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Editorial on the Research Topic

Neuroimaging Biomarkers and Cognition in Alzheimer’s Disease Spectrum

Subjective cognitive decline (SCD) and mild cognitive impairment (MCI) are well recognized to
be at high risk of converting to Alzheimer’s disease (AD) and act as a clinical continuum of the
AD spectrum. Neuroimaging is applied as a tool to figure out both anatomical and functional
alterations in the AD spectrum and may further reveal the pathophysiologic mechanism of AD.
This topic aimed to recruit worldwide articles focusing on neuroimaging biomarkers and cognition
in the AD spectrum. A total of 30 contributions from 168 different authors have been included as
of January 2022.

STRUCTURAL AND METABOLIC ALTERATIONS CORRELATED

WITH COGNITION IN THE AD SPECTRUM

Voxel-based morphometry (VBM) is a useful tool for detecting structural alterations in the
preclinical AD spectrum. Zhang J. et al. assessed 31 VBM studies in amnestic MCI (aMCI) patients,
discovering the highly robust deterioration in the left amygdala and right hippocampus. This
indicates that specific gray matter (GM) atrophy may serve as a potential biomarker for early AD
diagnoses. GM atrophy in the hippocampus and its subfield (HippSub) has long been recognized
as typical lesions of AD. Several articles in our Research Topic focus on alterations in hippocampal
volume. For example, Hansen et al. discovered alterations in HippSub volume in AD, but not in
bipolar disorder (BD), or in major depressive disorder (MDD). This study reinforced the notion of
different neural mechanisms in hippocampal degeneration. Except for HippSub volumes, atrophy
in other brain regions has been observed to be correlated with cognitive dysfunction. Chen Q.
et al. discovered reduced basal forebrain (BF) volume, especially in the Ch4p subfield in SCD
patients compared with healthy controls, which was further associated with spatial disorientation.
This indicates a structural basis for allocentric disorientation independent of hippocampal atrophy
in SCD patients. To note, there is an increasing number of studies focusing on subdivided brain
regions. We may expect that precisely subdividing regions could assist in improving the accuracy
of locating preclinical AD lesions and further exploring the essence of disease changes.
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White matter (WM) fiber bundles communicate with various
brain regions and serve as important structural components of
the brain. AD progression leads to potential damage to WM.
One typical pathological change is white matter hyperintensities
(WMHs). WMH reflects demyelination, which is a deterioration
of neural pathways caused by decreasing blood flow and/or
disease. WMHs have been widely observed in dementia such
as AD. At the same time, diffusion tensor imaging (DTI) is
used for detecting water molecule diffusion and is sensitive
in white matter atrophy detection. Fractional anisotropy (FA),
mean diffusivity (MD), and relative anisotropy (RA) are
recognized as common DTI metrics. Diaz-Galvan et al. assessed
cerebrovascular disease by applying WM signal abnormalities
(WMSA) and MD. They further combined correlation, multiple
regression, and mediation analyses to investigate the association
between depressive symptomatology, cerebrovascular disease,
and SCD. Likewise, several contributions of WM pay special
attention to lesions in specific brain regions. Srisaikaew et al.
focused on disruption of fornix integrity and fiber length in
non-amnestic MCI (naMCI) compared to healthy controls, and
its association with cognition. Based on their study results, the
authors suggested that fornix fiber tract length played a crucial
role in sustaining executive function in naMCI patients. To
summarize, various studies focus on WM and GM separately.
Still, since GM and WM together constitute the major part of
the cerebrum, the internal relationship of atrophy between GM
and WM is worth pondering, which may reveal the in-depth
deteriorative and compensatory mechanism of the AD spectrum.

As for micro-alterations, fluorodeoxyglucose-B-positron
emission tomography (FDG-PET) is utilized to reveal glucose
metabolism in patients of the early AD spectrum. By GM
volume analyses and glucose metabolism analyses, Lee S.-Y.
et al. announced that tinnitus may lead to abnormal metabolism
and altered cerebral architecture in MCI patients, providing
insights into the combination of micro (metabolism) and macro
(cerebellar structure) alterations to reveal AD pathology. Aβ and
tau pathology are well established as AD typical biomarkers.
By conducting partial correlation analyses under different
amyloid statuses, Ge et al. calculated the relationship between
tauopathy/volume of the hippocampal subfields and assessment
scores. A significant decrease in hippocampal volume and
increase in tau deposition of hippocampal subfields were
observed in the Aβ-positive group compared to the negative one,
indicating the feasibility of applying neuroimaging methods to
explore traditional biomarkers.

FUNCTIONAL ALTERATIONS, NETWORK

CONNECTIVITY, AND ENTROPY MAPPING

CORRELATED WITH COGNITION IN THE

AD SPECTRUM

Resting-state functional magnetic resonance imaging (rs-fMRI)
is widely applied for AD early detection by means of functional
connectivity (FC). Wang S. et al. applied data from the Nanjing
Brain Hospital-Alzheimer’s Disease Spectrum Neuroimaging
Project (NBH-ADsnp) database (Dr. Jiu Chen serves as the

principal investigator of NBH-ADsnp) to conduct FC in insular
subnetworks for SCD and aMCI classification. Amplitude
of low-frequency fluctuations (ALFF) can be utilized for
measuring low-frequency oscillations of the blood-oxygen-level-
dependent (BOLD) signal and localize altered spontaneous
brain activities. Zhang X. et al. looked into previous studies
on ALFF and fractional ALFF (fALFF) in amnestic and
vascular MCI patients, suggesting the possibility of applying
ALFF/fALFF for distinguishment. Except for FC and ALFF, other
assessments such as regional homogeneity (ReHo), etc. can reflect
neuronal activities.

Minor alterations pile up and eventually lead to the
dysfunction of network connectivity. Many contributions in our
Research Topic focus on brain networks. Sheng et al. conducted
graph theory analysis to explore altered GM network metrics
among healthy controls, MCI patients, and AD patients. Their
study provided insight into the association between cognitive
impairment and brain structural network compensation. To
reveal executive function (EF) alterations, Liu et al. calculated
fALFF and FC in an executive control network (ECN) and
examined the relationship between altered fALFF or FC and EF
composite score, uncovering the convergence and divergence
in the MCI-high EF group and MCI-low EF group. Moreover,
Lee P.-L. et al. suggested that the posterior cingulate cortex
(PCC)-synchronized degeneration network (SDN) is spatially
correlated with patterns of the GM atrophy rate, which is in
better association with the AD spectrum than hippocampus-
SDN. These contributions uncovered the deterioration and
compensation of preclinical AD correlated to cognitions under
diverse brain networks, which may also assist in revealing disease
mechanism and progression.

Progressive brain deterioration leads to increasing brain
entropy (BEN). In order to characterize BEN in AD and test
the inverse-U-shape BEN model, Wang Z. et al. compared BEN
between AD and normal aging, and further correlated BEN with
age, education, etc. Abnormal decreasing BEN was discovered in
association with severe cognitive impairment and daily function
disability in an AD group, indicating an inverse-U trajectory of
BEN evolution when normal aging progresses into AD dementia.

POTENTIAL CLASSIFICATION TOOLS FOR

THE AD SPECTRUM

Optimizing classification tools for the early AD spectrum has
always been a pursuit for researchers in this field. Research
is conducted mainly by applying machine learning, pattern
recognition, logistic regression, and deep learning strategy.
For example, by integrating altered rCBF, ALFF, and ReHo,
Zhang Q. et al. established a support-vector classifier model
of machine learning to classify patients of the AD spectrum
from HC. Except for applying various biomarkers, Wang S.-H.
et al. proposed an Alzheimer’s Disease VGG-Inspired Attention
Network (ADVIAN) to better identify AD. Some researchers
also chose to optimize the existing models. Du et al. suggested
that anisotropy of anomalous diffusion improved the accuracy
of classifying AD in a novel fractional motion model. These
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studies cast light on the improved strategy of AD diagnoses.
Still, more effort is needed for establishing AD diagnostic
models based on the proper combination of stable biomarkers,
which are accurate, convenient, and economical enough for
clinical use.

POTENTIAL PREVENTION STRATEGY FOR

THE AD SPECTRUM

Two other contributions focusing on intervention are included
in our Research Topic. To measure the effect of aerobic
exercises, Yu et al. examined hippocampal volume, temporal
meta-regions of interest (ROI) cortical thickness, WMH volume,
and network failure quotient (NFQ). They further performed
correlation analyses between 6- and 12-month changes of
MRI biomarkers and the AD Assessment Scale-Cognition
(ADAS-Cog). The results revealed that hippocampal volume
and temporal meta-ROI cortical thickness are slightly reduced
only during the intervention period. By applying probabilistic
tractography and voxel-based morphometry, Kim G.-W. et al.
discovered that no significant changes in thalamo-cortical
WM connectivity, cortical thickness, or GM volume exist
between MCI patients with/without donepezil treatment. A
reliable intervention strategy is urgently needed for slowing
down the procession of AD. Thus, carrying out relevant
longitudinal research is a necessity. Through structural and
functional alterations and correspondent clinical symptoms,
these two studies assessed the treatment effect of aerobic
exercises and donepezil for preclinical stages of AD. This
suggests that potential neuroimaging biomarkers can be
further applied to evaluate the impact of diet, lifestyle
intervention, and medication on AD progression. At the same
time, the combination of multimodal interventions may have

superimposed therapeutic effects, which is also worthy of
researchers’ attention.
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Brain Entropy Mapping in Healthy
Aging and Alzheimer’s Disease
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United States

Alzheimer’s disease (AD) is a progressive neurodegenerative disease, for which aging
remains the major risk factor. Aging is under a consistent pressure of increasing
brain entropy (BEN) due to the progressive brain deteriorations. Noticeably, the brain
constantly consumes a large amount of energy to maintain its functional integrity, likely
creating or maintaining a big “reserve” to counteract the high entropy. Malfunctions of
this latent reserve may indicate a critical point of disease progression. The purpose of
this study was to characterize BEN in aging and AD and to test an inverse-U-shape BEN
model: BEN increases with age and AD pathology in normal aging but decreases in the
AD continuum. BEN was measured with resting state fMRI and compared across aging
and the AD continuum. Associations of BEN with age, education, clinical symptoms,
and pathology were examined by multiple regression. The analysis results highlighted
resting BEN in the default mode network, medial temporal lobe, and prefrontal cortex
and showed that: (1) BEN increased with age and pathological deposition in normal aging
but decreased with age and pathological deposition in the AD continuum; (2) AD showed
catastrophic BEN reduction, which was related to more severe cognitive impairment and
daily function disability; and (3) BEN decreased with education years in normal aging,
but not in the AD continuum. BEN evolution follows an inverse-U trajectory when AD
progresses from normal aging to AD dementia. Education is beneficial for suppressing
the entropy increase potency in normal aging.

Keywords: resting state fMRI, entropy, pathology, reserve, AD, MCI

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease that has impacted millions of elderly
people but still remains incurable (Ferri et al., 2005; Reitz and Mayeux, 2014). Although
AD has been well characterized by AD pathology and clinical symptoms, a major barrier
to research progress is the unclear mechanism for how and when normal aging progresses
into AD dementia (Kumar and Singh, 2015; Mehta and Yeo, 2017) and why AD symptoms
often emerge many years later than AD pathology. This pathology vs. symptom discrepancy
(Jack et al., 2010; Jack and Holtzman, 2013) suggests that there may exist a reserve of brain
function according to the seminal ‘‘cognitive reserve’’ (CR; Stern, 2006; Stern et al., 2018)
model. This reserve may compensate brain damage–induced functional abnormalities in
normal aging but fails to do that after disease conversion. To characterize the brain function
reserve, we need a more tangible proxy. One candidate is the resting-state brain activity
which matches the latent function reserve in two perspectives: first, it is an ongoing process
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non-specific to any overt brain function; second, it has been
postulated to play a role in brain function facilitation (Raichle
et al., 2001; Raichle and Gusnard, 2002; Raichle, 2011). Resting-
state fMRI (rsfMRI) represents the most widely used tool for
studying resting brain activity and has been used to assess
neural correlates of brain reserve through the inter-regional
functional connectivity (FC) analysis (Arenaza-Urquijo et al.,
2013; Bozzali et al., 2015; Marques et al., 2016; Franzmeier
et al., 2017; Li et al., 2020). An overall picture revealed by these
studies is that higher CR measures are related to stronger FC
in distributed brain regions including the default mode network
(DMN) area and weaker FC in other restricted focal regions.
Because FC is defined by the inter-regional signal correlation in
the seed-based FC (Biswal et al., 1995) or the associations to a
common temporal fluctuation pattern in the spatial independent
component decomposition (Calhoun et al., 2001; Hyvärinen
et al., 2001; Beckmann and Smith, 2004), it does not tell anything
specific to regional brain activity.

In this study, we proposed entropy of each local voxel
as a regional proxy of brain reserve. Entropy is a physical
measure for a dynamic system with high entropy indicating
less order and more irregularity. It may be informative for
delineating the aforementioned AD pathology vs. symptom
discrepancy because aging is known to have progressive
brain deteriorations (Hayflick, 2004; Drachman, 2006) which
inevitably increase the brain entropy. High entropy corresponds
to low temporal coherence, which is detrimental to brain
functional organization and has to be counteracted to keep the
normal brain functionality. Because brain reserve is defined by
brain function facilitation and compensation, assessing entropy
of functional brain activity may provide a direct outcome
measure of the latent brain reserve. In a pilot study (Wang,
2020a,b; full article under separate review) based on data from
862 healthy adults from the human connectome project (Van
Essen et al., 2013), we found that brain entropy (BEN) in
the DMN (including precuneus, bilateral parietal cortex, and
part of temporal cortex) and the executive control network
(ECN; including the dorsolateral prefrontal cortex and lateral
parietal cortex) increases with age but decreases with education
years (an indicator of cognitive reserve for compensating brain
dysfunctions) and that lower BEN inDMNand ECN is associated
with better performance of cognitive functions. These data
suggest the feasibility of BEN for characterizing the latent brain
reserve compensation outcome. Although the compensationmay
be sufficient in normal aging, they may become insufficient
when disease progresses, which can reciprocally trigger reserve
overactions, leading to a catastrophic reduction of BEN as
found in previous biophysiological recording–based AD entropy
studies (Stam et al., 2003; Jeong, 2004; Abásolo et al., 2006;
Gómez and Hornero, 2010; Mizuno et al., 2010; Yang et al.,
2013). To explain this apparent opposed entropy change pattern
in normal aging and AD, we proposed a heuristic BEN model as
shown in Figure 1. This model considers low BEN in DMN and
ECN as beneficial for normal aging because low brain entropy
corresponds to high temporal coherence which is evidenced to
be important for brain function (Buzsáki and Draguhn, 2004;
Buzsaki, 2006; Schroeder and Lakatos, 2009; Saleh et al., 2010;

Buzsáki and Watson, 2012; Henry and Obleser, 2012; Lega
et al., 2012; Thut et al., 2012; Calderone et al., 2014; Reinhart
and Nguyen, 2019). However, in AD, our model predicts a
detrimental large BEN reduction in DMN/ECN, indicating a
failure of the functional compensation role of brain reserve in
AD (Stern, 2006, 2012; Stern et al., 2018). The accumulating
brain errors or deteriorations will increase BEN and the risk
of brain dysfunction if no compensations occur. This potency,
however, can be substantially counteracted by brain reserve or
other compensatory mechanisms, resulting in a slowly increasing
and then flat topping BEN evolution curve in normal aging
(the dashed blue line in Figure 1). When the BEN increase
latency reaches a critical point where brain dysfunction cannot be
fully compensated anymore, reserve overactionmay be triggered,
leading to an apparent BEN reduction (the red solid curve in
Figure 1). When disease progresses, BEN reduction may be
accelerated further by other detrimental factors such as the
accumulation of Aβ deposition and perfusion deficits. Both Aβ

decomposition and hypoperfusion may cause or be associated
with BEN reductions through the CBF vs. brain coherence
associations: lower CBF correlates with higher brain activity
coherence (Sharbrough et al., 1973; Foreman and Claassen, 2012;
higher coherence corresponds to lower BEN).

The main purpose of this study was to assess the feasibility
of BEN as an outcome measure of the latent brain function
reserve and to evaluate the hypothetical BEN model by
leveraging the relatively large data from the AD Neuroimaging
Initiative (ADNI)1 and our recently developed rsfMRI-based
BEN mapping tool (Wang et al., 2014). The model was assessed
using the cross-sectional ADNI rsfMRI data. We hypothesized
that AD patients have lower BEN than cognitively healthy
elderlies; BEN increases with age in normal aging but not in
AD. The association of BEN to function reserve was examined
through the correlation between BEN and education, cognitive
function measures, and AD pathology measures. Education is a
main contributing factor of cognitive reserve (Stern et al., 2018).
Longer education years have been demonstrated to be beneficial
for combating cognitive impairments. In accordance with the
BEN model, we hypothesized that longer education years are
associated with reduced BEN in normal aging but not in AD. The
entire study reported in this paper is a full expansion of a small
sample-based preliminary study (Li and Wang, 2016).

MATERIALS AND METHODS

Human Subjects
All human subjects’ data included in this study were downloaded
from the ADNI database1. Reanalysis of ADNI data was
approved by institutional review boards of all participating
institutions and written informed consent was obtained from
all participants or authorized representatives. Subjects were
limited to those with rsfMRI data acquired with the traditional
gradient-echo-weighted echo-planar imaging sequence by May
2018. Full inclusion and exclusion criteria for ADNI are
described at www.adni-info.org. In brief, patients with mild

1http://www.adni-info.org
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FIGURE 1 | A hypothetical brain entropy (BEN) model for normal aging and Alzheimer’s disease (AD). The dotted line shows the latent BEN evolution trend as a
result of the aging-related accumulated brain deteriorations. The dashed line represents the actual BEN evolution curve after brain reserve compensation which
imposes negative entropy brings down the total BEN. Catastrophic BEN reduction may start at the disease conversion time due to a potential overaction of the
brain reserve.

cognitive impairment (MCI) were classified essentially in the
manner described by Petersen (2004), but were then further
divided into ‘‘early’’ and ‘‘late’’ groups (i.e., EMCI and LMCI,
respectively) based on performance on the Wechsler Memory
Scale–Revised Logical Memory II (WMS-LM). The EMCI group
was defined based on scores between the cutoff of normal and
that of the LMCI group. A total of 211 subjects whose rsfMRI
data met all QC criteria were analyzed. Detailed characteristic
information and the number of subjects in each sub-group are
listed in Table 1.

MRI Data Acquisition
Both high-resolution structural MRI data and rsfMRI data
were downloaded from the ADNI website1. The structural
images were acquired using a 3D magnetization-prepared rapid
acquisition with gradient echo T1-weighted sequence with
the following parameters: repetition time/echo time/inversion
time = 2,300/2.98/900 ms, 176 sagittal slices, within plane field of
view = 256 × 240 mm2, voxel size = 1.1 × 1.1 × 1.2 mm3,
flip angle = 9◦, bandwidth = 240 Hz/px. rsfMRI was
acquired using a gradient echo-weighted echo-planar
imaging sequence with the following acquisition parameters:
repetition time/echo time = 3,000/30 ms, number of axial
slices = 48, slice thickness = 3.3, flip angle = 80◦, within
plane field of view = 212 × 212 mm2, and number of
timepoints = 140.

MRI Data Preprocessing
MR image preprocessing was conducted using the pipeline
included in BENtbx (Wang et al., 2014) with the following steps:
slice timing correction, motion correction, temporal nuisance
correction, spatial smoothing, inter-modality coregistration
(structural image and rsfMRI images), and spatial normalization.
These procedures were implemented in Matlab m-script.
Coregistration and spatial normalizationwere based on functions
provided by SPM (version 122); other steps were based on
custom code written by the author. The first two rsfMRI
images were excluded to allow rsfMRI signal reach the steady
state. Subjects included in the following analyses had no more
than 2 mm translational motions and no more than 2◦ of
angular motions. Subjects with mean framewise displacement
(Power et al., 2012) greater than 0.5 mm were excluded
too. Residual motions were regressed out from the rsfMRI
time series in the temporal nuisance correction step. The
Diffeomorphic Anatomical Registration Through Exponential
Lie Algebra algorithm (Ashburner, 2007) implemented in
SPM12 was used to generate a local brain template based on
all subjects’ gray matter and white matter probability maps. The
template was registered into the Montreal Neurological Institute
(MNI) standard space using a linear affine transformation.
With these two transforms, each individual subject’s rsfMRI

2https://www.fil.ion.ucl.ac.uk/spm/
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TABLE 1 | Human subject characteristics.

Diagnosis group HC SMC EMCI LMCI Alzheimer’s disease P-value

Number 54 27 58 38 34 –
Gender (M/F) 24/28 12/15 22/35 24/14 16/18 0.253
Age (mean ± SD, range) 75.3 ± 6.96, 65–95 72.44 ± 5.49, 65–83 71.53 ± 6.93, 56–89 71.89 ± 8.26, 57–88 72.47 ± 7.06, 56–87 0.082
APOE ε4 allele 30.00% 29.63% 45.61% 35.89% 70.59% 1.9E−03
MMSE (mean ± SD) 27.56 ± 5.71 28.78 ± 1.48 25.93 ± 7.94 26.59 ± 6.12 22.21 ± 4.47 1.59E−4

P-values were assessed due to significant differences among diagnosis groups and were computed using one-way ANOVA (except for gender using χ2 test). HC, healthy control;
SMC, significant memory concern; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; MMSE, Mini-Mental State Examination; values in bold signify p < 0.05.

was mapped into the MNI space for group-level analysis. BEN
calculation was performed for each voxel of the preprocessed
rsfMRI data using two iterative processes. Given the rsfMRI
time series of any voxel, a sliding window with a length
of m consecutive timepoints was used to extract all possible
data segments as illustrated by the colored rectangles overlaid
on the time series and the associated arrows. For the i-th
data segment, its Chebyshev distance to another segment was
calculated. If the distance was smaller than the cutoff threshold
r, it was considered as a ‘‘match’’. r and m were selected to
be r = 0.6 and m = 3 as evaluated in Wang et al. (2014).
The same procedure was iterated until the seed segment was
compared with all other segments and the total number of
matches was recorded as Bm

i (r) and the sum of Bm
i over all

segments was recorded by Bm
i (r). Next, the sliding window

length was increased by 1 to be m + 1. The aforementioned
matching process was repeated to get the total number ofmatches
A(m + 1)(r) for all segments with a length of m + 1. Following
the Sample Entropy formula, entropy was finally calculated as
the logarithm of the ratio of Bm(r)/A(m + 1)(r). This process
is theoretically equivalent to calculating the negative natural
logarithm of the conditional probability that two temporal
segments of the entire data time series similar for m points
remain similar for m + 1.

Cerebrospinal Fluid (CSF) Biomarker
The amyloid-β 1–42 peptide (Aβ1–42) and total tau (t-tau)
measured in the baseline CSF samples were obtained from the
ADNI database1. Sample acquisition and quality control of CSF
were performed as described previously (Shaw et al., 2009). Mean
and SD of t-tau/Aβ1–42 ratio were calculated, while subjects with
greater or smaller than 6 SD from the mean value were regarded
as outliers. Only one subject was out of this range and was
subsequently excluded from the following analysis.

Statistical Analysis
An ANOVA model was used to examine BEN difference
between controls and patients at different disease stages. Disease
diagnosis vs. pathology interactions weremodeled. Age, sex, race,
and education were included as variables. Cross-sectional BEN
difference and age, sex, and education effects were assessed using
ad hoc contrast analysis as mentioned previously. Disease vs.
age, sex, and education interactions on BEN were examined.
Voxelwise multiple regressions were used to assess age, sex,
and education effects and the associations of BEN to delayed
recall (for memory), memory test results in the Rey Auditory
Verbal Learning Test (RAVLT; Schmidt, 1996), the total score

of Functional Activity Questionnaire (FAQ; Pfeffer et al., 1982;
Marshall et al., 2015), and the Mini-Mental State Examination
(MMSE). The rationales for choosing these neuropsychological
measures are memory dysfunction is a hallmark of clinical AD
symptoms and is widely assessed by delayed recall and RAVLT;
AD patients present characteristic daily function impairment
which can be measured by FAQ; MMSE is the most often
used short screening tool for measuring the overall cognitive
impairment. Sex, age, and education level were included as
nuisance covariates in these regression models. Additional
multiple-regression models were used to assess associations of
BEN vs. CSF Aβ (Aβ1–42) concentration.

Data Availability
BENtbx used in this study is available from https://www.cfn.
upenn.edu/∼zewang/BENtbx.php. ADNI data are available from
loni.usc.edu/adni. Analysis results are available from the author
by request.

RESULTS

Age difference was significant only between controls and EMCI
(p = 0.02). Figure 2 shows the one-way ANOVA results. BEN
was significantly (F-test, p < 0.05, family-wise error corrected)
different within the whole brain among the five populations
(elderly controls, significant memory concern (SMC), EMCI,
LMCI, and AD). The hot spots overlaid on the three axial image
slices in Figure 2 are the post hoc voxelwise BEN difference
between AD and controls. At p < 0.005, cluster size > 300
[AlphaSim (the updated version) corrected], AD showed reduced
BEN in MTL including hippocampus (HIPP), inferior temporal
cortex, precuneus, and parietal cortex (part of the DMN). No
BEN increase was observed across the brain in AD as compared
with controls. BEN was extracted from a voxel in left parietal
cortex as marked by the yellow dotted cross. Both the scatter plot
and the fitted curve demonstrate an inverse-U shaped transition
pattern of BEN from cognitively normal elderly controls to
AD: BEN slightly increased from controls to SMC, then to
EMCI, but quickly dropped to be below BEN of controls in
LMCI, and fell further in AD at an accelerated pace. This curve
was very similar at different voxels in DMN, PFC, and other
brain regions.

Figure 3 shows the age and education effects of BEN. Controls
showed age-related BEN increase [Figure 3A; p < 0.005, cluster
size > 200 (corrected using AlphaSim)] in precuneus, MTL,
and PFC. Education years were negatively correlated to BEN in
controls (Figure 3C). By contrast, the age effects were mostly
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FIGURE 2 | Cross-sectional brain entropy (BEN) profile identified from ADNI rsfMRI. BEN slightly increased from old controls to significant memory concern (SMC)
and then early mild cognitive impairment (EMCI), but reduced from EMCI to late mild cognitive impairment (LMCI), and then AD at an accelerated pace. The inset
figure shows the post hoc control > AD (red spots in the three image slices) BEN difference (P < 0.005, cluster size > 300 corrected). The gray curve was the fitted
line of BEN from different populations from the same position marked by the yellow cross. Color bar indicates the display window for the t-map shown in the three
image slices.

flipped to the opposite direction (a negative correlation) in
the combined patient group (SMC + EMCI + LMCI + AD;
Figure 3B) and no education effects were found in the composite
patient group at all (Figure 3D).

Figure 4 shows the results of BEN vs. AD pathology
association analyses. AD pathology was measured by CSF
Aβ1–42 peptide concentration with lower CSF Aβ meaning
higher brain Aβ depositions. Controls and patients showed
opposite BEN vs. CSF Aβ associations in nearly the same
brain regions. As CSF Aβ1–42 is inversely related to beta
amyloid depositions in the brain (Grimmer et al., 2009), the
negative CSF Aβ-BEN correlation found in controls (Figure 4A)
means BEN in DMN, MTL, lateral PFC, and visual cortex
may increase with brain beta amyloid depositions. In patients
(Figure 4B), BEN decreases with brain beta amyloid depositions.
Figure 4C shows the scatter plots for all subgroups. Controls
and SMC showed opposite BEN vs. CSF Aβ relationship
though the correlation was statistically significant only in
controls (r2 = 0.282, p = 4.3e−4) and LMCI (r2 = 0.14,
p = 0.04). Similar BEN vs. AD pathology associations were
found when we used tau/Aβ ratio or p-tau/Aβ ratio as the
pathology indicator.

Figure 5 shows the associations of BEN to cognitive and daily
functional impairment for the composite patient group. Age,
sex, and education years were regressed out. Both Figure 5A
(delayed-recall) and 5C (RAVLT) show a positive correlation
of BEN to memory function, meaning that a lower BEN in the
elucidated regions (DMN, MTL) corresponds to a more severe
memory deficit. BEN in DMN and hippocampus was positively
related to MMSE (Figure 5B), suggesting patients with more

cognitive impairments have lower BEN. Lower BEN in DMN,
temporal cortex, and PFCwas further related tomore severe daily
functional disability as measured by FAQ.

DISCUSSION

We assessed resting state BEN as a proxy for assessing the latent
brain reserve and proposed a heuristic inverse-U shape BEN
model to explain the aging-related functional brain alterations
and the pathology vs. AD symptom discrepancy. The validity
of BEN as a reserve proxy was examined by the BEN vs.
age, education, and cognitive performance association studies.
The inverse-U shape model was evaluated by comparing BEN
across normal aging and patients with different stages of disease
in the AD continuum as well as by the neurobehavioral and
pathological association analyses. The major findings are as
follows: (1) the cross-sectional analysis demonstrated that BEN
first slightly increased from normal aging to SMC and to EMCI,
but quickly fell below the BEN level of normal controls in LMCI,
and reduced further in AD with an accelerated pace; (2) BEN
presented different age and education effects in normal aging
and AD continuum. It increases with age in normal aging but
decreases with age in the AD continuum. It decreases with
education years in normal aging, but is not correlated with
education any more in the AD continuum; (3) BEN showed
totally opposite associations with CSF Aβ depositions. The
BEN vs. CSF Aβ correlation was negative in normal aging
but became positive in the AD continuum; and (4) low BEN
was correlated with more severe cognitive impairment and
daily function disability in the AD continuum. These findings
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FIGURE 3 | Age and education effects of brain entropy (BEN). Controls and patients [mild cognitive impairment (MCI) and AD] showed opposite BEN vs. age
relationship in most part of the brain (A,B). Education years correlated with reduced BEN in default mode network in controls (C), but not in patients (D). Red and
cool colors mean positive and negative correlations, respectively. Color bars indicate the display windows of the t-maps of the regression analysis.

highlighted resting BEN in DMN, MTL, and PFC, which have
been implicated in different neuroimaging-based aging and AD
studies (Ries et al., 2008; Ouchi and Kikuchi, 2012; Weiner et al.,
2013; Wang, 2016; Badhwar et al., 2017; Anthony and Lin, 2018).

These findings proved the hypothetical inverse-U shape
BEN model as depicted in Figure 1: resting BEN changed
from cognitively normal controls to AD following an apparent
inverse-U shape; BEN increases with age and pathological
depositions but decreases with longer education years in normal
aging; in the AD continuum, BEN decreases with age and is
not correlated with education anymore as the reserve-based
function compensations fail. Age had deleterious effects on BEN
(BEN increases with age), but the effects were surpassed by a
potential overaction of brain reserve after clinical observable
memory or cognitive problems emerged. Controls and patients
showed opposite age effects on BEN, which can be explained
by the substantially reduced BEN in LMCI and AD. The
lack of education effects in patients may suggest a failure of

the compensation role of BEN especially in later stages of
dementia. Education years showed effects of reducing BEN in
the cognitively normal elderly, but the effects diminished in the
AD continuum, indicating a weakening or failure of the reserve
compensation as suggested by the brain reserve literature (Stern,
2006, 2012; Stern et al., 2018). This compensation weakening
or failure was further supported by the BEN vs. behavior
correlations showing that lower BEN in DMN/MTL/PFC is
correlated to more severe cognitive impairment and daily
functional disability. The opposite BEN evolution processes in
normal controls and the disease continuum were supported by
the AD pathology association findings: higher AD pathology
deposition (reflected by lower CSF Abeta level) is associated
with increased BEN in the cognitively normal elderly, suggesting
an AD pathology–related functional deterioration in normal
aging. In contrast, the pathology–BEN association was switched
to the opposite in the AD continuum showing more brain
pathology corresponding to lower DMN/MTL/PFC BEN. This
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FIGURE 4 | Brain entropy (BEN) vs. cerebrospinal fluid (CSF) Aβ associations in panel (A) controls and (B) MCI and AD. (C) The associations for each sub-group in
precuneus. The red cross in the 4th image in panel (A) indicates the location of the precuneus region of interest. The lines in panel (C) depict the linearly fitted
associations. EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment.

pathology-related BEN reduction (rather than increase) indicates
an escalated demand of compensation triggering a reserve
overaction, which unfortunately cannot be achieved anymore.
The dramatically reduced BEN eventually leads to accelerated
functional impairments as the brain activity still needs a certain
level of entropy to keep its functional flexibility (Tagliazucchi
et al., 2012; Haimovici et al., 2013). Low entropy may also
indicate a low energy state, which is supported by the well-known
hypo-perfusion/hypo-metabolism state found in AD (Johnson
et al., 2005; Ruitenberg et al., 2005; Chao et al., 2009; Hu et al.,
2010; Chen et al., 2011; Musiek et al., 2012; Wang et al., 2013; Liu
et al., 2014; Wang, 2014; Verclytte et al., 2016; Daulatzai, 2017).

The BEN variation patterns from normal aging to the AD
continuum are consistent with our initial finding reported in
2016 (Li and Wang, 2016) and the AD hypo-entropy literature
(Stam et al., 2003; Jeong, 2004; Abásolo et al., 2006; Gómez
and Hornero, 2010; Mizuno et al., 2010; Yang et al., 2013;
Wang et al., 2017). Different from these previous studies, the
current study provided more comprehensive data regarding

the change patterns of BEN across different disease stages,
the associations of BEN to AD pathology, the associations
with age and education, and the link to clinical consequences.
The link of BEN to brain reserve was examined through its
correlation to education years, which is a widely used index
of cognitive reserve. The BEN–brain reserve association was
also evidenced by the correlation to neurobehaviors in the
patients. Although we did not find a significant correlation
between BEN and neurobehavior measures in the healthy
elderly controls, we observed significant negative correlation
between BEN and cognitive function and education years
but significant positive correlation between BEN and age in
866 young healthy adults in a article under peer review. Those
data suggest that BEN vs. neurobehavior correlation in elderly
controls may still exist but require a larger sample size to
be identified.

Brain reserve was proposed to explain the individual
difference of tolerating the pathology-induced functional
alterations (Stern, 2006, 2012; Stern et al., 2018). Because
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FIGURE 5 | Higher brain entropy (BEN) in parietal cortex, temporal cortex associated with more severe impairment of memory (A,C), cognitive (B), and daily
functions (D). Red and cool colors mean positive and negative correlations, respectively. MMSE, Mini-Mental State Examination; RAVLT, Rey Auditory Verbal
Learning Test; FAQ, Functional Activity Questionnaire.

brain reserve is non-specific to any overt brain function,
the null-hypothesis resting state activity which play a role
in function facilitation (Raichle et al., 2001; Raichle and
Gusnard, 2002; Raichle, 2006; Pizoli et al., 2011) has been
postulated to be related to brain reserve in several studies
(Arenaza-Urquijo et al., 2013; Bozzali et al., 2015; Marques et al.,
2016; Franzmeier et al., 2017; Li et al., 2020). Different from
these previous studies, the current study focused on regional
resting brain activity, which may either be the action or the
outcome of brain reserve facilitation or compensation. We chose
entropy as the proxy to characterize the neural substrates of
brain reserve because any system including human brain is
prone to errors and deteriorations which inevitably leads to
entropy increase (Finch et al., 2000; Hayflick, 2004, 2007a,b;
Drachman, 2006). Without compensation, brain activity will be
disrupted and provide no function. No matter how functional
compensation by brain reserve works (which is unknown),

the compensation outcome should be a reduction of entropy.
Another rationale for choosing BEN is that BEN is inversely
related to coherence (low BEN means high coherence) and
brain activity coherence has been shown to be fundamental
to high-order brain functions such as memory, attention,
perception, and coordination (Pesaran et al., 2002, 2008; Buzsáki
and Draguhn, 2004; Buzsaki, 2006; Womelsdorf et al., 2006;
Buschman and Miller, 2007; Gregoriou et al., 2009; Schroeder
and Lakatos, 2009; Siegel et al., 2009; Saleh et al., 2010; Hagan
et al., 2011; Buzsáki and Watson, 2012; Dean et al., 2012;
Henry and Obleser, 2012; Lega et al., 2012; Salazar et al., 2012;
Thut et al., 2012; Rigotti et al., 2013; Calderone et al., 2014;
Hawellek et al., 2016; Wong et al., 2016). Loss of temporal
coherence interrupts inter-neuronal then inter-regional
communications. Restoring brain coherence can therefore
fix the related brain dysfunctions. For example, a recent study
showed that enhancing coherence improved memory for older
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people (Reinhart and Nguyen, 2019). However, too much
coherence (very low BEN), such as in the sedation or coma
state (Viertiö-Oja et al., 2004; Perez et al., 2019), will make the
brain too rigid, unable to form variable brain activity patterns.
This situation can happen in the AD continuum because of
the escalated compensation demand from the progressive brain
function deterioration caused by both aging and AD pathology.

Limitations exist in this study. First, these findings were
based on cross-sectional data and must be further confirmed
with longitudinal data. Second, the negative BEN vs. education
correlations seem to be contradictory to a previous large
size study showing positive correlations between BEN and
intelligence (Saxe et al., 2018). We have to note that the
suprathreshold regions between this study and Saxe et al. (2018)
did not overlap with ours mainly in the parietal cortex and theirs
in inferior frontal and temporal regions and cerebellum. In an
independent study based on 862 young healthy adults’ high-
resolution, high signal-to-noise-ratio long rsfMRI data from the
Human Connectome Project, we observed the same negative
education vs. BEN correlations in parietal cortex as well as
prefrontal cortex (Wang, 2020a,b). The consistent findings across
two different cohorts with different age ranges and different
imaging acquisition parameters prove the rigor of the negative
BEN vs. education findings. Third, although the heuristic BEN
model predicts a reserve compensation-related BEN reduction,
the rsfMRI-derived BEN represents the sum of the aging-related
BEN and the compensation-induced BEN reduction and we
cannot separate them. In other words, we cannot assess the
compensation-related BEN reduction independently. A fifth
concern is the physiological noise such as motion, cardiac,
and respiratory pulsations. Although we followed the standard
processing steps for motion correction, residual motion effects
removal, and physiological noise filtering, residual effects may
still exist. As those confounds are unlikely correlated with all
the assessed variables such as age, education, pathology, and
cognitive measures, the major BEN effects identified in this
article should be still related to neuronal events. Finally, BOLD
signal is also contributed by vascular effects. Because vascular
abnormality is a known risk factor of AD, vascular contributions
to BOLD fMRI signal may be even larger than in healthy
controls. Therefore, the observed resting BOLD fMRI-derived
BEN effects likely contained both neuronal and vascular
effects too.

In summary, rsfMRI-derived BEN provides a potential proxy
to assess the brain circuits underlying brain reserve; BEN follows
an inverse-U curve when normal aging progresses into AD. The
heuristic BEN progression model may provide a potential tool
for early detection of AD and disease modification development
given the recent evidence of that resting BEN can be modulated
using non-invasive transcranial magnetic resonance stimulation
(Chang et al., 2018; Song et al., 2018).
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Tinnitus is a conscious auditory perception in the absence of an external stimulus.
Despite previous reports of a recognized association between tinnitus and cognitive
deficits, the effects of tinnitus on functional and structural brain changes associated
with cognitive deficits remain unknown. We aimed to investigate the changes in glucose
metabolism and gray matter (GM) volume in subjects diagnosed with mild cognitive
impairment (MCI) depending on tinnitus. Twenty-three subjects were subclassified into
MCI with the chronic tinnitus (MCI_T) and MCI without tinnitus (MCI_NT) groups.
Encouraged by the identification of neural substrates associated with tinnitus and
cognitive deficits, we correlated the extent of tinnitus severity with the changes in
glucose metabolism and GM volume and conducted a glucose metabolic connectivity
study. Compared to the MCI_NT group, the MCI_T group showed significantly lower
metabolism in the right superior temporal pole and left fusiform gyrus. Additionally,
the GM volume in the right insula was markedly lower in the MCI_T group compared
to the MCI_NT group. Moreover, correlation analyses in metabolism or GM volumes
revealed specific brain regions associated with the cognitive decline with increasing
tinnitus severity. Metabolic connectivity analysis revealed that MCI_NT had markedly
strengthened intra-hemispheric connectivity in the frontal, parietal, and occipital regions
than did MCI_T. Furthermore, MCI_NT showed a strong negative association between
the parietal and temporal and parietal and limbic regions, but the association was
not observed in MCI_T. These findings indicate that tinnitus may cause metabolic and
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structural changes in the brain and alters complex inter- or intra-hemispheric networks
in MCI. Considering the impact of MCI on accelerating dementia, these results provide
a valuable basis on which yet-to-be-identified neurodegenerative markers of tinnitus can
be refined.

Keywords: tinnitus, mild cognitive impairment, voxel-based morphometry, positron emission tomography,
Alzheimer’s dementia

INTRODUCTION

Tinnitus, a ‘‘phantom sound,’’ is a conscious auditory perception
in the absence of an external stimulus (Lee et al., 2017). Recently,
tinnitus is considered to be a consequence of the complex
interplay between auditory and non-auditory cortical regions
after auditory deafferentation, likely recapitulating maladaptive
cortical plasticity (Langguth et al., 2013). A meta-analysis of
PET studies, coupled with other neuroimaging-based researches,
has shown an association between tinnitus and multiple brain
regions concerning attention, emotion, memory, and cognition
(Song et al., 2012).

With a growing body of evidence on the association between
chronic tinnitus and cognitive deficits, several studies have
suggested that a decrease in attention and working memory is
associated with the mechanism between chronic tinnitus and
cognitive deficits (Rossiter et al., 2006; Trevis et al., 2016; Zarenoe
et al., 2017). Furthermore, by correlating resting-state cortical
oscillatory changes with tinnitus severity, a recent study has
proposed that specific brain regions related to memory, such as
the parahippocampus, may serve as a bridge between chronic
tinnitus and cognitive decline. This, in turn, led us to hypothesize
that neurophysiological changes may explain the association
between tinnitus and cognitive impairment.

Specifically, mild cognitive impairment (MCI) is a
predementia condition with a substantial risk of advancing
to dementia (Snowden, 2004), particularly Alzheimer’s disease
(Levey et al., 2006; Langa and Levine, 2014). Therefore,
evaluating the risk factors associated with MCI is important
for prognosis and protection. It was recently observed that
chronic tinnitus accompanies a relatively high rate of MCI in
approximately 17% of elderly subjects (i.e., >65 years; Lee et al.,
2020). Further, a significant correlation between tinnitus severity
and cognitive performance suggests that chronic tinnitus might
be a potential determinant for accelerating MCI (Wang et al.,
2018; Lee et al., 2020). The rationale behind this association
would rely on a couple of previous studies, demonstrating
that tinnitus may closely link to a reduced cognitive function
on selective and divided attention, memory, and learning
(Das et al., 2012; Vanneste et al., 2016). Despite the existence
of recognized evidence regarding the association between
tinnitus and cognitive deficits, the effects of chronic tinnitus on
functional and structural brain changes in subjects with MCI
have never been investigated, and no neurodegenerative markers
of chronic tinnitus have thus far been identified.

Herein, we thus aimed to investigate the changes in
glucose metabolism and gray matter (GM) volume in subjects
diagnosed with MCI depending on tinnitus using [18F]fluoro-

2-deoxyglucose-positron emission tomography (FDG-PET) and
voxel-based morphometry (VBM). A recent neuroimaging study
demonstrated that the combination of FDG-PET and VBM
makes it possible to predict the conversion from MCI to
Alzheimer’s dementia (Ottoy et al., 2019). Encouraged by the
identification of neural substrates associated with tinnitus and
cognitive deficits, we correlated the extent of tinnitus severity
with the changes in glucose metabolism and GM volume.
Furthermore, we conducted a glucose metabolic connectivity
study based on the correlation of FDG uptakes between
predefined regions of interest by templates to reveal the specific
tinnitus-related metabolic pattern in the MCI group, similar to
functional reorganization. Certainly, the functional connectivity
analyses based on FDG-PET have been developed (Yakushev
et al., 2017), allowing to evaluate cerebral metabolic connectivity
using inter-regional correlation analysis (Lee et al., 2008).
Overall, the present study not only provides insights regarding
the effects of chronic tinnitus on metabolic and structural
changes in patients with MCI but also sets the stage for potential
neural substrates that may link tinnitus and cognitive decline.

MATERIALS AND METHODS

Subjects
This study retrospectively reviewed subjects diagnosed with MCI
who were nested in the prospective, longitudinal cohort registry
of the Korean Brain Aging Study for the Early Diagnosis and
Prediction of Alzheimer’s disease. Only subjects whose baseline
neuroimaging was performed and audiograms met the criteria
of having a mean hearing threshold <40 dB hearing loss (HL)
in both ears were initially included. Subsequently, subjects with
otologic disorders such as otosclerosis and Meniere’s disease,
psychiatric or neurological disorders, and chronic headache,
subjects receiving psychotropic/central nervous system-active
medications, and subjects with a history of drug/alcohol abuse
and/or history of a head injury (with loss of consciousness) or
seizures were excluded from this study. Ultimately, 23 eligible
subjects were enrolled in this study. To test the hypothesis,
23 subjects were subclassified into two groups: MCI with chronic
subjective tinnitus (the MCI_T group, N = 12) and MCI without
chronic subjective tinnitus (the MCI_NT group, N = 11). All
subjects in the MCI_T group experienced perception of tinnitus
with a duration of more than 6 months. Specifically, two subjects
who reported no subjective tinnitus but had positive Tinnitus
Handicap Inventory (THI) scores of 5 or less were assigned to the
MCI_NT group. This study was approved by the Seoul National
University Hospital Institutional Review Board (IRB-B-20-2019-
44) and was conducted following the Declaration of Helsinki.
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Mild Cognitive Impairment Criteria and
Neurocognition Battery
All subjects were diagnosed with MCI based on Peterson criteria,
as documented in a previous study (Byun et al., 2017). The
subjects had a global Clinical Dementia Rating score of 0.5 and
were assessed at baseline and follow-up according to the Korean
version of Consortium to Establish a Registry for Alzheimer’s
Disease (CERAD-K) neuropsychological battery (Lee et al.,
2004). The CERAD-K neuropsychological battery comprised
the Verbal Fluency Test, Boston Naming Test, Mini-Mental
State Exam in the Korean version of the CERAD assessment
packet, Word List Memory, Constructional Praxis, Word List
Recall, Word List Recognition, and Constructional Recall Test.
General exclusion criteria for all patients were a history of major
neurological or untreated major medical conditions.

Positron Emission Tomography
(PET)/Magnetic Resonance Image
Acquisition
Subjects underwent FDG-PET and magnetic resonance
(MR) imaging using a PET/MR scanner (Biograph mMR,
Siemens Healthcare, Knoxville, TN, USA). Subjects received
an intravenous injection of 370 MBq or less of [18F] FDG,
the subjects remained in a dimly lit waiting room, and the
brain emission scans were acquired after 40 min on bolus
injection and continued for 20 min. For attenuation correction
of PET, MR images were acquired simultaneously with PET
using a dual-echo ultrashort echo time (UTE) sequence
(echo time = 0.07 and 2.46 ms, repetition time = 11.9 ms,
flip angle = 10◦). The UTE images were reconstructed into
a 192 × 192 × 192 matrix with an isotropic voxel size of
1.33 mm. The PET images were reconstructed using the ordered
subset expectation maximization algorithm (subset = 21,
iteration = 6) into 344 × 344 × 127 matrices with voxel size
1.04 × 1.04 × 2.03 mm. A 6-mm Gaussian post-filter was
applied to the reconstructed PET images. A T1-weighted three-
dimensional ultrafast gradient echo sequence was also acquired
on an integrated PET/MR scanner in a 208 × 256 × 256 matrix
with voxel sizes of 1.0 × 0.98 × 0.98 mm.

Audiological and Psychoacoustic
Evaluations
At the baseline evaluation, a structured history of the
characteristics of tinnitus on the affected ear and the
psychoacoustic properties (pure-tone or narrow-band noise) of
the tinnitus was obtained. As described in previous studies (Lee
et al., 2017, 2020), all subjects underwent pure-tone audiometry
(PTA) testing that included psychoacoustic tests of tinnitus such
as tinnitus pitch matching, tinnitus loudness matching, and the
minimum masking level test. The hearing thresholds for seven
different octave frequencies (0.25, 0.5, 1, 2, 3, 4, and 8 kHz) were
evaluated using PTA in a sound-proof booth. The mean hearing
threshold was calculated by the average of the hearing thresholds
at 0.5, 1, and 2 kHz. The severity of perceived tinnitus was based
on the THI scores.

PET Analysis
Pre-processing and statistical analyses were performed using
Statistical Parametric Mapping (SPM12, Wellcome Department
of Imaging Neuroscience, London, UK1) implemented in
MATLAB 9.1 (The MathWorks Inc., Natick, MA, USA).
Co-registration was performed to align functional and structural
images from the same subject to map functional information
into anatomical space, and the co-registered FDG images
were subsequently spatially transformed into the Montreal
Neurological Institute standard PET template. The spatially
normalized image was smoothed with an isotropic Gaussian
kernel of 12 mm full width at half maximum (FWHM). Brain
glucose metabolism at each voxel was proportionally scaled to
the global mean value to reduce individual variation; hence, the
relative regional glucose metabolic rate was calculated.

Voxel-Based Morphometry Image Analyses
VBM was performed using the CAT12 toolbox2; Structural
Brain Mapping Group, Jena University Hospital, Jena, Germany)
implemented in SPM12 to identify structural changes. Each
anatomical image was segmented into GM, white matter, and
cerebrospinal fluid and non-linearly normalized to a standard
stereotactic space using DARTEL (diffeomorphic anatomical
registration through an exponentiated Lie algebra) algorithm.
The spatially normalized images were subsequently rescaled
to preserve relative tissue volumes and smoothed using an
8-mm FWHMGaussian kernel to reduce residual interindividual
variability. For the exclusion of artifacts on the GM, we applied
an absolute GM threshold of 0.1.

FDG-PET Metabolic Connectivity
For whole-brain FDG-PET metabolic connectivity, we used a
region of interest (ROI)-based metabolic connectivity. First,
the pre-processed and normalized FDG-PET image for subjects
was parcellated based on the Automated Anatomical Labeling
(AAL) template, which divides the brain into 90 anatomical
ROIs, except the cerebellum (Supplementary Table 1, Tzourio-
Mazoyer et al., 2002). To evaluate FDG-PET metabolic
connectivity, we extracted the count normalized mean glucose
uptake values divided by global mean from each ROI of the
AAL template for all subjects, calculated the Pearson’s correlation
between each pair of ROIs across subjects within each group,
and created a pairwise FDG-PET metabolic connectivity matrix
(90 × 90 ROIs) for the whole brain in each group. Age was
included as a nuisance variable. A connectivity matrix was
constructed by converting the correlation coefficient values into
Fisher’s Z values to obtain an approximately normal distribution.
Moreover, individual FDG-PET metabolic connectivity maps
were constructed for each group separately at a threshold
of p < 0.01, and the difference in each real FDG-PET
metabolic connectivity matrix between the two groups (e.g.,
MCI_T vs. MCI_NT) was also constructed with significance
at a p < 0.01 (two-tailed). For validation, we performed
nonparametric permutation testing to test the probability that the

1http://www.fil.ion.ucl.ac.uk/spm
2http://www.neuro.uni-jena.de/cat
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observed difference of metabolic connectivity between the two
groups occurred by chance (the null hypothesis) and to validate
significant differences. To determine the null distribution of
the difference in the correlation between the determined ROIs,
we went back to the data matrix. The subject number was
randomly into two pseudo-group data matrices (e.g., pseudo-
MCI_T and pseudo-MCI_NT). On each pseudo-data matrix,
correlationmatrices were generated, and differences between two
pseudo-groups were computed. Subsequently, null distributions
of the FDG-PET metabolic connectivity matrix were generated,
and this procedure was repeated 10,000 times. The difference in
each real FDG-PET metabolic connectivity matrix between the
two groups was compared with the null distribution. Significance
was set at a p < 0.01 (two-tailed).

Statistical Analysis
To evaluate differences between theMCI_T andMCI_NT groups
in glucose metabolism and gray matter volume, statistical tests
were performed using a two-sample t-test. The age variable
was included as a nuisance covariate for glucose metabolism
differences and age and total intracranial volume (TIV) were
included as covariates of no interest for differences of gray
matter volume. Because of the small sample size, the statistical
voxel-wise threshold was set at uncorrected p < 0.005 with
a cluster extent threshold of 100 in group comparison. For
correlation analysis, after a log conversion of the THI scores
due to the wide range (from 0 to 88), an evaluation of the
correlation between the severity of tinnitus based on THI
scores and gray matter volume and between the severity of
tinnitus based on THI scores and glucose metabolism were also
evaluated using regression analysis for whole-brain volume and
glucose metabolism. The age variable was included as a nuisance
covariate in regression analysis in glucose metabolism and the
TIV variable was added in regression analysis in gray matter
volume. For regression analysis, an exploratory uncorrected
statistical threshold was set at p < 0.005 and a minimum cluster
extent of 100 voxels in regression analysis in gray matter volume
and a minimum cluster extent of 50 voxels in regression analysis
in glucose metabolism. For validation of metabolic connectivity
analysis, we performed non-parametric permutation testing by
10,000 times. The difference in metabolic connectivity matrix
between two groups was set at a p < 0.01 (two-tailed).

RESULTS

Demographic and Clinical Characteristics
of the Subjects
The clinical characteristics of 23 subjects diagnosed with MCI
are summarised in Table 1. The mean age of the 23 subjects
was 74.0 ± 6.1 years (range, 63–83 years), and 13 were male.
The demographics and clinical characteristics in terms of age,
sex, educational level, and mean hearing thresholds of subjects
in the MCI_T and MCI_NT groups did not have a statistically
significant difference. In particular, each hearing threshold across
all frequencies did not differ between the MCI_T and MCI_NT
groups (Figure 1). Regarding the neuropsychological test, no
significant differences were observed for any domain involved

in CERAD-K between the two groups. As expected, THI scores
and the duration of tinnitus were significantly higher in the
MCI_T group than those in the MCI_NT group. In the MCI_T
group (N = 12), the most frequent characteristic of tinnitus
was pure tone (N = 7, 58.3%), followed by narrow-band noise
(N = 5, 41.7%).

Group Comparison of Gray Matter Volume
and Glucose Metabolism
Compared with the MCI_NT group, the MCI_T group exhibited
significantly lower GM volume in the right insula (Figure 2A;
Table 2). Compared with the MCI_NT group, the MCI_T group
showed a lower metabolism in the right superior temporal pole
and the left fusiform gyrus and higher metabolism in the right
postcentral gyrus (Figure 2B; Table 2).

Association Between Tinnitus Severity and
Gray Matter Volume and Metabolism
The THI score was inversely correlated with the GM volume in
multiple brain regions, including the bilateral superior frontal
gyrus, left frontal gyrus, right supplementary motor area (SMA),
right insula, bilateral fusiform gyrus, and right rectal gyrus
(Figure 3A; Table 3). Additionally, a putative rank in terms of
the T-score was observed. Specifically, the left superior frontal
gyrus showed the highest correlation, whereas the SMA and
insula belonged to the second-tier group. However, the THI
score was positively associated with glucose metabolism in the
SMA/middle cingulate gyrus but was inversely associated with
that in the olfactory/rectal gyrus (Figure 3B; Table 3).

Metabolic Connectivity of Glucose
Metabolism
In MCI_NT, negative metabolic connectivity was mainly
detected between the parietal and temporal regions, such as
Heschl’s gyrus, and between the parietal and limbic regions,
including the amygdala, hippocampus, and parahippocampus.
Moreover, MCI_NT showed strong metabolic connectivity
within the intra-hemispheric regions, such as the frontal, parietal,
and occipital regions, and between the frontoparietal regions
(Figure 4). In contrast, in MCI_T, different from MCI_NT,
inter-parietal connectivity was weakened or absent with the
other regions, but there was strong connectivity between the
motor regions and both temporal and limbic regions (Figure 4).
Compared with the MCI_NT group, the MCI_T group had
significantly lower metabolic connectivity between the rectal
gyrus and inferior frontal gyrus; between the SMA and parietal
region, including the angular gyrus and precuneus; between
the orbitofrontal and inferior temporal region; between the
precuneus and inferior occipital gyrus; and between the fusiform
gyrus and insula but had higher metabolic connectivity between
the parietal and temporal and parietal and limbic regions
(Figure 4).

DISCUSSION

This is the first study that investigated the effects of chronic
tinnitus on metabolic and structural brain changes concerning
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TABLE 1 | Demographic and clinical characteristics of the study population.

MCI_T group (MCI patients with from
mild, to severe tinnitus handicap)

MCI_NT group (MCI patients
without tinnitus handicap)

P-value

No. of patients 12 11
Gender (M:F) 6:6 7:4
Age (years) 73.27 ± 5.83 74.83 ± 6.56 n.s
Education (years) 8.00 ± 4.43 11.82 ± 4.51 p = 0.053
Duration of tinnitus (years) 3.50 ± 3.19 0.09 ± 0.20 p < 0.01
THI 38.50 ± 20.06 0.55 ± 1.29 p < 0.01
Hearing loss (right) 32.71 ± 7.21 33.50 ± 8.42 n.s
Hearing loss (left) 29.69 ± 6.93 32.84 ± 6.94 n.s
Hearing loss (average) 31.20 ± 5.86 33.17 ± 7.22 n.s
Neuropsychological test
MMSE 23.42 ± 2.75 24.73 ± 3.10 n.s
Semantic fluency 13.50 ± 3.66 11.64 ± 4.90 n.s
Boston naming 11.75 ± 1.60 11.64 ± 2.34 n.s
Word list immediate memory 15.33 ± 2.74 15.45 ± 3.67 n.s
Constructional praxis 9.50 ± 1.78 9.64 ± 1.21 n.s
Word list delayed recall 4.83 ± 1.19 4.00 ± 2.24 n.s
Word list recognition recall 8.75 ± 1.29 7.73 ± 2.53 n.s
Memory delayed call 6.08 ± 2.64 6.09 ± 3.33 n.s

Data shows mean ± SD (SD, standard deviation). M, male; F, female; MMSE, mini mental state exam; THI, tinnitus handicap inventory; n.s, no statistical significance.

FIGURE 1 | No significant differences in hearing thresholds across all
frequencies were observed between mild cognitive impairment (MCI) with
tinnitus handicap (MCI_T) and MCI without tinnitus handicap (MCI_NT). Data
show the mean ± SEM (SEM, standard error of the mean).

MCI. It clearly showed that at least chronic tinnitus contributes
to hypometabolic changes in the fusiform gyrus and the superior
temporal gyrus and volumetric atrophy in the insula. These
results, coupled with correlation and connectivity analyses, merit
attention because the specific brain regions tied to tinnitus
and cognitive deficits may serve as neurodegenerative markers
indicating the progression of cognitive deficits over time.
However, the biomarkers that reveal the linkage between tinnitus
and cognitive decline may be only relevant to the particular
situation of MCI with tinnitus. Our findings cannot necessarily
represent all cases of MCI transitioning dementia, requiring
careful interpretation.

Importantly, the MCI_T group demonstrated more
distinctive hypometabolic changes in the superior temporal
pole and the fusiform gyrus compared to the MCI_NT group.
Anatomically, the superior temporal region comprises the
auditory cortex, which is known to play a critical role in tinnitus
perception (Maudoux et al., 2012). As is known, the superior
temporal region interacts with the parietal and limbic regions
in the social cognitive process (Zilbovicius et al., 2006). A
recent meta-analysis on PET studies reported higher regional
cerebral blood flow in primary and secondary auditory cortices
in tinnitus subjects compared with normal controls (Song et al.,
2012). According to these results, the group with tinnitus should
have high intrinsic activity or metabolism, but our result shows
that metabolism in the tinnitus group is lower than that with
the no tinnitus group. Possibly, the neurodegeneration might
be still more advanced, despite an increase in intrinsic activity
by tinnitus. This suggests that the hypometabolic changes in
the superior temporal pole, as evidenced here, might be more
associated with cognitive deficits and underlying tinnitus, rather
than perceived tinnitus itself. Additionally, a recent study on
changes in resting-state brain function networks in subjects with
amnestic MCI showed that regional abnormalities in functional
brain areas, including the superior temporal gyrus, could be
associated with cognitive deficits (Wang et al., 2011). Several
lines of evidence indicate that the superior temporal region plays
a critical role in cognition. In particular, the superior temporal
gyrus is an essential structure for auditory processing, which has
been implicated as a hub for social perception and cognition
(Ramot et al., 2019). For example, impaired social interaction
and visual object discrimination deficiency, both early signs of
MCI or Alzheimer’s dementia, are closely associated with the
functional and structural abnormality of the superior temporal
gyrus (Pietschnig et al., 2016; Ramot et al., 2019).

Additionally, compared with the MCI_NT group, a
significant hypometabolism in the fusiform gyrus in the
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FIGURE 2 | Brain regions showing structural and metabolic differences in MCI_T, compared with MCI_NT. (A) Three-dimensional visualization of comparison of
MCI_T with MCI_NT in gray matter (GM) volumes by voxel-based morphometry (VBM). The red-spectrum color indicates the MCI_T-increase in GM volumes, and
blue-spectrum color indicates the MCI_T-decrease in GM volumes compared with MCI_NT. MCI_T showed a significant decrease in GM volume, compared with
MCI_NT (middle). The bottom figure shows a scatter plot of individual GM volume in the region showing significant volume reduction. The horizontal lines represent
the mean and standard error of the mean (±SEM). (B) Three-dimensional visualization of comparison of MCI_T with MCI_NT in mean metabolic uptake of
[18F]fluoro-2-deoxyglucose-positron emission tomography (FDG-PET). The red-spectrum color indicates the MCI_T-increase in metabolism, and blue-spectrum color
indicates the MCI_T-decrease in metabolism compared with MCI_NT. Middle figures indicate brain regions showing significant glucose metabolic differences, in
which red color indicates higher metabolism and blue color indicates lower metabolism in the MCI_T compared with the MCI_NT. The bottom figure shows a scatter
plot of individual glucose metabolism in the regions showing significantly increased or decreased metabolic uptakes. The horizontal lines represent the mean and
standard error of the mean (±SEM; p < 0.005 uncorrected, k > 100).

MCI_T group was observed. Furthermore, it shows that an
increase in tinnitus severity is associated with the reduced GM
volume of the fusiform gyrus. The fusiform gyrus is a part of the
temporal lobe in Brodmann area 37, which has been associated
with various neural pathways related to recognition (Mummery
et al., 2000). A previous FDG-PET study revealed that the
fusiform gyrus, but not the temporal pole, exerted a significant
effect on semantic disruptions in semantic dementia (Cai et al.,
2015). Moreover, the GM volume of the left fusiform gyrus
was significantly correlated with the semantic scores in subjects
with semantic dementia, after adjusting for the GM volumes
of the other related regions (Ding et al., 2016). Collectively,
these results suggest that perceived tinnitus in MCI subjects
is closely associated with reduced activation of the superior
temporal pole and fusiform gyrus. The specific brain regions tied
to tinnitus and cognitive deficits, such as the superior temporal
pole and fusiform gyrus, may act as potential neurodegenerative
markers that may accelerate cognitive decline, which deserves
further study.

Metabolic connectivity analysis revealed that, in MCI_NT,
strong negative correlations were observed between the parietal
regions and both temporal and limbic regions, which was
less pronounced or absent in MCI_T. Negative correlations
between a region and other brain areas indicate that when
the region has a high FDG uptake, the negatively connected
areas have a low FDG uptake and vice versa. In functional
MRI (fMRI) network analyses, negative correlations between
brain areas were frequently observed, but those had been

considered artifacts caused by methodological peculiarities of
fMRI analysis because their biological relevance was unclear
(Parente et al., 2018). However, our results using FDG-PET
were not influenced by short-term hemodynamics or time
series artifacts. In recent studies, negative correlations tend to
be considered in the biological state. Furthermore, negative
correlations might reflect regulatory interactions between brain
regions, such as modulations, inhibition, suppression, and
neurofeedback (Gopinath et al., 2015). In the MCI_NT group,
the inter-hemispheric parietal connectivity was negatively
strengthened in temporal including Heschl’s gyrus and
limbic regions, including the hippocampus, amygdala, and
parahippocampal gyrus, although that was not observed in
the MCI group with tinnitus. In particular, the MCI_T group
showed hypermetabolism in the parietal regions. Our results
suggested that hypermetabolism in the parietal regions was
affected by chronic tinnitus in the MCI_T group, which was
abnormally altered metabolic connectivity with several regions
that impairs salience network and hearing, cognitive, and
emotional processing.

It is worth noting that chronic tinnitus only leads to a
decrease in the insula volume in subjects with MCI. As depicted
in Figure 3, an inverse correlation between tinnitus severity
and insula volume supports the putative association. The insula
is responsible for emotion and sympathetic activation and,
according to an integrative model of tinnitus (De Ridder et al.,
2014), has been considered a critical node of the salience network
in the context of tinnitus (Vanneste and De Ridder, 2012). The
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TABLE 2 | Brain regions showing significant gray matter (GM) volume or glucose metabolic differences between MCI_T and MCI_NT groups.

Clusters MNI Coordinates

Regions L/R BA (voxels) T-score x y z

Gray matter volumes differences
MCI_T < MCI_NT Insula R 13 142 3.59 39 6 −12
Glucose metabolic differences
MCI_T > MCI_NT Postcentral gyrus R 4 305 4.25 56 −16 44
MCI_T < MCI_NT Superior temporal pole R 38 246 4.06 40 12 −26

Fusiform gyrus/cerebellum L 19 184 4.05 −34 −74 −20

The statistical threshold was p < 0.005 (uncorrected) with cluster threshold of 100 voxels.

FIGURE 3 | Brain regions showing significant correlations between the Tinnitus Handicap Inventory (THI) score and GM volume (A) and glucose metabolism (B) in
the MCI_T group. (A) A voxel-wise multiple regression analysis was performed to detect specific areas in which the GM volume changes are associated with the THI
score in MCI_T. The plot figure shows the linear regression line in each region. All analysis was controlled by age and total intracranial volume (TIV;
p < 0.005 uncorrected, k > 100). (B) A voxel-wise multiple regression analysis was performed to detect specific areas in which the glucose metabolic changes are
associated with the THI score in MCI_T. The plot figure shows the linear regression line in each region. All analysis was controlled by age (p < 0.005 uncorrected,
k > 50).

salience network is a distributed functional-anatomical network
that supports emotion and cognition (Uddin, 2015). Importantly,
the insula intensively connects with the medial temporal lobe
and the posteromedial part of the parietal cortex, which are
known biomarkers showing the accelerating conversion from
MCI to Alzheimer dementia (Lee et al., 2002; Ferreira et al.,
2017; Xu et al., 2019). The results were consistent with those
of a previous meta-analysis, indicating that the precuneus
and posterior cingulate cortex play a significant role in the
transition from MCI to Alzheimer’s dementia (Ma et al., 2018).
Indeed, Carpenter-Thompson et al. (2015a) also proposed that

the posterior cingulate and insula may be associated with
an early emotional reaction to develop tinnitus in both task
and resting states. Further, the recruitment of more frontal
regions makes it possible to better control their emotional
response and exhibit altered connectivity in the default mode
network (Carpenter-Thompson et al., 2015a). The precuneus
and posterior cingulate cortex resided in the posteromedial
part of the parietal cortex are core components of the default
mode network (Huijbers et al., 2012), a distributed functional-
anatomic network exhibiting a high rate of metabolism in
subjects not focused on the outside world, and decreases in
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TABLE 3 | Correlation analysis between glucose metabolism or gray matter volume and tinnitus severity in MCI_T group.

Clusters MNI Coordinates

Regions L/R BA (voxels) T-score x y z

Gray matter volume correlation with tinnitus severity
Negative correlation Superior frontal gyrus L 10 417 7.90 −26 57 2

Superior frontal gyrus R 10 228 7.15 15 66 23
Inferior frontal gyrus L 45 158 5.13 −50 21 11
SMA R 6 290 7.18 11 −2 71
Insula R 13 425 6.08 42 6 −17
Fusiform gyrus L 36 167 5.02 −36 −23 −36
Fusiform gyrus R 36 161 4.65 36 −23 −36
Gyrus rectus R 11 330 4.32 11 42 −17

Glucose metabolism correlation with tinnitus severity
Positive correlation SMA/middle cingulate gyrus R 6 201 4.81 8 10 48

SMA/middle cingulate gyrus L 6 61 3.73 −6 12 44
Negative correlation Olfactory/ Gyrus rectus R 32 95 3.59 6 14 −10

The statistical threshold was p < 0.005 (uncorrected) with cluster threshold of 100 voxels (gray matter volume) and cluster threshold of 50 voxels (glucose metabolism).

FIGURE 4 | Whole-brain glucose metabolic connectivity. (First left and middle column) Figures show the whole-brain metabolic connectivity matrix among 90 by
90 regions of MCI_NT and MCI_T based on correlation, respectively, with color gradient representing the strength of correlation between two nodes, at
p-value < 0.01. (Right column) The figure shows differences in metabolic connectivity in MCI_T compared to MCI_NT, at p-value < 0.01. Values were based on the
z-transformed correlations within (diagonal) and between (off-diagonal) ROIs. The color bar represents Fisher’s Z. The difference in real connectivity matrix was
compared with the null distribution, generated by permutation testing. The second row shows connections between two nodes projected on a 3D template.

activity across a range of cognitive loads (Shulman et al.,
1997; Raichle et al., 2001; Kim, 2010). Overall, the volumetric
atrophy in the insula is an important morphological marker
that selectively develops along with tinnitus in MCI patients
and may contribute to the progressive cognitive decline by
impairing the connectivity between the brain regions involved in
the salience network.

Additionally, a significant inverse correlation between
GM volume in the frontal gyrus and THI score
was also distinct in MCI subjects. In line with this,

Carpenter-Thompson et al. (2015b) demonstrated that
individuals with lower tinnitus distress engaged frontal regions
to a greater extent to better control their emotional response
to affective sounds. Indeed, the frontal regions, such as the
prefrontal cortex and orbitofrontal cortex, are considered key
areas for the integration of sensory and emotional aspects
of tinnitus and the modulation of autonomic physiological
responses (Vanneste et al., 2010). Interestingly, the structural
abnormalities of the frontal lobe have been reported to weaken
the role of auditory memory storage, resulting in the inhibitory
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modulation of input to the auditory cortex (Voisin et al., 2006).
Given this, severely attenuated GM volume in the frontal
gyrus observed herein may represent the deficiency of auditory
attention relevant to cognitive decline. As proposed in recent
literature (Carpenter-Thompson et al., 2015b), changes in
the function or structure of frontal gyrus might serve as a
guide when evaluating the efficacy of tinnitus treatment for
MCI subjects. Furthermore, it was observed that functional
and structural changes in the SMA correlate with THI scores
in subjects with MCI. Similarly, a recent study suggested
that the conscious perception of tinnitus may be part of
the synchronised theta activity in the SMA (Vanneste and De
Ridder, 2012). Considering a potential link between the SMA and
cognition (Nachev et al., 2008), hypermetabolic or diminished
changes in the SMA, such as increasing tinnitus severity,
may accelerate cognitive decline. Overall, these specific brain
regions, yet-to-be-determined, may influence the progression
of cognitive deficits over time, depending on the severity
of tinnitus.

This milestone study merits special attention considering the
significant impact of chronic tinnitus on developing dementia.
These results enhance the understanding of the effects of chronic
tinnitus on functional and structural brain changes in MCI
subjects and offer some potential neurodegenerative markers
indicative of cognitive decline. Nevertheless, several limitations
require future follow-up investigations. First, our results are
limited by the relatively small number of subjects in both
groups, mainly due to the difficulty of recruiting MCI subjects
with and without tinnitus presenting normal or mild hearing
loss. Additionally, the current study was designed as a cross-
sectional evaluation, which, along with the retrospective study
design, may weaken the clinical implications of our results.
Therefore, a prospective and longitudinal follow-up study in
large-scale cases is required to support the hypotheses. Second,
confounding variables concerning cognition were minimized,
but not eliminated. Although only tinnitus subjects with normal
hearing or mild hearing loss were enrolled, previous studies
have noted that mild hearing loss still acts as a confounder
that affects cognitive impairment, eventually leading to dementia
(van Boxtel et al., 2000; Thomson et al., 2017). Moreover,
combined tinnitus and hyperacusis were not taken into account.
Tinnitus subjects may have different cortical activity patterns
according to the degree of hearing loss or combined hyperacusis
(Vanneste and De Ridder, 2016). Thus, more efforts to minimize
the confounders that have cognition-related functional and
structural brain changes are required to draw a firm conclusion.
Third, lack of correction for multiple comparisons is also a major
limitation of the study; future studies employing correction for
multiple comparisons in large-scale cases would be the best fit
for proving the effects of chronic tinnitus on functional and
structural brain changes relevant to MCI. Fourth, since the
average age is 74 and younger adults were not included, all
results could be simply related to tinnitus, and not relevant to
MCI or aging. All subjects in the present study were diagnosed
with MCI based on Peterson criteria, which is consistent with
the previous study in Korea (Byun et al., 2017). Also, the
CERAD-K neuropsychological battery was employed to assess

the psychometric properties of the various cognitive domains
in both studies, including this study (Byun et al., 2017). As
shown in Supplementary Table 2, compared with the ‘‘CN-old
group by Byun et al. (2017),’’ MCI group in this study markedly
showed impairments of cognitive metrics in most cognitive
metrics, except for Boston naming test and Memory delayed
call. Nevertheless, the differences in neuropsychological status
between the two groups were not completely adjusted by other
confounding factors, such as age, gender, and education. Also,
cognitive metrics were not rigorously included in the PET/MRI
analyses. Thus, our results may still be inconclusive whether
the effects of chronic tinnitus on functional and structural
brain changes are relevant to MCI or the aging process or
not, when considering additional potential confounders. Fifth,
this study only included subjects with normal or mild hearing
loss, raising a question that the relationships discovered herein
might be different with higher levels of hearing loss. If not
perfectly, previous studies could tell to some extent whether
the relationships discovered herein will be different with higher
levels of hearing loss or not. Hearing loss per se has been
identified as the potentially largest modifiable risk factor for
cognitive decline (Lin et al., 2011). Recent neuroimaging studies
have shown that aberrant activity in the brain may interact with
dementia pathology in people with hearing loss (Griffiths et al.,
2020; Ha et al., 2020). Specifically, a longitudinal population
study demonstrated that the risk of dementia increased with
hearing loss severity for individuals older than 60 years (Lin
et al., 2011). In collaboration with this, the worsening hearing
was positively correlated with a higher β-amyloid burden,
a pathologic biomarker of AD, measured in vivo with PET
scans (Golub et al., 2020). Given this, the effects of chronic
tinnitus on functional and structural brain changes in subjects
with MCI would be different according to levels of hearing
loss, but this awaits further confirmation. Nevertheless, we
believe that our protocol that recruits only normal or mild
hearing loss subjects exerts major strength because it can
minimize bias related to hearing loss-induced metabolic and
structural changes. Finally, subjects enrolled in this study show
relatively heterogeneous tinnitus severity. To replicate current
results, future studies comprising a large number of cases
and subsequent normal distribution of tinnitus severity should
be considered.

CONCLUSIONS

Taken together, these results show, for the first time, that chronic
tinnitus elicits differential metabolic and structural brain changes
in subjects diagnosed with MCI. Given the significant impact of
MCI on developing dementia, specifically Alzheimer’s disease,
this study merits strong attention because the results provide a
valuable basis on which neurodegenerative markers of tinnitus,
yet-to-be-identified, can be polished accordingly.
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Jian Liu 5, Bing Liu 1, Shilong Sun 1, Guolin Ma 1,2* and Jiahong Gao 6,7,8

1Department of Radiology, China-Japan Friendship Hospital, Beijing, China, 2Graduate School of Peking Union Medical

College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 3Department of

Anesthesiology, Peking University First Hospital, Peking University, Beijing, China, 4 Beijing Intelligent Brain Cloud Inc., Beijing,

China, 5Department of Ultrasound Diagnosis, China-Japan Friendship Hospital, Beijing, China, 6 Beijing City Key Lab for
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Brain Research, Peking University, Beijing, China

Background and Purpose: Recent evidence shows that the fractional motion (FM)

model may be a more appropriate model for describing the complex diffusion process of

water in brain tissue and has shown to be beneficial in clinical applications of Alzheimer’s

disease (AD). However, the FM model averaged the anomalous diffusion parameter

values, which omitted the impacts of anisotropy. This study aimed to investigate

the potential feasibility of anisotropy of anomalous diffusion using the FM model for

distinguishing and grading AD patients.

Methods: Twenty-four patients with AD and 11matched healthy controls were recruited,

diffusion MRI was obtained from all participants and analyzed using the FM model.

Generalized fractional anisotropy (gFA), an anisotropymetric, was introduced and the gFA

values of FM-related parameters, Noah exponent (α) and the Hurst exponent (H), were

calculated and compared between the healthy group and AD group and between themild

AD group and moderate AD group. The receiver-operating characteristic (ROC) analysis

and the multivariate logistic regression analysis were used to assess the diagnostic

performances of the anisotropy values and the directionally averaged values.

Results: The gFA(α) and gFA(H) values of themoderate AD groupwere higher than those

of the mild AD group in left hippocampus. The gFA(α) value of the moderate AD group

was significantly higher than that of the healthy control group in both the left and right

hippocampus. The gFA(ADC) values of the moderate AD group were significantly lower

than those of the mild AD group and healthy control group in the right hippocampus.

Compared with the gFA(α), gFA(H), α, and H, the ROC analysis showed larger areas

under the curves for combination of α + gFA(α) and the combination of H + gFA(H) in

differentiating the mild AD and moderate AD groups, and larger area under the curves

for combination of α + gFA(α) in differentiating the healthy controls and AD groups.
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Conclusion: The anisotropy of anomalous diffusion could significantly differentiate

and grade patients with AD, and the diagnostic performance was improved when the

anisotropy metric was combined with commonly used directionally averaged values.

The utility of anisotropic anomalous diffusion may provide novel insights to profoundly

understand the neuropathology of AD.

Keywords: diffusion magnetic resonance imaging, fractional motion model, anisotropy, Alzheimer’s disease,

hippocampus

INTRODUCTION

Alzheimer’s disease (AD), manifested as progressive cognitive
decline andmemory loss, is themost common neurodegenerative
disease (Reddy and Oliver, 2019). Approximately accounting
for 60–70% of dementia patients, AD has been the most
prevalent type of dementia (Wortmann, 2012; Alzheimer’s,
2016; Khan et al., 2017). The underlying neuropathological
mechanisms of AD include the hyperphosphorylation of tau
protein and the deposition of β-amyloid (Aβ), which lead to
the formation of intracellular neurofibrillary tangles (NFTs)
and Aβ plaques separately (Kidd, 1963; Hyman et al., 1984;
Braak and Braak, 1991; Wegmann et al., 2010; Mattsson
et al., 2019) and ultimately result in the apoptosis of neurons.
Neuropathological changes can occur and persist for decades
before the appearance of cognitive degeneration. Recently, a
variety of magnetic resonance imaging (MRI) techniques have
been widely investigated for the diagnosis of AD; however, these
methods are insufficient to make a specific diagnosis of AD
(Cummings, 2017; Mattsson et al., 2019).

Diffusion MRI (dMRI) can non-invasively describe the
random motion of water molecules in and around brain
structures such as cell bodies or brain white matter fibers,
which provides rich information of microscopic properties than

other traditional MRI sequences (Le Bihan, 1995; Le Bihan and

Johansen-Berg, 2012; Harrison et al., 2020) and has become a
widely used imaging practice in clinical practice and relevant

researches (La Rocca et al., 2018; Anckaerts et al., 2019;
Bergamino et al., 2020; Finsterwalder et al., 2020). Directional
dependence (i.e., anisotropy) is one of the most important
microscopic properties obtained from the nervous system by
dMRI. Anisotropy results from the dense accumulation of axons
and inherent axonal membranes, which prevent the diffusion of
water perpendicular to the long axis of fibers (Beaulieu, 2002).
One of the most commonly used diffusion MRI technologies,
the apparent diffusion coefficient (ADC), was found useful in
differentiating AD patients (Takahashi et al., 2017; Xue et al.,
2019) and AD transgenic mice (Thiessen et al., 2010). Moreover,
the ADC value of white matter in the frontal lobe was correlated
with mini-mental state examination (MMSE) scale (Xue et al.,
2019). Diffusion tensor imaging (DTI) is another commonly
used diffusion MRI technology to measure the anisotropy in
the research (Basser et al., 1994a,b). DTI has been increasingly
applied to the diagnosis of AD in both basic and clinical
studies. The degree of diffusion anisotropy is mostly quantified
by two DTI-derived metrics, the fractional anisotropy (FA) and

mean diffusivity (MD), in patients with AD (Mayo et al., 2017;
Brueggen et al., 2019; Marcos Dolado et al., 2019). Several
studies found that the FA values reduced and MD values
increased in the hippocampus of AD patients and amnestic
mild cognitive impairment (aMCI) patients when compared
with healthy control. And the FA and MD might be used to
differentiate healthy controls, aMCI patients, and AD patients
(Hong et al., 2013; Tang et al., 2016; Schouten et al., 2017).
Moreover, the FA value or MD value of hippocampus could
be used to predict the progression of AD or aMCI, which is
evaluated by MMSE scale (Hong et al., 2013; Lee et al., 2017),
indicating the possibility of diffusivity as a biomarker for disease
progression. In addition to DTI combined with functional MRI,
structural MRI can improve the diagnostic accuracy of AD
(Dyrba et al., 2015; Tang et al., 2016; Bouts et al., 2018).

DTI presumes a normal diffusion process in brain tissues
and is consequently quantified using a mono-exponential
model, S/S0 = exp (–b · ADC). The b-value represents the
applied magnetic field gradient sequence. However, it has been
recognized that the observed dMRI signal decay curve deviates
from the mono-exponential form in brain tissues, especially at
high b-values (De Santis et al., 2011). To solve this problem,
several models have been developed based on different theories
of anomalous diffusion processes to find the optimal consistency
between the observed signal decay curve and the fitted curves.
Representative models include the stretched exponential model
(Bennett et al., 2003), the bi-exponential model (Mulkern
et al., 1999), the kurtosis model (Jensen et al., 2005), and
the statistical model (Yablonskiy et al., 2003). Additionally,
several physics-motivated dMRI models have also been proposed
(Magin et al., 2008; Ingo et al., 2014).

The fractional motion (FM) model has been proposed as a
more appropriate approach to describe the complex diffusion
process of biological systems (Magdziarz et al., 2009; Burnecki
and Weron, 2010; Weiss, 2013). Theoretically, the FM model
presumes that the diffusion process of water molecules is
α-stable and H-self-similar and has stationary increments. The
symbol α represents the Noah exponent, which describes the
fluctuations of the random process. The symbol H represents
the Hurst exponent, which depicts the self-similarity property
of molecular trajectories. The FM model possesses a relevantly
more excellent consistency between experimental data and fitting
curves. Many studies have demonstrated the clinical feasibility of
anomalous diffusion using the FM model (Kwee et al., 2010a,b;
Sui et al., 2015; Karaman et al., 2016; Xu et al., 2017b, 2018; Du
et al., 2020). In the aforementioned studies, researchers averaged
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the anomalous diffusion parameter values that were acquired
in different gradient directions, which ignored the impacts
of anisotropy. However, existing literature elucidated that the
anisotropy of anomalous diffusion should not be neglected as
it revealed a different image contrast and provided unique
information (Hall and Barrick, 2012; Xu et al., 2017a). At present,
the availability regarding the clinical application of the anisotropy
of anomalous diffusion in AD patients remains unclear. The
purpose of this study was to investigate the potential feasibility of
anisotropy of anomalous diffusion for distinguishing AD patients
from healthy controls and grading AD patients.

MATERIALS AND METHODS

Subjects
This research was approved by the ethics committee of the
China-Japan Friendship Hospital, and the informed consent
was obtained from all subjects. The cognitive function of all
participants was assessed by the MMSE scale and Montreal
cognitive assessment (MoCA) scale. Initially, MRI examinations
were performed on 13 healthy controls and 50 patients with AD.
The patients with AD visited the Department of Neurology of
the China-Japan Friendship Hospital from November 2015 to
March 2019. The clinical diagnosis of AD met the criteria of the
National Institute of Neurological and Communicative Disorders
and Stroke and the Alzheimer’s Disease and Related Disorders
Association (NINCDS-ADRDA) (1984) (McKhann et al., 1984;
Mattsson et al., 2019). Only the mild-to-moderate AD patients
(11 ≤ MMSE score ≤ 25) (Folstein et al., 1975; Perneczky
et al., 2006; Tchalla et al., 2018) who met the following criteria
were considered for inclusion: (a) the participants’ acquired MR
image had no artifacts; (b) the participants had no other brain
diseases, such as cerebral ischemia or infarction; and (c) the
participants had no visual and hearing impairment disorders,
aphasia, and limb activity disorder. Finally, 24 patients with
AD were eligible and enrolled in this study (9 males and 15
females, mean age, 69.0 years, age range, 50–79 years). Healthy
controls were recruited from the local community. Inclusion
criteria were as follows: (a) ages range from 50 to 79 years
(including 50 and 79 years); (b) a degree of primary education
or above; and (c) neurological examination showed no obvious
anomalies, and the MMSE scores were between 26 and 30.
Healthy controls who suffered from cardiovascular, neurologic,
metabolic, and psychiatric disorders or brain abnormalities were
excluded. Eventually, 11 healthy controls (2 males and 9 females,
mean age 65.3 years, range 54–78 years) were enrolled in the
present study. Detailed demographic and clinical characteristics
of all participants are summarized in Table 1.

Image Acquisition
All participants received conventional MRI, 3D T1-weighted
imaging, and dMRI. The MRI scans were performed on a 3.0-T
MRI scanner (GE Healthcare, Discovery MR750, USA) equipped
with an eight-channel head coil. dMR images of all participants
were obtained using a special Stejskal–Tanner single-shot spin-
echo echo-planar-imaging sequence.

TABLE 1 | Demographic and clinical information of all participants.

Healthy controls
AD patients

P–value

Mild AD Moderate AD

Number 11 12 12 -

Male/female 2/9 6/6 3/9 >0.05

Age 65.3 ± 6.6 65.8 ± 10.1 72.1 ± 3.8 > 0.05

Education 10.6 ± 3.3 13.4 ± 3.1 10.5 ± 3.9 > 0.05

MMSE score 28.8 ± 1.1 23.2 ± 1.3 19.1 ± 1.4 < 0.05

MoCA score - 19.5 ± 2.4 16.5 ± 2.2 < 0.05

The MoCA score was only compared between mild AD group and moderate AD group

using a two-sample t-test.

AD, Alzheimer’s disease; MMSE, mini-mental state examination; MoCA, Montreal

cognitive assessment.

To fit the FM model, we did not fix the diffusion gradient
separation time (1) during the scanning process as the
conventional dMRI sequence. Specifically, 1 was arrayed at
27.060, 39.560, and 52.060ms. For each 1 value, the diffusion
gradient amplitude (G0) was 15.67, 19.68, 24.73, 31.06, 39.01,
and 49.00 mT/m in sequence, which were selected to be
approximately evenly spaced on the log axis. The gradient
duration constant (δ) was set to 20.676ms. Thereafter, 18 non-
zero b-values (151, 239, 377, 595, 939, and 1,481 s/mm2 for 1

at 27.060ms; 245, 387, 611, 964, 1,521, and 2,399 s/mm2 for 1 at
39.560ms; and 339, 535, 845, 1,333, 2,103, and 3,317 s/mm2 for1

at 52.060ms) were obtained in each gradient direction. In order
to decrease the effect of diffusion anisotropy, we successively
applied the diffusion gradients in three orthogonal directions (the
x-axis, y-axis, and z-axis) in turn. Moreover, a total of 12 images
without diffusion sensitization (b= 0) were acquired.

The dMRI scanning parameters included the following:
repetition time (TR)/echo time (TE) = 3,800 ms/110ms;
accelerating factor = 2; flip angle = 90◦; number of excitations
= 2; field of view (FOV)= 240mm× 240mm; matrix size= 128
× 128; slice thickness = 5.0mm; number of slices = 27; voxel
size = 1.875 × 1.875 × 5 mm3. Since high in-plane resolution
was preferable, a large slice thickness had to be chosen to achieve
a decent signal-to-noise ratio (SNR). The total scan time was
8min 33 s, which facilitated the clinical use. T1 structure image
parameters were as follows: TR = 6.7ms; TE = min full; flip
angle = 12◦; FOV = 256mm × 256mm; matrix size = 256
× 256; slice thickness = 1.0mm; number of slices = 192; scan
time= 4min 10 s.

Image Segmentation
In the present study, the hippocampus was chosen as the region
of interest (ROI) (Figure 1). At first, the hippocampus was
manually drawn slice by slice using MRICRON by a radiologist
(LD, 5 years’ working experience) on the T1 structure images,
and then the drawn ROIs were registered onto lower-resolution
dMRI, to more easily define the boundary of hippocampus. The
ROIs’ boundary was accurately segmented, and ambiguous voxels
would be eliminated in all participants. Then the average values
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FIGURE 1 | A 67-year-old male healthy control. The left and right

hippocampus are outlined in red line in T1-weighted imaging.

of α, H, ADC, generalized FA (gFA)(α), gFA(H), and gFA(ADC)
in the left and right hippocampus were acquired.

Image Analysis
First, the obtained images were corrected for head motion
and eddy current distortions by FSL tools (Cha, 2006). In the
dMRI acquisition, ADC maps were calculated using the images
obtained at b-values of 0 and 954 s/mm2 (closest to conventional
1,000 s/mm2 b-value). We used the FM model to analyze the
images. According to the FM-based dMRI theory (Sui et al.,
2015), the following formula can be used to calculate diffusion-
induced signal decay:

S/S0 = exp(−ηDα,Hγ αGα
01α+αH) (1)

where Dα ,H represents the diffusion coeffcient of anomalous
diffusion and γ represents the gyromagnetic ratio. G0 represents
the diffusion gradient amplitude, and ∆ represents the gradient
separation time. η is a dimensionless number, which can be
calculated using α,H, δ, and∆ in the following formula (Xu et al.,
2017b, 2018):

η =
1
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(2)

where µ = H−1/α, and µ is the memory parameter. Along
each direction, the signal attenuation at each voxel is fitted to
Equation 1 separately. We used the trust-region-reflective non-
linear fitting algorithm in MATLAB (MathWorks, Natick, MA)
to perform the fitting procedures.

A metric similar to FA, called gFA, is introduced to quantify
anisotropy, where the sample standard deviation is divided by the
root mean square [35]:

gFA(V) =

√

√

√

√

N

N − 1

∑N
i=1 (Vi − V)

2

∑N
i=1 V

2
i

(3)

whereN represents the number of sampling directions, including
three directions in this research, and V refers to the parameter
values to be measured. V is the directionally averaged value, and
Vi is the value in the i-th direction. The gFA maps of α, H, and
ADC were calculated.

Statistical Analysis
Among the mild AD group, moderate AD group, and healthy
control group, gender was analyzed using the chi-square (χ2)
test, and the age, education, and MMSE score were compared
using one-way ANOVA. The MoCA score was compared using
a two-sample t-test between the mild AD group and moderate
AD group, since the MoCA score was not assessed in healthy
control. Except for gender, the data were shown in the form
of mean± SD.

The gFA values of α, H, and ADC were compared using
a one-way ANOVA test and post-hoc Tukey test among the
healthy group, mild AD group, and moderate AD group.
Moreover, receiver-operating characteristic (ROC) curves were
performed to evaluate the diagnostic capability of each gFA
value in differentiating AD patients from healthy controls and
distinguishing mild AD patients from moderate AD patients
by the area under the curve (AUC). Additionally, multivariate
logistic regression analysis was utilized to assess the diagnostic
performances of the combination of the anisotropy value and the
directionally averaged value. For example, the probability of the
combination of H and gFA(H) can be expressed as

P(high− grade|{gFA(α) , gFA(H)})

=
exp(a0 + a1gFA(α) + a2gFA(H))

1+ exp(a0 + a1gFA(α) + a2gFA(H))
(4)

where a1 and a2 are the regression coeffcients for H and
gFA(H), respectively, and a0 is a constant. The probabilities
of other combinations can be expressed in a similar method.
These probability values were used as the test variables in the
ROC analysis.

In AD patients, the correlations between gFA(α), gFA(H),
and gFA(ADC) values and the cognitive functions evaluated by
MMSE and MoCA scales were investigated using Pearson
correlation analysis. P-values < 0.05 were considered
statistically significant.
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FIGURE 2 | A 58-year-old male patient with AD. Top row: T1-weighed image (A) and directionally averaged maps of α, H, and ADC [(B–D), respectively]. Bottom row:

generalized fractional anisotropy (gFA) maps of α, H, and ADC [(E–G), respectively]. The bilateral hippocampus is shown with red outlines in all maps. AD, Alzheimer’s

disease; ADC, apparent diffusion coefficient; gFA, generalized fractional anisotropy.

FIGURE 3 | A 60-year-old male healthy control. Top row: axial T1-weighed image (A) and directionally averaged maps of α, H, and ADC [(B–D), respectively]. Bottom

row: gFA maps of α, H, and ADC [(E–G), respectively]. The bilateral hippocampus is shown with red outlines in all maps. ADC, apparent diffusion coefficient; gFA,

generalized fractional anisotropy.
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RESULTS

Characteristics of All Subjects
The demographic information and clinical cognition scores in all
subjects are summarized in Table 1. Ultimately, 24 AD patients
(69.0± 8.1 years) and 11 healthy controls (65.3± 6.6 years) were
enrolled in this study. Then patients with AD were divided into
two groups [the mild AD group (six males and six females, mean
age 65.8 ± 10.1 years) and the moderate AD group (three males
and nine females, mean age 72.1 ± 3.8 years)] according to their
MMSE score and education level. The general division criteria
are as follows: 21 ≤ MMSE score ≤ 25 was considered as mild
AD, and 11 ≤ MMSE score ≤ 20 was considered as moderate
AD (Perneczky et al., 2006). As demonstrated in Table 1, the age,
gender, and education level of the three groups were matched (P
> 0.05), while there was a significant difference in the MMSE
score among the three groups (P < 0.05). MoCA score was
significantly different between the mild AD group and moderate
AD group, and a significant difference was found between the two
groups (P < 0.05).

The locations of the bilateral hippocampus in the T1-weighted
image are shown in Figure 1. Figures 2, 3 show the representative
maps of a 58-year-old male patient with AD and a 60-
year-old male healthy patient, including the 3D T1-weighted
images; directionally averaged maps of α, H, and ADC;
and the gFA maps of α, H, and ADC. From Figures 2, 3,
we found that there no outstanding contrasts between the
hippocampus and other brain regions were observed by the
naked eye.

Comparisons of gFA(α), gFA(H), and
gFA(ADC) Values Among Three Groups
The gFA values of α, H, and ADC of the left and right
hippocampus in all participants are summarized in Table 2. Data
are presented in the form ofmean± SD. The comparisons among
three groups in gFA(α), gFA(H), and gFA(ADC) are shown in
Figure 4. From Figure 4, we found that the gFA(α) and gFA(H)
values of the moderate AD group were higher than those of the
mild AD group (P = 0.003, P = 0.008, separately) in the left
ROI (Figures 4A,C). We also found that the gFA(α) values of
the moderate AD group were higher than those of the healthy
control group (P < 0.001, P = 0.003, separately, Figures 4A,B)
in the bilateral ROI, and the gFA(ADC) values of the moderate
AD group were lower than those of the healthy control group and
mild AD group in the right ROI (P= 0.038, P= 0.035, separately,
Figure 4F). No significant differences were found between the
healthy control group and mild AD group (P > 0.05 for
all, Figures 4A–F).

The performances in differentiating mild AD and moderate
AD were illustrated by ROC analysis. Figure 5 depicts the ROC
curves calculated from individual gFA values and directionally
averaged maps of α, H, and ADC. Figure 5 shows that
gFA(α) (AUC = 0.833) and gFA(H) (AUC = 0.826) of
the left ROI and gFA(ADC) (AUC = 0.764) of the right
ROI exhibited good capacity to differentiate the two groups.
The other anisotropy measures of gFA parameters did not
perform well. Figure 6 demonstrates the ROC curves calculated

by combinations of different parameters, and some positive
results were elucidated. More specifically, {α, gFA(α)} and {α,
gFA(α), H, gFA(H)} of the bilateral ROI and {H, gFA(H)}
and {gF(α) + gFA(H)} of the left ROI showed inspiring
potencies in differentiating mild AD and moderate AD. It was
noteworthy that, by combining the anisotropy information, the
α combination {α, gFA(α)} (AUC = 0.806, left ROI; AUC
= 0.819, right ROI) and the H combination {H, gFA(H)}
(AUC = 0.861, left ROI; AUC = 0.549, right ROI) were
significantly superior to the separate performances of the
individual directionally averaged α (AUC= 0.674, left ROI; AUC
= 813, right ROI) or H (AUC = 0.524, left ROI; AUC = 0.569,
right ROI).

Similarly, ROC analysis in differentiating AD patients
and healthy controls was also made. Figure 7 presents the
ROC curves calculated from the individual gFA values and
directionally averaged maps of α, H, and ADC for differentiating
AD patients and healthy controls. As depicted in Figure 7,
gFA(α) (AUC = 0.801, left ROI; AUC = 0.758, right ROI)
values of the bilateral ROI exhibited a good capacity to
differentiate the two groups. The anisotropy measures of gFA(H)
and gFA(ADC) did not perform well. Figure 8 shows the
ROC curves calculated from the combinations of different
parameters, and the results validated some significant findings.
Specifically, {α, gFA(α)}, {gF(α) + gFA(H)}, and {α, gFA(α),
H, gFA(H)} of the bilateral ROI can perfectly separate AD
patients and healthy controls. By combining the anisotropy
information, the α combination {α, gFA(α)} (AUC = 0.852,
left ROI; AUC = 0.826, right ROI) outperformed the individual
directionally averaged α (AUC = 0.780, left ROI; AUC = 0.811,
right ROI).

Correlations Between Fractional
Motion-Related Parameters and
Mini-Mental State Examination Scores and
Montreal Cognitive Assessment Scores
Figure 9 shows that the gFA(α) and gFA(H) values of the
left hippocampus were negatively correlated to corresponding
MMSE score (P = 0.017, P = 0.037, respectively) in patients
with AD. However, the correlations were not so strong, and
there was no significant correlation after false discovery rate
(FDR) correction and family-wise error rate (FWER) correction.
Moreover, no significant correlations were found in other
gFA parameters.

DISCUSSION

In the current study, we investigated the feasibility and
effectiveness of the anisotropy of anomalous diffusion assessed
by the FM model to differentiate and grade AD patients.
We introduced a new anisotropy metric called gFA, and
we explored its potencies in identifying AD patients and
healthy controls and distinguishing mild AD and moderate AD
patients. Our results demonstrated that the anisotropy of α

and H of the left ROI exhibited good performances to grade
AD patients, and the anisotropy of α of the bilateral ROI
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TABLE 2 | Mean and SD of the gFA(α), gFA(H), and gFA(ADC) values of left and right hippocampus in all participants.

Subjects No. ROIs gFA(α) gFA(H) gFA(ADC)

Controls 11 Left-hippocampus 0.0403 ± 0.0088 0.1588 ± 0.0431 0.0859 ± 0.0340

Right-hippocampus 0.0390 ± 0.0066 0.1497 ± 0.0364 0.0770 ± 0.0075

Mild AD 12 Left-hippocampus 0.0451 ± 0.0069 0.1443 ± 0.0244 0.0705 ± 0.0102

Right-hippocampus 0.0461 ± 0.0143 0.1542 ± 0.0351 0.0787 ± 0.0126

Moderate AD 12 Left-hippocampus 0.0573 ± 0.0105 0.1829 ± 0.0393 0.0695 ± 0.0144

Right-hippocampus 0.0555 ± 0.0150 0.1667 ± 0.0539 0.0663 ± 0.0144

SD, standard deviation; gFA, generalized fractional anisotropy; ADC, apparent diffusion coefficient; AD, Alzheimer’s disease; ROI, region of interest.

FIGURE 4 | Comparisons among three groups: healthy control group, mild AD patient group, and moderate AD patient group (A–F). Scatter plots show that gFA(α)

and gFA(H) of the left hippocampus (A,C), and gFA(ADC) values of the right hippocampus (F) can readily separate the mild AD patients and moderate AD patients,

and gFA(α) of the bilateral hippocampus (A,B), gFA(ADC) values of right hippocampus (F) can easily distinguish the moderate AD patients and healthy controls. n =

12 for mild AD patients, n = 12 for moderate AD patients, and n = 11 for healthy controls. P < 0.05 was considered as significant. AD, Alzheimer’s disease; gFA,

generalized fractional anisotropy; ADC, apparent diffusion coefficient.

possessed good potencies to differentiate AD patients and healthy
controls. It was worth noting that the diagnostic accuracy was
increased when combined with the anisotropy metric with the
commonly used directionally averaged value, indicating that the
anisotropy metric could improve the diagnostic performances
of directionally averaged values in identifying and grading
AD patients.

An important finding in the present study was that the
anisotropy of α and H showed significant superiority to
distinguish mild AD and moderate AD patients and identify
AD patients from healthy controls, in particular the α. In
combination with the results of our previous study (Du et al.,

2020), we reached a conclusion that both directionally averaged
value and the anisotropy value of α exhibited excellent capacity
to identify and grade AD patients, which indicated that α-related
values may possess a specific advantage in the diagnosis and
grading of AD. In line with the currently available data, α-related
diffusion values probably already provide sufficient information
regarding the differentiation and classification of AD, which is
beneficial to shorten the scan time, simplify the test procedure,
and improve medical efficiency. However, it should be validated
by future studies with larger sample size.

Possible explanations for the diagnostic performance of
gFA(α) are as follows. The symbol α describes the fluctuations
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FIGURE 5 | Receiver-operating characteristic (ROC) curve was generated using the individual gFA values and directionally averaged values of α, H, and ADC for

differentiating mild and moderate AD patients (n = 12 in each group). (A,B) The area under the curve (AUC) of gFA(α) and gFA(H) values of the left hippocampus

(AUC = 0.833, AUC = 0.826, separately) were larger than those of others. ROC, receiver operating characteristic; ROI, region of interest; gFA, generalized fractional

anisotropy; ADC, apparent diffusion coefficient; AD, Alzheimer’s disease; AUC, area under the curve.

FIGURE 6 | Receiver-operating characteristic (ROC) curve was generated using the combination of gFA values and averaged values of α, H, and ADC for

differentiating mild and moderate AD patients (n = 12 in each group). (A,B) The combinations {α, gFA(α)} and {α, gFA(α), H, gFA(H)} of the bilateral ROI and {H,

gFA(H)} and {gF(α) + gFA(H)} of the left ROI perfectly differentiate mild AD and moderate AD patients. The α combination {α, gFA(α)} and the H combination {H,

gFA(H)} outperformed the directionally averaged α and H, respectively. ROC, receiver operating characteristic; ROI, region of interest; AUC, area under the curve; gFA,

generalized fractional anisotropy; ADC, apparent diffusion coefficient; AD, Alzheimer’s disease.

of the random process. Excessive deposition of Aβ protein and
neurofibrillary tangles in brain tissue are two main pathological
changes in AD patients and can lead to neuronal apoptosis
(Wang et al., 2015). These pathological alterations that emerged
along with AD progression can result in subsequent neuronal
apoptosis and encephalatrophy, which eventually reduce the
volume of affected brain regions (especially the hippocampus).
Moreover, it is well acknowledged that the α values depend

on the structural complexity of the brain regions. The non-
Gaussian water molecule diffusion is more active in a more
complex brain region, and accordingly, the measured α values
would be higher and gFA(α) values would be lower. Consistently,
the degenerative pathological alterations (neuronal apoptosis and
encephalatrophy) that occurred in AD progression can markedly
decrease the structural complexity of the hippocampus (Jensen
et al., 2005; Grinberg et al., 2011; Yoshida et al., 2013) and
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FIGURE 7 | Receiver-operating characteristic (ROC) curve was generated using the individual gFA values and directionally averaged values of α, H, and ADC for

differentiating healthy controls and AD patients. (A,B) The area under the curve (AUC) of gFA(α) values of the bilateral hippocampus (AUC = 0.801, AUC = 0.758,

separately) was larger. ROC, receiver operating characteristic; ROI, region of interest; gFA, generalized fractional anisotropy; ADC, apparent diffusion coefficient; AD,

Alzheimer’s disease; AUC, area under the curve.

FIGURE 8 | Receiver-operating characteristic (ROC) curve was generated using the combination of gFA values and averaged values of α, H, and ADC for

differentiating AD patients and healthy controls (n = 24, n = 11, respectively). (A,B) The combinations {α, gFA(α)}, {gF(α) + gFA(H)}, and {α, gFA(α), H, gFA(H)} of the

bilateral ROI perfectly separated AD patients and healthy controls. The α combination {α, gFA(α)} outperformed the directionally averaged α. ROC, receiver operating

characteristic; ROI, region of interest; AUC, area under the curve; gFA, generalized fractional anisotropy; ADC, apparent diffusion coefficient; AD, Alzheimer’s disease.

can manifest as different α values and gFA(α) values among
healthy controls, mild AD, and moderate AD patients, which
were observed in the current study.

Compared with other commonly used traditional techniques,
such as DTI, using the FM model to calculate anisotropy of
anomalous diffusion possesses several potential advantages. On
the one hand, DTI quantifies the diffusion process of water

molecule using amono-exponential form. However, the observed
dMRI signal decay curve in the brain deviates from the mono-
exponential form. In this regard, the FM model was introduced
and showed a better agreement between the measured signal
decay curve and the fitted curves (Magin et al., 2008). On the
other hand, the detected diffusion-time dependence of the MR
signal shows a non-Gaussian nature of diffusion, while the DTI
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FIGURE 9 | Correlations between MMSE scores and the gFA(α) (A) and gFA(H) (B) values of the left hippocampus in patients with AD. Pearson correlation was

conducted. n = 24. MMSE, mini-mental state examination; gFA, generalized fractional anisotropy; AD, Alzheimer’s disease.

model assumes the molecular displacement in brain tissues with
a 3D Gaussian ellipsoid (Fieremans et al., 2016). This defect was
circumvented by the FM model.

The feasibility and effectiveness of anisotropy calculated by
the FM model have been verified in this research. But potential
clinical applications are not limited to the FMmodel. As shown in
Equation 1, the α is an exponent of the diffusion gradient, which
is proportional to the parameters of other dMRI models, like
the stretching parameter γ in the stretched-exponential model
(Bennett et al., 2003; Hall and Barrick, 2008; Zhou et al., 2010).
Therefore, the clinical feasibility of anisotropymay be generalized
to the α-like parameters of other models because of the intrinsic
consistency of their anisotropic properties (Xu et al., 2017a).

The current results indicated that the gFA(α) and gFA(H)
values of the left hippocampus were negatively correlated
with MMSE score in patients with AD. This finding was
partially consistent with the results of our previous study using
directionally averaged values (Du et al., 2020), which further
provided evidence for the reliability and repeatability of our
findings. However, the correlations were not so strong and
even not significant after FDR and FWER correction. This
may be explained by the following reasons. In addition to the
hippocampus, pathological alterations of AD affected other brain
regions such as the prefrontal cortex and basal ganglion region,
which synergistically contributed to cognitive impairments in
AD patients. So there might be no linear relationship between
cognitive scores and anisotropic values in the hippocampus.
Moreover, the small sample size of this study may also affect the
results, and further researches with larger sample size are needed
to confirm these findings.

The limitations of the present study must be acknowledged.
First, this is a single-institution study with a limited number
of healthy controls and AD patients, and the results should be
validated by further study with larger samples. We hope the
independent validation of our results can be done at separated
institutions. Second, the voxel of imaging is large, and a single
voxel displays an averagemeasurement of neuronal environment,

which may decrease the sensitivity for brain tissue components
occupying a small part of a voxel. Third, the x-, y-, and z-axes are
the only three directions being applied by the diffusion gradients,
and the accuracy of this study may be affected, as increased
sampling directions are conducive to measuring the anisotropy
of anomalous diffusion.

CONCLUSIONS

In summary, the anisotropy of anomalous diffusion was
successfully applied in differentiating and grading patients with
AD. It was worth noting that the diagnostic performance was
improved when the anisotropy metric was combined with
commonly used directionally averaged value in identifying and
grading AD patients. The anisotropy of anomalous diffusion
calculated by the FM model may provide novel insights to
profoundly elucidate the neuropathology process of AD.
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Damage to the fornix leads to significant memory impairment and executive dysfunction

and is associated with dementia risk. We sought to identify if fornix integrity and

fiber length are disrupted in mild cognitive impairment (MCI) and how they associate

with cognition. Data from 14 healthy older adult controls (HCs) and 17 subjects with

non-amnestic MCI (n-aMCI) were analyzed. Diffusion tensor imaging (DTI) at 1.5 Tesla

MRI was performed to enable manual tracing of the fornix and calculation of DTI

parameters. Higher fractional anisotropy of body and column of the fornix was associated

with better executive functioning andmemory, more strongly in the HC than in the n-aMCI

group. Fornix fiber tract length (FTL) was associated with better executive function, more

strongly in the n-aMCI than in the HC group, and with better memory, more strongly in

the HC than in the n-aMCI group. These results highlight a decline in the contributions of

the fornix to cognition in n-aMCI and suggest that maintenance of fornix FTL is essential

for sustaining executive functioning in people with n-aMCI.

Keywords: non-amnestic mild cognitive impairment (n-aMCI), fornix, diffusion tensor imaging (DTI), fractional

anisotropy (FA), fiber tract length (FTL), cognitive performance, executive function, vascular dementia (VaD)

INTRODUCTION

Approximately 60% of the world’s population lives in the Asia-Pacific region, where the prevalence
of dementia is expected to rise from 23 million in 2015 to 71 million in 2050 (Venketasubramanian
et al., 2010; Alzheimer’s Disease International, 2014, 2018, 2019), among which vascular dementia
(VaD) is more prevalent than in western populations.Mild cognitive impairment (MCI) is generally
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considered the transitional state between healthy aging
and dementia (Petersen et al., 2001; American Psychiatric
Association, 2013; Anderson, 2019). The criteria for MCI
(termed minor cognitive disorder by the American Psychiatric
Association) include concerns about changes in cognition,
impairment in one or more cognitive domains, preservation
of independence in functional abilities, and no dementia
(American Psychiatric Association, 2013). People with MCI can
be categorized as amnestic (aMCI) or non-amnestic (n-aMCI).
aMCI is likely to progress to Alzheimer’s disease (AD), whereas
n-aMCI most typically develops into other types of dementia,
prominently into VaD but also into frontotemporal dementia
(FTD) or Lewy body dementia (LBD), but can also progress to
AD (Petersen et al., 1995; Farlow et al., 2004; Petersen, 2004).
VaD is the second most common cause of dementia after AD,
causing 20–30% of global dementia cases (Alzheimer’s Disease
International, 2014), 15–20% in North America and Europe
(Plassman et al., 2007; Rizzi et al., 2014), and∼30% in Asia (Jhoo
et al., 2008; Chan et al., 2013).

VaD is usually caused by decreased blood flow to the brain,
with the risk of incident dementia within 5 years being 6.5
times higher after a stroke and 1.5 times higher after a transient
ischemic attack (TIA) (Pendlebury et al., 2019). In VaD, white
matter (WM) inflammation is associated with oxidative stress,
cerebral hypoperfusion, and thromboembolism (Venkat et al.,
2015). Clinical signs and symptoms of VaD depend on the cause
of VaD, affected areas, and size of infarction. A decrease in
cerebral blood flow (CBF) and hypoxia in the prefrontal cortex
(PFC), basal ganglia, and hippocampus is typically associated
with cognitive decline and behavioral changes in VaD (Iadecola,
2013; Venkat et al., 2015). In a recent study, patients with small-
and large-vessel VaD showed dysfunction in memory, executive
function, and attention domains (Sengupta et al., 2019).

A WM tract that plays a major role in supporting these
functional domains is the fornix, a discrete bidirectional tract
bundle that connects the hippocampus to other limbic structures
that is crucial for normal cognitive function and is a subcortical
component of the limbic system (Teipel et al., 2008; Christiansen
et al., 2016; Rabin et al., 2019). As a part of the fornix extends
from the hippocampal–diencephalic system, the fornix plays an
important role in the Papez circuit (Papez, 1937). It is the major
efferent pathway in the human memory circuit and is thought
to be especially key for maintaining episodic memory (EM)
(Thomas et al., 2011; Douet and Chang, 2015) and executive
function (EF) (Sasson et al., 2013).

Damage to the fornix has been shown to lead to significant
memory and cognitive impairment (Oishi et al., 2009; Thomas
et al., 2011; Mielke et al., 2012; Fletcher et al., 2013; Wang
et al., 2018; Metzler-Baddeley et al., 2019). Likewise, infarction
of the fornix can lead to neurodegeneration of the fornix,
cognitive function decline, and VaD or subcortical VaD (SVD)
(Cummings, 1994; Kalaria and Erkinjuntti, 2006; Zhuang et al.,
2013; Mugikura and Takahashi, 2015; Takano et al., 2018; Zhu
et al., 2018). Neuropsychological evaluation demonstrated the
existence of an amnesia syndrome with deficit of executive
functions in patients with bilateral infarction of the fornix,
especially in the anterior column of the fornix (Nestor et al., 2007;

Rizek et al., 2013; Salvalaggio et al., 2018). Given these findings,
we expected reduced fornix integrity in n-aMCI compared to
healthy older adults and for fornix integrity to be related to
memory and executive functioning performance.

Diffusion tensor imaging (DTI) has been used fruitfully to
study in vivo WM microstructure in the human brain via
voxelwise analysis, region-of-interest (ROI) analysis, or fiber
tractography (FT) (Liu et al., 2009). The majority of DTI studies
have revealed a reduction of fractional anisotropy (FA) and an
increase in mean diffusivity (MD), also known as the apparent
diffusion coefficient (ADC), with advancing age (Beaulieu, 2002;
Peters, 2002; DeBoy et al., 2007; Lebel et al., 2008; Mamere et al.,
2009; Klawiter et al., 2011; Aung et al., 2013). These findings
have been attributed to the breakdown of the myelin sheath
and axonal membrane degradation such as axonal disintegration,
oligodendrocytosis, astrocytosis, and Wallerian degeneration
(WD) (Werring et al., 2000; Pierpaoli et al., 2001; Kiuchi
et al., 2009; Kantarci et al., 2011; Dimitra et al., 2013). Indeed,
abnormal fornix tissue cytoarchitecture has been associated with
neuropathological abnormalities in those who are cognitively
normal and later progress to MCI (Chao et al., 2013). Patients
with MCI and/or AD show significant reductions of FA of the
fornix, which highlights the importance of this key structure as
an imaging marker to predict early disease progression (Liu et al.,
2011; Thomas et al., 2011; Mielke et al., 2012; Pelletier et al.,
2013; Yu et al., 2014; Metzler-Baddeley et al., 2019; da Rocha
et al., 2020). Moreover, pathology of the fornix affects several
brain networks with which it is interconnected (Nowrangi and
Rosenberg, 2015).

In this study, we used DTI to assess the WM microstructure
of the fornix in a cohort of Thai older adults. While the current
literature has focused more on DTI markers of aMCI and
AD and on whole-brain analyses, our aim was to specifically
target the fornix, as its unique connectivity can shed light on
the pathophysiology of n-aMCI, which is particularly prevalent
in the Asia-Pacific region. Importantly, we approached this
aim through both volumetric analysis and tractography. Our
hypothesis was that WM integrity and fiber tract length (FTL)
of the fornix would be sensitive to n-aMCI and would associate
with cognitive functioning.

MATERIALS AND METHODS

Participants and Study Design
Participants aged 60 years and older with no history of
dementia, no active depression disorders, and normal levels
of daily function were recruited through the Maharaj Nakorn
Chiang Mai Hospital and the local community. This study
received institutional ethical approval. All participants in this
study had voluntarily offered to undergo blood collection,
cognitive screening tests, neuropsychological battery testing by a
geriatric psychologist, and MRI scan by a well-trained radiologic
technologist. Participants provided written informed consent
before beginning the study. Participants were excluded from
enrollment if they had (1) a history of infection, infarction, or
other focal lesions in a brain structure critically associated with
memory; (2) alcohol or substance abuse or dependence within
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the past 2 years; (3) significant neurologic diseases within the past
1 year; active claustrophobia, hypothyroidism, hyperthyroidism,
vitamin B12 deficiency, neurosyphilis [rapid plasma reagin (RPR)
or Treponema pallidum hemagglutination (THPA) positive], or
the human immunodeficiency virus (HIV); (4) current use of
psychoactive medications; significant head trauma with post-
traumatic loss of consciousness for at least 30min at any
point in their life; (5) loss of senses (blindness, deafness) or
photosensitive epilepsy; presence of any metallic implants; and
(6) any significant systemic illness or unstable medical condition
that could lead to difficulty complying with the protocol.

Eighty participants were recruited, of which 39 were excluded
after screening due to (1) 10 cases of mild anemia, (2) three
cases of incomplete screening, (3) three cases of claustrophobia,
(4) two cases of depression, (5) two cases of abnormal thyroid
function, (6) two cases of obstructive sleep apnea, (7) two cases
where participants were taking medications that affect cognition
(i.e., prostatitis treatment), (8) one case of contracted syphilis, (9)
one case of color blindness, (10) one case of generalized anxiety
disorder, and (11) one case of low white blood cell count. Eleven
other participants were excluded due to an unclear diagnosis after
neuropsychological testing. Forty-one participants met the initial
inclusion criteria, consisting of 20 healthy controls (HCs) and
21 with MCI. All of the participants with MCI met the criteria
for non-amnestic MCI (n-aMCI), all presenting with executive
dysfunction. Ten participants were excluded from the imaging
analysis due to incomplete MRI acquisitions and/or atypical
projection of the fornix. Therefore, data from 31 participants
are presented. The resulting cohort consists of 14 HCs and
17 n-aMCI.

Clinical Evaluation
Each participant received multidisciplinary clinical evaluations
at the Geriatric Psychiatry Clinic, Maharaj Nakorn Chiang Mai
Hospital. Evaluations included (1) a detailed medical history;
(2) physical and neurological examinations; (3) medical blood
tests including fasting blood sugar (FBS), lipid profile (cholesterol
and triglyceride), complete blood count (CBC), blood–urea–
nitrogen (BUN) and creatinine (Cr), blood electrolytes (sodium,
potassium, chloride, bicarbonate, calcium, magnesium, and
phosphorus), triiodothyronine (T3), thyroxine (T4), thyroid-
stimulating hormone (TSH) levels, and vitamin B12 (cobalamin),
the RPR test, TPHA test, and HIV testing by a well-trained
HIV counselor; and (4) cognitive screening tests including
Montreal Cognitive Assessment (MoCA) (Nasreddine et al.,
2005; Hemrungrojn, 2011), Mini-Cog Test (Borson et al., 2000;
Trongsakul et al., 2015), Thai Geriatric Depression Scale-15
(TGDS-15) (Sheik, 1986; Wongpakaran and Wongpakaran,
2012), and The Barthel Index for Activities of Daily Living (ADL).
In order to proceed in the study, participants needed to pass the
Mini-Cog Test (score ≥3) and TGDS-15 (score < 6) and to have
no abnormal blood work results indicating conditions that could
affect cognition.

Neuropsychological Testing
Subtests of the Wechsler Memory Scale-Third Edition (WMS-
III) and the Wechsler Adult Intelligence Scale-Fourth Edition

(WAIS-IV) were used to measure three cognitive domains:
attention, executive function, and memory.

To correct for multiple comparisons, composite scores were
calculated. A z-score was calculated for each participant’s
performance on each cognitive test relative to the mean and
standard deviation across all participants. The z-scores were
multiplied by −1 in cases where higher scores indicated worse
performance and then averaged within the domain:

• Attention: Digit Span Test, Digit Symbol-Coding Test, and
Trail Making Test (TMT) Part.

• Executive function: TMT Part B, Block Design test, Verbal
Fluency test (Phonemic and Animal), and the Stroop Color
and Word Test (SCWT).

• Memory: Letter-Number Sequencing Test and Word List
Memory I and II.

Diagnosis of cognitively normal or MCI (minor neurocognitive
disorder) was made according to the American Psychiatric
Association’s (APA) Diagnostic and Statistical Manual of
Mental Disorders-Fifth Edition (DSM-5 R©) criteria (American
Psychiatric Association, 2013) by a consensus conference of a
geriatric psychiatrist and neuropsychologist.

MRI Acquisition
All participants were scanned on a 1.5 Tesla MR Philips Ingenia
system equipped with a 15-channel head/spine array coil at
the Associated Medical Science (AMS) Clinical Service Center,
Department of Radiologic Technology, Faculty of Associated
Medical Sciences, Chiang Mai University. The examination
protocol included: axial DTI, T2 weighted (T2W) imaging, fluid-
attenuated inversion recovery (FLAIR), and T1 weighted (T1W)
imaging. The DTI protocol used the following parameters:
repetition time (TR) = 5.0 s, echo time (TE) = 90ms, FOV =

224mm, matrix = 128 × 128, 49 directions, slice/gap 5.0/1mm,
b-value = 0 (1 volume per acquisition) and 1,000 s/mm2 applied
in 12 diffusion gradient orientations, and 75 slices. The total scan
time was 25 min.

Preprocessing
The DTI data were analyzed using the FMRIB (University of
Oxford’s Center for Functional Magnetic Resonance Imaging
of the Brain) Software Library (FSL) Diffusion Toolbox FSL
release 5.0.10 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). All DICOM
files were converted into NIFTI files using the MRICron utility
dcm2nii (http://www.nitrc.org/projects/mricron), and the first
volume (the b = 0 image) was used to generate a binary brain
mask with a threshold of 0.2 by using Brain Extraction Tool
(BET). Then, the DTI parameters FA, axial diffusivity (AxD),
mean diffusivity (MD), and radial diffusivity (RD) were derived
from each participant’s preprocessed DTI data.

Non-linear registration to the FMRIB58_FA space was applied
to align the individual FA maps into a Montreal Neurological
Institute (MNI) 152 standard space (http://imaging.mrc-cbu.
cam.ac.uk/imaging/MniTalairach). The mean FA image was
created from across all participants to generate a mean FA
skeleton, which represents the center of WM tracts shared by
all participants. To exclude voxels containing peripheral tracts,
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partial volume effects with gray matter (GM), and cerebrospinal
fluid (CSF), the mean FA skeleton voxel was thresholded at FA
≥ 0.2.

Given the small size and high intersubject variability of
fornix anatomy, in our group analyses, we used standard-space
binary masks to isolate specific anatomical substrates of the
fornix based on the JHU ICBM-DTI-81 WM Labels Atlas (Mori
et al., 2005, 2008) (Figure 1). Subsequently, FSL’s fslmeants
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Fslutils) was used to extract
the average time course of FA and ADC values over 2 JHU-
atlas masks for each participant: the whole tract of the fornix
(denoted by subscript “whole”) and the body and column (BC)
of the fornix.

Fiber Tract Length Measurement
We performed fornix tractography using the Phillips proprietary
software, FiberTrak, which is based on the Fiber Assignment
with Continuous Tracking (FACT) algorithm (Mukherjee et al.,
2008; Christidi et al., 2016). This deterministic DTI fiber
tracking technique was performed with an FA threshold of
0.2. The fornix was manually drawn on the axial plane based
on anatomical knowledge on the color-coded first eigenvector
FA (FEFA) map by an experienced radiologic technologist and
by three raters: (1) a professional rater with experience with
DTI of the brain and manual tracing, (2) an intermediate
rater who knew about DTI but had no experience with the
protocol or manual tracing, and (3) a novice rater who was
unfamiliar with DTI, the protocol, and manual tracing. Then,
the fornix FTL was computed using the FACT algorithm length
distributions across the fornix following the main direction
of its principal eigenvector in each individual using Euler’s
method (Yeh et al., 2013). Each completed the tracings three
times within 1-month interval to determine intra- and inter-
rater reliability of the manual tracings. The FEFA maps
were calculated based on a combination of direction and
anisotropic diffusion, represented in red, green, and blue.
Figure 2 shows the manually traced tract (red line) drawn on
the 2D FEFA map on the axial plane of the fornix (green color
diffusion direction).

Statistical Analysis
Statistical analyses were performed using IBM-SPSS version
26 (IBM Corp. Released 2019 from the manual tracing
IBM SPSS Statistics for Windows, Version 26.0; IBM Corp.,
Armonk, NY). Independent t-tests were used to compare age
and education level between the HC and n-aMCI groups.
ANOVAs were used to compare groups on MoCA, attention,
executive functioning, memory, and the DTI parameters; FTL
from the manual tracing (FiberTrak) and (FAwhole, ADCwhole,
FABC, FAST, ADCBC, and ADCST) extracted from the JHU-
atlas masks, all controlling for age and education level.
Pearson correlation coefficients were calculated to determine
the strength of the linear association among DTI parameters
and cognitive composites (Supplementary Table 4). Separate
hierarchical linear regressions for each DTI parameter were
performed to predict the cognitive composites, controlling for

age and education. To achieve this, the HC group was coded
as 1 and the n-aMCI group as 2, and age and education
were entered first. Because age and education correlated with
FTL (Supplementary Table 4), the interactions of FTL with
age and education were included as a second step to account
for these relationships. Next entered was a DTI parameter
(e.g., FA of the entire fornix) and then the group × DTI
parameter interactions. The group × DTI interaction term
allowed us to determine if the relationship between DTI
parameters and cognition differed between groups over and
above any effects of age or education. The alpha level was set at
0.05 throughout.

RESULTS

Demographic Data
Table 1 shows the descriptive statistics of the demographic data.
The HC group was significantly younger (64.36 ± 3.93 years)
than the n-aMCI group (71.24 ± 8.15 years), p = 0.005, and
significantly more educated (HC = 15.79 ± 2.61, n-aMCI =

12.18 ± 5.71), p = 0.029. Furthermore, age and education
were correlated with cognition and with FTL from the manual
tracing; Supplementary Table 4). Therefore, age and education
were controlled in all remaining group comparisons.

Qualitative Analysis
Although the anatomy of the fornix is well-established,
substantial intersubject anatomical variability is observed. The
3D reconstruction of the manually labeled fornix tracts was
classified into seven classes of projection based on a skilled
neuroanatomist’s knowledge of the typical complete projection
of the fornix consisting of fimbriae, crura, body, and column. The
seven classes identified included three types of typical projection,
two types of typical projection with missing features, and two
types of atypical projection (Figure 3). Six cases (14.6% of all
cases) of Type 6 and Type 7 were excluded due to the atypical
projection of the fornix tract.

Intra- and Inter-rater Reliability
Intra-rater consistency of the manual tracing in fornix FTL
ranged from acceptable to excellent, with Cronbach’s alpha of
0.733 to 0.972, as shown in Table 2. Inter-rater consistency was
excellent, with Cronbach’s alpha ranging from 0.950 to 0.990.
The inter-rater reliability of FTL in the HC group showed
the highest reproducibility among both groups. In addition,
the intra/inter-rater consistency averaged across all iterations
and raters was excellent, with the highest Cronbach’s alpha of
0.993. It was these latter averages that were brought forward
for analysis.

Group Differences in Diffusion Tensor
Imaging Parameters and Cognition
Descriptive statistics for cognitive screening scores, DTI
parameters, and the z-scores of attention, executive function,
and memory domains for each group are shown in Table 3.
The HC group outperformed the n-aMCI group in the executive
function and memory domains, but not in the attention domain,
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FIGURE 1 | The binary mask of the body and column of the fornix is represented in red, the 3D rendered by using MRIcroGL (https://www.mccauslandcenter.sc.edu/

mricrogl/) in the sagittal plane (A), coronal plane (B), and right oblique plane (C).

FIGURE 2 | The deterministic tractography of the complete projection of the fornix tract (yellow tract) consists of fimbriae, crura, body, and column. The manual

tracing region of interest (ROI) draws on the 2D first eigenvector fractional anisotropy (FEFA) map on the axial plane of the fornix (A). The fornix fiber tract in the axial

plane (B), sagittal plane (C), axial plane (D), and left oblique view (E). The conventional red-green-blue color-coding was used for display purposes (red for right–left,

blue for dorsal–ventral, and green for anterior–posterior) (Müller and Kassubek, 2007).

TABLE 1 | Descriptive statistics of participants’ demographics.

Variables Mean ± SD Group comparison

HC n-aMCI F p

Subjects (n) 14 17 – –

Age (years) 64.36 ± 3.93 71.24 ± 8.15 4.868 0.005

Education level (years) 15.79 ± 2.61 12.18 ± 5.71 1.713 0.029

Gender (M:F) 0:14 3:14 4.278 0.098

Age and education level were compared using an independent t-test and a chi-square

test, respectively. HCs, healthy older adult controls, n-aMCI, non-amnestic mild cognitive

impairment (MCI) group. Significant values are bolded.

after controlling for age and education. No significant difference
between groups was found in the age- and education-adjusted
DTI parameters.

Group Differences in the Relationship
Between Diffusion Tensor Imaging
Parameters and Cognition
Hierarchical linear regressions revealed no significant
relationship of the whole-fornix FA or ADC with cognition. The
same was true for the ADC of the BC of the fornix. However,

significant relationships with cognition were identified in FABC

and FTL, and these relationships furthermore differed between
groups after accounting for the influence of age and education.
FABC was positively associated with both executive function (p
= 0.003) and memory (p = 0.035) overall, but more strongly
in the HC than in the n-aMCI group (p < 0.001 and p =

0.028, respectively) (Table 4). While the association of FTL with
executive function and memory was not significant overall, these
relationships also differed between groups (p < 0.001 and p
= 0.011, respectively) (Table 5). The association of FTL with
memory was stronger in the HC group than that in the n-aMCI
group, but contrary to the case of FABC, the association of FTL
with executive functioning was stronger in the n-aMCI group
than that in the HC group. Importantly, these differences in
the relationship between FABC and FTL with cognition were
independent of any influence of age or education.

DISCUSSION

Demographics
All participants with MCI in our study were classified as n-aMCI
with deficits in executive functioning. This is consistent with the
high prevalence of cerebrovascular and cardiovascular conditions
in the Asia-Pacific region compared to other regions (Jhoo et al.,
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FIGURE 3 | Seven classes of the fornix projection are classified by using a single region of interest (ROI) (n = 41). Ten cases (24.4%) of Type 1, the complete typical

projection; four cases (9.8%) of Type 2, complete typical projection with short fimbria (one side, Lt/Rt); seven cases (17.1%) of Type 3, complete typical projection with

short fimbriae (both sides, Lt. and Rt.); four cases (9.7%) of Type 4, atypical projection with missing crus and/or fimbria (one side, Lt/Rt); 10 cases (24.4%) of Type 5,

atypical projection with missing both crura and fimbriae (both sides, Lt. and Rt.); four cases (9.8%) of Type 6, complete typical projection with addition atypical

projection; and two cases (4.9%) of Type 7, the atypical projection of fimbriae (both sides, Lt. and Rt.). Six cases (14.6%) of Type 6 and Type 7 were excluded due to

the atypical projection of the fornix tract. Note: Healthy control (HC) group is shown in blue, and non-amnestic mild cognitive impairment (MCI) group (n-aMCI) group is

shown in yellow.

2008; Chan et al., 2013), although it should be noted that n-
aMCI can progress to AD, and individuals with AD often have
mixed neuropathology that includes neurovascular events such
as WM hyperintensities (Alber et al., 2019). Earlier studies have
reported a higher prevalence of VaD than AD with an overall
ratio of 2:1 in the Asia-Pacific population due to lifestyle and
food preference (Narasimhalu et al., 2008). The HC group was
significantly younger and had higher education levels than the
n-aMCI group; therefore, all other group comparisons in this
study accounted for these differences. Our findings in this regard

are consistent with several studies that have demonstrated a
link between educational attainment and cognitive functioning
(Ardila et al., 2000; Le Carret et al., 2003; Narasimhalu et al., 2008;
Falch and Sandgren Massih, 2011; Guerra-Carrillo et al., 2017).

Fornix Projections and Integrity
DTI tractography was performed using the novel deterministic
FACT algorithm. In the FACT algorithm, the fornix fiber tract
is reconstructed voxel by voxel following the main direction
of its principal eigenvector. Hence, this algorithm provided
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TABLE 2 | The internal consistency (Cronbach’s alpha) of the manual tracing of

the fornix, both intra-observer and among three levels of inter-observer including

professional, intermediate, and novice levels.

DTI

parameters

Intra-rater

consistency (α)

Inter-rater

consistency (α)

Average of

intra/inter-rater

consistency (α)

HC

(n = 14)

n-aMCI

(n = 17)

HC

(n = 14)

n-aMCI

(n = 17)

HC

(n = 14)

n-aMCI

(n = 17)

FTL (mm) 0.972 0.733 0.990 0.950 0.993 0.966

HCs, healthy older adult controls; n-aMCI, non-amnestic mild cognitive impairment

(MCI) group; FA, fractional anisotropy; ADC, apparent diffusion coefficient; FTL, fiber

tract length.

a reliable estimate of fornix FTL (Mori and Van Zijl, 2002;
Hagler et al., 2009). Based on neuroanatomy knowledge, we
found 35 of the 41 participants (85.37%) to have successfully
represented the projection of fornix entirely and only six (9.76%)
to have unsuccessful tracking results (presenting with the unlikely
scenario of fiber projecting within subcorticalWM) (Bürgel et al.,
2009). For this reason, it was necessary to exclude these six
aberrant fiber cases. FornixWM integrity begins to decrease after
its maturation peak during late adolescence because it is one of
the earliest WM tracts to mature in the human brain (Douet and
Chang, 2015).With advancing age, totalWMfiber length in older
adults has been reported to be decreased by 27 to 45% compared
to younger adults (Tang et al., 1997; Marner et al., 2003). In our
study, 14 cases had shortened or missing crura and/or fimbriae
of the fornix including six cases (42.85%) of HC and eight cases
(57.15%) of the n-aMCI group (as you can see in Figure 3; Type
4 and Type 5). Aging, together with the WM lesions (WMLs), in
particular, specific frontal or medial temporal lobe (MTL) areas,
could lead to a higher prevalence of atypical or incomplete fornix
projection in n-aMCI than in the control group.

The Relationship Between Fornix Integrity
and Executive Function
Executive function (EF) encompasses higher-order cognitive
processes that generally refer to the coordinated operation of
organization, regulation, planning, working memory, problem-
solving, cognitive flexibility, and cognitive fluency (Denckla,
1994; Alvarez and Emory, 2006; Chan et al., 2008). It has
long been known that the PFC is a pivotal area for sustaining
executive functioning (Welsh et al., 1991; Moriguchi and Hiraki,
2013; Yuan and Raz, 2014). As the fornix connects the limbic
system with both prefrontal and subcortical regions, it is a
critical component of the Papez circuit and serves a major
efferent pathway from the hippocampus to the medial PFC.
Indeed, executive dysfunction was found to be related to cerebral
hypoperfusion in regions connected to the fornix, specifically the
middle frontal cortex and posterior cingulate gyrus in people with
n-aMCI and executive dysfunction (Chao et al., 2009). Moreover,
infarction of the fornix also leads to amnesia with executive
dysfunction (Rizek et al., 2013; Salvalaggio et al., 2018).

We found a significant relationship between executive
function and integrity in the BC (FABC) of the fornix as well
as with fornix FTL, independent of the influence of age and

TABLE 3 | Descriptive statistics of participants’ MoCA score, cognitive

composites, and diffusion tensor imaging (DTI) parameters.

Variables Mean ± SD Group comparison

HC n-aMCI F p

MoCA 26.07 ± 3.10 19.88 ± 4.06 7.804 0.009

Attention (z) 0.05 ± 0.46 −0.10 ± 0.44 0.000 0.988

Executive Function (z) 0.46 ± 0.39 −0.46 ± 0.44 19.703 <0.001

Memory (z) 0.24 ± 0.37 −0.19 ± 0.46 5.680 0.024

JHU-atlas

FAwhole 0.43 ± 0.03 0.42 ± 0.03 0.167 0.686

ADCwhole 1.11 ± 0.09 1.15 ± 0.12 0.683 0.416

FABC 0.33 ± 0.07 0.29 ± 0.08 2.366 0.136

ADCBC 1.71 ± 0.24 1.84 ± 0.30 1.722 0.200

Manual tracing: FiberTrak

FTL (mm) 44.25 ± 9.66 37.59 ± 10.89 0.326 0.573

The group comparisons were made using univariate ANOVA, controlling for age and

education. HCs, healthy older adult controls; n-aMCI, non-amnestic mild cognitive

impairment (MCI) group; MoCA, Montreal Cognitive Assessment; FA, fractional

anisotropy; ADC, apparent diffusion coefficient; FTL, fornix fiber tract length; FABC, FA

value of the body and column of the fornix; FAwhole, FA value of the whole fornix tract;

ADCBC, ADC value of the body and column of the fornix; ADCwhole, the ADC value of the

whole fornix tract. Significant values are bolded.

education. Our results suggest that FABC does not support
executive function as efficiently in n-aMCI compared to HC,
as FA is less strongly associated with EF in the former group
(Table 4). Interestingly, FTL was more strongly associated with
EF in n-aMCI than the control group, and FTL was significantly
positively related to EF over all participants (r = 0.60, p < 0.01;
Supplementary Table 4). In n-aMCI, we found that most cases
(57% of all n-aMCI cases) had missing crura and fimbriae, which
are extended from the hippocampus. On the other hand, the BC
of the fornix was intact in all cases. The column of the fornix
projects to septal nuclei and the PFC via the precommissural
fornix. As mentioned above, the PFC plays a critical role in
executive functioning. Those with longer fornix FTL had better
executive functioning, and this was particularly the case in the
n-aMCI group. Given that the precommissural fornix projects to
the PFC via the septal nuclei (Yeo et al., 2013; Cho et al., 2015;
Coad et al., 2020), this finding suggests that, particularly among
those with n-aMCI, executive functioning was sustained among
those with fornix FTL long enough to make these connections.

The Relationship Between Fornix Integrity
and Memory
Episodic memory involves the ability to learn, store, and retrieve
information (Dickerson and Eichenbaum, 2010). In our study,
FABC and FTL both showed a significant positive relationship
with memory performance, over and above the influences of
age and education. Moreover, this relationship was stronger
in the HC than in the n-aMCI group. These results replicate
previous findings showing that fornix integrity is supportive of
memory performance in healthy young and older adults (e.g.,
Rudebeck et al., 2009; Metzler-Baddeley et al., 2011) but also
highlight the breakdown of the contribution of the fornix to
episodic memory in individuals with n-aMCI. As is well known,
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TABLE 4 | Hierarchical linear regression analysis of fractional anisotropy (FA) of the body and column of the fornix and cognition among HC and non-amnestic mild

cognitive impairment (MCI) group (n-aMCI) groups, with attention, executive function, and memory domains as dependent variables, adjusted for age and education.

Model Unstandardized coefficient Standardized coefficient t p F R R2
1R2

B SE Beta

1. Attention domain

Age −0.005 0.013 −0.086 −0.413 0.683

Edu 0.031 0.019 0.343 1.685 0.104

FABC 0.615 1.214 0.107 0.507 0.617

FABC*Group 0.057 0.598 0.023 0.095 0.925 1.244 0.401 0.161 <0.001

2. Executive function domain

Age −0.013 0.010 −0.159 −1.299 0.205

Edu 0.042 0.015 0.330 2.770 0.010

FABC 3.199 0.990 0.401 3.230 0.003

FABC*Group −2.097 0.488 −0.596 −4.298 0.000 16.169 0.845 0.713 0.204

3. Memory domain

Age 0.013 0.012 0.210 1.136 0.266

Edu 0.029 0.017 0.299 1.663 0.108

FABC 2.513 1.131 0.416 2.221 0.035

FABC*Group −1.295 0.558 −0.487 −2.323 0.028 3.419 0.587 0.345 0.136

Edu, education level; FABC, the FA value in the body and column of the fornix; FABC*Group, group difference in FABC. Significant values are bolded.

TABLE 5 | Hierarchical linear regression analysis of fornix fiber length and cognition among HC and non-amnestic mild cognitive impairment (MCI) group (n-aMCI) groups,

with attention, executive function, and memory domains as dependent variables, adjusted for age and education.

Model Unstandardized coefficient Standardized coefficient t p F R R2
1R2

B SE Beta

1. Attention domain

Age −0.007 0.048 −0.108 −0.135 0.894

Edu −0.136 0.072 −1.495 −1.892 0.071

Age * FTL 0.000 0.001 −0.509 −0.335 0.741

Edu * FTL 0.005 0.002 3.052 2.443 0.022

FTL −0.53 0.100 −1.275 −0.530 0.601

FTL * Group 0.002 0.004 0.116 0.571 0.573 2.323 0.606 0.367 0.209

2. Executive function domain

Age −0.022 0.042 −2.55 −0.515 0.612

Edu 0.065 0.063 0.508 1.035 0.311

Age * FTL 0.001 0.001 0.703 0.744 0.464

Edu * FTL −0.001 0.002 −0.353 −0.455 0.653

FTL 0.005 0.086 0.086 0.057 0.955

FTL * Group −0.015 0.003 −0.569 −4.491 <0.001 12.374 0.869 0.756 0.695

3. Memory domain

Age 0.012 0.049 0.194 0.252 0.803

Edu 0.082 0.073 0.855 1.123 0.273

Age * FTL 0.001 0.001 0.704 0.480 0.636

Edu * FTL −0.02 0.002 −0.999 −0.830 0.415

FTL 0.020 0.101 0.465 0.200 0.843

FTL * Group −0.011 0.004 −0.540 −2.750 0.011 2.799 0.642 0.412 0.265

Edu, education level; FTL, fornix fiber tract length; Age * FTL, age by FTL interaction; Edu * FTL, education by FTL interaction; FTL * Group, group difference in FTL. Significant values

are bolded.
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the hippocampus–fornix–mammillary body system plays a role
in episodic memory (Gaffan, 1992). Similar to hippocampus
lesions, neurodegeneration of the fornix microstructure leads to
the inability to create and/or store new memories (Thomas et al.,
2011). This joint biological mechanism can potentially include
Wallerian-like degeneration (WD) of the fornix axons, which is
secondary to early injury of the neuronal degeneration in the
hippocampus (Fletcher et al., 2013; Chen et al., 2017). The earliest
study to our knowledge identifying WD in the fornix was after
transection of the fimbria–fornix during temporal lobe epilepsy
surgery for intractable epilepsy (Liu et al., 2013). More recently,
Wang et al. (2020) reported that poorer fornix WM integrity was
significantly correlated with reduced functional connectivity of
the hippocampus due to the WD of the fornix axons in patients
with MCI and AD (Wang et al., 2020). WD can be secondary
to some cerebrovascular diseases (Uchino et al., 2004; Thomalla
et al., 2005; Xie et al., 2012; Zhang et al., 2018), especially in the
first week after ischemic stroke. It has been reported that the FA
values of the affected tract begin to decrease 3 days after onset
of the stroke (Thomalla et al., 2005; Xie et al., 2012; Zhang et al.,
2018). Moreover, the fornix microstructure has been shown to
predict episodic memory performance in several MRI studies
(Vann et al., 2009; Sexton et al., 2010; Metzler-Baddeley et al.,
2011; Zhuang et al., 2012).

Infarction of the fornix can lead to VaD or SVD, which also
leads to a decline in memory performance (Cummings, 1994;
Kalaria and Erkinjuntti, 2006). Likewise, the MTL is commonly
affected by traumatic brain injury (TBI), which typically results
in a variety of cognitive deficits. The pathophysiology of TBI
is characterized by impaired regulation of cerebral blood flow
(Werner and Engelhard, 2007; Prins et al., 2013), tissue damage
involving the damage of limbic WM, and other factors such as
edema, excitotoxicity, and hemorrhage (Gale et al., 1993). WM
disruption in the fornix has been found to be associated with
memory performance in both TBI patients and control groups
(Kinnunen et al., 2011) and the reduction of FA of the fornix is
correlated with poorer memory performance (Tomaiuolo et al.,
2004), working memory (Palacios et al., 2011), and learning
(Kinnunen et al., 2011) in patients with TBI.

In addition, anterograde amnesia, the inability to create new
memories, is one of the earliest symptoms in patients with fornix
infarction or after TBI that damages limbic-related structures
including the fornix (Baweja et al., 2015; Gupta et al., 2015;
Turine et al., 2016; Kauppila et al., 2018; Takano et al., 2018;
Wang et al., 2018; Zhu et al., 2018). These results suggest that one
contributor to episodic memory deficits in n-aMCI is the subtle
degradation of fornix integrity.

The Relationship Between Fornix Integrity
and Attention
Attention refers to the ability to selectively attend or concentrate
on specific relevant information while ignoring irrelevant
information (McGuinness et al., 2010). The dorsolateral PFC
and anterior cingulate gyrus are two areas involved in attention
(Perry and Hodges, 1999). Because the fornix is one of the WM
tracts carrying signals from the MTL to the PFC, damage to

the fornix could lead to a decline in attention ability. Although
our participants with n-aMCI had intact attention and there
was no significant relationship between the DTI parameters
and attention in the present study, several studies have found
that patients with VaD have attentional deficits and more so
than patients with AD (Mendez and Ashla-Mendez, 1991; Barr
et al., 1992; Almkvist et al., 1993). Therefore, we might expect a
significant decline in attention ability and its relationship with
fornix integrity in the later stages of VaD in our sample. It is
also the case that our measures of attention did not assess higher-
order attention skills such as divided attention. Perhaps we would
have seen group differences had we administered more complex
attention tasks.

Fornix and Its Association With Vascular
Dementia
Changes in fornix diffusivity are common among patients with
VaD (Douaud et al., 2011; Mayo et al., 2017; Salvadores et al.,
2017), especially the reduction of FA and an increase of ADC,
which reflect its integrity. The higher the frequency of ischemic
heart disease, TIA, or stroke in a sample, the more WMLs are
found in n-aMCI compared to aMCI patients (Mariani et al.,
2007). Likewise, those with n-aMCI typically have increased
vascular burden and are more likely to have cardiovascular risk
factors as well as basal forebrain atrophy than those with aMCI
(He et al., 2009; Jak et al., 2009). These vascular burdens, such
as small ischemic and vascular lesions that involve subcortical
areas (where the fornix is situated) are commonly associated with
cognitive decline (Cummings, 1994). As is well known, n-aMCI
is more likely to develop into non-AD dementia, notably VaD
(Petersen et al., 2001).

Limitations and Future Directions
One limitation of this pilot study is the small sample size,
which may have limited the power of investigation. We initially
recruited 80 participants but were very conservative in excluding
conditions that might affect cognition, other than preclinical
neurodegeneration. Thus, although our sample is small, we are
highly confident in the clinical diagnosis of our sample. Another
limitation of our data is that age and education are strongly
associated with cognition; age and education differed between
the patient and control groups. However, we have shown that the
significance relationship between cognition and DTI parameters
in our study is independent of any influence of age or education.
Another limitation is the deterministic tractography, which can
only detect local diffusion that passes through the chosen ROI
and is unable to distinguish between afferent and efferent fibers
within the WM tract; hence, it cannot be assumed that the
detected projection reflects the true anatomical structure (Mori
et al., 1999; Bürgel et al., 2009).

Because the fornix is small and located between the lateral
ventricles beneath the corpus callosum along with septum
pellucidum, it is susceptible to partial volume effects by the
surrounding CSF, which can potentially affect the measurement
of the thinner parts of it (i.e., crura and fimbriae). By contrast, the
BC of the fornix is the most prominent structure, making it least
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susceptible to partial volume effects and thus a good candidate
for representing the WM integrity of the entire fornix.

CONCLUSION

The FA of the BC of the fornix and fornix FTL were positively
associated with executive function and memory among both
groups. These relationships were stronger in the healthy older
adults than those in the n-aMCI, with the exception of the
FTL–executive functioning association. This pilot study provides
the first evidence for a decline in the contributions of fornix
integrity to memory and executive functioning in n-aMCI
and suggests that maintenance of fornix FTL is critical for
sustaining executive functioning in people with presumptive
preclinical VaD.
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Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by

the accumulation of toxic misfolded proteins, which are believed to have propagated

from disease-specific epicenters through their corresponding large-scale structural

networks in the brain. Although previous cross-sectional studies have identified potential

AD-associated epicenters and corresponding brain networks, it is unclear whether these

networks are associated with disease progression. Hence, this study aims to identify the

most vulnerable epicenters and corresponding large-scale structural networks involved

in the early stages of AD and to evaluate its associations with multiple cognitive domains

using longitudinal study design. Annual neuropsychological and MRI assessments

were obtained from 23 patients with AD, 37 patients with amnestic mild cognitive

impairment (MCI), and 33 healthy controls (HC) for 3 years. Candidate epicenters were

identified as regions with faster decline rate in the gray matter volume (GMV) in patients

with MCI who progressed to AD as compared to those regions in patients without

progression. These epicenters were then further used as pre-defined regions of interest

to map the synchronized degeneration network (SDN) in HCs. Spatial similarity, network

preference and clinical association analyses were used to evaluate the specific roles of the

identified SDNs. Our results demonstrated that the hippocampus and posterior cingulate

cortex (PCC) were the most vulnerable AD-associated epicenters. The corresponding

PCC-SDN showed significant spatial association with the patterns of GMV atrophy

rate in each patient group and the overlap of these patterns was more evident in the

advanced stages of the disease. Furthermore, individuals with a higher GMV atrophy rate

of the PCC-SDN also showed faster decline in multiple cognitive domains. In conclusion,

our findings suggest the PCC and hippocampus are two vulnerable regions involved

early in AD pathophysiology. However, the PCC-SDN, but not hippocampus-SDN, was

more closely associated with AD progression. These results may provide insight into the

pathophysiology of AD from large-scale network perspective.

Keywords: Alzheimer’s disease, mild cognitive impairment, structural covariance network, synchronized

degeneration network, hippocampus, posterior cingulate cortex
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INTRODUCTION

The human brain is traditionally considered to be a patchwork
composed of neurons with specific functions and has been

thoroughly dissected into histologically distinct regions based
on functional organization or cellular cytoarchitecture. Advances

in neuroimaging techniques have generated a novel view of the
brain as a complex interconnected system that exerts its functions
via both local and long-range connections (Biswal et al., 1995).

Although the exact roles of these large-scale brain networks are
not fully understood, disruptions of these networks have been
demonstrated in various neurological diseases (Ahmed et al.,
2016).

A pathological hallmark of neurodegenerative diseases is
misfolded protein deposition in specific brain areas. In patients
with Alzheimer’s disease (AD), β-amyloid and tau proteins are
widespread in many cortical regions and are correlated with
clinical symptoms and cognitive functions (Braak and Braak,
1991). Recent studies further suggested that these misfolded
proteins may be deposited in certain vulnerable anatomical
regions early on, and spread along their corresponding large-
scale networks in the brain as the disease progresses (Pievani
et al., 2014; Franzmeier et al., 2020). According to this brain
network degeneration hypothesis, the process may begin in
epicenters of disease-specific networks, which are specific brain
regions that are structurally and/or functionally vulnerable to
the disease (Seeley et al., 2009). Misfolded proteins then spread
along corresponding brain networks rather than by geographical
proximity (Iba et al., 2013). Based on this hypothesis, several
cross-sectional studies have identified AD epicenters as brain
areas with maximal atrophy in patients with AD compared to
healthy controls (HCs). These epicenters were then used as
seeds to determine their corresponding structural and functional
brain networks in HCs (Seeley et al., 2009; Dickerson et al.,
2017). However, the epicenters identified using this approach
may not be the earliest disease-involved regions, as AD pathology
accumulates in the brain prior to the onset of clinical symptoms
(Jack et al., 2010). In addition, it is also unclear whether these
identified brain networks are associated with disease progression.

To identify AD-associated structural brain networks based
on characteristics of disease progression, a 3-year-prospective
study was conducted and the epicenters were posited as regions
with greater annual atrophy rates in gray matter volume
(GMV) in patients with mild cognitive impairment (MCI)
who progressed to AD during the follow-up period as well
as AD patients who were at an earlier stage. These regions
were used as candidate epicenters to establish synchronized
degeneration networks (SDNs) based on covariance patterns of
annual GMV atrophy rates in HCs. This approach has been
proposed as a surrogate marker for investigating longitudinal
changes in large-scale structural networks (Alexander-Bloch
et al., 2013). In contrast with the widely-used structural
covariance network approach, which models the cross-sectional
co-variance pattern of morphometric features across the study
participants, the SDN approach uses longitudinal GMV atrophy
rates as a coupling factor to construct the related structural
network. Consequently, brain networks established using the

SDN approach would more likely capture the progressive
characteristic of neurodegenerative disease. We hypothesized
that large-scale SDNs established with our identified epicenters
could predict disease progression and provide further evidence
supporting the network degeneration hypothesis for AD
pathophysiology from a longitudinal perspective.

MATERIALS AND METHODS

Participants
Patients with amnestic MCI, patients with AD dementia, and
HCs were recruited for the study. During the 3-year follow up,
patients with MCI who progressed to AD were classified as
MCIp; those that remained stable were classified as MCIs. All
patients were recruited from thememory clinic at Taipei Veterans
General Hospital (TVGH), Taiwan. Before the study began,
written informed consent was obtained from all participants
and guardians for AD patients. This study was approved by the
Local Ethics Committee of Human Research in TVGH (N0.97-
04-1OA). Every subject was interviewed by the neurologist for
history-taking and neuropsychological evaluation. Laboratory
and MR examinations were used to exclude other major
neurological diseases such as tumors, strokes, and severe white
matter disease. None of the participants had a history of major
head injury, brain tumor, stroke, epilepsy, alcoholism, major
psychiatric illness, or other systemic diseases affecting cognitive
function. HCs were volunteers with no neurological disease and
no cognitive complaints.

Clinical Assessments
The Mini-Mental State Examination (MMSE) was administered
to assess global cognitive function (Folstein et al., 1975).
To evaluate performance in different cognitive domains, the
following cognitive tests were used:

• Verbal memory: the Chinese version of the Verbal Learning
Test (CVVLT; nine items, four trials, and 10-min delayed
recall) (Chang et al., 2010)

• Language: the categorical (animals) Verbal Fluency Test
(VFT) and 30-item Boston Naming Test (BNT) (Cheung et al.,
2004)

• Visuospatial function: the modified Rey-Osterrieth Complex
Figure Test (CFT) (Boxer et al., 2003)

• Executive function: the modified Trail-Making Test, Part B
(TMT-B) (Kramer et al., 2003)

The diagnosis of AD was based on the criteria from the National
Institute of Neurological and Communicative Disorders and
Stroke-Alzheimer’s Disease and Related Disorders Association
(NINCDS/ADRDA) (McKhann et al., 1984). All patients with
AD had mild dementia with a baseline CDR score of 1
at the time of enrollment. All patients with amnestic MCI
fulfilled the Petersen criteria (Petersen et al., 1999): (1) memory
complaints, preferably corroborated by an informant; (2)
objective memory impairment (verbal memory test, CVVLT ≤5,
below 1.5 standard deviations of normal data) (Chang et al.,
2010); (3) normal general cognitive function (MMSE ≥24);
(4) intact daily living activities; and (5) dementia criteria not
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met. As defined for amnestic MCI, only patients with isolated
memory impairments and without neuropsychological evidence
of dysfunction in other cognitive domains were recruited. All
participants were scheduled to receive clinical and imaging tests
annually for 3 years. Only subjects that received at least two
MRI examinations (17 participants with 2 consecutive scans
and 76 participants with 3 consecutive scans) were included in
subsequent analyses.

Image Acquisition
The MRI scans were acquired using an eight-channel phased-
array head coil on the identical 1.5 T Excite-II MRI scanner
(General Electric Healthcare, Milwaukee, Wisconsin, USA) at
TVGH. Foam pads were used to minimize head movement
during image acquisition. T1 weighted anatomical images were
acquired using a 3-dimensional fluid-attenuated inversion-
recovery fast spoiled gradient recalled echo sequence with
the following imaging parameters: repetition time/echo
time/inversion time = 8.548/1.836/400ms; flip angle = 15
degrees; number of excitations = 1; matrix size = 256 ×

256 × 124 without inter-slice gap and interpolation; and
voxel size = 1.02 × 1.02 × 1.50 mm3. Each individual brain
scan was manually inspected for image artifacts and gross
anatomical abnormalities by an experienced radiologist before
the morphometry analysis. No participant was excluded for
brain abnormalities. Before subsequent image processing, we
reoriented all images to have an approximate point of origin at
the anterior commissure.

Image Analysis
A general overview of the analytical framework is
illustrated in Figure 1. Details of the analytic pipeline are
summarized below.

Estimating Individual Voxel-Wise Anatomical

Changing Rate Map
To estimate voxel-wise anatomical brain changes over time
and enable subsequent statistical analyses independent of the
number of time points, a two-stage tensor-based morphometry
approach was applied using Statistical Parametric Mapping
software (SPM12 version 7487, Wellcome Institute of Neurology,
University College London, UK, http://www.fil.ion.ucl.ac.uk/
spm/) with default settings and in-house MATLAB codes
(R2018a, Mathworks, Natick, MA). In the first stage, all available
native space T1w scans for each individual were warped
longitudinally to their corresponding midpoint average image
using an inverse-consistent non-linear registration approach
available in the “Serial Longitudinal Registration” module of
SPM12 (Ashburner and Ridgway, 2012). Experiment times
for each scan were entered into the registration algorithm,
generating Jacobian determinant maps of each time point and
the corresponding midpoint average images for each individual.
All midpoint average anatomical images were subsequently
segmented into three distinct tissue types (gray matter, white
matter, and cerebrospinal fluid) using a unified segmentation
approach (Ashburner and Friston, 2005). The resulting gray
and white matter tissue segments were used to construct

group-specific tissue templates and estimate deformation
fields using a fast diffeomorphic image registration algorithm
(Ashburner, 2007). This procedure enabled the transformation
of individual Jacobian determinant maps into the standard
Montreal Neurological Institute (MNI) space. Subsequently,
to estimate voxel-wise changing rate maps, a linear regression
model was applied to the MNI-space Jacobian determinant
maps of each time point for each individual participant.
The estimated slope of the regression model presented the
changing rate of the brain across multiple time points. The
resulting changing rate maps were then further smoothed
using an isotropic 8mm full-width at half-maximum Gaussian
kernel. These preprocessed data encoded the relative speed
of brain expansion or contraction per individual, and were
used for subsequent voxel- and network-level analyses. To
exclude partial volume effects of borders between different
tissue types, individual unmodulated gray matter segments of
corresponding midpoint average images were averaged and set
at a threshold (0.2 intensity) to create explicit masks. Individual
native space baseline T1w scans were used to estimate total
intracranial volume.

Voxel-Wise Statistical Analyses of Changing Rate

Maps
The GLM Flex toolbox (http://mrtools.mgh.harvard.edu/index.
php?title=GLM_Flex) with appropriate statistical models was
used for the following voxel-wise statistical analyses. A single-
factor-four-level (HC, MCIp, MCIs, and AD) analysis of
covariance with age, sex, educational years, and total intracranial
volume as nuisance covariates was used to identify between-
group differences in GMV changing rates of local brain areas. A
separate one-sample t-test was performed for each study group
to map group-specific degenerative patterns (different from zero)
over time. Voxel-wise statistical results were set at a voxel-level
uncorrected p < 0.005 and extent threshold of family wise error
(FWE) corrected p < 0.05 (cluster extent= 513 voxels) using the
updated “3dFWHMx” and “3dClustSim” programs implemented
in the Analysis of Functional Neuroimages software (AFNI,
version 19.3.17). For transparency and reusability of statistical
results, all unthresholded statistical maps of direct group
comparisons and group-specific degenerative patterns can be
downloaded from the NeuroVault website (https://neurovault.
org/collections/3273/).

Disease-Specific Epicenter Identification and

Synchronized Structural Degeneration

Network Analysis
Disease-specific epicenters for synchronized SDN analysis were
identified by placing 6-mm-radius spheres at the most-significant
voxel from the above direct-group voxel-wise changing rate
analysis (MCIp vs. MCIs). Brain regions with significantly
higher GMV changing rates in MCIp were defined as early
AD-associated epicenters and further selected as seed regions-
of-interest (ROIs) for mapping large-scale SDNs in HCs. In
accordance with previous longitudinal studies (Alexander-Bloch
et al., 2013), we extracted mean changing rate values of seed ROIs
(hippocampus and the posterior cingulate cortex [PCC]) and
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FIGURE 1 | Framework of the study design and analyses. (A) The optimized longitudinal anatomical image preprocessing pipeline was used to generate individual

annual changing rate maps in Montreal Neurological Institute (MNI) standard space. (B) Vulnerable regions (hippocampus and PCC) were identified by comparing MNI

space annual changing rate maps between MCIp and MCIs groups. (C) Seed-based correlation analyses were conducted to identify corresponding large-scale

synchronized degeneration networks (SDNs) in the HC group. (D) A one-sample t-test was performed for each patient group to map group-specific degenerative

patterns (different than zero) over time. (E) Permutation test was conducted to assess the spatial similarity between SDNs and group-specific degenerative patterns

by comparing the strength of actual correlations with the distribution from randomly generated SDNs. (F) Network preference analysis and Spearman correlation

analysis were conducted to investigate clinical implications. AD, Alzheimer’s disease; ANCOVA, analysis of covariance; C.C., correlation coefficient; HC, healthy

control; HIPP, hippocampus; MCIp, mild cognitive impairment with progression to AD; MCIs, mild cognitive impairment stable without progression to AD; PCC,

posterior cingulate cortex; TP, time point; SDN, synchronized degeneration network.
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then entered these values into respective general linear models to
identify possible coupling patterns between seed ROIs and voxels
across the rest of the brain in HCs. The same nuisance covariate
settings and statistical criteria were used for SDN analyses.
Unthresholded statistical maps of these SDNs are also available
at the NeuroVault website (https://neurovault.org/collections/
3273/).

Spatial Similarity and Network Preference Analyses
To investigate whether AD-specific SDNs predicted the
longitudinal GMV atrophy rate in each disease group, a voxel-
wise spatial cross-correlation approach was used to assess
similarities between spatial distributions of unthresholded
group-specific degenerative maps and SDN maps (Douaud et al.,
2014). Using non-parametric permutation tests to assess the
statistical significance of observed spatial relationships, 1,000
randomGaussian noise maps were generated and smoothed with
corresponding estimated smoothness from SDN maps. We then
calculated 1,000 spatial cross-correlations between simulated
SDNs and group-specific degenerative maps, and compared
the strength of observed correlations with the empirically
generated null distribution. To test whether AD-specific SDNs
exhibited different vulnerability levels in each disease group,
network preference analysis was conducted (Seeley et al.,
2009). First, binarized network-level ROIs were generated from
previous SDN analysis with statistical thresholding (cluster-level
FWE corrected p < 0.05). We then calculated the goodness-of-fit
(GOF) score between binarized network ROIs and group-specific
degenerative patterns (from previous one-sample t-tests of voxel-
wise changing rate map analysis). The GOF score reflected how
well SDNs fit each group-specific degenerative pattern, and was
defined by the difference between the mean z-value within and
outside the binarized network ROIs. Furthermore, to confirm the
stability and reliability of the results of the network preference
analysis, we performed an additional GOF analysis using
binarized network-level ROIs with fixed network size. More
specifically, we first ranked the whole brain voxels from highest
to lowest according to the corresponding voxel-wise z-value of
PCC- and hippocampus-epicentered network analyses. After
voxel ranking procedure, 10 binarized network ROIs with
different network sizes from the top 1 to 10 percent of all brain
voxels with 1 percent intervals were generated for the PCC- and
hippocampus-epicentered SDNs, respectively. This procedure
provides a more identical network size for both AD-specific
SDNs to be used in the GOF-based network preference analysis.
The GOFs scores were then calculated using the same approach
which was mentioned above.

Relationship Between Cognitive Decline and the

Mean Changing Rate of AD-Specific Synchronized

Structural Degeneration Networks
To investigate the relationships between AD-specific SDNs and
cognitive decline, mean GMV changing rates of AD-specific
SDNs were extracted, averaged, and entered into MATLAB
software to perform partial Spearman’s rank order correlation
analysis with the changing rate of neuropsychological test scores.
Participants’ age, sex, education years, and total intracranial

volume were included as nuisance variables. A Bonferroni
correction was applied to correct for multiple comparisons for
correlation analyses, excluding the MMSE which was considered
a separate test representing global cognition. The threshold for
statistical significance was set at corrected p < 0.05.

Statistical Analyses of Demographic,
Clinical Characteristics, and Global Tissue
Volume at Baseline
The statistical analyses of non-voxel-wise data were performed
with IBM SPSS Statistics Version 25 (Armonk, NY). We used
the Shapiro-Wilk normality test to check that each variable was
normally distributed. The Chi-square test was used to examine
categorical data. The Analysis of Variance and Kruskal-Wallis
rank sum tests were used to identify differences in continuous
variables after considering distributional assumptions.
Two-tailed p < 0.05 were considered statistically significant.

RESULTS

Patients’ Characteristics and Clinical Data
In total, 23 patients with AD, 37 patients with MCI, and 33 HCs
were included at baseline. During the 3-year follow-up, 12 of
the patients with MCI progressed to AD (MCIp); the remaining
25 patients remained stable (MCIs). Patient demographics and
baseline cognitive function test results are listed in Table 1.
Age and sex were similar among study groups. Differences in
education years were noted. Post-hoc analysis revealed greater
education years in HCs than in MCIp (p = 0.011) and AD
patients (p = 0.036). Significant differences were observed in
the baseline cognitive function test results between study groups
with the exception of the complex figure test copy section (CFT
copy). In the majority of tests, HCs performed better than MCIs,
followed by MCIp and AD.

Epicenter Identification and Group
Differences in Annual GMV Atrophy Rate
Using the direct group comparison of voxel-wise annual GMV
atrophy rate maps between patients with MCIp and MCIs, the
hippocampus and PCCwere identified as the early AD-associated
disease epicenters (Figure 2A). Additionally, all possible group
differences in the regional GMV atrophy rate are illustrated
in Supplementary Figure 1; detailed anatomical locations are
listed in Supplementary Table 1. Overall, the AD group had the
fastest atrophy rate, followed by MCIp, MCIs, and HC groups.
More specifically, compared to HCs, patients with AD had faster
atrophy rates in the hippocampus, temporal pole, frontal lobe,
cingulate gyrus, and cuneus/precuneus. No brain areas exhibited
a decreased annual GMV atrophy rate when comparing disease
groups and HCs.

Spatial Distribution of Vulnerable SDNs
The spatial distribution of large-scale hippocampus- and
PCC-epicenter SDNs are illustrated in Figure 2B and the
detailed anatomical locations of the corresponding SDNs are
listed in Supplementary Table 2. The hippocampus-epicentered
SDN involved brain areas surrounding the hippocampus
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TABLE 1 | Demographics and baseline clinical characteristics.

HC MCIs MCIp AD p-value Post-hoc comparisons

Number 33 25 12 23

Female [n, (%)] 18 (54.5%) 16 (64.0%) 6 (50.0%) 12 (52.2%) 0.804a

Age (years) 74.9 (5.46) 77.1 (6.08) 77.1 (6.24) 78.3 (5.79) 0.066b

Education (years) 13.1 (3.21) 12.4 (3.53) 9.58 (4.48) 10.3 (4.87) 0.035b HC>MCIp/AD

MMSE 28.5 (1.42) 27.2 (1.87) 24.7 (2.50) 20.7 (2.86) <0.001b HC>MCIs>MCIp>AD

CVVLT 7.79 (1.29) 5.04 (1.43) 3.50 (2.81) 1.04 (1.40) <0.001c HC>MCIs/MCIp>AD

CFT copy 15.7 (1.57) 15.4 (1.71) 14.8 (2.01) 15.0 (1.72) 0.352b

CFT recall 11.5 (3.28) 6.96 (3.43) 4.58 (4.19) 0.83 (1.85) <0.001b HC>MCIs/MCIp>AD

VFT 16.8 (3.88) 12.7 (3.08) 13.6 (3.85) 12.3 (4.08) <0.001b HC>MCIs/MCIp/AD

BNT 28.2 (2.32) 26.6 (2.23) 24.5 (3.50) 23.5 (3.36) <0.001b HC>MCIs/MCIp/AD; MCIs>AD

TMT-B lines 13.3 (2.28) 11.4 (3.76) 11.2 (3.97) 8.59 (5.03) <0.001b HC>MCIs/MCIp/AD; MCIs>AD

GMV (cm3) 592 (57.1) 578 (56.9) 569 (51.5) 544 (47.0) 0.015c HC/MCIs>AD

WMV (cm3) 398 (50.8) 399 (47.5) 385 (46.0) 375 (33.9) 0.230c

CSFV (cm3) 471 (92.7) 504 (80.4) 506 (88.9) 499 (87.5) 0.073c

TIV (cm3 ) 1,460 (146) 1,481 (118) 1,461 (152) 1,451 (131) 0.895c

aChi-square test was used for group comparison in categorical variables.
bKruskal-Wallis rank sum test was used for comparing of group differences in continuous variables with non-normal distributions.
cAnalysis of variance test was used for comparing group differences in continuous variables with a normal distribution.

AD, Alzheimer’s disease; BNT, Boston Naming Test; CFT, Complex Figure Test; CSFV, Cerebrospinal fluid volume; CVVLT, Chinese version of the Verbal Learning Test; GMV, gray matter

volume; HC, healthy controls; MCIp, mild cognitive impairment-progression; MCIs, mild cognitive impairment-stable; MMSE, Mini-Mental Screening Examination; TIV, total intracranial

volume; TMT-B lines, Trail-making Test Part B lines completed in 120 s; VFT, Verbal Fluency Test; WMV, white matter volume.

(parahippocampus, entorhinal cortex, temporal pole, and
temporal fusiform cortex), frontal poles, and the cerebellum.
On the other hand, the PCC-epicentered SDN included more
widespread brain areas, including the cingulate, frontal lobe,
temporal lobe, insula, and cerebellum.

Spatial Similarity Between Vulnerable
SDNs and GMV Atrophy Rate Patterns in
Disease Groups
The voxel-wise spatial patterns of GMV atrophy rates for each
disease group are illustrated in Figure 2C. Significant spatial
correlation between atrophy patterns and SDNs were noted for
PCC-epicentered SDN (MCIs: r = 0.571, p < 0.001; MCIp: r =
0.639, p < 0.001; AD: r = 0.570, p < 0.001) and hippocampus-
epicentered SDN (MCIs: r = 0.285, p < 0.001; MCIp: r = 0.415,
p < 0.001), with the exception of the hippocampus-epicentered
SDN in the AD group (r = 0.1, p > 0.99).

Network Preference Analysis Revealed the
Specific Role of Each SDN
To examine network preferences across different disease
stages, we investigated the fitness between hippocampus/PCC-
epicentered SDNs and whole-brain atrophy rate patterns of all
disease groups (Figure 3). We first generated binarized masks
of hippocampus- and PCC-epicentered SDNs (FWE-corrected
p < 0.05, Figure 3A), and calculated the GOF according to the
different disease stages (Figure 3B). A higher GOF represented
more similarity between the SDN and disease atrophy pattern.
For the PCC-epicentered SDN, overlaps were more evident
with more advanced disease stages (GOF scores in MCIs =

0.610; MCIp = 0.827; AD = 0.874). This trend was not

observed for the hippocampus-epicentered SDN (GOF scores
in MCIs = 0.380; MCIp = 0.213; AD = 0.230). Furthermore,
the additional GOF-based network preference analysis, which
uses a different degree of fixed size approach to determine the
network ROIs, also demonstrated the same relationship between
SDN and disease atrophy pattern across different disease stages
(Supplementary Figure 2).

Correlations Between the GMV Atrophy
Rate of SDNs and Cognitive Decline
To test whether large-scale SDNs were associated with
progressive cognitive decline, we performed exploratory
correlation analyses between mean annual GMV atrophy rates
of each SDN and deterioration slopes of neuropsychological
test scores (Table 2). Significant correlations between PCC-
epicentered SDN, but not hippocampus-epicentered SDN, and
cognitive decline were observed in most domains (including
MMSE, CVVLT, CFT recall, VFT, and BNT).

DISCUSSION

The results from this 3-year longitudinal study support
the network degeneration hypothesis of AD. Our results
indicated that the PCC and hippocampus were the two
most vulnerable regions involved in the early-stage of AD.
Spatial correlation analysis further demonstrated PCC- and
hippocampus-epicentered SDNs in HCs strongly associated
with the GMV atrophy patterns of disease groups. However,
only the PCC-epicentered SDN was associated with disease
severity, and its GMV atrophy rate predicted cognitive decline
in multiple domains. These findings collectively indicate the

Frontiers in Aging Neuroscience | www.frontiersin.org 6 December 2020 | Volume 12 | Article 60866763

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Lee et al. Vulnerable Structural Networks in AD

FIGURE 2 | The spatial distribution of the vulnerable SDNs and GMV atrophy rate patterns in disease groups. (A) Direct group comparison of the annual gray matter

atrophy rate between MCIs and MCIp groups to identify early AD-associated epicenters. (B) Whole brain vulnerable SDNs illustrated in the HC group by seed-based

correlation analyses in the epicenters on (A). (C) Group-specific spatial patterns in each patient group based on one-sample t-tests. The transparent colors indicate

the z-value of statistical results without a significant threshold; the solid colors show the significant regions. AD, Alzheimer’s disease; HC, healthy control; HIPP,

hippocampus; GMV, gray matter volume; MCIp, mild cognitive impairment with progression to AD; MCIs, mild cognitive impairment stable without progression to AD;

PCC, posterior cingulate cortex; SDN, synchronized degeneration network.
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FIGURE 3 | Network preference analysis. (A) Statistical maps of the hippocampus- and PCC-SDNs. (B) Preference determined by goodness-of-fit showed a stronger

association of the PCC-SDN than that of the hippocampus-SDN, especially in the MCIp and AD groups. AD, Alzheimer’s disease; FWE, family-wise error; HIPP,

hippocampus; MCIp, mild cognitive impairment with progression to AD; MCIs, mild cognitive impairment stable without progression to AD; PCC, posterior cingulate

cortex; SDN, synchronized degeneration network.

TABLE 2 | Correlations between the mean annual gray matter volume atrophy

rate and slopes of neuropsychological test scores.

Spearman rank order test correlation coefficients

Hippocampus-SDN PCC-SDN

rho p-value rho p-value

MMSE 0.001 0.994 0.245 0.035*

CVVLT 0.093 0.432 0.400 <0.001†

CFT copy −0.030 0.799 0.052 0.659

CFT recall 0.089 0.455 0.336 0.004†

VFT 0.150 0.202 0.429 <0.001†

BNT 0.298 0.010 0.304 0.008†

Trail B line 0.052 0.668 0.215 0.076

*p < 0.05.
†p < 0.008 (statistically significant correlation after Bonferroni correction).

BNT, Boston Naming Test; CFT, Complex Figure Test; CVVLT, Chinese version of

the Verbal Learning Test; MMSE, Mini-Mental Screening Examination; PCC, posterior

cingulate cortex; SDN, synchronized degeneration network; TMT-B lines, Trail-making Test

Part B lines completed in 120 s; VFT, Verbal Fluency Test.

Significant values are bolded.

distinct roles of PCC- and hippocampus-epicentered SDNs in the
pathophysiology of AD.

The hippocampus, which plays an important role in
declarative memory, is the anatomical signature of AD (Schröder
and Pantel, 2016). Hippocampal atrophy, and more specifically,
its atrophy rate, may be potential biomarkers to predict the
conversion from MCI to AD (Henneman et al., 2009). Our
voxel-wise atrophy rate analyses supported the regional role of

the hippocampus in AD progression. In addition to its regional
significance, the hippocampus has also been shown to be an
important node in several large-scale brain networks and has
been implicated as part of the subsystem of the default mode
network (DMN) (Andrews-Hanna et al., 2010). Decreased
integrity of hippocampus-associated functional and structural
networks has also been reported (Zhou et al., 2008; O’Callaghan
et al., 2019). In this study, we used the coupling atrophy rate as
a surrogate image marker for longitudinal mapping of potential
large-scale brain SDNs. We identified the parahippocampus,
temporal pole, temporal fusiform cortex, frontal poles, and
cerebellum within a single hippocampus-epicentered SDN.
Although network mapping approaches vary among studies,
the spatial distribution of identified hippocampus-epicentered
SDNs is highly accordant with previous studies (Bai et al., 2009;
Zhu et al., 2018). Close connections between the hippocampus
and nearby regions, collectively referred to as the medial
temporal lobe, have been reported in various histopathological
and neuroimaging findings of AD (Braak and Braak, 1985,
1991). Beyond the limbic system, considerable evidence
indicates that the hippocampus and prefrontal cortex become
coupled via oscillatory synchrony reflecting bidirectional
information flow (Battaglia et al., 2011) and may play an
important role in memory and learning (Eichenbaum, 2017).
Taken together, these regional and network-level findings
underscore the importance of the hippocampus and its
corresponding functionally/structurally connected areas in
AD pathophysiology.

The PCC is an area in the brain with higher metabolic activity
and dense anatomical and functional connections to many
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other brain regions. PCC hypometabolism, volume atrophy, and
connectivity corruption have been reported in patients with AD
(Leech and Sharp, 2014). Longitudinal follow-up in patients with
MCI revealed that changes in PCC connectivity over time were
correlated with declines in MMSE and other cognitive test scores
(Wang et al., 2012). From a global network perspective, the PCC
is considered to be a central hub of the DMN and is inter-
connected with several large-scale brain networks (Raichle et al.,
2001). Based on its regional and global characteristics, previous
studies have indicated that the PCC may be involved in multiple
cognitive functions including autobiographical/episodic memory
retrieval, attention, salience, attention, and emotion (Leech and
Sharp, 2014). These domains of cognitive function also changed
during AD progression (Mortamais et al., 2017). Among these
multiple PCC-connected large-scale brain networks, DMN is the
first and most consistently reported network to be involved in
AD (Badhwar et al., 2017). DMN failure begins early in the
course of AD, even prior to measurable amyloid accumulation
(Jones et al., 2016). Furthermore, using various network mapping
approaches, including intrinsic functional connectivity and the
cross-sectional structural covariance method, previous studies
have reported that the integrity of the PCC-epicentered DMN
may be associated with the clinical severity and progression
of AD (Zhang et al., 2010), suggesting that the PCC and
its corresponding brain networks have important roles in
AD progression.

In our study, the PCC-epicentered SDN involved widespread
frontal, temporal, insular, and cerebellar areas. Most of these
areas overlap with the classical DMN that includes the precuneus,
medial and lateral parietal, medial prefrontal, and medial and
lateral temporal cortices (Raichle, 2015). The insular cortex
is a notable exception, as it is typically not included in the
DMN. The insular cortex is a core limbic area, historically and
phylogenetically associated with emotion, and may underpin the
behavioral and emotional symptoms in AD (Spalletta et al., 2010).
The insular and anterior cingulate cortices are key hubs of the
salience network that is also involved in AD and MCI. The
insula may play a role in connecting the salience network and
DMN, switching from externally-oriented to internally-oriented
mental status (Sridharan et al., 2008). Functional and structural
disruptions to the switching mechanism occur with disease
progression in patients with AD (Xie et al., 2012; Liu et al., 2018).
On the other hand, the cerebellum was shown to be involved in
the PCC-epicentered SDN. Although traditionally considered to
be involved in motor coordination, recent studies have further
suggested that the cerebellum may be involved in multiple
domains of cognitive function based on its complex spatial
connectivity profile with large-scale cortical brain networks
(King et al., 2019). Beyond its spatial characteristics, recent
intrinsic functional connectivity studies have further suggested
that the cerebellum may engage in a domain-general function in
the adaptive control of the cortical process which may impaired
in the progression of AD (Bai et al., 2011; Zheng et al., 2017;
Marek et al., 2018). Taken together, these findings suggest the
potential importance of the cerebellum in the pathogenesis
of AD.

The findings of our study demonstrated that compared to
the hippocampus-epicentered SDN, the PCC-epicentered SDN
atrophy rate was more strongly correlated with deterioration
slopes of cognitive tests in multiple domains. Moreover,
the PCC-epicentered SDN predicted AD progression better
than did the hippocampus SDN. One possible explanation
is that the hippocampus and the surrounding entorhinal
cortex are involved earliest in the course of AD (Braak and
Braak, 1991), which might suggest that further atrophy rate
in the hippocampus SDN is not as relevant. In addition,
compared to the hippocampus, the PCC may be an integrative
hub which mediates information flow across whole-brain
networks (Leech and Sharp, 2014). Although the PCC
and hippocampus are both components of the DMN, and
considering the different functional roles in the DMN (central
vs. peripheral), we propose that deficits in the PCC-epicentered
network may better represent overall AD progression in
terms of structural changes and cognitive decline in multiple
domains. In addition, the fact that we did not observe any
correlation between hippocampus-epicentered network and
cognitive decline might be due to the small sample size in
the current study. Future studies with a larger sample size
will be needed to confirm the potential role of core PCC
region and related connected brain areas and to determine
the exact mechanism of the involvement of this region in the
pathophysiology of AD.

To the best of our knowledge, this study is the first to
investigate the associations between structural network changes,
brain volume atrophy, and cognitive decline using an SDN
approach from a longitudinal perspective. One strength of our
study was its longitudinal follow-up design, which enabled us
to identify AD-related epicenters involved early in the course of
AD. Additionally, we demonstrated a relationship between large-
scale structural brain networks and AD progression. However,
our results should be interpreted with caution; first, due to
the longitudinal design, the dropout rate was high, limiting
the generalizability of our results to large disease populations.
However, our exploratory findings may guide future studies
with larger samples. Second, AD and MCI diagnoses were
made according to characteristic clinical presentation and
neuropsychological performance. Although these criteria are
widely accepted for both clinical and research purposes, potential
bias may exist due to a lack of amyloid and tau biomarkers. Third,
we defined the structural networks based on brain regions with
maximal changes during the conversion fromMCI to AD; earlier
changes occurring during the progression fromHC toMCImight
have been overlooked.

In conclusion, the PCC and hippocampus are two vulnerable
regions involved early in AD pathophysiology. Notably, the
PCC-epicentered, but not hippocampus-epicentered, network
predicts AD progression, including brain atrophy and cognitive
decline. Our results support the network degeneration hypothesis
of AD and suggest that PCC large-scale SDNs may be used
as potential markers for disease progression. Further, the
results provide insight regarding the mechanisms of network
pathology in AD.
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The topological organization of human brain networks can be mathematically

characterized by the connectivity degree distribution of network nodes. However,

there is no clear consensus on whether the topological structure of brain networks

follows a power law or other probability distributions, and whether it is altered in

Alzheimer’s disease (AD). Here we employed resting-state functional MRI and graph

theory approaches to investigate the fitting of degree distributions of the whole-

brain functional networks and seven subnetworks in healthy subjects and individuals

with amnestic mild cognitive impairment (aMCI), i.e., the prodromal stage of AD,

and whether they are altered and correlated with cognitive performance in patients.

Forty-one elderly cognitively healthy controls and 30 aMCI subjects were included. We

constructed functional connectivity matrices among brain voxels and examined nodal

degree distributions that were fitted by maximum likelihood estimation. In the whole-brain

networks and all functional subnetworks, the connectivity degree distributions were fitted

better by the Weibull distribution [f(x)∼x(β−1)e(−λxβ)] than power law or power law with

exponential cutoff. Compared with the healthy control group, the aMCI group showed

lower Weibull β parameters (shape factor) in both the whole-brain networks and all seven

subnetworks (false-discovery rate-corrected, p< 0.05). These decreases of theWeibull β

parameters in the whole-brain networks and all subnetworks except for ventral attention

were associated with reduced cognitive performance in individuals with aMCI. Thus, we

provided a short-tailed model to capture intrinsic connectivity structure of the human

brain functional networks in health and disease.

Keywords: Alzheimer’s disease, mild cognitive impairment, resting-state functional MRI, degree distribution,

Weibull, network
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INTRODUCTION

Resting-state functional magnetic resonance imaging (rsfMRI)
studies have suggested that the human brain can be considered
an efficiently integrated network that is divided into several
functionally linked subnetworks. Examining the topology of
brain networks can provide valuable information about the
organization of the networks such as hub regions, robustness
levels, and ability to communicate information (Bullmore and
Sporns, 2012; Dai et al., 2015; Liao et al., 2017). One of the
most important properties describing the network topology is the
degree distribution of network nodes, a graph theory property
that characterizes the probability distribution of the number of
connections between pairs of nodes in a network. In resting-state
brain networks, there is no agreement on which model can better
describe the degree distribution. One view is that the degree
distribution follows the heavy-tailed power law (Van Den Heuvel
et al., 2008; Hanson et al., 2016; Forlim et al., 2019) based on
the simple growth mechanisms, such as preferential attachment
(Barabási and Albert, 1999). Another view is that the degree
distribution can be better fitted by a short-tailed distribution
such as power law with exponential cutoff (Bassett et al., 2006;
Hayasaka and Laurienti, 2010; Cao et al., 2016) and Weibull
distribution (Nakamura et al., 2009; Gupta and Rajapakse, 2018),
considering the wiring-cost constrains (Bullmore and Sporns,
2012) in the human brain. These suggest that power law, power
law with exponential cutoff (also called truncated power law),
and Weibull distribution (also called stretched exponential) are
the three most frequently reported models for fitting the degree
distribution of human brain networks, but the findings are
not conclusive.

Amnestic mild cognitive impairment (aMCI) is an
intermediate stage between healthy aging and (most likely
to develop into) Alzheimer’s disease (AD) (Petersen et al.,
2001). For elderly subjects with cognitive impairment, rsfMRI is

acquired without engaging the subjects in a particular cognitive
task (i.e., during rest) and therefore has the advantages of clinical
practice. It has been argued that neuropsychiatric disorders

including AD can be considered as “dysconnectivity syndrome”
and that a combination of graph theory method enables a
quantitative study of the topology of the network (Bullmore
and Sporns, 2009; Xie and He, 2012). In resting-state networks,

functional connectivity (FC), the synchronization of spontaneous
low-frequency fluctuations in brain activity between different
brain regions, is themost commonly usedmeasure of the number
of connections in a degree distribution. Alterations of FC in
resting-state networks have been identified in the early stages of
AD, including elderly cognitively normal subjects with increased
amyloid-beta (Aβ) level and aMCI patients (Hedden et al., 2009;
Wang et al., 2013a; Zhang et al., 2016). Such aberrant FCs were
observed even when controlling for gray matter atrophy (Sorg
et al., 2007; Agosta et al., 2012; Wang et al., 2013b). Together,
these results suggest that alterations of degree distribution in
resting-state networks could be occurred in AD.

In the prodromal stage of AD, changes in network structures
are usually accompanied by a variety of alterations in cognitive
functions, such as memory, attention, and executive functions.

Previous rsfMRI studies suggest that brain regions involving the
medial and lateral prefrontal and parietal cortices, insula, and
thalamus are preferentially affected in AD (Buckner et al., 2009;
Dai et al., 2015, 2019). Two recent meta-analyses have explored
resting-state brain changes in the progression of AD and overlaid
the coordinates of these changes onto functional subnetworks. In
the meta-analysis of Li et al. (2015a), they included 25 resting-
state and 75 task-based fMRI studies, and the results revealed that
compared to healthy controls, MCI patients showed altered brain
activities in default, frontoparietal, and limbic networks during
rest; when fulfilling cognitive tasks, there were also abnormalities
in ventral attention and somatomotor networks in addition to
these three networks. Including 40 resting-state fMRI studies,
Badhwar et al. (2017) found that MCI and AD patients showed
connectivity alterations in default, salience, and limbic networks.
However, very few studies have examined AD-related changes in
the topology architecture of functional subnetworks as described
by the degree distribution.

Areas commonly activated during complex cognitive tasks are
distributed across several of the classic resting-state networks (Li
et al., 2015b). For example, a meta-analysis showed widespread
memory-related activities across temporal, frontal parietal, and
other regions of the brain (Spaniol et al., 2009). Also, these
areas can also be observed to have functional synchronization
during rest (Zhang et al., 2016). Therefore, to understand
changes in degree distributions and whether they are related
to cognitive performance, not only the connections within
a specific functional subnetwork need to be considered, but
also the connections of that network to other regions in the
whole brain. Many studies have also found that resting-state FC
changes, both within and in between the classic networks, are
significantly associated with the patients’ cognitive performance
(Dai et al., 2015; Pasquini et al., 2015; Zhang et al., 2016).
However, most of these studies have focused on some specific
functional connections. The changes in the degree distributions
of global connections in different functional subnetworks remain
to be elucidated.

To address these issues, we used rsfMRI to investigate
connectivity degree distributions of nodes in the whole-brain
functional networks and within functional subnetworks in
aMCI and healthy controls. The seven referenced functional
subnetworks were defined according to Thomas Yeo et al. (2011).
Using the three most likely candidate models (power law, power
law with exponential cutoff, andWeibull distribution), we sought
to determine whether degree distributions of these networks (1)
can be better fitted by one of the candidate models, (2) are altered
in aMCI, and (3) are associated with cognitive performance as
assessed by standard neuropsychological tests.

MATERIALS AND METHODS

Participants
Seventy-one subjects (30 aMCI patients and 41 healthy controls,
HC) were included in this study. The aMCI patients were
recruited from the Dementia Care and Research Center
(memory clinic) at Peking University Sixth Hospital. Elderly
cognitively HC were screened from local communities. All
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participants’ demographic information was collected through
detailed clinical consultations, including age, sex, education
level (years of education), history of depression, treatment
information, and current medication use. All participants were
right-handed, drug-naive, and aged between 55 and 85 years. All
participants received a neuropsychiatric and neuropsychological
examination, and a geriatric psychiatrist provided a definitive
diagnosis and Clinical Dementia Rating (CDR) (Chan and
Siu, 2005) score after a clinical interview. Participants with
aMCI met Petersen’s MCI criteria (Petersen, 2004), which
are as follows: (1) complaints of memory problems that are
confirmed by an informant, (2) preserved general cognitive
function (Mini-Mental State Examination (MMSE) (Folstein
et al., 1975) scores ≥ 24), (3) intact or mildly impaired
daily living ability (an ADL score ≤ 26) (Lawton and Brody,
1969), and (4) do not meet the diagnosis of dementia (World
Health Organization, 2010). All HC had no cognitive complaints
and did not meet clinical criteria for cognitive impairment
or depression. MMSE cutoff scores were ≥24 for the HC
group. The requirement for global CDR was ≤0.5 in the aMCI
group and 0 in the HC group. For all participants, exclusion
criteria were as follows: (1) history of stroke, tumor, subdural
hematoma, other cerebrovascular disease or intracranial space-
occupying disease, and obvious risk factors for cerebrovascular
disease, (2) currently taking anti-dementia or antidepressant
medications, (3) history of drug or substance abuse, (4) history
of neurological or psychiatric disorders, and (5) presence of a
physical illness that may affect cognition or emotion. Written
informed consent was obtained from each participant, and this
study was approved by the Medical Research Ethics Committee
of Peking University Sixth Hospital, Beijing, China. The data
of eight subjects were discarded during scanning, preprocessing,
diagnosis, or analysis (for details, see Supplementary Figure 1).
Neuropsychological and demographic summary statistics for
each diagnostic group are provided in Table 1. No significant
between-group differences were found in gender and education
level (gender: p = 0.45; education level: p = 0.81). The age of the
HC group was significantly lower than that of the aMCI group
(p < 0.01). The MMSE and the Montreal Cognitive Assessment
(MoCA) (Nasreddine et al., 2005) scores in the HC group were
significantly higher than those in the aMCI group (ps < 0.001).

Assessment of Cognitive Ability
Cognitive ability was quantified by a mean score of the
MMSE and the MoCA. The MMSE and the MoCA are
two widely used screening assessments for detecting cognitive
impairment. Both tests have a 30-point questionnaire and
cover a wide range of cognitive functions, with the MMSE
testing dysfunctions of attention and calculation, recall, language,
orientation, abilities to repeat named prompts and to follow
simple commands, and the MoCA screening for dysfunctions
of attention, executive function, language, visual, memory,
abstracting thinking, structure calculation, and directional force.

MRI Acquisition
All MRI data were acquired on a 3T Siemens Magnetom
Prisma scanner (Siemens, Erlangen, Germany). Foam pads

TABLE 1 | Characteristics of each diagnostic group.

Variable HC aMCI p-value

N 41 30 -

Gender (F/M) 28/13 17/13 0.45b

Age (y) 70.3 [7.0] 74.8 [5.7] <0.01a

Education 4.3 [0.9] 4.2 [1.1] 0.81a

MMSE 28.5 [1.3] 26.7[1.9] <0.001a

MoCA 25.7 [2.8] 22.2 [3.5] <0.001a

Values represent the mean [standard deviation] or number of subjects. HC, cognitively

healthy; aMCI, amnestic mild cognitive impairment; N, number of subjects; F, female; M,

male; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment.
aThe P-value was obtained by the two-sample two-tailed t-test.
bThe P-value was obtained by the two-tailed Pearson χ2 test.

and headphones were used to minimize head movement and
scanner noise. For rsfMRI, the following acquisition parameters
were used: T2∗-weighted multi-band echo planer imaging
(EPI) pulse sequence in transverse slice orientation, with
multiband acceleration factor of 4, repetition time (TR)/echo
time (TE) = 500/30ms, flip angle (FA) = 47◦, field of view
(FOV) = 231 × 231 mm2, matrix = 66 × 66, slices = 36,
thickness = 3.5mm, voxel size = 3.5 × 3.5 × 3.5 mm3,
echo spacing = 0.4ms, and bandwidth = 3,444 Hz/pixel. The
subjects were instructed to keep their eyes closed but not
fall asleep, relax their minds, and minimize their movement
during data acquisition. rsfMRI scan lasted for 480 s and
included 960 functional volumes for each subject. T1-weighted
magnetization-prepared rapid gradient echo (MPRAGE) sagittal
images were also scanned with the following sequence:
TR/TE= 2,530 ms/2.98ms, FA= 7◦, inversion time= 1,100ms,
FOV = 256 × 224 mm2, slices = 192, thickness = 1mm, voxel
size= 0.5× 0.5× 1 mm3.

Image Pre-processing
The first 10 rsfMRI volumes were discarded to ensure steady-
state magnetization. The remaining volumes were then realigned
to the first volume to correct for head motion. Subjects
were excluded if the head motion is larger than 3mm and
3◦. The mean functional image after motion correction was
coregistered to the individual T1-weighted images using a linear
transformation (Collignon et al., 1995) and were then segmented
into gray matter (GM), white matter (WM), and cerebrospinal
fluid (CSF) with a priori tissue maps of SPM by using a unified
segmentation algorithm (Ashburner and Friston, 2005). The
resultant GM, WM, and CSF images were further non-linearly
registered into the Montreal Neurological Institute (MNI) space
with the information estimated in unified segmentation and
then averaged across all subjects to create custom GM, WM,
and CSF templates. Then, the custom templates were used as
reference images to segment the coregistered T1 images for
the second time. This two-step registration procedure based
on custom template could minimize the inaccuracies of the
spatial normalization of rsfMRI volumes caused by GM atrophy
in elderly people. The transformation parameters estimated
during unified segmentation were applied to motion-corrected
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rsfMRI images and then the images resampled to 3-mm isotropic
voxels, which reflect the neuronal pattern of the columnar
grain (Kriegeskorte et al., 2010) and are the minimum spatial
resolution to capture cortical folding (Kiselev et al., 2003).
Subsequently, a linear trend was removed and 24 head motion
parameters, mean global signal, and the WM and CSF time
courses were regressed out from the spatially normalized rsfMRI
scans. A bandpass filter was used to remove frequencies outside
of the 0.01–0.1-Hz range. It should be noted that no spatial
smoothing was applied to the rsfMRI time series, avoiding
local artificial correlations between voxels. The MATLAB-based
Statistical Parametric Mapping (SPM12, Wellcome Department
of Cognitive Neurology, London, http://www.fil.ion.ucl.ac.
uk/spm/) and graph theoretical network analysis toolbox
(GRETNA, Beijing Normal University, http://www.nitrc.org/
projects/gretna/) (Wang et al., 2015) were used to carry out all
functional imaging data pre-processing.

Degree Distribution Analysis
Creating Brain Networks and Degree Calculation
The degree distribution analyses were based on binarized brain
networks according to the original definition of nodal degree (i.e.,
the number of binary edges of a node). To establish the whole-
brain networks, for each subject, FC matrices were computed
by Pearson’s correlation between the times series of any pairs
of brain voxels. This procedure was constrained within a GM
mask (Nvoxels = 47,294) generated by thresholding (cutoff= 0.2)
the mean GM probability map of all subjects. A threshold T
between 0.4 and 0.6 (with steps of 0.1) defined links between
any pairs of nodes (voxels) in the networks. The maximum
T value was empirically set to 0.6 to maintain the network
integrity, minimizing the number of disconnected voxels, and
the minimum value was set to 0.4 to keep the small-world
property of the networks and to ensure that the matrices were
sufficiently sparse for voxel-based networks (Van Den Heuvel
et al., 2008). For each given voxel, i, its degree was calculated by
the following equation:

degree (i) =

Nvoxels
∑

j=1, j 6=i

aij,

{

aij = 1 if rij ≥ T
aij = 0 if rij < T

,

where rij was the correlation coefficient between voxel i and voxel
j. The seven referenced functional subnetworks were obtained
from previous studies based on the rsfMRI data from 1,000
participants and a data-driven clustering approach (Thomas
Yeo et al., 2011) (see Supplementary Figure 2), including visual
(V), sensorimotor (SM), dorsal attention (DA), ventral attention
(VA), limbic (Lim), frontoparietal (FP), and default mode (DM).
For each subnetwork, nodal degrees were still computed by
summing the connections of a voxel to any other voxels in the
whole brain (not only the connections within the subnetwork),
which we refer to here as the global degree of nodes in a
particular subnetwork.

For validity reasons, to identify the whole strength pattern
of degree distribution in both the HC and aMCI groups, we
performed a functional connectivity strength (FCS) analysis, also

called degree centrality of a weighted network (Buckner et al.,
2009; Zuo et al., 2012; Dai et al., 2015). For each subject, we built
whole-brain FC matrices by computing Pearson’s correlations
between the time series of any pairs of brain voxels. This process
was constrained within the same GMmask. For each voxel, i, the
FCS was computed by the following equation:

FCS (i) =
1

Nvoxels

Nvoxels
∑

j=1, j 6=i

zij, rij > r0 ,

where zij is the Fisher’s z-transformation of rij, r0 is a threshold
that eliminates weak correlations possibly arising from noise
[here r0 = 0.2, based on a previous study that evaluated different
thresholds (Dai et al., 2015)].

Notably, only positive correlations between voxels were
considered in the calculation of the nodal degree and FCS;
connectivity terminating within 20mm of each source voxel
center was set to zero to avoid potential shared signals between
nearby voxels. These voxel-wise brain network analyses were
performed using an in-house toolbox (developed by Dr. Mingrui
Xia, Beijing Normal University).

Degree Distribution Fit
Based on published literatures, we chose three most likely
models, including power law, power law with exponential
cutoff, and Weibull, as candidate models for the fittings of
the degree distributions (see Table 2 for their probability
density function). The fittings of the alternative models and
the estimations of the model parameters followed the statistical
methods from previous study (Clauset et al., 2009) and used
the powerlaw Python package (Alstott and Bullmore, 2014)
(https://github.com/jeffalstott/powerlaw). In general, the visual
form of the Complementary Cumulative Distribution Function
(CCDF) is more frequently preferred than that of the Probability
Distribution Function (PDF) against fluctuations due to finite
sample sizes (Clauset et al., 2009). In the fitting procedure, for
each network, a vector containing voxels’ degrees was sorted
in ascending order for each correlation threshold. For every
generated network, the maximum likelihood estimation method
was used to estimate model parameters. The obtained degrees
could only take values in integers. For the power law distribution,
there is no exact closed-form expression for the maximum
likelihood estimator of the parameter α in the discrete case. The
powerlaw Python package uses an analytic estimation of α with
the method mentioned by Clauset et al. (2009) that provides a
faster way to obtain a more precise estimation. The approximate
expression of α is

α̂ ≃ 1+ n

[

n
∑

i=1

ln
xi

xmin −
1
2

]− 1

,

where xi, i = 1 · · · n are the observed voxels’ degree values in the
vector. In practice, the power law tends to apply only when the
values of empirical phenomena are greater than some minimum
value xmin. Thus, when initially fitting with the power law, the
optimal value of xmin was obtained by selecting the one that
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TABLE 2 | The three candidate models for the fit of the degree distribution.

Distribution name Probability density function

Power law x−α

Power law with exponential cutoff x−αe−λx

Weibull xβ−1e−λxβ

resulted in the minimal Kolmogorov–Smirnov distance between
the data and the fit. The initial fit showed that the CCDF of
degree distributions of functional brain networks was curved
on the double logarithmic axis, and the selection of different
optimal xmin values resulted in a large shift of the fitted lines
on the sample curves for different subjects. Thus, the power-
law model might not be appropriate. The xmin was then fixed
to 1 in the fittings and comparisons of the other alternative
models. Discrete forms of the other alternative models are not
defined analytically. Discrete forms of probability distributions
are often more difficult to calculate. The powerlaw package
performs discretization by rounding, summing the continuous
distribution to the nearest integer, to calculate approximations to
the discrete form of the alternative distribution. For comparison
between models, a normalized loglikelihood ratio R and an
associated significance value p were used to evaluate the goodness
of fit between two competing distributions to identify a better
fit. The positive or negative sign of the R indicates which
model is better, or a ratio close to zero indicates the two
models have similar effects, if the p-value is small enough (<
0.05). Therefore, we used the mean of R-values to determine
which model and to what extent is more appropriate at the
group level.

Statistical Analyses
To investigate whether the degree distribution parameter(s) of
the best-fit model changed in the aMCI group compared to
the HC group, we applied analyses of the following general
linear model including diagnosis (HC vs. aMCI), age, gender,
and education as independent variables and model parameter as
dependent variable:

Model parameter ∼ β0 + β1 × Diagnostic group+ β2 × Age

+β3 × Gender + β4 × Education.

Then, to detect the relationship between a parameter of a
degree model and cognition ability, the parameters of degree
distribution that were found significantly altered in the aMCI
group were tested as predictors of cognition scores in the aMCI
group. We used the following linear regression model, including
cognitive ability as dependent variable and model parameter, age,
gender and education as independent variables:

Cognitive ability ∼ β0 + β1 ×Model parameter + β2 × Age

+β3 × Gender + β4 × Education.

For validity reasons, we generated mean FCS maps for the
HC and the aMCI groups. The group difference of the FCS

maps was evaluated via two-sample t-tests controlling for
age, gender, and education. A false discovery rate (FDR)
procedure was used to correct for multiple comparisons within
the GM.

Without other statements, the analyses were corrected for
multiple comparisons, FDR-corrected at p = 0.05. All group-
level statistical analyses were done with the stats package of
statistical software R implemented in R Studio v. 0.98.953
(Boston, MA, https://www.rstudio.com/).

RESULTS

Weibull Distribution Fits Brain Networks
Better
In order to estimate connectivity degree distributions of the
whole-brain networks and different functional subnetworks, we
tested the three candidate models for each subject by using
normalized loglikelihood ratios R and p-values (calculated by R
and its standard deviation σ , indicating whether the observed
sign of R is statistically significant). A positive R suggests a better
fit of the data to the first model, while a negative R suggests a
better fit to the second, if the p-value is small (< 0.05 here).
The results of the group-averaged normalized loglikelihood
ratios (only counted if ps < 0.05) for the fittings of degree
distributions between two of the three models in the whole-brain
networks and subnetworks are listed in Table 3. In the whole-
brain networks and all subnetworks, the connectivity degree
distributions were fitted better by a Weibull distribution than
power law or power law with exponential cutoff. Examples of the
CCDF plots and their fittings of the three candidate models in
the whole-brain network and the seven subnetworks (correlation
threshold T = 0.4) for an aMCI subject are shown (fittings
were similar for other subjects and thresholds); see Figure 1. For
the fittings compared between Weibull and power law, in all
networks, both the HC and the aMCI groups, all of the averaged
R ratios were positive and sufficiently larger than zero, indicating
that the Weibull is better than the power law in human brain
rsfMRI networks. For the 48 times fitting compared between
Weibull and power law with exponential cutoff, in all generated
networks, 85.4% of the R-values were positive, suggesting that
the Weibull is better than the power law with exponential cutoff.
While the other 14.6% comparisons have negative R-values, these
values were very close to zero, suggesting that the two models
fit similarly for these 14.6% comparisons (Table 3). It should
be noted that, in general, all R-values tended to decrease as the
correlation threshold increases. Consequently, out of the three
correlation thresholds, T = 0.4 and 0.5 were more compatible
with the Weibull distribution. The reason could be that lower
threshold preserves more weak connections. No significant
between-group difference in R-values was found in any of
the networks.

Degree Distribution Changes in aMCI
Focusing on the Weibull distribution, we tested whether its
two parameters, β and γ, were altered in the aMCI group.
The Weibull distribution can be used to describe a distribution
between the power law and the exponential function, where the
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parameter β ∈ (0, 1) denoting the extent it falls between the two
distributions. When β = 0, it reduces to a power law distribution
and when β = 1, it becomes an exponential distribution.
Compared with the HC group, the aMCI group showed lower
Weibull β parameters (shape factor) in both the whole-brain

TABLE 3 | Group-averaged loglikelihood ratios between candidate models for the

fittings of connectivity degree distributions.

WB vs. PL

in HC

WB vs. PL

in aMCI

WB vs. PLEC

in HC

WB vs. PLEC

in aMCI

V 66.9/37.9/25.9 63.8/32.5/21.2 33.8/12.5/7.4 29.8/7.2/2.7

SM 57.6/28.7/18.4 54.8/ 25.0/16.4 27.0/4.2/2.5 23.3/−1.3/0.8

DA 52.6/29.1/18.8 51.1/ 25.9/16.2 25.4/7.5/4.4 23.3/3.8/1.7

VA 48.8/24.9/15.8 46.6/ 22.7/14.8 22.1/4.6/1.6 19.5/0.5/0.5

Lim 43.6/19.0/11.6 40.2/ 16.3/9.8 19.2/−0.1/−1.8 16.5/2.9/2.0

FP 64.8/36.7/22.0 60.7/ 32.2/19.8 34.3/12.3/4.9 29.6/6.8/2.7

DM 80.6/44.5/27.3 75.5/ 39.3/24.6 42.3/13.7/4.8 36.4/7.8/2.2

Whole

brain

164.9/87.1/57.2 157.5/ 78.0/51.3 67.3/9.7/4.3 59.0/−2.1/−1.4

Values represent the mean normalized loglikelihood ratios (ps < 0.05) between candidate

models for the fittings of networks generated at threshold of 0.4/0.5/0.6 in the HC

and the aMCI groups. V, visual; SM, somatomotor; DA, dorsal attention; VA, ventral

attention; Lim, limbic; FP, frontoparietal; DM, default model; WB, Weibull; PL, power law,

PLEC, power law with exponential cutoff; HC, cognitively healthy; aMCI, amnestic mild

cognitive impairment.

network and all the seven subnetworks. When T= 0.4, decreased
Weibull β parameters were found in aMCI for connectivity
degree distributions in the whole-brain networks (p = 0.05)
and within functional subnetworks: in FP & DM (ps < 0.01),
in V & SM (ps = 0.05), and a tendency in VA (p = 0.06,
uncorrected p = 0.04). When T = 0.5, the β parameters of the
Weibull distribution in the whole-brain network and within all
seven subnetworks decreased significantly: in V (p = 0.001),
in SM, DA, VA, FP, DM, and whole brain (ps ≤ 0.01), and in
Lim (p = 0.05). When T = 0.6, the β parameters were also
decreased in V, DA, and the whole brain (ps < 0.05), and a
tendency to decrease in SM and DM (ps < 0.1, uncorrected
ps < 0.05). All p-values reported were FDR-corrected, unless
otherwise noted. As shown in Figure 2, the value of β parameters
in aMCI were lower than that for HC in the whole-brain network
and within all seven subnetworks (correlation threshold T= 0.5).
No changes of λ parameter in aMCI were observed compared to
HC. For validity reasons, we also examined the group difference
of the FCS map between the HC and the aMCI groups (see
Supplementary Figure 3). Visual inspection indicated that the
spatial distributions of FCS in the aMCI group were similar
but weaker than those of the HC group; the FCS of some
voxels distributed in regions including the angular and precuneus
were increased in the aMCI group. No significant between-
group difference was found after an FDR multiple comparisons
at p < 0.05 (for the number of connections between voxels
in GM).

FIGURE 1 | The CCDF plots of the degree distributions for an aMCI subject in the whole-brain network and seven subnetworks and their fit with the three candidate

models (correlation threshold T = 0.4). V, visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention; Lim, limbic; FP, frontoparietal; DM, default model; WB,

Weibull; PL, power law, PLEC, power law with exponential cutoff; CCDF, complementary cumulative distribution function.
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FIGURE 2 | Boxplot of the Weibull β parameters as a function of diagnosis on the degree distributions of the whole-brain network and seven subnetworks (correlation

threshold T = 0.5). P-values of between-group differences were FDR adjusted. V, visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention; Lim, limbic; FP,

frontoparietal; DM, default model; HC, cognitively healthy; aMCI, amnestic mild cognitive impairment; FDR, false-discovery rate.

Association Between Weibull β Parameter
and Cognitive Decline in aMCI
Focusing on the Weibull β parameter for which the value
was found to be decreased in aMCI, we found lower values
of the Weibull β parameter to be associated with reduced
cognitive ability in aMCI (mainly in the networks with T = 0.4).
Specifically, for connectivity degree distributions in rsfMRI, we
found the above associations for the whole-brain network and all
subnetworks excluding VA (for the t-values and FDR-corrected
p-values, see Figure 3). We also found the association in Lim
with T = 0.5 (t = 2.99, FDR-corrected p = 0.04). We computed
the diagnosis (HC, aMCI) × Weibull β parameter interactions,
controlled for age, gender, and education to correlate cognitive
ability in the networks showed the above relationship. The results
showed that the slopes of the Weibull β parameter in HC differed
significantly from those in aMCI (Supplementary Figure 4).

DISCUSSION

The first major finding of the present study was that the Weibull
distribution fits brain networks better in resting-state fMRI. The
second major finding was the decreased Weibull β parameters
in the whole-brain network and all seven subnetworks in aMCI
subjects compared to HC. The third major finding was that
the abnormal decrease in the values of Weibull β parameter in
the whole-brain network and the functional subnetworks were
associated with reduced cognitive performance in aMCI.

The current finding ofWeibull distribution fits brain networks
better is in line with previous reports of the nodal degree
of human brain functional networks that follow short-tailed
distribution such as the Weibull distribution and the power
law with exponential cutoff (Nakamura et al., 2009; Hayasaka

and Laurienti, 2010; Gupta and Rajapakse, 2018; Zucca et al.,
2019). In contrast, the heavy-tailed power law distribution
(also called scale-free network) has been extensively discussed
(Eguíluz et al., 2005; Van Den Heuvel et al., 2008; Ciuciu
et al., 2014; Hanson et al., 2016; Forlim et al., 2019). Most of
these studies on the power law had a strong hypothesis that
brain networks are structured with simple growth mechanisms,
such as preferential attachment (Barabási and Albert, 1999).
Under this assumption, the network has scale-free property that
allows for efficient communication of information through a
few hub nodes. To characterize this property, more complicated
network constructionmethods were adopted in these studies. For
example, Hanson et al. (2016) reported brain networks that fit for
power law distribution by using a conditional probability-based
Bayes network searchmodel that “allows for the node structure to
express more subtle hub and modular configurations.” Another
rsfMRI study also found that a machine learning-based k-nearest
neighbor graph construction of brain networks presents scale-
free properties (Forlim et al., 2019). However, a recent study
analyzing over a thousand power law distributions from various
disciplines concluded that scale-free networks are rare in real-
world data, and alternative models such as log-normal often
fit degree distributions better than the power law (Broido and
Clauset, 2019).

For the present study, we found that the Weibull distribution
outperforms the other two commonly reported brain network
models in the whole-brain networks and all the seven
subnetworks, in both the HC and the aMCI subjects. We agree
with the assumption of wiring-cost constrains in human brain
(Bullmore and Sporns, 2012). In addition to the fact that the
human brain has mechanisms to reduce information processing
cost and maximize efficiency, the organization of functional
networks is also limited by the spatial structure of the brain. The
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FIGURE 3 | Regression plots of the association between Weibull β parameters and cognitive ability scores for aMCI in the whole-brain network and seven

subnetworks (correlation threshold T = 0.4). All p-values were FDR adjusted. V, visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention; Lim, limbic; FP,

frontoparietal; DM, default model; aMCI, amnestic mild cognitive impairment; FDR, false-discovery rate.

dynamic properties of functional networks such as their topology
and synchronization ability are strongly influenced by small
world and other structural connectivity constraints (Bullmore
and Sporns, 2009). The architectural constraints prevent the
occurrence of long-distance hubs, as the corresponding remote
anatomical connections consume more energy. Therefore, on
a CCDF plot of the nodal degree with logarithmic axes, the
tail of the Weibull distribution may show a downward bend
compared to the power law distribution. Notably, it has been
suggested that the estimation of the degree distribution is still
dependent on several factors such as the pre-processing process,
region-based or voxel-based node scale, edge calculation, and
fitting method (Clauset et al., 2009; Hayasaka and Laurienti,
2010; Zucca et al., 2019). For example, the earliest studies usually
used the least-square fitting method on log–log plots to test
whether a degree distribution is power law. This fitting method
is systematically biased and does not take into account the
goodness of fit and selection of prospective degree distributions
(Clauset et al., 2009). Another study comparing functional
brain networks at multiple resolutions found that although the
degree distributions of all networks followed the power law
with exponential cutoff, the higher the resolution (up to the
voxel level), the more the distribution tended to be a power law
(Hayasaka and Laurienti, 2010). In summary, in this study, we

aimed to use a generally applicable, easily understood approach
to discuss degree distribution of functional brain networks in
rsfMRI. We used the Pearson association of FC to construct
binary networks at the finest voxel level. To avoid the flaws
of the least-squares, the maximum likelihood estimation and
loglikelihood ratio methods were used to estimate and compare
proposed models. Our results suggest that the short-tailed
Weibull distribution is superior to the other two models in all
generated networks.

The second major finding showed decreased Weibull β

parameters of the global degree distribution in the whole-
brain network and all seven functional subnetworks in aMCI.
These nodal degrees were computed from themselves to all
the other nodes in the whole brain. The calculation of the
degree distribution was based on the strength of functional
connectivity between paired voxels. Therefore, these findings are
at least partially in agreement with previous reports that found
alterations in resting-state connectivity in aMCI. Specifically, two
meta-analyses reported increased connectivity in default mode,
salience, and limbic networks, while decreased connectivity in
default mode, frontoparietal, visual, and limbic networks (Li
et al., 2015a; Badhwar et al., 2017). Another study that explored
topological pattern changes of brain networks in aMCI reported
decreased nodal centrality in the medial temporal lobe and
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increased nodal centrality in the occipital regions (Liu et al.,
2012). Here we extended these findings to the network level,
showing that the overall topology features of these functional
subnetworks have changed in aMCI.

The underlying nature of the decrease in Weibull β

parameter in aMCI is unclear. The Weibull distribution used
here that describes the degree distribution of functional brain
networks is a two-parameter model. Although no statistically
significant between-group differences were found for the second
γ parameter, it is difficult to determine the specific variation of
the curve on the CCDF plot based on just one β parameter.
The β parameter is the shape factor of the Weibull distribution.
Its slight decrease may be thought of as a small shifting of the
degree distribution from exponential to power law distribution,
reflecting an increase in the number of hub nodes in the
network. One possible explanation is that the decrease in
Weibull β parameter reflects less efficient neural network activity.
According to the dedifferentiation hypothesis, inefficient neural
processing results in age-related brain functional changes that
lead to more diffuse brain activity (Dennis and Cabeza, 2011). In
line with the dedifferentiation hypothesis, a study found that age-
related decreased modularity of resting-state FC within networks
and increased inter-network connectivity in elderly cognitively
healthy subjects (Geerligs et al., 2015). Another study showed
increased number of FC connections in aMCI and AD compared
to HC. The number of connections peaked in aMCI and is
significantly higher compared to AD. Furthermore, increased
strength of FC was found for connections that spanned different
functional clusters were identified, including the FP network, the
posterior DM network, the medial temporal lobe subsystem, and
a subcortical cluster (Zhang et al., 2016). The human brain has
the capacity to buffer or reserve itself against some extent of
the changes brought on by aging and disease (Staff, 2012). It is
possible that this more diffuse, less efficient neural processing
may require an increase in the strength or the number of FC,
with compensatory recruitment of additional neural resources to
try to maintain task performance in early stage of AD (Grady
et al., 2003; Dickerson et al., 2004). An alternative explanation
is that the increase in FC results from increased deposition of
Aβ (Elman et al., 2014; Huijbers et al., 2015). However, this
hypothesis is still in doubt. The present study did not collect
Aβ from the subjects, and therefore, no Aβ-related experimental
manipulation was involved.

The third major findings found that the abnormal decrease in
the value of Weibull β parameter was associated with reduced
cognitive performance in aMCI. These findings are consistent
with previous reports of increased DM network connectivity
contributes to semantic memory deficits in MCI patients
(Gardini et al., 2014). The abnormal increase in the strength of
FC, not confined to the DM network but connected between the
FP network andmedial temporal lobe subsystem, was found to be
associated with reduced episodic memory performance in MCI
and AD (Zhang et al., 2016). Task-related studies have also shown
that MCI patients had enhanced activation in the hippocampus
(Dickerson et al., 2004) and its association with faster subsequent
cognitive decline in MCI (Miller et al., 2008). Although most
of the previous findings were related to the DM network,

complex cognitive functions, such as memory, are distributed
across several resting-state networks (Li et al., 2015b). Here
we addressed the associations between changes in nodal degree
distributions and cognitive ability at the functional network level.
Negative correlations were found between the cognitive ability
and the Weibull β parameters of several subnetworks’ global
degree distributions in aMCI. Notably, we focus on the number
of FC-based connections for each node in the network, with
each connection potentially linking to other functional networks.
In other words, increase in the number of hub nodes in these
networks is associated with cognitive decline in aMCI. Thus, the
inverse association may reflect a failed compensatory attempt to
recruit additional neural resources to maintain task performance.
These results suggest that decrease in the Weibull β parameter
characterizing the functional brain network is detrimental to
cognitive performance in aMCI.

It is important to acknowledge the potential limitations of
our study. Firstly, the number of subjects used in this study was
relatively small, which may lead to potential statistical instability.
Secondly, the determination of the connections during network
construction will have an influence on the results. We used
absolute thresholds so that connections that surpass the fixed
connectivity strength were kept and set to 1. However, there is no
consistent standard for the selection of threshold. In this study,
the selection was based on the small-world characteristic and the
integrity of the network. The networks generated with multiple
thresholds were all well-fitted by the Weibull distribution. For
validity reasons, we performed a FCS analysis, using the weighted
degree centrality to avoid the selection of thresholds. The
results also revealed enhanced degree centrality of several hub
regions in aMCI (Supplementary Figure 3), which is consistent
with the results of reduced Weibull β parameters using the
absolute thresholds. Additionally, in rsfMRI, the spontaneous
brain activation is sampled without reference to external tasks,
so its interpretation is inherently less well-understood. Therefore,
we attempted to frame the study in a hypothesis-driven manner,
focusing on functional subnetworks derived from a data-driven
approach based on 1,000 participants. However, the combination
of resting-state and specific task-related fMRI studies would be
important for future researches.

Overall, the current results on the altered degree distributions
of functional brain subnetworks support that the degree
distribution gives a window to evaluate the neural network
topology underlying cognitive performance. This study offers a
method for designing resting-state analysis to assess variations in
degree distribution for providing insight into cognitive decline
in aMCI. Degree distribution is currently not established as a
biomarker for neuroimaging. Longitudinal studies are needed to
examine the value of degree distribution to predict subsequent
cognitive decline.
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Background: Alzheimer’s disease (AD) may present retinal changes before brain

pathology, suggesting the retina as an accessible biomarker of AD. The present work

is a diachronic study using spectral domain optical coherence tomography (SD-OCT) to

determine the total retinal thickness and retinal nerve fiber layer (RNFL) thickness in an

APPNL−F/NL−F mouse model of AD at 6, 9, 12, 15, 17, and 20 months old compared to

wild type (WT) animals.

Methods: Total retinal thickness and RNFL thickness were determined. The mean total

retinal thickness was analyzed following the Early Treatment Diabetic Retinopathy Study

sectors. RNFL was measured in six sectors of axonal ring scans around the optic nerve.

Results: In the APPNL−F/NL−F group compared toWT animals, the total retinal thickness

changes observed were the following: (i) At 6-months-old, a significant thinning in the

outer temporal sector was observed; (ii) at 15-months-old a significant thinning in the

inner temporal and in the inner and outer inferior retinal sectors was noticed; (iii) at

17-months-old, a significant thickening in the inferior and nasal sectors was found in

both inner and outer rings; and (iv) at 20-months-old, a significant thinning in the inner

ring of nasal, temporal, and inferior retina and in the outer ring of superior and temporal

retina was seen. In RNFL thickness, there was significant thinning in the global analysis

and in nasal and inner-temporal sectors at 6 months old. Thinning was also found in the

supero-temporal and nasal sectors and global value at 20 months old.

Conclusions: In the APPNL−F/NL−F AD model, the retinal thickness showed thinning,

possibly produced by neurodegeneration alternating with thickening caused by deposits

and neuroinflammation in some areas of the retina. These changes over time are

similar to those observed in the human retina and could be a biomarker for AD. The

APPNL−F/NL−F AD model may help us better understand the different retinal changes

during the progression of AD.

Keywords: Alzheimer, retina, OCT, mouse model of AD, APPNL-F/NL-F
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative brain pathology
characterized by a loss of neurons and their synapses, after
which an atrophy of the cerebral cortex develops (Sharma and
Singh, 2016). The main features of AD are extracellular deposits
of the protein amyloid-β (Aβ), the formation of plaques, and
intraneuronal hyper-phosphorylated tau (pTau) in the form
of neurofibrillary tangles (Ghiso et al., 2013) leading to a
neuroinflammatory process (Pan et al., 2011).

One important tissue to focus on in search of
neurodegenerative disease biomarkers is the eye. It is widely
known that patients with AD have visual problems, such as
decreased visual acuity, contrast sensitivity, color perception, and
visual integration (Salobrar-García et al., 2015a, 2016, 2019a,b).
Retinal changes have also been documented in vivo using optical
coherence tomography (OCT) both in humans (Iseri et al., 2006;
Garcia-Martin et al., 2014; Salobrar-García et al., 2015b, 2016,
2019a,b; Polo et al., 2017; Ko et al., 2018; Lad et al., 2018) and in
different AD animal models (Chiquita et al., 2019; Georgevsky
et al., 2019; Harper et al., 2020). The retinal changes observed
in the OCT results of AD patients showed macular thinning
when the disease is in an early stage, followed by thinning of
the peripapillary area when AD progresses (Garcia-Martin et al.,
2014; Salobrar-García et al., 2015b, 2019a,b; Jáñez-Escalada et al.,
2019). Retinal areas with an increased thickness were found in
AD patients, specifically in the macular area (Jáñez-Escalada
et al., 2019; Salobrar-García et al., 2019a), revealing areas of
possible gliosis prior to neurodegeneration. These changes could
be correlated with those found in the retinas of AD transgenic
models, where marked neurodegeneration and a loss of optic
nerve axons were observed (Gupta et al., 2016; Chiquita et al.,
2019; Georgevsky et al., 2019), alongside retinal thickening
and increased microglial activation in the early stages of the
disease (Perez et al., 2009; Yang et al., 2013; Gao et al., 2015;
Salobrar-García et al., 2020). In addition to the retinal structural
changes, several functional changes have been observed by
means of electroretinogram (ERG) in the APPswe/PS1 transgenic
mouse model of AD finding a significant reduction of the a and
b wave amplitudes between 12 and 16 months of age (Perez
et al., 2009). Other authors observed in this model, already
at 3 months a significant reduction of the b-wave coinciding
with the Aβ deposits in the hippocampus (Georgevsky et al.,
2019). In addition, findings, such as a slightly shortened ERG
latency in dark adapted conditions and the increased frequency
of oscillatory potentials in the old APPswe/PS1, could be related
to inadequate cholinergic innervation (Leinonen et al., 2016).
However, in this model, late-stage photopic ERG measurements
revealed that the cone mediated retinal response was preserved
in the APPswe/PS1 mice (Joly et al., 2017). Therefore, the retina
has been postulated as an accessible biomarker of AD.

Most cases of AD in humans are sporadic, and only <3%
are caused by genetic mutations (Selkoe, 2001). There is
currently no mouse model for sporadic AD (Foidl and Humpel,
2020). In recent decades, different transgenic AD models have
been generated for mice to mimic the main neuropathological
hallmarks of the disease (Foidl and Humpel, 2020), but there

is no transgenic mouse model that presents all AD features.
Most transgenic mice were made to overexpress mutant forms of
APP and/or PS1 and show the onset of Aβ age-dependent brain
deposition, gliosis, synaptic dysfunction, and memory deficits
(Duyckaerts et al., 2008). Transgenic mice that overexpress
APP have artificial phenotypes because, in addition to the Aβ,
they overproduce other APP fragments that can interfere with
intrinsic biological functions. In addition, these models use
artificial promoters that produce transgenic expression in cells
that are not always identical to those that express endogenous
APP. Another feature of APP overexpression models is the
sudden death that reflects a physiological alteration (Nilsson
et al., 2014; Saito et al., 2014). A second generation of AD mouse
models was developed to have both less artificial phenotypes
and less altered physiology (Sakakibara et al., 2018). This
alternative AD mouse models have been generated via knock-
in (KI) of a humanized Aβ sequences harboring familial AD
mutations [Swedish (NL), Beyreuther/Iberian (F), and Arctic
(G)] (Sakakibara et al., 2019). One of these second generation
ADmousemodels is the APPNL−F/NL−F that harbors the Swedish
mutation (NL) and the Iberian mutation (F). This model, unlike
the models that overexpress APP, has normal levels of full-
length APP, and its cleavage products produce a significantly
higher level of Aβ42 compared to wild type (WT) mice and
APP overexpression models, as well as exhibits a significantly
higher Aβ42/Aβ40 ratio (Saito et al., 2014). Increased Aβ42
levels in this model cause pathological deposits of Aβ in the
cerebral cortex and hippocampus, leading to infiltration of the
microglia and astrocytes surrounding the Aβ plaques starting at
6 months old (Sasaguri et al., 2017). The APPNL−F/NL−F model
reproduces several key pathologies found in AD patients. It has
been suggested that this model may be useful as a preclinical AD
mouse model to research the pathological role of amyloidosis
and amyloids related to neuroinflammation (Saito and Saido,
2018). In addition, this model presents a number of neurological
disturbances in an age-dependent manner, such as synaptic
disorders and memory impairment, in a Y-maze test (Saito et al.,
2014).

For retinal tissue, Aβ deposits have been found in several AD
models that overexpress APP (Ning et al., 2008; Shimazawa et al.,
2008; Dutescu et al., 2009; Perez et al., 2009; Koronyo-Hamaoui
et al., 2011; Gupta et al., 2016). These Aβ deposits were located in
the retinal nerve fiber layer (RNFL), ganglion cell layer (GCL),
inner plexiform layer (IPL), outer plexiform layer (OPL), and
inner nuclear layer (INL) (Ning et al., 2008; Dutescu et al., 2009;
Perez et al., 2009; Koronyo-Hamaoui et al., 2011).

Recently, the retina has been studied by OCT in transgenic
mouse models that overexpress APP, but these studies are scarce
and controversial. In an APP/PS1 model analyzing the retina
from 3 to 12 months of age, a significant decrease in retinal
thickness in the inner layers was found at 9 months of age and
in the outer layers at 12 months (Georgevsky et al., 2019). In the
3xTg-AD animal model, neurodegeneration was found to start
at 4 months-old in the innermost retinal layers. As the disease
progressed, significant changes were found in every analyzed
layer, with the exception of the ONL, where a thickening was
observed at 12 months of age (Chiquita et al., 2019), as well as a
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significant thinning of the RNFL in AD mouse retinas compared
to the WT controls (Song et al., 2020).

Despite the loss of neurons that occurs at ∼17 months-age,
for most transgenic models of AD (APP/PS1 model) (Harper
et al., 2020), diachronic studies that analyze the retinal changes
observed by OCT in AD transgenic models from early stages
to late stages of the disease could help us better understand
the retinal observations. To the best of our knowledge, there
is no study that analyzes the retina using SD-OCT in the
APPNL−F/NL−F model. Given the aforementioned advantages of
this model, the aim of this study was to analyze the changes
in retinal thickness (total retinal thickness and RNFL thickness)
over time (at 6, 9, 12, 15, 17, and 20 months of age) in a
well-validated mouse model of AD (APPNL−F/NL−F).

MATERIALS AND METHODS

Animals and Ethics
The experiments were performed on male APPNL−F/NL−F mice
produced by manipulating the mouse APP gene using a knock-in
strategy with Swedish (KM670/671NL) and Beyreuther/Iberian
(I716F) mutations, as described previously (Saito et al., 2014).
The experiments were also performed on age-matched WT
animals (C57BL/6J). The animals were obtained from the
research group led by Dr. Takaomi C. Saito at the laboratory
for Proteolytic Neuroscience, RIKEN Brain Science Institute,
Saitama, Japan.

The Aβ sequence within the mouse APP gene was humanized
and, while the Swedish mutation (NL) elevates the total amount
of Aβ40 and Aβ42, the Beyreuther/Iberian(F) mutation increases
the ratio of Aβ42/Aβ40 (Saito et al., 2014). The great advantage
of this model is that the mouse Aβ sequence is humanized and
the Swedish and Beyreuther/Iberian mutations are introduced by
knock-in technology (Saito et al., 2014). In order to accelerate
pathology and to remove murine endogenous Aβ, mutant mice
are bred in homozygosity (Sasaguri et al., 2017) explaining
why control mice are not littermates. However, this should
not be a major problem considering that mutant mice have
been backcrossed with genuine wild-type B6J mice for more
than 10 generations.

The retinas of male APPNL−F/NL−F and WT animals were
evaluated in vivo using SD-OCT at 6, 9, 12, 15, 17, and 20 months
of age.

The animals were housed in light- and temperature-controlled
rooms with a 12-h light/dark cycle and ad libitum access to food
and water in the Medical School at the University Complutense
of Madrid. Light intensity within the cages ranged from 9 to
24 lux. The SD-OCT analysis was performed under general
anesthesia induced with an intraperitoneal (ip) injection of a
mixture of ketamine (75 mg/kg; Anesketin R©, Dechra Veterinary
Products SLU, Barcelona, Spain) and medetomidine (0.26 mg/kg;
Medetor R©, Virbac España S.A., Barcelona, Spain), which can be
reversed by the antagonist atipamezole (Antisedan, 5 mg/mL;
Pfizer). During the recovery from anesthesia, the mice were
placed in their cages with a heat source to maintain their core
body temperature.

All procedures were performed in accordance with the
European Parliament, the Council Directive 2010/63/EU, and
Spanish legislation (Real Decreto 53/ 2013). The procedures
were approved by the Ethics Committee on Animal Welfare
of the University Complutense (PROEX No. 047/16) and
reported according to the Association for Research in Vision and
Ophthalmology (ARVO) statement of animal use. All procedures
minimized the number of animals used and their suffering.

Experimental Groups
Two groups of mice were used for this study: an APPNL−F/NL−F

group (n= 55) and an age-matched control (WT, n= 41) group,
as indicated inTable 1. Only the left eyes of the animals were used
in our study. This control-case study was performed at 6, 9, 12,
15, 17, and 20 months of age.

OCT Analysis
The retinal structures were evaluated using SD-OCT Spectralis
with the Heidelberg Eye Explorer software v6.13 (Heidelberg
Engineering, Heidelberg, Germany) after pupil dilation
(tropicamide 10 mg/ml; colircusi tropicamide, Alcon Healthcare,
Barcelona, Spain).

The cornea was kept moisturized using artificial tear eye
drops. To prevent a reduction in body temperature, heating pads
were placed underneath the mice.

An addition, a 25 diopter mouse lens (Heidelberg, Germany)
was added in front of the OCT camera, and the murine eye was
covered with a polymethyl methacrylate contact lens (3.2mm
diameter, base curve 1.7; Cantor&Nissel, UK), which served to
create a uniform refractive surface.

Each mouse eye was aligned with respect to the measurement
beam to ensure that the optic nerve head (ONH) was at the center
of the OCT analysis. To compensate for small eye movements,
such as those that occur as a result of respiration, motion
artifacts were minimized through real-time eye tracking in the
device software.

As in the Early Treatment Diabetic Retinopathy Study
(ETDRS), retinal thickness data were displayed as three
concentric rings 3mm in total diameter centered in the optic
nerve. These rings were distributed as follows: a central area
with a diameter of 1mm that was not considered for the
measurements, an inner ring with a diameter of 2mm, and
an outer ring with a diameter of 3mm. Both measured rings
were divided into four quadrants (superior, inferior, nasal, and
temporal) (Figures 1A,B). Due to the size of the mouse eye,

TABLE 1 | Number of mice used at different time points.

Age group APPNL-F/NL-F group (n) WT group (n)

6 months 5 7

9 months 14 6

12 months 10 7

15 months 6 7

17 months 8 7

20 months 12 7
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FIGURE 1 | (A) Concentric rings with 1, 2, and 3mm diameters. (B) OCT section. Retinal thickness measured between the inner limiting membrane and the retinal

pigment epithelium. (C) RNFL sectors (RNFL, Retinal Nerve Fiber Layer; ST, Supero–Temporal; SN, Supero–Nasal; N, Nasal; IN, Infero–Nasal; IT, Infero-Temporal; T,

Temporal; G, Global). (D) OCT section. Result of segmentation of the OCT scan. RNFL delimited between the ILM and GCL + IPL. OCT, optical coherence

tomography; RNFL, Retinal nerve fiber layer; ILM, inner limiting membrane; GCL + IPL, ganglion cell layer and inner plexiform layer.

which differs significantly from that of the human eye, a +25
diopter optical lens was used in addition to a contact lens, so
the lateral distances were not entirely accurate. However, it was
shown that axial measurements with OCT are accurate for the
study of rodents (Dysli et al., 2015).

To analyze the RNFL, an axonal ring scan around the optic
nerve head was carried out. The RNFL was measured in six
sectors provided by the Heidelberg Software (Supero–Temporal,
Superior, Supero–Nasal, Nasal, Infero–Nasal, Temporal, Inferior,
and Temporal). The mean of all sectors is shown in the center as
the global value (G) (Figures 1C,D).

The Spectralis OCT animal software allows automatic
segmentation of the retinal layers and measurement of each
layer’s thickness through the same segmentation of the concentric
circular sectors mentioned above. After collecting the images,
if it was necessary to correct the automatic division of the
layers, manual corrections were made by the same experienced
examiner. The RNFL and total retinal thickness were then
measured. The distance between the inner limiting membrane
and the posterior surface of the RPE was defined as the total
retinal thickness.

Statistical Analysis
For the statistical analysis, we used the SPSS software 25.0 (SPSS
Inc., Inc., Chicago, IL, USA). The differences between study

groups (APPNL−F/NL−F and WT) were analyzed using a non-
parametric Mann–Whitney U Test. Data are reported as the
mean values ± standard deviation (SD). A P-value <0.05 was
considered statistically significant.

RESULTS

In this study, we evaluated the total retinal thickness and
RNFL thickness in different age groups (at 6, 9, 12, 15, 17,
and 20 months) using the APPNL−F/NL−F mouse model of
AD (APPNL−F/NL−F group) and age-matched wild-type mice
(WT group). Ninety-four mice were analyzed in total−55
APPNL−F/NL−F mice and 41 WT mice.

Total Retinal Thickness
At 6 months of age, for the APPNL−F/NL−F mice, we found
that the total retinal thickness was significantly decreased in the
temporal sector in the outer ring (244.40 ± 2.41) compared to
the WT mice (253.00 ± 6.11; p < 0.05). In this same age group,
compared to the WT mice, the remaining sectors showed slight
thinning, except for the superior sector in the inner ring, which
showed a slight thickening (without statistical significance in
both cases) (Table 2, Figure 2).

When we analyzed the 9-months-age groups, the total retinal
thickness of the APPNL−F/NL−F mice showed slight thinning
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TABLE 2 | Total retinal thickness between groups.

Total retinal thickness

Inner ring Outer ring

S I N T S I N T

6 months APPNL−F/NL−F Mean 250.60 244.20 241.40 243.00 254.20 243.80 246.20 244.40

SD 5.73 4.82 4.28 4.53 6.38 4.44 5.63 2.41

WT Mean 249.43 249.43 246.00 247.43 256.57 253.57 248.86 253.00

SD 6.02 7.30 4.28 7.25 8.28 9.11 6.18 6.11

P-value 0.935 0.255 0.101 0.221 0.684 0.061 0.624 0.028*

9 months APPNL−F/NL−F Mean 252.36 247.29 247.43 247.57 257.71 245.36 251.21 246.14

SD 8.42 7.24 5.26 5.56 6.78 9.43 4.51 6.68

WT Mean 257.17 250.33 250.50 251.83 261.67 249.00 248.17 252.33

SD 7.31 6.12 6.92 7.68 11.38 5.37 7.36 7.12

P-value 0.246 0.342 0.230 0.185 0.282 0.535 0.320 0.063

12 months APPNL−F/NL−F Mean 253.00 246.56 245.56 246.33 257.22 246.11 247.67 246.22

SD 8.38 3.17 5.96 5.70 11.29 4.86 4.85 7.07

WT Mean 255.86 252.86 249.71 250.71 258.14 252.57 250.14 250.57

SD 6.94 7.84 7.04 6.92 6.31 7.61 6.87 5.53

P-value 0.366 0.089 0.202 0.123 0.560 0.100 0.243 0.110

15 months APPNL−F/NL−F Mean 253.83 248.00 244.83 249.17 257.50 247.00 248.17 247.67

SD 4.96 7.90 2.48 8.64 9.12 7.75 4.36 9.58

WT Mean 252.71 254.86 251.00 250.57 257.29 255.29 250.71 251.57

SD 7.11 5.90 6.68 8.48 9.23 6.34 6.05 6.11

P-value 0.429 0.044* 0.031* 0.473 0.617 0.038* 0.418 0.195

17 months APPNL−F/NL−F Mean 255.38 250.25 251.63 248.25 257.75 252.88 255.00 248.13

SD 7.48 4.37 5.73 3.37 9.10 5.30 7.48 4.52

WT Mean 252.29 244.71 243.00 246.71 255.00 245.00 243.71 249.71

SD 4.68 4.57 4.73 3.20 8.50 5.45 3.30 4.68

P-value 0.450 0.036* 0.024* 0.415 0.602 0.023* 0.004** 0.523

20 months APPNL−F/NL−F Mean 240.83 241.83 239.08 240.25 245.25 244.91 242.58 241.67

SD 6.86 4.53 5.74 4.75 8.67 7.49 7.14 6.96

WT Mean 250.67 253.17 251.50 251.50 255.33 252.33 249.50 252.00

SD 9.87 8.38 8.89 8.80 9.54 8.14 6.75 9.61

P-value 0.054 0.007** 0.009** 0.007** 0.039 0.076 0.100 0.031

* in bold: p-value <0.05; **in bold: p-value <0.01; Mann-Whitney U Test; WT, wild type; SD, standard deviation; S, superior; I, inferior; N, nasal; T, temporal.

without statistical significance in all sectors, except for the nasal
sector in the outer ring, which was slightly thickened compared
to the WT group (Table 2, Figure 2).

At 12 months of age, total retinal thickness in the
APPNL−F/NL−F group showed no statistically significant changes
in comparison to the WT group. However, at 12 months
old, all sectors showed slight thinning, with the inferior
sectors in both the inner and outer rings being the thinnest
(Table 2, Figure 2).

At 15 months of age, the total retinal thickness of the
APPNL−F/NL−F mice group showed a significant decrease in the
inferior sector in both the inner (248.00 ± 7.90) and outer ring
(247 ± 7.75) and in the inner ring of the nasal sector (244.83
± 2.48) compared to the WT group (254.86 ± 5.90, 255.29 ±

6.34, and 251 ± 4.73, respectively p < 0.05 in all cases). In
this age group, the remaining sectors showed slight thinning,
except for the superior sector in the inner ring, which showed

a slight thickening (without statistical significance in both cases),
in comparison to the WT mice group (Table 2, Figure 2).

At 17 months of age, in the APPNL−F/NL−F group compared
to the WT group, we found a significant increase in thickness in
the nasal and inferior sectors in the inner and outer rings. The
nasal sectors in both the inner ring (251.63± 5.73 vs. 243± 4.73,
for APPNL−F/NL−F and WT groups, respectively) and the outer
ring (255.00± 7.48 vs. 243.71± 3.30, for APPNL−F/NL−F andWT
groups, respectively) were significantly thicker (p< 0.05 for inner
ring and p < 0.01 for outer ring) in the APPNL−F/NL−F group
compared to the WT group. Similarly, in the APPNL−F/NL−F

group, the inferior sectors in both the inner ring (250.25 ±

4.37 vs. 244.71 ± 4.57, for APPNL−F/NL−F and WT groups,
respectively) and the outer ring (252.88 ± 5.30 vs. 245.00 ±

5.45, for APPNL−F/NL−F and WT groups, respectively) showed
statistically significant thickening compared to the WT group (p
< 0.05 in all cases; Table 2, Figure 2).
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FIGURE 2 | Colorimetric differences of retinal thickness in each age group between the APPNL−F/NL−F and WT animal groups. OCT rings with 1, 2, and 3mm

diameters. Red: thickening; blue: thinning. APPNL−F/NL−F, Single App Knock-in mouse model of Alzheimer’s disease; WT, Wild type; OCT, optical coherence

tomography; N, nasal; T, temporal.

When we compared the APPNL−F/NL−F group with the WT
control group in the oldest animals (20 months), we found a
significant thickness decrease in the inner and outer ring in
the temporal sector (p < 0.01 and p < 0.05, respectively), in
the inner ring of both inferior and nasal sectors (p < 0.01 in
both cases) and in the outer ring of the superior sector (p <

0.05). In the APPNL−F/NL−F mice in comparison with the WT
group: the temporal sectors showed a statistically significant
decrease in both the inner ring (240.25 ± 4.75 vs. 251.50 ±

8.80, in APPNL−F/NL−F and WT, respectively) and in the outer
ring (241.67 ± 6.96 vs. 252.00 ± 9.61, in APPNL−F/NL−F and
WT, respectively); both the nasal sectors and inferior sectors
showed statistically significant thinning in the inner ring (239.08
± 5.74 vs. 251.50 ± 8.89 for nasal sector and 241.83 ± 4.53
vs. 253.17 ± 8.38 for inferior sector, in APPNL−F/NL−F and
WT, respectively) and the superior sectors showed statistically
significant thinning, in the outer ring (245.25 ± 8.67 vs.
255.00± 9.54, in APPNL−F/NL−F and WT, respectively) (Table 2,
Figure 2).

RNFL Thickness
Overall, in RNFL, there were no statistically significant changes
over time observed in our study, except at 6 and 12 months of
age. At early time point in the APPNL−F/NL−F group, we found

a significant thickness decrease compared to the WT group in
the nasal sector (21.80± 1.48 vs. 24.29± 1.80, in APPNL−F/NL−F

and WT, respectively), in the infero–temporal sector (21.20 ±

1.30 vs. 25.57 ± 4.58, in APPNL−F/NL−F and WT, respectively),
and in the global value (23.00 ± 1.00 vs. 26.71 ± 4.46, in
APPNL−F/NL−F and WT, respectively; p < 0.05 in all cases)
(Table 3, Figure 3).

At 9 months-old, the thickness of all sectors in the
APPNL−F/NL−F group slightly decreased compared to the WT
group without statistical significance (Table 3, Figure 3).

By contrast, at 12 and 15 months of age, in the APPNL−F/NL−F

group, only four sectors showed a slight non-significant thickness
decrease (in the supero–temporal, temporal, nasal, and infero–
nasal sectors), and the remaining two sectors were slightly
thickened without statistical significance (supero–nasal, and
infero–temporal) compared to theWT group (Table 3, Figure 3).

When comparing APPNL−F/NL−F and WT mice at 17 months
old, it was found that the RNFL thickness of all sectors
increased slightly without statistical significance, except in the
supero–temporal sector, where we found a slight non-significant
thickness decrease (Table 3, Figure 3).

By contrast, at 20 months of age, the highest age in the
APPNL−F/NL−F group, we found a significant thickness decrease
in comparison to WT group in the nasal sector (24.83 ± 2.33
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TABLE 3 | Retinal nerve fiber layer thickness between groups.

Retinal nerve fiber layer thickness

N T SN ST IN IT G

6 months APPNL−F/NL−F Mean 21.80 23.60 25.60 25.00 24.80 21.20 23.00

SD 1.48 0.89 4.16 2.12 1.30 1.30 1.00

WT Mean 24.29 25.86 24.00 28.86 25.71 25.57 26.71

SD 1.80 2.19 3.00 4.06 4.46 4.58 4.46

P-value 0.030* 0.062 0.741 0.087 0.868 0.014* 0.039*

9 months APPNL−F/NL−F Mean 24.29 26.36 24.64 27.00 25.57 23.86 25.29

SD 2.73 3.46 4.09 4.71 6.28 3.63 2.61

WT Mean 26.17 28.00 24.50 27.83 29.00 24.50 26.67

SD 2.14 2.37 2.95 2.64 2.37 2.43 1.75

P-value 0.133 0.213 0.708 0.868 0.299 0.617 0.170

12 months APPNL−F/NL−F Mean 25.40 25.90 25.70 27.60 25.00 25.90 26.00

SD 2.07 2.28 3.37 2.59 5.42 3.14 1.70

WT Mean 26.33 25.50 23.83 27.83 28.50 23.67 26.17

SD 1.63 2.17 3.25 2.99 2.95 2.58 1.47

P-value 0.352 0.659 0.414 0.869 0.190 0.272 0.868

15 months APPNL−F/NL−F Mean 24.50 25.67 25.33 26.17 28.17 25.17 25.50

SD 3.62 1.97 3.39 4.07 4.36 2.14 2.43

WT Mean 27.29 26.86 26.14 29.00 29.71 25.29 27.14

SD 3.99 3.72 3.02 5.03 2.87 5.59 2.91

P-value 0.311 0.718 0.829 0.194 0.251 0.665 0.348

17 months APPNL−F/NL−F Mean 26.75 27.25 28.00 26.38 30.00 26.38 27.25

SD 4.30 5.39 3.25 3.85 5.55 3.29 3.06

WT Mean 26.29 26.29 25.71 28.43 26.71 23.43 26.29

SD 1.98 3.99 3.25 7.55 4.46 2.70 2.29

P-value 0.861 0.861 0.244 0.636 0.270 0.077 0.481

20 months APPNL−F/NL−F Mean 24.83 24.58 25.25 26.33 24.83 24.17 24.67

SD 2.33 3.73 3.47 4.08 5.56 4.84 2.06

WT Mean 30.33 27.00 28.00 31.50 29.17 28.33 29.00

SD 1.86 4.52 4.86 2.35 5.42 3.44 1.79

P-value 0.001* 0.257 0.343 0.011* 0.158 0.081 0.002*

* in bold: p-value <0.05, Mann-Whitney U Test; WT, wild type; SD, standard deviation; N, nasal; T, temporal; SN, supero-nasal; ST, supero-temporal; IN, ínfero-nasal; IT, ínfero-temporal;

G, mean global thickness.

vs. 30.33 ± 1.86, in APPNL−F/NL−F and WT, respectively), in
the supero-temporal sector (26.33 ± 4.08 vs. 31.50 ± 2.35, in
APPNL−F/NL−F and WT, respectively), and in the global value
(24.67 ± 2.06 vs. 29.00 ± 1.79, in APPNL−F/NL−F and WT,
respectively) (Table 3, Figure 3).

DISCUSSION

The present work is the first diachronic SD-OCT study of the
RNFL thickness and total retinal thickness in APPNL−F/NL−F

mice at 6, 9, 12, 15, 17, and 20 months of age compared with
WT animals. In this way, the development of the retinas could
be tracked as the disease progressed. This diachronic study
covers a wider timeframe than any other study performed so
far. Histological studies provide a wide spectrum of information,
but the processing of retinal tissue for analysis causes thicknesses

to vary, which makes it difficult to correlate directly with
the data provided by current techniques like OCT, which
allows us to analyze in vivo the changes experienced by the
retina as the disease develops (Salobrar-García et al., 2016).
In this study we demonstrated for the first time retinal
changes from the early to late stages of AD using OCT in
the APPNL−F/NL−F model.

The APPNL−F/NL−F model presents an age-related Aβ

pathology, memory deterioration, behavioral problems, and
neuroinflammation (Cash et al., 2013; Rochat et al., 2013; Saito
et al., 2014; Masuda et al., 2016; Sasaguri et al., 2017; Shah et al.,
2018) and allows us to estimate early changes in the retina.

It is now known that there are relationships between certain
areas of the brain and the retina. Specifically, the thickness
of peripapillary RNFL (pRNFL) in the temporal sector is
related to the volume of the medial temporal lobes, especially
with the volume of the hippocampus (Shi et al., 2020). In
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FIGURE 3 | Colorimetric differences of RNFL thickness at each time point between the APPNL−F/NL−F and WT groups. OCT sectors. Red: thickening; blue: thinning.

APPNL−F/NL−F, Single App Knock-in mouse model of Alzheimer’s disease; WT, Wild type; RNFL, Retinal nerve fiber layer; N, nasal; SN, Supero–Nasal; ST,

Supero–Temporal; T, temporal; IT, Infero-Temporal; IN, Infero–Nasal; G, global.

the lower sector the pRNFL thickness is associated with the
volume of the occipital lobes and selectively with the volume
of the lingual gyrus. Therefore, the cerebral changes observed
in AD may be related to retinal changes and the retina
may be useful as a biomarker of neurodegenerative diseases
(Shi et al., 2020).

In APPNL−F/NL−F model, at 3 months old, there was no
presence of Aβ pathology, although there was already an
alteration of the proteome in both the hippocampus and the
cortex compared to WT mice. The early increase in Tris-soluble
Aβ42 levels suggests that the pre-symptomatic stages of AD begin
before amyloidosis Aβ (Schedin-Weiss et al., 2020). In addition,
the accumulation of Aβ is age-dependent from 1 to 18 months
(Petrache et al., 2019). Aβ brain deposits have been reported at 6
months of age in this AD model (Saito et al., 2014), developing
first in the hippocampus and then becoming more significant in
the cerebral cortex (Schedin-Weiss et al., 2020). At 9 months old,
there was a significant amount of Aβ plaques in the parenchymal
brain, with the Aβ plaque load reaching its maximum at 18
months (Schedin-Weiss et al., 2020). While the brain changes in
this model have been studied, there are not works analyzing the

retina. However, in other transgenic models retinal changes have
been previously reported.

In the retina, the formation of Aβ plaques was described to
occur at 6 months in the APP/PS1 model (Georgevsky et al.,
2019), although other authors observed these plaques earlier in
the retina at 2.5 months old (Koronyo-Hamaoui et al., 2011).
Using the 3xTg-AD model, it was demonstrated that there is a
positive correlation between retinal thickness and the volume of
the visual cortex (Chiquita et al., 2019), as well as the behavior
of the microglia in the retina, showing activation and migration
between the different layers of the retina in whole-mount retinas
(Salobrar-García et al., 2020). Histological alterations has been
described in the retina, such as a decrease in the density of retinal
ganglion cells and the nerve fiber layer, thinning of the inner
plexiform layer, and the presence of Aβ plaques in the inner
nuclear layer in a APP/PS1 model (Gupta et al., 2016).

Scarce studies have analyzed retinal changes using OCT in
transgenic models (APP/PS1 and 3xTg-AD), however, to our
knowledge, there is no study that analyses the retina in the
APPNL−F/NL−F model. By analyzing two horizontal lines above
and below the optic nerve, Georgevsky et al. (2019) showed, in
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both APP/PS1 mice and WT controls, a significant age-related
reduction in the inner retinal thickness from 3 to 12months, with
a significant difference between the APP/PS1 and WT mice in
both the inner and outer retinal thickness starting at 9 months.
In contrast, Harper et al. (2020) using multicontrast OCT, more
recently found no significant changes in retinal thickness between
APP/PS1 mice and control mice in any of the retinal regions
analyzed by scanning an annulus around the ONH divided
into two sectors. Finally, Song et al. (2020) using a multimodal
imaging system with co-registered OCT and angle-resolved low-
coherence interferometry, found a significant thinning of RNFL
in 3xTg-AD mouse retinas compared to the WT controls.

Although the use of OCT gives us in vivo images at a very
high resolution that allow us to analyze the retinal layers in
animal model studies, most OCTs designed for animal studies
have no tracker system. To date, no published studies have been
conducted using this technique (Georgevsky et al., 2019; Harper
et al., 2020). However, our diachronic study in APPNL−F/NL−F

model was conducted using SD-OCT with a tracking system that
allowed us to re-examine the exact same area, thereby avoiding
measurement errors or unintentional movements and giving us
the ability to analyse areas of the retina that cover almost the
entire posterior pole instead of a single scan line.

In APPNL−F/NL−F mice the early retinal thinning observed
with SD-OCT at 6 months of age (which was significant in total
retinal thickness only in the outer temporal sector, as well as in
the nasal, infero–temporal sectors and mean global value of the
RNFL) appeared to develop toward more significant thinning
by the final time point. It is possible that these initial changes
are the consequence of the progressive accumulation of soluble
oligomers of Aβ (in our model Tris-soluble Aβ42), inducing early
neuronal dysfunction due to their toxicity. These changes are
in line with the observation that the APOE ε4 genotype of AD
is associated with a decrease in GABAergic interneurons and
glutamatergic signaling in the hippocampus, which is a risk factor
for AD (Andrews-Zwilling et al., 2010; Busche and Konnerth,
2016; Shah et al., 2018). In the APP/PS1 model, primary visual
cortex degeneration has also been observed in parallel with an
increase in Aβ plaque with age. This is specific to the hyperactive
neurons located near plaques, which are also found in the frontal
cortex in AD (Busche et al., 2008). The hyperactive astrocytes
located in the vicinity of the Aβ plaques that are formed may also
contribute to neuronal protection, which can directly improve
neuronal activity initially. This astrogliosis becomes noticeable
very early and correlates with the slow development of AD in
the APPNL−F/NL−F mice at 6 months (Saito et al., 2014; Petrache
et al., 2019). The findings at this early time may also be secondary
to the astrocyte reduction of glutamate synaptic recapture (Li
et al., 2009) and to the excessive amount of Aβ dimers, as
well as the Aβ1−40 monomers and dimers, which increase the
presynaptic release of glutamate (Fogel et al., 2014). Therefore,
a combination of both causes could increase residual glutamate
levels, thereby promoting neuronal hyperactivity, which is a
precursor to plaque formation (Busche and Konnerth, 2016;
Schedin-Weiss et al., 2020).

In the APPNL−F/NL−F mice, the time between 9 and 15months
of age was characterized by a slow and progressive tendency

toward thickening of the retina with alternation of thinned
retinal sectors, which vary over time and present only statistical
significance at 15 months in some sectors of the total retinal
thickness (outer and inner rings of inferior sector and inner ring
of the temporal sector). These changes could correlate to the
brain changes seen in this model at 9 months, when neuronal
death was detected by necrosis in the cerebral cortex (Schedin-
Weiss et al., 2020). At the same time, the effect of microgliosis
and astrogliosis are significant in the APPNL−F/NL−F model
in the cortex, hippocampus, and subcortical region compared
to the WT mice (Masuda et al., 2016). These mechanisms
could explain why, at 9 months, although there were changes
in the OCT analysis in the APPNL−F/NL−F group compared
to WT mice, these changes were not statistically significant
since neuroinflammation could appears at the same time as
neurodegeneration, masking the changes seen at 6 months of
age (Saito et al., 2014; Masuda et al., 2016). These slow and
minor changes in retinal thickness, which evolve steadily until
15 months of age, could be produced by the progressive deposit
of Aβ plaques (Radde et al., 2006; Ferguson et al., 2013; Nilsson
et al., 2014; Masuda et al., 2016; Stevanovic et al., 2017; Shah
et al., 2018; Petrache et al., 2019; Schedin-Weiss et al., 2020)
and by the mechanisms of inflammation, phagocytosis, and
microglial migration between different retinal layers (Lee et al.,
2020; Salobrar-García et al., 2020).

While in the APP/PS1 model, at 16 months of age, there was
a heavy plaque burden throughout all cortical regions (Ferguson
et al., 2013), as well as increased microglial activity (Perez et al.,
2009), in the murine model used in our study, this heavy plaque
load peaked at 18 months. At the same time, the mice showed
alterations in different proteins of the hippocampus and the
cortex, which are involved in various neuronal maintenance
activities (Schedin-Weiss et al., 2020).

These findings may be linked to the overall increase in total
retinal thickness at 17 months of age in the APPNL−F/NL−F

group, with significance in the nasal and inferior sectors,
the inner and outer sectors, and the RNFL (albeit without
statistical significance); these changes were more noticeable
in the nasal–superior, nasal–inferior, and temporal–inferior
sectors. At this point in our study, where the greatest
thickening was observed, we precisely observed that Aβ brain
plaques accumulate at an accelerated rate (Koronyo-Hamaoui
et al., 2011), which coincides with the findings of our model
(Saito et al., 2014; Schedin-Weiss et al., 2020).

In addition, astrocytes are hyperreactive, surrounding the
Aβ plaques and releasing proinflammatory factors that induce
higher microglial activation (Saito et al., 2014; Busche and
Konnerth, 2016; Masuda et al., 2016; Shah et al., 2018). In
the APP/PS1model there was an increase in the microglial
marker F4/80, inflammatory cytokine MCP-1, and TUNNEL-
positive cells in the RGC layer (Ning et al., 2008). In addition,
the activated microglia may trigger a neuroinflammatory
response (Perez et al., 2009) that could contribute to retinal
disorganization, as demonstrated by the functional alterations
present in the electroretinogram of the APP/PS1 mouse
model (Krasodomska et al., 2010; Ramirez et al., 2017). In
APPNL−F/NL−F mice, high levels of Aβ42 cause pathological Aβ
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deposits in the cerebral cortex and hippocampus, which are
accompanied by increased neuroinflammation, with activation
of the astrocytes and microglia surrounding the plaques from 6
months of age (Saito et al., 2014; Sasaguri et al., 2017; Schedin-
Weiss et al., 2020). In our study, Iba-1+ cells located in the
OPL and IPL were larger, with thicker and larger somas and
processes than in the WT group (Supplementary Figures 1D,F).
In addition, in the GCL-NFL the Iba-1+ cells had a more
amoeboid appearance with thicker somas and retracted processes
(Supplementary Figures 1D,F). In the APPNL−F/NL−F group
there was an increase in GFAP+ immunostaining with astrocytes
accumulating in areas where Iba-1+ cells also clustered
(Supplementary Figures 1E,F). When the microglia is activated,
it undergoes morphological changes and it is transformed into
cells with an amoeboid appearance and phagocytic properties,
capable of releasing substances that induce an inflammatory
response (Rowland and Shneider, 2001). These morphological
changes are gradual, ranging from the branched resting state
to an intermediate, early activated or “primed” state, and
finally reaching the amoeboid phagocytic state (Perry, 2004).
In the “primed” state, the microglia increases its vigilance state
and shows a thickening of the cell body and its processes.
This change in the microglia can occur in response to
primary factors derived from neurons or astrocytes. Astrogliosis
has also been observed in patients with AD in the GCL
(Grimaldi et al., 2018, 2019). All microglial and astroglial cell
changes, which may be associated with the neuroinflammatory
process, could result in the increased retinal thickness observed
in APPNL−F/NL−F group.

Finally, at 20 months of age, which is the latest time point
we analyzed, the findings of SD-OCT show significant thinning
of the total retina thickness in the inner ring of nasal, inferior
and temporal sectors and in the outer rings of superior and
temporal sectors, contrary to where the thickening occurred at
17 months, which could be the result of the generalized thinning
of the retina. It should be noted that the outer temporal sector,
the first sector with a significant change at 6 months, again
showed significant thinning being more pronounced than that
at earlier time points. The RNFL showed generalized thinning
reaching statistical significance in nasal, supero-temporal sectors
and mean global value. This situation could be a consequence
of the neurodegeneration caused by high levels of Aβ and
oligomers, which could be promoting neurotoxicity at this
time point (Schedin-Weiss et al., 2020). At the same time,
a decrease in retinal ganglion cell density due to apoptosis
(Ning et al., 2008; Gupta et al., 2016), a decrease in the
axon density of the optic nerve, and a significant thinning of
the inner plexiform layer were found in the APP/PS1 model
(Gupta et al., 2016).

Notably, in the SD-OCT analysis from 6 to 20 months of age,
in the RNFL, the only sector that did not increase in thickness
was the superior temporal sector, while that with the most
fluctuations was the superio–nasal sector, which correlates with
the temporal sectors in total retinal thickness because, again,
the sector that exhibited the least thickness variation was the
outer temporal sector. These structural changes are consistent
with the functional findings of the electroretinogram (ERG),

which show dysfunction of the RGCs and cones, as well as a
response from bipolar and other interneuronal cells in the inner
retina in the APP/PS1 mice (Gupta et al., 2016), which could
support the diminished thickness of the retina detected in our
APPNL−F/NL−F mice.

It must be considered that this data should be corroborate
in future works with molecular biological investigations that
confirm the findings in this model.

In summary, the first changes observed at 6 months of age
included a significant thinning of the total retinal thickness in the
outer temporal sector, and significant thinning of the RNFL in the
nasal and inferior–temporal sectors, and mean global value. At
the later time points, which correspond to 9 and 12months of age,
there was a slow and progressive evolution toward thickening,
with alternation of the thinned sectors, albeit without statistical
significance. At 15 months of age, there was a significant thinning
of the total retinal thickness in the inner rings of temporal and
inferior sectors and in the outer ring of inferior sector. At 17
months of age there were a widespread thickening of the total
retina, which was significant in the inferior and nasal sectors
of both the inner and outer ring. This thickening could be due
to a neuroinflammatory process produced by astrocytes and
microglia changes. Finally, at 20 months of age, the SD-OCT
showed generalized non-significant thinning of the RNFL and a
considerable thinning of the total retinal thickness, with greatest
significance in the superior and temporal sectors of both the inner
and outer ring.

CONCLUSIONS

In conclusion, this diachronic study of the murine model
of APPNL−F/NL−F of AD from 6 to 20 months of age
provides significant information on the variations in total retinal
thickness and RNFL measured by SD-OCT. In this model,
the retinal thickness showed thinning, possibly produced by
neurodegeneration alternating with thickening that could be
caused by deposits and neuroinflammation in some areas of
the retina.

Retinal changes over time, similar to those observed in the
human retina could be a biomarker for AD. The APPNL−F/NL−F

AD model may help us better understand the different retinal
changes during the progression of AD.
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Background and Objective: Alzheimer’s disease (AD) has been shown to affect vision

in human patients and animal models. This study was conducted to explore ocular

abnormalities in the primary visual pathway and their relationship with hippocampal

atrophy in patients with AD and mild cognitive impairment (MCI). The aim of this study

was to investigate the potential value of ocular examinations as a biomarker during the

AD progression.

Methods: Patients with MCI (n = 23) or AD (n = 17) and age-matched cognitively

normal controls (NC; n = 19) were enrolled. Pattern visual-evoked potentials (PVEP),

flash electroretinogram (FERG) recordings and optical coherence tomography (OCT)

were performed for all participants. Hippocampal volumes were measured by 3T

magnetic resonance imaging. Cognitive function was assessed by Mini Mental State

Examination (MMSE), Montreal Cognitive Assessment (MoCA) and Alzheimer’s Disease

Assessment Scale-cognitive subscale (ADAS-cog). Pearson correlation was employed

to analyze the potential associations between ocular abnormalities and hippocampal

volumes. Hierarchical regression models were conducted to determine associations

between cognitive performances and ocular abnormalities as well as hippocampal

volumes after adjusting for confounding factors including age, sex, cognitive reserve,

and APOE4 status.

Results: PVEP amplitude of P100 waveform was significantly decreased in AD patients

compared to MCI and normal individuals. In FERG test, delayed latencies of rod

response, rod cone response and 3.0 flicker time were found in cognitively impaired

groups, indicating dysfunctions of both the rod and cone systems in the disease

progression. OCT test revealed reduced macular retinal nerve fiber layer (m-RNFL)

thickness in MCI and AD patients, which significantly correlated with brain structure

of hippocampus particularly vulnerable during the progression of AD. Interestingly,

P100 amplitude showed a significant association with hippocampal volumes even after

adjusting confounding factors including age, sex, and cognitive reserve. Hierarchical
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regression analysis further demonstrated that m-RNFL thickness, as well as hippocampal

volumes, significantly associated with ADAS-cog scores.

Conclusion: P100 amplitude and m-RNFL thickness showed significant correlations

with brain structure involved in AD-related neurodegeneration, and therefore proved to

be potential indicators of brain imaging pathologies.

Keywords: Alzheimer’s disease, mild cognitive impairment, hippocampus, visual abnormalities, P100 amplitude,

m-RNFL thickness

INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of
degenerative dementia in older people (Livingston et al.,
2020). The early symptoms begin with short-term memory
loss and gradually progress to severe impairment in memory,
thinking and behavior (Chan et al., 2013). Mild cognitive
impairment (MCI) is defined as an early stage of dementia
and more than 50% of MCI patients progress to AD in a
period of 4–5 years (Petersen, 2006). Therefore, screening,
diagnosis and targeted treatment in this stage to prevent
conversion to AD is of great importance. Various studies have
attempted to identify and evaluate biomarkers for AD and
MCI, including state-of-the-art neuroimaging techniques and
biochemical analysis of the cerebrospinal fluid. However, time-
consuming, radiation, high cost, and invasiveness have hampered
their widespread availability.

In recent years, ocular tests have received substantial
attention from the scientific community for ocular structural and
functional changes in AD through non-invasive and inexpensive
evaluation (Heaton et al., 2015). Lots of evidence indicates
that visual disturbance is common for AD patients (Cormack
et al., 2000). In some AD patients, visual disturbances present
as the initial complaint, such as impairment in visual acuity,
spatial contrast sensitivity, color sensitivity, and blurred vision
(Croningolomb, 1995; Armstrong, 1996). Quantitative data
supports the assessment that in the primary visual pathway
including retina and lens amyloid-beta accumulation, retinal
nerve fiber layer loss, and visual cortex changes can be valuable
for the diagnosis of AD (Goldstein et al., 2003; Ohno-Matsui,
2011; Ikram et al., 2012). Optical coherence tomography (OCT) is
a non-invasive imaging technique that captures high-resolution
and three-dimensional images of the retina. Previous studies
in AD patients demonstrated that the retinal nerve fiber layer
(RNFL) thickness was attenuated in comparison to healthy
controls (Iseri et al., 2006). In addition, the decrease in
parapapillary and macular RNFL thickness, and macular volume
were related to the cognitive ability of AD patients (Ikram et al.,
2012). Other than structural measures, flash electroretinogram
(FERG), and pattern visual evoked potential (PVEP) are classic

Abbreviations: AD, Alzheimer’s disease; MCI, Mild cognitive impairment; PVEP,

Pattern visual-evoked potentials; FERG, Flash electroretinogram; OCT, Optical

coherence tomography; MMSE, Mini Mental State Examination; MoCA, Montreal

Cognitive Assessment; ADAS-cog, Alzheimer’s Disease Assessment Scale-cognitive

subscale; m-RNFL, Macular retinal nerve fiber layer; SDS, Self-rating depression

scale; SAS, Self-rating anxiety scale; MRI, Magnetic resonance imaging.

tests to assess full retinal function and retinal ganglion cells,
respectively. Abnormal changes are reported in FERG and PVEP
in early AD patients as well (Krasodomska et al., 2010).

In this study, we aim to perform ophthalmological
examinations including PVEP, FERG and OCT tests to explore
ocular functional and structural changes in patients with AD or
MCI and age-matched cognitively normal individuals. Since the
hippocampus is well-known to be involved in neurodegenerative
processes and atrophy of hippocampus predicts the conversion
from MCI to AD (Erten-Lyons et al., 2006), we investigated
hippocampal volumes by MRI and attempt to identify the
relationship between hippocampal volumes and visual system
impairment. Our research’s goal was to evaluate the potential
availability of the application of non-invasive, cost-effective
ophthalmic screening tests for AD.

MATERIALS AND METHODS

Patients Enrolment
Participants (N = 59) in this study were enrolled at the
neurology clinic of Ruijin Hospital affiliated to the Shanghai
Jiao Tong University School of Medicine, Shanghai, China,
from September 2016 to December 2020. All volunteers gave
their informed, written consent prior to study participation.
This study was approved by the Research Ethics Committee
of Ruijin Hospital. All patients with AD dementia were
diagnosed as probable AD dementia following the National
Institute on Aging and Alzheimer’s Association (NIA-AA)
diagnostic guidelines for probable AD dementia with support
of structural MRI images (McKhann et al., 2011). To ensure
volunteers understood the task, only patients with mild to
moderate AD dementia [24 ≥ Mini Mental State Examination
(MMSE) ≥ 10] participated on the tests. MCI with deficits in
memory function were diagnosed according to the Mayo Clinic
criteria (Petersen, 2004). The criteria include subjective memory
complaint corroborated by an informant together with preserved
everyday activities, a memory impairment based on a standard
neuropsychological test, preserved global cognitive functions and
finally the exclusion of dementia. Age- and education-adjusted
scores falling 1.5 standard deviations below that expected for age
and education level may indicate MCI but these are considered
as guidelines rather than diagnostic cut-offs. The cognitively
normal participants were age-, sex-, and education-matched and
were recruited from the local community in Shanghai. Inclusion
criteria for normal controls required aMMSE score≥ 28 without
any memory-related complaint. Participants with the presence
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of dementia or other neurological diseases such as Parkinson’s
disease were excluded. Besides, individuals were excluded if
they have any of the following medical problems: acute diabetic
complications, history of acute cerebrovascular accident, history
of acute cardiovascular accident, systemic disorders such as
malignancy and lupus which were not cured, severe infection,
drug abuse or dependency condition and severe psychiatric
disorders which were not cured. Individuals with any ocular
disease, high refractive error, systemic disease affecting vision or
history of ophthalmic surgery were excluded.

Neuropsychological Assessment
Each participant received a detailed neuropsychological
assessment by a memory-related specialist. Additionally, patients
with vascular dementia, mental disorders, other neurological
diseases, and history of alcohol or drug abuse were also excluded.
Specialists assessed cognitive ability in all participants utilizing
Mini-Mental State Examination (MMSE, developed by Zhang
et al., 1990), Montreal Cognitive Assessment (MoCA) Beijing
version, Self-rating depression scale (SDS), Self-rating anxiety
scale (SAS), and the 12-item Chinese version of Alzheimer’s
Disease Assessment Scale-cognitive subscale (ADAS-cog). The
cut point established for the MMSE that defines “Alzheimer’s
disease” was set at 24 (Lopez et al., 2005). We used MoCA cut-off
scores of ≤24 points for MCI and ≤22 points for dementia and
for individual within 6 years or fewer of formal education, one
point was added to the score as a correction (Goldstein et al.,
2014). The clinical cut-off raw scores for SAS and SDS were set at
36 and 40, respectively (Dunstan and Scott, 2018). The optimal
cut-off score for ADAS-Cog 12-item scale to discriminate
between MCI and mild AD was ≥21 (Zainal et al., 2016).

Optical Coherence Tomography
All participants underwent the OCT examination using the
STRATUS OCT Model 3000 (Carl Zeiss Meditec, Inc., Dublin,
California, USA). The retinal mapping software was used to
calculate the average retinal thickness of the central ring. All eyes
were scanned in a radial-spoked pattern centered on the foveola
with the scan length of 6mm. The mean and standard deviations
of the macular RNFL (m-RNFL) were calculated in superior,
inferior hemiretina. These measurements were performed out
to one disc diameter inferiorly and superiorly to the fovea.
Optic disc head scans were recorded with optimized z-offset and
polarization. The Fast Optic Disc Scan Protocol (OCT-DISC) was
used. The software determined automatically the disc margin
setting a point at the edge of the retinal pigment epithelium
(RPE)/choriocapillaris layer on each side of the disc along a cross-
section. The operator was permanently monitoring for steady
eye fixation, correct scan position, and good signal-to-noise
ratio. Scans were repeated until an image of satisfying quality
was obtained.

Pattern Visual Evoked Potential
All the PVEP examinations (UTAS-E3000, LKC Technologies
Inc., Gaithersburg, USA) were performed in an electrically
shielded room. Cup-shaped electrodes of Ag/AgCl were placed
according to the International 10/20 system (Odom et al., 2004)

at the following positions: active electrode in Oz, reference
electrode in Fz, ground electrode on earlobes. The recordings
were performed in a quiet and dimmed room. The electrical
potentials of the occipital cortex were recorded while the
participant was looking at the fixation point in the middle of
the moving checkboard patterns on the screen one meter in
front. The luminance of the white areas was 80 cd m−2, and
the contrast between the checks was 100%. The checkerboard
pattern reversed at the rate of 2Hz and the viewing distance
was 100 cm, the check edges subtended at 15′of visual angle. The
signals were fed into an amplifier with the low frequency cut-
off filter set at 1.0Hz and the high frequency cut-off filter set at
100Hz. The amplified responses were fed to a signal-averaging
computer, and 100 responses were averaged with an analysis time
of 500ms. The impedance was kept below 5 kOhm. An alternant
checkboard pattern was used as a stimulating pattern and the
check size was 23min. There are three separate phases in the
VEP waveform: an initial negative deflection (N75), a prominent
positive deflection (P100), and a later negative deflection (N135).
The peak latency and peak to peak amplitudes of these waves
are measured (Mishra and Kalita, 2004). N75 reflects the activity
of fovea and primary visual cortex. P100 originates from dorsal
and ventral extrastriate cortex and represents the processing
of stimulus characteristics and visuospatial selection (Di Russo
et al., 2005; Hamilton et al., 2020). The latency and amplitude of
N75 and P100 were calculated in this study.

Flash Electroretinogram
All participants underwent the FERG examinations using LKC
UTAS-E 3000 system (LKC Technologies, Inc., Gaithersburg,
USA). The white flash illumination was provided by Ganzfeld
2503D stimulator (LKC Technologies, Inc., Gaithersburg, MD,
USA). The software LKC EM for Windows (EMwin v3.0; LKC
Technologies, Inc., Gaithersburg, MD, USA) was used to control
the recording setting and analyze the data. Signal amplification,
luminance calibration, and bandpass filtering were integrated
into the LKC system. Standard Ganzfeld scotopic (dark-
adapted) and photopic (light- adapted) ERGs were obtained
by specialists after pupillary dilation. Subjects took 10min of
light adaptation before recording light-adapted ERGs and were
dark adapted for at least 30min before dark-adapted ERGs were
obtained. Topical anesthesia was used for contact lens electrodes.
Electroretinographic waveforms were simultaneously obtained
from each eye by positioning the active electrodes (ERG-jet
monopolar contact lens electrodes; UniversoPlastique SA, Le
Cret-Du-Locle, Switzerland) on each cornea. The reference and
ground electrodes (Grass subdermal needle electrode; Astro-
Med, Inc., West Warwick, RI) were placed subcutaneously in
the pinna.

Three ERG recordings were obtained per stimulus intensity.
The scotopic and photopic white flash stimuli were performed
with an intrastimulus interval of 1min. The intrastimulus
background recovery interval allowed the retina to recover from
the previous flash. Photopic tests included: a 100 Td-s (∼4 cd-
s/m2 [assuming a 6mmpupil diameter]) flash stimulus presented
at a 1Hz repetition rate with no background luminance (P1);
a 58 Td-s (∼2 cd-s/m2 [assuming a 6mm pupil diameter]) red
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stimulus presented at 3.4Hz, with a 380 Td blue background
(P2); a 100 Td-s (∼4 cd-s/m2 [assuming a 6mm pupil diameter])
flash stimulus presented at a 2Hz repetition rate with a 340
Td background (P3); and an 85 Td-s (∼3 cd-s/m2 [assuming a
6mm pupil diameter]) flickering (at 28.3Hz) stimulus (PF). For
scotopic tests, stimulus intensity increased by a factor of 10 for
each trial, beginning with a 2.8 Td-s (∼0.10 cd-s/m2 [assuming
a 6mm pupil diameter]) flash stimulus presented at 0.25Hz (S1),
then a 28 Td-s (∼1 cd-s/m2 [assuming a 6mm pupil diameter])
flash stimulus presented at 0.1Hz (S2), and finally, a 280 Td-s
(∼10 cd-s/m2 [assuming a 6mm pupil diameter]) flash stimulus
presented at 0.05Hz (S3). Flicker ERG was obtained under the
same conditions of light adaptation as the light-adapted ERG.
And flashes were presented at a rate of∼30 stimuli per second.

Magnetic Resonance Imaging
MRI Scans were performed on a 3.0T EXCITE HD MR imaging
system (Echo-speed plus, General Electric, Milwaukee, WI, USA)
with an 8NVHEAD-A coil using a three- dimensional, spoiled
gradient recalled echo 3D-SPGR-T1 weighted sequence using the
following parameters: repetition time (TR) = 7.7ms; echo time
= 1.6ms; flip angle = 15′; number of excitations = 1; section
thickness = 0.5mm; field of view = 240 × 240mm; and matrix
size = 256 × 256mm. The voxel size was 1 × 1 × 1mm. The
voxel-based morphometry was used to analyze the hippocampal
volume, with the Biological ParametricMapping (WFUPickAtlas
Tool, http://fmri.wfubmc.edu/) and the MATLAB platform
(version 7.0, Mathworks Inc. Sherbom, MA, USA) was used to
calculate the hippocampal structure volume.

Statistical Analysis
Both eyes for each subject were examined and the average of
these measurements was taken for the both eyes. Hippocampal
volumes of both sides were obtained and the mean value of
both sides was included in the analysis. Statistical analysis was
performed using SPSS Version 26.0 (SPSS Inc., Chicago, IL, USA)
and P < 0.05 was considered significant. One-way ANOVAs were
used to compare group differences in demographic and clinical
variables between the three groups (AD, MCI, and cognitively
normal control). We used chi-squared and split chi-squared tests
to identify differences in sex and APOE 4 carrier status between
the three groups. The Pearson correlation was used to determine
the associations between hippocampal volume and ocular
indexes, while the partial correlation coefficient (r) and associated
probability (P) were calculated using partial correlation analysis
after adjusting for confounding factors, such as age, sex, and years
of education. We performed a Bonferroni correction by dividing
the critical P-value by the number of comparisons being made.
For multiple comparisons of demographic characteristics, ocular
measurements and hippocampus volumes among AD, MCI,
and cognitively normal group, the adjusted P-value required
for significance is 0.05/3 = 0.017. For correlation analysis,
P-value is adjusted at 0.05/5 = 0.01. We conducted hierarchical
multiple stepwise linear regression analysis to evaluate the
possible factors affecting the scores of ADAS-cog, MMSE
and MoCA, including age, sex, years of education, APOE 4
carrier status, ophthalmologic measurements and hippocampal

TABLE 1 | Demographic characteristics of all participants.

Demographics NC MCI AD P-value

N 19 23 17 –

Age, y, (SD) 66.63 (6.17) 68.43 (5.70) 70.24 (7.53) 0.251

Sex M/F 8/11 12/11 9/8 0.756

Education, y, (SD) 10.74 (3.00) 12.78 (3.48) 10.47 (3.47) 0.057

ApoE4 carrier (%) 15.8% 30.4% 41.2% 0.238

MMSE (SD) 28.79 (1.03) 26.91 (1.47)# 21.18 (3.09)*§ <0.001

MoCA (SD) 24.89 (2.13) 20.57 (2.21)# 15.65 (2.81)*§ <0.001

ADAS-cog (SD) 14.21 (4.57) 18.00 (3.22)# 31.88 (4.31)*§ <0.001

SAS (SD) 28.26 (5.11) 27.26 (4.87) 27.64 (4.78) 0.789

SDS (SD) 27.47 (6.44) 29.96 (6.15) 29.76 (6.10) 0.389

AD, Alzheimer’s disease; MCI, mild cognitive impairment; NC, normal control; M, male; F,

female; y, years; SD, standard deviation; MMSE, Mini-Mental State Examination; MoCA,

Montreal Cognitive Assessment; ADAS-cog, Alzheimer’s Disease Assessment Scale-

cognitive subscale; SAS, Self-rating anxiety scale; SDS, Self-rating depression scale.
#MCI vs. NC, P < 0.017.
*AD vs. MCI, P < 0.017.
§AD vs. NC, P < 0.017.

volumes. For each model, the regression coefficients (β),
R-squared (R2), change of R2 (1R2), and change of F (1F) were
calculated, respectively.

RESULTS

In this research, 19 cognitively normal controls, 23 MCI patients
and 17 AD patients were included. There was no significant
difference in age, sex, years of education and APOE 4 carrier
status among three groups. MMSE, MoCA and ADAS-cog
were performed to assess cognitive function for all participants,
and the scores of which revealed significantly typical trends
among groups as expected (P < 0.001). Detailed demographic
characteristics of each group are shown in Table 1.

Results of ocular measurements are listed in Table 2. Of the
PVEP waveform components recognized, AD patients showed
a decrease in the P100 amplitudes when compared to MCI
group (P = 0.016), while comparison of the N75 wave revealed
no statistically significant differences for the amplitudes or the
latencies. In the FERG tests, eyes of AD patients had significantly
prolonged rod response latency time when observed in the
dark-adapted environment in comparison with age-matched
cognitively normal controls (P = 0.013). As light stimulus in
darkness was intensified to activate the cone system and mixed
responses from both rod and cone systems were recorded,
delayed rod cone response latency time was found in both MCI
(P = 0.003) and AD (P = 0.003) patients compared to normal
controls. In the light environment, where responses from the
cone system were recorded, AD patients showed longer reaction
time reflected as increased 3.0 flicker latencies when compared to
MCI patients (P = 0.013) and healthy participants (P = 0.008).
However, no statistically significant group difference was found
in amplitudes of all responses. In addition, structural changes
were examined by OCT tests. Remarkably reduced thickness
of m-RNFL was observed in AD eyes than that in MCI eyes
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TABLE 2 | PVEP, FERG, OCT results, and Hippocampal volumes for all participants.

Variable NC MCI AD P-value F-value Total df Effect size (η2
p)

N75 latency(ms), (SD) 63.84 (13.49) 63.76 (17.70) 62.15 (16.30) 0.938 0.064 58 0.003

N75 amplitude(µV), (SD) 2.41 (0.62) 2.32 (0.85) 2.48 (0.87) 0.808 0.214 58 0.027

P100 latency(ms), (SD) 99.89 (8.31) 104.33 (10.69) 104.65 (14.54) 0.354 1.058 58 0.054

P100 amplitude(µV), (SD) 6.23 (2.71) 6.92 (3.48) 4.61 (2.17)* 0.050 3.159 58 0.099

Rod response latency(ms), (SD) 49.93 (6.63) 51.55 (11.45) 59.47 (9.76)§ 0.010 5.028 58 0.149

Rod response amplitude(µV), (SD) 90.69 (9.47) 88.95 (11.17) 92.68 (10.33) 0.537 0.629 58 0.025

Rod cone response latency(ms), (SD) 41.36 (7.21) 50.50 (10.52)# 50.82 (10.65)§ 0.002 6.859 58 0.237

Rod cone response amplitude(µV), (SD) 110.63 (36.95) 130.14 (42.17) 108.97 (26.95) 0.125 2.157 58 0.048

Cone response latency(ms), (SD) 16.85 (2.12) 15.70 (2.58) 16.43 (2.97) 0.345 1.084 58 0.029

Cone response amplitude(µV), (SD) 93.47 (16.24) 90.50 (20.53) 91.84 (16.91) 0.871 0.138 58 0.008

3.0 flicker latency(ms), (SD) 25.85 (4.11) 26.31 (5.90) 30.63 (5.72)*§ 0.015 4.554 58 0.121

3.0 flicker amplitude(µV), (SD) 75.09 (13.58) 68.96 (20.96) 73.73 (15.00) 0.482 0.740 58 0.018

m-RNFL thickness(µm), (SD) 96.76 (7.30) 88.65 (9.81)# 80.46 (8.37)*§ <0.001 15.94 58 0.393

Rim area(mm2 ), (SD) 1.36 (0.14) 1.44 (0.32) 1.50 (0.24) 0.255 1.40 58 0.044

Disc area(mm2 ), (SD) 2.08 (0.25) 1.98 (0.33) 2.09 (0.32) 0.441 0.831 58 0.055

Cup volume(mm3 ), (SD) 0.30 (0.04) 0.28 (0.08) 0.30 (0.07) 0.476 0.752 58 0.020

Hippo volume(cm3 ), (SD) 2.53 (0.45) 1.84 (0.30)# 1.33 (0.37)*§ <0.001 46.91 58 0.636

PVEP, pattern visual evoked potential; FERG, flash electroretinogram; OCT, optical coherence tomography; AD, Alzheimer’s disease; MCI, mild cognitive impairment; NC, normal control;

SD, standard deviation; m-RNFL, macular retinal nerve fiber layer; Hippo, hippocampus.
#MCI vs. NC, P < 0.017.

*AD vs. MCI, P < 0.017.
§AD vs. NC, P < 0.017.

FIGURE 1 | Correlation analysis between hippocampal volume and m-RNFL thickness (A) or P100 amplitude (B). The parameter was estimated using Pearson’s

correlation coefficients. Hippo, hippocampus; m-RNFL, macular retinal nerve fiber layer. ***P < 0.001, **P < 0.01.

(P = 0.014) and NC eyes (P < 0.001). MCI patients showed
significantly thinner m-RNFL compared to normal individuals
(P = 0.011) as well. However, no significant morphological
changes in the optic disc head were found for the rim area, disc
area, and cup volume.

Regarding hippocampal volumes investigated by MRI, as
shown in Table 2, significantly decreased size of hippocampus
was found in patients with AD when compared to MCI group
(P < 0.001) and healthy individuals (P < 0.001). A comparison
of the MCI group with the NC group showed obviously
shrunken structure of hippocampus as well (P < 0.001). Then we
performed Pearson correlation analysis to explore associations
between hippocampal volumes and ocular abnormalities as
described in PVEP, FERG, and OCT examinations, respectively.

As shown in Figure 1, m-RNFL thickness (r = 0.529, P <

0.001, Figure 1A) and P100 amplitude (r = 0.374, P = 0.003,
Figure 1B) significantly correlated with hippocampal volumes.
With adjustments made for the confounding factors of age, sex,
years of education and APOE 4 carrier status, as shown in
Table 3, associations remained significant between the volumes
of hippocampus and m-RNFL thickness (r= 0.521, P < 0.001) as
well as P100 amplitude (r = 0.389, P = 0.003). We did not find
any significant associations between rod response latency, rod
cone response latency, 3.0 flicker latency and the brain structure
of hippocampus.

A hierarchical regression analysis was further conducted to
determine the associations between ocular indexes, hippocampal
volumes and cognitive function. After controlling for age, sex,
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TABLE 3 | Partial correlation analysis between visual indexes and hippocampal

volume.

Variable r-value P-value

m-RNFL thickness 0.521 <0.001*

P100 amplitude 0.389 0.003*

Rod response latency −0.183 0.178

Rod cone response latency 0.078 0.570

3.0 flicker latency −0.065 0.634

m-RNFL, macular retinal nerve fiber layer.

The partial correlation coefficient of the correlation analysis was corrected with

confounding factors including age, gender, and years of education.

*P < 0.01.

TABLE 4 | Hierarchical regression analysis for ADAS-cog score in all participants.

Variable Regression 1 Regression 2 Regression 3

Age 0.141 0.032 −0.061

Gender −0.068 −0.147 −0.111

Years of education −0.205 −0.219 −0.167

ApoE4 status 0.146 0.090 0.083

Hippo volume −0.667*** −0.490***

m-RNFL thickness −0.242*

P100 amplitude −0.028

Rod response latency 0.204

Rod cone response latency 0.044

3.0 flicker latency 0.173

R2 0.107 0.528 0.635

1R2 0.107 0.421 0.106

1F 1.625 47.262*** 2.794*

ADAS-cog, Alzheimer’s Disease Assessment Scale-cognitive subscale; Hippo,

hippocampus; m-RNFL, macular retinal nerve fiber layer.

***P < 0.001, *P < 0.05.

years of education and APOE 4 carrier status, hippocampal
volumes (β = −0.490, P < 0.001) and m-RNFL thickness (β
= −0.242, P = 0.031) were significantly associated with ADAS-
cog scores (Table 4). Regarding scores of MMSE (Table 5) and
MoCA (Table 6), however, just the parameter of hippocampal
volumes demonstrated strongly positive associations (β = 0.527,
P < 0.001; β = 0.664, P < 0.001; respectively), while parameters
of ocular indexes revealed no significant association (P > 0.05).

DISCUSSION

This study performed ophthalmic measurements including
PVEP, FERG and OCT tests to investigate functional and
structural changes of retina and/or visual pathway in MCI
and AD patients compared to cognitively normal aging.
Our results demonstrated that PVEP amplitude of P100
waveform was significantly decreased in AD patients compared
to MCI and normal individuals. In FERG test, delayed
latencies of rod response, rod cone response and 3.0 flicker
time were found in cognitively impaired groups, indicating
dysfunctions of both the rod, and cone systems in the disease

TABLE 5 | Hierarchical regression analysis for MMSE score in all participants.

Variable Regression 1 Regression 2 Regression 3

Age −0.006 0.095 0.219

Gender −0.113 −0.040 −0.054

Years of education 0.218 0.230 0.159

ApoE4 status −0.188 −0.136 −0.139

Hippo volume 0.617*** 0.527***

m-RNFL thickness 0.134

P100 amplitude −0.004

Rod response latency −0.177

Rod cone response latency −0.128

3.0 flicker latency −0.022

R2 0.076 0.437 0.491

1R2 0.076 0.361 0.054

1F 1.115 33.942*** 1.024

MMSE, Mini-Mental State Examination; Hippo, hippocampus; m-RNFL, macular retinal

nerve fiber layer.

***P < 0.001.

TABLE 6 | Hierarchical regression analysis for MoCA score in all participants.

Variable Regression 1 Regression 2 Regression 3

Age −0.041 0.068 0.068

Gender −0.078 0.001 −0.075

Years of education 0.007 0.021 0.046

ApoE4 status −0.191 −0.135 −0.108

Hippo volume 0.664*** 0.664***

m-RNFL thickness 0.085

P100 amplitude −0.170

Rod response latency −0.050

Rod cone response latency 0.025

3.0 flicker latency −0.123

R2 0.042 0.460 0.506

1R2 0.042 0.417 0.047

1F 0.597 40.957*** 0.905

MoCA, Montreal Cognitive Assessment; Hippo, hippocampus; m-RNFL, macular retinal

nerve fiber layer.

***P < 0.001.

progression. OCT test revealed reduced m-RNFL thickness in
MCI and AD patients, which significantly correlated with brain
structure of hippocampus particularly vulnerable during the
progression of AD. Strikingly, P100 amplitude showed significant
association with hippocampal volumes even after adjusting
confounding factors including age, sex, and years of education.
Hierarchical regression analysis further demonstrated that m-
RNFL thickness, as well as hippocampal volumes, had significant
predictive value in assessing cognitive performance in terms of
neuropsychological test of ADAS-cog.

PVEPs are used to evaluate the functional integrity of the
visual pathway. P100, typically peaking at about 100ms, is the
major component of the PVEPs. It is considered to generate
from dorsal and ventral extrastriate cortex and represent the
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processing of stimulus characteristics and visuospatial selection
(Di Russo et al., 2005). Extrastriate cortex belongs to part
of visual association areas and shows significant microscopic
pathology with beta-amyloid (Aβ) aggregates and neurofibrillary
tangles in the post-mortem investigation of AD patients (Arnold
et al., 1991). High synaptic complexity of the association
cortices may enable and amplify the propagation of disease
pathology (Mckee et al., 2006). In line with previous reports
(Krasodomska et al., 2010; Stothart et al., 2015), we propose
that reduced P100 amplitude in AD patients may reflect this
pathology in visual association areas and prove a sensitive
marker in examining cortical pathology in AD progression
beyond currently available behavioral, imaging and biochemical
tools. Interestingly, partial correlation analysis revealed that
decreased P100 amplitude significantly positively correlated with
atrophied volume of hippocampus. Recent findings suggest that
hippocampus participates in visuospatial memory formation.
Dysfunction of synaptic plasticity in the visual cortex may
influence visuospatial information process and thus in turn
hippocampal formation (Tsanov and Manahan-Vaughan, 2008).
Close relationship between P100 amplitude and hippocampal
volumesmay strengthen the potential value of PVEPwaveform of
P100 in early screening and monitoring the disease progression.

FERG provides an objective measure of cellular function
in retina. The cellular responses recorded can be specific to
rod photoreceptors under dark-adapted conditions or cone
photoreceptors in light-adapted environment. In our study,
prolonged latencies of rod response and 3.0 flicker time were
found in AD patients when compared to MCI group and/or
normal aging, while delayed rod cone response latency was
observed in both MCI and AD patients compared to healthy
controls, indicative of being a potential marker in early stage of
cognitive decline. In an animal study of mice carrying APOE4,
the most prevalent genetic risk factor for AD, ERG recordings
revealed significant attenuation of mixed rod cone responses
in dark-adapted eyes, which is considered to be related to
observed decrease in synaptic density of the retinal synaptic
layers (Ran et al., 2013). However, our following correlation
analysis demonstrated no significant association between FERG
components and hippocampal volumes. In view of recent
reports of FERG alterations in other neurodegenerative diseases
(Devos et al., 2005; Pearl et al., 2017), more comprehensive
longitudinal studies are needed to improve its specificity in
clinical practice.

Retina has been viewed as an extension of central nervous
system due to their developmental and structural similarities.
Histopathological studies reported typical Aβ deposits, loss of
retinal ganglion cells and optic nerve degeneration in AD
patients, hence initiating in the retrograde damaged ganglion
cell fibers and leading to the morphological changes, such
as RNFL thinning (Blanks et al., 1996a,b). Consistent with
recent evidence (den Haan et al., 2017b; Chan et al., 2018),
we have found significantly reduced overall thickness of m-
RNFL in AD and MCI patients compared to age-matched
control counterparts in the current research. In addition, our
results demonstrated a significant correlation between total m-
RNFL thickness and hippocampal volumes, corroborating the

link between retina and brain in the progression of cognitive
impairment. Several studies have investigated the connections
between retinal changes and MRI volumetric measurements
of brain structures. In early-onset AD patients, den Haan
et al. (2017a) found total macular thickness correlated with
parietal cortical atrophy, suggestive of reflection of cerebral
cortical changes in the retina, independent of AD pathological
markers, such as amyloid. In non-demented older adults,
thinner overall RNFL and peripapillary RNFL showed good
associations with smaller volumes of medial temporal lobes
and hippocampus, while no significant associations were found
in the control regions, which were located outside the visual
pathway and the regions involved in AD (Méndez-Gómez et al.,
2018; Shi et al., 2020). In a recent study involving AD and
MCI patients, better correlation was observed between inner
perifovea retinal thickness and the hippocampal and entorhinal
cortical volumes, which are specifically affected in the early
stage of AD, although no correlation was found between m-
RNFL thickness and cognitive performance, and no significant
difference of m-RNFL thinning was shown in patients with
MCI compared to those with AD (Tao et al., 2019). In our
study, m-RNFL thickness exhibited a significant reduction in
MCI patients in comparison to AD patients and presented
as an independent predictor of ADAS-cog score, along with
average hippocampal volumes, in the hierarchical regression
model. The discrepancies may result from high degree of
variability in the study inclusion/exclusion criteria, assessment
of neuropsychological performance and the rigor of adjustment
of confounding factors. However, our results have added more
evidence for the availability of application of m-RNFL thickness
as a promising biomarker for future AD diagnosis, monitoring,
and prognosis.

In the current cross-sectional study we have enrolled relatively
small sample size, partially due to strict exclusion criteria of
patient enrollment and adaptability to full screen of ocular
structural and functional measurements. A longitudinal study
with expanded sample size is required to validate the retina-
brain association in the neurodegenerative process of cognitive
decline. Owing to the lack of Aβ or Tau-related markers, we were
unable to analyze the relationship between those pathological
markers and ocular measurements, and hence the present
findings cannot directly confirm whether the alterations in the
ophthalmological examinations are specific to AD. Additionally,
quandrant-specific changes of peripapillary RNFL thickness
have been reported in recent studies, although results remained
controversial (Alber et al., 2020). Evidence from numerous
neuropsychological and functional neuroimaging studies
suggested that right posterior hippocampus is implicated in
visual information and visuospatial memory formation. Changes
in the volume of the anterior and posterior hippocampus can
be compensated and therefore underestimate the alteration
of the hippocampus most involved in vision (Hüfner et al.,
2011). Braak’s staging of AD showed that neurodegeneration
began in entorhinal and perirhinal cortex suggesting the
area most and earliest affected by neurofibrillary tangles in
Alzheimer’s disease, even before the hippocampus (Braak and
Braak, 1995). Further detailed studies with investigations of
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changes of different segmentation of RNFL thickness and
more brain regions including entorhinal cortex, perirhinal
cortex and subareas of hippocampus are needed to assist in
clarification of possible mechanisms underlying retina-brain
association in the disease progression of cognitive decline
and AD.

In conclusion, our results presented significant alterations
in ophthalmological examinations including PVEP,
FERG responses and m-RNFL thickness in patients with
MCI and AD. P100 amplitude and m-RNFL thickness
showed significant correlations with brain structure
involved in AD-related neurodegeneration, and therefore
proved to be potential indicators of brain imaging
pathologies. Future prospective researches are required to
determine the reliability of ocular investigations, especially
measurement of RNFL thickness during AD progression
and recognize whether retina has broad implications in
AD pathology to serve as a promising non-invasive and
cost-effective biomarker.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Ruijin Hospital Ethics Committee, Shanghai Jiao
Tong University School of Medicine. The patients/participants
provided their written informed consent to participate in
this study.

AUTHOR CONTRIBUTIONS

YD and WX designed the study, edited the manuscript, and
validated the statistics. AZ and FF collected the data, wrote and
edited the manuscript, and performed the statistics. YC and YW
collected the data and help revised the manuscript. BL and YQ
collected the data. All authors contributed to the article and
approved the submitted version.

FUNDING

This study was supported by grants from the National Natural
Science Foundation of China (No. 81571029) and the Natural
Science Foundation of Shanghai (No. 19ZR1432500) to YD;
the Shanghai Municipal Commission of Health and Family
Planning (No. 201640042) to WX; the National Natural Science
Foundation of China (No. 81801261) to FF.

REFERENCES

Alber, J., Goldfarb, D., Thompson, L. I., Arthur, E., Hernandez, K., Cheng, D.,

et al. (2020). Developing retinal biomarkers for the earliest stages of Alzheimer’s

disease: what we know, what we don’t, and how to move forward. Alzheimers

Dement. 16, 229–243. doi: 10.1002/alz.12006

Armstrong, R. A. (1996). Visual field defects in alzheimer’s disease patients may

reflect differential pathology in the primary visual cortex. Optom Vis Sci.

73:677–682. doi: 10.1097/00006324-199611000-00001

Arnold, S. E., Hyman, B. T., Flory, J., Damasio, A. R., and Hoesen, G.W. V. (1991).

The topographical and neuroanatomical distribution of neurofibrillary tangles

and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease.

Cereb. Cortex 1, 103–116. doi: 10.1093/cercor/1.1.103

Blanks, J. C., Schmidt, S. Y., Torigoe, Y., Porrello, K. V., Hinton, D. R.,

and Blanks, R. H. (1996a). Retinal pathology in Alzheimer’s disease. II.

Regional neuron loss and glial changes in GCL. Neurobiol. Aging 17, 385–395.

doi: 10.1016/0197-4580(96)00009-7

Blanks, J. C., Torigoe, Y., Hinton, D. R., and Blanks, R. H. (1996b). Retinal

pathology in Alzheimer’s disease. I. Ganglion cell loss in foveal/parafoveal

retina. Neurobiol. Aging 17, 377–384. doi: 10.1016/0197-4580(96)0

0010-3

Braak, H., and Braak, E. (1995). Staging of Alzheimer’s disease-related

neurofibrillary changes. Neurobiol. Aging 16, 271–278; discussion 278–84.

doi: 10.1016/0197-4580(95)00021-6

Chan, K. Y., Campbell, H., Wang, W., Rudan, I., Wang, W., Wu, J. J., et al.

(2013). Epidemiology of Alzheimer’s disease and other forms of dementia in

China, 1990-2010:a systematic review and analysis. Lancet 381, 2016–2023.

doi: 10.1016/S0140-6736(13)60221-4

Chan, V. T. T., Sun, Z., Tang, S., Chen, L. J., Wong, A., Tham, C. C.,

et al. (2018). Spectraldomain OCT measurements in Alzheimer’s disease:

a systematic review and meta analysis. Ophthalmology 126, 497–510.

doi: 10.1016/j.ophtha.2018.08.009

Cormack, F. K., Tovee, M., and Ballard, C. (2000). Contrast sensitivity and

visual acuity in patients with Alzheimer’s disease. Int. J. Geriatr. Psychiatry 15,

614–620. doi: 10.1002/1099-1166(200007)15:7<614::AID-GPS153>3.0.CO;2-0

Croningolomb, A. (1995). Vision in Alzheimer’s disease.Gerontologist 35, 370–376.

doi: 10.1093/geront/35.3.370

den Haan, J., Janssen, S. F., van de Kreeke, J. A., Scheltens, P., Verbraak, F. D.,

and Bouwman, F. H. (2017a). Retinal thickness correlates with parietal cortical

atrophy in early-onset Alzheimer’s disease and controls. Alzheimers Dement.

10, 49–55. doi: 10.1016/j.dadm.2017.10.005

den Haan, J., Verbraak, F. D., Visser, P. J., and Bouwman, F. H. (2017b).

Retinal thickness in Alzheimer’s disease: a systematic review and meta-analysis.

Alzheimers Dement. 25, 162–170. doi: 10.1016/j.dadm.2016.12.014

Devos, D., Tir, M., Maurage, C. A., Waucquier, N., Defebvre, L., Defoort-

Dhellemmes, S., et al. (2005). ERG and anatomical abnormalities suggesting

retinopathy in dementia with Lewy bodies. Neurology 65, 1107–1110.

doi: 10.1212/01.wnl.0000178896.44905.33

Di Russo, F., Pitzalis, S., Spitoni, G., Aprile, T., Patria, F., Spinelli, D., et al. (2005).

Identification of the neural sources of the pattern-reversal VEP.Neuroimage 24,

874–886. doi: 10.1016/j.neuroimage.2004.09.029

Dunstan, D. A., and Scott, N. (2018). Assigning clinical significance and

symptom severity using the zung scales: levels of misclassification arising from

confusion between index and raw scores. Depress. Res. Treat. 2018:9250972.

doi: 10.1155/2018/9250972

Erten-Lyons, D., Howieson, D., Moore, M. M., Quinn, J., Sexton, G., Silbert,

L., et al. (2006). Brain volume loss in MCI predicts dementia. Neurology 66,

233–235. doi: 10.1212/01.wnl.0000194213.50222.1a

Goldstein, F. C., Ashley, A. V., Miller, E., Alexeeva, O., Zanders, L., and King,

V. (2014). Validity of the montreal cognitive assessment as a screen for mild

cognitive impairment and dementia in African Americans. J. Geriatr. Psychiatry

Neurol. 27, 199–203. doi: 10.1177/0891988714524630

Goldstein, L. E., Muffat, J. A., Cherny, R. A., Moir, R. D., Ericsson, M. H., Huang,

X., et al. (2003). Cytosolic beta-amyloid deposition and supranuclear cataracts

in lenses from people with Alzheimer’s disease. Lancet 361, 1258–1265.

doi: 10.1016/S0140-6736(03)12981-9

Hamilton, R., Bach, M., Heinrich, S. P., Hoffmann, M. B., Odom, J. V.,

McCulloch, D. L., et al. (2020). ISCEV extended protocol for VEP methods

of estimation of visual acuity. Doc Ophthalmol. doi: 10.1007/s10633-020-

09780-1

Frontiers in Aging Neuroscience | www.frontiersin.org 8 January 2021 | Volume 12 | Article 597491100

https://doi.org/10.1002/alz.12006
https://doi.org/10.1097/00006324-199611000-00001
https://doi.org/10.1093/cercor/1.1.103
https://doi.org/10.1016/0197-4580(96)00009-7
https://doi.org/10.1016/0197-4580(96)00010-3
https://doi.org/10.1016/0197-4580(95)00021-6
https://doi.org/10.1016/S0140-6736(13)60221-4
https://doi.org/10.1016/j.ophtha.2018.08.009
https://doi.org/10.1002/1099-1166(200007)15:7<614::AID-GPS153>3.0.CO;2-0
https://doi.org/10.1093/geront/35.3.370
https://doi.org/10.1016/j.dadm.2017.10.005
https://doi.org/10.1016/j.dadm.2016.12.014
https://doi.org/10.1212/01.wnl.0000178896.44905.33
https://doi.org/10.1016/j.neuroimage.2004.09.029
https://doi.org/10.1155/2018/9250972
https://doi.org/10.1212/01.wnl.0000194213.50222.1a
https://doi.org/10.1177/0891988714524630
https://doi.org/10.1016/S0140-6736(03)12981-9
https://doi.org/10.1007/s10633-020-09780-1
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Zhao et al. Visual Abnormalities in AD

Heaton, G. R., Davis, B. M., Turner, L. A., and Cordeiro, M. F. (2015). Ocular

biomarkers of Alzheimer’s disease. Cent. Nerv. Syst. Agents Med. Chem. 15,

117–125. doi: 10.2174/1871524915666150319123015

Hüfner, K., Strupp,M., Smith, P., Brandt, T., and Jahn, K. (2011). Spatial separation

of visual and vestibular processing in the human hippocampal formation. Ann.

N. Y. Acad. Sci. 1233, 177–186. doi: 10.1111/j.1749-6632.2011.06115.x

Ikram, M. K., Cheung, C. Y., Wong, T. Y., and Chen, C. P. (2012). Retinal

pathology as biomarker for cognitive impairment and Alzheimer’s disease. J.

Neurol. Neurosurg. Psychiatr. 83, 917–922. doi: 10.1136/jnnp-2011-301628
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Background: Subjective cognitive decline (SCD) and amnestic mild cognitive

impairment (aMCI) are regarded as part of the pre-clinical Alzheimer’s disease (AD)

spectrum. The insular subregional networks are thought to have diverse intrinsic

connectivity patterns that are involved in cognitive and emotional processing. We set

out to investigate convergent and divergent altered connectivity patterns of the insular

subregions across the spectrum of pre-clinical AD and evaluated how well these patterns

can differentiate the pre-clinical AD spectrum.

Method: Functional connectivity (FC) analyses in insular subnetworks were carried out

among 38 patients with SCD, 56 patients with aMCI, and 55 normal controls (CNs).

Logistic regression analyses were used to construct models for aMCI and CN, as well

as SCD and CN classification. Finally, we conducted correlation analyses to measure the

relationship between FCs of altered insular subnetworks and cognition.

Results: Patients with SCD presented with reduced FC in the bilateral cerebellum

posterior lobe and increased FC in the medial frontal gyrus and the middle temporal

gyrus. On the other hand, patients with aMCI largely presented with decreased FC

in the bilateral inferior parietal lobule, the cerebellum posterior lobe, and the anterior

cingulate cortex, as well as increased FC in the medial and inferior frontal gyrus, and

the middle and superior temporal gyrus. Logistic regression analyses indicated that a

model composed of FCs among altered insular subnetworks in patients with SCD was

able to appropriately classify 83.9% of patients with SCD and CN, with an area under

the receiver operating characteristic (ROC) curve (AUC) of 0.876, 81.6% sensitivity, and

81.8% specificity. A model consisting of altered insular subnetwork FCs in patients with

aMCI was able to appropriately classify 86.5% of the patients with aMCI and CNs, with

an AUC of 0.887, 80.4% sensitivity, and 83.6% specificity. Furthermore, some of the FCs
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among altered insular subnetworks were significantly correlated with episodic memory

and executive function.

Conclusions: Patients with SCD and aMCI are likely to share similar convergent

and divergent altered intrinsic FC patterns of insular subnetworks as the pre-clinical

AD spectrum, and presented with abnormalities among subnetworks. Based on these

abnormalities, individuals can be correctly differentiated in the pre-clinical AD spectrum.

These results suggest that alterations in insular subnetworks can be utilized as a potential

biomarker to aid in conducting a clinical diagnosis of the spectrum of pre-clinical AD.

Keywords: amnestic mild cognitive impairment, subjective cognitive decline, fMRI, insular subnetwork, functional

connectivity, episodic memory, executive function

INTRODUCTION

Subjective cognitive decline (SCD) and amnestic mild cognitive
impairment (aMCI), which are part of the clinical continuum
of dementia progression and the spectrum of pre-clinical
Alzheimer’s disease (AD), are well-established risk factors for the
development of AD (van der Flier et al., 2004; Stewart et al., 2008;
Striepens et al., 2010; Scheef et al., 2012; Jessen et al., 2014b,
2020; Buckley et al., 2016; Xue et al., 2019). Many studies have
suggested that individuals with SCD go on to develop aMCI, and
then AD (Jessen et al., 2014b; Berger-Sieczkowski et al., 2019).
Therefore, our in-depth understanding of neuroimaging-based
continual pathology across the spectrum of pre-clinical AD can
help assist in the development of a new method in pre-clinical
AD diagnosis and treatment.

Neuroimaging can help reveal the pathological mechanisms
behind AD progression. The insula and its network connectivity
are anatomically connected to the limbic and frontal-parietal-
temporal lobes and are functionally involved in a higher-order
cognitive and emotional processing (Allen et al., 2008; Naqvi and
Bechara, 2010), which has a significant role in AD progression
(Fan et al., 2008; Guo et al., 2012). Numerous studies have
reported the presence of insular gray matter atrophy in AD (Guo
et al., 2012), as well as altered insular activities and networks in
aMCI (Xie et al., 2012; Lin et al., 2017). In particular, studies have
demonstrated that insula atrophy can help correctly distinguish
patients with AD from normal controls (CNs; Fan et al., 2008;
Guo et al., 2012). Therefore, it is reasonable to hypothesize that
the insula is an extremely vulnerable area, as well as a critical hub,
in delaying the progression of the pre-clinical spectrum of AD,
including SCD and aMCI.

Recently, several studies have consistently suggested that the
insula demonstrates heterogeneity and may be divided into the
ventral anterior insula (vAI), the dorsal anterior insula (dAI),
and the posterior insula (PI) (Deen et al., 2011; Peng et al., 2018;
Lu et al., 2020). These insula subregional networks have different
roles in information processing (Taylor et al., 2009) and therefore,
have distinct intrinsic connectivity patterns (Deen et al., 2011;
Peng et al., 2018; Lu et al., 2020). Studies have demonstrated
that patients with aMCI and AD present with distinct disruption
in the connectivity of insular subregions (Xie et al., 2012; Liu
et al., 2018; Lu et al., 2020), which is associated with episodic

memory deficits (Xie et al., 2012). Increasing evidence indicates
that insular subregional networks can reveal neuroimaging-based
continuum pathology across the spectrum of pre-clinical AD in
a sensitive and specific manner. However, there is still a lack of
knowledge with regards to altered network connectivity patterns
of the insular subregions across the spectrum of pre-clinical
AD (SCD and aMCI), as well as its relationship with cognition.
In particular, it is unclear whether altered connectivity patterns
of the insula subregions can help distinguish the spectrum of
pre-clinical AD.

We conducted this study to identify altered intrinsic
connectivity patterns of the insular subregions across the
spectrum of pre-clinical AD. After identification of intrinsic
connectivity pathology, we further evaluated how well this
can be used to distinguish the spectrum of pre-clinical AD.
Finally, we hypothesized that patients with SCD and aMCI
present with different altered intrinsic connectivity patterns of
the insular subregions. Additionally, we further hypothesized
that integration of altered intrinsic functional connectivity (FC)
can accurately distinguish individuals in the spectrum of pre-
clinical AD.

MATERIALS AND METHODS

Participants
The data used in this study were acquired from our in-
home database, the Nanjing Brain Hospital-Alzheimer’s
Disease Spectrum Neuroimaging Project (NBH-ADsnp)
(Nanjing, China), which is continuously updated. The relevant
information obtained from the NBH-ADsnp is summarized in
Supplementary Methods S.1. This study was granted approval
by the responsible Human Participants Ethics Committee of the
Affiliated Brain Hospital of Nanjing Medical University (Nos.
2018-KY010-01 and 2020-KY010-02), located in Nanjing, China.
Signed informed consent was obtained from each participant.

Initially, 460 individuals, who were of Han Chinese origin
and right-handed, were enrolled in the NBH-ADsnp database
from the memory clinic of hospitals and local communities
through the use of advertising and broadcasting. All patients
with SCD (n = 116) and CNs (n = 190) were recruited from
local communities, while aMCI subjects (n = 154) were enrolled
from both memory clinics and local communities. According
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to our criteria, a total of 169 elderly individuals participated
in this study. Among them, two CNs, two patients with SCD,
and 16 patients with aMCI were excluded due to excessive head
movement during MRI scan (defined as cumulative translation
or rotation of >3.0mm or 3.0◦ and individual time points with
mean frame-wise displacement (FD) of >0.5mm and scans with
>50% volumes removed; Brady et al., 2019), and incomplete
or missing MRI data. The remaining 55 CNs, 38 patients with
SCD, and 56 patients with aMCI were enrolled in the final
study. The inclusion and exclusion criteria were outlined in
accordance with previously published studies (Jessen et al., 2014a,
2020; Chen et al., 2015a, 2016a, 2019a; Dubois et al., 2016; Xue
et al., 2019). The diagnosis was performed independently by
three neuropsychiatric physicians (Dr. Jiang Rao, Fuquan Zhang,
and Xiangrong Zhang) who had 12–15 years of experience. Any
disagreement between the three neuropsychiatric physicians was
solved by reaching a consensus through group discussions.

The inclusion criteria of SCD subjects included the published
SCD research criteria proposed by the Subjective Cognitive
Decline Initiative (SCD-I; Jessen et al., 2014a). The detailed
inclusion criteria were described in our previously published
study (Xue et al., 2019), and is as follows: (a) self-reported
persistentmemory decline, confirmed by the caretaker or a family
member; (b) a Subjective Cognitive Decline Questionnaire (SCD-
Q) score> 5 (Hao et al., 2017; Yan et al., 2018; Cedres et al., 2019);
(c) performance within a normal range on the Mini-Mental State
Examination (MMSE) and the Montreal Cognitive Assessment
(MoCA) (adjusted for age and education); (d) Clinical Dementia
Rating (CDR) = 0; (e) subjects must be between the ages of 50
and 80; and (f) subjects must have Hamilton Depression Scale
(HAMD) scores of < 7.

The inclusion criteria of aMCI subjects included the
diagnostic criteria that were previously defined by Petersen et al.
(1999) and the revised consensus standards reported by Winblad
et al. (2004). The detailed inclusion criteria have been previously
described in our published studies (Chen et al., 2016b, 2019a;
Xue et al., 2019) and includes: (a) complaint of loss of memory,
preferably corroborated by an informant or the subject for more
than 3 months; (b) objective memory impairment (adjusted for
age and educational level); (c) normal general cognitive function
with MMSE score ≥ 24; (d) no or minimal impairment in daily
life activities; (e) CDR= 0.5; (f) subjectsmust be between the ages
of 50 and 80; (g) absence of dementia symptoms not sufficient
to meet the criteria of the National Institute of Neurological and
Communicative Disorders and Stroke or the AD and Related
Disorders Association criteria for AD; and (h) subjects must have
HAMD scores of < 7.

The inclusion criteria of CNwere as follows: (a) no complaints
of loss of memory; (b) normal cognitive performance (matched
for age and education); (c) CDR= 0; (d)MMSE≥ 26; (e) subjects
must be between the ages of 50 and 80 (Chen et al., 2019b; Xue
et al., 2019); and (f) subjects must have a HAMD score of < 7.

Detailed exclusion criteria for all subjects were described in
our previously published studies (Chen et al., 2016b, 2019a; Xue
et al., 2019), and included (a) past history of stroke (modified
Hachinski Ischemic Scale score > 4), alcoholism, head injury,
brain tumors, Parkinson’s disease, epilepsy, encephalitis, major

depression (excluded by HAMD), or other neurological or
psychiatric diseases (excluded by clinical assessment and case
history); (b) diagnosis of a major medical illness (i.e., cancer,
anemia, thyroid dysfunction, syphilis, or HIV); (c) severe loss of
vision or hearing; (d) inability to complete neuropsychological
tests or a contraindication for MRI, and (e) T2-weighted MRI
displaying major changes in white matter (WM), infarction,
or additional lesions, as determined by the scan analysis done
by two experienced radiologists. None of the subjects used
any medications.

All participants underwent a standardized clinical evaluation
protocol, including sequencing, demographic inventory, medical
history, neurological and mental status examination, and MRI
scan. The neuropsychologic tests were conducted by two different
neurologists (Dr. Jiang Rao andDr. Chen Xue) who had 3–5 years
of experience. Specific demographics and neuropsychological
characteristics of each group are provided in Table 1.

Neuropsychological Assessment
Neuropsychological assessments were similar to those used in
our previous studies (Chen et al., 2015a, 2016a, 2019a,b; Xue
et al., 2019). These assessments were utilized for evaluating
the general cognitive function, episodic memory, speed of
information processing, executive function, and visuospatial
function. Details regarding each of the assessments are listed in
Supplementary Methods.

MRI Data Acquisition
The detailed parameters of MRI acquisition of the NBH-ADsnp
are summarized in Supplementary Methods. Imaging analysts
were blinded to the status of diagnosis.

Functional MRI Data Pre-processing
We utilized MATLAB2015b and DPABI software (Yan et al.,
2016) to preprocess all functional MRI (fMRI) data. The image
processing procedure was conducted as previously described
(Yan et al., 2013) and is summarized in Supplementary Methods.
In brief, the first 10 time-points were removed, and the data
were adjusted for time and motion effects with several nuisance
variables [Friston 24-parameter model, with WM, cerebrospinal
fluid (CSF), global signals and the linear trend removed;
Ashburner and Friston, 2009]. Then, the functional images were
spatially normalized, smoothed, and temporal band-pass filtered.
The voxels within a group gray matter (GM) mask created by
DARTEL were used for further analyses.

Structural MRI Data Pre-processing
Structural MRI analysis was carried out during fMRI data
preprocessing using the DPABI image processing software. First,
we manually reoriented and shifted the structural images to
define the anterior commissure as the origin. Next, we used the
DARTEL technique for normalization and segmentation, which
divided the structural images into GM, WM, and CSF (Almairac
et al., 2018), and created a group-specific GM (functional
connection analysis was restricted to voxels within the GMmask)
and WM template. Then, the native and DARTEL versions were
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TABLE 1 | Demographics, clinical measures, and head rotation parameters of aMCI, SCD, and CN subjects.

Characteristics CN SCD aMCI F-values (χ2) p-values

n = 55 n = 38 n = 56

Age (years) 62.91 (5.94) 65.84 (7.73) 64.30 (7.70) 1.927 0.149

Gender (male/female) 23/32 8/30 15/41 5.243 0.074

Education level (years) 12.51 (2.51) 12.22 (2.72) 11.15 (2.87)b 3.813 0.024*

MMSE 28.58 (1.43) 28.32 (2.63) 27.29 (1.59)b,c 11.426 0.000*

MoCA 25.05 (2.42) 24.92 (1.79) 22.73 (2.88)b,c 14.787 0.000*

MDRS 141.46 (2.33) 140.37 (3.05) 136.45 (6.67)b,c 17.874 0.000*

SCD-Q 3.55 (1.50) 6.51 (0.90)a 5.06 (1.79)b,c 44.589 0.000*

HAMD 1.82 (2.26) 3.92 (3.17)a 3.80 (3.64)b 7.614 0.001*

Composite Z scores of each cognitive domain

Episodic memory 0.27 (0.53) 0.34 (0.59) −0.49 (0.61)b,c 33.177 0.000*

Information processing speed 0.27 (0.67) 0.18 (0.71) −0.38 (0.74)b,c 13.325 0.000*

Executive function 0.27 (0.48) 0.30 (0.57) −0.46 (0.62)b,c 31.026 0.000*

Visuospatial function 0.17 (0.66) 0.26 (0.50) −0.34 (0.96)b,c 9.400 0.000*

Head rotation parameters

FD_VanDijk 0.05 (0.03) 0.04 (0.03) 0.04 (0.03) 0.880 0.417

FD_Power 0.18 (0.08) 0.16 (0.09) 0.16 (0.09) 1.046 0.354

FD_Jenkinson 0.09 (0.04) 0.09 (0.05) 0.08 (0.05) 0.667 0.515

Data are presented as mean (standard deviation, SD). CN, normal control; SCD, subjective cognitive decline; aMCI, amnestic mild cognitive impairment; MMSE, Mini-Mental State

Examination; MoCA, Montreal Cognitive Assessment; MDRS, Mattis Dementia Rating Scale; HAMD, Hamilton Depression Scale; CDR, Clinical Dementia Rating; SCD-Q, Subjective

Cognitive Decline-Questionnaire; FD, frame-wise displacement. *Significant differences were found among CN, SCD, and aMCI subjects. Most p-values were obtained using ANOVA,

except for gender (chi-square test). Comparisons of each paired group were conducted to further reveal the source of ANOVA difference (a: SCD vs. CN; b: aMCI vs. CN; c: aMCI

vs. SCD). Bonferroni correction was applied for multiple group comparisons. MMSE, MoCA, and MDRS were displayed as raw scores. This study utilized the composite Z scores to

determine the level of each cognitive domain. Supplementary Table 2 displays detailed raw scores and the corresponding Z scores of neuropsychological assessments.

provided for GM,WM, and CSF tissues, and native versions were
utilized to compute the global intracranial volumes (ITV).

Quality Assurance
The Effect of Brain Atrophy
Given that significant GM atrophies that are present within
patients with SCD (Scheef et al., 2012) and aMCI (Trzepacz
et al., 2013; Chen et al., 2015a,b, 2020), the anatomical differences
between each group may affect the FCs of insular subregions.
In order to investigate this issue, we computed ITV based on
native GM, WM, and CSF in CN, SCD, and aMCI groups
through the use of in-home MATLAB codes. We explored the
differences among each group on the FC of insular subnetworks
using ITV as an additional covariate in the general linear model
(GLM) analysis.

Head Motion Effect
We used three different approaches to control for head motion
effect, both at an individual and group level. First, we excluded
CNs and patients with SCD and aMCI that had excessive head
motion (defined as cumulative translation or rotation > 3.0mm
or 3.0◦). Next, a Friston 24-parameter model was applied for
regressing out the effects of head motion from the realigned
data (Friston et al., 1996). Then, a “scrubbing” procedure was
performed to scrub frames (volumes) that had an excessively high
whole-brain root mean square (RMS) signal change over time in
the preprocessed fMRI data for each participant (Sheline et al.,
2010; Power et al., 2012; Van Dijk et al., 2012). Furthermore, any

volume with an FD that was> 0.2mm as nuisance covariates was
regressed out, and scans with 50% of volumes were removed and
discarded, as previously described in a study (Brady et al., 2019).
Overall, two CNs, two patients with SCD, and 16 patients with
aMCI were excluded on the account of excessive headmovement.
There were no significant changes with regards to between-group
differences found in quality assurance parameters of headmotion
in qualified subjects (Table 1).

Strict Multiple Comparison Correction Strategy
In order to ensure reproducibility, test-retest reliability, and
replicability using the fMRI metrics, we conducted a strict
multiple comparison correction (Chen et al., 2018). That
is, statistical maps were set with a threshold applying the
permutation test with Threshold-Free Cluster Enhancement
(TFCE; Smith and Nichols, 2009) and the family-wise error
(FWE), as was implemented in DPABI (Yan et al., 2016).

Definition of Insular Subregions
For this study, we created six 6-mm radius spherical seeds.
Our definition of insular subregions was in accordance with
recent studies (Deen et al., 2011; Peng et al., 2018; Lu et al.,
2020). Essentially, the insula was separated into six subregions,
which included the left and right bilateral ventral anterior
insula (L-vAI and R-vAI), the left and right bilateral dorsal
anterior insula (L-dAI and R-dAI), and the left and right bilateral
posterior insula (L-PI and R-PI) (Peng et al., 2018; Lu et al.,
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2020). Supplementary Table 1 details the Montreal Neurological
Institute (MNI) seed coordinates.

Functional Connectivity Analyses
For each participant, we extracted the average time courses for
all voxels within each insula subregional seed and used that
as the reference time course. Next, we conducted voxel-wise
cross-correlation analysis between the averaged time courses
of all voxels within the insular subregional seed, as well as
each voxel in the remainder of the entire brain within the
group-specific GM mask. Finally, we increased the normality of
correlation coefficients, and a Fisher’s z-transformation analysis
was performed.

Statistical Analyses
Demographics and Neuropsychological Data
ANOVA and chi-square tests were conducted for a comparison of
differences of the demographic data, clinical measures, and head
rotation parameters among the SCD, aMCI, and CN subjects.
Notably, in order to improve the statistical power of the study,
we applied a re-sampling method of stationary bootstrap (10,000
bootstrap samplings) to obtain significance.

We also set out to improve statistical power by diminishing
random variability, as was done in a previous study (Chen
et al., 2016b). This was done by compositing neuropsychological
assessments into four cognitive domains (episodic memory,
information processing speed, executive function, and
visuospatial function), and the raw scores were then
transformed into four composite Z scores. The details of
raw and composite scores for the neuropsychological tests are
outlined in Supplementary Table 2.

Identification of Altered Connectivity Patterns of the

Insula Subregions
Using GLM analysis, we evaluated the differences of the FCs
of insula subregions among subjects with aMCI, SCD, and CN
(1,000 permutations, TFCE-corrected; p < 0.001 and cluster
size > 227 mm3). Then, we constructed a mask based on the
different brain regions. Comparisons between any two groups
(i.e., CN vs. SCD, CN vs. aMCI) were performed under this
mask after adjusting for age, sex, education, ITV, and mean FD
(1,000 permutations, TFCE-FWE-corrected p < 0.05, and cluster
size > 227 mm3).

Classification Based on Altered Connectivity Patterns

of Insular Subregions
In order to further identify the FC patterns of insular subregions,
closely related to patients with SCD and aMCI, we applied
an approach based on binary logistic regression analysis using
alterations in the identified ROIs as biomarkers to evaluate how
well these can help distinguish patients with SCD or aMCI from
CN subjects. The receiver operating characteristic (ROC) curve
was applied to determine the classification power of this model,
as well as to assess its accuracy, sensitivity, and specificity.

Relationship Between Altered Connectivity Patterns

of the Insula Subregions and Cognition
In order to empirically verify the behavioral significance of
altered FC within insular subnetworks in patients with SCD
and aMCI, a Pearson’s correlation analysis was performed to
calculate the relationship between abnormal FC patterns of insula
subregions, cognition, and clinical measure (HAMD scores) after
adjusting for age, sex, and education. Furthermore, we assessed
the significance of these correlation analyses through the use
of a leave-one-out cross-validation procedure in 10,000 Monte-
Carlo simulation tests to measure how often these results would
be expected by chance in a study of multiple comparisons and
a re-sampling method of stationary bootstrap (10,000 bootstrap
samplings) in order to obtain significance.

RESULTS

Demographic and Neuropsychological
Characteristics
We found no significant differences with regard to age and
gender across each of the three groups (p > 0.05; Table 1).
In comparison with CNs, patients with aMCI had significantly
decreased education level (p < 0.05), while patients with SCD
were not significantly different. In comparison to CNs, patients
with SCD only showed significantly increased SCD-Q and
HAMD scores, while patients with aMCI exhibited significantly
reduced MMSE, MoCA, and MDRS scores, higher SCD-Q and
HAMD scores, and a significant decline in executive function,
episodic memory, information processing speed, and visuospatial
cognition (p < 0.05).

Functional Connectivity of Insular
Subnetworks in Patients With SCD and
aMCI
In the left vAI subnetwork, in comparison to CNs, patients with
SCD displayed reduced FC in the left cerebellum posterior lobe
and increased FC in the bilateral medial frontal gyrus (MFG),
the right middle temporal gyrus (MTG), and the right inferior
frontal gyrus (orbital part) (IFGorb) (PTFCE−FWE < 0.05, cluster
size > 227 mm3) (Figure 1A, Table 2). Additionally, in the left
dAI subnetwork, compared to CNs, patients with SCD showed
decreased FC in the bilateral cerebellum posterior lobe and
the left cerebellum anterior lobe, with increased FC in the left
MTG (PTFCE−FWE < 0.05, cluster size > 227 mm3) (Figure 1B,
Table 2). Furthermore, in the right PI subnetwork, patients with
SCD exhibited increased FC in right MTG in comparison with
CNs (PTFCE−FWE < 0.05, cluster size > 227 mm3) (Figure 1C,
Table 2).

In the left vAI subnetwork, compared to CNs, patients
with aMCI exhibited decreased FC in bilateral inferior parietal
lobule (IPL) and increased FC in bilateral MFG, and right,
middle, and superior temporal gyrus (STG; PTFCE−FWE < 0.05,
cluster size > 227 mm3) (Figure 2A, Table 2). In addition,
in the left dAI subnetwork, compared with CNs, patients
with aMCI showed decreased FC in the bilateral cerebellum
posterior lobe, the left cerebellum anterior lobe, and the bilateral
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FIGURE 1 | Insular subnetwork functional connectivity in patients with SCD compared to CNs. (A) The different brain regions of the FC of the left vAI subregion

between CN and SCD. A bar chart indicating the quantitative comparison of functional connectivity between these regions. (B) FC of left dAI subregion between CN

and SCD. A bar chart indicating the quantitative comparison of FC between these regions. (C) FC of the right PI subregion between CN and SCD. A bar chart

indicating the quantitative comparison of FC between these regions. *PTFCE−FWE < 0.05. Note: only subnetworks that show significant differences in between-group

comparisons are shown here. All results are displayed after adjusting for age, sex, education, ITV, and FD. A threshold of p < 0.05 was applied, and TFCE-FWE

correction with cluster size >270 mm3. FC, functional connectivity; CN, normal control; SCD, subjective cognitive decline; L-vAI, left ventral anterior insula; L-dAI, left

dorsal anterior insula; R-PI, right posterior insula; TFCE, threshold-free cluster enhancement; FEW, family-wise error; ITV, intracranial volume; FD, frame-wise

displacement; CERpos.L, left cerebellum posterior lobe; CERpos.R, right cerebellum posterior lobe; MTG.R, right middle temporal gyrus; IFGorb.R, right inferior frontal

gyrus, orbital part; MFG.R, right medial frontal gyrus; MFG.L, left medial frontal gyrus; MTG.L, left middle temporal gyrus.

anterior cingulate cortex (ACC) (PTFCE−FWE < 0.05, cluster
size > 227 mm3) (Figure 2B, Table 2). Finally, in the right
PI subnetwork, in comparison with CNs, patients with aMCI
displayed increased FC in right IFGrob and IFGtri (triangular
part) (PTFCE−FWE < 0.05, cluster size > 227 mm3) (Figure 2C,

Table 2). All results were adjusted for age, sex, education, ITV,
and FD.

However, it is important to note that other insular
subnetworks did not show significant differences among CN,
SCD, and aMCI subjects.
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TABLE 2 | Comparisons of functional connectivity of insular subregions among aMCI, SCD, and CN subjects.

Brain regions L/R BA MNI F/T-values Cluster size (mm3)

x y z

L-vAI FUNCTIONAL CONNECTIVITY

CN vs. SCD

Cerebellum posterior lobe L −51 −63 −33 5.7672 864

Middle temporal gyrus R 21 60 −9 −27 −3.8771 2,241

Inferior frontal gyrus, orbital part R 11 39 33 −15 −4.0899 324

Medial frontal gyrus R 10 6 63 3 −3.3068 432

Medial frontal gyrus L 9 6 51 24 −3.3713 1,026

CN vs. aMCI

Medial frontal gyrus L/R 11 −9 54 −15 −4.0347 14,121

Middle temporal gyrus R 11 63 −63 3 −3.6545 297

Superior temporal gyrus R 39 51 −57 21 −3.7118 297

Inferior parietal lobule R 40 33 −54 42 4.7854 864

Inferior parietal lobule L 40 −42 −51 51 3.8108 1,728

SCD vs. aMCI

None

L-dAI FUNCTIONAL CONNECTIVITY

CN vs. SCD

Cerebellum posterior lobe R 36 −60 −57 4.1111 486

Cerebellum posterior lobe/Cerebellum anterior lobe L 3 −60 −18 4.5395 15,147

Middle temporal gyrus L 38 −51 3 −12 −4.5773 405

CN vs. aMCI

Cerebellum posterior lobe L −33 −87 −27 3.4273 2,025

Cerebellum posterior lobe/Cerebellum anterior lobe L −6 −69 −21 3.5586 2,052

Anterior cingulate cortex L/R 24 0 15 24 4.1218 567

SCD vs. aMCI

None

R-PI FUNCTIONAL CONNECTIVITY

CN vs. SCD

Middle temporal gyrus R 21 48 0 −24 −4.0283 297

CN vs. aMCI

Inferior frontal gyrus, orbital part R 47 42 21 −3 −3.7377 2,160

Inferior frontal gyrus, triangular part R 46 51 33 15 −3.2717 540

SCD vs. aMCI

None

CN, normal control; SCD, subjective cognitive decline; aMCI, amnestic mild cognitive impairment; TFCE, threshold-free cluster enhancement; FEW, family-wise error; ITV, intracranial

volume; FD, frame-wise displacement; L-vAI, left ventral anterior insula; L-dAI, left dorsal anterior insula; R-PI, right posterior insula; MNI, Montreal neurological institute; L, left hemisphere;

R, right hemisphere. To note, only the subnetworks that have significant between-group differences are shown here. All results are displayed after adjusting for age, sex, education, ITV,

and FD at a threshold of p < 0.05, after applying TFCE-FWE correction with cluster size > 270 mm3.

Classification of SCD, aMCI, and CN Using
the Binary Logistic Regression
Binary logistic regression analyses revealed that the best-fitting
model that combined altered insular subnetwork connectivity in
patients with SCDwas able to correctly classify 83.9% of SCD and
CN subjects (χ2 = 66.239, p < 0.001; Nagelkerke R2 = 0.777).
The ROC curve of each altered insular subnetwork connectivity
is presented in Figure 3A. The best-fitting model for this analysis
had an area under the ROC curve (AUC) of 0.876, with 81.6%
sensitivity and 81.8% specificity.

Next, using binary logistic regression analyses, we found that
the best-fitting model combining altered insular subnetwork
connectivity in patients with aMCI was able to correctly classify

86.5% of aMCI and CN subjects (χ2 = 71.785, p < 0.001;
Nagelkerke R2 = 0.635). The ROC curve of each altered insular
subnetwork connectivity is displayed in Figure 3B. The best-
fitting model had an AUC of 0.887, with 80.4% sensitivity and
83.6% specificity.

Behavioral Significance of Altered FC
Within Insular Subnetworks in Patients
With SCD and aMCI
Functional connectivity between the left vAI and left cerebellum
posterior lobe in patients with SCD was negatively correlated
with episodicmemory score (r=−0.357, p= 0.028) (Figure 4A).
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FIGURE 2 | Insular subnetwork functional connectivity in patients with aMCI compared to CNs. (A) FC of left vAI subregion between CN and aMCI patients. A bar

chart indicating the quantitative comparison of FC between these regions. (B) Functional connectivity of the left dAI subregion between CN and aMCI patients. A bar

chart indicating the quantitative comparison of FC between these regions. (C) FC of right PI subregion between CN and aMCI patients. A bar chart indicating the

quantitative comparison of FC between these regions. *PTFCE−few < 0.05. Note: only the subnetworks that show between-group differences are shown here. All

results are displayed after adjusting for age, sex, education, ITV, and FD. A threshold of p < 0.05 was applied, with a TFCE-FWE correction with cluster size > 270

mm3. FC, functional connectivity; CN, normal controls; aMCI, amnestic mild cognitive impairment; L-vAI, left ventral anterior insula; L-dAI, left dorsal anterior insula;

R-PI, right posterior insula; TFCE, threshold-free cluster enhancement; FEW, family-wise error; ITV, intracranial volume; FD, frame-wise displacement; IPL.L, left inferior

parietal lobule; IPL.R, right inferior parietal lobule; STG.R, right superior temporal gyrus; MTG.R, right middle temporal gyrus; MFG. L/R, left/right medial frontal gyrus;

ACC.L/R, anterior cingulate cortex; CERpos.L, left cerebellum posterior lobe; CERpos/ant.L, left cerebellum posterior lobe/cerebellum anterior lobe; IFGorb.R, right

inferior frontal gyrus, orbital part; IFGtri.R, right inferior frontal gyrus, triangular part.

Furthermore, FC between the left vAI and left IPL within patients
with aMCI was positively correlated with episodic memory score
(r = 0.292; p = 0.034), while FC between left vAI and right STG
(r = −0.348; p = 0.011), and FC between right PI and right

IFGtri was negatively correlated with executive function scores
(r = −0.388, p = 0.004) (Figures 4B–D). Furthermore, we did
not find any correlation between depression (HAMD scores) and
changes in FC in patients with SCD and aMCI (p > 0.05).
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FIGURE 3 | Classification of individuals as SCD vs. CN and aMCI vs. CN using an MRI-based classifier. (A) ROC curve showcasing the classification power using an

MRI-based “classifier” of SCD from CN. (B) ROC curve presetting the classification power using MRI-based “classifier” of aMCI from CN. Note: the values of AUC,

sensitivity, and specificity are displayed in the lower right region of the figure. The combined line reflects the combination of indices of abnormal insular subnetwork

functional connectivity. CN, normal control; SCD, subjective cognitive decline; aMCI, amnestic mild cognitive impairment; AUC, area under the ROC curve; ROC,

receiver operating characteristic; vAI.L, left ventral anterior insula; dAI.L, left dorsal anterior insula; PI.R, right posterior insula; CERpos.L, left cerebellum posterior lobe;

CERpos.R, right cerebellum posterior lobe; MTG.R, right middle temporal gyrus; IFGorb.R, right inferior frontal gyrus, orbital part; MFG.R, right medial frontal gyrus;

MFG.L, left medial frontal gyrus; MTG.L, left middle temporal gyrus; IPL.L, left inferior parietal lobule; IPL.R, right inferior parietal lobule; STG.R, right superior temporal

gyrus; ACC.L/R, anterior cingulate cortex; CERpos/ant.L, left cerebellum posterior lobe/cerebellum anterior lobe; IFGtri.R, right inferior frontal gyrus, triangular part.
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FIGURE 4 | Relationship between abnormal insular subnetwork functional connectivity and cognition in patients with SCD and aMCI. (A) Relationship between the

insular subnetwork FC and cognition in patients with SCD. (B–D) Relationship between the insular subnetwork FC and cognition in patients with aMCI. FC, functional

connectivity; CN, normal control; SCD, subjective cognitive decline; aMCI, amnestic mild cognitive impairment; vAI.L, left ventral anterior insula; PI.R, right posterior

insula; CERpos.L, left cerebellum posterior lobe; IPL.L, left inferior parietal lobule; STG.R, right superior temporal gyrus; IFGtri.R, right inferior frontal gyrus, triangular

part; EM, episodic memory; EF, executive function.

DISCUSSION

To the best of our knowledge, this is the first study to evaluate
altered FC patterns of insular subnetworks in the pre-clinical
spectrum of AD, and investigate the relationship between
altered FC and behavioral significance. Binary logistic regression
analyses were further applied for the classification of pre-clinical
AD stages. According to our study results, we discovered that
altered FC, if found, were mainly in overlapping areas among
insular subnetworks (vAI, dAI, and PI) (Nomi et al., 2018), part
of which is correlated with the abnormal cognition. Nonetheless,
similarities and differences do exist between the two pre-clinical
AD stages, and this utilization of abnormalities is able to precisely
distinguish the spectrum of pre-clinical AD. Taken together, our
results could imply that altered FCs within insular subnetworks
may act as a biomarker for prompt detection, intervention, and
treatment for pre-clinical AD.

Altered FC Patterns of Insular
Subnetworks in Patients With SCD
We detected reduced FC within the L-vAI and L-dAI of
cerebellum posterior lobe in patients with SCD compared

to CN subjects. Furthermore, early studies discovered that
the cerebellum posterior lobe contributes to episodic memory
coding (Fliessbach et al., 2007). Additionally, altered FC within
this area is closely related to abnormal episodic memory in
patients with aMCI (Bai et al., 2011). In accordance with earlier
observations, we identified a negative relationship between
altered FCs of vAI in the cerebellum posterior lobe and episodic
memory. With a gradual deterioration of FC, the episodic
memory scores of patients with SCD turn out to increase.
One possible explanation for this phenomenon is that while
the connection between the cerebellum and insula gradually
collapses, the compensatory brain regions (i.e., IFG, MFG, and
MTG) become abnormally activated. These excessive intrinsic
FCs contribute to transiently improved clinical performance.
Notably, a dysfunction in episodic memory is thought to be a
typical syndrome of aMCI (Seo and Choo, 2016). Furthermore,
apart from aMCI, altered FC in the cerebellum was found
to be highly correlated with deteriorated episodic memory
performance of patients with SCD. This result implies that
SCD may share some similarities in neuronal deterioration
with aMCI, and may actually represent as a prodromal
aMCI stage.
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Altered FC Patterns of Insular
Subnetworks in Patients With aMCI
In comparison to subjects with CN, patients with aMCI
presented with reduced FCs of the L-vAI in IPL and in the
cerebellum posterior lobe and ACC of L-dAI. IPL is known
to be a region of heterogeneity that is associated with diverse
brain networks, including DMN, salience network (SAN), and
executive control network (ECN) (Wang et al., 2015). IPL has
a role in multiple functions, such as the executive and salience
effect (Uddin et al., 2011). Moreover, Kwok and Macaluso
have demonstrated that IPL may be modulated under the
episodic memory retrieval process, which indicates a tight
relationship with episodic memory (Kwok and Macaluso, 2015).
In addition, Xie et al. (2012) have reported that aberrant
insular networks may play a key role in the processes of
episodicmemory. Consistently, we detected a positive correlation
between FCs of L-vAI in IPL and episodic memory. With a
reduction in FC, the severity of damage exceeds the degree
of compensation, which leads to irreversible disrupted episodic
memory performance. This implies decreased neuroactivity
between IPL and L-vAI, which eventually causes worsened
clinical performance. ACC is engaged in various processes,
which includes attention, memory, and emotion (Fillinger et al.,
2018). To date, numerous studies have demonstrated strong
functional or structural connections between the dorsal ACC
and dAI (Chang et al., 2013; Wiech et al., 2014; Ghaziri et al.,
2017). Consistently, our result reveals a functional relationship
between ACC and dAI, which indicates a potential deterioration
mechanism of aMCI.

Convergent altered intrinsic FC remains in MFG, STG, and
MTG under L-vAI, and in IFG under R-PI. MFG and MTG
both belong to DMN and are relevant in cognitive processes.
The abnormally increased FCs of patients with aMCI between
these two regions and L-vAI implies possible recruitment
of activated DMN for an early functional complement.
Additionally, STG is in charge of primary and secondary
auditory and lingual processes (Luo et al., 2018). Furthermore,
Mwansisya et al. (2017) have reported convergent neuronal
abnormalities within activated STG, which is closely related
to executive dysfunction in schizophrenia. Consistently, we
discovered a negative relationship between executive function
and altered FC of L-vAI in STG, which validates an intimate
relationship between STG and executive dysfunction of patients
with aMCI. These results indicate that aMCI (or AD)
may share similarities with regard to psychopathology and
compensatory mechanisms.

Convergent and Divergent Altered FC of
Insular Subnetworks in Patients With SCD
and aMCI
Subjective cognitive decline and aMCI share both similarities and
differences in altered FC of insular subnetworks. To summarize,
we found that there were compensatory brain regions in patients
with SCD, including MFG, MTG, and IFG. In addition, we
also discovered that the compensatory phenomenon exists in
STG in patients with aMCI. Furthermore, altered FC in MTG

was detected across all three insular subnetworks, suggesting
that STG may represent the main compensatory region in
patients with SCD. However, compensation in patients with
aMCI is more prominent, which further reflects the adaptation
of deepened atrophy. With regards to the distribution of
affected regions, IFG and MFG belong to the frontal regions
while MTG and STG belong to the temporal regions. With
the ever-expanding influence of neurotoxicity, researchers have
discovered the presence of excessive strengthened intrinsic
neuroactivities among the frontal and temporal regions (Qi et al.,
2010; Gour et al., 2011; Yang et al., 2018). Combined with our
results, we infer that the frontal and temporal regions may serve
as the major and the earliest regions that regulate compensatory
activities in pre-clinical AD stages. These results suggest a
tendency to recruit advanced brain regions to compensate for
early functional loss.

In addition, our study showed no insular differences in FC in
the SCD group compared to the aMCI group. This is a surprising
finding given the clear-cut cognitive differences that are present
between the SCD and aMCI groups, as well as the different stages
that are attributed to these groups in the clinical and pathological
progression of AD. Our results suggest that even though these
groups are clinically different, their underlying insular pathology
may not be. Previous studies have highlighted the similarities
and the overlap of the cerebral amyloid burden between patients
with SCD and MCI (Wolfsgruber et al., 2017; Jessen et al.,
2018). The explanation may be that SCD, in the presence of
AD pathology, may represent the stage at which there is the
first subtle cognitive dysfunction in pre-clinical AD (Sperling
et al., 2011). At this stage, SCD reflects an individual’s experience
of this subtle cognitive decline, which is still in a significant
compensatory phase (Erk et al., 2011). Furthermore, our previous
study discovered that the compensatory phenomenon of neural
networks in SCD individuals is associated with clinical cognition
measures (Xue et al., 2019). This further indicates that AD
pathology occurs in a temporally ordered manner, along with
disease progression (Jack et al., 2013; Chen et al., 2019a).
Therefore, SCD is considered a highly attractive stage for future
early interventions in pre-clinical AD, as the brain function
remains largely preserved with intact compensatory processes.

Our results also indicated that SCD and aMCI subjects
have significantly higher HAMD scores in comparison to
controls, despite the fact none of the subjects were depressed
(HAMD score < 7). This suggests that depression may be a
confounding factor of insular connectivity changes in SCD and
aMCI. Recently, Liew (2019) investigated the independent risk
factors for neurocognitive disorders associated with depression
in a large sample study. Their results suggested that SCD
and depression were both independent risks of MCI/dementia,
but the combination of depression and SCD was a higher
risk compared to SCD alone. However, in order to avoid
this confounding factor, all subjects had depression scores of
<7. Furthermore, there were no correlations found between
depression scores and insular connectivity. Therefore, it is
reasonable to speculate that the connectivity changes seen are
indicative of SCD and aMCI, and are not representative of a state
of depression.
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Distinctly Altered Connectivity Patterns of
Insular Subnetworks Within the Separate
Spectrum of Pre-clinical AD
Even within the same group, there are differences among vAI,
dAI, and PI. Based on our study results, we can infer that
vAI is more sensitive with regard to the manifestation of
compensation. Furthermore, vAI delivers more evident clinical
manifestations of deterioration and compensation compared to
dAI and PI and is associated with strong clinical significance.
Liu et al. (2018) have reported that vAI, dAI, and PI are
closely associated with SAN, ECN, and somatomotor network,
respectively, indicating separate engagement in cognitive,
affective, and interoceptive processes. The insula is highly
associated with neuronal nodes that are related to episodic
memory (Sugar and Moser, 2019) and possesses the function
of executive control (Menon and Uddin, 2010). Our data
have revealed that vAI is recruited in the functioning of
episodic memory and executive function. Additionally, our
results reveal a strong relationship between executive function
and PI. Since there are distinct brain regions located within
the hub of insular subnetworks, we infer that FC among
these interactive subregions possesses multimodal functions.
Under certain circumstances in which a specific function of
a subregion is impaired, FC is increased within that region.
However, further experimentation is required to verify specific
mechanisms. Our preliminary results suggest that altered FC
detection in pre-clinical AD patients may reversely play an
essential role in revealing the internal relationships within
insular subnetworks.

Precise Classification of the Spectrum of
Pre-clinical AD by Model Combining
Altered Insular Subnetwork Connectivity
To date, this is the first time that aberrant FC of insular
subnetworks has been applied to identify the stages of the
spectrum of pre-clinical AD. Utilizing binary logistic regression,
we were able to obtain two separate optimal models for
each pre-clinical stage, SCD, and aMCI. The accuracy of
classification for the SCD model was 83% (81% sensitivity
and 81.8% specificity), while the accuracy of the aMCI model
was 86.5% (80% sensitivity and 83.6% specificity). Through
this comparison, we are able to conclude that the aMCI
classification model has higher overall accuracy. While the
SCD classification model has increased competence in the
identification of real patients, the aMCI classification model
possesses a greater capability of excluding healthy individuals.
Based on these results, as well as a combination of abnormal
FCs in several altered brain regions, which belong to the
overlapping areas of vAI, dAI, and PI, we are able to precisely
distinguish the spectrum of pre-clinical AD. Therefore, abnormal
connectivity among these regions can be utilized as a tool
for early clinical diagnosis, and these altered regions can
also be used as therapeutic targets for early intervention
and treatment.

LIMITATION

There are several limitations to our study. Firstly, we have a
small sample size, and only 55 CNs, 38 patients with SCD, and
56 patients with aMCI were included in this study. This may
have led to a bias of the results. To enhance the statistical power
of our results, we applied a non-parametric permutation test,
which allows control of the false positive rate in cluster-level
inference. Meanwhile, our NBH-ADsnp database is constantly
being updated and recruits new volunteers, and therefore, we
will further verify our conclusions shortly. Secondly, we studied
the behavioral significance of FC abnormalities in its resting
state, which has some limitations. The task-based fMRI may
be utilized to verify these results and further evaluate the
behavioral significance of FC alterations. Finally, we found no
differences in FC between SCD and aMCI, which may limit
the validity of insular FC measures in staging individuals that
are on the spectrum of pre-clinical AD. This may suggest that
insular FC features may simply serve as biological markers of
disease, rather than markers of disease progression. The reason
for these findings may be that aMCI subjects were recruited
from the memory clinic and local communities. In the future,
we hope to further expand the sample size in order to assess
the characteristics of insular FC differences in patients with
aMCI from the local community vs. patients enrolled from the
memory clinic.

CONCLUSION

Subjective cognitive decline and aMCI, part of the spectrum of
pre-clinical AD, share some convergent and divergent altered
intrinsic connectivity of insular subnetworks, with differences in
abnormalities existing among subnetworks. These abnormalities
can be applied to accurately identify patients that are within
the spectrum of pre-clinical AD, which suggests that aberrant
functional connectivity within insular networks may serve as
a strong potential biomarker in the diagnosis of pre-clinical
AD stages.
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Individuals with subjective cognitive decline (SCD) are at higher risk of incipient

Alzheimer’s disease (AD). Spatial navigation (SN) impairments in AD dementia and

mild cognitive impairment patients have been well-documented; however, studies

investigating SN deficits in SCD subjects are still lacking. This study aimed to explore

whether basal forebrain (BF) and entorhinal cortex (EC) atrophy contribute to spatial

disorientation in the SCD stage. In total, 31 SCD subjects and 24 normal controls were

enrolled and administered cognitive scales, a 2-dimensional computerized SN test, and

structural magnetic resonance imaging (MRI) scanning. We computed the differences in

navigation distance errors and volumes of BF subfields, EC, and hippocampus between

the SCD and control groups. The correlations between MRI volumetry and navigation

distance errors were also calculated. Compared with the controls, the SCD subjects

performed worse in both egocentric and allocentric navigation. The SCD group showed

volume reductions in the whole BF (p < 0.05, uncorrected) and the Ch4p subfield (p

< 0.05, Bonferroni corrected), but comparable EC and hippocampal volumes with the

controls. In the SCD cohort, the allocentric errors were negatively correlated with total BF

(r =−0.625, p< 0.001), Ch4p (r =−0.625, p< 0.001), total EC (r =−0.423, p= 0.031),

and left EC volumes (r = −0.442, p = 0.024), adjusting for age, gender, years of

education, total intracranial volume, and hippocampal volume. This study demonstrates

that SN deficits and BF atrophy may be promising indicators for the early detection of

incipient AD patients. The reduced BF volume, especially in the Ch4p subfield, may

serve as a structural basis for allocentric disorientation in SCD subjects independent

of hippocampal atrophy. Our findings may have further implications for the preclinical

diagnosis and intervention for potential AD patients.
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INTRODUCTION

Alzheimer’s disease (AD), a global concern, is a progressive
neurodegenerative disorder that contains three stages: the
preclinical stage, mild cognitive impairment (MCI), and
dementia (Sperling et al., 2011). Subjective cognitive decline
(SCD), a self-perceived worsening of cognitive function without
objective deficits in neuropsychological evaluations, is considered
to be a clinically-based approach for the detection of subjects
at a potentially higher risk of developing AD (Jessen et al.,
2014, 2020). SCD corresponds to the preclinical stage of
the AD spectrum; thus, it is of critical importance to
fully investigate features and biomarkers of this stage to
pave the way for early diagnosis and intervention in AD
(Howard, 2020; Jessen et al., 2020).

It has been well-established by histopathological studies that
AD is associated with the loss of cholinergic neurons (Davies
and Maloney, 1976; Mcgeer et al., 1984). Treatment with
cholinesterase inhibitors has proven effective in improving global
cognitive function, the activities of daily living, and behavioral
symptoms in patients with mild to moderate AD (Raskind et al.,
2000; Tariot et al., 2000; Rockwood et al., 2006). The basal
forebrain (BF), consisting of different subfields such as Ch1-
4, is a key structure for cholinergic input to the hippocampus,
amygdala, and cerebral cortex (Mesulam et al., 1983). Studies
based on magnetic resonance imaging (MRI) volumetry have
shown significant volume reductions of the BF in MCI and
AD dementia patients (Teipel et al., 2011; Grothe et al., 2012,
2013). The reduced volumes in specific subfields correlated with
impairments in different cognitive domains (Grothe et al., 2010).
However, to our knowledge, only one recent study has reported
Ch4p volume reductions in the BF in a cohort of 24 SCD subjects
(Scheef et al., 2019).

The entorhinal cortex (EC) is recognized as one of the earliest
affected regions by AD pathology, and previous studies have
shown cortical thinning and volume reductions in the EC in SCD
subjects (Jessen et al., 2006; Meiberth et al., 2015; Ryu et al.,
2017). Furthermore, a longitudinal study using the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) cohort revealed that BF
atrophy preceded entorhinal volume reduction and could predict
the cortical spread of AD pathology and memory impairments in
MCI patients (Schmitz et al., 2016).

Patients with MCI and AD dementia experience difficulties
with spatial navigation (SN), which is the ability to determine
and maintain a route from one place to another (Hort et al.,
2007; Nedelska et al., 2012; Lithfous et al., 2013). Two SN
strategies have been well-established: egocentric navigation and
allocentric navigation (O’Keefe and Nadel, 1978). Egocentric
navigation relies on subject-to-object relations and leads to the
constitution of self-centered representations, while allocentric
navigation depends on object-to-object relations and contributes
to the construction of world-centered representations (Colombo
et al., 2017). Lesion studies in mice have provided direct
evidence that BF lesions result in both egocentric and allocentric
disorientation (Berger-Sweeney et al., 2001; Hamlin et al., 2013).
Previous studies have shown that BF atrophy was associated
with allocentric impairments in AD patients (Kerbler et al.,

2015b). Furthermore, treatment with donepezil, a cholinesterase
inhibitor, has suggested improved performance in allocentric but
not egocentric navigation in AD patients (Hort et al., 2014).
The EC contains grid cells, which show a six-fold modulated
firing pattern and play a critical role in allocentric representations
(Hafting et al., 2005; Doeller et al., 2010). However, whether
BF and EC atrophy contribute to SN deficits in SCD subjects
remains unresolved.

In the present study, we aimed to determine the alterations
in volumes of BF subfields and the bilateral EC in SCD subjects
and to further elucidate the associations between MRI volumetry
and navigation performance assessed by a 2-dimensional
computerized SN test. We hypothesized that SCD individuals
would show reduced volumes in the BF, most pronounced in the
Ch4p subregion, and reduced volumes in the EC compared to
the control subjects. Consistent with previous studies, we also
expected significant associations between structural measures
and allocentric navigation performance, which may indicate
the structural neural basis of allocentric navigation deficits in
SCD subjects.

MATERIALS AND METHODS

Subjects
Fifty-six individuals with Chinese Han nationality were recruited
from the Drum Tower District of Nanjing by advertisement,
and one subject showing bad homogeneity of imaging data was
excluded. In total, 55 subjects were enrolled in the present study.
The inclusion criteria were 55–75 years old, right-handedness,
and equal to or more than 9 years of education experience.
Participants with a history of stroke, other neurological disorders
that could lead to cognitive decline (Parkinson’s disease,
encephalitis, epilepsy, brain tumors, etc.), severe anxiety or
depression, and contraindications for MRI scanning were
excluded from the study. Subjects who met the diagnostic for
MCI in the standardized neuropsychological evaluation were also
excluded from the current study. Specifically, three cognitive
domains each containing two subtests were assessed: Auditory
Verbal Learning Test (AVLT) long-delayed memory and AVLT
recognition (Zhao et al., 2012) for episodic memory; Trail
Making Test Part A (TMT-A) and Part B (TMT-B) (Zhao et al.,
2013) for executive function; and Boston Naming Test (BNT)
(Mack et al., 1992) and Animal Fluency Test (AFT) (Henry
et al., 2004) for language ability. Participants were considered
MCI patients with scores >1 standard deviation (SD) below
the normative means in both subtests within one cognitive
domain or >1 SD below the normative means in three single
tests in three different domains (Jak et al., 2009; Li et al.,
2019). The participants were assigned to the SCD group if they
complained of memory decline within the last 5 years and
expressed worries associated with memory decline. In total, 31
subjects were assigned to the SCD group. Twenty-four age-, sex-,
and education-matched old people without memory complaints
and cognitive impairments were recruited as normal controls
(NCs). All participants signed an informed consent statement
after gaining a sufficient understanding of the study procedures.
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The experiment was approved by the Medical Research Ethics
Committee of Nanjing Drum Tower Hospital.

Neuropsychological Evaluation
Each participant completed a set of standardized
neuropsychological tests. The cognitive evaluation was
performed by a psychologist with 10 years of working
experience. The Mini-Mental State Examination (MMSE)
(Tombaugh and Mcintyre, 1992) was implemented to measure
global cognition, and the SCD questionnaire (SCD-Q) was
employed for a quantitative assessment of the severity of SCD
(Supplementary Box 1) and was not the inclusion criteria for
SCD (Gifford et al., 2015; Li et al., 2019). Except for AVLT,
TMT-A, TMT-B, BNT, and AFT mentioned above, we also
used the Rey-Osterrieth Complex Figure (ROCF) (Shin et al.,
2006) recall test to measure visuospatial memory, ROCF copy
test and the Clock Drawing Test (CDT) (Shulman, 2000) to
assess visuospatial abilities, and the Symbol Digit Modalities Test
(SDMT) (Sheridan et al., 2006) to evaluate processing speed.
The measures from the TMT-A and TMT-B tests are reported
as the time (in seconds) spent on the test, with longer times
representing worse executive function. Higher scores in the
SCD-Q suggest worse self-assessment of cognition. For the other
cognitive tests, measures are reported as the numbers of correct
responses, with higher scores reflecting better function in the
corresponding cognitive domains.

Spatial Navigation Assessment
The navigation behavior was measured by the Amunet test
battery (NeuroScios, Austria, Gmbh), a computer-based version

of the Morris water maze (hMWM), which used a similar
paradigm as the hidden goal task (Kalová et al., 2005; Hort
et al., 2007; Nedelska et al., 2012). Participants were presented
with a computer screen (640 × 480 pixels) that showed a
large white circle with 280 pixels in diameter representing the
overhead view of the arena. Briefly, a red dot was the starting
point, and yellow and green lines on the edge of a large white
circle were the orienting cues. A purple hollow circle with
16 pixels in diameter was the goal, which was shown at the
beginning and then disappeared in each trial. The examinee was
asked to draw a path from the start to the goal as accurately
as possible using a mouse. After the subject indicated the
supposed goal position, the correct position was shown and
the subject again was encouraged to notice its relative position
to the starting point or cues. The task contained four phases
from simple to complex: (a) Mixed alloegocentric navigation
(Figure 1A): The least demanding subtask, which was considered
a training task designed to get familiarized with the SN test.
The examinee could find the goal by its spatial relationship with
both the starting point and the orienting cues. (b) Egocentric
navigation (Figure 1B): The examinee could locate the hidden
goal only by its mutual relationship with the starting point,
as the orienting cues were not displayed on the screen. (c)
Allocentric navigation (Figure 1C): The examinee could locate
the hidden goal using only its relationship with the orienting
cues, as the position of the starting point was unrelated to
the goal. (d) Delayed allocentric navigation (Figure 1D): This
subtest was performed 30min later using the same strategy
as allocentric navigation to measure the delayed recall ability,
during which the correct goal position was not shown so as

FIGURE 1 | The 2-dimensional computerized hidden goal task and corresponding navigation distance errors in each subtest. The images show an aerial view of the

arena (large white circle), the starting point (red filled circle), orientation cues (yellow and green lines), and the goal (purple hollow circle). The green lines represent

tracking by a subject from the start point to the supposed goal position, and the white lines represent the distance errors. Navigation distance errors in the normal

control (NC) and subjective cognitive decline (SCD) groups in each trial of the (A) mixed alloegocentric navigation subtest (AEN), (B) egocentric navigation subtest

(EN), (C) allocentric navigation subtest (AN), and (D) delayed allocentric navigation subtest (DAN) are shown. Values are the mean ± SEM (For interpretation of the

references to colors in this figure, the reader is referred to the web version of this article).
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to prevent the subjects from learning (Laczó et al., 2011). It is
analogous to the probe trial in the original MWM task, where
the hidden platform is removed and only distal orientation
cues are used for navigation (Laczó et al., 2015). There were
eight trials each of the mixed alloegocentric, egocentric, and
allocentric subtests, while there were two trials of the delayed
allocentric subtest. SN performance was recorded automatically
as the average distance errors (from the position drawn by
the examinee to the correct position of the goal on the
computer screen in pixels) across all trials of each subtest. The
SN task was not time-restricted to reduce bias by differences
in cognitive, sensory, and physical functioning (Laczo et al.,
2014). The examiner was blind to the diagnosis. Two SCD
participants did not complete the delayed subtest; thus, they
were excluded from the following analyses related to delayed
allocentric navigation.

Imaging Data Acquisition
All participants were scanned on a 3T MRI scanner with an
8-channel phased-array head coil (Philips, Achieva TX) at the
Department of Radiology, Nanjing Drum Tower Hospital. The
T1-weighted images (T1WI) were acquired with the following
parameters: 192 sagittal slices, repetition time (TR) = 9.74ms,
echo time (TE) = 4.60ms, slice thickness = 1mm, field of
view (FOV) = 256 × 256 mm2, and voxel size = 1 × 1 ×

1 mm3.

Basal Forebrain Subfield and Entorhinal

Cortex Volumetry
MRI data were processed by the Computational Anatomy
Toolbox (CAT12) for Statistics Parametric Mapping version
12 (SPM12). Briefly, MRI data were automatically segmented
into gray matter (GM), white matter (WM), and cerebrospinal
fluid (CSF) partitions. Then, the GM partitions were non-
linearly normalized to the CAT12 default template (IXI555-
MNI152) using the Diffeomorphic Anatomical Registration
Through Exponentiated Lie Algebra (DARTEL) (Ashburner,
2007). Subject with a correlation between volumes that was two
SDs below the mean suggested bad homogeneity of the data
was excluded from the following analysis (Dahnke et al., 2013).
The images were smoothed with a 4-mm full-width at half-
maximum (FWHM) (Kilimann et al., 2014; Wolf et al., 2014).
The GM, WM, and CSF partitions were summarized as the total
intracranial volume (TIV), which was calculated to adjust for
head size differences.

Calculation of the individual BF volumes was obtained
by summing up the modulated GM voxel values within a
cytoarchitectonic BF mask in the MNI space, which was derived
from histological sections of a postmortem brain (Wolf et al.,
2014). Regions of interest (ROIs) corresponding to the following
BF subfields were derived (Figure 2): Ch1/2 (the nucleus of the
vertical limb of the diagonal band), Ch3 (the nucleus of the
horizontal limb of the diagonal band), Ch4a_i (anterior and

FIGURE 2 | Anatomical position and extent of the basal forebrain and entorhinal cortex. Different colors refer to different subregions. NSP, nucleus subputaminalis;

LEC, left entorhinal cortex; REC, right entorhinal cortex (For interpretation of the references to colors in this figure, the reader is referred to the web version of

this article).
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intermediate parts of the nucleus basalis of Meynert), Ch4p
(posterior part of the nucleus basalis ofMeynert), and the nucleus
subputaminalis (NSP). The entire volumes of the BF were defined
as the sum of the volume of all subfields.

We extracted the subregions labeled 115 and 116 from the
Brainnetome Atlas as the left EC and right EC mask, respectively
(Fan et al., 2016) (Figure 2), using the Data Processing Assistant
for Resting-State fMRI, advanced edition (DPARSF) (Chao-Gan
and Yu-Feng, 2010). Individual EC volumes were calculated by
summing up the modulated GM voxel values within the left or
right EC mask.

We also calculated the hippocampal volume of each subject
using FreeSurfer version 6.0.0 image analysis suites (http://
freesurfer.net/), which was extracted as a covariate in subsequent
correlation analyses.

Apolipoprotein E Genotyping
DNA extraction from 300 µL of whole blood per subject was
performed using an SK2884 DNA extraction kit (Sangon Biotech,
Shanghai, China). Apolipoprotein E (APOE) single nucleotide
polymorphism (SNP) genotyping was performed for rs429358
and rs7412 using PCR technology with the support of the BGI
Tech Solutions Beijing Liuhe Company. We determined APOE
ε4 status for 42 of the 55 participants (15/24 in the NC group and
27/31 in the SCD group).

Statistical Analysis
Age, years of education, cognitive measures, and navigation
distance errors were compared by two-sample t-tests. Gender
distribution and APOE ε4 status were calculated by chi-square
tests. We also applied paired t-tests to assess the differences
in distance errors between egocentric and allocentric strategies
within the whole cohort and in the NC and SCD cohorts. We also
evaluated between-group differences in the total BF, BF subfields,
EC, and hippocampal volumes, controlling for age, gender, years
of education, and TIV.

The associations of SN errors with cognitive variables were
assessed, adjusting for age, gender, and years of education. The
correlations between the total BF, significant BF subfield volumes,
total EC, and hippocampal volumes were calculated within the
whole cohort and in the NC and SCD cohorts, adjusting for age,
gender, years of education, and TIV. The associations between
BF and EC volumetry and navigation distance errors on each
subtest were also evaluated, adjusting for age, gender, years of
education, TIV, and hippocampal volume. We further evaluated
the differences in volumetry-navigation correlations between
the two groups. Statistical analyses were performed with SPSS
version 21.0 and the SurfStat package (http://www.math.mcgill.
ca/keith/surfstat/). The significance level was set at p < 0.05
with two-tailed tests. Bonferroni corrections were applied for
multiple comparisons.

RESULTS

Demographic and Neuropsychological

Data
As shown in Table 1, the SCD and NC groups did not
significantly differ in age, gender distribution, or educational

TABLE 1 | Demographic, neuropsychological, and APOE genotyping data.

NC

(n = 24)

SCD

(n = 31)

Statistics

(degree of

freedom)

P

Age 63.50 ± 5.35 64.68 ± 5.21 t(53) = −0.822 0.415

Gender 8/16 5/26 χ2
(1) = 2.218 0.136a

Education 13.25 ± 3.35 11.97 ± 2.60 t(53) = 1.598 0.116

MMSE 29.04 ± 1.33 28.35 ± 1.43 t(53) = 1.820 0.074

SCD-Q 3.19 ± 2.43 6.02 ± 1.65 t(53) = −5.140 <0.001**

Episodic memory

AVLT

immediate

18.79 ± 4.75 16.55 ± 5.07 t(53) = 1.673 0.100

AVLT

short-term

5.83 ± 2.60 4.45 ± 2.57 t(53) = 1.969 0.054

AVLT long-term 5.46 ± 2.50 4.39 ± 2.79 t(53) = 1.477 0.146

AVLT cued

recall

5.46 ± 2.17 4.19 ± 2.54 t(53) = 1.953 0.056

AVLT

recognition

21.67 ± 1.46 21.87 ± 1.15 t(53) = −0.580 0.564

Visuospatial memory

ROCF recall 18.13 ± 4.88 13.94 ± 5.76 t(53) = 2.858 0.006*

Executive function

TMT-A 58.04 ± 15.48 55.55 ± 17.34 t(53) = 0.554 0.582

TMT-B 135.33 ± 46.04 153.32 ± 54.64 t(53) = −1.295 0.201

Language ability

AFT 19.17 ± 4.23 17.97 ± 4.57 t(53) = 0.996 0.324

BNT 27.25 ± 2.71 27.16 ± 2.58 t(53) = 0.124 0.902

Visuospatial ability

ROCF copy 35.33 ± 1.24 34.23 ± 2.68 t(53) = 1.873 0.067

CDT 27.67 ± 2.44 26.94 ± 2.71 t(53) = 1.036 0.305

Processing speed

SDMT 43.04 ± 9.68 37.45 ± 10.42 t(53) = 2.034 0.047*

Genotyping

APOE ε4

(carriers/non-

carriers)

4/11 5/22 χ2
(1) = 0.380 0.537a,b

Values are the mean ± SD.

NC, normal control; SCD, subjective cognitive decline; MMSE, Mini-Mental State

Examination; SCD-Q, SCD questionnaire; AVLT, Auditory Verbal Learning Test; ROCF,

Rey-Osterrieth Complex Figure; TMT-A, Trail Making Test part A; TMT-B, Trail Making Test

part B; AFT, Animal Fluency Test; BNT, Boston Naming Test; CDT, Clock Drawing Test;

SDMT, Symbol Digit Modalities Test; APOE, apolipoprotein E.

*p < 0.05, uncorrected; **p < 0.003 (Bonferroni-adjusted α, 0.05/15 cognitive

scales measured).
achi-square test; bAPOE ε4 status not determined for the whole cohort.

level. Following Bonferroni correction with an adjusted α of
0.003, the SCD group showed higher scores on the SCD-
Q [t(53) = −5.140, p < 0.001]. Under uncorrected criteria,
the SCD group also performed worse on the ROCF recall
test [t(53) = 2.858, p = 0.006] and the SDMT [t(53) =

2.034, p = 0.047]. No significant differences in MMSE
scores, episodic memory, executive, language or visuospatial
abilities were observed between the NC and SCD groups. The
two groups did not significantly differ in APOE ε4 status
[χ2

(1) = 0.380, p= 0.567].
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Comparisons of Navigation Behavior

Performance and Associations With

Cognitive Variables
As Table 2 and Figure 1 show, the SCD subjects demonstrated
larger distance errors in all the navigation subtests than the
controls [mixed alloegocentric navigation: t(53) = −2.115, p
= 0.039, Cohen’s d = 0.60; egocentric navigation: t(53) =

−3.048, p = 0.004, Cohen’s d = 0.88; allocentric navigation:
t(53) = −3.664, p < 0.001, Cohen’s d = 1.03; delayed allocentric
navigation: t(51) = −3.328, p = 0.002, Cohen’s d = 0.93], but
the differences in mixed alloegocentric navigation errors did not
survive Bonferroni correction with an adjusted α of 0.0125. In
addition, the two groups did not significantly differ in average
duration in each subtest.

Regarding the within-group differences in two navigation
strategies, we observed significantly larger distance errors in
the allocentric strategy compared to the egocentric strategy in
the whole [t(54) = −5.519, p = <0.001, Cohen’s d = 0.74],
NC [t(23) = −4.458, p < 0.001, Cohen’s d = 0.91], and

TABLE 2 | Spatial navigation distance errors.

NC

(n = 24)

SCD

(n = 31)

Statistics

(degree of

freedom)

P Cohen’s d

Mixed

AEN

26.23 ± 9.86 35.60 ± 19.86 t(53) = −2.115 0.039* 0.60

EN 20.63 ± 6.69 38.74 ± 28.44 t(53) = −3.048 0.004** 0.88

AN 33.59 ± 15.74 57.35 ± 28.54 t(53) = −3.664 <0.001** 1.03

DAN 28.16 ± 22.69 54.78 ± 33.27 t(51) = −3.328 0.002**,a 0.93

Average distance errors (in pixels) in mixed alloegocentric (AEN), egocentric (EN),

allocentric (AN), and delayed allocentric navigation (DAN) subtests in the normal control

(NC) and subjective cognitive decline (SCD) groups. Values are the mean ± SD.

*p < 0.05, uncorrected; **p < 0.0125 (Bonferroni-adjusted α, 0.05/4 navigation

tests measured).
aTwo SCD participants did not complete the DAN subtest; thus, they were excluded from

the comparison.

SCD cohorts [t(30) = −3.982, p < 0.001, Cohen’s d = 0.72]
(Supplementary Table 1).

Supplementary Figure 1 shows the correlations between SN
errors and cognitive measures in the whole cohort adjusting for
age, gender, and years of education. The ROCF recall scores
showed significant negative associations with distance errors in
all the SN subtests.

Comparisons of BF, EC, and Hippocampal

Volumes
After adjusting for age, gender, education level, and TIV, the
SCD group showed reduced total BF volumes compared to
the NC group [F(1) = 4.258, p = 0.044, partial η2 = 0.08]
under uncorrected criteria. Considering the BF subfields, volume
reduction in Ch4p in the SCD group [F(1) = 8.187, p = 0.006,
partial η2 = 0.14] survived the Bonferroni adjusted α of 0.01.
No significant differences in total and bilateral EC volumes,
and in total and bilateral hippocampal volumes were observed
(Figure 3).

Correlations Between BF Volumes and EC

and Hippocampal Volumes
After adjusting for age, gender, education level, and TIV,
we observed significant positive correlations between the
Ch4p volumes and the total EC volumes (r = 0.332, p
= 0.017) (Supplementary Figure 2A), and between total
BF and hippocampal volumes (r = 0.369, p = 0.008)
(Supplementary Figure 3A) in the whole cohort. In
the SCD group, the total BF volumes showed positive
correlations with total EC volumes (r = 0.394, p = 0.042)
(Supplementary Figure 2B) and hippocampal volumes (r
= 0.572, p = 0.002) (Supplementary Figure 3B). The Ch4p
volumes also showed positive correlations with total EC
volumes (r = 0.609, p < 0.001) (Supplementary Figure 2C)
and hippocampal volumes (r = 0.558, p = 0.002)
(Supplementary Figure 3C) in the SCD group. No significant
associations between BF and EC volumes and between BF

FIGURE 3 | Group comparisons of the basal forebrain (BF), entorhinal cortex (EC), and hippocampal (HP) volumes between the normal control (NC) and subjective

cognitive decline (SCD) groups. Values are the mean ± SD. *p < 0.05; **p < 0.01 (Bonferroni-adjusted α, 0.05/5 BF subfields measured). P-values were adjusted for

age, gender, years of education, and total intracranial volume.
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and hippocampal volumes were observed in the NC group
(Supplementary Table 2).

Correlations Between BF and EC Volumes

and Navigation Performance
In the whole cohort (Supplementary Table 3), the total BF
volumes were negatively correlated with allocentric errors (r =
−0.587, p < 0.001) (Figure 4A) and delayed allocentric errors
(r = −0.294, p = 0.043) (Figure 4B). The Ch4p volumes were
negatively correlated with both allocentric errors (r = −0.468, p
< 0.001) (Figure 4C) and delayed allocentric errors (r =−0.355,
p = 0.013) (Figure 4D), controlling for age, gender, years of
education, TIV, and hippocampal volume.

In the SCD group (Supplementary Table 4), the reduced total
BF volumes were associated with larger allocentric errors (r =
−0.625, p < 0.001) (Figure 5A), and the reduced Ch4p volumes
were associated with larger allocentric errors (r = −0.625, p
< 0.001) (Figure 5B). We also observed a negative correlation
between the total EC volumes and allocentric errors (r =−0.423,
p = 0.031) (Figure 5C) and between the left EC volumes and
allocentric errors (r=−0.442, p= 0.024) (Figure 5D) in the SCD

group, controlling for age, gender, years of education, TIV, and
hippocampal volume.

In the NC group (Supplementary Table 5), no significant
associations between BF, EC volumes, and navigation errors
were observed.

Comparisons of Correlations Between BF

and EC Volumes and Navigation

Performance
Regarding the brain-behavior correlation comparison, we
observed significant differences in the Ch4p volume-allocentric
error correlation [F(1,46) = 10.07, p = 0.003], total EC volume-
allocentric error correlation [F(1,46) = 4.75, p = 0.034], and
left EC volume-allocentric error correlation [F(1,46) = 5.22, p
= 0.027] between the NC and SCD groups, controlling for
age, gender, years of education, TIV, and hippocampal volume
(Supplementary Figure 4).

DISCUSSION

In the present study, we observed worse egocentric and
allocentric navigation performance in the SCD subjects.

FIGURE 4 | Correlations between basal forebrain (BF) volumetry and navigation distance errors in the whole cohort. (A) Correlations between allocentric navigation

(AN) distance errors and total BF volumes. (B) Correlations between delayed allocentric navigation (DAN) distance errors and total BF volumes. (C) Correlations

between AN distance errors and Ch4p volumes. (D) Correlations between DAN distance errors and Ch4p volumes. NC, normal control; SCD, subjective cognitive

decline. P-values were adjusted for age, gender, years of education, total intracranial volume, and hippocampal volume.

Frontiers in Aging Neuroscience | www.frontiersin.org 7 February 2021 | Volume 13 | Article 596025123

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Chen et al. Basal Forebrain Regulates Allocentric Navigation

FIGURE 5 | Correlations between basal forebrain (BF) and entorhinal cortex (EC) volumetry and navigation distance errors in the subjective cognitive decline (SCD)

cohort. (A) Correlations between allocentric navigation (AN) distance errors and total BF volumes. (B) Correlations between AN distance errors and Ch4p volumes. (C)

Correlations between AN distance errors and total EC volumes. (D) Correlations between AN distance errors and left EC volumes. P-values were adjusted for age,

gender, years of education, total intracranial volume, and hippocampal volume.

Additionally, we found that SCD subjects showed reduced
volumes in the Ch4p subfield of BF, which were negatively
correlated with allocentric distance errors. Our findings support
the hypothesis that BF atrophy and spatial disorientation are
objective and sensitive biomarkers for the preclinical detection
of subjects with potential AD and point to the critical role of the
BF, especially the Ch4p subfield, in allocentric disorientation in
the SCD stage.

SCD Subjects Showed Egocentric and

Allocentric Disorientation
With the exception of SCD-Q, the SCD subjects revealed
comparable function to the controls in all the cognitive domains
based on the neuropsychological evaluation after Bonferroni
correction. Regarding the navigation test, the SCD subjects
showed disorientation with both egocentric and allocentric
representations, consistent with that observed in MCI and AD
dementia patients in previous studies using the same paradigm
(Hort et al., 2007; Laczo et al., 2010). Notably, the study by Hort
et al. (2007) did not reveal significant differences in navigation

performance between NCs and participants with subjective
memory complaints (SMC). We speculated that differences
in diagnostic criteria for SMC and SCD, sample size, and
demographic characteristics may be possible factors contributing
to the discrepancies. Our study extended previous findings by
showing that spatial deficits exist in preclinical subjects at a
higher risk of AD.

Egocentric is self-centered and depends on the parietal
cortex and caudate nucleus, while allocentric is world-centered
and hippocampus-driven (Laczó et al., 2018). Navigation likely
represents a distinguishable cognitive domain that could provide
promising methods for detecting individuals with incipient AD.
In the present study, navigation performance revealed significant
correlations with a broad range of cognitive domains, especially
visuospatial memory, visuospatial ability, and processing speed.
These relationships support the notion that SN is a complex
process that associates with various navigational skills including
spatial memory and visuospatial ability (Botly and De Rosa, 2009;
Lithfous et al., 2013; Li and King, 2019). A recent study has also
suggested a relation between SN impairments and processing
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speed (Glikmann-Johnston et al., 2019). Of note, compared to
the traditional cognitive scales, navigation tests could overcome
limits based on ethnic origins and cultural restrictions, which
may benefit longitudinal studies with large cohorts in the future
(Coughlan et al., 2018).

Regarding the within-group analysis, we found that
participants showed larger distance errors in allocentric
compared to egocentric navigation. According to previous
studies, older people prefer to use the egocentric strategy for
navigation (Harris et al., 2012; Wiener et al., 2013; Lester et al.,
2017). Our findings suggest that more accurate navigation
using the egocentric rather than allocentric strategy may be
an explanation for this bias. Still, this might also imply the
absence of significant associations between mixed alloegocentric
distance errors and BF volumes while the presence of strong
correlations between allocentric performance and BF volumes
discussed below in the present study, considering old subjects
might tend to choose egocentric strategy when both egocentric
and allocentric references were provided.

SCD Subjects Showed Reduced Ch4p

Subfield Volumes of BF
We observed reduced Ch4p subfield volumes of BF in the
SCD group compared to the NC group. Postmortem studies
have documented cholinergic neuron loss in the BF in AD
patients (Vogels et al., 1990), which was most pronounced
in the Ch4p region (Liu et al., 2015). Previous studies have
demonstrated significant volume reductions in all BF subfields
except for Ch2 in MCI patients in a multicentre cohort, and the
subsequent receiver operating characteristics (ROC) analysis for
the separation between subjects with MCI and NCs revealed a
higher diagnostic value of the Ch4p region than the hippocampus
(Kilimann et al., 2014). A recent study investigating BF volumes
in SCD subjects showed a significant total volume reduction
in the BF, with the largest effect sizes in the Ch1/2 and Ch4p
subregions, and the latter was associated with reduced glucose
metabolism in the right precuneus, which had been reported
to predict subsequent memory decline (Scheef et al., 2019). In
addition, studies have reported negative correlations between
BF volume and cortical amyloid deposition in presymptomatic
subjects, suggesting intrinsic associations between cholinergic
degeneration and amyloid pathology in the preclinical stages of
AD (Grothe et al., 2014). Our findings provide evidence that SCD
represents a higher risk of preclinical AD from the perspective of
BF volumetry, which also suggests that Ch4p atrophy may serve
as a sensitive imaging marker for the identification of incipient
AD patients.

By contrast, we did not find significant differences in EC and
hippocampal volumes between the two groups, which has been
considered the earliest regions demonstrating neurofibrillary
tangles and amyloid deposition in the initial stages of AD
(Braak and Del Tredici, 2015). Previous studies have shown
cortical thinning or reduced volumes of EC and hippocampus
in SCD subjects, which reflected early alterations related to AD
pathology in the SCD stage (Jessen et al., 2006; Saykin et al.,
2006; Meiberth et al., 2015; Ryu et al., 2017; Zhao et al., 2019).

Similar to our findings, these studies also did not find significant
EC or hippocampal volumetry differences between controls and
SCD subjects (Selnes et al., 2012; Hong et al., 2016; Ryu et al.,
2017). Factors such as SCD definition, recruitment site, and
calculation methods may contribute to the discrepant results.
Notably, the SCD participants in the present study may be in
a relatively earlier phase of SCD, while the SCD cohorts in
previous studies showing remarkable EC or hippocampal atrophy
may be representative of a later phase of SCD that is closer
to MCI.

Since the SCD cohort in the present study showed volume
reductions in the Ch4p subfield of BF while comparable EC
and hippocampal volumes with the controls, we speculated
that reduced BF volumes might have an advantage over EC
or hippocampal atrophy as sensitive imaging markers for the
detection of potential AD patients. However, since no pathology
biomarkers and no follow-up data were available, the conclusion
that cholinergic degeneration of the BF precedes neurofibrillary
tangles or amyloid deposits in the EC and hippocampus in the
initial stage of AD should be made with caution. In line with
previous studies (Kerbler et al., 2015a,b)(Kerbler et al., 2015a,b),
the positive relationships between BF and EC and hippocampal
volumetry observed in the whole cohort and the SCD group
may suggest covariation of these pathological processes, which
remains to be further validated by studies with AD pathology
biomarkers and more accurate volumetric methods.

BF Atrophy, Especially in the Ch4p

Subfield, Contributed to Allocentric

Disorientation in SCD Subjects
In the whole cohort, greater BF and Ch4p volumes were
associated with better allocentric navigation performance.
Studies in rats have revealed the role of cholinergic neurons
in the posterior BF in visuospatial attention during feature
binding (Botly and De Rosa, 2012). Furthermore, cholinesterase
inhibitors have been reported to increase the selectivity of neural
responses during visual working memory encoding in humans,
which are crucial for allocentric navigation (Furey et al., 2000).
Our findings were consistent with previous studies in that greater
BF volumes predicted better allocentric navigation ability.

In the SCD group, the significant correlations between total
BF and Ch4p volumes and allocentric errors suggested that
BF degeneration, especially in the Ch4p subfield, contributes
to allocentric disorientation in SCD subjects. Previous studies
have demonstrated marked correlations between allocentric
performance and anterior BF volumes, which covered Ch1-3
and the anterior region of Ch4, while no significant correlations
between egocentric performance and BF volumes were found in
AD dementia patients (Kerbler et al., 2015b). However, we did
not observe significant Ch1-2 and Ch3 volume reductions in the
SCD group, indicating that the allocentric disorientationmay not
be due to Ch1-3 atrophy in the preclinical stage. Previous studies
also suggested that AD-related neurodegenerative changes in
the BF may lead to less effective allocentric processing and
increased reliance on egocentric representations in the early
clinical stages of AD (Parizkova et al., 2018). Furthermore, mild
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AD patients treated with cholinesterase inhibitors demonstrated
improved delayed allocentric performance after 3 months (Hort
et al., 2014). Our findings provide additional evidence that
Ch4p atrophy contributes to allocentric navigation deficits in
the SCD stage independent of hippocampal atrophy and have
implications for the potential use of the SN test for prognostic
evaluation of drugs targeting the cholinergic system in preclinical
AD patients.

The Ch4 region mainly projects to the medial frontal,
cingulate, retrosplenial, and visual cortices (Solari and Hangya,
2018). The medial frontal cortex has been implicated in
the upstream processing of spatial memory (Ito, 2018). The
retrosplenial cortex has been identified as crucial for allocentric
navigation and the flexible transition between egocentric
representations and allocentric representations (Vann et al.,
2009). Ch4p atrophy may lead to disrupted projections from
the BF to the medial frontal cortex and retrosplenial cortex
and thus subsequent allocentric deficits. Although Ch4 also
projects to the posterior parietal cortex (PPC), which mainly
contributes to egocentric route planning, we did not observe
significant correlations between Ch4p volumes and egocentric
performance. We speculated that the Ch4-PPC cholinergic
neurons were insusceptible to the earliest AD-related alterations
and thus did not predict egocentric deficits in the SCD
stage. Longitudinal studies with direct detection of functional
assessment of cholinergic activity rather than mere BF volumetry
are needed to further elucidate these speculations.

Neurons in Ch4p also project to the adjacent EC (Mesulam
et al., 1983; Parizkova et al., 2018). We observed marked
associations between total and left EC volumes and allocentric
performance in the SCD group. The EC, particularly the
medial part, processes self-motion generated and environmental
landmark orienting signals to create an allocentric representation
(Wang et al., 2020). In addition, themedial EC contains grid cells,
which encode spatial information to form a cognitive map critical
for allocentric strategies. Critically, young adults at genetic
risk of AD (APOE ε4 carriers) exhibited reduced grid-cell-like
representations and altered SN behavior in a virtual arena (Kunz
et al., 2015). No significant associations between EC volumetry
and navigation performance were detected either in the whole
cohort or in the NC group. Therefore, we speculated that
the negative relationships between EC volumes and allocentric
errors did not represent a normal aging process but an SCD-
related covariation.

The SCD vs. NC group difference may also modulate
the relationship between BF and EC volumes and navigation
behavior, with greater volume predicting better performance
being more evident in the SCD group. These findings highlighted
that stage specificity should be taken into consideration while
investigating the associations between brain measures and
behavior in AD-related studies (Qing et al., 2017).

LIMITATIONS

This study has some limitations. First, we conducted this
cross-sectional study in a small cohort, which was mainly

composed of female subjects; thus, enlarging the sample size,
increasing the number of male participants, and collecting
follow-up data is necessary for our future studies. Second,
the SN test was performed on the computer, which might be
difficult for participants with no computer experience, although
the skill demands were relatively basic. Notably, although the
computerized SN test has been suggested highly associated with
the real-space SN test (Hort et al., 2007), we need to examine
SN ability in virtual reality or real space in our future study
to make the present findings more convincing (Coughlan et al.,
2018). Third, since preclinical AD is a designation for individuals
who exhibit pathological amyloid-β and tau deposits, it is critical
to collect data on these biomarkers and direct evidence of
cholinergic neurodegeneration in our future research, which
may benefit a better understanding of the directionality between
reports of SCD and BF atrophy. Further, a recent study has
reported the effects of APOE ε4 on navigation (Coughlan et al.,
2020), thus in our future study with a larger sample size, we
need to regress out the potential effects of APOE genotype.
Last, a more sophisticated EC mask containing subregions is
needed, since the posteromedial part of the EC was believed to
be more relevant to SN than the anterolateral part (Howett et al.,
2019). Longitudinal studies with large cohorts, novel navigation
paradigms, and sophisticated segmentation methods are needed
for the systemic clarification of the neural basis underlying spatial
deficits in SCD individuals in the future.

CONCLUSION

In the present study, we observed spatial disorientation in the
SCD subjects, which may serve as a promising biomarker for
the early detection of potential AD patients and indicate future
cognitive deterioration. Furthermore, the volume reductions in
the Ch4p subfield of BF suggested the structural neural basis for
allocentric navigation deficits in the SCD stage. Our findings may
provide novel insights into the early diagnosis and prognostic
evaluation of subjects at higher risk of incipient AD.
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Supplementary Figure 1 | Correlations between spatial navigation distance

errors and cognitive variables in the whole cohort. AEN, mixed alloegocentric

navigation; EN, egocentric navigation; AN, allocentric navigation; DAN, delayed

allocentric navigation; MMSE, Mini-mental state examination; SCD-Q, subjective

cognitive decline questionnaire; AVLT, auditory verbal learning test; ROCF,

Rey-Osterrieth complex figure; TMT-A, trail making test part A; TMT-B, trail making

test part B; AFT, animal fluency test; BNT, Boston naming test; CDT, clock

drawing test; SDMT, symbol digit modalities test. ∗p < 0.05;
∗∗

p < 0.01;
∗∗∗

p <

0.001. Findings were adjusted for age, gender, and years of education.

Supplementary Figure 2 | Correlations between basal forebrain (BF) and

entorhinal cortex (EC) volumes. NC, normal control; SCD, subjective cognitive

decline. P-values were adjusted for age, gender, years of education, and total

intracranial volume.

Supplementary Figure 3 | Correlations between basal forebrain (BF) and

hippocampal (HP) volumes. NC, normal control; SCD, subjective cognitive decline.

P-values were adjusted for age, gender, years of education, and total

intracranial volume.

Supplementary Figure 4 | Comparisons of the correlations between basal

forebrain (BF) and entorhinal cortex (EC) volumetry and spatial navigation distance

errors between the subjective cognitive decline (SCD) and normal control (NC)

groups. AN, allocentric navigation. P-values were adjusted for age, gender, years

of education, total intracranial volume, and hippocampal volume.

Supplementary Table 1 | Comparisons of navigation distance errors between

egocentric and allocentric strategies.Average distance errors (in pixels) in

egocentric navigation (EN) and allocentric navigation (AN) subtests within the

whole cohort, normal control (NC), and subjective cognitive decline (SCD) groups.

Values are the mean ± SD. ∗p < 0.05.

Supplementary Table 2 | Correlations between total EC and HP volumes and BF

volumes.BF, basal forebrain; EC, entorhinal cortex; HP, hippocampus; NC, normal

control; SCD, subjective cognitive decline. ∗p < 0.05. P values were adjusted for

age, gender, years of education, and total intracranial volume.

Supplementary Table 3 | Correlations between BF and EC volumetry and

navigation distance errors in the whole cohort.AEN, alloegocentric navigation; EN,

egocentric navigation; AN, allocentric navigation; DAN, delayed allocentric

navigation; BF, basal forebrain; EC, entorhinal cortex. ∗p < 0.05. P values were

adjusted for age, gender, years of education, total intracranial volume, and

hippocampal volume.

Supplementary Table 4 | Correlations between BF and EC volumetry and

navigation distance errors in the SCD group.SCD, subjective cognitive decline;

AEN, alloegocentric navigation; EN, egocentric navigation; AN, allocentric

navigation; DAN, delayed allocentric navigation; BF, basal forebrain; EC, entorhinal

cortex. ∗p < 0.05. P values were adjusted for age, gender, years of education,

total intracranial volume, and hippocampal volume.

Supplementary Table 5 | Correlations between BF and EC volumetry and

navigation distance errors in the NC group. NC, normal control; AEN,

alloegocentric navigation; EN, egocentric navigation; AN, allocentric navigation;

DAN, delayed allocentric navigation; BF, basal forebrain; EC, entorhinal cortex. P

values were adjusted for age, gender, years of education, total intracranial volume,

and hippocampal volume.

Supplementary Box 1 | Subjective cognitive decline questionnaire.
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Objective: To investigate variation in the characteristics of regional cerebral blood flow

(rCBF), brain activity, and intrinsic functional connectivity (FC) across the Alzheimer’s

disease spectrum (ADS).

Methods: The study recruited 20 individuals in each of the following categories:

Alzheimer’s disease (AD), mild cognitive impairment (MCI), subjective cognitive decline

(SCD), and healthy control (HC). All participants completed the 3.0T resting-state

functional MRI (rs-fMRI) and arterial spin labeling scans in addition to neuropsychological

tests. Additionally, the normalized CBF, regional homogeneity (ReHo), and amplitude

of low-frequency fluctuation (ALFF) of individual subjects were compared in the ADS.

Moreover, the changes in intrinsic FC were investigated across the ADS using the

abnormal rCBF regions as seeds and behavioral correlations. Finally, a support-vector

classifier model of machine learning was used to distinguish individuals with ADS

from HC.

Results: Compared to the HC subjects, patients with AD showed the poorest level of

rCBF in the left precuneus (LPCUN) and right middle frontal gyrus (RMFG) among all

participants. In addition, there was a significant decrease in the ALFF in the bilateral

posterior cingulate cortex (PCC) and ReHo in the right PCC. Moreover, RMFG- and

LPCUN-based FC analysis revealed that the altered FCs were primarily located in the

posterior brain regions. Finally, a combination of altered rCBF, ALFF, and ReHo in

posterior cingulate cortex/precuneus (PCC/PCUN) showed a better ability to differentiate

ADS from HC, AD from SCD and MCI, but not MCI from SCD.

Conclusions: The study demonstrated the significance of an altered rCBF and

brain activity in the early stages of ADS. These findings, therefore, present a potential

diagnostic neuroimaging-based biomarker in ADS. Additionally, the study provides a

better understanding of the pathophysiology of AD.

Keywords: Alzheimer’s disease, arterial spin labeling, resting-state functional MRI, regional homogeneity, cerebral

blood flow, amplitude of low frequency fluctuation
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INTRODUCTION

Alzheimer’s disease (AD) is one of the most important public
health burdens worldwide. Notably, constant frustrations in drug
development against the disease revealed the complexity of the
pathogenic mechanism of AD. This, therefore, suggested that a
more comprehensive study of specific neurobiological changes
should be performed across the Alzheimer’s disease spectrum
(ADS), at both the preclinical and clinical stages. Moreover, the
search for effective biomarkers is essential for the implementation
of effective interventions before the development of significant
neuronal damage.

Multimodal MRI has extensively been applied to investigate
the abnormalities in brain structure and function in the ADS. In
addition, the estimation of medial temporal lobe atrophy (MTA)
by structural MRI (sMRI) is used as a neuroimaging biomarker in
the diagnosis of AD (Ten et al., 2017). However, the obvious brain
structure atrophy might imply the appearance of irreversible
neuronal damage in the process of AD pathophysiology.
In contrast, the resting-state functional MRI (rs-fMRI) can
detect early functional changes in the brain reflected by the
intrinsic blood-oxygen-level-dependent (BOLD) signals before
the appearance of cognitive decline and brain structural atrophy
(Galvin et al., 2011; Habib et al., 2017; Kawagoe et al., 2019).
Moreover, several brain regions, including the hippocampus
(HIP), posterior cingulate cortex (PCC), precuneus (PCUN),
prefrontal cortex (PFC), temporal lobe, and angular gyrus (ANG)
(Kawagoe et al., 2019; Xue et al., 2019; Zheng et al., 2019), have
been reported as the core hub of brain networks involved in the
pathophysiology of AD. Importantly, functional changes in the
brain are independent of and even more sensitive than brain
structure atrophy during the early stages of AD (Galvin et al.,
2011; Xie et al., 2015; Kawagoe et al., 2019).

In addition, arterial spin labeling (ASL), utilizing intravascular
water as an endogenous contrast agent, can measure regional
cerebral blood flow (rCBF) (Ma et al., 2017). Notably, several
studies consistently reported that rCBF displayed a decreasing
trend with the progression of cognitive impairment in ADS
(Binnewijzend et al., 2013; Ding et al., 2014; Trebeschi et al.,
2016; Ma et al., 2017; Li et al., 2020). Moreover, compared to
the age-matched subjects of health control (HC) and subjects of
subjective cognitive decline (SCD), subjects of the mild cognitive
impairment (MCI) and patients with AD presented decreased
perfusion in the parietal lobe, PCC/PCUN, and occipital lobe
(Binnewijzend et al., 2013; Ding et al., 2014; Trebeschi et al.,
2016; Ma et al., 2017; Duan et al., 2020). Furthermore, the
perfusion patterns identified by ASL were highly congruent with
that provided by PET (Schroeter et al., 2009; Riederer et al.,
2018; Dolui et al., 2020). PCC/PCUN, as one of the core regions
in the default mode network (DMN), has been widely reported
to be associated with a decreased rCBF, disrupted activity, and
a destructive brain network in subjects with MCI and subjects
with AD (Yoshiura et al., 2009; Sierra-Marcos, 2017; Xue et al.,
2019). Notably, functional abnormalities of PCC/PCUN were
also associated with the increased amyloid burden and decreased
hippocampal volume (Khan et al., 2020). Additionally, a recent
study, which explored the correlation between an altered rCBF

and brain function in AD, revealed that the combination of
ASL and the amplitude of low-frequency fluctuations (ALFF)
in the PCC/PCUN could be used as a potential biomarker for
the diagnosis of AD (Zheng et al., 2019). However, whether
the integration of an altered rCBF and functional parameters
in PCC/PCUN is capable of predicting various stages of AD is
still unclear.

Therefore, the present study aimed to investigate the altered
brain perfusion and function in all phases of ADS. First,
the study measured whole-brain rCBF, regional homogeneity
(ReHo), and the ALFF in each subject through the ASL and
rs-fMRI approaches. Second, a partial correlation analysis was
performed between the altered regions of each modality image
and neuropsychological tests in ADS to obtain the behavioral
significance of these altered brain functions. Third, the study
investigated the changes in whole-brain functional connectivity
of the identified rCBF regions as a seed in the ADS. Finally, the
altered rCBF, ALFF, and ReHo in PCC/PCUN were integrated to
get an imaging biomarker for the prediction of the ADS using
a linear support vector machine (SVM) based on the machine
learning approach.

MATERIALS AND METHODS

Participants
Participants were recruited from media advertisements and
neurology outpatient clinics of the Affiliated Zhongda Hospital,
Southeast University (Nanjing, China). All the subjects and their
relatives were then provided with all relevant details before
signing a written informed consent to participate in the study.
A total of 80 Han Chinese individuals from eastern China were
included in the study. Additionally, the participants underwent
a full neuropsychological test battery, physical examination,
blood tests, and a multi-modal MRI brain scan. This study was
approved by the Research Ethics Committee of the Affiliated
Zhongda Hospital, Southeast University (Nanjing, China).

Neuropsychological Assessments
Comprehensive cognitive function assessment and neurological
examination were conducted on all the participants by two
experienced neuropsychiatrists. The items specifically included
activities of daily living (ADL), the Hamilton Depression Scale
(HAMD), the Hachinski Ischemic Scale (HIS), the Mini-Mental
State Examination (MMSE), and additional tests that covered
the four previously characterized cognitive domains, namely:
memory (episodic memory), information processing speed,
visuospatial function, and executive function. In addition,
memory tests included the Auditory Verbal Learning Test-
20-min-Delayed Recall (AVLT-20-min-DR), Logical Memory
Test-20-min-Delayed Recall (LMT-20-min-DR), and the
Rey–Osterrieth Complex Figure Test-20-min-Delayed Recall
(ROCFT-20-min-DR). On the other hand, the information
processing speed was measured using the Symbol Digit
Modalities Test (DSST), Trail Making Tests-A (TMT-A), and the
Stroop Color andWord Test A and B. Moreover, the visuospatial
function domain included the Clock Drawing Test (CDT) and
the ROCFT. Additionally, the executive function domain was
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measured using the Stroop Color and Word Test C, the Digit
Span Test (DST), the Verbal Fluency Test (VFT), the Trail
Making Tests-B (TMT-B), and the Semantic Similarity Test (Shi
et al., 2019). Finally, the raw scores of each test were transformed
into z-scores using the mean and SD in order to calculate the
composite score of each cognitive domain (Xie et al., 2012).

Inclusion and Exclusion Criteria
All subjects were independently evaluated and diagnosed by
two experienced neuropsychiatrists. Participants were required to
meet the following criteria: (1) 55–85 years old, (2) educational
years ≥8, (3) right-handed, and (4) should have been from the
Han Chinese population. In addition, the inclusion criteria for
HC contained: (1) no memory complaints and normal in ADL,
(2) all neuropsychological tests were within the normal range,
and (3) no abnormal findings in routine brain MRI (Dubois
et al., 2014; Yan et al., 2018). On the other hand, the eligibility
criteria for SCD contained: (1) frequent complaints of memory
problems; (2) normal neuropsychological performance of age-
and education-matched norms; and (3) lack of impairments
in the ADL (Dubois et al., 2014; Yan et al., 2018). Moreover,
the inclusion criteria for MCI contained: (1) complaints of
memory impairment for more than 3 months; (2) MMSE score
≥24 and HAMD ≤7; (3) objective impairment in at least one
cognitive domain, AVLT-20-min-DR score within≤1.5 SD of the
same age- and education-adjusted norms (cut-off of ≤4 correct
responses on 12 items for subjects); and (4) no dementia (Dunn
et al., 2014; Shi et al., 2019). The clinical diagnosis of AD was
based on the criteria by the National Institute of Neurological
and Communicative Disorders and Stroke and the Alzheimer’s
Disease and Related Disorders Association (NINCDS-ADRDA).
They included (1) a clear-cut history of worsening cognition over
6months; (2)MMSE score<24; (3) impairments in the ADL; and
(4) dementia (McKhann et al., 2011; Arevalo-Rodriguez et al.,
2015).

On the other hand, the exclusion criteria were as follows: (1)
history of serious neurological and psychiatric diseases including
major depressive disorders, schizophrenia, hydrocephalus,
significant cerebrovascular disorders, and brain trauma; (2)
systemic illnesses, such as uncontrolled hypertension, diabetes,
abnormalities in the thyroid hormone, folic acid levels, vitamin
B12, or significant liver and kidney diseases; and (3) the inability
to undergo an MRI scan (Xie et al., 2012; Shi et al., 2019).

Acquisition of MRI Data
All MRI data was obtained using the Siemens Verio 3Tesla MRI
Scanner with an 8-channel head-coil. In addition, the rs-fMRI
images were obtained using the following parameters: 240 time
points, repetition time (TR)= 2,000ms, echo time (TE)= 25ms,
flip angle = 90◦, number of slices = 36, slice thickness = 4mm,
spatial resolution = 3.75 × 3.75 × 4 mm3, acquisition matrix =
64× 64, and field of view (FOV)= 240× 240mm2. Additionally,
the 3D magnetization-prepared rapid gradient echo (MP-RAGE)
were acquired to get the T1-weighted images with the following
data parameters: TR = 1,900ms, TE = 2.48ms, slice thickness
= 1mm, FA = 90◦, FOV = 256 × 256mm, gap = 0mm, and
number of slices = 176. Moreover, the ASL data was obtained
using the following parameters: TI1 = 600ms, TI2 = 1.6 s, flip

angle = 90◦, number of slices = 27, slice thickness = 4.0mm,
TR = 4 s, TE = 12ms, FOV = 220 × 220 mm2, and matrix
size= 64× 64.

Data Pre-processing
SPM8 software (http://www.fil.ion.ucl.ac.uk/spm) was used to
analyze the T1-weighted and ASL images. First, the T1-weighted
images were segmented into three parts [cerebrospinal fluid
(CSF), gray matter (GM), and white matter] using the VBM8
toolbox (http://dbm.neuro.uni-jena.de/wordpress/vbm/). Out of
these, the segmented GM volume was normalized and regressed
out as a covariate to control the effects of GM volume
on the analysis of rCBF, ALFF, ReHo, and FC. Thereafter,
deformation matrices were used to co-register the ASL images
to the corresponding native GM images, which were spatially
normalized to the Montreal Neurological Institute (MNI) space.
During spatial normalization, the ASL images were resampled
into 2 × 2 × 2 mm3 voxel size. Finally, the resulting ASL images
were smoothened using an isotropic 6mm Gaussian filter for
subsequent multiple comparison analysis.

Additionally, Data Processing & Analysis for Brain Imaging
(DPABI, http://www.rfmri.org) was used to perform ALFF,
ReHo, and seed-based FC analysis on the rs-fMRI images (Yan
et al., 2016). Briefly, the first 10 volumes for each subject were
removed in case of possible instability in the rs-fMRI signal. The
remaining 230 points in time were then corrected for timing
differences before adopting the Friston 24-parameter model to
regress out the effects of head motion from realignment (Qi
et al., 2020). All subjects with cumulative translation and rotation
of head motion were <2mm or 2◦. Thereafter, the original
space was registered to the MNI space with a resampled voxel
size of 3mm isotropic by using the DARTEL templates created
during the preprocessing of T1-weighted images (Ashburner,
2007), which could alleviate the interference from different
brain structures between subjects. Following this, the normalized
images were smoothed with a 6 × 6 × 6mm Gaussian kernel
to reduce variation. The effects of confounding factors were
then removed and they included the global mean signal, CSF
signal, and white matter signal (Zheng et al., 2019). Finally,
the previously generated images were filtered between 0.01 and
0.08Hz so as to control noise interferences.

Moreover, a seed-based connectivity analysis was adopted to
investigate FC changes in the ADS. Regions showing significant
differences in rCBF among the groups were selected as regions
of interest (ROIs). The mean time series of the seed regions was
extracted for each participant and correlated with each voxel of
the whole brain to obtain the seed-based FC maps, which were
then transformed to z-maps based on the Fisher z-transformation
(Waltz et al., 2013; Wang et al., 2019).

Statistical Analyses
The analysis of variance (ANOVA) and chi-square tests were used
for demographic characteristics. Additionally, the mixed analysis
of covariance (ANCOVA) was used to calculate differences in
clinical scores and images among subjects (p < 0.05, SPSS
20.0) after controlling for age, gender, and education. For image
data analysis (voxel-wised ANCOVA), GM volume, age, and
education were controlled as covariates of no interest, and the
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Gaussian random field (GRF) theory was used for multiple
comparison correction (cluster level p < 0.05, voxel-level p <

0.001). Post hoc analysis was also performed with the Bonferroni
correction to evaluate differences between the four groups (p
< 0.05).

Thereafter, a partial correlation analysis was used to
investigate relationships between the behavioral scores and the
altered rCBF, functional activity, and connectivity in all the
subjects, after controlling for age, gender, and education as
nuisance covariates (p < 0.05/5= 0.01).

Finally, an SVM model based on the machine learning
approach was adopted to obtain an imaging biomarker for
the classification of the ADS by integrating the altered rCBF,
ALFF, and ReHo in specific regions. Briefly, we used an SVM
package, which was built in MATLAB, the LIBSVM toolbox
to get optimal classifiers and test the power of classification
(Pirooznia and Deng, 2006). The mean values of PCC/PCUN
that showed significant group differences in rCBF, ALFF, and
ReHo were employed as input features, which were all based
on voxel-wise measures. Due to our limited sample size, the
leave-one-out cross-validation (LOOCV) was used to quantify
the power of classification (Wee et al., 2011). At last, receiver
operating characteristic (ROC) curves were utilized to assess the
performance of the classifier using the results from the LOOCV
data. The classification performance was manifested at the area
under the ROC curve (AUC), and the larger the AUC, the
better the performance. Detailed information can be found in the
Supplementary Material.

RESULTS

Demographic and Neuropsychological

Tests
Table 1, Supplementary Table 1, and Supplementary Figure 1

show the main demographic and clinical scores of all the

subjects. There were no significant differences in age, gender,
and education, as well as HAMD and HIS scores (p > 0.05),
among the subjects. However, there were obvious differences
in the MMSE, ADL, and composite z-scores of each cognitive
domain between AD and the other three groups. Post hoc
analysis revealed that the AD groups showed the worst behavioral
performance when compared with the other three groups. In
addition, more importantly, the four groups showed significant
differences with each other in the episodic memory scores which
decreased with disease severity (i.e., HC > SCD > MCI > AD).

Differences in Brain rCBF in the Four

Groups
The voxel-wise ASL analysis showed that the altered rCBF was
primarily located in the left PCUN (LPCUN) and the right
middle frontal gyrus (MFG) in the four groups (Figure 1A).
In addition, post hoc analysis indicated that patients with AD
suffered the most severe CBF loss in both altered brain regions
compared to the other three groups (Figure 1B). Figure 1C

shows the correlations between the different brain rCBF regions
and clinical tests in the SCD, MCI, and AD groups. The rCBF
in the LPCUN showed a clear positive association with MMSE
(R2 = 0.298, p < 0.001), episodic memory (R2 = 0.125, p =

0.006), information processing speed (R2 = 0.150, p= 0.002), and
executive function (R2 = 0.266, p < 0.001). However, it was only
related to MMSE (R2 = 0.160, p = 0.002) and episodic memory
(R2 = 0.122, p = 0.006) (adjusted p-values were < 0.01) in the
right MFG. Notably, the higher the neuropsychological scores,
the higher the rCBF value was in these regions of the brain.

Altered Brain Activities Among Groups
Thereafter, the study measured intrinsic brain activity in each
region using ALFF and ReHo (Figures 2, 3). Significant changes
in ALFF were shown in the bilateral PCC, LPCUN, and left
paracentral lobule (PCL) as shown in Figure 2A. Additionally,

TABLE 1 | Comparison of demographic, clinical characteristics, and cognitive function in all subjects.

HC (n = 20) SCD (n = 20) MCI (n = 20) AD (n = 20) p-Value

Age (years) 70.75 ± 5.37 68.60 ± 7.30 71.95 ± 5.93 73.00 ± 6.03 0.144

Gender (F/M) 8/12 16/4 12/8 10/10 0.067†

Education (years) 13.38 ± 2.89 12.35 ± 3.63 11.40 ± 3.73 10.75 ± 3.52 0.096

HAMD scores 0.50 ± 0.89 2.40 ± 3.96 2.85 ± 2.96 2.55 ± 3.46 0.176

HIS scores 1.75 ± 0.85 1.05 ± 1.32 1.60 ± 1.35 1.70 ± 1.26 0.459

ADL scores 20.00 ± 0.00 20.10 ± 0.45 20.15 ± 0.37 26.45 ± 7.20cef <0.001

MMSE scores 28.60 ± 1.19 28.80 ± 1.28 26.95 ± 2.09 19.60 ± 3.27cef <0.001

Composite z-scores of each cognitive domain

Episodic memory 2.75 ± 1.27 1.37 ± 1.86a −1.51 ± 1.16bd −2.85 ± 0.94cef <0.001

Visuospatial function 0.64 ± 0.66 0.50 ± 1.16 0.13 ± 1.20 −1.19 ± 2.57ef 0.002

Information processing speed 2.46 ± 2.31 1.16 ± 2.23 0.32 ± 2.83 −4.10 ± 2.71cef <0.001

Executive function 2.49 ± 1.79 0.84 ± 1.98 0.62 ± 1.92b −4.35 ± 2.61cef <0.001

The values of p were obtained from the one-way ANOVA (age and education) and the ANCOVA (controlled for age, gender, and education) analysis, while the
†
p-value was obtained

from the χ2 test. Data are presented as mean ± SD. Significant differences were found in MMSE, ADL, and four cognitive domains among all the groups. Post hoc analysis (Bonferroni

correction) further revealed the source of ANCOVA differences: (a) HC vs. SCD; (b) HC vs. MCI; (c) HC vs. AD; (d) SCD vs. MCI; (e) SCD vs. AD; (f) MCI vs. AD. HC, Healthy Control;

SCD, Subjective Cognitive Decline; MCI, Mild Cognitive Impairment; AD, Alzheimer’s Disease; F/M, Female/Male; MMSE, Mini-Mental State Examination; ADL, Activities of Daily Living;

HAMD, Hamilton Depression Scale; HIS, Hachinski Ischemic Scale.
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FIGURE 1 | Group-level differences in rCBF among all subjects and behavioral significance. (A) The result revealed altered rCBF regions among the groups including

LPCUN and RMFG (GRF-corrected, cluster level p < 0.05, voxel-level p < 0.001). The color bar represents the z-scores. (B) Post hoc analysis of the altered rCBF in

the LPCUN and RMFG regions in all the groups (Bonferroni correction, p < 0.05). Box plots show the 25 percentile, the median, and the 75 percentile, and whisker

plots are in mean ± SD. *Represents statistical difference (p < 0.05). (C) Significant correlations between the altered rCBF and cognitive performance in the SCD,

MCI, and AD groups after controlling the effects of age, gender, education, and GM volumes as covariates of no interest (p < 0.01). AD, Alzheimer’s Disease; MCI,

Mild Cognitive Impairment; SCD, Subjective Cognitive Decline; HC, Healthy Control; MMSE, Mini-Mental State Examination; rCBF, Regional Cerebral Blood Flow;

LPCUN, Left Precuneus; RMFG, Right Middle Frontal Gyrus; GM, Gray Matter; GRF, Gaussian Random Field.

ReHo was significantly altered in the bilateral PCUN, left inferior
parietal (IPL), left middle temporal gyrus (MTG), and right
superior occipital gyrus (SOG) among the groups (Figure 3A).
Moreover, the groups with the disease showed decreased ALFF
and ReHo compared to the HC group (Figures 2B, 3B). It
is also worth noting that ReHo significantly increased in the
MCI group in most of the altered brain regions except for
the right PCUN (Figure 3B). Furthermore, partial correlation

analysis revealed the relationship between brain activity and
the neuropsychological scores (adjusted p-values were < 0.01)
as shown in Figures 2C, 3C. The results revealed a negative
correlation between the ALFF in the LPCL and MMSE (R2 =

0.121, p = 0.006), as indicated in Figure 2C. In contrast, ReHo
was positively associated with MMSE (LPCUN: R2 = 0.229, p <

0.001; LMTG: R2 = 0.191, p = 0.001), information processing
speed (LPCUN: R2 = 0.254, p < 0.001; LMTG: R2 = 0.147, p =
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FIGURE 2 | Group-level differences in ALFF among the subjects and behavioral significance. (A) The results showed the altered ALFF regions among the groups

including LPCUN, LPCL, and LPCG (GRF-corrected, cluster level p < 0.05, voxel-level p < 0.001). Color bars represent the z-scores. (B) Post hoc analysis for the

altered ALFF regions in all the groups (Bonferroni correction, p < 0.05). Box plots show the 25 percentile, the median, and the 75 percentile, and whisker plots are in

mean ± SD. *Represents statistical difference (p < 0.05). (C) Significant correlations between the altered ALFF and neuropsychological tests in the SCD, MCI, and AD

groups after controlling the effects of age, gender, education, and GM volumes as covariates of no interest (p < 0.01). AD, Alzheimer’s Disease; MCI, Mild Cognitive

Impairment; SCD, Subjective Cognitive Decline; HC, Healthy Control; MMSE, Mini-Mental State Examination; ALFF, Amplitude of Low-Frequency Fluctuation; LPCUN,

Left Precuneus; LPCL, Left Paracentral Lobule; BPCG, Bilateral Posterior Cingulate Gyrus; GM, Gray Matter; GRF, Gaussian Random Field.

0.002), and executive function (LPCUN: R2 = 0.266, p < 0.001;
LMTG: R2 = 0.185, p = 0.001) in the LPCUN and left MTG as
shown in Figure 3C. Moreover, there was a significant positive
correlation between the ReHo of the LPCUN and the episodic
memory (R2 = 0.118, p= 0.007), as highlighted in Figure 3C.

Functional Connectivity Changes in the

Resting State
Using the altered rCBF regions as ROIs, the study then performed
a seed-based FC analysis (Figures 4, 5). The results showed
significant differences in the FC of RMFG with bilateral SOG,
right supramarginal gyrus (SMG), and right fusiform gyrus
(RFFG) among the groups (Figure 4A). Notably, the bilateral
SOG and right SMG showed decreased FC strength in MCI
compared to SCD, while the maximum reduction was only
observed in the AD group across all regions (Figure 4B). After
adjusting the values of p, the partial correlation analysis also
revealed that the FC strength of RMFG-RSOG significantly
affected the visuospatial function in the disease groups (R2 =

0.109, p = 0.009) (adjusted p-values are < 0.01) as shown
in Figure 4C.

Moreover, group changes were widely observed between
LPCUN and the left median cingulate, between paracingulate
gyrus (DCG) and olfactory cortex (OLF), right cuneus (RCUN),
superior temporal gyrus (STG), lingual gyrus (LING), and
FFG (Figure 5A). Interestingly, although FC was significantly
decreased in ADS compared to the HC group, patients
with AD displayed an obvious increase in all the different

regions compared to the SCD and MCI groups (Figure 5B).
Furthermore, the partial correlation analysis revealed significant
negative correlations between the FC strength of LPCUN-RCUN
and MMSE (R2 = 0.177, p = 0.001), episodic memory (R2 =

0.121, p= 0.007), and executive function (R2 = 0.131, p= 0.005)
(adjusted p-values are < 0.01) as shown in Figure 5C.

Analysis of the Altered rCBF, ALFF, and

ReHo as Biomarkers in PCC/PCUN
Finally, the altered rCBF, ALFF, and ReHo in PCC/PCUN
were used to conduct a ROC analysis. The results in
Supplementary Figure 2 show that the study was able to
differentiate all the disease groups from HC through the
classification of altered ReHo (Supplementary Figure 2B)
or ALFF (Supplementary Figure 2C) but not altered
rCBF, which could only differentiate AD from HC
(Supplementary Figure 2A). Within the disease groups,
the altered rCBF (Supplementary Figure 2D) and ReHo
(Supplementary Figure 2E) were satisfactory in their ability
to classify AD and MCI, AD, and SCD but not MCI and SCD.
However, the altered ALFF showed the worst performance
with regard to classification (Supplementary Figure 2F).
Nonetheless, a combination of altered rCBF, ALFF, and ReHo
in PCC/PCUN showed a better differentiating ability across the
AD spectrum (Figure 6). Therefore, using this classification, the
AUC was 0.978 (95% confidence intervals from 0.942 to 1.000,
p < 0.001), 0.958 (95% confidence intervals from 0.897 to 1, p
< 0.001), and 0.915 (95% confidence intervals from 0.82 to 1,
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FIGURE 3 | Group-level differences in ReHo among all the subjects and behavioral significance. (A) The results showed the altered ReHo regions among the groups,

including BPCG, LIPL, LMTG, and RSOG (GRF-corrected, cluster level p < 0.05, voxel-level p < 0.001). (B) Post hoc analysis of the altered ReHo regions in all the

groups (Bonferroni correction, p < 0.05). Box plots show the 25 percentile, the median, and the 75 percentile, and whisker plots are in mean ± SD. *Represents

statistical difference (p < 0.05). (C) Significant correlations between the altered ReHo and neuropsychological tests in the SCD, MCI, and AD groups after controlling

the effects of age, gender, education, and GM volumes as covariates of no interest (p < 0.01). AD, Alzheimer’s Disease; MCI, Mild Cognitive Impairment; SCD,

Subjective Cognitive Decline; HC, Healthy Control; MMSE, Mini-Mental State Examination; ReHo, Regional Homogeneity; BPCG, Bilateral Posterior Cingulate Gyrus;

LIPL, Left Inferior Parietal; LMTG, Left middle Temporal gyrus; RSOG, Right Superior Occipital Gyrus; GM, Gray Matter; GRF, Gaussian Random Field.

p < 0.001) in the distinction of AD, MCI, and SCD from HC,
respectively (Figure 6A). Moreover, the AUC of the difference
between MCI and AD was 0.933 (95% confidence intervals from
0.855 to 1, p < 0.001) while that of SCD and AD was 0.86 (95%
confidence intervals from 0.744 to 0.977, p < 0.001). However,
the combination displayed a poor ability to differentiate MCI
from SCD (AUC value = 0.623, 95% confidence intervals from
0.445 to 0.8, p= 0.224) as shown in Figure 6B.

DISCUSSION

This study aimed to explore the changing patterns in rCBF,
brain function, and the behavioral significance across the ADS.
First, the results showed that the rCBF in LPCUN and RMFG
of the AD group decreased significantly compared to the other

three groups. It also had a significant positive association with
most cognitive tests except for visuospatial function. Second,
the results revealed that the aberrant activity and function were
mainly in the posterior brain regions. Compared to the HC
group, the ALFF in LPCC/PCUN and the LPCL as well as
ReHo in RPCC and RSOG showed an obvious decrease across
the disease groups. In addition, ReHo in LMTG, LPCC, and
LIPL of the MCI group was higher than that of the AD group.
Furthermore, the partial correlation analysis revealed that there
was a negative association between ALFF in the LPCL and the
MMSE scores, while ReHo in LPCC and LMTG had a positive
association with most of the behavioral tests. Additionally,
it was shown that the identified regions of the brain had a
significant dysfunction in FC andwere closely related to cognitive
performance. Finally, a combination of altered rCBF, ALFF,
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FIGURE 4 | Group-level differences in RMFG-based functional connectivity among the subjects and behavioral significance. (A) The results showed the altered FC

brain regions among the groups including BSOG, RITG, and RSMG (GRF-corrected, cluster level p < 0.05, voxel-level p < 0.001). (B) Post hoc analysis of the altered

FC regions in all the groups (Bonferroni correction, p < 0.05). Box plots show the 25 percentile, the median, and the 75 percentile, whisker plots are in mean ± SD.

*Indicates statistical difference (p < 0.05). (C) Significant correlations between the altered FC and cognitive performance in the SCD, MCI, and AD groups (p < 0.01)

after controlling the effects of age, gender, education, and GM volumes as covariates of no interest (p < 0.01). AD, Alzheimer’s Disease; MCI, Mild Cognitive

Impairment; SCD, Subjective Cognitive Decline; HC, Healthy Control; FC, Function Connectivity; BSOG, Bilateral Superior Occipital Gyrus; RFFG, Right Fusiform

Gyrus; RSMG, Right Supramarginal Gyrus; GM, Gray Matter; GRF, Gaussian Random Field.

and ReHo in PCC/PCUN showed a better differentiating ability
across the ADS.

Differences in rCBF in the ADS
In this study, there was a significant decrease in rCBF in the
LPCUN and the RMFC of the AD group. In addition, rCBF
was positively associated with cognitive function, consistent with
the previous studies (Johnson et al., 2005; Alexopoulos et al.,
2012; Hays et al., 2016; Kawagoe et al., 2019; Thomas et al.,
2019; Duan et al., 2020). Additionally, a community-based cohort
study showed that higher levels of rCBF were associated with
better attention, executive function, and memory (Leeuwis et al.,
2018). A previous study also showed that the lower the level
of rCBF, the worse the cognitive performance was in patients
with AD (Leeuwis et al., 2017). Notably, the DMN has two
core regions, namely the MFG and the PCUN. The MFG is
mainly related to attention, working memory, and regulation
of emotions (Seminowicz and Moayedi, 2017), while PCUN is
primarily involved in the retrieval of episodic memory, self-
consciousness, and processing of the self-relevant effect (Zhang
and Li, 2012). Moreover, necropsy revealed that MFG and PCUN
were susceptible to Aβ deposition and hypoperfusion in the
early stages of AD (Thomas et al., 2015; Miners et al., 2016).
According to a previous report, a decrease in CBF starts from
the PCUN and propagates along the PCC to other regions of
the brain. More importantly, hypoperfusion in these regions
showed no significant association with the distribution of brain

atrophy in the early onset of familial AD (Benzinger et al., 2013).
However, similar hypoperfusion was identified in the late-onset
sporadic AD and showed the most pronounced decrease of CBF
in PCUN and PCC, as well as in the prefrontal, parietal, and
occipital cortices (Binnewijzend et al., 2013). Moreover, CBF
in the prefrontal cortex was shown to be highly sensitive in
the prediction of future cognitive performance (De Vis et al.,
2018), while decreased CBF in the PCUN was considered to
be a marker of severity in cognitive impairment (Binnewijzend
et al., 2013). Intriguingly, aberrant local perfusion in the brain
revealed that neurovascular dysfunction is commonly present
in ADS. This also implied that the reduction in rCBF may be
closely related to the progression of pathological processes in
AD (Leeuwis et al., 2017), forming a vicious circle. Notably,
decreased brain perfusion reduces the clearance of Aβ, leading
to the accumulation of amyloid plaques and neurofibrillary
tangles, which further impair vascular function and exacerbate
the reduction of CBF (Popa-Wagner et al., 2015). As such, the
altered rCBF may interfere with brain function and aggravate
cognitive decline in the ADS.

Changes in Brain Activity and FC Among

the Subjects
The study identified multiple areas of the brain with decreased
activity and disrupted FC (Liu et al., 2008; Han et al., 2012;
Zhang et al., 2012; Pan et al., 2017; Min et al., 2019). Additionally,
two recent meta-analyses demonstrated that the decreased ALFF
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FIGURE 5 | Group-level differences in the LPCUN-based functional connectivity across the subjects and behavioral significance. (A) The results showed the altered

FC brain regions among the groups including LDCG, LOLF, RCUN, RSTG, RLING, and RFFG (GRF-corrected, cluster level p < 0.05, voxel-level p < 0.001). (B)

Post hoc analysis of the altered FC regions in all the groups (Bonferroni correction, p < 0.05). Box plots show the 25 percentile, the median, and the 75 percentile,

whisker plots are in mean ± SD. *Indicates statistical difference (p < 0.05). (C) Significant correlations between the altered FC and neuropsychological tests in the

SCD, MCI, and AD groups after controlling the effects of age, gender, education, and GM volumes as covariates of no interest (p < 0.01). AD, Alzheimer’s Disease;

MCI, Mild Cognitive Impairment; SCD, Subjective Cognitive Decline; HC, Healthy Control; FC, Function Connectivity; LDCG, Left Median Cingulate and Paracingulate

Gyri; LOLF, Left Olfactory Cortex; RCUN, Right Cuneus; RSTG, Right Superior Temporal Gyrus; RLING, Right Lingual Gyrus; RFFG, Right Fusiform Gyrus; GM, Gray

Matter; GRF, Gaussian Random Field.

and ReHo in patients with MCI were primarily located in the
BPCC/PCUN, bilateral frontal, left occipitotemporal cortex, and
parietal lobule compared to HC (Pan et al., 2017; Zhen et al.,
2018). In the present study, the findings showed that the altered
regions were mainly located in the posterior areas of the brain,
including the PCC/PCUN, LMTG, IPL, SOG, FFG, and LING.
These constitute parts of the DMN, the executive control network
(ECN), and the visual network (VN) (Pan et al., 2017; Zhen et al.,
2018). Moreover, numerous studies reported on the interruption
of the connectivity of DMN, ECN, and VN in MCI/AD (Bokde
et al., 2006; Sorg et al., 2007; Brier et al., 2012; Wang et al., 2015;
Joo et al., 2016; Eyler et al., 2019). It is also well-known that
visual impairment is one of the most important clinical signs
of AD and accounts for about 30% in MCI (Mapstone et al.,
2003) and up to 50% in AD (Mendola et al., 1995). Additionally,
a marked decrease in glucose metabolism was reported in the

parietal and occipital cortices of patients with AD (Pietrini et al.,
1996). Existing evidence suggests that visual impairment might
arise from the abnormal connectivity of the VN and other regions
of the brain (Bokde et al., 2006; Vannini et al., 2008; Zheng
et al., 2019). However, it is important to note that both brain
activity and FC significantly decreased as early as in SCD. This
suggests that dysregulation of brain neuronal excitability appears
before objective impairment upon formal testing and that might
be a potential biomarker (Mattson and Arumugam, 2018; Si
et al., 2020). Interestingly, the FC strength between LPCUN
and the altered regions of the brain in the AD group showed
an increasing trend compared to the SCD and MCI groups.
Moreover, there was a significant negative correlation between
the FC of LPCUN-RCUN and MMSE, episodic memory, and
executive functioning. This may have been due to the slight
global cognitive impairment in the preclinical stage of AD,
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FIGURE 6 | ROC curve from the support vector machine classifier and the general ROC model for classification of the AD spectrum. The results revealed that the

combination of altered rCBF, ALFF, and ReHo in PCC/PCUN had more power in differentiating subjects with ADS from HC (A) MCI and SCD from patients with AD but

not (B) SCD from MCI. The classification was able to differentiate disease groups from HC. Specifically, the AUC for the AD patients was 0.978 (95% confidence

intervals from 0.942 to 1.000, p < 0.001), the MCI had 0.958 (95% confidence intervals from 0.897 to 1, p < 0.001), and SCD had 0.915 (95% confidence intervals

from 0.82 to 1, p < 0.001) (A). Within disease groups, the combination showed a good ability to distinguish AD from MCI (AUC value = 0.933, 95% confidence

intervals from 0.855 to 1, p < 0.001) as well as AD from SCD (AUC value = 0.86, 95% confidence intervals from 0.744 to 0.977, p < 0.001), but not MCI from SCD

(AUC value = 0.623, 95% confidence intervals from 0.445 to 0.8, p = 0.224) (B). The blue line represents the HC and AD group, the red line represents the HC and

MCI group, the purple line represents the HC and AD group, the orange line represents the AD and MCI group, the green line represents the AD and SCD group, the

dark blue line represents the MCI and SCD group, and the gray line represents the reference. AD, Alzheimer’s Disease; MCI, Mild Cognitive Impairment; SCD,

Subjective Cognitive Decline; HC, Healthy Normal; ROC, Receiver Operating Characteristic, AUC, Area Under the Curve; ALFF, Amplitude of Low-Frequency

Fluctuation; ReHo, Regional Homogeneity.

which only manifested as decreased FC. However, the FC in
the core hub of DMN led to a compensatory rise in order to
maintain cognitive function during the progression of the disease
(Qi et al., 2010). It is noteworthy that with continued amyloid
deposition and substantial loss of neurons in the late stages of
AD, DMN gradually falls out of the compensatory mode, leading
to a severe decrease in FC (Tuovinen et al., 2016; Scherr et al.,
2019). Furthermore, the results showed that the ALFF in LPCL
had a negative association with the MMSE score. The PCL is
located in the posterior ventral region of the inferior frontal
gyrus (IFG), which is a crucial cortical node for the cognitive
control in the circuits. Additionally, with the aggravation of
cognitive impairment, the cortical motor regions in the circuits
compensate for the damaged brain function by part activation
(Zhang et al., 2020). In summary, the results suggested that there
is a significant difference in brain activity and FC across the ADS,
and the difference appears as early as in SCD. Moreover, the
difference is closely correlated with cognitive performance and
can be used as a potential imaging biomarker for monitoring
disease progression in AD.

Altered rCBF, ALFF, and ReHo as

Biomarkers in PCC/PCUN
Numerous studies have reported on the altered rCBF, the
deposition of AD pathology biomarkers, and decreased brain
function in the PCC/PCUN of AD (Benzinger et al., 2013;
Aghakhanyan et al., 2018; Zhu et al., 2019). In addition, the rCBF
was validated in a previous study as a diagnostic marker for
AD but not for preclinical AD (Zheng et al., 2019). It is well-
known that the machine learning method is widely employed
for classification in clinical research and has been used for the
prediction of AD and preclinical AD (Liu et al., 2013; Xu et al.,
2018). Therefore, using SVM, the study performed an integrated

analysis of altered rCBF, ALFF, and ReHo in PCC/PCUN as
biomarkers to uncover the differentiating power across the
AD spectrum. The results revealed that a combination of the
three measured brain functional changes in PCC/PCUN has a
better differentiating power across the ADS compared to each
parameter. Notably, the combination was able to differentiate the
disease groups from HC. Moreover, the combination displayed a
good ability to distinguish between AD and MCI, AD and SCD,
but not MCI and SCD in the disease groups. Therefore, the study
demonstrated that a combination of multimodal neuroimaging
in PCC/PCUNmight be an effective biomarker for differentiating
the ADS.

LIMITATIONS

Although the study supplemented and refined similar reports
from the past, it had a number of limitations. First, there
was no evidence of a biomarker for amyloid pathology and
genetic data. Secondly, the study was a single-center cross-
sectional study and might therefore have presented insufficient
data. Thirdly, the sample size was relatively small and some
analyses may have had insufficient power. Moving forward,
more volunteers will be recruited to participate in the study.
In addition, the study will refine the detection of pathological
markers of AD and obtain genetic data. Finally, regular follow-
up will be conducted in the future in order to further confirm
the results.

CONCLUSION

This study demonstrated obvious changes in CBF, brain activity,
and FC in the ADS, and these could appear in the early stages of
the disease. In addition, a disrupted FC, decreased CBF, and brain
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activity were associated with more serious cognitive impairment,
reflecting brain neurovascular dysfunction in ADS. Finally, the
combination of altered rCBF, ALFF, and ReHo in PCC/PCUN
proved to be a powerful tool in differentiating the ADS and is
therefore a potential neuroimaging biomarker.
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Background: Despite known associations between low blood hemoglobin level and

Alzheimer’s disease (AD) or cognitive impairment, the underlying neuropathological links

are poorly understood. We aimed to examine the relationships of blood hemoglobin levels

with in vivo AD pathologies (i.e., cerebral beta-amyloid [Aβ] deposition, tau deposition,

and AD-signature degeneration) and white matter hyperintensities (WMHs), which are

a measure of cerebrovascular injury. We also investigated the association between

hemoglobin level and cognitive performance, and then assessed whether such an

association is mediated by brain pathologies.

Methods: A total of 428 non-demented older adults underwent comprehensive

clinical assessments, hemoglobin level measurement, and multimodal brain imaging,

including Pittsburgh compound B-positron emission tomography (PET), AV-1451 PET,

fluorodeoxyglucose (FDG)-PET, and magnetic resonance imaging. Episodic memory

score and global cognition scores were also measured.

Results: A lower hemoglobin level was significantly associated with reduced

AD-signature cerebral glucose metabolism (AD-CM), but not Aβ deposition, tau

deposition, or WMH volume. A lower hemoglobin level was also significantly associated

with poorer episodic memory and global cognition scores, but such associations

disappeared when AD-CM was controlled as a covariate, indicating that AD-CM has

a moderating effect.

Conclusion: The present findings suggest that low blood hemoglobin in older adults

is associated with cognitive decline via reduced brain metabolism, which seems to be

independent of those aspects of AD-specific protein pathologies and cerebrovascular

injury that are reflected in PET and MRI measures.

Keywords: hemoglobin, anemia, Alzheimer’s disease, cerebral hypometabolism, cognitive impairment
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INTRODUCTION

Hemoglobin, a protein molecule present in red blood cells,
contributes to the oxygen-carrying capacity of blood and related
energy metabolism (Feig et al., 1971, 1972; Zauner et al., 2002;
Schechter, 2008). Anemia, characterized by a decrease in the
level of blood hemoglobin, is one of the most common blood
disorders and has been reported to increase the risk of acute
stroke (Tanne et al., 2010) and coronary heart disease (Astor
et al., 2006; Mahmoodi et al., 2007). Many human studies have
also found associations of low blood hemoglobin or anemia with
increased risk of Alzheimer’s disease (AD) (Shah et al., 2011; Faux
et al., 2014; Wolters et al., 2019) or overall dementia (Atti et al.,
2006; Hong et al., 2013; Wolters et al., 2019) and poorer cognitive
performance (Shah et al., 2011).

Despite such associations of a lower blood hemoglobin level
with AD and related cognitive impairment, the pathological
mechanisms that underlie the associations are still poorly
understood. A couple of preclinical and postmortem brain
studies indicated that hemoglobin binds beta-amyloid protein
(Aβ) and co-localizes with amyloid plaques (Oyama et al., 2000;
Wu et al., 2004). Hemoglobin was also reported to alter the Aβ

aggregation state (Chuang et al., 2012) and suppress Aβ-mediated
inflammatory reactions (Sankar et al., 2018). A recent magnetic
resonance imaging (MRI) study in a non-demented population
showed an association of low blood hemoglobin level with
altered white matter integrity and cerebral perfusion (Wolters
et al., 2019). However, as of yet, no studies have investigated
the relationship between blood hemoglobin and AD-specific
pathologies in a living human brain.

Therefore, the present study was performed to investigate
the associations between low blood hemoglobin and in vivo AD
pathologies in non-demented older adults. We first examined
the relationships of blood hemoglobin level with three AD
pathologies (i.e., cerebral Aβ deposition, tau deposition, and AD-
signature neurodegeneration) and white matter hyperintensities
(WMHs), which are a measure of cerebrovascular injury.
We then tried to examine whether the association of blood
hemoglobin with cognitive impairment is affected by brain
pathology which shows a significant relationship with lower
hemoglobin level.

MATERIALS AND METHODS

Participants
This study was part of the Korean Brain Aging Study for Early
Diagnosis and Prediction of Alzheimer’s Disease (KBASE), which
is an ongoing prospective cohort study (Byun et al., 2017). As
of February 2017, a total of 428 non-demented [289 cognitive
normal (CN) and 139 mild cognitive impairment (MCI)] older
adults between 55 and 90 years of age were enrolled in the study.
The CN group consisted of participants with a Clinical Dementia
Rating (CDR) (Morris, 1993) score of 0 and no diagnosis of
MCI or dementia. All individuals with MCI met the current
consensus criteria for amnestic MCI, which are as follows: (1)
memory complaints confirmed by an informant; (2) objective
memory impairments, (3) preserved global cognitive function;

(4) independence in functional activities; and (5) no dementia.
With regard to criterion 2, the age-, education-, and gender-
adjusted z-scores for at least one of four episodic memory
tests were < −1.0. The four memory tests were the Word
List Memory, Word List Recall, Word List Recognition, and
Constructional Recall tests, which are included in the Korean
version of the Consortium to Establish a Registry for Alzheimer’s
Disease (CERAD-K) neuropsychological battery (Lee et al.,
2004). All MCI individuals had a CDR score of 0.5. The exclusion
criteria were as follows: (1) presence of a major psychiatric
illness; (2) significant neurological (e.g., cerebrovascular disease)
or medical conditions that could affect mental function; (3)
contraindications for MRI (e.g., pacemaker or claustrophobia);
(4) illiteracy; (5) the presence of significant visual/hearing
difficulties and/or severe communication or behavioral problems
that wouldmake clinical examinations or brain scans difficult; (6)
taking an investigational drug; and (7) pregnant or breastfeeding.
The presence of any of the exclusion criteria was determined
by research clinicians that referred to laboratory examination,
MRI results, as well as clinical data collected by trained
nurses during systematic interviews of participants and their
reliable informants during the screening period. More detailed
information on the recruitment of the KBASE cohort is presented
in a previous report from our research group (Byun et al., 2017).

Clinical Assessments
All participants underwent comprehensive clinical and
neuropsychological assessments administered by trained
psychiatrists and neuropsychologists based on the KBASE
assessment protocol (Byun et al., 2017), which incorporates
the Korean version of the CERAD neuropsychological battery
(Morris et al., 1989; Lee et al., 2002, 2004). The episodic memory
score (EMS) was calculated by summing the scores of the four
episodic memory tests (i.e.,Word ListMemory,Word List Recall,
Word List Recognition, and Constructional Recall) included in
the CERAD neuropsychological battery. A CERAD total score
(TS) was generated by summing the scores of seven tests in
the CERAD neuropsychological battery including the Verbal
Fluency, modified Boston Naming Test, Word List Memory,
Constructional Praxis, Word List Recall, Word List Recognition,
and Constructional recall tests (Seo et al., 2010). EMS and TS
were selected as measures of episodic memory function and
global cognitive function, respectively. Importantly, episodic
memory decline is the earliest cognitive change observed in AD
(Howieson et al., 1997; Grober et al., 2000). The comorbidity
rates of vascular risk factors (e.g., hypertension, diabetes mellitus,
dyslipidemia, coronary heart disease, transient ischemic attack,
and stroke) were assessed based on data collected by trained
nurses during systematic interviews of participants and their
informants. A vascular risk score (VRS) was calculated based
on the number of vascular risk factors present and reported as
a percentage (Decarli et al., 2004). Body mass index (BMI) was
calculated by dividing the weight in kilograms by the square
of the height in meters. Annual income was evaluated and
categorized into three groups [below the minimum cost of living
(MCL), more than MCL but below twice the MCL, twice the
MCL or more] (http://www.law.go.kr). Regarding occupational
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complexity, we considered only the longest-held occupation and
then classified into four levels based on the skill levels described
in International Standard Classification of Occupations (http://
www.ilo.org/public/english/bureau/stat/isco/). The details of
annual income and occupational complexity were described
in Supplementary Material. Medication use within 4 weeks
(no/yes), declined food intake over the past 3 months due to
loss of appetite or swallowing difficulties (no/moderate/severe)
(Vellas et al., 1999) smoking status (never/ex-smoker/smoker),
and alcohol intake status (never/former/drinker) were also
evaluated through nurse interviews and medical record
review. To acquire accurate information, reliable informants
were interviewed.

Laboratory Tests of Blood Samples
After an overnight fast, blood samples were obtained via
venipuncture in the morning (8–9 a.m.). Hemoglobin levels
were measured using a flow cytometry method (ADVIA 2120i,
Siemens, USA). The normal ranges for hemoglobin level are
12–15.5 g/dL in women and 13–17.5 g/dL in men (Shah et al.,
2011). Serum creatinine levels weremeasured using a colorimetry
method (ADVIA 1800 Auto Analyzer, Siemens, USA). Serum
folate and vitamin B12 were measured using a radioimmunoassay
method (Gamma-counter) with a vitamin B12 [57Co] / folate
[125I] radioassay kit. Additionally, genomic DNA was extracted
from whole blood and apolipoprotein E (APOE) genotyping
was performed as previously described (Wenham et al., 1991).
APOE ε4 (APOE4) positivity was defined as the presence of at
least one ε4 allele.

Measurement of Cerebral Aβ Deposition
All participants underwent simultaneous three-dimensional
(3D) [11C] Pittsburgh compound B (PiB)-positron emission
tomography (PET) and 3D T1-weighted MRI scanning using a
3.0T Biograph mMR (PET-MR) scanner (Siemens; Washington
DC, WC, USA), in accordance with the manufacturer’s
guidelines. The details of the PiB-PET imaging acquisition and
preprocessing were described previously (Park et al., 2019). An
automatic anatomical labeling algorithm and a region-combining
method(Reiman et al., 2009) were applied to determine regions of
interest (ROIs) for characterization of PiB retention levels in the
frontal, lateral parietal, posterior cingulate-precuneus, and lateral
temporal regions. Standardized uptake value ratio (SUVR) values
for each ROI were calculated by dividing the mean value for all
voxels within each ROI by the mean cerebellar uptake value in
the same image. A global cortical ROI consisting of the four ROIs
was defined and a global Aβ retention value was generated by
dividing the mean value for all voxels of the global cortical ROI
by the mean cerebellar uptake value in the same image (Reiman
et al., 2009; Choe et al., 2014). Participants were classified as Aβ-
positive (Aβ+) if the SUVR value was > 1.4 in at least one of the
four ROIs or as Aβ-negative (Aβ-) if the SUVR value was ≤ 1.4
for all four ROIs (Reiman et al., 2009; Jack et al., 2014).

Measurement of Cerebral Tau Deposition
A subset of subjects (n = 107) underwent [18F] AV-1451
PET scans using a Biograph True point 40 PET/CT scanner

(Siemens; Washington DC, WC, USA), in accordance with the
manufacturer’s guidelines. While all the other neuroimaging
scans were performed during the baseline visit, AV-1451 PET
imaging was performed at an average of 2.6 (standard deviation
0.3) years after the baseline visit. The details of AV-1451 PET
imaging acquisition and preprocessing were described previously
(Park et al., 2019). To estimate cerebral tau deposition, we
quantified the AV-1541 SUVR of an a priori ROI of “AD-
signature regions” of tau accumulation, which was composed
of a size-weighted average of partial volume-corrected uptake
in entorhinal, amygdala, parahippocampal, fusiform, inferior
temporal, and middle temporal ROIs, in accordance with the
method used in a previous report (Jack et al., 2017). The AV-
1451 SUVR of the abovementioned ROI was used as an outcome
variable for cerebral tau deposition.

Measurement of AD-Signature

Neurodegeneration
All participants underwent [18F] fluorodeoxyglucose (FDG)-PET
imaging using the above-described PET-MR machine; the details
of FDG-PET image acquisition and preprocessing were described
previously (Park et al., 2019). AD-signature FDG ROIs that are
sensitive to the changes associated with AD, such as the angular
gyri, posterior cingulate cortex, and inferior temporal gyri (Jack
et al., 2014), were determined. AD-signature cerebral glucose
metabolism (AD-CM) was defined as the voxel-weighted mean
SUVR extracted from the AD-signature FDG ROIs.

Measurement of WMH
All participants underwent MRI scans including T1 weighted
images and fluid-attenuated inversion recovery (FLAIR) images
using the abovementioned 3.0T PET-MR machine. WMH
volume was measured though a validated automatic procedure
previously reported (Tsai et al., 2014). Briefly, the procedure
consists of 11 steps: spatial co-registration of T1 and FLAIR
images, fusion of T1 and FLAIR images, segmentation of T1
images, acquisition of transformation parameters, deformation
and acquisition of the white matter mask, acquisition of
FLAIR within the white matter mask, intensity normalization
of the masked FLAIR, nomination of candidate WMH with a
designated threshold, creation of a junctionmap, and elimination
of the junction. There were two modifications in the current
processing procedure relative to that used in the original study:
(a) an optimal threshold of 70 was applied, as it was more
suitable for our data than the threshold of 65 that was used in the
original study; and, (b) given that individuals with acute cerebral
infarcts were not enrolled in our sample, we did not use diffusion-
weighted imaging in the current automated procedure. Using the
final WMH candidate image, WMH volume was extracted in the
native space in each subject.

Statistical Analysis
To examine the relationships between hemoglobin level and
neuroimaging biomarkers, multiple logistic, and linear regression
analyses were performed as appropriate. Hemoglobin level,
an independent variable for each analysis, was first entered
as a continuous variable, and then as a stratified categorical
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TABLE 1 | Participant characteristics.

Characteristic Overall, N = 428

Age, y 70.61 (8.01)

Female, n (%) 240 (56.07)

Education, y 11.18 (4.78)

APOE4 positivity, n (%) 99 (23.13)

Clinical diagnosis, CN, % 289 (67.52)

MMSE 25.45 (3.47)

Hemoglobin level

Overall hemoglobin, g/dL 13.87 (1.30)

Categorized hemoglobin

High, n (%) 2 (0.05)

High-normal, n (%) 181 (42.89)

Low-normal, n (%) 203 (47.43)

Anemia, n (%) 42 (9.81)

Red cell distribution width 12.89 (0.83)

Hematocrit 42.36 (3.87)

Iron (n = 376) 118.65 (39.14)

Transferrin (n = 376) 271.77 (40.65)

Ferritin (n = 376) 121.84 (92.87)

Body mass index, kg/m2 24.37 (3.03)

Vascular risk score, % 17.76 (16.33)

Annual income status

<MCL, n (%) 35 (8.18)

≥MCL, <2×MCL, n (%) 190 (44.39)

≥2×MCL, n (%) 203 (47.43)

Occupational complexity (N = 427)

None, n (%) 78 (18.27)

Skill level 1, n (%) 29 (6.79)

Skill level 2, n (%) 141 (33.02)

Skill level 3, n (%) 56 (13.11)

Skill level 4, n (%) 123 (28.81)

Smoking status, n (%)

Never/Former/ Smoker 287 (67.21)/119 (27.87)/21 (4.92)

Alcohol intake status, n (%) (n = 427)

Never/former/ drinker 231 (54.10)/57 (13.35)/139 (32.55)

Vitamin B12 580.93 (336.05)

Folic acid 10.01 (5.56)

Platelet, 109/L 239.28 (57.49)

Serum creatinine, mg/dL 1.01 (0.20)

Medication use within 4 weeks (n = 427)

No, n (%)/Yes, n (%) 85 (19.91)/ 342 (80.09)

Declined food intake over past 3 months (n = 426)

No, n (%)/Moderate, n (%)/Severe, n (%) 354 (83.10)/54 (12.68)/18 (4.23)

CERAD neuropsychological test, z-score

Episodic memory score −0.19 (1.21)

Memory total score −0.19 (1.10)

Cognitive test score −0.10 (0.86)

AD neuroimage biomarkers

Cerebral Aβ deposition (n = 420)

Aβ positivity, n (%) 101 (24.05)

Aβ retention, SUVR 11.28 (0.35)

(Continued)

TABLE 1 | Continued

Characteristic Overall, N = 428

Cerebral tau deposition (n = 106)

AV-1451, SUVR 1.60 (0.79)

AD-CM, SUVR (n = 420) 1.40 (0.13)

WMH volume, cm3 (n = 376) 5.99 (5.41)

MMSE, mini-mental state examination; APOE4, apolipoprotein ε4; CN, cognitively normal;

MCL, minimum cost of living; Aβ, beta-amyloid; AD, Alzheimer’s disease; AD-CM,

Alzheimer’s disease signature cerebral glucose metabolism; SUVR, standardized uptake

value ratio.

Unless otherwise indicated, data are expressed as mean (standard deviation).

variable. Subjects were divided into three strata [<12 g/dL
in female and <13 g/dL in male (anemia), ≤14 g/dL (low-
normal level), and 14< g/dL (high-normal level)]. Within the
normal range of hemoglobin level, the median value (i.e., 14
g/dL) was used as a cutoff to divide the low-normal and high-
normal levels. To analyze the associations between hemoglobin
and neuroimaging biomarkers, three models were tested for
stepwise control of potential confounders. The first model did
not include any covariates, the second model included age and
sex as covariates, and the third model included all potential
covariates (i.e., age, sex, education, APOE4 positivity, VRS,
clinical diagnosis, BMI, annual income status, occupational
complexity, smoking, alcohol intake, vitamin B12, folate, platelet
level, serum creatinine, medication use within 4 weeks, and
declined food intake over past 3 months) that might confound
the relationship between hemoglobin level and brain changes
(Ballard, 1997; Vellas et al., 1999; Borroni et al., 2002; Chan
and Mike, 2014; Shi et al., 2018). In multiple linear regression
analyses, the normality was checked using the Kolmogorov-
Smirnov test for dependent variable(s).While AD-CMwas found
to be normally distributed (statistic= 0.032, df = 420, p= 0.20),
the other neuroimaging markers were not (statistic = 0.294,
df = 420, p < 0.05 in global Aβ retention; statistic = 0.266,
df = 106, p < 0.05 in AV-1451; and statistic = 0.139, df =

376, p < 0.05 in WMH). Therefore, the markers except AD-
CMwere used after natural log-transformation to achieve normal
distribution. For the sensitivity analyses, the same analyses were
performed for the subjects without cognitive impairment (i.e.,
CN subjects) or those without decreased food intake over the past
3 months due to loss of appetite or swallowing difficulties that
could affect the hemoglobin level. For neuroimaging biomarkers
that showed significant associations with hemoglobin level in
the above analyses, further multiple linear regression analyses
were performed that included hemoglobin×age (or sex or
education or APOE4 positivity or VRS or clinical diagnosis or
BMI or annual income or occupational complexity) interaction
term, as well as hemoglobin and age (or sex or education
or APOE4 positivity or VRS or clinical diagnosis or BMI or
annual income or occupational complexity) as independent
variables. In these analyses, the neuroimaging biomarker was
used as a dependent variable, and the analyses were controlled
for all potential covariates. To investigate the association
between hemoglobin level and cognitive performance, a multiple
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linear regression model with hemoglobin as an independent
variable and each of EMS and TS as a dependent variable
was tested. Then, the same regression model was tested again
while controlling for the neuroimaging biomarker that showed
significant association with hemoglobin level as an additional
covariate, to examine whether the relationship between blood
hemoglobin and cognitive impairment is affected by the brain
pathological marker. All statistical analyses were performed using
IBM SPSS Statistics software (version 24, IBM Corp., Armonk,
NY, USA).

RESULTS

Participants
Demographic and clinical characteristics of the participants are
presented in Table 1. Among the total of 428 participants, 183
had high or high-normal hemoglobin levels, 203 had low-normal
hemoglobin levels, and 42 had low hemoglobin levels (anemia).

Association Between Hemoglobin Level

and Neuroimaging Biomarkers
As shown in Tables 2 and 3, neither Aβ biomarkers (i.e.,
Aβ positivity and Aβ deposition) nor tau deposition showed
association with hemoglobin level (or strata) even after
controlling for potential confounders. Hemoglobin level (or
strata) was also not associated with WMH volume. In contrast,
hemoglobin level (or strata) showed a significant positive
association with AD-CM (Tables 2, 3 and Figures 1A, 2A).
Both anemia and the low-normal stratum of hemoglobin
showed significantly decreased AD-CM compared to the high-
normal stratum. Sensitivity analyses that included only CN
individuals produced very similar results for the relationships
between hemoglobin and AD-CM (Supplementary Tables 1, 2;
Figures 1B, 2B). Even when individuals without reduced food
intake over the past 3 months were excluded, the results were
not changed (Supplementary Tables 3, 4). Additional analyses
to determine the moderation effects of age, sex, education,
APOE4 positivity, VRS, clinical diagnosis, BMI, annual income
status, and occupational complexity on the association between
hemoglobin and AD-CM did not reveal any significant results
(Supplementary Table 5).

Association Between Hemoglobin and

Cognition
Both EMS and TS were significantly different among the three
hemoglobin strata (Table 4). The high-normal stratum had a
significantly higher EMS and TS than the other two strata
with lower hemoglobin levels (Figure 3). When AD-CM was
controlled as an additional covariate, the relationship between
hemoglobin strata and EMS or TS was no longer significant
(Table 4).

DISCUSSION

In the present study, a lower blood hemoglobin was associated
with reduced AD-CM, but not Aβ deposition, tau deposition or
WMH volume, in non-demented older adults. There was also a

TABLE 2 | Results of multiple logistic and linear regression analyses for assessing

the relationship between hemoglobin level and Aβ, AV-1451, AD-CM, or WMH in

non-demented older adults.

OR 95% CI P

Aβ positivity

Model 1 0.816 0.684–0.974 0.024

Model 2 0.866 0.699–1.073 0.187

Model 3 0.894 0.682 to 1.171 0.416

B 95% CI P

Aβ retention, SUVR

Model 1 −0.021 −0.038 to −0.004 0.014

Model 2 −0.012 −0.033 to 0.009 0.254

Model 3 −0.005 −0.025 to 0.014 0.590

AV-1451, SUVR

Model 1 −0.020 −0.079 to 0.039 0.511

Model 2 −0.027 −0.097 to 0.042 0.439

Model 3 −0.038 −0.113 to 0.036 0.305

AD-CM, SUVR

Model 1 0.019 0.010 to 0.029 < 0.001

Model 2 0.020 0.008 to 0.032 0.001

Model 3 0.018 0.006 to 0.030 0.004

WMH, cm3

Model 1 −0.031 −0.105 to 0.042 0.404

Model 2 −0.015 −0.101 to 0.071 0.732

Model 3 −0.017 −0.110 to 0.077 0.722

Aβ beta-amyloid; AD–CMAlzheimer’s disease signature cerebral glucosemetabolism; OR

odds ratio; CI confidence interval.

The results of multivariate logistic or linear regression analyses are presented with OR or

B coefficient values, 95% CI and P value.

Global Aβ retention, AV-1451, and WMH were used after natural log-transformation to

achieve normal distribution.

Model 1 did not include any covariates, model 2 included age and sex as covariates, and

model 3 included all potential covariates, including age, sex, education, apolipoprotein

ε4, vascular risk score, clinical diagnosis, body mass index, annual income status,

occupational complexity, smoking, alcohol intake, vitamin B12, folate, platelet level, serum

creatinine, medication use, and declined food intake.

significant association between lower hemoglobin and decreased
cognitive performance. To the best of our knowledge, this is the
first study to investigate the relationship between hemoglobin
and AD-specific pathologies in the living human brain.

We found a strong association between anemia or a low-
normal level of hemoglobin and decreased AD-CM. The present
findings are in line with previous reports that found a strong
relationship between a low level of hemoglobin and AD dementia
(Shah et al., 2011; Wolters et al., 2019). Regarding the association
between lower hemoglobin and deceased AD-CM, there are
a couple of possible explanations. First, lower hemoglobin or
anemia itself can decrease the delivery of oxygen to brain
tissues (Kosenko et al., 2017), and cause oxidative damage
to key enzymes involved in glycolysis, the tricarboxylic acid
cycle and adenosine triphosphate (ATP) biosynthesis (Butterfield
and Halliwell, 2019). This damage to energy-related processes
negatively affects the metabolism of glucose, a key source of
energy for the brain, and subsequently results in the characteristic
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TABLE 3 | Results of multiple logistic and linear regression analyses for assessing the relationship between hemoglobin strata and Aβ, AV-1451, AD-CM, or WMH in

non-demented older adults.

Stratified hemoglobin level

Anemia Low-normal (≤14 g/dL) High-normal (>14 g/dL)

OR (95% CI) P OR (95% CI) P

Aβ positivity

Model 1 2.410 (1.153 to 5.037) 0.019 1.421 (0.868 to 2.326) 0.163 Reference

Model 2 1.649 (0.748 to 3.637) 0.215 1.216 (0.674 to 2.196) 0.515 Reference

Model 3 1.466 (0.541 to 3.977) 0.452 1.091 (0.554 to 2.151) 0.801 Reference

B (95% CI) P B (95% CI) P

Aβ retention, SUVR

Model 1 0.100 (0.022 to 0.179) 0.013 0.051 (0.005 to 0.098) 0.032 Reference

Model 2 0.062 (−0.019 to 0.143) 0.134 0.032 (−0.023 to 0.087) 0.249 Reference

Model 3 0.030 (−0.046 to 0.106) 0.442 0.020 (−0.028 to 0.068) 0.410 Reference

AV-1451, SUVR

Model 1 0.095 (−0.174 to 0.364) 0.485 0.101 (−0.042 to 0.244) 0.165 Reference

Model 2 0.109 (−0.166 to 0.383) 0.433 0.165 (−0.019 to 0.348) 0.078 Reference

Model 3 0.112 (−0.179 to 0.403) 0.446 0.129 (−0.038 to 0.296) 0.129 Reference

AD-CM, SUVR

Model 1 −0.092 (−0.136 to −0.048) <0.001 −0.045 (−0.071 to −0.019) 0.001 Reference

Model 2 −0.081 (−0.127 to −0.036) 0.001 −0.047 (−0.078 to −0.016) 0.003 Reference

Model 3 −0.063 (−0.111 to −0.015) 0.010 −0.045 (−0.076 to −0.015) 0.003 Reference

WMH, cm3

Model 1 0.141 (−0.189 to 0.471) 0.402 0.165 (−0.039 to 0.369) 0.112 Reference

Model 2 −0.006 (−0.339 to 0.327) 0.971 0.187 (−0.046 to 0.420) 0.116 Reference

Model 3 −0.028 (−0.392 to 0.337) 0.882 0.191 (−0.047 to 0.430) 0.116 Reference

Aβ, beta-amyloid; AD-CM, Alzheimer’s disease signature cerebral glucose metabolism; OR, odds ratio; CI, confidence interval.

Global Aβ retention, AV-1451, and WMH were used after natural log-transformation to achieve normal distribution.

Model 1 did not include any covariates, model 2 included age and sex as covariates, and model 3 included all potential covariates, including age, sex, education, apolipoprotein ε4,

vascular risk score, clinical diagnosis, body mass index, annual income status, occupational complexity, smoking, alcohol intake, vitamin B12, folate, platelet level, serum creatinine,

medication use, and declined food intake.

FIGURE 1 | Partial regression plot showing the relationship between hemoglobin level and AD-signature cerebral glucose metabolism (AD-CM) in (A) non-demented

and (B) cognitive normal older participants. Multiple linear regression analyses were performed after adjusting for age and sex.
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FIGURE 2 | Error bar charts displaying AD-signature cerebral glucose metabolism and stratified hemoglobin level in (A) non-demented and (B) cognitive normal older

participants. Error bars indicate standard error. Multiple linear regression analyses were performed after adjusting for age and sex.

TABLE 4 | Results of multiple linear regression analyses for assessing the relationship between hemoglobin strata and cognitive performance in non-demented older

adults.

Stratified hemoglobin level

Anemia Low-normal (≤14 g/dL) High-normal (>14 g/dL)

B (95% CI) P B (95% CI) P

EMS, z-score −0.432 (−0.834 to −0.030) 0.035 −0.282 (−0.524 to −0.040) 0.023 Reference

EMS, z-score
†

−0.266 (−0.670 to 0.138) 0.196 −0.202 (−0.443 to 0.040) 0.101 Reference

TS, z-score −0.376 (−0.659 to −0.093) 0.009 −0.205 (−0.375 to −0.035) 0.018 Reference

TS, z-score
†

−0.238 (−0.520 to 0.044) 0.098 −0.138 (−0.306 to 0.030) 0.108 Reference

AD-CM, Alzheimer’s disease signature cerebral glucose metabolism; CI, confidence interval; EMS, episodic memory score; TS, total score.
†
To examine whether the association between hemoglobin and cognitive impairment is mediated by the brain pathological marker, we included AD-CM which showed a significant

relationship with hemoglobin as an additional covariate in the multiple linear regression model with hemoglobin as an independent variable and each of EMS and TS as a

dependent variable.

reduction of cerebral glucose metabolism that is found in AD
dementia (Aliev et al., 2003; Perry et al., 2003; Butterfield
and Halliwell, 2019). Second, hemoglobin may also be lowered
by decreased oral intake and poor nutrition in individuals
with cognitive impairment. However, this possibility seems
very low since the sensitivity analysis for CN subjects or
those without declined food intake over the past 3 months
revealed similar findings. Additionally, lower socio-economic
status (SES) may just mediate the association between lower
hemoglobin and deceased AD-CM because it could be related
with not only low hemoglobin level via chronic poor nutritional
intake and limited access to medical care, but also reduced
brain metabolism and poor cognition (Farah, 2017). Given
that the result did not change even after controlling annual
income and occupational complexity as indicators for SES
as covariates (in Model 3), however, this possibility appears
very low.

Although several preclinical and postmortem studies showed
a possible association between hemoglobin and Aβ pathology
itself or its downstream pathological changes (Oyama et al.,
2000; Wu et al., 2004), we could not find any association of
hemoglobin with Aβ or tau pathologies. This indicates that
AD-specific protein pathologies are not associated with lower
hemoglobin and dementia or cognitive decline. Additionally,
WMH volume, a measure of cerebrovascular injury, was
not associated with hemoglobin in the present study. This
finding is not in line with the result from a recent human
study, which reported that a lower level of hemoglobin was
associated with increased WMH volume in non-demented
individuals (Wolters et al., 2019). This discrepancy may
be explained by differences in the characteristics of study
participants regarding the presence of severe cerebrovascular
disease. While the aforementioned study included individuals
with severe cerebrovascular lesions, the present study did
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FIGURE 3 | Error bar charts displaying (A) episodic memory score (EMS) and (B) CERAD total score (TS) according to stratified hemoglobin levels in non-demented

older participants. Error bars indicate standard error.

not. The null finding in the current study may be related
to the low variability or relatively low burden of WMH or
cerebrovascular injury.

We also found a relationship between low hemoglobin
and poorer episodic memory or overall cognition, consistent
with previous similar observations (Deal et al., 2009; Shah
et al., 2011; Qin et al., 2019). When AD-CM, which showed
significant association with hemoglobin, was adjusted as
an additional covariate, the positive relationship between
hemoglobin level and cognitive function was no longer
significant. These findings further support the possibility
that low hemoglobin or anemia may contribute to the
development of AD dementia and related cognitive decline via
cerebral hypometabolism.

There were a few limitations in the present study. First,
because this was a cross-sectional study, causal relationships
cannot be easily inferred from the findings. Long term
prospective studies are still needed to confirm the etiological
contribution of low hemoglobin. Second, we did not assess the
relationships between an abnormally high level of hemoglobin
(<15.5 g/dL in female and <17.5 g/dL in male) and
neuroimaging markers or cognition, although such high levels of
hemoglobin, as well as anemia, have been reported to increase
the risk of poor cognitive performance (Shah et al., 2011). This
was because only two subjects had a high level of hemoglobin in
the present study. Further studies that include individuals within
the entire range of possible hemoglobin levels will be helpful to
obtain a more comprehensive understanding of the association
between hemoglobin and brain pathologies or related cognitive
impairment. Third, tau PET was applied after an average of
2.6 years from the baseline visit, whereas other neuroimaging
scans were performed at baseline. This temporal gap may
have influenced the association between hemoglobin and tau.

When we controlled for the temporal gap as an additional
covariate, however, the results did not change. In addition, only
a subset of participants (n = 107) underwent tau PET, while
all participants underwent the other imaging modalities. This
relatively reduced sample size for tau PET may have decreased
the statistical power and contributed to the null result for the
relationship between hemoglobin and tau deposition. A study
with a larger sample size is still needed to confirm this finding.
Lastly, history of vascular risk factors, included as one of the
covariates in the Model 3, was assessed only based on the data
collected through systematic interviews of participants and their
informants. Detailed review of medical record or use of direct
physiological or biochemical measurements may help to obtain
more accurate information.

CONCLUSION

The present findings suggest that low blood hemoglobin
in older adults is associated with cognitive decline via
reduced brain metabolism, which seems to be independent
of those aspects of AD-specific protein pathologies and
cerebrovascular injury that are reflected in PET and
MRI measures.
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Background: Structural network alterations in Alzheimer’s disease (AD) are related to
worse cognitive impairment. The aim of this study was to quantify the alterations in
gray matter associated with impaired cognition and their pathological biomarkers in
AD-spectrum patients.

Methods: We extracted gray matter networks from 3D-T1 magnetic resonance imaging
scans, and a graph theory analysis was used to explore alterations in the network
metrics in 34 healthy controls, 70 mild cognitive impairment (MCI) patients, and 40 AD
patients. Spearman correlation analysis was computed to investigate the relationships
among network properties, neuropsychological performance, and cerebrospinal fluid
pathological biomarkers (i.e., Aβ, t-tau, and p-tau) in these subjects.

Results: AD-spectrum individuals demonstrated higher nodal properties and edge
properties associated with impaired memory function, and lower amyloid-β or higher
tau levels than the controls. Furthermore, these compensations at the brain regional
level in AD-spectrum patients were mainly in the medial temporal lobe; however, the
compensation at the whole-brain network level gradually extended from the frontal lobe
to become widely distributed throughout the cortex with the progression of AD.

Conclusion: The findings provide insight into the alterations in the gray matter network
related to impaired cognition and pathological biomarkers in the progression of AD. The
possibility of compensation was detected in the structural networks in AD-spectrum
patients; the compensatory patterns at regional and whole-brain levels were different
and the clinical significance was highlighted.

Keywords: cognitive impairment, pathological biomarkers, Alzheimer’s disease, structural compensation ability,
gray matter (GM) atrophy

INTRODUCTION

Alzheimer’s disease (AD), the most prevalent cause of dementia, is characterized by progressive loss
in the activities of daily living and cognitive impairment, which causes a very large socioeconomic
burden (van der Lee et al., 2018). The number of individuals with AD is increasing significantly
every year, and 10–20% of people aged 65 or older suffer from mild cognitive impairment (MCI)
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which is known as a prodromal clinical stage of AD (Kim et al.,
2020). However, the effective period of symptomatic treatment is
limited (Patnode et al., 2020). Therefore, the early diagnosis and
prognosis of clinical AD-spectrum patients is of great importance
as it increases the time window to implement interventions that
attenuate or reverse deterioration (Luo et al., 2019).

Structural magnetic resonance imaging (MRI) is a promising
approach used to identify the progression of disease (Lane
et al., 2019). Evidence has been accumulating that changes
leading to cognitive impairment and dementia are not limited
to specific regions but rather exhibit widespread changes in
connectivity and topological properties that have emerged as
potential intermediate biomarkers for AD (Verfaillie et al., 2018).
The pattern of gray matter morphology can be defined as a
network that consists of multiple regions (i.e., nodes) that are
interconnected when structural similarity is exhibited within the
cortex across subjects (Beheshti et al., 2017). The advantage of
examining the morphology of gray matter networks is that it
provides the possibility to accurately quantify individual brains
using tools from graph theory (Batalle et al., 2013; Beheshti
et al., 2017). For example, the small world coefficient provides
an indication of whether the organization of connections in the
network is different from a randomly organized network (Zhao
et al., 2017). Although the biological significance of structural
similarities is not fully understood, the similarity within gray
matter has been shown to be related to synchronized maturation
between brain regions, which may reflect a higher degree of
clustering (Wang et al., 2018). Previous studies have shown
that changes in structural properties in gray matter are related
to the degree of cognitive impairment and disease severity in
individuals with AD (Vipin et al., 2018). In the early and
preclinical stages of dementia, the gray matter network might
commence reorganization and show high resilience to network
integrity damages (Lin et al., 2020). Previous studies have further
demonstrated that lower cerebrospinal fluid (CSF) Aβ42 levels
in individuals with cognitive impairment were closely associated
with the perceived decline in memory performance (Zhang
et al., 2018). In a series of structural neuroimaging studies,
it was reported that individuals with cognitive impairment
exhibited, from the perspective of topological properties, higher
nodal degree centrality and lower nodal betweenness in the
bilateral hippocampus, compared to the healthy controls (Chen
et al., 2020). Recently, structural similarity within the gray
matter network in individuals with cognitive impairment was
mainly related to the thalamus, insula, and occipital cortex
and was associated with poor memory performance (Ahmed
et al., 2019). However, there has been no research exploring
the altered structural network measures related to pathological
biomarkers in combination with the structural similarity and
topological properties in patients with cognitive impairment.
If individuals with cognitive impairment at the early stage
of AD could be identified, they may benefit from early
targeted intervention. With developments in neuroimaging,
an increasing number of studies have focused on identifying
brain functional and structural alterations related to the AD
continuum, which may potentially be considered a biomarker
of AD pathology.

To this end, we compared the structural networks and
the structural similarity within gray matter in AD-spectrum
patients using a graph theoretical approach (Rubinov and Sporns,
2010). In the present study, the aim was to explore whether
gray matter network parameters were linked to declines in
cognitive impairment and abnormal CSF pathology in AD-
spectrum patients.

MATERIALS AND METHODS

Data used in the preparation of our study were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database1.
The protocol was authorized by the ADNI and informed consent
was obtained according to the Declaration of Helsinki. The
ADNI was launched in 2003 as a non-profit organization, led
by Principal Investigator Michael W. Weiner, MD. The aim of
the ADNI is to test whether neuroimaging, neuropsychological
assessment, and biological markers could track the progression
of AD and conduct early diagnosis. For up-to-date information,
see adni-info.org.

Study Population
This study included 34 healthy controls (HC), 70 early or late
MCI patients, and 40 AD patients, and used a subset of T1-
weighted MRI images for these 144 subjects. Subjects were
originally recruited for ADNI-GO or ADNI-2. Group inclusion
criteria were as follows. HC subjects had no memory complaints,
a CDR score of 0 and Mini-Mental State Examination (MMSE)
scores between 26 and 30. MCI subjects had a CDR score
of 0.5, MMSE scores between 21 and 30, as well as memory
complaints and abnormal memory function according to the
Logical Memory II subscale (Delayed Paragraph Recall) from the
Weschler Memory Scaled—Revised (=8 for 16 years and more of
education; =4 for 8–15 years of education; and =2 for 0–7 years
of education), but an absence of dementia. To be included in
the AD group, participants had memory complaints, CDR scores
between 0.5 and 2.0, MMSE scores less than 26, and presented
the criteria for probable AD diagnosis according to National
Institute of Neurological and Communicative Disorders and
Stroke/Alzheimer’s Disease and Related Disorders Association
(NINCDS/ADRDA) (Lu et al., 2019). In addition, we also
excluded participants with a history of significant psychiatric
and neurological illness (e.g., depression, stroke, traumatic brain
injury, and others). All participants were required to provide
informed consent compatible with the local sites (Institutional
Review Board regulations). Table 1 shows the detailed clinical
and demographic information for these subjects.

Clinical and Neuropsychological
Measurement
All participants received a series of cognitive evaluations in
the primary analyses, including the MMSE, Montreal Cognitive
Assessment (MoCA); Functional Activities Questionnaire (FAQ);
Clinical Dementia Rating Sum of Boxes (CDRSB); Alzheimer’s

1adni.loni.usc.edu
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TABLE 1 | Demographic and neuropsychological data.

Items HC (n = 34) MCI (n = 70) AD (n = 40) F/χ 2 P

Demographics

Age (years) 72.38 ± 0.87 73.78 ± 0.84 74.85 ± 1.37 1.082 0.342b

Education (years) 16.21 ± 0.48 15.73 ± 0.34 15.15 ± 0.45 1.273 0.283b

Gender (male/female) 13/21 42/28 23/17 4.614 0.100a

General cognition

MMSE 28.76 ± 0.26 27.61 ± 0.21 23.25 ± 0.30 9.653 <0.001b*

MoCA 25.85 ± 0.40 22.44 ± 0.34 17.28 ± 0.68 61.959 <0.001b*

FAQ 0.41 ± 0.24 2.77 ± 0.37 15.1 ± 1.06 143.618 <0.001b*

CDRSB 0.15 ± 0.07 1.66 ± 0.10 5.03 ± 0.22 268.077 <0.001b*

ADAS13 8.09 ± 0.68 17.3 ± 0.83 30.68 ± 1.35 102.456 <0.001b*

EcogSPMem 1.47 ± 0.11 2.21 ± 0.09 3.25 ± 0.10 63.732 <0.001b*

EcogSPLang 1.33 ± 0.09 1.56 ± 0.07 2.47 ± 0.13 36.699 <0.001b*

EcogSPVisspat 1.14 ± 0.05 1.42 ± 0.06 2.60 ± 0.15 61.820 <0.001b*

EcogSPPlan 1.30 ± 0.09 1.49 ± 0.07 2.76 ± 0.13 63.467 <0.001b*

EcogSPOrgan 1.38 ± 0.11 1.64 ± 0.08 3.03 ± 0.12 71.906 <0.001b*

EcogSPDivatt 1.44 ± 0.11 1.85 ± 0.09 3.09 ± 0.13 54.816 <0.001b*

EcogSPTotal 1.35 ± 0.08 1.70 ± 0.06 2.83 ± 0.10 78.533 <0.001b*

Cerebrospinal fluid

Aβ (pg/mL) 1293.73 ± 84.83 901.05 ± 57.21 647.98 ± 41.89 23.100 <0.001b*

t-tau (pg/mL) 210.03 ± 13.12 290.83 ± 22.36 358.16 ± 26.69 7.873 0.001b*

p-tau (pg/mL) 19.32 ± 1.24 28.25 ± 2.45 35.43 ± 2.81 7.913 0.001b*

Values are presented as the mean ± standard error (SE).
aThe p-value was obtained by χ2 test, bthe p-value was obtained by one-way ANOVA.
*Indicates a statistical difference between groups, p < 0.05.
MMSE, mini mental state examination; MoCA, Montreal Cognitive Assessment; FAQ, Functional Activities Questionnaire; CDRSB, Clinical Dementia Rating Sum of Boxes;
ADAS13, Alzheimer’s Disease Assessment Scale; EcogSP, Everyday Cognition by the patient’s study; Mem, Memory; Lang, Language; Visspat, Visuospatial; Plan,
Planning; Organ, Organization; Divatt, Divided Attention; Aβ, amyloid-β; t-tau, total tau; p-tau, phosphorylated tau.

Disease Assessment Scale (ADAS13), and Everyday Cognition
by the patient’s study partner (EcogSP), that provided memory,
language, visuospatial abilities, planning, organization, divided
attention, and total scores (Table 1).

Cerebrospinal Fluid Biomarkers
Lumbar puncture and the preparation of the CSF sample were
described in the ADNI manual2. CSF Aβ, t-tau, and p-tau were
measured based on the reagents (Innotest, Fujirebio, Ghent,
Belgium) from INNOBIA AlzBio3 immunoassay kit. Not all
subjects had CSF sample data because lumbar puncture is an
invasive procedure. In this study, 23 out of 34 HC subjects, 46
out of 70 MCI subjects, and 34 out of 40 AD subjects had a CSF
sample available (Table 1).

MRI Acquisition
The standardized T1-weighted image protocol used volumetric
3-dimensional sagittal MPRAGE3. Briefly, the ADNI protocol
includes T1-weighted acquisition based on a sagittal volumetric
magnetization-prepared rapid gradient-echo sequence collected
from a variety of 3.0 Tesla MRI systems with protocols
optimized for each type of scanner. Representative of each scan,
parameters were as follows: repetition time = 2300 ms;

2http://adni.loni.usc.edu/research/protocols/bios-pecimens-protocols/
3http://adni.loni.usc.edu/

flip angle = 8◦; inversion time = 1000 ms; field of
view = 240 mm × 240 mm; and a 256 × 256 matrix yielding,
a voxel size of 0.94 mm × 0.94 mm × 1.2 mm. The workflow
graphic about the processing of the gray matter structural
network is presented in Figure 1.

Image Pre-processing
We used the Computational Anatomy Toolbox (CAT124) as
implemented in the Statistical Parametric Mapping analysis
package (SPM125) to pre-process the structural images. First,
the raw MRI data were checked manually to ensure no obvious
artifacts. Second, individual 3D-T1 images were segmented into
white matter (WM), gray matter (GM), and cerebrospinal fluid
(CSF) using an adaptive Maximum A Posterior technique (Wang
et al., 2016). The intracranial volume was obtained by summing
the volumes of the GM, WM, and CSF. Last, the resultant GM
images were normalized to the Montreal Neurological Institute
(MNI) space and the GM volume maps were smoothed spatially
(Gaussian kernel of 8 mm full width at half maximum). To define
the network nodes, an automated anatomical labeling (AAL)
atlas was used to divide the brain into 90 regions of interest
(ROIs) (abbreviations provided in Supplementary Table 1). We
calculated the gray matter network density considered as the
total number of edges in the network, divided by the possible

4http://www.neuro.uni-jena.de/cat/
5http://www.fil.ion.ucl.ac.uk/spm/soft-ware/spm12/
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FIGURE 1 | Workflow graphic of gray matter structural networks. The processing of gray matter structural network roughly includes preprocessing (A: spatial
smoothing), brain parcelation (B), network type (C), graphical models (D), and network reconstruction (E).

number of edges, and average network strength considered as
the sum of all weighted edges for every node, using the Graph
Theoretical Network Analysis Toolbox (GRETNA6) based on
Brain Connectivity Toolbox (Wang et al., 2015).

Network Parameters and Network Reconstruction
Every subject’s gray matter network from gray matter
segmentations was extracted, using a fully automated method to
implement in MATLAB7. Briefly, we defined nodes as 3 × 3 × 3
voxel regions in gray matter through an atlas free approach
(Rimkus et al., 2019). We then defined connectivity using
statistical similarity in gray matter structures by Spearman’s
correlations across intensity values of corresponding voxels
between one node and neighbor nodes in the gray matter (Tijms
et al., 2016). All similarity values were collected in a matrix.
Nodes connected were ensured that all subjects had a threshold
that they had a similar chance including at most 5% spurious
connections through a random permutation method (Toppi
et al., 2012). To reduce the number of local tests, the nodal
network characteristics for nodes were averaged in 90 regions of
interest as defined by the automatic anatomical labeling (AAL)
brain atlas (Tzourio-Mazoyer et al., 2002; Jin et al., 2020). The
network metrics were classified as “basic” or “higher-order”
parameters (Liu et al., 2020). The basic parameters included the
local and global degree and the small-worldness. Higher-order
network parameters consisted of the clustering coefficient,
characteristic path length, degree centrality, and betweenness
centrality (Rubinov and Sporns, 2010). To further explore
the topological structure of the network, we calculated the
small-worldness, global efficiency, and local efficiency. To obtain
the network edge, we calculated the connectivity referred to
the statistical similarity between each pair of 90 ROIs, which
is computed by the Spearman’s correlation of the grey matter
intensity values of the corresponding voxels in the ROIs. All
similarity values are arranged in a similarity matrix. ROIs

6http://www.nitrc.org/projects/gretna/
7https://github.com/bettytijms/Single_Subject_Grey_Matter_Networks

are connected when the similarity value of ROIs exceeds the
statistical threshold (P < 0.05, False Discovery Rate, FDR
corrected) determined by the random arrangement method
(Toppi et al., 2012). A brief description of specific definitions,
calculating formula, and topological property descriptions for
the network G with N nodes and V edges follows below (Xu et al.,
2016; Yang et al., 2020).

Global Topological Properties
The inverse of the harmonic mean of the shortest path length
between every two nodes in the network is considered as Global
efficiency. It efficiently measures the information communication
capacity of the whole network. It is calculated as:

Eglobal (G) =
1

N (N − 1)

∑
i6=j∈G

1
dij

dij is the shortest path length between node i and j of the network.
Local efficiency of the network measures how efficiently the

communication information is among the neighbors of a specific
node when that node is removed, which shows how fault tolerant
the network is and is calculated as:

Elocal(G) =
1
N

∑
i∈G

Eglobal(Gi)

Gi is the subgraph consisting of the nearest neighbors of node i.

Nodal Topological Properties
Nodal global efficiency quantifies how efficiently the parallel
information transfers from one node in the network and is
calculated as:

Enodal_global (i) =
1

N − 1

∑
i6=j∈G

1
dij

dij indicates the shortest path length between node i and
j of the network.

Nodal local efficiency indicates the efficiency of the
communication among the first neighbors of one node when it is
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removed. It is calculated as:

Enodal_local(i) =
1

Ni(Ni − 1)

∑
m6=n∈Gi

1
dmn

Gi is the sub-graph which consists of node i and its
local neighbors.

Nodal strength is defined as the sum of the edge weights in a
subnetwork Gi, which is the graph that includes the nodes that
are direct neighbors of node i. It can be defined as:

Snodai(i) =
∑
j∈Gi

wij

where wij is the edge weight linking node i and j in the
subnetwork Gi.

Statistical Analysis
Statistical analyses were performed with the Statistical Package
for the Social Sciences (SPSS, IBM v22). A one-way analysis
of variance (ANOVA) was performed in the analyses of age,
education, and data volume, with significance at P < 0.05 among
the control group, the MCI group, and the AD group. The Chi-
squared (χ2) test was applied in the analysis of gender, among
the three groups. Because the neuropsychological data was of
non-normal distribution, the Kruskal–Wallis test was applied in
the analyses of the neuropsychological data with significance at
P < 0.05 among the three groups (Zhu et al., 2016).

At the level of the edge properties of the brain network,
we used the two-sample t test to investigate group differences
between any two groups, adjusting for age, sex, and education
years with a false discovery rate (FDR) correction for
multiple comparisons.

One-way analysis of covariance (ANCOVA) was used to
explore the group differences in the structural networks (degree
centrality, betweenness centrality, global efficiency, and local
efficiency) while adjusting based on age, sex, and education years.
Correction of multiple testing used the FDR. Subsequently, we
conducted a post hoc analysis to investigate the group differences
between any pair of all groups.

Additionally, a multiple linear regression analysis was
conducted to investigate the relationships among CSF pathology
indicators, gray matter network graph theoretical properties, and
cognitive function adjusting for age, gender, and education years
at P < 0.05, uncorrected (Lu et al., 2017; Wang et al., 2020).

RESULTS

Demographic, Neuropsychological, and
CSF Data
The characteristic demographic, neuropsychological and CSF
data of the participants are presented in Table 1. No significant
differences among the three groups were observed in age, gender,
or education years (P > 0.05). Multiple cognitive functions were
more impaired in MCI and AD patients than in the controls,
and the largest differences were between AD patients and the

controls (all P < 0.05), including scores on the MMSE, MoCA,
FAQ, CDRSB, ADAS13, and EcogSP.

We observed a significant reduction in CSF Aβ levels
(P < 0.001) and increased CSF t-tau (P = 0.001) and p-tau
(P = 0.001) levels with the progression of AD.

Global Topology of Gray Matter
Structural Networks
The properties of the global network analysis are shown in
Figure 2. No significant differences were calculated among
the three groups in global efficiency or the small-worldness
(P > 0.05, FDR corrected).

Node-Based Analysis of Gray Matter
Structural Networks
The nodal analysis is shown in Figure 3. Abnormal nodal levels
(betweenness centrality, degree centrality, and nodal efficiency)
were observed in AD-spectrum patients (P < 0.05, FDR
corrected). In general, gradually increasing nodal properties in
the medial temporal lobe (right parahippocampal gyrus and right
amygdala) were associated with the progression of AD across the
three groups (from HC to MCI to AD), with the exception of
decreased betweenness centrality of the right parahippocampal
gyrus in the MCI group.

In the present study, significant relationships between
altered nodal (i.e., right parahippocampal gyrus and right
amygdala) properties and multidomain cognitive impairments
were observed in AD-spectrum patients (Table 2; for more
details, see Supplementary Table 2). In addition, no significant
correlation was calculated between altered nodal properties
and CSF biomarkers in HC and MCI patients, and the
betweenness centrality in the right parahippocampal gyrus was
negatively correlated with CSF t-tau (r =-0.373, P = 0.03)
(Figure 4A) and p-tau (r = -0.386, P = 0.024) (Figure 4B)
concentration in AD patients.

Connectivity-Based Analysis
By using correcting for multiple comparisons with FDR
correction, the AD-spectrum patients had significant differences
in the structural similarity within the gray matter network
when compared to the controls. In addition to a few edges
showing decreased structural similarity, most of the others
showed increases with the development of AD. In detail, the
abnormal connections were mainly related to the frontal lobe in
the MCI group (Figure 5A), but were more widely distributed in
the frontal lobe, thalamus, and subcortical structures in the AD
group (Figures 5B,C) (P < 0.05, FDR corrected).

Significant associations between altered edge properties and
cognitive impairments were detected in AD-spectrum patients.
Interestingly, most of these connections between edges were
associated with the frontal lobe in both the MCI and AD groups
(Table 3, for more details, see Supplementary Tables 3, 4).
In addition, the connection between the right medial superior
frontal gyrus and left precentral gyrus (t-tau: r = -0.293,
P = 0.049) (Figure 6A) was negatively correlated with the CSF tau
concentrations in MCI patients. In the AD group, the connection
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FIGURE 2 | Global topology of gray matter structural networks in AD-spectrum patients. No significant differences were calculated among the three groups (all
P > 0.05, FDR corrected).

FIGURE 3 | Between-groups comparisons showed the altered betweenness centrality (A: right parahippocampal gyrus), degree centrality (B: right parahippocampal
gyrus; C: right amygdala) and nodal efficiency (D: right parahippocampal gyrus) in AD-spectrum patients. PHG.R, right parahippocampal gyrus; AMYG.R, right
amygdala; *P < 0.05, **P < 0.01, ***P < 0.001 indicates a statistical difference between groups by FDR corrected.
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TABLE 2 | Significant correlations between altered graph theoretical properties and neuropsychological performance in AD-spectrum patients.

Neuropsychological scale Group Network properties Spearman’s correlation
coefficient

P-values

FAQ HC DC of PHG.R 0.352 0.041*

DC of AMYG.R 0.36 0.037*

NE of PHG.R 0.362 0.035*

MCI BC of PHG.R 0.301 0.011*

AD DC of PHG.R 0.334 0.035*

DC of AMYG.R 0.335 0.034*

NE of PHG.R 0.342 0.031*

CDRSB HC BC of PHG.R 0.37 0.031*

DC of PHG.R 0.424 0.012*

DC of AMYG.R 0.388 0.023*

NE of PHG.R 0.433 0.011*

MCI BC of PHG.R 0.295 0.013*

DC of PHG.R 0.343 0.004**

NE of PHG.R 0.286 0.016*

AD DC of PHG.R 0.339 0.032*

NE of PHG.R 0.362 0.022*

ADAS13 AD DC of PHG.R 0.395 0.012*

NE of PHG.R 0.364 0.021*

EcogSP Mem MCI DC of AMYG.R − 0.236 0.049*

EcogSP Lang HC BC of PHG.R 0.392 0.022*

MCI NE of PHG.R 0.248 0.038*

EcogSP Visspat HC BC of PHG.R 0.355 0.039*

DC of PHG.R 0.492 0.003**

NE of PHG.R 0.477 0.004**

MCI DC of AMYG.R − 0.244 0.041*

AD BC of PHG.R 0.334 0.035*

DC of PHG.R 0.462 0.003**

DC of AMYG.R 0.384 0.014*

NE of PHG.R 0.511 0.001**

EcogSP Plan HC BC of PHG.R 0.386 0.024*

DC of PHG.R 0.436 0.01**

NE of PHG.R 0.454 0.007**

MCI BC of PHG.R 0.326 0.006**

AD DC of AMYG.R 0.395 0.012*

NE of PHG.R 0.336 0.034*

EcogSP Organ HC BC of PHG.R 0.464 0.006**

DC of PHG.R 0.484 0.004**

NE of PHG.R 0.494 0.003**

EcogSP Divatt HC BC of PHG.R 0.348 0.044*

DC of PHG.R 0.491 0.003**

NE of PHG.R 0.498 0.003**

AD NE of PHG.R 0.328 0.039*

EcogSP Total HC BC of PHG.R 0.394 0.021*

DC of PHG.R 0.4 0.019*

NE of PHG.R 0.413 0.015*

AD DC of PHG.R 0.407 0.009**

DC of AMYG.R 0.389 0.013*

NE of PHG.R 0.446 0.004**

*P < 0.05, **P < 0.01 indicates an uncorrected relevant analysis.
HC, healthy controls; MCI, mild cognitive impairment; AD, Alzheimer’s disease; BC, Betweenness Centrality; DC, Degree Centrality; NE, Nodal Efficiency; PHG.R,
right parahippocampal gyrus; AMYG.R, right amygdala; MMSE, mini mental state examination; MoCA, Montreal Cognitive Assessment; FAQ, Functional Activities
Questionnaire; CDRSB, Clinical Dementia Rating Sum of Boxes; ADAS13, Alzheimer’s Disease Assessment Scale; EcogSP, Everyday Cognition by the patient’s study;
Mem, Memory; Lang, Language; Visspat, Visuospatial; Plan, Planning; Organ, Organization; Divatt, Divided Attention.
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FIGURE 4 | Relationships between altered nodal properties and CSF biomarkers in AD group. The betweenness centrality in the right parahippocampal gyrus was
negatively correlated with CSF t-tau (A: r = -0.373, P = 0.03) and CSF p-tau (B: r = -0.386, P = 0.024) in AD patients. PHG.R, right parahippocampal gyrus.

between the right medial superior frontal gyrus and left cuneus
was positively correlated with CSF t-tau (r = 0.399, P = 0.019)
(Figure 6B) and CSF p-tau (r = 0.420, P = 0.013) (Figure 6C).

DISCUSSION

In the present study, we investigated topological alterations
in the structural network within gray matter, the relationships
to pathological biomarkers, and their behavioral significance
in AD-spectrum patients. The three main findings are as
follows: (i) The local regional rearrangements in AD-spectrum
patients are mainly in the medial temporal lobe. (ii) The
rearrangements in the whole-brain networks gradually extended
from the frontal lobe to become widely distributed in the
cortex with the progression of AD. (iii) These rearrangements
in gray matter might be associated with compensation, which
was influenced following multidomain cognitive impairments
and AD-related CSF.

Research interest is transforming to increasingly earlier
diagnoses, since the origin of AD and the key to treatment
probably lie in preventing progression to a fully-fledged disease
(Hem et al., 2016; Slot et al., 2018). It should be noted that
compensation in the structural network has been shown to be
manifested earlier in AD-spectrum patients (Liu et al., 2020),
and there is increasing interest in the study of structural network
alterations to assess the progression in subjects who have a
higher risk of AD (Sanchez-Benavides et al., 2018). Therefore,
it is essential to evaluate alterations in structural networks
related to cognition and pathology (Dicks et al., 2020). In
the present study, we deduced that there was the possibility
of compensation in the structural networks in AD-spectrum
patients, as expected from previous AD-spectrum studies which
also provided additional evidence for our research results (Wook
Yoo et al., 2015; Caso et al., 2016). Our findings demonstrate
that brain regional compensation may start from the medial
temporal lobe, and the level of compensation within the whole
gray matter network moved from the frontal lobe to the more
extensive cortex as the disease progressed. We confirmed that the
gray matter network might commence reorganization and show
high resilience to network integrity damages in the early and

preclinical stages of dementia, which is similar to previous studies
(De Vogelaere et al., 2012). Thus, structural network properties
can be a sensitive and reliable index to detect changes in the
evolution of AD.

These findings are in line with previous studies reporting
altered graph theoretical properties in these regions in AD-
spectrum patients (Shah et al., 2018; Liu et al., 2020). Most of
the network graph theoretical properties referring to the frontal
lobe, medial temporal lobe, and subcortical structures–areas that
play a role in perception, executive control, episodic memory, and
understanding–have consistently been found to be affected across
the development of AD (Geib et al., 2017; Danti et al., 2018; Luo
et al., 2018). Furthermore, our study may reflect reorganization
and high resilience to network integrity damage. Previous
studies evaluating graph theoretical properties have described
compensation at the level of hippocampal/parahippocampal
regions and the frontal and occipital lobes (van Duinkerken
et al., 2016; Li et al., 2018). In line with prior studies,
in our analysis, network integrity was widely increased due
to the compensation in specific nodes related to cognition.
Despite differences in methodologies, compensation has been
described in other neurological and psychiatric disorders, such
as schizophrenia (Sapara et al., 2014) and early stages of
Parkinson’s disease (Nonnekes et al., 2019). Increased global
connectivity in the frontal lobe, hippocampus, and occipital
areas has been previously reported for mild AD patients (Bai
et al., 2011; De Vogelaere et al., 2012). Similarly, our study
shows that the compensation appears in the medial temporal
lobe at the brain regional level, while it gradually spread
from the frontal lobe to the widely distributed throughout the
cortex at the whole-brain network level with AD degenerative
processes. However, there is no specific report about the
potential mechanism revealing the patterns of this compensation
within structural networks of AD-spectrum patients. In that
sense, our findings present novel evidence of pathophysiological
mechanisms in alterations within the gray matter network of
AD-spectrum patients.

In addition, little is known about the pathological basis
of structural network compensation (Jackson et al., 2019).
The findings of impaired graph theoretical properties with
reference to the frontal lobe, medial temporal lobe, and
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FIGURE 5 | The altered edge based on the node analysis in AD-spectrum patients. Edges with significant (P < 0.05, FDR correction) increase (in red) or decrease (in
blue) in MCI (A) and AD (B) in patients compared with HC, and MCI group compared with AD (C). Results are shown in anatomical view (left panels) and in
connectograms (right panels).

subcortical structures involved alterations affecting gray
matter structures in the present AD spectrum patients,
which is in line with previous studies reporting increased
Aβ deposition and pathological tau accumulation in these
regions in AD (Buckley et al., 2017). This study demonstrates
the compensation related to cognitive impairments, which

exists with a potential AD pathological basis behind them.
Taken together, our findings and those from structural network
studies suggest structural brain compensation in response
to brain damage (Wook Yoo et al., 2015; Liu et al., 2020).
However, the relationship between structural changes and
disease progression remains controversial. Modifications in
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TABLE 3 | Significant correlations between the altered edge properties and neuropsychological performance in MCI and AD patients.

Neuropsychological scale Group Edge Spearman’s correlation
coefficient

P-values

MMSE MCI SFGmed.R – MFG.R 0.356 0.002**

SFGmed.R – ORBsupmed.L − 0.277 0.02*

AD SFGmed.R – PreCG.R − 0.396 0.011*

MoCA AD SFGmed.R – PreCG.R − 0.35 0.027*

SFGmed.R – PoCG.R − 0.395 0.012*

ACG.L – THA.R − 0.349 0.027*

FAQ AD SFGmed.R – PreCG.R 0.385 0.014*

CDRSB AD SFGmed.R – PoCG.R 0.315 0.048*

ADAS13 AD ACG.L – THA.R 0.354 0.025*

EcogSP Lang AD SFGmed.R – ORBsupmed.R 0.319 0.045*

EcogSP Plan MCI SFGmed.R – FFG.R 0.308 0.009**

*P<0.05, **P<0.01 indicates an uncorrected relevant analysis.
MCI, mild cognitive impairment; AD, Alzheimer’s disease; MMSE, mini mental state examination; MoCA, Montreal Cognitive Assessment; FAQ, Functional Activities
Questionnaire; CDRSB, Clinical Dementia Rating Sum of Boxes; ADAS13, Alzheimer’s Disease Assessment Scale; EcogSP, Everyday Cognition by the patient’s study;
Lang, Language; Plan, Planning; PreCG.R, right precentral gyrus; MFG.R, right middle frontal gyrus; SFGmed.R, right superior frontal gyrus-medial part; ORBsupmed.L,
left superior frontal gyrus-medial orbital part; ORBsupmed.R, right superior frontal gyrus-medial orbital part; THA.R, right thalamus; PoCG.R, right postcentral gyrus;
ACG.L, left anterior cingulate and paracingulate gyri; FFG.R, right fusiform gyrus.

FIGURE 6 | Relationships between altered edges and CSF biomarkers in MCI and AD group. In MCI group, (A) the connection between right medial superior frontal
gyrus and left precentral gyrus (t-tau: r = -0.293, P = 0.049) was correlated with CSF tau concentration in MCI patients. In the AD group, the connection between
right medial superior frontal gyrus and left cuneus was positively correlated with CSF t-tau (B: r = 0.399, P = 0.019) and CSF p-tau (C: r = 0.420, P = 0.013).
SFGmed.R, right medial superior frontal gyrus; PreCG.L, left precentral gyrus; CUN.L, left cuneus.

the cerebral structure could be integral mechanisms that
reflect maladaptive changes promoting clinical dysfunction
or maintaining optimal network functioning (Llufriu et al.,
2017). Therefore, longitudinal studies are required to
understand the positive or negative consequences of these
compensatory brain changes.

Although our study attempted to provide a new perspective
for understanding the aberrant structural network architecture
and early identification in AD-spectrum patients, a few
limitations still require future study. First, to explore the
relationships among CSF pathology indicators, gray matter
network graph theoretical properties, and cognitive function,
we did not perform a correction for multiple comparisons.
The present study was a preliminary exploration and this
study, at least in part, revealed these interactions. Second,
this study was cross-sectional, and no directionality or causal
inferences were made. We still require large sample and
longitudinal studies to further confirm these findings and
to formulate a personalized evaluation system for disease
progression in patients with cognitive impairment in the

future. Third, the structural network parameters were
calculated according to the binary adjacency matrix rather
than the weighted network analysis. The latter analysis may
provide additional findings in future studies. Fourth, the
whole brain was divided coarsely into 90 regions based on
the AAL template for structural network construction. The
parcelation of the brain regions might influence the network
properties and may result in various outcomes in the graph
theoretical metrics. Different parcelation strategies are required
to validate our findings.

CONCLUSION

In summary, this study explored the differences in gray
matter network properties by graph theory and revealed a
reorganization mechanism of structural networks related to
cognitive impairments and CSF pathological biomarkers in
AD-spectrum patients. Our findings present novel evidence
of compensatory mechanisms in gray matter networks of AD
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spectrum patients and highlight the potential for applying
structural network metrics to monitor disease progression.
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The donepezil treatment is associated with improved cognitive performance in patients

with mild cognitive impairment (MCI), and its clinical effectiveness is well-known.

However, the impact of the donepezil treatment on the enhanced white matter

connectivity in MCI is still unclear. The purpose of this study was to evaluate the

thalamo-cortical white matter (WM) connectivity and cortical thickness and gray matter

(GM) volume changes in the cortical regions following donepezil treatment in patients

with MCI using probabilistic tractography and voxel-based morphometry. Patients with

MCI underwent magnetic resonance examinations before and after 6-month donepezil

treatment. Compared with healthy controls, patients with MCI showed decreased WM

connectivity of the thalamo-lateral prefrontal cortex, as well as reduced thickness in

the medial/lateral orbitofrontal cortices (p < 0.05). The thalamo-lateral temporal cortex

connectivity in patients with MCI was negatively correlated with Alzheimer’s disease

assessment scale-cognitive subscale (ADAS-cog) (r = −0.76, p = 0.01). The average

score of the Korean version of the mini-mental state examination (K-MMSE) in patients

with MCI was improved by 7.9% after 6-months of donepezil treatment. However, the

patterns of WM connectivity and brain volume change in untreated and treated patients

were not significantly different from each other, resulting from multiple comparison

corrections. These findings will be valuable in understanding the neurophysiopathological

mechanism on MCI as a prodromal phase of Alzheimer’s disease in connection with brain

functional connectivity and morphometric change.

Keywords: white matter connectivity, probabilistic tractography algorithm, mild cognitive impairment, gray matter

volume, donepezil treatment, cortical thickness
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INTRODUCTION

Alzheimer’s disease (AD) is a chronic brain disorder that
is associated with neurodegeneration and the progressive
development of dementia (Fumagalli et al., 2006). AD generally
progresses slowly in three stages, including preclinical AD, mild
cognitive impairment (MCI) due to AD pathology, and AD-
dementia. MCI is a prodromal stage of AD, which is a relatively
broad clinical condition that involves a slight memory deficit,
and in many cases, the condition may represent a transitional
state between normal cognition and AD (Morris, 2005). Among
the neuropathological alterations in AD, relevant neuronal loss,
and synaptic pathology have been studied to be most strongly
related to dementia severity and cognitive deficits (Hoy et al.,
2017). White matter (WM) degeneration occurs early in the
development of AD and is useful in evaluating pathologic AD
progression before AD becomes clinically evident (Caso et al.,
2015). Several postmortem studies have reported that the early
neuropathology in AD manifests in the medial temporal lobe
(Hyman et al., 1984; Krasuski et al., 1998).

The key clinical symptom of AD is the progressive
deterioration of learning and memory, which further leads to
reduced acetylcholine (ACh) levels in the brain (Hashimoto et al.,
2005). Treatment with acetylcholinesterase inhibitors (AChEIs)
prevents the breakdown of ACh and impacts an increase
in cholinergic transmission. Acetylcholinesterase inhibitors are
among the approved drugs currently used to treat AD, wherein,
and the most frequently prescribed drug is donepezil (Cavedo
et al., 2017). Donepezil has been demonstrated to inhibit
acetylcholinesterase activity in the cerebral cortex, hippocampus,
and striatum of the rat brain, by impacting the increased
production of ACh activity in the brain areas associated with
cognitive function (Kasa et al., 2000; Scali et al., 2002). Kim et al.
(2020) reported that donepezil treatment in patients with MCI
is associated with improved cognitive performance. However, it
is as yet unknown how donepezil treatment influences the brain
cortical thickness and WM connectivity in MCI.

Diffusion weighted imaging (DWI) facilitates measuring the
effects of tissue microstructure on the random translational
motion of water molecules in biologic tissues and has been

reported to be highly sensitive to WM microstructural damage
(Caso et al., 2015). Several DWI studies (Wang et al., 2012; Mito

et al., 2018) focusing on MCI and AD have analyzed the DWI
data based on the diffusion tensor model. For the detection of

WM integrity of an entire bundle, probabilistic tractography in
DTI has recently emerged as an increasing medium, allowing
us to evaluate structural connectivity through estimating the
likelihood that two areas of the brain are interconnected

(Jaimes et al., 2017). This tool may advantageously provide
more valuable information and insight regarding the early
signs of microstructural change in MCI and brain structural
connectivity following the donepezil treatment. Most brain
structural connectivity studies focusing on MCI and AD have
exclusively explored the specific brain region-of-interest (ROI),
hippocampus, or medial temporal lobe. AD has largely been
considered a disease of the cerebral cortex, and thus it is
important to screen cortical dysfunction at an early stage before

the development of AD. The thalamus is an evolutionarily
conserved structure with extensive reciprocal connections to
cortical regions, and it plays an important role in learning
and memory (Nakajima and Halassa, 2017). Alderson et al.
(2017) have reported that patients with MCI showed significantly
decreased fractional anisotropy between the thalamus and
inferior parietal lobe compared with healthy controls. To
date, however, no neuroimaging studies on the interaction
between the thalamus and cortical regions using probabilistic
tractography in patients with MCI following donepezil treatment
have been attempted. We have previously reported on a
study that evaluated the thalamo-cortical WM connectivity
in patients with MCI using probabilistic tractography. Voxel-
based morphometry (VBM) has grown in popularity since its
introduction because of its ability to perform statistical tests
across all voxels in the image, identifying volume differences
between groups (Whitwell, 2009; Kim et al., 2018b). Therefore,
a combined study of probabilistic tractography and VBM could
further understanding of gray matter (GM) atrophy and the
WM networks that can cause disconnection among neural cells
in MCI.

The purpose of this study was to evaluate the thalamo-
cortical WM connectivity before and after donepezil treatment
in patients with MCI using probabilistic tractography, as well as
to assess the cortical thickness and GM volume changes in the
cortical regions.

SUBJECTS AND METHOD

Ethics
This is study a retrospective that has been approved by the
Institutional Review Board of Chonnam National University
Hospital (IRB-CNUH). Before MR scanning, the experimental
procedure was explained to all volunteers, and written informed
consent was obtained. All the experimental procedures and
methods were performed in accordance with the relevant
guidelines and regulations approved by IRB-CNUH.

Subjects
Ten patients with MCI (male:female = 4:6, mean age = 72.4
± 7.9 years) and 9 age-matched healthy controls (male:female
= 3:6, mean age = 70.7 ± 3.5 years) participated in this
study (Table 1). The patients with MCI were inpatients or
outpatients of the CNUH. We included the patients with MCI
based on the following criteria: first, the MCI of Alzheimer-
type by the criteria of both the DSM-IV and the National
Institute of Neurological and Communicative Diseases and
Stroke-Alzheimer Disease and Related Disorders Association
(NINCDS-ADRDA); second, no history of MCI treatment and
other neurological or psychiatric illnesses; third, a score of 0.5 or
1 on the Clinical Dementia Rating (CDR); fourth, a score <26
on the Korean version of the Mini-Mental State Examination
(K-MMSE); fifth, reconfirmation through the typical symptom
severity including change in cognition recognized by the affected
individual or observers, objective impairment in one or more
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TABLE 1 | Demographic and clinical characteristics of patients with MCI (baseline), donepezil-treated patients (follow-up), and healthy controls (HC).

MCI patients Healthy controls

(n = 9)

Statistical analysis (p-value)

Baseline

(n = 10)

Follow-up

(n = 10)

Baseline vs.

follow-up

HC vs.

baseline

HC vs.

follow-up

Age (years) 73.1 ± 7.9 - 70.7 ± 3 .5 - p = 0.092 p = 0.092

Gender 7 F, 3M - 6 F, 3M - p = 0.876 p = 0.876

K-MMSE 16.5 ± 4.9 17.5 ± 2.9 28.6 ± 1.1 p = 0.031a p < 0.001b p < 0.001b

ADAS-Cog 25.6 ± 6.2 24.4 ± 5.9 - p = 0.506 - -

CDR 0.6 ± 0.2 0.6 ± 0.2 - p = 0.317 - -

GDS 13.2 ± 5.2 12.7 ± 4.9 - p = 0.372 - -

aSignificant difference (Wilcoxon’s signed-ranks; p < 0.05) between MCI patients (baseline) and treated patients (follow-up).
bSignificant differences (Mann-Whitney U; p < 0.001) in both “healthy controls (HC) vs. MCI patients” and “HC vs. treated patients”.

K-MMSE, the Korean version of the mini-mental state examination; ADAS-Cog, AD assessment scale-cognitive subscale; CDR, clinical dementia rating; GDS, geriatric depression scale.

cognitive domains, independence in functional activities, and
absence of dementia (Morris, 2012).

Ten patients underwent MR examinations before (baseline)
and after (follow-up) donepezil treatment. After performing
the first MR examination, 10 patients received 5 mg/day of
Aricept (donepezil hydrochloride; Pfizer Inc., New York, NY)
for the initial 28 days, and 10 mg/day thereafter. The mean time
gap between before and after donepezil treatment was 194.0 ±

29.5 days.

Neuropsychological Tests
The MCI symptom severity was evaluated in the two separated
groups, receiving and not receiving donepezil treatment, using
the questionnaires of the K-MMSE, AD assessment scale-
cognitive subscale (ADAS-Cog), CDR scale, and geriatric
depression scale (GDS). Patients with MCI completed
questionnaires before and after the 6-months of donepezil
treatment. The contrasts of “healthy controls vs. patients
with MCI” and “healthy controls vs. using donepezil-treated
patients” were analyzed by using a Mann-Whitney U-test. A
Wilcoxon’s signed-ranks test was used to compare the scores on
the K-MMSE, ADAS-Cog, CDR, and GDS between untreated
and treated patients.

Image Acquisition
T1- and T2-weighted images and DWI were performed on a 3.0-
T Magnetom Tim Trio MR Scanner (Siemens Medical Solutions,
Erlangen, Germany) with a head coil of birdcage type. The
axial DW images were acquired using echo-planar imaging pulse
sequence with the following parameters: TR/TE = 5,200/105ms,
matrix = 128 × 128, field of view (FOV) = 220 mm2, and
resolution = 1.7mm × 1.7mm. Diffusion sensitizing gradient-
echo encoding was applied in 24 directions using a diffusion-
weighting b factor of 1,000 s/mm2 and 5 images without diffusion
weighting (b factor = 0 s/mm2). Phase-encoding was in the
anterior → posterior direction and a factor of 2 in-plane
acceleration (GRAPPA) was used. T1-weighted sagittal images
(TR/TE = 1,700/2.2ms) and T2-weighted axial images (TR/TE
= 5,000/90ms) were acquired with the following parameters:

FOV = 256 × 256 mm2, matrix = 512 × 512, slice thickness =
5mm, and slice gap= 2 mm.

Data Processing and Analysis
DWI data were analyzed using Functional Magnetic Resonance
Imaging of the Brain (FMRIB) Software Library (FSL) v6.0
software (Behrens et al., 2003, 2007; Jenkinson et al., 2012). Based
on the findings of previous studies (Marenco et al., 2012; Cho
et al., 2016) that used probabilistic tractography, we identified
9 brain regions of interest (ROIs) in all, individual T1 images
using the FreeSurfer v6.0 software (MGH, Boston, MA, USA)
with Desikan-Killiany cortical parcellation as following: seed
region; thalamus, target regions; orbitofrontal cortex (OFC),
medial prefrontal cortex (MPFC), lateral prefrontal cortex
(LPFC), sensorimotor cortex (SMC), parietal cortex (PC), medial
temporal cortex (MTC), lateral temporal cortex (LTC), and
occipital cortex (OC) (Figure 1) (Dale et al., 1999; Fischl et al.,
2002, 2004). The DWI data were preprocessed using skull
removal and eddy current as well as motion correction. The first
non-diffusion weighted image was set as the target image, into
which the remaining images (24 diffusion weighted image and 4
non-diffusion weighted images) were registered using an affine
transformation to adjust for distortions caused by eddy currents
and head motion (Tsai, 2018). The individual T1 images were
rigidly registered to their corresponding non-diffusion weighted
(B0) images using FMRIB’s Linear Image Registration Tool
(FLIRT) in combination with mutual information cost function
and trilinear interpolation. Diffusion parameters were modeled
using Bayesian Estimation of Diffusion Parameters Obtained
using Sampling Techniques (BEDPOSTX) with crossing-fibers
modeling. One patient had motion artifact in the T1 images
obtained after treatment, thus nine ROIs in the patient were
extracted in the T1 image obtained before treatment to register
their T1 images to diffusion space. BEDPOSTX models of
diffusion signal as a ball (isotropic) and stick (anisotropic)
components were used to generate a distribution of likely fiber
orientations within each voxel as well as an estimate of the
uncertainty on these orientations (Theisen et al., 2017). To
determine WM connectivity between seed region and target
regions, we used FSL probabilistic tractography (connectivity
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FIGURE 1 | Illustration of fiber tracts (A), thalamus ROIs (seed regions)

(B), and cortical ROIs (target regions) (C): orbitofrontal cortex (yellow-green),

medial prefrontal cortex (red), lateral prefrontal cortex (blue), sensorimotor

cortex (brown), parietal cortex (purple), lateral temporal cortex (orange),

medial temporal cortex (dark-green), and occipital cortex (yellow).

modeling) as following: 5,000 streamlines per each voxel in the
thalamus, 0.2 curvature threshold, 0.5mm step length, and loop
check. The connectivity values were routinely thresholded at 10%
to remove the aberrant connections arising from noise and errors
(Cho et al., 2016). To take into account the individual variances in
total connectivity between the thalamus and eight cortical ROIs,
each thalamo-cortical WM connectivity value was divided by the
sum of connectivity values from all cortical ROIs, named “relative
connectivity” (Cho et al., 2016).

For the group analysis, a Wilcoxon’s signed-ranks test was
conducted using the SPSS (version 24.0, IBM, Armonk, NY,
USA) to compare the thalamo-corticalWM connectivity between
patients receiving and not receiving donepezil treatment. A
Mann-Whitney U-test was used to compare the connectivity
between patients and healthy controls. The significance level
was set to 0.05 after Bonferroni correction for 8 brain cortices
to adjust multiple comparisons (level of significance after
Bonferroni correction: p < 0.0063).

The cortical thickness of the entire brain was calculated using
the FreeSurfer v6.0 software (MGH, Boston, MA, USA). T1 data
of 1 subject was excluded from the cortical thickness and VBM
analyses due to a motion artifact detected in the anatomical
scan. Post-processing of images comprised the following steps:
correction for head motion and non-uniformity of intensity,
Talairach transformation of each subject’s brain, removal of non-
brain tissue, segmentation of cortical gray, subcortical white
and deep GM volumetric structures, triangular tessellation of
the GM/WM matter interface and GM/CSF boundary, and
topology correction. The images were then smoothed with a 10-
mm FWHM Gaussian kernel. Cortical thickness was calculated

as the shortest distance between the GM/WM boundary and
pial surface at each vertex across the cortical mantle, measured
in millimeters (Gerrits et al., 2016). The cortical maps were
generated by computing mean cortical thickness for each subject
at each vertex, right and left hemispheres separately, and
mapping these data to the surface of an average brain template
enabling visualization of data across the entire cortical surface
(Han et al., 2014). Cortical thickness was compared between
patients receiving and not receiving donepezil treatment using
Wilcoxon’s signed-ranks test, and between patients and healthy
controls using the Mann-Whitney U-test.

Brain GM volume was analyzed using SPM8 software
(Statistical Parametric Mapping, Wellcome Department of
Cognitive Neurology, University College, London, U.K.) with
diffeomorphic anatomical registration through exponentiated Lie
algebra (DARTEL) analysis (Kim et al., 2018a, 2019). Prior to
processing data, all individual T1 images were aligned with
the anterior and posterior commissure line on the transverse
plane. After correcting the non-uniformity field bias on images,
the images were segmented to GM, WM, and cerebrospinal
fluid (CSF) using the tissue probability maps based on the
International Consortium of Brain Mapping (ICBM) space
template type of East Asian Brains. In addition, the mean
templates of GM and WM were created using individual GM
and WM images. Subsequently, all the images were normalized
to the Montreal Neurological Institute template and smoothed
with an 8mm full width at a half maximum (FWHM) isotropic
Gaussian kernel.

To compare the GM volumes between healthy controls and
patients with MCI before or after donepezil treatment, a two
sample t-test, with whole brain volume as covariate, was used in
the Statistical non-Parametric Mapping (SnPM13). A paired t-
test was used to compare the GM volumes between patients with
MCI and treated patients withMCI. The results were thresholded
at a cluster level corrected threshold of p < 0.05 [n = 5,000
permutations, family-wise error (FWE)-corrected] with a cluster-
determining threshold at the voxel level p < 0.0001.

RESULTS

Changes in Symptom Severity
The average scores of K-MMSE in healthy control, patients with
MCI, and donepezil-treated patients with MCI were 28.6 ± 1.1,
16.5 ± 4.9, and 17.5 ± 2.9, respectively (Table 1). The average
score of K-MMSE in untreated patients with MCI was improved
by 7.9% after donepezil treatment (p= 0.031). The average scores
of ADAS-Cog and GDS in untreated patients were decreased by
5.0% (25.6 ± 6.2→ 24.4 ± 5.9; p = 0.506) and 4.0% (13.2 ± 5.2
→ 12.7± 4.9; p= 0.372) after donepezil treatment, respectively
(Table 1). In addition, the average score of CDR in untreated
patients and donepezil-treated patients were 0.6 ± 0.2, and 0.6
± 0.2, respectively (p= 0.317) (Table 1).

White Matter Connectivity Changes
Compared with healthy controls, the untreated and treated
patients showed significantly decreased thalamo-LPFC relative
connectivity (p < 0.05, Bonferroni corrected) (Figure 2,
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FIGURE 2 | Mean white matter (WM) connectivity between the thalamus and

each cortex in patients with MCI (baseline), donepezil-treated patients

(Follow-up), and healthy controls. OFC, orbitofrontal cortex; MPFC, medial

prefrontal cortex; LPFC, lateral prefrontal cortex; SMC, sensorimotor cortex;

PC, parietal cortex; MTC, medial temporal cortex; LTC, lateral temporal cortex;

OC, occipital cortex. *significant difference (Bonferroni corrected, p < 0.05).

Table 2). Treated patients showed increased thalamo-MTC
relative connectivity after donepezil treatment (p < 0.05).
Interestingly, thalamo-LPFC relative connectivity in patients
with MCI was positively correlated with the K-MMSE (r
= 0.80, p = 0.005) and thalamo-LTC relative connectivity
was negatively correlated with the ADAS-Cog (r = −0.76,
p= 0.010) (Figure 3).

Cortical Thickness
Compared with the healthy controls, patients with MCI showed
significantly reduced thickness in the medial orbitofrontal
cortex ([x, y, z = −9, 37, −21], t-value = 3.6) and lateral
orbitofrontal cortex ([x, y, z = −13, 34, −19], t-value =

3.0) (Monte-Carlo corrected, p < 0.01) (Figure 4). However,
no significant differences were found between untreated and
treated patients.

Global Gray Matter Volume Changes
The overall GM volumes in healthy control, patients with MCI,
and donepezil-treated patients were 589.9 ± 54.7mL, 574.0 ±

36.8mL, and 578.9 ± 32.8mL, respectively. In comparison with
the healthy controls, patients with MCI showed significantly
reduced GM volumes in the hippocampus ([x, y, z = 32, −16,
−14], t-value = 5.8) (FWE corrected, p < 0.05) (Figure 5).
Furthermore, when comparing the untreated and treated
patients, the treated patients showed significantly higher GM
volumes in the putamen ([x, y, z = −30, −10, 6], t-value = 5.5),
globus pailldus ([x, y, z = 16, 6, 0], t-value = 6.0), and inferior
frontal cortex ([x, y, z= 46, 24,−4], t-value= 5.2) (uncorrected;
p < 0.001) (Figure 5).

DISCUSSION

To our knowledge, this is the first study evaluating the
thalamo-cortical WM connectivity after donepezil treatment in
patients with MCI using probabilistic tractography. Patients
with MCI showed decreased thalamo-LPFC WM connectivity,
as well as reduced thickness in the medial/lateral orbitofrontal
cortices compared with the healthy controls. In addition, the
thalamo-SMC WM connectivity in patients with MCI was
positively correlated with K-MMSE scores, and the thalamo-LTC
connectivity was negatively correlated with ADAS-cog scores.
This suggests that decreased thalamo-LPFC WM connectivity
and reduced thickness of medial/lateral orbitofrontal cortices are
closely related to MCI and/or early stages of AD.

It is widely recognized that WM abnormalities are
detectable in the early stages of AD and MCI, suggesting
that abnormalities in the cortico-cortical and cortico-subcortical
WM interconnections are associated with an increased risk
of progression from MCI to AD (Radanovic et al., 2013). A
previous study (Wang et al., 2012) using VBM has reported
that the MCI group showed lower fractional anisotropy (FA)
and higher radial diffusivity (RD) in the parahippocampal
WM compared with the control group. Another similar study
(Palesi et al., 2012) demonstrated that patients with MCI showed
decreased volume in the hippocampus and increased MD in
the hippocampus-precuneus/posterior cingulate cortex tracts
when compared with the healthy controls. The current study
revealed that in comparison with the control group, the MCI
group showed a significant decrease in the thalamo-LPFC WM
connectivity. In addition, the thalamo-SMCWM connectivity in
the MCI group was positively correlated with K-MMSE scores.
The LPFC was shown to play an important role in cognitive
function. There is evidence that cognitive deficits in patients
with MCI are related to dysfunction of the LPFC (Duarte et al.,
2006; Zhou et al., 2013). According to the study by Duarte
et al. (Duarte et al., 2006), patients with MCI showed GM
volume loss in the LPFC compared with the healthy controls.
Zhou et al. (2013) evaluated the functional connectivity in the
thalmo-cortical network in patients with AD. They reported
a decrease in the functional connectivity between the left
thalamus and left inferior frontal cortex. A cerebral perfusion
study (Chao et al., 2009) demonstrated that MCI patients with
executive dysfunctions showed hypoperfusion in the prefrontal
cortex relative to controls. This indicates that thalamo-LPFC
WM connectivity in the MCI patients may be associated with
characteristics of the pathobiology of MCI.

We also found evidence that the decreased thickness of
the medial/lateral orbitofrontal cortices in patients with MCI
compared with healthy controls. The orbitofrontal cortex
occupies the anterior part of the prefrontal cortex, which
plays in complex human behaviors such as evaluation, affect
regulation, and reward-based decision-making (Fettes et al.,
2017). The orbitofrontal cortex atrophy was associated with
cognitive deficits (Hornberger et al., 2010; Zhao et al., 2015).
Both MCI and AD subjects had a thinner cortex in the
lateral orbitofrontal cortex compared with healthy controls
(Zhao et al., 2015). A positron emission tomography study
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TABLE 2 | Mean white matter connectivity between the thalamus and each cortex in patients with MCI (baseline), donepezil-treated patients (follow-up), and healthy

controls (HC).

Brain cortex MCI patients

(baseline)

Treated patients

(follow-up)

Healthy controls

(HC)

Statistical analysis

Baseline vs.

follow-up

HC vs. baseline HC vs. follow-up

OFC 0.04 ± 0.02 0.04 ± 0.02 0.06 ± 0.03 p = 0.959 p = 0.027 p = 0.034

MPFC 0.25 ± 0.05 0.24 ± 0.07 0.17 ± 0.08 p = 0.575 p = 0.014 p = 0.086

LPFC 0.05 ± 0.03 0.05 ± 0.04 0.17 ± 0.06 p = 0.959 *p < 0.001 *p = 0.001

SMC 0.36 ± 0.09 0.37 ± 0.06 0.29 ± 0.08 p = 0.575 p = 0.060 p = 0.022

PC 0.19 ± 0.08 0.20 ± 0.06 0.17 ± 0.05 p = 0.959 p = 0.514 p = 0.221

MTC 0.02 ± 0.01 0.03 ± 0.02 0.04 ± 0.03 p = 0.037 p = 0.022 p = 0.221

LTC 0.05 ± 0.02 0.05 ± 0.03 0.06 ± 0.01 p = 0.444 p = 0.165 p = 0.050

OCC 0.03 ± 0.03 0.03 ± 0.02 0.04 ± 0.03 p = 0.445 p = 0.327 p = 0.253

OFC, orbitofrontal cortex; MPFC, medial prefrontal cortex; LPFC, lateral prefrontal cortex; SMC, sensorimotor cortex; PC, parietal cortex; MTC, medial temporal cortex; LTC, lateral

temporal cortex; OC, occipital cortex.

*significant difference (Bonferroni corrected, p < 0.05).

FIGURE 3 | (A) The thalamo-sensorimotor cortex (SMC) white matter connectivity in patients with MCI was positively correlated with K-MMSE scores (Spearman’s

rho = 0.80, p = 0.005) and (B) the thalamo-lateral temporal cortex (LTC) was negatively correlated with ADAS-cog scores (Spearman’s rho = −0.76, p = 0.01).

Dotted lines show 95% confidence intervals. Red, white matter connectivity; green, thalamus ROIs (seed regions). • Shows WM connectivity and K-MMSE or

ADAS-Cog in patients with MCI.

(Mentis et al., 1995) demonstrated hypometabolism in the
orbitofrontal cortex in patients with AD. Notably, observations
with simultaneously decreased thalamo-LPFCWM connectivity,

thickness in the orbitofrontal cortex, and reduced K-MMSE
scores can be attributed to the cognitive dysfunction in the
MCI patients.
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FIGURE 4 | Reduced orbitofrontal cortex thickness in patients with MCI compared with healthy controls (Monte-Carlo corrected, p < 0.01). The p-values of the

clusters are represented by warm (healthy controls > MCI patients) and cool (MCI patients > healthy controls) colors.

FIGURE 5 | (A,B) Decreased hippocampal volume in patients with MCI compared with healthy controls [FWE corrected, p < 0.05 (A); uncorrected p < 0.0005 (B)].

(C) Brain regions with significantly increased GM volumes in donepezil-treated patients compared with patients with MCI (uncorrected, p < 0.001).

Furthermore, atrophy in the temporal lobe and hippocampus
has proven to be an important biomarker in the diagnosis of
MCI and AD. Especially, hippocampal atrophy has also been

an important predictor of progression from MCI to AD and
may be a marker for early AD in patients with MCI (Jack
et al., 1999, 2005; Apostolova et al., 2006; He et al., 2009).
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According to He et al. (2009), patients with amnestic multiple-
domain MCI had significant hippocampal atrophy compared
with the patients with amnestic single-domain MCI. The work
of Apostolova et al. (2006) suggested that smaller hippocampal
volume is associated with increased risk for conversion from
MCI to AD. The current study found that patients with MCI
showed significantly decreased volume in the hippocampus and
middle temporal cortex compared with the healthy controls.
This result is in concurrence with the finding that the most
prominent structural changes at the initial stage in AD occur
in the temporal lobe and hippocampus (Jack et al., 1999, 2005;
Apostolova et al., 2006; He et al., 2009). Although the patients
with MCI showed decreased GM volume in the middle temporal
cortex, the significance level by multiple comparison correction
is not high enough to validate this finding. In addition, the
thalamo-LTC WM connectivity in the patients with MCI was
negatively correlated with the ADAS-cog scores. The ADAS-Cog
is a validated and robust scale for measuring the change in AD
and continues to remain the regulatory standard outcome for
AD trials (Schrag et al., 2012). Based on these findings, decreased
thalamo-LPFC WM connectivity, reduced orbitofrontal cortical
thickness, and hippocampal atrophy can be useful for diagnosing
and tracking MCI.

In the current study, the MMSE scores in patients with MCI
improved after donepezil treatment by 7.9%. Additionally, after
6 months of treatment, patients with MCI showed increased
thalamo-MTC WM connectivity and higher GM volume in
the inferior frontal cortex. However, the patterns of WM
connectivity and brain volume change in untreated and treated
patients were not significantly different from each other, resulting
from multiple comparison corrections. However, these findings
might not be clear due to the short follow-up period for
donepezil treatment. Therefore, future studies comprising a
larger population with a long period of follow-up are needed to
generate more accurate and reliable data.

This study has some limitations. The small sample size means
it does not have high statistical power. To compensate for this
limitation, we considered a statistical threshold of P-value <0.05
using FWE or Bonferroni correction. Another limitation relates
to the quality inspection of DWI data, which is based on a
visual inspection and individual processing in FSL software,
without correction for the geometric distortion induced by B0
inhomogeneity. Thus, further correction through unwarping is
needed to rectify susceptibility-induced geometric distortions.
Another limitation involves the short follow-up period of about 6
months for donepezil treatment, hindering optimal evaluation of
the time course of donepezil treatment efficacy. Therefore, large
population studies with long-term follow-up are needed to obtain

more accurate and reliable findings. Furthermore, a placebo-
controlled study of MCI patients is recommended to validate and
establish the efficacy of drug treatments.

CONCLUSION

This study has demonstrated altered thalamo-cortical WM
connectivity, cortical thickness, and GM volume following
donepezil treatment in patients with MCI. More specifically,
patients with MCI showed decreased thalamo-LPC WM
connectivity and reduced thickness in the medial/lateral
orbitofrontal cortices. Taken altogether, these findings could
be valuable in the early detection of MCI as a prodromal
phase of AD, as well as furthering understanding of the
neurophysiopathological mechanism of MCI in connection with
structural and functional abnormalities.
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Background: Voxel-based morphometry (VBM) has been widely used to investigate

structural alterations in amnesia mild cognitive impairment (aMCI). However, inconsistent

results have hindered our understanding of the exact neuropathology related to aMCI.

Objectives: Our aim was to systematically review the literature reporting VBM on

aMCI to elucidate consistent gray matter alterations, their functional characterization,

and corresponding co-activation patterns.

Methods: The PubMed, Web of Science, and EMBASE databases were searched for

VBM studies on aMCI published from inception up to June 2020. Peak coordinates

were extracted from clusters that showed significant gray matter differences between

aMCI patients and healthy controls (HC). Meta-analysis was performed using seed-based

d mapping with the permutation of subject images (SDM-PSI), a newly improved

meta-analyticmethod. Functional characterization and task-based co-activation patterns

using the BrainMap database were performed on significant clusters to explore

their functional roles. Finally, VBM was performed based on the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) dataset to further support the findings.

Results: A total of 31 studies with 681 aMCI patients and 837 HC were included in

this systematic review. The aMCI group showed significant gray matter atrophy in the

left amygdala and right hippocampus, which was consistent with results from the ADNI

dataset. Functional characterization revealed that these regions were mainly associated

with emotion, cognition, and perception. Further, meta-regression analysis demonstrated

that gray matter atrophy in the left inferior frontal gyrus and the left angular gyrus was

significantly associated with cognitive impairment in the aMCI group.

Conclusions: The findings of gray matter atrophy in the left amygdala and right

hippocampus are highly consistent and robust, and not only offer a better understanding

of the underlying neuropathology but also provide accurate potential biomarkers

for aMCI.

Keywords: amnestic mild cognitive impairment, voxel-based morphometry, gray matter volume, meta-analysis,

seed-based d mapping
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INTRODUCTION

Mild cognitive impairment (MCI) is a transitional stage between
normal cognitive function and dementia, mainly characterized
by mild impaired cognitive function but without significant
impairment of function (Bennett et al., 2002; Petersen, 2004).
Amnestic MCI (aMCI), is a subtype of MCI characterized
by objective memory impairment without dementia, preserved
general cognitive function, and highly intact functional activities
(Petersen, 2004). aMCI conveys a high risk for developing
Alzheimer’s disease (AD), with an annual rate of ∼25% of
patients (Petersen et al., 2001b; Zhao et al., 2014). Although
numerous studies have reported gray matter atrophy in many
brain regions and have suggested it to be associated with the
pathophysiology of aMCI, the results are inconsistent (Threlkeld
et al., 2011; Baglio et al., 2012; Migo et al., 2015), and need to
be verified.

In recent years, numerous systematic reviews have been
performed to analyze the difference in gray matter between
MCI and HC (Schroeter et al., 2009; Shi et al., 2009; Yang
et al., 2012; Tabatabaei-Jafari et al., 2015; Minkova et al., 2017;
Gu and Zhang, 2019). However, the studies showed that MCI,
including both aMCI and non-aMCI, is a heterogeneous clinical
identity displaying the loss of different neurodegenerative entities
(Costafreda et al., 2009; Serra et al., 2013), thus, should be studied
at the subtype level. The most recent meta-analysis (Nickl-
Jockschat et al., 2012) on the gray matter differences between
aMCI and HC was conducted in 2012, and revealed significant
atrophy in the bilateral amygdala, hippocampus, left superior
temporal gyrus, and the left thalamus. An increasing number
of voxel-based morphometry (VBM) studies have investigated
gray matter differences between aMCI and HC. However, due
to the small and heterogeneous samples of participants as
well as substantial methodological differences between studies,
results from VBM studies remain inconsistent and controversial
(Costafreda et al., 2009). For example, some studies report that
regional gray matter atrophy is mainly restricted to the bilateral
hippocampus (Pa et al., 2009; Gili et al., 2011), whereas other
studies only report gray matter volume (GMV) loss in the
unilateral hippocampus (left or right) (Bonekamp et al., 2010;
Xie et al., 2015). Moreover, a statistical method of the meta-
analysis has been optimized (Albajes-Eizagirre et al., 2019a,b).
A new-generation algorithm for coordinate-based meta-analysis
(CBMA), seed-based d mapping with the permutation of subject
images (SDM-PSI), has been successfully used in previous VBM
meta-analysis studies (Albajes-Eizagirre et al., 2019b;Wang et al.,
2020). This method has led to significant improvements, such
as using threshold-free cluster enhancement (TFCE) statistics,
small bias estimates of the overall size estimates, and multiple
imputations of the study image, to avoid bias associated with
single imputation (Albajes-Eizagirre et al., 2019a).

Therefore, in this systematic review of VBM studies, SDM-PSI
was used to determine the most prominent and replicable areas
that can distinguish aMCI from healthy controls. Further, meta-
analytic connectivity modeling (MACM) analysis was performed
to understand the role of significance clusters at the functional
network level. Behavioral domains (BD) and paradigm classes

(PC) were used to determine functional characterization of
significance clusters. A dataset (144 aMCI and 87 HC) from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
was used to compare gray matter atrophy of aMCI and HC to
further validate the results of our meta-analysis.

MATERIALS AND METHODS

The meta-analysis was conducted in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-
analyses (PRISMA) statement (Moher et al., 2009; Muller
et al., 2018) (Supplementary Table 1). The present meta-
analysis was undertaken following the recent guidelines and
recommendations for CBMA (Winblad et al., 2004; Tahmasian
et al., 2019). The protocol of this meta-analysis was registered
at PROSPERO (http://www.crd.york.ac.uk/PROSPERO)
(registration number: CRD42020204050).

Literature Search and Study Selection
A systematic search strategy was conducted in PubMed,
EMBASE, and Web of Science (https://www.webofknowledge.
com/) from inception to June 2020. The search keywords used
were (“cognitive impairment” OR “mild cognitive impairment”
OR “cognitive decline” [Title/Abstract]) OR “neurocognitive
disorder” OR “MCI”) AND (“voxel-based morphometry” OR
“VBM” OR “morphometry”) OR “volumetry” OR “gray matter”
OR “structural MRI”). Besides, the references of the included
studies were manually screened to avoid omission of relevant
studies, and all the identified studies were imported into
EndNote. After a review of the title and abstracts, studies that did
not meet the inclusion criteria were excluded. A final exclusion of
studies was performed after a full-text review.

Studies were included if they met the following criteria: (1)
the patients met the clear diagnostic criteria for aMCI (McKhann
et al., 1984; Petersen et al., 2001a,b; Petersen, 2004; Du et al.,
2014); (2) the study utilized the VBM method to estimate
GMV or differences in gray matter density at the whole-brain
level between aMCI and HC; (3) the study used stereotactic
coordinates (i.e., Talairach space or Montreal Neurological
Institute (MNI) space); and (4) the study was an original
article, peer-reviewed, and published in English. The appropriate
results of the meta-analysis were based on the overall effect
in the subgroups. Studies reporting aMCI patients with other
neurological, psychiatric, or systemic diseases or postoperative
complications were also excluded (i.e.; stroke, Parkinson’s
disease, or diabetes). For longitudinal design studies, only
baseline preprocessing data were included. Authors of published
studies were contacted for additional information by email.
Following this approach, 31 studies were selected (Figure 1).

Data Extraction and Quality Assessment
The extracted data included study characteristics (author
and year of publication), subject characteristics [sample size,
age, gender, education, and mini-mental state examination
(MMSE)], peak coordinates, and the significance level.
Moreover, coordinates in different stereotactic spaces were
converted to MNI space, while Z- or P-values for significant
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FIGURE 1 | Flow diagram of inclusion and exclusion process of selected articles of VBM studies in patients with aMCI. aMCI, amnestic mild cognitive impairment.

clusters were converted to T-values using SDM utilities
(https://www.sdmproject.com/utilities/?show=Statistics).

A 12-point checklist (Supplementary Table 2) containing
the inclusion criteria, demographic characteristics, sample size,
technical details of the imaging procedure, analysis method, and
the quality of the reported results was assessed to determine
the quality of each selected article (Radua et al., 2015). All the
steps were independently performed by two authors, and all
inconsistencies were resolved by a third author.

Coordinate-Based Meta-Analysis
CBMA was carried out using SDM-PSI version 6.21 (https://
www.sdmproject.com/), with the following procedure: (1)
collection of information regarding the peak coordinates of
significant GMdifferences between aMCI andHC; (2) calculation
of the maps of the lower and upper bounds of possible effect sizes
within a GM mask, full anisotropy = 1, isotropic full width half
maximum (FWHM) = 20mm, and voxel = 2mm; (3) the mean
analysis: estimation of the map of most likely effect size and its
standard error based on the MetaNSUE algorithms (Radua et al.,
2012; Albajes-Eizagirre et al., 2019b); (4) conducting multiple
imputations of the maps of the effect size of individual studies;
(5) meta-analysis of these maps using a standard random-effects

model, and Rubin rules to pool the different meta-analyses
resulting from the multiple imputations (Albajes-Eizagirre et al.,
2019b); (6) family-wise error (FWE) correction for multiple
comparisons; and (7) using threshold-free cluster enhancement
(TFCE) in the statistical thresholding (p < 0.05, voxel extent
≥ 10). The details of these procedures have been extensively
described in prior publications (Albajes-Eizagirre et al., 2019a,b)
and the SDM-PSI reference manual (https://www.sdmproject.
com/manual/).

Reliability Analysis, Subgroup

Meta-Analysis, and Meta-Regressions
To test the replicability of the results, a systematic whole-
brain voxel-based jackknife sensitivity analysis was performed
using the leave-one-out method (Radua and Mataix-Cols, 2009;
Albajes-Eizagirre et al., 2019a).

Subgroup meta-analyses were performed to investigate the
potential confounding effects. Imaging methodology variables
including datasets using a 3.0 T MRI scanner, statistical
parametric mapping (SPM) software versions 8 or 12, a
smoothing kernel of 8mm, and the corrected thresholds for
multiple comparisons, respectively, were performed. Statistical
significance was determined using the TFCE-based FWE
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corrected threshold (p < 0.05, voxel extent ≥ 10) (Radua et al.,
2014; Albajes-Eizagirre et al., 2019b).

Finally, meta-regression analyses were conducted to examine
the potential effects of demographic characteristics and clinical
confounders (age, gender, education, and MMSE) on GMV
by linear regression. Confounders were weighted based on the
square root of the sample size and restricted to only predict
possible SDM values (Radua et al., 2014). Statistical significance
was determined using a stringent threshold of p < 0.05 and
cluster extent ≥ 10 voxels in the meta-regression analyses
(Higgins et al., 2003; Radua and Mataix-Cols, 2009).

Analyses of Heterogeneity and Publication

Bias
The values from peak coordinates reported in the CBMA were
extracted for information to guide heterogeneity statistics and
publication bias analyses. Heterogeneity between studies was
assessed using the I2 statistic using a random-effects model,
where I2 < 50% indicates low heterogeneity (Egger et al., 1997).
Publication bias was examined using funnel plots and Egger tests
(Eickhoff et al., 2011). An asymmetric plot and p < 0.05 were
considered statistically significant.

Analysis of Co-activation Patterns and

Functional Characterization
To determine the role of these clusters at the functional network
level, we performed MACM to obtain the task-dependent co-
activated patterns of each brain region in the BrainMap database
(http://brainmap.org/) by performing an activation likelihood
estimation (ALE) (Eickhoff et al., 2009; Tench et al., 2014). The
ALE scores were compared to a null-distribution of random
spatial association between experiments with a fixed within-
experiment distribution of foci (Eickhoff et al., 2012) yielding
a p-value based on the proportion of equal or higher random
values (Eickhoff et al., 2011). These non-parametric p-values
were converted to z-scores and corrected at a cluster-level FWE-
corrected threshold of p < 0.05 (a voxel-level p < 0.001).

Functional characterization determines the functional role
of the brain region in terms of behavioral domains (BD) and
paradigm classes (PC) using forward inference in the BrainMap
database (Laird et al., 2009; Turner and Laird, 2012) (http://www.
brainmap.org). Behavioral domains include the main categories
of cognition, action, perception, emotion, and interception, as
well as their related sub-categories. Paradigm classes classify the
specific task employed (Muller et al., 2013) (http://brainmap.
org/scribe/) for complete BrainMap taxonomy. Significance was
assessed using a binomial test (p < 0.05, corrected for multiple
comparisons using FDR) (Weiner et al., 2013).

Alzheimer’s Disease Neuroimaging

Initiative Database
The gray matter differences between aMCI and HC were further
studied using the ADNI database, to support the meta-analysis
results. Inclusive and exclusive criteria are described in detail
at http://www.adni-info.org.

Data were downloaded from the ADNI database up to July
2020 (Chetelat et al., 2002) (http://adni.loni.ucla.edu/). The
search included insertion of MCI and HC in the research group
and selecting MRI modalities from the ADNI.

The T1 images were preprocessed using DPABI (http://
rfmri.org/dpabi). First, each image was segmented into gray
matter, white matter, and cerebrospinal fluid, and the images
were transformed to MNI space. The gray matter images were
modulated to preserve regional volume information. Finally,
the modulated images were smoothed with a 6mm FWHM.
Two-sample t-tests were performed to identify GMV differences
between aMCI andHC. Age and sex were entered into themodels
as covariates. Results were corrected for Gaussian Random Field
(GRF) with a voxel level of p < 0.001 and a cluster level
of p < 0.05.

RESULTS

Included Studies and Sample

Characteristics
Thirty-one studies (Bell-McGinty et al., 2005; Hirata et al.,
2005; Saykin et al., 2006; Shiino et al., 2006; Trivedi et al.,
2006; Hämäläinen et al., 2007; Bai et al., 2008; Barbeau et al.,
2008; Barnes et al., 2009; Guedj et al., 2009; Pa et al., 2009;
Rami et al., 2009; Bonekamp et al., 2010; Agosta et al., 2011;
Derflinger et al., 2011; Threlkeld et al., 2011; Venneri et al.,
2011; Baglio et al., 2012; Han et al., 2012; Wang et al., 2012;
Xie et al., 2012, 2015; Bastin et al., 2013; Hoppstädter et al.,
2013; Serra et al., 2013; Zhao et al., 2014, 2015; Hong et al.,
2015; Migo et al., 2015; Sheelakumari et al., 2018; Chen et al.,
2020) were included comprising 681 aMCI patients (211 male
and 207 female) and 837 HC (257 male and 301 female). An
unbalanced age distribution was observed between aMCI andHC
(standardized mean difference [SMD] = −0.20, 95% confidence
interval [CI] = [−0.31, −0.10], z = 3.74, p < 0.01), and one
dataset (Pa et al., 2009) did not report the mean age and standard
deviation of HC. Significant differences were observed between
aMCI and HC regarding gender (χ2 = 4.7, p = 0.03), however,
the sex ratios of the two datasets (Saykin et al., 2006; Chen et al.,
2020) were not provided. In terms of educational level, the aMCI
group had fewer years of education compared with the HC group
(SMD = −1.32, 95%CI = [−1.45, −1.18], z = 19.23, p < 0.01),
the education levels in six datasets (Bell-McGinty et al., 2005;
Saykin et al., 2006; Trivedi et al., 2006; Guedj et al., 2009; Pa et al.,
2009; Agosta et al., 2011) were not provided. Besides, the aMCI
groups had significantly lower MMSE scores than the HC group
(SMD=−0.19, 95% CI= [-0.31,−0.07], z= 3.19, p< 0.01). The
MMSE scores in seven datasets were not provided.

The quality of each included study (Supplementary Table 2)
was acceptable, with a quality score not <10 (a maximum
score =11.5). The demographic, clinical, and quality score
of each eligible study are summarized in Table 1. Technical
characteristics are shown in Supplementary Table 3.

Gray Matter Atrophy
In the pooled meta-analysis, aMCI patients showed significant
gray matter atrophy in two brain regions relative to HC; one in
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TABLE 1 | Demographic and clinical characteristics of the included VBM studies.

Study Gender (F/M) Age (SD) Education (SD) MMSE (SD) Quality scores (out of 12)

HC MCI HC MCI HC MCI HC aMCI

Chetelat et al. (2002),

Chetelat et al. (2002),

Bell-McGinty et al. (2005)

22 (12/10) 22 (12/10) 66.6 (7.2) 71.0 (8.0) NA NA NA NA 11

Bell-McGinty et al. (2005),

Hirata et al. (2005)

47 (20/27) 9 (5/4) 66.9 (7.3) 71.9 (7.6) 15.7 (2.7) 13.7 (2.1) 29.4 (0.4) 23.1 (3.8) 10.5

Hirata et al. (2005),

Saykin et al. (2006)

30 41 70.6 (8.4) 71.1 (7.7) NA NA 28.7 (1.5.) 26.0 (1.5) 10.5

Saykin et al. (2006),

Shiino et al. (2006)

40 (28/12) 40 (17/23) 63.4 (8.9) 70.9 (9.0) 16.6 (2.7) 16.3 (3.3) 29.1 (1.0) 27.2 (2.2) 11.5

Shiino et al. (2006),

Trivedi et al. (2006)

88 (48/40) 20 (10/10) 68.7 (8.7) 67.7 (9.0) NA NA 29.09 (1.47) 26.80 (1.88) 11

Trivedi et al. (2006),

Hämäläinen et al. (2007)

15 (6/9) 15 (6/9) 73.6 (7.1) 73.3 (6.7) 16.7 (2.5) 16.3 (2.8) 29.7 (0.5) 27.8 (1.8) 11.5

Hämäläinen et al. (2007),

Bai et al. (2008)

21 (17/4) 14 (10/4) 71.2 (4.9) 72.4 (7.3) 7.9 (2.9) 8.1 (2.6) 27.7 (2.0) 5.6 (3.1) 11

Bai et al. (2008),

Barbeau et al. (2008)

20 (11/9) 20 (10/10) 69.4 (3.8) 71.3 (3.8) 13.8 (4) 14.0 (3.1) 28.3 (1.4) 27.2 (1.6) 11

Barbeau et al. (2008),

Guedj et al. (2009)

28 (13/15) 28 (16/12) 63.3 (7.2) 69.3 (8.6) NA NA 28.9 (1.0) 27.4 (1.4) 11

Guedj et al. (2009),

Pa et al. (2009)

28 19 (10/9) NA 69.9 (9.5) NA NA 28.8 (1.0) 27.1 (1.1) 10

Pa et al. (2009),

Rami et al. (2009)

36 (23/13) 26 (13/13) 64.8 (8.2) 68.0 (6.6) 17.0 (2.0) 17.5 (1.7) NA NA 11

Rami et al. (2009),

Bonekamp et al. (2010)

27 (17/10) 14 (10/4) 74.3 (5.3) 72.9 (4.8) 9.4 (5.2) 7.4 (4.2) 27.4 (1.0) 26.0 (2.0) 11

Bonekamp et al. (2010),

Agosta et al. (2011)

20 (10/10) 10 (5/5) 75.5 (4.6) 73.5 (5.5) NA NA 28.9 (1.2) 26.3 (2.9) 11.5

Agosta et al. (2011),

Derflinger et al. (2011)

15 (9/6) 15 (7/8) 69.8 (6.0) 70.4 (7.2) 12.3 (3.6) 9.0 (4.6) 28.8 (1.5) 25.8 (0.9) 11.5

Derflinger et al. (2011),

Threlkeld et al. (2011)

30 (20/10) 24 (13/11) 67.0 (8.7) 69.0 (9.0) 10.6 (1.7) 10.4 (2.0) NA 26.8 (1.7) 11.5

Threlkeld et al. (2011) 24 (11/13) 18 (8/10) 77.9 (7.1) 77.1 (5.8) 16.2 (2.4) 15.8 (2.6) 28.4 (1.1) 27.1 (1.3) 11

Venneri et al. (2011),

Venneri et al. (2011)

25 (15/10) 25 (12/13) 70.3 (6.5) 70.5 (6.4) 9.32 (4.46) 8.96 (4.41) 28.68 (1.52) 28.24 (1.23) 10.5

Baglio et al. (2012),

Baglio et al. (2012)

15 (9/6) 16 (7/9) 71.0 (5.8) 66.9 (6.4) 10.8 (3.5) 9.9 (4.8) 29.0 (1.3) 27.0 (1.8) 10.5

(Continued)
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TABLE 1 | Continued

Study Gender (F/M) Age (SD) Education (SD) MMSE (SD) Quality scores (out of 12)

HC MCI HC MCI HC MCI HC aMCI

Han et al. (2012),

Han et al. (2012),

Wang et al. (2012)

18 (11/7) 17 (10/7) 66.5 (6.2) 69.7 (7.6) 8.4 (5.6) 8.8 (4.0) 29.2 (0.7) 25.2 (3.5) 11

Wang et al. (2012),

Xie et al. (2012)

30 (11/19) 40 (16/24) 76.1 (7.2) 68.07 (7.46) 13.5 (2.6) 11.4 (4.3) NA NA 11.5

Xie et al. (2012),

Bastin et al. (2013)

25 (12/13) 17 (11/6) 74.3 (8.3) 75.1 (6.6) 15.3 (2.9) 13.5 (2.1) 28.9 (1.2) 27.3 (1.8) 11

Bastin et al. (2013),

Hoppstädter et al. (2013)

24 (18/6) 35 (12/23) 73.2 (7.2) 73.9 (6.6) 12.5 (2.8) 13.0 (3.5) NA NA 11.5

Hoppstädter et al. (2013),

Serra et al. (2013)

10 (6/4) 14 (4/10) 67.8 (4.7) 68.0 (4.0) 12.90 (3.80) 11.30 (2.50) 28.88 (1.05) 27.85 (1.29) 11.5

Serra et al. (2013),

Zhao et al. (2014)

28 (10/18) 15 (4/11) 63.4 (8.9) 70.9 (9.0) 13.1 (3.5) 11.3 (4.4) 28.4 (1.7) 25.4 (1.7) 11

Zhao et al. (2014),

Hong et al. (2015)

18 (10/8) 20 (12/8) 66.8 (7.4) 65.1 (9.9) 12.0 (2.9) 11.8 (3.3) 29.3 (1.2) 25.2 (2.2) 11.5

Hong et al. (2015),

Migo et al. (2015)

28 (19/9) 29 (19/10) 70.6 (6.5) 70.5 (5.2) 8.8 (6.16) 8.6 (4.36) 28.7 (1.36) 25.5 (2.81) 11.5

Migo et al. (2015) 11 (4/7) 10 (5/5) 70.3 (6.2) 71.4 (6.4) 15.64 (4.13) 16.00 (4.30) NA NA 10.5

Xie et al. (2015),

Xie et al. (2015),

Zhao et al. (2015)

26 (12/14) 30 (11/19) 64.8 (7.59) 67.14 (9.3) 14.3 (3.2) 14.3 (3.2) 28.2 (1.3) 27.1 (1.6) 11.5

Zhao et al. (2015),

Sheelakumari et al. (2018)

34 (16/18) 34 (20/14) 66.9 (6.7) 68.0 (7.6) 11.5 (3.9) 10.8 (3.3) 29.2 (0.9) 25.5 (1.6) 11.5

Sheelakumari et al. (2018),

Chen et al. (2020)

25 24 63.24 (6.94) 69.8 3(5.76) 12.80 (3.68) 11.29 (3.25) NA NA 11.5

Chen et al. (2020) 29 (17/12) 20 (7/13) 70.69 (5.4) 71.35 (5.9) 12.17 (3.2) 10.88 (2.9) 28.55 (1.4) 27.45 (2.1) 11.5

aMCI, amnestic mild cognitive impairment; SD, standard deviation; MMSE, mini-mental state examination; NA, not available; F, female; and M, male.
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the left amygdala (p = 0.000999987 < 0.001) extending to the
left hippocampus, left temporal pole, superior temporal gyrus,
left amygdala, cingulum, and left parahippocampal gyrus. The
other in the right hippocampus (p = 0.000999987 < 0.001),
extending to the right amygdala and right parahippocampal
gyrus (Figure 2; Table 2).

Jackknife Sensitivity Analysis and

Subgroup Analysis
Whole-brain jackknife sensitivity analysis showed that gray
matter atrophy in the left amygdala and right hippocampus were
highly replicable (Table 2). The results of the right amygdala and
left thalamus remained significant in all but one combination
(Trivedi et al., 2006).

The results remained largely unchanged when the meta-
analysis was restricted to the datasets corrected for multiple
comparisons (n = 14). However, when the meta-analysis was

FIGURE 2 | Regions showing reduced gray matter in aMCI patients.

restricted to the datasets acquiring images with a 3.0 T MRI
scanner (n = 16), datasets using statistical parametric mapping
(SPM) software, versions 8 or 12 (n= 19), only the left amygdala
was found (Table 3).

Analyses of Heterogeneity and Publication

Bias
The low I2 statistic (0.0%) (Supplementary Figures 1, 2)
indicated low heterogeneity between-study variability in gray
matter atrophy in the right hippocampus and left amygdala.

Although the funnel plot showed no obvious asymmetry for
the right hippocampus and the left amygdala (Figure 3), Egger
tests revealed possible publication bias in the left amygdala (p <

0.05) (Supplementary Table 4).

Meta-Regression Analysis
GMV atrophy in the left orbital part of the inferior frontal gyrus
(IFG.L) (BA 47, MNI coordinate: x = −36, y = 26, z = −16,
SDM-Z value = 2.469, r = 0.19, p = 0.006, and 112 voxels),
the left triangular part of the inferior frontal gyrus (BA 48, MNI
coordinate: x = −52, y = 16, z = 8; SDM-Z value = 1.965, r =
0.16, p = 0.024, 47 voxels), and the left angular gyrus (AG.L)
(BA 39, MNI coordinate: x = −48, y = −62, z = 48, SDM-Z
value = 2.037, r = 0.17, p = 0.020, 19 voxels) was found to be
positively correlated with the MMSE scores in the aMCI patients
after removing the covariates of age and education (Figure 4).

Results From ADNI
A total of 144 patients with aMCI (82 male/62 female, mean
age = 74.97, mean MMSE = 29.64) and 83 HC (38 male/45
female, mean age = 75.90, mean MMSE = 26.85) were included
in the current study. No significant difference was reported for
age and gender between both groups (p > 0.05). The aMCI
group showed significantly higher MMSE compared with the HC
group (p < 0.01).

VBM analysis revealed that there were two clusters with
a statistical significant difference: the left hippocampus (MNI
coordinate: x = −25.5, y = −9, z = −16.5, t = 4.450, 2,609
voxels) and right amygdala (peak MNI coordinate: x = 21, y =

−4.5, z = −18, t = 4.453). These results showed high overlap
with the meta-analysis results (Supplementary Figure 3).

TABLE 2 | Regional differences in GM volume between patients with aMCI and healthy controls in the meta-analysis.

Brain

regions

MNI

coordinate

SDM-Z

value

P-value Number of

voxels

Cluster breakdown

(number of voxels)

Jackknife

sensitivity

Left amygdala −26, −2, −16 −6.635 <0.001 2,633 Left hippocampus, BA 20 (177); left

temporal pole, superior temporal gyrus,

BA 38 (165); left median network,

cingulum (128); left parahippocampal

gyrus, BA 28 (125); left inferior network,

inferior longitudinal fasciculus (112); left

inferior network, uncinate fasciculus (94);

left insula, BA 48 (91);

31/31

Right hippocampus 20, −6, −14 −5.973 <0.001 836 Right amygdala, BA 34 (86); right

parahippocampal gyrus, BA 28 (66)

30/31

BA, Brodmann area.

Frontiers in Aging Neuroscience | www.frontiersin.org 7 March 2021 | Volume 13 | Article 627919182

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Zhang et al. Gray Matter Atrophy of aMCI

TABLE 3 | Results of analyses of subgroups.

Decreased gray matter

Left amygdala Right hippocampus

Studies Hämäläinen et al., 2007;

Barnes et al., 2009; Threlkeld et al.,

2011; Venneri et al., 2011; Baglio

et al., 2012; Han et al., 2012; Wang

et al., 2012; Bastin et al., 2013;

Hoppstädter et al., 2013; Serra et al.,

2013; Zhao et al., 2014; Hong et al.,

2015; Migo et al., 2015; Sheelakumari

et al., 2018 with acquiring images

with a 3.0T MRI scanner (n = 14)

Yes No

Studies Barnes et al., 2009; Venneri

et al., 2011; Wang et al., 2012; Bastin

et al., 2013; Hoppstädter et al., 2013;

Serra et al., 2013; Zhao et al., 2014,

2015; Migo et al., 2015;

Sheelakumari et al., 2018; Chen

et al., 2020 employing statistical

parametric mapping (SPM) software,

versions 8 or 12 (n =11)

Yes No

Studies Bell-McGinty et al., 2005;

Saykin et al., 2006; Trivedi et al.,

2006; Bai et al., 2008; Barbeau et al.,

2008; Guedj et al., 2009; Pa et al.,

2009; Rami et al., 2009; Agosta et al.,

2011; Derflinger et al., 2011;

Threlkeld et al., 2011; Han et al.,

2012; Wang et al., 2012; Xie et al.,

2012; Bastin et al., 2013; Zhao et al.,

2014, 2015 with correction for

multiple comparisons (n = 16)

Yes Yes

Co-activation Patterns and Functional

Characterization
To further investigate the role of significance clusters (the left
amygdala and right hippocampus) at the functional network
level, MACM analysis was performed; at the same time,
functional characterizations was performed to explore the
detailed functions and behavioral profiles of the left amygdala and
the right hippocampus.

The bilateral cerebrum, limbic lobe, parahippocampal gyrus,
amygdala, inferior frontal gyrus, sub-lobar, frontal lobe, inferior
frontal gyrus, temporal lobe, extra-nuclear, superior frontal
gyrus, and fusiform gyrus were co-activated with the left
amygdala (Figures 5A,B). Functional characterization showed
that the left amygdala was mainly associated with emotion,
perception, and cognition, and the PCs showed similar
results (Figure 5C).

The bilateral cerebrum, limbic lobe, parahippocampal gyrus,
amygdala, temporal lobe, inferior frontal gyrus, sub-lobar,
extra-nuclear, fusiform gyrus, and cingulate gyrus were co-
activated with the right hippocampus (Figures 5D,E). Functional
characterization demonstrated that the right hippocampus was
associated with emotion, perception, and cognition, and the PCs
also showed similar results (Figure 5F).

FIGURE 3 | Funnel plot of effect size of left amygdala (A) and right

hippocampus (B).

DISCUSSION

In the current study, a newly improved SDM-PSI method was
used to perform a meta-analysis on VBM studies on GMV
alterations in aMCI compared to HC. This quantitative meta-
analysis comprised 31 whole-brain VBM studies with 681 aMCI
patients and 837 HC. aMCI patients were found to exhibit
significant gray matter atrophy in the left amygdala and the right
hippocampus compared to HC. Jackknife sensitivity analysis
and subgroup analysis revealed that the results were highly
consistent and robust. Moreover, VBM analyses based on the
ADNI dataset showed similar results with high overlap. Further
meta-regression analysis demonstrated that GMV atrophy in
the left inferior frontal gyrus and left angular gyrus is
associated with the severity of cognitive impairment in aMCI.
Functional characterization revealed that these regions were
mainly associated with emotion, cognition, and memory.

Our findings of robust GMV atrophy in the left amygdala
and right hippocampus were consistent with a previous meta-
analysis based on ALE studies which reported evidence of volume
reduction in the bilateral amygdala and hippocampus in aMCI
(Albajes-Eizagirre et al., 2019b). Our results were also consistent
with various longitudinal studies which showed that subjects with
AD have higher rates of hippocampal and amygdala volumetric
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FIGURE 4 | Meta-regression results showing an association between MMSE

and gray matter volume in the aMCI group, in the left inferior frontal gyrus (A),

left inferior frontal gyrus (B), and left angular gyrus (C). MMSE, mini-mental

state examination.

atrophy compared with HC (Jack et al., 1998; van de Pol et al.,
2007; Wolz et al., 2010; Zhang et al., 2012; Miller et al., 2013).
Moreover, the results were also supported by the previous meta-

analysis between MCI and HC (Yang et al., 2012; Minkova et al.,
2017; Gu and Zhang, 2019), however, there were some statistically

significant clusters not reported in this study, which may be

related to a heterogeneous subgroup of MCI patients (that is,
aMCI and non-aMCI) (Hirata et al., 2005). These differences
may be related to risk factors or physiology that is unique

to each MCI subtype. Previous studies demonstrate that gray
matter atrophy in MCI subtypes differs from HC (Whitwell
et al., 2007; Bai et al., 2009a), aMCI showed more atrophy
in the hippocampus, parahippocampus, and temporal lobes,

whereas non-aMCI showed atrophy in the inferior and medial
frontal gyrus, anterior cingulate gyrus, superior temporal gyrus,
and insula (Whitwell et al., 2007). Most importantly, functional
MRI studies report that aMCI patients show decreased medial
temporal lobe activation (Chen et al., 2016) and decreased sub-
regional functional connectivity (Remondes and Schuman, 2004;
Bai et al., 2009b) compared with HC. It is important to note
that the amygdala and hippocampus are two important medial
temporal lobes (MTL) structures. MTL, involved in encoding
and retrieval of episodic and spatial memory (Braak and Braak,
1991; Schwindt and Black, 2009; Ranganath and Ritchey, 2012),
is considered to be initially targeted in AD-related pathology
(Braak and Braak, 1991; Ranganath and Ritchey, 2012) and aMCI
patients (Scheltens et al., 1992; Karas et al., 2004; Korf et al.,
2004; Bai et al., 2009a). The results indicate that GMV atrophy in
the left amygdala and right hippocampus might provide accurate
potential biomarkers for aMCI.

This meta-analysis revealed GMV atrophy of the amygdala
in aMCI, which has been reported in numerous other studies
(Maren and Fanselow, 1995; Trivedi et al., 2006; Bastin et al.,
2013; Migo et al., 2015). The important role of the amygdala
in emotional processing and emotional memory has been
emphasized by functional imaging experiments and lesion
studies in animal models (Roozendaal et al., 2009; Pape and
Pare, 2010; Mendez-Bertolo et al., 2016). Human studies further
demonstrate the central roles of the amygdala in emotion
processing (Adolphs et al., 1999; Sotres-Bayon et al., 2012),

memory, and storage. Growing evidence suggests that aMCI
patients have impaired recognition of facial emotional expression
(McCade et al., 2011; Richard-Mornas et al., 2012; Varjassyova
et al., 2013), which is mainly related to the amygdala. Results

of our behavioral analysis for the amygdala also support
this opinion. More importantly, impairments of emotional
recognition and emotional facial expressions have been reported
in aMCI patients (Lavenu et al., 1999), and are related to the

transition of aMCI into AD (Bediou et al., 2009; Chen et al.,
2015). Based on these findings, amygdala atrophy may help
explain the clinical manifestations of aMCI.

Consistent with previous studies in aMCI patients (Maren

and Fanselow, 1995; Apostolova et al., 2006; Shi et al., 2009;
Bartsch and Wulff, 2015), this meta-analysis also showed GMV
atrophy in the hippocampus, which is the most validated, easily
accessible, and widely used biomarker for AD. The hippocampus,
located in theMTL, plays a pivotal role in the learning, formation,
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FIGURE 5 | Functional connectivity and characterization. (A) Left amygdala. (B) Co-activation connectivity analysis for left amygdala. (C) Functional characterization

of left amygdala. (D) Right hippocampus. (E) Co-activation connectivity analysis for right hippocampus. (F) Functional characterization of right hippocampus.

Functional characterization of significance levels was thresholded at p < 0.05, cluster-level FWE-corrected, cluster-forming threshold at voxel-level p < 0.001.

Co-activation connectivity of significance levels was thresholded at p < 0.05, corrected for multiple comparisons using FDR.

and consolidation of memory (Knierim, 2015). Lesion studies
on humans and animals demonstrate that the hippocampus
performs a critical function in the brain’s ability to store and
retrieve memories (particularly episodic memories in humans)

(Kontaxopoulou et al., 2018). Recent findings indicate that
aMCI patients have difficulties with episodic memory, incidental
memory, and long-term memory with greater hippocampal
atrophy (Lee et al., 2014; Zhao et al., 2014; de Mendonca
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et al., 2018). Lee’s study also showed that recognition memory
can be used to identify aMCI patients at greater risk for
progressing to dementia (Leung et al., 2013). These findings
are consistent with our functional characteristics findings. An
important study by Leung et al. found that hippocampal atrophy
in MCI patients was estimated to accelerate by an average of
0.22%/year2 (Defrancesco et al., 2014). Therefore, our findings on
hippocampal atrophy in patients with aMCI further emphasize
the important role of the hippocampus in the pathobiology
of aMCI.

MMSE, a general cognitive screening test commonly used to
assess MCI in previous studies, has been correlated with GMV
atrophy. In this study, lower MMSE was positively correlated
with decreased GMV in the IFG.L, which was consistent with
previous studies (Prince et al., 2005; Wang et al., 2012). The
IFG.L has been implicated as an important part in the pathology
of MCI, and is thought to be associated with attention and
memory processes, including encoding and retrieval and long-
and short-term memory (Wagner et al., 2001; Chambers et al.,
2004; Prince et al., 2007). Similarly, lower MMSE was positively
correlated with decreased GMV in the AG.L, which plays a major
role in spatial attention and orienting (Dehaene et al., 2004),
mathematical cognition (Thakral et al., 2017), and especially,
episodic simulation and episodic memory (Bokde et al., 2010).
Previous studies have shown that lower resting-state activity in
the angular gyrus in aMCI may be related to poorer verbal
working memory performance that involves short-term storage
and retrieval of phonological representations (Jonides et al., 1998;
Lin et al., 2020). These findings indicated that the IFG.L andAG.L
may be used as potential markers to monitor aMCI progression
and cognitive decline. Subgroup meta-analyses revealed that
the main results were affected by the MR field-strength and
SPM software to some extent, whereas GMV atrophy in the
left amygdala and right hippocampus were independent of
correctionmethods. These results provide insights to future VBM
investigations, indicating the need to control for the potentially
confounding factors of MR field-strength and SPM software.

The current study has several strengths. The most important
one is the use of SDM-PSI, an updated CBMA, which has
been presented and recommended in several previous studies
(Yu et al., 2017; Albajes-Eizagirre et al., 2019b; Sheng et al.,
2020a,b; Wang et al., 2020). This technique has made significant
methodological improvements to overcome the drawbacks of
alternative procedures and produce accurate results (Albajes-
Eizagirre et al., 2019a). Besides, functional characterization
and task-based co-activation using the BrainMap database was
performed to explore the functional roles of the abnormal regions
between aMCI and HC. Finally, the ADNI database was used to
investigate the reliability of our findings.

Despite these strengths, this study has several potential
limitations. First, the study shows that there may be publication
bias in the gray matter atrophy of the amygdala. This may
be related to the fact that we include only studies published
in English that have been peer-reviewed. However, one study
performed by Yu et al. also showed that publication bias
did not have a major influence on the results in general
(Salimi-Khorshidi et al., 2009). Our VBM results from the ADNI

database showed similar patterns with those of the meta-analysis,
which further supports the findings. Future comprehensively
pooled big neuroimaging data from worldwide populations is
still warranted. Second, voxel-based meta-analyses are based
on summarized coordinates from published studies rather than
raw data, which may result in less accurate results (Li and
Zhang, 2015). However, obtaining and analyzing the raw images
from these studies is logistically and technically difficult. Third,
we did not perform subgroup analyses on the aMCI-single
domain (aMCI-sd) and aMCI-multiple domain (aMCI-md), yet,
distinct clinical features of aMCI subtypes may indicate different
conversion rates to AD (Li and Zhang, 2015). Finally, since
MMSE scores are a rather unspecific measure for aMCI (Nickl-
Jockschat et al., 2012), the relationship betweenMMSE and brain
structure should be used with caution. More specific memory
tests are needed in future studies to better explore the relationship
between gray matter atrophy and cognitive impairment
in aMCI.

CONCLUSIONS

The current meta-analysis supports that GMV atrophy in the left
amygdala and right hippocampus is highly consistent in aMCI
patients. Additionally, functional characterization demonstrates
that the consistent regions of brain atrophy are functionally
linked to “emotion,” “perception,” and “cognition.” This not only
offers a better understanding of the underlying neuropathology
but also provides accurate potential biomarkers for aMCI.
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Much research effort is currently devoted to the development of a simple, low-cost
method to determine early signs of Alzheimer’s disease (AD) pathology. The present
study employs a simple paradigm in which event-related potentials (ERPs) were recorded
to a single auditory stimulus that was presented rapidly or very slowly while the
participant was engaged in a visual task. A multi-channel EEG was recorded in 20 healthy
older adults and 20 people with mild cognitive impairment (MCI). In two different
conditions, a single 80 dB sound pressure level (SPL) auditory stimulus was presented
every 1.5 s (fast condition) or every 12.0 s (slow condition). Participants were instructed
to watch a silent video and ignore the auditory stimuli. Auditory processing thus occurred
passively. When the auditory stimuli were presented rapidly (every 1.5 s), N1 and
P2 amplitudes did not differ between the two groups. When the stimuli were presented
very slowly, the amplitude of N1 and P2 increased in both groups and their latencies
were prolonged. The amplitude of N1 did not significantly differ between the two groups.
However, the subsequent positivity was reduced in people with MCI compared to healthy
older adults. This late positivity in the slow condition may reflect a delayed P2 or a
summation of a composite P2 + P3a. In people with MCI, the priority of processing may
not be switched from the visual task to the potentially much more relevant auditory input.
ERPs offer promise as a means to identify the pathology underlying cognitive impairment
associated with MCI.

Keywords: mild cognitive impairment, MCI, event-related potentials, ERPs, biomarker

INTRODUCTION

Mild cognitive impairment (MCI) is a condition in which individuals demonstrate cognitive
impairment with no impairments in social or occupational function. MCI may represent a
transitional stage between healthy aging and Alzheimer’s disease (AD) with 20–40% of people
with MCI progressing to dementia (Roberts and Knopman, 2013). The early identification of
MCI and prediction of decline associated with progression to AD has been the subject of intense
research (Sperling et al., 2011). Much of this research is devoted to the development of a
simple, low-cost, and readily available biomarker to determine the early signs of neuropathology
underlying AD.
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Neuropsychological tests are often used to diagnose AD.
Performance on almost all neuropsychological and cognitive
tasks will inevitably be affected by the participant’s ability and
willingness to maintain attention (Sturm et al., 1999; Buschman
and Miller, 2010; Oberauer, 2019). Attentional control and the
maintenance of attention may be a challenge for older adults,
and particularly for people with MCI (Saunders and Summers,
2010). A good deal of early processing of sensory input is said
to be automatic; that is, it is completed whether or not the
participant attends to the sensory channel. Determining the
extent of processing of unattended input is methodologically
difficult. The processing of unattended input can be measured
by event-related potentials (ERPs), the changes in the electrical
activity of the brain elicited by an external stimulus or internal
psychological event. ERPs consist of a series of negative- and
positive-going components, thought to reflect different aspects
of information processing. Some of these ERP components are
elicited independently of attention.

All auditory stimuli elicit an obligatory negative component,
the N1, occurring around 100 ms post-stimulus, followed
by a later positivity, the P2, occurring around 180 ms. In
the classic Näätänen (1990) model of auditory processing, a
transient detector system detects abrupt onsets and offsets of
auditory stimuli. The output of this system, reflected by the
amplitude of N1, varies directly with the rate of stimulus
presentation and the energy (intensity) of the stimulus, thus
defining its salience. N1 and the P2 will therefore be larger for
higher intensity auditory stimuli and stimuli presented slowly.
Critically, it has long been known that attention to the auditory
channel has relatively little effect on N1 and P2 (Picton and
Hillyard, 1974), especially when stimuli are presented slower
than every 1 s (Schwent et al., 1976; Hansen and Hillyard, 1988;
Woldorff, 1995).

In the Näätänen (1990) model, sufficiently high activation of
the transient detector system will result in an interrupt signal
being sent to the frontoparietal network controlling processing
priorities (Goulden et al., 2014). Attention may then be switched
from the ongoing cognitive activities to the processing of the
highly salient stimulus event. A later positivity, the P3a, peaking
between 200 and 300 ms, is thought to reflect processes associated
with the switching of attention (Escera et al., 1998; Masson and
Bidet-Caulet, 2019).

The P3a is often elicited in oddball paradigms by a deviant
representing a large change from the frequently occurring
standard stimulus. There is evidence that a P3a can also be
elicited by a single, rarely presented stimulus. When the rate of
stimulus presentation is very slow (> than every 10 s), N1 and
P2 become very large and their peak latencies are delayed by
about 20–30 ms (Alcaini et al., 1994; Budd et al., 1998; Muller-
Gass et al., 2008; Pereira et al., 2014). Berti (2013) questioned
whether this P2 might be better described as a P3a. The Berti
study required subjects to decide on a visual stimulus. On 13%
of trials, the visual stimulus was preceded by an irrelevant
auditory stimulus. Performance on the visual task subsequently
deteriorated, compared to trials in which no auditory stimulus
preceded the visual stimulus. This suggested that attention had
been switched from the processing of the visual task to the

processing of the auditory stimulus. Such processing is associated
with the P3a rather than the P2. In the present study, we describe
the positivity following the very slow presentation of the stimulus
as a composite P2/P3a. Rinne et al. (2006) and Muller-Gass et al.
(2007) employed oddball paradigms in which the rare deviant
was created by either decreasing or increasing the intensity of
the standard. Only the intensity increase elicited a large P3a,
presumably because it resulted in large output from the transient
detector system. In this regard, Cecchi et al. (2015) employed an
oddball paradigm with a white noise burst deviant. The intensity
of white noise at times increases and as such will be detected by
the transient detector system. A P3a was elicited by the noise
burst in healthy older adults but was reduced in amplitude in
people with MCI.

There is disagreement about how the N1 and P2 change
with aging. In most studies, stimuli are presented relatively
rapidly, every 1–3 s. Many of these studies have failed
to find N1 or P2 differences between younger and older
adults, while some have reported larger responses for younger
adults and others have reported larger responses for older
adults (Pfefferbaum et al., 1980; Cranford and Martin, 1991;
Bertoli et al., 2005; Harkrider et al., 2005; Čeponiene et al.,
2008; McCullagh and Shinn, 2013; Stothart and Kazanina,
2016; Kamal et al., 2021). Stimulus features and experimental
parameters differ widely across studies, making comparison
difficult. In general, even when differences between younger
and older participants are observed, they tend to be small.
More consistent results have been observed when stimuli are
presented very slowly. Berti et al. (2017) and Kamal et al. (2021)
varied the rate of stimulus presentation of the to-be-ignored
auditory stimuli. When the auditory stimuli were presented very
slowly (every 10 and 12 s respectively), the amplitude of both
N1 and P2/P3a was much reduced in the older compared to
younger adults.

A limited number of studies have examined the N1 and P2 in
people with MCI (for a review see Morrison et al., 2018). When
the stimuli are presented relatively rapidly, most studies have not
found N1 and P2 differences between healthy older adults and
people with MCI (Golob et al., 2002; Lai et al., 2010; Lister et al.,
2016; Bidelman et al., 2017; Buján et al., 2019). Some studies have
reported a somewhat larger N1 or a reduced P2 in people with
MCI, at least in certain conditions (Irimajiri et al., 2005; Golob
et al., 2007; Lister et al., 2016; Buján et al., 2019). While some
of these differences have been attributed to the severity of MCI,
experimental parameters again tend to vary widely across studies.

The effects of very slowly presented stimuli have yet to be
examined in people with MCI. The large age-related changes
in N1 and P2/P3a elicited by auditory stimuli presented
very slowly offer much promise for early identification of
MCI. The paradigm used by Kamal et al. (2021) has many
advantages. Testing can be completed within 15 minutes.
Moreover, the participant does not need to attend to the
auditory stimuli; the ERPs are elicited passively, independent
of attention. In the present study, participants were asked to
ignore the auditory stimuli while engaged in a visual task. We
compared the passive processing of the auditory stimuli in people
with MCI and cognitively healthy older adults. The auditory
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stimuli were presented rapidly and very slowly in separate
conditions. Berti et al. (2017) and Kamal et al. (2021) observed
large N1 and P2/P3a differences between younger and older
adults only when stimuli were presented very slowly. It was
therefore expected that with the additional decline observed
in people with MCI compared to healthy older adults, ERP
amplitude differences would also only be observed in the
slow condition.

MATERIALS AND METHODS

Participants
Forty-one participants took part in this study. One participant
was excluded from the analysis because of noisy EEG data
(see ‘‘EEG Data Recording’’ section). A total of 40 participants’
data were therefore analyzed: 20 cognitively healthy older adults
(12 females; age range = 67–81 years; M = 72.4 years) and
20 people with MCI (10 females; age range = 68–84 years;
M = 74.2 years). Older adults were recruited through word-
of-mouth and announcements displayed at community centers.
Participants with MCI were recruited from the Bruyère Memory
Program. They were diagnosed with MCI based on the clinical
history and a neurological exam by a physician with expertise in
neurodegenerative conditions. They underwent a CT scan and
blood work to rule out reversible causes of cognitive impairment.
Participants were not included if their cognitive decline was
thought to be related to other comorbidities.

The Montreal Cognitive Assessment (MoCA) was used to
screen for cognitive decline (Nasreddine et al., 2005). The
cutoff for the MoCA in cognitively healthy older adults was
24. Healthy older adults scored significantly higher (p < 0.001)
on the MoCA (M = 27.05, SD = 1.46) than people with
MCI (M = 22.79, SD = 3.24). Participants also completed a
one-hour neuropsychological battery to assess general cognitive
functioning (see Supplementary Table 1). The healthy older
adults also participated in the Kamal et al. (2021) study. All
participants reported no history of neurological or psychiatric
conditions. All participants reported normal hearing but also
completed pure tone audiometric testing for 500, 1,000, and
2,000 Hz frequencies.

This study was approved by the University of Ottawa and
Bruyère Research Institute ethics boards. Participants provided
informed written consent before starting the study and an
honorarium was given as compensation.

Stimuli and Procedure
Participants were seated in a sound-attenuated testing room. A
single 80 dB SPL (sound pressure level) 1,000 Hz pure tone
auditory stimulus, having a total duration of 55 ms (5 ms
rise/fall time) was presented binaurally through Sony MDR-V6
headphones. The stimuli were presented every 1.5 s in a fast
condition and every 12.0 s in a slow condition. A total of
400 and 50 stimuli were presented in the fast and slow conditions,
respectively. Each condition lasted 10 min. The order of the
two conditions was randomized across participants. The auditory
conditions were presented a second time in reverse order. A
total of 100 and 800 stimuli were therefore presented in the

slow and fast conditions, respectively. The repetition of stimulus
presentations served to reduce the amplitude of the random
background noise in the EEG.

Participants were instructed to watch a silent, subtitled video
and to ignore the presentation of the irrelevant auditory stimuli.
Processing of the auditory stimuli thus occurred passively.

EEG Data Recording
Continuous EEG activity was recorded from 31 active silver-
silver chloride electrodes, attached to an electrode cap placed
according to the international 10-10 system. An EOG electrode
was placed on the infraorbital ridge of the left eye to monitor
vertical eye movements and blinks. An electrode placed on
the tip of the nose served as a reference for all channels. An
advantage of active electrodes is that impedance can be relatively
high (Kappenman and Luck, 2010). Inter-electrode impedance
was kept below 20 k�. The impedance at F3, Fz, F4, and C3,
Cz, C4, which comprised regions of interest (ROIs), was below
10 k�. The EEG and EOG signals were sampled at a rate of
500 Hz.

The EEG was then visually examined to remove channels
containing high levels of noise. These channels were substituted
by interpolating the data of the surrounding electrode sites
(Perrin et al., 1989). Interpolation was not applied to any of the
ROI sites. The data of one participant were removed from further
analysis because more than four channels with excessive noise
were rejected. A 0.5 Hz high-pass and a 20 Hz low-pass digital
filter (24 dB/octave roll-off) were then applied to the data.

Eye movement and blink artifacts occurring independently of
EEG activity were identified and corrected using Independent
Component Analysis (ICA; Makeig et al., 1996). To do so
required computation of vertical and horizontal EOG activity.
A vertical EOG was computed by subtracting FP1 from
the inferior orbital activity. Horizontal eye movements were
computed by subtracting the FT9 and FT10 activity. The EEG
was subsequently reconstructed into single 700 ms epochs
starting 100 ms before stimulus onset. The average of all
activity in the pre-stimulus period served as a zero-voltage
baseline. Drifts in post-stimulus voltage from this baseline
were then corrected for each epoch. Epochs containing EEG
activity exceeding ±100 µV were subsequently rejected from
the averaging. In the fast condition, fewer than 1% of trials
were rejected for healthy older adults, while fewer than
3% were rejected for people with MCI (p = 0.20). In the
slow condition, fewer than 2% of trials were rejected for
either group.

ERP Quantification
The amplitude of N1 and P2/P3a was quantified as the mean of
all data points within ± 25 ms of their peak amplitude identified
in the grand average of each group. In both groups, N1 peaked
at 95 ms in the fast condition and 115 ms in the slow condition.
The subsequent P2/P3a positivity peaked at 205 ms in the fast
condition and 230 ms in the slow condition.

N1 and P2/P3a were quantified at frontal (F3, Fz, F4) and
central (C3, Cz, C4) ROIs, where they are largest. Separate 2-way
ANOVAs were initially run at these ROIs for both the N1 and
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FIGURE 1 | Grand averaged event-related potentials (ERPs) from healthy older adults and people with mild cognitive impairment (MCI) in the fast rate of
presentation condition. N1 and P2 amplitude did not differ between the two groups.

P2/P3a with a single between-subjects factor, Group (Older,
MCI), and a single within-subjects factor, Rate of Presentation
(Fast, Slow). The results were quite similar at both electrode
sites. For this reason, the data were collapsed across ROIs.
A 3-way ANOVA was then run with the between-subjects
factor, Group (Older, MCI), and two within-subjects factors,
Rate (Fast, Slow) and ROI (Frontal, Central). Previous research
has shown large ERP differences between younger and older
participants but only when stimuli were presented very slowly.
We, therefore, expected to observe differences between MCI
and healthy older adults only in this condition. For this reason,
planned comparisons were run on interactions involving Group
and Rate of Presentation.

RESULTS

Figures 1, 2 illustrate the multi-channel ERPs for both groups in
the fast and slow conditions, respectively. As may be observed,
a robust negative peak, N1, occurring at about 100 ms was
elicited in both conditions followed by a later positivity, P2/P3a,
occurring at about 200 in the fast condition and 230 ms in the
slow condition.

N1
A main effect of Rate of Presentation was observed for the
amplitude of N1, F(1,38) = 29.05, p < 0.001, η2

p = 0.43.
N1 was larger in the slow than in the fast condition. Overall
Group differences were not significant (F < 1) and interactions

involving Group were not significant (F < 1). Thus, regardless of
the rate of presentation, the amplitude of N1 did not significantly
differ between groups at either frontal or central ROIs.

Figure 3A presents the grand averaged ERPs at Cz including
SDs around the average. A pirate plot illustrating both descriptive
and inferential statistics (Phillips, 2017) of the N1 data is
presented in Figure 3B. As may be observed, the confidence
intervals (CIs) for N1 were very similar for both groups. There
was considerable overlap between healthy older adults and
people with MCI in both the fast and slow conditions.

P2/P3a
An overall significant main effect of the Rate of the presentation
was also observed for P2/P3a. P2/P3a was larger in the slow
than the fast condition, F(1,38) = 28.30, p < 0.001, η2

p = 0.43.
The Group × Rate interaction was not significant F(1,38) = 2.53,
p = 0.12, η2

p = 0.06. The trend of the interactions was, however,
in keeping with a priori predictions. Follow-up Fisher’s Least
Square Significance procedures revealed the source of the
interactions. Group differences were not significant in the fast
condition (p < 0.20). However, in the slow condition, P2 was
significantly larger for healthy older adults than for people with
MCI (p< 0.03). The Group × Condition × ROI interaction was
not significant, F < 1.

A pirate plot of the P2/P3a at the central ROI is presented in
Figure 3C. The mean amplitude of the P2/P3a was larger for the
older than the MCI group, but only in the slow condition. There
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FIGURE 2 | Grand averaged ERPs from healthy older adults and people with MCI in the slow rate of presentation condition. The amplitude of N1 did not differ
between the groups. The amplitude of P2 was larger for healthy older adults than people with MCI at both the frontal and central regions of interest (ROIs).

was, however, considerable overlap in individual participants’
amplitudes within the two groups.

Changes Across Quarters
A reduced P2/P3a was observed in people with MCI in slow
condition (see Figure 4). Possibly, their ERPs varied over time,
while being more consistent for healthy older adults. The data
were separated into four equal quarters to explore changes over
time. The first trial was excluded from this analysis because it
marked the initiation of a new condition. Thus, for the slow
condition trials 2–13, 14–25, 26–37, and 38–49 were averaged
separately. The main effect of the Quarter was not significant
(F < 1). Importantly, the Group x Quarter interaction was also
not significant (F < 1).

Correlations
Correlations were also computed between the P2/P3a amplitude
and the MoCA scores within the MCI group. In the fast
condition, no significant correlations were found r = 0.24,
p = 0.22 at Fz, and r = 0.32, p = 0.22 at Cz. In the slow condition,
the correlations were also not significant, r = 0.32, p = 0.19 at Fz,
and r = 0.40, p = 0.09 at Cz.

Scalp Distribution
N1 and P2/P3a were both large over fronto-central areas of
the scalp. Interactions involving Site and Group and Site and
Rate were not significant for either N1 or P2/P3a (F < 1 in

all comparisons). Spline-interpolated scalp distribution maps of
N1 are illustrated in the Supplementary Figure 1.

DISCUSSION

The auditory stimulus in both the fast and slow conditions
elicited a robust N1 and P2/P3a. In both healthy older adults and
people with MCI, the amplitude of N1 and P2/P3a increased and
their latencies were prolonged when the stimuli were presented
very slowly. This finding replicates several other studies in
younger adults (Alcaini et al., 1994; Budd et al., 1998; Muller-
Gass et al., 2008; Pereira et al., 2014). There is evidence that
the sources of the auditory N1 differ depending on the rate
of stimulus presentation. When stimuli are presented relatively
rapidly, the sources have been identified to be in and around
the auditory cortex. When stimuli are presented very slowly,
the large increase in the amplitude of the N1 and P2/P3a, and
their prolonged latencies has been explained by activation of
additional widespread sources, particularly in the frontal lobes
(Sams et al., 1993; Alcaini et al., 1994; Giard et al., 1994; McEvoy
et al., 1997). Many imaging studies have noted a deterioration
and loss of function in the frontal regions with age and in early
dementia (Driscoll et al., 2009; Machulda et al., 2009; Madden
et al., 2012; Salami et al., 2012).

It was expected that differences between healthy older adults
and people with MCI would be largest when stimuli were
presented very slowly, and smallest when stimuli were presented
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FIGURE 3 | Pirateplots of N1 and P2 data providing both descriptive and inferential statistics. Data are collapsed across all central electrode (C3, Cz, C4) sites. The
grand averages and SDs (shaded) are illustrated in panel (A). The mean amplitudes of N1 and P2 (thick, solid horizontal line), 95% confidence intervals (CIs; light
horizontal box), smooth frequency distribution (shaded area), and individual data points (jittered) are presented in panels (B,C) respectively. The mean amplitude of
N1 did not differ between the groups in the fast condition. On the other hand, P2 was larger for the healthy older adults when stimuli were presented slowly.

rapidly. The finding that the N1 and P2 amplitudes did not differ
between the two groups in the fast condition is consistent with
other studies (Golob et al., 2002; Lai et al., 2010; Lister et al., 2016;
Bidelman et al., 2017; Buján et al., 2019). However, contrary to
expectations, the amplitude of N1 was not significantly reduced
in people with MCI when stimuli were presented slowly. The
amplitude of N1 can be used to define the salience of stimulus
input. N1 amplitude is larger when transient energy (intensity)
is higher or when the time between the onset of stimuli is very
long (i.e., when stimuli are presented slowly). In the present
study, there is thus little evidence that at the early level of
processing, people with MCI have a deficit in computing the
salience of unattended auditory stimuli compared to healthy
older adults.

In the present study, when stimuli were presented very slowly,
planned comparisons indicated that the P2/P3a was significantly
larger in older adults than in people with MCI. Its peak latency,
around 230 ms, is more consistent with that of a P3a than a
P2. Distinguishing between the P2 and P3a processes can be
difficult because they may overlap and summate both temporally
(occurring at about the same time) and spatially (sharing a
similar scalp distribution).

When stimuli were presented slowly, it could be argued that
the reduced P2/P3a in people with MCI is a result of a variable

FIGURE 4 | Healthy older adult and MCI grand averaged ERP waveforms
across the four quarters of the slow rate of presentation condition. Data
presented are from the Cz electrode site. Note the N1 and P2 did not change
across the four quarters for either healthy older adults or people with MCI.

response within this condition. The reduction in this positivity in
people with MCI in the slow condition might have been a result
of rapid habituation, or a fatigue effect throughout the study.
Ruusuvirta (2021) notes that the ERP response will be large in
the initial trials but will decay upon repetition of the stimulus.
Thus, in people with MCI, it is possible that the P2/P3a response
was large in the initial trials but subsequently became much
smaller. By contrast, in healthy older adults, the P2/P3a response
may not have varied within the condition. However, there was
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little evidence to support this notion. When the averages were
computed across each quarter of the study, ERP response showed
little variance over time for either group.

The reduced P2/P3a in MCI, also observed by Cecchi
et al. (2015), supports the view that the operations of the
frontoparietal network may be dysfunctional in MCI. At first
glance, the reduced P2/P3a does seem to contradict the theory
that people with MCI are less able to inhibit the processing
of irrelevant, unattended stimulus input (Belleville et al., 2008;
Johns et al., 2012; Rabi et al., 2020; but see Rey-Mermet and
Gade, 2018). In the present study, although the auditory stimuli
were not attended to, their very rare occurrence should have
been deemed to be a potentially highly relevant event. The
amplitude of N1 did not significantly differ between people
with MCI and healthy older adults. This finding suggests that
people with MCI can establish the relevance/salience of the
incoming stimulus event. To determine the actual relevance of
such input would require a switch of processing priorities and the
continuation, rather than the inhibition, of further processing.
The dysfunction in people with MCI, therefore, appears to occur
later as a result of a reduction in the ability to determine
processing priorities.

In people with MCI, the correlational analyses indicated a
small positive relationship between the amplitude of P2/P3a
and MoCA scores. Nevertheless, the correlations did not attain
statistical significance, perhaps because of the limited range
of MoCA scores. It is also possible that the specific cognitive
functions reflected by the P2/P3a are different from the more
global cognitive functions measured by the MoCA.

CONCLUSION

Several studies have proposed the use of electrophysiological
measures as a biomarker of MCI (Gu and Zhang, 2017;
Morrison et al., 2018; Paitel et al., 2020). The very simple
paradigm used in the present study has the advantage that
it could be readily implemented on almost any low-cost
commercial system. Testing can be completed in a short
15-min period. It has the marked advantage that the ERP
responses elicited by the slowly-presented auditory stimuli
occur relatively independent of attention, task demands, and
what the participant is doing. From a clinical and applied
perspective, whether the positivity occurring around 230 ms
reflects P2 or P3a activity may be somewhat incidental.
What is critical for its use as a biomarker is how accurately
ERPs can classify people with MCI and cognitively healthy
older adults. Despite overlap among individual participants,
the P2/P3a group differences in the slow condition were

significant. ERPs thus offers promise as a means to identify
the pathology underlying cognitive impairment associated with
MCI. Future research should examine the effects of even
slower rates of stimulus presentation and different intensity
levels. The use of an oddball paradigm which includes white
noise and novel environmental sound deviants, known to
elicit a large P3a, might also be employed. A longitudinal
design should also be employed to examine differences
between MCI participants who convert to dementia and
those who remain stable. These studies could reveal the
electrophysiological changes associated with conversion to
dementia at an individual level.
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Background: The hippocampus and its subfields (HippSub) are reported to be

diminished in patients with Alzheimer’s disease (AD), bipolar disorder (BD), and major

depressive disorder (MDD). We examined these groups vs healthy controls (HC) to reveal

HippSub alterations between diseases.

Methods: We segmented 3T-MRI T2-weighted hippocampal images of 67 HC, 58

BD, and MDD patients from the AFFDIS study and 137 patients from the DELCODE

study assessing cognitive decline, including subjective cognitive decline (SCD), amnestic

mild cognitive impairment (aMCI), and AD, via Free Surfer 6.0 to compare volumes

across groups.
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Results: Groups differed significantly in several HippSub volumes, particularly between

patients with AD and mood disorders. In comparison to HC, significant lower volumes

appear in aMCI and AD groups in specific subfields. Smaller volumes in the left

presubiculum are detected in aMCI and AD patients, differing from the BD group. A

significant linear regression is seen between left hippocampus volume and duration since

the first depressive episode.

Conclusions: HippSub volume alterations were observed in AD, but not in early-onset

MDD and BD, reinforcing the notion of different neural mechanisms in hippocampal

degeneration. Moreover, duration since the first depressive episode was a relevant factor

explaining the lower left hippocampal volumes present in groups.

Keywords: Alzheimer’s disease, cognitive impairment, early-onset depression, hippocampus, hippocampal

subfields, MRI volumetry

INTRODUCTION

The human hippocampus is known as a brain structure pivotal
for memory formation. It is the plasticity of the hippocampus
to form memory that makes it particularly vulnerable to damage
and volume reduction. In Alzheimer’s disease (AD), hippocampal
volume is reduced due to neurodegeneration as evidenced in
brain MRIs of specific hippocampal subfields (HippSub). A
variety of human studies have reported that specific HippSubs
such as the cornu ammonis 1–3 (CA1–3), presubiculum or
subiculum are more prone to neurodegenerative processes than
others (Hanseeuw et al., 2011; La Joie et al., 2013; Carlesimo
et al., 2015; de Flores et al., 2015). The degeneration pattern
may depend on the AD stage, as indicated by cognitive
performance, varying from subjective cognitive decline (SCD)
to dementia. HippSub fields are suitable biological imaging
markers of early stages of AD, as the presubiculum-subiculum
complex (Carlesimo et al., 2015; Jacobs et al., 2020), CA2–
3 (Hanseeuw et al., 2011), or CA1 region (de Flores et al.,
2015) are often atrophied. Supporting this idea, recent work
indicates that lower subicular volumes in patients with memory
impairment are related to the grade of ß-amyloid depositions
independent of the presence of neurodegeneration assessed by
fluorescence desoxyglucose positron emission tomography (FDG
PET) (Filho et al., 2021). More broadly, another study confirmed
the association of ß-amyloid deposition in conjunction with
higher iron content in the medial temporal lobe and subjects’
age (even in cognitively unimpaired subjects) in terms of
specific HippSub volume decreases, i.e., in the subiculum, CA1/2,
CA3/dentate gyrus (DG) subregions (Foster et al., 2020). ß-
amyloid accumulation is a key underlying mechanism in the
loss of hippocampal volume across the spectrum of cognitive
impairment in preclinical and clinical AD. Another study suggest
that both reduced cerebrospinal fluid (CSF) ß-amyloid 1-42 and
elevated CSF tau levels are seen in AD patients who exhibit
smaller subiculum volumes (Tardif et al., 2018). This evidence
suggests that both tau-based neurodegeneration and ß-amyloid
pathology are crucial for HippSub volume loss in patients with
AD. Other mechanisms underlying the loss of hippocampal
volume might be polygenic, as a higher polygenic risk score

for AD was observed in cognitively normal patients in a study
by Foo (Foo et al., 2020), possibly depicting preclinical AD.
Protective mechanisms might also play a role, such as carrying
the TREML2 rs3747742-C polymorphism, which seem related
to higher CA1 volumes in cognitively normal subjects (Wang
et al., 2020). The interrelationship between depression and AD is
a well-replicated finding (Heser et al., 2013; Donovan et al., 2018).
It remains unclear whether depression is a relevant risk factor for
AD (Enache et al., 2011), or if depression is an earlymanifestation
thereof (Singh-Manoux et al., 2017). Furthermore, there is recent
evidence that a decrease in hippocampal volume and functional
connectivity is an important feature of major depressive disorder
(MDD) associated with cognitive impairment (Genzel et al.,
2015; Schmaal et al., 2016). Thus, it is of major interest to
compare HippSub volumes which might give us hints about
common underlying mechanisms in affective disorders and AD.
In depressive disorders, diverse mechanisms such as the number
of depressive episodes, stressful life events, oxidative stress,
childhood physical, or sexual abuse or metabolic changes are
potential underlying mechanisms of lower HippSub volumes
such as CA1 or dentate gyrus (DG) or fimbria (Treadway et al.,
2015; Elvsåshagen et al., 2016; Xu et al., 2018; Weissman et al.,
2020; Yuan et al., 2020). These studies depict that in depression,
the mechanisms of hippocampal volume loss seem to be even
broader than in hippocampal degeneration due to AD’s spectrum.
HippSub loss does not just concern unipolar depression; it is
also present in bipolar disorder (BD); the pattern of subfield loss
was considerably more extensive than in controls in a recent
multicentric study with 1,472 BD patients (Haukvik et al., 2020).
Another recent study indicated one possible common pathogenic
mechanism between BD and AD (Berridge, 2013), which is why
we added a BD group in our study. BD could could result in
a HippSub-specific fingerprint like reduced volume in the CA1
(Cao et al., 2017; Haukvik et al., 2020), cornu ammonis 4 (CA4)
(Cao et al., 2017; Haukvik et al., 2020), the granule cell layer
(GCL) (Cao et al., 2017; Haukvik et al., 2020), molecular layer
(ML) (Cao et al., 2017; Haukvik et al., 2020), subiculum (Sub)
(Cao et al., 2017; Haukvik et al., 2020), hippocampal amygdala
transition area (Haukvik et al., 2020) and tail (Cao et al., 2017;
Haukvik et al., 2020) depending on the duration and type of BD
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(Cao et al., 2017), but also on antipsychotic and antiepileptic drug
history (Haukvik et al., 2020). On the other hand, it has been
suggested that depressive symptoms might reduce age-related
hippocampal atrophy and result in larger Sub and CA1 subfields
(Szymkowicz et al., 2017). However, most studies showed smaller
hippocampal volumes due to ongoing depressive symptoms,
thus the controversy about how depression’s duration relates to
HippSub volumes. The aforementioned studies show that the
mechanism of hippocampal volume loss might differ even in
two distinct affective disorders and AD and that it is not fully
understood. However, we wondered whether there might be a
similar pattern of HippSub loss in some HippSubs implying
similar mechanisms of degeneration.

In the current investigation, we thus aimed [a] to analyze
HippSub volumes and hippocampal volumes between cohorts
with cognitive impairment, early-onset major depression and
BD, and [b] to identify potential disorder-specific alterations
and any shared trajectories of hippocampal volume decrease
in the hippocampus and HippSub in SCD, aMCI, AD, BD,
and MDD groups. Our study covers the spectrum ranging
from subjective complaints (SCD) to amnestic mild cognitive
impairment (aMCI) and AD. SCD patients do not reveal
objective cognitive impairment. Therefore, it is worth seeking
novel biomarker tools such as hippocampus and HippSub
imaging to diagnose early AD more accurately. In addition, we
are looking for molecular markers in the CSF such as ß-amyloid
and tau protein to detect any underlying pathomechanism for
HippSub in AD; a recent study by Tardif (Tardif et al., 2018)
proved a relevant relationship between HippSub decline and
ß-amyloid and tau-based neuropathology in AD. Our study
does not focus on specific HippSubs, as there is controversy
about which HippSubs are reduced among different diseases.
The intersection between lower HippSub volumes and various
diseases associated with cognitive dysfunction is inconsistent in
studies of AD’s spectrum (Hanseeuw et al., 2011; La Joie et al.,
2013; Carlesimo et al., 2015; de Flores et al., 2015; Cao et al., 2017;
Szymkowicz et al., 2017; Jacobs et al., 2020), MDD (Treadway
et al., 2015; Elvsåshagen et al., 2016; Xu et al., 2018; Weissman
et al., 2020; Yuan et al., 2020), and BD (Cao et al., 2017; Haukvik
et al., 2020). Therefore, we plan to take a more exploratory look
at the volumes of various HippSubs. Furthermore, we aimed
to discover whether specific factors show a relevant impact
on our HippSub and hippocampal volumes in certain disease
groups; i.e., sex, age, disease duration, age at condition onset,
number of depressive episodes, duration since first depression,
and intracranial volume. In addition, we expected to uncover
potential relationships not yet investigated between hippocampal
volume and HippSub volumes and duration since the first
occurrence of a depressive episode between all groups that might
be clinically relevant and thus support the relevance of very early,
effective treatment to impede further hippocampal degeneration
that might accompany disease progression. By analyzing early-
onset depression and BD patients, we will demonstrate a wide
spectrum of time duration in years between the first episode of
depression and hippocampal and HippSub volumes to answer
how a lifetime’s duration of suffering intermittent depressive and
no depressive episodes since the first one’s occurrence relates

to hippocampus volumetry. Analyzing hippocampal volumes in
addition to the HippSubs is an important endeavor, as they
involve functional aspects of memory such as pattern separation
and recognition in AD (Rizzolo et al., 2021), stress sensitization
(Weissman et al., 2020), as does the number of depressive
episodes in prior life (Videbech and Ravnkilde, 2004).

METHODS

Participants
We compared data of two independent cohorts from 137 patients
of the DELCODE study and 58 patients of the AFFDIS study
in this retrospective investigation. The German DELCODE
[Deutsches Zentrum für Neurodegenerative Erkrankungen
(DZNE, German Center for Neurodegenerative Diseases)
Longitudinal COgnitive impairment and Dementia] is assessing
cognitive decline and dementia in an ongoing, memory clinic-
based, observational, longitudinal, multicentric study (Jessen
et al., 2018). The AFFDIS study investigated differential neural
correlates in AFFective DISorders (AFFDIS) and medication-
related changes from 2015 to 2017. For a detailed description
of the DELCODE study design and study population, please see
Jessen et al. (2018). In short, participants from the DELCODE
cohort were grouped into SCD (n = 32; mean age: 72 ±

6.2 years, age range: 60–89 years), amnestic mild cognitive
impairment (aMCI) (n = 63; mean age: 72.5 ± 5.9 years,
age range: 62–88 years), and AD (n = 42; mean age: 72.9
± 6.9 years, age range: 61–87 years). The AD patients were
selected according to McKhann’s criteria (McKhann et al.,
2011). Probable AD is diagnosed according to McKhann’s
criteria (McKhann et al., 2011) when the following deficits
and other alternative causes have been excluded: a gradual,
not acute onset of symptoms, worsening cognition resulting in
dementia with a prominent amnestic presentation of cognitive
dysfunction, difficulty finding words and solving problems,
defective spatial cognition, impaired reasoning, or judgement.
We randomly selected the patients from the DELCODE cohort
for comparable size between study cohorts (AFFDIS, DELCODE)
and their subgroups. Participants were classified as having
SCD in case of self-reported subjective cognitive decline and
a neuropsychological test achievement superior than −1.5
standard deviation (SD) on each subtest of the Consortium to
Establish a Registry for Alzheimer’s Disease (CERAD) test battery
(according to normative data adapted for age, education and sex)
(Jessen et al., 2014, 2018, 2020). According to research criteria
(Jessen et al., 2018), participants with aMCI were defined as
those whose neuropsychological performance was below −1.5
SD in the delayed recall test of the CERAD word list, which
is indicative of episodic memory. For the HC group (n =

67, age: 54.0 ± 16.7 years, age range: 19–78 years) from the
DELCODE study, the same test criteria for SCD were applied,
but subjective cognitive concerns were absent. In a subgroup
of patients with cognitive impairment in the DELCODE study
[21/32 (66%) SCD, 46/63 (73%) aMCI, and 19/42 (45%) AD
patients] cerebrospinal fluid (CSF) biomarkers were assessed. As
part of the DELCODE protocol, Tau-protein, phosphorylated
181 Tau-protein (pTau181), ß-Amyloid 42, ß-Amyloid 40, and
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the ratio of ß-Amyloid 42/40 were analyzed in cerebrospinal
fluid (CSF) with cut-off values for AD’s molecular markers
established at the University Hospital in Bonn as previously
described (Jessen et al., 2018). AD’s molecular signature (AD
pathology+) was present if Aß42 or the Aß42/Aß40 ratio in
CSF was reduced and Tau protein or pTau181 were elevated in
CSF in line with Jack’s criteria for biological AD (Jack et al.,
2018).

Major exclusion criteria were significant sensory impairment,
major or neurological psychiatric disorder, current major
depressive episode, malignant disease, cerebral ischemia,
Vitamin B12 deficiency, and any unstable medical condition. A
medical history derived from the participant’s and caregiver’s
self-reports was collected and covered depression history
(e.g., age of depression onset, number of previous mood
episodes, if applicable). In the AFFDIS cohort, participants
with affective disorders were diagnosed with BD (n = 28, age:
54.0 ± 16.7 years, and age range: 26–63 years) and MDD (n
= 30, age: 38.2 ± 15.9 years, and age range: 19–65 years),
according to the DSM-5 criteria, and were assessed by the
Beck Depression Inventory-II (BDI-II), while HC participants
were evaluated by the Symptom Checklist-90-R (SCL-90-
R) to ensure the absence of psychopathological symptoms.
By pooling HC from the two cohorts (DELCODE n = 32,
AFFDIS n = 35), the HC group consisted of 67 participants
in total. Informed consent was received from all participants.
Approval was obtained for DELCODE [ethics committee of
the University Hospital Bonn and subsequent local ethics
committee’s of the participating centers of Berlin (Charité-
Universitätsmedizin Berlin), Göttingen (University Medical
Center of Göttingen), Cologne (University Hospital Cologne),
Magdeburg (Otto-von-Guericke University Magdeburg),
Munich (LMU Munich), Rostock (University Medical Center
of Rostock), and Tübingen (University of Tübingen)] and
AFFDIS (ethics committee of the University Medical Center of
Göttingen) from our local ethics committee and for DELCODE
from the executive board of the DZNE in Bonn, Germany. The
study was in agreement with the guidelines of the Declaration
of Helsinki.

Neuroimaging
We used whole-brain T1-weighted images (1mm isotropic) and
high-resolution T2-weighted images (0.5 × 0.5 × 1.5mm3)
spanning the hippocampus to segment it into its constituent
substructures. These structural images were acquired using 3T
MRI Siemens scanner systems [TIM Trio and Verio systems,
Skyra, and Prisma system, both the DELCODE and AFFDIS
cohorts. We used the already established and reliable method,
corroborated by longitudinal studies (Brown et al., 2020;
Garimella et al., 2020; Xu et al., 2020), of FreeSurfer (Version
6.0, software: http://surfer.nmr.mgh.harvard.edu/) to segment
the whole brain T1-weighted structural images using the default
standard recon-all processing stream (Dale et al., 1999; Fischl
et al., 1999). This step usually takes about 7–10 h for each subject
image, and outputs the segmentation results from both cortical
and subcortical structures. Standard preprocessing comprises
brain extraction, B1 bias field correction, segmentation of gray

as well as white matter, reconstruction of gray matter–white
matter boundary and pial surfaces, labeling of regions in both
the cortex and subcortex, and non-linearly co-registering the
individual T1’s cortical surface to a spherical atlas to allow
comparison across subjects. To obtain HippSub segmentation,
we employed the higher-resolution T2-weighted scans using
the revised module available in FreeSurfer 6.0 (Iglesias et al.,
2015; Whelan et al., 2016). The step takes ∼45min for each
subject’s hippocampal segmentation and provides a label for
the following subregions: hippocampal tail, subiculum (Sub),
CA1, fissure, presubiculum (PreSub), parasubiculum (ParaSub),
molecular layer (ML), granule cell layer-molecular layer of the
DG, CA3, cornu ammonis 4 (CA4), fimbria, and hippocampus-
amygdala transition area (Hata) region in both hemispheres.
After this, we used automated scripts (courtesy of P. Saemann
of the ENIGMA consortium [https://enigma.ini.usc.edu]) to
extract the HippSub volumes of each hemisphere for further
statistical analysis. Finally, we created 2D and 3D (Figure 1)
renderings to perform careful quality check (QC) to ensure
correct segmentation of all cases before running statistical
analysis. Cases of poorly segmented hippocampus or HippSub
were absent.

Statistical Analysis
We performed ANOVA to detect differences between groups
and controls in relevant variables such as sex, age, disease
duration, age at condition onset, number of depressive episodes,
duration since first depression, and intracranial volume (eTIV).
We examined the potential contribution of covariates (age, age
at condition onset, and eTIV) to the HippSub volumes as
they showed significant group differences. Only those covariates
exhibiting relevant group differences among all patients were
regarded as significant covariates in our HippSub analysis. To
investigate volume differences between all groups, we analyzed
HippSub volumes from FreeSurfer using ANOVA with group
as a factor (SCD, aMCI, AD, BD, and MDD) with and without
HC and with covariates age and eTIV. An additional one-
way ANOVA was performed only with the cognitive-decline-
groups as factor with or without CSF pathology suggestive of
Alzheimer’s disease (SCD, aMCI, AD, SCD-CSF pathology+,
aMCI-CSF pathology+, and AD-CSF pathology+). A further
ANOVA was performed for AFFDIS patient groups and their
AFFDIS control group with eTIV as covariate. To investigate
the potential impact of time since first depressive episode on
volume reduction, we ran a linear regression analysis in all patient
groups that had history of depression. The length of time since
the first depressive episode is defined as the cumulative amount
of time someone had been depressed including transient time
periods with no depression in their lifetime before hippocampal
volume was assessed. Statistical analysis was performed via
SPSS (Version 25, IBM Inc., Chicago, Illinois, USA). Graphs
were constructed by Sigma Plot (Version 11, Sigma Plot, USA).
Statistical analyses were two-sided with a p-level of significance
≤ 0.05, including, if applicable, LSD post-hoc tests including
Bonferroni correction.
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FIGURE 1 | Visualization of hippocampal subfield segmentation. (A) Left hippocampal subfields (HippSub) presented in a coronal MRI section, (B) Left HippSub

illustrated in a 3D reconstruction, (C) Right HippSub presented in a coronal MRI section, and (D) Right HippSub illustrated in a 3D reconstruction. HippSub color code

is on the right side of the figure. CA1/3/4, cornu ammonis 1/3/4; DG, granule cell layer-molecular layer of the dentate gyrus; Hata, hippocampus-amygdala transition

area; ML, molecular layer; ParaSub, Parasubiculum; PreSub, Presubiculum; Sub, Subiculum.

TABLE 1 | Demographic and clinical information of patient and control groups.

DELCODE cohort AFFDIS cohort Statistics

SCD MCI AD BD MDD HC (HCDELCODE,

HCAFFDIS)

F, p

Number of subjects/patients n = 32 n = 63 n = 42 n = 28 n = 30 n = 67 (32, 35)

Sex (females/ males) 15/17 34/29 18/24 17/11 16/14 26/ 41 (22/ 10, 19/ 16) 68.9, 0.371 (0.342)

Age (y) 72 ± 6.2 72.5 ± 5.9 72.9 ± 6.9 44 ± 9.7 38.2 ± 15.9 54.0 ± 16.7 (67.4 ±

4.3, 41.4 ± 14.3)

1.082, <0.005 (<0.0005)

Age at disease onset (y) 56.7 ± 6.9 57.8 ± 5.0 59.5 ± 7.9 26.4 ± 9.8 28 ± 15.6 na 102.6, <0.0005

Onset of depressive episodes (y) 46.9 ± 17.7 36.4 ± 22.2 49.75 ± 15.9 25.7 ± 11.1 28.7 ± 15.9 na 4.81, <0.0005

Number of depressive episodes 2.7 ± 3.3 2.25 ± 1.2 2 ± 1.15 6.6 ± 5.5 4.8 ± 4.4 na 2.07, 0.095

Duration of depression (y) 21 ± 18.7 33.8 ± 26.4 17.5 ± 15.5 5 ± 12.75 9.4 ± 9.3 na 4.42, <0.005

AD, Alzheimer’s disease dementia; BD, bipolar disorders; HC, healthy controls; HCDELCODE, healthy controls DELCODE; HCAFFDIS, healthy controls AFFDIS; MCI, mild cognitive

impairment; MDD, major depressive disorder; na, not available; SCD, subjective cognitive decline; y, years; Mean ± standard deviation.

RESULTS

Baseline Characteristics of Groups
We pooled HC (n = 67) from the AFFDIS cohort (n = 35) and

DELCODE cohort (n = 32) to serve as a reference for potential

effects of age-related differences in hippocampus and HippSub

volumes. Clinic and demographic data of study participants (n

= 195) are presented in Table 1, showing sex, age, onset age of
depressive episodes, number of depressive episodes, age at onset

of condition, and duration since first depression compared across

all groups (HC, SCD, aMCI, AD, BD, and MDD). Past depressive
episodes were identified in 7/32 (22%) of SCD, in 5/63 (7.9%)
of aMCI and in 4/42 (9.5%) of AD patients. The BP and MDD

patients revealed a moderate degree of current depressive mood
a s indexed by BDI-II (BDI-II scores: BD: 19± 12.8; MDD: 25±
11.3). Age (F = 68.9, p < 0.005), disease condition’s onset age (F
= 90.7, p < 0.005), and the onset age of depressive episodes (F =

4.3, p< 0.005) and the duration of depression (F= 4.4, p< 0.005)
differed significantly between groups, whereas sex and number
of depressive episodes did not. The eTIV differed significantly
between groups (F = 4.98, p < 0.0005). In post-hoc analysis, only
SCD and HC differed significantly from BD and MDD patients
(post-hoc test: p < 0.05), while the other groups did not (LSD
post-hoc test: p > 0.05). However, when comparing the HC in
the AFFDIS cohort only with BD and MDD patients in eTIV
volume, we detected no significant differences (LSD post-hoc test:
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TABLE 2 | Neuroimaging data of patient and control groups.

DELCODE cohort AFFDIS cohort

SCD aMCI AD BD MDD HC

eTIV 1,412,486 ± 223,372 1,490,137 ± 267,502 1,468,571 ± 141,138 1,575,000 ± 188,277 1,575,667 ± 134,976 141,908 ± 194,631

Right side

Whole Hippocampus 2,921 ± 361 2,714 ± 436 2,205 ± 426 3,179 ± 339 3,229 ± 307 3,051 ± 351

CA1 590 ± 88 549 ± 99 445 ± 102 636 ± 82 649 ± 70 613 ± 86

CA3 171 ± 25 159 ± 32 128 ± 30 180 ± 29 189 ± 26 171 ± 26

CA4 239 ± 31 219 ± 41 179 ± 35 249 ± 29 260 ± 31 242 ± 30

DG 270 ± 35 248 ± 45 202 ± 39 287 ± 34 296 ± 34 277 ± 35

Fimbria 68 ± 19 65 ± 21 45 ± 20 93 ± 19 96 ± 18 80 ± 27

Fissure 180 ± 29 170 ± 32 148 ± 39 168 ± 29 171 ± 34 168 ± 31

Hata 54 ± 11 52 ± 14 43 ± 10 63 ± 10 63 ± 10 58 ± 9

Molecular Layer 270 ± 35 414 ± 79 324 ± 70 287 ± 34 465 ± 48 447 ± 57

ParaSub 51 ± 12 49 ± 11 42 ± 10 53 ± 8 54 ± 7 52 ± 9

PreSub 215 ± 46 201 ± 45 167 ± 38 240 ± 48 224 ± 36 226 ± 41

Sub 376 ± 52 337 ± 58 270 ± 62 416 ± 60 419 ± 45 400 ± 54

Tail 443 ± 66 422 ± 86 360 ± 77 488 ± 68 513 ± 79 485 ± 87

Left side

Whole hippocampus 2,927 ± 307 2,652 ± 401 2,182 ± 426 3,233 ± 34 3,295 ± 320 3,058 ± 356

CA1 568 ± 73 519 ± 87 437 ± 94 596 ± 72 634 ± 74 586 ± 78

CA3 163 ± 28 149 ± 29 125 ± 28 174 ± 27 175 ± 26 161 ± 24

CA4 231 ± 27 206 ± 38 171 ± 34 251 ± 28 260 ± 32 238 ± 30

DG 261 ± 31 234 ± 41 194 ± 39 289 ± 33 299 ± 35 271 ± 35

Fimbria 60 ± 19 57 ± 20 39 ± 20 83 ± 15 93 ± 17 75 ± 18

Fissure 167 ± 29 162 ± 33 143 ± 36 155 ± 21 153 ± 32 161 ± 32

Hata 53 ± 12 49 ± 11 43 ± 10 58 ± 10 59 ± 11 54 ± 11

Molecular Layer 446 ± 60 411 ± 79 322 ± 76 289 ± 33 485 ± 59 452 ± 57

ParaSub 52 ± 11 48 ± 12 42 ± 10 52 ± 9 51 ± 8 50 ± 8

PreSub 246 ± 43 216 ± 43 175 ± 42 278 ± 47 257 ± 31 251 ± 43

Sub 381 ± 50 333 ± 59 271 ± 64 426 ± 54 432 ± 46 407 ± 48

Tail 443 ± 66 429 ± 82 361 ± 74 539 ± 75 550 ± 79 513 ± 97

AD, Alzheimer’s disease dementia; BD, bipolar disorders; HC, healthy controls; HCDELCODE,healthy controls DELCODE; HCAFFDIS, healthy controls AFFDIS; MCI, mild cognitive

impairment; MDD, major depressive disorder; na, not available; SCD, subjective cognitive decline; y, years; Mean ± standard deviation.

p> 0.05). Thus, the eTIV difference was driven by the SCD group
compared with BD and MDD patients. Overall, age and eTIV
showed relevant group differences among all patients and were
considered as relevant covariates for our HippSub analysis as well
as linear regression of hippocampus and HippSub volumes in
patients with and without controls.

Comparison of Hippocampal Subfield

Volumes Between Cognitive Decline and

Affective Disease Groups Without Controls
ANOVA revealed a significant difference (F = 2.24, p < 0.0005,
see Table 2 for neuroimaging data of patients and controls)
in hippocampus and HippSub volumes between all groups
including cognitive decline (SCD, aMCI, and AD) and early-
onset mood conditions (MDD and BD). The hippocampus in
both hemispheres exhibited smaller volumes in AD patients, but
not in MDD and BD patients (LSD post-hoc test: p < 0.0005;
Figure 2A). Bilateral CA1, CA4, DG, ML, Sub, fimbria, and left

tail revealed the same pattern of a diminished volume in AD,
but not in MDD and BD groups (LSD post-hoc test: p < 0.05,
Figures 2B,C). Significantly lower volumes in the left PreSub
were observed in aMCI and AD patients when compared to
BD (LSD post-hoc test: p < 0.005, Figures 2B,C). No differences
between hippocampal volumes in AD vs. BD or MDD patients
were identified in bilateral CA3, ParaSub, fissure, hata, and right
PreSub regions (Figures 2B,C).

Hippocampal Subfield Volumes in

Cognitive Decline Groups
Considering the hippocampus, aMCI and AD (but not SCD)
groups presented significantly smaller volumes bilaterally in
comparison to HC (post-hoc tests: p < 0.05, Figure 2A).
Moreover, in aMCI and AD groups, but not in SCD group, we
detected lower volumes in left CA1, left CA4, left DG, left tail,
left PreSub, and bilateral Sub when compared to HC (LSD post-
hoc test: p < 0.05, Figures 2B,C). In the right CA1, right CA4,
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FIGURE 2 | Continued
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FIGURE 2 | Hippocampal subfield volumes across groups. (A) Whole hippocampus volumes compared in each hemisphere, (B) Hippocampal subfield (HippSub)

volumes, including the CA1, CA3, CA4, DG, ML, and Sub as part of the hippocampus, compared in each hemisphere, and (C) Additional HippSub volumes including

tail, PreSub, ParaSub, fissure, fimbria, Hata, compared in each hemisphere. Results refer to LSD post-hoc t-tests (two-sided) with Bonferroni correction between each

condition. The significance level is indicated by different symbols: ##p < 0.005 vs. HC, **p < 0.005 vs. SCD, ++p < 0.005 vs. aMCI, &p < 0.005 vs. AD, $$p <

0.005 vs. BD, xxp < 0.005 vs. MDD, *p < 0.05 vs. SCD, +p < 0.05 vs. aMCI, &p < 0.05 vs. AD, $p < 0.05 vs. BD, xp < 0.05 vs. MDD. AD, Alzheimer’s disease; BD,

bipolar disorder; CA1/3/4, cornu ammonis 1/3/4; HC, healthy controls; DG, granule cell layer-molecular layer of the dentate gyrus; Hata, hippocampus-amygdala

transition area; L, left; aMCI, amnestic mild cognitive impairment; MDD, major depressive disorder; ML, molecular layer; ParaSub, Parasubiculum; PreSub,

Presubiculum; R, right; SCD, subjective cognitive decline; Sub, Subiculum.

right DG, right tail, right PreSub, bilateral CA3, bilateral ParaSub,
bilateral fimbria, and bilateral fissure regions (Figures 2B,C) we
found no volume differences in HippSub in aMCI and SCD
groups compared to HC.

In additional subgroup analyses, we investigated subjects
presenting neuropathological abnormalities typical of AD.
Concerning those DELCODE patients, for 6/32 (19%) patients
with SCD, 20/63 (38%) with aMCI, and 16/42 (38%) patients
with AD, their CSF pathology suggests AD. When we compared
subgroups with a positive AD pathology to those without, we

detected no significant between-group differences in HippSub
(all p > 0.05, data not shown).

Hippocampal Subfield Volumes in Affective

Disorder Groups
No significant differences were detected on hippocampal and
HippSub volumes when we compared MDD and BD groups to
HC (p > 0.05).
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FIGURE 3 | Linear regression of depression duration and left hippocampal

volumes. Significant regression analyses of depression duration and left

hippocampal volume are shown. AD, Alzheimer’s disease; BD, bipolar

disorder; L, left; aMCI, amnestic mild cognitive impairment; MDD, major

depressive disorder; SCD, subjective cognitive decline; y, years.

Hippocampal-Subfield Volumes and

Duration of Depression
To explore the role duration plays in years since depression onset
on hippocampus volume in each hemisphere, we conducted
a linear regression analysis, and noted that left, but not right
hippocampal volume was significantly associated with time since
first depressive episode (left hippocampus: F = 6.5, p < 0.05;
Figure 3). We explored this effect further in HippSub volumes,
and observed no relevant association with the time since first
depressive episode and the left Sub, left CA1, left PreSub, left DG,
left CA4, left fimbria, right tail, and right fimbria.

DISCUSSION

The main findings of our investigation are that using MRI data,
hippocampal and specific HippSub volumes differed between
major cognitive decline due to possible AD and early-onset
of unipolar and bipolar disorders. Smaller hippocampus and
most HippSub volumes were detected almost exclusively in
aMCI and AD groups, while SCD, BD, and MDD groups
revealed no significant smaller volumes in relation to HC. Early
markers of possible neurodegeneration can therefore be seen
predominantly in the left CA1, CA4, DG, tail, PreSub, and
bilateral Sub regions, since significant smaller volumes were
found in aMCI and ADD groups, but not in early-onset mood
disorders (MDD, BD). Of note, the duration in years since first
depressive episode was significantly related to the volume of left
hippocampus in all patient groups. Based on the present study,
the HippSub right CA1, CA4, DG, tail, PreSub, and bilateral CA3,
ParaSub, fimbria, and fissure regions seem more resilient against
neurodegeneration in aMCI and SCD patients. These findings
may partially reflect the existing variability at certain stages of
cognitive decline, as other studies have already demonstrated a
volume decrease in MCI patients (Zhao et al., 2019).

A unique finding in this investigation was the significant
difference seen between aMCI and BD in the left PreSub region,

which could function as a suitable imaging marker. If replicated,
smaller volumes in the left PreSub might prove to be the earliest
indications of hippocampal-volume differences due to cognitive
impairment distinct from those with bipolar mood disorders.
There is evidence that both ß-amyloid and tau pathology assessed
via CSF are relevant factors in lower HippSub volumes due to
AD’s cognitive spectrum (Tardif et al., 2018; Filho et al., 2021).
As we failed to detect significant volume differences in patients
with cognitive impairment with and without AD-typical CSF
pathology, there might be additional mechanisms contributing
to HippSub decline in our patients. Nevertheless, we could not
exclude the possibility of insufficient power to detect differences,
considering the relatively few subgroup samples. Further studies
are needed with larger patient cohorts to differentiate the
proposed underlying mechanisms of AD in HippSub volume
loss. The aforementioned literature suggests other mechanisms
of HippSub volume degeneration in the AD spectrum such as
genes, iron accumulation, or even neuroprotective factors (Foo
et al., 2020; Foster et al., 2020; Wang et al., 2020). Some of these
factors may be partly responsible for the PreSub volume loss in
AD, aMCI vs BD patients that we detected.

Overall, we identified neither smaller hippocampal nor
HippSub volumes in early-onset mood disorder groups. That
may be attributable both groups’ similar age and similar severity
of depressive symptoms. Furthermore, another explanation for
no relevant differences in HippSub in mood disorder groups
might be that structural differences between MDD-BD patients
are likely less evident in the hippocampus or HippSub than in
other brain regions such as thalamus, dorsolateral, and medial
prefrontal cortex as well as parietal regions (Schmaal et al.,
2020). The lack of smaller HippSub volumes in MDD and BD
might be due to the fact that the AFFDIS cohort recruited
patients undergoing antidepressant therapy. As shown lately in
a survey by Han et al. (2016), drug-naïve MDD patients revealed
a pattern of smaller volumes in Sub, CA2-4, DG in comparison
to healthy controls. On the other hand, other factors such as
early-life stress, or rs1360780 polymorphism of the FKBP5 gene
(referring to the hypothalamic-pituitary-adrenal axis) associated
with some smaller HippSub volumes (Mikolas et al., 2019) might
also have enabled variation in our sample (data not available).
Genetic architecture with different genetic loci (Hibar et al.,
2017) could have a major influence on disease-specific HippSub
volumes, which might explain the absence of HippSub volume
reduction observed in groups with mood disorders. In contrast
to our findings, BD patients have also demonstrated reduced
hippocampal CA1, GCL volumes (Han et al., 2019). Smaller
volumes have been observed in the PreSub and Sub regions
in a subgroup of BD patients (Janiri et al., 2019), an evidence
to which our left PreSub findings, in contrast to aMCI, appear
to be in line with. One factor that might explain why our BD
patients revealed no major hippocampal volume reductions is
that, differently from ours, their cohort was heterogeneous, and
not characterized by a predominantly depressive subtype. Our
results, however, support the findings from a recent investigation
showing no smaller volumes inMDDpatients via high-resolution
7-TeslaMRI (Tannous et al., 2020). As in this study only HippSub
volumes and not shape alterations were assessed, therefore
we cannot identify if HippSub deformations coinciding with
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unaltered volumes were seen, as has been reported in MDD
(Ballmaier et al., 2008; Cole et al., 2010).

Our findings suggest that depression’s duration has a
significant impact on left hippocampal volume, indicating that
the time since first depressive episode plays an important role in
hippocampal degeneration. This concurs with the knowledge that
lower hippocampal volumes are associated with a poorer clinical
outcome andmore depressive episodes (Videbech and Ravnkilde,
2004; MacQueen and Frodl, 2011). However, when further
exploring specific HippSub volumes, we observed no relationship
between the duration since first depressive episode and HippSub
volumes. Further studies with larger cohorts should be conducted
to identify whether the duration since depressive manifestation
affects HippSub volumes in a more relevant manner.

The limitations of our study concern the sample size of
groups and subgroups, restricting additional conclusions in
terms of clinical representation, applicability and neurobiological
foundations. For instance, cognitive assessments comparable
to DELCODE were not available in the AFFDIS cohort,
with which we could have additionally investigated whether
cognitive impairment across disorders relate to hippocampus or
HippSub volume decline. A further potential limitation is the
age difference between groups in both cohorts, with younger
patients in the AFFDIS than the DELCODE cohort. Our analyses
were controlled for age and eTIV (as covariates), but it would
have been interesting to see if differences across patient groups
would indeed hold when comparing older participants in mood
disorder groups. Future studies addressing this aspect should
also consider the potential risk of misclassifying participants with
late-onset depression, since depressive episodes can be initial
manifestations of neurodegeneration. However, as molecular
markers have not yet been assessed in patients with affective
disorders or in some patients with cognitive decline and possible
AD, no general conclusions about the molecular mechanisms
of neurodegeneration can be drawn for our patient groups.
Cognitive decline in early-onset depression is usually not
clinically associated with the neurodegenerative process, and it
is often less severe (Jamieson et al., 2019) and affects specific
cognitive subdomains such as language, memory, and cognitive
flexibility, as recently reported (Ang et al., 2020). Thus, the
manifestation age of depression is clinically relevant for the
pattern and severity of cognitive decline, while also being a risk
factor for later cognitive decline (Brzezińska et al., 2020). The
increasing grade of severity in cognitive decline observed in late-
onset compared to early-onset depression age might thus be
accompanied by decreasing hippocampal and HippSub volumes.

In addition, our findings comprised cross-sectional structural
imaging data and not longitudinal comparisons, through which
more insight into intraindividual changes in HippSub volumes
can be gained. Further studies combining functional data could
better elucidate the significance of neuropathological processes
in the HippSub for cognitive impairment. Lastly, potential
influences of the treatment history on hippocampal and HippSub
volumes could not be determined in the absence of comparable
information across disorders.

Our study showed that hippocampus and HippSub volumes
differ between cognitive decline due to possible AD and

early-onset mood disorders. The left PreSub is a structure
apparently affected in aMCI and AD subjects, but not in
BD patients. This sheds new light into a possible marker
differentiating correlates of neurodegeneration due to minor
and major cognitive decline and BD. Conversely, we detected
no relevant field and subfield volume decline in BD and
MDD groups. Most strikingly, we found that the time since
the first depressive episode was negatively associated with left
hippocampal volume in all disorder groups. This time effect is a
potentially important hallmark supporting hippocampal volume
reduction as a continuum extending from mood disorders, and
cognitive deterioration to AD. This finding may advance the
comprehension of the relationship between depression and AD.
The usage of sophisticated tools, such as machine learning, in
identifying multivariate patterns in much larger groups should
consider this feature.
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Alzheimer disease (AD) is the most common cause of dementia in geriatric
population. At present, no effective treatments exist to reverse the progress of AD,
however, early diagnosis and intervention might delay its progression. The search for
biomarkers with good safety, repeatable detection, reliable sensitivity and community
application is necessary for AD screening and early diagnosis and timely intervention.
Electroencephalogram (EEG) examination is a non-invasive, quantitative, reproducible,
and cost-effective technique which is suitable for screening large population for possible
AD. The power spectrum, complexity and synchronization characteristics of EEG
waveforms in AD patients have distinct deviation from normal elderly, indicating these
EEG features can be a promising candidate biomarker of AD. However, current reported
deviation results are inconsistent, possibly due to multiple factors such as diagnostic
criteria, sample sizes and the use of different computational measures. In this study, we
collected two neurological tests scores (MMSE and MoCA) and the resting-state EEG of
30 normal control elderly subjects (NC group) and 30 probable AD patients confirmed by
Pittsburgh compound B positron emission tomography (PiB-PET) inspection (AD group).
We calculated the power spectrum, spectral entropy and phase synchronization index
features of these two groups’ EEG at left/right frontal, temporal, central and occipital
brain regions in 4 frequency bands: δ oscillation (1–4 Hz), θ oscillation (4–8 Hz), α
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oscillation (8–13 Hz), and β oscillation (13–30 Hz). In most brain areas, we found that the
AD group had significant differences compared to NC group: (1) decreased α oscillation
power and increased θ oscillation power; (2) decreased spectral entropy in α oscillation
and elevated spectral entropy in β oscillation; and (3) decrease phase synchronization
index in δ, θ, and β oscillation. We also found that α oscillation spectral power and
β oscillation phase synchronization index correlated well with the MMSE/MoCA test
scores in AD groups. Our study suggests that these two EEG features might be useful
metrics for population screening of probable AD patients.

Keywords: Alzheimer disease, electroencephalogram (EEG), power spectrum, spectral entropy (SE), phase
synchronization index

INTRODUCTION

Alzheimer disease (AD) is the most common cause of dementia,
accounting for an estimated 60–80% of cases (Garre-Olmo,
2018). It is characterized by progressive decline in memory,
language function, orientation, and executive function, etc. AD is
a continuous disease process, divided into preclinical, prodromal,
and overt dementia (Babiloni et al., 2020a). Besides seriously
affecting patients’ own quality of life, AD also brings heavy
economic and psychological burdens to family members and
caregivers, and has become one of the serious public health
problems. The exact pathogenesis of AD is unclear yet; its
related pathological hypotheses may involve synapse damage and
loss, amyloid plaques and neurofibrillary tangles (Colom-Cadena
et al., 2020). The pathophysiological process of AD is thought to
start up to 20 years before clinical symptoms can be detectable
(Sperling et al., 2014). At present, no effective medication
exist for curing this pathology and reversing the course of
AD (Cassani et al., 2018). Current therapeutic treatments at
the early stage might improve the symptoms and delay the
evolution of the disease (Houmani et al., 2018). Therefore, early
diagnosis and active intervention are of great significance for
mitigating the epidemic.

Current diagnosis of AD usually depends on the biomarkers
in cerebrospinal fluid (CSF), neuropsychological tests, and
neuroimaging, neurophysiological examinations (Maestu et al.,
2019). The CSF biomarker like amyloid-β (Aβ) or tau protein
level has high sensitivity and specificity in diagnosing probable
AD (Lim et al., 2016). But the CSF biomarker is obtained from
invasive lumber puncture operation, which is not easy to be
accepted by patients and their families. Neuroimaging biomarker
like the Pittsburgh compound B positron emission tomography
(PiB-PET) inspection is highly specific in detecting the
accumulation of in vivo amyloid-β, making it almost comparable
to the golden standard of autopsy (Cohen et al., 2019).
However, the PET inspection is very expensive, and it requires
complex hardware equipment, inspection environment, and
repeat exposure to radiation. Therefore, the above-mentioned
two well-established biomarkers are not suitable for large-scale
population screening. On the other hand, the neuropsychological
test like the Mini-Mental Status Exam (MMSE) and Montreal
Cognitive Assessment (MoCA) is easy to perform and can
quickly evaluate a patient’s cognitive function. Therefore, these

neurological tests are frequently used in clinical practice for
screening large populations of possible AD. However, performing
these tests is time-consuming, requires well-cooperated subjects
and experienced clinicians (Cassani et al., 2018). Even though,
the test scores are very subjective, and usually affected by the
educational background of subjects.

As a non-invasive, cost-effective electrophysiological
examination technique, electroencephalogram (EEG) can
directly record the neural activity in different brain states. It can
objectively and quantitatively reflect the neurological changes
in pathological conditions with high time resolution, although
its spatial resolution is lower than neuroimaging devices like
magnetic resonance imaging (MRI). EEG has been widely
used in the study of various neurological diseases including
AD. Recently, Babiloni and many researchers have proposed
an international initiative to include the use of EEG/MEG
biomarkers in the regulatory requirements and guidelines for AD
studies (Babiloni et al., 2020a). A variety of quantitative analysis
techniques was used to characterize the EEG changes, looking
for EEG biomarkers suitable for AD diagnosis. Compared to
normal elderly, the resting state EEG activity in AD patients
diffusely slows down, usually manifested by a decrease in the
spectral power of the high frequency (α and/or β) oscillations
and an increase of spectral power of low frequency (θ and/or
δ) oscillations (Jeong, 2004; Cassani et al., 2018; Horvath et al.,
2018; Babiloni et al., 2020a; Benwell et al., 2020; Wicki et al.,
2021). Besides, AD is also characterized as a brain disconnection
syndrome (Delbeuck et al., 2003). The synchronization of
EEG activity is usually perturbed in AD patients, especially
demonstrated by the decreased functional connectivity in
different brain areas (Cassani et al., 2018; Musaeus et al.,
2019a,b; Nunez et al., 2019; Song et al., 2019; Briels et al.,
2020). Furthermore, the decline in the structure and functional
connection of the brain may lead to a reduction in the complexity
of EEG signals in AD patients, as reported in Azami et al. (2017),
Deng et al. (2017), Kulkarni (2017), Simons and Abásolo (2017),
Al-Nuaimi et al. (2018), Cassani et al. (2018), Horvath et al.
(2018), Li et al. (2018), Simons et al. (2018). However, with
respect to specific EEG frequency bands, current studies usually
have inconsistent results, possibly due to multiple factors such
as the severity level of disease, educational background of
subjects, diagnostic criteria, sample sizes and the use of different
computational measures (Briels et al., 2020). For example,
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Babiloni et al. found that subjective memory complaint seniors
with AD neuropathology (amyloid PET-positive) and high
education attainment showed higher temporal α3 power density
and lower posterior α2 power density, suggesting that preclinical
Alzheimer’s neuropathology may interact with education
attainment (Babiloni et al., 2020b). Gaubert and colleagues
found an increase in high frequency oscillations (higher β and
γ power) and a decrease in low frequency oscillations (lower δ

power), higher spectral entropy, higher complexity and increased
functional connectivity in θ band in the frontocentral regions
in preclinical AD patients (Gaubert et al., 2019). They found a
nonlinear relationship between amyloid burden and EEG metrics
in neurodegeneration positive subjects, suggesting the EEG
patterns are modulated differently depending on the degree of
amyloid burden. Briels and colleagues also found that the choice
of functional connectivity measures and frequency bands can
have a large impact on the outcome of EEG studies in AD. Their
results showed that the corrected amplitude envelope correlation
are reproducible in the α and β bands, and phase-based measures
with correction for volume conduction showed reproducible
effects in the θ band (Briels et al., 2020).

Considering the above inconsistent results, in this study we try
to find significant and reliable EEG biomarkers for AD diagnosis.
We collected 30 probable AD patients confirmed by PiB-PET
inspection (AD group) with a wide neurological tests scores
(MMSE and MoCA) range, resulting an AD population with
great varieties of impaired cognitive functions. We calculated
the power spectrum, spectral entropy and phase synchronization
index metrics of their resting-state EEG in four frequency bands,
and compared these metrics with that of 30 normal controlled
elderly subjects (NC group). To investigate whether these EEG
metrics could reflect the impaired cognitive functions in AD
groups, we further calculated the correlation of these EEG metrics
with the MMSE and MoCA test scores.

MATERIALS AND METHODS

Participants
In this study, patients who were diagnosed clinically as probable
AD were screened for inclusion from the outpatients in the
Department of Neurology, the Second Medical Center of Chinese
People’s Liberation Army General Hospital from 2016 to 2019.
All patients in AD group meet the core criteria for probable AD
diagnosis developed by the National Institute of Aging and the
Alzheimer’s Disease Society (NIA-AA) in 2011 (McKhann et al.,
2011). Besides, they all underwent the PiB-PET neuroimaging
test and their results are all positive. At the same time, their
family members and volunteers who matched their gender, age
and education level were selected as normal controls (NC).

Thirty AD patients and 30 NC subjects were evaluated by
two or more senior neurological physicians and were included
in this study. The studies involving human participants were
reviewed and approved by the Medical Ethics Committee
of Chinese People’s Liberation Army General Hospital. The
patients/participants provided their written informed consent to
participate in this study.

EEG Acquisition and Processing
EEG Acquisition
The EEG data acquisition of all the participants was completed in
the fixed clinic of the Department of Neurology, Chinese People’s
Liberation Army General Hospital. Before the test, the subjects
were asked whether they took food or beverages containing
stimulants such as nicotine, caffeine, and alcohol on the day, and
the non-users were checked after washing their hair.

Participants sat in a comfortable chair, kept quiet and relaxed,
and kept their bodies as motionless as possible to reduce artifacts.
Because the EEG data collected when the eyes are open has more
eye movement artifacts, the previous literature mostly uses the
EEG data when the eyes are closed for research. Therefore, this
study only records the resting state EEG data when the eyes are
closed. The recording time is 5 min.

The EEG detection equipment used is a portable 8-
channel high-performance EEG signal acquisition instrument
(JL-EEG8w), developed by the State Key Laboratory of Cognition
and Learning of Beijing Normal University, which is designed
for quick EEG examination from outpatients who usually have
very limited time at the clinic. The bandwidth of the EEG
amplifier is 0.1–80 Hz with a sampling frequency of 1,000 Hz.
According to the 10–20 international standard electrode system,
8 electrode position is used, i.e., F3, F4, T3, T4, C3, C4, O1, and
O2. The reference electrode is in Cz, and the ground electrode
is in Fpz (Figure 1). There is no parietal electrode used due to
the recording device’s limitation. The impedance of each active
electrode is controlled below 100 k� before the start of recording
EEG, and further checked after finishing recording. The data is
saved in EDF format for subsequent offline analysis.

EEG Data Preprocessing
Several conventional preprocessing steps are taken following the
recommendations from the OHBM COBIDAS MEEG committee
(Pernet et al., 2020). Firstly, the recorded EEG data is bandpass
filtered to 0.5–45 Hz, using the eegfiltfft function in EEGLab
toolbox. Next, the continuous filtered data of each channel is
divided into 4 s epoch. Then, for each epoch, the automatic
artifact detection algorithm is applied to remove eye movement,
breathing, EMG, 50 Hz power supply interference and outlier
data segments, according to Durka et al. (2003). Finally, the
remaining data epochs are manually checked to remove data
segments that are not automatically eliminated with big artifacts
or drowsy characteristics. The first 30 segments without artifacts
(30 × 4 s = 120 s) of each channel of the participants were
selected for analysis.

Relative Spectral Power of EEG
As mentioned in the above preprocessing section, the EEG signal
has been divided into 30 epochs of 4 s data segment. We further
reduce the sampling rate to 250 Hz, so that there are 1,000 points
of EEG samples in each epoch. A Hamming window of 125 points
(0.5 s) is used to slide over each piece of data in a step of 50
points (0.2 s). The Fourier transform of 1024 points is calculated
to obtain the estimated power spectrum of each piece of data. The
frequency resolution is about 0.25 Hz (1f = Fs/Nfft = 250/1,024).
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FIGURE 1 | The eight electrodes position used in this study (Cz, reference electrode; Fpz, ground electrode).

Then, the power spectrum estimates calculated for all 30
epochs are averaged, and the absolute powers are calculated
in the following 4 canonical frequency bands: δ oscillation (1–
4 Hz), θ oscillation (4–8 Hz), α oscillation (8–13 Hz), and β

oscillation (13–30 Hz). In this study, we did not consider the γ

oscillation as this frequency band EEG is easily contaminated by
muscle artifacts.

Since the absolute power varies greatly among individual
subjects, we further calculated the relative power of each
oscillation for comparison between groups. Use the sum of the
power in the frequency range of 1–45 Hz as the normalization
factor, and define the ratio of each oscillation’s absolute powers to
the normalization factor as the relative power of that oscillation.
The pwelch function in Matlab software is used to estimate the
power spectral density.

Spectral Entropy of EEG
In addition to the power spectrum characteristics of EEG
signals, the complexity of EEG signals is also an important
parameter reflecting the characteristics of EEG. EEG signals are
generally considered to be a chaotic signal between random and
deterministic signals. Entropy values can be used to quantitatively
describe the uncertainty of EEG signals.

Spectral entropy refers to the degree of uncertainty of the
signal power spectrum distribution. It regards the normalized

power distribution of a signal in the frequency domain as
a probability distribution, and then calculates its information
entropy. For a signal x(n), its power spectrum is represented by
S(ω), and the probability distribution p(ω) of the spectrum is
defined as (Wang et al., 2015):

p (ω) =
S(ω)∑
i S(i)

(1)

Then the spectral entropy H is defined as:

H = −

N∑
ω =1

p (ω) log2p(ω) (2)

Here N is the total frequency point. Normalized spectral entropy
is usually used and is defined as:

Hn = −

∑N
m =1 P (m) log2P(m)

log2N
(3)

Here the denominator log2N represents the maximum spectral
entropy of white noise evenly distributed in the frequency
domain. The higher the spectral entropy of a signal, the more
disordered (complex) the signal is. Conversely, the lower the
spectral entropy, the more ordered (simple) the signal is.
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In this study, the 8-s data sampled at 250 Hz is taken as one
segment. There are a total of 15 segments. Calculate the spectral
entropy in δ, θ, α, and β oscillation, and the frequency sampling
points are 1,024 points. Then average the spectral entropy at each
oscillation calculated from 15 data segments to obtain the spectral
entropy value of each subject at each channel.

Phase Synchronization Index of EEG
Because brain information transmission needs to integrate the
functions of various regions and the cooperation of neurons
in multiple brain regions, the EEG in many diseases like AD
are manifested as abnormal synchrony or connectivity between
neurons in different brain regions. According to Dauwels
et al. (2010), many of those synchronization measures are
strongly correlated (or anti-correlated) with the correlation
coefficient, providing little complementary information about
EEG synchrony. While the phase synchrony indices are one of the
metrics that are weakly correlated with the correlation coefficient,
hence, it may capture a specific kind of interdependence of the
EEG time series. The instantaneous phase ϕx of an EEG signal x
is extracted as follows (Dauwels et al., 2010):

ϕx
(
k
)
= arg[x

(
k
)
+ ix̃(k)] (4)

where x̃ is the Hilbert transform of x. The phase synchronization
index is defined as:

γ =

∣∣∣〈ei(nϕx−mϕy)
〉∣∣∣ (5)

where n and m are integers, 〈·〉 denotes time average. If γ

tends to 1 in the above formula, the two signals are in phase
synchronization, and if γ tends to 0, the phase difference of the
two signals is randomly distributed.

In this study, phase synchronization index was used to
investigate the connectivity difference in EEG signals between
AD and NC groups. After pre-processing, the data is resampled
to 250 Hz and divided into 4-s epochs. One-second Hamming
window is used, with a 0.5-second sliding steps. The phase
synchronization index of δ, θ, α, and β oscillation of each subject’s
EEG is calculated.

Neuropsychological Scale Evaluation
Two senior neurological physicians used MMSE and MoCA
to evaluate the participants’ cognitive functions. The test
environment was quiet and the test scale versions were
uniform. Among 60 participants, three AD patients and 7 NC
subjects failed to complete MMSE/MoCA assessment because
of noncooperation.

Statistical Analysis
Two-sample t-test was used to compare the age differences
between AD and NC groups. Chi-square test was used to compare
their gender differences. Using a two-sample t-test with false
discovery rate (FDR) correction, the differences in the relative
power, spectral entropy and phase synchronization index in δ,
θ, α, and β oscillation of EEG signals between AD patients and
NC subjects are compared. Further, in the AD patient group,
Spearman correlation analysis with FDR correction was used to
calculate the correlation between EEG metrics and the degree of

cognitive impairment (2 neuropsychological evaluation scores).
Subject’s age was used as a control factor to eliminate its effect on
the results. P < 0.05 was considered statistically significant.

RESULTS

Demographic Information and
Neuropsychological Test Comparisons
Between AD and NC Groups
As shown in Table 1, there was no statistical difference in age and
gender between the AD and NC groups (P > 0.05), and there
were statistically significant differences in the neuropsychological
evaluation results (P < 0.001). The MMSE and MoCA scores in
AD group were significantly lower than those in the NC group.

Sex Differences of EEG Metrics in AD or
NC Groups
To evaluation the sex differences in each group, we further
compared the relative spectral power, spectral entropy and phase
synchronization indices between female (n = 18) and male
(n = 12) participants in AD or NC groups. Two-sample t-test with
FDR correction was used for the comparison. Results were shown
in the Supplementary Materials (Supplementary Figure 1).

Differences of EEG Metrics Between AD
and NC Groups
Relative Spectral Power
The comparison of the relative power of each oscillation at each
electrode in the AD and NC groups is shown in Figure 2. The
relative power of the slow wave oscillation (δ and θ oscillation)
at each electrode in the AD group is higher than that in the
NC group, and the relative power of fast-wave oscillation (α
and β oscillation) at each electrode is lower than that in the NC
group, suggesting that the relative power of EEG in AD patients
is widely changed compared with NC subjects. Specifically, the
relative spectral power of α oscillation at all electrodes and θ

oscillation at seven electrodes (F3, T3, T4, C3, C4, O1, and O2)
has significant difference, suggesting a diffuse slowing effect of
the EEG spectrum in AD patients.

Spectral Entropy
In Figure 3, we show the comparison of the spectral entropy
of each oscillation at each electrode of the EEG in AD
and NC groups. For the α oscillation, the spectral entropy
in the frontal, temporal and central regions of the AD

TABLE 1 | Participants demographic information.

AD (n = 30) NC (n = 30) P value

Age(year) 68.83 ± 10.18 64.43 ± 10.55 0.106

Male : Female 12:18 12:18 0.879

MMSEa 12.89 ± 9.98 29.39 ± 0.89 0.000

MoCAa 10.48 ± 7.90 28.22 ± 1.98 0.000

aThree AD patients and 7 NC subjects failed to complete
MMSE/MoCA assessment.
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FIGURE 2 | Comparison of relative spectral power in AD and NC group at each electrode in four frequency bands.

group is significantly decreased compared to NC group,
while in the occipital electrodes the spectral entropy has no
significant difference between groups. For the β oscillation,
the spectral entropy in the temporal, central and occipital
regions of the AD group is significantly higher than that of
the NC group, but in the frontal area the spectral entropy
has no significant difference between groups. The spectral
entropy of the θ oscillation in the occipital areas of AD

group was higher than that of the NC group. However, the
spectral entropy in the δ oscillation does not show statistical
difference between groups.

Phase Synchronization Index
The phase synchronization comparison of each oscillation (δ,
θ, α, and β) at each electrode pairs in the AD and NC groups
is shown in Figure 4. The phase synchronization in AD group
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FIGURE 3 | Comparison of spectral entropy in AD and NC group at each electrode in four frequency bands.

is significantly lower than that of the NC group, specifically in
frontal and temporal related areas in δ, θ, and β oscillations.
While for α oscillation, the phase synchronization index of AD
groups in most areas (apart from T3 and C4 electrode pairs) does
not show statistical significance.

Association Between EEG Metrics and
Neuropsychological Test Scores in AD
Group
The Spearman correlation analysis with FDR correction was
performed to investigate whether these EEG metrics could
reflect the impaired cognitive functions in AD patients.
Here we only demonstrate the association between EEG
metrics and neuropsychological test scores in AD group. The
neuropsychological tests and EEG correlation analysis in NC

group and in both groups is listed in Supplementary Materials
(Supplementary Tables 1–6).

Association Between Relative Spectral Power and
MMSE/MoCA Scores
The correlation analysis between relative spectral power of
each oscillation at each electrode of the EEG and the
neuropsychological test scores in AD groups were calculated.
As shown in Table 2, the relative power of δ and θ oscillations
in AD patients is negatively correlated with the MMSE score,
while the relative power of α and β oscillations is positively
correlated with the MMSE score. Among them, the correlation of
the relative power of α oscillation at bilateral frontal and central
electrodes and the MMSE score is beyond statistical significance.
The correlation between the power of each oscillation and the
MoCA score has similar trend. The relative power of α oscillation
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FIGURE 4 | Differences of phase synchronization indices between AD and NC group in four frequency bands. Values beyond statistical significance after FDR
correction is demonstrated, and the color bar denotes the t-value.

TABLE 2 | Relationship between relative spectral power and MMSE/MoCA scores.

Electrode Position MMSE MoCA

ρδ_power ρθ_power ρα_power ρβ_power ρδ_power ρθ_power ρα_power ρβ_power

F3 0.0376 –0.3085 0.3736 0.2806 0.0523 –0.2197 0.4711 0.2207

F4 –0.1044 –0.2596 0.3267 0.4013 –0.0886 –0.1642 0.4369 0.3361

T3 –0.2575 –0.1636 0.6540** 0.1698 –0.2813 –0.2107 0.7103** 0.2199

T4 –0.2596 –0.4019 0.5671* 0.4610 –0.2704 –0.3270 0.5871* 0.3999

C3 –0.1034 –0.4856 0.5972* 0.3485 –0.0667 –0.4643 0.6320** 0.2894

C4 –0.2275 –0.3480 0.5753* 0.0229 –0.2838 –0.3685 0.6470** 0.0838

O1 –0.3660 –0.3205 0.4334 0.3962 –0.3380 –0.3951 0.4722 0.4280

O2 –0.4541 –0.2908 0.4717 0.3719 –0.3953* –0.3696 0.5315* 0.3902

*P < 0.05; **P < 0.01.

at bilateral frontal-central and right occipital electrodes is
significantly positively correlated with the MoCA score.

Association Between Spectral Entropy and
MMSE/MoCA Scores
We examined the correlation between δ, θ, α, and β oscillation
spectrum entropy and the degree of cognitive impairment in the
AD group. As shown in Table 3, the spectral entropy does not
exhibit significant correlation to the MMSE and MoCA scores.

Association Between Phase Synchronization and
MMSE/MoCA Scores
We further investigated the association between δ, θ, α, and
β oscillation phase synchronization indices and the degree of
cognitive impairment in the AD group. From Table 4, we can see
the phase synchronization index of β oscillation is significantly
correlated with MoCA scores, specifically at left frontal-central
and temporal-central electrode pairs. Besides, the correlation of
phase synchronization index of θ oscillation at left central to right
frontal and right temporal electrode pairs to MoCA scores also
beyond statistical significance after FDR correction.

DISCUSSION

In this study, we found that, almost in the whole brain regions,
the AD group had higher θ oscillation spectral power and
lower α oscillation spectral power than that in the NC group,
which is consistent with many former studies as reviewed in
Jeong (2004); Engels et al. (2017), Malek et al. (2017); Cassani

et al. (2018), Horvath et al. (2018), and Babiloni et al. (2020a).
We further found that in the AD group the α oscillation spectral
power was positively correlated with the MMSE and MoCA
scores. Basar and colleagues has suggested α oscillations have
multifold functional correlates including sensory, motor and
memory functions (Basar and Guntekin, 2012). As a universal
code or universal operator, α oscillations serve as building blocks
in several functions and can be used as clinical biomarkers
of cognitive impairment in schizophrenia, Alzheimer’s disease
and bipolar disorders (Basar and Guntekin, 2012). Our results
showed that α oscillation spectral power could be a significant
EEG biomarker for differentiating probable AD patients from
normal elderly, and could also indirectly reflect the severity and
prognosis of disease.

Previous studies have shown that the EEG complexity of
AD patients is lower than that of NC subjects, which is
manifested by changes in entropy-related parameters such as
spectral entropy, approximate entropy, and sample entropy
(Abasolo et al., 2006; Simons et al., 2018; Tylová et al., 2018),
etc. While on different time scales or frequency bands, the
complexity of EEG signals associated with cognitive impairment
may be inconsistent. When multi-scale entropy analysis is
used, the entropy in the AD group was lower than that in
the NC group on smaller scales, while the AD patients had
higher complexity than NC subjects at larger scales on long
scales (Mizuno et al., 2010; Maturana-Candelas et al., 2019).
The smaller/larger scales can be considered to correspond
to higher/lower frequencies of spectral power, respectively.
Spectral entropy considers the complexity at specific frequency
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TABLE 3 | Relationship between spectral entropy and MMSE/MoCA scores.

Electrode Position MMSE MoCA

ρδ_entropy ρθ_entropy ρα_entropy ρβ_entropy ρδ_entropy ρθ_entropy ρα_entropy ρβ_entropy

F3 –0.3907 0.0542 0.3497 –0.2381 –0.2962 0.1014 0.3191 –0.1973

F4 –0.2999 0.0548 0.3027 0.0034 –0.2310 0.0440 0.2837 –0.0041

T3 –0.1264 0.2411 0.2387 –0.4739 –0.0734 0.1217 0.2947 –0.5415

T4 –0.2981 0.1387 0.3903 –0.3828 –0.2232 0.1133 0.3452 –0.4503

C3 –0.3528 0.0843 0.4075 –0.2785 –0.3027 0.0360 0.4055 –0.3572

C4 –0.4294 0.0854 0.2896 –0.5550 –0.3723 0.0434 0.3380 –0.5788

O1 –0.1919 0.1229 0.1812 –0.1962 –0.2445 0.0599 0.2598 –0.2075

O2 –0.1433 0.0294 0.1976 –0.1833 –0.2279 –0.0177 0.2609 –0.1996

TABLE 4 | Relationship between phase synchronization index and MMSE/MoCA scores.

Electrode pairs MMSE MoCA

ρδ_pha_syn ρθ_pha_syn ρα_pha_syn ρβ_pha_syn ρδ_pha_syn ρθ_pha_syn ρα_pha_syn ρβ_pha_syn

F3-F4 0.0815 0.1249 –0.0084 0.3389 0.1377 0.1998 0.0650 0.4273

F3-T3 0.2913 0.2540 0.2156 0.4963 0.2882 0.3319 0.2902 0.5567*

F3-C3 0.0091 –0.0461 –0.0222 0.4796 –0.0025 –0.0057 0.0163 0.5542*

F3-C4 0.2166 0.2798 0.2513 0.4190 0.3530 0.3985 0.3314 0.5295

F3-T4 0.1624 0.4192 0.3108 0.4441 0.0978 0.4371 0.3564 0.5225

F3-O1 0.1683 0.3735 0.3115 0.4464 0.1610 0.4383 0.3258 0.5139

F3-O2 0.1017 0.2733 0.2059 0.4327 0.1030 0.3747 0.2548 0.5077

F4-T3 0.2546 0.2519 0.3283 0.3906 0.3551 0.3541 0.4125 0.4913

F4-C3 0.4255 0.5059 0.4528 0.4413 0.4387 0.5941* 0.4808 0.5127

F4-C4 –0.0245 0.0095 0.1032 0.0578 0.0641 0.0736 0.1711 0.1645

F4-T4 0.1470 0.2754 0.2773 0.2804 0.1856 0.2939 0.3197 0.3700

F4-O1 0.2665 0.2875 0.3547 0.4078 0.2822 0.3388 0.3568 0.4835

F4-O2 0.1943 0.1756 0.2995 0.3473 0.2252 0.2208 0.3278 0.4240

T3-C3 0.3450 0.3806 0.2854 0.4770 0.4309 0.4585 0.3698 0.6104*

T3-C4 0.3059 0.3649 0.4134 0.4915 0.3630 0.4391 0.4683 0.5555*

T3-T4 0.1137 0.3751 0.3269 0.3407 0.0761 0.3285 0.2606 0.3260

T3-O1 0.0124 0.2274 0.2194 0.2123 0.0076 0.1793 0.1252 0.2145

T3-O2 0.0426 0.1717 0.1869 0.2107 –0.0014 0.1135 0.0591 0.1840

C3-C4 0.4031 0.3382 0.3449 0.4251 0.4693 0.4209 0.3630 0.5261

C3-T4 0.3343 0.5681 0.4578 0.5410 0.3246 0.5836* 0.4782 0.6553*

C3-O1 0.3655 0.3330 0.2635 0.4735 0.3362 0.3667 0.2670 0.5600*

C3-O2 0.1847 0.2222 0.2591 0.3949 0.1630 0.2534 0.2691 0.5277

C4-T4 –0.0414 0.1907 0.2125 0.3301 0.0520 0.3367 0.3223 0.4557

C4-O1 0.2332 0.2900 0.3895 0.3570 0.2160 0.3039 0.3517 0.4109

C4-O2 0.2106 0.2772 0.2908 0.2874 0.1481 0.2765 0.2575 0.3198

T4-O1 0.0493 0.2618 0.1802 0.2722 0.0244 0.1878 0.0611 0.2347

T4-O2 –0.0439 0.2368 0.2054 0.2378 –0.0782 0.1744 0.1074 0.2288

O1-O2 –0.0826 –0.0150 -0.0980 0.1018 –0.1033 –0.0979 –0.2208 0.0197

*P < 0.05.

bands. Our study found that the spectral entropy of the
α oscillations in the frontal, temporal and central regions
of the AD group was lower than that in the NC group,
which is consistent with former studies (Sun et al., 2020).
On the other hand, we found the β oscillation spectral
entropy in the temporal, central and occipital regions was
higher than that in the NC group. Because the spectral
entropy represents the degree of uncertainty in the power

distribution of EEG signals, our results suggest that the power
fluctuations of the α oscillations of AD patients become
smaller, while the power fluctuations of the β oscillations
become larger. In preclinical amyloid positive patients, Gaubert
and colleagues also found increased spectral entropy, which
is suggested to be related to a compensatory mechanism in
AD patients during memory load and cognitive performance
(Gaubert et al., 2019).
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Many functional connectivity measures has been used in
evaluating the synchronization characteristics in different brain
areas in AD patients, and many of them are correlated
(Dauwels et al., 2010). The phase-based measures are robust
and reproducible, insensitive to volume conduction (Briels et al.,
2020). Our study found the phase synchronization index of
δ, θ, and β oscillations of AD patients was decreased than
that of the NC subjects, especially in the frontal, temporal and
central areas. Further, we found the phase synchronization index
of β oscillations at these brain areas correlated well with the
MoCA scores in AD patients. According to Pini et al. (2016),
cortical atrophy in AD patients affects the medial temporal
lobe very early, then extending to the other parts of the cortex
along a temporal-parietal-frontal trajectory. Due to the recording
device’s limitation, we lack the neural activity in the parietal
electrodes. Instead, our results suggests the neuronal functional
connectivity at the temporal-central-frontal areas in AD patients
is greatly impaired, and the phase synchronization index of
β oscillations might be an indicator of the impairment of
brain functions. However, the phase synchronization index of
α oscillation seemed less damaged and less correlated with the
neurological scores, suggesting the phase synchronization feature
of α oscillations may not reflect the severity of disease.

In conclusion, our study suggest that quantitative EEG
spectral power in α oscillations and phase synchronization
characteristics in β oscillations could reflect the severity of AD
disease and are beneficial to the diagnosis and screening of
probable AD patients. As the PiB-PET examination is rather
expensive, the number of AD patients included in this study is
relatively small. In addition, the parietal neural activity is not
recorded in current study, which hindered us evaluating the
impaired cognitive functions in parietal areas of AD patients.
Further, this study is a retrospective, cross-sectional group
study. In the future we should consider a longitudinal and
individualized study with a larger sample size and with more
electrode sites.
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Objective: White matter hyperintensities (WMHs) on magnetic resonance imaging (MRI)
is frequently presumed to be secondary to cerebral small vessel disease (CSVD) and
associated with cognitive decline. The cerebellum plays a key role in cognition and
has dense connections with other brain regions. Thus, the aim of this study was to
investigate if cerebellar abnormalities could occur in CSVD patients with WMHs and the
possible association with cognitive performances.

Methods: A total of 104 right-handed patients with WMHs were divided into the mild
WMHs group (n = 39), moderate WMHs group (n = 37), and severe WMHs group
(n = 28) according to the Fazekas scale, and 36 healthy controls were matched for
sex ratio, age, education years, and acquired resting-state functional MRI. Analysis
of voxel-based morphometry of gray matter volume (GMV) and seed-to-whole-brain
functional connectivity (FC) was performed from the perspective of the cerebellum, and
their correlations with neuropsychological variables were explored.

Results: The analysis revealed a lower GMV in the bilateral cerebellum lobule VI and
decreased FC between the left- and right-sided cerebellar lobule VI with the left anterior
cingulate gyri in CSVD patients with WMHs. Both changes in structure and function
were correlated with cognitive impairment in patients with WMHs.

Conclusion: Our study revealed damaged GMV and FC in the cerebellum associated
with cognitive impairment. This indicates that the cerebellum may play a key role in the
modulation of cognitive function in CSVD patients with WMHs.

Keywords: cerebellum, white matter hyperintensities, resting-state functional connectivity, voxel-based
morphometry, magnetic resonance imaging

INTRODUCTION

White matter hyperintensities (WMHs) is a state of chronic hypoperfusion in the white
matter, which reflects the loss of axons and myelin, myelin pallor, and gliosis. It is
described as hyperintense in the subcortical white matter displayed on T2-weighted
MRI images and fluid-attenuated inversion recovery (FLAIR) images (Gebeily et al.,
2014). Cerebral small vessel disease (CSVD), associated with the altered blood supply
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to the brain white matter, can lead to localized ischemic areas of
necrosis and cavitation and cause WMHs (Petito et al., 1998).
The prevalence of WMHs in the general population aged 60
to 90 years is nearly 70% in the Chinese population (Han
et al., 2018). Moreover, there is growing evidence that the
WMHs is imperative to cognitive dysfunction, particularly in
executive function. Niels et al. reported that increasing severity of
periventricular WMHs was specifically associated with impaired
information processing speed and executive function (Prins et al.,
2005; Smith et al., 2011; Yamanaka et al., 2019).

The cerebellum has long been regarded as critical for intact
motor functioning (Koziol et al., 2014). Until recently, it has
been accepted that it plays a significant role in cognitive
processing supported by the posterior cerebellum, which is
noteworthy (Smith et al., 2015a). Increasing numbers of
studies have proven this. A meta-analysis revealed that patients
with focal cerebellar lesions performed significantly worse
on neuropsychological tests including phonological fluency,
semantic fluency, Stroop test, block design test (WAIS-R), and
visual memory (Ahmadian et al., 2019). Furthermore, lesions
of the posterior lobe (lobules VI, VII, and possibly lobule
IX) are reported to result in cerebellar cognitive affective
syndrome characterized by impairments in executive function
(Schmahmann, 2019).

Previous studies investigating the associations between
WMHs on MRI and cognitive impairment have reported
different results, with the most possible key role for prefrontal
cortex connectivity with other (sub-)cortical regions (Chen et al.,
2019). Moreover, structural and functional brain abnormalities
in the cerebellum have also been recently identified in WMHs
recently (Buckner, 2013). Studies have reported that both the
number and volume of WMHs are correlated with changes in
brain connectivity, especially in the cerebellum (Hoogendam
et al., 2012; Smith et al., 2015b). Accumulating evidence has
led to the growing recognition of the cerebellum’s role in
cognitive function and its involvement in WMHs. However,
in the vast majority of neuroimaging studies of WMHs, the
cerebellum’s role in cognition has been dismissed or remains
largely on the periphery in favor of cortico-centric models.
Therefore, all these findings paved the way for our in-depth
examination of the emerging role of the cerebellum in cognitive
function in WMHs.

All these studies suggested that the cerebellum may play a
vital role in cognition, and cerebellar involvement is described
in several neurodegenerative diseases. For this reason, the aims
of this study were to investigate if cerebellar abnormalities could
occur in CSVD patients with WMHs and to investigate the
possible association with cognitive performances. Therefore, we
conducted voxel-based morphometry analysis (VBM) to explore
cerebellar gray matter volume (GMV) and seed-to-whole-brain
functional connectivity (FC) to investigate abnormalities of
FC related to the cerebellum. Seed regions for resting-state
analysis were selected based on GMV differences between the
WMHs group and healthy controls (HC) group. Meanwhile,
we also performed a correlation analysis between GMV as
well as FC changes and cognitive performance in CSVD
patients with WMHs.

MATERIALS AND METHODS

Participants
This study included 104 patients with WMHs from the
Department of Neurology of the First Affiliated Hospital of
Anhui Medical University, Hefei, China. The inclusion criteria
were as follows: (1) aged between 40 and 80 years and
(2) visible WMHs on T2 fluid-attenuated inversion recovery
(T2 FLAIR). The exclusion criteria were as follows: (1)
intracranial and extracranial stenosis of >50%; (2) Trial of Org
10172 in Acute Stroke Treatment classification suggestive of
cardiogenic stroke; (3) non-CSVD-related WMHs (e.g., multiple
sclerosis); (4) mental disorders, alcohol addiction; (5) tumors;
(6) intracranial hemorrhage; (7) significant hearing or visual
impairment and physical movement disorders that prevented
cooperation during cognitive testing; (8) language barrier; and (9)
MRI contraindications or known claustrophobia. Periventricular
hyperintensity (PVH) and deep white matter hyperintensity
(DWMH) were scored separately using the four-point scale
according to the Fazekas scale on FLAIR images (Fazekas et al.,
1987). The PVH scores were categorized as follows: 0, absent; 1,
caps or pencil-thin lining; 2, smooth “halo”; and 3, irregular PVH
lesions extending into the deep white matter. DWMH scores were
categorized as follows: 0, absence; 1, punctate foci; 2, beginning
confluence of foci; and 3, large confluent areas. The Fazekas score
is the sum of the PVH and DWMH scores. Patients with WMHs
were divided into three groups based on their Fazekas scores.
The mild WMHs group scored 1–2, the moderate WMHs group
scored 3–4, and the severe WMHs group scored 5–6. Finally,
we included 39 patients in the mild group, 37 patients in the
moderate group, and 28 patients in the severe group.

Thirty-six controls (HC) were relatives of patients with
WMHs and social recruits studied during the same period who
matched the demographic data of the patients with WMHs,
including age, gender, and years of education, and had no
previous history of neurological diseases or mental illnesses.
Imaging showed no white matter hyperintensities. The study
was approved by the Ethics Committee of Anhui Medical
University. All participants provided written informed consent
before the study.

Statistical Analyses
One-way analysis of variance was used to assess differences in
age, education, and CSVD neuroimaging manifestations and
differences between the neuropsychological test scores of the
four groups (significant for P < 0.05), and the least significant
difference was used for post-hoc analysis (significant for P< 0.05).
The chi-squared test was used to determine gender differences in
the four groups (P < 0.05).

Magnetic Resonance Parameters
Structural and functional MRI were performed with a 3-T
scanner (Discovery 750; GE Healthcare, Milwaukee, WI, United
States) at the Information Science Center of the University
of Science and Technology of China. During resting-state
functional MRI (rs-fMRI) scanning, participants were instructed
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to keep their eyes closed, but not to fall asleep, and try to
think of nothing in particular. A tight but comfortable foam
padding was used to minimize head motion, and earplugs
were used to reduce scanner noise. The parameters of the
different sequences were set as follows: T2FLAIR: repetition time
(TR) = 8,000 ms, echo time (TE) = 165 ms, TI = 2,000 ms,
flip angle = 111◦, matrix size = 512 × 512, field of view
(FOV) = 256 mm × 256 mm, slice thickness = 5 mm, gap = 1 mm,
and total slices = 20. Enhanced gradient echo T2 star-weighted
angiography (ESWAN): TR = 52.189 ms, TE = 2.856 ms, flip
angle = 12◦, matrix size = 256 × 256, FOV = 220 mm × 220 mm,
and slice thickness = 2 mm with no gap. Rs-fMRI: TR = 2,400 ms,
TE = 30 ms, flip angle = 90◦, matrix size = 64 × 64,
FOV = 192 mm × 192 mm, slice thickness = 3 mm with no gap,
and 46 continuous slices (one voxel = 3 mm × 3 mm × 3 mm).

Sagittal three-dimensional (3D) T1-weighted images were
acquired using a brain volume (BRAVO) sequence with 188
slices (TR = 8.16 ms; TE = 3.18 ms; flip angle = 12◦;
FOV = 256 mm × 256 mm; slice thickness = 1 mm, no gap; voxel
size = 1 mm × 1 mm × 1 mm).

Neuropsychological Test
The neuropsychological scale of the Chinese Cerebral Small
Vessel Disease Clinical Evaluation Study was used to evaluate
the global cognitive function and individual cognitive functions
of all participants (Cao et al., 2020). The Montreal Cognitive
Assessment (MoCA) was used to measure global cognitive
function (Nasreddine et al., 2005). Anxiety was assessed using
the Generalized Anxiety Disorder-7 (GAD-7; Buckner, 2013).
Depression symptoms were assessed using the Patient Health
Questionnaire-9 (PHQ-9; Smarr and Keefer, 2011). The Chinese
version of the Auditory Verbal Learning Test (AVLT) was
used to evaluate memory function. The AVLT is composed of
immediate memory, delay memory, and recognition memory
function (Schoenberg et al., 2006). The Symbol Digit Modalities
Test (SDMT) was used to evaluate information processing speed
(Silva et al., 2018). The Digital Span test consists of two parts,
forward and backward, and was used to evaluate the attention of
the subjects (Yamamoto et al., 2011), and the Stroop Color-Word
Test was used to evaluate executive function. The Trail Making
Test (TMT) was also used to evaluate the executive and attention
function (Selnes et al., 1991), and the Boston Naming Test was
used to evaluate word-finding ability (Mack et al., 1992). The
testers were all graduate or doctoral students in neurology who
had passed the unified training.

WMHs Volume
The WMHs volume was calculated using the UBO detector (Jiang
et al., 2018)1, which is a cluster-based software. The calculation
process was described in a previous study (Wen et al., 2009).

Rs-fMRI Data Processing
All rs-fMRI data were preprocessed using the Data
Processing Assistant for Resting-State Functional MR
Imaging toolkit (Chao-Gan and Yu-Feng, 2010) (DPARSF;

1https://cheba.unsw.edu.au/group/neuroimagingpipeline

http://rfmri.org/content/dparsf) and statistical parametric
mapping (SPM12; https://www.fil.ion.ucl.ac.uk/spm/software/
spm12/). Preprocessing mainly includes the following. (1) The
first five time points were removed to reduce the impact of the
scanner during the initial scanning and facilitate the adaptation
of the participants to the scanning environment. (2) The slice
timing was used to correct the differences in acquisition time
between layers of the volume. (3) Head correction was performed
by removing participants with large head movements to reduce
the effect on the result. (4) Space standardization was used
to reduce the impact of human BRAVO and shape diversity.
3D T1 was used to register functional images for the spatial
standardization of the participants in our study. A matrix was
generated after registration and segmentation. The matrix data
were applied to the functional images, which were used to
register the participants from the functional to the standard
space. (5) Smoothing was applied to reduce the incomplete
effects of registration to ensure that the residuals were more
consistent with the Gaussian distribution and improve the image
signal-to-noise ratio. An 8-mm Gaussian kernel was chosen.
(6) A detrending was applied at the end to reduce the effects of
scanner heating. (7) Regression 24 Friston motion parameters,
white matter high signal, and CSF were analyzed.

VBM Analysis
Voxel-based morphometry analyses were performed to
determine potential differences in the cerebellum between
patients in the WMHs group and the HC group. T1-weighted
anatomic images were preprocessed using the VBM8 toolbox in
SPM8 (Statistical Parametric Mapping software). Each structural
image was segmented into gray matter (GM), white matter,
and cerebrospinal fluid using a fully automated algorithm
within SPM8 and subsequently transformed into the Montreal
Neurological Institute (MNI) space using diffeomorphic
anatomical registration through exponentiated Lie algebra
(DARTEL) normalization. Next, the normalized GM images
were smoothed (FWHM = 8 mm) for statistical analyses. Finally,
a one-way ANOVA was conducted with age, education, gender,
and whole-brain GM volume as covariates on these normalized
cerebellum images to determine structural differences. The
Gaussian random field (GRF) correction (significant for voxel
levels at P < 0.001 and cluster at P < 0.05) was used for
correction. Statistical analysis for saving masks was performed
using the Data Processing and Analysis of Brain Imaging toolbox
(Wu et al., 2020).

Rs-FC Calculation
We extracted the right-sided cerebellum lobule VI and the left-
sided cerebellum lobule VI as the seed areas for resting-state
FC analyses. The rs-FC between the mean time series of the
seed and the time series of each voxel in the remainder of
the GM was calculated using Pearson’s correlation coefficient of
the time course of each seed. To facilitate the normality of the
data distribution, the correlation coefficients were converted to
z-values using Fisher’s r-to-z transformation.

Based on a GM template, a one-way analysis of covariance
was used to assess the differences between the functional
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connectivities of the four groups. Age, education, GM volume,
and gender were considered as covariates. Statistical analysis was
performed voxel-wise using DPARSF and SPM software. Multiple
comparisons during the analyses were corrected using the GRF
(significant for voxel levels at P < 0.001 and cluster at P < 0.05).

Correlation Analysis
We performed a Pearson correlation analysis between each
participant’s volume of the cerebellum and neuropsychological
tests and between each participant’s FC and neuropsychological
tests in significant regions to further explore whether
neuroimaging indices were related to cognitive functions
(significant for P < 0.05).

RESULTS

Demographic and Clinical
Characteristics
There were no significant differences between the ages, years
of education, and gender distributions of the HC and WMHs
groups. The proportion of patients with hypertension was higher
than that of HC, but there were no significant differences in
the four groups in terms of diabetes, hyperlipidemia, smoking
history, and drinking history. Demographic information and
CSVD marker information are displayed in Table 1. Regarding
the severity of WMHs, the quantitative assessment method we
used was in good agreement with the Fazekas score (P < 0.001,
r = 0.499). The distribution of lacunes and microbleed lesions is
shown in Table 2. However, several participants did not complete
the ESWAN sequence scan for specific reasons (HC group: 5
participants; mild WMHs group: 13 patients; moderate WMHs
group: 7 patients; and severe WMHs group: 7 patients). Besides,
neuropsychological tests of the participants in the four groups are
shown in Table 3.

Group Comparison of Cerebellar Atrophy
Atrophy in the cerebellar subregions was apparent in patients
with WMHs relative to HCs. Specifically, two large contiguous
clusters were identified shown in Figure 1. One cluster included
cerebellar subregions right-sided lobule VI (voxel size: 1961; peak
MNI coordinates: x = 22.5, y = −63, z = −15; GRF for voxel levels
at P < 0.001 and cluster at P < 0.05) and another included left-
sided lobule VI (voxel size: 622; peak MNI coordinates: x = −12,
y = −82.5, z = −13.5; GRF for voxel levels at P< 0.001 and cluster
at P < 0.05). The volumes of the two ROIs were significantly
higher in the HC group than in the patients with WMHs and
gradually decreased in patients with WMHs from the mild to
severe group (shown in Figure 2). The severe group also showed
reduced volume both in right-sided lobule VI and left-sided
lobule VI compared to the mild and moderate groups.

We identified significantly decreased functional connection
between the left-sided cerebellum lobule VI with the left anterior
cingulate gyrus (voxel size: 39; peak MNI coordinates: x = −3,
y = 33, z = −6; cluster-level GRF for voxel levels at P < 0.001 and
cluster at P < 0.05) in mild, moderate, and severe WMHs groups
compared with HCs (shown in Figure 3).

Correlation analyses revealed that the volume of the left-
sided cerebellum lobule VI was negatively correlated with TMT-
A test (P = 0.026, r = −0.361) and TMT-B test (P = 0.027,
r = −0.363) in the mild group, and positively correlated with
AVLT-study test (P < 0.001, r = 0.670), AVLT-immediate test
(P = 0.002, r = 0.601), AVLT-delay test (P = 0.001, r = 0.644),
AVLT-recognition test (P = 0.033, r = 0.437) results in the severe
group. The volume of the right-sided cerebellum lobule VI was
positively correlated with the AVLT-immediate test (P = 0.022,
r = 0.398), AVLT-delay test (P = 0.015, r = 0.428) results in the
moderate group, and positively correlated with the AVLT-study
test (P = 0.001, r = 0.607), AVLT-immediate test (P < 0.001,
r = 0.757), AVLT-delay test (P < 0.001, r = 0.800), AVLT-
recognition test (P < 0.001, r = 0.628) in the severe group.

DISCUSSION

In this study, we investigated the alterations in the volume
and FC in the cerebellum due to WMHs and evaluated their
relevance to cognitive function. Regarding imaging data, for the
group difference, we have shown a lower volume in cerebellum
lobule VI and lower FC between the left and right cerebellar
lobule VI with the left anterior cingulate gyri in patients with
WMHs. Moreover, both were closely related to WMHs scores and
cognitive functions.

Recently, studies have demonstrated an increasing interest in
elucidating the pattern of cerebellar atrophy across diseases and
revealed its critical role in many neurodegenerative diseases (Guo
et al., 2016). Although WMHs is commonly observed in cerebral
white matter, CSVD-associated lesions can also occur in GM.
We found cerebellar atrophy in lobule VI in WMHs patients,
which is in line with numerous studies of neurodegenerative
diseases (Tan et al., 2014). As for Alzheimer’s disease (AD),
atrophy of the posterior cerebellar regions was identified (Guo
et al., 2016), and in Parkinson’s disease (O’Callaghan et al., 2016),
direct pathological change in the cerebellum, including atrophy,
has also been confirmed (Borghammer et al., 2010). However,
the functional consequences of GM loss in the cerebellum
are not uniform across these studies. Cerebellar lobule VI has
been implemented in executive functions that dovetail with
the predominant cognitive impairment characteristic of WMHs
(Habas et al., 2009). This is supported by our study that
found a correlation between cerebellar lobule VI atrophy and
cognitive decline in WMHs.

Reduced connectivity of the cerebellum lobule VI to the left
anterior cingulate gyri owing to white matter hyperintensities
was also found in this study. Observed gray matter loss in
cerebellum lobule VI may drive this change in FC, and the
WMHs can also disrupt white matter tracts or U-fibers that
mediate cortical–cortical or cortical–subcortical connections
(Ward et al., 2015). Furthermore, connectivity studies have
confirmed that the posterior cerebellum has strong connections
with the prelimbic, orbitofrontal, and anterior cingulate cortex,
which provide anatomical substrates for our results (Badura
et al., 2018). Aligning with our results, Schaefer et al. reported
connectivity changes in cerebellar regions that are connected
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TABLE 1 | Demographic and cerebral small vessel disease neuroimaging manifestations of participants in the four groups [mean (SD)].

HC (n = 36) Mild WMHs (n = 39) Moderate WMHs (n = 37) Severe WMHs (n = 28) F/χ 2 P

Age (years) 60.58 (5.98) 63.77 (8.23) 65.08 (10.03) 65.04 (6.90) 2.424 0.068

Female 18 16 14 16 3.011 0.390

Education (years) 9.31 (3.32) 8.41 (4.16) 8.00 (3.84) 7.75 (3.88) 1.083 0.359

Hypertension 8 21 22 21 19.568 <0.001***

Diabetes 2 8 7 4 3.905 0.272

Hyperlipidemia 8 10 9 8 0.356 0.949

Smoking history 9 18 15 11 3.808 0.283

Drinking history 12 9 16 12 4.346 0.226

Fazekas 0.00 (0.00)a,b,c 1.64 (0.49)a,d,e 3.59 (0.50)b,d,f 5.43 (0.50)c,e,f 958.855 <0.001***

WMHs volume / 11,457.35 (12,493.05)d,e 18,067.56 (10,873.84)d,f 30,658.38 (12,033.91)e,f 21.696 <0.001***

Lacunes 0.00 (0.00)a,b,c 0.51 (0.91)a,d 0.89 (1.29)b,d 0.79 (1.23)c 5.626 0.001**

Microbleeds 0.31 (0.59)c 2.26 (3.61) e 1.50 (2.35)f 6.29 (14.96)c,e,f 3.389 0.021**

Volume is in cubic millimeters. HC, healthy controls; WMHs, white matter hyperintensities; and SD, standard deviation. aHealthy control group vs. mild WMHs group
significantly different (P < 0.05). bHealthy control group vs. moderate WMHs group significantly different (P < 0.05). cHealthy control group vs. severe WMHs group
significantly different (P < 0.05). dMild WMHs group vs. moderate WMHs group significantly different (P < 0.05). eMild WMHs group vs. severe WMHs group significantly
different (P < 0.05). f Moderate WMHs group vs. severe WMHs group significantly different (P < 0.05). ***Significant at 0.001 level, **significant at 0.01 level.

TABLE 2 | Distribution of neuroimaging manifestations in HC and patients with WMHs [mean (SD)].

Lacunes CMBs

HC
(n = 36)

Mild
WMHs
(n = 39)

Moderate
WMHs
(n = 37)

Severe
WMHs
(n = 28)

HC
(n = 32)

Mild
WMHs
(n = 27)

Moderate
WMHs
(n = 30)

Severe
WMHs
(n = 21)

Subcortical

Frontal 0.00
(0.00)

0.18
(0.51)

0.11
(0.39)

0.14
(0.45)

0.03
(0.18)

0.11
(0.32)

0.13
(0.57)

0.33
(0.80)

Parietal 0.00
(0.00)

0.03
(0.16)

0.11
(0.39)

0.00
(0.00)

0.09
(0.30)

0.19
(0.68)

0.13
(0.35)

0.33
(0.91)

Occipital 0.00
(0.00)

0.00
(0.00)

0.05
(0.23)

0.04
(0.19)

0.03
(0.18)

0.07
(0.27)

0.07
(0.25)

0.57
(1.36)

Temporal 0.00
(0.00)

0.08
(0.27)

0.05
(0.33)

0.21
(0.50)

0.03
(0.18)

0.41
(1.15)

0.23
(0.63)

1.48
(3.12)

Any subcortical 0.00
(0.00)

0.03
(0.16)

0.08
(0.28)

0.11
(0.31)

0.00
(0.00)

0.04
(0.19)

0.00
(0.00)

0.19
(0.87)

Deep

Basal ganglia 0.00
(0.00)

0.18
(0.51)

0.38
(0.79)

0.18
(0.61)

0.03
(0.18)

0.22
(0.51)

0.17
(0.38)

0.71
(1.23)

Thalamus 0.00
(0.00)

0.00
(0.00)

0.03
(0.16)

0.00
(0.00)

0.00
(0.00)

0.07
(0.27)

0.17
(0.46)

0.43
(1.33)

Internal capsule 0.00
(0.00)

0.00
(0.00)

0.03
(0.16)

0.00
(0.00)

0.03
(0.18)

0.44
(0.84)

0.23
(0.77)

0.62
(1.72)

Any deep 0.00
(0.00)

0.00
(0.00)

0.03
(0.16)

0.11
(0.31)

0.03
(0.18)

0.11
(0.32)

0.20
(0.66)

0.24
(0.89)

Infratentorial

Cerebellum 0.00
(0.00)

0.00
(0.00)

0.03
(0.16)

0.00
(0.00)

0.03
(0.18)

0.15
(0.36)

0.13
(0.35)

0.86
(3.50)

Pons 0.00
(0.00)

0.03
(0.16)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.11
(0.42)

0.03
(0.18)

0.14
(0.48)

Mesencephalon 0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.15
(0.46)

0.03
(0.18)

0.14
(0.65)

Any 0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.04
(0.19)

0.00
(0.00)

0.29
(1.10)

Any 0.00
(0.00)

0.51
(0.91)

0.89
(1.29)

0.79
(1.23)

0.31
(0.59)

2.11
(3.53)

1.53
(2.36)

6.33
(14.96)

SD, standard deviation; CMBs, cerebral microbleeds.
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TABLE 3 | Neuropsychological tests of participants in the four groups [mean (SD)].

HC (n = 36) Mild WMHs (n = 39) Moderate WMHs (n = 37) Severe WMHs (n = 28) F/χ 2 P

MoCA 22.33 (3.09)c 21.16 (4.32)d 21.06 (3.79)e 17.81 (4.91)c,d,e 6.850 <0.001***

AVLT-study 8.15 (1.59)c 7.63 (2.24)d 7.31 (1.52) 6.55 (2.00)c,d 3.776 0.012*

AVLT-immediate 9.40 (2.30)c 8.17 (3.84)d 7.88 (2.65)e 6.17 (3.27)c,d,e 5.320 0.002**

AVLT-delay 9.06 (2.41)b,c 7.95 (3.76) 7.31 (2.67)b 6.50 (3.13)c 3.731 0.013*

AVLT-recognition 13.63 (1.33)c 13.53 (3.68)d 13.16 (1.87)e 11.13 (3.62)c,d,e 4.734 0.004**

TMT-A 63.34 (24.76)a,b,c 80.72 (33.12)a,d 79.12 (33.73)b,e 105.82 (37.72)c,d,e 8.233 <0.001***

TMT-B 129.65 (44.44)c 155.35 (70.69)d 158.16 (73.16)e 207.55 (81.24)c,d,e 6.301 0.001**

BNT 13.94 (0.98)a,b,c 12.89 (1.54)a 13.25 (1.68)b 12.74 (1.40)c 4.797 0.003**

PHQ-9 3.31 (4.78)c,d 3.74 (4.56)d 5.00 (4.62) 7.39 (5.81)c,d 4.272 0.006**

GAD-7 2.40 (3.24)c,d 2.61 (4.10)d 2.81 (3.43)e 5.29 (5.48)c,d,e 3.282 0.023*

HC, healthy controls; WMHs, white matter hyperintensities; SD, standard deviation; MoCA, Montreal Cognitive Assessment; PHQ, Patient Health Questionnaire; GAD,
generalized anxiety disorder; AVLT, Chinese Auditory Learning Test; TMT, Trial Making Test; and BNT, Boston Naming Test. aHealthy control group vs. mild WMHs
group significantly different (P < 0.05). bHealthy control group vs. moderate WMHs group significantly different (P < 0.05). cHealthy control group vs. severe WMHs
group significantly different (P < 0.05). dMild WMHs group vs. severe WMHs group significantly different (P < 0.05). eModerate WMHs group vs. severe WMHs group
significantly different (P < 0.05). ***Significant at 0.001 level, **significant at 0.01 level, and *significant at 0.05 level (two tailed).

FIGURE 1 | Voxel-based morphometry showing gray matter loss in the cerebellar subregions for patients with White matter hyperintensities (WMHs) in comparison
with controls. Areas of significant gray matter loss (red) included the cerebellar subregions right-sided lobule VI [voxel size: 2,106; peak MNI coordinates: x = 22.5,
y = –63, and z = –15; Gaussian random field (GRF) for voxel levels at P < 0.001 and cluster at P < 0.05] and left-sided lobule VI (voxel size: 703; peak MNI
coordinates: x = –22.5, y = –54, and z = –15; GRF for voxel levels at P < 0.001 and cluster at P < 0.05), for patients with WMHs vs. control subjects.

FIGURE 2 | Group comparison of cerebellar atrophy. Volume contrasts within two subregions of the cerebellum across four groups. Post-hoc analysis of the brain
regions with significant differences among the four groups. (A) The gray matter volume (GMV) of the right-sided cerebellum lobule VI showing atrophy in WMHs
groups. (B) The GMV of the left-sided cerebellum lobule VI showing atrophy in WMHs groups. ∗∗∗P < 0.001, ∗∗P < 0.01, and ∗P < 0.05.
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FIGURE 3 | Differences of functional connectivity (FC) between groups at the right-sided cerebellum lobule VI—whole brain level. (A) Significant differences were
observed between patients with WMHs and healthy controls (HC) in the FC between the right-sided cerebellum lobule VI with the left anterior cingulate gyri (voxel
size: 39; peak MNI coordinates: x = –3, y = 33, and z = –6; GRF for voxel levels at P < 0.001 and cluster at P < 0.05). (B) The functional connectivity of the
right-sided cerebellum lobule VI with the left anterior cingulate gyri was significantly decreased in patients with WMHs. ∗∗∗P < 0.001.

to frontoparietal cognitive networks (lobules crus II and VIIb)
in patients with CSVD (Schaefer et al., 2014). Another study
revealed that both the number and volume of WMHs were
correlated with decreased FC of the cerebellum (Kerkovsky
et al., 2019). Our findings provide further support for cerebellar
involvement in WMHs. Despite the difficulties in interpreting
WMHs pathology, the fact that atrophy and impaired FC
correlated with WMHs severity observed in our study suggested
that cerebellar changes should be at least partly related to the basic
pathological process of WMHs.

The existing studies have shown that in patients with WMHs,
memory, processing speed, and executive function impairments
exist compared with HCs, and structural and functional brain
abnormalities in the cerebellum have also been reported
(Buckner, 2013; Kaskikallio et al., 2019). However, the association
between cognitive decline and cerebellum in patients with WMHs
is rarely discussed. The cerebellum has traditionally been thought
to contribute mainly to motor coordination (Ito, 2000; Gao et al.,
2012). However, increasing evidence has demonstrated that the
cerebellum also plays an important role in cognitive processing,
and memory and executive functions are mostly localized in the
posterior cerebellum (E et al., 2014), which is supported by many
researchers. Functional MRI evidence found cerebellar activation
is a consistent finding with memory tasks predominantly in
the posterior lobe of the cerebellum (Zacharia and Eslinger,
2019). Schmahmann found that lesions of the posterior lobe of
the cerebellum were particularly important in impairments in
executive function (Zhuang et al., 2017; Schmahmann, 2019).
Researchers suspect that the most likely route for cerebellar
contribution to cognition is via interactions with the neocortex
(Wagner and Luo, 2020). This means that damage to the posterior
lobe of the cerebellum and its connections may potentially
degrade and disconnect cognition subserved by it. In line
with previous studies, both atrophy and hypoconnectivity of
cerebellum lobule VI were found to be related to cognitive
decline in WMHs in our study, suggesting that the cerebellum
with its influence on the cingulate cortex is responsible for
cognitive decline in patients with WMHs. This is particularly
relevant because the cerebellum’s ability to work full time likely

depends on its internal integrity and the integrity of its cortical
connections, and local gray matter change in cerebellum lobule
VI, or its functional connections (the cingulate), might influence
cerebellar activity.

Several limitations of this study should be addressed. First,
the sample size was relatively small, and therefore, our findings
require validation in a larger cohort. Second, this cross-sectional
study only provides correlational but no causal associations that
need to be approached by longitudinal study designs. Third, it
is impossible to eliminate the concomitant structural changes of
WMHs, such as lacunes, although the lacunes were much less
severe than WMHs in the current study. Further studies using
a prospective design are needed to address these issues.

In conclusion, this study demonstrated that CSVD patients
with WMHs display a lower bilateral GMV and a decreased
FC in specific subregions of the cerebellum related to cognitive
functions (VI). Moreover, correlations exist between these
brain alterations and specific neurocognitive functions including
memory and executive function. Together, it is quite a
novelty to demonstrate that cerebellar abnormalities could
occur in CSVD patients with WMHs and to introduce its
unique contribution to cognitive functions, which led to
the growing recognition of the cerebellum’s role in CSVD
patients with WMHs.
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Objective: To delineate the relationship between clinical symptoms and tauopathy of the
hippocampal subfields under different amyloid statuses.

Methods: One hundred and forty-three subjects were obtained from the ADNI project,
including 87 individuals with normal cognition, 46 with mild cognitive impairment,
and 10 with Alzheimer’s disease (AD). All subjects underwent the tau PET, amyloid
PET, T1W, and high-resolution T2W scans. Clinical symptoms were assessed by the
Neuropsychiatric Inventory (NPI) total score and Alzheimer’s Disease Assessment Scale
cognition 13 (ADAS-cog-13) total score, comprising memory and executive function
scores. The hippocampal subfields including Cornu Ammonis (CA1–3), subiculum (Sub),
and dentate gyrus (DG), as well as the adjacent para-hippocampus (PHC) and entorhinal
cortex (ERC), were segmented automatically using the Automatic Segmentation of
Hippocampal Subfields (ASHS) software. The relationship between tauopathy/volume
of the hippocampal subfields and assessment scores was calculated using partial
correlation analysis under different amyloid status, by controlling age, gender, education,
apolipoprotein E (APOE) allele ε4 carrier status, and, time interval between the acquisition
time of tau PET and amyloid PET scans.

Results: Compared with amyloid negative (A−) group, individuals from amyloid positive
(A+) group are more impaired based on the Mini-mental State Examination (MMSE;
p = 3.82e-05), memory (p = 6.30e-04), executive function (p = 0.0016), and ADAS-
cog-13 scores (p = 5.11e-04). Significant decrease of volume (CA1, DG, and Sub) and
increase of tau deposition (CA1, Sub, ERC, and PHC) of the hippocampal subfields
of both hemispheres were observed for the A+ group compared to the A- group.
Tauopathy of ERC is significantly associated with memory score for the A- group, and the
associated regions spread into Sub and PHC for the A+ group. The relationship between
the impairment of behavior or executive function and tauopathy of the hippocampal
subfield was discovered within the A+ group. Leftward asymmetry was observed with
the association between assessment scores and tauopathy of the hippocampal subfield,
which is more prominent for the NPI score for the A+ group.
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Conclusion: The associations of tauopathy/volume of the hippocampal subfields with
clinical symptoms provide additional insight into the understanding of local changes
of the human HF during the AD continuum and can be used as a reference for
future studies.

Keywords: Alzheimer’s disease, hippocampal subfield, tau pathology, PET imaging, behavior symptoms

INTRODUCTION

Alzheimer’s disease (AD) is characterized by the deposition
of pathologic amyloid and tau proteins (Marks et al., 2017;
Gordon et al., 2019; Scharre, 2019). Compared with β-amyloid
(Aβ) plaques, tau deposition has been found to have a stronger
association with cognitive decline during the AD continuum
(Brier et al., 2016). Specimen research has revealed that the arise
of tau deposition is firstly found in the trans-entorhinal cortex
and then spreads into the temporal lobe regions such as the
hippocampal formation (HF), and finally reaches the neocortex
(Braak and Del Tredici, 2011; Braak et al., 2011). As the central
node of the mnemonic circuitry, impairment of the HF has
received much attention from other researchers (Yushkevich
et al., 2015; Adler et al., 2018; Evans et al., 2018) to study the
occurrence and progression of AD.

The HF has been associated with memory and cognitive
functions and is conventionally used as one of the early
biomarkers of several neuropsychiatric disorders including
AD and Parkinson’s disease (PD; Ikram et al., 2010; Adler
et al., 2018; Das et al., 2019). AD subjects present a significant
decrease in hippocampal volume and multifaceted impairment
of adult hippocampal neurogenesis (AHN) compared to
cognitively normal (CN) individuals (Adler et al., 2018; Moreno-
Jiménez et al., 2019). However, morphometry changes of
the whole HF may be insufficient to delineate the detailed
neurodegenerative features during the progression of AD
as the human HF is comprised of several substructures
including the dentate gyrus (DG), the Cornu Ammonis
(CA), the subiculum (Sub), and the associated white
matter tracts (Naidich et al., 1987). Subfields of the HF
may exhibit differential patterns in their association with
cognitive performance in specific domains, as well as the
subsequent risk of dementia. The atrophy of subiculum
and pre-subiculum regions were found strongly associated
with executive dysfunction (Evans et al., 2018). CA1 and
fimbria also showed the trend toward significant volume
reduction with the progression of AD (Parker et al., 2019;
Zhao et al., 2019). In addition, the impairment of the HF can
be regarded as the neurodegeneration assessment following
the amyloid/tau/neurodegeneration (AT[N]) framework
(Jack et al., 2016, 2019; Jack Jr et al., 2018). The spreading
patterns of biomarker findings such as tau deposition of the
hippocampal subfields, as well as its association with the
clinical symptoms during the AD continuum, however, remain
relatively underexplored.

In addition, behavioral changes are the accompanying
characteristics with AD progression and severely impact the

patients’ quality of life and caregivers’ burdens (Zhao et al.,
2016; Deb et al., 2018). CN individuals with abnormal behavior
symptoms were found to be at higher risk of developing mild
cognitive impairment (MCI; Mok et al., 2004; Masters et al.,
2015). Much research has demonstrated that the presence of
mild behavioral impairment can be used as an ‘‘at-risk’’ state for
cognitive decline and dementia (Ismail et al., 2016; Yoon et al.,
2019). As one of the early markers of AD, impairment of the
hippocampal subfield may also be associated with the rise of
behavior symptoms. The characterization of these relationships
will help us to determine if the presence of behavior symptoms
provides additional information for the understanding of the
AD continuum.

The specific aim of the current study was to observe
the relationship between tau deposition of each hippocampal
subfield and clinical symptoms (assessed by the memory,
cognition, executive function, and behavior scores) under
different amyloid status (amyloid negative and positive). The
Alzheimer’s Disease Assessment Scale-Cognitive (ADAS-cog)
was used to measure the cognitive performance (Petersen et al.,
2010; Kueper et al., 2018) and the Neuropsychiatric Inventory
(NPI) was used to quantify the severity and frequency of
behavior symptoms in the ADNI project (Cummings, 1997;
Nunes et al., 2019). The volume of each hippocampal subfield
was also assessed in the current research to calculate its
association with the clinical scores. AD-related factors including
age, gender, education, and apolipoprotein E (APOE) allele
ε4 carrier status were considered in the statistical analysis based
on previous studies (Tosun et al., 2017; McCartney et al.,
2018). We hypothesize that the tauopathy/volume of different
hippocampal subfields may have diverse association patterns
with the clinical symptoms, even under the same amyloid
status. They may exhibit an enhanced association between
the tauopathy/volume of hippocampal subfield and the clinical
symptoms with the presence of amyloid pathology. Our results
may provide additional insight into the detailed analysis of the
local changes of the human HF during the AD continuum and
can be used as the reference for future AD studies.

MATERIALS AND METHODS

Participant
ADNI project was conducted to measure the progression of
MCI and early AD based on serial MRI, PET, other biomarkers,
and clinical and neuropsychological assessments (Weiner et al.,
2015). The diagnostic criteria in ADNI was described beforehand
and informed written consent was obtained from all participants
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TABLE 1 | Data characteristics (A−: amyloid negative, A+ : amyloid positive,
n.s.: no significant, p < 0.05).

Amyloid status A− A+ P-value

Number of subjects (N) 88 55
CN/MCI/AD 59/28/1 28/18/9
Age (years) 75.05 ± 6.77 77.99 ± 7.90 0.0192
Education (years) 16.40 ± 2.68 16.47 ± 2.73 n.s.
Gender (M/F) 40/48 24/31 n.s.
APOE ε4 (0/1/2) 71/15/1 25/22/7 1.96e-06
MMSE 28.75 ± 1.74 26.55 ± 4.35 3.82e-05
Memory 0.82 ± 0.69 0.31 ± 0.98 6.30e-04
Executive function 0.94 ± 0.95 0.33 ± 1.24 0.0016
ADAS-cog-13 14.23 ± 6.02 19.58 ± 10.10 1.33e-04
NPI 2.86 ± 6.40 5.07 ± 8.94 n.s.

at each site (Petersen et al., 2010). In our study, we firstly
screened subjects who underwent both 18F-AV-1451 PET and
structural T1 scans in the latest visit. Subjects with amyloid
florbetapir (AV-45) PET scans and T2 scans (High-resolution
hippocampus sequence) within the time interval of 1 year
before/after the acquisition time of tau PET scans were then
selected. The Aβ status was determined by previous studies
with a cutoff of 1.11 for AV-45 tracer (Landau et al., 2014).
Participants with age >65 years and complete cognitive and
behavioral assessments were included in our study as we focused
on late-onset AD. By June 11th of 2019, 143 participants meeting
the above requirements were selected from ADNI-2 and ADNI-3
(Table 1).

T1-Weighted and T2-Weighted MRI
Acquisition and Processing
All subjects were scanned by 3.0 T MRI scanners using
a 3D MP-RAGE or IR-SPGR T1-weighted sequences and
high-resolution hippocampus T2-weighted sequence. The
detailed protocol can be found online1.

Tau PET Image Acquisition and Processing
Tau PET images were preprocessed according to the
standardized protocols at each ADNI site. All images were
verified with quality control and processed with realignment,
averaging, and resampled to an isotropic voxel size of 8 mm.
We obtained the brain ROIs based on the Desikan-Killiany
Atlas (Desikan et al., 2006) and mapped the PET image to the
structural T1-weighted MRI image. Standardized uptake value
ratio (SUVR) images were calculated for each subject using the
whole cerebellum gray matter as the reference region.

Segmentation of the Hippocampal
Subfields
ASHS (Automatic Segmentation of Hippocampal Subfields)
software was used for the automatic segmentation of the
hippocampal subfields for each subject2. T1 weighted and
high-resolution T2 weighted MRI data were imported into the
ASHS to automatically parcellate the HF and adjacent brain
regions into CA1, CA2, CA3, Sub, para-hippocampus (PHC),

1http://adni.loni.usc.edu/methods/documents/mri-protocols
2http://picsl.upenn.edu/software/ashs/

entorhinal cortex (ERC), and DG (Figure 1). The ERC and
PHC were also considered in the current study as these two
regions were adjacent to the HF and were closely related to the
progression of AD. The CA2 and CA3 regions were considered
together in the following analysis as the size of these regions
were relatively small. Mean SUVRs of the six regions on each
hemisphere were finally calculated from the SUVR images.

Clinical Symptoms
In the current research, we focus on the behavior score and the
cognition score, as well as the comprised memory and executive
function scores to delineate their relationship with tau pathology.
The total score of NPI based on 12 domains was used to assess
the behavioral symptoms. The total score of ADAS-cog based
on 13 domains was used to measure cognitive symptoms. The
composite score for memory was composed of scores of the Rey’s
Auditory Vocabulary List Test (RAVLT), Alzheimer’s Disease
Assessment Scale—cognitive subscale-11 (ADAS-Cog), Logical
Memory (LM), and MMSE recall scores. The composite score
for executive function included Category Fluency (animals and
vegetables scores), Trail Making Test (TMT) A and B, Digit span
backward, Wechsler Adult Intelligence Scale-Revised (WAIS-R)
Digit Symbol Substitution, and five Clock drawing items (circle,
symbol, numbers, hands, time). Clinical scores were acquired
within the time interval of 3 months before/after the acquisition
time of Tau PET scans.

Statistical Analysis
For paired group comparison based on amyloid status (A+ and
A−), a two-tailed Student t-test was applied to the mean SUVR
or volume of each hippocampal subfield between A− and A+
groups. For hemispheric comparison, a two-tailed Student t-test
was applied to the mean SUVR or volume of each hippocampal
subfield between the left and right hemisphere under different
amyloid status.

To assess the association of clinical symptoms and mean
SUVR (or volume) of each hippocampal subfield, partial
correlation analysis was conducted on two groups (A+ and A−)
for each hippocampal subfield. The NPI total score, ADAS-
cog-13 total score, comprised memory score, and comprised
executive function score were treated as the response variable and
the mean SUVR or volume of each hippocampal subfield as the
predictor. Age, gender, education, APOE allele ε4 carrier status,
and the time interval between the acquisition time of amyloid
PET and tau PET scans were used as the covariates of the partial
correlation analysis. For all statistical tests, the false discovery
rate (FDR) correction was applied for the correction of multiple
comparisons. An adjusted p-value less than 0.05 was considered
as statistically significant in all analyses.

Data Availability
All ADNI data used in our experiments are publicly available
through LONI IDA3.

3https://ida.loni.usc.edu/
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FIGURE 1 | Example of the automatic segmentation of the hippocampal subfield using ASHS software. The boundary of each hippocampal subfield of the
hippocampal head (first row), body (second row), and tail (third row) are shown using ITK-SNAP software. The right two columns are the enlargement of the box in
the left column. Abbreviations: DG, dentate gyrus; CA, Cornu Ammonis; Sub, subiculum; PHC, para-hippocampus; ERC, entorhinal cortex.

RESULTS

Data Characteristics
As we can see from Table 1, no significant difference in education
level and gender distribution are found between the A− and A+
groups. Compared to the A− group, the A+ group has older
subjects (p = 0.0192), more APOE allele ε4 carriers (p = 1.96e-
06), and is more impaired based on the MMSE (p = 3.82e-05),
memory (p = 6.30e-04), executive function (p = 0.0016), and
ADAS-cog-13 scores (p = 5.11e-04).

The distribution of the mean tau SUVR and total volume of
the whole region comprised of the six subfields in the current
study were plotted in Figure 2. We should note that there may
be several outliers in the current cohort. Outliers were then
removed from each group based on the mean tau SUVR and

total volume before the statistical analysis was conducted. If the
outlier criterion was satisfied for any condition (mean SUVR or
total volume for left or right hippocampi), this subject would
be excluded as an outlier. These calculations were performed
using the ‘‘isoutlier’’ function of MATLAB with the ‘‘mean’’
method. After outlier removal, three subjects in the amyloid
negative group and one subject in the amyloid positive group
were removed from the statistical analysis steps.

Comparison of Volume and Tau Deposition
of the Hippocampal Subfields Between
Amyloid Negative and Positive Groups
Significant volume decreases of the CA1, Sub, and DG for both
hemispheres are observed from the A− group to the A+ group.
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FIGURE 2 | The distribution of the mean tau SUVR and total volume of the whole region comprised of the six subfields in the current research for each group
(CN/MCI/AD) were shown based on violin plot. From left to right and top to bottom are the distribution of (A) the mean tau SUVR for the left hemisphere, (B) the
mean tau SUVR for the right hemisphere, (C) the total volume for the left hemisphere, and (D) the total volume for the right hemisphere, respectively.

Tau deposition of the CA1, Sub, ERC, and PHC for the A+ group
increase significantly in both hemispheres compared to the A−

group (Table 2).

Hemispheric Differences of the
Hippocampal Subfields Within Specific
Amyloid Status
For A− group, no significant difference is found between the
left and right hippocampal subfield for tau SUVR. Hemispheric
differences were prominent for hippocampal volume (leftward
lower) mainly in the CA1 (p = 0.0069), DG (p = 0.0026), PHC
(p = 0.0026), and CA2/CA3 (p = 1.92e-08) regions.

Similarly, no significant difference is found between the
left and right hippocampal subfield for tau SUVR within
the A+ group. The hemispheric difference is also prominent
for hippocampal volume (leftward lower) mainly in the PHC
(p = 0.0055) and CA2/CA3 (p = 2.57e-08) regions.

Partial Correlations Between Tau
Deposition or Volume of the Hippocampal
Subfields and Clinical Assessment Scores
for A− Subjects
As can be seen from Table 3, the tau SUVR is found significantly
correlated with memory score in the ERC for the left hemisphere,

while no significant correlation was observed between the other
clinical scores and tau SUVR of the hippocampal subfields for
either hemisphere.

Differently, the volume of the left Sub and CA1 are
significantly correlated with memory score, while no significant
correlation is observed between the other assessment scores and
hippocampal volumes (Table 4).

Partial Correlations Between Tau
Deposition or Volume of the Hippocampal
Subfields and Clinical Assessment Scores
for A+ Subjects
As we can see from Table 5, significant correlations between the
assessment scores and tau SUVR are found in the Sub, ERC, and
PHC for the left hemisphere. Tau SUVR of CA1 region is also
significantly associated with ADAS-cog-13 and NPI scores for
the left hippocampi.

As to the right hemisphere, the correlations with tau SUVR
are found in the ERC and the PHC with memory score, in
the Sub, ERC, and PHC with ADAS-cog-13 score, and in the
PHC with executive function score. No significant correlation
is found between the NPI score and tau SUVR of the right
hippocampal subfields.
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TABLE 2 | Volume and tau deposition of the hippocampal subfields between different amyloid status (p < 0.05, FDR correction. n.s.: not significant).

Hemisphere CA1 DG Sub ERC PHC CA2/CA3

Volume Left 0.0036 0.0414 0.0414 n.s. n.s. n.s.
Right 0.0037 0.0037 0.017 n.s. n.s. n.s.

SUVR Left 0.0110 n.s. 0.0027 0.0001 0.0014 n.s.
Right 0.0417 n.s. 0.0006 0.0001 0.0006 n.s.

TABLE 3 | Associations between assessment scores and tau SUVR of the hippocampal subfields for A- group (p < 0.05, FDR correction).

Hemisphere Assessment score CA1 DG Sub ERC PHC CA2/CA3

Left Memory 0.54 0.62 0.32 0.04 0.54 0.62
ADAS-cog−13 0.49 0.49 0.18 0.18 0.35 0.49
Executive function 0.47 0.47 0.47 0.47 0.47 0.47
NPI 0.53 0.53 0.53 0.53 0.53 0.53

Right Memory 0.67 0.81 0.52 0.051 0.67 0.81
ADAS-cog-13 0.78 0.78 0.34 0.30 0.34 0.72
Executive function 0.39 0.39 0.31 0.31 0.35 0.39
NPI 0.30 0.30 0.30 0.30 0.30 0.30

Bold values mean the p’s < 0.05 and statistically significant.

TABLE 4 | Associations between assessment scores and volume of the hippocampal subfields for A− group (p < 0.05, FDR correction).

Hemisphere Assessment score CA1 DG Sub ERC PHC CA2/CA3

Left Memory 0.01 0.053 0.004 0.16 0.96 0.96
ADAS-cog-13 0.07 0.43 0.07 0.61 0.96 0.48
Executive function 0.50 0.86 0.09 0.86 0.86 0.48
NPI 0.92 0.92 0.88 0.92 0.56 0.92

Right Memory 0.27 0.21 0.21 0.21 0.31 0.78
ADAS-cog-13 0.55 0.55 0.55 0.55 0.89 0.55
Executive function 0.99 0.96 0.39 0.39 0.39 0.99
NPI 0.51 0.51 0.51 0.67 0.51 0.67

Bold values mean the p’s < 0.05 and statistically significant.

TABLE 5 | Associations between assessment scores and tau SUVR of the hippocampal subfields for A+ group (p < 0.05, FDR correction).

Hemisphere Assessment score CA1 DG Sub ERC PHC CA2/CA3

Left Memory 0.08 0.64 0.01 0.003 0.003 0.20
ADAS-cog-13 0.02 0.31 0.001 0.0005 0.0005 0.72
Executive function 0.37 0.90 0.048 0.008 0.008 0.51
NPI 0.04 0.25 0.03 0.03 0.03 0.83

Right Memory 0.26 0.74 0.059 0.03 0.02 0.45
ADAS-cog-13 0.06 0.51 0.004 0.002 0.009 0.84
Executive function 0.43 0.74 0.11 0.054 0.03 0.74
NPI 0.20 0.27 0.20 0.27 0.20 0.82

Bold values mean the p’s < 0.05 and statistically significant.

TABLE 6 | Associations between assessment scores and volume of the hippocampal subfields for A+ group (p < 0.05, FDR correction).

Hemisphere Assessment score CA1 DG Sub ERC PHC CA2/CA3

Left Memory 0.008 0.008 0.03 0.008 0.02 0.04
ADAS_cog_13 0.14 0.23 0.11 0.11 0.74 0.68
Executive function 0.16 0.12 0.19 0.35 0.12 0.83
NPI 0.008 0.008 0.06 0.005 0.25 0.008

Right Memory 0.04 0.053 0.053 0.0004 0.39 0.04
ADAS_cog_13 0.09 0.17 0.09 0.02 0.91 0.15
Executive function 0.10 0.03 0.12 0.03 0.12 0.12
NPI 0.07 0.12 0.01 0.003 0.39 0.06

Bold values mean the p’s < 0.05 and statistically significant.

Significant correlations between the volumes and memory
score are found in all the subfields for the left hemisphere,
while the association is only found with the CA1, ERC, and

CA2/CA3 regions for the right hippocampi. The volume of the
CA1, DG, ERC, and CA2/CA3 are found significantly correlated
with the NPI score for the left hemisphere. However, there
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is no significant correlation between the volume of the left
subfields with either ADAS_cog_13 or executive function score.
Differently, the ADAS_cog_13 score is found to be significantly
correlated with the volume of the ERC and the executive function
score is significantly correlated with the volume of the DG and
ERC for the right hemisphere. The NPI total score is found
associated with the volume of the CA1, Sub, and ERC for the right
hippocampi (Table 6).

DISCUSSION

Atrophy of the HF is one of the early biomarkers for the diagnosis
of neurodegenerative disorders including AD (Pizzi et al., 2016).
However, neurodegeneration such as changes of the HF is not
specific to AD and several neuropsychiatric disorders may have
the same outcomes (Das et al., 2019). With the proposed AT[N]
framework, the combination of the neurodegeneration assessed
by the decrease of cortical thickness or the atrophy of HF and
AD-related biomarkers such as pathology of amyloid and tau
proteins were used to distinguish the stages of the AD continuum
(Jack et al., 2016). In the current study, the memory score
was found significantly associated with tau pathology in the
ERC of the left hemisphere compared to the other hippocampal
subfields, even for the amyloid negative individuals. On the
contrary, impairment of cognition, behavior, and executive
function were related to the changes of tauopathy/volume of
hippocampal subfields when the amyloid status became positive.
The impairment patterns of the hippocampal subfields observed
in the current research are essential for the understanding of
the AD spectrum and can be used as a reference for future
AD studies.

Pathology of amyloid and tau proteins are the two defining
hallmarks that can characterize the progression of AD. The
presence of abnormal amyloid status was regarded as the ‘disease
state’ to determine if the subject is during the Alzheimer’s
pathologic process (Brier et al., 2016). Individuals with positive
amyloid biomarkers demonstrated a higher risk of the conversion
from cognitive normal to mild cognitive impairment (Donohue
et al., 2017). There is a strong association of elevated tau
deposition in both medial temporal lobe structures and the
neocortex with positive amyloid status across the normal aging
to clinical dementia (Marks et al., 2017). In the current
study, higher tau deposition is discovered in the CA1, Sub,
ERC, and PHC of both hemispheres for the A+ group as
compared to the A− group (Table 2). Significant volume
decreases of the CA1, DG, and Sub of both hemispheres are
also observed from the A- group to the A+ group. All confirm
the increased disease severity with the presence of elevated
amyloid pathology.

Previous studies showed that tau pathology in the medial
temporal lobe (MTL) is a key driver of memory impairment
in AD and is an important biomarker for neurodegeneration
(Marks et al., 2017; Scott et al., 2020). Repeated tau PET
scans have been an effective measurement to track the disease
progression, while amyloid PET is more responsible for the
detection of the early Alzheimer pathology (Hanseeuw et al.,
2019). Tau deposition in the temporal lobe has been a better

predictor of cognitive decline than the emergence of amyloid
plaques in any region of the brain (Brier et al., 2016). The
crucial role of tau deposition is recommended as a candidate
target for AD therapy to deal with the limitations of the amyloid
cascade hypothesis (Giacobini and Gold, 2013). We thus focused
on the association of tau pathology with clinical symptoms in
the hippocampal subfields under different amyloid statuses to
delineate the detailed progression of AD. Tau SUVR of the ERC
showed a significant correlation with the comprised memory
score for the A− subjects in the current research (Table 3). ERC
is one of the most vulnerable regions for the deposition of tau
tangles and is closely associated with memory function (Braak
et al., 2011). Impairment of the ERC has been regarded as an
essential marker for the classical analysis of AD. Our results
confirmed that the ERC should be paid more attention for the
subsequent studies.

With the presence of amyloid pathology, the correlation
between the tau SUVR with assessment scores spread into
several subfields (Table 5). The tau SUVR of the Sub, ERC,
and PHC are correlated with the comprised memory score,
ADAS-cog-13 score, executive function score, and NPI total
score for the left hippocampi. The tau SUVR of the CA1 region
is also found significantly associated with the ADAS-cog-
13 score and NPI total score for the left hemisphere. For
the right hippocampi, the comprised memory score and
ADAS-cog-13 score are found significantly correlated with
the deposition of tau tangles in the ERC and PHC. It is
known that the spatiotemporal spread of tau tangles follows
a stereotypical trajectory starting from the locus coeruleus
and the trans-entorhinal cortex, and then extending to the
ERC, the HF, and finally the neocortex (Fuster-Matanzo et al.,
2018). The associations between the tau deposition of the
hippocampal subfields and assessment scores in the current
research demonstrate that the development of AD may be
affected in a progressive manner from the ERC and the PHC
to the Sub, and eventually to the CA1 region on a smaller
scale. On the other hand, the DG and the CA2/CA3 regions
are less affected by the tau pathology. The DG is one of the
few areas in the mammaliasn brain in which new excitatory
neurons are continuously generated throughout life. The neural
plasticity that results from the continuous integration of newly
born excitatory granule cells may contribute to the DG network
activity and withstand tau deposition. This could finally slow
the disease progression (Tuncdemir et al., 2019; Christian et al.,
2020). In addition, the NPI total score and executive function
score were only found correlated with tau SUVR or volume
of the hippocampal subfields with the presence of elevated
amyloid pathology, which indicates that the decline of behavior
and executive function is consistent with the neurodegenerative
alterations of the HF when the subject was in the Alzheimer’s
pathologic process.

Volume changes of the hippocampal subfields are not as
regular as the deposition of tau tangles. The CA1, DG, and
Sub of both hemispheres have a volume decrease in the A+
group as compared to the A− group, while no significant
difference is found in the ERC, PHC, and CA2/CA3 (Table 2).
There is nearly no significant association between the volume
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of the hippocampal subfields and assessment scores (except for
the memory score) for the A- subjects (Table 4). With the
presence of amyloid pathology, the relationship between the
volume of the hippocampal subfields and assessment score is
in conformity (Table 6). One possibility is that the volumetric
changes of the hippocampal subfields are the sum of influences
from normal aging and diverse neurodegenerative disorders
such as AD, PD, and depression (Knopman et al., 2019).
Individuals with diverse neuropsychiatric disorders may also
be diagnosed as MCI or AD, which may affect the statistical
results in the current study. Using volume changes of brain
region without the help of AD-specific biomarkers is insufficient
for the accurate diagnosis of AD (Edmonds et al., 2016;
Sørensen et al., 2017).

Hemispheric difference is a classic topic in the neuroimaging
area and still possesses a vital debate (Toga and Thompson,
2003; Pedraza et al., 2004; Woolard and Heckers, 2012).
The left hippocampus was found more impaired than the
right for individuals with subjective cognitive decline (Yue
et al., 2018), as well as for the MCI and AD subjects (Shi
et al., 2009). Similar results are discovered in the current
research with the CA1 (p = 0.0069), DG (p = 0.0026), PHC
(p = 0.0026), and CA2/CA3 (p = 1.92e-08) regions showing
lower volume for the A− individuals. Lower volume of the left
PHC (p = 0.0055) and CA2/CA3 (p = 2.57e-08) regions are
also found for A+ group. In addition, the asymmetry of the
association patterns between the tau SUVR of the hippocampal
subfields and the assessment scores are obviously observed,
and particularly more prominent for the NPI total score with
the presence of elevated amyloid pathology (Table 5). Behavior
symptoms including apathy, anxiety, and sleeping problems
may be related to diverse brain functions and changes of
specific hippocampal subfields (Chen et al., 2018; Campabadal
et al., 2019; Dalton et al., 2019). The leftward asymmetry
in the current research shows that the progression of AD
may seriously affect the left hippocampi as compared to the
right hemisphere.

LIMITATIONS

The diagnosis of the patients from ADNI is based on the clinical
symptoms and clinical assessment scores other than the amyloid
PET or tau PET scans. This is why one AD patient and some
MCI individuals are included in the A- group, while many CN
subjects are found in the A+ groups. Considering the integrity of
the original data as well as the relatively small sample size, we put
the CN, MCI, and AD subjects together for the statistical analysis
in the current study. It is insufficient to observe the alterations of
tau deposition or volume changes of the hippocampal subfields
during a specific stage of AD (normal aging, mild cognitive
impairment, or AD) based on the limited data. This is one of the
reasons why the association between the volume of hippocampal
subfields and assessment scores show no consistent patterns as
compared to the tau deposition. In addition, there is a significant
difference of age between the A− and A+ groups (Table 1).
However, the influence of normal aging is not demonstrated
thoroughly even if we considered age as a covariance in the partial

correlation process. On the other hand, NPI has 12 domains
to assess the behavior symptoms of each subject and is widely
used for the assessment of treatment effect (Cummings, 1997).
However, the sample size of the current study is insufficient for
the analysis of one specific behavior domain. Further analysis
focused on the cohort with the same clinical diagnosis, as well
as with the matched distribution of age, gender, education, etc.,
should be conducted with the development of the ADNI project.

Another limitation is that the relatively low resolution of the
PET images may influence the calculation of the tau deposition
for each hippocampal subfield. No partial volume correction was
performed in this study, which may introduce signal mixture
to small brain regions (Brendel et al., 2015; Matsubara et al.,
2016; Rullmann et al., 2016; Su et al., 2016; Baker et al., 2017;
Gonzalez-Escamilla et al., 2017). This is one of the reasons why
the CA2 and CA3 were considered together and relatively large
regions such as the CA1, ERC, and PHC were considered in the
statistical analysis.

Not enough longitudinal data of the high-resolution
T2 weighted MR images and tau PET scans for the statistical
analysis were acquired based on the current inclusion criteria.
AD is a neurodegenerative disorder that may go through
several decades before clinical diagnosis. Observation of the
dynamic changes of the tau deposition of the hippocampal
subfields and its association with assessment scores in the
future is essential for the early diagnosis and prevention of
AD dementia.

CONCLUSION

The current research has found that the development of AD
may be affected in a progressive manner from the ERC to the
PHC, the Sub, and eventually to the CA1 region on a smaller
scale. The relationship between the clinical symptoms and
tauopathy/volume of the hippocampal subfield showed diverse
patterns under different amyloid statuses. Leftward asymmetry
was observed with the association between assessment scores and
tauopathy/volume of the hippocampal subfield, which is more
prominent for the NPI total score in the current study. The
associations of tauopathy/volume of the hippocampal subfields
with the clinical symptoms are essential for the understanding
of the AD spectrum and can be used as the reference for future
AD studies.
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Subjective cognitive decline (SCD) may be the first sign of Alzheimer’s disease (AD),

but it can also reflect other pathologies such as cerebrovascular disease or conditions

like depressive symptomatology. The role of depressive symptomatology in SCD is

controversial. We investigated the association between depressive symptomatology,

cerebrovascular disease, and SCD. We recruited 225 cognitively unimpaired individuals

from a prospective community-based study [mean age (SD) = 54.64 (10.18); age

range 35–77 years; 55% women; 123 individuals with one or more subjective cognitive

complaints, 102 individuals with zero complaints]. SCD was assessed with a scale

of 9 memory and non-memory subjective complaints. Depressive symptomatology

was assessed with established questionnaires. Cerebrovascular disease was assessed

with magnetic resonance imaging markers of white matter signal abnormalities

(WMSA) and mean diffusivity (MD). We combined correlation, multiple regression, and

mediation analyses to investigate the association between depressive symptomatology,

cerebrovascular disease, and SCD. We found that SCD was associated with more

cerebrovascular disease, older age, and increased depressive symptomatology. In turn,

depressive symptomatology was not associated with cerebrovascular disease. Variability

in MD was mediated by WMSA burden, presumably reflecting cerebrovascular disease.

We conclude that, in our community-based cohort, depressive symptomatology is

associated with SCD but not with cerebrovascular disease. In addition, depressive

symptomatology did not influence the association between cerebrovascular disease

and SCD. We suggest that therapeutic interventions for depressive symptomatology

could alleviate the psychological burden of negative emotions in people with SCD, and

intervening on vascular risk factors to reduce cerebrovascular disease should be tested

as an opportunity to minimize neurodegeneration in SCD individuals from the community.

Keywords: subjective cognitive decline, subjective cognitive complaints, DTI, mean diffusivity, cerebrovascular

disease, depressive symptomatology, mediation
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INTRODUCTION

It has been postulated that subjective cognitive decline (SCD)
may be the first sign of Alzheimer’s disease (AD) (Jessen et al.,
2014). However, SCD has also been associated with other
pathologies such as cerebrovascular disease (Diniz et al., 2013),
especially in community-based studies (Slot et al., 2018). SCD
has also been associated with other conditions like depressive
symptomatology (Ginó et al., 2010; Zlatar et al., 2014; Cedres
et al., 2019). Indeed, the role of depressive symptomatology in
current diagnostic criteria of SCD is controversial (Jessen et al.,
2014), and it is intensively discussed at the moment (Molinuevo
et al., 2017; Rabin et al., 2017; Jessen et al., 2020).

Part of the discussion about the role of depressive
symptomatology in SCD stems from the well-known association
between depressive symptomatology and SCD (Clarnette et al.,
2001; Reid and Maclullich, 2006; Ginó et al., 2010; Zlatar
et al., 2014; Cedres et al., 2019). Due to this association, it was
traditionally believed that SCD could merely reflect emotional
factors (Apolinario et al., 2013; Yates et al., 2015; Burmester et al.,
2016). However, there is convincing data showing that depressive
symptomatology is a risk factor for future cognitive decline
(Butters et al., 2008), or an early symptom of an underlying
neurodegenerative disease (Alexopoulos et al., 2013). For
example, late-life depression exacerbates the cognitive decline
associated with both AD and cerebrovascular disease (Da Silva
et al., 2013; Diniz et al., 2013). Also, cerebrovascular disease
affects brain networks and causes early depressive symptoms
(Murphy et al., 2007; Alexopoulos et al., 2013).

Cerebrovascular disease can be measured through markers
assessed on magnetic resonance imaging (MRI) (Wardlaw
et al., 2013). A common MRI marker of cerebrovascular
disease is white matter signal abnormalities (WMSA), which
can be assessed both on T1-weigthed images (white matter
hypointensities) and T2-weigthed or fluid-attenuated inversion
recovery (FLAIR) images (white matter hyperintensities).
Another promising yet unspecific MRI marker is diffusion tensor
imaging (DTI), which assesses microstructural alterations in the
white matter that might be due to cerebrovascular disease (Zhou
et al., 2008; Black et al., 2009; Kennedy and Raz, 2009; Salat
et al., 2012). For example, DTI has been proposed as a marker
to monitor the progression of cerebrovascular disease (Fu et al.,
2012). Both WMSA and DTI alterations have been separately
associated with depression (Murphy et al., 2007; Allan et al.,
2016) and SCD (Wang et al., 2012; Selnes et al., 2013; Li et al.,
2016; Cedres et al., 2019, 2020a; Ohlhauser et al., 2019). However,
little is known about the association between cerebrovascular

Abbreviations: ACME, average causal mediation effect; AD, Alzheimer’s
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tensor imaging; FAQ, Functional Activity Questionnaire; FSPGR, Fast Spoiled

Gradient Echo; GDS, Geriatric Depression Scale; GENIC, Grupo de Estudios

Neuropsicológicos de las Islas Canarias; ICV, Intracranial volume; MD, Mean

diffusivity; MMSE, Mini Mental State Examination; MRI, Structural magnetic

resonance imaging; SCC, Subjective Cognitive Complaints; SCD, Subjective

Cognitive Decline; SCD-I, Subjective Cognitive Decline initiative; TBSS, tract-

based spatial statistics; WMSA, White matter signal abnormalities.

disease, depressive symptomatology, and SCD. This association
is especially relevant in SCD individuals from the community,
since the prevalence of cerebrovascular disease is significantly
higher in community-based cohorts than in clinical cohorts of
SCD individuals who seek medical help (Buckley et al., 2017; Slot
et al., 2018).

In keeping with the recent contribution from the international
working group on SCD (Jessen et al., 2020), the role of depressive
symptomatology in SCD still needs to be elucidated (Molinuevo
et al., 2017; Rabin et al., 2017). Therefore, the first aim of this
study was to investigate the role of depressive symptomatology
in SCD in a community-based cohort. We hypothesized three
possible scenarios where depressive symptomatology would
(A) co-exist with SCD, (B) influence SCD, or (C) reflect SCD
(Figure 1). We addressed these hypotheses by combining
correlation, multiple regression, and mediation analyses.
We wanted to: (A) prove that depressive symptomatology
and cerebrovascular disease are independently associated
with SCD, but there is no association between depressive
symptomatology and cerebrovascular disease (hypothesis:
depressive symptomatology co-exists with SCD); (B) depressive
symptomatology is associated with cerebrovascular disease and
it mediates the association between cerebrovascular disease
and SCD (hypothesis: depressive symptomatology influences
SCD by mediating the association between cerebrovascular
disease and SCD); and (C) SCD mediates the association
between cerebrovascular disease and depressive symptomatology
(hypothesis: depressive symptomatology reflects SCD). The
second aim of this study was to test the hypothesis that variability
in the unspecific DTI marker of neurodegeneration would be
associated with cerebrovascular disease in our community-based
SCD cohort. In addition to correlation analysis, we also used
mediation analysis to demonstrate that T1 WMSA burden
would mediate the association between DTI abnormalities
and SCD. Further, older individuals in our cohort have an
increased WMSA burden (Nemy et al., 2020), a higher frequency
of SCD (Cedres et al., 2019), and higher levels of depressive
symptomatology (Machado et al., 2018). Hence, our third
aim was to investigate the effect of aging in our analyses. We
hypothesized that DTI abnormalities in SCD are associated with
increased WMSA burden and older age.

METHODS

Participants
A total of 225 cognitively unimpaired individuals from the
GENIC-database (Machado et al., 2018) were included in
the current study. The GENIC is a prospective community-
based study from the Canary Islands (Spain). Recruitment was
performed through primary care health centers, advertisements
in local schools, and relatives, as well as acquaintances of the
research staff. A more detailed description of the cohort is
provided in previous publications (Ferreira et al., 2015; Machado
et al., 2018; Gonzalez-Burgos et al., 2019).

All the individuals who received an MRI scan including both
T1 and DTI sequences (see further down) were candidate cases
for the current study. Inclusion criteria were in concordance
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FIGURE 1 | Representation of the three hypothetical scenarios: (A) depressive symptomatology co-exist with SCD (i.e. depressive symptomatology and

cerebrovascular disease are independently associated with SCD; (B) depressive symptomatology influeces SCD by mediating the association between

cerebrovascular disease and SCD; (C) depressive symptomatology reflects SCD (i.e. SCD mediates the association between cerebrovascular disease and depressive

symptomatology. Paths in the figure refer to the associations betwen the independent variable, the mediator, and the dependent variable as described in Baron and

Kenny’ mediation framework (Baron and Kenny, 1986).

with the SCD initiative (SCD-I) working group (Jessen et al.,
2014): (1) Normal cognition, which was established in a two-
step diagnostic procedure: Firstly, in a screening phase dementia
was excluded based on altered activities of daily living and global
cognition operationalized as a Blessed Rating Dementia Scale
(BRDS) score >4 (Blessed et al., 1968), a Functional Activity
Questionnaire (FAQ) score >5 (Pfeffer et al., 1982), and a Mini-
Mental State Examination (MMSE) score <24 (Folstein et al.,
1975); Secondly, mild cognitive impairment was excluded based

on comprehensive neuropsychological assessment and age-,
sex-, and education-adjusted normative data following current
clinical criteria (Winblad et al., 2004). The neuropsychological

protocol is summarized in the Supplementary Table 1. Briefly,
the neuropsychological protocol was applied in two sessions
and MRI scanning was conducted in a third session. In all
participants, the time between neuropsychological assessment

(first session) and MRI scanning was within 6 months (mean
= 1.5 months, SD = 2.5); (2) No abnormal findings such as
stroke, tumors, hippocampal sclerosis, etc., in MRI according
to an experienced neuroradiologist; (3) no medical history of
neurological and psychiatric disorders (including a diagnosis
of major depression and/or individuals under treatment for
depression), systemic diseases or head trauma; and (4) no history
of substance abuse.

This study was approved by the ethics committee from
the University of La Laguna (Spain). Participation was
completely voluntarily, and all the individuals gave their
written informed consent.

Subjective Cognitive Decline
SCD was assessed with a questionnaire that covers subjective
cognitive complaints (SCC) in different cognitive domains,
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including memory, orientation, executive functions, face
recognition, language production, language comprehension,
word-finding, reading and writing (Cedres et al., 2019).
Participants answered nine yes/no questions referred to
cognitive changes occurring during approximately the last 6
months. Answers were codified as 0 (absence of complaints)
or 1 (presence of complaints). Answers were summed up and
the total of complaints was obtained ranging from 0 to 9. In the
current study, we use SCD when we refer to the clinical entity or
concept of SCD, and we use SCC when we refer to the variable
we used in our statistical analyses. The continuous variable of
SCC was preferred to the dichotomous variable of SCD due
to the nature of our statistical models and to avoid arbitrary
clinical thresholds.

Depressive Symptomatology
Depressive symptomatology was assessed with two validated
scales. The Beck Depression Inventory (BDI, 21-items version)
(Beck et al., 1961) was used for participants younger than 63
years of age, and the Geriatric Depression Scale (GDS, 15-items
version) (Yesavage et al., 1982) was used for participants 63
years old or older. Following previous publications, BDI and
GDS scores were transformed into z-scores and combined into
one single variable for statistical analysis (BDI-GDS composite)
(Ferreira et al., 2017; Cedres et al., 2019).

MRI Data Acquisition and Image
Processing
Participants were scanned using a 3.0T GE imaging system
(General Electric, Milwaukee, WI, USA), located at the
Hospital Universitario de Canarias in Tenerife, Spain. A three-
dimensional T1-weighted Fast Spoiled Gradient Echo (FSPGR)
sequence was acquired in sagittal plane: repetition time/echo
time/inversion time = 8.73/1.74/650ms., field of view = 250
× 250mm, matrix = 250 × 250mm, flip angle = 12◦, slice
thickness= 1mm, voxel resolution= 1× 1× 1mm. Also, a DTI
sequence was acquired in axial plane: repetition time/echo time
= 15.000/≈72ms., field of view = 256 × 256mm, matrix: 128
× 128mm, directions = 31, B-value = 1,000, flip angle = 90◦,
slice thickness = 2.4mm, voxel resolution = 2 × 2 × 2.4mm.
Full brain and skull coverage was required for the MRI datasets
and detailed quality control was carried out on all MR images
according to previously published criteria (Simmons et al., 2011).

T1-weighted images were processed and analyzed with
the FreeSurfer 6.0.0 image analysis suite (http://surfer.nmr.
mgh.harvard.edu/). The FreeSurfer measure of white matter
hypointensities was used as a surrogatemarker of cerebrovascular
disease, and referred to as WMSA in the current study.
Briefly, FreeSurfer uses a probabilistic procedure to detect
hypointensities in the white matter and labels them as WMSA
(Fischl et al., 2002). This procedure has previously demonstrated
sensitivity in measuring white matter damage both in healthy
individuals and in patients with Alzheimer’s disease (Salat et al.,
2010; Leritz et al., 2014). These T1-weighted WMSA correlate
with hyperintensity volumes measured on T2/FLAIR, as well
as with microstructural white matter changes as measured on
diffusion tensor imaging data (Leritz et al., 2014; Riphagen et al.,

2018; Cedres et al., 2020b; Nemy et al., 2020). The estimated total
intracranial volume (TIV) was also obtained from FreeSurfer in
order to adjust the WMSA volume by the TIV. This adjustment
was performed by dividing the WMSA volume by the TIV of
each individual (Voevodskaya, 2014). The TIV-adjusted WMSA
measure was used for statistical analyses.

The DTI images were pre-processed and analyzed with the
FSL software (http://www.fmrib.ox.ac.uk/fsl/index.html), using
the FDT and tract-based spatial statistics (TBSS) tools. The mean
diffusivity (MD) index was selected as our measure of interest in
this study because MD has shown to be an earlier indicator of
neurodegeneration compared to other diffusivity measures (Liu
et al., 2013; Li et al., 2015).

All the data were processed through theHiveDB system
(Muehlboeck et al., 2014). Careful visual quality control was
performed on all output data obtained from both FreeSurfer and
FSL, and manual edits were applied when needed.

Statistical Analysis
The DTI data was analyzed through a voxel-based approach on
the white matter skeleton, using the FSL software (Smith et al.,
2006). Separate general linear models were fitted at the voxel
level with MD as the dependent variable and SCC, depressive
symptomatology, WMSA, or age as independent variables.
Permutation-based non-parametric testing with 5,000 iterations
was used followed by threshold-free cluster enhancement (TFCE)
and the family-wise error (FWE) correction for multiple testing
(p ≤ 0.01, two-sided). Average MD values of significant clusters
in individual’s native space were extracted as new measures for
further analysis (e.g., SCC-related MD and WMSA-related MD,
please see the results section below). In addition, the global MD
was extracted as a measure of meanMD values in the whole white
matter skeleton.

We designed an approach based on correlation, multiple
regression, and mediation analyses to address our first aim:
to investigate de role of the depressive symptomatology in
SCD (Figure 1). Firstly, bivariate Pearson correlations were
used to study relationships between SCC and depressive
symptomatology, WMSA, and MDmeasures. Secondly, multiple
linear regression models were used to further investigate partial
associations of depressive symptomatology, WMSA, and MD
measures (predictors) with SCC (outcome variable). Thirdly,
these analyses were complemented with mediation models when
the three basic conditions of mediation analysis were satisfied
(Baron and Kenny, 1986): (1) there is a significant association
between the mediator and the independent variable; (2) there is
a significant association between the independent variable and
the dependent variable; and (3) there is a significant association
between the mediator and the dependent variable when the
independent variable is also included in the model. For an
illustration of the mediation models please see Figure 1.

Mediation analysis was also used to investigate our second
aim: to investigate whether WMSA mediates the association
betweenMD and SCC.Mediation was based on the average direct
effect (ADE), the average causal mediation effect (ACME), and
the total effect. Briefly, the ADE represents the direct effect of the
independent variable on the dependent variable, while the ACME
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TABLE 1 | Demographic and clinical characteristics.

Whole sample

(n = 225)

Individuals with one or more SCC

(n = 123)

Individuals with zero SCC

(n = 102)

p

Age 54.6 (10.2) 56.9 (11.0) 51.9 (8.3) <0.001

Sex (% women) 55 64 43 0.002

Education level (% 0/1/2/3/4)a 0/3/35/25/37 4/42/26/29 2/28/25/45 0.07

Information (WAIS-III) 16.8 (6.0) 15.6 (6.0) 18.3 (5.7) <0.001

MMSE 28.9 (1.2) 28.7 (1.3) 29.1 (1.0) 0.018

BDRS 0.6 (0.9) 0.7 (1.0) 0.4 (0.8) 0.017

FAQ 0.3 (0.7) 0.3 (0.6) 0.3 (0.8) 0.357

Subjective cognitive complaintsb 0.9 (1.1) 1.7 (1.0) 0 (0) –

Depressive symptomatologyc 0 (1) 0.3 (1.0) −0.3 (0.8) <0.001

Cholesterol, n(%) 41 (18) 30 (73) 11 (27) 0.017

High blood pressure, n(%) 51 (23) 35 (69) 16 (31) 0.041

Diabetes, n(%) 5 (2) 4 (3) 1 (1) 0.507

Global MDd 7.4 (0.2) 7.5 (0.2) 7.4 (0.2) 0.018

WMSA volume 14.9 (13.1) 16.9 (15.6) 12.5 (8.7) 0.01

Values correspond to the mean (standard deviation), except for Sex and Education level, in which values correspond to percentage (%). P-values correspond to results of group

comparisons between individuals with one or more subjective cognitive complaints (SCC) and individuals with zero SCC. aEducation Level: illiterate (0); acquired reading and/or writing

skills (1); primary level (2); secondary level (3); university level (4). bSubjective cognitive complaints were studied through nine yes/no questions as explained in the methods. cDepressive

symptomatology was estimated by transforming BDI and GDS scores into z scores and then combined them into one single variable. dMD values were multiplied by 10,000. WAIS,

Wechsler Adult Intelligence Scale; MMSE,Mini-Mental State Examination; BDRS, Blessed Dementia Rating Scale; FAQ, Functional Activity Questionnaire; BDI, Beck Depression Inventory;

GDS, Geriatric Depression Scale; WMSA, White Matter Signal Abnormalities; MD, Mean Diffusivity.

represents the indirect effect of the independent variable on the
dependent variable, through the mediator variable. The total
effect represents the sum of the ACME and the ADE. When the
ACME is statistically significant (in conjunction with a significant
total effect) there is a mediation effect that can be of two types:
full mediation, when the ACME is significant but the ADE is
non-significant; and partial mediation, when both the ACME and
the ADE are significant (Tingley et al., 2014). The ACME and
the ADE were calculated by using confidence intervals based on
non-parametric bootstrap sampling (1,s000 simulations).

To address our third aim—to investigate the effect of aging
in our analyses—we repeated the above-mentioned regression
models including age as a covariate, and we tested for
bivariate Pearson’s correlations for age with SCC, depressive
symptomatology, WMSA, and MD.

Statistical analyses were conducted using the R statistical
software (http://www.r-project.org). A p < 0.05 (two-tailed) was
deemed significant in all these analyses.

RESULTS

The demographic and clinical characteristics of the cohort are
described in Table 1. A total of 123 (55%) participants endorsed
one or more SCC, while 102 (45%) participants reported zero
SCC (number of complaints: mean = 0.92; SD = 1.1, range
= 0–6). There were significantly more women in the subgroup
of individuals with one or more SCC compared with those
individuals with zero SCC (Table 1). Individuals with one or
more SCC also showed significantly lower scores in theWAIS-III
Information subtest after correcting for sex. Individuals with one
or more SCC also had significantly lower scores in the MMSE;
higher scores in the BDRS; andmore depressive symptoms. These
differences remained significant after controlling for the effect

of sex and WAIS-III Information subtest. The proportion of
individuals with high cholesterol and blood pressure was higher
in the subgroup with one or more SCC than the group with
zero SCC. Individuals with one or more SCC had a higher
WMSA burden and worse white matter integrity (i.e., higher MD
values) than individuals with zero SCC. Regarding depressive
symptomatology irrespective of SCC, participants younger than
63 years scored between 0 and 23 in the BDI (mean = 5.6; SD
= 4.6), and participants 63 years old or older scored between 0
and 9 in the GDS (mean = 2.3; SD = 2.1). The distributions of
BDI, GDS, and the BDI-GDS composite variable are shown in
Figure 2.

First Aim: The Role of Depressive
Symptomatology
The first aim of this study was to investigate the role of depressive
symptomatology in SCD, under the hypotheses that depressive
symptomatology would (A) co-exist with SCD, (B) influence
SCD, or (C) reflect SCD (Figure 1). Correlation analyses showed
that higher scores in depressive symptomatology were associated
with a higher number of SCC (r= 0.340, p < 0.001). In contrast,
depressive symptomatology did not correlate with the global
MD (r = 0.076, p = 0.321) or WMSA (r = 0.003, p = 0.961).
Depressive symptomatology did not correlate with MD values
at the voxel level either (Figure 3A). Based on these results,
we could not satisfy some of the three basic conditions for
mediation analysis proposed by Baron and Kenny’s (1986) (i.e.,
the association between depressive symptomatology and MD
or WMSA). Hence, we could not test for mediation models
including depressive symptomatology together with WMSA
or global MD (Figures 1B,C). We next conducted a multiple
linear regression model to investigate the partial association of
depressive symptomatology, WMSA, and MD with SCC. We
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FIGURE 2 | Distribution of the variables of depressive symptomatology. Scores on the x-axis (original scores from the BDI and the GDS, or z-scores from the

BDI-GDS composite measure), and densities on the y-axis. BDI, Beck Depression Inventory; GDS, Geriatric Depression Scale.

included SCC as the criterion variable, and WMSA, global MD,
and depressive symptomatology as the predictors (Table 2; model
1). This model was significant [F(3, 221) = 15.655, p < 0.001,
R² adj. = 0.16], indicating that depressive symptomatology and
WMSA were independently associated with SCC. In contrast,
global MD was not significant (Table 2). However, the lack of
a significant effect for global MD may due to the fact that the
measure of global MD may include areas that are not involved
in SCC. Hence, in a second model, we restricted MD values to
those voxels that were significantly related with SCC (“average
SCC-related MD,” see below). We observed that depressive
symptomatology continued to be a significant predictor of SCC,
but WMSA was no longer a significant predictor when the
average SCC-related MD was also in the model [Table 2; model
2, full model: F(3, 221) = 20.987, p < 0.001, R² adj. = 0.211].
In correlation analysis, depressive symptomatology was not
correlated with the average SCC-related MD either (r = 0.117,
p= 0.079).

These results suggest that depressive symptomatologymay co-
exist with SCC (Figure 1A). To fully prove that hypothesis we
had to demonstrate that cerebrovascular disease is also associated
with SCC. Hence, we conducted complementary analyses to
further characterize the association ofWMSA andMDwith SCC.
A higher burden of WMSA and a higher global MD correlated
with a higher number of SCC (r= 0.216, p= 0.001, and r= 0.210,
p= 0.002, respectively). The voxel-based analysis showed that the
association between higher MD values and a higher number of
SCC involved most of the white matter skeleton, with a tendency
to spare the occipital white matter and the anterior part of the
cingulum bundle (Figure 3B). The average MD value of these
SCC related areas was extracted in a new variable (“average
SCC-related MD”) for further analysis.

Second Aim: The Contribution of WMSA to
Variability in MD
The second aim of this study was to test the hypothesis
that variability in MD, an unspecific DTI biomarker of
neurodegeneration, would mediate cerebrovascular disease as
measured by WMSA. Correlation analyses showed that a higher

global MD correlated with a higher burden of WMSA (r= 0.370,
p < 0.001), and a higher MD in areas specifically associated
with SCC (“average SCC-related MD”) showed an even stronger
correlation with a higher burden of WMSA (r = 0.492, p <

0.001). At the voxel level, the association between higher MD
levels and higher WMSA burden involved most of the white
matter skeleton, with a tendency to spare the internal capsule,
the occipital white matter, and the cingulum bundle (Figure 3C).
The average MD value of WMSA-related areas was extracted in a
new variable (“average WMSA-related MD”) for further analysis.
Results showed that the correlation coefficient of the association
between SCC and the average WMSA-related MD (r = 0.267)
was larger than the correlation coefficient of the association
between SCC and global MD (r = 0.210). We also assessed
the conjunction between the association of MD with SCC and
WMSA. When we overlapped these two maps, MD values in
forceps minor, corpus callosum, superior longitudinal fasciculus,
inferior fronto-occipital fasciculus, and thalamic radiation were
associated with both SCC and WMSA burden (Figure 3D).
The measure “average SCC&WMSA-related MD” was calculated
as the conjunction between these two maps. A new multiple
regression model was conducted to investigate the partial
association of depressive symptomatology and the MD voxels
that were associated with both SCC andWMSA burden (“average
SCC&WMSA-related MD”) with SCC. The model included
depressive symptomatology and “average SCC&WMSA-related
MD” as predictors, and SCC as the criterion (Table 2; model 3).
This model was significant [F(2, 222) = 28.534, p < 0.001, R² adj.
= 0.197], indicating that both the average SCC&WMSA-related
MD (β = 0.300, p < 0.001) and depressive symptomatology
(β = 0.309 p < 0.001) were independently associated
with SCC.

Finally, we used mediation analysis to investigate whether
WMSA mediates the association between global MD and SCC.
We found that WMSA significantly mediated the association
between global MD and SCC (ACME = 2960.825; p = 0.026).
This mediation effect was partial because the direct effect of
global MD on SCC was also significant (ADE = 7590.678,
p= 0.032).
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FIGURE 3 | Voxel-wise correlations of MD values with depressive symptomatology, SCC, WMSA, and age. The white matter skeleton is depicted in green. Significant

voxels are colored in pink [(B) the association between MD values and SCC], orange [(C) the association between MD values and WMSA], red [(D) overlap of the

association between MD values and SCC, and MD values and WMSA], and blue [(E) the association between MD values and age]. No significant voxels were

obtained for the association between MD values and depressive symptomatology (A). L, left; R, right; S, superior; I, inferior; A, anterior; P, posterior; MD, mean

diffusivity; SCC, subjective cognitive complaints; WMSA, white matter signal abnormalities; mm, millimeters.

Third Aim: The Effect of Aging
The third aim of this study was to investigate the effect of
aging in our data. Correlation analyses showed that an older
age correlated with a higher volume of WMSA (r = 0.521,
p < 0.001), a higher global MD (r = 0.387, p < 0.001), a higher
number of SCC (r = 0.373, p < 0.001), and higher scores in
depressive symptomatology (r = 0.069, p = 0.030). The voxel-
based analysis showed that the association between an older
age and higher MD values involved most of the white matter
skeleton, with a tendency to spare the occipital and parietal white
matter and tracts going through the internal capsule and the
cingulum bundle (Figure 3E). Next, we added age as an extra
predictor to the multiple regression models reported for the
first and second aims. The model for global MD (model 4 in
Table 2) was significant [F(4, 222) = 17.581, p < 0.001, R² adj. =
0.228], showing that age was the main predictor of SCC, followed
by depressive symptomatology. In contrast, WMSA and global
MD were not significant as predictors. The model specific for

MD areas involved in SCC (“average SCC-related MD,” model
5 in Table 2) was significant [F(4, 220) = 19.466, p < 0.001, R²
adj. = 0.248], showing that age, depressive symptomatology,
and the average SCC-related MD were significant predictors of
SCC, while WMSA was not significant (p = 0.900). Finally, the
model for the average SCC&WMSA-related MD (model 6 in
Table 2) was significant [F(3, 221) = 24.676, p < 0.001, R² adj. =
0.241], showing that both depressive symptomatology and age
(β = 0.268, p < 0.001) were independently associated with SCC,
with a trend to significance for the average SCC&WMSA-related
MD to predict SCC (β = 0.140, p= 0.055).

DISCUSSION

In this study, we tested the role of depressive symptomatology
in the context of SCD and cerebrovascular disease using
cross-sectional data from a community-based cohort. We also
investigated whether DTI abnormalities (increased MD values)
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TABLE 2 | Partial association of depressive symptomatology, WMSA, MD, and age with SCC (multiple regression models).

R2 B SE B β p

Model 1 0.16 <0.001

Depressive symptomatology 0.36 0.07 0.33 <0.001

WMSA 0.01 0.01 0.17 0.011

Global MD 0.63 0.33 0.13 0.059

Model 2 0.21 <0.001

Depressive symptomatology 0.34 0.07 0.31 <0.001

WMSA 0.01 0.01 0.08 0.271

Average SCC-related MD 0.12 0.03 0.28 <0.001

Model 3 0.20 <0.001

Depressive symptomatology 0.35 0.06 0.30 <0.001

Average SCC&WMSA-related MD 0.10 0.03 0.31 <0.001

Including age as predictor

Model 4 0.23 <0.001

Depressive symptomatology 0.35 0.06 0.31 <0.001

WMSA 0.002 0.01 0.03 0.663

Global MD 0.28 0.33 0.06 0.391

Age 0.03 0.01 0.31 <0.001

Model 5 0.25 <0.001

Depressive symptomatology 0.33 0.06 0.30 <0.001

WMSA −0.00 0.01 −0.01 0.90

Average SCC-related MD 0.08 0.03 0.19 0.012

Age 0.03 0.01 0.25 0.001

Model 6 0.24 <0.001

Depressive symptomatology 0.35 0.06 0.31 <0.001

Average SCC&WMSA-related MD 0.11 0.03 0.14 0.055

Age 0.03 0.01 0.27 <0.001

Values correspond to R2 and its significance for each model. For each predictor in the models, values correspond to beta values (B) and their standard errors (SE B), as well as the

standardized betas (β) and their significance values. BDI, Beck Depression Inventory; GDS, Geriatric Depression Scale; WMSA, White Matter Signal Abnormalities; MD, Mean Diffusivity;

SCC, subjective cognitive complaints.

in SCD are associated with increased WMSA burden and older
age. We operationalized SCD following the diagnostic criteria of
the international working group on SCD (Jessen et al., 2014), and
used the number of SCC (i.e., subjective cognitive complaints)
in our statistical analyses. While our results showed that an
increased depressive symptomatology is significantly associated
with more SCC, we could not find a significant association
of depressive symptomatology with WMSA or MD measures.
We thus accepted the hypothesis of depressive symptomatology
co-existing with SCC, independently of any MRI marker of
cerebrovascular disease. In addition, we demonstrated that
WMSA mediated the association between MD and SCC, and age
had an important contribution to our findings.

The role of depressive symptomatology in SCD is
controversial. While major depression is an exclusion criterion in
current diagnostic criteria of SCD (Jessen et al., 2014), individual
symptoms of depression that do not reach the threshold of a
disorder are not considered a criterion for exclusion (Jessen
et al., 2014). However, it is not clear what should be the
exact threshold to exclude depression and how this type of
symptomatology should be assessed in SCD (e.g., concurrent,
past, subclinical, etc.). Currently, the most urgent need is to

elucidate the role of subthreshold depressive symptomatology in
SCD (Molinuevo et al., 2017; Jessen et al., 2020). In our relatively
large community-based cohort, we approached this question by
assessing subthreshold variability in depressive symptomatology
in SCD individuals who did not have a diagnosis of major
depression nor were under treatment for depression. Our
analyses confirmed the well-known association between
depressive symptomatology and SCD (Donovan et al., 2014,
2015; Buckley et al., 2016; Burmester et al., 2016; Lebedeva et al.,
2018; Cedres et al., 2019), showing that a higher number of SCC
was associated with increased depressive symptomatology in our
cohort. In contrast, we could not demonstrate that an increased
depressive symptomatology in our cohort is related with an older
age, which would reflect the concept of late life depression (Diniz
et al., 2013). In addition, we did not find an association ofWMSA
or MD measures with depressive symptomatology, as it would
be predicted by the vascular depression hypothesis (Alexopoulos
et al., 2013; Taylor et al., 2013). Altogether, our results suggest
that the variability in depressive symptomatology in our cohort
may be related to emotional factors rather than cerebrovascular
disease or age-related factors. Moreover, despite its strong
association with SCC, depressive symptomatology seems to
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just co-exist with SCD in our cohort, without influencing
associations of SCC with markers of cerebrovascular disease or,
as demonstrated in previous studies using the same cohort, with
markers of gray matter degeneration (Cedres et al., 2019, 2020a)
or clinical-cognitive status (Diaz-Galvan et al., 2021). Hence,
SCD in our cohort does not seem to merely reflect emotional
factors, as traditionally postulated (Apolinario et al., 2013;
Yates et al., 2015; Burmester et al., 2016), but may rather reflect
neurodegeneration and subclinical cognitive decline.

We observed a strong association of SCC with both
WMSA and MD. Since WMSA correlated with MD, and
WMSA mediated the association between MD and SCC, we
suggest that variability in our MD measure may be influenced
by cerebrovascular disease. In other words, despite being
an unspecific marker, our MD measure may be reflecting
cerebrovascular disease in our study. Other studies also
highlighted the contribution of non-AD pathologies such as
cerebrovascular disease to SCD in community-based cohorts
(Diniz et al., 2013). The novelty of our study is the use of DTI
to investigate white matter neurodegeneration associated with
cerebrovascular disease, and the analysis of its topographical
distribution. The utility of DTI measures as markers of
cerebrovascular disease has previously been noted (Zhou et al.,
2008; Black et al., 2009; Fu et al., 2012; Salat et al., 2012).
Interestingly, in our study, the association between WMSA and
MD in areas related with SCC (“average SCC-related MD”)
was stronger than the association between WMSA and MD in
the whole white matter skeleton (“global MD”). This suggests
that the brain areas in which integrity of the white matter
is associated with SCC seems to be more vulnerable to the
effect of cerebrovascular disease than other white matter areas.
Hence, cerebrovascular disease may be a contributor to SCC in
our community-based cohort. This interpretation was further
supported by our result showing that the association between
SCC and MD in areas related with WMSA (“average WMSA-
related MD”) was stronger than the association between SCC
and MD in the whole white matter skeleton (“global MD”).
Another important observation is that our associations between
SCC and markers of cerebrovascular disease were related with or
accounted by the age, as discussed further down.

We demonstrated the strong association between an older
age and increased SCC, a finding that is well-established in
the SCD literature (Derouesné et al., 1993; Wang et al., 2004;
Jessen et al., 2010; van Harten et al., 2018; Cedres et al., 2019).
We also demonstrated the strong association between an older
age and increased cerebrovascular disease, in line with previous
reports (Raz et al., 2012; Habes et al., 2016; Nemy et al., 2020).
Whether this cerebrovascular disease in cognitively unimpaired
older individuals indicates preclinical stages of vascular cognitive
impairment or is rather a feature of normal aging when not
reaching the clinical threshold is currently not known. The
hypothesis of a preclinical stage is attractive in the context of
our study, highlighting the capacity of SCD to reflect underlying
neurodegenerative processes of presumably vascular origin. In
a recent study using the same cohort we demonstrated that
the effect of WMSA on cholinergic white matter pathways goes
beyond the effect of age (Nemy et al., 2020). In our current
study, including the age in our models removed the predictive

partial effect of global MD, but the effect of MD in white
matter areas associated with SCC remained significant. This
suggests that while the integrity of the white matter overall
seems to be primarily driven by increasing age, variability in the
integrity of areas specific to SCC goes beyond the effect of aging
(and depressive symptomatology). This finding was attenuated
when investigating the integrity of areas specific to both SCC
and WMSA (p = 0.055), suggesting that the cerebrovascular
component that is related to SCC in our cohort may primarily
be explained by increasing age, and not to stroke or other
major vascular disease. This interpretation is congruent with the
current definition of SCD, where neurological diseases other than
AD are a criterion for exclusion (Jessen et al., 2014).

This study has some limitations. Although we did not find a
significant association between depressive symptomatology and
MRI markers of cerebrovascular disease, we cannot exclude that
depressive symptomatology in our cohort could be an early
symptom of other brain pathologies previously reported in SCD,
such as amyloid-beta or tau pathologies (Amariglio et al., 2012;
Perrotin et al., 2012; Buckley et al., 2017). The lack of biomarkers
for amyloid-beta and tau pathologies is thus a limitation of our
study. Nonetheless, vascular risk factors are highly prevalent in
community-based cohorts like the one used in our study (Buckley
et al., 2017), while AD pathologies are more prevalent in clinical
cohorts (Kern et al., 2018). In the same vein, variability in MD
was strongly associated with WMSA, but other pathologies such
as amyloid-beta and tau could also be contributing to MD.
This interpretation is supported by our finding of SCC-related
MD remaining in our model, while WMSA was automatically
removed when including the age in the same model. We
believe that SCC-related MD reflects neurodegeneration beyond
that related with an older age or a higher WMSA burden.
However, our measure of WMSA is global, and it would be
interesting to investigate WMSA intersecting SCC-related white
matter tracts in future studies. We partially circumvented this
by investigating the conjunction between WMSA-related MD
and SCC-related MD. We reported the frequency of some
vascular risk factors but a more complete characterization
of vascular risk factors, as well as their contribution to our
current findings is warranted in the future. In any case, these
limitations do not compromise our main interpretation of
depressive symptomatology as an emotional factor co-existing
but not related with neurodegenerative factors that underlie
SCC, since MD and WMSA correlated with SCC but not with
depressive symptomatology.We used correlation, regression, and
mediation analyses to investigate associations on cross-sectional
data. Longitudinal designs or clinical trials to demonstrate that
treating emotional or vascular risk factors reduces SCD would
help to support potential causality in our current associations.
Finally, previous studies showed that individuals with SCD
differed in the frequency of affective symptoms and underlying
neurodegeneration depending on whether they are recruited in
the community or in clinical settings (Perrotin et al., 2017; Slot
et al., 2018). Therefore, our current findings could also be tested
in clinical-based samples, including SCD individuals who seek
medical help.

In conclusion, depressive symptomatology co-exists with SCD
and reflects emotional factors but not cerebrovascular disease,
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in our community-based cohort. In addition, we did not find
any evidence for depressive symptomatology to influence the
association between cerebrovascular disease and SCD. In our
cohort, SCD reflected white matter neurodegeneration in spite of
its association with depressive symptomatology. This highlights
the clinical usefulness of SCD, especially in older individuals who
often show subjective complaints, depressive symptomatology,
and positive cerebrovascular disease biomarkers. A remark
is that although SCD increased with age in our cohort,
the association between white matter abnormalities and SCD
was beyond the effect of aging. Therapeutic interventions for
depressive symptomatology could alleviate the psychological
burden of negative emotions in people SCD, and intervening
on vascular risk factors to reduce cerebrovascular disease should
be tested as an opportunity to minimize neurodegeneration
in SCD individuals from the community. Another important
contribution of the current study is the data reported to help
understanding the association between cerebrovascular disease,
depressive symptomatology, and SCD.
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Brain aging is becoming an increasingly important topic, and the norms of brain

structures are essential for diagnosing neurodegenerative diseases. However, previous

studies of the aging brain have mostly focused on Caucasians, not East Asians.

The aim of this paper was to examine ethnic differences in the aging process of

brain structures or to determine to what extent ethnicity affects the normative values

of lobar and subcortical volumes in clinically normal elderly and the diagnosis in

multi-racial patients with Alzheimer’s disease (AD). Lobar and subcortical volumes were

measured using FreeSurfer from MRI data of 1,686 normal Koreans (age range 59–89)

and 851 Caucasian, non-Hispanic subjects in the ADNI and OASIS datasets. The

regression models were designed to predict brain volumes, including ethnicity, age, sex,

intracranial volume (ICV), magnetic field strength (MFS), and MRI scanner manufacturers

as independent variables. Ethnicity had a significant effect for all lobar (|β | > 0.20,

p < 0.001) and subcortical regions (|β | > 0.08, p < 0.001) except left pallidus and

bilateral ventricles. To demonstrate the validity of the z-score for AD diagnosis, 420

patients and 420 normal controls were selected evenly from the Korean and Caucasian

datasets. The four validation groups divided by race and diagnosis were matched on

age and sex using a propensity score matching. We analyzed whether and to what

extent the ethnicity adjustment improved the diagnostic power of the logistic regression

model that was built using the only z-scores of six regions: bilateral temporal cortices,

hippocampi, and amygdalae. The performance of the classifier after ethnicity adjustment

was significantly improved compared with the classifier before ethnicity adjustment

(1AUC= 0.10, D= 7.80, p < 0.001; AUC comparison test using bootstrap). Korean AD

255
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dementia patients may not be classified by Caucasian norms of brain volumes because

the brain regions vulnerable to AD dementia are bigger in normal Korean elderly peoples.

Therefore, ethnicity is an essential factor in establishing normative data for regional

volumes in brain aging and applying it to the diagnosis of neurodegenerative diseases.

Keywords: aging, norm, ethnic difference, Alzheimer’s disease, brain magnetic resonance imaging

Findings
1. Brain structures of cognitively normal people mostly decayed

with age from 59 to 89 years old.
2. Ethnicity had a significant effect on all lobar regions and

subcortical regions except left pallidus and bilateral ventricles.
3. The z-scores for brain volumes based on the prediction

model incorporating ethnicity as a predictor were effective for
diagnosing multi-racial patients with AD.

INTRODUCTION

Neurodegenerative diseases, including Alzheimesr’s disease
(AD) dementia and other dementias, yield specific brain
changes detectable by a group comparison of anatomical
magnetic resonance imaging (MRI) between patients and
normal controls. To measure the brain volume alternation
of an individual, the normative value or reference standard
is required for estimating the degree of abnormality or the
deviation from the norm according to the characteristics of
the person. Very few attempts had been made (Kruggel,
2006; Walhovd et al., 2011) because a large number of brain
images of normal people are needed, and there are many
factors to consider in producing the normative data for brain
volumes using MRI: technical and physical characteristics of
MRI as well as demographic and anatomical characteristics
of individuals.

Recently, a series of remarkable studies for normative data
(norms) of brain regions have emerged, considering almost
all feasible factors (Potvin et al., 2016, 2017). However, their
work missed an essential factor of racial characteristics, so
they produced practically the norms for Caucasians only.
Neuroanatomical differences in brain structures between Asians
and Caucasians have been reported (Zilles et al., 2001;
Tang et al., 2010; Chee et al., 2011). Thus, ethnicity or
race should be a factor considered for producing norms of
brain regions.

Particularly, the norms specific to the elderly encompassing
Asians as well as Caucasians are becoming increasingly necessary.
According to the United States Census Bureau (2020), people
over 65 years old are 730 million people and under 10% of
the world population in 2020. By 2050, the older population is
expected to reach 1.6 billion. Older Asians are now 414million, or
more than half (56.8%) of the older population, and are projected
to more than double to 967 million by 2050. Most researchers
in the field of aging brain did not consider ethnic backgrounds
and examined Western samples with a high percentage of white
people. Existing findings are largely a reflection of the White or

Caucasian (Resnick et al., 2003; Scahill et al., 2003; Sowell et al.,
2003; Ledig et al., 2018). Moreover, the norms specific to a narrow
age range have two advantages. Even with the same number of
samples, the prediction model can provide more reliable and
precise estimates. The predictive model could be kept simple and
non-over-fitted since the relationship between age and volume
can be assumed to be linear.

Moreover, racial or regional differences have long been
known in the cranial cavity or intracranial space among
Asia, America, Europe, Oceania, and Africa (Beals et al.,
1984; Howells, 1990; Rushton, 2000). Head shape has
long been documented to be different between Caucasian
and East Asian populations (Ball et al., 2010). The racial
comparison demonstrated that East Asians have a rounder
head with a flatter back and forehead than Caucasians. The
shape of the head or cranium considerably determines the
morphometry of the brain. It means that the normative values
of brain structures could vary across ethnic populations
and that the norms that take into account ethnicity
are needed.

The study aimed to present the normative data of lobar
and subcortical brain volumes for both the Asians and
Caucasian elderly and determine whether and to what
extent ethnicity affects the volumes in normal brain aging.
To this end, we selected brain MRIs of 1,686 cognitively
normal (CN) elderly people from the Gwangju Alzheimer’s
and Related Dementia (GARD) cohort in the Republic of
Korea. For a Caucasian sample, we collected 851 brain
images from the AD Neuroimaging Initiative (ADNI) and
Open Access Series of Imaging Studies (OASIS) datasets.
Our methods differ in detail but followed the procedures
outlined in Potvin et al. (2016). We estimated lobar
and subcortical volumes using FreeSurfer, an automated
segmentation software widely used in neuroimaging research
and created prediction models for each brain region’s
volume according to ethnicity, age, sex, ICV, scanner
manufacturer, MFS.

The z-score as the difference between expected and actual
volumes allows testing each brain structure for volume
abnormality and the effect size. Finally, our objective was
to determine whether ethnicity as a predictive variable
resulted in substantially improved diagnosis performance
when the normative z-score was applied to patients
with AD; for this purpose, we analyzed additionally 420
images from patients with AD and compared the z-scores
and the classifiers before and after ethnicity adjustment
in the area under the receiver operating characteristics
curve (AUC).
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METHODS

Normative Samples for Koreans and
Caucasians
Koreans
The study protocol was approved by the institutional review
board of Chosun University Hospital, Republic of Korea. All
volunteers or the next of kin of patients gave written informed
consent before participation. They were registered in the GARD
cohort by GARD Cohort Research Center at Gwangju City,
Republic of Korea, from April 2010 to March 2018.

A normative sample for Koreans aged 59–89 years was
included from the Korean elderly cohort in this study. All
participants were evaluated by comprehensive interviews,
neurological examinations, and neuropsychological tests.

FIGURE 1 | Flowchart of the process of subject selection for the norms. The

normative sample finally comprised 2,537 subjects: 1,686 for Koreans and

851 for Caucasians. GARD, Gwangju Alzheimer’s and Related Dementia.

ADNI, Alzheimer’s Disease Neuroimaging Initiative. OASIS, Open Access

Series of Imaging Studies.

Neuropsychological tests consist of the Korean version of
mini-mental state examination (K-MMSE) (Folstein et al., 1975),
Clinical Dementia Rating (CDR) (Morris, 1993), and Seoul
Neuropsychological Screening Battery (SNSB) (Kang et al.,
2012). The exclusion criteria for all subjects were the presence
of a focal lesion on brain MRI, history of head trauma, or
psychiatric disorders that could affect their mental function.
Individuals with minor medical abnormalities were included.

Caucasians
To investigate ethnic differences, we collected Caucasians
excluding Hispanic subjects (851 CN cases) from the ADNI
database (http://adni.loni.usc.edu) and the OASIS project
(https://www.oasis-brains.org). The age range was matched with
our dataset (59–89 years). Figure 1 showed the inclusion and
exclusion criteria. In more technical detail, for ADNI, we applied
one of the search conditions per step: VISCODE = “bl” (step
1) AND DX = “CN” (step 2) AND PTRACCAT = “White”
AND PTETHCAT = “Not Hisp/Latino” (step 3) AND age >

59 AND age < 90 (step 4). Thirteen subjects were excluded
in the final step. For OASIS, the search conditions were Visit
ID = “d000” or the first date of MRI scans (step 1) AND
DX1 = “Cognitively normal” (step 2) AND Race = “Caucasian”
AND Ethnicity = “Non-Hispanic” (step 3) AND age > 59 AND
age < 90 (step 4). Eight subjects were excluded in the final step.

Finally, the study sample for analysis comprised 2,537 subjects
whose demographic information was described in Table 1.

Some of the Caucasian data used in the preparation
of this article were obtained from the ADNI database
(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-
private partnership led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD). For up-to-date information,
see www.adni-info.org.

MRI Acquisition
The brain MRI images of Korean subjects were acquired using a
3.0 T scanner (Skyra, Siemens; 20-channel head coil; MPRAGE
sagittal view; TR = 2,300ms; TE = 2.143ms; TI = 900ms;
FA = 9◦; FoV = 256mm × 256mm; matrix = 320 × 320;
slice thickness = 0.8mm) and a 1.5 T scanner (Avanto, Siemens;
12-channel head coil; MPRAGE axial view; TR = 1,800ms;

TABLE 1 | Cohort sizes and demographics for normal Koreans and Caucasians.

Age (y) MMSE Education (y)

Race Dataset n F 3T Range Mean SD Mean SD Mean SD

Korean GARD 1686 62% 81% 59–89 73.1 5.5 27.0 2.1 9.6 4.6

Caucasian ADNI, OASIS 851 55% 77% 59–89 73.2 6.3 29.1 1.1 16.3 2.6

GARD, Gwangju Alzheimer’s Disease and Related Dementias; ADNI, Alzheimer’s Disease Neuroimaging Initiative; OASIS, Open Access Series of Imaging Studies. F, female; 3T, MRI

image using a 3 Tesla scanner; y, years; MMSE, mini mental state examination.
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TABLE 2 | Standardized coefficients of the prediction model of lobar and subcortical gray matter volumes.

Model Coefficent

RMSE R2 Ethnicity Sex Intracrainial volume MFS Manufacturer Intraction

M SD M SD Age Caucasian/
Korean

M/F ICV ICV2 ICV3 1.5T/3.0TGE/ Siemens Philips/
Siemens

Ethnicity*
Age.

Ethnicity*
Sex

Sex* Age MFS* GE MFS *
Philips

MFS*
ICV

ICV* GE ICV *
Philips

Brain 44.42 1.88 0.78 0.02 −0.29 −0.32 −0.08 0.94 0.03 −0.09 −0.26 0.08 0.02 −0.01 0.07 −0.03 0.03 0.04 0.00 −0.01 −0.03

Lobar GM 22.14 1.10 0.71 0.03 −0.23 −0.41 −0.06 0.83 0.03 −0.10 −0.45 0.09 −0.02 −0.02 0.05 −0.02 0.03 0.07 0.00 −0.03 −0.04

Frontal L 4.45 0.19 0.61 0.04 −0.18 −0.29 −0.06 0.83 0.03 −0.10 −0.36 0.09 −0.03 −0.03 0.04 −0.02 −0.03 0.05 −0.01 −0.03 −0.03

Frontal R 4.51 0.19 0.62 0.03 −0.19 −0.33 −0.05 0.83 0.02 −0.10 −0.37 0.10 −0.02 −0.01 0.04 −0.03 −0.01 0.05 −0.01 −0.03 −0.03

Temporal L 3.31 0.13 0.63 0.03 −0.33 −0.45 −0.05 0.73 0.02 −0.08 −0.38 0.12 0.00 0.03 0.08 −0.02 0.03 0.06 0.01 −0.03 −0.04

Temporal R 3.22 0.15 0.63 0.03 −0.30 −0.41 −0.05 0.76 0.02 −0.08 −0.39 0.11 −0.01 0.01 0.07 −0.01 0.01 0.06 0.00 −0.03 −0.02

Parietal L 3.28 0.14 0.64 0.04 −0.19 −0.44 −0.10 0.76 0.03 −0.11 −0.51 0.05 −0.04 −0.03 0.04 −0.01 0.07 0.09 0.00 −0.03 −0.04

Parietal R 3.33 0.16 0.65 0.04 −0.19 −0.44 −0.09 0.76 0.03 −0.10 −0.51 0.06 −0.05 −0.04 0.05 −0.01 0.05 0.08 −0.01 −0.03 −0.04

Occipital L 1.98 0.08 0.50 0.04 −0.25 −0.31 −0.03 0.59 0.03 −0.08 −0.50 0.07 −0.03 −0.01 0.06 −0.01 0.06 0.09 0.01 −0.03 −0.05

Occipital R 2.01 0.08 0.51 0.04 −0.24 −0.26 0.00 0.63 0.02 −0.09 −0.48 0.04 −0.04 −0.02 0.05 −0.01 0.04 0.09 0.00 −0.03 −0.04

Cingulate L 1.02 0.04 0.46 0.03 −0.17 −0.20 −0.03 0.74 0.04 −0.09 −0.30 0.03 −0.02 −0.01 0.03 0.01 0.03 0.05 −0.03 −0.01 −0.03

Cingulate R 1.00 0.04 0.36 0.04 −0.16 −0.31 −0.03 0.65 0.01 −0.11 −0.25 0.09 0.05 0.00 0.02 0.01 −0.02 0.00 0.01 −0.02 −0.04

Insular L 0.45 0.02 0.41 0.04 −0.05 −0.31 0.00 0.68 0.01 −0.07 −0.14 0.11 0.02 −0.01 0.03 −0.01 −0.02 0.01 0.01 −0.01 −0.03

Insular R 0.47 0.02 0.44 0.04 −0.07 −0.38 0.05 0.61 0.01 −0.05 −0.19 0.06 0.01 0.01 0.03 −0.01 0.00 0.02 0.04 −0.01 −0.02

Subcortical GM 3.10 0.13 0.53 0.04 −0.32 −0.25 −0.03 0.68 0.01 −0.05 −0.32 0.01 0.01 0.03 0.06 −0.02 0.04 0.05 0.03 −0.01 −0.02

Thalamus L 0.80 0.04 0.38 0.04 −0.13 −0.47 −0.08 0.53 0.01 −0.06 −0.32 0.02 0.03 −0.01 0.06 −0.02 0.10 0.04 0.01 0.00 −0.01

Thalamus R 0.53 0.02 0.46 0.04 −0.17 −0.44 −0.05 0.60 0.03 −0.04 −0.17 −0.12 0.01 −0.03 0.04 −0.02 0.15 0.02 0.02 −0.03 −0.01

Putamen L 0.64 0.02 0.19 0.04 −0.24 0.13 0.01 0.33 −0.02 0.01 −0.17 −0.05 −0.04 0.06 0.01 −0.02 0.04 0.04 0.00 0.00 −0.02

Putamen R 0.54 0.02 0.20 0.05 −0.28 0.08 0.06 0.30 −0.01 0.01 −0.14 0.05 −0.03 0.08 0.01 −0.02 −0.07 0.02 0.03 0.01 −0.05

Hippocampus L 0.39 0.02 0.34 0.04 −0.43 −0.28 −0.05 0.33 0.00 −0.06 −0.33 0.06 0.05 0.02 0.05 0.00 0.03 0.00 0.04 0.00 −0.02

Hippocampus R 0.41 0.02 0.40 0.05 −0.43 −0.34 −0.06 0.34 −0.02 −0.03 −0.40 0.01 0.06 0.04 0.07 0.00 0.08 0.03 0.03 −0.02 −0.02

Caudate L 0.39 0.01 0.20 0.04 −0.04 −0.08 −0.13 0.54 0.00 −0.03 0.00 0.01 −0.04 0.04 0.00 0.00 −0.04 0.04 0.01 0.00 0.02

Caudate R 0.40 0.02 0.27 0.04 −0.07 0.20 −0.07 0.48 −0.01 0.00 0.07 0.05 −0.06 0.07 −0.01 −0.03 −0.11 0.02 0.04 −0.03 0.01

Amygdala L 0.19 0.01 0.40 0.04 −0.31 −0.18 0.06 0.28 −0.01 −0.03 −0.54 −0.04 0.02 0.04 0.04 −0.01 0.10 0.05 0.04 −0.02 −0.02

Amygdala R 0.20 0.01 0.38 0.05 −0.28 −0.20 0.10 0.33 −0.01 −0.04 −0.50 0.10 0.06 0.04 0.06 −0.01 0.03 0.04 0.02 −0.02 −0.03

Pallidus L 0.22 0.01 0.13 0.03 0.07 −0.04 0.05 0.30 0.02 0.03 0.00 −0.09 0.01 −0.06 −0.03 0.00 0.11 0.02 0.03 −0.03 −0.01

Pallidus R 0.18 0.01 0.22 0.04 0.01 −0.22 −0.06 0.43 −0.01 −0.02 −0.35 0.05 −0.02 −0.07 0.06 0.02 0.12 0.10 0.01 0.00 −0.02

Accumbens L 0.09 0.00 0.26 0.05 −0.38 0.26 −0.01 0.14 −0.02 −0.04 −0.14 0.16 −0.05 0.02 0.05 0.01 −0.14 0.02 0.06 −0.04 −0.04

Accumbens R 0.08 0.00 0.38 0.05 −0.32 0.29 0.07 0.20 −0.02 −0.04 −0.41 0.02 −0.02 0.01 0.02 0.00 −0.05 0.06 −0.02 0.00 −0.04

Ventral DC L 0.29 0.01 0.44 0.04 −0.11 −0.22 0.01 0.66 0.02 −0.06 −0.28 0.00 0.00 0.00 0.08 −0.03 0.06 0.07 −0.01 −0.01 −0.03

Ventral DC R 0.26 0.01 0.45 0.04 −0.22 −0.14 0.04 0.65 0.05 −0.08 −0.25 0.00 0.00 0.01 0.06 0.00 0.03 0.04 0.02 0.00 −0.02

Stem 1.61 0.07 0.42 0.04 −0.16 −0.12 −0.06 0.70 0.02 −0.06 −0.06 −0.07 0.03 0.01 0.11 −0.03 0.11 0.02 0.01 −0.02 −0.03

Corpuscallosum 0.36 0.01 0.20 0.04 −0.28 −0.17 −0.15 0.36 −0.04 −0.03 −0.27 −0.01 0.02 −0.02 0.06 0.00 0.06 0.04 0.02 0.00 −0.02

Ventricle 0.15 0.01 0.45 0.04 0.49 0.00 0.02 0.47 0.00 0.01 −0.04 0.03 0.00 −0.05 −0.01 −0.04 0.01 0.00 0.02 0.01 0.00

Lateral L 0.16 0.01 0.42 0.04 0.48 −0.01 0.00 0.47 0.00 0.01 −0.04 0.02 0.00 −0.05 −0.01 −0.04 0.01 0.01 0.01 0.01 0.00

Lateral R 0.17 0.01 0.42 0.05 0.49 0.04 0.00 0.46 −0.01 0.01 −0.03 0.03 0.00 −0.06 −0.01 −0.04 0.00 0.00 0.03 0.00 0.01

Inferior lateral L 0.23 0.01 0.39 0.04 0.49 −0.04 0.17 0.21 0.02 0.04 −0.02 0.02 −0.02 −0.02 −0.02 −0.02 0.06 0.04 0.03 −0.04 0.00

Inferior lateral R 0.26 0.01 0.36 0.04 0.48 0.02 0.16 0.23 0.00 0.00 0.02 0.06 −0.06 −0.07 −0.01 0.00 0.03 0.02 0.05 −0.05 0.00

3rd 0.12 0.00 0.44 0.05 0.41 −0.18 0.19 0.39 0.01 −0.01 −0.06 0.07 0.02 −0.01 −0.04 −0.04 0.04 0.00 0.02 −0.03 0.00

4th 0.12 0.00 0.14 0.04 0.14 −0.12 0.05 0.25 −0.01 0.07 −0.05 0.05 −0.01 −0.01 0.05 0.00 −0.06 −0.01 −0.02 0.03 0.02

The values with p < 0.00125 are presented in bold and italic. The values with p < 0.05 are presented in bold. L, left; R, right; MFS, magnetic field strength; GM, gray matter; DC, diencephalon.
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FIGURE 2 | Relative importance (R2, proportion of the variance explained) of each predictive variable in the regression model for each regional volume. Ethnicity (dark

blue) has a substantial effect on brain volumes. The relative importance is computed by averaging each predictor’s explained proportion of the variance over all

orderings of predictors. Interaction indicates the sum of the proportions of variance explained by all the interaction terms.

TE = 3.43ms; TI = 1,100ms; FA = 15◦; FoV = 224mm ×

224mm; matrix = 256 × 256; slice thickness = 0.9mm) at
Chosun University Hospital, Gwangju, Republic of Korea.

The brain images of Caucasians were selected with slice
thickness ≤1.2mm from ADNI and OASIS datasets. Since
there are no sub-millimeter resolution images (voxel size
< 1 mm3) in the ADNI dataset, we selected 1- or near-
millimeter resolution images (voxel size = 1−2 mm3, 0.93–
1.30 × 0.93–1.30 × 1.0–1.2mm) of Caucasian brains, which

were scanned at multiple centers. The MRI scanner protocols
were described in detail according to each scanner model at the
ADNI site (https://adni.loni.usc.edu/methods/documents/mri-
protocols/) and the OASIS site (https://www.oasis-brains.org/
files/OASIS-3_Imaging_Data_Dictionary_v1.5.pdf).

Measurement of Cortical and Subcortical Volumes
The volumes of cortical and subcortical structures weremeasured
from each brain image using the standard recon-all processing
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TABLE 3 | Percentage of the variance explained by each predictor in models predicting lobar and subcortical regional volumes.

Ethnicity Age Sex ICV MFS Manufacturer Interaction Unexplained

Brain 4.0 6.2 9.1 45.3 3.0 0.3 10.0 22.1

Cortical gray matter 7.7 4.2 7.4 31.3 12.3 1.0 7.5 28.7

Frontal L 3.6 3.0 7.2 32.0 7.8 0.7 6.8 39.0

Frontal R 4.7 2.9 7.5 32.0 8.2 0.7 6.5 37.5

Temporal L 9.6 7.0 6.0 24.9 7.8 0.7 7.3 36.7

Temporal R 8.0 6.0 6.3 26.7 8.7 0.7 7.1 36.5

Parietal L 9.9 3.1 4.7 22.4 16.3 1.5 6.8 35.3

Parietal R 9.6 3.1 5.0 23.2 16.2 1.5 7.0 34.4

Occipital L 4.0 4.3 4.2 15.4 16.1 0.7 5.5 49.8

Occipital R 2.9 4.1 5.2 17.2 15.0 0.8 5.7 49.1

Cingulate L 1.6 1.9 6.3 26.6 5.3 0.3 4.5 53.3

Cingulate R 4.6 1.6 4.3 18.0 3.6 0.4 3.8 63.5

Insular L 4.7 0.3 6.8 24.6 0.8 0.3 4.4 58.1

Insular R 7.8 0.4 7.7 21.8 1.7 0.5 5.1 55.1

Subcortical gray matter 2.5 6.5 5.7 25.2 5.6 0.5 7.3 46.8

Thalamus L 11.6 1.6 2.7 11.9 5.9 0.7 4.3 61.2

Thalamus R 11.1 2.5 4.2 19.3 1.3 1.7 6.0 53.9

Putamen L 1.6 3.3 1.6 8.0 1.8 0.2 3.4 80.2

Putamen R 0.8 4.3 2.2 7.4 1.4 0.1 4.2 79.6

Hippocampus L 3.7 12.2 0.7 4.0 6.9 0.4 7.1 65.0

Hippocampus R 5.5 11.7 0.9 4.7 10.4 0.8 7.0 59.1

Caudate L 0.3 0.1 1.9 15.3 0.2 0.2 2.9 79.2

Caudate R 3.2 0.3 2.1 16.1 0.8 0.3 5.2 72.0

Amygdala L 1.6 5.7 2.5 4.2 21.2 1.0 5.0 58.8

Amygdala R 1.5 4.4 4.4 6.3 17.3 0.5 4.2 61.4

Pallidus L 0.1 0.2 2.5 8.2 0.1 0.2 2.1 86.5

Pallidus R 1.7 0.0 2.4 9.3 6.9 0.2 2.3 77.2

Accumbens L 6.2 9.1 0.3 1.1 1.6 1.1 7.5 73.1

Accumbens R 7.2 6.3 1.2 2.0 13.8 0.5 7.6 61.5

Ventral diencephalon L 1.7 1.0 7.4 24.3 4.5 0.3 5.1 55.8

Ventral diencephalon R 0.7 3.1 7.3 24.0 3.4 0.2 6.2 55.0

Stem 0.4 2.1 5.4 27.4 0.2 0.3 6.9 57.3

Corpus callosum 1.0 6.0 0.5 4.9 4.5 0.3 4.2 78.7

Ventricle 0.2 13.8 5.2 16.4 0.1 0.1 9.5 54.7

Lateral L 0.1 13.1 4.5 15.7 0.1 0.1 8.8 57.6

Lateral R 0.5 13.1 4.4 15.4 0.1 0.2 8.8 57.4

Inferior lateral L 0.2 15.7 6.4 7.1 0.1 0.2 9.6 60.7

Inferior lateral R 0.2 14.3 6.0 6.2 0.3 0.8 9.4 62.9

3rd 1.9 10.9 9.6 13.2 0.2 0.2 8.2 55.8

4th 0.7 1.3 3.0 7.2 0.2 0.1 2.7 84.9

L, left; R, right; ICV, intracranial volume; MFS, magnetic field strength.

pipeline of FreeSurfer version 5.3.0, which is documented and
available for download online (http://surfer.nmr.mgh.harvard.
edu/). Briefly, the steps of the process include intensity
normalization (Sled et al., 1998), segmentation of the gray
matter (GM), white matter (WM), and cerebrospinal fluid
(CSF), and surface modeling for the GM/WM and GM/CSF
borders (Dale et al., 1999; Fischl et al., 2001). Once the cortical
models are complete, a number of deformable procedures can
be performed for in further data processing and analysis,

including surface inflation (Fischl et al., 1999a), registration to a
spherical atlas which utilized individual cortical folding patterns
to match cortical geometry across subjects (Fischl et al., 1999b),
parcellation of the cerebral cortex into units based on gyral and
sulcal structure (Fischl et al., 2004; Desikan et al., 2006), and
creation of a variety of surface-based data including maps of
curvature and sulcal depth. This method uses both intensity and
continuity information from the entire three-dimensional MR
volume in segmentation and deformation procedures to produce
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TABLE 4 | Sample sizes of normal people and AD patients of Koreans and Caucasians.

Korean Korean Caucasian Caucasian

CN AD CN AD

Mean SD Mean SD Mean SD Mean SD

n 210 210 210 210

Age 75.1 5.5 74.6 6.1 75.6 5.8 74.8 6.5

Sex (M) 51.0% 50.0% 54.8% 50.0%

Field strength (1.5T) 33.8% 37.1% 31.9% 37.6%

M, male; CN, normal control; AD, Alzheimer’s disease.

representations of cortical thickness, calculated as the closest
distance from the GM/WM boundary to the GM/CSF boundary
at each vertex on the tessellated surface (Fischl and Dale, 2000).

Subjects were excluded from all analyses if there were major
errors in cortical and subcortical segmentation. To acquire
consistent brain measures, we used the Desikan–Killiany–
Tourville (DKT) atlas (Klein and Tourville, 2012), which has
the advantages of having unambiguous regional definitions and
boundaries well-suited to the FreeSurfer classifier algorithm.

Statistical Analysis
All statistical analyses, including regression models predicting
cortical and subcortical volumes, were conducted in R version
3.6.3 (https://www.r-project.org/). In the previous study (Potvin
et al., 2016), the regression model analyses were performed
using age, sex, intracranial volume (ICV), magnetic field strength
(MFS), and scanner manufacturers as predictors. Quadratic and
cubic terms for ICV were tested, and the following interactions:
age × sex, ICV × MFS, MFS × manufacturer. For age, unlike
their model including quadratic and cubic terms, our prediction
models adopted only a linear term because the age range was
narrow for the subjects and the relations between age and GM
volume are nearly linear from adulthood (Sowell et al., 2003; Fox
and Schott, 2004; Fjell et al., 2009; Salthouse, 2011). The base
model before including ethnicity as a predictor was as follows:

V̂ = β1 · age+ β2 · sex+ β3 · ICV + β4 · ICV
2

+β5 · ICV
3 + β6 ·MFS+ β7 ·manufacturer + β8 · sex× age

+β9 ·MFS×manufacturer + β10 ·MFS× ICV

+β11 · ICV ×manufacturer + α

Our final model including ethnicity as well as the interaction
terms: ethnicity× age, ethnicity× sex was as follows:

V̂ = β1 · ethnicity+ β2 · age+ β3 · sex+ β4 · ICV

+β5 · ICV
2 + β6 · ICV

3 + β7 ·MFS+ β8 ·manufacturer

+β9 · ethnicity× age+ β10·ethnicity× sex

+β11 · sex× age+ β12 ·MFS×manufacturer

+β13 ·MFS× ICV + β14 · ICV ×manufacturer + α

To prevent overfitting and boost generalizability, 10-fold cross-
validation was performed on all the predictive models using
the caret package. Ventricular volumes were log-transformed to

FIGURE 3 | Vertex-wise comparison of cortical volume between Caucasian

and Korean normal controls. Korean elderly people were bigger in cortical

volume than Caucasians. The p-value of ethnicity as a predictor was

computed at each vertex based on the regression model described in the

method section.

analyze because of the skewed distribution, and the estimated
coefficients for the ventricular volumes were back-transformed
to represent cm3 or a % increase per year.

For the z-score distribution of normal controls and AD
subjects of Koreans and Caucasians, the four groups were
matched to each other based on age, sex, and MFS using a
propensity score matching method of MatchIt package in R
(see Table 4 for the details of the four groups). The normal
controls matched to patients with AD were selected again from
the aforementioned normative samples.

Normative Statistics
We turn to the calculations required to draw inferences
concerning the discrepancies between a given subject’s obtained
volume, V0, and the volume predicted by the regression model,
V̂ . The following methods are those developed by Crawford,
Garthwaite (Crawford et al., 2012).

The first step is to calculate the standard error (SE) of a
predicted volume for a new subject, denoted as sn+1. This SE can
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FIGURE 4 | Lobar volume changes with age in Caucasian and Korean elderly people. This figure illustrates ethnic contrast on age effect in each model predicting lobar

volumes in a massive sample of cognitively normal people aged 59–89 years. Each line denotes mean volume with 95% confidence intervals in the colored shade.

be expressed in this form:

sn+1 = sV·x

√

1+
1

n
+

1

n− 1

∑

riiz2i0 +
2

n− 1

∑

rijzi0zj0

where sV·x represents the root mean square error (also called
residual standard deviation or SE of estimate) of the model
predicting normative values, rii identifies the main diagonal
elements of the inverted correlation matrix (R−1) for the k
predictor variables, rij identifies off-diagonal elements, and z0 =

(z10, . . . , zk0)
′ identifies the subject’s values on the predictor

variables in z-score form. We use the form zi0 = (n − 1)(xi0 −
xi)/6(xij − xi)

2. The first summation is over the k diagonal

elements, and the second is over the k(k-1)/2 off-diagonal
elements below (or above) the diagonal.

For effect size, a z-score (z) was computed by the formula
below, using the discrepancy between a subject’s actual (V0)
and predicted volumes (V̂), divided by sn+1 the SE of the
predicted volume:

z =
V0 − V̂

sn+1.
(1)

Vertex-Wise Analysis
Vertex-wise cortical volume comparisons were rendered on the
cortical surface using the regression models implemented in
the SurfStat toolbox (http://www.math.mcgill.ca/keith/surfstat/)
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FIGURE 5 | Subcortical volume changes with age in Caucasian and Korean elderly peoples. This figure illustrates ethnic contrast in age effect in each model

predicting subcortical volumes in a massive sample of cognitively normal people aged 59–89 years. Each line denotes mean volume with 95% confidence intervals in

the colored shade. Ventricular volumes are log10 transformed.

in MATLAB R2016a (The Mathworks, Natick, MA, USA).
A random field theory (RFT)-based correction for multiple
comparisons was applied at the cluster level with p = 0.05 as the
significance threshold.

Classification of Korean Patients With AD From

Caucasian Normal People
The logistic regressionmodel analyses were built using the only z-
scores of six regions: bilateral temporal cortices, hippocampi, and
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TABLE 5 | Z-scores and the differences between the observed volumes and the predicted volumes.

Before ethnicity adjustment After ethnicity adjustment

Kor.CN Cau.CN Kor.CN Cau.CN

z t p z t p z t p z t p

Brain 0.24 1.59 0.113 −0.58 −3.11 0.002 −0.02 −0.12 0.901 −0.02 0.35 0.728

Cortical gray matter 0.18 1.37 0.171 −0.62 −4.15 0.000 −0.14 −1.03 0.304 0.04 0.59 0.555

Frontal L 0.08 0.67 0.502 −0.37 −2.83 0.005 −0.13 −1.10 0.270 0.08 0.56 0.574

Frontal R 0.12 0.99 0.321 −0.39 −3.37 0.001 −0.11 −0.91 0.365 0.10 0.37 0.710

Temporal L 0.20 1.75 0.080 −0.61 −3.93 0.000 −0.08 −0.70 0.482 −0.01 1.27 0.204

Temporal R 0.19 1.57 0.117 −0.56 −3.76 0.000 −0.08 −0.75 0.453 0.01 1.04 0.297

Parietal L 0.17 1.45 0.149 −0.71 −5.43 0.000 −0.16 −1.30 0.196 −0.06 0.29 0.771

Parietal R 0.18 1.59 0.112 −0.69 −5.17 0.000 −0.15 −1.11 0.268 −0.04 0.32 0.745

Occipital L 0.12 0.97 0.333 −0.34 −3.20 0.001 −0.06 −0.81 0.419 0.06 0.54 0.588

Occipital R 0.11 1.05 0.294 −0.34 −2.62 0.009 −0.05 −0.47 0.636 0.00 0.44 0.662

Cingulate L 0.11 1.09 0.278 −0.30 −2.48 0.014 −0.01 −0.12 0.901 −0.03 −0.13 0.898

Cingulate R 0.07 0.70 0.482 −0.33 −3.99 0.000 −0.11 −1.25 0.212 0.06 0.14 0.885

Insular L 0.18 2.01 0.046 −0.31 −3.50 0.001 0.00 0.05 0.959 0.09 0.29 0.775

Insular R 0.21 2.44 0.015 −0.40 −4.88 0.000 0.00 0.07 0.945 0.08 −0.09 0.932

Subcortical gray matter 0.16 1.53 0.127 −0.33 −3.19 0.002 0.03 0.31 0.754 −0.03 −0.42 0.672

Thalamus L 0.25 2.90 0.004 −0.58 −8.17 0.000 0.00 −0.31 0.756 −0.04 −0.95 0.344

Thalamus R 0.28 2.97 0.003 −0.56 −7.53 0.000 0.02 −0.14 0.890 0.00 −1.02 0.307

Putamen L −0.08 −0.53 0.598 0.13 2.45 0.015 0.01 0.58 0.563 −0.05 −0.13 0.897

Putamen R 0.00 0.19 0.848 0.20 1.64 0.103 0.07 1.06 0.288 0.06 −0.12 0.901

Hippocampus L 0.19 2.21 0.028 −0.25 −2.73 0.007 0.06 0.58 0.564 0.06 0.74 0.457

Hippocampus R 0.21 2.16 0.031 −0.34 −3.81 0.000 0.05 0.40 0.689 0.04 0.45 0.650

Caudate L 0.01 0.43 0.670 −0.19 −1.35 0.178 −0.03 0.04 0.970 −0.11 −0.34 0.737

Caudate R −0.08 −0.65 0.517 0.20 2.96 0.003 0.05 0.76 0.450 −0.07 −0.12 0.902

Amygdala L 0.13 1.05 0.293 −0.20 −1.23 0.219 0.04 0.20 0.843 0.00 0.92 0.360

Amygdala R 0.08 0.45 0.657 −0.17 −1.45 0.148 0.00 −0.48 0.628 0.03 0.77 0.442

Pallidus L 0.03 0.55 0.580 −0.06 −2.20 0.029 −0.02 −0.10 0.923 0.02 −1.05 0.297

Pallidus R 0.15 1.94 0.053 −0.22 −3.21 0.001 0.04 0.48 0.628 0.02 0.29 0.769

Accumbens L −0.15 −1.61 0.108 0.40 5.73 0.000 0.03 0.81 0.419 0.02 1.29 0.199

Accumbens R −0.21 −2.00 0.047 0.48 4.45 0.000 −0.02 0.28 0.777 0.07 −0.05 0.964

Ventral diencephalon L 0.09 1.13 0.261 −0.23 −1.88 0.061 −0.01 0.09 0.930 0.00 0.32 0.751

Ventral diencephalon R 0.08 0.93 0.355 −0.10 −1.47 0.143 0.02 0.33 0.739 0.05 −0.11 0.912

Stem 0.08 0.95 0.344 −0.03 0.18 0.859 0.06 0.76 0.450 0.03 0.76 0.450

Corpus callosum 0.11 1.35 0.179 −0.06 −1.02 0.307 0.04 0.45 0.656 0.10 0.97 0.332

Ventricle −0.05 −0.78 0.438 0.00 0.34 0.731 −0.07 −0.96 0.335 0.02 0.56 0.577

Lateral L −0.03 −0.61 0.542 0.00 0.00 0.997 −0.06 −0.91 0.365 0.05 0.42 0.673

Lateral R −0.07 −0.94 0.346 0.04 1.11 0.266 −0.07 −0.90 0.366 0.02 0.87 0.387

Inferior lateral L −0.07 −0.82 0.414 −0.11 −0.85 0.398 −0.11 −1.26 0.210 −0.02 0.10 0.922

Inferior lateral R −0.08 −0.99 0.325 −0.08 −0.43 0.665 −0.09 −1.07 0.284 −0.07 −0.45 0.654

3rd 0.08 0.71 0.480 −0.33 −3.44 0.001 −0.06 −0.60 0.546 −0.03 −0.45 0.652

4th −0.06 −0.73 0.469 −0.20 −1.73 0.084 −0.10 −1.35 0.177 −0.09 −0.47 0.636

The z scores with p < 0.00125 are presented in bold and italic. The scores with p < 0.05 are presented in bold. L, left; R, right. Kor, Korean; Cau, Caucasian; CN, normal controls.

amygdalae. The best classification model was determined with
10-fold cross-validation using the caret package. The two receiver
operating curves (ROCs) and the areas under the ROC (AUCs)
were calculated using the pROC package. All the bootstrap

operations for the significance of AUC comparison were
performed with non-parametric stratified resampling (Carpenter
and Bithell, 2000), and 10,000 bootstrap replicates to obtain a
good estimate of the statistics.
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TABLE 6 | Z-score differences between AD patients and controls before/after ethnicity adjustment.

Before ethnicity adjustment After ethnicity adjustment

Kor.AD vs. Kor.CN Cau.AD vs. Kor.CN Kor.AD vs. Cau.CN Cau.AD vs. Cau.CN Kor.AD vs. Kor.CN Cau.AD vs. Kor.CN Kor.AD vs. Cau.CN Cau.AD vs. Cau.CN

1z t p 1z t p 1z t p 1z t p 1z t p 1z t p 1z t p 1z t p

Brain −0.92 −10.43 0.000 −1.75 −18.53 0.000 −0.16 −1.59 0.113 −0.99 −9.42 0.000 −1.03 −10.26 0.000 −1.20 −11.49 0.000 −1.12 −10.35 0.000 −1.28 −11.52 0.000

Cortical GM −0.88 −9.26 0.000 −1.92 −19.47 0.000 −0.12 −1.19 0.234 −1.17 −10.79 0.000 −1.02 −9.21 0.000 −1.33 −11.75 0.000 −1.27 −10.87 0.000 −1.58 −13.26 0.000

Frontal L −0.62 −6.03 0.000 −1.17 −11.68 0.000 −0.17 −1.51 0.132 −0.71 −6.66 0.000 −0.65 −5.95 0.000 −0.67 −6.30 0.000 −0.87 −7.66 0.000 −0.88 −8.04 0.000

Frontal R −0.60 −6.07 0.000 −1.21 −11.98 0.000 −0.03 −0.30 0.762 −0.64 −5.91 0.000 −0.64 −6.00 0.000 −0.67 −6.18 0.000 −0.81 −7.22 0.000 −0.84 −7.39 0.000

Temporal L −1.22 −11.41 0.000 −2.24 −20.75 0.000 −0.56 −5.06 0.000 −1.58 −14.11 0.000 −1.42 −11.37 0.000 −1.74 -14.29 0.000 −1.69 −13.45 0.000 −2.02 −16.39 0.000

Temporal R −1.02 −9.76 0.000 −2.20 −20.25 0.000 −0.38 −3.45 0.001 −1.57 −13.68 0.000 −1.15 −9.70 0.000 −1.71 −14.45 0.000 −1.40 −11.53 0.000 −1.96 −16.19 0.000

Parietal L −0.64 −6.95 0.000 −1.75 −17.06 0.000 0.16 1.65 0.100 −0.95 −8.64 0.000 −0.73 −6.83 0.000 −1.12 −9.29 0.000 −0.95 −8.57 0.000 −1.33 −10.81 0.000

Parietal R −0.61 −6.91 0.000 −1.78 −16.91 0.000 0.20 2.10 0.036 −0.97 −8.59 0.000 −0.71 −6.84 0.000 −1.15 −9.37 0.000 −0.90 −8.39 0.000 −1.35 −10.66 0.000

Occipital L −0.39 −4.36 0.000 −0.99 −10.32 0.000 0.06 0.57 0.569 −0.54 −5.18 0.000 −0.41 −4.25 0.000 −0.53 −5.28 0.000 −0.56 −5.38 0.000 −0.68 −6.30 0.000

Occipital R −0.46 −5.07 0.000 −1.02 −10.78 0.000 −0.05 −0.47 0.641 −0.60 −5.73 0.000 −0.47 −4.99 0.000 −0.62 −6.24 0.000 −0.57 −5.46 0.000 −0.72 −6.60 0.000

Cingulate L −0.58 −5.97 0.000 −1.01 −10.45 0.000 −0.18 −1.86 0.064 −0.61 −6.29 0.000 −0.59 −5.90 0.000 −0.70 −7.09 0.000 −0.59 −5.94 0.000 −0.69 −7.14 0.000

Cingulate R −0.33 −3.44 0.001 −0.87 −8.64 0.000 0.12 1.20 0.230 −0.42 −4.13 0.000 −0.34 −3.36 0.001 −0.42 −4.07 0.000 −0.47 −4.65 0.000 −0.55 −5.32 0.000

Insular L −0.65 −6.71 0.000 −1.10 −10.75 0.000 −0.08 −0.82 0.415 −0.54 −4.90 0.000 −0.67 −6.62 0.000 −0.65 −6.11 0.000 −0.70 −6.55 0.000 −0.68 −6.08 0.000

Insular R −0.61 −6.50 0.000 −1.16 −11.56 0.000 0.12 1.19 0.235 −0.43 −4.01 0.000 −0.65 −6.41 0.000 −0.62 −5.93 0.000 −0.63 −5.93 0.000 −0.60 −5.49 0.000

Subcortical GM −1.03 −10.46 0.000 −1.78 −19.00 0.000 −0.51 −5.08 0.000 −1.25 −13.19 0.000 −1.07 −10.37 0.000 −1.46 −15.14 0.000 −0.98 −9.42 0.000 −1.37 -14.05 0.000

Thalamus L −0.37 −4.47 0.000 −0.88 −10.44 0.000 0.48 5.71 0.000 −0.03 −0.39 0.699 −0.40 −4.33 0.000 −0.25 −2.71 0.007 −0.34 −3.74 0.000 −0.19 −2.11 0.035

Thalamus R −0.41 −4.68 0.000 −1.06 −12.12 0.000 0.50 5.71 0.000 −0.15 −1.68 0.095 −0.44 −4.54 0.000 −0.42 −4.52 0.000 −0.36 −3.71 0.000 −0.33 −3.65 0.000

Putamen L −0.38 −3.63 0.000 −0.38 −4.16 0.000 −0.60 −6.11 0.000 −0.60 −7.21 0.000 −0.39 −3.70 0.000 −0.60 −6.65 0.000 −0.34 −3.41 0.001 −0.55 −6.69 0.000

Putamen R −0.52 −5.02 0.000 −0.72 −7.20 0.000 −0.63 −6.19 0.000 −0.83 −8.44 0.000 −0.53 −5.08 0.000 −0.89 −8.85 0.000 −0.43 −4.22 0.000 −0.79 −8.01 0.000

Hippocampus L −1.69 −14.47 0.000 −2.46 −24.53 0.000 −1.24 −10.45 0.000 −2.01 −19.54 0.000 −1.75 −14.30 0.000 −2.15 −20.78 0.000 −1.76 −14.22 0.000 −2.17 −20.50 0.000

Hippocampus R −1.59 −14.40 0.000 −2.37 −23.00 0.000 −1.05 −9.30 0.000 −1.82 −17.31 0.000 −1.68 −14.27 0.000 −2.02 −18.83 0.000 −1.69 −14.06 0.000 −2.02 −18.49 0.000

Caudate L 0.02 0.18 0.856 −0.40 −3.92 0.000 0.18 1.53 0.128 −0.24 −2.50 0.013 0.02 0.17 0.863 −0.29 −2.91 0.004 0.05 0.46 0.648 −0.26 −2.69 0.007

Caudate R −0.13 −1.22 0.223 −0.13 −1.28 0.202 −0.45 −4.17 0.000 −0.44 −4.46 0.000 −0.15 −1.31 0.190 −0.46 −4.49 0.000 −0.07 −0.59 0.552 −0.38 −3.76 0.000

Amygdala L −1.16 −9.90 0.000 −1.97 −19.47 0.000 −0.93 −7.75 0.000 −1.74 −16.65 0.000 −1.18 −9.81 0.000 −1.75 −16.65 0.000 −1.25 −10.14 0.000 −1.82 −17.24 0.000

Amygdala R −0.97 −9.57 0.000 −1.80 −17.80 0.000 −0.79 −7.27 0.000 −1.62 −14.91 0.000 −0.99 −9.48 0.000 −1.57 −15.40 0.000 −1.11 −9.91 0.000 −1.69 −15.40 0.000

Pallidus L 0.14 1.52 0.129 −0.06 −0.61 0.540 0.34 3.67 0.000 0.15 1.60 0.111 0.15 1.57 0.116 0.04 0.49 0.626 0.22 2.32 0.021 0.11 1.26 0.208

Pallidus R −0.13 −1.31 0.191 −0.47 −5.31 0.000 0.25 2.70 0.007 −0.10 −1.12 0.263 −0.12 −1.20 0.229 −0.18 −1.99 0.048 −0.10 −1.06 0.289 −0.16 −1.87 0.062

Accumbens L −0.77 −8.31 0.000 −0.45 −4.50 0.000 −1.38 −13.47 0.000 −1.05 −9.74 0.000 −0.81 −8.47 0.000 −0.93 −9.06 0.000 −0.87 −8.26 0.000 −0.98 −8.85 0.000

Accumbens R −0.57 −6.82 0.000 −0.44 −4.60 0.000 −1.16 −12.15 0.000 −1.03 −9.67 0.000 −0.61 −6.98 0.000 −0.99 −9.78 0.000 −0.58 −5.87 0.000 −0.96 −8.63 0.000

Ventral DC L −0.26 −2.48 0.013 −0.59 −6.02 0.000 0.06 0.51 0.611 −0.28 −2.70 0.007 −0.26 −2.44 0.015 −0.31 −3.09 0.002 −0.28 −2.58 0.010 −0.33 −3.20 0.001

Ventral DC R −0.46 −4.36 0.000 −0.65 −6.88 0.000 −0.20 −1.76 0.078 −0.39 −3.75 0.000 −0.46 −4.35 0.000 −0.47 −4.97 0.000 −0.41 −3.59 0.000 −0.42 −4.02 0.000

Stem −0.47 −4.72 0.000 −0.48 −4.86 0.000 −0.40 −3.65 0.000 −0.41 −3.76 0.000 −0.47 −4.72 0.000 −0.40 −3.97 0.000 −0.49 −4.42 0.000 −0.41 −3.73 0.000

Corpus callosum −0.77 −8.24 0.000 −0.67 −6.90 0.000 −0.58 −5.79 0.000 −0.47 −4.62 0.000 −0.77 −8.20 0.000 −0.47 −4.84 0.000 −0.82 −8.22 0.000 −0.52 −5.04 0.000

Ventricle 1.02 11.07 0.000 0.97 10.14 0.000 0.90 9.24 0.000 0.86 8.45 0.000 1.02 11.02 0.000 1.00 10.54 0.000 0.86 8.82 0.000 0.84 8.43 0.000

Lateral L 0.93 10.35 0.000 0.87 9.15 0.000 0.87 8.91 0.000 0.81 7.90 0.000 0.93 10.32 0.000 0.92 9.83 0.000 0.80 8.17 0.000 0.79 7.80 0.000

Lateral R 0.90 9.84 0.000 0.91 9.55 0.000 0.69 7.18 0.000 0.70 7.04 0.000 0.90 9.80 0.000 0.88 9.31 0.000 0.72 7.54 0.000 0.70 7.13 0.000

Inferior lateral L 1.35 12.97 0.000 1.42 14.78 0.000 1.35 13.33 0.000 1.42 15.27 0.000 1.35 12.99 0.000 1.53 16.00 0.000 1.22 12.00 0.000 1.39 15.06 0.000

Inferior lateral R 1.30 12.66 0.000 1.43 14.48 0.000 1.25 12.58 0.000 1.38 14.49 0.000 1.31 12.61 0.000 1.43 14.59 0.000 1.24 12.49 0.000 1.37 14.59 0.000

3rd 0.75 7.53 0.000 0.28 2.77 0.006 1.17 11.99 0.000 0.70 7.13 0.000 0.78 7.62 0.000 0.65 6.38 0.000 0.76 7.63 0.000 0.63 6.35 0.000

4th 0.32 3.34 0.001 −0.17 −1.64 0.101 0.42 4.11 0.000 −0.07 −0.66 0.513 0.32 3.38 0.001 −0.04 −0.35 0.724 0.26 2.57 0.010 −0.10 −0.86 0.389

L, left; R, right; ICV, intracranial volume; MFS, magnetic field strength; Kor, Korean; Cau, Caucasian; AD, AD patients; CN, normal controls; GM, gray matter; DC, diencephalon.
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FIGURE 6 | Examples of z-score distributions of patients with Alzheimer’s disease and normal controls before/after adjustment for ethnic differences. Before the

adjustment, the z-score distributions of each diagnosis group were separated between Koreans and Caucasians and then overlapped after the adjustment.

RESULTS

Prediction Model Including Ethnicity as a
Predictor
Table 2 describes fitmeasures and standardized coefficients of the
models predicting lobar and subcortical volumes of the Korean
and Caucasian subjects (n = 2,537). The models for subcortical
GM volumes explained considerate portions of the variance
(mean R2: 31.8%, range: 12.7–45.5%). The models for lobar GM
volumes explained more (mean R2: 54.0%, range: 36.1–65.5%).
As shown in Table 2, ethnicity had a substantial effect for all
regions except left pallidus and bilateral ventricles, and age also
had a substantial effect for all regions except bilateral pallidus.

Figure 2 shows the relative importance or explained variance
predicted by each predictor (for detailed results, see Table 3).
Focusing on ethnicity and age, the two main variables of
interest, lobar volumes, were largely predicted by ethnicity
(mean R2: 5.9%, range: 1.6–9.9%) compared with age (mean R2:
3.1%, range: 0.3–7%) whereas subcortical volumes were largely
predicted by age (mean R2: 4%, range: 0–12.2%) compared
with ethnicity (mean R2: 3.5%, range: 0.1–11.6%). The effects of
ethnicity on the brain volumes were comparable to those of age.
Even in some modified models, ethnic effects were substantial
(Supplementary Tables 2, 3).

As shown in Table 2, ethnicity had a substantial effect for
all regions except left pallidus and bilateral ventricles, and age
also had a substantial effect for all regions except bilateral
pallidus. Cortical volumes of Koreans were larger than those
of Caucasians at both lobar (Table 2) and vertex-wise levels
(Figure 3). Subcortical volumes also were generally larger in
Koreans, but the volumes of the putamen, accumbens, and right
caudate were larger in Caucasians (Table 2).

Lobar and Subcortical Volume Changes in
Normal Aging
Figures 4, 5 illustrated aging slopes of lobar and subcortical
regions in Caucasians and Koreans aged 59 and 89 years, or the
predicted volumes for lobar and subcortical regions according to
age and ethnicity. As shown in Table 2, a marked age by race
interaction was found in the right putamen and right inferior
lateral ventricle. Additionally, a weak age by race interaction was
found in the left frontal and right parietal lobes and the left
putamen, right caudate, amygdalae, pallidi, and lateral ventricles.

Z-Scores of the Normal Controls
Before/After Ethnicity Adjustment
For the validation of the z-scores based on our prediction model
incorporating ethnicity, we selected Caucasian and Korean
patients with AD and the matched normal controls. The four
groups (two races × two diagnoses) were matched based on
age, sex, and MFS (Table 4). To confirm whether the z-scores
of the normal controls were close to zero, we calculated the
z-scores of normal controls for Koreans and Caucasians, and
the significances of the z-scores, or the differences between the
observed and the predicted volumes. As shown in Table 5, the
z-scores of the normal controls or the differences between the
observed and the predicted volumes after ethnicity adjustment
became not significant for both races. However, the differences
before ethnicity adjustment were significant in most regions for
either race. After ethnicity adjustment, the z-scores for lobar
volumes became close to zero (mean z: −0.08, range: −0.16 to
0 for Korean; mean z: 0.03, range: −0.06 to 0.10 for Caucasian),
and subcortical volumes also were close to zero (mean z: 0.02,
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range: −0.03 to 0.07 for Korean; mean z: 0.01, −0.11 to 0.07
for Caucasian).

Crossover Classification of Korean
Patients With AD From Caucasian Normal
People
To verify the usefulness of our z-scoring system at diagnosis,
we compared the z-scores of patients with AD and the
normal controls (Table 6) and depicted the distributions of
the three (bilaterally six) representative regions in Figure 6.
The representative regions, the temporal cortices, hippocampi,
and amygdalae were selected based on the criteria that all
the four types of 1z values of each region were lesser than
−1 after ethnicity adjustment (Table 6). The regions such as
ventricles were not selected because they were not much affected
by ethnicity.

As shown in Figure 6, before adjusting for racial differences,
the z-score distributions of normal subjects were separated
between Koreans and Caucasians and then overlapped after the
adjustment. The distribution of patients with AD also shows
a similar pattern, to a lesser extent than in normal people.
An important point to look at is the distance change between
the distributions of Korean patients with AD and Caucasian
normal controls. Their distributions were overlapped before
the adjustment and then separated after the adjustment. Their
differences in z-value before ethnicity adjustment were close
to zero and then became clear after ethnicity adjustment (see
Table 6, particularly the columns named “Kor.AD vs. Cau.CN”).

The result indicates that diagnostic errors could occur when
doctors only diagnose Asian patients with AD with information
from the Caucasian norms. They are likely to diagnose the
patient as normal due to the highly overlapping distribution for
Caucasian normal controls and Asian patients with AD before
ethnicity adjustment.

Finally, we analyzed whether and to what extent the ethnicity
adjustment improved the diagnostic power of the logistic
regression models built using the only z-scores of six regions:
bilateral temporal cortices, hippocampi, and amygdalae. The
performances of the classifier models were visualized as the
two ROCs (Figure 7). The performance of the classifier after
ethnicity adjustment (AUC = 0.88) was significantly improved
compared with the classifier before ethnicity adjustment (AUC
=0.78) (1AUC = 0.10, D = 7.80, p < 0.0001; AUC comparison
test using bootstrap).

DISCUSSION

General Summary
To our knowledge, the present study is the first to produce multi-
racial normative volumes for lobar and subcortical structures
in CN elderly individuals, considering ethnicity and age,
sex, ICV, and characteristics of the MRI scanner using large
samples restricted to old age. Even with the same number
of samples, the sample dense in an age group can help the
prediction model provide more reliable and precise estimates.

FIGURE 7 | Performance of the classifiers of Korean patients Alzheimer’s

disease from Caucasian normal people using z-scores of bilateral temporal

cortices, hippocampi, and amygdalae before/after adjustment for ethnic

differences.

The predictive model could be kept simple and non-over-
fitted since the relationship between age and volume can be
assumed to be linear, although hippocampal volumes were
reported to be systemically overestimated to a less extent
compared with young subjects when FreeSurfer measured
(Wenger et al., 2014). The over-measurement is a function of
ICV in elderly subjects. Since we included primary, secondary,
and tertiary terms of ICV as predictors in our model, the
z-scoring system can reduce the systematical errors caused
by the over-measurement. Even if the inclusion of the terms
of ICV could not work, the relative relationship between
the two races will not change. Additionally, we focused on
old age rather than whole life since comparing old and
old will be more error-free than comparison between young
and old.

We found that the temporal cortex, hippocampus, and
amygdala were important for the AD diagnosis and highly
influenced by the ethnic factor. Previous studies have shown that
the temporal gyrus among cortical structures could be affected
by some ethnic or genetic factors resulted in morphological
differences such as brain shape or size (Zilles et al., 2001; Chee
et al., 2011; Tang et al., 2018), possibly because the Asian brain
is relatively wider than the Caucasian brain (Liang et al., 2015)
and the temporal cortex is located on both sides of the brain. Our
findings align with previous research reporting the significant
effects of race or ethnicity on the hippocampus and amygdala
volumes even in black and white children (Assari, 2020a,b).
In contrast, ventricles and left pallidus did not significantly
differ from the ethnicity in our result. Some studies reported
the ethnicity effects on the ventricular and pallidal volumes
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in diverse racial comparisons such as Hispanic, African vs.
white Americans (Minagar et al., 2000; Brickman et al., 2008),
and Indigenous Australian vs. Caucasian women except men
(Klekamp et al., 1989). The discrepancy with our results might
be due to the different racial composition of the subjects in
each study and the different aging slopes of the brain structures
in each ethnic group that changed the order of the volumes
dynamically across races according to age, i.e., Caucasians at
relatively early ages showed larger volume than Asians but
showed smaller volume at relatively late ages as shown in
Figure 5 (Choi et al., 2020).

Review/Comparison of Previous Studies
Ethnicity, as well as age, was found to affect brain volume
significantly. All cortical structures were significantly greater
in Koreans compared with Caucasians. Whole-brain size and
ICV often has been used interchangeably. Even in old age, the
whole brain volume is highly correlated to intracranial capacity
(Pearson’s r = 0.75, p < 0.001 for our whole sample). The
larger the brain structures, the more proportional it tended to
be to intracranial capacity. This tendency is reflected in the
results that East Asian’s largeness was noticeable, particularly in
cortical or lobar volumes rather than in subcortical structures
(Figures 3–5). Given that Caucasians had a little greater ICV
(cf. Supplementary Table 1), the East Asian’s largeness was
rather surprising even after adjusted for ICV. One of the
most probable explanations is that Koreans may have a high
proportion of GM in the brain, judging from the finding that
women show greater cortical GM thickness than men when
adjusted for whole-brain size (Luders et al., 2006). Also, it might
be due to brain morphometric differences between the ethnic
groups, but the exact cause is unknown, and further research
is needed.

There are, of course, research papers that take different
stances from our data but not converging into one conclusion.
Japanese hemispheres were reported to be wider but shorter
than European hemispheres (Zilles et al., 2001). Compared with
Caucasians, young Chinese men were observed to show larger
volumes in temporal and cingulate cortices except for frontal
and parietal lobes (Tang et al., 2018). Chinese Singaporeans and
non-Asian Americans were not observed to be different for old
groups, whereas the young Chinese group was found to have a
lower cortical thickness in frontal, parietal, temporal lobes (Chee
et al., 2011). All the previous studies involved just fewer than 70
persons as East Asians who are mostly young. The studies are
inconsistent with each other. The superior size of our samples
may have made the small ethnic difference more reliable.

Limitations
Multi-study MRI analyses combining single- and multi-site
datasets have limitations due to different scanner hardware and
software versions and MRI protocols between studies. Even a
multi-site study like ADNI uses dozens of protocols that contain
many types of parameters such as TR, TE, flip angle, voxel
size, and FoV. Furthermore, the process by which the complex
interplay between the multiple factors affects images has not
been clarified. The present study controlled two scanner-related

variables: manufacturer and MFS, but not other scan parameters.
We expected that the uncontrolled factors would play somewhat
more the role of noise that increases variance than of bias that
increases ethnic differences since the protocols and scanners used
in ADNI were too diverse to produce a bias in a specific direction.
As shown in Supplementary Figures 1, 2, the CIs, or variances,
of the regression lines for ADNI were wider than those for GARD
and OASIS that used only Siemens scanner, and the distances
between the lines for ADNI and GARDwere narrower than those
for OASIS and GARD in most regions. These results made it
less plausible that the ethnic differences we found were only due
to different MRI protocols. According to Potvin et al. (2016),
a combination of data from diverse sources is likely to provide
more robust normative values than values generated using data
from a single source, although there is a possibility to increase
the noise or variance. Nevertheless, it is still necessary to collect
brain images frommanufacturers other than Siemens to enhance
the diversity in the Korean sample.

All studies on humans have limitations in sampling, and our
study is no exception. The Korean sample was based upon a
population-based cohort in a city, whereas the Caucasian sample
was based upon convenience cohorts collected by academic
research groups. The GARD dataset can represent the Korean
elderly because it is from a city where the prevalence of
dementia and the per capita income are moderate in Korea.
However, the ADNI and OASIS datasets can hardly represent
the Caucasian elderly because of their cohort character. Although
some datasets may not be strongly argued to represent the elderly
population of their ethnic group, they are one of the largest
samples in such studies comparing ethnic groups. Moreover, a
study comparing a convenience sample and a population-based
sample (Whitwell et al., 2012) reported that the differences in
hippocampal volume between the two samples disappeared after
matching for demographic information. Indeed, as shown in
Figure 6, our validation procedure using the matched samples
of healthy individuals showed that the z-score distributions
overlapped between the two ethnic groups.

Although our study provides an insight into the normal
aging of the brain, it has limitations due to its cross-
sectional character. The limitations of cross-sectional and
longitudinal studies were already discussed in our previous
paper (Choi et al., 2020). However, the longitudinal studies
have consistently supported the findings of the cross-sectional
studies (Fjell et al., 2009), and brain atrophy is found to be
greater in the longitudinal data than in cross-sectional data
(e.g., Raz et al., 2005; Du et al., 2006; Taki et al., 2011;
Fjell et al., 2014). Thus, the effects identified in the cross-
sectional study would become more apparent in the longitudinal
study, and a large sample-based cross-sectional study could
explain a general trend of normal aging at a population level
(Schuster et al., 2015).

Ethnicity or race is a very complex construct in which
genetic and environmental factors are mixed. So, we do not
argue that the observed differences in brain volumes were
only caused by genetic background. Alternative explanations
involving environmental as well as genetic sub-factors of
ethnicity should be considered. For example, since obesity, a
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cardiovascular risk factor that may cause brain structure atrophy
(Hamer and Batty, 2019; Opel et al., 2020), ethnic differences
in obesity measures like body mass index could explain the
ethnic differences in brain volumes. The obesity of an ethnic
group is related to their dietary culture, which can be considered
as an environmental component of ethnicity. However, in the
present study, such sub-factors of ethnicity were not rigorously
controlled because they could be broadly viewed as constituent
elements in the concept of ethnicity. Strictly speaking, our study
is not about identifying brain regions affected only by genetic
components of ethnicity but rather revealing ethnic norms in
brain volume and inventing methods to reduce the discrepancies
between the norms at the current time. Further research is
needed to dissect which factors cause the ethnic differences
in norms. In future studies, the interplay between genetic and
environmental factors in ethnicity that affects aging deserves
more attention.

CONCLUSION

This normative data for the aging brain considering ethnic
backgrounds can render researchers and clinicians with the
age-related reference ranges needed to facilitate research and
precise diagnosis of degenerative brain diseases in diverse
ethnic societies.
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Background: Changes in the amplitude of low-frequency fluctuations (ALFF) and

the fractional amplitude of low-frequency fluctuations (fALFF) have provided stronger

evidence for the pathophysiology of cognitive impairment. Whether the altered patterns

of ALFF and fALFF differ in amnestic cognitive impairment (aMCI) and vascular mild

cognitive impairment (vMCI) is largely unknown. The purpose of this study was to

explore the ALFF/fALFF changes in the two diseases and to further explore whether

they contribute to the diagnosis and differentiation of these diseases.

Methods: We searched PubMed, Ovid, and Web of Science databases for articles

on studies using the ALFF/fALFF method in patients with aMCI and vMCI. Based on the

activation likelihood estimation (ALE) method, connectivity modeling based on coordinate

meta-analysis and functional meta-analysis was carried out.

Results: Compared with healthy controls (HCs), patients with aMCI showed increased

ALFF/fALFF in the bilateral parahippocampal gyrus/hippocampus (PHG/HG), right

amygdala, right cerebellum anterior lobe (CAL), left middle temporal gyrus (MTG), left

cerebrum temporal lobe sub-gyral, left inferior temporal gyrus (ITG), and left cerebrum

limbic lobe uncus. Meanwhile, decreased ALFF/fALFF values were also revealed in the

bilateral precuneus (PCUN), bilateral cuneus (CUN), and bilateral posterior cingulate (PC)

in patients with aMCI. Compared with HCs, patients with vMCI predominantly showed

decreased ALFF/fALFF in the bilateral CUN, left PCUN, left PC, and right cingulate

gyrus (CG).
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Conclusions: The present findings suggest that ALFF and fALFF displayed remarkable

altered patterns between aMCI and vMCI when compared with HCs. Thus, the findings

of this study may serve as a reliable tool for distinguishing aMCI from vMCI, which may

help understand the pathophysiological mechanisms of these diseases.

Keywords: amnestic mild cognitive impairment, vascular mild cognitive impairment, amplitude of low-frequency

fluctuations, fractional amplitude of low-frequency fluctuations, resting state

INTRODUCTION

Mild cognitive impairment is a nosological entity referred
to as a cognitive decline that is beyond normal peers. The
condition is considered to be the transitional state between
normal aging and dementia, where activities of daily living
are unaffected (Sanford, 2017; Petersen et al., 2018). Amnestic
mild cognitive impairment (aMCI) and vascular mild cognitive
impairment (vMCI) are the two most common forms of the pre-
dementia subtypes (Wentzel et al., 2001; Sun et al., 2016). The
aMCI is characterized by isolated episodic memory impairment
associated with higher risk; it is also considered as the prodromal
state for the development of Alzheimer’s disease (AD) (Yan
et al., 2019). The vMCI, on the other hand, is described as
an abnormal condition caused by vascular diseases, where the
cognitive impairment of the patient is not serious and does not
meet the criteria of dementia (Consoli et al., 2012). Interests in
diagnosing and distinguishing between aMCI and vMCI have
attracted a lot of attention and have brought out a great deal
of research in both clinical and research settings. From this,
researchers proposed that early diagnosis and active intervention
could effectively delay the progression from MCI to dementia
(Sanford, 2017). Currently, the clinical and research diagnostic
criteria for aMCI and vMCI mainly depend on clinical history,
neuropsychological assessment, and neuroimaging examination
(Sudo et al., 2015; Anderson, 2019), but it is still difficult to
distinguish between these two forms of cognitive impairment
at an early stage. Therefore, a study on the similarities and
specificities between aMCI and vMCI in MRI may provide
a new prospect for the diagnosis and differentiation of these
two diseases.

Resting-state functional MRI (rs-fMRI) has also been widely
used to study the internal brain function of patients with
many neuropsychiatric diseases, including MCI (Ni et al., 2016;
Yang et al., 2018; Xu et al., 2020). The amplitude of low-
frequency fluctuations (ALFF) of the rs-fMRI is a method to
measure low-frequency oscillations of the blood-oxygen-level-
dependent (BOLD) signal and local spontaneous activity during
the resting state (Zang et al., 2007; Zou et al., 2008; Xi et al.,
2013). Several studies have shown that ALFF can be used as
an indicator of the disease state of the brain (Han et al., 2011;
Chen et al., 2015), but it may be affected by a number of non-
neurophysiological fluctuations. The fractional amplitude of low-
frequency fluctuations (fALFF), on the other hand, represents the
ratio of the amplitude in the low-frequency range to the sum
of the amplitude in the whole frequency range (Wang et al.,
2016). It has high sensitivity and specificity in the detection of

spontaneous brain activity, but it is not as reliable as ALFF (Zou
et al., 2008). These two indicators reflect the amplitude of low-
frequency oscillations from different aspects and are sensitive
indicators of related neurodegenerative changes (Wang et al.,
2016). Both ALFF and fALFF have been more and more applied
in numerous basic and clinical neuroscience studies with high
reliability and reproducibility (Liu et al., 2017; Zhao et al., 2018;
Luo et al., 2020). Moreover, ALFF and fALFF have been found to
be abnormal in a number of neuropsychiatric disorders, such as
AD, depression, and schizophrenia, and have also been found to
be altered in aMCI and vMCI.

Previous ALFF/fALFF studies revealed abnormal intrinsic
brain activity in aMCI. Xi et al. suggested that patients
with aMCI, compared with healthy controls (HCs), showed
decreased ALFFs in the left lateral temporal cortex, right
hippocampus (Hip), parahippocampal gyrus (PHG), and right
ventral medial prefrontal cortex (vMPFC), while increased
ALFFs were displayed in the left temporal-parietal junction
(TPJ) and inferior parietal lobule (IPL) (Xi et al., 2013).
Meanwhile, a machine learning method demonstrated the
gradual disturbances of the ALFF/fALFF in the AD spectrum
as disease advanced. These studies showed several brain regions
with decreased ALFF/fALFF within different bands among
the bilateral cingulum, bilateral inferior cerebellum lobe, and
bilateral precuneus (PCUN). However, increased ALFF/fALFF
were also detected in the hip, frontal lobe, and paracentral
lobe and involved in default-mode regions, such as the hip,
PHG, posterior cingulate gyrus (PCG), and middle frontal gyrus
(MFG). These abnormities were significantly correlated with
the neuropsychological assessments as diseases progressed (Long
et al., 2016; Yang et al., 2018). More recently, vascular risk factors
have been found to modulate the spontaneous brain activity
in patients with MCI, thus providing preliminary evidence that
MCI patients with high vascular risk demonstrated decreased
ALFF in the left Hip as compared with HCs with high vascular
risk. This may serve as a potential neuroimaging biomarker
for an underlying vascular contribution to AD (Zhuang et al.,
2020). Previous studies have shown that ALFF/fALFF changes are
closely related to cognitive function in patients with AD, MCI,
white matter osteoporosis, and cerebral autosomal dominant
arteriopathy with subcortical infarcts and leukoencephalopathy
(CADASIL), suggesting that ALFF/fALFF may be an imaging
biomarker for these diseases (Li et al., 2017; Yang et al., 2018;
Su et al., 2019; Wang J. et al., 2019; Wang P. et al., 2019). Thus,
the study of ALFF/fALFF changes in aMCI and vMCI can help
us find their imaging diagnostic markers and understand their
pathophysiological mechanisms.
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Considering the above-mentioned ALFF and fALFF findings,
in this study, we used the activation likelihood estimation (ALE)
method to study ALFF/fALFF changes in aMCI and vMCI
to explore their ALFF change pattern compared to HCs and
diagnose and differentiate aMCI from vMCI at an early stage.
Since there have been many reports of decreased ALFF/fALFF
in the PCUN and posterior cingulate cortex (PCC) in aMCI and
vMCI (Jing et al., 2012; Ding et al., 2015; Ni et al., 2016; Yang et al.,
2018), we hypothesized that aMCI and vMCI also follow this
pattern and are expected to find changes in ALFF/fALFF in some
other brain regions, which may serve as a reliable neuroimaging
biomarker for the two subtypes of MCI.

METHODS

Literature Search and Selection Criteria
This study followed the list of the Preferred Reporting Items for
Systematic Reviews and Meta-analyses (PRISMA) statement and
the phase flowchart for meta-analysis (Liberati et al., 2009; Moher
et al., 2009).

Search Strategy
Studies were comprehensively searched in the PubMed,
Web of Science, and Ovid databases. Search keywords were
as follows: (“vascular cognitive impairment” OR “vascular
cognitive impairment-no dementia” OR “vascular mild cognitive
impairment” OR “amnestic mild cognitive impairment”
OR “mild cognitive impairment”) AND (“amplitude of
low-frequency fluctuations” OR “fractional amplitude of low-
frequency fluctuations”). Considering that different articles
may use different terms to describe vMCI, in order to ensure
the comprehensiveness of the search, a supplementary search
was made for vMCI. The search keywords are as follows:
(“small vessel disease” OR “vascular cognitive impairment
not dementia” OR “subcortical ischemic vascular disease” OR
“moyamoya disease” OR “Leukoaraiosis” OR “leukodystrophy”
OR “CADASIL” OR “vascular deficit” OR “vascular disorder”
OR “cerebrovascular disorder” OR “cerebrovascular deficit”
OR “vascular” OR “cerebrovascular”) AND (“amplitude of
low-frequency fluctuations” OR “fractional amplitude of
low-frequency fluctuations”). All articles published up to and
including March 2021 were examined; thus, a total of 515 articles
were studied.

Inclusion and Exclusion Criteria
Criteria for inclusion were as follows: (1) The patients met the
diagnostic criteria for aMCI or vMCI; (2) the patients were
compared with HCs for ALFF/fALFF; (3) information on three-
dimensional Talairach or Montreal Neurological Institute (MNI)
coordinates was reported; (4) the study was based on rs-fMRI;
and (5) the research was written in English and published in a
peer-reviewed journal.

Criteria for exclusion were as follows: (1) The study was based
on other diseases, such as schizophrenia and epilepsy; (2) the
study was categorized as a case report or secondary literature
(e.g., systematic review and meta-analysis).

Data Extraction and Quality Assessment
The research results were screened independently by two authors
(Xulian Zhang and Chen Xue) according to the inclusion and
exclusion criteria. In case of disagreement, the reviewers (Xuan
Cao and Qinlging Huang) evaluated and made the final decision.
Firstly, we conducted a preliminary screening of the titles and
abstracts of the studies to evaluate whether they conformed to
the research content being explored. Secondly, for articles that
conformed to the research content or with content that could not
be determined according to the title and abstract, the full text was
reviewed for a more extensive assessment. Thirdly, the articles
obtained after preliminary screening were examined again to
assess whether they met the inclusion criteria. Finally, we cross-
checked the references of all the retrieval results to find the
missing studies.

Data Analysis Procedures
The results of that compared aMCI with HCs and vMCI with
HCs were divided into three groups according to decreased or
increased ALFF/fALFF values: aMCI increased ALFF/fALFF (n
= 377; 43 foci); aMCI decreased ALFF/fALFF (n = 351; 61 foci);
and vMCI decreased ALFF/fALFF (n= 136; 20 foci).

JAVA GingerALE Version 2.3.6 (http://www.brainmap.
org/ale) was used for meta-analysis free of charge and
for calculating the ALFF changes in amnestic and vMCI
compared to HCs based on the method of ALE. First, the
foci data recorded in the text file were imported into the
reading software (Eickhoff et al., 2012), and coordinates
in the Talairach space were converted into the MNI 152
standard space using the GingerALE converter foci tool.
Then, the threshold for using the error discovery rate
in the ALE map was set to p < 0.05 (Eickhoff et al.,
2012). Finally, the ALE map was overlaid into the MNI
152 template and viewed using the DPABI software
(http://rfmri.org/DPABI).

RESULTS

Search Results
After the preliminary screening of the retrieval results, 62 studies
were obtained, of which 21 were excluded because they focused
on other diseases ormeta-analysis, 14 were excluded because they
did not have an HC group or group comparison coordinates,
and 5 were excluded because they were not published in English.
Finally, 22 studies were included in the present meta-analysis
(Figure 1; Table 1).

Meta-Analysis Results
Abnormal ALFF/fALFF in aMCI

Compared with HCs, patients with aMCI showed increased
ALFF/fALFF in the bilateral PHG/Hip, right amygdala (AMYG),
right cerebellum anterior lobe (CAL), left middle temporal gyrus
(MTG), left cerebrum temporal lobe sub-gyral, left inferior
temporal gyrus (ITG), and left cerebrum limbic lobe uncus
(Table 2; Figure 2A). Patients with aMCI also showed decreased
ALFF/fALFF in the bilateral PCUN, bilateral cuneus (CUN), and
bilateral PCC (Table 2; Figure 2B).
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FIGURE 1 | Flowchart to identify the studies that are eligible for systematic review.

Abnormal ALFF/fALFF in vMCI

Compared with HC, patients with vMCI showed decreased
ALFF/fALFF in the bilateral CUN, left PCUN, left PCC, and right
cingulate gyrus (CG) (Table 2; Figure 3).

DISCUSSION

This study is the first meta-analysis to investigate the changes of
ALFF/fFALFF in aMCI and vMCI and further explore whether
these changes contribute to the diagnosis and differentiation
of the two diseases. Compared with HCs, we found that the
ALFF/fALFF values of both aMCI and vMCI were altered, which
was consistent with the findings of the previous studies (Xi et al.,
2013; Yin et al., 2014). In patients with aMCI, ALFF/fALFF
increased mainly in the bilateral PHG/Hip, right AMYG, right
CAL, left MTG, left cerebrum temporal lobe sub-gyral, left ITG,
and left cerebrum limbic lobe uncus, while these values decreased
mainly in the bilateral PCUN, bilateral CUN, and bilateral
cingulate cortex. However, we only found that the ALFF/fALFF
decreased in the left side of the bilateral CUN, the left PCC of
the PCUN, and the right CG in patients with vMCI, but no brain
regions with increased ALFF/fALFF values were found.

In this study, we found that, in aMCI compared to
HCs, the brain regions with increased ALFF/fALFF were
mainly concentrated in the limbic lobe, MTG, ITG, and
anterior cerebellar lobe, while the brain regions with decreased
ALFF/fALFF were mainly concentrated in the parietal lobe,
occipital lobe, and limbic lobe. A quantitative meta-analysis
found that patients with aMCI showed increased ALFF/fALFF
in the right CAL, right PCUN, right IPL, and left ITG, while
decreased ALFF/fALFF was found in the right PCUN and
PCC. These results are mostly consistent with our findings (Xu
et al., 2020). Meanwhile, increased ALFF/fALFF also occurred
in the right AMYG and right CAL within our meta-data. A
voxel-based morphometry meta-analysis found that the aMCI
group showed significant GM atrophy in the left AMYG and
right Hip, and these findings were highly consistent with the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset.
These abnormalities further confirmed that GM atrophy is
accompanied by local ALFF/fALFF abnormalities in patients
with aMCI (Zhang J. et al., 2021). However, different results
have been reported previously. Studies have revealed that
aMCI groups showed increased ALFF in the calcarine, right
cuneus, and bilateral PC/PCUN, and decreased ALFFs in the
left inferior frontal gyrus, superior temporal gyrus, and insula
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TABLE 1 | Demographic characteristics of the included studies.

Study Imaging

modality

N Age (SD) Gender

(male/female)

MMSE (SD) Group

contrasts

Foci

ALFF/fALFF IN THE aMCI PATIENTS

ALFF

Xi et al. (2013) rs-fMRI aMCI 18 67.39 (7.67) 8/10 25.16 (3.43) MCI > HC 2

HC 20 65.42 (5.75) 9/11 28.14 (1.84) MCI < HC 3

Cai et al. (2017) rs-fMRI aMCI 39 72.4 (5.01) 19/20 25.52 (2.88) MCI > HC 5

HC 38 73.92 (3.90) 19/19 29.28 (0.88) MCI < HC 7

Yin et al. (2014) rs-fMRI aMCI 11 66.6 (8.7) 2/9 24.6 (3.2) MCI > HC 2

HC 22 62.1 (8.1) 12/10 29.2 (1.1) MCI < HC 4

Li et al. (2014) rs-fMRI aMCI 17 67.0 (7.9) 9/8 25.6 (1.27) MCI > HC 5

HC 22 62.6 (5.8) 11/11 28.5 (1.1) MCI < HC 2

Ni et al. (2016) rs-fMRI aMCI 26 71 (9) 12/14 25 (1.48) MCI > HC 2

HC 28 70 (9) 17/11 29 (1.09) MCI < HC 5

Wang et al. (2011) rs-fMRI aMCI 16 69.38 (7.00) 7/9 26.50 (1.03) MCI > HC 0

HC 22 66.55 (7.67) 7/15 28.59 (0.59) MCI < HC 2

Zhuang et al. (2020) rs-fMRI aMCI 43 64.5 (5.64) 18/25 26.77 (1.66) MCI > HC 2

HC 29 66.79 (3.68) 7/22 28.71 (0.91) MCI < HC 0

Liang et al. (2014) rs-fMRI aMCI 53 73.2 (7.3) 22/31 27.1 (2.3) MCI > HC 1

HC 35 74.3 (5.9) 17/18 28.9 (1.6) MCI < HC 8

fALFF

Yang et al. (2020) rs-fMRI aMCI 52 68.06 (9.32) 26/26 24.52 (4.27) MCI > HC 2

HC 55 63.41 (7.97) 22/23 28.07 (2.14) MCI < HC 7

Liu et al. (2020) rs-fMRI aMCI 20 68.8 (11.2) 12/8 27.4 (1.66) MCI > HC 4

HC 22 72.7 (8.05) 9/13 28.3 (1.42) MCI < HC 4

Zhou et al. (2020) rs-fMRI aMCI 24 69.8 (6.2) 10/14 23.9 (3.6) MCI > HC 4

HC 32 67.9 (6.4) 14/18 28.0 (1.9) MCI < HC 0

Zhao et al. (2015) rs-fMRI aMCI 34 68.0 (7.6) 14/20 25.5 (1.6) MCI > HC 0

HC 34 66.9 (6.7) 18/16 29.2 (0.9) MCI < HC 2

Jing et al. (2012) rs-fMRI aMCI 10 78.42 (9.65) 5/5 – MCI > HC 2

HC 8 75.35 (6.45) 3/5 – MCI < HC 0

Li et al. (2017) rs-fMRI aMCI 27 67.44 (8.49) 13/14 23.52 (3.31) MCI > HC 0

HC 32 64.88 (7.54) 16/16 27.69 (1.67) MCI < HC 9

Yang et al. (2018) rs-fMRI aMCI 55 67.51 (9.62) 27/28 24.66 (4.20) MCI > HC 4

HC 57 63.77 (8.09) 22/35 28.14 (2.13) MCI < HC 8

ALFF IN THE vMCI PATIENTS

Ni et al. (2016) rs-fMRI vMCI 22 79 (6) 16/6 25 (1.48) MCI > HC 2

HC 28 70 (9) 17/11 29 (1.09) MCI < HC 2

Ding et al. (2015) rs-fMRI vMCI 11 63.09 (4.99) 6/5 – MCI > HC 4

HC 12 63.64 (5.35) 6/6 – MCI < HC 4

Li et al. (2015) rs-fMRI vMCI 28 67.9 (6.1) 16/12 27.89 (1.57) MCI > HC 3

HC 30 66.6 (4.6) 14/16 28.10 (1.73) MCI < HC 2

Wang J. et al. (2019) rs-fMRI vMCI 28 59.28 (6.12) 14/14 24.96 (1.48) MCI > HC 1

HC 28 58.35 (6.82) 13/15 29.46 (1.07) MCI < HC 1

Su et al. (2019) rs-fMRI vMCI 22 49.0 (14.2) 13/9 23.3 (6.3) MCI > HC 3

HC 44 48.5 (13.7) 26/18 28.6 (1.1) MCI < HC 1

Lei et al. (2014) rs-fMRI vMCI 11 40.2 (11.2) 4/7 19.6 (4.3) MCI > HC 15

HC 22 40.2 (7.2) 10/12 29.0 (1.2) MCI < HC 3

Ding et al. (2018) rs-fMRI vMCI 14 67.9 (8.7) 8/6 26.87 (0.32) MCI > HC 2

HC 15 65.8 (7.9) 7/8 28.51 (0.28) MCI < HC 7
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TABLE 2 | All clusters from the activation likelihood estimation (ALE) analysis.

Cluster Volume

(mm3)

MNI Anatomical regions Maximum

ALE value

Side BA

X Y Z

ALFF/fALFF IN THE aMCI PATIENTS

MCI > HC

1 12120 36 −36 −16 Parahippocampal Gyrus 0.009105647 Right 36

1 12120 30 −6 −26 Amygdala 0.008697757 Right –

1 12120 34 −12 −22 Parahippocampal Gyrus/Hippocampus 0.008655652 Right –

1 12120 42 −24 −24 Parahippocampal Gyrus 0.008040754 Right 36

1 12120 38 −20 −24 Parahippocampal Gyrus/Hippocampus 0.007865525 Right –

1 12120 36 −50 −18 Cerebellum Anterior Lobe 0.007794415 Right –

2 11160 −36 −10 −22 Parahippocampal Gyrus/Hippocampus 0.009343305 Left –

2 11160 −60 0 −24 Middle Temporal Gyrus 0.009123246 Left 21

2 11160 −50 −18 −16 Sub-Gyral 0.008646758 Left 21

2 11160 −62 −18 −24 Inferior Temporal Gyrus 0.008411912 Left 20

2 11160 −38 −14 −32 Uncus 0.007911957 Left 20

MCI < HC

1 23032 −10 −60 10 Cuneus 0.014755126 Left 30

1 23032 12 −66 28 Precuneus 0.011124825 Right 31

1 23032 −10 −74 48 Precuneus 0.010285008 Left 7

1 23032 18 −68 42 Precuneus 0.010156754 Right 7

1 23032 10 −72 22 Cuneus 0.00971911 Right 18

1 23032 18 −54 24 Posterior Cingulate 0.009503377 Right 31

1 23032 −14 −72 42 Precuneus 0.009484317 Left 7

1 23032 4 −58 24 Posterior Cingulate 0.009442661 Right 23

1 23032 −4 −52 14 Posterior Cingulate 0.009429278 Left 29

1 23032 10 −66 42 Precuneus 0.008669218 Right 7

1 23032 −6 −60 44 Precuneus 0.006714426 Left 7

1 23032 14 −52 44 Precuneus 0.00636507 Right 7

ALFF/fALFF IN THE vMCI PATIENTS

MCI < HC

1 17944 6 −81 30 Cuneus 0.008325707 Right 18

1 17944 −8 −80 42 Cuneus 0.008055744 Left 19

1 17944 0 −66 54 Precuneus 0.006901417 Left 7

1 17944 −2 −52 66 Precuneus 0.006225559 Left 7

2 16000 −4 −46 24 Posterior Cingulate 0.01040697 Left 30

2 16000 −4 −54 20 Posterior Cingulate 0.007187156 Left 30

2 16000 8 −50 32 Cingulate Gyrus 0.006430536 Right 31

(Liu et al., 2014; Zhuang et al., 2019). This may be due to the
frequency bands chosen (Slow-4 and Slow-5). An rs-fMRI study
showed abnormal ALFF/fALFF in the Slow-5 band of PCC/PCU
and PHG, and that several occipital regions were greater than
the Slow-4 band in patients with aMCI compared with age-
and sex-matched HCs. These abnormalities reflect the functional
differences between groups that rely on these frequency bands
(Han et al., 2011). In addition, some studies have found that
the PICALM rs541458 and TOMM40 gene polymorphisms can
regulate ALFF in elderly patients with aMCI (Liu et al., 2014;
Zhuang et al., 2019). From the above, we can see that changes
in ALFF/fALFF are the result of the combined action of many
factors. Although our results are broadly consistent with those of
most previous studies (Xi et al., 2013; Yin et al., 2014), there are

still some differences, which may be related to the influence of
multiple factors on ALFF/fALFF changes.

The limbic lobe mainly includes the hip, parahippocampal
gyrus, CG, and AMYG and is mainly involved in emotion
and motivation functions (Heimer and Van Hoesen, 2006).
Studies have shown that the hip and its parahippocampal gyrus
play an important role in memory function, which is mainly
related to information storage and episodic memory retrieval
(Xi et al., 2013). Heimer et al. found that the hip and CG
played a role in regulating emotional state and the AMYG was
mainly involved in the recognition of emotional meaning and
the generation of emotional state (Heimer and Van Hoesen,
2006). A meta-analysis by Davey et al. found that the MTG
is an important junction between the default mode network
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FIGURE 2 | (A) Brain regions showing increased ALFF/fALFF in patients with aMCI compared with HCs. (B) Brain regions showing decreased ALFF/fALFF in patients

with aMCI compared with HCs. aMCI, amnestic mild cognitive impairment; HCs, healthy controls; ALFF/fALFF, the amplitude of low-frequency fluctuation/fractional

amplitude of low-frequency fluctuation; MTG, middle temporal gyrus; ITG, inferior temporal gyrus; CAL, cerebellum anterior lobe; PHG, parahippocampal gyrus;

AMYG amygdala; PCUN, precuneus; CUN, cuneus; PCC, posterior cingulate; R, right; L, left.

FIGURE 3 | Brain regions showing decreased ALFF in patients with vMCI

compared with HCs. PCUN, precuneus; CUN, cuneus; PCC, posterior

cingulate; CG, cingulate gyrus R, right; L, left.

(DMN) and the multi-need network and is mainly involved in
semantic control, while the ITG is mainly involved in higher
cognitive functions such as language and vision (Davey et al.,
2016; Lin et al., 2020). The anterior cerebellum is known to be
involved in sensorimotor activity, but studies have also suggested
that it plays an important role in cognition and emotion
(Schmahmann, 2019). In addition, previous studies have found
that the PCUN/CUN is structurally and functionally connected
to the DMN, which may play a central role in the neural network
related to consciousness (Cavanna, 2007; Cunningham et al.,
2017; Su et al., 2019). Although the conclusions of studies on
ALFF have exhibited some inconsistency, a meta-analysis of rs-
fMRI studies using the seed-based mapping software package
revealed widespread aberrant regional spontaneous brain activity
in aMCI and a regression analysis found that the severity of

cognitive impairment in aMCI was negatively correlated with
increased ALFFs in the CUN/PCUN cortices. These results
were consistent with our meta-analysis results (Pan et al.,
2017). We also found a meta-analysis based on brain 18F-
fluorodeoxyglucose positron emission tomography (FDG-PET),
which found that the left PCC/PCUN was the most robust and
reliable metabolic altered brain region for metabolic alterations
in aMCI converted to AD. The hypometabolism in the left
PCC/PCNU and altered fMRImay serve as a potential biomarker
for AD and other forms of cognitive impairment (Ma et al., 2018;
Zhang Q. et al., 2021). These findings support our meta-analysis
results that found that these aberrant regions may be regarded as
early neuroimaging biomarkers for aMCI (Lau et al., 2016).

Our study found that, compared with HCs, vMCI showed
no significant difference in ALFF/fALFF increased brain regions,
while the decreased brain regions were the bilateral CUN, left
PCUN, left PCC, and right CG. These brain areas are essentially
the same as those that were decreased in patients with aMCI.
Previous researchers have also found consistent results based
on rs-fMRI in vMCI. A study on leukoaraiosis (LA) divided
LA patients into two groups of LA-vMCI and LA with vascular
dementia (LA-VaD). The ANOVA statistical analysis showed
the predominant and widespread differences of ALFF in the
PCC/PCUN and the right ITG for LA patients compared with the
HCs. In particular, ALFF was found to be significantly decreased
in the PCC/PCUN and increased in the temporal regions for
LA-VaD patients, while the LA-vMCI group showed significantly
increased ALFFs in the ITG compared to the HCs and the LA-
VaD group. Furthermore, the results revealed that decreased
executive functions were correlated with altered ALFF in the left
PCUN (Wang J. et al., 2019). In addition, studies have shown that
CG is related to cognitive processes and behaviors, which may be
the reason why vMCI is mainly shown as decreased processing
speed and executive ability (Vasquez and Zakzanis, 2015; Apps
et al., 2016). In view of our meta-analysis results between aMCI
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and vMCI groups, we found that decreased ALFF/fALFF in the
PCC/PCUN and CG both occurred in the two groups. Our
results are consistent with the aforementioned meta-analysis,
whichmay indicate that theremay be some similarity in cognitive
impairment caused by different brain etiologies.

However, decreased ALFF/fALFF in the PCUN/CUN and CG
may present a decompensated stage of cognitive impairment in
aMCI and vMCI, and this may contribute to the understanding
of the pathophysiology and interconnectivity of disparate
cognitive processes. Patients with aMCI not only displayed
decreased ALFF/fALFFs in several different brain regions but also
demonstrated increased ALFF/fALFFs in other brain regions.
Meanwhile, we could not achieve satisfactory results regarding
the increased ALFF/fALFF in vMCI even after we increased the
statistical threshold. Through careful observation, we found that
all the included studies on vMCI had brain regions with increased
ALFF/fALFF, but there were different opinions on the specific
brain regions with increased ALFF/fALFF. We speculated that
the inclusion criteria of vMCI and the frequency bands selected
in the studies might be related. This may explain the absence of
elevated brain regions found in patients with vMCI. Although
ALFF/fALFF abnormalities may depend on different frequency
bands, these increased ALFF/fALFF in patients with aMCI may
still indicate a compensatory mechanism in the early stage of
cognitive impairment.

LIMITATIONS

The limitations of thismeta-analysismainly include the following
points. Firstly, different studies in the included literature used

different criteria to distinguish vMCI from HCs; thus, there
is no strict unified standard yet. This may be because the

concept of vMCI was only proposed in recent years, and previous
studies had inconsistent statements on the disease. Secondly,
our meta-analysis was based on a whole-brain analysis, without
specific analysis of the various networks in the brain. Finally,
although some brain regions of aMCI and vMCI were found
to be different from those of HCs, we did not have enough
evidence to indicate which brain regions that ALFF/fALFF
changes are the early neuroimaging biomarkers of aMCI and
vMCI. But finding them is going to be an important part of our
future work.

CONCLUSIONS

This study showed that aMCI and vMCI had different
ALFF/fALFF changes compared with HCs. Taken
together, our findings provide novel insights into the
pathophysiological mechanisms of aMCI and vMCI and
may be helpful to distinguish aMCI from vMCI for early
clinical interventions.
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The natural history of Alzheimer’s Disease (AD) includes significant alterations in
the human connectome, and this disconnection results in the dementia of AD.
The organizing principle of our research project is the idea that the expression of
cognitive dysfunction in the elderly is the result of two independent processes — the
neuropathology associated with AD, and second the neuropathological changes of
cerebrovascular disease. Synaptic loss, senile plaques, and neurofibrillary tangles are
the functional and diagnostic hallmarks of AD, but it is the structural changes as a
consequence of vascular disease that reduce brain reserve and compensation, resulting
in an earlier expression of the clinical dementia syndrome. This work is being completed
under the auspices of the Human Connectome Project (HCP). We have achieved
an equal representation of Black individuals (vs. White individuals) and enrolled 60%
Women. Each of the participants contributes demographic, behavioral and laboratory
data. We acquire data relative to vascular risk, and the participants also undergo in vivo
amyloid imaging, and magnetoencephalography (MEG). All of the data are publicly
available under the HCP guidelines using the Connectome Coordinating Facility and the
NIMH Data Archive. Locally, we use these data to address specific questions related to
structure, function, AD, aging and vascular disease in multi-modality studies leveraging
the differential advantages of magnetic resonance imaging (MRI), functional magnetic
resonance imaging (fMRI), MEG, and in vivo beta amyloid imaging.
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INTRODUCTION

The natural history of Alzheimer’s Disease (AD) includes
significant alterations in the human connectome, and this
disconnection results in the dementia of the Alzheimer’s type
(DAT). Data from structural and functional magnetic resonance
imaging (MRI) (Dai and He, 2014; Prescott et al., 2014), as well
as magnetoencephalopathy (MEG) (Lopez-Sanz et al., 2019) and
electroencephalography (Maestu et al., 2019; Babiloni et al., 2020)
all demonstrate significant changes in neural networks even prior
to the onset of clinical dementia. While such changes are not
explicit in the popular A/T/N (amyloid/tau/neurodegeneration)
model of AD (Jack et al., 2016), they appear to be an early
consequence of the accumulation of beta amyloid (Busche and
Konnerth, 2016; Nakamura et al., 2017), and thus may be an early
warning sign of impending neurodegeneration. Indeed, models
of the natural history of AD that propose that the loss of synapses
is one of the first pathological stages of AD (Selkoe, 2002), imply
changes in the connectome.

In 2016 the University of Pittsburgh was awarded funds by
the National Institute on Aging under the Connectomes Related
to Human Disease1 of the Human Connectome Project.2 Our
project is organized around the idea that the natural history of AD
is affected by multiple independent factors (Ewers et al., 2011),
and that the expression of cognitive dysfunction is the result
of independent processes including AD and vascular-related
neuropathology. Here we describe the general organization of the
Connectomics in Brain Aging and Dementia project, the sampling
frame, a brain imaging protocols, and the behavioral/cognitive
data that were acquired as part of the study. All of the study data
are currently being uploaded to the Connectome Coordination
Facility3 and the NIMH National Data Archive.4

To accomplish the study goals, we acquired
neuropsychological data, as well as brain structural and
functional (functional MRI, MEG) imaging, and positron
emission tomography (PET) imaging of in vivo of brain amyloid
with Pittsburgh Compound B (PET-PiB). We used different
measures of brain function because fMRI and MEG rely on
fundamentally different biological processes to generate “signal”
(Tsvetanov et al., 2015), and this has the potential to provide
critical information about the uncoupling of the neural and
vascular components in AD (and possibly in normal aging)
(Zlokovic, 2011). Because the MEG signal is derived from
post-synaptic currents, and fMRI signal also includes a vascular
response, they may expose different sources of the disconnection
(i.e., degeneration vs. vascular). We also acquire a direct measure
of cerebrovascular function – an MRI-based measure of cerebral
blood flow, as well as a direct measure of AD pathology using
in vivo amyloid imaging. These data provide the opportunity to
examine the relationship between amyloid deposition and local
and distant connectivity (Zhou et al., 2015) among individuals
with and without cognitive impairment.

1https://grants.nih.gov/grants/guide/pa-files/par-14-281.html
2https://en.wikipedia.org/wiki/Human_Connectome_Project
3https://www.humanconnectome.org/
4https://nda.nih.gov/

METHODS

Study Design
This is a longitudinal, community-based study of brain structural
and functional connectivity among cognitively normal and
cognitively impaired individuals aged 50–89 years.

Recruitment Sources
There are currently two primary portals of entry into the
study: the University of Pittsburgh Alzheimer’s Disease Research
Center5 and the Pitt +Me web portal (primarily to recruit Black
individuals and Whites without college education).6 Additional
individuals were identified through active links with the Heart
SCORE Study (Bambs et al., 2011), the Long Life Family Study
(Newman et al., 2011), and by word of mouth.

Study Protocol
All study participants are tested/scanned over three days. On
Day One, all study enrollees complete the informed consent
process and the intake forms. They are then escorted to the MR
Research Center (MRRC) and where they complete the two fMRI
tasks (motor, working memory), and the structural imaging.
Following a break, the individuals complete the behavioral tests
that are not components of the NIH Toolbox. On Day Two,
the participants undergo a brief exam and fasting blood tests.
They are then taken back to the MRRC where they undergo
diffusion imaging, task free fMRI and the language/math task
fMRI; they then complete all the NIH Toolbox tests. On Day
Three the participants undergo MEG and PET-PiB scanning; this
is scheduled approximately 1 week after the last MRI scanning
session (to avoid any interference of the MRI on the MEG
data). The participants are escorted to the Center for Advanced
Brain Magnetic Source Imaging7 where they are prepared for the
MEG scan, and complete task training. Once in the magnetically
shielded room, the individuals complete task free MEG, and one
task MEG (working memory). Individuals will then take for a
short break and for the placement of the electrodes for the motor
stimulation; then they will complete the Language/Math and
Motor MEG task scans. Following a break for either a snack or
lunch, the participants are escorted to the UPMC PET Facility
for their PiB scan.

Diagnostic Evaluation
Each participant undergoes a brief neuropsychological test
battery for group classification purposes. The test battery
is based on that of the ADRC and includes the Montreal
Cognitive Assessment (MoCA) (Nasreddine et al., 2005), verbal
fluency, a 30-item visual naming test (Saxton et al., 2000),
Trailmaking (Reitan, 1958; Reitan and Wolfson, 1994), verbal
free recall (Welsh et al., 1991, 1994), and the Rey-Osterreith
Complex Figure (Rey, 1941). Classification decisions were made
independently by JTB, and BES and any differences were resolved

5https://www.adrc.pitt.edu/
6https://pittplusme.org/studyarms/publicdetails?guid=abdb4de3-0e00-49e6-
b0a0-a3ca2d6e7c2a
7http://www.neurology.upmc.edu/cabmsi/

Frontiers in Aging Neuroscience | www.frontiersin.org 2 October 2021 | Volume 13 | Article 669490283

https://grants.nih.gov/grants/guide/pa-files/par-14-281.html
https://en.wikipedia.org/wiki/Human_Connectome_Project
https://www.humanconnectome.org/
https://nda.nih.gov/
https://www.adrc.pitt.edu/
https://pittplusme.org/studyarms/publicdetails?guid=abdb4de3-0e00-49e6-b0a0-a3ca2d6e7c2a
https://pittplusme.org/studyarms/publicdetails?guid=abdb4de3-0e00-49e6-b0a0-a3ca2d6e7c2a
http://www.neurology.upmc.edu/cabmsi/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-669490 October 7, 2021 Time: 11:15 # 3

Cohen et al. Brain Aging and Dementia

in a group discussion. We use the ADRC classification scheme
(Lopez et al., 2000) for AD, MCI (both amnestic and non-
amnestic), and Subjective Cognitive Complaints (SCC).

Neuropsychological Tests and Questionnaires
The individual tests and questionnaires that serve as
outcome variables include items from the NIH Toolbox,8

the Promis battery,9 and additional paper-and-pencil tests
(see Supplementary Tables 1–3). The questionnaires cover
symptomatology, personality, diet, and exercise.

Brain Imaging
Magnetic Resonance Imaging Scanning
We use Siemens Prisma 3-Tesla 64-channel systems equipped
with Connectome level gradients operating at 80mT/m. They are
equipped with fMRI presentation systems including E-Prime, a
MR compatible video projector, and Celeritas response gloves.

The MRI scanning is completed in two 90-min sessions
over two days. The scan sequences include: T1-weighted MP-
RAGE, T2-weighted SPACE image, FLAIR, susceptibility
weighted imaging, diffusion tensor imaging, task-free
functional MRI, task-based fMRI, and arterial spin labeling
(see Supplementary Table 4).

The tasks used were those described for the HCP and, with one
exception, used the stimuli provided by the HCP; the exception
was the N-back task. For that task all of the original photographs
of faces were of White individuals; we substituted photos of Black
individuals so that half of all of the N-back trials used White faces,
and half Black faces. The same race was used for all of the stimuli
within a trial (i.e., race could not be used to select responses).

All the MRI data are processed locally through the HCP
pipeline, as modified to work in the local environment. The raw
data are stored on an XNAT server10 and pushed to a receiving
server at Washington University in St. Louis for processing by
the Connectome Coordination Facility and eventual upload to
the on-line, public HCP database.

Magnetoencephalopathy Recording
Magnetoencephalography (MEG) studies are completed on an
Elekta-Neuromag Vectorview 306 MEG system. The whole-scalp
neuromagnetic measurement system uses 102 triple sensors –
102 magnetometers and 204 planar gradiometers – in a
helmet-shaped array. The locations of three cardinal anatomical
landmarks (nasion, and two preauricular points) and of four
head localization coils are digitized prior to each MEG study
using a 3D-digitizer (ISOTRAK; Polhemus, Inc., Colchester VT)
to define the subject-specific Cartesian head coordinate system.
30–50 anatomical points are digitized on the head surface to
provide for more accurate co-registration of the MEG data with
the reconstructed volumetric MR image. Eye movements are
measured and recorded simultaneously with the MEG. The MEG
sensor unit, the floor-mounted gantry, the subject chair and bed,
together with the patient audio-visual monitoring and stimulus
delivery systems are contained in a magnetically shielded room.

8http://www.healthmeasures.net/explore-measurement-systems/nih-toolbox
9http://www.healthmeasures.net/explore-measurement-systems/promis
10https://www.xnat.org/

Once a subject is comfortably positioned in the MEG machine,
a short electrical signal is sent to the head coils enabling their
localization with respect to the MEG sensor array. The MEG data
are acquired at a sampling rate of 1 kHz, with on-line filtering of
0.10–330 Hz. The acquisition includes two memory tasks, as well
as 10 min of “resting state” data – 5 min with eyes open followed
by 5 min with eyes closed. At the end of the scan, we collect 2 min
of “empty room” data to assess the validity of any signal in the
test conditions.

Recordings were filtered offline using a tempo-spatial filtering
algorithm (tSSS, correlation window 0.9, time window 10 s)
(Taulu and Simola, 2006) to eliminate magnetic noise originating
outside the head and to compensate for head movements.

The raw data are stored on an XNAT server and are pushed to
the NDA for eventual inclusion in the study database (C3159).

Positron Emission Tomography Amyloid Imaging
The PET amyloid tracer, Pittsburgh Compound B (PiB) is
synthesized by a simplified radiosynthetic method based on the
captive solvent method (Wilson et al., 2000; Price et al., 2005).
High specific activity (> 0.50 Ci/µmol at time of injection) PiB
(15 mCi) is injected over 20 s and the participant then relaxes
quietly in a chair for ∼25 min, after which they are positioned in
the scanner. A windowed transmission scan (10 min) is acquired
for attenuation correction, followed by a 30 min PiB PET study
(6× 300 s frames).

The Siemens/CTI ECAT HR + scanner gantry is equipped
with a Neuro-insert (CTI PET Systems) to reduce the
contribution of scattered photon events (Weinhard, 1998).
Positron emission tomography data are reconstructed
using filtered back-projection (Fourier rebinning and 2D
backprojection with Hann filter: kernel FWHM = 3 mm). Data
are corrected for photon attenuation, scatter (Watson et al.,
1997), and radioactive decay. The final reconstructed PET image
resolution is ∼ 6 mm (transverse and axial) based on in-house
point source measurements.

The raw data are stored on an XNAT server and are pushed to
the NDA for inclusion in the study database (C3159). The data
include the dynamic images as well as a single SUV image.

Imaging Data Processing (Local)
All the MRI data are pushed to the HCP CCF XNAT server where
they are processed using standard quality control measures, and
analysis via the HCP Pipeline. The processed data are made
available by the CCF. The MEG and PET data are saved to the
NIMH Data Archive as.FIF files (MEG) and DICOM images
(PET SUV images). What follows below is the description of the
local processing of these data.

Magnetic Resonance Imaging Structural Image Processing
We briefly describe here the HCP Minimal Processing Pipelines
that are implemented at the CCF prior to the release of the
data [See Glasser, et alia (Glasser et al., 2013) for details]. There
are three main components to the structural data processing. In
the first steps, the goal is to produce a “native” structural space
for each subject, align the T1 and T2 images, perform a bias
field correction, and co-register the structural volumes into MNI
space. The second component which uses FreeSurfer extensively,
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segments these volumes into predefined subcortical and cortical
regions. It also reconstructs cortical surfaces and performs the
standard surface registration to the FreeSurfer atlas. Finally, in
the third step all the NIFTI and GIFTI surface files are created
that can then be used in the Connectome Workbench.

In addition, we also process all the MP-RAGE data through
Computational Anatomy Toolbox (CAT12) for SPM.11 This
process provides the basis for a range of morphological analysis
methods, including voxel-based morphometry, surface-based
morphometry, deformation-based morphometry, and region- or
label-based morphometry.

Positron Emission Tomography Processing
The PET data are processed using PMOD12 and Freesurfer
software packages. Correction for subject motion during the
multi-frame PET scan is performed using frame-to-frame
registration procedure. The PET data are averaged to generate
images that correspond to the 50–70 min post-injection uptake.
The anatomical T1-weighted MR image is reoriented along the
anterior-posterior commissure and the averaged PET images are
co-registered to the reoriented MR image. Freesurfer software is
used for MR bias field correction, automated ROI parcellation
and tissue segmentation. The Freesurfer ROI parcellations are
converted into an ROI template and ROI sampling of the
PET images is performed to include anterior cingulate, frontal
cortex, parietal, precuneus, lateral temporal cortex, primary
visual cortex, hippocampus, anterior ventral striatum, thalamus,
pons, and cerebellum.

Regional standardized uptake value (SUV) measures are
computed for PiB by normalizing tissue uptake to the injected
radioligand dose and body mass. Each regional SUV is
normalized to a reference ROI in the cerebellum to generate
the SUV ratio (SUVR). Cortical SUVRs were measured in
anterior cingulate cortex, the superior frontal cortex, orbital
frontal cortex, lateral temporal cortex, parietal lobe, precuneus,
and the anterior ventral striatum regions and averaged across
hemispheres. The volume-weighted average of these seven SUVR
values constituted the Global SUVR. The SUVR in each area
is compared to a region-specific cut-off determined by sparse
k-means clustering; those scores above the cut-off are considered
“positive”. If any of the regions was considered “PiB Positive,”
then the Global rating was set to positive (Cohen et al., 2013).

Magnetoencephalography Signal Processing
Ocular, muscular and jump artifacts are identified using an
automatic procedure from the Fieldtrip package (Oostenveld
et al., 2011). The remaining data are segmented into 4 s epochs
of artifact-free activity using only the magnetometer data (Garces
et al., 2017). An ICA-based procedure is used to remove the
electrocardiographic component.

Source Reconstruction. Artifact-free epochs are filtered between
2 and 40 Hz, to remove both low frequency noise and network
line artifact. The epochs are padded with 2 s of real signal from
both sides prior to the filtering to prevent edge effects inside
the data. The source model consists of 2459 sources placed in

11http://www.neuro.uni-jena.de/cat/
12http://www.pmod.com

a homogeneous grid of 1 cm in MNI template, then linearly
transformed to subject space by warping the subject T1-weighted
MRI into the MNI template. The lead field is calculated using a
single shell (the brain-skull interface) generated from the T1 MRI
using Fieldtrip13 and a modified spherical solution (Nolte, 2003).
A Linearly Constrained Minimum Variance beamformer (Van
Veen et al., 1997) is used to obtain the source time series by using
the computed lead field and building the beamforming filter with
the epoch-averaged covariance matrix and a regularization factor
of 5% of the average channel power.

Spectral Analysis. The estimated spatial filters are used to
reconstruct the source-space time series for each epoch and
source location. MEG power spectra are calculated between 2 and
40 Hz for every clean epoch using a Hann taper, with 0.25 Hz
steps. The resulting spectra for each trial are averaged to build the
final spectrum for each source. The obtained power is normalized
with the overall power in Rey (1941), Reitan (1958), Welsh et al.
(1991, 1994), Reitan and Wolfson (1994), Van Veen et al. (1997),
Watson et al. (1997), Weinhard (1998), Lopez et al. (2000), Saxton
et al. (2000), Wilson et al. (2000), Selkoe (2002), Nolte (2003),
Nasreddine et al. (2005), Price et al. (2005), Rosano et al. (2005),
Schinka et al. (2005), Taulu and Simola (2006), Erickson et al.
(2010, 2013), Bambs et al. (2011), Ewers et al. (2011), Newman
et al. (2011), Oostenveld et al. (2011), Zlokovic (2011), Cohen
et al. (2013), Glasser et al. (2013), Lambert et al. (2013), Prescott
et al. (2014), Hughes et al. (2015), Tsvetanov et al. (2015), Zhou
et al. (2015), Busche and Konnerth (2016), Jack et al. (2016),
Garces et al. (2017), Nakamura et al. (2017), Lopez-Sanz et al.
(2019), Maestu et al. (2019), and Babiloni et al. (2020) Hz. The
normalized spectra of all the sources in each brain lobe were
averaged, obtaining one value per frequency step, brain lobe and
subject. Last, we calculated the relative power per lobe in each of
the standard frequency bands: Delta (2–4 HZ), Theta (4–8 Hz),
Alpha (8–12 Hz), Beta (12–30 Hz), and Gamma (30–40 Hz).

Genotyping
We are genotyping each study participant for 21 previously
identified susceptibility genes (Lambert et al., 2013)
including APOE∗4 (see Supplementary Table 5). The genetic
information is also uploaded to the NDA but requires special
permissions for access.

Measures Related to Risk/Protection From Cognitive
Impairment
Each of the study subjects provides additional data related to
risk for and protection from cognitive impairment based on
studies from our prior research. With regard to exercise and
motor function, each subject wears an activity monitor (Erickson
et al., 2010, 2013) for five days, and we query them about the
amount of walking per week, estimate the number of kilocalories
burned per week, and measure gait speed (Rosano et al., 2005)
(in addition to the motor tasks used by the NIH Toolbox). Each
participant completes the Florida Cognitive Activities scale to
obtain a measure of activities that might affect cognitive and brain
health (Schinka et al., 2005; Hughes et al., 2015).

13http://surfer.nmr.mgh.harvard.edu
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On Day Two, we measure blood pressure, height, weight,
and waist-hip ratio (Mukamal et al., 2003). Laboratory measures
include a fasting lipid profile (Wong et al., 2010), cystatin-
c, homocysteine (Longstreth et al., 2004), and inflammatory
markers (Tracy et al., 1997; Fornage et al., 2008; Braskie et al.,
2014).

Quality Control/Assurance Procedures
Quality Control
Magnetic Resonance Imaging Scanner. The MRRC has QC/QA
procedures and American College of Radiology certification in
place for all scanners. These include daily signal stability scans for
echo planar imaging (1% maximum RMS over a continuous 30-
min acquisition with a 64 × 64 matrix size) and daily signal-to-
noise measurements with the standard RF head coil. In addition
to the daily QC testing of the MRI scanner, each imaging protocol
is examined visually prior to submitting it to the local data
archive. The scans are checked immediately by a member of the
Imaging Team and repeated if necessary.

Positron Emission Tomography Scanner. QC/QA procedures are
run according to the University of Pittsburgh PET Facility
Standard Operating Procedures HR + Quality Assurance Task
Schedule. The “Daily QC” protocol runs a scan that is compared
to the last standard that was written into the database. That is, the
standard that was written by the Norm 2D and ECF (Customer)
protocol. The resulting deviation between scans must be less than
2.5. The protocol uses the internal rod sources of the gantry, so
no phantoms are used.

Magnetoencephalography Scanner. The operating status of
the Elekta NeuroMag system is tested daily. This includes
determining that there is a sufficient level of liquid helium,
calibrating and tuning the sensors, determining the proper
functioning of the magnetic shielding producing a sufficiently
low ambient magnetic interference level.

Neuropsychological Testing. Clinical Team Leader Dr. Snitz trains
the staff who are responsible for administering and/or scoring
questionnaires or paper-and-pencil tests as she does within the
ADRC.

Quality Assurance
Magnetic Resonance Imaging Scanner. We use the ADNI
phantom as a reference tool for our structural and functional
images.

Positron Emission Tomography Scanner. The 68Ge phantom is
run at on a weekly basis to check for changes in the scanner
calibration or changes in uniformity. Four times each year the
following procedures are performed in order: Full ASIC Bucket
Setup; System Normalization; Daily QC; and, Scanner/Well
Counter Cross Calibration.

Magnetoencephalography Scanner. Prior to and after every scan
we record 2 min of empty room data to measure ambient
magnetic noise. We complete a simple spectral analysis and then
save the raw data and spectra. This allows for monitoring the
noise level and system status over time to help identify changes
in the background environment.

Neuropsychological Testing. Dr. Snitz reviews the scoring of all
questionnaires and paper-and-pencil tests. Every six months a
sample of ten protocols will be “double scored” to ensure inter-
rater reliability. Five of these protocols will be repeated annually
to check for scoring drift.

PRELIMINARY RESULTS

The data acquired through this protocol are and will continue
to be uploaded to the CCF and NDA. However, the team has
completed some initial analyses to help to better explicate the
participants who had enrolled in the study by March 31, 2020.
The data provides critical information about the relationship
between the breakdown in functional and structural connectivity
and the expression of cognitive impairment along the AD-
pathology continuum. Because of our unique sampling frame,
we have data from participants who are less likely to enroll in
biomedical research studies, and this has revealed several aspects
of the normal/pathological aging spectrum that were previously
under-appreciated.

The study was reviewed and approved by the University of
Pittsburgh Human Research Protection Office. All participants
signed written statements of Informed Consent prior to initiation
of any research procedures.

Subjects
A total of 472 individuals inquired about the study and of these,
208 either chose not to enroll or failed the initial screening
questions related to MR compatibility (e.g., metal implants) or
medical history (e.g., clinical stroke). Twenty-seven individuals
were excluded after having signed an informed consent form; as
of 31 March 2020, 227 individuals had enrolled in the study.

Of these participants, 13 had been diagnosed with DAT;
these individuals are not described in this report. Sixty-seven
study participants (31%) entered via the ADRC; 97 (45%) came
through Pitt + Me, and 27 (13%) were volunteers from the
community. Twenty-one participants (10%) entered through
HeartScore or the LLFS.

We compared the characteristics of the participants initially
classified as having normal cognition to those with some degree
of impairment. There were two subgroups among the Cognitively
Normal participants: those who reported no limitations in
their cognition and those who reported significant concerns
[Subjective Cognitive Complaints (SCC)]. There were also two
subgroups among the cognitively impaired participants: those
who reported no concerns or loss of abilities [Impaired Without
Complaints (IWOC)], and those who reported loss of abilities
(i.e., MCI) (see Tables 1–3).

The proportion of Black individuals was greater within the
cognitively impaired group, as was the proportion reporting
being left-handed. As would be expected, the Crystallized
and Fluid Intelligence measures from the NIH Toolbox were
significantly lower among the impaired participants.

The two subgroups of individuals who were cognitively
normal did not differ in terms of age, years of education,
distribution of men and women, race, or handedness (see
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TABLE 1 | Characteristics of study participants as a function of initial classification.

Study groups Effect size1

Normal
cognition

Impaired
cognition

Number 121 93

Age 65.6 (8.0) 62.8 (9.7) 0.03*

Education 16.0 (3.1) 13.9 (2.8) 0.13*

Sex [Percent (N) Male] 30.6 (37) 30.4 (32) 0.04

Race [Percent (N) Caucasian] 59.5 (72) 34.4 (32) 0.29*

Handedness [Percent (N) Right] 95.7 (112) 90.0 (81) 0.11*

APOE*4 Present [Percent(N)] 26.1 (29) 34.9 (30) 0.10

Montreal Cognitive Assessment 26.5 (2.3) 23.4 (2.7) 0.44*

Wide Range Achievement Test – 4 63.8 (5.1) 59.1 (7.8) 0.18*

Walk Endurance – 2min distance 544.4 (177.2) 502.1 (87.0) 0.02

Gait Speed – 4meter walk – time 3.4 (0.5) 3.4 (0.7) 0.001

Oral reading 6.9 (3.6) 4.6 (2.8_ 0.12*

DCCS 29.3 (1.0) 28.2 (2.0) 0.13*

Flanker Inhibitory Control 19.9 (0.8) 19.9 (0.6) 0.00

Pattern Comparison 41.7 (6.3) 38.5 (7.6) 0.05*

Picture Sequence Memory 11.7 (6.8) 7.3 (4.7) 0.14*

Crystalized Cognition 113.5 (9.3) 105.0 (9.1) 0.21

Fluid Cognition 97.5 (9.1) 88.4 (9.2) 0.25*

Total Cognition 105.8 (8.8) 95.4 (7.4) 0.40*

Promis Abilities 30.8 (7.2) 28.1 (8.0) 0.03*

Promis Concerns 16.1 (7.3) 17.0 (7.5) 0.004

Life Satisfaction 19.9 (7.4) 20.1 (10.7) 0.000

Meaning 29.2 (15.3) 30.1 (14.7) 0.001

Positive Affect 18.8 (13.1) 21.2 (15.6) 0.01

Sadness 8.9 (2.4) 9.2 (2.2) 0.004

Self-Efficacy 19.6 (9.4) 18.5 (9.7) 0.003

1Cramer’s V for categorical data; Cohen’s f2 for continuous data. ∗p < 0.05.

Table 2). The MoCA scores were equivalent, but the individuals
in the SCC group performed more poorly on the Wide Range
Achievement Test. The SCC group reported more cognitive
concerns, and lower scores on the measure of Meaning and
Purpose. The latter indicates more hopelessness, less goal-
directedness, less optimism, and weaker feelings that their life is
“worthy”.14

Between the two subgroups of individuals with Impaired
Cognition those in the IWOC group were younger, less well
educated, and more likely to self-identify as Black; they had
decreased physical endurance (see Table 3). The IWOC group
reported significantly better cognitive abilities (higher scores) and
fewer cognitive concerns (lower scores) than the people in the
MCI group. They reported higher scores on the Meaning and
Purpose questions from the Promis battery.

The participants with MCI had significantly lower scores
on the Promis Cognitive Abilities questionnaire relative to the
healthy controls [t(132) = −4.39, d = 0.76], and reported
significantly more concerns about their cognition [t(132)= 3.77,
d= 0.66]. By contrast, the individuals in the IWOC group did not

14http://www.healthmeasures.net/index.php?option=com_instruments&view=
measure&id=847&Itemid=992

differ significantly on the Cognitive Abilities scale [t(125)= 1.20,
d = 0.21], and reported fewer concerns about their cognition
than did the healthy controls [t(125) = −2.54, d = 0.45].
Finally, when we compared the MCI and IWOC groups, we
found that those with MCI had lower scores on the Cognitive
Abilities questionnaire [t(75) = −5.00, d = 1.15], and reported
significantly more concerns [t(75) = 6.12, d = 1.41] about their
cognition than the IWOC group.

Structural Magnetic Resonance Imaging
Data
We calculated an index of the cortical thickness of critical
temporal lobe areas including the fusiform gyrus, entorhinal
cortex, and the inferior and middle temporal gyri (Jack et al.,
2017) using values taken from the standard output of the HCP
pipeline. We then classified each case as “normal” or “atrophic”
based on the standard cut-off of+ 2.70 mm (see Table 4).

The mean cortical thickness differed as a function of group
(One-Way Analysis of Variance) [F(3,182) = 3.18, f 2

= 0.05,
p < 0.05]. Furthermore, the rate of abnormal thickness differed
significantly between groups (X2

= 7.87, df = 3, V = 0.21,

TABLE 2 | Characteristics of cognitively normal participants by subgroup.

Study groups Effect size1

Healthy
controls

Subjective
complaints/

No impairments

Number 104 17

Age 65.3 (8.2) 68.6 (6.9) 0.02

Education 16.2 (2.9) 16.4 (4.7) 0.001

Sex [Percent (N) Male] 26.9 (28) 52.9 (9) 0.20*

Race [Percent (N) Caucasian] 56.7 (59) 76.5 (13) 0.15

Handedness [Percent(N) Right] 96.1 (99) 92.9 (13) 0.05

APOE*4 Present [Percent(N)] 27.2 (25) 30.8 (4) 0.01

Montreal Cognitive Assessment 26.4 (2.4) 26.9 (1.4) 0.008

Wide Range Achievement Test – 4 64.1 (5.0) 57.5 (2.1) 0.095

Walk Endurance – 2min distance 523.0 (82.7) 677.5 (419.0) 0.10*

Gait Speed – 4meter walk – time 3.4 (0.5) 3.3 (0.4) 0.003

Oral Reading Recognition 6.9 (3.8) 6.7 (2.4) 0.000

Dimensional Change Card Sort Test 29.4 (0.8) 28.7 (1.4) 0.07*

Flanker Inhibitory Control 19.9 (0.8) 20.0 (0.0) 0.002

Pattern Comparison 41.7 (6.1) 41.4 (7.6) 0.000

Picture Sequence Memory 11.8 (6.8) 11.2 (6.9) 0.001

Crystalized Cognition 113.3 (9.6) 114.4 (7.8) 0.002

Fluid Cognition 97.6 (8.9) 97.0 (9.9) 0.001

Total Cognition 105.8 (8.8) 106.0 (9.0) 0.000

Promis Abilities 31.5 (7.0) 27.3 (7.5) 0.04*

Promis Concerns 15.4 (7.0) 20.4 (8.1) 0.06*

General Life Satisfaction 20.0 (7.8) 19.1 (4.5) 0.002

Meaning and Purpose 30.4 (15.9) 21.9 (8.5) 0.04*

Positive Affect 19.3 (13.3) 15.8 (11.7) 0.009

Sadness 8.8 (2.4) 9.0 (2.5) 0.001

Self-Efficacy 20.0 (9.5) 17.2 (8.6) 0.011

1Cramer’s V or Cohen’s f2 ∗p < 0.05.
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TABLE 3 | Characteristics of cognitively impaired participants by subgroup.

Study groups Effect size1

Mild cognitive
impairment

Impaired/No
complaints

Number 52 41

Age 64.9 (10.4) 60.5 (8.0) 0.06*

Education 14.5 (2.7) 13.1 (2.7) 0.07*

Sex [Percent (N) Male] 28.9 (15) 41.5 (17) 0.13

Race [Percent (N) Caucasian] 48.1 (25) 17.1 (7) 0.32*

Handedness [Percent(N) Right] 92.0 (46) 87.5 (35) 0.08

APOE*4 Present [Percent(N)] 31.3 (15) 39.5 (15) 0.09

Montreal Cognitive Assessment 23.3 (2.6) 23.5 (3.0) 0.001

Wide Range Achievement Test – 4 60.9 (6.8) 56.1 (8.5) 0.10

Walk Endurance – 2min distance 481.9 (86.3) 528.2 (82.1) 0.08*

Gait Speed – 4meter walk – time 3.6 (0.7) 3.3 (0.6) 0.04

Oral Reading Recognition 4.9 (2.6) 4.1 (2.9) 0.02

Dimensional Change Card Sort Test 28.2 (2.0) 28.1 (2.1) 0.002

Flanker Inhibitory Control 19.9 (0.8) 20.0 (0.2) 0.01

Pattern Comparison 36.6 (8.3) 40.6 (6.3) 0.08

Picture Sequence Memory 7.1 (4.4) 7.6 (5.0) 0.003

Crystalized Cognition 106.6 (9.0) 103.2 (9.1) 0.04

Fluid Cognition 86.5 (9.2) 90.3 (8.9) 0.05

Total Cognition 95.5 (7.8) 95.3 (7.0) 0.000

Promis Abilities 24.7 (7.9) 32.6 (5.7) 0.32*

Promis Concerns 20.3 (7.5) 12.7 (4.6) 0.35*

General Life Satisfaction 19.6 (8.7) 20.7 (12.6) 0.003

Meaning and Purpose 26.5 (13.2) 34.1 (15.1) 0.07*

Positive Affect 18.1 (12.3) 24.7 (18.1) 0.05

Sadness 8.8 (2.1) 9.5 (2.4) 0.03

Self-Efficacy 17.0 (8.0) 20.2 (11.2) 0.03

1Cramer’s V or Cohen’s f2. ∗p < 0.05.

p< 0.05) with the controls and the IWOC having the lowest rates,
and the SCC and MCI groups having the highest.

Positron Emission Tomography
Pittsburgh Compound B Data
Positron emission tomography (PET) data were available from
176 of the individuals enrolled in the study. Table 4 shows the
data including the mean SUVR for each of the brain regions
used for determining amyloid deposition, as well as the global
rate of PiB positivity. There is a significant Main Effect of group
(One-Way ANOVA) for each of the seven regions of interest
(summed across each hemisphere). In addition, the rate of PiB
positivity was significantly different across all groups (chi-square
test). However, these effects were due to the lower-than-normal
SUVRs in each of the six brain regions for the 35 individuals in
the IWOC group compared to the healthy controls (all ds> 0.61)
and their low rate of PiB positivity (Odds Ratio = 14.0, 95%
CI = 1.8−110, Exact Test p = 0.002) compared to the controls.
Among the normal controls the rate of positivity was greater
among the White (51.4%) relative to the Black participants (4.5%;
OR= 32.2, 95% CI= 2.7−184; Exact Test p= 0.0003).

Amyloid/Neurodegeneration
Classification
We compared the rates of PiB retention and temporal lobe
atrophy as a function of the clinical classification (see Table 5).
There was a significant difference in the rates of biomarker
abnormality across groups (χ2

= 21.5, df = 9, V = 0.21,
p < 0.05). Fifty-eight percent of the normal controls were
biomarker negative, which is similar to the rates for the SCC
(53%) and MCI (49%) groups. By contrast, the IWOC group
was 74% biomarker negative. Among the participants with MCI,
29% had only temporal lobe atrophy, while 9.8% had only
PiB+ imaging.

Magnetoencephalopathy Summary Data
One hundred and eighty-six individuals contributed MEG data
that met all quality control standards. We examined the relative
power across all five MEG frequency bands in regions of interest
(ROI) extracted using the AAL templates (Tzourio-Mazoyer et al.,
2002). The repeated measures (band) Analysis of Covariance
(age) of temporal lobe power by subject group revealed that
the SCC group had elevated theta power compared to the other
study groups (see Figure 1A), and decreased beta power. There
was no significant association (chi-square tests) between elevated
theta power (> 75%tile of normal controls) and race, sex, and
APOE∗4 status. However, an ANCOVA of temporal lobe theta
power revealed a significant interaction between group (NC vs.
SCC) and PiB status (positive vs. negative) [F(1,64) = 9.11,
ξ 2
= 0.13]. As can be seen in Figure 1B, theta power in the

temporal lobe (adjusted for age) is similar in the normal controls
(PiB ±) and the PiB- SCC group; power is elevated only in the
PiB+ SCC participants.

DISCUSSION

The purpose of this report is to describe the creation of the
Connectomics of Brain Aging and Dementia study.15 The MRI
brain images are being uploaded to the CCF and the behavioral
and cognitive data, PET PiB scan regional SUVRs (and raw SUV
images), and the raw data from the MEG are being uploaded to
the NDA (ID C3159).

Study Advantages, Limitations, Possible
Pitfalls, and How to Counteract Them
When this project was initially proposed to the NIH, we specified
that the sample would consist of 50% women and 50% black
participants. We further proposed that the 50:50 splits be
maintained in each subject group. While we were able to achieve
this goal in our sample of healthy controls, some subgroups of
participants did not conform to these expectations which in fact
reveals much about the characteristics of those phenotypes. We
believe that the single biggest advantage of using data derived
from this study, and which will continue to be acquired and
deposited for public consumption, is the composition of the study

15https://www.humanconnectome.org/study/connectomics-brain-aging-and-
dementia
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TABLE 4 | Summary neuroimaging findings among four subject groups.

Groups Effect size 1

Healthy controls Subjective complaints Impaired without complaints Mild cognitive impairment

Number 96 17 39 46

Temporal Lobe Cortical Thickness 2 2.80 (0.24) 2.72 (0.37) 2.72 (0.27) 2.68 (0.28) 0.04

Grey Matter Atrophy [Percent (N)] 3 21.9 (21) 29.5 (5) 25.6 (10) 37.0 (17) 0.14

PiB SUVR 4,5,6

Ant. Cing. 1.29 (0.33) 1.45 (0.11) 1.12 (0.44) 1.29(0.36) 0.07*

Sup. Front. 1.22 (0.30) 1.36 (0.08) 1.08 (0.36) 1.22 (0.35) 0.07*

Orb. Front. 1.27 (0.30) 1.40 (0.09) 1.11 (0.43) 1.26 (0.36) 0.07*

Lat Temp. 1.18 (0.24) 1.31 (0.07) 1.06 (0.29) 1.18 (0.26) 0.08*

Parietal 1.24 (0.25) 1.35 (0.08) 1.09 (0.33) 1.22 (0.28) 0.08*

Precuneus 1.32 (0.34) 1.46 (0.09) 1.13 (0.42) 1.30 (0.37) 0.08*

Ant. Vent. Striatum 1.29 (0.20) 1.43 (0.12) 1.14 (0.33) 1.28 (0.31) 0.11*

PiB Positive [Percent (N)] 32.5 (26) 40.0 (6) 5.7 (2) 22.2 (10) 0.25*

1Cohen’s f2 for continuous variables; Cramer’s V for categorical data.
2Average of the cortical thickness values from the fusiform gyrus, entorhinal cortex, and the middle and inferior temporal lobe.
3Abnormal thickness < 2.70 mm (Jack et al., 2017).
4ANC – Anterior Cingulate Cortex; FRC – Frontal Cortex; LTC – Lateral Temporal Cortex; PAR – Parietal Cortex; PRC – Precuneus; AVS – Anterior Ventral Striatum.
5PiB SUVR Cut-off scores: Anterior Cingulate = 1.469; Anterior Ventral Striatum = 1.372; Superior Frontal = 1.333; Orbitofrontal = 1.387; Insula = 1.296; Lateral
Temporal = 1.278; Parietal = 1.344; Posterior Cingulate = 1.495; Precuneus = 1.508; Global = 1.346.
6Participants with PiB data: HC = 80, SCC = 15, IWOC = 35, MCI = 45.
∗p < 0.05.

TABLE 5 | Summary amyloid and atrophy findings among four subject [Percent(N) Within Group].

Groups

Healthy controls Subjective complaints Impaired without complaints Mild cognitive impairment

Number 74 15 34 41

No Abnormality 58.1 (43) 53.3 (8) 73.5 (25) 48.8 (20)

Amyloid Only 21.6 (16) 13.3 (2) 2.9 (1) 9.8 (4)

Atrophy Only 9.5 (7) 6.7 (1) 20.6 (7) 29.3 (12)

Amyloid and Atrophy 10.8 (8) 26.7 (4) 2.9 (1) 12.2 (5)

Cramer’s V = 0.21, p < 0.05.

sample. We found that by carefully tailoring our public face on
Pitt+Me we were able to recruit individuals across a wide range
of socioeconomic strata as well as a high rate of Black volunteers.
While many studies successfully enroll Black participants at a rate
consistent with the population distribution, we specifically chose
to oversample Blacks. The individuals that we ended up enrolling,
both White and Black, were frequently new to research, and often
had relatively low health-related knowledge. In our view, these
are the people who need to be enrolled in studies such as COBRA
in order to see the process of aging and neurodegeneration as it
exists in the broader community.

However, we learned several things about the execution of
the protocol that had not been self-evident prior to the study.
First, and perhaps most important, the research participants
require a great deal of “hands-on” care than the typical research
participant. In the end, each participant is assigned to a Research
Associate who is, in effect, a concierge. They escort the participant
around the medical center for the various procedures. They may
be an examiner or interviewer who sits with the participant
during neuropsychological testing or completion of healthcare

questionnaires. They may take the participant to the cafeteria
for lunch, or if time is short, purchase the lunch from the
hospital cafeteria. These are also the individuals who make
interval telephone calls to maintain the necessary contact with
the participants during follow-up. This means that we had
underestimated our need for support staff by as much as 50%.

We also learned that because many of these individuals were
new to research, many of the procedures that we use must be
explained to them in ways that differ from the more research-
experienced individuals we are more accustomed to working
with. For example, the PET procedures are explained in more
detail as the notion of injecting radioactive compounds (or
any other solution) is not universally accepted without good
explanation. To facilitate this process, we talk in terms of the
important changes that can occur in the brain with dementia,
and that we can take a picture of those changes using that
injected solution.

After our participants have completed their baseline
examinations, we send them a signed certificate of participation
accompanied by a color image of the surface of the brain using
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FIGURE 1 | (A) Estimated mean power in the five cortical regions adjusted for mean age of the group. The bars represent values for the Normal Controls, IWOC,
SCC, and MCI groups, respectively. (B) Estimated theta band power in the temporal lobes adjusted for mean age. The open bars are those individuals classified as
PiB−, and the cross-hatched bars are for those individuals who are PiB+.

the Freesurfer parcellations. Frequently, this results in our
getting telephone calls being asked to explain “what it means.”
One of the Investigators always returns these calls; it is critically
important to “give back” to the communities. We also attend

monthly gatherings at local Community Engagement Centers –
just being present increases our familiarity to the community.

We also found that it was important to pay close attention
to transportation needs. Many of our participants live in
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neighborhoods where public transportation is less than ideal
(e.g., two or more transfers needed for a 60-min one-way trip).
Consequently, we had to develop relationships with ridesharing
services to obtain the quality of service that we wanted for our
participants. Everyone is met at the door to the hospital by their
“concierge,” and from there escorted to all of the tasks that they
will do during the day. At the end of the day the ride is scheduled,
and the “concierge” takes the volunteer back to the lobby and
awaits the arrival of the car.

Finally, while all imaging researchers are familiar with the
problem of incidental findings, the quality of those findings
in a study such as this is different than that which we have
encountered in the past. Many of the individuals in the study
had limited healthcare resources which might have identified
potential problems; many participants do not have a regular
annual physical. However, we have also had instances of more
severe brain injury that was a consequence of the participants
living environment. One individual, for example, had suffered
a severe closed head injury, and the sequalae were evident
on the scan. However, there was no mention of this event
despite multiple opportunities during screening and interview.
The individual seemed surprised that spending more than three
days in the hospital, much of the time in coma, would result
in brain damage. This view is likely due in part due to lack of
awareness of health-related issues.

Comments on Preliminary Data
A significant proportion of the participants in this study have
never been involved in biomedical research. Thus, our sample
likely includes individuals who are typically under-represented
in academic research studies and may be more representative
of the population at-risk for cognitive impairment. This has
resulted in the identification of a group of study participants who
were cognitively impaired but had no complaints or concerns
about their cognitive abilities. Further, we found that the rate
of amyloid deposition among those individuals with cognitive
impairment (i.e., MCI and IWOC) was lower than expected
based on prior analyses (Wolk et al., 2009). Among the MCI
participants 4/10 individuals (40%) recruited from the ADRC
were amyloid positive, whereas only 1/16 among the individuals
(6%) recruited via Pitt + Me were amyloid positive (Odds
Ratio = 10.0, 95% Confidence Interval = 0.92 – 108, p = 0.055)
[cf., (Wolk et al., 2009)].

We had assumed when the project began that participants
recruited from the community would be, on average, cognitively
normal; the cognitively impaired participants (and those
with subjective complaints) would enroll through the ADRC.
However, experience revealed a more nuanced picture. The
group of individuals with impaired cognition, but who did
not complain of changes in their behavior or cognition
deserve special mention. The participants in this group were
predominantly Black (85%) which contrasts sharply with the
NC (41.7%) and SCC (14.3%) groups. Their performance on
the tests used for classification was equivalent to that of the
MCI participants, but without the complaints necessary for
that classification. Indeed, on average the IWOC participants
reported better cognitive abilities, and fewer cognitive concerns

than did the cognitively normal controls. The near absence of
PiB retention means that these individuals were not as yet,
on the AD pathology spectrum; although with a mean age
of 60 years, the amyloid cascade may not be well developed,
or perhaps other non-amyloid factors may be in play [e.g.,
(Selkoe, 2002)].

Given the age range of the IWOC group there is also a
high likelihood that these individuals (as well as other Black
participants in the study) are the children or grandchildren
of the people who migrated from the rural South to cities
like Pittsburgh. Growing up Black in a northern city in the
1950s and 1960s was likely associated with poorer educational
quality, poor access to medical care and health maintenance,
as well as a range of psychosocial consequences of explicit and
implicit discrimination. It may be that any racial inequities
in the development of cognitive impairments are driven
by pervasive institutionalized inequities that shape risk and
disadvantage individuals at multiple levels, including biological,
environmental, behavioral, sociocultural (Hill et al., 2015).
Although these factors have often been referred to as “modifiable
individual risk factors,” this term fails to recognize that individual
risk is influenced by racism and social determinants that
are outside of an individual’s control. At a population level,
Black communities experience racism and more adverse social
determinants of health, including negative work, living and
educational conditions, that can lead to long-term negative
biological consequences (Shonkoff et al., 2009; Braveman P. et al.,
2011; Braveman P.A. et al., 2011). Indeed, neighborhood-level
disadvantage was associated with an increased likelihood of AD
neuropathology at autopsy (Powell et al., 2020). While there
are established diagnostic hallmarks of AD, little attention has
been paid to the possibility that factors such as neighborhood
context may directly and indirectly impact brain changes that
alter the connectome, thus resulting in earlier expression of
the dementia. To date, little attention has been paid to the
possibility that early social structural and social determinants
may affect brain structure and function, alter the connectome,
and reduce brain reserve and compensation resulting in the
earlier expression of DAT and an apparent increased incidence
of dementia among Blacks [see also Wilkins et al., 2020]. Indeed,
there needs to be a paradigm shift in the field to focus on
collecting the contextual and environmental data that may help
disentangle apparent differences due to race; “analyzing findings
by race/ethnicity without appropriate contextual data could
lead to inaccurate, misleading, or stigmatizing conclusions that
may detract from the overall goals of diversity in research: to
enhance the accuracy, utility, and generalizability of scientific
evidence” (Wilkins et al., 2020). This view is supported by the
decades of research that argue that racial and socioeconomic
inequities are not the result of individual behavior or biological
factors but rather are due to the structures, institutional
practices, and policies which contribute to adverse outcomes
and susceptibilities (Fuller-Thomson et al., 2009; Nuru-Jeter
et al., 2009; Mendez et al., 2014a,b; Bailey et al., 2017;
Hardeman et al., 2018).

The data included in this project provides investigators
around the world with the opportunity to investigate
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the spectrum of aging and AD effects on the brain and
cognition using true-multimodal imaging, and detailed
cognitive/behavioral evaluations. Genetic analyses will be
completed starting at the end of 2020, and those restricted
data will be available directly from the study investigators.
Longitudinal follow-up of the individuals in the study is
underway, and there are plans to enrich the sample of pre-DAT
participants and continue follow-up. These data, combined with
the main HCP dataset, the HCP Lifespan and Aging datasets, and
the other CRHD project related to AD provide richest and most
comprehensive resource for the neurobiological study of AD and
related dementias.

CONCLUSION

The study has two unique characteristics. First, the data are
acquired using standard and standardized procedures that are
shared by other CRHD studies, including the HCP Lifespan
Study (Bookheimer et al., 2019). This provides an international,
accessible database for all investigators. Second, and more
important, are the characteristics of the study sample. We used
multiple portals of entry, including customized web sites that
allowed to achieve our goal of ∼50% Black participants, and
reaching people who were participating in their first research
study. This, we believe, at least partly explains why our measured
rates of AD pathology are lower than those in more typical
research samples [e.g., (Wolk et al., 2009)]. In addition, we
identified a group of participants whose test performance was
as poor as that of the MCI participants, but who reports few
concerns about their cognition [c.f., (Antinori et al., 2007)]; this
group is predominately Black.

This leads us to what we believe is the most important
implication of our data, and which is a weakness of the study
as currently described. Specifically, we, like many others, make
the mistake of “analyzing [our] findings by race/ethnicity without
appropriate contextual data [which] could lead to inaccurate,
misleading, or stigmatizing conclusions that may detract from
the overall goals of diversity in research: to enhance the accuracy,
utility, and generalizability of scientific evidence” (Wilkins et al.,
2020). Race is a socially determined construct that is not
biologically or genetically based (Cooper and David, 1986). In
addition to strong data suggesting there are no biologically
determined differences between races (Serre and Paabo, 2004),
defining race as a social construct has the advantage of capturing
the concept of racism more precisely (Jones, 2000). Racism is
thus better defined as a system that structures opportunity based
on race, providing unfair advantages and disadvantages based
on race.

There is still considerable disagreement on the factors
contributing to disparities in many AD- related outcomes, e.g.,
dementia onset and course. Much of this is likely due to
the focus on individual behavior or “lifestyle factors” without
consideration for the social, physical, and policy environments
that are inextricably linked to the individual and are key to
understanding health disparities (Cooper et al., 2015). Perhaps
a better way to place the factors related to AD and dementia
into the NIA Health Disparities Framework is to study the

interplay between social determinants of health, racism, and
AD and dementia (Hill et al., 2015). Aside from the more
direct effects racism on risk factors, we also believe that racism
may have the moderating effect of reducing the impact of the
positive social determinants of health (SDOH) (e.g., education,
access to health care) and increasing the impact of negative
SDOH (e.g., poverty, social isolation). Significant advances in
AD and dementia prevention and management will be made
as we accumulate more information SDOH and how racism
affects their relationship with resilience, diagnosis, prognosis, and
response to treatment.
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Despite strong evidence from animal models of Alzheimer’s disease (AD) supporting

aerobic exercise as a disease-modifying treatment for AD, human mechanistic studies

are limited with mixed findings. The objective of this pilot randomized controlled trial was

to examine the effects of 6-month aerobic exercise on hippocampal volume, temporal

meta-regions of interest (ROI) cortical thickness, white matter hyperintensity (WMH)

volume, and network failure quotient (NFQ), measured with MRI, in community-dwelling

older adults with AD dementia. Additionally, the relationships between 6- and 12-month

changes in MRI biomarkers and the AD Assessment Scale-Cognition (ADAS-Cog) were

examined. Sixty participants were randomized, but one was excluded because baseline

MRI failed quality control: 38 randomized to cycling and 21 to stretching. The intervention

was moderate-intensity cycling for 20–50 mins, three times a week for 6 months. Control

was low-intensity stretching. The study outcomes include hippocampal volume, temporal

meta-ROI cortical thickness, WMH volume, and NFQ. Outcomes were measured at

baseline, 6 months, and 12 months. The sample averaged 77.3 ± 6.3 years old with

15.6 ± 2.9 years of education and 53% men. Both groups experienced significant

declines over 6 months in hippocampal volume (2.64% in cycling vs. 2.89% in stretching)

and temporal meta-ROI cortical thickness (0.94 vs. 1.54%), and over 12 months in

hippocampal volume (4.47 vs. 3.84%) and temporal meta-ROI cortical thickness (2.27

vs. 1.79%). These declines did not differ between groups. WMH volume increased

significantly with the cycling group increasing less (10.9%) than stretching (24.5%) over

6 months (f = 4.47, p = 0.04) and over 12 months (12.1 vs. 27.6%, f = 5.88, p = 0.02).

NFQ did not change significantly over time. Pairwise correlational analyses showed a

significant negative correlation between 6-month changes in hippocampal volume and

ADAS-Cog (r = −0.34, p < 0.05). To conclude, aerobic exercise may reduce the

decline in hippocampal volume and temporal meta-ROI cortical thickness during the
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intervention period, but the effect sizes are likely to be very small and dose-dependent

and reverse once the intervention stops. Aerobic exercise is effective on slowing down

WMH progression but has no effect on NFQ. Hippocampal atrophy was associated with

cognitive decline during the intervention period.

Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT01954550.

Keywords: exercise, Alzheimer’s disease, dementia, imaging, MRI, hippocampal volume, white matter

hyperintensity

INTRODUCTION

Dementia affects 47 million people worldwide and is projected
to afflict 150 million by 2050 (International, 2016). Alzheimer’s
disease (AD) is the most common cause of dementia, accounting
for 60–80% of all dementia cases (Alzheimer’s Association, 2021).
No drugs can yet prevent, slow down, or cure AD, and the current
Food and Drug Administration (FDA)-approved treatments
don’t affect AD pathology (Matsunaga et al., 2019). Even when
targeting AD neuropathology of abnormal amyloid-beta (Aβ)
and tau [hyperphosphorylated tau (p-tau)], recent promising
drug trials continued to fail (Tolar et al., 2020). Reasons for
these failures are myriad and likely attributable to the facts that
these treatments did not address the multifactorial nature of AD
neuropathogenesis; the dominant amyloid hypothesis has limited
the investigations of other causative factors of AD; and reliance
on AD animal models for treatment discovery overly simplifies
the complex nature of human cognition, behaviors, emotions,
and disease chronicity (Banik et al., 2015). Hence, mechanistic
studies on and beyond Aβ and tau biomarkers in humans are
critical for developing disease-modifying treatments in AD.

Over the past two decades, aerobic exercise has emerged as a
potential disease-modifying treatment for AD. In AD-transgenic
animal models, aerobic exercise has been shown to favorably
modify the accumulation, degradation, and removal of Aβ and
p-tau as well as other abnormal processes occurring in AD
such as neuroinflammation (McGurran et al., 2019; da Costa
Daniele et al., 2020). On the molecular level, aerobic exercise was
found to stimulate the production and function of brain-derived
neurotrophic factors (BDNF). BDNF contributes to neurogenesis
(particularly in hippocampi), neuronal survival, and synaptic
plasticity and mediates memory improvement (Cotman and
Berchtold, 2007). Mechanistic studies of aerobic exercise
in humans are limited with mixed findings. Observational
studies showed that physical activity or exercise was positively
(Frederiksen et al., 2019a; Raichlen et al., 2019), not (Best
et al., 2015), or negatively (Wagner et al., 2015) associated with
hippocampal volume in cognitively normal adults. Self-reported
high-intensity physical activity was associated with lower tau in
the cerebrospinal fluid (CSF) among cognitively normal older
adults (Baker et al., 2012). Engagement in moderate, but not
light or vigorous, physical activity was associated with higher
CSF Aβ42 and lower CSF total tau and p-tau in asymptomatic
late-middle-aged adults at risk for AD (Law et al., 2018). High
level of self-reported physical activity was also associated with
lower levels of plasma Aβ (Brown et al., 2013), Positron Emission

Tomography-qualified Aβ (Liang et al., 2010; Head et al., 2012;
Okonkwo et al., 2014), and PET-quantified tau (Brown et al.,
2018) in cognitively intact older adults. In contrast, other
studies found no associations between physical activity and PET-
quantified in this population (de Souto Barreto et al., 2015) or
CSF Aβ (Brown et al., 2017). However, self-reported measures
of physical activity were prone to recall errors and biases due to
varied interpretations of physical activity levels.

Randomized controlled trials (RCTs) to establish the disease-
modifying effects of aerobic exercise are even more limited than
observational studies. Using MRI in cognitively normal older
adults, some studies reported that aerobic exercise increased
prefrontal lobe volume (Tamura et al., 2015), gray and white
matter volumes in the anterior cingulate (Colcombe et al.,
2006), and hippocampal volume (Erickson et al., 2011; Niemann
et al., 2014), but other studies showed no (Best et al., 2015) or
detrimental effects on brain and hippocampal volume (Wagner
et al., 2015). The latter study, however, was conducted with
young men only, had large between-participant variations in
hippocampal volume changes, and was a short intervention of 6
weeks (Wagner et al., 2015). In older women with mild cognitive
impairment (MCI), 6-month aerobic exercise was found to
significantly increase hippocampal volume (ten Brinke et al.,
2015). In older adults with MCI or mild AD dementia, 26-week
aerobic exercise reduced hippocampal atrophy (hippocampal
volume in the intervention group decreased 0.8% vs. 1.6% in
the control group) (Morris et al., 2017). In older adults with
mild-to-moderate AD dementia, 16-week aerobic exercise had
no effects on hippocampal volume (Frederiksen et al., 2018),
CSF Aβ (Jensen et al., 2016), PET-quantified Aβ (Frederiksen
et al., 2019b), and CSF tau (Jensen et al., 2017). Furthermore,
emerging findings suggest that aerobic exercise may improve
cortical thickness (Bae et al., 2020), functional connectivity (Boa
Sorte Silva et al., 2020), and white matter hyperintensity (WMH)
(Graff-Radford et al., 2019). Together, these findings suggest the
need to examine whether and how aerobic exercise may modify
limbic neurodegeneration in humans.

The objective of this pilot RCT, the FIT-AD Trial, was to
examine the effects of 6-month aerobic exercise on hippocampal
volume, temporal meta-regions of interest (ROI) cortical
thickness, WMH volume, and network failure quotient (NFQ)
in community-dwelling older adults with mild-to-moderate AD
dementia. FIT-AD stands for Functional Impact of aerobic
exercise Training in Alzheimer’s Disease. We hypothesized
that intervention participants will have a smaller decrease in
hippocampal volume, cortical thickness, and NFQ and a smaller
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increase in WMH volume over 6 and 12 months in comparison
to stretching controls. Further, we examined the correlations of
the longitudinal changes of these MRI biomarkers and cognition
over 6 and 12 months.

MATERIALS AND METHODS

Design
The FIT-AD Trial was a pilot RCT that followed the
CONSORT guideline with its CONSORT checklist (Eldridge
et al., 2016) provided in the Supplementary Table. It first
qualified participants based on their eligibility for participating in
the exercise interventions. Those who met the eligibility criteria
were then approached for their interest in volunteering for the
MRI component of the trial, and, if interested, assessed for
MRI eligibility. Randomization was performed at the main study
level (not the MRI eligibility level) to allocate participants to 6-
month intervention (moderate-intensity cycling) or control (low-
intensity stretching exercise) for 20–50 mins per session, three
times a week on a 2:1 ratio with three age strata (66–75, 76–85,
and 85+ years of age). Allocation was generated and concealed to
all data collectors and investigators except for the biostatistician.
MRI was completed at baseline before randomization and at 6
and 12 months. The biostatistician generated the randomization
sequence that was sequentially concealed in an opaque envelop.
Once a participant was enrolled, the study interventionist opened
the envelop to reveal the group assignment of a participant. This
trial was approved by the University of Minnesota’s Institutional
Review Board (IRB: #1306M35661). The detailed study protocol
was published previously (Yu et al., 2014).

Setting
MRI was conducted using 3 Tesla (3T) Siemens Trio system
(Siemens, Erlangen, Germany) at the university Center for
Magnetic Research and Resources. The MRI protocol was set
up and qualified on site by our MRI team located at the Mayo
Clinic Aging and Dementia Imaging Research (ADIR) Lab. All
scans were securely transmitted to the ADIR lab for evaluation
of protocol compliance, scan quality, medical abnormality, and
study eligibility. All MRI personnel were blinded to participant
group assignment. Any issues were communicated and resolved
accordingly. Exercises were delivered in a YoungMen’s Christian
Association gym or the lounge of a senior community.

Participants
Participants were first qualified for the FIT-AD Trial.
Community-dwelling older adults, who had a clinical diagnosis
of AD dementia, were 66 years old and older, and spoke English
were potentially eligible if they scored 15–26 on the Mini-Mental
State Examination (MMSE) and 0.5–2 on Clinical Dementia
Rating (CDR), had medical clearance for exercise and MRI,
and were stable on AD drugs >1 month if prescribed. Potential
participants were excluded if their resting heart rate was ≤50 or
≥100 beats per minute, had neurologic, psychiatric disorders,
alcohol/chemical dependency that explained their dementia,
exercise contraindications, new symptoms or diseases that had
not been evaluated by their providers, and abnormal findings

from the symptom-limited cycler-ergometer test. This study
was powered on the primary cognitive outcome, not the MRI
outcomes (Yu et al., 2014).

The inclusion criteria for the MRI component included
consent to volunteer for the MRI and passed MRI safety
screening. Participants were excluded from both the MRI
component and the main study if MRI showed abnormality
(normal pressure hydrocephalus, brain tumor, subdural
hematoma, significant posttraumatic encephalomalacia, or one
or more large hemispheric infarctions).

A variety of strategies were used for recruitment such as
Alzheimer’s Association’s events, referrals, and flyer/brochure
distributions. Recruitment started in March 2014 and ended in
March 2019, and the last follow-up was completed in October
2019. Participants were screened through (1) phone screen;
(2) in-person interview (consent, MMSE, CDR); (3) medical
clearance (exercise/MRI safety); and (4) symptom-limited peak
cycle-ergometer test (unknown heart conditions) and MRI if
qualified. After completing baseline data collection, participants
were enrolled and started their assigned exercise within a week
(Yu et al., 2014).

Intervention
The target intervention was supervised, individualized,
moderate-intensity cycling on recumbent stationary cycles for 50
mins a session, three times a week, after an adjustment period.

Moderate intensity was prescribed as 65–75% of heart rate
reserve (HRR) and 12–14 on the 6–20 Borg Ratings of Perceived
Exertion (RPE) scale. The adjustment period was essential to
safely progress participants to the target intensity and session
duration over time. Hence, the intervention sessions started at
a lower than the target dose (50–55% of HRR or RPE 9–11 for
20 mins) in the first week. The session intensity and duration
were alternately increased by 5% of HRR (1-point on RPE) or
5-min duration as tolerated over sessions to eventually reach
the target dose of 65–75% of HRR or RPE 12–14 for 50 mins
a session. The adjustment period lasted for an average of 6–8
weeks. Each session also included a 5-min cardiac warm-up and a
5-min cardiac cool-down before and after the prescribed cycling
dose for the session. The control exercise was seated low-intensity
stretching at <20% of HRR and RPE 9 with its frequency and
session duration matched to those of cycling. The total duration
of the exercise programs, including the adjustment period, was 6
months (72 total sessions). A Master’s-prepared interventionist
supervised every session at no more than 1:3 interventionist-
to-participants ratio and monitored heart rate and RPE every 5
mins, blood pressure every 10–15 mins, and overexertion signs
and symptoms (Yu et al., 2014).

Outcomes
The outcomes included hippocampal volume, temporal meta-
ROI cortical thickness, WMH volume from structural MRI,
and NFQ from the resting state functional MRI (rs-fMRI).
The protocol for the anatomic sequences and the study data
extracted from each sequence were as follows: magnetization
prepared rapid gradient echo imaging (MPRAGE) for measuring
ROI-wise brain volumes and cortical thickness, axial T2 star
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FIGURE 1 | CONSORT diagram for MRI. *Patient with failed MRI at baseline excluded as comparison to baseline not available.

for assessing cerebral micro hemorrhages, T2 fluid-attenuated
inversion recovery (FLAIR) for assessing cerebrovascular disease,
axial diffusion-weighted imaging (DWI) for assessing acute
hemorrhage, and axial multiband fMRI for assessing regional
brain perfusion.

Hippocampal volume and cortical thickness of temporal
meta-ROI (entorhinal cortex, fusiform, inferior temporal, and
middle temporal gyri) (Jack et al., 2017) as shown in Figure 1

were determined using FreeSurfer (v5.3) (Fischl and Dale, 2000;
Fischl et al., 2002). Volume/thickness values were generated
for 122 ROIs for each scan. ROI values for hippocampal
volume from right and left hemispheres were combined. Global
cerebral WMH volume was measured from FLAIR images using
a semiautomated segmentation algorithm developed at ADIR
(Graff-Radford et al., 2019).

NFQ was calculated from rs-fMRI, following the method
described in Wiepert et al. (2017). rs-fMRI data were
preprocessed by applying slice timing correction, de-spiking,
intra-series motion correction, and simultaneous band pass
filtering and nuisance regression. Prior to band pass and
nuisance regression steps, a mean-over-time fMRI (3D)
volume is created and co-registered with a T1-weighted
(T1w) MRI for the same subject. Each T1w image has been
processed to create tissue probability maps via SPM12 unified
segmentation. Additionally, atlases included in the Mayo
Clinic Adult Lifespan Template are warped into the space
of each T1w image using ANTs registration. Using the EPI-
to-T1 registration parameters, atlas parcellations and tissue
probability estimates were propagated into space of the fMRI
series. Nuisance covariates included intra-series motion
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parameters and first derivatives thereof as well as time series of
mean signal in white matter, CSF, and a global signal region.
Estimates of local co-activation within functional atlas regions
and correlation between regions are combined to calculate
the NFQ.

Cognition was measured with the AD Assessment Scale-
Cognition (ADAS-Cog). The ADAS-Cog is the most widely used
measure of global cognition in AD drug RCTs and assesses
orientation, memory, recall, language, and praxis. Its total
score is 0–70 with higher scores indicating worse cognitive
function. The interrater reliability of ADAS-Cog was 0.65–
0.99 and test-retest reliability was 0.51–1.0 (Rosen et al.,
1984).

Covariates included demographics (age, sex, and education)
collected from interviews. Dementia stage was determined as
mild stage if MMSE was ≥18 and moderate stage if MMSE <18.
Exercise adherence was calculated as the percent of attended
sessions and the percent of attended sessions that met session

intensity and duration goals. Per-protocol adherence was defined
as attending >70% sessions and >70% attended sessions met
session intensity and duration prescription.

Statistical Analyses
Baseline demographics and characteristics were summarized
using standard descriptive statistics. Continuous variables were
tested between groups using t-tests and categorical variables were
tested using χ2 unless expected cell counts were small, in which
case Fischer exact tests were used. Changes at 6 months and at
12 months from baseline were tested using one-way ANCOVA
within each group and between groups, following intention-to-
treat. In addition, pairwise correlation analyses were conducted
to examine the associations of the longitudinal changes in the
MRI biomarkers and cognition over 6 and 12 months. Statistical
analysis was completed using SAS version 9.4 and p < 0.05 was
considered statistically significant.

FIGURE 2 | Comparison of changes in MRI biomarkers between groups.

Frontiers in Aging Neuroscience | www.frontiersin.org 5 October 2021 | Volume 13 | Article 703691299

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Yu et al. Mechanism of Exercise in AD

RESULTS

Sixty participants were qualified for the MRI component.

One MRI scan at baseline did not meet quality control and

was excluded. Among the 59 enrolled participants, 38 were
randomized to the intervention group and 21 to the control
group (Figure 2). The attrition rate was 13.5% at 6 months (15.8
vs. 9.5% for the intervention vs. control group) and 23.7% at 12

TABLE 1 | Characteristics of the study MRI sample at baseline (n = 59).

Overall (n = 59)

Mean (SD) or n (%)

Cycling (n = 38)

Mean (SD) or n (%)

Stretching (n = 21)

Mean (SD) or n (%)

t or χ
2* p

Demographics

Age, years 77.3 (6.3) 77.2 (6.3) 77.4 (6.5) 0.16 0.876

Sex 1.22 0.268

Male 31 (53%) 22 (58%) 9 (43%)

Female 28 (47%) 16 (42%) 12 (57%)

Race/Ethnicity FET 0.041

Non-Hispanic White 56 (95%) 38 (100%) 18 (86%)

Hispanic White 2 (3%) 0 2 (10%)

Black or African American 1 (2%) 0 1 (5%)

Education, years completed 15.6 (2.6) 15.5 (2.4) 15.8 (3) 0.42 0.673

Marital status FET 0.685

Married 41 (69%) 27 (71%) 14 (67%)

Divorced 6 (10%) 4 (11%) 2 (10%)

Widowed 11 (19%) 7 (18%) 4 (19%)

Live as married 1 (2%) 0 (0%) 1 (5%)

Never married 0 (0%) 0 (0%) 0 (0%)

Living arrangement FET 0.740

Alone 12 (20%) 8 (21%) 4 (19%)

With spouse/partner only 35 (59%) 23 (61%) 12 (57%)

With spouse/partner and other 5 (8%) 2 (5%) 3 (14%)

With family 7 (12%) 5 (13%) 2 (10%)

Other 0 (0%) 0 (0%) 0 (0%)

Clinical indicators

Dementia severity (MMSE) 21.7 (3.2) 21.5 (3.5) 22.2 (2.7) 0.87 0.390

Body Mass Index (BMI) 27.4 (4.7) 27.2 (4.4) 27.7 (5.3) 0.34 0.736

AD medication 0.44 0.508

Any AD medication 36 (61%) 22 (58%) 14 (67%)

Not used 23 (39%) 16 (42%) 7 (33%)

# comorbidities 6 (1.9) 6.3 (1.7) 5.5 (2) −1.63 0.110

NPI-Q symptom presence 3.4 (2.1) 3.8 (2.0) 2.8 (2.2) −1.67 0.100

NPI-Q severity 5.1 (3.8) 5.7 (3.7) 4.0 (3.7) −1.66 0.102

NPI-Q caregiver distress 7.1 (5.7) 7.7 (5.0) 6.0 (6.9) −1.10 0.274

ADL (DAD percent score) 76.9 (16.3) 76.7 (13.0) 77.3 (21.2) 0.12 0.906

Premorbid intellect (WTAR) 35.2 (10.7) 35.9 (9.4) 33.9 (12.8) −0.72 0.476

Attrition

6-month attrition 8 (13.5%) 6 (15.8%) 2 (9.5%) FET 0.257

12-month attrition 14 (23.7%) 11 (28.9%) 3 (14.3%) FET 0.338

Exercise adherence

Sessions attended 55.8 (20.3) 55.5 (19.4) 56.2 (22.4) 0.12 0.906

Attended session meeting prescription 75 (23) 70 (23) 88 (19) 3.06 0.003

Per protocol 32 (54%) 18 (47%) 14 (67%) 2.03 0.154

MRI measures

Hippocampal volume 5.266 (1.090) 5.236 (1.099) 5.320 (1.099) 0.08 0.780

AD-signature cortical thickness 2.504 (0.170) 2.495 (0.170) 2.518 (0.172) 0.24 0.629

WMH volume 13,608 (14,710) 14,122 (17,321) 12,679 (8,432) 0.13 0.722

NFQ 0.525 (0.221) 0.550 (0.204) 0.480 (0.247) 1.36 0.249

*FET, Fisher Exact Test, if expected cell counts ≤ 5; AD, Alzheimer’s disease; DAD, disability in Alzheimer’s Disease; MMSE, mini-mental state examination; NPI-Q, neuropsychiatric

inventory-caregiver; WTAR, Wechsler Test of Adult Reading.
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TABLE 2 | Adjusted 6- and 12-month Changes in Imaging Biomarkers.

Measure Cycling Stretching Between-group

difference

Mean (SD) p

(from baseline)

Mean (SD) p

(from baseline)

p

6-month changes

Hippocampal volume −0.139 (0.198) 0.001* −0.155 (0.142) 0.001* 0.759

Temporal meta–ROI cortical thickness −0.024 (0.040) 0.002* −0.039 (0.047) 0.001* 0.156

WMH volume 1534 (2270) 0.001* 3381 (3612) 0.001* 0.030*

NFQ 0.029 (0.258) 0.531 0.038 (0.247) 0.517 0.687

12-month changes

Hippocampal volume −0.227 (0.185) 0.001* −0.201 (0.142) 0.001* 0.886

Temporal meta-ROI cortical thickness −0.057 (0.057) 0.001* −0.045 (0.053) 0.002* 0.936

WMH volume 1829 (2185) 0.001* 3764 (3348) 0.001* 0.015*

NFQ −0.057 (0.266) 0.285 0.079 (0.357) 0.377 0.174

*p < 0.05.

months (28.9 vs. 14.3% for the intervention vs. control group;
Table 1), respectively.

Overall, the participants were 77.3±6.3 years old and had
15.6±2.9 years of education with 53% male and 95% non-
Hispanic white. The two groups did not differ except that the
intervention groups were all white (Table 1).

The 6- and 12-month within-group changes in hippocampal
volume, temporal meta-ROI cortical thickness, and WMH
volume were statistically significant for both the cycling and
stretching groups, but not in NFQ (Table 2). From baseline
to 6 months, hippocampal volumes decreased 2.64% in the
cycling group vs. 2.89% in the stretching group, temporal meta-
ROI cortical thickness decreased 0.94% in cycling and 1.54% in
stretching, and WMH volume increased 10.94% in cycling and
24.54% in stretching. From baseline to 12 months, hippocampal
volumes decreased 4.47% in the cycling group vs. 3.84% in
the stretching group, temporal meta-ROI cortical thickness
decreased 2.27% in cycling and 1.79% in stretching, and WMH
volume increased 12.08% in cycling and 27.59% in stretching.

The 6-month and 12-month between-group changes in
hippocampal volume, temporal meta-ROI cortical thickness, and
NFQ were not statistically significant. The 6- and 12-month
changes in WMH volume were statistically significant, favoring
the cycling group (Table 2).

The results of pairwise correlation analyses showed a
significant negative correlation between 6-month changes in
hippocampal volume and ADAS-Cog (r = −0.35, p < 0.05).
The 12-month changes in hippocampal volume and ADAS-Cog
were not significant (Table 3). The 6- and 12-month changes in
hippocampal volume and temporal meta-ROI cortical thickness
were significant (r = 0.38 and 0.45 respectively, p < 0.01) and
6-month changes in cortical thickness and WMH volume (r
= −0.37, p < 0.01). However, the 6- and 12-month changes
in temporal meta-ROI, WMH volume, and NFQ were not
significantly associated with the 6- and 12-month changes in
ADAS-Cog (Table 3).

TABLE 3 | Pairwise correlation coefficients between changes in MRI biomarkers

and changes in cognition over 6 and 12 months.

(1) (2) (3) (4) (5)

6-month changes in:

(1) ADAS-Cog 1.00

(2) Hippocampal volume −0.34* 1.00

(3) Cortical thickness −0.15 0.38** 1.00

(4) WMH volume −0.22 −0.09 −0.37** 1.00

(5) Network failure quotient 0.09 0.06 0.03 −0.11 1.00

12-month changes in:

(1) ADAS-Cog 1.00

(2) Hippocampal volume −0.21 1.00

(3) Cortical thickness −0.21 0.45** 1.00

(4) WMH volume −0.07 −0.03 −0.19 1.00

(5) Network failure quotient 0.19 0.04 −0.13 0.14 1.00

*p < 0.05; **p <0.01; two tailed; ADAS-Cog, Alzheimer’s disease assessment scale-

cognition.

DISCUSSIONS

The disease-modifying potential of aerobic exercise for AD
has been well-supported in animal research, showing that
exercise increases BDNF and reduces AD amyloid plaques and
neurofibrillary tangles (McGurran et al., 2019; da Costa Daniele
et al., 2020). However, mechanistic studies of effects of aerobic
exercise in humans are limited, particularly in older adults with
AD dementia, using MRI. An important feature of this study was
that the diagnosis of AD dementia was based on clinical criteria
and was not verified by biomarkers. Therefore, it is possible that
AD played minimal to no role in the cognitive presentation of
some participants. Our findings show that hippocampal volume
and temporal meta-ROI cortical thickness decreased over 6 and
12 months. The decreases were smaller in the cycling group
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than the stretching group over 6 months (2.64 vs. 2.89% for
hippocampal volume; 0.94 vs. 1.54% for temporal meta-ROI
cortical thickness), but greater over 12 months (4.47 vs. 3.84%
for hippocampal volume; 2.27 vs. 1.79% for temporal meta-ROI
cortical thickness). The between-group differences did not reach
statistical significance. We further found that NFQ did not differ
within- or between-groups over 6 and 12 months. In contrast,
there are significant within- and between-group differences in
WMH volume with the cycling group experiencing substantial
less WMH volume increases over both 6 and 12 months. There
was a significant negative correlation between 6-month changes
in hippocampal volume and ADAS-Cog.

Our findings on hippocampal volume and temporal meta-
ROI cortical thickness are consistent with the literature. An
important reason for our findings and similar findings that
failed to show significant effects of aerobic exercise on these
variables is the small detectable changes (Villemagne et al., 2013).
For example, the mean annualized rate of hippocampal atrophy
was 3.5–3.98% or 1.75–1.99% over 6 months in older adults
with AD dementia (Jack et al., 2000). Our participants showed
greater 6-month decreases in hippocampal volume (2.64% in
the cycling group and 2.89% in the stretching group) than
expected (Jack et al., 2000; Morris et al., 2017). In a recent study,
aerobic exercise was reported to likely attenuate hippocampal
volume decline (0.8% in the intervention group vs. 1.6% in the
control group) (Morris et al., 2017). While our cycling group
also showed a smaller decline, the between-group difference is
smaller (0.23%) than that (0.8%) reported in the other trial
(Morris et al., 2017). Similar small detectable changes in PET-
quantified brain Aβ have also been reported (Villemagne et al.,
2013). In addition, we found a significant negative correlation
between 6-month changes in hippocampal volume and ADAS-
Cog, suggesting that hippocampal atrophy was significantly
associated with cognitive decline during the intervention period.
This finding further supports hippocampal atrophy as a potential
biological mechanism mediating intervention effects. Together,
these results explain the inconsistent and negative results from
RCTs because these RCTs including ours are usually not powered
to detect such small changes in biomarkers. Future RCTs
with large sample sizes and powered on biomarkers such as
hippocampal volume are needed to truly establish the disease-
modifying abilities of aerobic exercise in AD dementia.

Our participants showed that their temporal meta-ROI
cortical thickness decreased 0.94% in cycling and 1.54% for
the stretching group over the 6-month intervention period, but
the between-group differences were not significant. Two recent
trials reported that aerobic exercise alone or in combination
with cognitive training increased temporal meta-ROI cortical
thickness in older adults with preclinical AD (Bae et al., 2020;
Um et al., 2020). Our findings further show that over 12 months,
temporal meta-ROI cortical thickness decreased 2.27% in the
cycling group and 1.79% in the stretching group. These findings
indicate that the effects of aerobic exercise on hippocampal
volumes and temporal meta-ROI cortical thickness are most
likely intervention dependent. Once the intervention stops,
the benefits disappear, and the rate of atrophy appears to
accelerate in the intervention group. They may also support the

hypotheses that the rates of decline in hippocampal volumes and
temporal meta-ROI cortical thickness are likely not linear and are
heterogeneous as those who declined faster clinically experienced
greater decline in hippocampal atrophy (Jack et al., 2000).

Previously, we have reported that our intervention
participants had a smaller increase in global cognition as
measured by the ADAS-Cog at 6 months (1.0 ± 4.6) than
its natural course (3.2 ± 6.3-point increase; p = 0.001) (Yu
et al., 2021). In this study, we found a significant negative
correlation between the 6-month declines in hippocampal
volume and the 6-month increases in ADAS-Cog, meaning
that hippocampal atrophy was significantly associated with
cognitive decline during the intervention period. The 6- and
12-month changes in temporal meta-ROI cortical thickness
were significantly associated with the 6- and 12-month changes
in hippocampal volume, and 6-month changes in temporal
meta-ROI cortical thickness and WMH volume were associated;
however, temporal meta-ROI cortical thickness and WMH
volume were not associated with ADAS-Cog changes. Together,
these findings suggest hippocampal atrophy as a potential
biological mechanism mediating intervention effects and
aerobic exercise may affect MRI biomarkers differently. Those
hypotheses need to be tested in future studies.

Another potential mechanism may play a bigger role in the
effect of aerobic exercise: WMH. WMH results from chronic
ischemia and is slowly progressive in nature. Aerobic exercise has
been postulated as a potential intervention for mitigating WMH
progression. Our findings support this postulation and indicate
that there are significant within- and between-group differences
over both 6 and 12 months with the cycling group experiencing
substantial less increases (∼50%) of WMH volume than the
stretching group. However, a recent trial in vascular dementia did
not find significant between-group differences in WMH volume;
instead, a sex effect was identified, showing women in the control
group experienced more WMH progression than women in the
aerobic exercise group (Dao et al., 2019). Future studies are
needed to examine the effects of aerobic exercise on WMH and
the moderating/mediating factors.

We did not find any significant within- or between-group
differences in NFQ over 6 and 12 months, although NFQ is
a sensitive measure for functional connectivity (Wiepert et al.,
2017). Previously, functional connectivity has been associated
with cognition and multimodal exercise intervention was shown
to improve functional connectivity in older adults (Li et al.,
2014). Functional connectivity may also mediate the association
between aerobic fitness and cognition (Voss et al., 2010). A recent
study showed that multimodal exercise improved task-based
functional connectivity (Boa Sorte Silva et al., 2020). Collectively,
these findings suggest the need for large-scale studies and the
use of not only rs-fMRI but also task-based MRI for measuring
functional connectivity.

The striking differences in mechanistic findings between
animal and human studies and the inconsistent findings in
human research can be explained by many methodological
factors, but the aerobic exercise dose likely plays a major role.
Animal studies commonly employed high “duration of exercise
to lifespan,” which means high and desired doses were used
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and achieved (Brown et al., 2019), while human studies are
often limited in doses. Inter-individual differences in humans
further affect the severity and progression of degenerative
pathology and exercise dose delivery and may have hidden a
wide variety of biomarker responses to aerobic exercise when the
conventional “between-group difference” analysis was performed
(Williamson et al., 2017). Heterogenous aerobic fitness responses
to aerobic exercise that have long been recognized in young
adults (Lortie et al., 1984; Bouchard and Rankinen, 2001;
Hautala et al., 2003; Rose and Parfitt, 2007; Karavirta et al.,
2011; Robinson et al., 2017; Hecksteden et al., 2018; Ross
et al., 2019) were shown to be more prominent in older adults
(Sisson et al., 2009) and demonstrated by our FIT-AD Trial
for the first time in older adults with AD dementia (Yu et al.,
2020). Moreover, effects of exercise might be obscured by
the high nonresponse rates. Compared to the 17–19% aerobic
fitness nonresponse rates to aerobic exercise in young adults
(Higgins et al., 2015; Gurd et al., 2016), the nonresponse
rates were 19.3–44.9% in older adults when nonresponse was
defined as no improvement (Sisson et al., 2009) and rose to
63.4% when nonresponse was defined as <5% improvement
(Pandey et al., 2015).

The strengths of our study include a rigorous design
and implementation following trial guidelines, the objective
measurement of delivered exercise doses, high adherence, the
match of exercise frequency and duration between groups, and
the use of validated outcome measures.

Weaknesses that inform future trial design include the lack
of power to detect between-group differences, the inclusion
of both mild and moderate stages of AD dementia, and the
unequal representation of mild and moderate stages of AD
dementia. In addition, environments might have influenced
intervention delivery and adherence. Both the YMCA gym
and the lounge of the senior community had open floor
plan. Although we delivered exercises during the down time
at the YMCA gym, the gym was more crowded and nosier
than the lounge of the senior community. Last, our study
could have been strengthened with a usual care control
group to observe the natural course of changes since both
exercises appeared to affect the outcomes. The decision of not
including usual care was not made lightly and was influenced
by multiple factors (e.g., considerations of the effects of
attention and social interaction, the feasibility of recruitment,
and retention).

To conclude, aerobic exercise may reduce the decline in
hippocampal volume and temporal meta-ROI cortical thickness,
but the effect sizes are likely to be small and dose-dependent and
reverse once intervention stops. Aerobic exercise appears to slow
down WMH progression. Hippocampal atrophy was associated
with cognitive decline during the intervention period.
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Medial temporal lobe (MTL) atrophy is a key feature of Alzheimer’s disease (AD), however,

it also occurs in typical aging. To enhance the clinical utility of this biomarker, we

need to better understand the differential effects of age and AD by encompassing

the full AD-continuum from cognitively unimpaired (CU) to dementia, including all

MTL subregions with up-to-date approaches and using longitudinal designs to assess

atrophy more sensitively. Age-related trajectories were estimated using the best-fitted

polynomials in 209 CU adults (aged 19–85). Changes related to AD were investigated

among amyloid-negative (Aβ−) (n = 46) and amyloid-positive (Aβ+) (n = 14) CU, Aβ+

patients with mild cognitive impairment (MCI) (n = 33) and AD (n = 31). Nineteen

MCI-to-AD converters were also compared with 34 non-converters. Relationships with

cognitive functioning were evaluated in 63 Aβ+ MCI and AD patients. All participants

were followed up to 47 months. MTL subregions, namely, the anterior and posterior

hippocampus (aHPC/pHPC), entorhinal cortex (ERC), Brodmann areas (BA) 35 and 36

[as perirhinal cortex (PRC) substructures], and parahippocampal cortex (PHC), were

segmented from a T1-weightedMRI using a new longitudinal pipeline (LASHiS). Statistical

analyses were performed using mixed models. Adult lifespan models highlighted both

linear (PRC, BA35, BA36, PHC) and nonlinear (HPC, aHPC, pHPC, ERC) trajectories.

Group comparisons showed reduced baseline volumes and steeper volume declines

over time for most of the MTL subregions in Aβ+ MCI and AD patients compared to

Aβ− CU, but no differences between Aβ− and Aβ+ CU or between Aβ+ MCI and

AD patients (except in ERC). Over time, MCI-to-AD converters exhibited a greater

volume decline than non-converters in HPC, aHPC, and pHPC. Most of the MTL

subregions were related to episodic memory performances but not to executive

functioning or speed processing. Overall, these results emphasize the benefits of

studying MTL subregions to distinguish age-related changes from AD. Interestingly,

MTL subregions are unequally vulnerable to aging, and those displaying non-linear age-

trajectories, while not damaged in preclinical AD (Aβ+ CU), were particularly affected

from the prodromal stage (Aβ+ MCI). This volume decline in hippocampal substructures
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might also provide information regarding the conversion from MCI to AD-dementia. All

together, these findings provide new insights into MTL alterations, which are crucial for

AD-biomarkers definition.

Keywords: medial temporal lobe (MTL), Alzheimer’s disease, aging, episodic memory, structural magnetic

resonance imaging, mild cognitive impairment, hippocampus

INTRODUCTION

The hippocampus (HPC), entorhinal cortex (ERC), perirhinal
cortex (PRC), and parahippocampal cortex (PHC) are subregions
of the medial temporal lobe (MTL) that are critical for
several cognitive functions such as declarative memory and
spatial navigation (Wixted and Squire, 2011; Raslau et al.,
2015; Moscovitch et al., 2016; Baumann and Mattingley, 2021).
Importantly, these subregions are altered early and severely
in Alzheimer’s disease (AD), as they are the primary target
of neurofibrillary tangles (Braak and Braak, 1991, 1995; Schöll
et al., 2016). In this context, hippocampal atrophy, assessed
by structural magnetic resonance imaging (MRI), has been
extensively studied in Alzheimer’s research and is widely used as
a biomarker to monitor in-vivo AD-related neurodegeneration
(Frisoni et al., 2010; Pini et al., 2016). For example, a study
focusing on the HPC reported an annual volume reduction of
1.9 ± 0.9% in patients with AD-dementia, and 1.3 ± 0.9%
in patients with mild cognitive impairment (MCI) (Henneman
et al., 2009). In addition, hippocampal volumetry might be
a relevant tool to predict the conversion to AD-dementia in
patients with MCI (Pennanen et al., 2004; Apostolova et al.,
2006; Devanand et al., 2007; Henneman et al., 2009; Brueggen
et al., 2015). As neuropathological changes are known to start
several years before symptom onset, more and more studies have
focused on the preclinical stage of AD—defined as amyloid-
positive (Aβ+) cognitively unimpaired (CU) individuals (Jack
et al., 2018)—(Miller et al., 2013; Fortea et al., 2014; Pegueroles
et al., 2017; Pettigrew et al., 2017); findings are sparse with only
a few studies showing medial temporal lobe subregional atrophy
in Aβ+ compared to amyloid-negative (Aβ−) CU (Wolk et al.,
2017; Xie et al., 2020), while others have found no difference (Xie
et al., 2019).

Interestingly, MTL subregions are also affected in typical
aging, and dissociating normal from early pathological changes
is sometimes challenging (Fjell et al., 2014). For example, studies
report a decline in HPC and ERC volumes with age (Schuff
et al., 1999; Jernigan et al., 2001; Du et al., 2006), and trajectories
appear to differ across MTL subregions with linear vs. non-linear
atrophy over the whole lifespan (Ziegler et al., 2012; Fjell et al.,
2013; de Flores et al., 2015; Daugherty et al., 2016; Hasan et al.,
2016; Bussy et al., 2021). Thus, a better understanding of the
effects of age on theMTL subregions is essential to define the best
candidate to be used as an AD biomarker.

Abbreviations: AD, Alzheimer’s disease; BA, Brodmann area; CU, cognitively

unimpaired; ERC, entorhinal cortex; HPC, hippocampus (a, anterior; p, posterior);

LMM, linear mixed model; MCI, mild cognitive impairment; MRI, magnetic

resonance imaging; PHC, parahippocampal cortex; PRC, perirhinal cortex; TIV,

total intracranial volume.

To date, most of the investigations on MTL structural
alterations were performed using cross-sectional designs and
were mainly limited to the HPC and ERC (Juottonen et al.,
1998; Du et al., 2001, 2003; Pennanen et al., 2004; Barnes
et al., 2009; Wisse et al., 2014; Pini et al., 2016). Given that
MTL subregions are affected heterogeneously in AD (Braak and
Braak, 1995; Krumm et al., 2016; Xie et al., 2020), longitudinal
designs accounting for inter-individual variability and including
usually neglected MTL subregions such as the PRC and PHC
might enhance the clinical utility of these neurodegeneration
biomarkers. In addition, automatic procedures recently emerged
to segment MTL subregions from standard T1-weighted MRI
scans (Pipitone et al., 2014; Iglesias et al., 2015; Xie et al., 2019),
and appear promising in characterizing AD-related changes in
clinical routines as MRI images are more accessible compared
with other neuroimaging techniques which are more expensive
and invasive.

In this context, this study aims to better characterize the
structural alterations of MTL subregions in typical aging and
across the whole Alzheimer’s continuum. For this purpose,
we took advantage of the longitudinal T1-weighted MRI data
acquired from 209 CU participants covering the adult lifespan
and 84 patients with MCI and AD. More precisely, we used
a tailored methodology to (i) explore the age-related volume
trajectories of MTL subregions over the adult lifespan, (ii)
examine the differences in MTL subregional atrophy across the
Alzheimer’s continuum (encompassing Aβ− CU older adults
[i.e., controls], Aβ+ CU older adults, Aβ+ MCI patients, and
Aβ+ AD patients), (iii) compare MTL subregional atrophy
between MCI-to-AD converters and non-converters patients,
and finally, (iv) investigate the associations between the volume
of MTL subregions and cognitive performances.

MATERIALS AND METHODS

Participants
All participants in this study were enrolled in the multi-modal
neuroimaging in AD study (IMAP+) (Caen, France) between
the years 2008 and 2016, and some of them were included in
previous publications from our lab (La Joie et al., 2013; de Flores
et al., 2015; Perrotin et al., 2017). All were right-handed, had
at least 7 years of education, and had no history of alcoholism,
drug abuse, head trauma, or neurological/psychiatric disorder.
The IMAP+ study was approved by a regional ethics committee
(Comité de Protection des Personnes Nord-Ouest III) and was
registered with ClinicalTrials.gov (number NCT01638949). All
participants gave written informed consent to the study before
the investigation.
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Two hundred and nine CU adults from the ages 19–
85 were recruited from the community using flyers and
advertisements in local newspapers, and had normal cognitive
performances according to age and education level, without
memory complaints. Patients were recruited from a local
memory clinic and then stratified by a senior neurologist
and neuropsychologists according to standard clinical criteria.
Thirty-one patients with AD fulfilled the standard National
Institute of Neurological and Communicative Disorders and
Stroke and the Alzheimer’s Disease and Related Disorders
Association (NINCDS-ADRDA) clinical criteria for mild to
moderate probable AD (McKhann et al., 1984), and 53 patients
with MCI satisfied Petersen’s criteria (Petersen andMorris, 2005)
at baseline. Among the 53 patients with MCI, 19 converted to
AD-dementia (updated on October 23, 2020, post-study clinical
follow-up= 20.7± 22.9 months).

Participants were followed up to 47 months with one
to three neuroimaging/cognitive assessments (±18 months
apart). Florbetapir-PET scans were available for each individual
and Aβ−positivity was defined using a global neocortical
standardized uptake value ratio (SUVr) measure. The positivity
threshold was calculated as the 99.9th percentile of the
distribution among 45 healthy individuals younger than 40,
corresponding to a SUVr of 0.99. SUVr images were corrected
for partial volume effect using the three-compartment method
(Müller-Gärtner et al., 1992). Among the CU aged over 60,
46 were Aβ− and 14 were Aβ+, while 33 MCI and 31 AD
patients were Aβ+. Of note, Aβ status was determined using
scans acquired at baseline for the vast majority of our population.
However, when the SUVr value was not available at baseline but
values at following times were below the threshold, we considered
the individual as Aβ− (n = 21). In addition, apolipoprotein E
(APOE) genotype was available for 203 of the 209 CU, resulting
in 53 ε4 allele carriers and 150 non-carriers.

The demographics of our samples are presented in Table 1.

MRI Data Acquisition
Participants were repeatedly scanned with a Philips Achieva
3T camera at the Cyceron Center (Caen, France). Longitudinal
T1-weighted anatomical images were acquired using a three-
dimensional (3D) fast-field echo sequence (3D-T1-FFE sagittal;
SENSE factor =2; repetition time = 20ms; echo time = 4.6ms;
flip angle = 10◦; 180 slices with no gap; slice thickness = 1mm;
field of view = 256 × 256 mm²; in-plane resolution = 1 ×

1 mm²).

Automatic Segmentation of Medial

Temporal Lobe Subregions
MTL subregions, including the anterior and the posterior
hippocampus (aHPC and pHPC, respectively), the ERC,
Brodmann areas (BA) 35 and 36—as PRC components
–, and the PHC were automatically segmented using
the Automatic Segmentation of Hippocampal Subfields
(ASHS) software (Yushkevich et al., 2015; atlas:
ashsT1_atlas_upennpmc_07202018; Supplementary Figure 1).
This multi-atlas segmentation algorithm has the advantage
of accounting for the dura mater confounds and MTL cortex

anatomic variability (Xie et al., 2019). Participants with a
single neuroimaging assessment (usually baseline) were directly
segmented using the standard ASHS-T1 pipeline, while the
Longitudinal Automatic Segmentation of Hippocampal Subfields
(LASHiS) pipeline (Shaw et al., 2020) was used to segment
images from participants with longitudinal follow-ups (two or
three assessments). This method is directly based on the ASHS
algorithm but additionally takes account of the longitudinal
aspect of the data by building a single subject template, thus,
reducing random errors in the labeling procedure. Rigorous
quality control was performed by visually evaluating the
segmentation of each subregion for all participants. Failed
segmentations were manually edited when feasible (∼30%,
for aHPC or pHPC only) or were discarded. Note that for the
same individual, some subregions were of adequate quality to
be included in analyses while others were not, so the number
of subjects for a given MTL subregion was not the same
(Supplementary Tables 2–9).

The aHPC and pHPC volumes were summed to obtain
the volume of the whole HPC, as well as the BA 35 and 36
volumes to estimate the PRC volume. Left and right volumes
were averaged to limit the number of analyses. Raw bilateral
volumes were then normalized by the total intracranial volume
(TIV-calculated as the sum of the volumes of gray matter, white
matter, and cerebrospinal fluid using SPM12) to account for
inter individual variability in head size (normalized volume
raw = volume 100/TIV), and then z-transformed to improve
comparability between the subregions. For this transformation,
we used (i) data from baseline CU adults under 40 for analyses
performed in the context of typical aging and (ii) data from
baseline Aβ− CU older adults for analyses performed in the
context of pathological aging.

Cognitive Functioning
Participants repeatedly underwent the same neuropsychological
exams as described in detail previously (Chételat et al., 2005;
Mevel et al., 2013). To obtain robust proxies of cognitive
abilities and to minimize the issue of multiple statistical testing,
we calculated composite scores reflecting executive functions,
processing speed, and episodic memory. Composite scores were
derived from individual scores z-transformed using baseline
Aβ− CU older adults as the reference since cognition was only
investigated in patients. We obtained the processing speed score
from the duration of the Trail Making Test (TMT) (Reitan,
1958) part A and the Stroop (1935) color naming. The executive
functions score was computed from a flexibility score calculated
with the TMT ((part B – part A)/part A) and an inhibition score
calculated with the Stroop [(interference – color naming)/color
naming]. The episodic memory score averaged the free recalls
of the Encoding, Storage, Retrieval (ESR) paradigm (Eustache
et al., 1998), the adapted Batterie d’efficience mentale (BEM)-
144 (Signoret, 1991), and the BEM figure. For all composite
scores, higher values indicate better performances. Since some
patients failed to complete all the tests, the sample size for a given
cognitive domain varies (Supplementary Table 9).
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TABLE 1 | Demographics of the study sample.

Adult Lifespan Alzheimer’s continuum MCI-to-AD

CU CU Aβ− CU Aβ+ MCI Aβ+ AD Aβ+ Non-

converters

Converters

Sex: nfemale/nmale 111/98 26/20 8/6 13/20 13/18 15/19 6/13

Age (years) 46.9 ± 18.6

[19.5, 84.6]

69.3 ± 5.9

[60, 81.4]

73.8 ± 7.2*

[61.5, 84.6]

73.9 ± 7.2**

[59.9, 86.6]

67.3 ± 9.9

[51.7, 84.1]

73.7 ± 7.1

[58.8, 85.1]

72.5 ± 7.1

[60.7, 85.0]

Education (years) 13.4 ± 3.3

[7, 20]

12.3 ± 3.9

[7, 20]

11.3 ± 3.3

[7, 17]

11.6 ± 4

[6, 20]

10.9 ± 3.2

[6, 20]

10.6 ± 2.9

[6, 17]

12 ± 4.7

[7, 20]

APOE4a: ncarrier/nnon−carrier 53/150 – – – – – –

Follow-up (months) 18.8 ± 11.2

[0, 47.2]

26.9 ± 11.9

[0, 41.2]

20.7 ± 12.5

[0, 39.8]

18.6 ± 13.1

[0, 40.7]

12.8 ± 9.1 [0,

22.6]

21.4 ± 15.5

[0, 43.9]

22.5 ± 12.9

[0, 37.1]

MMSEb 29.2 ± 0.9

[26, 30]

28.7 ± 1.2

[26, 30]

29.3 ± 0.7

[28, 30]

26.8 ± 1.9***

[22, 30]

20 ± 4.9***

[12, 29]

26.9 ± 1.9

[22, 30]

26.3 ± 1.8

[22, 30]

Post-study clinical follow-up (months) – – – – – 16.3 ± 21.2

[0, 89.7]

28.3 ± 24.5

[0, 78]

Continuous variables are indicated as follows: mean ± SD [minimum, maximum].

Age, education, MMSE from baseline.

CU Aβ+, MCI Aβ+, and AD Aβ+were compared with CU Aβ−; converters were compared with non-converters. Independent two-sample t-test (age), Wilcoxon rank-sum test (education

and MMSE), and chi-squared test (sex) were used for statistical comparisons. ***p < 0.001; **p < 0.01; *p < 0.05.
aMissing data for six participants. bMissing data for two participants.

AD, patients who met McKhann criteria for probable Alzheimer’s disease dementia; APOE, apolipoprotein E; CU, cognitively unimpaired participants; MCI, mild cognitive impairment;

MMSE, mini-mental state examination.

Statistical Analyses
All statistical analyses were performed using R (version 4.0.3;
R Core Team, 2020). Longitudinal data were analyzed using
linear mixed models (LMMs). These models are advantageous
in handling within-subject observations, as well as missing
data and unbalanced designs (e.g., irregular follow-ups as
in the current study). LMMs were fitted to the data with
restricted maximum likelihood, using the lme4 package (Bates
et al., 2015). Type III F-tests with Satterthwaite’s method for
degrees of freedom approximation was used to assess the
significance of fixed effects. Effect size estimates of the LMMs
were assessed using pseudo-R-squared (Nakagawa et al., 2017).
Results were considered significant after Holm’s family-wise
error rate controlling procedure to account for multiple tests
(p < 0.05) (Holm, 1979). Model quality was assessed using
the performances package (Lüdecke et al., 2021), and visual
inspection of the residual plots did not reveal any obvious
deviations from homoscedasticity or normality.

Age-Related Volume Trajectories Over the Adult

Lifespan
Relationships between age and MTL subregional volumes were
estimated over the adult lifespan in CU participants aged from
19 to 85 years old. LMMs with polynomials of different orders
for the age term were considered to best describe the age-
related volume trajectories of MTL subregions. Models were
tested from the simplest to the most complex. A model was
kept as a candidate when the likelihood ratio test (i.e., testing
n vs. n-1 order-polynomial) was simultaneously significant
(p < 0.05) and when all the coefficients were significant using t-
statistic (p < 0.05). Candidate models were compared using the
corrected Akaike Information Criterion (AICc) and the Bayesian

Information Criterion (BIC) according to criteria (Burnham
and Anderson, 2004). As an exception, LMMs were fitted
with maximum likelihood for model comparison (Zuur et al.,
2009). More details on the model selection are provided in the
Supplementary Method. For the nonlinear relationships, the
inflections in the smoothed curves were estimated from the
place where a change in model estimates switches signs. Separate
LMMs with each MTL subregion as dependent variable were
computed. Fixed effect terms included age as an independent
variable and sex and education as covariates. Intercepts for
participants were entered as random effects. Differences related
to sex, education level, or APOE ε4 gene in age trajectories
were also investigated by adding the variable of interest (i.e.,
sex, education, or apoe) and its interaction with the age term as
fixed effects.

Structural Alterations Across the Alzheimer’s

Continuum
Structural alterations of MTL subregions across the Alzheimer’s
continuum were investigated in 124 participants, pooling CU
participants over 60 years of age [both Aβ− (n = 46) and
Aβ+ (n = 14)], as well as Aβ+ MCI (n = 33) and AD (n =

31) patients. Baseline volume differences were assessed using
analyses of covariance (ANCOVAs) with group (ie, Aβ− CU,
Aβ+ CU, Aβ+ MCI, and Aβ+ AD) as predictors. To estimate
the volume changes over time, LMMs with random intercept
and slope per participant were then computed with group, time,
and their interaction as fixed effects. In both ANCOVAs and
LMMs, each MTL subregion was entered as a dependent variable
in separate models. All models were controlled for age, sex, and
education. To compare atrophy across groups, independent t-
tests adjusted for multiple comparisons using Tukey honestly
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significant difference test were used as post-hoc comparing
estimated marginal means with the emmeans package (Lenth
et al., 2021).

Volume Comparisons Between Converters and

Non-converters
MTL subregional atrophy was compared between 19 MCI-
to-AD converters and 34 non-converters. Differences in
baseline volumes were investigated using ANCOVAs, and
differences in volume decreases using LMMs with by-participant
random intercepts. Each MTL subregion was entered as a
dependent variable in both types of models. The group
(i.e., converters or non-converters) was included as predictor
in ANCOVAs, and group, time, and their interaction were
included as fixed effects in LMMs. In all models, post-
study clinical follow-up, age, sex, and education were added
as covariates.

Relationships Between Cognitive Functioning and

Volume
Associations between the cognitive scores and MTL subregions
volume were only investigated in Aβ+ MCI and AD patients
to avoid ceiling effects and to get enough variance in the
scores. Separate LMMs were conducted for each cognitive score
(reflecting speed processing, executive functions, and episodic
memory) as a dependent variable and for each MTL subregion
as a predictor (i.e., 24 tests). Random effects included subject
intercepts. All models were adjusted according to the group, time,
age, sex, and education.

RESULTS

Aging Differently Impairs MTL Subregions

Over the Adult Lifespan
Structural trajectories over the adult lifespan of all the considered
MTL subregions are displayed in Figure 1. All MTL subregions
volume were significantly related to age using the best-fitted
models [HPC: F(317.89) = 14.58, p < 0.001; aHPC: F(344.43) =
8.05, p < 0.001; pHCP: F(316.73) = 17.49, p < 0.001; ERC:
F(309.85) = 16.37, p < 0.001; PRC: F(318.03) = 37.23, p < 0.001;
BA35: F(290.60) = 14.11, p < 0.001; BA36: F(339.54) = 35.04, p <

0.001; PHC: F(370.18) = 48.41, p < 0.001). Both linear and non-
linear age-related trajectories were found. More precisely, the
BA 35 and 36, PRC, and PHC volumes were linearly associated
with age, a quadratic term better described this relationship
between volume and age for the aHCP and ERC, and a cubic
term better described this relationship for the HPC and pHPC
(Supplementary Table 1). The estimation of inflection points
suggested that the aHPC volume declined from the age of 47
and the ERC volume from the age of 41. The HPC volume
approximately increased at the age of 22 and then decreased at
49. The pHPC volume exhibited stability from the ages 37–44 and
then started to decline.

When investigating the sex-related differences, a significant
main effect of sex was observed for pHPC [F(202.88) =

7.94, p = 0.04] and PHC [F(204.66) = 23.38, p < 0.001],
suggesting that women have greater volumes than men

(Supplementary Figure 2, Supplementary Table 2). No
significant age × sex interaction was found, suggesting that
age trajectories were comparable among men and women
(Supplementary Table 2). With regard to differences related to
APOE4 or education level, results revealed neither an interaction
effect with age nor a simple effect of the variable of interest (i.e.,
apoe or education) for none of all considered MTL subregions
(Supplementary Tables 3, 4).

AD Affects MTL Subregions More Severely

in the Advanced Stages of the Continuum
Cross-sectional analyses revealed significant effects of group on
baseline volume for all MTL subregions [HPC: F(3) = 19.32, p
< 0.001; aHPC: F(3) = 14.25, p < 0.001; pHPC: F(3) = 14.04,
p < 0.001; ERC: F(3) = 17.36, p < 0.001; PRC: F(3) = 7.09, p
< 0.001; BA35: F(3) = 9.16, p < 0.001; BA36: F(3) = 4.56, p =

0.005; PHC: F(3) = 3.96, p = 0.01]. As illustrated in Figure 2, no
significant difference between Aβ− and Aβ+ CU was observed.
Aβ+ MCI patients showed significantly smaller HPC, aHPC,
pHPC, and ERC volumes compared to Aβ− CU, and to Aβ+

CU. Aβ+AD patients showed significantly smaller volumes in all
MTL subregions compared to Aβ− CU, and to Aβ+ CU. Lastly,
Abβ+ AD showed significantly smaller ERC volumes compared
to Abβ+MCI patients. The corresponding statistics are depicted
in Supplementary Table 5.

For longitudinal analyses, the interaction group × time was
significant for all the LMMs, suggesting that volume decline
differs along the Alzheimer’s continuum [HPC: F(69.55) = 11.23,
p < 0.001; aHPC: F(85.82) = 4.46, p < 0.01; pHPC: F(126.55)
= 18.37, p < 0.001; ERC: F(87.62) = 9.67, p < 0.001; PRC:
F(77.39) = 6.21, p < 0.001; BA35: F(93.93) = 7.28, p < 0.001;
BA36: F(82.10) = 4.71, p < 0.01; PHC: F(85.39) = 14.26, p <

0.001]. As illustrated in Figure 3, Aβ+ MCI patients showed
significantly smaller HPC, aHPC, pHPC, ERC, BA35 and PHC
volumes compared to Aβ− CU, and significantly smaller HPC,
aHPC and pHPC volumes compared to Aβ+ CU. Aβ+ AD
patients showed significantly smaller HPC, pHPC, ERC, PRC,
BA35, BA36 and PHC volumes compared to Aβ− CU, and
significantly smaller HPC, pHPC, PRC, BA35 and PHC volumes
compared to Aβ+ CU. No significant differences between Aβ−

and Aβ+ CU or between Aβ+ MCI and AD patients were
observed (Supplementary Table 6).

Volume Decline in Hippocampal

Substructures Differs Between MCI-To-AD

Converters and Non-converters
Baseline volumes were not significantly different between
MCI-to-AD converters and non-converters for any MTL
subregion (Supplementary Table 7). However, converters
showed significantly steeper volume decrease over time in
hippocampal substructures compared to non-converters
[HPC: F(56.14) = 15.09, p < 0.001; aHPC: F(58.21) = 12.44,
p < 0.001 and pHPC: F(56.13) = 9.28, p = 0.003) (Figure 4,
Supplementary Table 8).
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FIGURE 1 | Age-related volume trajectories of MTL subregions over the adult lifespan. All subregions were significantly related to age, p < 0.001. Continuous line

indicates model-derived estimates. The shaded area represents a 95% confidence interval. BA, Brodmann area; ERC, entorhinal cortex; HPC, hippocampus (a,

anterior; p, posterior); PHC, parahippocampal cortex; PRC, perirhinal cortex.

MTL Subregions Are Specifically

Associated With Episodic Memory

Performances
Volumes inmostMTL subregions were positively associated with
episodic memory scores (HPC: β = 0.17, SE = 0.06, p = 0.006;
pHPC: β = 0.21, SE= 0.08, p= 0.009; ERC: β = 0.22, SE= 0.07,
p = 0.003; PRC: β = 0.20, SE = 0.07, p = 0.007; and BA35: β =

0.18, SE = 0.06, p = 0.008) but not with executive function or
speed processing (Supplementary Table 9).

DISCUSSION

The present study aims to explore how physiological aging
and AD affect the volume of MTL subregions. Our current
contribution represents one of the most comprehensive studies
on MTL volumetric data using a tailored methodology based
on longitudinal data and a dedicated segmentation algorithm.
The findings highlight differential effects of age over the adult
lifespan and support that AD-related neurodegeneration is
more severe in the late stages of the Alzheimer’s continuum,

reflecting cognitive impairment. Consistently, episodic memory
deficit, a key feature of AD, is related to greater atrophy in
most MTL subregions. Interestingly, subregions that undergo
specific aging mechanisms, as evidence by non-linear age-
related volume trajectories, although not different between
Aβ− and Aβ+ CU older adults, are particularly affected
from the prodromal stage of AD (i.e., Aβ+ MCI). This
volume decline in the hippocampal substructures might also
give information regarding the conversion to AD-dementia in
patients with MCI.

Differential Vulnerabilities of MTL

Subregions in Aging
Our results emphasized that MTL subregions differ in their
relationships with age over the adult lifespan, with both linear
and non-linear age-related trajectories. Linear trajectories were
observed for the first time for the PRC (as well as for BA 35 and
36) and PHC volumes, filling a knowledge gap regarding usually
neglected MTL subregions. In addition, non-linear trajectories
were observed for the HPC (and its anterior and posterior
parts) and ERC volumes, strengthening the importance of not
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FIGURE 2 | Group comparisons of MTL subregions baseline volume across the Alzheimer’s continuum. Boxplots display the median values and distribution of

z-transformed TIV normalized volumes at baseline in each group. ***p < 0.001; **p < 0.01; *p < 0.05, as results of Tukey adjusted post-hoc t-tests. AD, Alzheimer’s

dementia; BA, Brodmann area; CU, cognitively unimpaired; ERC, entorhinal cortex; HPC, hippocampus (a, anterior; p, posterior); MCI, mild cognitive impairment;

PHC, parahippocampal cortex; PRC, perirhinal cortex. The corresponding statistics are depicted in Supplementary Table 5.

restricting analyses to linear models when investigating the
effects of age (Chen et al., 2016). In line with previous findings,
visual inspection of the trajectories indicates that the HPC and
ERC volumes remained stable or expanded until middle age
and then declined substantially (Ziegler et al., 2012; Fjell et al.,
2013; Coupé et al., 2017; Amlien et al., 2018; Li et al., 2018;
Nobis et al., 2019; Langnes et al., 2020; Nyberg et al., 2021).
As entorhinal cortical-hippocampal circuits are important in
episodic memory processing, this pattern might partly explain
the similar trajectory of age-related episodic memory deficit
(Rönnlund et al., 2005; Nyberg et al., 2012). Interestingly, the
HPC and ERC are strongly involved in neuroplasticity-related
mechanisms such as neurogenesis or spinal plasticity (Teter and
Ashford, 2002; Neves et al., 2008; Fjell et al., 2014; Yun et al.,
2018; Ronaghi et al., 2019). Because these processes are partly
dependent on environmental factors, non-linear trajectories in
the HPC and ERC volumes might reflect age-related changes in
cellular morphology influenced by exogenous events experienced
during a lifetime. When compared visually, the HPC and ERC

volumes seem to decrease faster from midlife than those of the
PRC and PHC, suggesting that they are more vulnerable to
late aging; and this vulnerability might be the result of greater
plasticity, in line with the proposal of McEwen (1994). Based on
the approximation of the decline onset age, the ERC volume was
found to decrease earlier than the HPC volume. One speculation
behind this observation might be that ERC alterations trigger
damage to the HPC, as these structures are strongly connected
(Whitwell et al., 2007).

Interestingly, vulnerability to age also seems to vary along
the HPC longitudinal axis. Indeed, the pHPC volume declined
more severely than the aHPC, suggesting that aging preferentially
affects the posterior part of the HPC. This anteroposterior
specificity might explain why semantic memory is relatively
spared in aging while episodic memory and spatial learning
are more damaged (Brickman and Stern, 2009), as semantic
memory is particularly associated with the aHPC while episodic
memory and spatial navigation are preferentially associated with
the pHPC (Ranganath and Ritchey, 2012). Our observations
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FIGURE 3 | Group comparisons of MTL subregions volume decline over time across the Alzheimer’s continuum. The regression line indicates model-derived

estimates. The shaded area represents a 95% confidence interval. ***p < 0.001; **p < 0.01; *p < 0.05, as results of Tukey adjusted post-hoc t-tests. AD, Alzheimer’s

dementia; BA, Brodmann area; CU, cognitively unimpaired; ERC, entorhinal cortex; HPC, hippocampus (a, anterior; p, posterior); MCI, mild cognitive impairment;

PRC, parahippocampal cortex; PRC, perirhinal cortex. The corresponding statistics are depicted in Supplementary Table 6.

support previous results emphasizing less volume alteration in
the aHPC compared with pHPC in typical aging (Kalpouzos et al.,
2009), but is in contrast with the results showing comparable
volume declines (Li et al., 2018) or greater aHPC vulnerability
(Chen et al., 2010; Ta et al., 2012). Several methodological
differences might explain these discrepancies. For example, the
use of longitudinal vs. cross-sectional data might enhance the
results reliability, especially since HPC volume varies greatly
among individuals (Lupien et al., 2007). Age range, segmentation
procedure, and curvilinear pattern might as well account
for differences. However, such an anteroposterior gradient of
vulnerability was not systematically found in studies comparable

to ours (Langnes et al., 2020). Thus, differences between samples
might also contribute to the discrepant results because age-
related anatomical findings highly depend on inter-individual
variance (Ta et al., 2012). From this perspective, CU participants
over 60 years old included in our sample were highly educated
(12.14 ± 2.85) compared with their peers born in the same
period (∼1,940), of whom only 20% had a high school diploma
(Clerc et al., 2011), and probably belong to high socioeconomic
backgrounds. Following the hypothesis of Baum et al. (1999)
stating that stress might be the pathway linking socioeconomic
status and health, it is possible that high socioeconomic status is
associated with less exposure to stressful life events and might
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FIGURE 4 | MTL subregions volume decline over time among MCI-to-AD converters and non-converters. The regression line indicates model-derived estimates. The

shaded area represents a 95% confidence interval. ***p < 0.001; **p < 0.01, as results of F-tests after the Holm correction. BA, Brodmann area; ERC, entorhinal

cortex; HPC, hippocampus (a, anterior; p, posterior); MCI, mild cognitive impairment; PHC, parahippocampal cortex; PRC, perirhinal cortex. The corresponding

statistics are depicted in Supplementary Table 8.

prevent individuals from a drastic aHPC volume decline, as
the aHPC is particularly sensitive to stress (Vythilingam et al.,
2005; Szeszko et al., 2006; Hawley and Leasure, 2012; Hawley
et al., 2012; Decker et al., 2020). Further investigations of aHPC
and pHPC volume trajectories across the lifespan are needed
to draw strong conclusions, and the inclusion of a measure of
stressful life events might help explore this possibility. Structural
differentiation along the long axis of the HPC was also found
in the first decades of the adult lifespan, as the aHPC volume
still increased in early adulthood compared with the pHPC
volume. This observation is in line with the mean diffusion
results indicating that the pHPC microstructural development
is completed during childhood whereas the aHPC still develops
afterward (Langnes et al., 2020).

Overall, the differential vulnerabilities to age in MTL
subregions do not seem to be influenced by sex, APOE4,
or educational level. While investigating sex differences is
not the main focus of this paper, we pointed out that two
MTL subregions—pHPC and PHC—exhibited a larger adjusted
volume in women than in men. This observation corroborates
previous findings, highlighting a larger pHPC in women when

adjusted for TIV (Persson et al., 2014; van Eijk et al., 2020).
This anteroposterior specificity in sex differences might explain
previous inconsistent findings regarding the HPC volume
sex differences due to the hippocampus being considered
as a whole.

AD Particularly Damages MTL Subregions

From the MCI Stage
In line with previous findings, MTL subregional atrophy differed
along the Alzheimer’s continuum, with later clinical stages
being more affected (Wolk et al., 2017; Xie et al., 2019, 2020).
Specifically, baseline volumes were significantly greater in CU
older adults (either Aβ− or Aβ+) vs. Aβ+ AD patients for all
MTL subregions, and vs. Aβ+MCI patients only for HPC, aHPC,
pHPC and ERC. Interestingly, adult lifespan findings describe
these subregions as being affected late by the detrimental effects
of aging, suggesting that the MTL subregions displaying a late
age-related decline were impaired earlier in AD. In addition
to significantly smaller baseline volumes, Aβ+ MCI and AD
patients exhibited more severe volume decline over time for
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most of the MTL subregions compared to Aβ− CU older
adults, illustrating the sensitivity of longitudinal analyses in
tracking the progression of the disease. Given these findings,
MTL subregional atrophy appears as a valid biomarker of the
symptomatic stages of the Alzheimer’s continuum and seems
more widespread at the dementia stage, corroborating studies
that have already proven the considerable alteration of the MTL
in patients with MCI and AD (Juottonen et al., 1998; Du et al.,
2001; Pennanen et al., 2004; Dickerson et al., 2009; Stoub et al.,
2010; La Joie et al., 2012). The ERC and HPC (especially the
pHPC) were identified as the most damaged subregions from
the MCI stage, suggesting that AD preferentially targets long-
development MTL subregions, as volume of these subregions
keeps increasing until middle age. These subregions might be
more vulnerable to the detrimental effects of late aging because of
their high plasticity, and this age vulnerability might make them
more susceptible to additional pathological AD-related changes,
following the hypothesis described in Fjell et al. (2014). Thus,
environmental factors that influence volume loss in aging could
likely predispose to AD-related alterations. Interestingly, the
MTL subregions most prone to atrophy in ADwere also the most
affected by tau pathology regarding tangles topography (Braak
et al., 2006). These observations corroborate the relationship
between atrophy and neurofibrillary tangles outlined in previous
studies (Whitwell et al., 2008; Harrison et al., 2019; de Flores et al.,
2020).

Although our results advocate the benefits of studying MTL
subregions to differentiate patients of the Alzheimer’s continuum
from CU, none of these measures detect early pathological
changes defined by the presence of Aβ deposition. Previous
cross-sectional findings are inconsistent regarding the potential
ability of MTL subregional volumes to differentiate between
Aβ− and Aβ+ CU older adults. Some studies report no
differences (Xie et al., 2019) while others found smaller BA
35 in Aβ+ CU (Wolk et al., 2017; Xie et al., 2020). Because
these results were derived from cortical thickness measurements
rather than volumetric measurements, we suppose that cortical
thickness may be more sensitive in tracking early signs of
AD, especially since extra-hippocampal volume measures are
biased by the depth of the collateral sulcus which varies among
individuals (Feczko et al., 2009; Schwarz et al., 2016; Berron
et al., 2017). Still, the differences were small and did not survive
the multiple testing correction. Interestingly, the longitudinal
evaluation of MTL subregional atrophy seemed to enhance the
clinical utility of these biomarkers. Xie et al. (2020) revealed
more robust significant differences between Aβ− and Aβ+

CU older adults using longitudinal data, and these differences
were extended to most MTL subregions, yet, we failed to
replicate their findings in our analyses. As Xie et al. divided
Aβ+ CU participants into tau+ and tau- subgroups and found
that only the Aβ+ tau+ subgroup was significantly different
from Aβ− CU older adults, we can speculate that most of
the participants in our sample did not have significant tau
pathology, so no MTL subregional atrophy could be detected.
Unfortunately, no tau data was available in our study, so further
studies including such measures will be needed to validate
this assumption.

Neither the baseline nor longitudinal measures of MTL
subregional atrophy dissociated Aβ+ MCI and AD patients,
except for the ERC at baseline. This observation corroborates
previous findings that found significantly reduced ERC volume
inMCI compared with AD patients (Zhou et al., 2016 for review),
but do not replicate other previous findings highlighting HPC
volume difference between MCI and AD (Lu et al., 2019; Zhao
et al., 2019).

Overall, MTL subregional atrophy appears to reflect AD-
related cognitive impairments, as it distinguishes patients from
CU older adults, but may not be an ideal biomarker of early
AD-related pathological changes defined by the presence of
Aβ deposits.

Hippocampal Substructures Are Sensitive

to Alzheimer’s Dementia Conversion in

MCI Patients
From a prognostic perspective, the HPC, aHPC, and pHPC
volume declines were steeper in MCI-to-AD converters than
in non-converters, suggesting that hippocampal substructures
atrophy may provide information on the clinical outcomes of
MCI patients. These observations corroborate previous findings
also highlighting greater hippocampal atrophy in MCI patients
who developed AD-dementia compared with those who did
not (Pennanen et al., 2004; Apostolova et al., 2006; Devanand
et al., 2007; Henneman et al., 2009; Maruszak and Thuret,
2014 for review; Brueggen et al., 2015). The sensitivity of
hippocampal substructures in dissociating converters from non-
converters was thought to reflect the important alteration of
the HPC in AD. Because group differences were found only by
comparing the volume declines over time and not the baseline
volumes, a longitudinal assessment of atrophy appears to be
more sensitive for tracking AD progression than single-time
assessment, especially as cross-sectional measures may suffer
from cohort effects. In addition, a standardized hippocampal
atrophy score based on automatic segmentation procedures,
with norms as for neuropsychological testing, might provide a
more objective measurement than the subjective appreciation of
MTL atrophy used in previous studies (Scheltens et al., 1995,
1997; Korf et al., 2004; Lehmann et al., 2013). In contrast to
some studies that have illustrated the ability of ERC volume
to predict conversion to AD-dementia in MCI patients, no
significant dissociation between converters and non-converters
was found for this subregion in our analyses (de Toledo-
Morrell et al., 2004; Zhou et al., 2016 for reviews). Still,
the ERC was the subregion displaying the greatest groups
difference among non-significant models. To the best of our
knowledge, the PRC (and its subcomponents BA 35 and 36)
and PHC volume differences were investigated for the first time
between MCI-to-AD converters and non-converters, and results
suggest that none of these subregions discriminate converters
from non-converters.

These results might sound promising as they consider a
potential prognostic biomarker for AD conversion, but it must
be remembered that this is a group comparison and therefore
does not directly evaluate the predictive value of these measures.

Frontiers in Aging Neuroscience | www.frontiersin.org 10 October 2021 | Volume 13 | Article 750154315

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Chauveau et al. MTL in Aging and Alzheimer

Further studies entirely dedicated to the predictive ability of MTL
subregions volumetry to anticipate AD-dementia conversion in
MCI patients might help establish a better clinical routine.

The Volume of Most MTL Subregions

Reflects Episodic Memory Performances
According to our hypotheses, we outlined robust relationships
between most of MTL subregions volumes and episodic
memory performances in Aβ+ MCI and AD patients,
suggesting that pronounced MTL subregional atrophy
worsens episodic memory. Relative to the cognitive functions
investigated, the association between episodic memory
and MTL subregions volume was domain-specific, but
very few cognitive areas were assessed, which limits our
interpretation. Further studies including a more comprehensive
assessment of cognitive functioning might complement
our results and provide more substantiated information. In
particular, indexes of semantic and spatial memory may be
relevant, as some MTL subregions are specifically involved in
these processes.

Our results suggested that the pHPC, ERC, and PRC
volumes were the most strongly associated with episodic memory
performances. These MTL subregions were also the most
damaged in the late clinical stages of the Alzheimer’s continuum,
and so substantiate the view of episodic memory deficit as
a core feature of AD. Thus, the strong involvement of HPC
and ERC in episodic memory function might explain why
episodic memory may be enriched by our environment as
we suggested that environmental factors could impact their
development. Rather, the aHPC, BA36, and PHC volumes were
not significantly associated with episodic memory function. The
lack of association between PHC volumes and episodic memory
performances was quite expected as PHC is more involved in
visuospatial processing (Ranganath and Ritchey, 2012; Aminoff
et al., 2013; Bohbot et al., 2015; Baumann and Mattingley, 2021).
However, the role played by the PHC in episodic memory
should not be negated as it is known that PHC supports the
representations of the situational context associated with items
(Ranganath and Ritchey, 2012; Aminoff et al., 2013). Indeed, our
scores might not be sensitive enough to capture the associative
processing aspect of episodic memory since tests often fail to
capture all reality subtleties, such as contextual details. Thus,
new tests assessing episodic memory more realistically have been
designed and might be explored to better reflect the complexity
of episodic memory (Curot, 2018; Smith, 2019). Interestingly, the
aHPC volume was less related to episodic memory performances
compared with the pHPC volume. This disparity within
hippocampal substructures may reflect the differential role of the
two MTL networks, as aHPC belongs to an anterior-temporal
network which is known to be more involved in semantic
memory compared with pHPC which is included in a posterior-
medial network that is preferentially involved in episodic
memory (Ranganath and Ritchey, 2012).

Limitations
The present study has some limitations. First, it should be
mentioned that the age of our lifespan sample, ranging from 19

and 85, limits the interpretability of age-related changes in the
early lifespan. Specifically, the first inflection in the HPC volume
trajectory should be considered with caution, and additional
analyses including children and adolescents are needed to refine
our observations. Also, our sample size can appear relatively
small andmight prevent us from showing subtle effects, especially
early structural changes in preclinical AD, as only the data from
14 Aβ+ CU older adults were available. However, all data used
in this article were acquired using the same MRI scanner and
this sample size allowed us to rigorously check the scans quality
and manually edit the segmentations, thus, greatly improving
the accuracy of our data. In addition, we manually corrected
about 30% of the segmentations, which may suggest difficulties
for MTL volumetry clinical use. However, it is important to
note that most of these errors were found in CU young adults,
certainly reflecting the inclusion lack of such an age group in
the atlas used. Thus, modifying the atlas to better match a
specific targeted clinical population would likely optimize the
software segmentations.

CONCLUSION

Through this longitudinal study, we gained a better
understanding of aging and AD-related mechanisms regarding
the volume of MTL subregions. We emphasized the benefits
of studying these biomarkers to distinguish age-related
changes from AD. Interestingly, the MTL subregions were
differently vulnerable to the detrimental effects of aging,
and the subregions displaying a late-onset decline, while not
affected by the presence of Aβ deposits, were particularly
damaged in AD from the MCI stage, as well as closely
related to episodic memory performances. In particular, the
volume decline in the hippocampal substructures might
predict the conversion from MCI to AD-dementia. Overall,
we hope that these findings will provide new insights into
MTL alterations, which are crucial for the definition of
AD-specific biomarkers.
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Objective: Predicted age difference (PAD) is a score computed by subtracting

chronological age from “brain” age, which is estimated using neuroimaging data. The

goal of this study was to evaluate the PAD as a marker of phenotypic heterogeneity and

severity among early-onset Alzheimer’s disease (EOAD) patients.

Methods: We first used 3D T1-weighted (3D-T1) magnetic resonance images (MRI) of

3,227 healthy subjects aged between 18 and 85 years to train, optimize, and evaluate

the brain age model. A total of 123 participants who met the criteria for early-onset

(<65 years) sporadic form of probable Alzheimer’s disease (AD) and presented with two

distinctive clinical presentations [an amnestic form (n = 74) and a non-amnestic form

(n = 49)] were included at baseline and followed-up for a maximum period of 4 years.

All the participants underwent a work-up at baseline and every year during the follow-up

period, which included clinical examination, neuropsychological testing and genotyping,

and structural MRI. In addition, cerebrospinal fluid biomarker assay was recorded at

baseline. PAD score was calculated by applying brain age model to 3D-T1 images of

the EOAD patients and healthy controls, who were matched based on age and sex.

At baseline, between-group differences for neuropsychological and PAD scores were

assessed using linear models. Regarding longitudinal analysis of neuropsychological and

PAD scores, differences between amnestic and non-amnestic participants were analyzed

using linear mixed-effects modeling.

Results: PAD score was significantly higher for non-amnestic patients (2.35 ±

0.91) when compared to amnestic patients (2.09 ± 0.74) and controls (0.00 ± 1).

Moreover, PAD score was linearly correlated with the Mini-Mental State Examination

(MMSE) and the Clinical Dementia Rating Sum of Boxes (CDR-SB), for both

amnestic and non-amnestic sporadic forms. Longitudinal analyses showed that the

gradual development of the disease in patients was accompanied by a significant

increase in PAD score over time, for both amnestic and non-amnestic patients.
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Conclusion: PAD score was able to separate amnestic and non-amnestic sporadic

forms. Regardless of the clinical presentation, as PAD score was a way of quantifying an

early brain age acceleration, it was an appropriate method to detect the development of

AD and follow the evolution of the disease as a marker of severity as MMSE and CDR-SB.

Keywords: brain age, deep learning, structural MRI, longitudinal analysis, early-onset Alzheimer’s disease,

phenotypic variants

INTRODUCTION

Throughout life, the brain develops and changes (Teissier et al.,
2020). The changes do not occur to the same extent in all brain
regions (Trollor and Valenzuela, 2001) and are not uniform over
the ages (Scahill et al., 2003). Brain aging does not only impact
the function of our brain, it also impacts the structures with a
decrease in white matter (WM) and gray matter (GM), and an
increase in cerebrospinal fluid (CSF) brain volumes in adulthood
(Guttmann et al., 1998). In contrast to WM, the volume decrease
in GM is less uniform, with the frontoparietal cortex being
more affected than the temporo-occipital cortex (Resnick et al.,
2003). However, the shrinkage does not necessarily result from a
decrease in the number of neurons but mainly from a reduction
in their volume (Dickstein et al., 2007). Therefore, normal cellular
brain aging is characterized more by subtle changes than a large-
scale loss of cells (Teissier et al., 2020). As a result, it is more
difficult to characterize the pace of these changes, the biological
age of the brain, and all the processes involved in brain aging
(Peters, 2006).

It is now widely assumed that Alzheimer’s disease (AD)

reflects a form of accelerated aging (Cao et al., 2010; Jones
et al., 2011; Saetre et al., 2011). For this reason, a growing

number of studies investigated both normal and AD age-related
changes (Raji et al., 2009; Beheshti et al., 2020). Brain region

volumetry may be of interest in the diagnosis of AD with a
relatively preserved prefrontal cortex region and an atrophy of

hippocampus compared to healthy people (Head et al., 2005;
Jack and Holtzman, 2013). However, significant phenotypic
heterogeneity of AD is widely recognized, as several atypical
variants are described other than the typical limbic-predominant
subtype, which is characterized by an amnestic presentation
and a pattern of brain atrophy preferentially localized to
the limbic areas (Ferreira et al., 2020). Atypical variants are
characterized by a hippocampal-sparing pattern of brain atrophy
that relatively spares the limbic structures but more severely
affects neocortical areas (Whitwell et al., 2012; Cho et al., 2013;
Risacher et al., 2017). Moreover, there is significant heterogeneity
in the locations of atrophy across individual patients (Tetreault
et al., 2020).

Magnetic resonance imaging (MRI) is a powerful non-invasive
tool to investigate brain structural changes throughout ages in
vivo (Guttmann et al., 1998; Sowell et al., 2003). These images
can show changes in GM and WM during the maturation of the
brain (Giedd et al., 1999; Paus, 1999; Sowell et al., 1999, 2001;
Courchesne et al., 2000; Thompson et al., 2000) and during aging
(Bartzokis et al., 2001; Jernigan et al., 2001). Many markers, such

as cortical thickness and volumetric measures, are associated with
brain aging in healthy controls and neurodegenerative diseases
(Raji et al., 2009). Although the brain undergoes characteristic
changes due to aging over the course of a lifetime, the impact may
be slightly different for each individual. Not only are structural
characteristics involved in brain change but also education
and occupation may be proxies for brain functional reserve,
reducing the severity and delaying the clinical expression of
AD pathology.

Deep learning techniques, such as convolutional neural
networks (CNN), have the benefits to identify MRI markers, and
they can model complex non-linear relationships without the
need for predefined traditional MRI markers (Cole et al., 2017b;
Beheshti et al., 2018). However, these models need large and
diverse samples for training the complex deep network, making
it possible only by several data sharing initiatives. A growing field
of research combining MRI markers and CNN algorithms are
focusing on brain age estimation in the healthy population (Sajedi
and Pardakhti, 2019), with a mean absolute error (MAE) of 3–5
years in age ranging from 18- to 90-year-olds using T1-weighted
(T1w) structural MRI (Cole et al., 2017a; Franke and Gaser, 2019;
Couvy-Duchesne et al., 2020). Predicted age difference (PAD),
defined as the difference between chronological age and predicted
age, is associated with disease status, including AD and mild
cognitive impairment (Franke et al., 2010; Franke and Gaser,
2012; Löwe et al., 2016).

Early-onset AD (EOAD), which is defined by an age of
onset ≤65 years, is of interest in the study of the phenotypic
heterogeneity due to the higher frequency of non-amnestic
variants than in late-onset AD (LOAD) (Palasí et al., 2015).
Atypical presentations affect language abilities, visuospatial
abilities, or executive functions (Marshall et al., 2007; Garre-
Olmo et al., 2010; Koedam et al., 2010; Balasa et al., 2011;
Sá et al., 2012). Patients with EOAD appear to exhibit faster
cognitive decline than patients with LOAD (Haxby et al., 1992;
Pettigrew et al., 2017). However, studies on LOAD tend to show
that the later onset of dementia was the only prominent variable
accelerating all cognitive and functional outcomes (de Oliveira
et al., 2018). Moreover, studies on cognitive reserve tend to show
the same result. The concept of cognitive reserve arose from the
idea that life experiences associated with cognitive stimulation
could increase brain resilience to neuropathologic lesion and
delay the onset of symptoms of functional decline (Haxby et al.,
1992; Soldan et al., 2020). However, cognitive reserve did not
have a linear effect on the development of brain injuries, and
even experienced a paradox. Previous studies suggest that while
the cognitive reserve is associated with a delayed symptom onset
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(Qiu et al., 2001; Reed et al., 2010; Roe, 2011; Soldan et al.,
2013; Pettigrew et al., 2017; Robitaille et al., 2018; van Loenhoud
et al., 2019), it could be related to more severe brain atrophy
and accelerated cognitive decline in advanced AD stages (Wilson
et al., 2000; Scarmeas, 2005; Andel et al., 2006; Bracco et al.,
2007; Hall et al., 2007; Yoon et al., 2015; Myung et al., 2016;
Soldan et al., 2017). These contradictory results may be explained
by a higher proportion of non-amnestic variants and higher
education level (which seems to be a proxy for cognitive reserve)
in EOAD patients.

Despite the growing interest to better understand the
mechanisms underlying phenotypic heterogeneity in EOAD
using MRI (Mendez, 2012; Falgàs et al., 2020a; Vanhoutte et al.,
2020), there is a potential bridge between these group-level
studies and the clinical care of individual AD patients. The aim of
this study was to investigate the PAD as a marker of phenotypic
heterogeneity in EOAD for diagnostic and follow-up purposes.
We hypothesized that (i) PADmarker would distinguish between
clinical variants of EOAD, and (ii) progression of PAD marker
would follow the functional and cognitive severity of disease for
both phenotypes.

MATERIALS AND METHODS

EOAD Population
Participants with EOAD were all recruited at the University
Hospital’s Memory Resources and Research Center in Lille,
France. The participants were part of the COhorte Malade
Alzheimer’s Jeunes (Early-onset Alzheimer’s cohort in French,
COMAJ), which was initiated in 2009.

The COMAJ study was approved by the local institutional
investigational review board [Ethic committee (CPP Nord-Ouest
I); reference: 110-05]. Written informed consent was obtained
from all participants and/or their relatives. Inclusion criteria
were as follows: (a) participants should meet National Institute
on Aging - Alzheimer’s Association (NIA-AA) criteria for
“probable AD dementia with intermediate evidence of AD patho-
physiological process” (McKhann et al., 2011) and International
Working Group (IWG) 2 criteria (Dubois et al., 2014); (b)
participants must be ≤60 years of age at the time of first
symptoms; (c) evidence of abnormal CSF biomarkers with Aβ42
below 700 pg/mL and total tau and phosphorylated tau above
400 and 60 pg/mL, respectively (Lehmann et al., 2014). The final
diagnosis of sporadic EOAD was based upon extensive reviewing
of clinical history, CSF biomarkers, and neuropsychological
and imaging data by a multidisciplinary board. Criteria for
pathological mutations were onset of symptoms< 51 years old or
family history of EOAD in the first degree. Individuals with early-
onset dementia in first-degree relatives or those with a confirmed
mutation in the PSEN1, PSEN2, or APP genes were excluded.
Out of 123 participants, 16 participants were searched for APP,
PSEN1, and PSEN2.

A total of 217 sporadic EOAD participants were included and
classified as amnestic presentation (“typical”) or non-amnestic
presentation (“atypical”) with prominent cognitive impairments
in language, visuospatial, or executive functions, based on
neuropsychological tests of 4 cognitive domains listed below:

1. Episodic memory: free and cued selective recall, the “doors”
part of the Doors and People test, and the Visual Association
Test (Lindeboom, 2002; Schoonenboom et al., 2005).

2. Language: the DO80 confrontation naming test with 80
images (Deloche and Hannequin, 1997).

3. Visuospatial function: evaluation of upper limb praxis,
evaluation of visuoconstructive abilities using the Rey-
Osterrieth complex figure test and the Beery-Buktenica
developmental test of visual-motor integration (Beery VMI
test) (Lim et al., 2015), evaluation of visual gnosis using
subtests from the Visual Object and Space Perception Battery
(the screening test, incomplete letters, and number location).

4. Executive functions: evaluation of working memory using
the forward and backward digit span task from the Wechsler
memory scale (third edition), the Frontal Assessment Battery
at bedside, category verbal fluency (animals), and lexical verbal
fluency (the letter P) (Godefroy, 2008).

Three-dimensional T1-weighted (3D-T1) images were acquired
on a 3T MRI scanner (Achieva, Philips, Best, the Netherlands),
using an 8-channel phased-array head coil and whole-body coil
transmission (field of view = 256 × 256 × 160 mm3, isotropic
voxel size 1 × 1 × 1 mm3, TR = 9.9ms, TE = 4.6ms, and flip
angle = 8◦) for initial evaluation and follow-up. In addition to
MRI, each patient was evaluated annually for a maximum of 4
years by the Mini-Mental State Examination (MMSE) (Folstein
et al., 1985) and the Clinical Dementia Rating Sum of Boxes
(CDR-SB) (Hughes et al., 1982). Predicted brain age was obtained
from participants who completed a structural MRI scan at least
for one time point during follow-up. Based on the availability
and quality of MR images of the 217 EOAD participants, 74
amnestic and 49 non-amnestic participants were finally retained
(Figure 1). Out of the total number, 70, 28, 21, 17, 8 amnestic
and 46, 49, 38, 28, 13 non-amnestic patients were finally retained
at baseline, year 1, year 2, year 3, and year 4, respectively
(Supplementary Table S1).

Healthy Population
A total of 3,227 MRI scans from 2,065 healthy participants
(48% men, mean age = 33.6 ± 12.3 years, age range from 18
to 85 years) were included in the study. Data were compiled
from publicly available sources made available via various
data sharing initiatives (Supplementary Table S2). According
to the local study protocols, all participants were free from
neurological or psychiatric disease. We retained only images
acquired at 3T MRI using 3D-T1 sequence. The subject consent
was obtained at each local study site and each contribution was
ethically approved.

These images were divided into three datasets—a control
dataset to compare with the patients from the COMAJ cohort, the
training dataset to train and optimize our model, and the testing
dataset to test its performance.

For our control dataset, we used images of 116 age- and
sex-matched healthy subjects from the Parkinson’s Progression
Markers Initiative (PPMI) (www.ppmi-info.org/data) and
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
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FIGURE 1 | Flowchart of the study population.

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public–
private partnership, led by Principal Investigator, Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether
serial MRI, positron emission tomography and other biological
markers, and clinical and neuropsychological assessment can
be combined to measure the progression of mild cognitive
impairment and early AD. These images were acquired by
scanners from the three major MRI manufacturers (General
Electric, Philips, and Siemens). These data were never used in the
training, the hyperparametrization, or the testing of our brain
age model.

The training and testing sets were composed of 3,083 MR
acquisitions from 1,955 subjects and 144 MR acquisitions
from 110 subjects obtained from 6 data sharing initiatives,
which include Information eXtraction from Images (IXI),
Human Connectome Project (HCP) (Van Essen et al., 2012),
Center Of Biomedical Research Excellence (COBRE), Mind
Clinical Imaging Consortium (MCIC), Neuromorphometry by
Computer Algorithm Chicago (NMorphCH), and enhanced
Nathan Kline Institute-Rockland Sample (NKI-RS) (more details
in Supplementary Table S2).

Data Preprocessing
Minimal preprocessing steps were performed on 3D-T1 images
(Lombardi et al., 2020). First, images were corrected for magnetic
field inhomogeneity effects and skull-stripped using VolBrain
software (volbrain.upv.es) (Manjón and Coupé, 2016). Brain
extractions were systematically checked for possible errors (brain
regions missing), and manual corrections were performed by a
neuroradiologist (GK), when deemed necessary (Fischl, 2012).
Then, preprocessed 3D-T1 images were linearly registered
into MNI space and resampled to 1 mm3 using SPM software
(fil.ion.ucl.ac.uk/spm/software/spm12). Finally, intensity
normalization was performed using min–max normalization.

Furthermore, for correlation purposes, GM, WM, and CSF
brain volumes were estimated using VolBrain software (Manjón
and Coupé, 2016).

Brain Age Prediction Model
For the prediction of chronological age using MRI from healthy
control subjects, also called “brain age,” our model was based
on 3D convolutional neural network (CNN) architecture. This
architecture, which was inspired by Cole et al. (2017a), is both
simple and efficient for the prediction of brain age using 3D-T1
images (Figure 2).

The proposed architecture took preprocessed 3D-T1 images
with dimensions of 182 × 218 × 182 voxels. The weights of the
model were determined byminimizing the cost function, here the
mean absolute error (MAE). To optimize the weights, we used
stochastic gradient descent optimization algorithm (Sutskever
et al., 2013) with a learning rate of 0.001, a momentum of 0.1, and
a learning rate decay of 5e-05. We used a batch size of 8 during
150 iterations. We performed an early stopping at the epoch 113
because it gave us the best MAE on the validation set.

During the training phase, we performed a data augmentation
strategy on-the-fly consisting of performing translation and
rotation of the MR images. This technique generated additional
artificial training images to prevent the model from overfitting
and was empirically found to yield better performance (Shorten
and Khoshgoftaar, 2019).

We used a 5-fold cross-validation procedure on our training
set for optimizing hyperparameters and for assessing how
our results would generalize to another dataset of the same
distribution. The distribution of patient ages was not uniform in
the training set, so in the cross-validation, the distribution of the
validation set was not uniform either (Figure 3A).

To test the performance of our model across the ages, we
needed a more balanced testing set. The testing set had 144
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FIGURE 2 | Schematic representation of the CNN architecture. The black box represents the 3D-T1 images as inputs of our model. Each block consisted of 3D

convolution of kernel size (3 × 3 × 3), ReLU activation, 3D convolution of kernel size (3 × 3 × 3), batch normalization, rectified linear unit activation, and max-pooling

layer of pooling size (2 × 2 × 2). The block was repeated 5 times. The output of the network (gray box) corresponds to the brain-predicted age. CNN, convolutional

neural network; ReLU, Rectified Linear Unit.

FIGURE 3 | (A) Age distribution of subjects in the training set. (B) Age distribution of subjects in our testing set. We randomly selected 10 images every 5 years to

obtain a uniform distribution of images throughout the age.

images from 110 subjects, with 10 randomly selected images
for each 5 years period from 18 to 70 years, and 10 randomly
selected images from 70 years and above. With this pseudo-
random selection, we obtained a more uniform distribution than
the training age distribution (Figure 3B).

Bias Correction in Brain Age Prediction
Like all regression methods, the brain age model is subject
to the fundamental phenomenon of “regression toward the
mean” (Galton, 1886). This bias overestimates age among
younger participants and underestimates it in older participants.
Although studies had mainly attributed the bias to inconsistency
in the distribution of noise over the life course (Cole et al., 2017a),
the reasons are still largely unknown. The bias seems rather
universal, regardless of the data, age range, sample size, and even
the particular methods used (linear machine learning or deep
learning methods) (Liang et al., 2019). To correct the regression

toward the mean phenomenon, we used the following equation
(Liang et al., 2019):

regressed age predicted = intercept + α∗chronological age +

error (1)

α is a regression coefficient associated with the chronological age,
and in our study α = 0.13.

Patient Prediction
Weights from the training model were used for the prediction of
brain age of healthy controls and EOAD patients. This age was
regressed out using Equation 1. PAD score was calculated as the
difference between predicted brain age and chronological age at
the acquisition time. We calculated the PAD z-score for the three
groups taking the control group as standard.
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TABLE 1 | Demographic and clinical characteristics at baseline according to clinical forms of EOAD and controls.

Indicators Amnestic Non-amnestic Control Effect/p-value

N 70 46 116

CDR-SB 6.71 ± 4.25 7.21 ± 3.81 0.327a

MMSE 17.14 ± 6.71 16.13 ± 6.96 0.192a

Disease duration, years 5.45 ± 2.91 4.55 ± 2.14 0.157a

Education level, years 9.64 ± 2.82 10.41 ± 2.82 0.0357ac

Age, years 59.30 ± 4.28 58.61 ± 3.68 59.05 ± 4.05 0.611b

Female, n (%) 36 (51%) 26 (56%) 63 (54%) 0.73a

Quantitative variables were quoted as the mean ± SD (interquartile range).
aχ2 and Wilcoxon tests were applied to categorical and continuous variables, respectively.
bKruskal–Wallis test was applied to continuous variables for more than two populations.
cp < 0.05.

CDR-SB, Clinical Dementia Rating Sum of Boxes; MMSE, Mini-Mental State Examination.

TABLE 2 | Model performance on cross-validation datasets.

Folds 1 2 3 4 5 Mean ± SD

MAE validation (year) 3.85 2.74 3.06 2.77 3.48 3.18 ± 0.43

MAE, mean absolute error; SD, standard deviation.

Model Visualization With Gradient Class

Activation Maps
Gradient Class Activation Maps (Grad-CAM) approach uses the
final convolutional layer gradients to produce a map highlighting
the brain regions used for brain age prediction (Selvaraju et al.,
2017). Grad-CAM approach was used to create an average map
called an attention map for each group of participants (controls,
non-amnestic EOAD, and amnestic EOAD participants).

Statistical Analysis
All the analyses were conducted in Python (3.8.5) using
scipy (1.6.1) and statsmodels (0.12.1). At baseline, intergroup
differences between controls, amnestic, and non-amnestic EOAD
participants in demographic, clinical, and neuropsychological
features were assessed using Wilcoxon or Kruskal–Wallis tests
for continuous variables and chi-squared tests for categorical
variables. To quantify the magnitude of effect sizes between
groups, we used Cliff ’s delta (Cliff, 1993). Between-group
differences for neuropsychological and PAD scores were
assessed using linear models. Regarding the longitudinal analysis
of neuropsychological and PAD scores, differences between
amnestic and non-amnestic participants were analyzed using
univariate linear mixed-effects (LME) models. LME models
provide an approach for analyzing longitudinal data while
handling variable missing rates and non-uniform timing. These
models also make use of participants with a single time point
to characterize population-level regionally specific differences.
Equality of regression coefficients was assessed by the Chow test
(Toyoda, 1974).

The threshold for statistical significance was set to
p < 0.05. Bonferroni post-hoc test was used to correct for
multiple comparisons.

Code Availability
Code is available on github at https://github.com/
MorganGautherot/Brain_age_model.

RESULTS

Demographic and Clinical Data at Baseline
Baseline demographic and clinical data between amnestic
and non-amnestic EOAD forms are shown in Table 1.
The non-amnestic and amnestic EOAD groups did not
differ significantly with regard to age at inclusion, disease
duration from the first symptoms, and cognition (CDR-SB
and MMSE). The only difference was the education level,
which was higher for the non-amnestic patients (10.41 ±

3.68) when compared with the amnestic patients (9.64 ±

2.82). Overall, the EOAD participants had a moderately
severe disease (MMSE score was 17.17 ± 6.71 for amnestic,
and 16.13 ± 6.96 for non-amnestic patients). Thus,
education level was used as a covariate in the comparison
of EOAD groups.

Convolutional Neural Networks Accurately

Predict Age Using Neuroimaging Data
Analysis showed that our CNN model accurately predicted the
chronological age of healthy subjects, using 3D-T1 images. We
obtained an MAE of 3.18 ± 0.43 years on training data, after the
cross-validation approach (Table 2), and 4.34 years on the testing
set (Figure 4A).

Significant correlation was found between age and prediction
error before bias correction (r = −0.33, p < 0.001), but not after
bias correction (r = 0.00, p= 0.99) (Figures 4B,C).
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FIGURE 4 | (A) Accuracy of CNN for brain age prediction using testing set. Scatter plots depict chronological age (x-axis) and brain-predicted age (y-axis) on the

testing set subjects. The r value was the Pearson’s correlation coefficient of brain-predicted age with chronological age and p was the associated p-value. Plot of the

chronological age in function to PAD z-score (B) before and (C) after regression. CNN, convolutional neural network; PAD, predicted age difference.

FIGURE 5 | PAD z-scores distribution for controls, amnestic, and

non-amnestic EOAD patients. A Kruskal–Wallis test was applied to these

groups with a p < 0.001. Using Cliff’s delta, we showed that there was an

effect size between controls and non-amnestic population (d = 0.91), controls

and amnestic population (d = 0.90), and non-amnestic and amnestic

population (d = 0.22). PAD, predicted age difference. †, ‡; represent the

outliers of the distribution.

Comparison of Predicted Brain Age

Between Participants of EOAD Subtypes

and Controls
Predicted age difference z-scores were different for the three
groups (p < 0.01), with higher PAD z-scores for non-amnestic
patients (2.35 ± 0.91) when compared to amnestic patients (2.09
± 0.74, p = 0.022) and controls (0.00 ± 1, p < 0.001) (Figure 5).
PAD z-scores were higher for amnestic patients when compared
to controls (p < 0.001) (Figure 5). There was a small effect
size between amnestic patients and non-amnestic patients (Cliff ’s
delta = 0.22). For controls, there was a large effect size with
amnestic (Cliff ’s delta = 0.90) and non-amnestic (Cliff ’s delta =
0.91) population.

Predicted age difference z-scores were predictive of a low
MMSE (non-amnestic patients: α = −3.5, intercept = 22, p
< 0.001; amnestic patients: α = −2.5, intercept = 21, p =

1.7e-02) and a high CDR-SB score (non-amnestic patients:

α = 1.7, intercept = 3.1, p < 0.001; amnestic patients: α

= 2.3, intercept = 1.8, p < 0.001) for EOAD participants
(Figure 6).

The percentage of CSF brain volume was positively correlated
to PAD z-score for non-amnestic EOAD (r = 0.35, p = 0.0025),
amnestic EOAD (r = 0.35, p = 0.0025), and control participants
(r= 0.30, p< 0.001) (Figure 7A). Amnestic (p< 0.001) and non-
amnestic EOAD patients (p < 0.001) had a more rapid evolution
of PAD z-scores in relation to the percentage of CSF brain volume
when compared to control participants (Figure 7A). Amnestic
and non-amnestic EOAD patients had no statistical difference
between PAD z-scores and percentage of CSF brain volumes
(p= 0.1).

The percentages of GM volume were strongly negatively
correlated to PAD z-scores for non-amnestic EOAD (r =

−0.72, p < 0.001), amnestic EOAD (r = −0.55, p < 0.001),
and control participants (r = −0.50, p < 0.001) (Figure 7B).
Amnestic (p < 0.001) and non-amnestic EOAD patients (p <

0.001) had a more rapid evolution of PAD in relation to the
percentage of GM volumewhen compared to control participants
(Figure 7B). Amnestic and non-amnestic patients had no
statistical difference between PAD z-scores and percentage of GM
volumes (p= 0.092).

The percentages of WM volume were not correlated to PAD
z-scores for non-amnestic (r = 0.01, p = 0.94), amnestic EOAD
(r = −0.01, p = 0.89), and control participants (r = 0.11, p =

0.22) (Figure 7C).

Attention Map
For all groups, attention maps showed that mostly subcortical
white matter temporo-occipital junction and extension to
subcortical white matter middle frontal gyrus were used for
brain age prediction (Figures 8A–C). In these structures, we
noticed a more important involvement of the right hemisphere.
For amnestic and non-amnestic EOAD subtypes, attention maps
were similar but statistically took into account more information
than the controls (p< 0.05 FWE-corrected). EOAD subtypes had
the involvement of the left superior temporal gyrus and right
middle and inferior gyrus and anterior insula (Figures 9A,B).
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FIGURE 6 | (A) Plot of the MMSE in function of PAD in the EOAD population. (B) Plot of the CDR-SB in function of PAD in the EOAD population. Lines represented

linear trajectories using linear regression model (blue line: amnestic EOAD and yellow line: non-amnestic EOAD). **p < 0.05. MMSE, Mini-Mental State Examination;

PAD, predicted age difference; CDR-SB, Clinical Dementia Rating Sum of Boxes; EOAD, early-onset Alzheimer’s disease.

FIGURE 7 | Plot of the percentage of brain CSF (A), GM (B), and WM (C) volumes in function of PAD. Lines represented trajectories using linear regression model

(blue line: amnestic EOAD; yellow line: non-amnestic EOAD; and green line: control). Pearson correlation was computed between PAD and MMSE on non-amnestic

and amnestic EOAD populations. The two coefficients of the regression were not statistically different between non-amnestic and amnestic compared to GM and CSF

volumes (Chow test). The two coefficients of the regression for PAD in function of GM and CSF volumes were statistically different between controls and EOAD

subtypes (Chow test). **p < 0.05. CSF, cerebrospinal fluid; PAD, predicted age difference; GM, gray matter; WM, white matter; EOAD, early-onset Alzheimer’s

disease; MMSE, Mini-Mental State Examination.

Longitudinal Analysis of Predicted Age

Between EOAD Subtypes
The gradual development of disease in patients was accompanied
by a significant increase in PAD z-scores over time (p <

0.01) (Figure 10). Using the Chow test, there was no statistical
difference (p = 0.096) observed in the PAD z-scores evolution
between amnestic and non-amnestic EOAD patients.

DISCUSSION

In this study, we predicted the brain age of EOAD patients
based on 3D-T1 images using a 3D CNN algorithm trained
on a cohort of 1,955 healthy controls. We compared PAD z-
scores in amnestic and non-amnestic EOAD patients and healthy
controls. Although the groups of participants were matched with
their chronological age, PAD z-scores were higher for EOAD

patients when compared to controls. The brain regions used for
brain age prediction were also different between groups with the
involvement of left superior temporal gyrus and right middle and
inferior gyrus and anterior insula in EOAD patients. Moreover,
we showed that non-amnestic EOAD patients had a higher PAD
z-score than amnestic EOADpatients. Finally, we compared PAD
z-scores longitudinally over a period of 4 years and found that the
PAD z-score increased with the severity of the disease.

The atrophied regions detected in AD patients largely
overlapped with the regions showing a normal age-related
decline in healthy control subjects (Raji et al., 2009). As PAD
score was a way of quantifying an early brain age acceleration,
it was an appropriate method to detect the development of
neurodegenerative diseases such as AD. This characteristic of
PAD score had already shown its potential to provide clinically
relevant information (Franke et al., 2010). Studies showed that
PAD score longitudinally increased with the severity of the
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FIGURE 8 | Attention maps computed by Grad-CAM for control, non-amnestic, and amnestic EOAD participants. The resulting averages for each population were

overlaid on MNI template space. MNI coordinate of the red cross (25.28, −82.36, 33.42). (A) Average of the attention map on the control population. (B) Average of

the attention map on the non-amnestic EOAD population. (C) Average of the attention map on the amnestic EOAD population. R, right hemisphere; L, left

hemisphere; Grad-CAM, Gradient-weighted Class Activation Mapping; EOAD, early-onset Alzheimer’s disease; MNI, Montreal Neurological Institute.

impairment and allowed the detection of conversions from
mild cognitive impairment to AD (Franke and Gaser, 2012;
Gaser et al., 2013). However, these studies were based on the
comparisons of AD and healthy controls, while several AD
subtypes exist. In this study, we studied the EOAD which was
defined by an age of onset ≤ 65 years. Due to its early onset
and the clinical overlap between different diseases, there was a
significant delay in the diagnosis of EOAD (van Vliet et al., 2013).
One specificity of EOAD is the higher frequency of non-amnestic
variants when compared to LOAD (Palasí et al., 2015). Amnestic
and non-amnestic forms have different origins and evolution on
the cerebral degeneration (Ossenkoppele et al., 2015; Xia et al.,
2017; Phillips et al., 2018; Riedel et al., 2018; Vanhoutte et al.,
2020). We investigated PAD score as a marker of phenotypic
heterogeneity in EOAD for diagnosis.

At baseline, PAD z-scores were positively correlated with
MMSE and negatively correlated with CDR-SB. A previous
study showed similar results in AD (Beheshti et al., 2018).
The correlations of PAD with CDR-SB and MMSE mean that
PAD was correlated with the cognitive state of the patients.
They confirmed that a more impaired patient tended to have
a higher PAD. It was interesting to see that PAD was not
only useful in separating healthy population from patients with

neurodegenerative diseases, but that it was able to differentiate
amnestic and non-amnestic EOAD patients (p = 0.022). Non-
amnestic patients developed a more marked neocortical and
basal nuclei atrophy. However, they had an identical severity on
the MMSE, which could be due to a greater cognitive reserve
because of a significantly higher level of education or due to
the fact that the MMSE is less adapted to quantify the disorders
in patients with executive type disorders. One of the strengths
of our study is the fact that we analyzed the evolution of PAD
z-scores between EOAD phenotypes over a period of 4 years.
PAD z-scores increased over time similarly between amnestic
and non-amnestic EOAD forms. This result corroborated the
positive correlation between the severity of EOAD disease and
the increase in PAD z-scores. The evolution of PAD z-scores
over time was interesting because it could give a marker of
evolution that was independent of the clinical form and of any
other element such as cognitive scales that have their limits or
clinical scales such as MMSE and CDR-SB (collected subjectively
from the caregiver). This would make it possible to get rid of this
heterogeneity and show the evolution in an objective way.

One originality of our study was the search for the
interpretation of the PAD score in order to know about the
brain information on which it was based. We computed the
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FIGURE 9 | Significant T-value map (p < 0.05) computed using ANOVA corrected by the family-wise error method between the attention maps of the control group

and (A) the amnestic and (B) the non-amnestic groups. Coordinate of the slice (25.11, 18.40, 25.92). R, right hemisphere; L, left hemisphere; ANOVA, Analysis of

variance.

FIGURE 10 | Longitudinal evolution of the PAD over 4 years between

amnestic and non-amnestic patients. Lines represented trajectories using

linear-mixed-effects models (yellow line: non-amnestic EOAD and blue line:

amnestic EOAD). The two coefficients of the regression were not statistically

different (Chow test, p = 0.096). PAD, predicted age difference; EOAD,

early-onset Alzheimer’s disease. **p < 0.05.

attention maps to show the most involved regions for the
brain age prediction. For the three populations, the brain age
model took into account common area of the brain with the
involvement of the subcortical white matter temporo-parieto-
occipital junction and the extension to subcortical white matter
middle frontal gyrus. We noticed that the model took more
information on the right hemisphere than on the left hemisphere.
For the EOAD subtypes, the model statistically accounted for

additional structures such as the left superior temporal gyrus and
the right middle and inferior frontal gyrus and anterior insula.
We also looked for elements of interpretation in the interactions
of the PAD with the different tissues of CSF, WM, and GM,
which changed throughout life. As GM tissues decreased with
age (Narvacan et al., 2017), it was not surprising that PAD score
was negatively correlated with the GM volume for each group.
The GM volume did not decrease in the same way in all groups.
EOAD had lower GM volume, which was consistent with the
fact that AD experienced a faster decrease in GM volume when
compared to aging subjects (Frings et al., 2014). Even if WM
volume changed during the course of life (Guttmann et al.,
1998; Courchesne et al., 2000), our brain age model did not
use this information to compute PAD score. In aging, due to
ventricular dilatation and the decrease of GM and WM volumes,
the CSF volume increased with age (Courchesne et al., 2000).
We observed a positive correlation between CSF brain volume
and PAD score for each group. Nevertheless, EOAD patients had
higher CSF brain volume than controls, which was in agreement
with the previous studies on EOAD and LOAD patients (Anoop
et al., 2010; Teng et al., 2014; Chiaravalloti et al., 2016; Falgàs
et al., 2020b). The correlations were also consistent with the
attention maps showing the involvement of the junction between
the GM and the CSF in the brain age prediction.

To predict PAD score, we used a 3D CNN architecture which

allowed us to work directly with raw data with few preprocessing
steps. Using raw data allowed the algorithm to search itself for

the available information regarding who was the most interesting

to solve the brain age problem. There was therefore less bias
induced by the preprocessing steps, which were usually more

present during feature extraction for a classical machine learning
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algorithm. We applied field inhomogeneity correction, skull-
stripped extraction, linear registration to common space, and
min–max normalization as preprocessing steps. We obtained a
cross-validation MAE of 3.18 ± 0.43 and a test MAE of 4.34,
which are common results in brain age prediction (Franke and
Gaser, 2019; Sajedi and Pardakhti, 2019). The requirement of few
preprocessing steps and the fast calculation (around 0.36 s) make
the PAD score a marker of sporadic EOAD subtypes classification
that can be used in clinical routine.

Our study had some limitations. Even if 3,227 MR images
are considered to be a great number in medical studies, CNN
models used to be trained on a greater number of images.
More complex brain aging models exist, but we made the
choice to use a simpler and more flexible architecture to avoid
overfitting. In addition, this brain age model had already proven
its performance in a previous study (Cole et al., 2017a). Despite
the correction of the regression toward mean, the problem was
still present and was more pronounced when the model was used
on different data from the training set. However, to the best of
our knowledge, no alternative has been found to this problem
apart from the regression of the error. Our population suffered
from an attrition bias, as not all included patients completed
the 4 years follow-up. The controls used for comparison to
EOAD patients were not acquired with the same MR scanner.
We selected healthy subjects not used during the implementation
and validation of the brain age prediction model. Moreover, we
randomly paired our control with our two EOAD subtypes based
on age and sex, to remove the maximum of variability. Lastly,
further independent validation will be necessary to assess the
PAD score as a marker of global cognitive performance and
clinical status.

CONCLUSIONS

In this study, we showed that PAD score could be a valuable
marker of disease severity which can be used to distinguish
between clinical variants of EOAD. Further studies could
determine the robustness of the PAD score in prospective cohorts
and can be used in longitudinal studies for developments in
pharmacological studies to show the arrest of this progression
with treatment.
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In this work we aimed to identify neural predictors of the efficacy of multimodal
rehabilitative interventions in AD-continuum patients in the attempt to identify ideal
candidates to improve the treatment outcome. Subjects in the AD continuum who
participated in a multimodal rehabilitative treatment were included in the analysis [n = 82,
38 Males, mean age = 76 ± 5.30, mean education years = 9.09 ± 3.81, Mini Mental
State Examination (MMSE) mean score = 23.31 ± 3.81]. All subjects underwent an
MRI acquisition (1.5T) at baseline (T0) and a neuropsychological evaluation before
(T0) and after intervention (T1). All subjects underwent an intensive multimodal
cognitive rehabilitation (8–10 weeks). The MMSE and Neuropsychiatric Inventory (NPI)
scores were considered as the main cognitive and behavioral outcome measures,
and Delta change scores (T1–T0) were categorized in Improved (1MMSE > 0;
1NPI < 0) and Not Improved (1MMSE ≤ 0; 1NPI ≥ 0). Logistic Regression (LR) and
Random Forest classification models were performed including neural markers (Medial
Temporal Brain; Posterior Brain (PB); Frontal Brain (FB), Subcortical Brain indexes),
neuropsychological (MMSE, NPI, verbal fluencies), and demographical variables (sex,
age, education) at baseline. More than 50% of patients showed a positive effect
of the treatment (1MMSE > 0: 51%, 1NPI < 0: 52%). LR model on 1MMSE
(Improved vs. Not Improved) indicate a predictive role for MMSE score (p = 0.003)
and PB index (p = 0.005), especially the right PB (p = 0.002) at baseline. The
Random Forest analysis correctly classified 77% of cognitively improved and not
improved AD patients. Concerning the NPI, LR model on 1NPI (Improved vs. Not
Improved) showed a predictive role of sex (p = 0.002), NPI (p = 0.005), PB index
(p = 0.006), and FB index (p = 0.039) at baseline. The Random Forest reported a
classification accuracy of 86%. Our data indicate that cognitive and behavioral status
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alone are not sufficient to identify best responders to a multidomain rehabilitation
treatment. Increased neural reserve, especially in the parietal areas, is also relevant for
the compensatory mechanisms activated by rehabilitative treatment. These data are
relevant to support clinical decision by identifying target patients with high probability of
success after rehabilitative programs on cognitive and behavioral functioning.

Keywords: neurodegenerative diseases, dementia, rehabilitation, biomarker, MRI, brain reserve, cognitive reserve

INTRODUCTION

Cognitive disability affects 10.8% of adults living with a chronic
condition, and is characterized by a complex impairment in
attention, memory and/or decision making. With the aging
of the general population (World Health Organization, 2012)
cognitive disabilities in the adult are often observed as
clinical signs of neurodegenerative diseases as in Alzheimer’s
continuum conditions, ranging from Mild Cognitive Impairment
(MCI) to Alzheimer’s Dementia (AD) (Aisen et al., 2017;
Jack et al., 2018).

MCI is a mild neurocognitive disorder (American Psychiatric
Association, 2013; Stokin et al., 2015), affecting 6–25% of people
aged over 60, characterized by isolated impairment in one or
more cognitive processes, often involving memory (amnestic
MCI), with a complete autonomy in functional activities of
daily living (Langa and Levine, 2014; Petersen et al., 2018).
Each year, 5–25% of amnestic MCI individuals develop AD
(Hänninen et al., 2002; Grundman et al., 2004), thus experiencing
a worsening of cognitive abilities, gradual loss of functional
autonomies and different degrees of behavioral and psychological
symptoms (Lyketsos et al., 2000, 2002) such as depression,
agitation, apathy and delusions (Cummings, 2004; Steinberg
et al., 2008). Especially, behavioral symptoms associated to AD
impact seriously on patient’s management in daily living, as
well as caregiver distress (Steinberg et al., 2008). Unfortunately,
behavioral changes represent a mark of the disease and is strictly
linked with the need of hospitalization (Spector et al., 2013;
Maki et al., 2018).

Clinical, neuropsychological and behavioral aspects of
AD continuum are, in its typical form, paralleled by the
pathophysiological counterpart of the disease: a progressive
accumulation and spreading of amyloid plaques and
neurofibrillary T-tau protein tangles starting even years
before the clinical onset of symptoms (Aisen et al., 2017; Ekman
et al., 2018). The pathology starts in the medial temporal lobe and
limbic areas (enthorinal cortex, hippocampus, parahippocampal
regions) and reaches associative cortices (Braak and Braak, 1991).
Different patterns of cortical atrophy are associated with the
diffusion of tangles in the brain, such as the earlier involvement
of posterior-parietal regions (Lehmann et al., 2013; Ekman
et al., 2018) or the presence of frontal lobe atrophy in “executive
AD” presentation (Ferreira et al., 2016). Given this progression,
specific brain changes such as hippocampal atrophy rates and
local atrophy indices are established neuroimaging biomarkers
of AD-associated downstream neuronal degeneration (McKhann
et al., 2011; Ekman et al., 2018). To date, AD is the most diffuse

form of dementia, affecting globally 4.7 million individuals aged
65 + and a projected rise to 130 million individuals worldwide
by 2,050 (Lopez and Kuller, 2019).

Despite the great efforts spent in clinical and translational
research, the possible effect of symptomatic drugs on patients
suffering from AD continuum remains controversial
(Birks, 2006; Birks and Grimley Evans, 2015) with a
single molecule, Aducanumab, recently obtaining the FDA
approval (Fillit and Green, 2021) and new disease-modifying
pharmacological treatments still in clinical developing stages
(Sabbagh et al., 2020).

The most-adopted intervention is thus rehabilitation, tested
in manifold settings: from single-cognitive-domain approaches
to the most recent holistic multi-modal interventions (Fabbri
et al., 2018; Maki et al., 2018), amply documented to be
effective in neurodegenerative conditions (Baglio et al., 2015;
Chew et al., 2015; Realdon et al., 2016; Isernia et al., 2019).
In fact, considering the difficulties faced by individuals in
the AD continuum, often impacting cognitive and behavioral
functionality, multidisciplinary models of care are taken in
consideration to manage such a great variety of symptoms.
Multidisciplinary approaches have the advantage to mutually
complement and optimize benefits on different target of
rehabilitation (Maki et al., 2018). Importantly, the main effects
of multimodal approaches are demonstrated in several domains,
including daily living skills, global physical functions and
cognition (McDermott et al., 2019). These effects are the results
of multi-domain cognitive stimulation, motor enhancement
and occupational activities which are implemented in the
framework of a multidisciplinary clinical team. This complex
setting drives a parallel action on both enhancement and
maintenance of cognitive residual abilities, attaining and aligning
with the values of the International Classification of Functioning,
Disability and Health and supporting the quality of life of
people regardless their level of functioning (Gitlin et al., 2013;
World Health Organization, 2017; Maki et al., 2018).

To our knowledge, to date no clear evidences have been
proposed to forecast which patients can mostly benefit from
these rehabilitation treatments. This can be partially explained
by the observation that, despite the known neuropathological
progression of the disease, a disjunction between brain damage
and clinical outcome is often observed, accounting for individual
differences in coping with the pathology (Williams et al.,
2018). In particular, genetic, epigenetic and environmental
factors can mitigate the effects of neural decline caused
by aging and age-related diseases (Cabeza et al., 2018).
Identifying which neuro-clinical features are prognostic of
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treatment success is urgent with potentially vast implications
for the personalization of interventions and maximizing the
effectiveness of rehabilitation programs. This would allow to
a priori differentiate between people who potentially benefit from
the treatment and those who not.

Concepts such as cognitive and brain reserves (Stern, 2009)
can catch the individual differences both in how people process
cognitive tasks and in how their brains can morphologically
differ each other, aspects well known to be mediated by life
experiences (Maguire et al., 2006; Stern, 2009). Cognitive reserve
has been defined as the processing resources gained over time
as a result of engaging in mentally stimulating activities, i.e.,
education, professional attainment, and leisure activities (Stern,
2009). Although the relevance to measure cognitive reserve,
a plethora of “convenience proxies” to operationalized this
construct, as socio-behavioral indices, such as education, has
been reported (Stern, 2009). In this framework, brain reserve
is hypothesized to be the result of the accumulation of neural
resources before the brain is affected by age-related processes,
over a period of years (Cabeza et al., 2018). Brains with higher
reserve can sustain more insult before clinical deficit emerges,
and thus individual differences in brain reserve can led to
differences in the clinical expression of a particular degree of
damage to the brain (Stern, 2009). Brain reserve has been
operatively quantified in terms of functional or morphometric
measures (gross whole-brain measures reflective of peak or
premorbid brain volume, including Total Intracranial Volume
or head circumference) (Katzman et al., 1988; Stern, 2009).
Ongoing research has begun to incorporate more finegrained
measures such as specific patterns of gray matter volume, cortical
surface area, and cortical thickness. Changes after treatment
have been reported, such as changes in medial temporal lobe
structures in subjects that performed intensive mnestic training
(Maguire et al., 2006), but the detection of specific neural
structures as critical hub of neural reserve has not yet been
demonstrated.

Despite the association between a good brain reserve and
the increased probability to positively cope with neural injuries,
to date no clear indications can forecast the effects of a given
brain reserve on the results of a rehabilitative intervention, and
the prognostic characteristics of treatment success still remain a
matter of debate. A better knowledge of the prognostic neural
profile of rehabilitation candidates, in terms of level of probability
of treatment effectiveness, could be beneficial both for individual
patients, who would receive a more efficacious intervention, and
for the healthcare system.

In this work we aim to identify the best candidates for
effective rehabilitative interventions in AD-continuum disease
patients. We included neuroimaging biomarkers as aspects of
brain reserve and, in line with our previous work (Di Tella
et al., 2020), we used classification approaches including Random
Forest and logistic regression to define which neural (brain
reserve), demographical and clinical aspects of the disease
might predict the best outcome for multimodal rehabilitation.
Given the literature supporting the role of brain reserve on
clinical expression of diseases and deficits (Stern, 2009), we
hypothesize to find a significant predictor of neurorehabilitation

success in critical hub of neural reserve, such as specific
morphometric volumes.

MATERIALS AND METHODS

All the patients with a diagnosis in the AD-continuum,
consecutively admitted to the Memory Clinic of IRCCS
Fondazione Don Carlo Gnocchi ONLUS, Centro Santa Maria
Nascente (Milan) from 2011 to 2019 and fulfilling the admission
criteria (see below) had the possibility to participate in a
multimodal rehabilitation treatment. This IRCCS Don Carlo
Gnocchi is a scientific institute for rehabilitation and research
with a specific focus on neurodegenerative diseases. For this
reason, all subjects at admission are asked to provide an informed
consent (by signing the informed consent module approved by
Don Gnocchi Foundation Ethics Committee) allowing the use
of clinical data collected during evaluation and rehabilitation for
research purposes. No procedures different from standard were
performed for the present study.

Admission criteria were: (1) a diagnosis of an AD-continuum
condition, from MCI to mild-to- moderate AD according to
National Institute on Aging-Alzheimer’s Association guidelines
(Albert et al., 2011; McKhann et al., 2011) reported in the clinical
documentation; (2) age ≥ 65 years old; (3) minimum education
level being alphabetization (2 years); (4) right-hand dominance
(Oldfield, 1971); (5) attendance of a multimodal intensive
rehabilitation intervention tailored for mild-to-moderate stages
of AD continuum followed at IRCCS Santa Maria Nascente for
at least 80% of program’s sessions (see below); (6) presence
of a MRI examination not earlier than 2 months before
the beginning of rehabilitation treatment; (7) presence of
a neuropsychological evaluation pre- and post- intervention;
(8) a stable pharmacological treatment (acetylcholine esterase
inhibitors and neuropsychiatric drugs, if any) at least for
3 months before starting the rehabilitation. Exclusion criteria
were indeed considered: (1) presence of a prodromic condition
or a diagnosis of other types of dementia different from AD-
continuum; (2) presence of major psychiatric disorders; (3)
absence of a written informed consent.

All patients fulfilling the criteria were admitted in an
intensive rehabilitation program (8–10 weeks, 3–5 times a
week) based on a holistic approach (Baglio et al., 2015; Fabbri
et al., 2018). Rehabilitation was conceived to train cognition
by enhancing several domains (cognition, physical, and social)
via neuropsychological activities (both paper-and-pencil and
computerized tasks addressing different cognitive domains,
such as memory, executive functions, language, attention,
abstraction, praxis), psychomotor exercises (stretching, postural
changes, gait exercises, balance, and postural control), and
recreational/occupational activities (functional and goal-based
exercises in order to readapting the use of daily tools and
performing everyday tasks to recover personal autonomy and
to improve targeted domains of quality of life) were proposed.
By training different domains of functioning, the treatments
aimed to act in an integrated manner on residual cognitive
functions of AD-continuum people, triggering neuroplasticity
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mechanisms (e.g., Venna et al., 2014). The principal setting
of the intervention was in a small group (2–4 person) with a
therapist who helped the rehabilitation program for patients, and
the dose of the treatment was intense: about 3–5 times a week,
about 60-min per session. The programs were based on multi-
stimulation therapy (Baglio et al., 2015) and a multidisciplinary
rehabilitation team (physiotherapist, neuropsychologist, and
occupational therapist) cooperated in the rehabilitation plan
implementation and monitoring.

Retrospectively, demographic and clinical data have been
extracted from clinical charts by a single researcher (FR) and
inserted in an anonymized database, subsequently used for the
statistical analyses of the present research. The database included,
for each recruited subject:

- Age, gender, education diagnosis and anamnesis (disease
history and mood evaluation Hamilton, 1960);

- Mini-Mental State Examination (MMSE; Folstein et al.,
1983) as index of the global cognitive level of patients.
The total score, ranged 0–30, suggests the absence of
cognitive impairment (MMSE score: 27–30), the presence
of borderline impairment (MMSE score: 24–26), mild
cognitive impairment (MMSE score: 18–23), moderate
cognitive impairment (MMSE score: 14–17), or severe
cognitive impairment (MMSE score: 0–13).

- Verbal Fluencies (Novelli et al., 1986; Carlesimo et al., 1996)
assessing language and executive functions. In details, both
letter (FAS) and categorical (CAT) fluencies were extracted
from charts and included in the analysis. The raw total
score of the test performance was adjusted for age and
education following the instructions’ procedure of Novelli
et al. (1986) and Carlesimo et al. (1996).

- Neuropsychiatric Inventory (NPI; Cummings et al., 1994;
Cummings, 1997) as a measure of the frequency and
severity of behavioral symptoms related to the clinical
condition, including delusions, hallucinations, dysphoria,
anxiety, euphoria, aggression, apathy, irritability,
disinhibition, troublesome behavior. Both the scores
of frequencies and severity of symptoms (NPIf∗s) and
distress of caregiver (NPIdistress) were reported.

Moreover, from the MRI examinations (1.5T Siemens
Magnetom Avanto scanner, Erlangen, Germany) acquired
before the rehabilitation treatment, we retrieved anonymized
conventional sequences to exclude gross brain abnormalities
and a high-resolution T1-3D MPR (TR/TE = 1,900/3.37 ms;
FoV = 192 × 256 mm, isometric in-plane resolution 1 mm, 176
axial slices) to assess brain morphometry.

Statistics
MRI Data Analysis and Computation of Neuroimaging
Biomarkers
To extract morphometrical data, MPR acquisitions have
been analyzed using the recon-all pipeline of Freesurfer
software (v.5.3).1 Quality check have been performed for

1http://surfer.nmr.mgh.harvard.edu/

each subject according to ENIGMA guidelines2 and manual
corrections performed to improve automatic segmentation
when necessary. Brain parcellation were performed according
to Fischl et al. (2002) and Desikan et al. (2006) atlases.
As neuroimaging biomarkers, volumetric measurements were
computed considering brain areas strongly related to AD-
continuum conditions, according to Ekman et al. (2018). In
particular, we computed (a) Medial Temporal Brain (MTB)
index (sum of volumes in: hippocampal and parahippocampal
volumes); (b) Posterior Brain (PB) index (sum of volumes in:
posterior cingulate, precuneus, superior parietal, inferior parietal,
supramarginal gyrus); (c) Frontal Brain (FB) index (sum of
volumes in: caudal middle frontal, rostral middle frontal, pars
opercularis, pars triangularis, pars orbitalis, frontal pole, superior
frontal, rostral anterior cingulate, caudal anterior cingulate,
precentral, lateral orbito-frontal, medial orbitofrontal). In
addition, we also computed a (d) Subcortical Brain (SBCB) index
(sum of volumes in: thalamus, amygdala, nucleus accumbens,
caudate nucleus) (Roh et al., 2011). In each subject, the brain
neuroimaging biomarkers have been computed separately for
left and right hemispheres, as well as globally (MTBrh, MTBlh,
MTBglobal, PBrh, PBlh, PBglobal, FBrh, FBlh, FBglobal, SBCBrh,
SBCBlh, SBCBglobal). All indices have been normalized to the
estimated Total Intracranial Volume, and converted in z-values
considering MRI mean and SD data from an age- gender-
and education-matched sample of healthy controls (n = 32, 13
M, mean age 74.16 ± 4.33, internal laboratory dataset). These
Z-values have been included in subsequent statistical analyses
(Z-MTBrh, Z-MTBlh, Z-MTBglobal, Z-PBrh, Z-PBlh, Z-PBglobal,
Z-FBrh, Z-FBlh, Z-FBglobal, Z-SBCBrh, Z- SBCBlh, Z- SBCBglobal).

Demographic, Clinical, and Behavioral Measures
Statistical analyses were performed with IBM SPSS Statistics
software (version 24) and JASP (JASP Team 2020, JASP
version 0.14.1). Means, frequencies, and standard deviations were
computed to describe sample characteristics. χ2-test was used
to verify if sex distribution and education were balanced in
the whole sample.

The MMSE score was considered the primary clinical outcome
measure for the cognitive status. Delta change score (T1–T0) of
MMSE was categorized in Improved (1MMSE > 0) and Not
Improved (1MMSE≤ 0). The NPIf∗s was considered the primary
clinical outcome measure for the behavioral status. Delta scores
(T1–T0) of NPI was categorized in Improved (1NPIf∗s < 0) and
Not Improved (1NPIf∗s ≥ 0).

Logistic Regression classification models including
demographical characteristics (age, sex, years of education),
neural markers (Z-MTBglobal, Z-PBglobal, Z-FBglobal,
Z-SBCBglobal) and neuropsychological variables (MMSE T0,
NPIf∗s T0, FAS T0, CAT T0) at baseline were performed to
identify the subjects that significantly benefited from treatment
(1MMSE > 0 and 1NPIf∗s < 0) as in Di Tella et al. (2020). Wald
forward option was used as a stepwise selection method (entry
criterion p < 0.05, removal criterion p > 0.10). Only for cognitive
outcome neural markers were split in left and right side.

2http://enigma.ini.usc.edu/protocols/imaging-protocols
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For confirmatory purposes, Random Forest classification
models were run including only predictors retained in the last
step of the logistic regressions. We built Random Forest with
the default parameter values in JASP (version 0.14.1), specifically
with respect to data split we partitioned the data set into a
training (60%), validation (20%), and test set (20%). In relation
to the number of trees, we selected an optimal number of trees
[Ntrees (maximum) = 100], optimized with respect to the out-
of-bag accuracy. Performance of the classification model was
evaluated by calculating the classification accuracy that represents
the proportion of the instances that were classified correctly,
summing up true positive and true negative cases.

RESULTS

Demographical Characteristics of the
Sample
In total, 82 people (38 males) with a diagnosis of AD-continuum
condition (nMCI = 54, nAD = 28) were included in the
study. Table 1 shows data referred to neuropsychological
assessment and morphometrical z-scores of the computed brain
neuroimaging biomarkers.

TABLE 1 | Neuropsychological assessment and morphometrical
z-scores of the sample.

25th percentile 75th percentile Mean SD

Age (years) 72.25 79.00 76.00 5.30

Education (years) 6.00 13.00 9.09 3.81

Hamilton T0* 3.75 8.00 6.62 4.55

MMSE T0 (0–30) 21.00 26.00 23.32 4.08

FAS T0 16.25 30.50 23.10 10.55

CAT T0 18.00 30.75 24.33 9.96

NPIf∗s T0 (0–144) 4.75 19.50 12.75 9.47

NPIdistress T0 (0–60) 3.00 10.00 6.67 4.83

Z-MTBglobal −2.70 −1.18 −1.86 1.43

Z-MTBlh −2.72 −1.13 −1.88 1.39

Z-MTBrh −2.73 −0.82 −1.75 1.54

Z-PBglobal −2.54 −0.71 −1.54 1.38

Z-PBlh −2.28 −0.49 −1.35 1.29

Z-PBrh −2.54 −0.61 −1.58 1.43

Z-FBglobal −2.82 −0.45 −1.56 1.80

Z-FBlh −3.08 −0.50 −1.69 1.87

Z-FBrh −2.52 −0.29 −1.40 1.72

Z-SBCBglobal −1.21 −0.13 −0.65 0.84

Z-SBCBlh −1.23 −0.15 −0.70 0.87

Z-SBCBrh −1.16 −0.08 −0.58 0.87

Hamilton T0, Hamilton Depression Scale; MMSE T0, Mini-Mental State Examination
at baseline; FAS T0, Phonological Fluency at baseline; CAT T0, Categorial Fluency
at baseline; NPIf ∗ s T0, Neuropsychiatric Inventory frequencies and severity of
symptoms at baseline; NPIdistress T0, Neuropsychiatric Inventory caregiver distress;
Z-MTBglobal , Z-values of Medial Temporal Brain index; Z-MTBlh, Z-values of left
Medial Temporal Brain index; Z-MTBrh, Z-values of right Medial Temporal Brain
index; Z-PBglobal , Z-values of Posterior Brain index; Z-PBlh, Z-values of left
Posterior Brain index; Z-PBrh, Z-values of right Posterior Brain index; Z-FBglobal ,
Z-values of Frontal Brain index; Z-FBlh, Z-values of left Frontal Brain index; Z-FBrh,
Z-values of right Frontal Brain index; Z-SBCBglobal , Z-values of Subcortical Brain
index; Z-SBCBlh, Z-values of left Subcortical Brain index; Z-SBCBrh, Z-values of
right Subcortical Brain index.
*This data was available only for 64 participants.

TABLE 2 | Percentages of responders and not responders to the treatment in
cognitive and behavioral outcomes.

Not responders at NPIf∗ s

(%)
Responders at NPIf∗ s

(%)

Not responders at
MMSE
(%)

22.0% 26.8%

Responders at MMSE
(%)

25.6% 25.6%

MMSE, Mini-Mental State Examination; NPIf ∗ s, Neuropsychiatric Inventory
frequencies and severity of symptoms at baseline.

Response to the Treatment
The percentage of not responders to the treatment in both
cognitive and behavioral outcome was 22% (see Table 2).
Fifty-one percent of patients showed an improvement on
global cognitive functioning after the treatment (1MMSE > 0:
51%; AD: 38%; MCI: 13%) showing a mean 1MMSE = 2.24
(1MMSEAD = 2.13; 1MMSEMCI = 2.55), Cohen’s d = 2.15.
A reduction of behavioral symptoms after the treatment was
observed in a large number of cases (1NPIf∗ s < 0= 52%,
AD: 32%; MCI: 20%), showing a mean 1NPIf∗ s = −5.60
(1NPIf∗ sAD = −6.67; 1NPIf∗ sMCI = −3.81), Cohen’s d = 2.18
(Table 2). Baseline characteristics comparison between
responders and not responders to rehabilitation program
are reported in Supplementary Tables 1,2.

Improvement in the Cognitive Status
Significant logistic regression model (Wald method, Nagelkerke
R2 = 0.229) on 1MMSE (Improved vs. Not Improved) showed in
the final second step a predicted role of MMSE score at baseline
(p = 0.003) and Z-PBglobal index (p = 0.005) (Table 3). Age, sex,
educational years, FAS at baseline, CAT at baseline, NPIf∗s at
baseline, Z-MTBglobal index, Z-FBglobal index, Z-SBCBglobal index
were excluded from the equation (p > 0.05).

When considering the left and right hemisphere separately,
only MMSE score at baseline (p = 0.002) and Z-PBrh index
(p = 0.002) remained in the final second regression model
(Nagelkerke R2 = 0.259) (Table 4). Age, sex, educational years,
FAS at baseline, CAT at baseline, NPIf∗s at baseline, Z-values of
Z-MTBlh and Z-MTBrh index, Z-PBlh index; Z-FBlh and Z-FBrh
index, Z-SBCBlh and Z-SBCBrh index were excluded from the
equation (p > 0.05).

When considering predicted probability of success, ideal
candidate for the multimodal treatment was a person with
lower MMSE at baseline and higher brain volume in PB-index,
especially in the right PB-index (see Figure 1).

The Random Forest analysis, run to confirm the classification
model, gave an accuracy score of approximately 77% including
only variables retained at the last step of the regression model for
the identification of participants who significantly benefited from
the treatment and those which did not (Table 5).

Improvement in Behavioral Symptoms
Significant logistic regression model (Wald method, Nagelkerke
R2 = 0.352) on 1NPIf∗ s (Improved vs. Not Improved) showed in
the final fourth step a predicted role of sex (p = 0.002), 1NPIf∗ s at
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TABLE 3 | Binary logistic regression model to test best predictors of the MMSE change after rehabilitation.

β S.E. Wald p-value Exp(β) 95% C.I. for Exp(β)

Lower Upper

Step 1 MMSE baseline −0.142 0.061 5.474 0.019 0.868 0.770 0.977

Constant 3.358 1.439 5.444 0.020 28.727

Step 2 MMSE baseline −0.214 0.072 8.947 0.003 0.807 0.702 0.929

Z-PBglobal index 0.594 0.211 7.929 0.005 1.811 1.198 2.739

Constant 6.006 1.870 10.310 0.001 405.674

MMSE T0, Mini-Mental State Examination at baseline; Z-PBglobal , Z-values of Posterior Brain index; S.E., standard error; C.I., confidence intervals. Relevant statistically
significant results are reported in bold.

TABLE 4 | Binary logistic regression model to test best predictors of the MMSE change after rehabilitation.

β S.E. Wald p-value Exp(β) 95% C.I. for Exp(β)

Lower Upper

Step 1 MMSE baseline −0.142 0.061 5.474 0.019 0.868 0.770 0.977

Constant 3.358 1.439 5.444 0.020 28.727

Step 2 MMSE baseline −0.229 0.074 9.633 0.002 0.795 0.688 0.919

Z-PBrh index 0.657 0.214 9.409 0.002 1.929 1.268 2.935

Constant 6.478 1.940 11.151 0.001 650.428

MMSE, Mini-Mental State Examination; Z-PBrh, Z-values of right Posterior Brain index; S.E., standard error; C.I., confidence intervals. Relevant statistically significant
results are reported in bold.

baseline (p = 0.005), Z-PBglobal index (p = 0.006), and Z-FBglobal
(p = 0.039) (Table 6). Age, educational years, FAS at baseline, CAT
at baseline, MMSE at baseline, Z-MTBglobal index, Z-SBCBglobal
index were excluded from the equation (p > 0.05).

When exploring predicted probability of success, ideal
candidate for the multimodal treatment was a person with higher
severity of NPIf∗ s at baseline, lower brain volume in FB-index and
higher brain volume in PB-index (see Figure 2).

Finally, for confirmatory purposes we ran Random Forest
analysis. This analysis reported an accuracy of prediction
approximately of 86% including demographical, neurostructural,

FIGURE 1 | Probability to improve in the cognitive status at different scores of
MMSE at baseline and Z-PBglobal. MMSE, Mini-Mental State Examination;
1MMSE > 0, Delta change score (T1–T0) of Mini-Mental State Examination;
Z-PBglobal, Z-values of Posterior Brain index. Three ranks of PB index values
can be considered for interpretation purposes: Low PB: Z-score
ranges −4.10 to −2.22; Intermediate PB: Z-score ranges −2.15 to −0.95;
High PB: Z-score ranges −0.88 to 2.19.

and neuropsychological variables at baseline retained in the last
step of the regression model for the identification of participants
who significantly benefited from the treatment and those which
did not (Table 7).

DISCUSSION

We investigated the best predictors able to forecast
the efficacy of rehabilitative intervention according to
multimodal approach on cognitive and behavioral aspects
in AD-continuum conditions. While recent evidence supports
the effectiveness of these interventions (Baglio et al., 2015;
Realdon et al., 2016; McDermott et al., 2019; Di Tella et al., 2020;
Cafferata et al., 2021), little is known about the associated
neural reserve mechanisms underlying cognitive and behavioral
functions recovery. We identified brain reserve neuroimaging
biomarkers and clinical features associated with the best
rehabilitative outcomes, thus giving the opportunity to

TABLE 5 | Random Forest results.

Predicted

1MMSE Not responders Responders

Actual Not responder Count 28 12

% 70.0% 30.0%

Responder Count 7 35

% 16.7% 83.3%

Confusion matrix summarizing the performance of the RF classification
algorithm on the cognitive outcome. The column targets (Predicted Not
responders/Responders) are predicted values by the RF and the row targets
(Actual Not responders/Responders) are the actual values. Classification accuracy
represents the proportion of the instances that were classified correctly (Actual Not
responders and Predicted Not responders + Actual Responders and Predicted
Responders/Total sample). MMSE, Mini-Mental State Examination.
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TABLE 6 | Binary logistic regression model to test best predictors of the NPI f*s change after rehabilitation.

95% C.I. for Exp(β)

β S.0E. Wald p-value Exp(β) Lower Upper

Step 1 Sex −1.333 0.475 7.888 0.005 0.264 0.104 0.669

Constant 0.762 0.324 5.545 0.019 2.143

Step 2 Sex −1.314 0.497 6.984 0.008 0.269 0.101 0.712

NPIf∗s T0 0.070 0.029 5.879 0.015 1.073 1.014 1.136

Constant −0.117 0.470 0.062 0.803 0.889

Step 3 Sex −1.424 0.519 7.521 0.006 0.241 0.087 0.666

NPIf∗s T0 0.079 0.030 7.051 0.008 1.082 1.021 1.147

Z-PBglobal index 0.428 0.204 4.388 0.036 1.534 1.028 2.288

Constant 0.555 0.576 0.929 0.335 1.742

Step 4 Sex −1.758 0.580 9.175 0.002 0.172 0.055 0.538

NPIf∗s T0 0.086 0.031 7.711 0.005 1.090 1.026 1.157

Z-PBglobal index 1.123 0.408 7.588 0.006 3.073 1.382 6.830

Z-FBglobal index −0.605 0.294 4.243 0.039 0.546 0.307 0.971

Constant 0.754 0.613 1.511 0.219 2.125

NPIf ∗ s, Neuropsychiatric Inventory frequencies and severity of symptoms at baseline; Z-PBglobal , Z- values of Posterior Brain index; Z-FBglobal , Z-values of Frontal Brain
index; S.E., standard error; C.I., confidence intervals. Relevant statistically significant results are reported in bold.

FIGURE 2 | Probability to reduce behavioral symptoms at different scores of NPIf∗s at baseline, and Z-PBglobal, Z-FBglobal, and sex. NPI, Neuropsychiatric Inventory;
1NPIf∗s > 0, Delta change score (T1–T0) of Neuropsychiatric Inventory frequencies and severity of symptoms; Z-PBglobal, Z-values of Posterior Brain index;
Z-FBglobal, Z-values of Frontal Brain index; M, males, F, females. Three ranks values can be considered for interpretation purposes for PB index (Low PB: Z-score
ranges −4.10 to −2.22; Intermediate PB: Z-score ranges −2.15 to −0.95; High PB: Z-score ranges −0.88 to 2.19) and FB index (Low FB: Z-score ranges −5.25
to −2.32; Intermediate FB: Z-score ranges −2.30 to −0.87; High FB: Z-score ranges −0.81 to 2.56).

both clinicians and the healthcare system to exploit the
available resources at best, by selecting the best tailored
rehabilitative interventions for each patient. Despite the
large consensus regarding the impact of cognitive and brain

reserve in coping with age-related diseases (Valenzuela and
Sachdev, 2006; Cabeza et al., 2018), a paucity of studies
is available on the prognostic significance of structural
brain measures in neurorehabilitation. To our knowledge,
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TABLE 7 | Random Forest results.

Predicted

1NPIf∗s Not responders Responders

Actual Not responders Count 35 2

% 94.6% 5.4%

Responders Count 9 34

% 20.9% 79.1%

Confusion matrix summarizing the performance of the RF classification
algorithm on the behavioral outcome. The column targets (Predicted Not
responders/Responders) are predicted values by the RF and the row targets
(Actual Not responders/Responders) are the actual values. Classification accuracy
represents the proportion of the instances that were classified correctly (Actual
Not responders and Predicted Not responder + Actual Responder and Predicted
Responder/Total sample). NPIf ∗ s, Neuropsychiatric Inventory frequencies and
severity of symptoms.

this is the first study focusing on the effects of brain
reserves on the efficacy of rehabilitation interventions in
AD-continuum conditions.

Considering the cognitive outcome of rehabilitation,
our findings show that patients with low cognitive residual
capabilities (MMSE level) at the time of admission and
a high PB reserve in the parietal hemispheres (i.e.,
the normalized volume of AD-related parietal areas
according to Ekman et al., 2018) are the best candidates
to benefit from the rehabilitative treatment by achieving
a significant improvement in global cognitive level.
Neither FB nor MTL areas play a crucial role in the
prediction of the cognitive outcome of intervention in our
cohort of individuals.

The PB index (sum of volumes in: posterior cingulate,
precuneus, superior parietal, inferior parietal, supramarginal
gyrus) is not yet importantly compromised by the pathology
progression as MTL index (Ekman et al., 2018) and can
sustain the rehabilitation process in the mild to moderate
stage of AD by integrating cognition, physical, and social
activities (e.g., Venna et al., 2014). Such regions are importantly
involved in the focusing of attention in internally directed
cognition processes through the “tuning” of brain network
activity and in the retrieval of autobiographical memories
and in the planning of future acts (Zhang and Li, 2010;
Leech and Sharp, 2014), somatosensory processing and visuo-
spatial perception (Studer et al., 2014), socio-cognitive abilities
(Rossetto et al., 2020; Tholen et al., 2020; Lion et al.,
2021), and high-order processes (Culham and Kanwisher,
2001; Coull, 2004; Jubault et al., 2007; Desmurget and Sirigu,
2012). These aspects are well represented in the considered
multimodal rehabilitation treatment, consisting in multifaced
tasks touching cognitive, motor and social aspects of the patient’s
wellbeing.

Interestingly, when exploring the contribution of
lateralization, we observed that the right, but not left,
PB areas alone are strongly associated with cognitive
improvement after the multimodal rehabilitation. This
confirms previous findings (Thompson et al., 2003; Karas
et al., 2008; Derflinger et al., 2011; Cabinio et al., 2018;

Yang et al., 2019) that report an asymmetrical degeneration
of gray matter in AD, in terms of a greater atrophy of
left than right hemispheres: the so called “left hemisphere
susceptibility” (Shi et al., 2009; Donix et al., 2013). This is
particularly true considering cortical thickness and surface
areas in both amnestic mild cognitive impairment and
mild AD. fMRI studies highlighted the role of bilateral
activation as an effective way to counteract the effects
of aging and neurodegeneration by reorganizing its
function. In our previous work using fMRI we looked
for a hypoactivation pattern in AD, and after a period of
intensive multimodal rehabilitation, we found increased fMRI
activation in some PB areas for restoring neural functioning
(Baglio et al., 2015). We can assume that although there
is some neural asymmetric deterioration occurring with
the disease, the brain can increase bilateral neural activity
to improve cognitive function recruiting residual areas
from brain reserve.

Results herein also show that the best predictors to
achieve a significant improvement in behavioral domain
include the level of behavioral symptomatology at baseline,
the volume of FB and PB areas, as well as sex. In details,
lower brain volume in FB-index is associated with a greater
probability to improve in the behavioral outcome. In fact,
participants showing a high volume in FB-index are plausibly
people without significant behavioral symptoms and are
likely to remain stable over time. The behavioral symptoms
associated with dementia are particularly disabling aspects
of the disease, with a relevant impact on both patients and
caregivers (Bessey and Walaszek, 2019). These symptoms
include apathy, depression, anxiety, irritability, agitation,
delusions, hallucinations, aberrant motor behavior, and
appetite disorder. A recent study demonstrated that FB areas
constitute the best predictor of behavioral impairment of
dementia (Boublay et al., 2020), considering the strictly link
between the frontal-limbic pathways in the etiopathogenesis
of the main behavioral symptoms of the disease. In fact,
changes in behavior represent a mark of the disease linked
with impairment in executive functions and subserved by
frontal lobe degenerative damage. Our findings indicate
that the parietal reserve may also trigger a mechanism of
improvement during rehabilitation even when a frontal
degeneration is evident in behavioral aspects of AD-
continuum. Accordingly, a paradigm shift is currently
leading to new approaches in neurorehabilitation for
older adults, favoring a functional-led multimodal method
to enhance a wide range of cognitive functions, such
as art-based tools. This approach is based on evidence
supporting the potential benefit of the modulation of
neural activity in brain areas that are better preserved in
the aging process, such as parietal areas (Prakash et al.,
2014). In particular, art-based stimulation resulted in a
high effectiveness on different domains of functioning
in AD, by acting on emotional channels and brain areas
in which overactivation is observed in older adult age
(Bucks and Radford, 2004; Klein-Koerkamp et al., 2012;
Savazzi et al., 2020). Finally, a predictive role of sex on the
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behavioral outcome was found as females were more likely
to benefit from rehabilitation. To the best of our knowledge
no consistent data are available on sex and the prognostic
rehabilitation effect in AD. Only pilot evidence suggests that sex
may influence the cognitive effectiveness of motor treatment:
older females show greater cognitive benefits from exercise than
males (Barha and Liu-Ambrose, 2018). However, the mechanisms
underlying this finding are still unknown.

This study is not without limitation: only one MRI
examination per patient has been carried out at baseline.
Subsequent studies may investigate neural plasticity induced
by rehabilitation programs. Another limitation consists in
the restricted neuropsychological battery considered for the
outcome measures, not including measures with high ecological
validity, which could have prevented the study from additional
significant findings. Finally, our results should be interpreted
with caution also considering that the effects of rehabilitation
programs are variable depending on different factors, related
to the contents of the program, the ability of therapists, the
compliance of the participants. However, the relatively large
sample size of the study renders the work relevant in the
neurorehabilitation field. Future works will refine the predictive
models by considering additional variables, such as the symptom
duration and biomarkers (TAU protein and genotypes). Also,
more sophisticated models including other proxy measures of
cognitive reserve (employment/socio-behavioral indices) should
investigate the possible mediating and/or moderating role of
these variables explaining the association between treatment
response and brain reserve.

These results indicate that cognitive behavioral improvement
fostered by non-pharmacological treatments (Crescentini et al.,
2014; Stinear et al., 2014), strictly depends on the actual brain
reserve and functions of patients. This evidence supported
the concept that structural characteristics of the brain have a
protective role in AD. Cognitive and behavioral status alone
are not sufficient to identify best responders to a multidomain
rehabilitation treatment. Increased neural reserve, especially in
the parietal areas, is relevant for the compensatory mechanisms
activated by rehabilitative treatment. These data support clinical
decision by identifying target patients with high probability
of success after rehabilitative programs on cognitive and
behavioral functioning.

CONCLUSION

Our findings suggest that increased neural reserve, especially
in the posterior brain structures, is a relevant predictor

of the response to a rehabilitative treatment based on a
holistic approach. Finally, baseline assessment of neural
reserve indexes is fundamental to support clinical decision
by identifying those patients that might most benefit from of
multidomain rehabilitation.
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Background: Mild cognitive impairment (MCI) is considered to be a transitional state

between normal aging and Alzheimer’s dementia (AD). Recent studies have indicated

that executive function (EF) declines during MCI. However, only a limited number of

studies have investigated the neural basis of EF deficits in MCI. Herein, we investigate

the changes of regional brain spontaneous activity and functional connectivity (FC) of the

executive control network (ECN) between high EF and low EF groups.

Methods: According to EF composite score (ADNI-EF) from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI), we dividedMCI into two groups, including the MCI-highEF

group and MCI-lowEF group. Resting-state functional MRI was utilized to investigate the

fractional amplitude of low-frequency fluctuation (fALFF) and ECN functional connectivity

across 23 healthy controls (HC), 11 MCI-highEF, and 14 MCI-lowEF participants.

Moreover, a partial correlation analysis was carried out to examine the relationship

between altered fALFF or connectivity of the ECN and the ADNI-EF.

Results: Compared to HC, the MCI-highEF participants demonstrated increased fALFF

in the left superior temporal gyrus (STG), as well as decreased fALFF in the right precentral

gyrus, right postcentral gyrus, and left middle frontal gyrus (MFG). The MCI-lowEF

participants demonstrated increased fALFF in the cerebellar vermis and decreased fALFF

in the left MFG. Additionally, compared to HC, the MCI-highEF participants indicated no

significant difference in connectivity of the ECN. Furthermore, the MCI-lowEF participants

showed increased ECN FC in the left cuneus and left MFG, as well as decreased ECN

functional connectivity in the right parahippocampal gyrus (PHG). Notably, the altered

fALFF in the left MFG was positively correlated to ADNI-EF, while the altered fALFF

in cerebellar vermis is negatively correlated with ADNI-EF across the two MCI groups

and the HC group. Altered ECN functional connectivity in the right PHG is negatively

correlated to ADNI-EF, while altered ECN functional connectivity in the left cuneus is

negatively correlated to ADNI-EF across the three groups.
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Conclusions: Our current study demonstrates the presence of different patterns of

regional brain spontaneous activity and ECN FC in the MCI-highEF group andMCI-lowEF

group. Furthermore, the ECN FC of the MCI-highEF group was not disrupted, which may

contribute to retained EF in MCI.

Keywords: mild cognitive impairment, executive function, executive control network, functional connectivity,

fractional amplitude of low-frequency fluctuation

1. INTRODUCTION

Mild cognitive impairment (MCI) is a transitional state between
normal aging and Alzheimer’s dementia (AD) (Bohlken et al.,
2019; Thomas et al., 2019). Among patients with MCI, it has
been well-established that patients with memory impairment
(amnestic MCI, aMCI) are at a high risk of developing AD
(Park et al., 2017; Thomas et al., 2017). Although memory
deficits during disease progression have been widely studied and
represent a benchmark of a probable AD diagnosis (Scheltens
et al., 2018), more recent research has investigated executive
function (EF) decline during MCI, which is also referred to as
the preclinical stage of AD (Chang et al., 2009; Ewers et al., 2014;
Kirova et al., 2015). EF has the ability required to plan, organize,
operate on working memory, as well as switch between tasks
(Bettcher et al., 2016). A recent study has developed a composite
measure of EF, ADNI-EF, utilizing neuropsychological data from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI), and
has reported that ADNI-EF is a major predictor of transition
from MCI to AD (Gibbons et al., 2012a). It has been concluded
that poor EF in patients with MCI is characterized by very early
cognitive decline in the initial course of AD, and indicates a
transition fromMCI to AD. Thus, it is greatly significant to clarify
neuropathological mechanism of EF impairment and identify
features that can predict their progression to AD.

While a large number of studies have examined the
neuropathological factors related to MCI memory impairment
(Perrotin et al., 2015; Terry et al., 2015; Vijayakumari et al.,
2020), only a limited number of studies have examined the neural
basis of EF deficits in MCI. Therefore, these limited studies
have explored neural mechanisms of EF decline in patients with
MCI from different aspects of brain morphology, metabolism,
and network function. A study from the perspective of brain
morphology has demonstrated that among patients with aMCI,
the atrophic brain areas associated with decreasing of EF are
located in the frontal and temporal cortex and that the atrophy
of the right inferior frontal gyrus is more closely related to
decreasing EF (Zheng et al., 2014). However, results from the
metabolic point of view are not consistent with this, and the
results indicated that EF impairment in aMCI is related to
cerebral glucosemetabolic abnormalities in the anterior cingulate
cortex (ACC) and posterior cingulate cortex (PCC) (Yoon et al.,
2020). Damage to the EF in MCI is not only related to the
abnormality of local brain structure and brain metabolism but
also to the brain network. A functional MRI (fMRI) study
validated that the presence of increased connectivity of the ACC
and dorsal lateral prefrontal cortex (DLPFC) in the ECN is

positively correlated to EF in aMCI (Wu et al., 2014). Similarly,
a diffusion tensor imaging (DTI) study demonstrated that MCI
with high EF has a larger network size, density, and clustering
coefficient (Farrar et al., 2018). However, results from fewer
previous studies were not entirely consistent, and little was
known about the changes in both spontaneous brain activity and
brain functional networks.

In recent years, resting-state fMRI (rs-fMRI), attracted
significant research interest in studying neural mechanisms of
cognitive dysfunction (d’Ambrosio et al., 2020; Lee et al., 2020;
Li et al., 2020). Among them, the fractional amplitude of low-
frequency fluctuation (fALFF) was utilized to reliably measure
the intensity of brain activity (Shu et al., 2020; Li et al., 2021).
As it is a whole-brain data-driven method with high test-retest
reliability, the fALFF has been chosen to carry out many studies
among patients with MCI (Qiu et al., 2019; Yu et al., 2019; Zeng
et al., 2019). In addition, it is well-known that EF requires several
distinct brain regions that work together to perform complex
tasks effectively (Farrar et al., 2018). Therefore, EF is suitable for
network analysis. Moreover, the ECN comprising the main brain
regions in the medial frontal cortex, ACC, DLPFC, is involved in
top-down, attention-dependent EF such as cognitive control and
response inhibition (Chen et al., 2008; Brown et al., 2019).

Therefore, according to ADNI-EF, patients with MCI were
divided into two groups, including the high EF group and the
low EF group. The objective of this current study is to investigate
changes in regional brain spontaneous activity and FC of ECN
between the two groups, as well as to further investigate the
relationship between changes in the brain activity or FC of the
ECN and EF. We hypothesized that there are different altered
brain spontaneous activity and FC of ECN between the two
groups, and changes of the low EF group may be more significant
and similar to the pathological patterns of AD.

2. MATERIALS AND METHODS

In total, 109 subjects participated in the current study, which
included 84 patients with MCI and 25 healthy controls (HC). All
participants were chosen from the in-house database, the Nanjing
Brain Hospital-Alzheimer’s Disease Spectrum Neuroimaging
Project (NBH-ADsnp) (Nanjing, China), which is continuously
updated. The details of the NBH-ADsnp-related information
are provided in Supplementary Material. The diagnostic and
exclusion criteria of MCI and HC were in accordance with our
previous studies (Xue et al., 2019; Wang et al., 2021b). This study
was granted approval by the responsible Human Participants
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Ethics Committee of the Affiliated Brain Hospital of Nanjing
Medical University (Nos. 2018-KY010-01 and 2020-KY010-02),
located in Nanjing, China. All participants were granted written
informed consent prior to participation.

2.1. Neuropsychological Assessments
All participants underwent a comprehensive and standard
assessment of neurocognitive function, including general
cognitive function, information processing speed, episodic
memory, visuo-spatial function, and EF. Details regarding each
of these assessments were consistent with previous studies (Xue
et al., 2019; Wang et al., 2021a).

2.2. Grouping
First, the EF composite score (ADNI-EF) of 84 patients with
MCI was calculated according to the model provided by the
ADNI website (http://adni.loni.usc.edu/). This model contains
a WAIS-R Digit Symbol Substitution, Digit Span Backwards,
Trails A and B, Category Verbal Fluency Test (CVFT), and Clock
Drawing (Gibbons et al., 2012b). In our study, the average score
was −0.91, with a SD of 0.46. Individuals with MCI with high
executive abilities (MCI-highEF participants) were classified as
being one SD above the group mean EF score, which led to
13 participants having a score above −0.45. Individuals with
cognitive impairment that have low executive abilities (MCI-
lowEF participants) were categorized as being one standard
deviation below the groupmean, leading to 15 participants with a
score below−1.37. Similarly, 25 HCs were matched with 28 MCI
participants (13 MCI-highEF participants and 15 MCI-lowEF
participants). However, two MCI-highEF participants, one MCI-
lowEF participant, and two HCs were excluded due to excessive
head movement (> 3mm or > 3◦). Finally, 25 patients with
MCI were enrolled, which included 11 MCI-highEF participants,
14 MCI-lowEF participants, and 23 HCs.

2.3. MRI Data Acquisition
The detailed parameters of MRI acquisition of NBH-ADsnp were
summarized in Supplementary Material.

2.4. Image Preprocessing
Data processing was conducted utilizing Data Processing
Assistant for Resting-State fMRI (DPARSF 4.4, http://www.
restfmri.net) based on the Matlab2013b platform. The first 10
volumes of functional images were removed for each subject.
Then, the remaining images were corrected using slice-timing
and realignment, accounting for head motion, normalized to
standard space using DARTEL, resampled to a 3×3×3mm3 voxel
size, regress nuisance variable, and spatially smoothed with 4 mm
full width at half maximum (FWHM). The nuisance variables
include 24 motion parameters (six head motion parameters,
six head motion parameters one time point before, and the 12
corresponding squared items), a global signal, a white matter
signal, and a cerebrospinal fluid signal. Finally, we carried out
filtering band-pass (0.01-0.08 Hz) (Chen et al., 2016) prior to
calculating seed-based functional connectivity (FC), and after
calculating fALFF. In addition, participants with excessive head

motion (cumulative translation or rotation >3.0 mm or 3.0) were
excluded(Chen et al., 2020; Wang et al., 2021a).

2.5. fALFF Analysis
After data preprocessing, we carried out fALFF for each scan.
The fast Fourier transform helped transform the time series of
each voxel to the frequency domain in order to obtain the power
spectrum. Then, the square root of the power spectrum was
calculated. The fALFF was attained using the ratio of the power
spectrum in a given frequency band (0.01–0.08Hz) to total power
in the entire detectable frequency range (Zou et al., 2008). Finally,
the fALFF value of each voxel was divided using the global mean
value in order to decrease global effects across participants.

2.6. FC Analysis
A seed-based FC analysis was carried out to examine the
alteration of ECN. Seed region of interest (ROI) by drawing the
6-mm spheres located in the right DLPFC (MNI space: 48, 12, 34)
was determined by converging data from previous studies (Smith
et al., 2009; Wang et al., 2016). The DLPFC was consistently
considered to be a key region within the ECN. Individual
mean time series were extracted based on the coregistered seed
region as the reference time series. The correlation analyses
were conducted on the seed region and whole brain in a voxel-
wise manner. The correlation coefficients of each voxel were
normalized to Z-scores using Fisher’s r-to-z transformation.
Therefore, an entire brain Z-score map was developed for each
subject for subsequent statistical analyses.

2.7. Statistical Analyses
The ANOVA was conducted to compare the demographics,
neuropsychological assessment, and head rotation parameters
among the three groups, except for gender (chi-square test).
The two-sample t-test was used for post-hoc comparisons. The
p-value was set as <0.05 for significant differences. A one-way
analysis of covariance (ANCOVA) was utilized for comparison
of the differences of FC in ECN and fALFF among HC, MCI-
highEF, and MCI-lowEF participants. We used demographic
data (age, gender, and education level), and gray matter volume
as covariables. As suggested in the previous study, a non-
parametric permutation test was able to precisely control the
false positive rate in cluster-level inference (Qi et al., 2010).
Therefore, we set the permutation times at 1,000. The corrected
p <0.01 (fALFF results) or p <0.05 (FC results) was used for
statistical significance and cluster size >50 voxels (1,350 mm3)
was applied for multiple comparisons at the voxel level. Then,
the two-sample t-test was used for post-hoc comparisons, and
the mask resulted from ANCOVA analyses after controlling
the effects of demographic data (age, gender, and education
level), and gray matter volume. We also set significance with
the threshold free cluster enhancement and family-wise error
(TFCE-FWE) corrected cluster p < 0.05 and the cluster size
> 10 voxels (270 mm3). Finally, FCs or fALFF of significantly
altered regions were extracted and later utilized for correlation
analyses. The partial correlation analyses were carried out to
reveal relationships between the altered fALFF or FCs andADNI-
EF after adjusting for the effects of age, gender, and education
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TABLE 1 | Demographics and clinical measures of patients with mild cognitive impairment (MCI) and healthy controls (HC).

HCs (n = 23) MCI-highEF (n = 11) MCI-lowEF (n = 14) F(χ2) P

Age (years) 60.96 ± 9.45 60.00 ± 6.68 70.00 ± 7.47b,c 6.27 0.004∗

Gender (M/F), n 8/15 2/9 4/10 1.00 0.608

Education (years) 12.70 ± 2.24 12.18 ± 2.32 10.68 ± 3.16 2.75 0.075

MMSE 28.430 ± 1.56 27.73 ± 1.01 26.36 ± 1.45b,c 9.30 <0.001∗

MoCA 26.65 ± 1.70 23.91 ± 1.70 22.21 ± 2.46a,b,c 9.30 <0.001∗

ADNI-EF -0.11 ± 0.36 −0.33 ± 0.18 −1.60 ± 0.20a,b,c 121.81 <0.001∗

Data is represented bymean± SD unless otherwise indicated. M, male; F, female; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment. *Significant differences

were found among HC, MCI-highEF, and MCI-lowEF subjects. Most p-values were obtained using ANOVA, except for gender (chi-square test). Comparisons of each paired group were

conducted to further reveal the source of ANOVA difference (a: MCI-highEF vs. HCs; b: MCI-lowEF vs. HCs; c: MCI-lowEF vs. MCI-highEF).

FIGURE 1 | Regions that demonstrate between-group differences in the fractional amplitude of low-frequency fluctuation (fALFF). (A) Regions with significant

differences across the three groups in fALFF (one-way analysis of covariance (ANCOVA), cluster p <0.01, cluster size >50 voxels). (B) Regions with significant

differences of MCI-highEF group vs. HC in fALFF [two-sample t-test; cluster p <0.05; cluster size >10 voxels; TFCE-FWE (family-wise error) corrected]. (C) Regions

with significant differences of the MCI-lowEF group vs. HC in fALFF (two-sample t-test; cluster p <0.05; cluster size >10 voxels; TFCE-FWE corrected). MFG.L, left

middle frontal gyrus; PosCG.R, right postcentral gyrus; PreCG.R, right precentral gyrus; STG.L, left superior temporal gyrus.

level. Because of the relatively small sample size, we did not
correct the correlation analysis results for multiple comparisons
in order to better present the results. The statistical significance
was determined by an uncorrected p <0.05.

3. RESULTS

3.1. Demographic and Neuropsychological
Characteristics
In parallel, EF of the MCI-lowEF group was lower compared
to the MCI-high group (p <0.05) (Table 1). We found
no significant differences in gender, head motion parameters
(Supplementary Table 1) or education level were observed
between the MCI-highEF group, MCI-lowEF group, and the
HC group (all p >0.05). The MCI-lowEF group was older,
compared to the HC subjects (70 ± 7.47 vs. 60.96 ± 9.45, p
<0.05) and MCI-highEF group (70 ± 7.47 vs. 60 ± 7.47, p
<0.05). In comparison to HCs,MCI-highEF patients only showed
significantly decreased MoCA and ADNI-EF scores, while MCI-
lowEF patients exhibited significantly reduced MMSE, MoCA,
and ADNI-EF (all p <0.05). In addition, compared to the MCI-
highEF group, the MCI-lowEF group demonstrated a significant
decline in MMSE, MoCA, and ADNI-EF (all p <0.05) (Table 1).

3.2. Comparison of fALFF Between the
Patients With MCI and the HC
When comparing the three groups, the ANCOVA analysis
demonstrated significantly altered fALFF across the five brain

regions among the groups, including in the cerebellar vermis, left
superior temporal gyrus (STG), right precentral gyrus, left middle
frontal gyrus (MFG), and right postcentral gyrus (Figure 1A and
Table 2). Compared to HC, the MCI-highEF participants had
significantly higher fALFF in the left STG, and decreased fALFF
in the right precentral gyrus, right postcentral gyrus, and left
MFG (Figure 1B and Table 2). The MCI-lowEF participants also
showed significantly increased fALFF in the cerebellar vermis
and decreased fALFF in the left MFG (Figure 1C and Table 2).
Compared to the MCI-highEF participants, the MCI-lowEF
participants demonstrated no significant differences in fALFF in
these brain regions.

3.3. Comparison of FC Between the
Patients With MCI and the HC
In the ECN, upon the comparison of the three groups, the
ANCOVA analysis demonstrated the seven significantly
altered FCs between the right DLPFC and brain regions
among the groups, including the left cerebelum_crus, right
parahippocampal gyrus (PHG), left cerebelum_4_5, left
calcarine, left MFG, and left middle cingulum (Figure 2A and
Table 3). Compared to the HC, the MCI-highEF participants
demonstrated no significant difference in the connectivity of
the ECN. In addition, the MCI-lowEF participants indicated
significantly increased FC in the left cuneus, left MFG, and
decreased FC in the right PHG (Figure 2B and Table 3).
Compared to the MCI-highEF participants, the MCI-lowEF
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TABLE 2 | The differences in the fractional amplitude of low-frequency fluctuation (fALFF) among the three groups.

Region (aal)
Peak MNI coordinate

F/t Cluster number

x y z

ANCOVA

Cerebellar vermis 6 −72 −24 12.697 57

Left superior temporal gyrus −39 21 −18 9.852 89

Right precentral gyrus 57 9 39 11.033 77

Left middle frontal gyrus −24 36 42 11.557 100

Right postcentral gyrus 54 −30 48 10.570 124

MCI-highEF>HC

Left superior temporal gyrus −39 18 −18 4.782 35

MCI-highEF<HC

Right precentral gyrus 54 6 39 −5.359 16

Right postcentral gyrus1 60 −12 42 −4.354 12

Right postcentral gyrus2 36 −33 60 −5.025 59

Left middle frontal gyrus −30 30 48 −4.323 27

MCI-lowEF>HC

Cerebellar vermis 3 −72 −15 4.656 24

MCI-lowEF<HC

Left middle frontal gyrus −24 36 42 −4.782 48

FIGURE 2 | Regions showing between-group differences in functional connectivity (FC) of the executive control network (ECN). (A) Regions with significant differences

among the three groups in FC of ECN. (one-way ANCOVA; cluster p <0.05; cluster size >50 voxels). (B) Regions with significant differences of MCI-lowEF group vs.

HC in FC of ECN (two-sample t-test; cluster p <0.05; cluster size >10 voxels; TFCE-FWE corrected). MCC.L, left middle cingulum cortex; MFG.L, left middle frontal

gyrus; PHG.R, right parahippocampal gyrus.

participants demonstrated no significant difference in FC of
the ECN.

3.4. Association Between Changes in
fALFF or FC and ADNI-EF
Among the groups that consist of HC and MCI, the analysis
demonstrated that altered fALFF in the left MFG is positively
correlated to ADNI-EF (r = 0.41, p = 0.005, Figure 3A), while
altered fALFF in cerebellar vermis is negatively correlated to
ADNI-EF (r=−0.32, p= 0.033, Figure 3B). Altered FC between
the right DLPFC and the right PHG is negatively correlated to
ADNI-EF (r = 0.31, p = 0.038, Figure 3C), while altered FC
between the right DLPFC and left cuneus is negatively correlated

to ADNI-EF (r = −0.31, p = 0.039, Figure 3D). Age, gender,
and education level are all used as covariates for these results
(If Bonferroni-corrected used, the result is that only the fALLF
value of the left MFG is significantly positively correlated with
ADNI-EF).

4. DISCUSSION

Using the fALFF and FC, we evaluated the differences in
resting regional brain activity and FC of ECN among patients
with MCI-highEF and MCI-lowEF subtypes. We also explored
the relationship between these changes and EF. The results
demonstrated that only the regional brain activity was impaired
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TABLE 3 | The differences in functional connectivity (FC) of executive control network (ECN) among the three groups.

Region (aal)
Peak MNI coordinate

F/t Cluster number

x y z

ANCOVA

Left cerebelum_crus −3 −78 −33 7.962 52

Right parahippocampal 24 −6 −24 9.787 74

Left cerebelum_4_5 −9 −36 −9 11.632 93

Left cuneus 0 −90 18 14.376 409

Left calcarine −12 −78 9 6.252 54

Left middle frontal gyrus −42 18 33 10.072 71

Left middle cingulum −3 −21 39 9.708 52

MCI-lowEF>HC

Left cuneus 0 −93 15 5.515 189

Left middle frontal gyrus −42 21 36 4.634 22

MCI-lowEF<HC

Right parahippocampal 24 −9 −24 −4.698 10

FIGURE 3 | (A) Significant relationships between the altered fALFF in the left MFG and ADNI-EF. (B) Significant relationships between altered fALFF in the cerebellar

vermis and ADNI-EF. (C) Significant relationships between altered FC in the right parahippocampal gyrus and ADNI-EF. (D) Significant relationships between altered

FC in the left cuneus and ADNI-EF. EF-H, MCI-highEF group; EF-L, MCI-lowEF group; HC, healthy controls; EF, ADNI-EF.

in MCI-highEF, while the FC of ECN did not change. On
the other hand, not only was the regional brain activity of
MCI-lowEF impaired, but the FC patterns of ECN changed.
Additionally, correlation analysis indicated that altered fALFF

and FCwere related to impaired EF. These results suggest that the
two subtypes of MCI can have different patterns of spontaneous
brain activity and FC of the ECN, and the functional integrity of
ECN may contribute to retained executive abilities in MCI.
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Our first important finding was that the fALFF in the right
precentral gyrus, right postcentral gyrus, and left MFG in the
MCI-highEF group is lower than that in the HC group, while
the fALFF in the left STG is higher than in the HC group.
Contrastingly, the fALFF in the left MFG in the MCI-lowEF
group is lower compared to HC, while fALFF of the cerebellar
vermis is higher than HC. The majority of regions have been
reported in prior MCI or AD studies (Cai et al., 2018; Long et al.,
2018; Shi and Liu, 2020; Wang et al., 2021c). Compared to HC,
the two groups all demonstrated significant fALFF differences
in the left MFG. On the other hand, the frontal lobe itself
was found to be an important component of ECN. A large
number of previous studies have shown that the frontal lobe is
closely related to cognitive function (Zhao et al., 2018; Catani,
2019; Jung et al., 2020) and EF (Cristofori et al., 2019; Zanto
and Gazzaley, 2019). Herein, a study aimed to investigate the
differences in atrophy patterns in the frontal-subcortical circuits
between MCI and AD subjects, results of which indicated that
both MCI and AD subjects had a thinner cortex in the left
MFG compared to HC individuals (Zhao et al., 2015). Another
structural MRI study also determined that frontal lobe atrophy
was related to decreased EF in patients with aMCI (Zheng
et al., 2014). Moreover, the study examined the relation between
reward processing and performance on a working memory task.
Results revealed that left MFG was activated by both working
memory demands and increasing levels of reward (Pochon et al.,
2002). Another task fMRI study showed that bilateral MFG were
activated while participants performed a color-word Stroop task
(Spielberg et al., 2011). Previous studies have validated that the
structural and neurophysiological basis of abnormal frontal lobe
spontaneous brain activity in patients withMCI, and have further
verified the results of this current study. Furthermore, correlation
analysis demonstrates that the fALFF of the left MFG is positively
correlated to the ADNI-EF (The left MFG remained significantly
positively correlated with ADNI-EF if Bonferroni-corrected was
used). In other words, the lower the fALFF of the left MFG, the
more severe the impairment of EF. Therefore, we hypothesize
that the two groups have different patterns of spontaneous brain
activity, but that the left MFG is not only a common site of injury
but also closely related to EF.

In addition, our study also found that fALFF in cerebellar
vermis is negatively correlated to ADNI-EF. Traditionally,
the cerebellum plays an important role in the movement,
maintaining body balance, regulating muscle tension, and
forming voluntary movements. Thus, it was not considered to
influence human cognitive function. Such an approach changed
in the 1980s when research demonstrated that patients with
cerebellar damage exhibited cognitive deficits (Schmahmann,
1991). Recently, much evidence has shown that the cerebellum
affects not only visuospatial and verbal function, and declarative
memory but also more complex behavior regulation processes,
namely EF (Mak et al., 2016; Myers et al., 2017; Beuriat et al.,
2020). A study found that patients with cerebellar infarction
exhibited impaired cognitive function and had reduced fALFF
values in the cerebellum compared to HC (Fan et al., 2019).
Similarly, patients with bipolar disorder executive dysfunction
showed significant hypoactivation in the cerebellum during the

performance of EF tasks (Tian et al., 2020). Numerous studies
have confirmed the important role of the cerebellum in EF, which
is consistent with our study.

At the same time, our study indicated that the ECN
connectivity pattern altered in the MCI-lowEF group, as we
observed a decrease in the connection to the right PHG and
an increase in the connection to the left MFG and left cuneus.
However, there were no significant FC changes in the MCI-
highEF group, which suggests that the functional integrity of the
ECNmay have contributed to retained executive abilities inMCI.
More importantly, there is a positive correlation between FC and
EF in the right PHG, but a negative correlation between the FC
and EF in the left cuneus. Therefore, we speculate a decrease of
the connection between the right PHGmay be the diseased brain
area related to damaging EF, while an increase in the connection
of the left cuneus may be a compensatory mechanism. The PHG
is known to be an important node of the hippocampal network
(Zhu et al., 2020), which is vulnerable in AD for convergence
of amyloid deposition, brain atrophy, functional disconnection,
and hypometabolism (Sanchez et al., 2011; Trachtenberg et al.,
2012). Prior studies have also shown a role of PHG in the
progression of AD (Qiu et al., 2016; Wang et al., 2017). For
example, some studies have demonstrated that the thickness of
the PHG cortex is significantly thinner among patients with
MCI (Devanand et al., 2012; Spulber et al., 2012; Machulda
et al., 2020). Additionally, a longitudinal study showed that,
compared to the normal control group, the converted patients
with MCI showed insufficient perfusion in the right precuneus
and PHG, while the MCI patients with MCI demonstrated low
perfusion in the left PHG. The results of this study suggest that
hypoperfusion in PHG is the earliest sign of progression from
MCI to AD (Park et al., 2012). In addition, results from a meta-
analysis showed the presence of significant regional resting-state
differences between the aMCI and control group, which includes
the posterior cingulate gyrus, right angular gyrus, right PHG,
left fusiform gyrus, left supramarginal gyrus and bilateral middle
temporal gyrus. The regions can be utilized as neuroimaging
markers of aMCI. Thus, it can be seen that the right PHG is not
only a neuroimagingmarker ofMCI but also a sign of progression
from MCI to AD (Lau et al., 2016). This is consistent with our
results and also validates that patients with MCI having low EF
are more likely to progress to AD. Additionally, we identified
an increase in FC in the left MFG and left cuneus. This is
consistent with the majority of our previous research results, and
is considered to be a compensatory mechanism.

Combining the results of fALFF and FC, both groups
demonstrated the abnormal intensity of spontaneous brain
activity. However, only the FC of the ECN in the MCI-lowEF
group changed. This indicates that it was not just local brain
regions involved, but also ECN changes with the aggravation
of EF damage among patients with MCI. Executive abilities are
known to require many distinct brain regions working together
in order to efficiently perform complex tasks (Reineberg et al.,
2018). As EF depends on global brain function, as the damage
increases, the brain network needs to change. Our results further
validate this point. Another important finding is that the left
MFG is a commonly damaged brain area. The fALFF in the
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MCI-highEF group and MCI-lowEF group is lower compared to
the HC group, while FC between the right DLPFC and left MFG
in the MCI-lowEF group is higher compared to the HC group.
Similarly, correlation analysis demonstrated that there was a
positive relationship between ADNI-EF and fALFF in the left
MFG (If Bonferroni-corrected was used, the left MFG remained
significantly positively correlated with ADNI-EF). These results
suggest that with a decrease of EF in MCI, the spontaneous brain
activity of left MFG decreases, while FC of the left MFG and ECN
increases, in order to compensate part of the function. At the
same time, it has also been validated that the retained executive
abilities in MCI are related to the functional integrity of ECN.
Hence, our study provides an important and novel idea that the
left MFG can be used as a target of neuroregulatory techniques
for early intervention.

In addition, our current study utilized ADNI-EF to assess the
EF of patients with MCI. Studies have verified that ADNI-EF is
a useful comprehensive measurement of EF in MCI, as good or
better as any composite part. Importantly, ADNI-EF performed
the same or better than all other EF indicators in detecting
changes over time, as well as in predicting dementia (Gibbons
et al., 2012a). Therefore, it is more reasonable to separate patients
with MCI into either the low EF group or the high EF group,
according to ADNI-EF.

5. LIMITATIONS

Despite these results, there are still several limitations to our
study. First, to ensure the authenticity of the data, we did not
censor the data for matching demographics between groups,
which led to significant differences in age among the three groups
and, thus, may cause confusion to our results. However, in order
to avoid the effect of these confounding factors, we carried out
all statistical analyses with age, gender, and education level as
covariates. Meanwhile, MCI - highEF group only includes two
men, which will also affect our results. Therefore, we are still
working on enrolling participants, andwewill further validate the
results after demographics matching. Second, our cross-sectional
design can limit the assessment of the role of regional brain
activity and changes in FC in the left MFG in the subsequent
development of AD. Changes of fALFF and FC in the left MFG
after the conversion of two MCI groups into AD need to be
further prospectively studied. Meanwhile, differences in fALFF
and FC in the left MFG between patients with MCI who will
be converted into AD and those who were not converted to
AD also need to be further prospectively researched. Third, the
sample size in our study is small, so the results are corrected
by strict multiple comparisons to ensure reliability. However,
recent studies have shown that even if the results are corrected
by multiple comparisons, the results of a small sample size
are inconsistent. Small P-values may not yield robust findings
(Jia et al., 2021). Therefore, we are still working on enrolling
participants, and we will further validate the results when the
sample size is expanded in the future.

6. CONCLUSION

Our current study demonstrates that there are different patterns
of spontaneous brain activity and FC of the ECN in the MCI-
highEF group and MCI-lowEF group. Furthermore, the two
groups demonstrated the abnormal intensity of spontaneous
brain activity, but only FC of the ECN in MCI-lowEF group
changed. This suggests that not only are the local brain regions
involved but also that ECN changes with the aggravation of
EF damage in patients with MCI. Additionally, the functional
integrity of the ECN may contribute to retained executive
abilities in MCI. Furthermore, the left MFG showed synchronous
abnormalities in regional brain activity and FC with peripheral
brain regions, and this was positively correlated with EF.
Therefore, it has been suggested that the left MFG can be utilized
as a target of neuroregulatory techniques for early intervention
in MCI.
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