory in general, is that it
links the geometric distribution and delivery of blood supply to a
given volume of metabolizing tissue.

To calculate metabolic scaling exponents for vascular trees
using Equation (4), distributions of volumetric scale factors ν

were first calculated for all bifurcations within the network.
Geometric means for these distributions in ν were calculated
to identify the average scaling of volume within each vascular
tree. Estimates for the number of branching generations, N,
within each vascular tree were determined from the number of
terminal vessels, Ntips within each tree using the expression N =

log(Ntips)/ log(2). As this expression produces non-integer values
for the number of generations,N was then rounded to the nearest
integer. Examination of how the rounding of N influences final
estimates of θ demonstrated no significant change.

2.6. Metabolic and Gross Tumor Volume
Scaling
An important prediction of metabolic scaling theory is a
power-law relationship between the metabolic tumor volume
(MTV) and the gross tumor volume (GTV) that incorporates
the metabolic scaling exponent (θ). The full derivation of
this formula incorporates aspects of oxygen diffusion, vessel
recruitment, and vascular branching arguments, and it can be
found in the Supplementary Material. We present here the
results of that argument,

MTV = V0(GTV)
2
3θ (5)

where V0 is a normalization constant. The 2/3 exponent reflects
the fact that the metabolically active region of the tumor is
an exterior shell, and thus a Euclidean surface-area-to-volume
scaling occurs between this region and the total tumor volume.
Equation (5) provides an important method to extract metabolic
scaling exponents from PET-CT imaging, as the metabolically
active tumor volume (MTV) is measured with both PET and CT
modalities, while the gross tumor volume (GTV) is measured
only with the CT modality. This is in addition to the scaling of
maximum standard uptake value to metabolic tumor volume,
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FIGURE 5 | Examples of tumors, the pulmonary vasculature in which they are embedded and supplied by, and remaining pulmonary vasculature of the lungs. Tumors

are the rounded shapes colored in gray, and vessels are cylindrical shapes colored according to HS generation labeling. Tumor-supplying vasculature is drawn in

full-color with zero transparency, while healthy-tissue supplying vasculature are drawn in color but with partial transparency.

given as

SUVmax = W0(MTV)θ (6)

where W0 is a normalization constant. Both of Equations (5)
and (6) are used to examine PET-CT data collected for this
study, shown in Figures 1, 2. Having dual measurements for the
metabolic scaling exponent at the whole-tumor level gives added
support when comparing these measurements against vascular
based estimates using Equation (4).

3. RESULTS

3.1. Allometric Regressions
Examination of PET-CT imaging data shows clear allometric
trends in Figures 1, 2. For the larger dataset, we found that
estimates of metabolic scaling exponents, θ , based on SUVmax ∝

MTVθ are θ = 0.71 ± 0.07, with histologically specific values
of θ = 0.73 ± 0.09 for adenocarcinomas (ADCs) and θ =

0.59 ± 0.10 for squamous cell carcinomas (SCCs) (see Table 1).
These measurements are consistent with those from the subset
of the PET-CT data from which vascular segmentations were
examined. However, variation in SUVmax is large enough that,
with the smaller sample size for this latter subset, estimates
for the metabolic scaling exponent θ are found to be less-
significant for ADC and the combined data, and non-significant
for SCCs. Estimates of θ based on the scaling of metabolic
tumor volume and gross tumor volume, as in Equation (5), were

found to be significant for both ADC (θ = 0.73 ± 0.21), SCC
(θ = 0.62 ± 0.37), and the combined groups (θ = 0.70 ±

0.17). This finding indicates a potential robustness in image-
based metabolic biomarkers that are distributed over the tumor
volume, as opposed to those that are derived from the single
brightest voxel.

3.2. Scale Factor Analysis
Scale factor analysis demonstrated significant differences
between vasculature that supplies tumors and that which
supplies healthy lung tissue. In Figure 6A, the joint distributions
of the radial scale factors (β̄ ,1β) for healthy-tissue supplying
vasculature can be seen to adhere well to the area preservation
constraint of Equation (2), particularly in the presence of
asymmetry (1β 6= 0). Whereas the tumor supplying
vasculature tends to exhibit area increasing radial scaling.
This is supported by the average scale factor values for β̄

presented in Table 2, where β̄ = 0.85 ± 0.02 for both ADC
and SCC tumor vasculature, and β̄ = 0.75 ± 0.01 for healthy-
tissue vasculature. This is reinforced by the local KDE test
in Figure 6B. Here the distinguishing regions of the different
vessel category distributions are those corresponding precisely
to area-preservation scaling for healthy tissue, and extreme
area increasing scaling for the tumor vasculature. These
differences have important physiological consequences related
to fluid flow rates and blood volume supply that we explore in
the Discussion.
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FIGURE 6 | Comparison of branching scale factors between tumor-supplying vessels (blue) and healthy tissue-supplying vessels (red). (A) Joint and marginal

distributions for radial scale factors. White dashed lines correspond to predicted constraint equations for cubic, area-increasing scaling, Equation (3), (top line) and

square, area-preserving scaling, Equation (2), (bottom line). Note that both categories of vessel groups closely follow area-preserving scaling, yet variation in the

tumor-supplying vessel groups trend toward area-increasing scaling. (B) Significance contours identifying regions in the radial scale factor feature space responsible

for differentiation. Unlike the radial scale factors, length scale factors (C) defined using canonical generation labeling do not result in significant differentiation between

vessel groups.

Unlike the radial scale factors, no significant differences
were observed between the tumor supplying and healthy tissue
supplying vasculature in the average and difference length scale
factor feature space (γ̄ ,1γ ), as seen in Figure 6C and Table 2.
However, upon relabeling vessels using the Horton-Strahler

topology, and remeasuring lengths and the Horton-Strahler
length scale factor γHS, we found significant differences between
the healthy vessel and tumor vessel populations (Figure 4).
Specifically, we found that healthy vessels had an HS length scale
factor of γHS = 0.48 ± 0.07, while ADC HS length scale factors

Frontiers in Ecology and Evolution | www.frontiersin.org 11 October 2021 | Volume 9 | Article 691830236

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Brummer and Savage Metabolic Scaling in Lung Cancer

averaged γHS = 0.65±0.11 and SCCs averaged γHS = 0.73±0.32.
Theory does not presently exist to rigorously translate Horton-
Strahler length scale factors into fractal dimensions of scaling.
However, assuming that the fractal dimension can still be defined
under the conventional manner as D = − log(2)/ log(γHS), then
one can still calculate the fractal dimension for a bifurcating
system. In this case, the fractal dimension for the healthy tissue
vasculature usingHorton-Strahler labeling isD = 0.94, for ADCs
is D = 1.61 and for SCCs is D = 2.20.

In addition to the conventional branching scale factors related
to length and radius, we also analyzed the volumetric scale
factor, ν, the ratio of the volume of both child branches to the
volume of the parent branch across a bifurcation. Expressed
in terms of the radial and length average and difference scale
factors, ν = 2β̄2

γ̄ + 4β̄1β1γ + 2γ̄ 1β
2. We measured

distributions of ν for every bifurcation across all vessel categories.
We found significant differences in volumetric scaling between
the two tumor categories of ADC and SCC and the healthy tissue
supplying vasculature. Specifically, we measured the average
volumetric scale factor for healthy tissue vasculature was ν =

2.05 ± 0.27, where for ADCs ν = 2.41 ± 0.36 and for SCCs
ν = 2.52 ± 0.34. This pronounced difference in the volume of
blood supplied by the vasculature is due in part to the observed
difference in radial scaling, and has important consequences for
metabolic scaling given the dependence on ν in Equation (4).

3.3. Vascular Based Estimates of Metabolic
Scaling
Evaluation of Equation (4) to estimate metabolic scaling
exponents from vascular branching resulted in average values
for ADCs of θ = 0.85 ± 0.03 and for SCCs θ = 0.87 ±

0.02 (see Table 1). These values are within the 95% confidence
intervals of the PET-CT imaging based estimates using the scaling
of metabolic tumor volume (MTV) to gross tumor volume
(GTV) from Equation (5). Importantly, the consistency of these
two, simultaneous measurements marks a first-of-its-kind test of
metabolic scaling theory.

Further analysis of the vascular based estimates of the
metabolic scaling exponents is shown in Figure 7, where the
dependence of the metabolic scaling exponent on volumetric
scaling and total network generation is presented, with results
for vasculature supplying ADCs, SCCs, and healthy lung tissue.
We find that the tumors and healthy tissues cluster separately
within the feature space of metabolic scaling exponent, θ ,
number of network generations, N, and volumetric scale factor,
ν. Specifically, the ADCs have values of N = 3.58 ± 0.08 and
ν = 2.41 ± 0.36, the SCCs have values of N = 4.03 ± 0.07
and ν = 2.52 ± 0.34, and the healthy tissue vascular networks
have values of N = 5.23 ± 0.16 and ν = 2.05 ± 0.27. These
and other measured network values are reported in Table 2.
The differences in the number of branching generations and
volumetric scaling exist despite the fact that the tumors and
healthy tissue vessel networks result in the same average values
for the metabolic scaling exponent. This result serves to reinforce
the potential value of vascular scale factors as imaging biomarkers
for tumors.

4. DISCUSSION

In this work we demonstrate the potential for clinical cancer
imaging to serve as a novel test of metabolic scaling theory. The
nuclear and structural imaging modalities of positron emission
tomography and X-ray computed tomography (PET-CT) provide
a unique lens with which to examine metabolic scaling theory,
with non-small cell lung cancer tumors serving as a model
subject. We report several key findings as a result of this
work, and summarize and discuss their implications. (i) We
have conducted a first-of-its-kind simultaneous measurement of
metabolic scaling. We utilize PET imaging to measure tumor
glucose uptake as an estimate of metabolism via Equations (5)
and (6), and CT imaging to measure the tumor-supplying
vasculature that leads to vascular-based estimates of metabolic
scaling via Equation (4). We report consistent measurements
between these two approaches, a result that serves to validate the
metabolic scaling theory of ecology. Furthermore, we highlight
how growth models rooted in energetic partitioning connect
these morphologic changes in tumor-supplying vasculature
to tumor growth trajectories. (ii) We measure tumor-specific
metabolic scaling exponents based on morphologic changes
to the geometric scaling of the tumor-supplying vasculature.
These structural changes in vascular scaling may serve as future
imaging biomarkers to aid in disease detection, diagnosis, and
stratification. (iii) We emphasize the opportunity for cancer to
serve as a model subject to probe metabolic scaling theory at the
onset of vascular development through the examination of small
avascular tumors that transition to large vascularized tumors. (iv)
Finally, we close by discussing several extensions and limitations
of the work presented.

4.1. Simultaneous Measurements and
Tumor Growth Trajectories
4.1.1. Simultaneous Measurements
Since the original inception of metabolic scaling theory in (West
et al., 1997), simultaneous measurements of metabolic scaling
have been elusive. However, these measurements are crucial
for identifying strengths and weaknesses in the methods and
theory of metabolic scaling, and for refining our understanding
of metabolic scaling as a phenomenon (Price et al., 2012).

Our work presents a new and complementary perspective
to the field of cancer biology which has recently seen a surge
of interest in the scaling of tumor metabolism to tumor mass.
Here, metabolic scaling is used as a quantitative framework for
understanding the de-regulated growth of tumors facilitated by
aerobic glycolysis, also known as the Warburg effect (Warburg,
1956; Vander Heiden et al., 2009). In these differing schools
of thought, variation in metabolic scaling can be attributed to:
variation in turnover rates from proliferative to necrotic states,
resulting in transitions from linear to sub-linear scaling as in
(Milotti et al., 2013); cell migration and competition as a driver
of tumor subpopulations evolving from single to heterogenous
states, resulting in transitions from sub-linear to super-linear
scaling as in (Pérez-García et al., 2020); or sudden increases
in oxygen supply levels as a result of angiogenesis, resulting
in momentary accelerations in tumor growth and temporary
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FIGURE 7 | Vascular based estimates of metabolic scaling exponents as a function of volumetric scale factor for tumor supplying vessel networks (adenocarcinoma in

green and squamous cell carcinoma in orange) and healthy tissue supplying vessel networks (gray). The direction of increasing network size, as measured by

generation number N, is into the upper left corner. Note the distinct clustering of the healthy tissue supplying networks along ν ≈ 2 and the tumor supplying networks

along ν > 2.

super-linear scaling as in (Azimzade et al., 2021). Here, we
present a perspective that connects variation in metabolic scaling
to variation in the geometric scaling of the tumor-supplying
vasculature. While the many proposed mechanisms of variation
in metabolic scaling offer complementary views of tumor growth
and heterogeneity, they can also inform possible reasons for
treatment failures.

Important benefits of simultaneous measurements are their
ability to test the robustness of models and measurable features
from experimental and clinical data. Although the two different
regression methods of measuring metabolic scaling exponents
in Equations (5) and (6) led to consistent results, both
measurements rely heavily on the maximum standard update
value (SUVmax) from the PET imaging. Despite the fact that
SUVmax will have little variation from differences in contouring,
it can still vary from effects such as machine variability, patient
physiology, and the partial volume effect. The latter of these
is quite significant for metabolic scaling studies as it precludes
many clinical PET imaging metrics from tumors smaller than
4 cm3. While important work is being done in the realm of
quantitative imaging biomarker discovery to standardize metrics

(see Sullivan et al., 2015), we comment here on two other metrics
of growing interest, total lesion activity (TLA) and glucose
metabolic rate (MRglu).

Recalling that TLA is the summed product of voxel volume
and SUVi, or TLA =

∑

i viSUVi, we argue caution should be
made in using TLA for examining metabolic scaling as it can
introduce potentially spurious super-linear scaling. To see this,
we highlight that if one calculates a volume-weighted average
of SUV as 〈SUV〉V =

∑

i viSUVi/
∑

i vi, the definition of TLA
appears in the numerator. Solving for TLA here results in, TLA =

V〈SUV〉V . Thus, in comparing TLA toMTV as candidate metrics
for a scaling phenomenon, a potential extra factor of volume
can appear that may bias inferred scaling exponents toward the
super-linear regime.

On the other hand, dynamic PET imaging may offer improved
resolution of scaling phenomenon. Work by Visser et al. (2008)
demonstrated that the combination of pharmacokinetic models
of glucose uptake and dynamic PET imagingmethods to measure
the tumor glucose metabolic rate (MRglu) result in systematic
reduction in estimates of tumor volume when compared to static
PET images. However, comparison of tumor volume estimates
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from both static and dynamic PET imaging to tumor volumes
measured after surgical resection show that both imaging metrics
under-predicted tumor volume by as much as 50% (Meijer
et al., 2017). Despite these varied differences, such work can
still be valuable for metabolic scaling studies as over- or under-
predicting tumor volume can be corrected as long as the
deviations are systematic.

4.1.2. Growth Trajectories
Interpretation of the value of the metabolic scaling exponent for
tumors is most easily done through the context of growthmodels.
Although the data considered in this study consists entirely
of single point-in-time measurements, the metabolic scaling
exponent can provide insight into tumor growth trajectories.
Metabolic scaling theory can be extended to model the growth
trajectory of an organ or organism using energetic partitioning.
Derivations and analyses of the following model can be found
in the literature (West et al., 2001; Guiot et al., 2006; Herman
et al., 2011). Here we summarize the main points of an energetic
tumor growth model, and in particular as it relates to the vascular
supply network.

The growth of tumor mass over time can be expressed in the
following differential equation,

dm

dt
=

B0mc

Ec
mθ −

Bc

Ec
m (7)

where mc is the mass of an individual cell, Ec is the
energetic cost of cellular division, Bc is the metabolic cost of
cellular maintenance, and B0 is the normalization constant for
the metabolic scaling allometry. Equation (7) is derived by
partitioning the total metabolic power available into two terms:
one for cellular growth and the other for the cost of cellular
maintenance. In Equation (7), the resulting growth term appears
on the left-hand-side, while the terms for total metabolism
minus the cost of maintenance appear on the right-hand-side.
Historically, Equation (7) is also known as the Bertalanffy-
Richards model of growth (Von Bertalanffy, 1957; Richards,
1959).

An important feature of Equation (7) is how the stability of
the equilibrium mass, meq, changes with respect to the metabolic
scaling exponent θ . For super-linear metabolic scaling, where
θ > 1, the equilibrium mass is an unstable fixed point.
Furthermore, if m < meq, the maintenance term in Equation (7)
dominates the behavior and the system converges to meq =

0, whereas if m > meq then the cost term is negligible, and
the tumor mass grows without bound. For linear metabolic
scaling, associated with laminar blood flow and where θ = 1,
Equation (7) reduces to that of exponential growth, with no stable
equilibrium. Finally, for sub-linear scaling, where θ < 1, the
equilibrium mass is a stable fixed point.

The combination of Equations (4) and (7) highlights how
patterns in vascular development during tumor angiogenesis
can determine a growth trajectory (this is in addition to the
histologically specific values of mc,Ec,Bc, and B0. In particular,
as a tumor neoplasm develops, it first exists in the linear
metabolic scaling regime with no equilibrium state and exhibits

runaway growth. Once the tumor begins secreting angiogenic
factors, new vasculature develops to supply the tumor with blood,
subsequently reshaping the local vascular branching geometry
and driving the tumor into the sub-linear metabolic scaling
regime with a stable equilibrium. Thus, in the context of
metabolic scaling theory, the geometric scaling of the tumor
vasculature can serve as a measurable bifurcation parameter of
the tumor growth trajectory.

The vascular-based tuning of growth demonstrates the
importance for future measurements of both metabolic
scaling exponents and tumor microenvironment variables
extracted from pathology samples and/or altogether new
metabolic radio-tracers to determine the overall tumor growth
trajectory (Momcilovic et al., 2019). These efforts are especially
important in understanding variation in tumor growth due to
differences in tumor histology (e.g., squamous cell carcinoma
and adenocarcinoma) and heterogeneity.

4.2. Vascular Morphogenesis
Our work in examining metabolic scaling in tumors relies heavily
on measurements of the pulmonary vascular-network that is
supplying the tumors with blood. We propose a procedure for
identifying the tumor-supplying vessels as those that penetrate
the segmented tumor contours, and a routine for identifying
the vascular tree in which these vessels are connected. We
subsequently demonstrate that these tumor-supplying vascular
trees exhibit markedly different radial scaling than the healthy
lung tissue-supplying vascular networks (Figure 6). These
differences have important connections to volumetric blood-
flow rates.

There are two potential physiological consequences for the
observed differences in radial scaling. Conservation of fluid flow
dictates that area increasing scaling will result in a slowing of
the blood flow from parent to child vessels across a bifurcation.
Large tumors will necessarily attach to large diameter vessels,
which diminishes the number of branching generations that
would normally be present to slow the flow of blood. Thus,
vessel widening may be viewed as a compensatory mechanism
to facilitate the slowing down of blood flow in the absence of a
sufficient number of branching generations.

The second consequence for increased radial scaling is
increasing the total blood volume delivered per unit time. This
is supported by the observed increase in volumetric scaling for
tumor-supplying vessels over healthy tissue-supplying vessels
(Figure 7 and Table 2). As a tumor grows it places an increasing
demand on nutrient supply in terms of blood volume. This can
be accomplished by increasing either the vessel length or vessel
radius. However, an increase in vessel length can only occur
through the process of growing wholly new vessels, or by pruning
existing vessels at a branch point, whereas increasing vessel radius
can be achieved in any existing vessel. Furthermore, as changes in
vessel volume are constant with respect to length and linear with
respect to radius, the benefit of increasing radius is two-fold. That
is, doubling the length only doubles the volume, but doubling the
radius will quadruple the volume.

Frontiers in Ecology and Evolution | www.frontiersin.org 14 October 2021 | Volume 9 | Article 691830239

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Brummer and Savage Metabolic Scaling in Lung Cancer

4.3. Metabolic Scaling in Avascular
Systems
Finally, this work highlights important opportunities for insights
and perspectives from cancer biology to inform ecology and
evolutionary biology. Although applications of metabolic scaling
in ecology and evolutionary biology permeate a myriad of
systems (e.g., food webs, predator-prey interactions, forrest
demography, and species-area distributions) a central hallmark
of metabolic scaling theory is the reliance on a well-defined
vascular network distributing resources. Thus, in systems absent
of resource distribution networks, deviations from metabolic
scaling predictions can be challenging to interpret.

The biological processes of tumor growth and angiogenesis
represent a unique opportunity to study metabolic scaling theory
beyond the vascular regime. Many conventional tumor growth
and angiogenesis models are cast as reaction-diffusion processes
that highlight different phenomena operating at different scales
(Hormuth et al., 2021). Cellular-scale models incorporate any
number of terms specific to cellular growth, death, interactions,
and importantly include cellular motion due to diffusion,
advection and chemical attraction (Frieboes et al., 2010). Tissue-
scale models balance the demands of fluid transport within
vascular networks, fluid flux through vessel walls, and interstitial
flow that links the embedding tissues with the supplying vessels
(Wu et al., 2020).

Metabolic scaling theory may serve to bridge these
phenomenological scales by linking geometric patterns of
tissue vasculature to the metabolic demands of cellular processes.
Alternatively, framing the cell and tissue scale processes in the
context of metabolic scaling theory may help to inform the
modeling of other biological systems conventional to ecology
and evolutionary biology. For example, models of cellular
diffusion bear much resemblance to those of species aggregation
and migration, and could inform recent efforts in landscape
disturbance ecology (Harte et al., 2021). Similarly, the interaction
between tumor driven angiogenesis and changes in the tumor
microenvironment may guide studies on the interaction between
environmental drivers and biomechanical limits to cellular
evolution (Malerba and Marshall, 2021).

4.4. Extensions and Limitations
Here we outline several extensions and limitations of this
work. These span: improvements in technical analyses and
model approaches; the focus of pulmonary arterial networks
over bronchial arterial networks; applications in tumor directed
chemotherapy, embolization, and malignancy determination;
and the general study of other cancers.

4.4.1. Small Lesions and Partial Volume Limitations
A challenge of the current study is the inability to accurately
apply metabolic scaling theory to the study of small lesions, here
defined as having a tumor volume less than 4 cm3. This is a
consequence of the partial volume effect, an imaging artifact in
which objects near the resolution limit may appear larger than
they actually are (Soret et al., 2007). The partial volume effect can
skew measurements of tumor and vessel volumes extracted from
CT imaging, in addition to metabolic measurements from PET

imaging. Important work has been done to quantify the size of the
partial volume effect in PET imaging by using imaging phantoms
(materials designed with known radioactivities) (Kinahan et al.,
2009), as well as to define analysis protocols to correct for the
partial volume effect based on background PET measurements
in the vicinity of a lesion (Salavati et al., 2017). Regarding
CT imaging, recent studies of variation in image acquisition
(dose and resolution) and reconstruction methods are providing
important insight into the source and nature of variation in lesion
detection and quantification (Lo et al., 2016). Finally, recent work
leveraging mathematical theorems of vessel shape and geometry
have identified systematic procedures for subsampling vessel
image data to resolutions beyond the imaging modality limit
(Brummer et al., 2021). Thus, while small lesions were omitted
from this work, future efforts have multiple avenues available for
their inclusion.

4.4.2. Horton-Strahler Corrections to Vascular

Branching Architecture
The biased differences between the PET-CT derived estimates for
the metabolic scaling exponents and the vascular based estimates
can be partially resolved with careful examination of the length
scale factors of the vascular networks. A common finding in
measuring length scale factors is the heavy-tailed structure of
their distributions (Newberry et al., 2015; Tekin et al., 2016;
Brummer et al., 2021). This results in large distributionmeans for
length scale factors (〈γ̄ 〉 > 1), which can subsequently increase
the estimate of the metabolic scaling exponent. A benefit of the
Horton-Strahler labeling scheme is that it systematically lowers
the estimates for length scaling and results in more biophysically
realistic estimates of the fractal dimension for the network
(Figure 4E and Table 2). Furthermore, we can approximate the
impact of the length scaling bias on estimates of the metabolic
scaling exponent by utilizing the Horton-Strahler length scale
factor and the fact that the vascular networks studied exhibit
radial symmetry.

An exact derivation of Equation (4) for the Horton-Strahler
topology remains elusive, primarily due to the challenges of
bridging the formalisms for asymmetrically branching networks.
However, our measurements show that the vascular systems
exhibit radial symmetry, 〈1β〉 ≈ 0 (see Figure 6 and Table 2).
Thus, the definition of the volume scale factor reduces to ν ≈

2β̄2
γHS, where we have substituted γ̄ with γHS under a symmetric

approximation. Evaluating Equation (4) with this approximate
form of ν and values taken from Table 2 results in estimates of
the metabolic scaling exponent of θHS = 0.60 for ADCs and
θHS = 0.65 for SCCs, values that are intriguingly closer to those
extracted from the PET-CT allometric scaling measurements.
This suggests the HS topology may be a more appropriate
labeling scheme for these types of vasculature (Table 1).

4.4.3. Pulmonary vs. Bronchial (Systemic) Arterial

Networks
A unique feature of the lung is that it possesses a dual arterial
blood supply. The pulmonary arterial trees are responsible for
oxygenating the blood supply and dispelling byproducts of
systemic cellular respiration, while the bronchial (or systemic)
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arterial trees provide oxygenated blood specifically to lung
tissue for their own cellular respiration. This dual blood supply
feature of the lungs is also shared with lung tumors (Milne,
1967), and resolving the extent to which the different vascular
networks are involved in tumor initiation, growth, histology, and
metastasization is an active field of research (Nguyen-Kim et al.,
2015; Eldridge et al., 2016; Deng et al., 2020).

Importantly for this study, the diameters of the vessels in
the bronchial arterial tree are an order of magnitude smaller
than those found in the pulmonary arterial tree. This results
in many of the bronchial vessels not being detected in typical
clinical CT imaging devices and likely being absent from our
study. There exist methods to simultaneously measure both
pulmonary and bronchial arterial networks using carefully
designed perfusion CT imaging. However, these methods are
technologically demanding and require exceptionally large doses
of radiation to be given to patients, precluding their widespread
adoption (Yuan et al., 2012; Nguyen-Kim et al., 2015).

The absence of bronchial vascular networks from our
study may contribute to the observed difference between the
allometric-based and vascular-branching-based measurements
of metabolic scaling exponents (Table 1). The exact size of
the contribution of the bronchial networks to the total
tumor metabolism is not currently known. However, current
understanding suggests as tumors increase in size they begin to
undergo hypoxia internally and subsequently develop necrotic
cores. As a result, vessel recruitment through either angiogenesis
or cooption of the pulmonary arterial vessels can occur at the
tumor boundary to facilitate an increase in tumor blood supply.
Thus, we presume that by focusing this study to larger tumors
of clinical staging II-IV, the reliance on bronchial arterial supply
is minimized.

4.4.4. Tumor Directed Therapies and Embolization
Tumor directed therapies—ones that try to localize treatment
more to the local tumor and not the whole body—may
be greatly informed by distinguishing between bronchial and
pulmonary tumor vascular supply, providing a major motivator
for future studies in that direction. Expansive knowledge
of the vascular supply to hepatic tumors has led to a
multitude of standard treatment options that combine vascular
embolization with any of radio-, chemo-, or immunotherapy
(Erinjeri et al., 2019). These methods provide localized tumor
directed treatment and alleviate many of the complicating
side-effects associated with systemic (whole-body) approaches
or surgical intervention. In the treatment of lung cancer,
transpulmonary chemoembolization has proven successful as
an interventional technique, yet has questionable impact
on overall patient survival (Lindemayr et al., 2007; Vogl
et al., 2013). We propose our framework of coupling tumor
vascular supply to tumor metabolism as a method for
screening for patients that are likely to respond to tumor
directed therapies. Specifically, tumors whose vascular supply
is dominated by the pulmonary arterial vasculature may be
good candidates for these therapies as the likelihood of
treatment escape through the bronchial arterial supply should
be minimal.

4.4.5. Malignancy Determination in Lung Cancer
The methods and results presented here have potential to serve
as biomarkers of tumor malignancy. Previous work by others
has demonstrated the ability of blood vessel branching metrics
to serve as indicators of tumor malignancy. In a radiomics-
inspired study, blood vessel volume was identified as an imaging
biomarker that could distinguish between adenocarcinomas
and granulomas in the networks supplying and surrounding
the nodules (Alilou et al., 2018). Blood vessel volume would
be most directly related to our volumetric scale factor, ν,
which we found to indicate significant differences between
blood vessel networks supplying healthy and tumor burdened
lungs (Table 2). Furthermore, another study identified blood
vessel diameter as being indicative of malignant vs. benign
classification in a patient cohort with comorbidities of chronic
obstructive pulmonary disorder (e.g., emphysema) (Wang et al.,
2017). Blood vessel diameter constitutes our radial average and
difference scale factors, β̄ and 1γ , which also demonstrated
significant differences between healthy and tumor burdened
pulmonary vessels (Table 2). Finally, our measurements of vessel
length scaling, specifically the average length scale factor, γ̄ ,
and the Horton-Strahler length scale factor, γHS, identified
modest differences between adenocarcinomas and squamous cell
carcinomas, suggesting that histologically-based differences in
tumor-supplying vasculature may exist (Table 2). These results
motivate future work to better quantify the diagnostic potential
of blood vessel biomarkers both for malignancy determination
and histological stratification.

4.4.6. General Study of Other Cancers
While this work focused on the application of metabolic
scaling theory to the study of non-small cell lung carcinoma
and PET-CT imaging, it should be applicable to other
cancers and imaging modalities. Recent work by Pérez-García
et al. (2020) has demonstrated the existence of metabolic
allometries in brain, lung, breast, rectal, and head and neck
cancers. The challenge that persists is accurate segmentation
of the supplying vasculature, and more so, the vasculature
that comprises the tumor itself. This is a challenge at the
intersection of imaging modality and computer vision. We
chose to focus on the lung in order to minimize the
presence of background tissue that may complicate accurate
vessel segmentation using high dose CT. However, ongoing
efforts that utilize vessel segmentation to guide therapeutic
interventions and track treatment response in liver and breast
cancer using diffusion-weighted contrast-enhanced magnetic
resonance imaging (see Marčan et al., 2015; Wu et al., 2020)
may benefit from metabolic scaling theory, or even contribute
to its development. In fact, the highly vascularized nature of
liver tumors offers a unique opportunity to test the assumption
that tumor-supplying vessels are a sufficient proxy for tumor-
comprising vessels.

5. CONCLUSION

We present a first-of-its-kind test of metabolic scaling theory.
Leveraging clinical PET-CT imaging across a cohort of patients,

Frontiers in Ecology and Evolution | www.frontiersin.org 16 October 2021 | Volume 9 | Article 691830241

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Brummer and Savage Metabolic Scaling in Lung Cancer

and computer vision methods to extract pulmonary vascular
segmentation, we simultaneously measure metabolic scaling
exponents from allometric regressions on tumor metabolism and
mass as well as geometric models of the vascular branching
architecture. The consistency of these measurements supports
the framework of metabolic scaling theory, and introduces
new opportunities for imaging biomarkers in the detection,
diagnostics, and tracking of non-small cell lung carcinoma.
Specifically, we find that the pulmonary vascular networks
that supply tumors with blood exhibit area-increasing radial
scaling with essential physiological consequences. This scaling
facilitates a slowing of blood flow and an increase in total
blood volume delivered. In combination with measurements of
tumor cell proliferation from histological studies, these vascular
imaging features can be utilized for the prediction of tumor
growth. Additionally, this work highlights unique opportunities
to further develop and test themetabolic scaling theory of ecology
in avascular systems.
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Ben-Gurion University of the Negev, Beersheba, Israel, 3 Department of Integrated Mathematical Oncology, Moffitt Cancer
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As cancer progresses, its impact should manifest in the foraging behavior of its
host much like the effects of endo-parasites that hinder foraging aptitudes and risk
management abilities. Furthermore, the lifestyle of the host can impact tumor growth
and quality of life. To approach these questions, we conducted novel experiments
by letting C57BL/6 laboratory mice, with or without oral squamous cell carcinoma,
free range in a large outdoor vivarium. Our goals were to: (1) determine whether
one could conduct experiments with a mouse model under free range conditions,
(2) measure effects of cancer burden on foraging metrics, (3) compare tumor growth
rates with laboratory housed mice, and (4) begin to sort out confounding factors
such as diet. With or without cancer, the C57BL/6 laboratory mice dealt with natural
climatic conditions and illumination, found shelter or dug burrows, sought out food from
experimental food patches, and responded to risk factors associated with microhabitat
by foraging more thoroughly in food patches under bush (safe) than in the open (risky).
We quantified foraging using giving-up densities of food left behind in the food patches.
The mice’s patch use changed over time, and was affected by disease status, sex, and
microhabitat. Males, which were larger, consumed more food and had lower giving-
up densities than females. Relative to cancer-free mice, mice with growing tumors
lost weight, harvested more food, and increasingly relied on patches in the bush
microhabitat. The tumors of free-ranging mice in the vivarium grew slower than those of
their cohort that were housed in mouse cages in animal facilities. Numerous interesting
factors could explain the difference in tumor growth rates: activity levels, stress, weather,
food intake, diet, and more. To tease apart one of these intertwined factors, we found
that tumors grew faster when mice in the laboratory were fed on millet rather than
laboratory mouse chow. While just a start, these novel experiments and framework show
how free-ranging mice provide a model that can test a broader range of hypotheses and
use a broader range of metrics regarding cancer progression and its consequences for
the host.

Keywords: disease ecology, foraging ecology, foraging aptitudes, risk management, cancer, tradeoffs of food
and safety, tumor growth rates, environmental effects
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INTRODUCTION

Cancer experiments with mice invariably involve very small
spaces (laboratory cages), ad lib food, the simplest of lifestyles,
and little to no habitat heterogeneity. Here we explore the
potential for using mouse model experiments in large outdoor
enclosures or vivaria using the inbred laboratory mouse strain
C57BL/6. This strain dates from 1921 and may be the most
widely used mouse model in research (Festing, 1979; Rao et al.,
1988; Song and Hwang, 2017). We offered each of four groups of
C57BL/6 laboratory mice (male vs. female; and cancer vs. cancer-
free) an outdoor space measuring 8.5 m × 17 m. The results are
promising and instructive with respect to insights into foraging
behaviors, tumor growth rates, and diet.

Experiments in large outdoor enclosures have a long history
in ecological studies. Enclosures have ranged in size from a few
square meters in an indoor setting (e.g., Dice, 1945; Clarke, 1983;
Morris et al., 2017; Mowry et al., 2017), somewhat larger semi-
natural outdoor enclosures of one to several hundred square
meters (e.g., Brown et al., 1988; Kotler et al., 1991; Meagher
et al., 2000; Bär et al., 2020), on up to large natural outdoor
enclosures of one to many hectares (e.g., Abramsky et al., 1991,
1997, Rohner and Krebs, 1996). The subject matters of these
studies are diverse and range from ecological questions such
as food-safety trade-offs, locomotion, and territoriality (Morris
et al., 2017) to evolutionary issues such as body mass and sexual
selection (Meagher et al., 2000).

More recently, semi-natural enclosures have been used to
study both wild-caught and laboratory-bred house mice (e.g.,
Ruff et al., 2017; Phifer-Rixey et al., 2018), including various
“rewilding” experiments with C57BL/6 laboratory mice (Leung
et al., 2018; Cope et al., 2019; Bär et al., 2020; Graham, 2021).
Medically related questions with laboratory mice have included
the role of fungi in immune function (Yeung et al., 2020), the
effects of high levels of sugar consumption on mortality (Ruff
et al., 2013), the role of sex and social organization on rates of
pathogen transmission (Cornwall et al., 2021), and the magnitude
of inbreeding effects (Meagher et al., 2000). Such settings can
measure the performance of mice as an assay for the safety of
pharmaceuticals (Gaukler et al., 2016a,b).

Large outdoor vivaria have shown particular utility in foraging
ecology (e.g., Brown et al., 1988; Kotler et al., 1991, 2010; Embar
et al., 2011). In such experiments, rodents respond to predators
(e.g., owls, snakes, and foxes) by foraging less and shifting
foraging toward safer microhabitats. The vivarium used in the
current study also provided the setting for experiments with wild
gerbils and other desert rodents to address issues ranging from
the interplay of state, time allocation, and vigilance in optimal
foraging decisions over the lunar cycle (Kotler et al., 2010), the
role of sight lines (Embar et al., 2011), and the consequences
of compromise-breaking adaptations in understanding limited
convergence between rodents from different continents (Kotler
et al., 2016). With respect to disease burden, wild-caught
gerbils infected with an endoparasitic bacteria (Mycoplasma
haemomuris-like bacteria) harvested less food, exhibited less
effective anti-predator responses, and were more susceptible to
predation by owls (Makin et al., 2020). Cancer burdens in mouse

models might elicit similar responses. Free-range experiments in
large enclosures represent a scaling down of space when using
wild-caught rodents, whereas they represent a scaling up for
laboratory mice that may not have seen a space larger than a
laboratory cage in 100 or more generations.

In the vivarium, as in many field studies of rodents, foraging
behaviors can be measured using experimental food patches in
which a known amount of seeds is mixed into a substrate that
requires the rodent to dig, search for, and harvest seeds. This
creates diminishing returns: as the patch becomes depleted, the
animal’s harvest rate declines. Eventually, the forager abandons
the patch. The seeds remaining in the patch, the giving-up density
(GUD), can be collected and measured to provide data on the
amount of seeds harvested and the willingness of the forager
to work for additional food. The less food left, the more the
animal was willing to work. The giving-up density declines (more
food harvested) in patches perceived as safer from predation risk,
and for animals that have a higher need for food (Brown, 1988,
1992). Giving-up densities in such food patches can provide both
behavioral enrichments and measures of foraging behavior in the
free-ranging C57BL/6 mice.

C57BL/6 mice free-ranging in the vivarium need to contend
with natural fluctuations in temperature and the need to
thermoregulate. There, they are no longer housed under sterile
or near-sterile conditions. They must spend several hours each
night visiting seed trays and digging through the sand to find
and harvest seeds. The mice in the vivarium must seek shelter
and avoid risky locations. In general, studies reveal that wild-
caught rodents perceive greater predation risk away from cover
vs. under cover (open vs. bush microhabitat) (Brown et al., 1988;
Kotler et al., 1991), have lower giving-up densities in the bush
microhabitat (Brown et al., 1988; Kotler et al., 1991; Kotler and
Blaustein, 1995), and have lower giving-up densities when in a
lower body condition or when experiencing a greater need for
food (Kotler, 1997; Kotler et al., 2004; Berger-Tal and Kotler,
2010; Berger-Tal et al., 2010). Under this more complex lifestyle,
we can test hypotheses for how cancer and its progression
influence food harvest, giving-up densities, and use of open and
bush microhabitats.

Exercise (Zielinski et al., 2004; Jones et al., 2012; Betof et al.,
2015; Idorn and Thor Straten, 2017), food limitation (Lee et al.,
2012; Nencioni et al., 2018), and stress (Grimm et al., 1996;
Thaker et al., 2006; Kokolus et al., 2013) all have been shown
to affect tumor growth rates, generally resulting in slower tumor
growth rates. Free-ranging C57BL/6 mice as compared to their
counterparts remaining in the laboratory will likely exercise
more, contend with food limitation, and experience more and
different forms of stress. To explore this, we compared tumor
growth rates of a cohort of mice that were inoculated with the
same batch of cancer cells on the same day, and then split
into those remaining in the laboratory and those transferred
to the vivarium.

Diet is known to influence tumor growth rates (e.g., Wang
et al., 1995; Rose et al., 1999; O’Neill et al., 2016). To measure
patch use and for consistency with other studies with wild-caught
rodents, we used millet seeds. To initiate this novel and unusual
experiment, the animal care committee allowed us to use millet
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for the free-range mice, but not for those housed in the laboratory
(thus confounding free-range with diet regarding tumor growth
rates). With the successful application of this approach to the
free-range mice, we subsequently received permission to compare
tumor growth rates of laboratory mice fed on mouse chow pellets
or fed on just millet. Millet is lower in protein than the mouse
chow pellets, and high protein diets have been shown to slow
tumor growth in mouse models (Ho et al., 2011) and associated
ketogenic diets (Chung and Park, 2017; Weber et al., 2020).
Alternatively, millet is known to be high in antioxidants, often
seen as anti-tumorigenic (Parohan et al., 2019). In addition to
these alternative hypotheses, millet provides a compelling food
source. Millet is one of the ancient grains associated with the
Fertile Crescent. It is likely associated with the original evolution
and dispersal of the ancestor of C57BL/6 laboratory mice, the
house mouse, Mus musculus domesticus (Cucchi and Vigne,
2006; Cucchi et al., 2020), as well as the house sparrow, Passer
domesticus (Boursot et al., 1993; Whelan et al., 2015). These
animals and their laboratory descendants may be specialists at
consuming cereal grains such as millet.

METHODS

For all experiments, we used C57BL/6 laboratory mice. For cancer
research, they are favored for being permissive of many injected
cancer cell lines while remaining immuno-competent.

Effects of Microhabitat, Sex, and Cancer
on Foraging Behaviors
C57BL/6 mice are being used more frequently within the free-
range contexts of outdoor enclosures to address ecological,
evolutionary, and even medical questions (e.g., Gaukler et al.,
2016a,b; Cope et al., 2019; Bär et al., 2020; Yeung et al., 2020).
With Experiment 1A, we tested whether free ranging, C57BL/6
laboratory mice forage in a manner typical of house mice and
other seed-eating rodents in nature; and we tested for the effects
of cancer on foraging behavior.

Experiment 1A took place in a large, outdoor vivarium
(Figure 1) on the Sede Boker Campus of Ben-Gurion University
of the Negev in Midreshet Ben-Gurion, Israel (30.857274◦N,
34.780942◦E) and Experiment 1B in laboratories located there
and on the Marcus Family Campus of Ben-Gurion University
in Beer Sheva, Israel. Sede Boker is a small rural town of
less than 1,000 inhabitants located on the 90 mm rainfall
isopleth in the Negev Desert. The vivarium is located there
on the desert’s edge. The vivarium is exposed to ambient
conditions, including illumination, humidity, and temperature.
Natural predators in the vicinity include barn owls (Tyto
alba), red foxes (Vulpes vulpes), and Clifford’s desert diadem
snakes (Spalerosophis cliffordi). During the vivarium experiments,
daytime highs averaged 33.56 ± 0.244 (s.e.) ◦C and nighttime
lows 19.59 ± 0.463 (s.e.) ◦C. No precipitation fell then, but dew
occurred on most nights. The vivarium is a rectangular outdoor
enclosure (17 × 34 × 4.5 m high) enclosed with chicken wire
sides and roof. It is also bounded with a rodent-proof wall that
extends 1 m below ground and another 1 m above ground.

FIGURE 1 | The vivarium.

Inside the vivarium, two 1 m tall and 1 m deep walls run east
to west and north to south, respectively. These walls divide the
vivarium into four equally sized 17 × 8.5 m quadrants. We
placed 5 water dishes and three nest boxes in each quadrant.
Mice were free to occupy nest boxes or burrows that they could
either find or dig for themselves. We provided seed resources to
rodents using experimental food patches, and quantified rodent
foraging by measuring GUDs (giving-up densities: the amount
of food left behind in a resource patch after an animal has
stopped feeding from the patch) in these patches. Except for the
seeds that we provided in the food patches, there was little other
food to be found.

Food patches consisted of plastic trays (25× 25× 10 cm) each
filled with 3 l of sifted sand. Before each night of the experiment,
we provisioned each tray with 6 g of millet seeds (11% crude
protein, 4% crude fat, 8.5% crude fiber, total carbohydrates 73%)
mixed thoroughly and randomly into the sand. Each quadrant
received four pairs of trays for a total of 32 patches in the
vivarium. Each pair of trays was separated from the adjacent
pair by approximately 2–3.5 m. The trays within each pair were
placed 1.5 m apart. One tray of each pair was covered by a
low-lying wooden trellis (76 × 60 × 16 cm) covered in black
shade cloth. This tray simulated the bush microhabitat typical of
natural systems. The other tray of the pair was left uncovered and
simulated the open microhabitat.

Most rodent species tested to date, whether in enclosures
or free-living in nature, find the bush microhabitat to be safer
than the open (e.g., Brown et al., 1988; Kotler et al., 1991;
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Longland and Price, 1991). They demonstrate this preference by
harvesting more seeds from and having lower GUDs in trays
placed in the bush microhabitat relative to those placed in the
open microhabitat (e.g., Kotler et al., 1991, but see Brown, 1989
for a reversal of this pattern in the kangaroo rat, Dipodomys
merriami). Prior researchers have shown that both laboratory rats
and laboratory mice have lower GUDs when patches are covered
(Arcis and Desor, 2003; Troxell-Smith et al., 2016). We expected
laboratory mice in the vivarium to exhibit lower GUDs in the bush
than in the open.

Prior to the vivarium experiment, 10 mice each marked with a
uniquely numbered PIT (passive induction transponder) tag were
placed in each quadrant (40 in total) of the vivarium. In two of
the quadrants, all the mice were males; in two of the quadrants,
all were females. This allowed us to test for sex differences in
GUDs. The sex that finds energy more valuable or that feels safer
will have the lower GUD.

To begin the experiment, all mice in two of the quadrants (one
with 10 males; one with 10 females) were injected subcutaneously
with a mouse-derived cancer cell line. The 20 mice in the
remaining two quadrants were injected with saline. The cell line
is derived from 4-Nitroquinoline N-oxide (4NQO) induced oral
squamous cell carcinoma from a male C57BL/6 mouse (Hawkins
et al., 1994; Badarni et al., 2019). We have sequenced and
characterized these cell lines (Elkabets and Prasad, unpublished
data). Prior to injection in the mice, the cell line was grown
and maintained at 37◦C in a humidified atmosphere at 5% CO2
in DMEM media supplemented with 1% l-glutamine 200 mM,
100 units each of penicillin and streptomycin, and 10% FBS.
Cells were routinely tested for Mycoplasma infection and treated
with appropriate antibiotics as needed (De-Plasma, TOKU-E,
D022). For injection, cells were trypsinized and resuspended
in 1X sterile PBS (c. 1 Million cells /injection). We made two
subcutaneous injections per mouse, one in the left and one in the
right flank (100 µl for each injection). In this way, each mouse
developed two localized non-metastatic tumors. The control
group was injected with sterile 1xPBS (100 µl in each side).
All mice in both the experimental group and the control group
were anesthetized for the procedures. Anesthesia was performed
using an intraperitoneal injection of ketamine (80–100 mg/kg)
and xylazine (10–12.5 mg/kg), following which mice were placed
on a heating pad for recovery. Relative to the cancer-free mice,
the cancer mice over time should see an increase in GUDs if their
capacity to forage becomes impaired, or they may show a decrease
in GUDs if they require more seeds to meet metabolic demands.

We quantified tumor volume twice a week by measuring
length (mm) and width (mm) using a caliper and fitting them to
the formula Volume (mm3) = (Length2

×Width × π)/6. At the
conclusion of the experiment, we also weighed final tumor mass.
All animals were weighed weekly. For measurements, we either
captured animals by hand from nest boxes or used Sherman live
traps baited with millet seeds on nights without food patches.
We injected all mice of Experiment 1 with cancer cells or with
saline on 30 July 2020. Following this, we released mice into the
vivarium a day after injection.

For mice in the vivarium, we gave them 2 days after release
to acclimate, after which we began collecting GUD data from

the seed trays on 3 August 2020. Our experience with other
species of rodents indicates that 2 days is sufficient acclimation to
yield reliable data. Each week, for the next 4 weeks, we collected
GUD data on four consecutive days centered on the moon phase
and starting with the full moon. Prior to each night of data
collection, we provisioned each seed tray with millet seeds (6 g).
The following morning, we collected the remaining seeds from
each tray and replenished seeds and sand to their original levels.
We then returned the seeds to the laboratory where they were
dried, cleaned of sand and debris, and weighed to obtain the
GUD for each tray.

We analyzed the GUD data using an ANCOVA, with day
as a covariate and GUD in a patch as the dependent variable
(in grams). The rationale is that the tumors are growing with
time and should change the disposition of the mice with cancer
relative to those without. This will manifest as a day by cancer
treatment interaction. Changes in risk management with time
will manifest as a day by cancer treatment by microhabitat
interaction. Hence, our interest is primarily in the interactions
of group variables with day. The group variables were cancer
treatment (cancer and cancer-free), sex (male and female), and
microhabitat (bush and open). We included in our model the
covariate of day and main effects of sex and microhabitat; the
interaction of sex by microhabitat; the interaction of treatment by
day; the interaction of treatment by sex by day; the interaction of
treatment by microhabitat by day; the interaction of treatment by
sex by microhabitat by day. Interactions of group variables (and
their interactions) with day indicate differences in slopes, or rates
at which GUDs changed per day. The data collection included
the entire lunar cycle, but we did not include moon phase in our
analysis as moon phases are associated with day, which in turn
are associated with tumor growth in the cancer mice. As such,
the effect of moon phase is subsumed in the covariate of day.

Effect of Free-Ranging on Tumor Growth
Rates
Experiment 1B involved measuring the tumor growth rates of
mice housed under standard laboratory conditions. Drawing
randomly from the same set of mice as Experiment 1A and
using the same batch of cancer cells on the same day (30 July
2020), we injected mice that were then kept in two laboratory
locations: Sede Boker (3 males and 3 females) and Beer Sheva
(5 males and 6 females). The Beer Sheva facility maintains SPF
(Specific Pathogen Free) conditions, the Sede Boker facility does
not. Because of the animal care regulations for the SPF conditions
at the Beer Sheva facilities, mice in Beer Sheva could only be
fed sterilized mouse chow pellets. Accordingly, mice in both the
Sede Boker and Beer Sheva laboratories received mouse chow
pellets (Ssnif, Mouse Breeding V1154-300, 22.5% crude protein,
5.5% crude fat, 4.0% crude fiber, 6.0% crude ash, 1.0% calcium,
0.7% calcium). As in Experiment 1A, we quantified tumor volume
twice a week, weighed animals weekly, and, at the conclusion of
the experiment, weighed final tumor masses.

We analyzed the tumor growth rates in a similar manner
as the GUD data. We summed the tumor volume from both
sides of a mouse and then under the assumption of exponential
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tumor growth, we took the natural logarithm of this value as our
dependent variable. For the ANCOVA of the tumor growth rates
measured during Experiment 1 (the vivarium and the concurrent
laboratory trials), day was the covariate, with location (free-range
in the vivarium, Beer Sheva lab, and Sede Boker lab) and sex (male
and female) as group variables.

Effect of Diet on Tumor Growth Rates
In comparing tumor growth rates between mice of Experiments
1A and 1B there is a confounding of diet and location. To test
for effects of a diet of millet or mouse chow pellets on tumor
growth rates, we ran Experiment 2 in the laboratory in Sede Boker
where both millet and mouse chow pellets were permitted. We
began by giving each individual in two groups of mice cancer
as described above. One group then received millet ad lib, the
other mouse chow ad lib. Each group consisted of 6 males and
6 females for a total of 24 mice. We injected mice with cancer
cells as described above on November 30, 2020. We weighed mice
weekly and measured tumor volume twice a week. We ended the
experiment on January 4, 2021, euthanized individual mice, and
then resected, weighed, and preserved tumors.

For tumor growth rates in response to diet, we used the
same ANCOVA as with tumor growth in the three locations, but
with the adjustment that diet (millet and mouse chow pellets)
substituted for location as a group variable. While seemingly
appealing, we did not analyze tumor growth rates from both
experiments together, as each of the two experiments used a
different batch of cultured cancer cells, and batch effects can be
significant (e.g., Karp et al., 2020). The same batch was used for
all mice within an experiment.

For all experiments, we also used ANCOVA (one for each
experiment) to track changes in body mass and the effects of
the group variables, including housing conditions, cancer vs.
cancer-free, and diet, as appropriate.

RESULTS

Effects of Microhabitat, Sex, and Cancer
on Foraging Behaviors
The ANCOVA of the GUDs in Experiment 1A provided a good
fit to the data (r2

= 0.73). As expected, mouse GUDs were
significantly and substantially higher in the open [4.23 ± 0.08
(s.e.) g] than bush [1.72± 0.06 (s.e.) g] microhabitat [MS= 802.1,
F(1, 496) = 1075.2, p < 0.001]. Furthermore, males had
significantly lower GUDs than females: 2.48 ± 0.08 (s.e.) g vs.
3.48 ± 0.11 (s.e.) g [MS = 135.3, F(1, 496) = 181.4, p < 0.001].
Note that males are larger in body mass than females. Males
might also be more territorial than females (more often found
alone in nest boxes rather than in groups), although we did not
quantify this. Overall, males harvested 5.63 g of millet per day per
individual, and females harvested 4.63 g per day per individual.
Rather than consuming all of this, the mice can be expected to
have cached some. Most notably, there is a significant interaction
effect between microhabitat and sex (Figure 2) showing that
the higher GUDs of females relative to males was much more
pronounced in the open than bush microhabitat [MS = 48.5,

FIGURE 2 | Giving-up densities (GUD) of mice in the vivarium according to
microhabitat (bush and open) and sex. Females (F) have lower GUDs than
males (M). All mice had lower GUDs in the bush than the open. Error bars
represent standard errors of the means.

F(1, 496) = 65.0, p < 0.001]. This result suggests that females are
warier of the risky open areas than males (see Kotler et al., 1988,
1991 for experimental evidence showing that differences in GUDs
across microhabitat is caused by predation risk).

There were significant temporal trends in GUDs during the
experiment, during which time the tumors were growing in the
mice with cancer. Overall, GUDs tended to decline with time
at a rate of −0.017 g per day [MS = 10.28, F(1, 496) = 13.78,
p < 0.001]. There was a significant microhabitat by cancer
treatment by day effect [MS = 4.12, F(1, 496) = 5.53, p < 0.02],
showing that a growing tumor burden influenced foraging
behavior. In the bush microhabitat, the GUDs of cancer mice
changed little with time (overall rate of increase of 0.001 g per
day) while that of cancer-free mice increased substantially with
time (0.035 g per day). In the open microhabitat, the GUDs of
both cancer and cancer-free mice declined similarly with time
(−0.050 and −0.057 g per day, respectively), with cancer mice
tending to have higher GUDs than cancer-free mice. While all
mice began to shift more of their foraging toward the open
microhabitat with time (suggesting perhaps a growing sense of
safety), this trend was stronger for the cancer-free mice than
for the cancer mice. This suggests possibly greater divergence in
wariness over the course of the experiment by the cancer mice as
their tumor burdens increased.

There was a significant cancer treatment by sex by day effect
on GUDs [MS= 5.17, F(1, 496) = 6.925, p < 0.01; Figures 3A,B).
For females, cancer and cancer-free mice saw a decline in GUDs
with time, though more strikingly for females with cancer than
those without (−0.034 and −0.013 g per day, respectively). For
males, declines in GUDs with time were less pronounced than
for females, with less difference between cancer and cancer-free
males (−0.016 and −0.009 g per day, respectively). There was a
significant cancer treatment by sex by microhabitat by day effect
[MS= 4.09, F(1, 496) = 5.485, p < 0.02]. It shows that in the open
microhabitat all four groups of mice (cancer treatment by sex)
exhibited nearly identical daily declines in GUDs (Figure 3B),
with GUDs for cancer mice being higher than cancer-free mice.
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FIGURE 3 | Giving-up densities (GUDs) of mice in the vivarium according to cancer treatment, sex, and date. (A) Bush microhabitat. (B) Open microhabitat. Error
bars represent standard errors of the means.

This is suggestive of higher foraging costs for cancer mice. But
in the bush microhabitat, there were striking divergences in
daily trends, with cancer-free males and females showing sharp
increases in GUDs with time, cancer males exhibiting a smaller
increase in GUDs with time, and cancer females showing a
temporal decline in daily GUDs (Figure 3A). By the end of the
experiment, cancer males achieved lower GUDs in the bush than
cancer-free males. This suggests increasing energy demands for
cancer mice relative to cancer free mice.

Effect of Free-Ranging on Tumor Growth
Rates
In Experiment 1 (A and B), both sex and housing conditions
(free-range, Sede Boker facility, and Beer Sheva facility)
influenced tumor growth rates. Mice at all locations started
the experiment with similar tumor volumes (Figure 4B).
Furthermore, the initial tumor volume was larger for males than
females and remained so throughout the experiment [Figure 4A;
M.S. = 9.483, F(1, 256) = 55.6, p < 0.001]. Tumor volume
increased at a rate of 9.4% per day during the experiment
[M.S. = 127.7, F(1, 256) = 748.7, p < 0.001], with similar rates
for males and females. Finally, tumor growth rates differed in
the three locations, with similarly high rates in the laboratory of
10.5% per day in Beer Sheva and 9.7% per day in Sede Boker,
and a much lower rate of 8.0% per day in the free-range vivarium
mice [Figure 4B; M.S. = 1.165, F(1, 256) = 6.83, p = 0.001]. The
growth rate differences between caged facilities and the free-range
vivarium matters. Exponential growth rates of 10% vs. 8% per day
will result in a tumor that is 80% larger after 30 days (20-fold vs.
11-fold increase).

In terms of body mass, males were significantly larger than
females in Experiment 1 (A and B) (23.7 vs. 19.0 g, respectively,

at day zero). For free-ranging mice in the vivarium, those with
cancer declined in body mass over time (−0.024 grams per day)
while those without saw little or no change (−0.006 g per day)
[ANCOVA: significant interaction of cancer treatment with day,
M.S. = 30.89, F(1, 198) = 6.73, p < 0.01)] (Figure 5A). This
occurred despite the mice with cancer increasing their daily food
harvest relative to the cancer-free mice over time. In a separate
analysis, for mice with cancer, those in the laboratory increased
in body mass over the 31 days of the experiment (0.06 g per
day), while as noted, those in the vivarium declined in mass
with time [ANCOVA: significant interaction of location by day,
M.S. = 30.89, F(1, 198) = 6.73, p < 0.01] (Figure 5B). Although
males are heavier than females, the location specific trends were
similar for both sexes (Figure 5A).

During Experiment 1A, one cancer mouse male was found
dead in the vivarium on 17 August and another cancer mouse
male on 20 August. Each was replaced the following day by a
cancer mouse male kept in the laboratory for such purposes.
In addition, a cancer mouse female and a cancer-free female
were killed on 13 August by a snake that managed to enter the
vivarium. The snake was removed and released, and the mice
were replaced on August 14th.

Effect of Diet on Tumor Growth Rates
In Experiment 2 conducted in the Sede Boker facility, diet
significantly affected tumor growth rates. As before, the initial
tumor volume was larger for males than females [M.S. = 0.932,
F(1,210) = 6.058, p < 0.02], and thereafter remained larger as
tumors in males and females grew at the same rate (Figure 6A).
Tumors grew at a rate of 9.3% per day [M.S. = 156.14,
F(1,210) = 1015.7, p < 0.001]. Diet did not affect initial mass,
but did influence tumor growth rates. Mice fed on millet had
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FIGURE 4 | Tumor size (cm3) in the vivarium experiment and concurrent laboratory experiment over time (days). (A) Effect of sex (F, female; M, male). (B) Effect of
Location (BS laboratory, laboratory in Beer Sheva with SPF conditions; SB laboratory, laboratory in Sede Boker; Vivarium, large, outdoor vivarium in Sede Boker).
Error bars represent standard errors of the means.

FIGURE 5 | Body mass (g) of the mice in the vivarium experiment over time (days). (A) Effects of sex (F, female; M, male) and location (Vivarium, Laboratory).
(B) Effects of sex (F, female; M, male) and cancer treatment (Yes, cancer; cancer-free). Error bars represent standard errors of the means.

significantly higher tumor growth rates than mice eating mouse
chow pellets [M.S. = 1.385, F(1, 210) = 9.007, p = 0.003] at 9.8%
per day and 8.8% per day, respectively (Figure 6B). After 30 days,
this difference leads to tumors that are 35% larger in mice fed on
millet than those fed on mouse chow.

In terms of body mass in Experiment 2, like the first
experiment, males were larger than females [23.7 ± 0.4 (s.e.) g
vs. 18.9 ± 0.4 (s.e.) g, respectively, at day zero], and body mass
increased over time for both diet treatments (0.089 g per day),

with a strong trend of mice fed on millet gaining mass at a faster
rate than those fed on mouse chow pellets (0.122 g per day vs.
0.055 g per day, respectively) [ANCOVA: interaction of diet with
day, M.S.= 11.67, F(1, 140) = 3.45, p= 0.065] (Figure 7).

For both Experiments, the final mass of a tumor correlated
tightly with the final measurement of tumor volume [Pearson’s
correlation of 0.932 and 0.882 for the first (n = 67) and second
(n = 48) experiments, respectively]. Recall that each cancer
mouse had two tumors, one on its left flank and one on its right.
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FIGURE 6 | Tumor size (cm3) in the laboratory diet experiment over time (days). (A) Effect of sex (F, female; M, male). (B) Effect of diet (Millet, mice fed on millet
seeds; Pellets, mice fed on mouse chow pellets). Error bars represent standard errors of the means.

FIGURE 7 | Body mass (g) of the mice in the diet experiment for cancer mice fed a diet of either Millet or Mouse Chow Pellets. Error bars represent standard errors
of the means.

At the end of the experiment there was some to no correlation
across mice between the tumors on the right and left flanks
[Pearson’s correlation of 0.526 and −0.017 for the first (n = 34)
and second (n= 24) experiments, respectively].

DISCUSSION

Our goals were to: (1) determine whether one could conduct
experiments with a mouse model under free range conditions,
(2) measure effects of cancer burden on foraging metrics,

(3) compare tumor growth rates with laboratory housed mice,
and (4) begin to sort out confounding factors such as diet.

Effects of Microhabitat, Sex, and Cancer
on Foraging Behaviors
With respect to (1), laboratory mice, despite their pedigree, when
released into the vivarium behaved as expected of wild rodents
(e.g., Kotler et al., 1991). They sought shelter, they explored their
environment, they searched for food and water, they dug through
sandy substrates to harvest the millet seeds, and they traded off
food and safety when making foraging decisions. They responded
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strongly to the risk factor of microhabitat and recognized the
open microhabitat as intrinsically more dangerous than sheltered
areas under bushes as reflected in their GUDs. Thus C57BL/6
mice free-ranging in the vivarium show reasonable behavior that
is similar to wild rodents and so offer a potential mouse model for
more complex and complete lifestyles.

With respect to (2), cancer in the C57BL/6 laboratory mice
gave rise to measurable changes in foraging patterns. Over time,
free-range mice with cancer harvested more food yet saw a loss
in body mass relative to those without cancer. Based on models
of patch use and foraging economics, we interpret this as the
cancer mice having a greater need for energy (higher marginal
value of energy) or perceiving less to live for (lower survivor’s
fitness) as their tumors grew (Brown, 1992; Brown et al., 1997).
Furthermore, mice with cancer became warier relative to the
cancer-free mice. With time, mice with cancer harvested a greater
and greater fraction of their food from the bush (safe) than
open (risky) microhabitat relative to the cancer-free mice (note:
both groups showed a general temporal tendency of harvesting
more from the open).

Upon approaching a threshold tumor size, the mice were
euthanized according to standard animal care protocols (for
consistency, we euthanized all mice in Experiment 1 at the
same time even though tumors were substantially smaller in
the free-range than facility-housed mice). At that 30-day point,
the free-range cancer mice continued to be highly active and
forage extensively. They were not symptomatic to the extent
that their foraging aptitudes were impaired or that they were
debilitated with cachexia (body wasting). Presumably, had the
tumors continued to grow, at some point the cancer mice’s GUDs
would have increased, either through an increase in foraging time
or from the symptomatic effects of the tumor burden.

Regarding cancer in natural populations, the increased
foraging effort and weight loss seen in the free-range cancer mice
might render such animals less successful at reproducing and
competing for food, and more susceptible to predators. Overall,
we would thus expect cancerous animals to disappear more
rapidly from the population. Thus, we might expect cancer to be
rarely observed in natural populations (Ewald and Ewald, 2017;
Madsen et al., 2017) even beyond the direct mortality caused by
the disease itself.

Because cancer induces changes in foraging metrics (GUDs
and habitat selection) and because cancer induces changes
in body condition, this may allow for an animal model for
evaluating quality of life. With the free-ranging mice, one can
objectively define critical points such as when GUDs or habitat
choices begin to change mice with growing tumor burden relative
to mice without. At what level of cancer progression do GUDs
begin to increase and effective foraging cease? How quickly do
these change manifest with cancer cell lines that vary in metastatic
potential and potential to induce cachexia? Finally, how does
therapy alter foraging behavior? We suggest that the vivarium-
based system described here when coupled with various types of
cancer and targeted therapies can provide quantitative metrics of
quality of life.

We envisage that we can investigate quality of life issues
quantitatively using behavioral indicators (i.e., GUDs) by giving

laboratory mice the appropriate cancer and the appropriate
therapy drug regime in a full factorial design. The experimental
design would consist of: the baseline for healthy mice (cancer-
free, no therapy drugs; expectation of low GUDs); the negative
effects of cancer on quality of life (plus cancer, no therapy
drugs — this experiment; expectation of first lower, and
then higher GUDs that track the energetic demands and the
deleterious impact of cancer); the negative effects of the therapy
on quality of life (cancer-free, plus therapy drugs; expectation
of higher GUDs reflecting the adverse effect of the therapy
on quality of life); and the combined effect of both cancer
and therapy drugs in potentially increasing the quality of life
(plus cancer, plus therapy drugs; therapy worthwhile so long
as GUDs are lower than for cancer alone or therapy alone).
The behavioral indicators can then be linked to physiological
indicators as well. The mice without cancer reveal in their GUDs
how they would like to go about their foraging (among the
most significant activities for a non-human mammal) vs. how
they do go about their business when burdened with cancer
and/or therapy.

Effect of Free-Ranging on Tumor Growth
Rates
With respect to (3), we were able to demonstrate significantly
lower tumor growth rates in the free-range mice relative to those
housed in laboratory facilities. This is an intriguing result, that
while not definitive in itself, shows the opportunity to track the
growth of tumors in animals experiencing different ecological
settings (Loizides et al., 2015). Differences could have been due
to a multitude of factors including activity levels, stress, food
intake, diet, and daily vicissitudes of weather and other stimuli, all
factors known to or likely to influence tumor growth rates. While
beyond our scope and resources, the present experiments show
promise. Additional experiments could include mice housed in
cages and placed in the vivarium so as to be exposed to the daily
and nightly changes in climate and soundscape. Mice could be
allowed to free-range in the vivarium, but have effort-free, ad lib
access to food and water as is typical in the laboratory and some
vivarium experiments, while mice in laboratory cages (sufficiently
large, but still much smaller than a quadrant of the vivarium)
would obtain their food from the seed trays used in our vivarium
experiments. These experiments and more become intriguing
and relevant in light of our results.

Regardless of husbandry, tumors were larger in males than
females (Clocchiatti et al., 2016; Kim et al., 2018). The 4NQO
cancer cell line was derived from a male mouse (Badarni et al.,
2019). Its establishment at a larger size in males than females
may reflect a boost from androgens (e.g., Birrell et al., 1995;
Trigunaite et al., 2015). Beyond that, in humans, males and
females often show different incidences of cancer, different
outcomes from therapy, and different mortality rates (Clocchiatti
et al., 2016). These may be due to different sensitivities of
the cancer cells to estrogens and androgens, the role of sex
chromosomes (Birrell et al., 1995), or the manner in which
androgens suppress the immune system (Trigunaite et al., 2015),
among other possible causes.
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Effect of Diet on Tumor Growth Rates
With respect to (4), we began to untangle the effects of diet and
free-ranging on tumor growth rates. In the laboratory, we showed
that tumor growth rates were higher for mice fed on millet than
those fed on laboratory chow. This result does begin to rule out
the role of diet in explaining why the free-range mice (fed millet)
exhibited slower tumor growth rates than the mice housed in the
laboratory facilities (fed on chow). As future directions, seeds or
pelletized food can be varied or experimentally manipulated to
have different nutritional compositions (Nersesian et al., 2011).
One could then observe the effects of different foods on the
foraging behaviors (e.g., Schmidt et al., 1998; Shrader et al., 2008)
and tumor growth rates of the free-ranging C57BL/6 or even
other mice strains relevant to cancer research.
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