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Systems Biomedicine is a field in 
perpetual development.  By definition a 
translational discipline, it emphasizes the 
role of quantitative systems approaches in 
biomedicine and aims to offer solutions 
to many emerging problems characterized 
by levels and types of complexity and 
uncertainty unmet before. Many factors, 
including technological and societal ones, 
need to be considered. 

In particular, new technologies are 
providing researchers with the data deluge 
whose management and exploitation 
requires a reinvention of cross-disciplinary 
team efforts. The advent of “omics” and 
high-content imaging are examples 
of advances de facto establishing the 

necessity of systems approaches. Hypothesis-driven models and in silico validation tools in 
support to all the varieties of experimental applications call for a profound revision. The 
focus on phases like mining and assimilating the data has substantially increased so to allow 
for interpretable knowledge to be inferred. Notably, to be able to tackle the newly generated 
data dimensionality, heterogeneity and complexity, model-free and data-driven intensive 
applications are increasingly shaping the computational pipelines and architectures that quant 
specialists set aside of the high-throughput genomics, transcriptomics, proteomics platforms.

As for the societal aspects, in many advanced societies health care needs now more than in the 
past to address the problem of managing ageing populations and their complex morbidity 
patterns. In parallel, there is a growing research interest on the impact that cross-disciplinary 
clinical, epidemiological and quantitative modelling studies can have in relation to outcomes 
potentially affecting the quality of life of many people.

COMPREHENSIVE SYSTEMS  
BIOMEDICINE

Systems Biomedicine Axes. 
Many data types require ad hoc inference 
methods to enable a translational systems 
approach to biomedicine.

Topic Editors:  
Enrico Capobianco, University of Miami, USA & LISM – Laboratory of Integrative Systems 
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Complex systems, including those characterizing biomedicine, are assessed in both their 
functionality and stability, and also relatively to the capacity of generating information from 
diversity, variation, and complexity.

Due to the combined interactions and effects, such systems embed prediction power 
available for instance in both target identification or marker discovery, or more generally for 
conducting inference about patients’ pathological states, i.e. normal versus disease, diagnostic 
or prognostic analysis, and preventive assessment (e.g., risk evaluation). The ultimate goal, 
personalized medicine, will be achieved based on the confluence of the system’s predictive 
power to patient-specific profiling.
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Systems Biomedicine (see for instance Antony et al., 2012) is a
field in perpetual development. By definition a translational dis-
cipline almost holistically centered on the patient, it emphasizes
in light of its multifaceted characterization the need of assess-
ing its constitutive components as a system, whose dynamics
occur across multiple and hierarchical scales (organs, tissues,
cells, molecules).

A principal role in systems approaches is played by quantita-
tive inference methods resolving problems of high complexity and
uncertainty levels. Not surprisingly, it is expected that complex
systems may generate information from heterogeneity of sources
and diversity of components. Researchers can use this informa-
tion to look for data patterns with a signal-to-noise ratio which
help explaining variation and interdependent phenomena (gene
expression and methylation, pervasive transcription, alternative
splicing etc.).

Next-Gen technologies and Electronic Medical/Health
Records are providing researchers with data resources correctly
classified as “Big Data” (Pathak et al., 2013). The management of
such resources implies that a cross-disciplinary approach must be
put in place, involving team work targeting multiplexed research
topics (clinical, experimental, omics, high-content imaging, etc.)
whose separate analysis would not be as informative as their
synergistic fusion. In parallel, the growing impact of integration
of medical records, epidemiological studies and quantitative
measures referred to patients is increasingly expanding the
frontier of personalized or individualized medicine by leveraging
on a multi-evidenced mosaic of information designed to improve
patient-specific profiling.

While in principle it clearly appears from the most recent
literature what systems biomedicine is aiming to achieve, and
the attention is now on what instruments are needed, a main
question to pose is: How fast and effectively are we mov-
ing into this translation? Given the current speed at which
the translation is taking place, there are cultural, technical
and methodological bottlenecks that need be solved. The pro-
posed Special Topic on “Comprehensive Systems Biomedicine”
overviews the path of progression of the field along three main
axes:

(1) Data: once the accessibility is guaranteed and the dimension-
ality is managed, these will require novel generation analytics

to discriminate between signal and noise and thus reveal
with accuracy the inherent verifiability, relevance, complete-
ness, prediction power making of the data optimal candidate
for integrative inference approaches. The non-coding RNA
role is being increasingly revealed by high-throughput stud-
ies (The ENCODE Project Consortium, 2004; Harrow et al.,
2012) in both healthy and diseased conditions, but refers also
to the possibility of re-using data from previous technolo-
gies, i.e., microarray, as shown by the contributed work on
neuropathic pain. Then, this role is destined to have a strong
impact in pluripotency and neural differentiation of hESCs
and ihPSCs (following Li et al., 2011). Also, data integra-
tion is currently a major topic, in particular with reference
to profiling and pathway annotation of large-scale cancer cell
lines.

(2) Methods: when modularly designed and semi-parametric,
methods guarantee wide-spectrum applicability. Hybrid
pipelines can take advantage of different quantitative
approaches (statistics, machine learning, optimization, con-
trol, graph theory) combining multiple platform outcomes,
with analyzers and optimizers outflowing into metadata and
visual frameworks. Molecular interaction network approaches
in pharmacology are reviewed in a contributed study, while
in another study magnetic resonance techniques are discussed
with regard to morphological and physiological character-
izations of cancer tissue in vivo. Finally, a study is presented
for pathway, network, and multiplex methods in the context of
brain data.

(3) Systems: an organized functionally interactive aggregate
of entities operating under coordinated and harmonic
rules in normal conditions, should be comparatively eval-
uated against altered (disordered, dysregulated, etc.) con-
ditions to assess phenotypic variations determining the
systems characteristics preventively or prospectively, at
disease onset and pre/post intervention. In one exam-
ple, the integration of cytokines, lipoproteins, tissue pro-
teins, and histology indexes cast within a statistical model
to study plaque growth opens for new possible inter-
pretations of the atherogenesis inflammatory disorder. In
another study, the modeling of metabolism is consid-
ered and an algorithm proposed to detect functional
groups from existing databases and to identify metabolites,
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and from the perspective of pandemic studies. Then, a
study introduces an information system for precision oncol-
ogy designed for the integration of data and real-time
processing of samples with the computational analysis of
genomic alterations and mutations observed in the molecular
profiles.

The three axes—Data, Methods, Systems—can be naturally inte-
grated through key properties (such as compatibility, transferabil-
ity, generalizability), characteristic features and state-of-the-art
tendencies.

The communication across the axes is established on
the basis of the specific application domains. The final
impacts (clinical, societal, etc.) depend on both axis priori-
tization and solutions that are selected to optimize the key
properties.

While much work is on the way for empowering systems
approaches to enable a change in biomedical research, we hope
that the newly presented studies in this Special Topic can offer
opportunities to appreciate the current endeavors and prospective
potential in this field.
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The diagnosis of a suspected tumor lesion faces two basic problems: detection and
identification of the specific type of tumor. Radiological techniques are commonly used for
the detection and localization of solid tumors. Prerequisite is a high intrinsic or enhanced
contrast between normal and neoplastic tissue. Identification of the tumor type is still based
on histological analysis. The result depends critically on the sampling sites, which given
the inherent heterogeneity of tumors, constitutes a major limitation. Non-invasive in vivo
imaging might overcome this limitation providing comprehensive three-dimensional mor-
phological, physiological, and metabolic information as well as the possibility for longitudinal
studies. In this context, magnetic resonance based techniques are quite attractive since
offer at the same time high spatial resolution, unique soft tissue contrast, good temporal
resolution to study dynamic processes and high chemical specificity.The goal of this paper
is to review the role of magnetic resonance techniques in characterizing tumor tissue in
vivo both at morphological and physiological levels. The first part of this review covers
methods, which provide information on specific aspects of tumor phenotypes, considered
as indicators of malignancy. These comprise measurements of the inflammatory status,
neo-vascular physiology, acidosis, tumor oxygenation, and metabolism together with tissue
morphology. Even if the spatial resolution is not sufficient to characterize the tumor
phenotype at a cellular level, this multiparametric information might potentially be used
for classification of tumors. The second part discusses mathematical tools, which allow
characterizing tissue based on the acquired three-dimensional data set. In particular,
methods addressing tumor heterogeneity will be highlighted. Finally, we address the
potential and limitation of using MRI as a tool to provide in vivo tissue characterization.

Keywords: in vivo, histology, MRI, tumor, classification, physiology, metabolism, tissue

INTRODUCTION
Imaging in diagnosis of suspected neoplastic lesion faces two basic
problems: detection and identification of a tumor mass. Detection
is based on achieving sufficient contrast (i.e., contrast-to-noise
ratio) to enable discrimination of pathological from adjacent nor-
mal tissue. Critical factors are high SNR (signal-to-noise ratio) and
high soft-tissue contrast, i.e., different tissues should be reflected
by different intensity levels in the images and with high spatial res-
olution. Identification is more demanding and today still based in
histological analysis, which faces however, some limitations. His-
tology is typically carried out on biopsy samples, which provide
only focal information on a heterogeneous mass. Sample collec-
tion constitutes a burden for the patient and may not always be
feasible. Furthermore, longitudinal analyses are difficult. On the
other hand, histology yields unambiguous information critical for
diagnosis that is based on cellular morphology or on the expression
of a characteristic molecular signature expressed by the tissue. The
possibility to simultaneously analyze multiple tissue parameters is
essential for the identification of the tumor type.

Non-invasive imaging for tumor diagnosis offers unique
advantages: minimal burden of the patient, full three-dimensional
sampling of the heterogeneous lesion, dynamic measure-
ment of physiological and metabolic processes complementing
morphological information, and the possibility for longitudinal

examinations. Yet, current imaging approaches are based on struc-
tural and physiological phenotypic readouts, which are sufficient
for lesion detection and monitoring disease progression or ther-
apy response, but most likely, will not allow identifying the lesion
type. Analogous to histological tissue characterization it would be
important to assess (a) molecular and cellular characteristics and
(b) multiple complementary tissue features in order to achieve a
high discriminative power.

As we will see later, the use of complementary imaging modal-
ities that probe different aspects of the pathology would be most
promising. Nevertheless, we will focus our current discussion on
magnetic resonance based techniques, which are attractive as they
provide high spatial resolution, unique soft tissue contrast, a tem-
poral resolution sufficient for studying dynamic processes, and
moreover are characterized by high chemical specificity, a feature
that is extensively used for chemical and biochemical structure
elucidation. In addition, the method can be easily translated into
the clinics.

TISSUE CHARACTERIZATION BY MAGNETIC RESONANCE
Magnetic resonance images represent a weighted distribution of
protons (1H) in tissue, the predominant source of the signal being
tissue water and lipids (adipose tissue). Obviously the signal is
proportional to the density of protons in the respective tissue.

www.frontiersin.org January 2014 | Volume 4 | Article 298 | 7

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/about
http://www.frontiersin.org/Journal/10.3389/fgene.2013.00298/abstract
http://www.frontiersin.org/people/u/106703
http://www.frontiersin.org/people/u/2185
file:dominietto@biomed.ee.ethz.ch
file:dominietto@biomed.ee.ethz.ch
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Biology/archive


“fgene-04-00298” — 2014/1/9 — 14:51 — page 2 — #2

Dominietto and Rudin Magnetic resonance imaging histology

The weighting function is governed by the proton magnetic prop-
erties, which are affected by their local environments due to
magnetic and chemical interactions which depend on the nature
of tissue (Weishaupt et al., 2006). The effect of the environment
on the MRI signal is lumped into parameters describing three
distinct relaxation processes (Mark Haacke, 1999): (1) the longi-
tudinal relaxation characterized by the relaxation time T1, which
describes the interaction of the spin with its environment, hence
the expression spin-lattice relaxation as a crystal lattice constituted
the environment in early solid state physics nuclear magnetic res-
onance (NMR) experiments. T1 relaxation is based on energy
exchange between the spin under investigation and its environ-
ment and occurs such that the system is driven back to its thermal
equilibrium state. (2) Transverse relaxation, characterized by the
relaxation time T2 that describes the interaction of the spin under
interrogation with neighboring spins, hence the term spin-spin
relaxation. T2 relaxation is based on dipole–dipole interactions
between spin pairs that fluctuate with regard to their spatial align-
ment and hence is of stochastic nature. It leads to the irreversible
loss of phase coherence and hence to a loss in signal intensity. (3)
T2* relaxation is related to T2 and in addition to spin–spin inter-
actions is governed by inhomogeneities in the local magnetic field,
e.g., due to difference in magnetic susceptibility between tissues.
This local field inhomogeneities are static and hence deterministic
and can be accounted for when tailoring the MRI data acquisition
(so-called spin-echo experiments). Nevertheless, T2* provides an
additional source for contrast. Additional parameters that influ-
ence the modulate the interaction of the MRI signal with the
environment and hence the MRI signal intensity are molecular
diffusion, as well as mechanism leading to coherence/polarization
transfer such as chemical exchange reactions or spin diffusion.

Relaxation processes can be influenced by administration of
contrast agent, which are either paramagnetic (gadolinium based)
or superparamagnetic agents (iron-oxide based). These agents
contained unpaired electrons with a strong effect on the local
magnetic field that is experience be nearby protons. The contrast
mechanism of the two classes of agents is different, yet a detailed
description is beyond the scope of this article (Rudin, 2005a). In
the context of our discussion it suffices to state that paramagnetic
agents enhance the longitudinal relaxation rate, i.e., they reduce
T1, while superparamagnetic agents predominantly enhance the
transverse relaxation rate, i.e., reduce T2. Apart from enhanc-
ing the contrast in static MR images to improve discrimination
of distinct tissues, MRI allows monitoring dynamic changes fol-
lowing the contrast agent administration. The contrast change
measured in a volume element (voxel) is proportional to the
amount of contrast agent in this voxel, which by itself depends
on the biodistribution (including compartments within a tissue)
and pharmacokinetic properties of the agent. Such dynamic stud-
ies yield information on tissue perfusion, vascular leakage, or
distribution volumes.

The magnetic resonance phenomena are not only restricted
to the detection of protons of water and lipid molecules in
tissue. Essentially all magnetic nuclei give rise to signal. The
resonance frequency of a nucleus depends on its identity (char-
acterized by the so-called gyromagnetic ratio) and its chemical
environment. It is in particular the fact that the magnetic

resonance sensitively probes the chemical structure to which the
interrogated nucleus is attached that has made the method indis-
pensable for chemical structure elucidation. The identification
of a molecular entity is based on the detailed spectral analysis
of its resonance frequencies. Translating these approaches to in
vivo tissue characterization therefore bears considerable potential
to enable a detailed (molecular) tissue characterization, which
might be of high diagnostic value. Apart from protons, other
nuclei such as phosphorus-31, carbon-13, constituents of many
biologically relevant molecules are of interest for in vivo mag-
netic resonance spectroscopy (MRS). Yet this method suffers
from the low intrinsic sensitivity of magnetic resonance, as these
metabolites are typically present at millimolar to sub-millimolar
concentration compared to water protons with tissue levels of
approximately 80 M.

PHENOTYPIC TUMOR CHARACTERIZATION
If compared to healthy organs, tumor tissues present in general
highly heterogeneous and chaotic architecture. Such heterogene-
ity is primarily due to the genetic instability of tumor cells that is
responsible of the apparently chaotic tumor development, which
is reflected in tissue architecture, tumor vasculature, host infil-
trates, and metastasis formation (Heppner, 1984; Marusyk et al.,
2012). This chaotic behavior occurs at a molecular, cellular,
and microdomain level and determines also the interaction with
the host environment. The result is the formation of different
regions inside the tumor, which may exhibit completely different
physiological behavior (Denysenko et al., 2010; Huse et al., 2013).

In order to rationalize the complexities of neoplastic disease,
Hanahan and Weinberg (2000) have defined six phenotypic hall-
marks of cancer, which correspond to six biological features
acquired during tumor development. Those include sustained
proliferative signaling, evasion of effects of growth suppressor,
resistance to cell death program, acquisition of replicative immor-
tality, development of a vascular network (angiogenesis), invasion
of adjacent healthy tissue, and the formation of distant metastases.
In a recent publication (Hanahan and Weinberg, 2011), these ini-
tial six hallmarks were complemented by four additional features
related to the specific behavior of tumor tissue: genome instability,
inflammation, reprogramming of energy metabolism, and evasion
of immune surveillance.

An important aspect of tumor is that they are not only com-
posed of cancer cells but contain a variety of host derived cells
such as immune cells, endothelial cells, pericytes, fibroblasts, stem,
and progenitor cells that characterize the hallmarks traits and
constitute the tumor microenvironment (Swartz et al., 2012).

Considerable efforts have been invested to assess these tumor
hallmarks non-invasively using imaging. Today, methods are
available to study tumor proliferation (DNA, protein, and mem-
brane synthesis) using PET and MRI methods, aspects of tumor
metabolism using PET and MRS, aspects of tumor vessel architec-
ture and physiology (MRI), apoptotic processes using PET, MRI,
and fluorescence imaging, as well as of the invasive potential and
propensity for metastasis formation using PET and fluorescence
imaging. Yet, all these phenotypic readouts are not specific enough
for an unambiguous identification of the tumor type, which is
based on unique molecular markers. Secondly, many of these tools

Frontiers in Genetics | Systems Biology January 2014 | Volume 4 | Article 298 | 8

http://www.frontiersin.org/Systems_Biology/
http://www.frontiersin.org/Systems_Biology/archive


“fgene-04-00298” — 2014/1/9 — 14:51 — page 3 — #3

Dominietto and Rudin Magnetic resonance imaging histology

are still in an early experimental stage and will not be available in
a clinical setting soon.

TUMOR MORPHOLOGY
Damadian (1971) reported on the observation that T1 relaxation
times in tumors are higher than in the adjacent normal tissue and
suggested that this feature might be used for tumor detection.
This constituted one of the prime motivations that later led to
the development of MRI. Nowadays, modern MRI scanners offer
several tools for detecting and characterize tumor.

Detection of tumors based on altered relaxivity values
Despite the fact that the basic biophysical mechanism leading
to tissue specific relaxivity values are poorly understood, the
evaluation of relaxivity parameters are of high diagnostic value.

According to the type of MR sequence and the relative parame-
ters, it is possible to acquire a signal, which is mostly dominated by
one of these contributions. Most established are T1-weighted, T2-
weighted or proton density weighted images (Haacke et al., 1999).
By optimizing the contrast between neoplastic and normal tissue
it is in generally possible to detect the cancer lesion, to identify
sub-regions displaying different tissue characteristics (dense ver-
sus non-dense tissue, poorly versus highly vascularized, necrotic
areas, edematous tissue, etc.), and to monitor of tumor progres-
sion or regression. Yet, these phenotypic measurements are in
general not sufficient for “histological” classification of the tumor.
Instead some generic tissue features are reflected. For example, T1-
weighted images are usually used to assess the gross morphology
of the tumor as shown in Figure 1 (left). As rule of thumb, regions
with high water content appear dark, while regions with high fat
content appear bright (Weishaupt et al., 2006). In combination
with gadolinium-based contrast agent such as Gd-DTPA it is pos-
sible to assess regions displaying high uptake of the agent indicative
of hemorrhage and leaky vessels. Areas, for which little uptake is
observed are commonly associated with necrotic or edematous

domains. Only when waiting sufficiently long these areas will
accumulate extravasated contrast agent via passive diffusion.

In T2-weighted images areas with high water content appears
bright. Since most diseases are characterized by increased water
content in tissues associated with an inflammatory tissue response,
T2-weighted are particularly useful for pathological investigation.
Dark regions may indicate high blood content such as hemorrhage,
vessels, or angiomas.

In proton weighted images (Westbrook, 2010), bright areas
indicates high proton density tissue, such as cerebrospinal fluid
or edema, while dark areas indicate low proton density such
connective tissue (i.e., tendons) or cortical bone.

Nowadays, tumor detection based on altered T1 and T2 relax-
ivity values is commonly used to diagnose and follow-up different
kinds of tumor comprising, among the others, brain tumor
(Young, 2007), breast tumor (Heywang-Kobrunner et al., 1997),
prostate cancer (Verma et al., 2012), and gastric cancer (Wang
et al., 2000). By means of T1 and T2 weighted images and in
combination with contrast agent, as Gd-DTPA or superparam-
agnetic nanoparticles, it is possible to assess tumor morphology
and grossly identify edematous and necrotic regions. Moreover,
kinetics and extent of contrast agent uptake are considered as an
indicator of prognostic quality.

The possibility to obtain high-resolution and high-contrast
images of soft tissue with similar density but different relaxiv-
ity values makes MRI the method of choice for the detection of
solid tumors.

Alteration in cellularity: measuring the apparent diffusion
coefficient
Diffusion Weighted Imaging (DWI) measures the random move-
ment of the water molecules and allows deriving the so-called
apparent diffusion coefficient (ADC) for each voxel (Haacke et al.,
1999). “Apparent” since the measured coefficient corresponds to
a weighted average across individual diffusion coefficients for all
compartments contained in this voxel. Also, structural barriers

FIGURE 1 |T1-weighted image of a glioma following contrast enhancement using a gadolinium-based contrast agent (left). Diffusion weighted images
DWI (middle), and apparent diffusion coefficient map ADC (right) of the same tumor patient. Adapted from Young (2007), reproduced with permission.
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like cell membranes, or perfusion effects affect diffusion (Haacke
et al., 1999). Given this definition and the fact that the diffusion
coefficients within cells and in the extracellular space are differ-
ent, with Dintracellular < Dextracellular , it becomes apparent that the
ADC values are sensitive to the relative size of these two compart-
ments. Hence, regions with densely packed cells will show low
ADC values. This has been exploited in the characterization of
brain neoplasms. High grade tumor neoplasms display significant
reduction of ADC and correspondingly a higher signal in DWI as
compared to lower grade (Okamoto et al., 2000; Figure 1 middle
and right). Fluid filled cysts or edematous regions appear hyperin-
tense in ADC maps (and hypo-intense in DWI) when compared to
the normal parenchyma because they largely correspond to bulk
water enabling unrestricted diffusion (within the MRI timescale;
Drevelegas and Papanikolaou, 2011).

Inflammatory status: edema formation and infiltration of immune
cells
Recent data have expanded the concept that inflammation is a crit-
ical component of tumor progression (Coussens and Werb, 2002).
The quantification of the inflammatory status is crucial in the
determination of the tumor volume, since its value is an impor-
tant prognostic factor with regard to the treatment of malignant
tumors (Xie et al., 2005). Moreover, inflammation may also influ-
ence therapy outcome in two opposite ways, in particular for brain
tumors such as gliomas (Kleijn et al., 2011). It can lead to tumor
control, by killing cancer cells and establishing anti-cancer immu-
nity, or it may further promote tumor growth, by participating in
glioma reoccurrence and progression. It is therefore evident that
the possibility to monitor the inflammation status in vivo, i.e.,
by monitoring immune cells, is a crucial step in tumor manage-
ment. Traditionally, such evaluation is performed ex vivo using
cytometry and immunohistochemistry methods, or in vivo using
labeled-radionuclides for PET (Positron Emission Tomography)
or SPET (Single Photon emission tomography) scanner (Ahrens
and Bulte, 2013). However, recent developments, in particular
the possibility to prepare non-toxic MRI probes for cell labeling,
enables MRI based tracking of immune cells. Compared to PET

or SPET, MRI has the advantages that it does not use ionizing
radiation and provides higher spatial resolution.

Magnetic resonance imaging (MRI) cell tracking involves
exogenous cell labels such as iron oxide nanoparticles, perflu-
orocarbon (PFC) nanoemulsion, or genetically encoded MRI
reporters (Ahrens and Bulte, 2013; Figure 2). Immune cells can be
labeled with superparamagnetic iron oxide based (SPIO) nanopar-
ticles in two ways: (i) by ex vivo labeling of harvested cells that
are incubated with SPIO nanoparticles in media typically using
a transfection agent, or (ii) by non-selective in situ labeling of
the phagocytic cells, such as macrophages, following intravenous
injection of SPIO nanoparticles (Bhakoo et al., 2006). PFC emul-
sion can be used to track cells using the same labeling strategies.
PFC-based cell tracking provides high specificity for cell detection
(i.e., a high signal-to-background ratio can be achieved as there is
no endogenous source of a fluorine signal) and enables the quan-
titative measurements of the amount of cells. Yet they require a
specific MRI coil tuned to the resonance frequency of 19F nuclei.
Disadvantages of using passive labeling strategies are that only the
presence of the label is detected, which is not necessarily identical
with the presence of cells. Cells may release the label into the envi-
ronment, e.g., after death, yielding to a false positive signal. Also,
the presence of the label does not yield any information on the sta-
tus of the cell, i.e., whether it is alive or dead. Finally, for dividing
cells (which is not relevant for the immune cells) the label will be
subsequently diluted. In addition, a passive label will be degraded
over time. Genetic encoded reporters avoid some of these issues.
They only yield a signal when the gene is expressed, i.e., when the
cell is alive, and the presence of labels also indicates the presence of
the cell. On the other hand, the sensitivity of genetic cell marking
is in general inferior to that of potent exogenous labels.

Magnetic resonance imaging cell tracking can also be used to
monitor inflammation related to other disease as neurological dis-
orders, autoimmune diseases, or transplant rejection. Moreover,
it is likely to become an important tool also in cell therapy (i.e.,
stem cells for different diseases) with the specific aim to guide cell
injections and subsequently monitoring their migration (Bulte,
2009; Hong et al., 2010).

FIGURE 2 | Example of tracking immune cells with MRI using SPIO

nanoparticles and PFC emulsions. (A) Imaging of in vivo antigen capture
and trafficking of dendritic cells (DCs). Sentinel DCs were labeled in situ by
intradermal injection of unlabeled (dashed arrow) or SPIO-labeled (solid

arrow) irradiated cancer cells, which function as a vaccine. Following
phagocytosis of both SPIO particles and tumour antigens in a process known

as magnetovaccination, the hypointense DCs migrate into the medulla
of the draining popliteal lymph node. (B) An electron micrograph of a
perfluorocarbon (PFC)-labeled DC is shown. Numerous bright spots (PFC
droplets) are observed inside the cell. Particles appear as smooth spheroids
(Ogawa et al., 1990). Arrowheads indicate vesicles. The scale bar represents
200 nm. Adapted from Ahrens and Bulte (2013), reproduced with permission.
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One of the consequences of the inflammatory status is the for-
mation of a peritumoral edema which is the results of several
cellular mechanism (Stummer, 2007). Although its prognostic
value for diagnosis, as well its role in the course of disease is
still a matter of discussion, peritumoral edema may cause severe
neurological symptoms in case of brain tumor, and remains a chal-
lenge in the treatment of glioblastoma patients (Kleijn et al., 2011;
Stummer, 2007).

The evaluation of edema by means of MRI is usually performed
using T2-weighted sequences that are quite sensitive to water con-
tent, and by assessing changes in ADC. The regions affected by
edema are characterized by prolonged T2 values and therefore
appear hyperintense in T2-weighted images.

TUMOR PHYSIOLOGY
The physiology of tumor tissues is directly dependent on the struc-
ture and functionality of the vascular network developed during
tumor growth. The newly formed vessels are responsible for the
delivery of the nutrients from the hosting tissue to the tumor and
for the removing of waste metabolites from the tumor. Charac-
terization of the angiogenic process is therefore essential either
for understanding the chaotic steps of tumor evolution or for
the development of anti-angiogenic drugs (Marmé and Fusenig,
2007).

Tumor vasculature deviates profoundly from that of the nor-
mal organs both in vascular architecture and functionality. The
vascular network of solid tumor does not show the hierarchi-
cal branching patterns characteristic for the majority of healthy
organs. This is the results of the opportunistic nature of the
angiogenic process, which in tumor seems not to follow physi-
ological pre-determined steps (Tropres et al., 2001; Kiselev et al.,
2005). Initially avascular tumor masses trigger the development
of new angiogenic vessels as a consequence of hypoxia and the
secretion of angiogenic factors (Lemasson et al., 2013). Alter-
natively, tumors may grow along one or more existing vessels
and co-opt them in the tumor structure in a parasitic manner.
In both cases vessels usually remain in a primitive status with
immature vascular walls and proper support by the tissue matrix.

Tumor vascular networks therefore consist of tortuous micro-
vessels exerting chaotic branching, arterial-venous shunts, and are
subject to acute or transient collapse (Heywang-Kobrunner et al.,
1997).

The lack of maturation of the primitive vessel network gives ori-
gin to a few abnormalities in vascular function. Tumor capillaries
show high permeability compared to the healthy ones (Tropres
et al., 2004). This results in a profound extravasation of erythro-
cytes and plasma in the adjacent tissue leading to an elevated
interstitial fluid pressure and to a rise in the viscous resistance
to blood flow (Dominietto, 2012). Second, because of this resis-
tance and chaotic structure, the blood circulation or perfusion
within such vessels is rarely correlated to the metabolic demands
of solid tumor (Heywang-Kobrunner et al., 1997). Moreover, the
clearance of metabolites from the tissue and the drainage by the
venous system do not work properly and are responsible of the
accumulation of blood in the tumor tissue.

To complicate matters even more, the degree of abnormali-
ties changes in different kinds of tumors and also during different
stages of the same tumor. While from a biological point of view
the origin of these physiological fluctuations is poorly understood,
the assessment of vascular abnormalities constitute an attrac-
tive biomarker, as it clearly distinguishes neoplastic from normal
tissue. Various structural and physiological aspects of tumor vas-
culature can be quantified by MRI and used for classification and
staging of tumors.

NEOANGIOGENESIS: VASCULAR STATUS AND PHYSIOLOGY
The vascular network of bigger vessels (diameter > 50 μm) can
be directly visualized by means of magnetic resonance angiog-
raphy (MRA) technique as shown in Figure 3. Three different
methods are currently available: (a) time-of-flight (TOF), (b) con-
trast enhanced (CE), and (c) phase contrast (PC) MRA. All these
approaches aim at generating a high contrast between the vascular
lumen (blood compartment) and the surrounding tissue to enable
the segmentation and extraction of vascular structures.

Time-of-flight angiography (Heverhagen et al., 2008) exploits
the intrinsic differential behavior of protons in flowing blood

FIGURE 3 | Magnetic resonance angiography of a brain tumor to

evaluate the tortuosity of the vascular network. Vessels within the
tumor nidus are shown in red, vessels supplying or passing through the
nidus in gold, while normal vessels outside the nidus are blue. The

nidus, containing type II tortuosity vessels, is volume rendered at full
opacity (left), at partial opacity (center), while vascular structures
exclusively are shown at (right). Adapted from Bullitt and Gerig (2003),
reproduced with permission.

www.frontiersin.org January 2014 | Volume 4 | Article 298 | 11

http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Biology/archive


“fgene-04-00298” — 2014/1/9 — 14:51 — page 6 — #6

Dominietto and Rudin Magnetic resonance imaging histology

as compared to stationary tissue and does not require the
administration of contrast agents. Briefly, by a combination of
radiofrequency excitation pulses all the spins of the excited vol-
ume will be saturated and, because of that, the signal will be largely
suppressed. However, blood that has entered the imaged volume,
will give rise to the full signal intensity, as it has not experienced
previous saturation. Whether a vessel can be depicted using TOF-
MRA depends on whether it can be reached by fresh blood during
excitation.

Contrast enhanced (Chandra et al., 2012) takes the advan-
tage of the administration as a bolus of a contrast agent in the
blood stream during MRI acquisition. Gadolinium based contrast
agent will produce an enhancement of the signal in T1-weighted
sequences, while iron-based contrast agent will cause dephasing of
the nuclear magnets decreasing the overall signal in T2-weighted
acquisitions. Acquisition has to be fast enough that extravasa-
tion of the contrast agent remains minimal. Angiograms are then
obtained by comparing pre- and post-contrast images.

Phase contrast (Thomas and Wells, 2011) utilizes the change in
the phase shifts of the flowing protons in the region of interest to
create an image. Spins moving along the direction of a magnetic
field gradient receive a phase shift proportional to their velocity.
This is usually accomplished by applying gradient pairs, which
sequentially dephase and then rephase spins during the sequence.
Use of phase-sensitive image reconstruction allows depticting the
vascular systems exclusively and more over provides information
on blood flow velocities.

Despite the high spatial resolution of MRI if compared to other
diagnostic imaging modalities, it is not possible to depict the fine
details vascular tree as (a) the typical vessel diameter of tumor
vessels is in the range 5–50 μm, and (b) flow velocity in these ves-
sels is typical small. Only with high-field magnets and sophisticate
coils that are used in experimental studies in animals, enabling an
isotropic spatial resolution of the order of 50 μm, it has been pos-
sible to depict larger branches of the tumor vasculature (>50 μm)
using CE techniques in subcutaneous or orthotopic tumors in
mice. Nevertheless, MRI offers the ability to indirectly investigate
small vessels by means of a special CE technique called vessel size
imaging (VSI).

Vessel size imaging (Tropres et al., 2001; Kiselev et al., 2005)
allows the evaluation of the mean vascular density (MVD;
Lemasson et al., 2013) and the average vessel diameter (AVD) in
a voxel or in a volume (Tropres et al., 2004). The approach is
based on the simultaneous measurement of the changes in T2
and T2* induced by the administration of an intravascular super-
paramagnetic contrast agent. While T2 depends on the dipolar
interaction between the intravascular contrast agent and the tis-
sue protons, which scales to the surface of the vessel T2* effects ar
proportional to the bulk effect of the contrast agent to the local
magnetic susceptibility, which scales to the vascular volume. From
indirect measurements of vessel surface and volume we can infer
on the average radius of the vessels in a given region-of-interest.

The dimension and density of the vessels is an important
index when studying angiogenesis. When combined with an inde-
pendent measurement of the tumor blood volume (TBV), it
constitutes an index of the organization of the vascular network.
Identification of vessels of various diameter (from big to small)

indicates a hierarchical network, while the presence of only small
vessels is an index of the poor organization of the vascular tree.

While information on the vascular architecture within the
tumor is a downstream manifestation of the angiogenic process,
it is important to derive physiological information in order to
understand the implication on substrate delivery, which essentially
determines the fate of the tumor. Capillary vessels like arterioles
and venules are permeable to the substances present in the blood
to enhancing compound exchange between the blood and tissue
compartment. It has been shown that in tumors also relatively
big vessels are highly permeable due to the immature structure
of the vascular wall. This results on an almost completely leaky
network with a highly non-uniform blood supply to tumor tissue
(Dominietto, 2012).

The characteristically high permeability of tumor vessels has
been suggested as biomarker for angiogenesis (Feng et al., 2008),
and for evaluating antiangiogenic treatment efficacy (Alic et al.,
2011; O’Connor et al., 2011; Najafi et al., 2012). Vascular perme-
ability values are commonly assessed by means of T1-weighted
dynamic contrast enhanced (DCE) acquisitions, involving serial
images of the same region during the administration of a
gadolinium-based contrast agent (Rudin et al., 2005). The mea-
sured MRI signal enhancement curve is fitted using a two-
compartment model originally proposed by Tofts and Kermode
(1991). In its simplest version the model comprises a vascular and
an extracellular compartment. Fitting to the enhancement curve is
carried out by optimizing two parameters, the vascular permeabil-
ity defined by the transfer constant ktrans , a measure for the rate of
contrast agent extravasation, and the volume of the extracellular
compartment V e .

Two other important parameters giving insight into the vessel
functionality are tumor blood flow (TBF) and TBV (Figure 4).
While TBV measure the volume of the vascular compartment
in a region-of-interest, TBF assess the exchange of blood within
this volume per unit time. Both parameters can be estimated by
means of T2*-weighted dynamic susceptibility contrast (DSC)
MRI experiments recording the change in signal intensity dur-
ing the administration of a super-paramagnetic contrast agent
(Barbier et al., 2001; Rudin et al., 2005). For data analysis, it is
assumed that, due to its nanoparticulate size, the contrast agent
remains confined to the blood compartment, at least for the
duration of the measurement.

Tumor oxygenation
The oxygenation is another important factor in tissue character-
ization since abnormal oxygen levels have several implications in
tumor progression and treatment (Nilesh and Quarles, 2011). In
particular, a hypoxic environment is known to promote angio-
genesis, inflammatory behavior, genetic instability, invasiveness,
and metastasis formation. Hence, hypoxia is associated with
increased malignancy and causes reduced efficacy of radio- and
chemo-therapy.

Two MR based techniques have mainly developed to image
tissue oxygenation status: BOLD-MRI and fluorine-19 NMR (19F-
NMR). BOLD (Blood Oxygen Level Dependent; Figure 5) contrast
assesses alterations in the relative concentrations of deoxyhe-
moglobin (dHb) and oxyemoglobin (HbO2) concentration in
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FIGURE 4 | Example of relative tumor blood volume rTBV (color)

overlaid on a structural MR image (gray level). The images show the
effect of DMOG treatment that affects angiogenesis process (left) versus
placebo (right). DMOG treated tumor shows multiple small regions with

relative high rTBV, while placebo treated tumor present only one big
region with significant rTBV. The color bar indicates the rTBV values in
arbitrary units. Adapted from Dominietto et al. (2012), reproduced with
permission.

FIGURE 5 | BOLD MRI for a patient with breast tumor exhibiting a partial

response to therapy. Images show a signal enhancement maps (color)
overlaid on T2-weighted anatomical images. Images have been acquired
1 week before start of neoadjuvant chemotherapy (left), after one cycle of

chemotherapy showing small signal response (middle) and after four cycles
of chemotherapy demonstrating a striking change in tumor characteristics in
response to therapy (right). Adapted from Jiang and Weatherall (2013),
reproduced with permission.

blood (Ogawa et al., 1990). The blood oxygen saturation given by
the ratio [HbO2]/(HbO2] + [dHb]) changes according to local
cellular activity and hence oxygen consumption. Since dHb is
paramagnetic, it induces local changes in magnetic susceptibil-
ity, and hence a decrease of T2*, in the region surrounding the
vessel. Correspondingly, increased oxygen saturation will lead
to an increased signal intensity when using T2*-weighted pulse
sequences (Nilesh and Quarles, 2011). This method has been used
to monitor treatment response during phototherapy (Gross et al.,
2003), upon administration of vasomodulators (Robinson et al.,
1995; Taylor et al., 2001), to predict the response radiotherapy
response, which is known to critically depend on the oxygenation
status of the tumor (Rodrigues et al., 2004), and to character-
ize vascular architecture in general (Robinson et al., 2003). While
BOLD based methods provide accurate qualitative information
of blood oxygenation it is difficult to extract reliable quantitative
data.

19F-NMR approaches involve the administration of PFCs,
which are well known for their high oxygen carrying capacity. It
has been demonstrated that the 19F relaxation time T1 is linearly
dependent on oxygen tension (Joseph et al., 1985; Fishman et al.,
1989) and with proper calibration it is possible to quantitatively
assess tissue oxygenation at equilibrium, or following a metabolic
perturbation. However, given the difficulty of delivering sufficient
quantities of PFCs to tumor tissue, as many of these agents require
intra-tumoral injection, the method has remained a preclinical
tool (Nilesh and Quarles, 2011).

Acidosis: link to metabolism
Metabolic reprogramming of tumor cells has been recognized
already very early. It has been observed that neoplastic tissue
exerts high glycolytic activity even under conditions of nor-
moxia (Warburg effect; Gatenby and Gillies, 2004). In fact,
measurement of enhanced glucose utilization with PET using
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[18F]-2-fluoro-2-doxyglucose (FDG) as tracer has emerged as
important diagnostic tool for tumor diagnosis, in particular for
detection of the metastatic burden. Only recently, molecular
mechanism underlying this reprogramming, linking metabolic
processes to altered gene expression are being elucidated (DeBer-
ardinis et al., 2008; Ward and Thompson, 2012). Glycolysis leads
to the production of lactic acid from pyruvic acid via pyruvate
dehydrogenase, which is responsible for acidosis. Nevertheless,
the intracellular pH of solid tumor, which is the result of a
balance between metabolic proton production, proton buffering
capacity and transport processes, is maintained within a range
of pH = 7.0–7.2 (Zhang et al., 2010). Hence, despite increased
acid production, tumor cells maintain a normal slightly alka-
line intracellular pH. The major acid load is transported outside
the cells but, since the acid cannot be easily removed by the
abnormal vasculature, the microenvironment will become acidic
(Zhang et al., 2010).

Tissue acidosis is an important feature of the tumor
microenvironment which has been shown to drive local invasion
and not surprisingly several approaches have been described to
assess tumor pH non-invasively (Figure 6). In vivo MRI and MRS
can be used to measure pH values in vivo either using endogenous
or exogenous compounds (Raghunand, 2006). MRS methods are
generally based on a difference in chemical shifts between pH-
dependent and pH-independent resonances (Zhang et al., 2010). A
resonance becomes pH dependent when the resonance frequency
of the protonated form is distinct from that of the deprotonated
form and when the exchange reaction is fast compared to the MRS
time scale, which is defined by the frequency difference of the
two resonances. Different nuclei can be used to determine tissue
pH using this approach: 31P (Gadian and Radda, 1981), 1H and
hyperpolarized 13C (Gallagher et al., 2011).

An alternative approach using MRI relies on perturbing the
relaxivity of water via pH-dependent relaxation agents. Small
molecules Gd-based agents, whose relaxivity is pH dependent,
have been recently synthesized (Zhang et al., 1999; Raghunand
et al., 2002; Pierre et al., 2006). For the pH quantification, this
method requires knowledge of the concentration of the agent in
each voxel.

FIGURE 6 | pH map of mouse MCF-7 breast tumor model. pH was
measured by administration of a paramagnetic CEST (Chemical Exchange
Saturation Transfer) MRI using pH-sensitive contrast agent ytterbium-
1,4,7,10-tetraazacyclododecane-1,4,7 tetraacetic acid, 10-oaminoanilide.
Adapted from Zhang et al. (2010) reproduced with permission.

Finally, a new generation of agents that have been developed
to generate contrast via chemical shift saturation transfer (CEST)
enable pH measurement (Zhang et al., 2010). The dynamic pro-
cess of CEST can be described by 2-pool chemical exchange model,
wherein the magnetization is exchanged between a labile proton
(e.g., an amide proton of proteins) and bulk water. The two res-
onances have to be distinguishable. In the experiment one of the
two resonances (the smaller proton pool) is magnetically labeled
(saturated) and the transfer of label to the exchange partner (the
water proton) is monitored. For example, the resonance of amide
protons is saturated and the transfer of saturation to the water
resonance, i.e., the decrease of the water signal intensity, is ana-
lyzed. Mathematical modeling based on Bloch equations coupled
by chemical exchange yields estimates for the exchange rate, which
depend on pH. In general, exchange rates are slower at a low pH.
There are three main categories of CEST imaging: diamagnetic
(Pacheco-Torres et al., 2011), paramagnetic (Liu et al., 2012), and
amide proton transfer (Sun et al., 2011).

TUMOR METABOLISM
The concentration various metabolites can be measured by means
of MRS (Figure 7). Compounds accessible by MRS relate to
the tumor hallmarks deregulated energy metabolism, sustained
proliferation, and resisting cell death (Hanahan, 2000). Metabo-
lites related to energy metabolism are the substrate glucose and
the intermediates of glycolytic processing including pyruvate
and lactate, which can be assessed using either 1H or 13C
MRS. Recently, hyperpolarization techniques such as 13C MRS
combined with dynamic nuclear polarization (DNP) have been
introduce. They enhance the sensitivity of MRI by three to four
orders of magnitude, though the lifetime of the hyperpolarized
state is typically less than 1 min in biological tissue, which limits
the applicability of the method. Nevertheless, it could be shown
using DNP 13C MRS in addition to glycolytic processing of pyru-
vate that the label is also transferred to alanine, which indicates
the increased anabolic (proliferative) activity of tumors. The prime
energy substrate produced by anaerobic and aerobic glucose pro-
cessing is adenosine-triphosphate (ATP), which can be assessed,
together with other phosphorus containing metabolites such as
phosphocreatine (PCr), nicotinamide adenine dinucleotide phos-
phate (NADP), or orthophosphate (HPO4

2−/ H2PO4
−) using 31P

MRS. A characteristic of tumors is their acidic environment, which
is related to their high glycolytic activity. Intracellular pH is com-
monly assessed by comparing the resonance frequency of the PCr
and HPO4

2−/ H2PO4
− resonance. Due to the fast proton exchange

(with regard to the MRS time scale) between HPO4
2−and H2PO4

−
only one resonance signal is observed for the two compounds,
the frequency of which depends on the relative concentration
of the two and hence sensitive to the pH value. In contrast, the
PCR signal does not depend on the pH value. Hence by mea-
suring the frequency difference of the PCr versus the HPO4

2−/
H2PO4

− signal, the pH value can be accurately determined
(Zhang et al., 2010). High proliferation capacity implies high rates
of membrane synthesis. Not surprisingly tumor typically show
high levels of phospholipid precursors such as choline/phospho-
choline or ethanolamine/phospho-ethanolamine. While the non-
phosphorylated compound are typically measured using 1H MRS,
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FIGURE 7 | Magnetic resonance spectroscopy from patient with

heterogeneously enhancing white matter lesions. The indistinguishable
spectra demonstrate elevated choline, low NAA, and moderate lactate. One
spectrum represents tumefactive multiple sclerosis (MS), the other one

anaplastic astrocytoma. In anaplastic astrocytoma, choline elevation reflects
membrane synthesis as marker of active proliferation, whereas in MS, it
represents membrane injury and degradation of membrane phospholipids.
Adapted from Young (2007) reproduced with permission.

the phosphorylated analogs are detected as a phosphomonoester
resonance using 31P MRS. In fact the characteristic nature of this
peak has been used to assess therapy response already very early
(Ng et al., 1989). In clinical routine, these proliferation readouts
are mainly used in the diagnosis and monitoring of brain tumors
(Bhakoo et al., 2006; Ahrens and Bulte, 2013). Finally it has been
shown that 1H MRS of lipid signal may be used to study apoptotic
signaling (Schmitz et al., 2005).

The evaluations of all the phenotypic readouts previously
described are indirect measurement of processes that occur at a
molecular level. Although these readouts provide relevant infor-
mation on the tumor status, they are of generic nature and may lack
the specificity required for the final diagnosis: different molecular
processes, for example, can lead to almost identical phenotypes.
The identification of tumor types is based on its molecular com-
position. Hence, similar to the histological analysis imaging,
methods have to be developed that provide cellular and molecu-
lar information (see Assessing Cellular and Molecular: Molecular
Imaging Approaches). Alternatively, we might consider compiling
the various structural, physiological and metabolic informa-
tion collected into a fingerprint that may provide the desired
degree of specificity in selected cases (see Mathematical Tools
for Handling Multi-Parametric Imaging Data: a Classification
Problem).

ASSESSING CELLULAR AND MOLECULAR: MOLECULAR IMAGING
APPROACHES
Final histological tumor diagnosis/classification is based on the
expression of specific molecular markers, hence it becomes obvi-
ous that whenever non-invasive imaging should reach that stage,

it mast yield temporal-spatially resolved information on the
expression of such tumor-specific biomolecules, typically surface
epitopes. This asks for molecular imaging solutions visualizing
molecular targets or molecular processes occurring at the molec-
ular and cellular levels (Martin, 2011). To achieve this goal,
exogenous contrast agents coupled with a molecule that targets
specific cell receptors or interacts with specific enzyme or proteins
in vivo are needed. Quantification of results in molecular imaging
refers to the ability to estimate the concentration of the exogenous
agent that has reached a specific location at a specific time, and in
special cases, to estimate the rate of a biochemical process, such as
enzymatic cleavage.

Today, there are a considerable number of publications describ-
ing target specific compounds tested in in vitro assays that have the
potential for in vivo imaging; yet only few studies are reported with
living organism.

Antibody-based imaging agents constitute a large majority of
tumor specific probes (Rudin, 2005b). The tyrosine kinase recep-
tor Her-2/neu, for example, is a protein over-expressed on the
surface of breast cancer cells, and other human tumors (Slamon
et al., 1989). Approximately 30% of mammary carcinomas express
this epithelial growth factor receptor. High expression levels cor-
respond to poor prognosis; hence, Her-2/neu may constitute an
attractive target for immunotherapeutic agents, such as human-
ized monoclonal antibody trastuzumab (Herceptin). By labeling
trastuzumab with a superparamagnetic iron-oxide nanoparticles
(SPIO) a specific agent able to target cancer cells that overex-
pressed Her-2/neu could be designed though in vivo validation
of the approach is still lacking (Smith, 2010; Artemov et al.,
2003).
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Tissue homeostasis is normally achieved by a tight regulation
of proliferation, differentiation, and apoptosis. Apoptosis, or pro-
grammed cells death, is downregulated in cancer cells. A general
therapeutic strategy may be therefore to induce apoptosis. Devel-
opment of such treatments would benefit from imaging assays
that specifically target molecular players involved in apoptotic sig-
naling or cell surface marker that are specifically expressed on
the surface of cells undergoing programmed cell death (Rudin,
2005b). For example, cells undergoing apoptosis redistribute
aminophospholipids, primarily phosphatidylserine, to the outer
layer of the cell membrane. Phagocytic cells, thus constituting
a signal for cell removal, recognize exposed phosphatidylserines.
Phosphatidylserine is recognized by peptidic molecules such as
annexin-V and synaptogamin I. The latter has been labeled with
SPIO nanoparticles and used in vivo as apoptosis-specific contrast
agent. The nanoparticulate probe can leave the vascular bed in
tumors since tumor vessels are immature and leaky, hence uptake
is likely to be non-specific. Nevertheless it could be shown that
the target specific probe was better retained in subcutaneously
implanted tumors in mice while non-targeted SPIO nanoparticles
were rapidly cleared from the tumor site (Zhao et al., 2001).

Molecular imaging can also be used as a complementary tool
to monitor angiogenesis. In particular, it offers the possibil-
ity to differentiate angiogenic vessels from normal blood vessels
by detecting differences in the expression of molecular mark-
ers (McDonald and Choyke, 2003). In the angiogenic cascade,
different cell surface receptors, including the αvβ3-integrin, are
strongly expressed on activated endothelial cells. Mulder et al.
(2005) have described the possibility to imaging angiogenesis
using αvβ3-specific bimodal lipidic nanoparticle both with MRI
and fluorescence imaging.

The motivation for using MRI-based contrast agents, instead
of other imaging modalities, is the possibility to combine together
both the target-specific information with the high anatomical
definition. Moreover, MRI is able to provide three-dimensional
imaging which enables the possibility for an accurate quantifica-
tion of the probe concentration, which otherwise is not be possible
in the case of two-dimensional techniques as SPECT or optical
imaging. The drawback of MRI approach is the low sensitivity, i.e.,
high local concentration of the reporter construct is required to
induce detectable changes in the relaxation rates (Rudin, 2005b).
In addition, MRI reporter molecules are in general bulky and
may not easily reach the target site. However, for tumors this
might be less an issue due to the leaky vasculature. Today, none
of the MRI based target-specific probes has been approved for
clinical use.

MATHEMATICAL TOOLS FOR HANDLING
MULTI-PARAMETRIC IMAGING DATA:
A CLASSIFICATION PROBLEM
In each three-dimensional image dataset the object (tumor) is
characterized by a set of voxels, with parameter values (features)
that are characteristic for the respective measurement attributed
to every voxel. Examples are values for the relaxation time, appar-
ent water diffusion coefficient, or vascular permeability. Assuming
that the dataset are properly coregistered all voxels vx,y,z are char-
acterized by a vector, whose elements are the parameter values fi

allocated to the various measurements, i.e.,

vx,y,z;t = vx,y,z;t (f1, f2, ..., fN ).

The dimension of this data set is D×T×N, where D is the
number of voxels, T the number of time points measured (T = 1
for static measurements) and N the number of features evaluated.

In mathematical terms these set of voxels (three-dimensional
maps) form a dataset that contains all the information collected
for the tumor. Although all the data are stored in a simple structure
as a basic database, it is not easy to extract and quantify informa-
tion from it. Usually, radiologists consider just few features and
mentally divide the tumor in macro-regions, for which individual
parameters are analyzed. Obviously this type of analysis discards
many the majority of features contained in the dataset and the
validity of conclusion critically depends on the experience of the
reader. There is no way for human brain to systematically process
all the available information voxel by voxel.

The three-dimensional maps contain all measured information
on the object reflecting both morphological aspects and physio-
logical behavior. Information regarding the heterogeneity of the
object is intrinsically contained. Taking into account this huge
amount of information requires mathematical tools that allow a
data reduction in a robust manner. One output of such tools is to
classify each voxel of the tumor according to the measured features,
and finally generate a map of the different tissues types present in
the tumor. Several mathematical methods, which come from the
field of information theory, have been developed for this purpose.
A schematic workflow of the quantification process is shown in
Figure 8.

EXTRACTING OBJECT FEATURES FOR CLASSIFICATION
As mentioned before, all the information are stored in a dataset,
where the features are any kind of map (measured by MRI,
Figure 9) and the subject are the individual voxels voxel of the
three-dimensional matrix.

The first step of the classification process consists of the selec-
tion of useful features from the dataset. This process called feature
selection aims at taking into account only features that contain sig-
nificant and non-redundant information in order to minimize the
confusion intrinsic noise of the data (Umbaugh, 2011). For this
purpose different approaches, that describe the variability of the
dataset, can be pursued. The traditional way, which comprises a
set of techniques that perform a simultaneous statistical analysis of
all features, is called multivariate analysis. Such techniques include
multivariate analysis of variance (MANOVA), principal compo-
nent analysis (PCA), factor analysis, multidimensional scaling, and
correspondence analysis. All of them have as goal to determine a
new set of synthetic variables that best represent the samples in a
statistical interval.

Another approach consist of considering all the features and
assign them a ranking score according to their discriminant
power and accuracy, and then simply select the top ranked ones
as final features used for the classification (Press et al., 2007;
Zacharaki et al., 2009). These methods can be divided in three
main categories: filter algorithm, wrapper, and embedded meth-
ods. For a comprehensive mathematical description of these
methods the reader is referred to (Guyon and Elisseff, 2003).
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FIGURE 8 | Scheme for potential tumor phenotypic characterization by mean of MRI.

FIGURE 9 | Schematic workflow of the quantification process.

Another important issue is the quantifications of the charac-
teristics inherent in 3D feature maps. In other words, specific
estimators that take into account the heterogeneity and the
complexity of the object (tumor) are determined (Dominietto
et al., 2012). Two types of estimators are commonly used: shape
and texture estimators. The first group describes the geome-
try of the object (whole tumor or specific region), and extracts
shape descriptors such as volume, surface area, compactness and

signature (Rangayyan and Nguyen, 2007; Rangayyan et al., 2010).
Texture estimators are related with the contents of the object and
in particular to its texture by means of a set of estimators as fractal
dimension (Lopes and Betrouni, 2009), lacunarity (Plotnick et al.,
1996), Laws’measures (Rangayyan, 2005), and Haralick’s measures
(Haralick, 1979). Both shape and texture estimators also used in
the geometrical segmentation of anatomical structure (Rangayyan,
2005).
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CLASSIFICATION
For classification two common techniques are currently used:
pattern recognition and clustering technique (Umbaugh, 2010).

In general terms, for a given group of objects (i.e., different
kinds of tissue or different type of tumors), pattern recognition
algorithms aim at identifying the individual objects and assign
them the correct label. In order to perform this operation, the
algorithm has been “trained” previously with a dataset consisting
of known objects (training dataset) by means of which it learns
to recognize the objects from their features. This process is called
supervised machine learning (Bishop, 2006).

The clustering approach is different as it does not require previ-
ous knowledge on the objects. Briefly, for analyzing multiparamet-
ric static data each voxel represent a subject in a N .D-dimensional
space, where N is the number of features and D the number of vox-
els. Voxels that share similar properties will have similar features
values and therefore will form a group (or cluster) of points in the
N .D space. The objective of using the cluster algorithm is to iden-
tify the different groups of points (Theodoridis and Koutroumbas,
2006). The combination of features expressed by each group char-
acterizes its morphological, physiological, metabolic, or molecular
properties: it is therefore necessary, but not always straightfor-
ward, to translate the feature fingerprint into biomedically relevant
information.

For both approaches, the most critical point is feature selection
as subsequent tissue classification, e.g., differentiating tumor from
healthy tissue or classifying subregions within a tumor, critically
depends on the discriminative nature of the features.

Most of the studies to classify tumor tissues relate to brain
tumors. Brain, in fact, offers many advantages related with the
image acquisitions: easy positioning and fixation, absence of or
minimal physiological movements, availability of several anatom-
ical landmarks that renders co-registration rather straightforward
in case of multi-modalities acquisitions. Different approaches have
been described in the literature to classify and segment brain
tumors using texture analysis (Qurat-Ul-Ain et al., 2010), neu-
ral networks (Arizmendi et al., 2012), linear discriminant analysis
decision tree support vector machine (Zacharaki et al., 2009), and
clustering (Jagadeesan and Sivanandam, 2013). Similar studies
have been reported for breast tumor in order first to discrimi-
nate between malignant tumors and benign microcalcifications
(Rangayyan and Nguyen, 2007; Mu et al., 2008), and second to
classify tumor lesions (Zheng et al., 2007; Tang et al., 2009; Glasser
et al., 2013).

IN VIVO HISTOLOGY USING MRI/MULTIMODAL ANALYSIS:
POTENTIAL AND ISSUES
Multiple features have to be evaluated in order to comprehensively
characterize biological tissue. Histological analysis, the gold stan-
dard for such investigation, used morphological features as well
as specific molecular markers to unambiguously identify a spe-
cific tissue type. Yet, histology is based on tissue specimen, which
for diagnosis are typically obtained via biopsy. Standard biopsy
involves focal sampling of only small portions of tissue, and hence
carries the risk, that critical regions may be missed in particular
when sampling highly heterogeneous tissue such as tumors. The
possibility to acquire in vivo 3D multi-parametric information

on tissues, in our context tumors, in a non-invasive manner
might offer important benefits in management of cancer patients.
Compared to biopsy, imaging (MRI) based tissue characterization
allows analyzing the whole tumor yielding information over its
entire volume thereby avoiding the problem of sampling errors.
As the measurement is non-invasive, changes in tissue features can
be monitored longitudinally, which is highly relevant for prognosis
and for evaluating therapy response. The comprehensive nature of
tissue analysis provided by imaging supports histological analysis
by guiding biopsy sampling thereby minimizing the possibility of
sampling errors.

An important advantage of the in vivo measurement is the pos-
sibility to study physiological processes, which evidently cannot
be assessed ex vivo. Measurements of processes such as tumor
angiogenesis, perfusion, metabolism, or oxygen consumption pro-
vide essential information for determining the stage of the tumor.
Also it has been shown that such readouts may be early indicators
of therapy response, proceeding morphological changes. Simi-
lar to morphological features, tumor physiological and metabolic
parameters are highly heterogeneous, for example different tumor
stages may coexist in the same proliferative mass in glioma patients
(Zacharaki et al., 2009). Apart from spatial heterogeneity tumor
physiology and metabolism also fluctuate over time (Bonadonna
et al., 2007).

In vivo tissue characterization based on imaging has emerged
as important tool for the detection and characterization of solid
tumors including metastases (Mia, 2011). Today, MRI together
with PET (Positron Emission Tomography), SPECT (Single Pho-
ton Emission Computer Tomography), CT (Computer Tomog-
raphy), and US (Ultra Sound) provide a platform that provides
multiparametric information characterizing tumor morphology,
physiology, metabolism as well as cellular and molecular proper-
ties. These techniques are currently used in the clinic to gain as
comprehensive information as possible before deciding the best
treatment for the patient. Nevertheless, the evaluation of this huge
amount of data is usually qualitative and relies on skills of the radi-
ologist. A standardize quantitative evaluation, which gives robust
and reproducible results is at the moment missing.

At present there is a huge diversity of imaging/MRI meth-
ods that are used in experimental animal studies that provide the
multiparametric information required for using the classification
tools. However, only a few are being used in the clinics, stan-
dard features derived from DCE, FLAIR, T1w, and T2w images
and used as qualitative indicators of tumor stage (Young, 2007).
More sophisticated techniques as DTI (Diffusion Tensor Imaging),
MRS together with machine learning infrastructure, can provide
complementary features that better characterize tumor physi-
ology and micro-environment behavior, which would enhance
the value of multiparametric analysis. It is important to intro-
duce such method in a standardized manner into radiological
practice.

Obviously MRI does not reach microscopic resolution; (Heyn
et al., 2005; Martin, 2011), for in vivo experiments, the detec-
tion limit is in the range between 100 and 500 cells (Heyn et al.,
2005; Muja and Bulte, 2009). This is relevant insofar, as final
diagnosis is based on the cellular (type and shape) and molec-
ular information (surface epitopes expressed by the cells) derived
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from histology. In order to reach this detail of information at the
macroscopic level sampled by MRI, target specific contrast agents
have to be used. We have seen, that such agents can be devel-
oped; yet there are substantial hurdles to overcome, before such
agents will make it to the clinics. Scientific hurdles mainly relate to
probe specificity and even more so probe delivery. MRI contrast
agents are bulky and in general do not cross tissue barriers (mem-
branes). Despite substantial efforts, this still constitute a major
problem. The second hurdle relates to economics: development
of such an agent is expensive. MRI probes are not adminis-
tered in tracer amounts, which requires full safety and toxicology
analysis. Multicenter clinical trials to demonstrate diagnostic rel-
evance have to be carried. The complexity of developing MRI
contrast agents to the market is reflected by the fact that only
a very small number of generic agents is currently available for
clinical use and it is unlikely that this is going to change in the
near future. Hence, MRI methods to be used in clinical setting
have to exploit endogenous contrast and rely on the contrast
agents currently available. Nevertheless, together with spectro-
scopic readouts this already constitutes a fair basis for tissue
characterization.

Multiparametric imaging based tumor characterization using
morphological, physiological, metabolic – and eventually also
cellular and molecular – features that can be monitored longitu-
dinally in individual patients might open a way to personalization
of the treatment. Today, for many tumor standard treatment
protocols that are nevertheless tuned to the specific situation
of each patient, are being pursued. This approach does not
permit to exploit all possibilities offered today for tumor treat-
ment. Highly specific drugs, new detailed reclassifications of
tumor diseases, genetic characterization of several tumors as
well as improvements in diagnostic technologies are dramatically
changing the landscape of oncology toward patient-specific per-
sonalized treatments (Tursz et al., 2011). On the other hand, given
the high genetic instability of tumors, it has been questioned
whether such approaches are in fact viable (Gillies et al., 2012).
Nevertheless, it is beyond doubt that the combined analysis of
multi-parametric readouts will improve the diagnostic accuracy,
which ultimately should translate into an improved management
of cancer patients
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Purpose: The multifactorial pathogenesis of coronary atherosclerotic lesion formation has
been investigated in a swine model of high cholesterol diet induced atherogenesis and
data processed by a systems approach.

Methods: Farm pigs were fed on standard or high cholesterol diet of 8 and 16 weeks
duration. Plasma assessment of total cholesterol, HDL, LDL, and ELISA of some cytokines
and ICAM-1 were performed on baseline and end-diet samples. Segments of the right
coronary artery were incubated for 24 h in serum-free medium to collect secreted proteins
and their expression analyzed by mass spectrometry. Data of plasma and tissue factors
were processed by a statistical systems inference approach: both histologic parameters of
coronary intimal thickness (IT) and of lesion area (LA) were chosen as dependent variables
(coronary atherosclerotic burden).

Results: Relations among plasma adhesion molecules, cytokines, lipoproteins, tissue
proteins and histology indexes were integrated in a model regression scheme. Bayesian
model averaging (BMA) variable selection was chosen as a method to identify relevant
factors associated to atherosclerotic burden: TNFα was identified as an associated plasma
marker, oxLDL and HDL as relevant lipoproteins; macrophage function related antioxidant
Catalase enzyme, lysosome associated Cathepsin D, S100-A10, and Transforming
growth factor-beta-induced protein ig-h3 were identified and selected as associated to
atherogenesis outcome.

Conclusions: The results of this systems approach are consistent with the hypothesis
that, in high cholesterol diet-induced experimental atherogenesis, the interaction between
plasma cytokines, lipoproteins and artery-specific proteins, influences lesion initiation and
growth. In particular, some macrophage function related proteins are found significantly
and positively associated to atherosclerotic burden, suggesting a novel molecular
framework into the atherogenesis-inflammatory disorder.

Keywords: systems biomedicine, coronary atherogenesis, swine model, vascular inflammation, Bayesian model

averaging

INTRODUCTION
Atherogenesis is the initiating step of atherosclerosis, and can
be considered the key-point for a better understanding of the
entire process, as several factors and mechanisms are also related
to plaque progression in the clinical scenario (Weber and Noels,
2011).

Plaque initiation steps take place in the following environ-
ments:

1. Systemic blood environment (proatherogenic or atheroprotec-
tive) constituted of inflammatory and lipid factors

2. Endothelial blood-vessel interface, which expresses adhesion
molecules for monocyte intra-lesional transfer

3. Sub-endothelial intimal space, where proteoglycans retain
LDL

4. Intimal and intima-media interface, scenario for vascular
smooth cell (VSMC) phenotype switch and activation toward
migratory and proliferative conditions (Libby et al., 2010)

Traditional views of atherosclerosis, basically seen as a lipid-
based disorder, have been modified by the recognition of
the multifactorial etiology of this disease (Lamon and Hajjar,
2008), involving the interplay of genetic, phenotypic and envi-
ronmental factors that have to be integrated into a unified
scheme. According to this theory, the most likely sequence of
events occurring in the initial phase of atherosclerosis com-
prises vascular dysfunction and/or injury, monocyte recruit-
ment and foam cell formation, lipid deposition, vascular
smooth muscle cell proliferation and synthesis of extracellular
matrix (Libby, 2002). The interaction of all these factors
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confers to the resulting atherosclerotic plaque its typical
features.

In this study, circulatory systemic and locally expressed artery
factors in a high cholesterol diet animal model of coronary
atherogenesis have been collected and inter-related using a
Bayesian Model Averaging (BMA) (Leamer, 1978; Raftery, 1995)
computational approach, which is also suggested as a useful strat-
egy to unravel novel actors and pathways outlining this complex
framework.

A statistical regression framework based on BMA to account
for model uncertainty determined by many variables of heteroge-
neous nature has been used. In such circumstances, the choice
of an encompassing model is not easy, and needs to be a sta-
tistically reasonable decision. BMA is a suitable model strategy,
which presents several advantages and reasonable computational
requirements.

MATERIALS AND METHODS
EXPERIMENTAL DESIGN, CIRCULATORY-TISSUE DATA COLLECTION
AND HISTOLOGY
Animal experiment protocol was approved by the Animal Care
Committee of the Minister of Public Health according with guide-
lines (protocol number: 06/2009-B-2009/01/26). Atherogenesis
has been studied in 13 farm pigs fed on a high cholesterol (4%)
high fat (27%) diet for 8 (HF, 4 cases) and 16 weeks (HHF, 6
cases) and controls fed on standard diet (CNTL, 3 cases). Data
on plasma lipids, cytokines and cell adhesion markers have been
collected before and at the end of the diet period in all ani-
mals. Total cholesterol, High Density Lipoprotein (HDL) and
triglycerides (TG) were measured by standard enzymatic tech-
niques (Synchron CX9 Pro, Beckman Coulter Inc., Fullerton, CA,
USA). Low density lipoprotein (LDL) was calculated according
to Friedewald et al. (1972) IL-6, TNFα, and ICAM-1 were pur-
chased by Abcam (Cambridge, UK), while oxLDL was a product
of Antibodies-Online (Atlanta, GA, USA).

At the end of diet period, animals were anesthetized by intra-
muscular administration of 10 mg/kg of Zoletil® and 0.05 mg/Kg
of atropine, plus 5 mg/kg/h of propofol intravenous infusion and
sacrificed by KCl i.v. bolus injection. Upon heart explantation, a
3 mm long segment of the proximal tract of right coronary artery
(RCA), 1 cm below the ostium, was harvested and placed in serum
free solution to collect secreted/released proteins (Rocchiccioli
et al., 2013)

Following heart fixation in 10% buffered formalin (7–10 days),
5–10 mm thick transverse arterial samples were collected from left
main, left anterior descending, left circumflex and right coronary
arteries for routine histologic processing for paraffin embedding.
Consecutive cross-sections were obtained from each coronary
segment (rotary microtome Microm HM 300, Bio-optica) for
Haematoxylin and Eosin, Mallory trichrome and Weigert van
Gieson staining and examined under light microscopy (Olympus
BX43, Italy) from 2× to 40× original magnification. Images
were digitized by a video system (Olympus DP20 camera, Italy)
interfaced to a computer with dedicated software (CellSens
Dimension, Olympus, Italy) for morphometric analysis. Intimal
thickness (IT, mm), i.e. maximal radial expansion of the lesion,
and lesional area (LA, mm2) i.e., entire lesion area in each

cross-section, were used as representative morphometric indexes
of overall atherosclerotic burden in each individual case. Both
mean and median of all the IT and LA values of all cross-sectioned
coronary lesions of each case were calculated (Viglione et al.,
2013).

LIQUID CHROMATOGRAPHY (LC) SEPARATION, MASS SPECTROMETRY
(MS) ANALYSES AND DATA POST-PROCESSING
Chromatographic separation of digested peptides obtained from
secreted proteins was performed using an Ultimate 3000 nano-
HPLC system (LC Packings, DIONEX, USA) and peptides
eluted from chromatography were directly processed using
TripleTOF™ 5600 mass spectrometer (AB SCIEX, Toronto,
Canada) (Rocchiccioli et al., 2013). MS/MS data were processed
with ProteinPilot™ Software (AB SCIEX, Toronto, Canada), using
the Paragon™ and Pro Group™ Algorithms and SwissProt 2012
as protein database for Sus scrofa. The false discovery rate (FDR)
analysis was done using the integrated tools in ProteinPilot soft-
ware and a confidence level of 95% was set. Expression data for
proteins were obtained using MarkerViewTM software 1.2.1 (AB
SCIEX). Normalization of the total artery tissue size was accom-
plished with a global normalization of profiles (total protein
content) using Marker View 1.2 software.

MATHEMATICAL MODEL APPROACH: IMPLEMENTATION OF R
ENVIRONMENT, BMA PACKAGE
Circulatory and omics data have been processed and related to
histology parameters of mean and median coronary IT and LA of
each case of HF and HHF groups. All dependent and independent
variables of diet treated cases (HF and HHF) were normalized to
average values of standard diet CNTL cases which are taken as
reference. The effect of normalization, together with a logarith-
mic transform taken to minimize variability, is a better control
of the wide range of magnitude for the absolute values of histol-
ogy, circulatory and omics variables. The independent variables
are considered plasma lipoproteins (total cholesterol, LDL, HDL)
oxidized LDL, circulatory cytokines (IL6 and TNFα, ICAM-1 and
several coronary proteins identified by LC-MS reported in the
Supplementary Table 1. At first, the model has been applied to
all diet treated cases as a whole group, while it was subsequently
applied to HF and HHF groups separately.

In general, BMA is employed when multiple models may be
statistically reasonable, and selecting a single particular model
can lead to the underestimation of the uncertainty related to the
model form underlying the variables of interest. In such cases,
BMA can quickly determine suitable models through specified
sets of explanatory variables with high likelihoods. Equivalently,
averaging across a large set of such models allows to determine
the variables which are relevant to the data generating process for
a given set of priors used in the analysis.

The implementation of BMA was done within the R environ-
ment (Raftery et al., 2010), by averaging the best models of a
certain class, and according to the approximate posterior model
probability which was computed in each case. For instance, the
class “bicreg” in the BMA R package identifies the linear regres-
sion models, and is the one chosen among other possible tested
classes. In this way the analysis has been kept at its simplest and
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most interpretable level. In particular, the option “iBMA” repre-
sents the iterated BMA method for variable selection, and works
by repeatedly calling BMA, i.e., iterating through the variables in a
fixed order based on some measure of goodness of fit. After each
call, only the variables with posterior probability greater than a
specified threshold are retained, the rest being replaced by other
variables.

The summary function was used to provide concise and sum-
marized information about the variables that have been examined
up to the last iteration. Each model, and set of variables, is
weighted and the final estimates are constructed as a weighted
average of the parameter estimates from each of the models. All
the variables are considered, but some are subject to shrinking by
setting to zero the model weights, and depending upon features
such as the choice of prior (see also Supplementary Material).

POST-PROCESSING OF MODEL RESULTS
The adopted strategies to assess relevance of model selections
were:

1. Congruence of model selection by histology indexes.

Among all selected variables, those with only IT or LA associa-
tion have been discarded. Congruence of selected variables with
both maximal radial expansion and circumferential extension of
lesions was thus ensured.

2. Congruence of model selection by regression coefficients
(value and sign).

It has also been checked whether relevant variables according to
step 1 had regression coefficients of comparable size, and similar
direction of association (negative or positive sign); this strategy
allowed for a more robust combination of factors which strongly
relate to atherogenesis outcome. Variables were discarded, when
the corresponding coefficients had comparable size and opposite
sign, indicating inappropriate selection, as well as when absolute
values were very low (<0.001) irrespective of sign congruence.

RESULTS
Circulatory and omics data (Supplementary Table 1) have been
processed by BMA and related to histology parameters of mean
and median coronary IT (mm) and LA (mm2) of HF and HHF
groups. Circulatory data were measured by antibody-based kits
and expressed as a concentration in serum. Protein data were
measured by mass spectrometry and protein expression was mea-
sured by peptide peak area using arbitrary units (normalized
counts).

SELECTED VARIABLES BY FIRST IMPLEMENTATION RUN OF THE
MODEL: ALL HIGH CHOLESTEROL DIET-TREATED ANIMALS
IT and LA are the dependent variables that have been chosen for
BMA approach to provide different and complementary infor-
mation on atherosclerotic lesions, depending on lesion shape and
its mainly eccentric or concentric growth. IT is more representa-
tive of maximal radial expansion of the lesion, whilst LA is more
related to the circumferential extension.

Also Mean and Median values of the two indexes provide
distinct information, mean values being more representative of
mild localized rather than of severe and diffuse atherosclerotic
changes: different distribution patterns of lesions are present
along each coronary artery, related to single lesion severity and
extent of coronary involvement. But generally, mean and median
values tend to coincide when lesions are present in all examined
segments, whilst they diverge when atherosclerotic changes are
localized only in few segments, such as in the proximal portion
of main coronary arteries (Figure 1).

Independent variables selected by the model as associated to
atherosclerotic burden and derived from implementations run
on all diet treated cases are reported in Table 1 (lipoproteins
and circulatory factors) and Table 2 (artery secreted proteins). As
described in the Methods section, only variables with combined
association of IT and LA histology indexes of atherosclerotic
changes are reported and considered relevant.

Among lipoproteins, oxLDL, and HDL are found significantly
associated to arterial pathology. Plasma cytokine TNFα, as well as
adhesion molecule ICAM-1 are also relevantly selected variables.

Among artery secreted proteins, the most selected and asso-
ciated to all histology indexes of atherosclerotic burden are
Catalase (CATA) and Cathepsin D (CATD). Transforming growth
factor-beta-induced protein ig-h3(BGH3), S100A10 (S10AA)
and Glyceraldehyde-3-phosphate dehydrogenase (G3P) are also
selected and are congruent with 3 out of the 4 histology indexes.

SELECTED VARIABLES BY SECOND IMPLEMENTATION RUN OF THE
MODEL: TWO DISTINCT GROUPS (HF AND HHF)
The model has been also applied to 8 weeks (HF) and 16 weeks
(HHF) high cholesterol diet treated animals separately.

When considering systemic variables, separate analysis of early
atherogenesis HF group does not provide further relevant infor-
mation in addition to what previously derived from model run on
pooled data: this is likely due to the limited number of HF cases
and/or to the very low grade of atherogenesis after 8 weeks high
cholesterol diet.

On the other hand, for local factors, the model selects Moesin
and Osteonectine (MOES, SPRC) that had not been picked
in the first run, as well as the already selected Apolipoprotein
A4 (APOA4), Byglican (HPLN1), G3P, BGH3 and Calpastatin
(ICAL), all related to lesion development in model run on HF and
also on HHF group data. Annexin 1 (ANXA1) is the only protein
selected from HF group omics data and unselected in HHF.

EVALUATION OF REGRESSION COEFFICIENTS IN FIRST AND SECOND
IMPLEMENTATION
Regression coefficients (absolute beta values, considering beta as
the regression coefficients) of all the selected independent vari-
ables have been analyzed as an index of robustness of results and
a qualitative measure of their relation with dependent variables
IT and LA (mean and/or median values).

In pooled case run (first implementation), analysis of con-
gruence by regression coefficients confirms systemic lipid and
proinflammatory variables associated to atherosclerotic burden
(association with at least one IT plus one LA index). A positive
association is present for oxLDL, HDL and TNFα. On the other
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FIGURE 1 | Top: Histologic features of coronary lesions in a typical

HF (panel A, fatty streak, H&E 2×, insets 10× and 20×) and

HHF case (Panel B, atheroma, H&E 4×, inset Mallory trichrome

10×). Bottom: Coronary profiling (left anterior descending artery) of
IT values of observed lesions in 11 consecutive segments of a HF

case (panel A) and in 9 consecutive segments of a HHF case
(panel B). Median of IT values is about one half of the mean of
IT values in mild localized atherosclerotic changes of HF case (left),
whilst it is equal to the mean of IT values when diffuse severe
changes are present (HHF case, right).

Table 1 | Lipoproteins and inflammatory factors.

Model selected circulatory variables

IT mean IT median LA mean

IT median ICAM-1 BAS, IL6 BAS

LA mean TNFα BAS TNFα END-DIET

LA median OX-LDL END-DIET HDL END-DIET ICAM-1 END-DIET

Systemic inflammation selected variables: ICAM-1 (congruence with all indexes),

TNFα (congruence with IT mean, IT median, LA mean). Lipoproteins selected:

ox-LDL (congruence with IT mean, LA median), HDL end-diet (congruence with

IT median, LA median).

side, when considering artery specific factor congruence is lim-
ited to the combination of one IT and one LA index for CATA
(positive association), CATD (positive), BGH3 (positive), S10AA
(positive) and for Fatty acid-binding protein 3 (FABPH, with a
negative association) (Figure 2).

Inclusion of regression coefficients, in variables selected by
the model from separate run on HF and HHF groups, strongly
restricts the relevance of results. No congruence is present, nei-
ther in absolute values nor in the sign of coefficients, what-
ever combination of dependent variables (histologic indexes) is
considered.

DISCUSSION
The aim of this study is to propose a systems biology oriented
approach as a tool to associate circulatory and tissue markers

Table 2 | Artery secreted proteins.

Model selected proteins

IT mean IT median LA mean

IT median CATA, G3P, S10AA,
CPNS1

LA mean CATA, CATD,BGH3,
S10AA, CPNS1,
ANXA4, FABPH

CATA, S10AA,
CPNS1, PPCE

LA median CATA, BGH3, G3P,
CATD, ANXA4

CATA, G3P, PPCE BGH3, CATA,
CATD, PPCE

Selected proteins: CATA (Catalase) is congruent with all indexes and combi-

nations of histology indexes, CATD (Cathepsin D) with all indexes but not all

combinations, S10AA (S100 A10) and CPNS1 (Calpain small subunit 1) with IT

mean, IT median, LA mean, G3P (Glyceraldehyde-3-phosphate dehydrogenase)

with IT mean, IT median, LA median, BGH3 (Transforming growth factor-beta-

induced protein ig-h3) and ANXA4 (Annexin A4) with IT mean, LA mean, LA

median, PPCE (Prolyl endopeptidase) with IT median, LA mean, LA median.

with coronary lesion development in a high cholesterol diet swine
model. Using animal models, systemic and tissue data can be col-
lected and analyzed at the early stages of diet-accelerated process
and can be useful to define the timing of events that are mostly
uninvestigable in the clinical setting.

Among animal models of atherogenesis, pig is currently con-
sidered the most suitable among those closer to human pathology
(Vilahur et al., 2011).
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FIGURE 2 | (A) Plots of selected circulatory variables (as shown by different
symbols) with their coefficients (Y-axis). (B) Plots of selected, secreted
proteins (as shown by different symbols) with their coefficients (Y-axis).
Histomorphometry data on the X-axis are the dependent variables. Only

independent variables (circulatory factors or secreted proteins) with the
combined highest coefficients and congruent signs (i.e., inverse, negative
sign, or direct, positive sign, correlations), for at least two dependent
variables, are chosen and reported.

Coronary histology indexes, plasma lipoproteins, circulatory
cytokines, adhesion molecules and coronary specific secreted
proteins were provided to the mathematical model and were cho-
sen considering the current knowledge on factors involved in
atherogenesis (Libby et al., 2002; Mohler et al., 2008).

The rationale of exploiting systems approaches through statis-
tical models to elucidate the association between all these factors
originates from the need of pointing out relationships strongly
associated to coronary early atherosclerotic changes. It is known
that the interplay between circulatory and tissue markers and
the association between molecular factors and plaque growth
represent the crossroad of blood-artery wall events during athero-
genesis (Döring et al., 2012). Computational tools like those
described, which run on a multitude of variables simultaneously,
perform variable selection and model optimization, may help
toward the ultimate aim of predictive inference, without bringing
the burden of noisy and spurious correlative associations.

BMA APPROACH TO EXPERIMENTAL DATA
The model application to the provided data sets, followed by a
post-processing exclusion based on the criteria of absolute values
and sign of correlation coefficients, has evidenced that no con-
gruence of any of the independent variables considered for all the
chosen histology indexes is present, neither in the pooled nor in
the separate HF and HHF data implementation runs. This finding
is not surprising and underlies the limitations of this approach
for pathophysiologic investigations when a reduced number of
data is provided to the statistical tool. Despite such limitation,
a restricted number of variables (two lipoproteins, one cytokine
and five proteins) is finally suggested as robustly associated to
both IT and LA morphologic indexes of atherogenesis outcome
when HF and HHF cases are pooled. Separate analysis of the two
groups does not lead to a robust selection of any variable under
the criteria adopted, possibly because of the further reduction of
data available for the model.

BIOLOGICAL RELEVANCE OF MODEL RESULTS
The most robust association between dependent (histology
indexes of atherosclerotic burden) and independent (circula-
tory and local factors) variables has been found when con-
sidering HF and HHF cases as a single group. This finding
may be the consequence of model limitations (low number
of early atherogenesis HF cases) although common mecha-
nisms of initiation and of early plaque growth can also be
hypothesized.

Circulatory associated variables are LDL, oxLDL, and TNFα

and artery-specific variables are CATA, CATD, S100-A10, BGH3,
and FABPH. It must be emphasized that, at variance with con-
ventional statistical tools, the BMA mathematical model accounts
for all the possible associations and blood-tissue factor interre-
lations in selecting those relevant for histologically determined
atherogenesis outcome.

BMA selection of circulatory variables supports the current
view that atherogenesis in a high cholesterol diet experimen-
tal model is related to systemic proinflammatory cytokines and
adhesion molecules under a LDL-rich blood environment. The
impact of inflammation-immunity state on pathology outcome
has been demonstrated by several previous experimental and
clinical studies, both as a strong proatherogenic determinant
of plaque initiation as well as of its progression and evolution
(Lamon and Hajjar, 2008; Merched et al., 2008).

By the mathematical model, identified local artery-specific
factors, relevantly associated to lesion initiation and growth,
are those mainly involved in macrophage/phagocytosis function
and immunity-inflammatory pathways (CATA, CATD, S100-A10,
FABPH, BGH3) (Haidar et al., 2006; Nacu et al., 2008; O’Connell
et al., 2010; Lee et al., 2013). These proteins may be viewed as
mediators and possible markers of a local inflammation scenario
with pro- and anti-inflammatory elements playing a role in both
initiation and early growth of high cholesterol diet-induced coro-
nary atherosclerotic lesions. Among those, negative association is
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evidenced only for FABPH, in contrast with current knowledge
on the role of this protein in atherogenesis (Lee et al., 2013).

CONCLUDING REMARKS
An integrative systems approach is proposed to study the asso-
ciation between circulatory markers and omics data to coronary
atherosclerosis severity. BMA variable selection was chosen as
a method to identify relevant factors associated to atheroscle-
rosis. Specifically, TNFα was identified as an associated plasma
marker, oxLDL and HDL were confirmed as relevant lipopro-
teins, macrophage related antioxidant Catalse enzyme, lysosome
associated Cathepsin D, S100-A10 and Transforming growth
factor-beta-induced protein ig-h3 were selected as associated to
atherogenesis outcome.

The proposed approach has been shown to be feasible from a
computational standpoint and capable of helping in understand-
ing the association of multilevel factors in atherosclerotic plaque
initiation with early growth.

The results of this study suggest a relevant conclusion: in
a high-cholesterol diet-induced model of coronary artery dis-
ease, systemic inflammation impacts on atherogenesis outcome
and it is specifically reflected by macrophage/phagocytosis-related
artery-specific protein expression. Further studies integrating
genomics, epigenomics and transcriptomics are needed for a bet-
ter assessment of causative mechanisms and sequence of events in
the early phase of atherogenesis in coronary artery disease.
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Pandemics caused by novel emerging or re-emerging infectious diseases could lead to
high mortality and morbidity world-wide when left uncontrolled. In this perspective, we
evaluate the possibility of integration of global omics-data in order to timely prepare for
pandemics. Such an approach requires two major innovations. First, data that is obtained
should be shared with the global community instantly. The strength of rapid integration of
simple signals is exemplified by Google’sTM FluTrend, which could predict the incidence of
influenza-like illness based on online search engine queries. Second, omics technologies
need to be fast and high-throughput. We postulate that analysis of the exhaled breath
would be a simple, rapid and non-invasive alternative. Breath contains hundreds of volatile
organic compounds that are altered by infection and inflammation.The molecular fingerprint
of breath (breathprint) can be obtained using an electronic nose, which relies on sensor
technology. These breathprints can be stored in an online database (a “breathcloud”) and
coupled to clinical data. Comparison of the breathprint of a suspected subject to the
breathcloud allows for a rapid decision on the presence or absence of a pathogen.

Keywords: pandemic, exhaled breath, systems biology, diagnosis, metabolomics, metabolite profiling

RATIONALE
Respiratory tract infections are the primary cause of death by
communicable diseases (Lopez et al., 2006). The global burden
is estimated to be around 3.7 million deaths yearly. Novel emerg-
ing or re-emerging infectious diseases could increase the number
of victims substantially, as exemplified by the approximately
50 million deaths in the Spanish influenza pandemic in 1918–
1919 (Taubenberger and Morens, 2006). Subsequent influenza
pandemics and the emergence of novel animal-origin influenza
(H5N1, H7N9) and coronaviruses (SARS-CoV, MERS-CoV) that
cause severe infections in humans illustrate a continuous and
ongoing threat of new pandemics. Intensive farming and chang-
ing climate enhance the likelihood of (zoonotic) transmission of
animal-origin pathogens to humans and subsequent evolution
of such pathogens to efficient infection of – and transmission
between humans. Globalization, migrations and intensive tourism
further increase the chance of rapid spread of such agents (Jones
et al., 2008).

Since infectious disease outbreaks typically emerge unexpect-
edly and can advance swiftly, rapid detection of (re)-emerging
pathogens is of utmost importance. Rapid detection allows for
optimal preparation on the level of individuals (e.g., early recogni-
tion, quarantine and swift start of adequate treatment of individual
patients), on the level of populations (e.g., fast vaccination and
other preventive measures), and on the level of organizations
(e.g., timely preparation and education of hospital personnel,
adequate distribution of therapeutics and medical equipment,
and preparation of research infrastructures), thereby hopefully
limiting burden caused by each novel rapidly spreading disease.

The two most important challenges are timely recognition of
infected individuals and sufficient and timely monitoring of global
spread of an outbreak. The first step to optimal preparation may
therefore be earlier recognition of infected individuals and global
availability of data on spread of outbreaks. In this perspective, we
describe a novel vision of how pandemics could be monitored in
the future, using global omics-data. We will use influenza as an
example as this has been an important causative infection in the
past and is likely to cause successive pandemics in the near future.

THE STATE OF THE ART FOR INFLUENZA DIAGNOSIS AND
TREATMENT
As conventional diagnostic methods such as viral culture and
detection of antigens or antibodies have limitations due to low
sensitivity and delay in time, the officious gold standard for
laboratory diagnosis is detection of viral nucleic acids by reverse-
transcriptase polymerase chain reaction (RT-PCR; George, 2012).
Using this highly sensitive technique, minute amounts of virus can
be detected and influenza virus subtypes can be differentiated in
less than a few hours. The obvious disadvantages are that skilled
personal is needed to perform the tests and that they may not be
available during evenings, nights and weekend. This potentially
causes delay in the diagnosis of an influenza infection in indi-
vidual patients (Writing Committee of the WHO Consultation
on Clinical Aspects of Pandemic (H1N1) 2009 Influenza et al.,
2010).

Especially in case of severe illness, any delay is unwanted as
it could hamper timely and life-saving measures and treatment
(Writing Committee of the WHO Consultation on Clinical Aspects
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of Pandemic (H1N1) 2009 Influenza et al., 2010; Ryoo et al., 2013).
Of course, one could decide to quarantine and treat every critically
ill patient who presents with influenza-like symptoms empiri-
cally (Writing Committee of the WHO Consultation on Clinical
Aspects of Pandemic (H1N1) 2009 Influenza et al., 2010). Potential
side-effects of treatment and high costs associated with quaran-
tine, however, are arguments against such “unselected” treatment,
especially on a large scale.

In the scenario of a pandemic with new emerging or re-
emerging infections, every delay in adequate diagnosis halts
precautionary measures to protect the uninfected individuals.
These individuals could be vaccinated, if possible, which may
(partially) protect them against the virus when being carried
sufficiently ahead of time. Adequate vaccination may also limit
further spread of the virus under specific circumstances, as vacci-
nated individuals not only stay healthy but also will not become
contagious themselves. On the level of organization, timely detec-
tion allows for preparation and education of hospital personal
and distribution of therapeutics and equipment to the desired
location.

GLOBAL RECOGNITION OF FLU THROUGH INTEGRATION OF
SIGNALS
Equally important to the time to diagnostic test results is the
time to global availability of these data, especially if prepara-
tion at the population level and global organization for pandemia
prevention is a goal. A system that obliges clinicians to report
new cases of severe respiratory viral infections, called the public
health response, is available for the clinical suspicion of specific
pathogens but this requires a pro-active effort of doctors. Auto-
mated integration of test results through an online platform would
allow for real-time surveillance. This approach is nicely illustrated
by “Flu Trend” in GoogleTM (http://www.google.org/flutrends/).
Using online search engine query data such as “influenza compli-
cation” and “flu remedy,” GoogleTM is able to detect epidemics of
respiratory viruses (Ginsberg et al., 2009). This method could pre-
dict the incidence of influenza-like illness 1 week before the Center
of Disease Control (Ginsberg et al., 2009). However, as the input
data for this model are not specific for influenza infection, this tool
is helpful for influenza-like illness but probably not sufficient for
monitoring the spread of a specific strain of the influenza virus.
To capture this complexity, more specific viral signals should be
investigated.

SYSTEMS BIOLOGY AND “OMICS” TECHNOLOGIES
Search engine queries rely on the phenotypic presentation of
people with symptoms of influenza-like illnesses. Symptoms
are non-specific results of physiological, cellular and molecular
changes in the body that occur during viral infection. Systems
biology aims to integrate the signals from all these levels into an
understanding of the complete system (Josset et al., 2013). Fol-
lowing this philosophy, several “omics” technologies have been
developed to measure the molecular landscape in an integrative
fashion within one domain. “Genomics” can be used to study
genetic risk factors for disease susceptibility of the host (Key-
nan et al., 2013) and for understanding of the pathogenicity of
the pathogen in this context (Kash, 2009). Analysis of mRNA

using “transcriptomics” potentially allows for simultaneous mea-
surement of the expression of 10s of 1000s genes. Transcription
research allows for rapid testing (e.g., in the order of hours) and
provides more information on functionality than genomics alone.
However, proteins are ultimately responsible for the function of
cells. “Proteomics” has therefore the potential to uncover impor-
tant interactions between the virus and the host. Studies show
that influenza induces rapid changes in the host transcriptome
and proteome (Liu et al., 2012; Pommerenke et al., 2012), as soon
as 1 h after infection (Cheung et al., 2012). These very early tem-
poral changes after infection are also observed at the metabolite
level (Lin et al., 2012). “Metabolomics” is “the global assessment of
endogenous metabolites within a biologic system and represents a
snapshot-reading of gene function, enzyme activity and the phys-
iological landscape” (Serkova et al., 2011). Treatment of influenza
induces many metabolic changes that can be traced back to specific
pathways (Lu et al., 2012).

“OMICS” TECHNOLOGIES FOR GLOBAL INFLUENZA
SURVEILLANCE
The systems biology approach has the potential to increase under-
standing of the spread of a pandemic and the adaptations that
viruses undergo meanwhile, as exemplified recently in outstand-
ing research on the influenza virus reservoir in birds (Huang et al.,
2013). The major problem with these technologies for monitoring
is that they are very time-consuming and expensive, thus con-
clusions can only be drawn after the pandemic has ended, which
is obviously too late. As such, they may only be sufficient for
research on the pathogenesis of a pathogen responsible for the
pandemic of interest. However, the unbiased approaches of sys-
tems biology can be used for unsupervised previsions about disease
spreading if this information could be obtained rapidly and at the
bedside.

FOCUS ON EXHALED BREATH
Exhaled breath of infected individuals contains aerosols filled with
influenza viruses, mostly present in coarse particles (<5 μm;
Milton et al., 2013). This in fact is an important route for the
virus to spread. Breath also contains thousands of volatile organic
compounds (VOCs), metabolites in gas-phase produced by both
physiological and pathophysiological processes (Pauling et al.,
1971; Moser et al., 2005). Pulmonary infection, inflammation and
oxidative stress may alter the concentration of certain VOCs in
exhaled breath (Bos et al., 2013a,b). VOC-patterns identified by
smell have been used to diagnose disease and intoxication for
ages (e.g., scent of acetone in uncontrolled diabetes; Manolis,
1983). Thus, influenza diagnosis based on exhaled breath anal-
ysis could take two forms: detection of aerosols with viral RNA, or
an influenza-specific VOC-patterns.

So far, both these methods have relied on relatively time-
consuming methods, RT-PCR and gas-chromatography coupled
to mass-spectrometry, respectively. Rapid technological innova-
tion in sensors, however, allows for detection of these signals
using re-usable, rapid and easy nanosensor arrays. For example,
a silicon nano-wire sensor device would allow influenza detec-
tion in half the time of RT-PCR in the clinical setting (Shen
et al., 2012). Devices using sensor-based detection of VOCs are
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called “electronic noses,” following their apparent similarities
to olfaction (Röck et al., 2008). Electronic noses integratively
capture complex VOC mixtures using an array of different sen-
sors (Röck et al., 2008). Sensors have individual sensitivities
and specificities for multiple VOCs. The composite signal of all
sensors can be analyzed using pattern-recognition algorithms.
Electronic nose analysis of breath results in a unique finger-
prints of exhaled metabolites, called “breath-prints.” This allows
rapid identification, recognition and comparison of VOC mix-
tures. Thereby, these breath-prints can be used for diagnostic
and monitoring purposes, which do not require identifica-
tion of individual molecular constituents. Breath-prints have
found to be different in a wide range of respiratory diseases
(Hockstein et al., 2005; Machado et al., 2005; Fens et al., 2009,
2010).

MONITORING OF MALODOR USING AN ELECTRONIC NOSE
Electronic nose technology is not sufficiently mature for
widespread application in clinical practice. However, we can look
at other applications to glance at the possibilities for global mon-
itoring using this technology. In the port of Rotterdam, the
Netherlands, with 10 km × 10 km one of the largest ports in
the world, odor nuisance is a major problem. 30 metal oxide
sensor based electronic noses were installed throughout the por-
tal area, to monitor odor emissions in order to timely prevent
nuisance (Bootsma and Milan, 2010; Milan et al., 2012). After a
training period in which sensors were learned to recognize “mal-
odor,” the electronic noses were able to recognize more than 90%
of the reported odor complaints in advance. Based on compar-
ison between fingerprints of the recognized odor and an online
database of previous events (an “odor-cloud,” in line with the pop-
ular expression for an online virtual server application) the most
probable chemical characteristics of the scent can be estimated
(Apostulou, 2012). Combined with the temporal findings in differ-
ent sensors and the direction and speed of the wind, the most prob-
able source of pollution can be identified (Figure 1). This approach
has allowed for prevention of the development of odor nuisance
and environmental pollution by refineries, but also passing cargo
ships.

FIGURE 1 | Odor signatures in the harbor of Rotterdam. The odor
signature disseminates in the direction of the wind leading to increased
complaints of inhabitants (telephone symbols on the figure), with
permission of Simon Bootsma.

MONITORING OF EXHALED BREATH USING ELECTRONIC
NOSES
The parallels between monitoring of the spread of malodor in
industrialized areas and of viral infections are striking. In both
situations, the timing of the event is unknown, which requires
continuous surveillance, and source identification is necessary
for early intervention. In the case of exhaled breath analysis,
the source cannot be identified with the direction of the wind,
but by movement of hosts or patient populations. Therefore,
we postulate that exhaled breath tests can best be positioned in
places where large groups of people assemble for traveling. One
could think of airports, train stations or border control. Here,
a very sensitive test may identify infected individuals who are
to contribute to the global spread of the pathogen. Importantly,
the technique should be high-throughput and the result should
be available instantaneously. Thus, in line with environmental
surveillance, exhaled breath analysis of patients would allow for
the construction of an online database with previously observed
breath-prints (a “breath-cloud”; Figure 2). Linked with the clin-
ical characteristics of these patients, an exhaled breath pattern
for influenza infection can be identified and subsequently used
for characterization of new patients. When the clinical informa-
tion of these patients is known, the breath-cloud can be updated
and identification can be improved, allowing for repeated, cyclic
improvement of the diagnostic algorithm. There are important
differences in the type and concentration of VOCs in environ-
mental and breath analysis. In the environment, the molecules
of interest are mostly present in parts-per-million concentra-
tion, in contrast to 10s to 100s parts-per-billion in breath. This
means that sensors for breath monitoring need to be more sen-
sitive. The VOCs of interest are mostly sulfur-containing and
cyclic compounds in studies on maladour but breath research
is not limited to those. Therefore it is anticipated that the
sensor array ought to be larger and more versatile in breath
analysis.

REQUIRED STEPS FOR INTEGRATING THE METHODOLOGY
Several steps are needed to accomplish the above-suggested
approach:

• The VOCs that can be used for early diagnosis of a viral infec-
tion need to be identified. A very sensitive diagnosis is a first
requirement for global screening as the goal is to isolate a small
potion of the population while maintaining a very high negative
predictive value.

• An appropriate array of sensors needs to be assembled. These
arrays need to contain several sensors that are designed to
react selectively with the previously identified VOCs and a wide
variety of general, semi-selective (cross-reactive) sensors (Kon-
valina and Haick, 2013). The former are used for specific iden-
tification of a viral infection but are prone to changes in virus
induced exhaled breath profile that may occur over time, due
to viral mutations or phenotypic changes. The latter allows for
plasticity of the diagnostic algorithm by reacting with unselected
VOCs.

• An online centralized database, were to breath-prints are
uploaded, instantly should be created. Thus, the electronic
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FIGURE 2 | Future perspective of integration of global omics signals.

There is a centralized database containing molecular fingerprints of past
cases, the “breath-cloud” (middle of the picture). Green fingerprints
represent suspected cases that were found to be most similar to the

non-infected profile. Red fingerprints represent cases that were most
similar to the infected profile. There is a new suspected case in Italy,
the molecular signature is now compared to the profiles in the
breath-cloud.

noses should be connected to the Internet, which allows for
synchronization with the breath-cloud.

• The electronic noses should be readily available in the areas
where the first signals of an outbreak are visible.

OTHER TECHNOLOGIES
Exhaled breath analysis by electronic nose may not be the only
technology that is continuously available and provides a direct
test result. Any technology that gives a rapid result can be used
for the same purpose. All signals can be used complementary
by uploading them together to the same online database. Here a
pattern recognition algorithm can treat these signals similar and
will select only the most discriminative, updating prior beliefs
with every additional information that becomes available. The
development of bedside PCR machines is exciting in this respect
as these could allow for very accurate and rapid detection of viral
RNA (Centers for Disease Control and Prevention, 2013). Further
miniaturization and optimization toward a “lab on a chip” will
further improve the time to result and bedside use (Sun et al.,
2011; Song et al., 2012).

CONCLUSION
To conclude, there is a need for rapid diagnosis of specific infec-
tions (including but not restricted to outbreaks of influenza),
especially during a pandemic. High-throughput chemical profil-
ing of patient material could provide a fast and objective means
to diagnose patients. At this moment, portable electronic nose

technology is a good example of how these infections can be cap-
tured rapidly at the bedside and can be shared with the world
in the form of a “breath-cloud.” In principle, any technology that
provides test results rapidly could attribute to this online database.
Pattern recognition software can subsequently be used to diagnose
new suspected cases based on previous profiles from patients all
over the world.
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Several studies have demonstrated the important role of non-coding RNAs as regulators of
posttranscriptional processes, including stem cells self-renewal and neural differentiation.
Human embryonic stem cells (hESCs) and induced pluripotent stem cells (ihPSCs) show
enormous potential in regenerative medicine due to their capacity to differentiate to virtually
any type of cells of human body. Deciphering the role of non-coding RNAs in pluripotency,
self-renewal and neural differentiation will reveal new molecular mechanisms involved in
induction and maintenances of pluripotent state as well as triggering these cells toward
clinically relevant cells for transplantation. In this brief review we will summarize recently
published studies which reveal the role of non-coding RNAs in pluripotency and neural
differentiation of hESCs and ihPSC.

Keywords: pluripotent stem cells, pluripotency, non-coding RNA, differentiation, human embryonic stem cells

INTRODUCTION
Personalized medicine is expected to benefit from the combina-
tion of genomic information with the high throughput studies
including transcriptomic, proteomic and metabolomic profil-
ing. Measuring gene expression in individual cells is crucial for
understanding the gene regulatory network. In order to deci-
pher the genetic regulatory network in cells significant efforts
have been made over the years to develop technology plat-
forms for transcriptome characterization such as DNA microarray
hybridization, serial analysis of gene expression (SAGE; Velculescu
et al., 1995) or next-generation RNA sequencing often called
RNA-seq (Mortazavi et al., 2008).

The latest techniques which involve bioinformatic expertise
made a revolution in transcriptome analysis enabling not only
the identification of cDNA and gene isoforms but discovery of
long non-coding RNA (large intergenic non-coding RNA, lin-
cRNA; >200 nucleotides in length) and short non-coding RNA
(sncRNA, <200 nucleotides in length). Non-coding RNAs include
transfer RNA (tRNA), ribosomal RNA (rRNA), small nuclear and
small nucleolar RNA, microRNA (miRNA), and small interfer-
ing RNA (siRNA), which do not encode any proteins. Several
of these non-coding RNA species, like miRNA or SiRNAs, are
of particular interest to transcriptomic and particularly in stem
cell research due to their role in post-transcriptional regulation
of numerous biological processes (Morozova and Marra, 2008;
Roukos, 2010). During the last several years many studies were
published in order to determine the function of these non-
coding transcripts including novel miRNA (Hafner et al., 2008)
that exhibit different cell-type and tissue specificity (Guttman

and Rinn, 2012). Although the functions of the majority of
newly discovered non-coding RNAs are still unknown, some
were found to play important roles in the regulation of stem
cells. Recent studies concentrate on miRNAs (Wilson et al., 2009;
Kim et al., 2011; Lipchina et al., 2011). In the context of stem
cell biology, of particular interest is the role of these RNAs
in expression of renewal genes in human embryonic stem cells
(hESCs) or in regulation of induced pluripotency (Li et al.,
2011). In this review, we focus on recent discoveries of non-
coding RNA roles in human pluripotent stem cell biology and
differentiation.

HUMAN EMBRYONIC STEM CELLS AND INDUCED
PLURIPOTENT STEM CELLS
Human pluripotent stem cells encompassing hESCs and induced
pluripotent stem cells (ihPSCs) show great potential for regen-
erative biology providing the unique human in vitro plat-
forms for studying diseases, basic cell biology and develop
ment.

Human embryonic stem cells can be derived from inner mass
from human blastocyst maintaining unique capacity for unlim-
ited self-renewal through long-term maintenance using laboratory
culture conditions (Thomson et al., 1998). Since the generation of
the first hESCs line in 1998 (Thomson et al., 1998), research in this
area has progressed at a rapid pace, developing efficient proto-
cols globally for differentiation of these cells to clinically relevant
cell types (Erceg et al., 2008, 2009, 2010, 2012). hESCs represent
a useful model for studying early human embryology and cell
differentiation and have limited capacity for disease modeling in
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human cells (Biancotti et al., 2010). hESCs bear the advantage
over any other stem cells in that they are pluripotent, provid-
ing an unlimited starting cell source for differentiation to any
type of tissue of the human body. The perspective of clinical
use of these cells and their derivates is huge. The hESCs-based
therapy is increasingly recognized as a promising strategy for
degenerative disorders entering already in clinic to treat spinal cord
injury or recently published encouraging results in human clinical
trial investigating their use in age-related macular degeneration
(Schwartz et al., 2012). The main disadvantage of use of hESCs in
regenerative medicine is the fact that derivation of hESCs requires
the destruction of human embryos which generates the ethical
concerns.

Besides the abundance and efficient differentiation without
traces of pluripotency, the main requisite for personalized regen-
erative medicine is to derive disease cells that genetically match
the patient. Although the technique of somatic cell nuclear trans-
fer (SCNT) and successive derivation of hESCs (Tachibana et al.,
2013) could be a promising approach in the future to create patient
specific cells, major technical and ethical obstacles related with this
technique are present.

The discovery of human ihPSCs originally generated by ectopic
expression of four transcription factors Oct4, Sox2, Klf4, and cMyc
(Takahashi et al., 2007) in human fibroblast cells presents a novel
tool to obtain disease cells. This Nobel Prize winner technology was
substantially improved by introducing non-integrative transgene
expression (Jin et al., 2012) and targeting different somatic tis-
sues. Patient-specific ihPSCs derived from somatic cells are devoid
of immnunological and ethical concerns, allow the generation of
disease-specific stem cells providing a platform to study molecular
mechanisms of genetic diseases. The ihPSCs show morphological,
transcriptional, epigenetic, and phenotypic similarity to hESCs
and can differentiate toward any cell of human body. Until now a
number of studies has shown that ihPSCs can be successively gen-
erated from patients carrying different diseases and be a faithful
platform for disease modeling in vitro (Gunaseeli et al., 2010; Har-
gus et al., 2010; Jin et al., 2011, 2012; Pedrosa et al., 2011; Kumano
et al., 2012; Oh et al., 2012; Sun et al., 2012; Cocks et al., 2013;
Gross et al., 2013; Tubsuwan et al., 2013).

Pluripotent stem cells possess two major characteristics: self-
renewal and differentiation into other cell types. The investi-
gators put the major effort in development of new protocols
and moving these cells to clinics but it is crucial to under-
stand these two main characteristics in order to enter deeply
in basic biology of these cells. For example it is still to be
elucidated reprogramming mechanisms in target cells and why
only small population of cells becomes fully reprogrammed. In
order to decipher molecular mechanisms of reprogramming the
role of RNA and related global gene expression changes is of
particular interest in order to increase reproducibility and effi-
ciency of reprogramming processes. Reproducible generation of
specific cellular type without traces of ihPSCs is one of the
crucial issues in order to prevent teratoma generation in host.
Improvements of the differentiation protocols are required as a
basis for further cost-efficient industrial processes of large-scale
for future application in clinics. To reach this also extensive
characterization of differentiated cell has to be performed and

subsequently compared with undifferentiated counterparts. Com-
parative transcriptome analyses using microarray also indicate
that hESCs and hiPSCs have similar, highly alike gene expres-
sion patterns. Gene expression pattern of ihPSCs is separate
from the originating somatic cells with possibility of retain-
ing some transcriptional differences or an epigenetic memory
of the starting cells (Plath and Lowry, 2011). Transcriptome
characterization would undoubtedly provide insights into the
genetic regulatory networks involved in maintaining pluripotency
and directing differentiation. In order to define molecularly the
various phases of the reprogramming process, as well as full
pluripotent stem cells state global gene expression and proteomic
patterns of clonal cell populations or enriched populations need
to be performed in different stages after inicial reprogramming
induction.

PLURIPOTENCY
Generally, a definition of pluripotency is related to ability of cell to
give rise three germ layers: endoderm, ectoderm, and mesoderm
and their derivates. This ability has only a small number of cells
such as hESCs and ihPSCs and their maintenance involves core
transcription factors: Oct4, Sox2, and Nanog (Boyer et al., 2005;
Kim et al., 2009). A spectrum of different miRNA was detected
in embryonic stem cell as pluripotency-specific markers which
expression was downregulated during the induction of differen-
tiation (Table 1; Wilson et al., 2009; Lee et al., 2010). A family
of miRNA that includes AAGUGC seed sequence is of particular
interest in pluripotent stem cells for its high expression in hESCs
and ihPSC. The most abundant miRNA transcript in hESCs is mir-
302 which encodes for miR-302a/b/c/d and mir-367 (Suh et al.,
2004) and is under the control of Oct4, Sox2, and Nanog. This
miRNA is involved in maintenance of pluripotency, self-renewal,
regulation of cell cycle, and fate specification during differentiation
of hESCs (Suh et al., 2004; Landgraf et al., 2007; Bar et al., 2008;
Lipchina et al., 2011) probably inhibiting neural differentiation
by modulation of BMP signaling targeting its inhibitors: TOB2,
DAZAP2, and SLAIN1 (Lipchina et al., 2011). Rosa and Brivan-
lou (2011) have shown that Oct4 and miR-302 inhibit NR2F2,
which in turn inhibits Oct4. The expression of gene NR2F2 is
increased during differentiation when the expression of OCT4
gene and miR-302 declines (Rosa and Brivanlou, 2011). This study
showed important biological function of mir-302 and NR2F2 in
human early development and cell fate determination. It seems
that other miRNAs such as miR-145 has the opposite role in main-
tenance of pluripotency (Xu et al., 2009). The expression of this
miRNA is low in undifferentiated hESCs but its increased expres-
sion is related to inhibition of hESCs self-renewal and induction
of lineage-restricted differentiation (Xu et al., 2009).

Elucidation of the precise molecular and cellular mechanisms
which convert human fibroblasts or other somatic cells to ihP-
SCs was the main challenge among the investigators during the
last years. Reprogramming somatic cells into pluripotent cellu-
lar identity requires tightly regulated and coordinated changes
in expression of many genes. Understanding the genetic net-
work involved in cellular reprogramming is crucial to elucidate
pluripotency in order to increase the reprogramming efficiency
and cell renewal. These mechanisms will reveal why only small
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Table 1 | Different roles of non-coding RNA in pluripotency and neural differentiation.

Type of cells Processes involved Non-coding RNA Reference

hESC Pluripotency, self-renewal, cell cycle

and fate specification

miR-302 Suh et al. (2004), Bar et al.

(2008), Lipchina et al. (2011)

hESC Inhibition of pluripotency miR-145 Xu et al. (2009)

iPSC Pluripotency miR-17, miR-106b, and miR-106a Li et al. (2011)

Fibroblasts to iPSC Reprogramming miR-302, miR-372 Anokye-Danso et al. (2011, 2012),

Subramanyam et al. (2011)

Fibroblasts to iPSC Reprogramming Combination of miR-302, miR-200c,

and miR-369

Miyoshi et al. (2011)

iPSC Reprogramming LincRNAs Loewer et al. (2010)

hESC Neural differentiation LincRNAs Ng et al. (2012)

iPS-derived neural progenitors Neural differentiation LincRNAs Lin et al. (2011)

hESC Differentiation to neuroectoderm miR-200, miR-96 Du et al. (2013)

hESC-derived neural stem cells Suppression of selfrenewal, neural

differentiation

miR-124, miR-125b and miR-9/9 Roese-Koerner et al. (2013)

hESC Neural differentiation miR7 Liu et al. (2012)

hESC Neural differentiation miR125 Boissart et al. (2012)

hESC, human embryonic stem cells; iPSC, induced pluripotent stem cells.

population of somatic cells undergo full reprogramming. Dif-
ferent gene expression patterns and post-transcriptional events,
including mRNA decay, between pluripotent and differentiated
cells could reveal the reprogramming mechanisms of the fibrob-
lasts into ihPSCs. The study of Buganim et al. (2012) showed that
reprogramming involves stochastic gene expression in early phase
followed by a late hierarchical phase with activation of SOX2 gene,
which then triggers a stepwise gene activation that allows the
cells to enter the pluripotent state. SOX2 represents a group of
pluripotency initiating factors (PIFs) indispensable for endoge-
nous activation of OCT4, SOX2, and NANOG (Boyer et al., 2005)
which further maintain the ihPSCs state. Some of these genes
maintain pluripotency by blocking the gene machinery involved
in differentiation.

In the study of Li et al. (2011) was observed that three miRNA
clusters: miR-17, miR-106b, and miR-106a were significantly
upregulated that interfere with iRNA machinery directly con-
nected with important reprogramming pathways: TGF-β signaling
and cell cycle. These results suggest that transcription factors that
modulate miRNA decay could have crucial role in reprogramming
differentiated cells or in maintaining pluripotency, but future stud-
ies have to be performed to confirm whether these factors can be
efficient target to induce or maintain the pluripotency or trigger
the differentiation.

Several miRNA, especially miR-302 and miR-372 have been
directly involved in enhancing of HFF reprogramming (Sub-
ramanyam et al., 2011) revealing the possibility to directly tar-
get these miRNAs to reprogram the HFF without Yamanaka

factors. The recent study of Morrisey and colleague (Anokye-
Danso et al., 2011, 2012), confirmed that reprogramming can
be achieved by using miRNAs without protein-coding fac-
tors. Another study confirmed that fully pluripotent stem
cells can be obtained by introducing other miRNA such as
combination of miR-302, miR-200c, and miR-369 (Miyoshi
et al., 2011). Different studies speculated about the mechanisms
and signaling pathways by which these miRNAs exert their
reprogramming function such as regulation of different genes
involved in cell cycle, epithelial-mesenchymal transition, epi-
genetic regulation and vesicular transport (Subramanyam et al.,
2011).

On the other hand, the abundance of lincRNAs in mammalian
transcriptome reveals their role as key regulators of biological pro-
cesses. These RNA transcripts have little or no protein coding
potential but some studies point out their possible participation
in pluripotency, differentiation and self-renewal (Guttman et al.,
2009, 2011; Sheik Mohamed et al., 2010; Guttman and Rinn, 2012).
Several studies have recently discovered a novel class of lincRNAs
possible involved in reprogramming processes, pluripotency and
lineage commitment (Boyer et al., 2006; Lee et al., 2006; Loewer
et al., 2010).

Some of these lincRNAs act directly as regulators of reprogram-
ming (RoR) called lincRNA-RoR (Loewer et al., 2010). Overex-
pression of these RNAs significantly enhances the reprogramming
efficiency and their downregulation decreases the generation of
ihPSC colonies possibly by mechanism of negative regulation of
p53 (Zhang et al., 2013).
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These studies indicate that non-coding RNAs, especially miR-
NAs have the potential to be used as small-molecule therapeutics
to promote more efficient reprogramming or to induce the
pluripotent stem cells toward other cell lineages.

DIFFERENTIATION
In the context of regenerative medicine it is crucial to develop
protocols for efficient and reproducible differentiation of pluripo-
tent stem cells toward homogeneous population of desired cells
without traces of pluripotency. Since the generation of the first
hESCs line (Thomson et al., 1998) and derivation of ihPSC (Taka-
hashi et al., 2007), research in this area has progressed at a rapid
pace, developing efficient protocols globally for differentiation
of these cells to clinically relevant cell types. As already men-
tioned, hESCs and ihPSCs bear the advantage over any other
stem cells in that they are pluripotent, providing an unlim-
ited starting cell source for differentiation to any type of tissue
of the human body. Understanding the regulatory mechanisms
which orchestrate the hESCs and ihPSCs during differentiation
is of enormous importance because coordinated changes in gene
expression during the differentiation of hESC and ihPSC are cru-
cial for lineage specification. Beside the gene expression changes
in coding RNA it is a clear to investigate whether non-coding
RNA play important role in early differentiation of pluripotent
stem cells. Although recent studies have shown that ihPSCs lines
exert better differentiation capacity when compared with hESCs
(Hu et al., 2010) direct comparison of differentiated cells versus
undifferentiated counterparts is crucial in order to find signaling
mechanisms involved in differentiation. In the recent study Gifford
et al. (2013) performed comprehensive transcriptional profil-
ing of cell populations generated by directed differentiation of
hESCs.

To reveal whether lincRNAs play important role in hESCs
and neural differentiation Stanton and colleague (Ng et al., 2012),
employed a highly efficient protocol for neural differentiation of
hESCs based on stromal-derived induction activity (SDIA) using
co-culture of hESCs with PA6 mouse stromal cells. This procedure,
used by many groups, was designed to generate homogeneous
population of neural progenitor cells and further dopaminergic
neurons (Kawasaki et al., 2000, 2002; Zeng et al., 2004). About 36
lincRNAs were identified which were associated with pluripotency
making the complex with SOX2, and SUZ12, well known genes
involved in pluripotency. Association of newly discovered lincR-
NAs with MIR-125B and LET7A reveal important role of these
lincRNA in neurogenesis and neural differentiation. These results
demonstrate that lincRNAs represents indispensable components
in regulation of biological processes such as neural differentiation
and pluripotency.

In order to clarify the contribution of lincRNA in developmen-
tal and neurological disorders, Lin et al. (2011) were performed
Genome-wide analysis using next-generation sequencing (RNA-
Seq) of neural progenitors derived from ihPSCs. They found
that early differentiated cells underwent dramatic quantitative
changes in gene expression especially lincRNAs. The authors
associated many lincRNAs with HOX gene (HOXA and HOXB),
genes involved in early patterning of anterior posterior axis dur-
ing the neural development. These results coincided with results

obtained with neural progenitors derived from hESCs as an addi-
tional prove that these two sources of pluripotent stem cells has
similar neuronal differentiation potential (Wu et al., 2010). The
author’s general aim in this article is to associate the obtained
results with some neuropsychiatric disorders in order to establish
faithful lincRNA markers. The RNA-Seq findings highlighted
possible non-coding RNA variants as feasible candidates which
mutations are involved in many neuropsychiatric disorders mostly
schizophrenia, bipolar disorders and autism spectrum disorders.
These transcription factors and chromatin modifiers candidate
are: POU3F2, MYTIL, RFX4, ZNF804A, SMARCA2, and NPAS3.
These changes in the transcriptome profiles and the role of
lincRNA during early human neural differentiation using pluripo-
tent stem cells reveals important use of ihPSC technology in
studying human disease as a unique human assay of human neuro-
genesis. Integration the novel transcripts in more global systems of
analysis is must in order to elucidate their abnormally regulation
in a subgroup of patients.

Comparing the miRNA profiles of neuroectodermal cells to
epidermal cells both derived from hESC, Zhang and colleague
(Du et al., 2013) identified the downreglation of two miRNA fam-
ilies in neuroectodermal differentiated cells, miR-200 and miR-96.
Investigating the function of these miRNA it was discovered that
miR-200 regulates the level of zinc-finger E-box-binding home-
obox (ZEB), transcription factor family involved in inhibition of
expression of BMP and its downstream genes, thus promoting
neural differentiation (Postigo et al., 2003), while miR-96 regulates
PAX6 (paired box 6), well known transcription factor character-
istic for neuroectoderm. The authors also find that upregulation
of these miRNA suppresses differentiation of hESCs toward neu-
ral lineage (Du et al., 2013). Recent article examined the role of
the neural-associated miR-124, miR-125b, and miR-9/9 in human
neural stem cells derived from human pluripotent stem cells
(Roese-Koerner et al., 2013) and showed that overexpression of
these miRNA suppress self-renewal and induce further differenti-
ation into neurons. Providing additional evidence of involvement
of other miRNA such as miR7 (Liu et al., 2012) and miR125 (Bois-
sart et al., 2012) in neural differentiation of hESCs, these studies
showed that neural stem cells derived from pluripotent stem cells
could be a faithful model for investigation of role of miRNA in
modulating of stemness and neuronal differentiation capacity of
these cells.

CONCLUSION
Studying of non-coding RNA in modeling exhaustive networks
of gene interactions as an ultimate application of systems biol-
ogy in systems biomedicine, could substantially contribute to
understanding and modulation of developmental and differen-
tiation processes in humans. Although the expression of newly
correlated non-coding RNA is strongly associated to pluripo-
tency and neural differentiation their possible role in differ-
ent neurodegenerative disorders is still to be elucidated. These
studies undoubtedly contribute to better understanding of the
biological processes during pluripotency and neural differen-
tiation and reveal the important interplay between multiple
pluripotency transcription factors and non-coding RNAs espe-
cially miRNAs. However, the understanding of the impact of

Frontiers in Genetics | Systems Biology May 2014 | Volume 5 | Article 132 | 36

http://www.frontiersin.org/Systems_Biology/
http://www.frontiersin.org/Systems_Biology/archive


Lukovic et al. Non-coding RNA in pluripotency and differentiation

miRNA-based regulation in human neural development is still
at its dawn. The future studies will confirm the potential of con-
trolling differentiation and pluripotency of human pluripotent
stem cells by modulating the expression of selected non-coding
RNAs and integrate them into models that reveal the global
behavior of the biological process in biomedicine and neu-
ral diseases in order to ultimately improve patients’ quality of
life.
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Neuropathic pain (NP) is caused by damage to the nervous system, resulting in
dysfunction and aberrant pain. The cellular functions (e.g., peripheral neuron spinal cord
innervation, neuronal excitability) associated with NP often develop over time and are
likely associated with gene expression changes. Gene expression studies on the cells
involved in NP (e.g., sensory dorsal root ganglion neurons) are publically available; the
mining of these studies may enable the identification of novel targets and the subsequent
development of therapies that are essential for improving quality of life for the millions of
individuals suffering with NP. Here we analyzed a publically available microarray dataset
(GSE30165) in order to identify new RNAs (e.g., messenger RNA (mRNA) isoforms
and non-coding RNAs) underlying NP. GSE30165 profiled gene expression in dorsal root
ganglion neurons (DRG) and in sciatic nerve (SN) after resection, a NP model. Gene
ontological analysis shows enrichment for sensory and neuronal processes. Protein
network analysis demonstrates DRG upregulated genes typical to an injury and NP
response. Of the top changing genes, 34 and 36% are associated with more than one
protein coding isoform in the DRG and SN, respectively. The majority of genes are receptor
and enzymes. We identified 15 long non-coding RNAs (lncRNAs) targeting these genes in
LNCipedia.org, an online comprehensive lncRNA database. These RNAs represent new
therapeutic targets for preventing NP development and this approach demonstrates the
feasibility of data reanalysis for their identification.

Keywords: gene expression, neuropathic pain, spinal cord injury, dorsal root ganglia, sciatic nerve, RNA

INTRODUCTION
The majority of patients with spinal cord injury (SCI) experi-
ence chronic pain, with a high percentage experiencing neuro-
pathic pain (NP) (Siddall et al., 1999). NP develops concurrently
with anatomical and physiological changes in the peripheral and
central nervous system (PNS and CNS). For example, periph-
eral neuron innervation into the spinal dorsal horn (Nakamura
and Myers, 2000) as well as both peripheral and central neuro-
transmitter expression and excitability change following injury
(Chaplan et al., 1997; Fukuoka et al., 1998; Alexander et al.,
2012). Identifying gene expression patterns in sensory neurons
(i.e., dorsal root ganglion, DRG neurons) under normal and NP
conditions is essential to understanding the genetic mechanisms
behind the development of NP. Importantly, as the cells involved
in NP are still alive, they are viable targets for small molecule or
gene therapy approaches aimed at restoring normal function.

RNAs that do not code for a protein, or non-coding RNAs
(ncRNAs; e.g., microRNAs: miRNAs and long ncRNAs: lncR-
NAs), are implicated in many biological and pathological pro-
cesses such as cancer development, progression, and metastasis
(Calin and Croce, 2006; Zhong et al., 2009; Gutschner and
Diederichs, 2012; Ziats and Rennert, 2013), and genetic variations
within ncRNA loci are increasingly associated with developmental

disorders and disease states (Pasmant et al., 2011; Richardson
et al., 2011; Zhang et al., 2012). Since RNA-regulated gene expres-
sion is increasingly involved in pathological conditions we wanted
to understand RNA expression and diversity in the context of
NP. Indeed evidence for the involvement of lnc and miRNAs
in the development of NP is emerging although in its infancy.
For example, Kcna2 antisense lncRNA is expressed in DRG neu-
rons and causes or reduces NP through its ability to regulate
the voltage-dependent potassium channel, Kcna2, impacting neu-
ronal excitability (Zhao et al., 2013). A recent study examined
miRNA expression along with gene expression in a sciatic nerve
(SN) ligation model of NP (von Schack et al., 2011). The authors
found 63 miRNAs changing expression; interestingly the major-
ity (59) of miRNAs were down-regulated in the ipsilateral DRG
one level above the injury (von Schack et al., 2011). It is likely that
additional ncRNAs contribute to NP development after SCI but
identification of these RNAs has remained challenging.

In addition to ncRNAs, messenger RNA (mRNA) isoforms
drive distinct biological functions (Hong et al., 2008) and may
underlie pathological conditions (Gerstin et al., 1998; Pertin
et al., 2005; Dina et al., 2008; Kanzaki et al., 2012). For example,
neuregulin-1 has three isoforms that undergo alternative expres-
sion regulation (Nrg1 I and II increase and Nrg1 III decreases)
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after spinal nerve ligation in the rat, changes associated with
mechanical sensitivity of the ipsilateral hind paw (Kanzaki et al.,
2012). Protein kinase C isoform delta is linked to L-type calcium
channel upregulation and may contribute to alcohol-induced
peripheral neuropathy (Gerstin et al., 1998; Dina et al., 2008).
These findings demonstrate that mRNA isoforms play an impor-
tant biological role but the paucity of evidence for mRNA iso-
forms in critical biological roles may in part be due to lack of their
complete identification.

Here we sought to identify additional mRNA isoforms and reg-
ulatory RNAs contributing to NP development. Multiple methods
are available for understanding gene expression (e.g., microar-
ray, RNA-seq) and many laboratories are applying these methods
to various pathologies such as SCI and NP. The majority of SCI
research is performed in Rattus norvegicus (rat) because the injury
response and lesion formation are similar to human (Sroga et al.,
2003). A search of the Gene Expression Omnibus (GEO) (Edgar
et al., 2002; Barrett et al., 2005) database using “drg pain” or
“drg NP” as terms produced over 200 results, with the majority
of studies in rat using microarrays. We examined several datasets
and chose GSE30165 because it examined global gene expression
changes after SN resection in both the DRG and SN. We identi-
fied the differentially expressed rat genes and then converted them
to their mouse homologs using a sequence based strategy, allow-
ing us to identify the associated mRNA isoforms and regulatory
RNAs. This strategy globally identifies possible new RNAs for tar-
geting and provides a roadmap for the re-evaluation of already
existing datasets.

MATERIALS AND METHODS
SCIATIC NERVE INJURY
This following procedural guideline was kindly provided by Dr.
Bin Yu, Jiangsu Key Laboratory of Neuroregeneration, Nantong
University, Nantong, China, the investigator who uploaded the
results to the NCBI GEO Database. Briefly, male Sprague-Dawley
rats (180–220 g), were anesthetized by an intraperitoneal injec-
tion of complex narcotics (85 mg/kg trichloroacetaldehyde mono-
hydrate, 42 mg/kg magnesium sulfate, 17 mg/kg sodium pento-
barbital), and the SN was exposed and lifted through an incision
on the lateral aspect of the mid-thigh of the left hind limb. A 1 cm
long segment of SN was then resected at the site just proximal
to the division of tibial and common peroneal nerves, and the
incision sites were then closed. To minimize discomfort and pos-
sible painful mechanical stimulation, the rats were housed in large
cages with sawdust bedding after surgery. L4-6 DRG tissues and
SN tissues (0.5 cm) were collected at different time points after
injury, respectively. All the experimental procedures involving
animals were conducted in accordance with Institutional Animal
Care guidelines and ethically approved by the Administration
Committee of Experimental Animals, Jiangsu Province, China.

GENE EXPRESSION ANALYSIS
Gene expression data and analysis was obtained from the NCBI
NIH GEO, dataset GSE30165. Sample preparation was described
in the dataset design description. Briefly, gene expression levels
from L4-6 DRG tissues and proximal SN tissues (0.5 cm) were
examined at 0 days, 1 day, 4 days, 7 days, and 14 days after SN

resection. This dataset consisted of three samples each for the
DRG and SN tissues, and gene expression data was available for
all samples at each of the 5 times points. GEO2R was used to
compare expression between sham and 1 day post-injury (dpi);
sham and 4 dpi; sham and 7 dpi; and finally sham and 14 dpi for
both the DRG and SN. GEO2R analyzes gene expression using
GEOquery and the Linear Models of Microarray Analysis R pack-
age (limma) (Edgar et al., 2002; Gentleman et al., 2004; Smyth,
2004, 2005; Barrett et al., 2005; Davis and Meltzer, 2007). First,
GEOquery formats the data into tables for R and then limma R
applies the Benjamini and Hochberg False Discovery Rate (FDR)
correction for multiple comparisons testing to determine the
adjusted p-value, p-value, moderate t-statistic, log fold change,
and the moderate F-statistic (Edgar et al., 2002; Barrett et al.,
2005; Gentleman et al., 2004; Smyth, 2004; Davis and Meltzer,
2007). We determined the top 250 genes that changed signifi-
cantly at each time point compared to baseline with an adjusted
p-value of <0.05 in order to identify the genes that changed over
the time-course following injury, and not to identify the most dif-
ferentially expressed genes across the experiment. We looked at
the top 250 differentially expressed genes in each comparison to
focus our results to only the genes that changed the most at each
time point. The final subset of genes from each comparison was
restricted to only those with a fold change in either direction that
was greater than 2 for the DRG and SN tissues separately. The final
list of genes consisted of all that had at least one time point that
showed a change with an adjusted p < 0.05 and a fold change of
2, resulting in the identification of 246 genes for the DRG dataset
and 549 for the SN dataset. The values at each time point were
normalized with respect to the average expression value over all
time points for each gene. Heatmaps were generated using the
bioinformatics toolbox in Matlab.

GENE ONTOLOGY ANALYSES
The final gene list after applying the cutoffs (adj. p < 0.05
and fold change of 2) was input into the DAVID Functional
Annotation interface and submitted as a gene list selecting species
Rattus norvegicus (Huang da et al., 2009a,b). Gene Ontology (GO)
charts were created using the following options: thresholds: count
2, EASE 0.1; Benjamini correction, Number of records = 1000.

RAT TO MOUSE CONVERSION
The microarray probe sequences for the differentially expressed
genes at different time points following nerve injury were
extracted for both DRG and proximal SN tissues from the GEO,
Agilent-014879 Whole Rat Genome Microarray 4x44K G4131F.
The extracted sequences were then aligned against mouse ref-
erence (Ensembl), Mus_musculus.GRCm38.74.cdna.all.fa (Flicek
et al., 2013, 2014) using BLAT (Kent, 2002), a fast spliced align-
ment program. BLAT was executed with blast8 as output and all
other parameters set at default values. The alignment was done
against mouse reference to identify the homologous sequences
between the two rodent species. The aligned rat sequences were
then annotated using mouse, Mus_musculus.GRCm38.74.gtf to
associate the rat genes from the microarray data against the cor-
responding mouse homologs based on the alignment results,
and then the gene biotypes were assigned based on the mouse
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annotation provided by Ensembl (Hubbard et al., 2002). Since
the rat annotations are not defined as thoroughly as the mouse
(Table 1), mouse annotation was chosen to classify the gene
biotypes that includes protein-coding and specific type of non-
coding.

NETWORK ANALYSES
Protein interactions (Figure 2)
A very popular tool named STRING (V. 9.1, http://string-db.

org/) was used for visualizing interactomes starting from iden-
tified differentially expressed entities (genes and transcripts) in
both species. In particular the confidence and evidence STRING
protein–protein interaction modes were applied.

In confidence view, stronger associations are represented by
thicker lines, while in evidence view; different line colors repre-
sent the types of evidence for specific associations: expression,
binding catalysis, and post-translational modification.

Expression interactions (Figure 3)
Mouse gene symbols returned from the rat to mouse con-
version were uploaded to Ingenuity® Systems (www.ingenuity.
com). Interactions were added using the Connect Tool. Molecules
involved in depolarization and nociception were identified using
the Overlay Tool. The RNAs with greater than 1 CDS and associ-
ated ncRNAs were added by hand.

RESULTS
IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES
We identified the top 250 IDs from the microarray dataset that
met our cutoffs for a significant expression change (adjusted
p < 0.05 and fold change >2; Figures 1A,B). There were 549
unique IDs corresponding to 366 rat genes with gene sym-
bols in the SN and 246 unique IDs corresponding to 158 rat
genes with gene symbols in the DRG (Figure 1C; Supplementary
Tables 1, 2). 25 of the top changing were found in both sam-
ples, 18 of which had associated gene symbols (Supplementary
Table 3). In the SN, a subset of genes decreased expression
(Group 1, Figure 1A; Supplementary Table 1), while the bulk
increased in expression (Group 2, Figure 1A; Supplementary
Table 1). In the DRG, the majority of genes increased in expres-
sion (Group2, Figure 1B; Supplementary Table 2). These data
indicate major gene expression changes in the SN and in the DRG
after injury.

GENE ONTOLOGY ANALYSIS
A GO term enrichment analysis (Huang da et al., 2009a,b) was
subsequently performed to gain a deeper understanding of these
genes. GO enrichment analysis assigns general descriptions based

on biological function, cellular component, and molecular func-
tion, to groups of genes. We isolated the up or down regulated
genes (SN: Group 1–3, Supplementary Table 1; DRG: Group
1 and 2, Supplementary Table 2) and performed GO analysis
using DAVID Bioinformatics Resource v6.7 (Huang da et al.,
2009a,b). GO analysis on the down-regulated genes in the SN
sample show the majority of biological processes are biosynthetic
and catabolic functions while the majority of the up-regulated
processes are related to the detection of stimuli and signaling
responses (Supplementary Table 4). Not surprisingly, the major-
ity of cellular components up- or down-regulated are associated
with the cytoplasm and cellular membrane (Supplementary Table
4). The majority of molecular functions switch from ion binding
(downregulated) to chemokine and enzymatic activities (upregu-
lated; Supplementary Table 5). These data suggest a switch from
neurotransmission and normal sensory functioning to immune
response detection and receptor activation, consistent with a
switch from normal sensory neurotransmission to an injury
response in the SN. In the DRG sample, the majority of genes
were upregulated after injury (Figure 1B). Most biological pro-
cesses in the DRG upregulated genes fall into signaling pathways
(e.g., G-protein, neuropeptide) or detection and reaction to stim-
uli (e.g., sensory perception of chemical stimulus, inflammatory
response; Supplementary Table 5). In cellular component, the
majority associated with the membrane, extracellular space, and

FIGURE 1 | Hierarchical clustering of normalized expression values at

various days post-sciatic nerve resection in the sciatic nerve and in the

DRG. The heatmaps reflect gene expression values normalized to the mean
across all time points (day 0, 1, 4, 7, and 14 post-injury) for genes that met
the cutoff in at least one time point (p < 0.05 and fold change >2). (A) In
the SN there are two distinct groups, 1 and 2, which decrease (green) or
increase (red) in expression, Supplementary Table 2. (B) In the DRG the
majority of genes decrease in expression. (C) Some genes overlap (25)
between SN and DRG but the majorities of changing genes were unique to
each tissue.

Table 1 | The rat genome has fewer RNA annotations in all categories.

Protein coding Micro Long non-coding Small-nucleolar Small-nuclear Antisense

Mus musculus 22,740 2010 1795 1556 1387 1476

Rattus norvegicus 19,878 419 0 0 0 0

The number of protein coding, micro, long non-coding, small nucleolar, small nuclear, and antisense RNAs found in the Mus_musculus.GRCm38.74.gtf and

Rattus_norvegicus.Rnor_5.0.74.gtf from the Ensemble Database.
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nerve terminal (cellular component, Supplementary Table 6) and
the molecular functions are associated with receptors, cytokines,
or hormone activity (molecular function, Supplementary Table
5). These data suggest a major change in DRG gene expression
in areas directly associated with NP development such as neu-
rotransmission and receptor expression (Xu et al., 1993, 2007;
Fukuoka et al., 1998; Sah et al., 2003; Pertin et al., 2005; Mika
et al., 2008; Miller et al., 2009).

IDENTIFICATION OF ISOFORMS
During the analysis it was observed that many rat UniqueIDs
were not associated with a gene name or symbol (Supplementary
Tables 2, 3). Indeed the rat genome contains far fewer elements
compared to the mouse (Table 1). This suggests that using the
rat for gene array and/or RNA-seq experiments is problematic
and could severely limit gene expression analysis interpretation.
To address this problem and gain insight into gene expression
and regulation we converted the rat genes (Figure 1) to their
mouse homologs using a sequence based strategy (Methods;
Supplementary Tables 6, 7). BLAT finds similar sequences of
length 25 base pairs or greater. We set a homology threshold
of 84% and higher to extract the potential homologs from the
BLAT output using the default parameters. We retrieved the cor-
responding target mouse gene names from the BLAT output and
used them for downstream analysis. Using this homology-based
strategy we identified 455 corresponding mouse genes in SN
and 167 in the DRG (Supplementary Tables 6, 7). These genes
give rise to hundreds of isoforms and produce multiple pro-
tein isoforms (Table 2). Isoform switching [aka: alternative open
reading frame (ORF) utilization], is one mechanism driving neu-
ral development (Ruusuvuori et al., 2004; Bani-Yaghoub et al.,
2007) and contributing to disease states in the body (Periasamy
and Kalyanasundaram, 2007). It could be a potential mechanism
underlying NP development. We identified numerous differen-
tially expressed genes whose isoforms differ at the level of the cod-
ing DNA sequence (CDS) leading to alternative ORFs (Table 2).
Protein coding differences were most abundant in enzymes,
ion-channels, transcription regulators, and G-protein coupled
receptors (Table 3), all highly associated and implicated in NP.

NETWORK ANALYSIS AND ncRNA REGULATION PREDICTION
In large datasets relationships between differentially expressed
genes are uncovered by examining protein-protein interactions.
We used STRING (Franceschini et al., 2013), which utilizes
both known and predicted protein associations to generate

Table 2 | Differentially expressed genes have abundant transcript

diversity.

SN DRG

Genes 445 167

Transcripts 1451 409

Transcripts with different CDS 162 36

Mouse transcript information was obtained from the Ensemble

Mus_musculus.GRCm38.74.gtf. The number of genes, transcripts and

transcript harboring changes in the coding DNA sequence (CDS) was identified.

protein interaction networks. In DRG up-regulated genes, sev-
eral direct protein interactions among molecules known to
change expression after DRG neuron injury were uncovered.
The most prominent group of interactions in this analysis was
between the neuropeptides vasoactive intestinal peptide (VIP),
its receptors (VIPR1/2), pituitary adenylate cyclase-activating
polypeptide (ADCYAP1 aka PACAP), its receptor (ADCYAP1R1),
and cholecystokinin (CCK) and its receptors (CCKAR, CCKBR;
Figure 2). VIP, ADCYAP1, and CCK are upregulated in DRG after
injury and are associated with NP (Nielsch and Keen, 1989; Xu
et al., 1993; Ma and Bisby, 1998; Ohsawa et al., 2002). These
observations support the involvement of these neuropeptides
in NP development and support that this dataset is reflecting
gene expression changes regulating NP. Interestingly, these neu-
ropeptide receptors have multiple isoforms (Bokaei et al., 2006;
Nachtergael et al., 2006), but to date no studies have examined
their function in NP models.

The role of RNA isoforms and their contributions to neuronal
development and pathology is slowly being elucidated (Gerstin

Table 3 | Enzymes and transcription regulators are associated with

the most protein coding isoforms in the SN and DRG, respectively.

SN DRG

Enzyme 49 3

G-protein coupled receptor 6 5

Ion channel 12 1

Kinase 5 1

Peptidase 7 2

Transcription regulator 2 8

Translation regulator 1 1

Transmembrane regulator 5 2

Transporter 1 1

Categories were assigned using the molecular annotations feature in Ingenuity®

Systems, www.ingenuity.com.

FIGURE 2 | Protein interaction network using LINC identifies

neuropeptide interactions after injury in the DRG. (A) A confidence view
of protein interactions. Thicker lines represent stronger associations. (B) An
evidence view of protein interactions. Both observations support previous
studies demonstrating increased expression of neuropeptides after injury.
In particular, it is noticed the modular connectivity centered on VIP,
ADCYAP1, and CCK, all appearing up-regulated in DRG after injury and
associated with NP. Evidence is taken from reports in the literature. Yellow:
expression; blue: binding; lilac: violet: catalysis; and post-translation
modification. This observation supports previous studies demonstrating
increased expression of neuropeptides after injury.

Frontiers in Genetics | Systems Biology May 2014 | Volume 5 | Article 131 | 42

www.ingenuity.com
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


Raju et al. Identifying novel neuropathic pain targets

et al., 1998; Pertin et al., 2005; Dina et al., 2008; Hong et al.,
2008; Kanzaki et al., 2012; Lerch et al., 2012b) but a full under-
standing of RNA isoform diversity is broadly lacking. To identify
mRNAs with alternative CDS’s with the potential to impact NP
development we created a network of DRG enriched genes with
the ability to directly regulate each other’s expression (Figure 3).
As expected, many genes have a role in neuronal depolarization
(Jarvis et al., 1995; Beaudet et al., 2000) and nociception (Jeftinija
et al., 1982; Mika et al., 2008; Belcheva et al., 2009), two prop-
erties of sensory neurons altered in NP states (Chaplan et al.,
1997; Fukuoka et al., 1998; Alexander et al., 2012). We highlight
genes with more than one CDS because alternative CDS’s leads
to changes in functional protein domains which alter cellular
function.

LncRNAs have recently been demonstrated to regulate sen-
sory neuronal excitability and NP (Zhao et al., 2013). To identify
potential additional gene targets for regulation we searched a
database of lncRNAs (Volders et al., 2013). The nomenclature
for lncRNAs in this database makes searching straightforward.
Transcripts overlapping one or more exons are named with

the same gene symbol and therefore considered the same gene
(Volders et al., 2013). Searching gene symbols identifies associated
lncRNAs. We found 15 lncRNAs conserved between human and
mouse in our dataset that corresponded to significantly chang-
ing genes (Supplementary Table 8). There were an additional 11
lncRNAs not identified as conserved across species (http://www.

lncipedia.org/db/search). Given that lncRNAs have a high degree
of evolutionary conservation (Qu and Adelson, 2012); it is possi-
ble these additional genes are regulated similarly in rats and mice
(Figure 3). The genes identified with a potential lncRNAs fall into
many categories such as enzymes (HSD3B2 and PDE6B), growth
factors (FGF2), transmembrane receptors (CHRNA1, HLA-DRA,
HLA-DRB1, IL1R2, and SEMA6A), and transcriptional regu-
lators (NKZ6.2, SOX11, and STAT4). This demonstrates that
lncRNA regulation of gene expression is likely not limited to
one particular gene category or class of protein. These strate-
gies highlight a way to reanalyze existing data and extend it to
identify novel mRNA isoforms and regulatory RNAs to further
our understanding of NP and can be extended to other disease
datasets.

FIGURE 3 | Upregulated DRG neuronal network is associated with mRNA

isoforms and ncRNAs. The list of mouse homolog DRG upregulated genes
(Group 2, Supplementary Table 2) was put into a direct interaction network
(Ingenuity® Systems, www.ingenuity.com). Genes having more than one CDS
(blue line), an associated ncRNA (yellow line), involved in depolarization (red
line), and/or nociception (gray line) are indicated. Black lines with arrows
indicate expression activation. Straight black lines indicate protein-protein
interaction. ADCYAP1, adenylate cyclase activating polypeptide 1; CCK,
cholecystokinin; CD74, CD74 molecule, major histocompatibility complex, class
II invariant chain; ELF3, E74-like factor 3; FGF2, fibroblast growth factor 2;

GADD45A, growth arrest and DNA-damage-inducible, alpha; Hamp/Hamp2,
hepcidin antimicrobial peptide; HLA-DQB1, major histocompatibility complex,
class II, DQ beta 1; HLA-DRB1, major histocompatibility complex, class II, DR
beta 1; IL1A, interleukin 1, alpha; IL1R2, interleukin 1 receptor, type II; IL24,
interleukin 24; KLK3, kallikrein-related peptidase 3; MMP12, matrix
metallopeptidase 12; RNF138, ring finger protein 138; E3 ubiquitin protein
ligase,: syndecan 1; SERPINA3, serpin peptidase inhibitor, clade A, member 3;
STAT4, signal transducer and activator of transcription 4; TGM1,
transglutaminase 1; TMPRSS6, transmembrane protease, serine 6; TSLP,
thymic stromal lymphopoietin; VIP, vasoactive intestinal peptide.
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DISCUSSION
Millions of people worldwide, including the majority of SCI
patients, experience NP. The prevalence of NP and the minimal
availability of effective treatment options make the identifica-
tion of the molecular pathways leading to NP development a
high priority. The majority of studies examining gene expression
changes in NP models use a microarray approach (except one
study, GSE53768, released 01/07/2014 which used RNA-seq and
was unpublished at the time paper submission). Therefore, the
identification of all expressed RNAs (e.g., isoforms and regulatory
RNAs) is lacking, omitting numerous potential therapeutic tar-
gets. To identify RNA isoforms and regulatory RNAs relevant to
NP we examined differentially expressed genes from a publically
available microarray study using a rat NP model (GSE30165). We
identified over 200 genes significantly changing in DRG neurons
and over 400 in the SN (Figure 1; Supplementary Tables 1–3).
Differentially expressed genes in this dataset show GO enrichment
for inflammatory processes, critical regulators and contributors
to NP (Supplementary Tables 4, 5; Hulsebosch, 2008; Kigerl et al.,
2009; Alexander et al., 2012).

One challenge of this dataset was the use of a rat model sys-
tem. We suggest that genetic studies should be performed in
mice given that the rat genome annotation is vastly incomplete
(Table 1). Given the lack of annotation, our ability to identify
mRNA isoforms and ncRNAs from the rat database was lim-
ited. Therefore, we retrieved differentially expressed rat RNA
sequences (Supplementary Tables 1, 2), and took mouse RNAs
with an 84% and greater homology to the rat sequences and then
examined these sequences for RNA isoforms and potential regu-
latory RNAs. We identified 455 mouse genes in SN, 167 in DRG,
and thousands of RNA isoforms for each gene (Supplementary
Tables 6, 7). We created a network of the interacting up-regulated
genes from the DRG dataset. Interestingly, in this dataset we iden-
tified 15 conserved lncRNAs that could regulate these transcripts
in the rat or mouse (Figure 3, Supplementary Table 8). LncRNAs
regulate protein coding gene expression by affecting DNA orga-
nization (e.g., defining chromatin domains; Rinn et al., 2007),
transcription (Zhao et al., 2013), and/or post-transcription pro-
cessing (Mercer et al., 2009). Most lncRNAs are associated with
a decrease in their target’s expression [e.g., HOTAIR’s repression
of the HoxD locus (Rinn et al., 2007); Kcna3 antisense repres-
sion of Kcna3 (Zhao et al., 2013)]. There is a single compelling
example of an lncRNA regulating NP development. Kcna3 anti-
sense expression increased after peripheral nerve injury, increased
neuronal excitability, and when overexpressed induced NP pain
symptoms (Zhao et al., 2013), a remarkable effect for a single
lncRNA. One area of future investigation is to determine global
lncRNA expression changes after SCI, because while Kcnc3 anti-
sense expression increased, it is just as likely that some lncRNAs
expression would decrease. In this study we found that SNI in the
DRG led to a majority of genes increasing expression (Figure 1).
Therefore, it is possible that SNI causes a reduction in the lncR-
NAs we identified (Figure 3) that contributed to their target gene
expression increase (Figure 1). In addition, we hypothesize that
these lncRNAs represent therapeutic targets since overexpressing
them would repress their target genes and potentially reduce NP
symptoms. For example, the increases in interleukin 1 receptor

(IL1R), adenylate cyclase activating polypeptide 1 (ADCYAP1),
and cholecystokinin (CCK) may be associated with a decrease in
their associated lncRNAs (Figure 3). This interaction, if occur-
ring, may contribute to their roles in nociception (Figure 3; IL1R
through binding to IL1A and ADCYAP1 through VIP binding;
Jeftinija et al., 1982; Xu et al., 1993; Mika et al., 2008). We
acknowledge that while these are intriguing possibilities, all of
these isoforms and lncRNAs require functional studies to test if
they are viable candidates, but note that identification is the first
step toward determining functional relevance.

NP is debilitating and in need of better therapeutic strategies.
A multitude of well-controlled publically available data exists in
the GEO database. We identified isoform diversity and potential
ncRNAs through a data reanalysis using a straightforward bioin-
formatic approach. There is growing evidence that RNA isoforms
and lncRNAs are important regulators of cellular function and
contribute to pathological processes (Gerstin et al., 1998; Hong
et al., 2008; Kanzaki et al., 2012; Lerch et al., 2012b). Future stud-
ies will employ RNA-seq enabling full scale detection of all RNAs
within a cell type (Faghihi and Wahlestedt, 2009; Lerch et al.,
2012a,b) giving a complete picture of gene expression but here
we demonstrate a fast and economical way to find new targets
underlying NP development.
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Precision medicine (PM) requires the delivery of individually adapted medical care based
on the genetic characteristics of each patient and his/her tumor.The last decade witnessed
the development of high-throughput technologies such as microarrays and next-generation
sequencing which paved the way to PM in the field of oncology. While the cost of
these technologies decreases, we are facing an exponential increase in the amount of
data produced. Our ability to use this information in daily practice relies strongly on
the availability of an efficient bioinformatics system that assists in the translation of
knowledge from the bench towards molecular targeting and diagnosis. Clinical trials and
routine diagnoses constitute different approaches, both requiring a strong bioinformatics
environment capable of (i) warranting the integration and the traceability of data, (ii)
ensuring the correct processing and analyses of genomic data, and (iii) applying well-
defined and reproducible procedures for workflow management and decision-making. To
address the issues, a seamless information system was developed at Institut Curie which
facilitates the data integration and tracks in real-time the processing of individual samples.
Moreover, computational pipelines were developed to identify reliably genomic alterations
and mutations from the molecular profiles of each patient. After a rigorous quality control,
a meaningful report is delivered to the clinicians and biologists for the therapeutic decision.
The complete bioinformatics environment and the key points of its implementation are
presented in the context of the SHIVA clinical trial, a multicentric randomized phase II
trial comparing targeted therapy based on tumor molecular profiling versus conventional
therapy in patients with refractory cancer.The numerous challenges faced in practice during
the setting up and the conduct of this trial are discussed as an illustration of PM application.

Keywords: precision medicine, clinical trial, bioinformatics, sequencing, oncology, SHIVA

INTRODUCTION
ERA OF PRECISION MEDICINE
Though physicians have always considered the individual charac-
teristics of each of their patients, the term personalized medicine
appeared recently to account for our new abilities to characterize
each person biologically with genomic analysis, and to use this
information to guide medical decision-making and deliver the
best treatment to each patient. This concept is also referred to as
genomic medicine, and other terms such as stratified medicine
or targeted medicine are sometimes used interchangeably. A few
years ago, the concept of P4 medicine was introduced with the

idea of managing the patient’s health instead of the patient’s dis-
ease (Hood and Friend, 2011). As a matter of fact, the practice
of medicine today is mainly reactive, i.e., the physician treats the
patient’s disease and little is done to prevent the occurrence of the
disease. The P4 medicine considers a model of healthcare that is
predictive (considering the genetic background of the individual
and his/her environment), preventive (adapting lifestyle, taking
prophylactic drugs), personalized (tailoring the treatment to the
individual’s unique features, such as the patient’s genetic back-
ground, the tumor’s genetic and epigenetic landscape, his/her life
environment) and participatory (many options about healthcare
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which require in-depth exchanges between the individual and
his/her physician). P4 medicine therefore extends the concept of
personalized medicine.

The term precision medicine (PM) is also frequently encoun-
tered in the literature to denote similar ideas, and generally refers
to delivering the right drug at the right time to the right patient,
by targeting specifically the molecular events that are responsible
for the disease. We will use in this article the terminology PM
defined as a customization of healthcare that takes into account
individual differences among patients from prevention, diagnosis,
prognosis, choice of the treatment and follow-up. PM combines
the knowledge of the patient’s characteristics with traditional med-
ical records and environmental information to optimize health.
PM does not only rely on genomic medicine but also integrates
any other relevant information such as non-genomic biological
data, clinical data, environmental parameters and the patient’s
lifestyle.

PM IN ONCOLOGY
In a special issue, the Journal of Clinical Oncology has focused
on PM in oncology (Garraway et al., 2013) showing that this
new era of medicine offers new perspectives to cure cancer. PM
also raises numerous challenges including biobanking, bioinfor-
matics and legal issues (Garraway et al., 2013; Meric-Bernstam
et al., 2013; Overby and Tarczy-Hornoch, 2013; Suh et al., 2013).
The intrinsic complexity of cancer and the variety of its forms
(each tumor being genetically unique) designate this pathol-
ogy as a prime target for PM approaches. Cancer is a disease
caused by the accumulation of mutations occurring in critical
genes (oncogenes and tumor-suppressor genes) and resulting in
the alteration of key molecular pathways. Due to the genetic
nature of cancer, the oncology research has largely benefited from
the advances in high-throughput genomics technologies in order
to decipher the molecular alterations involved in the tumori-
genesis on one hand, and to help the clinician to tailor the
therapy on the other (Tamborero et al., 2013). Molecular pro-
filing based on genomics information from the tumoral DNA
and constitutional DNA offers new insights into the predic-
tion of the disease progression and the response to treatment
for each individual patient. These approaches are based in par-
ticular on two dominant concepts: oncogene addiction and
synthetic lethality. The first one, oncogene addiction, stipulates
that some tumors rely on one particular oncogene for their sur-
vival and progression, and inhibiting this gene would therefore
stop tumor growth; this is the magic bullet idea introduced by
Paul Ehrlich in 1900. The second one, synthetic lethality, refers
to the observation that the inactivation of a pair (or more) of
genes might be lethal, whereas individual inactivation of any
of these genes would not kill the cell. It offers an opportunity
to selectively kill cancer cells, if they already present gene inac-
tivation for one gene of the synthetic lethal pair, by targeting
the second gene of the pair. A famous example is the syn-
thetic lethality of BRCA and PARP genes, which is exploited by
using PARP inhibitors for treating BRCA deficient breast cancer
tumors. Both oncogene addiction and synthetic lethality are typ-
ical situations where targeted therapy should be the solution of
choice.

The identification of genomic alterations used as biomark-
ers along with the emergence of molecularly targeted agents
(MTAs) such as tyrosine-kinase inhibitors have promoted the
development of PM in oncology. MTAs have proven their effi-
cacy in some cancer subtypes and they provide new opportu-
nities to treat the disease (see Dienstmann et al., 2013, for a
review). The first MTA has been trastuzumab, which is a mon-
oclonal antibody targeting the ERBB2 receptor. This gene is
amplified in 15–20% of patients with breast adenocarcinoma.
Treating patients with locally advanced disease with trastuzumab
for a year decreases by 50% the risk of recurrence (Piccart-
Gebhart et al., 2005). Targeting the BCR/ABL fusion gene (i.e.,
the Philadelphia chromosome) with another MTA, imatinib, in
patients with chronic myelogenous leukemia has dramatically
improved their outcome (Druker et al., 2001). BRAF(V600E)
mutation is frequently associated with melanoma, where it
seems to play a critical role in the malignancy process and
can be effectively treated using vemurafenib (Flaherty et al.,
2010). BRAF(V600E) mutation has been also identified in mul-
tiple forms of advanced cancers such as colorectal or thyroid
cancer (Cantwell-Dorris et al., 2011). It is generally accepted
today that using MTA has great potential in the treatment of
many types of cancer. Around 40 MTAs have been approved
to date for the treatment of cancer and the development of
new inhibitors is in progress. Developing new MTAs imply
also to decipher new biomarkers among the large number of
genomic alterations observed in tumors (mutations, amplifi-
cations, deletions, translocations, fusions and other structural
variants). A large number of genomic alterations are passen-
gers while very few are drivers. A subset of these drivers
are actionable, i.e., have significant diagnosis, prognosis, or
therapeutic implications in cancer, and a subset may also be
druggable, i.e., targets for therapeutic development (Dancey
et al., 2012). Classifying these genomic alterations into action-
able and/or druggable is difficult and high-throughput screening
techniques might help this classification. The possibility to search
within each tumor the actionable/druggable alteration using high-
throughput technologies opens the way to PM in the field of
oncology.

HIGH-THROUGHPUT SCREENING TECHNOLOGIES FOR PM
During the last two decades, the advent of high-throughput
technologies has allowed the genome-wide characterization of
molecular profiles in tumors. Among the different techniques,
the gene-expression microarrays have been widely used so far
in particular to build signatures for diagnostic and prognostic
purposes. These gene signatures are now proposed as clinical
tools for some types of breast cancer, for example Agendia’s 70-
gene Agilent-based MammaPrint®, i.e., the Amsterdam Signature
(van’t Veer et al., 2002; van de Vijver et al., 2002), Veridex’s 76-
gene signature, i.e., the Rotterdam Signature (Wang et al., 2005;
Foekens et al., 2006), Genomic Health’s 21-gene RT-PCR-based
Oncotype DXTM (Cobleigh et al., 2005; Hornberger et al., 2005)
and a 41-gene expression set (Ahr et al., 2001; Molecular, Ahr
et al., 2002). Ten years ago, next-generation sequencing (NGS)
technology appeared. It has evolved so quickly that it is pos-
sible today to sequence a genome for a few thousand dollars
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within a few days. Of note, the sequencing of the first human
genome costed around 3 billion dollars and took more than
10 years to be completed in 2003. The ability to simultaneously
sequence millions of short nucleic acid fragments in parallel in
a very short time and at very competitive costs (Sboner et al.,
2011) makes NGS a major tool in oncology (Tran et al., 2012).
NGS will very likely replace microarrays in a near future both
for research and clinical applications. The current NGS tech-
niques allow the profiling of the transcriptome (RNA-seq), the
genome (DNA-seq, exome-seq), the epigenome (bisulfite-seq),
the identification of DNA-protein interactions (ChIP-seq) and
the reconstruction of chromosome architecture (Hi-C). While
some sequencing platforms are very suitable for research pur-
poses, the long duration of runs as well as the cost of these
instruments are clearly incompatible with a real-time applica-
tion for clinical use (e.g., the HiSeq sequencer from Illumina
which tends to become the reference for very high-throughput
sequencing, requires approximately 11 days per instrument and
per run to generate data). In response to these concerns, bench-
top sequencers were introduced such as the MiSeqDxTM from
Illumina or the Ion TorrentTM PGM from Life Technologies.
Benchtop sequencers allow the sequencing of a few megabases
in a couple of hours with a very high depth of coverage. Their
relatively low cost and rapid turnaround time make them very suit-
able for clinical applications. In November 2013, the MiSeqDxTM

was the first sequencer obtaining clearance from the Food and
Drug Administration for clinical use as this platform demon-
strated its precision and reproducibility across instruments, users,
days and reagent lots (Collins and Hamburg, 2013). Benchtop
sequencers make it possible to sequence rapidly fractions of the
genome (target-seq) like the coding regions or a subset of known
genes or mutation hotspots. The target-seq offers the possibility
to screen several hundred mutation hotspots located in tumor-
suppressor genes and oncogenes using dedicated cancer panel kits.
Thus, the target-seq techniques offer new opportunities for diag-
nosis and many laboratories are shifting from Sanger sequencing to
NGS platforms in order to meet challenges in terms of through-
put and turnaround time. As an example recent advances have
been made in the screening of the BRCA1 and BRCA2 genes and
the detection of germline mutation related to an increased risk
of developing breast cancer (Bosdet et al., 2013; Tarabeux et al.,
2013).

FRAMEWORK FOR PM IN ONCOLOGY
Precision medicine requires a strong interdisciplinary collabo-
ration between several stakeholders covering a large continuum
of expertise ranging from medical, clinical, biological, trans-
lational, technical, and biotechnological know-hows. Figure 1
illustrates the different practitioners involved in the complex
process, describes the data workflow starting from and com-
ing back to the patient in order to tailor the therapy and shows
the informatics and bioinformatics infrastructure supporting the
workflow. To build the therapeutic decision, the most exhaus-
tive data ranging from clinical to biological, environmental and
family information (e.g., description of the tumor histology,
list of previous treatments, family history, etc.) needs to be
collected along a complex healthcare pathway. As the disease

evolves, new experiments such as high-throughput screens (with
microarray or NGS technologies for example) or biomarkers
detection by immunohistochemistry (IHC) have to be performed
to measure relevant biological information required to choose
the best therapy. During the process, physicians (including dif-
ferent specialists such as surgeons, pathologists, radiation and
medical oncologists, etc.), biologists, pharmacists, bioinformati-
cians, computational biologists, biostatisticians, informaticians,
biobank managers, biotechnological platform managers, clinical
research associates, and the technical staff will offer their exper-
tise for the benefit of the patient. Different actors and cultures
and a variety of miscellaneous constraints, including meeting
the deadlines for results delivery, render the application of PM
in daily clinical practice extremely challenging. Organizational
aspects are therefore essential for the success of PM (Veltman
et al., 2013). Downing et al. (2009) mentioned the importance
of Electronic Health Record (EHR) and Clinical Decision Sup-
port (CDS) for care delivery due to the acceleration of knowledge
discovery and its impact on the increasing number of possible
clinical decisions. Development in CDS is required to han-
dle the large heterogeneity of data and their complexity. The
authors also pinpoint the fact that PM strongly depends on
our ability to collect, disseminate and process complex infor-
mation. Indeed, every stakeholder produces information during
the healthcare pathway at different time points and in different
places. The overall information needs to be gathered, integrated
and summarized in a digest report to facilitate the therapeutic
decision-making.

NEED FOR BIOINFORMATICS SOLUTIONS TO SUPPORT PM
The availability of high-throughput technologies dedicated to
clinical applications makes it very attractive for cancer centers
to use these new tools on a daily basis. However, establishing
such a clinical facility is not a trivial task due to the aforemen-
tioned complexity of PM framework along with the overwhelming
amount of data. Indeed, the field of oncology has entered the
so-called big data era as the particle physics did several years
ago. From the big data 4 V’s perspective, data integration issue
(i.e., merging heterogeneous data in a seamless information
system) in oncology can be formulated as follows: a large Vol-
ume of patients’ data is disseminated across a large Variety of
databases which increase in size at a huge Velocity. In order
to extract most of the hidden Value from these data we must
face challenges at: (i) the technical level to develop a power-
ful computational architecture (software / hardware), (ii) the
organizational and management levels to define the procedures
to collect data with highest confidence, quality and traceability,
and (iii) the scientific level to create sophisticated mathemati-
cal models to predict the evolution of the disease and risks to
the patient. Obviously, an efficient informatics and bioinformat-
ics architecture is definitely needed to support PM in order to
record, manage and analyze all the information collected. The
architecture must also permit the query and the easy retrieval of
any data that might be useful for therapeutic decision in real-
time thus allowing clinicians to propose the tailored therapy
to the patient in the shortest delay. Therefore, bioinformatics
is among the most important bottlenecks towards the routine
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FIGURE 1 | Framework for PM in oncology. The left part describes the
workflow and processes required for the decision-making from patient
consultation to the therapeutic decision. The middle part focuses on the

informatics and bioinformatics architecture required to support the different
steps of the workflow. The right part indicates the different experts involved
in each process.

application of PM and several challenges need to be faced to
make it a reality (Fernald et al., 2011). First, the development
of a seamless information system allowing data integration, data
traceability, and knowledge sharing across the different stake-
holders is mandatory. Second, bioinformatics pipelines need to
be developed in order to provide relevant biological informa-
tion from the high-throughput molecular profiles of the patient.
Third, the architecture must warrant the reproducibility of the
results.

If many recent publications point out the key role of the
bioinformatics for PM today (see Simon and Roychowdhury,
2013 for a review), clinical trials usually do not detail the
complete bioinformatics environment used in practice to assess
the quality and the traceability of the generated data. Differ-
ent software platforms such as transMART (Athey et al., 2013),
G-DOC (Madhavan et al., 2011) or the cBio Cancer Genomics
Portal (Cerami et al., 2012) have been recently developed to
promote the data sharing and analysis of genomics data in
translational research. Canuel et al. (2014) reviewed the differ-
ent solutions available and compared their functionalities. One

of the most interesting features of these platforms relies on
their analytical functionalities. They provide ready-to-use tools
through user-friendly interface offering interesting functionali-
ties for data queries and user analysis. However, these different
solutions do not address essential aspects which are offered by
our system: first, often they handle a specific type of data;
second they do not cover management and traceability of the
data in real-time as long as they are generated by the different
stakeholders; third they do not provide clinicians with a mean-
ingful digest of the analyses, which they need to take clinical
decisions.

In the next section, we will focus on the bioinformatics solu-
tions implemented in order to tackle these challenges in the Institut
Curie Bioinformatics platform in the context of the SHIVA clinical
trial (Le Tourneau et al., 2012) initiated in October 2012 at Institut
Curie (Paris, France). This trial provides a concrete and practical
application of a PM project. First, we will describe the design of
the SHIVA clinical trial. Second, the seamless information system
we have implemented to manage data along with the bioinfor-
matics pipelines used to deliver the results for the therapeutic
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decision will be presented. Finally, the ongoing challenges will be
listed.

DESIGN OF THE SHIVA CLINICAL TRIAL
SHIVA is a randomized proof-of-concept phase II trial com-
paring molecularly targeted therapy based on tumor molecular
profiling versus conventional therapy in patients with refractory

cancer1 (Figure 2A; Le Tourneau et al., 2012). Randomized trials
in oncology are usually performed in a homogeneous population
of patients with a specific tumor type and in a specific setting. In
contrast, the goal of the SHIVA clinical trial is to bring the proof-
of-concept that the prescription of molecularly targeted therapies

1http://clinicaltrials.gov/show/NCT01771458

FIGURE 2 |The SHIVA clinical trial. (A) Rationale of the trial. The SHIVA trial
aims at determining whether the prescription of molecularly targeted
therapies based on tumor molecular abnormalities, independently of primary
tumor location and histology, would improve the outcome of cancer patients.

(B) Design of trial (adapted from Le Tourneau et al., 2012). The SHIVA clinical
trial involves many different actors from the patient inclusion to the
therapeutic decision. The whole process requires less than four weeks
including 4 days for the bioinformatics treatment.
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based on tumor molecular abnormalities, independently of pri-
mary tumor location and histology, would improve the outcome
of cancer patients. Therefore, all tumor types are allowed in the
trial (n.b. no more than 20% of patients with the same primary
tumor location will be randomized). Both DNA copy number
alterations and mutations in a subset of 76 genes are considered
for the decision-making. These genes cover in particular three
main signaling pathways: (1) the hormone receptors pathway, (2)
the PI3K/AKT/mTOR pathway, and (3) the MAP kinase pathway.
They include predictive biomarkers of efficacy of the MTAs as
well as known biomarkers of resistance (e.g., KRAS). These pre-
dictive biomarkers had either been validated in the clinic (e.g.,
ERBB2 amplification for anti-ERBB2 therapy, Piccart-Gebhart
et al., 2005) or been supported by strong preclinical study (e.g.,
PI3KCA mutations for mTOR inhibitors, see Carew et al., 2011,
for a review). Of note, not all of the 76 genes are of interest for the
SHIVA trial but the whole panel includes mutations that might be
of interest for non-randomized patients who may be eligible for
clinical trials based on not yet approved MTAs. For each patient, a
biopsy from the metastasis is performed and the molecular profiles
are assessed using both the Cytoscan HD technology (Affymetrix)
for the detection of DNA copy number alterations and loss of
heterozygosity (LOH), and the Ion TorrentTM PGM sequencing
technology (Life Technology) for the detection of somatic muta-
tions. IHC is used for the assessment of hormone receptor status,
including estrogen, progesterone and androgen receptors, as well
as for the validation of focal gene amplifications detected with
Cytoscan HD in the following genes: ALK, BRAF, EGFR, ERBB2,
KIT, MET, PDGFRA, PDGFRB and PTEN. Only samples which
contain more than 30% of tumor cells are processed to control
at best sample heterogeneity. Patients from seven hospitals in
France can be included in the study. The establishment of the
molecular profiles follows the process and the timelines described
in Figure 2B. All the bioinformatics steps including data man-
agement and integration, molecular profile analyses and data
coherence checking, are centralized at the Institut Curie bioin-
formatics platform. This centralization permits the analysis of the
molecular data from the different hospitals using the same param-
eters therefore ensuring the reproducibility of results. The whole
process was set up in real-time in order to have less than four
weeks elapsed between the biopsy and the randomization, includ-
ing 4 days for the bioinformatics treatment (Figure 2B). Thus,
this trial represents a concrete application of PM. It highlights
the real challenges and difficulties about the feasibility of such
project in real-time. A committee of expert named the Molecular
Biology Board (MBB) has been appointed. It consists of biolo-
gists, bioinformaticians and medical oncologists of each hospital.
The MBB meets each week to decide what the best therapy is
for each patient. Based on its scientific expertise and a literature
review, the MBB has defined a set of rules taking into account
the relevant molecular abnormalities identified in the tumor to
decide which MTAs to choose (among a list of 11 drugs) to
treat the patient. MTAs allowed in trial are only drugs that are
approved for clinical use in France. In the next section, we will
describe the bioinformatics solutions we have developed at Insti-
tut Curie to manage the data workflow for the SHIVA clinical
trial.

BIOINFORMATICS ENVIRONMENT FOR THE SHIVA CLINICAL
TRIAL
SEAMLESS INFORMATION SYSTEM
Precision medicine relies on a tight connection between many
different stakeholders. As the choice of the therapy is based on
a combination of different information levels including clini-
cal data, high-throughput profiles (somatic mutations and DNA
copy number alterations) and IHC data, all this information
related to a given patient needs to be gathered in a seamless
information system. Data integration is definitely required and
bioinformatics plays a central role in setting up this infrastructure.
To tackle this challenge, we have developed a seamless infor-
mation system named KDI (Knowledge and Data Integration)
described in Figure 3. The KDI system ensures information shar-
ing, cross-software interoperability, automatic data extraction,
and secure data transfer. In the context of the SHIVA clinical
trial, high-throughput and IHC data are sent by the different
biotechnological platforms to the bioinformatics platform using
standardized procedures for transfer and synchronization. Data
are then integrated into the KDI system within ad-hoc repos-
itories and databases. Metadata describing the data are stored
in the KDI core database such as the patient identifier, the type
of data (e.g., mutation screening, clinical data, DNA copy num-
ber profile) and the technology used (e.g., Affymetrix microarray,
Ion TorrentTM PGM sequencing). Each type of data is then pro-
cessed by dedicated bioinformatics pipelines in order to extract
the relevant biological information such as the list of muta-
tions and the list of amplifications/deletions. Therefore, the KDI
core database acts as a hub allowing referencing all data through
the use of web services. The KDI core database knows exhaus-
tively which data is available for a given patient and where the
raw and processed data are physically stored. It thus offers the
possibility for clinicians to make queries through a web applica-
tion and to extract the list of available information for a given
patient. In addition, the system is also used to manage and per-
form automatic integrative analysis required for the therapeutic
decision.

From a technical point of view, the KDI system consists of dif-
ferent modules dedicated to the storage, processing, analysis and
visualization of each type of data (clinical, biological, microar-
ray, NGS, etc.). High modularity associated with an efficient
interoperability makes our system able to retrieve any relevant
information. To facilitate the developments of these modules, we
have retained a classical n-tiers architecture implemented with
the JAVA/J2EE language. The core of each module of the KDI
system can be presented as the association of different layers
(Figure 3B).

Data layer
Data are stored in a relational database using the Entity-Attribute-
Value (EAV) pattern. This conceptual modeling provides a data
model plasticity required to handle the heterogeneity and the
scalability of the variables of interest. Therefore, with EAV model-
ing, same concepts managed by different projects (with specific
requirements by project) can be stored in a unique database
without any modification of the data model. MySQL has been
chosen as database provider for all web applications of the system.
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FIGURE 3 | Knowledge and data integration system. (A) Integration of
heterogeneous data requires a seamless information system with high
scalability, plasticity, reliability and interoperability. (1) The samples are first
collected for a given patient. (2) The samples are then processed by the
technological platforms (NGS, microarrays, immunochemistry, etc.) (3) Raw
data are analyzed using dedicated bioinformatics pipelines. Results are stored

in dedicated applications. (4) Sample data and the corresponding patient are
referenced in the KDI core system. (5) Advanced research functionality enable
multiple data queries. (6) Specific bioinformatics pipelines generate new
integrative knowledge from heterogeneous sources of data. (B) Technical
view of web applications: web applications are based on n-tiers architecture,
developed with J2EE technologies.

Complementary solutions such as NoSQL databases are currently
evaluated for particular requirements (ontologies storage, specific
queries, etc.).

Data access layer
Data access is supported by the DAO (Data Access Object) pattern.
By using HibernateDaoSupport superclass provided by Spring
Framework, we promote the standardization of database access
for all standard queries (findAll, findById, save, delete). More-
over, Hibernate mapping through JPA annotations associated with
use of Hibernate Criteria provides a homogeneous frame for this
critical layer. Database sessions and transactional aspects are also
delegated to Spring Framework.

Business layer
Business core of our web applications has two main objectives:
(i) provide structured data for presentation layer, and (ii) make
data available for remote and secured access by other applica-
tions and technical users. Standard services are developed using

core functionalities of Spring framework (Aspect-Oriented Pro-
gramming - AOP, Inversion of Control - IoC, JavaBeans Factory).
Web services are published (server side) and invoked (client side)
through Apache CXF framework. To respect Web Services Secu-
rity (WS-Security) standards, we use the Apache WSS4J project
provided by CXF (with interceptors chain process) to set up a
username token authentication on each web application in the
system.

Front-end layer
Presentation layer is based on JSF (Java Server Faces) which is a
component oriented framework for building user interfaces for
web applications. To enrich the basic component set provided
by JSF, we use additional component libraries such as Apache
Trinidad and Primefaces. By this systematic approach for each
user interface, we aim to build a visual identity, ergonomic, eas-
ily usable, for the whole information system. All data available
within KDI can be browsed and retrieved from a user-friendly
bioinformatics web portal.
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Client layer
This layer represents the web browser through which end-users
access KDI system.

DNA COPY NUMBER ANALYSIS PIPELINE
The use of the Affymetrix CytoscanHD microarray allows both
the detection of DNA copy number alterations and the loss
of heterozygosity events. The analysis workflow is presented in
Figure 4A. Raw data are normalized with the Affymetrix Power
Tools software package2. Then, the log R ratio is segmented

2http://www.affymetrix.com

in order to detect breakpoints and assign copy number status
using Colibri (Rigaill, 2010) and GLAD (Hupé et al., 2004) soft-
ware. A similar process is applied on the allele difference profile
using the GAP software (Popova et al., 2009). Both profiles (DNA
copy number and LOH) allow the estimation of absolute copy
number for each probe taking into account the sample cellu-
larity and tumor ploidy estimated by the GAP algorithm. Each
gene status (normal, gained, amplified, lost, deleted, loss of
heterozygosity) can then be assessed. Copy number alterations
are defined as follows: deletion = 0 copy, loss = 1 copy, nor-
mal = 2 copies, gain = 3, 4 or 5 copies and amplification ≥ 6
copies for diploid tumor, and deletion = 0 copy, loss = 1 or

FIGURE 4 | Bioinformatics analysis pipelines. (A) DNA copy number
analysis pipeline. The DNA copy number signal is segmented and called to
detect genomic alterations (deletion, loss, normal, gain and amplification) and
loss of heterozygosity taking into account the sample cellularity. Focal gains
or amplifications are then identified as potential druggable regions.

(B) Mutation analysis pipeline. The sequenced reads are aligned on the
human reference genome, and centered on the targeted genomic regions.
Single nucleotide variations (SNVs) and insertion/deletion (indels) are then
called. The filtered variations can then be annotated using additional
databases in order to lead to a final list of potential druggable variants.
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2 copies, normal = 3 or 4 copies, gain = 5 or 6 copies and
amplification ≥ 7 copies for tetraploid tumors. Additional steps
in the analysis are performed to distinguish between large scale
events such as chromosome arm gain and focal events target-
ing single oncogene or tumor-suppressor gene. Focal gains and
amplifications are defined as genomic alterations with a size less
than 10 Mb, and a copy number greater than the surrounding
regions. In order to check whether a focal gain or an amplification
of a size between 1 and 10 Mb induce a protein overexpres-
sion, a validation using IHC is performed. A report with the
list of genes to be validated by IHC is automatically sent to the
pathologists.

MUTATION ANALYSIS PIPELINE
The bioinformatics pipeline presented in the Figure 4B was
applied to detect somatic mutations from the Ion TorrentTM PGM
sequencer using the AmpliseqTM cancer panel. Ion TorrentTM

PGM raw reads are aligned on the reference human genome hg19
using the TMAP aligner (v0.3.7 Life Technologies). The best map-
ping score for each read is used to detect misalignment. The
standalone package of the Torrent Variant Caller (v2.2 Life Tech-
nologies) is then used to call variants (SNVs and indels) from the
mapped reads. In the context of clinical trial, variants have to be
filtered to promote a high specificity, in order to avoid any false
positive mutations. Thus, detected variants are filtered accord-
ing to their frequency (≥4% for SNVs and 5% for indels), strand
ratio (≥0.2), and reads coverage (≥30X for SNVs and 100X for
indels). In addition, SNVs and mainly insertions and deletions
detected in the context of a repeated region or a homopoly-
mer are double checked. Homopolymer and repeated regions are
prone to contain recurrent false positive, because of the limita-
tion of the Ion TorrentTM PGM technology. In most cases, the
variant is discarded if also detected in other patients from the
same sequencing run. Otherwise, variations specific to a sam-
ple, even within a repeat context, are reported. To facilitate the
interpretation of individual patient data for clinical trials, the
filtered list of variants is then annotated using the ANNOVAR
software (Wang et al., 2010). Common polymorphisms found on
more than 1% of the ESP or 1K Genome project population as
well as recurrent and neutral variants on hotspots are reported.
These variants do not present any therapeutic interest but are
good internal controls to ensure the quality of the sequencing
data. The Catalog of Somatic Mutation in Cancer (COSMIC) is
used to annotate the mutations detected at a hotspot position.
Non targeted mutations in genes covered by the panel, being non
polymorphic nonsense, missense or indels are also reported, even
if it may be difficult to know whether the alteration is involved in
deregulating a particular pathway and whether it is clinically rel-
evant. However, more stringent frequency filtering are applied for
these cases (frequency ≥10% for SNVs and 15% for indels) lead-
ing to a higher specificity. Then, relevant mutations and variations
are visualized using the IGV browser (v.2.0.35, Thorvaldsdóttir
et al., 2013). The visualization remains an important step to assess
the overall quality of the variant call, by taking into account the
reads coverage, the error rate in the flanking region, the mutation
position across the targeted region and across reads supporting
them.

INTEGRATIVE ANALYSIS: THE REPORT FOR THE MOLECULAR BIOLOGY
BOARD
The last step of the bioinformatics workflow is the production a
technical report for the MBB. This task is crucial and must be
complete and precise on one hand, and summarized on the other
to allow a quick decision of the board. To answer this need, a
report is generated for each patient. This report first presents the
clinical information of the patient and the overall molecular pro-
files per gene, with the DNA copy number alterations, LOH status,
and number of mutations (Figures 5A,B). This first section pro-
vides the MBB with a rapid overview of all detected alterations.
If needed, the MBB can also have access to more detailed results,
with graphical views of the copy number profiles for each gene,
as well as the list of mutations with detailed annotation as pre-
viously described (Figures 5C,D). This name-blinded technical
report is sent to the members of the MBB for scientific validation
and prioritization of the identified molecular abnormalities.

SUMMARY OF THE DATA INTEGRATION WORKFLOW FOR THE SHIVA
CLINICAL TRIAL WITHIN KDI
In the context of the SHIVA trial, the clinical data needed for the
MBB are first imported in a dedicated module of the KDI system,
named ClinicalDB (Clinical Database, Figure 3A). This step is
performed weekly and updates the system by creating the patients
recently included in the trial into the KDI core database. At the
same time, an anonymous identifier is generated by the system
for each new patient. Conversion between the different patient
identifiers is guaranteed by the KDI core database and is accessible
through the Bioinfo-Portal web application. Once available, the
raw data generated by the biotechnological platforms are trans-
ferred to the bioinformatics platform for analysis (using rsync
system). Bioinformatics pipelines (mutation and DNA copy num-
ber pipelines) process each molecular profile and are responsible
for raw data storage and traceability within the KDI core database.
The summarized results are structured in the BIRD (Biological
Results Database) application. The last step of the data integra-
tion workflow is the generation of the bioinformatics reports. Two
reports are required in the context of the SHIVA clinical trial at
two different time points. A first report is generated by the system
after the processing of the DNA copy number profile in order to
request an IHC validation if needed. A second report is gener-
ated by the system and sent to the MBB for the final therapeutic
decision. All reports, data and analysis results for each patient
are gathered within the KDI modules (KDI core database, Clini-
calDB, BIRD). All the information are available under controlled
access for any member of the project through the KDI Bioinfo-
Portal. In order to supervise the patients’ process at each step of
the whole bioinformatics workflow, an additional module of the
system named the Bioinfo-Board application (Figure 6) has been
developed. This web application aims to controlling, monitoring
and checking the evolution and status of each SHIVA patient in
real-time.

QUALITY MANAGEMENT
Offering a high quality service is most required in the context
of a clinical application. The availability of all KDI’s component
and the reproducibility of the analyses is thus mandatory. To this
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FIGURE 5 | Example of the main features reported in the MBB report.

(A) Patient information. All available clinical and biological informations about
the patient are reported to guide the therapeutic decision. (B) Summary of
molecular abnormalities. DNA copy number and mutations statuses for all
genes are reported in a main table in order to provide a quick overview of the
potential targets. The DNA copy number (D = Deletion, L = Loss,
N = Normal, G = Gain, A = Amplification) and the mutations statuses are
color-coded to ease the interpretation. (C) DNA copy number status. For each

gene, detailed informations of their DNA gene copy number and loss of
heterozygosity statuses are provided. The profiles are shown for two patients
carrying an amplification of EGFR and PDGFRA. (D) Mutation status.
Mutations passing all the filters are reported as positives mutations. Others
cases can be discussed. In the following example, one variant does not have
any COSMIC ID and has a frequency lower than 10%. Another is annotated
as a recurrent variant, or outside an hotspot region. An IGV screenshot of the
genomic region can help in validating the variant.

aim, we have promoted a set of good practices for the software
building process. First, the software development phase follows
a strict frame with positive technical constraints, and a common
methodology known and shared by each data manager and soft-
ware developer. The configuration management is delegated to a
SVN repository where all the source codes of KDI system are regu-
larly committed. The unit testing is strongly recommended for all
programming languages involved in the system (X-Unit) and part
of our continuous integration server based on Jenkins software.
This system allows to check weekly that all the tests parameterized
for all applications are successfully passed. This control ensures
that the analysis pipelines provide the expected results, identical

to a reference analysis which is considered as a gold standard. Sec-
ond, we pay attention to the availability of KDI system. All web
applications are monitored with Nagios software in order to be
able to detect in real-time any disorder on the system and there-
fore take immediately all necessary actions (log analysis, server
restart, update configuration, etc.) to restore initial and nominal
state if needed.

In order to reach this high quality service expectations,
three different informatics environments (meaning three differ-
ent instances of all applications, three different web servers, three
different database servers and three dedicated file systems) have
been set up. An update on any environment is always linked with
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FIGURE 6 | Bioinformatics web applications screenshots.

(A) Clinical DB application is dedicated to clinical data storage.
(B) Bioinfo-Board application aims to manage, and monitor each
patient data workflow in real-time. (C) Bioinfo-Portal application is

dedicated to the KDI core system database. It allows the access
to all exported data and information for a given patient/project,
such as data or clinical report in the context of the SHIVA
clinical trial.

a SVN revision. The first environment is the development (D-
env) which is the place of the version currently in development.
Each developer, after doing unit testing on his local workspace is
allowed to install a new version of his components on this envi-
ronment. It results that the D-env can be temporarily unstable
and this is assumed. The second environment is the validation
(V-env) which must be stable at every time. Integration testing is
performed on this environment to validate the candidate release
of the KDI system. The V-env can be seen as a pre-production
environment. Only the persons in charge of the final installa-
tion are allowed to update the V-env. The third environment
is the production (P-env) which is the instance of KDI system
really used by the end-users. The updates of the P-env have to be

planned, secured, and widely announced to avoid any inconve-
nience. During delivery periods, the environments of validation
and production must be identical. These three environments per-
mit to secure our delivery process with a high reliability and
traceability.

FEASIBILITY OF THE SHIVA TRIAL
The presented bioinformatics environment is in use since October
2012 to manage and analyze the molecular profiles of the patients
included in the SHIVA trial.

Results of the feasibility part of the project, focused on the
first 100 patients were recently published (Le Tourneau et al.,
2014). Among the first 100 patients, diagnostic confirmation and
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IHC analyses for hormone receptors were performed in 92% of
the patients. Genomic analyses were performed for 65 patients
(68%). DNA copy number analyses met quality criteria in all the
65 patients, while a technical problem occurred in 2 patients for
mutations analyses. Overall, 58 out of the 95 patients (61%) had a
complete molecular profile. All patient data were integrated in the
KDI system. The median timeframe for the bioinformatics anal-
ysis (DNA copy number, mutation profiles and MBB report) was
5 days. Median timeframe from tumor biopsy/resection to MBB
was 26 days [range: 14–42]. To date, eight French cancer centers
are participating to the SHIVA trial, and more than 700 patients
were included. All data provided by the different centers are cen-
tralized at Institut Curie using the KDI system, and analyzed in
routine.

ON-GOING CHALLENGES FOR PM
The solution we have developed to manage the SHIVA clinical trial
provides a first step towards the routine application for PM. How-
ever, many challenges still need to be tackled and will require a
lot of mutualization and harmonization efforts within the scien-
tific community. The main on-going challenges are listed in what
follows.

COMPUTATIONAL ARCHITECTURE
Precision medicine does not only require an efficient informatics
infrastructure at the software level but also at the hardware level.
Indeed, as NGS is now widely used for tumor profiling, data pro-
cessing relies on an efficient High Performance Computing (HPC)
infrastructure for data storage, transfer, computation and access
control. So far, mainly targeted sequencing on a limited panel
of genes (e.g., using Ion TorrentTM PGM with AmpliSeqTM) has
been used and can be processed with relatively moderate comput-
ing resources. However, as sequencing cost keeps on decreasing,
whole-exome or even whole-genome might be used soon thus
requiring HPC infrastructure. According to Moore’s law, Kryder’s
law and Butter’s law, costs are halved every 18, 12, and 9 months
for processor, storage and data transfer, respectively (Stein, 2010)
while 5 months was the rule for sequencing costs during the period
2007-2011 period (source3). Thus, the difference between biotech-
nological and informatics capacities grows exponentially. Entering
the era of big data in cancer research implies a breakthrough
at the informatics level. First, the scalability of the infrastrure
(Input/Ouput performance and computing power) is required to
allow the management and analysis of ever-growing data. Second,
bioinformaticians must be trained to the use of low-level program-
ming languages for parallel computing such as Message Passing
Interface (MPI), Open MultiProcessing (OpenMP), or MapRe-
duce (Dean and Ghemawat, 2008) and to the algorithm analysis.
Developing these new skills will be essential in order to improve
the efficiency of software used in downstream analysis to deliver
results as quick as possible to meet deadline expected in the clin-
ical practice. Third, the configuration of job scheduler (such as
Torque/PBS, OGE, or Slurm) must ensure that resources could
be available and allocated to analyze in priority the data needed
for decision-making in clinic. This also implies a redundancy of

3http://www.genome.gov/sequencingcosts/

the hardware components to ensure their availability. Resources
and new know-how are definitely needed to handle NGS data
and PM. Importantly, the question of which data and how long
the data must be stored is an important issue. We can anticipate
that at some point, the storage capacity will be lower than the
amount of data generated meaning that data will have to be ana-
lyzed on-the-fly to extract the relevant information and reduce the
volume.

EXCHANGE STANDARDS AND ONTOLOGY
The large heterogeneity of the data that are collected along the
healthcare pathway hampered their exchange and their compar-
ison. Therefore, it is crucial to describe all the data that are
generated with controlled vocabularies also called ontologies.
Ontologies offer a formal representation of knowledge with def-
inition of the relevant semantic attributes, their hierarchy and
their relationship using a well-defined logic. Importantly, not
only one single ontology can pretend to describe all the knowl-
edge in a field but different ontologies (see4) are necessary to
cover different entities of interest such as the gene (Gene Ontol-
ogy), the disease (Disease Ontology) and the sequence (Sequence
Ontology). Semantic Web standards promoted by World Wide
Web Consortium (W3C) make it possible to link knowledge
and data together so they can be queried and retrieved. To this
aim, the Resource Description Framework (RDF) data format
along with SPARQL query language provide the technical frame-
work to describe, share, interact and query semantic data. While
the technical solutions exist to support data exchange and link-
ing, the definition of ontology, their choice and their use in
practice for healthcare and biomedical data is still an issue. In
order to tackle these challenges and to promote the use of stan-
dards and ontologies in the biomedical field, many European
initiatives supported by the European Community (FP6 and FP7
programs) are involved in the definition and harmonization of
standards:

1. SemanticHEALTH FP65 focused on semantic interoperabil-
ity issues of electronic health systems and infrastructures
and provided a number of relevant definitions, stan-
dards, and application domains for semantic interoperability
(Stroetman et al., 2009).

2. SemanticHealthNet FP76 develops a scalable and sustain-
able pan-European organizational and governance process
for the semantic interoperability of clinical and biomedi-
cal knowledge, to ensure that EHR systems are optimized
for patient care, public health and clinical research across
healthcare systems and institutions.

3. p-medicine FP77 aims at developing new tools, data shar-
ing and integration systems, IT infrastructure and Virtual
Physiological Human (VPH) models to accelerate PM for
the benefit of the patient.

Moreover, the European effort BioMedBridges supported by
the European Strategy Forum on Research Infrastructures (ESFRI)

4http://bioportal.bioontology.org/
5http://www.semantichealth.org
6http://www.semantichealthnet.eu
7http://p-medicine.eu
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aim to construct the data and service bridges needed to connect
emerging biomedical sciences research infrastructures. Among the
infrastructures concerned let us mention:

1. the European Infrastructure for translational medicine:
EATRIS supports the development of biomedical discoveries
for novel preventive, diagnostic or therapeutic products up
to clinical proof of concept.

2. the Biobanking and Biomolecular Resources Research
Infrastructure: BBMRI will form an interface between bio-
logical specimens and data and top-level biological and
medical research.

3. the European Clinical Research Infrastructures Network:
ECRIN supports multinational clinical research projects in
Europe.

4. ELIXIR: (it aims to construct and operate a sustainable
infrastructure for biological information in Europe to sup-
port life science research and its translation to medicine and
the environment, the bio-industries and society.

DEVELOPMENT OF SUSTAINABLE BIOINFORMATICS ANALYSIS
PIPELINES
Maintaining an efficient bioinformatics workflow in the context
of PM is today challenging because of the frequent updates of
the computational solutions either installed on the sequencing
machine or provided as standalone applications. These frequent
updates are mainly due to the rapid evolution of the sequencing
and microarray technologies but remain a major issue to ensure the
operability of the bioinformatics pipelines and their reproducibil-
ity. As a consequence, any update requires that each bioinformatics
pipeline is validated to warrant it provides a very high specificity
and sensitivity. Indeed, any changes in the data format or in the
analysis methods can have critical consequences on the down-
stream analysis and results. Moreover, many different methods
are currently available to analyze NGS data but no consensus or
standard computational tools exist so far. For instance, detecting
germline or somatic mutations can be achieved using different
bioinformatics algorithms, tools and filters. Choosing the most
efficient algorithm is not an easy task and a feasibility phase is
mandatory to define which algorithms and parameters to apply
for a dedicated question.

SAMPLE QUALITY CONTROL
The use of high-throughput technology in a clinical context also
offers new challenges in the development of cutting edge sta-
tistical methods and algorithms dedicated to the field. As an
example, the integration of heterogeneous molecular profiles pro-
vided by microarrays and sequencing assays could be used to
define a patient genotype signature, to improve molecular pro-
file accuracy and to ensure that the generated data come from
the same biological samples and patient. The intersection of geno-
type variations available through the SNPs arrays technology could
thus be intersected with the genotype information extracted from
next-generation sequencing. However, this type of quality control
requires the sequencing of a large DNA region to ensure that a
sufficient number of polymorphism is covered. In the same way,
the biopsy cellularity can also be estimated using both microarrays

and sequencing assays (Larson and Fridley, 2013) in order to cor-
relate the tumor purity from both profiles and detect intra-tumor
heterogeneity.

DEVELOPMENT OF DEDICATED COMPUTATIONAL AND MATHEMATICAL
METHODS - TOWARDS SYSTEM MEDICINE
Clinical trials for PM rely so far on a very limited number of
biomarkers used for the therapeutic decision (see Simon and Pol-
ley, 2013 for a review). Typically from one up to less than 50
biomarkers are used for PM in currently on-going clinical trials
worldwide. Moreover, the decision is based on a univariate deci-
sion rule meaning that a possible interaction between biomarkers
is not considered which certainly explains part of the limited effi-
cacy of targeted therapies even in the presence of their targets.
For example, Prahallad et al. (2012) showed that vemurafenib is
highly effective in the treatment of melanoma in patients with
BRAF(V600E) mutation while colon cancer patients harboring
the same BRAF(V600E) mutation have a very limited response
to this drug. They found that BRAF normally exerts a negative
feedback regulation of EGFR. Therefore BRAF inhibition causes
a rapid feedback activation of EGFR, which enhances cell prolif-
eration. As melanoma cells express low levels of EGFR they are
not subject to this feedback activation in contrast to colon can-
cer. Thus, they propose that these patients might benefit from
combined therapy consisting of BRAF and EGFR inhibitors. This
example highlights the fact that considering interactions between
biomarkers and combining different therapies together can dra-
matically strengthen the efficiency of PM. Also it clearly shows
that elucidating the reasons behind treatment escape and propos-
ing backup therapeutic strategies would benefit greatly from the
knowledge and modeling of the cell regulatory network rewiring.
Therefore, computational systems biology approaches, based on
mathematical models of the cell regulatory network rewiring, are
definitely needed to deepen our understanding of the cancer cell
and to improve current decision rules. Systems biology and sys-
tems medicine are two disciplines which open the road to PM.
Machine learning techniques will also be very useful to develop
prediction rules to predict outcome and response to treatment.
We can imagine that online machine learning techniques could
be used to refine and optimize decision rules as long as new data
and knowledge are generated. The key defining characteristic of
online learning is that soon after the prediction is made, the true
label of the instance is discovered. This information can then be
used to refine the prediction hypothesis used by the algorithm.
In the case of cancer, every day, for several patients, informa-
tion is collected: survival, response to therapy, molecular profiles,
pathological complete response, etc. This information could be
used to retrain the classifier on the available data. In addition to
these data-driven approaches, knowledge-based approaches must
be developed to capitalize on the large amount of knowledge that
is present in the scientific and medical literature to build efficient
decision rules. IBM has developed a supercomputer named Wat-
son (the name of IBM’s founder) able to understand question in
natural language and to extract relevant information from the lit-
erature. Watson supercomputer is currently used at the Memorial
Sloan-Kettering (New-York, USA) to help for diagnosis in lung
cancer.
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SEQUENCING THE GENOME AND BEYOND
Available NGS techniques expand from sequencing panels based
on a couple of genes to whole-exome and whole-genome sequenc-
ing. Even if the whole-exome and whole-genome sequencing are
currently used in cancer research, and can be seen as the future
of the clinical investigation, their use in routine clinical prac-
tice is much more difficult, mainly because the average depth of
coverage is much lower than for targeted genes sequencing com-
plicating mutations detection. However, these applications offer
new ways to explore DNA copy number and structural variations
and can thus be used as an alternative to the current microar-
ray technologies. In addition, the current sequencing capabilities
also offer new opportunities to develop gene/transcript expres-
sion and epigenomics biomarkers in clinic. For instance, the
detection of BRCA1/BRCA2 isoforms and their quantification
using RNA-seq approach would be an interesting complemen-
tary approach to mutations screening. In the same way, DNA
methylation, histone modifications, small non-coding regulatory
RNAs, or nucleosome remodeling regulate many biological pro-
cesses involved in tumorigenesis. More recently, evidence that
genetic and epigenetic mechanisms are related events in cancer
has emerged. Alteration in epigenetic mechanisms can lead to
somatic mutations, as well as somatic mutations in epigenetic reg-
ulators can lead to an altered epigenome (You and Jones, 2012;
Timp and Feinberg, 2013). If drug discovery in cancer epigenetics
had been held back due to concern about specificity and toxic-
ity, it remains an active field of investigation (see Dawson and
Kouzarides, 2012, for a review). The application of these new
fields in clinic raises the question of combined therapies. Com-
bination of targeted therapy with chemotherapy or with other
targeted therapies is challenging because of increased toxicity.
Solutions include the use of lower doses of drugs which might
not be relevant if the biologically active dose is not reached and
the use of drugs in a sequential manner although the relevance
of this approach still needs to be demonstrated. For instance, it
is likely that the combination of standard chemotherapy together
with drugs against mutated proteins and epigenetics drugs offer
synergetic benefits and increase therapeutic efficacy. Integrative
analysis considering the multidimensional nature of the cancer
(genome, proteome, epigenome, kinome, etc.) is therefore a major
challenge to unravel the complexity of the disease and identify the
most efficient treatments. To this aim, we will have to capitalize
on large collection of public datasets such as data from The Can-
cer Genome Atlas (TCGA8, Kandoth et al., 2013) or International
Cancer Genome Consortium (ICGC9) and also pathway databases
for gene regulatory network, signaling pathway, metabolic path-
way, Protein-Protein Interaction network and protein-compound
network (e.g., DIP, HPRD, KEGG, Reactome to name only a few).
The TCGA has initiated a pan-cancer analysis project (Cancer
Genome Atlas Research Network et al., 2013) on the first 12 tumor
types profiled by the consortium where the goal is to characterize
molecular alterations and their functional impact across tumor
type in order to promote the development of new therapies to
fight cancer.

8http://cancergenome.nih.gov/
9http://icgc.org/

CONCLUSION
We have developed a seamless information system named KDI that
fully supports the essential bioinformatics requirements for PM.
The system allows management and analysis of clinical informa-
tion, classical biological data as well as high-throughput molecular
profiles. It can deliver in real-time information to be used by
the medical and biological staff for therapeutic decision-making.
KDI makes it possible to share information and communicate
reports and results across numerous stakeholders, representing
a large continuum of expertise from medical, clinical, biologi-
cal, translational, technical and biotechnological know-hows. The
system relies on state-of-the-art informatic technologies allow-
ing cross-software interoperability, automatic data extraction,
quality control and secure data transfer. KDI has been suc-
cessfully used in the framework of the SHIVA clinical trial for
more than 18 months. KDI is also currently used for other
clinical trials supported by European Union consortia covering
cancer (RAIDs - Rational molecular Assessments and Innovative
Drugs selection in cervival cancer) and non-cancer applications
(MAARS - Microbes in Allergy and Autoimmunity Related to the
Skin). This demonstrates the potentiality and flexibility of our
system to support PM covering all its requirements ranging from
data management, data traceability, data analysis, query, and
visualization.

The evolution of sequencing technologies has expanded the
frontiers of genomics in both biology and clinical environments.
The sequencing field will continue to evolve rapidly, offering
lower costs and increased speeds. On-going developments in
the sequencing technology, such as an ultrafast sequencer like
nanopore technology, will improve performance and miniatur-
ization, thus offering new tools to improve prevention, diagnosis,
prognosis, choice of the treatment and follow-up for patients in
oncology. To promote PM in daily clinical routine, flexible bioin-
formatics systems like KDI are definitely required for enabling
efficient sharing of information in real-time, and rapid data pro-
cessing needed for therapeutic decisions. KDI also provides the
infrastructure for developing and integrating into the clinical deci-
sion process new integrative analysis methods with sophisticated
mathematical models, representing the multidimensional nature
of cancer to propose new biomarkers and to develop new therapies
to fight cancer.
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The study of molecular networks has recently moved into the limelight of biomedical
research. While it has certainly provided us with plenty of new insights into cellular
mechanisms, the challenge now is how to modify or even restructure these networks.This
is especially true for human diseases, which can be regarded as manifestations of distorted
states of molecular networks. Of the possible interventions for altering networks, the use
of drugs is presently the most feasible. In this mini-review, we present and discuss some
exemplary approaches of how analysis of molecular interaction networks can contribute
to pharmacology (e.g., by identifying new drug targets or prediction of drug side effects),
as well as list pointers to relevant resources and software to guide future research. We
also outline recent progress in the use of drugs for in vitro reprogramming of cells, which
constitutes an example par excellence for altering molecular interaction networks with
drugs.

Keywords: networks, molecular interactions, drugs, diseases, stem cells

INTRODUCTION
Over the last decade, we have witnessed impressive technological
advances in the field of molecular biology. Many of them have
brought us an incredible wealth of molecular data. Initially, it was
hoped that large data-driven projects such as the Human Genome
Project would readily pave the way for the development of new
effective therapies in biomedicine. Unfortunately, the translation
of these molecular data into biomedical breakthroughs has been
dauntingly slow. Why is this so?

One reason for this “bottleneck” is that biological processes
are highly interconnected, so their manipulation is a formidable
challenge. In addition, major human diseases, such as can-
cer, type II diabetes, and hypertension, are genetically complex.
Hence, a direct correspondence between causative genotype and
disease phenotype, as observed in Mendelian disorders, is fre-
quently obscure. Instead, these diseases are multi-factorial and
seem to result from interplay between multiple genes and envi-
ronmental factors, each having a relatively small effect, with few
(if any) being prerequisites for the disease to occur (Manolio,
2010). This view is supported by several other lines of investiga-
tions that underline how important it is to regard causative genes
not as isolated entities, but as integral parts of molecular net-
works or pathways (Badano and Katsanis, 2002; Oti and Brunner,
2007).

MOLECULAR NETWORKS: DATA AND ANALYSIS
In recognition of the importance of molecular networks,
researchers from different fields have begun to study them
intensely through computational and experimental means. Their
underlying premise has been that changes to cellular networks
determine many phenotypic variations, and that such changes can
be provoked, not only by alterations to a gene product’s abundance,
but also through perturbations of its interactions.

The intensified interest in molecular networks has resulted
in systematic gathering of interaction data for biomolecules, as
well as the development of computational approaches for the
analysis of biological networks. Nowadays, a large number of
publicly accessible databases contain various types of molecular
interaction data1. Networks derived from these resources fre-
quently contain only a specific type of molecular interaction
such a protein–protein or protein–DNA interactions. Based on
the type of included interaction, we distinguish between differ-
ent types of interaction networks. Currently, the major types are
protein–protein interaction (PPI), gene regulatory and metabolic
networks. These networks are often visually represented as sim-
ple graphs, with nodes or vertices denoting molecules, and links
or edges denoting interactions between them. While such drastic
simplification neglects many characteristics of individual com-
ponents, it facilitates the analysis and modeling of large cellular
networks. Furthermore, we can profit from the rich repertoire
of mathematical tools and concepts already developed in graph
theory.

The most basic characteristic of a node in a graph is its degree,
i.e., the number of edges attached to it. In many biological net-
works, the majority of nodes have a low degree, and only a few
nodes have a high degree. These highly connected nodes are known
as hubs, and are important for the integrity of the network (Albert,
2005). Another important concept in graph theory is modularity.
A module is commonly regarded as a set of nodes that are more
densely connected with each other than with other nodes in the
network (Pinto, 2012). These two concepts are illustrated for bio-
logical networks in Figure 1A. Modularity has also been suggested
to contribute to robustness of molecular systems (Hartwell et al.,
1999). In fact, robustness of molecular processes seems to result

1http://www.pathguide.org
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FIGURE 1 | (A) Illustration of basic concepts in the analysis of
molecular networks. Hubs are defined by their large number of
interactions, whereas “bottleneck” proteins link densely connected
sub-networks or modules. Both types of nodes provide prominent
targets for interventions, aimed at changing the network structure and
integrity. (B) Approaches for network-based drug targeting and
repositioning. Different types of heterogeneous bipartite or tripartite
networks have been used in the literature to identify new targets for
drugs. (C) Network-oriented pharmacology in the UniHI environment.
After querying for molecular interactions for central proteins, UniHI

derives tissue and phenotype-specific networks, which can be
scrutinized for known drug targets. In the example shown, an
interaction network with GADD45A, SNCA, PARK2 as central proteins
was retrieved and filtered using gene expression data from the brain.
Additional filtering steps, using drug–target data and phenotypic
information (“nervous system phenotype”) from knock-out mice,
generated a compact network of drug targets with potential relevance
for neurological disorders. Information regarding the drugs and their
mode of action can be interactively accessed within the displayed
network.
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directly from the structure of the underlying networks. Besides
redundant genetic components, compensatory network structures
such as alternative metabolic or signaling pathways can buffer the
failure of single parts (Wagner, 2005). This feature of networks is
a crucial aspect to be considered, when we want to design effective
interventions in their functioning.

Prime examples of popular and freely available software for
network analysis are R/Bioconductor2 or Cytoscape3. While these
are powerful and versatile tools, their use requires expertise in
both data handling and processing. Alternatives are given by sev-
eral on-line resources, which provide integrated and annotated
data together with applications for analysis and visualization.
For instance, our Unified Human Interactome (UniHI)4 database
stores a large number of molecular interactions for the human
genome, together with other types of information, and includes
tools for the interactive analysis of retrieved interaction net-
works (Chaurasia et al., 2007; Kalathur et al., 2014). Especially for
researchers less acquainted with network analysis, such integra-
tive platforms offer convenient gateways to a wealth of interaction
data.

DRUGS AND THEIR TARGETS
Pharmaceutical drugs are a common means to modify the activ-
ity of biomolecules, making them prime candidates for altering
activity and structure of molecular networks as well. The targets
of drugs can be proteins, peptides or nucleic acids, whose activ-
ities can be modulated. Drugs can be sub-divided into at least
three different classes: (i) chemical compounds with low molec-
ular weight (typically referred to as small molecules) that target
enzymes, receptors, transcription factors or ion channels; (ii)
biologics (such as antibodies or recombinant proteins) that tar-
get extracellular proteins and transmembrane receptor; and (iii)
nucleic acids that target messenger RNA by interference (Gashaw
et al., 2011). Notably, small molecules are still by far the most com-
mon type of drugs, and are frequently associated with low costs
and easy (i.e., oral) delivery. However, the number of proteins,
which can be targeted by small molecules, appears to be fairly
limited (Overington et al., 2006).

Ideally, drug targets should have: (i) a proven role in the patho-
physiology of a disease; (ii) little impact on physiological (health)
conditions when modulated; and (iii) a favorable prediction for
potential side effects (Gashaw et al., 2011). To fulfill the later cri-
terion, highly selective targeting is generally considered to be a
desirable trait. To target multiple proteins, as is frequently required
for treatment of complex diseases, it is therefore necessary to com-
bine multiple drugs. Especially for cancer, combinatorial drug
therapy has become a standard practice, minimizing the risk of
drug resistance. However, kinase inhibitors, which target multiple
pathways simultaneously, have shown efficacy in the treatment of
different cancers (Al-Lazikani et al., 2012). Thus, it has been argued
that multiple-target drugs might be a more favorable option, since
detrimental drug–drug interactions can be avoided, and optimal
dosage can be more easily determined (Hopkins, 2008).

2http://www.bioconductor.org
3http://www.cytoscape.org
4http://www.unihi.org

NETWORK-BASED APPROACHES FOR DRUG RESEARCH
IDENTIFICATION OF DRUG TARGETS
The identification of drug targets is a crucial, but laborious task
in biomedical research. Nowadays, in silico methods can assist
greatly. Conventional in silico methods for drug target prediction
are typically receptor- or ligand-based models. Whereas receptor-
based methods start with a known structure of the target, and
employ docking to assess drug binding (Luo et al., 2011); ligand-
based methods involve the comparison of drugs with known
ligands of the target protein. A successful example of the latter
method on a genomic scale is the study by Keiser et al. (2009),
in which a large number of new potential targets for exist-
ing drugs were found based on chemical similarity with known
ligands.

More recently, network-based methods have complemented the
computational toolbox for drug target identification. They are
especially helpful, if the three-dimensional structure of the tar-
get is unknown. Network-based methods are motivated by the
observation that the general biological importance of a protein is
at least partially linked to its location in relevant PPI networks.
For instance, essential genes tend to correspond to hubs or central
nodes in many PPI networks; although, in practice, such con-
clusions might be compromised by prevalent inspection biases
(Futschik et al., 2007; Barabási et al., 2011). Consequently, drugs
should target central nodes, when a lethal effect is intended, as it is
the case, for example, in the treatment of cancer cells or pathogens
(Figure 1A). In contrast, if a molecular process needs be adjusted,
it might be preferable to target neighbors of central nodes (Cser-
mely et al., 2013). This approach is consistent with observations
that targets of approved drugs tend to have more connections
on average than most proteins, but fewer connections than for
those proteins that correspond to essential genes (Yildirim et al.,
2007).

In addition to degree as a basic centrality measure, other
more sophisticated local metrics, including bridging centrality
and graphlet degree, have been proposed for the identification
of drug targets in PPI networks (Hwang et al., 2008; Milenkoviæ
et al., 2011). Alternatively, global network-based analyses can be
used to provide cues for follow-up investigations. For exam-
ple, a systematic review of major signaling pathways led to the
conclusion that proteins involved in cross-talk between path-
ways, represent promising targets for drug (Korcsmáros et al.,
2010).

While the study of the topology of PPI networks provides a
valuable, general indication about the likelihood of finding drug
targets; more specific predictions can be determined by eval-
uating local heterogeneous networks (Figure 1B). One of the
first steps in this direction was taken in the work of Yamanishi
et al. (2008), who transformed a bipartite network (in which two
types of nodes form a network) of drugs and their known tar-
gets into a high dimensional composite “pharmacological feature
space”, where interacting drugs and targets were close to each
other. New chemicals or targets could be mapped into this fea-
ture space, and drug–target interactions were predicted based on
their spatial proximity. A simpler approach, based on diffusion
of scores within the local bipartite network neighborhood, has
recently been proposed. This approach outperformed predictions

www.frontiersin.org June 2014 | Volume 5 | Article 160 | 65

http://www.bioconductor.org
http://www.cytoscape.org
http://www.unihi.org
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Biology/archive


Pinto et al. Targeting networks for drug research

based on interference using either chemical similarity of drugs,
or sequence similarity of targets (Cheng et al., 2012). Although
several of its predicted new targets of known drugs were suc-
cessfully validated, a drawback of this simpler method is that
it cannot be applied to novel drugs. This limitation can be
overcome through integration of the drug–target network with
drug–drug (based on chemical similarity) and target–target (based
on sequence similarity) networks. In the study by Cheng et al.
(2012), random walks on these integrated heterogeneous net-
works were simulated to connect drugs with potential targets.
Using drug–drug connections, new drugs, for which no target
is yet known, can be linked to proteins via drugs that have known
targets.

Furthermore, the use of expression responses appears to assist
in the process of drug target identification. Starting with a net-
work of functional associations between proteins, Laenen et al.
(2013) evaluated whether differential gene expression upon drug
treatment can pinpoint the protein targeted by a drug. Strik-
ingly, while the expression changes of the target itself was only
moderately informative, integration of differential expression
observed in the target’s network neighborhood resulted in a dras-
tic increase in prediction accuracy. However, it remains to be
assessed, whether it is generally the case that expression of genes
functionally related to a target is altered by its corresponding
drug.

REPOSITIONING OF DRUGS
Closely related to drug target identification is the task of drug
repositioning, i.e., finding new therapeutic uses for existing drugs
(Tobinick, 2009). Since drug repositioning is based on known
drugs, it provides an attractive shortcut to the lengthy develop-
ment of new drugs. While the above mentioned approaches for
drug target identification also can be applied to drug reposition-
ing, several methods and software have been exclusively developed
for this task. For instance, Mathur and Dinakarpandian (2011)
proposed new possible disease–drug relationships through the
analysis of affected biological processes. After identifying processes
defined in Gene Ontology that were enriched by genes associated
with a particular disease, drugs were linked to these processes,
if they targeted central proteins of the PPI network represent-
ing these processes. Through comparing predicted disease–drug
relationships with ones that had been reported in clinical tri-
als, they found a statistically significant overlap. A similar, but
more direct approach has been implemented in the PharmDB
database, which integrates binary linkages between drug, proteins,
and diseases (Lee et al., 2012). New targets of existing drugs are
inferred using a method called Shared Neighborhood Scoring,
which evaluates weighted connections between drug and disease
nodes via their associated proteins in a tripartite network com-
posite. An alternative software tool, which combines structural
models with analysis of interaction profiles, is DRAR-CPI (Luo
et al., 2011). This web-server compares the binding behavior of a
candidate drug with a set of pre-determined drug–target interac-
tions using a docking approach. Similar interaction profiles can
indicate shared targets and common clinical application. The
number of included reference targets for docking, however, is
limited.

It is important to note, that the use of networks as computa-
tional tools is not necessary constrained to the representation of
actual molecular interactions, but can be used to represent any
kind of defined similarities or association between distinct enti-
ties. For instance, Iorio et al. (2010) derived a drug–drug network,
where links between drugs indicated similar expression changes
upon treatment; they exploited it both for drug target prediction,
as well as repositioning.

ANALYSIS OF SIDE EFFECTS
Physiological side effects can be caused by binding of drugs to
proteins (“off-targets”), in addition to their intended targets. As
side effects are crucial factors in therapeutic applications, their
accurate prediction is of eminent importance to avoid failure in
drug trials. Notably, systematic recording of side effects repre-
sents a broad phenotying on the level of the human organism,
providing valuable holistic information on the action of drugs.
A unique resource, with this objective, is the SIDER database,
which accumulates reported side effects for almost 1000 marketed
drugs (Kuhn et al., 2010). Using this database, Mizutani et al.
(2012) correlated a drug’s side effects with the proteins it binds
to. For this, side effects and bound proteins were represented as
binary profiles and statistically associated using a modified ver-
sion of canonical correlation analysis. The obtained correlation
was used subsequently for the prediction of side effects, by evalu-
ating the proteins that the drug binds to. Remarkably, it is equally
possible to predict a drug’s target based on its side effects. This
relationship was originally explored by Campillos et al. (2008);
they identified new targets of known drugs based on the sim-
ilarity of their side effects with those of other drugs. There is
now a database, which has implemented this approach, called
PROMISCUOUS (von Eichborn et al., 2011). It enables the inter-
active exploration of an integrated network of drug, protein, and
side effect nodes, and can be used to gain new insight into the
drug’s mode of action. Finally, side effects can also be indica-
tive for drug–drug interactions, which are frequently of clinical
relevance. It was recently shown that two drugs tend to inter-
act, if their targets are in close proximity in a PPI network, or
if they have similar side effects (Huang et al., 2013). Moreover,
combining information on physical interaction of drug targets
and recorded side effects improves the prediction accuracy for
drug–drug interactions.

In Table 1, we provide a selection of publicly available databases
and computational resources, which may be useful for the reader
to initiate their own investigations in the field of network-based
pharmacology.

NEW HORIZONS: IN VITRO REPROGRAMMING OF CELLS
USING SMALL MOLECULES
In the network-based approaches described above, drugs mainly
act within small sub-networks in order to “fix” or interfere
with particular processes. This contrasts with their recent use
in stem cell biology, where small molecules have been used
to re-wire entire cellular networks. Their main object in this
context is to convert (or reprogram) somatic cells, specific to
an individual, into stem cells. These cells may eventually pro-
vide a personalized supply of tissue to replenish cells lost in
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Table 1 | Publically available resource for network-based drug targeting and repositioning.

Resource URL Description Reference

DRAR-CPI http://cpi.bio-x.cn/drar/ Web server that derives and compares the interaction

profile of a inputted drug with those of a library of drugs

Luo et al. (2011)

DrugBank http://www.drugbank.ca/ Database containing detailed information for approved or

experimental drugs and their targets

Knox et al. (2011)

DvD http://www.ebi.ac.uk/saezrodriguez/DVD/ Add-on software packages for R and Cytoscape for drug

repurposing using gene expression data

Pacini et al. (2013)

Mantra http://mantra.tigem.it/ Computational on-line tool for analyzing the mode of

action of a drug using its induced gene expression

Iorio et al. (2010)

PROMISCUOUS http://bioinformatics.charite.de/promiscuous Database for drug repositioning based on integrated PPI,

drug–protein interactions, and side effects

von Eichborn et al. (2011)

SIDER http://sideeffects.embl.de Database containing side effects of marketed drugs Kuhn et al. (2010)

Stitch http://stitch.embl.de/ Database accumulating a large number of interactions

between chemicals and proteins for various organisms

Kuhn et al. (2012)

UniHI http://www.unihi.org Web-based platform integrating human molecular

interactions, gene expression, phenotypes, and drug

target information (Figure 1C)

Kalathur et al. (2014)

degenerative diseases. Pioneering work led by Yamanaka showed
that such conversion is possible through forced expression of
merely four transcription factors using viral vectors (Takahashi
and Yamanaka, 2006). The original combination of transcription
factors used by Yamanaka comprises Octamer-binding transcrip-
tion factor 4 (Oct4), Sex-determining region Y-box 2 (Sox2),
Kruppel-like factor 4 (Klf4), and v-myc avian myelocytomato-
sis viral oncogene homolog (c-Myc). However, this approach
suffers from low efficiency. Furthermore, the viral integra-
tion of exogenous transcription factors, in particular of onco-
genes, such as Klf4 and c-Myc, is unlikely to offer a viable
therapeutic option. Thus, efforts have been made by various
groups to find small molecules that can boost reprogramming
efficiency, as well as replace virally transduced transcription
factors.

Two main classes of small molecules have been identified so
far: (i) molecules that facilitate chromatin remodeling by inhibi-
tion of, e.g., histone deacetylase, and thereby increase the plasticity
of cells (Huangfu et al., 2008); and (ii) molecules that block sig-
naling events that induce differentiation. Examples of the latter
class are inhibitors of extracellular signal-regulated kinases (ERKs)
and glycogen synthase kinase 3 (GSK3; Silva et al., 2008). By
combining these two classes of small molecules, it is even pos-
sible to replace all four transcription factors (Hou et al., 2013).
A remaining challenge, however, is to determine the underlying
molecular processes of chemically induced pluripotency. So far,
only rudimentary models, which lack mechanistic details, have
been proposed for the activation of key transcription factors by
the applied molecules (Hou et al., 2013). Here computational
methods for “reverse engineering” of gene regulatory networks
can be very helpful. These methods aim to infer regulatory inter-
actions from observed gene expression patterns and comprise a
diverse set of statistical approaches such as regression, analysis

of correlation or mutational information or Bayesian networks
(Marbach et al., 2012). Usually, their application requires a large
set of genome-wide expression measurements and might not
scale up very well to the complexity of regulatory networks in
higher eukaryotes. Nevertheless, a recent study identified suc-
cessfully a novel regulator of stem cell differentiation through
reverse engineering of gene regulatory networks from microar-
ray expression data (De Cegli et al., 2013). We anticipate that
such approaches as well as systems biology in general will help
to establish a rational basis for creating chemically induced
pluripotency.

PERSPECTIVES
Our review highlights several applications of molecular networks,
in which they act as versatile interfaces between phenotypes
and drugs. While these applications demonstrate the utility
of network-based analyses, several major challenges still exist.
Firstly, the quality and coverage of interaction data need to be
improved and consolidated. Many interaction data sets suffer
from both detection and selection biases, which limit their use
(Futschik et al., 2007). Published drug target data also appear
to be compromised by their low reproducibility (Prinz et al.,
2011). Secondly, condition-specific networks need to be con-
structed, reflecting the dynamics of molecular processes, in
contrast to the static nature of current models. In this way,
it will be possible to study the effects of external and inter-
nal stimuli on network structure and function. Finally, the
vast majority of available drugs target network nodes, dis-
rupting the general activity of a specific biomolecule. Only a
small number of drugs are directed towards specific interac-
tions (Wells and McClendon, 2007). Such “link-directed” drugs,
however, can provide a more precise means to modulate molecular
networks.
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In summary, network-based analyses offer new ways of study-
ing targets and effects of drugs. Although challenges lie ahead,
network models promise to be powerful and versatile tools in our
quest to better understand and control molecular systems in health
and disease.
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Large-scale identification of metabolites is key to elucidating and modeling metabolism
at the systems level. Advances in metabolomics technologies, particularly ultra-high
resolution mass spectrometry (MS) enable comprehensive and rapid analysis of
metabolites. However, a significant barrier to meaningful data interpretation is the
identification of a wide range of metabolites including unknowns and the determination
of their role(s) in various metabolic networks. Chemoselective (CS) probes to tag
metabolite functional groups combined with high mass accuracy provide additional
structural constraints for metabolite identification and quantification. We have developed
a novel algorithm, Chemically Aware Substructure Search (CASS) that efficiently detects
functional groups within existing metabolite databases, allowing for combined molecular
formula and functional group (from CS tagging) queries to aid in metabolite identification
without a priori knowledge. Analysis of the isomeric compounds in both Human
Metabolome Database (HMDB) and KEGG Ligand demonstrated a high percentage of
isomeric molecular formulae (43 and 28%, respectively), indicating the necessity for
techniques such as CS-tagging. Furthermore, these two databases have only moderate
overlap in molecular formulae. Thus, it is prudent to use multiple databases in metabolite
assignment, since each major metabolite database represents different portions of
metabolism within the biosphere. In silico analysis of various CS-tagging strategies under
different conditions for adduct formation demonstrate that combined FT-MS derived
molecular formulae and CS-tagging can uniquely identify up to 71% of KEGG and
37% of the combined KEGG/HMDB database vs. 41 and 17%, respectively without
adduct formation. This difference between database isomer disambiguation highlights
the strength of CS-tagging for non-lipid metabolite identification. However, unique
identification of complex lipids still needs additional information.

Keywords: metabolomics, chemical adduct, chemoselection, Fourier transform mass spectrometry, isotope-edited

NMR, common subgraph isomorphism, graph theory, functional group resolved metabolite databases

INTRODUCTION
Metabolomics is the comprehensive study of metabolomes, which
comprise the entirety of metabolites interconverted by networks
of chemical reactions in living systems that make life possible and
can be regarded as the functional readout of the genome and pro-
teome (Kaddurah-Daouk et al., 2008; Le et al., 2012). Most of
these chemical reactions are catalyzed by protein enzymes that
interconvert a vast array of metabolites in complex networks.

Metabolites are bioorganic compounds that range widely in
size and chemical complexity from small compounds with a few
atoms (e.g., glycerol, C3H8O3) to more complex structures con-
sisting of hundreds of atoms and multiple functionalities (e.g.,
monosialotetrahexosyl ganglioside C77H139N3O31). The ability to
identify and quantify a wide range of metabolites is the first step
in a systematic elucidation and modeling of metabolic networks.
The next important step is the ability to track individual atoms
of various metabolites through the metabolic network using

isotopically enriched tracers (e.g., 13C, 15N, and/or 2H labeled
precursors) coupled with stable isotope-resolved metabolomics
(SIRM), from which metabolic networks can be robustly recon-
structed (Fan et al., 2009, 2010, 2011, 2012; Moseley et al., 2011;
Le et al., 2012). From such studies, we can acquire system bio-
chemical insights across a broad spectrum of biological and
biomedical problems (Lane et al., 2011; Ramautar et al., 2013;
Armitage and Barbas, 2014; Wood, 2014; Zhang et al., 2014).

Despite the increasing interest in studying the metabolomes
of different organisms, the systematic detection, identification,
and quantification of metabolites, i.e., metabolomics, remains a
challenge, which limits meaningful interpretation of metabolic
data. Metabolomics employs numerous analytical techniques
for elucidating metabolite structures and quantification, prin-
cipally mass spectrometry (MS), and nuclear magnetic reso-
nance (NMR). These complementary structure-based techniques
afford a wider coverage of metabolites and versatility of structure
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determination, particularly in terms of isotopic enrichment pat-
terns of metabolites in SIRM studies. For example, NMR is excel-
lently suited for determining different position(s) of 13C label(s)
in given metabolites (i.e., isotopomers) whereas MS readily pro-
vides the number of 13C atoms in a metabolite (i.e., isotopologs).
Both types of structural information are required for robust
reconstruction of metabolic pathways (Fan et al., 2012). The com-
bination of NMR with high resolution high sensitivity FT-MS
makes it possible to obtain molecular formulae of a large number
of metabolites as well as isotopomer and isotopolog distributions
(Pan and Raftery, 2007; Fan and Lane, 2008; Lane et al., 2008; Fan
et al., 2012; Lorkiewicz et al., 2012).

The high volume of data produced by these instruments
requires computational approaches for automated assignment of
the spectra and to analyze the data in an accurate, meaning-
ful, and timely fashion (Goodacre et al., 2004). Furthermore,
the exceptionally high resolution and sensitivity of FT-MS allows
for the detection of metabolites that have not yet been charac-
terized, complicating peak assignment and analysis (Kind and
Fiehn, 2006). Despite the extremely high resolution and mass
accuracy of ultra-high resolution mass spectrometers, assigning
a unique formula to most peaks remains a non-trivial problem.
Only by utilizing isotope abundance and isotopolog data, which
eliminates >95% of possible peak-formula mappings, can assign-
ment of a peak to a unique formula or a small set of formulae
be achieved (Kind and Fiehn, 2006). However, this approach
fails when dealing with isotopically enriched metabolites in
SIRM studies, where the natural abundance distribution no
longer holds. The many more detectable mass isotopologs arising
from each labeled metabolite demand even higher mass resolu-
tion and accuracy for isotope-resolved molecular formula deter-
mination, thereby making the existing assignment algorithms
error-prone.

An equally difficult problem arises when the molecular formu-
lae must be mapped to specific metabolites. This is typically done
by referencing a database of interest and searching for entries
that match the computed mass and/or formula for the mass
peak of interest. For human metabolomics research, the Human
Metabolome Database (HMDB) is a growing source for human-
specific metabolite data (Wishart et al., 2009, 2013). The HMDB
currently contains 40,427 entries for compounds observed in the
human metabolome. In addition to the HMDB, the KEGG Ligand
database also contains a large number of metabolite entries.
Although not uniquely focused on human metabolism, the KEGG
database currently contains 16,396 metabolic entries from a vari-
ety of species (Goto et al., 2002) and additionally numerous drug
compound entries. The compounds from other species not yet
observed in humans may provide possible hints as to the identity
of observed, uncharacterized human metabolites or metabolites
present in human tissue that derive, from external sources, like
essential amino acids, sucrose, bacterial and plant products. For
both databases, the entries are stored as variants of the MDL
Molfile (.mol) format, a standard format for storing the chem-
ical structure, atoms, bonds, ionization state, and stereochemi-
cal information needed to represent any given molecule (Dalby
et al., 1992). However, database searching is ambiguous, as often
any given formula can correspond to more than one entry. For

example, using the MOLGEN isomer generator and the formula
C15H12O7, 788,000 distinct structures are generated (even with
restrictions on allowed functional groups) (Benecke et al., 1995;
Kind and Fiehn, 2006). Fortunately, MOLGEN represents all pos-
sible structures, not just those that exist in known metabolic
networks. Nevertheless, the presence of isomers, known as mass
isomers in MS, greatly complicates the use of metabolite databases
for metabolite assignment by MS. To overcome this difficulty,
additional information must be obtained to accurately assign
metabolite mass spectra. Tandem MS is often used to obtain
chemical substructure of a given metabolite via its fragmenta-
tion pattern. Unfortunately, the data produced by tandem-MS
requires very complicated, predictive algorithms for metabolite
assignment and differences in fragmentation patterns generated
by different instruments, in algorithms used for data analysis, and
in data interpretation hampers the reproducibility and accuracy
of these methods (Nesvizskii et al., 2007).

Chemoselective adduct formation, i.e., CS-tagging, of metabo-
lite functional groups, with subsequent detection by ultra-high
resolution FT-MS and/or NMR provides additional sources of
chemical structure information that could facilitate the unique
assignment of metabolites. Isotopically enriched reagents can
be designed to react with particular functional groups present
in metabolites, such as carboxylate (Ye et al., 2009), car-
bonyl (Fu et al., 2011; Mattingly et al., 2012), amino (Guo
and Li, 2009), and sulfhydryl (Gori et al., 2014). Figure 1A
shows the carbonyl-selective aminooxy reagent for simultane-
ous MS and NMR chemical editing. The adducts formed can
be selected by isotope editing techniques by NMR or in high
resolution MS, and the tag further provides enhanced sensi-
tivity for MS (cf. Figure 1B). The subset of metabolites that
react must therefore contain the particular functional group
(Figure 1C), which when combined with stable isotope labeling
of the aminooxy reagent and detection by high mass accuracy and
isotope edited NMR shift data can often identify the metabolites
uniquely, especially resolving isomeric structures (cf. workflow in
Figure 1D). This CS-tagging approach provides information that
directly relates to chemical substructure, and can be combined
with accurate mass and fragmentation patterns from tandem-
MS methods. However, in order to efficiently use functional
group composition information along with molecular formu-
lae, metabolite databases with functional groups delineated are
needed.

Identifying functional groups in existing metabolite databases
provides a convenient way of creating such a functional
group-resolved metabolite database. Fundamentally, this problem
requires the identification of metabolite substructures that are
identical to functional groups of interest and storing this informa-
tion in a well-organized manner as part of each metabolite entry.
CheckMol is a publically available program which can determine
the presence and number of over 240 different functional groups
in molfile files (Haider, 2010b). Since its introduction in 2003,
CheckMol has remained the industry standard for detecting func-
tional groups within chemical structures and is a component
in several chemoinformatics packages. Although CheckMol is a
powerful and reliable tool, it does not use a generalized method
for searching for each functional group; rather the method used
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FIGURE 1 | Chemoselective tagging and large-scale detection of

carbonyl-containing metabolites by FT-ICR-MS. (A) A chemoselective (CS)
probe (QDA) for tagging carbonyl-containing compounds was designed to
contain three different functionalities, i.e., an aminooxy group for specific
reaction with carbonyls, a quaternary ammonium group for enhancing MS
detection, and a hydrophobic domain for partitioning CS adducts into organic
solvents to remove ionic matrix interferences. In addition, the R group in QDA
can be isotopically labeled (such as 13CD3 in ∗QDA) to facilitate automated
assignment of carbonylated metabolites (Mattingly et al., 2012). (B) Reaction
between pyruvate and QDA to form the oxime ether adduct is depicted. (C) A
crude polar extract of human lung adenocarcinoma A549 cells was reacted
with an equal mixture of QDA and ∗QDA before analysis by FT-ICR-MS. The
top FT-ICR-MS spectrum shows an expanded spectral region from m/z 250 to
900, while the inset below (as depicted by the green box) more clearly
illustrates the companion peaks of QDA and ∗QDA adducts. Blue and red
lines (below the spectrum) respectively denote the m/z values of unlabeled

and 13CD3-labeled QDA derivatives, giving a “bar-code” profile of the adduct
pairs (adapted from Mattingly et al., 2012). (D) Flow diagram from sample
through to data integration. Samples from various sources are extracted into
separate fractions of polar and non-polar metabolites and proteins (single
step, Fan, 2012) and nucleic acids, either genomic DNA or mRNA (Fan et al.,
2012). The metabolites are either separated by chromatography for MS (e.g.,
GC-MS, LC-MS) or subjected to direct infusion high resolution MS and NMR
(Lane et al., 2008, 2009). The knowns are identified by comparison with
standard databases (Fan and Lane, 2008; Lane et al., 2008). The unknowns
may be identified using additional experiments including tandem MS and
multidimensional NMR, especially if isotope enriched and where editing
techniques can be used. Alternatively, the samples can be reacted with
functional-group-specific reagents that introduce a tag that can be edited for
by NMR, and imparts increased sensitivity in MS. This additional information
is used to narrow down the possibilities in the database searches as
described in the text.

for each functional group is unique and hard-coded. In order
to add a new functional group to the list of functional groups
searched for by CheckMol, a new method must be written in
Pascal and then incorporated into the proper region in CheckMol,
without introducing errors (Feldman et al., 2005).

To develop a tool that can search for a user-defined set of func-
tional groups using a generalized strategy that does not require
code modification, a natural choice is to abstract a molecule as
a graph, in which the atoms are nodes and the bonds are ver-
tices. The problem of detecting similarity between structures then
is analogous to that of finding regions of similarity between the
two graphs, called isomorphisms. This is the well-documented
maximum common subgraph isomorphism (MCSI) problem in
graph theory, for which several algorithms already exist, such as
the Ullmann Algorithm (Ullmann, 1976). Also, graph theoretical
approaches are widely used in chemoinformatics, notably to eval-
uate the structural similarity between compounds (Hattori et al.,
2010) and to aid in the assignment of MS data (Hummel et al.,
2010).

The Ullmann algorithm in its original form is unsuitable
for our application as it implements a time-consuming brute
force method for finding isomorphisms and lacks optimizations
for isomorphism search in the context of chemical structures
(Raymond and Willett, 2002). We have now implemented a
novel algorithm loosely based on Ullmann’s for finding subi-
somorphisms in database compounds that are completely iso-
morphic with a specific functional group. Our algorithm, called
Chemically Aware Substructure Search (CASS), solves the sub-
graph isomorphism problem, which is NP-complete in compu-
tational complexity, but not NP-hard as in the case for MCSI.
CASS utilizes a short-circuiting method to greatly accelerate the
search for isomorphisms as well as a set of optimizations based
on chemical structural rules. Although metabolite molfile files
are readily available from KEGG and the HMDB, there is no
database of functional group molfile files. We have hand crafted
a database of 210 functional group molfile files using JChem
which includes most of the functional groups searched for by
CheckMol (Csizmadia, 2000). By applying our tools to both
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KEGG Compound and HMDB, we have constructed a func-
tional group-resolved database that combines the two databases
into SQLite (Owens, 2006) relational tables. This database can be
queried using the formulae detected by FT-MS along with CS-
tagging to aid in the assignment of metabolites. Furthermore,
additional chemical substructure information derived from either
MS-MS analysis or NMR can be readily incorporated into the
analysis by simply adding additional substructure molfile files for
query.

MATERIALS AND METHODS
DATABASE ACCESS
Although both the HMDB and KEGG databases are publically
accessible from web interfaces, local copies of the databases were
needed for our analyses. The HMDB database was downloaded
directly as a single SDfile (.sdf) file (i.e., flat file of concatenated
molfile files with additional structured information) from the
HMDB website. Like many sources of molfile files, the most recent
versions of the HMDB contain additional structural and chem-
ical information in each molfile file that is not specified in the
original V3000 molfile file specification; therefore we developed
a Perl script to handle these standard deviations from the molfile
file specifications and create a specification compliant version. As
the KEGG Ligand database is not available for download in any
consolidated format, we developed a Python program that takes
advantage of the KEGG REST interface to download molfile files
(or kcf files) for each entry in the database and then concatenate
them into a local copy of the KEGG database. The molfile files
for KEGG entries do not contain database IDs nor compound
names; these were collected from the KEGG database via its REST
interface and added to the appropriate molfile file by our Python
program.

Because we could not find a current functional group database
that fit our particular design criteria (ability to specify both
wild-carded and contextual atoms) (Kotera et al., 2008; Haider,
2010a,b; Eustis, 2011), we created one from scratch. To provide
the same functionality as the existing CheckMol program, the list
of functional groups detected by CheckMol was a natural starting
point. For each functional group, the structure of the functional
group was drawn by hand in JChem and the structures saved as
molfile files. The molfile format designates each atom as a partic-
ular element. Therefore, we have developed a new nomenclature
for describing these conditions. To designate that a particular
atom could be one of several element types, the element type
is designated as a list of possible element types separated by “|”
while an “!” before an element type specifies the element type can
be any element except the specified one (Figure 2). For example,
“H|O|N” as an element type would specify that the atom could
be hydrogen, oxygen or nitrogen while “!H” specifies that the ele-
ment type can be any element type other than hydrogen. These
descriptive facilities are more powerful than simple wild-carded
“∗” descriptive facilities available in other chemoinformatics tools
(Daylight Chemical Information Systems, 2008).

Furthermore, to allow searching for a specific chemical sub-
structure (e.g., −C=O or carbonyl) in particular chemical con-
texts (e.g., aldehydes or ketones), a way to designate atoms as
“contextual” was added. Contextual atoms are designated with

an asterisk after the element type and must be matched for a
chemical substructure but are not considered as part of the sub-
structure. For example, “C∗” indicates a required element type
of carbon that is not counted as part of the chemical substruc-
ture (Figure 2), for example, to distinguish between ketone and
aldehyde carbonyls. To identify ketone carbonyls exclusively, the
two carbon atoms bonded to the ketone carbonyl carbon atom
are designated as contextual and therefore must be matched for
the ketone carbonyl to be recognized but are not considered as
part of the ketone carbonyl substructure. As a result, the carbonyl
of an aldehyde, which is bonded to C and H, would not be recog-
nized. The ability to designate contextual atoms in our chemical
substructure descriptions is one of the main differences from pre-
viously published chemoinformatics toolkits that have substruc-
ture detection facilities. For example, while SMARTS allows for
wild-carded atom designation (Daylight Chemical Information
Systems, 2008) it does not allow for the designation of contex-
tual atoms. This ability allows CASS to cleanly determine which
atoms overlap between functional groups.

The functional group molfile files were concatenated to form
a flat database similar to the downloaded copies of KEGG and
the HMDB. Since flat files themselves provide no efficient means
of searching for a particular entry and therefore must be parsed
in their entirety, SQLite versions of these flat database files were
created, to enable indexed entry retrieval. SQLite retains the sim-
plicity and portability of flat files while offering the ability to
search for entries in an efficient manner. Additionally, tools writ-
ten in Perl were created to add a new entry to a SQLite database
from a molfile file, return a particular molfile file from a database,
and to check if a given entry exists in the database.

MOLFILE PARSERS
While molfile files accurately store chemical structures in a
human-readable format, the structure of the molfile file format
does not lend itself to computer manipulation and thus a more
computer friendly internal format was needed. Toward this end,
a molfile file parser was developed to convert molfile files into an
internal representation shared among all of the programs. Due to
differences between the formatting of KEGG and HMDB molfile
files, different parsing methods are required for each database
molfile file. Our parser can handle the molfile file variants used
in both KEGG and HMDB as well as the proprietary.kcf format
used in KEGG. This parser also handles the modified molfile file
format used in our functional group molfile files via a parameter
passed to the parser.

Regardless of the origin of the input molfile file, the final
data structure generated by the parser is the same, a “molecule”
object consisting of multiple data members representing different
constituents and properties of a molecule. For each atom in the
molfile file, an “atom” object data member is created that con-
tains the element type, number of bonds to the atom, the sum of
the bond order of all bonds to the atom and the index of the atom,
which is its order in the list of atoms in the molfile file. Similarly,
each bond has a corresponding “bond” object data member con-
taining the indices of the two atoms it bonds and the order of
the bond. Additionally, the molecule object contains the com-
pound’s database ID and name, a mathematical representation of
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FIGURE 2 | Example functional group molfile files. (A) The functional
group molfile file for acyl fluoride demonstrates the use of the !X element
type. The !H element type for atom 2 designates that it can be validly
mapped to any non-hydrogen element type atom. (B) Similar to acyl fluoride,
acyl halide uses the !H to designate a non-hydrogen element type.

Additionally, since the halogen component of an acyl halide can be any
halogen, the element type for the halogen atom is designated using the X|Y
element type. (C) A typical functional molfile file. (D) The ketone carbonyl
functional group uses contextual atoms to prevent matching of the molfile
files to carbonyl-containing moieties that are not ketones.

its bonded structure, and optionally, a string representation of the
molfile file from which it was generated.

In many database molfile files, implicit hydrogens are often
excluded to reduce the size of the files. These implicit hydrogens
must be added to the internal representation of each compound as
the hydrogens could be included in a functional group of interest.
We used standard molecular connectivity and valence methods
to add the missing hydrogens (Weininger, 1988). This proce-
dure does not account for pH or pK in these calculations and
hydrogens are added to produce non-charged molecules unless
the molfile file specifies otherwise (i.e., species that barely exist
in practice). This procedure was validated by comparing known
formulae for database compounds to computed formulae follow-
ing hydrogen addition. Owing to the deviation of KEGG and
HMDB molfile files from the molfile file standard, preexisting
packages for manipulating molfile files could not be used and
our own tool had to be created. These new tools add a vari-
ety of features in addition to adding implicit hydrogens and

they support non-standard molfile files and KEGG compound
files (.kcf), a molfile file derived file format used throughout the
KEGG database.

ADJACENCY MATRIX REPRESENTATIONS
In order to use the graph theory algorithms in our substruc-
ture search program, numerical representations of each database’s
chemical structure are needed. The two common options for
storing graph-like structures are adjacency lists and adjacency
matrices. Although the list representation requires less memory
than an adjacency matrix, matrices allow for direct testing of
isomorphisms using very quick matrix comparisons and multipli-
cation. In an adjacency matrix, each row and column corresponds
to a specific node in a graph, or in this instance, an atom in a
molecule (see Figure 3). The assignment of row or column to
atom is done using the index of the atom. Row and column N is
mapped to the atom with index N, therefore the first row and col-
umn both represent the first atom, the second row and column
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FIGURE 3 | Flowchart of major steps and representations needed by a

chemical substructure search algorithm. Chemical structures of a specific
compound and functional group are treated as colored graphs that are
converted into adjacency matrices with elements identified along the

diagonal. A mapping matrix (M) represents possible translations of specific
atoms between the compound and functional group. The mapping matrix is
searched for specific isomorphic mappings of the functional group mapped
completely onto the compound chemical structure.

the second atom and so on. The value for an element (i,j) of
the adjacency matrix corresponds to the presence or absence of
a vertex connecting the two nodes, which correspond to chemi-
cal bonds between atoms. If the value of i,j is zero, no bond exists
between the atoms.

To construct an adjacency matrix for a molecule with N atoms,
our program first creates an N × N square matrix (A) with all Ai,j

equal to zero. This saves a significant amount of time construct-
ing the matrix as the entire matrix object is initialized at once and
memory is already allocated for it. Second, as molecular graphs
are often sparse (i.e., the number of possible vertices is much
smaller than the maximum possible number of vertices), most
of the values of Ai,j will be equal to zero. Thirdly, such a matrix
can be created very efficiently utilizing functional programming
methods which are heavily optimized in Perl. Not all values of
Ai,j can remain zero, so for each bond object, the indices of the
bonded atoms are retrieved along with the bond order and the
corresponding values of Ai,j and Aj,I (as bonds are mutual) are
set equal to the bond order. For example after processing, a dou-
ble bond between atoms 2 and 4, A2,4 = 2 and A4,2 = 2. Once the
adjacency matrix is constructed, they are stored as an object data
member within the molecule object.

SUBSTRUCTURE SEARCHING
After the adjacency matrices for both the database compounds
and the functional groups are constructed, our algorithm
searches for isomorphic functional group substructures within
the database compounds. The starting point for our algorithmic
development was the Ullman algorithm (Ullmann, 1976). Owing
to the presence of numerous “goto” statements in the original
pseudocode, we converted this pseudo code into a control flow
diagram (Figures 4A,B) and then into a modern control flow
pseudocode representation (Figures 5A,B). We then deviated sig-
nificantly from this new pseudocode representation during the
development of our algorithm.

Given two graphs GA and GB representing the structure of
a database molecule A and a functional group or a generic

substructure query B and their corresponding adjacency matri-
ces AA and AB, the first step in both algorithms is the creation
of a mapping matrix M (see Figure 3) with dimension b × a,
where a and b are the number of atoms in A and B, respectively.
It should be noted that a > b, as B must have fewer atoms than
A, in order to be a subgraph of A. Each element of M is then
assigned a value of 1 or 0. If Mi,j = 1, the atom with index i in
B can be “validly mapped” to the atom with index j in A and if
Mi,j = 0, no valid mapping can exist between the two atoms. In
the traditional Ullmann algorithm, the definition of a valid map-
ping was determined by the number of vertices to the two nodes,
i.e., valid mappings can only exist when the number of vertices
to the jth point in A is greater than or equal to the degree of the
ith point of B. Thus, the number of vertices “colors” the node and
valid mappings are only allowed between nodes with the same
or appropriate “color.” Expressed in chemical terms, the jth atom
in A must have an equal or greater number of bonds as the ith
atom in B. By expanding the parameters that constitute a valid
mapping, the total number of possible mappings that have to be
tested can be minimized. In our algorithm, the element types of
the two atoms are compared as well, set the corresponding Mi,j

equal to zero (Mi,j = 0), if the element types do not match. Here
our expanded element types used in the functional group molfile
files is important, as !X could map to an atom not element X
(Mi,j = 1), X|Y|Z could map to an atom of element type X, Y, or Z
(Mi,j = 1). As we are searching for complete instances of the func-
tional group B as a substructure of A, every atom in B must have
at least one valid potential mapping to an element in A. Therefore,
if an entire row of M contains zeroes, no isomorphism can exist
for that functional group-database compound pair as there is an
atom with no possible valid mapping.

Since M represents simultaneously all possible mappings, not
individual mappings of functional group atoms to database com-
pound atoms, M must be searched to find specific mapping
matrices M’ for each mapping of all functional group atoms
to particular database atoms (Figure 3). Thus, a comprehensive
search of M enumerates all M’ and the computational speed
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FIGURE 4 | Pseudocode and control flow diagram of the original

Ullmann simple enumeration algorithm. (A) The original pseudocode
for the Ullmann simple enumeration algorithm. The symbol “:=” was
used in the original algorithm to denote assignment (e.g., d := d + 1
means “set d equal to d + 1”). (B) Control flow diagram generated
from the original published 7-step Ullmann enumeration algorithm
pseudocode due to the presence of numerous “goto” statements.

Although “goto” statements still exist in some programming language,
their use are highly discouraged in modern programming style in order
to prevent errors and to improve both the readability and the
maintainability of computer programs. The “goto” statements are
represented by blue lines in the control flow structure. The variable
SKIP2B was added and maps to no variable in the original algorithm, it
is for control flow purposes only.

FIGURE 5 | Modernized pseudocode and control flow diagram of the

Ullmann algorithm. (A) Modern Ullmann algorithm pseudocode produced
from the control flow diagram with variables renamed to promote
readability of the pseudocode. While converting the control flow diagram
to the pseudocode, we noticed a typographical error in original published

algorithmic pseudocode (line 2, step 7, in the simple enumeration
algorithm on page 33 of the original publication), which we assume has
been either overlooked or ignored since its publication. This line is marked
† in the pseudocode above. (B) Control flow diagram of the modernized
Ullmann algorithm.

of searching M is highly correlated to the number of “1” ele-
ments in M, which we call the “possible node mapping count”
(m = ∑

Mi,j). Now, the Ullmann algorithm directly searches M
in a depth-first manner; this involves copying and modifying large

two-dimensional matrices frequently to enumerate all M’. Our
algorithm avoids these costly operations by keeping track of the
enumeration process with two one-dimensional integer vectors,
v and u. |v| is equal to the number of atoms in B and v records
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which atoms in B are mapped to atoms in A at any stage of the
enumeration. The index of the element in v corresponds to the
index of the atom of B and the value of v[i] the index of the atom
in A to which it is mapped; so the value v[2] = 3 denotes that
atom two in B is currently mapped to atom three in A. Before
any value v[i] = j is assigned, we check that Mi,j = 1, so that the
mapping stored in v is potentially valid. To denote an unmatched
atom in B, the corresponding element of v is set equal to −1. Since
v stores the same information as M’ in the Ullmann algorithm,
we can skip explicitly calculating M’ all together saving both time
and memory. In circumstances where knowing the existence of
a valid mapping is sufficient, once a valid mapping is detected
the algorithm can return the valid mapping and terminate. When
applicable, this short-circuiting has the potential to substantially
improve performance when the number of possible valid map-
pings is very large or the likelihood of finding a valid mapping
early in the enumeration process is high (see Figure 7A). |u| is
equal to the number of atoms in A and the elements in u indicate
if a corresponding atom in A has been used in previously detected
valid isomorphisms and should therefore be excluded from fur-
ther enumeration. The index of a value in u represents the atom
with the same index in A and the value of u[i] is either zero or one,
representing if the column is non-excluded or excluded, respec-
tively. The pseudocode for our enumeration method is shown in
Figure 6.

Each M’ generated by the Ullmann algorithm contains only
one “1” per row and represents a particular mapping of the atoms,
which must be checked to confirm if it is a valid isomorphism.

The Ullmann algorithm checks for isomorphism by comparing
a matrix C to AB, where C = M’(M’AA)T., An isomorphism is
found if it is true that (∀i, ∀j) where (ABi,j = 1) then (Ci,j = 1).
In our algorithm, we circumvent the calculation of C by directly
comparing AA and AB using the information stored in v. If
(∀ 0 ≤ i ≤ |v|, ∀ 0 ≤ j ≤ |v|) (AB i,j = AAv[i],v[j]), then v repre-
sents a valid isomorphism and a copy of v denoted as v’ is stored
in a list of isomorphisms. Once an atom in the functional group
has been discovered in a valid isomorphism, the corresponding
element in u is set to one to exclude that atom from additional
enumeration. Additionally, values in u can be given as input
to the enumerator to prevent mappings to those atoms. This is
useful in excluding database compound atoms from searches or
to import information concerning previously detected chemical
substructure.

After all functional group-database compound pairs are
checked for potential isomorphisms, it must be determined
if these isomorphisms overlap one another or are subgraphs
of one another. These conditions can be determined quickly
by comparing the saved v’ from each identified isomorphism.
Consider two functional group isomorphisms E and F and their
corresponding mapping vectors vE and vF. First correspond-
ing sets are constructed from each vector and the values with
indices corresponding to context-only atoms are removed: VE =
{vE[i]|i is not the index of a context only atom in E} and VF =
{vF[i]|i is not the index of a context only atom in F}. With these
sets constructed, the vertices shared by E and F is simply the
set O = VE ∩ VF and the relationship between E and F can be

FIGURE 6 | Pseudocode and control flow diagram of the CASS

algorithm. (A) Pseudocode for CASS. In this algorithm, matrices are neither
copied nor modified, saving considerable computational time and memory.
Also, the control flow is cleaner than in the modernized Ullmann algorithm
pseudocode. Additionally, our short-circuiting method in the line marked †

allows the algorithm to terminate early when a valid mapping has been

identified. This allows for time savings when knowing that a single valid
mapping exists is sufficient and the number of valid mappings is not needed
(e.g., stereoisomerism detection). Also, partial invalid mappings allow
additional short-circuiting to take place in the line marked �, since the
algorithm is finding subgraphs in graph A that are isomorphic to graph B. (B)

A control flow diagram of CASS.
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determined by comparing O to VE and VF. If O = Ø, the two
sets are disjoint and therefore E and F do not overlap. If |O|=
|VE| = |VF|, the indices shared are identical and E and F repre-
sent mirror images of the same substructure. If |O| = |VE | and
O != Ø then E completely overlaps with F and E is a subgraph
of F. If |O|= |VF | and O != Ø then F completely overlaps with
and is a subgraph of E. Else, |O| < |VF | and |O| < |VE | and O
!= Ø E and F overlap but neither is a subgraph of the other. This
allows the program to differentiate functional groups that exist as
a subgraph of other functional groups from those that do not and
allow for proper counting of functional groups that are mirror
images. Functional groups that are determined to be a subgraph
of another functional group (conditions 2 and 3) have “subgraph”
appended to their name. Functional groups that are overlapping
but neither is a subgraph of the other (condition 4), both func-
tional groups have “overlapping” appended to their name. For
example, the hydroxyl group of a carboxylic acid would be des-
ignated a “subgraph-hydroxyl” while the carboxylic acid would
be designated simply as “carboxylic acid.” Additionally mirror
image functional groups such as anhydrides, match twice, and this
must be accounted for in order to arrive at the proper number
of instances of such substructures. This comparison is conducted
for all functional group pairings and once complete, the name
and number of functional groups is appended to the molecu-
lar formula to generate an “extended formula.” For example, if
only ketones were searched for, the extended formula for acetone
would be C3H6O1Ketone1. Functional groups can also be marked
as “super” functional groups. These groups are excluded from the
subgraph and inclusive designations and are used for functional
groups that match a large number of other functional groups in
the database or are a subgraph of many other functional groups.
Alkyl halide is such a “super” functional group as it matches alkyl
chloride, fluoride, iodide, and bromide; if not marked super, all
instances of alkyl chloride for instances would be overlapping
with alkyl halide.

In addition to searching for functional groups, CASS can also
be configured to search for potential stereoisomerism between
database compounds. First, all database compound pairings
between database entries with the same molecular formula or
extended molecular formula are identified. Searching by extended
formula can greatly decrease the number of non-stereoisomeric
pairing that must be tested as stereoisomers will contain the same
functional groups in addition to having the same formula while
other types of isomers may not. When searching for stereoiso-
mers the same process as used for functional groups is utilized
except that compounds A and B are the database compounds
being tested. As our adjacency matrices do not store stereochem-
ical information and oftentimes database molfile files only have 2
dimensional coordinates for the atoms, we do not utilize 3 dimen-
sional coordinates in making this analysis, only the knowledge
that two compounds have the same connectivity between their
atoms. Implicit and explicit hydrogens can be omitted during this
search to improve performance, since confirming two structures
as stereoisomorphic is very time consuming, especially for large
molecular graphs, where a large number of “bad mappings” must
to be tested. Therefore, we had to expand our “node coloring”
scheme. Thus, we included the “color” of bonded atoms to create

a complex “patterned color” for an atom. This scheme can be
recursively applied to include larger shells of bonded atoms. We
refer to our initial coloring scheme as “element coloring” and then
each shell of atoms included as “1-bond coloring,” “2-bond col-
oring,” etc. This improved node coloring scheme greatly reduces
the size of m (Figure 7A), making detection of stereoisomers of
large compounds tractable. Still, duplicate entries or duplicate
structures cannot be distinguished using this method; although,
it is reasonable to assume that the percentage of duplicate entries
within any one database is very small and that stereoisomers iden-
tified by this method represent true stereoisomers. While this
advanced node coloring scheme is straightforward to apply for
stereoisomer analysis, it is harder to apply to functional group
searching, due to boundary conditions for nodes with edges
outside the functional group.

STORING FUNCTIONAL GROUP INFORMATION
Although CASS finds functional groups in relatively short time,
it is undesirable to repeat the calculations every time the data
needs to be accessed. To prevent repeating costly calculations,
the functional group data for the database entries is stored as a
SQLite database. All of the database entries are stored in one table
with their molecular formulae, extended formulae, molfile files,
text representations of the atom and bond objects and the num-
ber of each functional group present, including separate entries
for overlapping and subgraph functional groups. Additionally
the functional group molfile files and a list of the functional
group names used when the database was created is stored as a
separate table in the SQLite database. This is to allow for max-
imum portability and flexibility as everything needed to add a
new compound entry is available in the SQLite database. With
the appropriate program, a pre-existing functional group resolved
database, and the molfile file for a new compound entry, the addi-
tional entry can be added with the functional groups stored in
the SQLite database without reconstructing the entire database.
However, if the list of functional groups is changed, the database
must be reconstructed as the number of overlapping and sub-
graph functional groups may change. This SQLite format allows
rapid and efficient searching for database compounds with cer-
tain properties including molecular formula and/or functional
group composition, matching our standard use-case involv-
ing such information derived from CS-tagging and acquired
by FT-MS.

CS-TAGGING STRATEGY ANALYSIS
After using CASS to determine the number of each functional
group within all database entries, the functional group iden-
tified databases were analyzed to determine which combina-
tions of functional groups under what conditions allows for the
best disambiguation of isomeric database compounds. A spe-
cific CS-tagging strategy is represented by a set of functional
group adducts and its’ “performance” is measured by the num-
ber of non-isomeric extended formulae obtained from the
database using the percent of non-isomeric compounds from the
combined database as the base line.

As the number of functional groups in our functional group
database is too large to test all permutations of all possible
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FIGURE 7 | Representative results of significant algorithmic

improvements in CASS. (A) With element coloring only, the average
number of mappings for each possible stereoisomer pair ranges from very
small to very large, with 50% of pairs having an m greater than 700 and a
maximum m of 25,219 (not shown in figure). Coloring using the element
types connected within N bonds reduces m for almost all pairs. With 1 Bond
coloring, 50% have an m greater than 400. A substantial improvement occurs
between 1 bond and 2 bond coloring, with 50% having an m greater than 100
and a maximum m less than 6300. Incremental improvements in m occur for
most compounds when N > 2. Using coloring schemes based on adjacent

atoms greatly improves the speed of finding possible stereoisomerism with a
negligible time investment to color each atom. This allows CASS to efficiently
check for stereoisomerism between very large structures. (B) By searching
for the four functional groups in the entirety of the HMDBv3.5 the time
savings observed by enabling short circuiting mirrors the improvement seen
in our trial set. Alcohols and alkenes show a large improvement while
epoxides and carboxylic acids do not. This likely relates to the relative
frequency of the functional groups. Very common functional groups show the
greatest improvement as it is very likely to find an instance of the group early
in the enumeration.

functional groups, strategies were generated iteratively assuming
that functional group inclusion will have an additive effect on
strategy performance. Therefore, strategies performing above a
certain cutoff are expanded to include an additional functional
group while poorly performing strategies are eliminated. In the
first iteration, all one-functional group strategies are generated
and the top 50 best performing strategies kept. For all itera-
tions i > 1, the strategies from i − 1 are expanded to generate
all pairings of each parent strategy with each functional group
detected in the database to generate new child strategies. The per-
formance of each child strategy is compared to the performance
of the parent strategy; if the performance difference does not
exceed a user-specified limit, the child strategy is removed. The
top Y best performing non-redundant child strategies are then
kept and passed into the next iteration. This process continues
until the specified number of iterations is met or until an iteration
generates no new child strategies above the performance cutoff.

As two functional groups (A and B) can perform synergis-
tically, where in strategy [A,B] provides a greater disambigua-
tion of isomeric compounds than the performance of [A] plus
the performance of [B] would predict. Therefore, for effective
strategy searching X and Y must be sufficiently large to allow
poor performing strategies a chance to be paired with a syner-
gistic functional group. Additionally, functional group adducts
may not form stoichiometrically in all circumstances and the
ideal strategy should take this into account. Therefore, strategy
analysis can be performed in one of three modes: stoichiometri-
cally where adduct formation can determine the precise number
of functional groups, non-stoichiometrically where adduct for-
mation can only determine whether a group is present and

pseudostoichiometrically where adduct formation can determine
if there is one or two instances of a functional group precisely but
it cannot distinguish among 3 or more instances.

Furthermore, the number of instances of each functional
group can be determined in a number of manners as we detect
overlapping and subgraphs of each functional group. The strat-
egy analysis was ran considering distinct functional groups only,
distinct + overlapping, distinct + subgraph, distinct + sub-
graph + overlapping, distinct + subgraph + overlapping +
super, and super functional groups only. Distinct only repre-
sents the functional groups likely to be detected by the most
specific of adduct forming compounds, while other permuta-
tions allow us to consider the detection of functional groups in
more permissive contexts. The increase in percent distinguish-
able compounds using the strategies generated by our analysis can
guide researchers in both using commercially available adducts
and guide development of new adducts.

COMPUTATIONAL PLATFORMS AND LIBRARIES
All timed analyses were done on three identical machines with
dual Xeon X5650 processors @ 2.67 GHz and 24 GB of 1333 MHz
ECC memory running Fedora 18 “Spherical Cow.” All three algo-
rithms were implemented in Perl 5.16.3 and SQLite v3.7.13 with
DBI 1.631 was used in all programs interacting with a SQLite
database.

RESULTS
ALGORITHM PERFORMANCE
CASS outperforms the older Ullmann algorithm significantly
when searching for functional groups within molfile files. The
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older Ullmann algorithm takes a prohibitively long amount
of time for all but the most trivial analyses, while our algo-
rithm readily performs in applications utilizing large numbers
of molfile files. The number of atoms for a set of represen-
tative database compounds and functional groups was deter-
mined as was the possible node mapping count (m) for each
functional-group/database-compound pair (Tables 1, 2). The
relationship between m and algorithm performance becomes
apparent in Figures 8–10. Figures 8, 9, based on Tables S1, S2
in Supplementary Material, visualize the obvious differences in
performance between the Ullmann algorithm and CASS with no
short-circuiting, in identifying four common functional groups
in ten molfile files. The non-linear behavior of the Ullmann algo-
rithm as shown in Figure 8 is clearly unsuitable for our functional
group searching. The pseudo-linear behavior of our new algo-
rithm as shown in Figure 9 is stable for values of m up to 150 and
remains sufficiently fast for large values of m during functional
group searching, making CASS tractable for systematic func-
tional group searches in KEGG and HMDB. Furthermore, the
demonstrated polynomial behavior of our algorithm (Figure 9E)
is the best expected performance, given the debate on whether the
common subgraph isomorphism problem has polynomial or NP-
complete behavior (de Melo et al., 2013). Also, Figure 10 further
highlights the relative differences between the Ullmann algorithm
and CASS on a log scale. This difference in performance increases
substantially with respect to m.

However, the improvement in our new algorithm with
short-circuiting is sporadic (Figure 7B and Table S3) and is
dependent on the order of the search of M and the number of
valid isomorphic mappings in M (i.e., number of isomorphic
M’). But an excellent case for utilizing the short-circuiting variant

Table 1 | List of representative database compounds and functional

groups.

Atoms and bonds in database compounds and functional groups

Compound name Atoms Bonds

Database compounds Deoxycytidine 29 30

R-3-Hydroxybutyric acid 15 14

2-Hydroxybutyric acid 15 14

Deoxyuridine 28 29

1-Methylhistidine 23 23

Cortexolone 55 58

2-Methoxyestrone 46 49

Deoxycorticosterone 43 69

1,3-Diaminopropane 15 14

2-Ketobutyric acid 13 12

Functional groups Carboxylic acid 5 4

Epoxide 3 3

Alkene 6 5

Alcohol 3 2

The number of atoms and bonds in the database compound and in the functional

group being searched for have an indirect impact on the performance of each

algorithm.

of our algorithm is when searching for stereoisomeric com-
pounds within databases. Two large stereoisomeric compounds,
A and B, will have a very large number of possible mappings as
they contain an identical number and type of atoms. A single
valid mapping of all atoms in A to all atoms in B is sufficient
to determine that A and B are stereoisomeric. Additional valid
mappings beyond the first convey no additional information
regarding the relationship of compounds A and B and do not
need to be determined. For a number of possible stereoisomers
from KEGG Ligand, both the short-circuiting and non-short
circuiting algorithms were compared, providing sporadic results
where the short-circuiting either performed better or comparably
to the non-short circuiting algorithm (Table S4 in Supplementary
Material).

SYSTEMATIC ISOMER ANALYSIS
The increased performance of CASS compared to the Ullmann
algorithm allows for the rapid detection of functional groups and
stereoisomers, which we used to create functional group-resolved
SQLite versions of metabolite databases. From our functional
group-resolved SQLite versions of the HMDBv3.5 and KEGG
Ligand (as of March 2014), several additional analyses were per-
formed. First, the number of distinct molecular formulae in both
databases was determined as well as the number of molecular for-
mulae the two databases have in common (Figure 11A). The 3557
molecular formulae were then compared against both databases
to determine if the molecular formula was isomeric in neither,
both, or either database. 39% were isomers in neither database,
32% were isomers in both, while 17 and 12% were isomers only
in the HMDB and KEGG, respectively (Figure 11B).

In addition to determining the shared isomers between the
databases, a historic trend analysis of isomerism was performed

Table 2 | Possible node mapping counts for paired functional

group/database compound searches.

Possible node mapping count (m)

Database compounds Functional group

CA Epoxide Alkene Alcohol

Deoxycytidine 46 22 18 26

R-3-Hydroxybutyric acid 25 11 8 15

2-Hydroxybutyric acid 25 11 8 15

Deoxyuridine 47 23 18 26

1-Methylhistidine 34 16 14 20

Cortexolone 84 46 42 155

2-Methoxyestrone 71 41 38 46

Deoxycorticosterone 70 45 42 43

1,3-Diaminopropane 18 6 6 13

2-Ketobutyric acid 23 11 8 13

The possible node mapping counts (m) between functional group atoms and

database compounds have a direct impact on algorithm performance. In most

cases, larger functional groups have larger m values than smaller functional

groups and therefore should take longer to search for. These values of m are

based on an element node coloring scheme.
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FIGURE 8 | Time trials for the Ullmann algorithm. In all cases, the
time needed for the Ullmann algorithm to find all instances increases
essentially exponentially with increasing m. Data were analyzed by
non-linear regression to t = aexp(bt). (A,B,D) The time to search for
carboxylic acids, epoxides and alcohols shows exponential growth with
respect to m. (C) The time needed to search for alkenes, while also

exponential, is much smaller than that needed for all other functional
groups, as the alkene group is the smallest of the four groups in both
number of bonds and atoms. This indicates that the time needed to
find a specific group varies with respect to its size in a strong
nonlinear exponential manner (alcohol with only one more bond and
atom takes much longer for m > 25).

(Figures 12A–C). The percentage of isomeric molecular formulae
in the HMDV3.5 and a combined database appear to have
plateaued at 43 and 46%, respectively (Figures 12A,C). KEGG
has reached a 28% isomeric content based on molecular formu-
lae. This lower percentage of isomers in KEGG is likely due to the
inclusion of pharmaceuticals and synthetic compounds that have
unique molecular formulae that are not found in nature, which
is probably why the isomeric content has not plateaued. What
is also interesting is that the percent isomeric entries in all three
databases (Figure 12B) is appreciably higher than the percent iso-
meric molecular formulae, indicating that a moderate number
of isomeric molecular formulae are represented by more than 2
isomeric entries.

SYSTEMATIC STEREOISOMER ANALYSIS
Additionally, the higher performance of CASS allows for the com-
parison of two database structures in order to determine if they
are stereoisomers of one another. For each database, all com-
pound pairs in which the two compounds have identical formulae
and the same number of bonds are tested for potential stereoiso-
merism. Since a single isomorphic instance of one database entry
in another is sufficient to identify stereoisomeric compounds,
our short-circuiting can be used to greatly accelerate these com-
parisons. As database structures can be very large, the potential
number of mappings must be kept small for efficient analysis; this
is achieved using 2-bond and 3-bond node coloring.

In addition to searching for stereoisomerism within each
database, stereoisomerism was checked for compounds with the
same formula and number of bonds between the two databases.
Entries with duplicate names were excluded from this analysis to

reduce the likelihood of comparing identical entries. The per-
centage of stereoisomeric compounds in the HMDBv3.5 and
KEGG is 1.14 and 9.43%, respectively. The combined database
has a percent stereoisomerism of 8.3%. Additionally, a historical
trend of stereoisomers in HMDBv3.5, KEGG, and the com-
bined database show early instability, followed by a downward
trend that is plateauing. The large difference in stereoisomerism
between KEGG and HMDB likely reflects the different portions
of metabolism best represented by either database. The HMDB
contains a large number of lipids and large aliphatic structures
that typically have numerous structural isomers but few stereoiso-
mers while KEGG has numerous sugars and other structures with
a high number of potential stereoisomers.

CS-TAGGING STRATEGY ANALYSIS
All instances of each functional group were identified in a
combined KEGG and HMDB database with duplicate entries
removed. Using the functional group-resolved SQLite version of
the combined KEGG and HMDB database with duplicate entries
removed, we systematically tested different experimental CS-
tagging strategies to determine, optimal strategies with 3, 5, 10,
or 15 functional group adducts (Tables S5A–C in Supplementary
Materials).

In all tests, 15 iterations were performed, with the top 50
strategies kept in the first iteration and the top 15 strate-
gies kept in subsequent iterations, and, with a performance
cutoff of 0.1%. The analysis was repeated under stoichiomet-
ric, non-stoichiometric and pseudostoichiometric quantification
expectations and different degrees of allowed overlap between
functional groups. Selected strategy types were compared against
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FIGURE 9 | Time trials for CASS with no short circuiting. (A) The time
needed to find carboxylic acids is pseudo-linear at m < 100 (R2 = 0.9799). (B)

Similar to carboxylic acids, the time needed to find epoxides is pseudo-linear
for observed m, (R2 = 0.946). (C) Similarly, the time needed to search for
alkenes grows pseudo-linearly with m (R2 = 0.98). (D) The time needed to
find alcohols remains low at all observed values of m but is less strongly
linear than with other functional groups (R2 = 0.8833). It is likely that with
respect to high values of m, all functional groups would show polynomial
growth; however, for most values compounds, m will be sufficiently small to
allow our algorithm to show pseudo-linear performance. (E) The time needed
to find all alkenes in the HMDB demonstrates the non-linear performance of
CASS for values of m > 150, as the overall trend matches a second-order
polynomial with an R2 of 0.9994. Although non-linear, the time needed grows
slowly enough to allow all functional group searches to complete in a

relatively short amount of time. To estimate an upper bound on the values of
m likely to be observed during functional group searching within metabolic
databases, the value of m for each pair of functional group with database
compound within the HMDB was determined. The values of m for each
functional group were recorded and the largest value of m for each functional
group was selected to create a set of the largest observed values of m. This
set of largest values of m represents the most strenuous calculations that
must be performed by our algorithm. The average largest value of m is 1007
with a standard deviation of 508. The largest value of m observed for all pairs
was 4104. Although, these largest values of m are within the non-linear
performance region of CASS, these values of m are still small enough to
allow for efficient functional group searching within any given database
structure. The time needed to find the other three functional groups in all
HMDB entries was also determined and shown in Figure S2.

FIGURE 10 | Direct comparison of the Ullman algorithm to CASS with no

short circuiting. (A–D) For all four functional groups, our algorithm shows
linear performance at these values of m while the Ullmann algorithm does not.

(E) The ratio of the time needed by Ullmann vs. our algorithm with respect to
m demonstrates that our algorithm is faster than the Ullmann algorithm in all
cases. This ratio increases with m and varies between functional groups.
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FIGURE 11 | Distinct molecular Formulae distributions across

HMDBv3.5 and KEGG Ligand. (A) In each database, the number of
distinct formulae was determined. Each formula was tested to see if it
existed in the other database. Of a total 15,403 formulae, only 3788

(24.6%) exist in both. (B) Each shared formula was compared against the
HMDBv3.5 and KEGG’14 to test for isomerism in either database. The
majority are isomers in either both or neither database, but some are
isomers in one database exclusively.

FIGURE 12 | Historic trends of % isomeric molecular formulae and

compound entries. (A) The historical trend in % isomeric formulae was
determined by analyzing the isomeric content ofa growing percentage of the
database, following the sorted order of IDs. This was done by iteratively
adding 1% of each database to a temporary database, calculating how many
distinct formulae there are in the database and the number of formulae for
which there is only one compound, which is the number of isomeric
formulae. For both HMDBv3.5 and KEGG’14, the % isomeric formulae

increase with the number of compounds, but both seem to plateau. (C) The
combined analysis was performed identically to the individual analysis, but
1% of both databases sorted by ID was added after each trial. The combined
analysis reveals that the % isomeric formulae seems to plateau at around
40%, remaining at that level from 55% onwards. (B) In contrast, the % of
isomeric compounds in the databases seems to grow at a slow but constant
rate for the HMDB, (fits linear with R2 of 0.9883 after 30%) and a fluctuating
but slowly increasing rate for KEGG.

no adduct formation to visualize the improvements in compound
disambiguation (Figure 13). Unfortunately the distribution of
isomers within the HMDB makes it a poor representation of
the effectiveness of CS-tagging strategies. Over 53% of the iso-
meric compounds in the HMDB are isomers of 9 or more other
compounds (Figure S1). This level of high isomerism within the
HMDB is due to the inclusion of a very large number of lipids
and triglycerides, many of which are structural isomers of one
another (different positions of double bonds in the acyl chains
and positions of acyl chains on the backbone) and cannot be
easily disambiguated by CS-tagging and MS alone. Additional
information from other methods such as LC and tandem MS
will be needed to resolve lipid structural isomerism, especially for
triglycerides. KEGG on the other hand has a much more manage-
able isomer distribution. Strategy analysis was performed using
both the combined HMDB and KEGG database as well as KEGG
separately.

Stoichiometric adduct formation consistently generates the
best increases in percent unambiguous compounds for both

databases and the ideal strategy of 3 functional groups varies very
little with varying the amount of overlap or with which database
was analyzed. The optimal three adducts with distinct functional
groups only increases the percent of unambiguous compounds
in the combined database and the KEGG database from 17.13 to
30.35% and from 40.98 to 61.63%, respectively. Strategies with 15
functional groups perform slightly better with performances of
36.67% for the combined database and 69.13% for KEGG alone.
Allowing for detection of overlapping, subgraph or super func-
tional groups offers only minimal improvement; less than 1%
for 3 functional groups and less than 2.5% for strategies of 15
functional groups.

In contrast, non-stoichiometric strategies provide the worst
increases in percent unambiguous compounds. For the com-
bined database, the ideal 3 functional group strategy only allows
for 23.18% of compounds to be uniquely identified. The per-
formance is better in KEGG alone, with the ideal strategy of 3
allowing 49% of compounds to be uniquely identified. As with
stoichiometric analysis, ideal strategies are similar between the
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FIGURE 13 | Percent of Unambigiuous Compounds with Selected

CS-Tagging Strategies. (A) In general, using more adducts improves the
disambiguation of compounds for all strategies. For pseudostoichiometric
and stoichiometric strategies, the difference seen in utilizing 15 functional
groups compared to 5 is roughly equal to the difference in performance
seen with 5 and 3 functional groups indicating that multiplexing multiple
groups offers increased performance but with diminishing returns. The
yellow vertical line represents the percent of unambiguous formulae without
adduct formation, the red line represents the percent of formulae without
stereoisomers, which cannot be disambiguated with CS-Tagging alone due
to stereoisomerism. In all three stoichiometric environments, very good
performance is achieved by detecting distinct instances of the functional
groups alone. The ability to detect subgraph or overlapping instances of
each functional group offers only marginal improvements in performance.
Super functional group only strategies consistently provided the worst
performance. Stoichiometric tagging offers the maximum percent of
disambiguation; however, it will be difficult to ensure consistent results
experimentally. Pseudostoichiometric adduct formation provides
performance close to stoichiometric tagging and much greater performance
than non-stoichiometric tagging. However, the performance of all the
strategies falls short of the theoretical maximum expected from

stereoisomerism alone. This is likely the result of the distribution of isomers
in the HMDB. Many structural isomers in the HMDB differ only slightly and
map to a relatively small number of formulae, making them difficult to
disambiguate. The functional groups comprising each strategy differ slightly;
please refer to Tables S5A–C to find the set of functional groups comprising
each strategy shown as well as the performance of additional strategies. (B)

Similarly the same analysis was performed using the KEGG database only.
As with 13A, the yellow line represents the percent of unambiguous
compounds without adduct formation and the red line the theoretical
maximum based on stereoisomerism within the database. As with the
combined database, stoichiometric strategies outperform non-stoichiometric
and pseudostoichiomeric strategies but pseudostoichiometric strategies
have only slightly lower performance. The highest performing strategies
allow for coverage of over 70% of all database compounds but stills fall
short of the theoretical 90.6% maximum (see Tables S6A–C for the
functional groups comprising each strategy). The better performance of the
various strategies in KEGG compared to the combined database is the result
of the different distribution of isomeric compounds in KEGG. Unlike the
HMDB, the isomeric compounds in KEGG are more evenly distributed
among KEGG molecular formulae, allowing easier disambiguation of
isomeric compounds (see Figure S1 in Supplementary Material).

combined and KEGG database, however, in non-stoichiometric
analysis, allowing for detection of overlapping, subgraph or super
groups does allow for noticeable improvements for smaller strate-
gies. Detection of overlapping, subgraph or super groups has an
unpredictable effect on the performance of each strategy depend-
ing on what database is considered and the number of functional
groups. In the combined database, detection of overlapping, sub-
graph or super groups decreases performance of three functional
group strategies by a marginal amount, while for KEGG, marginal
improvements are observed. However, their detection improves
performance of all strategies with 10 or more functional groups
in both databases marginally.

In reality due to the complexity and differing reactivity of
metabolites, stoichiometric adduct formation is unlikely to occur
for all compounds. However, pure non-stoichiometric adduct

formation is unlikely to occur as well; adduct formation will likely
occur in a pseudostoichiometric manner, wherein only one to
three instances of a functional group can be reliably identified in a
stoichiometric manner. Pseudostoichiometric strategies perform
significantly better in both databases than non-stoichiometric
strategies but only marginally worse than stoichiometric ones.
For the combined and KEGG databases, the best pseudostoi-
chiometric strategy of 3 allows for unique identification of 28.37
and 59.32% of compounds. The performance of these strategies
increases steadily up to 15 functional groups for both databases
up to 35.83 and 68.13% for the combined and KEGG databases,
respectively. Detection of overlapping, subgraph, and super func-
tional groups has a mixed effect for strategies with less than three
functional groups, but is marginally helpful for all strategies with
greater than 5 functional groups.
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Additionally, strategies were generated using only the super
functional groups under stoichiometric, pseudostoichiometric,
and non-stoichiometric conditions. In all cases, the super only
strategies delivered the worst performance by a significant mar-
gin and the algorithm terminated early due to the performance
cutoff in all cases.

Collectively the optimal strategies determined by this analysis
can be generalized to help aid in CS-tagging reagent development
and use. The most common functional groups in strategies with
five or fewer functional groups are alkene, methyl, ketone, car-
boxylic acid, dialkyl ether, and enol; therefore, adducts for these
functional groups will allow for the greatest disambiguation of
metabolites. Although reagents already exist for forming adducts
with most of these groups, no CS-tagging agent exists for methyl
groups nor can one be easily developed due to the group’s lack of
chemical reactivity. However, supplementary techniques such as
NMR could be used in lieu of a CS-tagging agent to determine the
number of methyl groups pseudostoichiometrically. Additionally,
the marginal performance increases achieved by allowing the
detection of overlapping, subgraph and super functional groups
in addition to distinct instances of each functional group, indi-
cates that reagents that can detect instances of functional groups
within other chemical moieties will not be necessary for effec-
tive CS-tagging strategies. Instead, multiple reagents capable of
forming adducts pseudostoichiometrically or stoichiometrically
against specific moieties should be multiplexed. The poor perfor-
mance of the super only strategies demonstrate that optimally,
reagents should form adducts with functional groups that are
neither exceedingly rare within the database nor ubiquitous.

DISCUSSION
Our new algorithm, CASS, significantly outperforms the
Ullmann algorithm in finding complete isomorphisms in chem-
ical structures. Although the prototypical solution to the MCSI
problem and by extension the common subgraph isomorphism
problem that we have solved, the modernization of the Ullmann
algorithm shows that it not suitable for identifying identical
regions between compounds. Additionally, the modernization of
the Ullmann algorithm revealed a typographical mistake in the
original publication.

CASS allows for the creation of functional group-resolved
databases necessary for assigning functional group resolved
molecular formulae derived from FT-MS analysis of CS-tagged
metabolites to specific chemical structures. Additionally, the
short-circuiting and advanced node coloring abilities of CASS
allows the detection of all stereoisomers in the KEGG and HMDB
metabolite databases within a few hours on a single midrange
workstation (less $5K). We use CASS to determine the theoretical
number of compounds (∼9%) that cannot be distinguished using
the combined functional group (from CS-tagging) and molecular
formula (from FT-MS) information.

Furthermore, conversion of the molfile flat file databases into
SQLite provides a number of advantages such as portability, ease
of query with CS-tagging and molecular formula data as well as
improvements in database access speed. Also, our variant of the
molfile file format expands on the traditional file format, enabling
the designation of more complex substructures within specific

chemical contexts. This is achieved by allowing dynamic element
typing for given atoms and support for contextual atoms to delin-
eate functional groups with common features (e.g., aldehydes and
ketones). Additionally, unlike many previous functional group
search programs, CASS does not require hard coding in order to
search for a given structure; therefore, the end user can easily add,
remove, or modify functional groups to his or her choice without
introducing errors into the program.

Our analysis of the HMDBv3.5 and KEGG Compound’13
shows only a low amount of overlap as only 24% of the distinct
formulae from each databases exist in both. Thus, current
database searches for metabolites based on molecular formulae
could be biased, depending on the choice of the database. In
addition, the significant presence of isomeric molecular formulae
in these databases (i.e., 43% in HMDBv3.5, 28% in KEGG
Compound 13’, and 46% in a combined database) indicates
that additional structural features such as functional groups
determined by CS-tagging will need to be included in molecular
formula-based database searches to facilitate unambiguous
metabolite assignment of a large number of detected mass
peaks. Moreover, a unique assignment of a molecular formula
in one database could map to multiple compounds in another.
Therefore, unique assignments should be checked in multiple
databases to prevent potential misidentification of MS-detected
compounds.

As an aside, the apparent plateauing at roughly 46% percent
isomeric compounds in a combined database (from HMDBv3.5
and KEGG’13) may indicate a biologically relevant percent
isomeric content of metabolomes in the biosphere. This would
naturally be due to the significant number of stereospecific
enzyme-catalyzed chemical reactions in cellular metabolism that
appears to maintain an approximately 50% stereospecific chem-
ical environment in living systems. The specific biological sig-
nificance of this phenomenon is not completely apparent, but
we suspect it may be due to some fundamental principle in
information theory that living systems take advantage of at the
stereochemical level.

Also, our analysis of CS-tagging strategies indicate that by mul-
tiplexing several functional group derivatizations in a single sam-
ple, using the unique isotope labeling distributions inherent in the
design of the reagents, it is possible to determine: (i) the numbers
of distinguishable metabolites having each functional group, (ii)
the exact mass of the desired radical with high resolution MS, and
(iii) chemical shift and molecular connectivity information with
NMR. Together these can distinguish between many isomeric
species with the same molecular formula but different functional
groups, and therefore greatly reduce the ambiguity of structural
assignment, especially for non-lipid metabolites. However, iso-
meric disambiguation of lipids will require additional methods
that identify specific substructure.

In conclusion, by coupling molecular formula determination
from ultra-high resolution FT-MS with additional chemical sub-
structure information like functional group identification from
CS-tagging or substructure determination from tandem MS-MS
or NMR, our chemically aware substructure search algorithm
CASS can provide robust assignment of FT-MS raw data to vari-
ous metabolites and their isotopic enrichment profiles (e.g., 13C
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isotopologs of UDP N-acetylglucosamine or UDP-GlcNAc) in
SIRM studies. The identity and fractional enrichment of labeled
metabolites thus obtained are valuable parameters for modeling
the contribution of various pathways to the synthesis of given
labeled metabolites from tracer precursors such as done for UDP-
GlcNAc synthesis from 13C6-glucose (Moseley et al., 2011). Thus,
the combined molecular formula and chemical substructure-
based computational tools described here are key components
of our computational pipeline to facilitate systems biochemical
understanding of human metabolome and its perturbations by
disease development.
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Contemporary biomedicine is producing large amount of data, especially within the fields of
“omic” sciences. Nevertheless, other fields, such as neuroscience, are producing similar
amount of data by using non-invasive techniques such as imaging, functional magnetic
resonance and electroencephalography. Nowadays a big challenge and a new research
horizon for Systems Biology is to develop methods to integrate and model this data in
an unifying framework capable to disentangle this amazing complexity. In this paper we
show how methods from genomic data analysis can be applied to brain data. In particular
the concept of pathways, networks and multiplex are discussed. These methods can lead
to a clear distinction of various regimes of brain activity. Moreover, this method could be
the basis for a Systems Biology analysis of brain data and for the integration of these
data in a multivariate and multidimensional framework. The feasibility of this integration
is strongly dependent from the feature extraction method used. In our case we used an
“alphabet” derived from a multi-resolution analysis that is capable to capture the most
relevant information from these complex signals.
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INTRODUCTION
Brain activity is without doubt the most complex process in nature.
While the body of research is exponentially growing, it is quite
amazing that fundamental building blocks or atoms of this pro-
cess are still quite unknown. Two of them indicate how far we
are in understanding brain processes; the first is the fundamental
synaptic modification rule in a single neuron, and the second is
internal brain representations of the physical world (and sensory
input).

For a long time, it was assumed that it would be possible to
describe the synaptic modification rule by deducing from obser-
vations, and analyzing them mathematically (Lynch et al., 1990;
Cooper et al., 2004) in a similar way as other physical rules have
been discovered. As the process turns out to be extremely com-
plex in terms of the different neuro-transmitters, neuro-receptors
and the chemical interactions which lead to the changes, it is now
assumed that further deductions and a potential breakthrough in
understanding synaptic modification may be obtained by mas-
sive computer simulations (Kandel et al., 2013). This is motivated
by the immense progress computers have made in the last two
decades, and the believe that computational power and memory
which resembles the brain will be reached in a decade (Kurzweil
and Grossman, 2005).

The quest for understanding the internal brain representation
is somewhat independent of the quest for understanding synaptic
plasticity. To illustrate how little we know about internal represen-
tations, we can take an object such as a desk, and point out that we
do not know what it is that makes the simple combination of a sur-
face and legs be represented (or recognized) as a desk. Specifically,
what is the difference in representation for two (similar desks),

is it mainly temporal, namely a different form of oscillation of
the same neurons, or spatial, mainly activity of different neurons
(Biederman, 1987; Edelman, 1999).

This somewhat frustrating description of the current state of
the art suggests that a certain change in the way we collect data
about the brain may be necessary so as to drive us to more
meaningful conclusions.

A step in that direction occurred when functional MRI (fMRI)
became popular. Then, not only we moved away from determin-
ing brain representations, but we also started looking at brain
activity in a very crude way. Looking at oxygenated blood to dif-
ferent regions of the brain as a marker for neural activity in those
regions, and doing so while integrating data in 3 s time windows.
This crude brain activity measure led to great progress in brain
activity interpretation and in attributing functional labels to dif-
ferent brain regions. Then came an even more surprising finding;
we realized that we do not need to fully understand the role of
certain regions in various cognitive and emotional tasks. Instead,
it is enough to know the typical (crude) pattern of activity in
a group of normal people, and apparently, an attempt to alter
the activity in such regions in a group of subjects that suffers
from some brain malfunction, may alleviate symptoms of that
malfunction.

This paper suggests that another step forward in understanding
brain activity and improving brain malfunction may come from
developing new methods which like fMRI, provide a view on dif-
ferent functional units of the brain, but, unlike fMRI can be taken
outside of the clinical setup and put into continuous mobile use to
operate in any environment and thus enrich our ability to observe
brain activity under natural settings.
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To motivate this, we note, that it is remarkable how much we
have learned about brain networks of activity from fMRI given its
temporal and clinical limitations (Cabeza and Nyberg, 2000).

The electroencephalography (EEG) is a much older method for
sensing non-invasively the functioning brain, with human record-
ings starting in 1924 (Haas, 2003). The electrical activity mainly
results from fluctuations in ionic current flows within (1000 or
more) neurons and it provides an indication to the type and degree
of activation of different brain regions (Niedermeyer and Lopes da
Silva, 2005). Throughout the century of EEG research, EEG energy
features were extracted from a small number of frequency bands
(e.g., Klimesch, 1999) and other features were extracted from time-
locked averaging (ERP and EP) of the response (for review see:
Luck, 2005). As the role of EEG in characterizing epilepsy was dis-
covered, it was determined that epilepsy is some form of excessive
synchrony between neurons and between brain regions. This has
led to the discovery of more advanced signal processing meth-
ods which are sensitive to early synchrony changes (Fisher et al.,
2005). However, more advanced signal decomposition and feature
extraction methods have emerged only very recently in the analysis
of EEG data (Duncan et al., 2013; Intrator, 2014).

It is likely that in the near future, there will be several new brain
activity representations, all of which will be rich in content and
will provide orders of magnitude more data as they will enable
continuous mobile monitoring. This paper discusses the usage
of such advanced methods, and application of methods which
were mainly developed for genomic data analysis, in brain activity
interpretation.

There is indeed, a huge overlapping between methods used
in genomic data analysis and methods used for brain-activity
interpretations. Among the most used we can quote correlation
methods, that has been used both for large scale gene-network
analysis and for several brain data analysis and modeling (Cooper
et al., 2004; Remondini et al., 2005). Other overlapping between
these two fields are given by the role of noise in the spontaneous
background activity in neural and genomic systems and the sub-
sequent modeling strategies (Milanesi et al., 2009) mutuated from
the field of complex systems. In the last 20 years another unifying
concept has been developed within the field of statistical mechan-
ics and complex systems: the concept of complex network (Albert
and Barabási,2002). The idea of complex network has been applied
to neural systems and to genetic systems by the fundamental tool
of connectivity and degree distributions such as the famous power
law that is observed in both systems. As a further analogy, at least
from the point of view of modeling and data analysis, there is the
concept of pathway. The pathways analysis for genomic systems
is now a common tool that provide a better interpretation and
simplification of this complex data (Francesconi et al., 2008). Nev-
ertheless, the neuronal pathways, or neuronal circuits and areas,
have a long history in neuroscience, starting from the classical
phrenological idea, about the localization of emotions and neu-
ronal functions. The modern imaging tools and methods are now
supporting and confirming the fact that neuronal functions are
precisely localized in the brain and that there is a strong relation
between the anatomical and the functional localization. This is
exactly the same that is observed in cells and tissues by pathways
analysis.

In this paper we will take in exam the relations between the
genomic and neuronal data analysis and modeling and will illus-
trate how this can be a powerful method for the analysis of a new
generation of data obtained from EEG. We strongly believe that
this method will be a further advancement in the field of Systems
Biology.

NOVEL BRAIN ACTIVITY INTERPRETATION
Electroencephalography sensing started at the beginning of the
20th century (see Swartz, 1998 for a full review). The first record-
ing of EEG from humans occurred in 1923, with the seminal work
of Hans Berger (Haas, 2003), who discovered the Alpha and Beta
rhythms of brain-wave oscillations. Later, other typical oscilla-
tions were discovered; those below alpha and those above beta.
With multi-electrode recording, it became apparent that the EEG
signal is not uniform across the skull, and that the signal observed
in each electrode is strongly affected by the cortical volume clos-
est to that electrode. This enabled the analysis of correlations of
signals between different regions (electrodes), or as is thought
now, between different (distributed) cortical networks (Buzsáki
and Draguhn, 2004).

While EEG is not considered spatially accurate, the analysis of
activity correlations across electrodes gave research a strong boost,
in particular, it enabled de-correlating between different sources of
brain activity using blind source separation methods such as inde-
pendent components analysis (ICA; Delorme and Makeig, 2004).
The introduction of ICA tools to the EEG community which was
mainly done by Delorme and Makeig (2004), led to a large body
of work in the analysis of EEG under many brain state conditions.
It also enabled an efficient artifact removal (mainly due to muscle
activity) from EEG data.

From this short review, one can conclude that separation or
decomposition of the EEG signal into different components is a
very effective way to study different brain networks in separation.
The question becomes, whether an electrode array is essential for
such separation.

While the body of work on multi-channel EEG signal decom-
position is huge, the amount of work on single-channel EEG
decomposition is very small. It was used for example to adapt
the features to different subjects for brain computer interface, but
from a 32-electrode cap (Yang et al., 2007). In this paper, we con-
centrate on EEG signal decomposition from a single EEG lead
which is given as the difference of two EEG electrodes. The sig-
nal difference between two frontal EEG electrodes can provide
the simplest measure of Cerebral Asymmetry (Henriques and
Davidson, 1990). This asymmetry has long been associated with
emotional reaction as well as during cognitive tasks (Davidson,
1988). Thus, if one wants to select a single EEG lead that can
cover bot emotional and cognitive brain states, it makes sense to
use the difference between Fp1 and Fp2, which are two frontal
electrodes.

Luckily, these electrodes reside on the forehead and thus, may be
easier to put, and can be dry without the need of a conductive gel.

Using a 3-sensor EEG as in Figure 1, Intrator (2014) has discov-
ered features that can be obtained from a single EEG lead and may
be useful for emotional and cognitive brain state discovery. These
were found using a two stage process: first, a signal processing
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FIGURE 1 |The EEG sensor.

and decomposition is applied to propose candidate features, and
then, big-data mining and robust statistics methods are used to
prune the features and test the robustness and universality of the
remaining features across subjects and across conditions. These
brain activity features (BAF) provide potential new insights on
brain activity and states. They distinguish between three major
types of activity: focused, distributed, and chaotic.

Before describing the distinction, we briefly explain what can
be seen in Figures 2 and 3. Each column of each panel represents
the activity of a single BAF (in this case, 121 different features)
at a certain consecutive time point of about 1 s. In all panels, the
BAFs are the same and are ordered in the same order. Each panel
represents about an hour of brain activity. The BAFs which were
obtained from different subjects, use the heat color map is used to
represent the magnitude of activity, so the more brown/red each
pixel is the more active the corresponding feature in the specific
time location is. From the activity during the “focused” state, it is
apparent that there is a certain correlation and continuity between
the features, so that the activity, which can change in time between
different features, changes in a continuous way, so that features
that are presented close to one another are more likely to become
active. The chaotic stage of non-REM sleep is the only exception.

The relation between these features and well-known EEG fea-
tures or known areas and networks of brain activity is subject
to study and will be described elsewhere. Some indications from
anecdotal evidence suggest that the activity in the early part of sleep
resembles activity during Anesthesia and during some forms of
meditation. From studies done on that meditation performed dur-
ing fMRI scans, we deduce that these specific features correspond
to activity in the medial pre-frontal cortex.

Figure 3 depicts the richness of the brain states as is observed
by the BAF during sleep and fatigue.

The left panel represents close to 3 h of activity while the
right panel represents about an hour and a half of activity. Clear

distinction between three known sleep stage are see and they
correspond to the early, REM and non-REM stages.

As is well known, sleep monitoring is crucial for the early
detection of physical and mental health problems; diagnosis and
treatment of insomnia; and diagnosis and monitoring of demen-
tia. Fatigue monitoring is crucial when the brain is engaged in tasks
that require fast thinking and response, especially in roles where
alertness is essential to performance and safety (e.g., a pilot). The
right panel indicates the strength of the BAF for fatigue monitor-
ing: it depicts the brain activity of a subject briefly falling asleep
while watching a movie. Temporal regions where stronger and
weaker engagement with the movie are clearly visible, as well as
the length and depth of sleep.

COMPLEX NETWORK THEORY
In the last decade, physics has been expanding to new research
areas. In particular, life-related sciences (ecology, sociology, eco-
nomics, and last but not least biology) have been showing striking
analogies with complex systems arising from various physical
areas. Such approaching has happened from both fronts: on the
life science side, huge amounts of data have become available
for detailed analysis, thanks also to the Internet, through which
this data is nowadays easily collectable and queryable (e.g., stock
market financial series, social networks, high-throughput biolog-
ical data). On the other side, many physical and mathematical
tools, that had been proven useful in explaining complex phe-
nomena like polymer growth or spin glass, began to spread to
other research areas like biological and social sciences in a broad
sense.

The common trait of these research fields can be found in the
framework of network theory, which focuses on the relationships
among elements and allows to draw general conclusions, even
though the details of the system are not completely known or
easily tractable from a mathematical point of view. Relaxing the
attention to the details of the specific interaction or element, net-
work theory aims to provide tools for the characterization of a set
of relationships, represented as edges or links, occurring among
similar elements, referred to as vertices or nodes.

One of the most powerful approaches to physical systems is
statistical mechanics. Many results (for “ideal” gases or solids)
have been obtained by considering random interactions between
elements of the system, so that a “mean field theory” could be
built from the average behavior of the system. The main draw-
back of this mean field approach (and the actual challenge at
the same time) is that complex systems (to which living and life-
related systems belong) are often characterized by a non-trivial
set of interactions, and a mean field approach can completely
miss the interactions. Moreover, social and biological systems can
be considered as constantly far-from-equilibrium systems, since
equilibrium for every life-related process equals to death, and a
continuous influx and efflux of energy and matter is necessary to
maintain life-suitable conditions. It is thus quite hard to fit them
into equilibrium-based models that we can say to constitute the
“core” of classical statistical mechanics.

An approach that has received renewed attention is based on
the so called Master Equation (CME) that describes the tem-
poral evolution of the probability of having a given number of
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FIGURE 2 |Three different brain states based on the brain activity features found by Intrator (2014).

FIGURE 3 | Different brain activities features during sleep and Fatigue. See text for details.

molecules for each chemical species involved. The discrete prob-
abilistic approach, as with CME, is attractive because it ensures
the correct physical interpretation of fluctuations in the presence
of a small number of reacting elements (as compared to contin-
uum approaches as Langevin and Fokker-Planck formalism; van
Kampen, 2007) and because it provides a unitary formulation for
many biological processes, from chemical reactions to ion chan-
nel kinetics. The CME theory can be related to predictions on the
noise levels in selected biological processes, as for example during
transcription and translation (Friedman et al., 2006). In particu-
lar, the observation that mRNA is produced in bursts varying in
size and time has led to the development of new models capable
of better explaining the distributions of synthesized products (Cai
et al., 2006).

The models based on CME can help to characterize the role of
noise in networks reconstruction as well as the role of fluctuation
in the enhancement and maintenance of biological functions.

Furthermore, the ME approach, allows to compute all the
thermodynamic quantities, including entropy and free energy,
with the consequent possibility to characterize the system as a
non-equilibrium system if the detailed balance condition is not
satisfied.

One of the greatest contributions, which may be given by net-
work theory to the understanding of biological and social systems,
is that the network architecture may reflect the dynamical pro-
cesses that led to it. In a pure statistical-physical fashion, different
“universality classes”can be sought for in order to fit the process we
are studying, be it the ask-bid mechanism for a stock, the patterns
of gene expression or neuronal activation following a stimulus. We
remark that the features of a network model are peculiar from a
static viewpoint (e.g., the relation between network topology and
the evolutionary model that led to it) and from a dynamic view-
point (e.g., the responses to perturbation, or the noise features of
a stochastic dynamics). Recent models of social networks (Holme
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and Newman, 2006) show that the situation can be even more
complicated, with nodes interactions affecting network topology
and network topology affecting node interaction dynamics. This
is a common paradigm for biological systems at several levels, for
genomic, nervous, and immune (for a recent review, see Gross and
Blasius, 2008).

MULTIPLEX NETWORKS
During the last years, a growing interest in the so called multiplex
networks has gradually grown within the scientific community.
A multiplex network is a topological structure where individual
nodes can have links belonging to several layers of networks at the
same time. The multiplex, or multivariate network was well known
in social sciences at least starting from the seventies (Boorman and
Harrison, 1976).

A useful example for pointing out the differences between net-
works and multiplex is the analogy, from a mathematical-statistical
point of view, with univariate and multivariate data.

A univariate variable is identified by single measurements; for
example a population survey to estimate the average weight of
elderly. Since we are only working with one variable (weight), we
would be working with univariate data.

A multivariate variable is identified by multiple measurements
for each sampling unit. If for example, in the same population of
elderly, we are collecting not only weights, bur also blood pressure,
heights, heart rate, etc, we will have 4-uples of values.

In the field of social science and social networks there are many
examples of multiplex. In general, each individual node can have
different kinds of social ties or relations or transportation systems
where each location is connected to another location by different
types of transport.

In social sciences a multiplex is defined on the basis of the exis-
tence of multiple relations among actors, where actors are defined
accordingly to the actor–network theory (ANT; Latour, 1987; Law
and Hassard, 1999). At a larger scale relations among nations are
characterized by a plethora of cultural, economic, and political
exchanges as well as from other form of connections.

Single networks have been studied extensively (Albert and
Barabási, 2002; Boccaletti et al., 2006) also from a dynamical point
of view (Dorogovtsev et al., 2008) and in social sciences (Wasser-
man and Faust, 1994). Nevertheless, in nature there exist many
systems that cannot be considered as single networks. Notice-
able examples are: transportation networks, climatic systems,
economic markets, energy-supply networks, ecological networks,
human brain and metagenomic systems (Bianconi, 2013).

Multiplexity is thought to play an important role in the orga-
nization of large-scale networks. For example, the existence of
different link types between agents explains the overlap of com-
munity structures observed in ecological, genomic, metagenomic,
and social networks (Szell et al., 2010).

The concept of multiplex is taking new space in modern Biol-
ogy. As a paradigmatic example we will consider metagenomic
data and suitable methods for multivariate associations between
multiple set of omic data on the same population.

The human metagenome is the set of Homo sapiens genes
plus the trillions of genes in the genomes of microbes that live
in the human body. The microbial genome (microbiome) is in

a dynamical relation with the human organism and helps it by
crucial functions such as metabolic processes, shaping, control
and protective immune (IS) system development, that helped
the (co)-evolution of human being and ultimately also the brain
development.

With the term Metagenomics, we define the set of omics
measurements aimed to quantify the composition and the inter-
actions dynamics between the host and the microbiome. This
includes characterization at the level of DNA (metagenome), RNA
(meta-transcriptome), protein (meta-proteome), and metabolic
network (metabolome), both for the host and the microbiome.
Hence, H. sapiens is a metaorganism (or super organism) where
the different microbiota present in different organs play a major
physiological and pathological role.

The interaction between GM and host is personalized, dynamic,
bidirectional, history-dependent and is taking place in a multi-
variate way, by exchange of various molecules: metabolic, genetic,
immunitary etc. The dynamic properties of the GM are caused by
the fact that GM is a complex ecosystem with a complex dynamics
derived by the interactions with components such as the virome
(the set of viruses in the human body) the IS and the Neural Sys-
tem. The natural way to characterize the interaction between GM
and host is to perform multiple intersection between metagenomic
layers an to reconstruct networks and multiplexes.

From this perspective, social systems and biological systems
can be seen as a non-linear superposition of complex networks,
where nodes represent “actors,” “genes” or metabolites and links
capture a variety of different social and biological relationships.
Human societies and biological systems can be regarded as large
numbers of locally interacting agents, connected by a broad range
of relationships based on exchange of molecules or social rela-
tions. These relational ties are highly diverse in nature and can
represent a variety or relations (friendship, love, communication)
or ecological interactions (exchange of nutrients, predator/prey
relationship, cooperation, amensalism, or neutrality).

The networks in the different slices are not independent,
their shapes are interconnected and reciprocally influenced; one
network can act as enhancer or inhibitor on the other.

For instance networks in the brain can have excitatory and
inhibitory connections, and these can influence the behavior of
neurons in other slices. Another example is the transcriptional
network where connections intra-slice can modify connections
inter-slice (e.g., splicing and transcription factors). Also the case of
metagenomic networks is best understood within the framework
of multiplex: the cross-talk between host IS and microbiome is
influenced by ecological interactions between the Gut Microbiota.
Hence we can say that several biological systems, including the
brain, can be characterized as a superposition (a linear combina-
tion, or also a non-linear combination) of its networks, all defined
on the same set of nodes. This superposition is usually called mul-
tiplex, multirelational, multimodal, or multivariate network (see
Figure 4).

NETWORK RECONSTRUCTION FROM GENE-EXPRESSION
DATA BY A PRIORI BIOLOGICAL KNOWLEDGE
High-throughput gene expression analysis has become one of the
methods of choice in the exploratory phase of cellular molecular

www.frontiersin.org August 2014 | Volume 5 | Article 253 | 92

http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Biology/archive


Castellani et al. Integration of omics and EEG methods

FIGURE 4 | Scheme of a multiplex network with four layers. The same
nodes appear in every multiplex layer, but every layer can have different
internal connections. In general, in every layer we can have different kinds of
networks, both in terms of topology or because of different represented
relationships. For example, we could have a multiplex in which in one layer
there are genes connected by a transcription network, in the second layer the

proteins (produced by the genes) can interact, bind, or be co-expressed, and
in the third layer the enzymes encoded by the proteins are embedded in a
metabolic network. The typical network observables (e.g., connectivity) that
in a single network are scalar values for each node, in a multiplex become a
vector (one value for each layer), thus the relationship between nodes based
on these vectors can be more complex than in a single network.

biology and medical research studies. Although microarray tech-
nology has improved measurement accuracy, and new statistical
algorithms for better signal estimation have been developed
(Hekstra et al., 2003; Irizarry et al., 2003; Affymetrix Inc.), repro-
ducibility remains an issue (Fortunel et al., 2003). A way to
overcome this difficulty is to extend the analysis, in particu-
lar the interpretation of the results, from a single-gene level (in
which variablity is maximal) to a higher level in which genes
are grouped into functional categories. This approach has been
shown to be more robust and reproducible (Subramanian et al.,
2005; Manoli et al., 2006), since the “integration” of multiple gene
expression patterns may “average out” fluctuations (i.e., false pos-
itives). Moreover, it mat lead to an easier biological interpretation
of the experimental observations, since the single significant genes
are embedded into functional categories or processes of clearer
biological meaning.

Gene ontology (GO; Ashburner et al., 2000) and biological
pathways are the two main gene-grouping schemes in use. GO
organizes genes according to a hierarchy of terms, that from a net-
work point of view is defined as a directed acyclic graph (DAG),
in simple terms a “tree” in which genes are the “leafs” and the
grouping categories are the “branches” (thus following a hierarchy
from the external branches to the “root”). This DAG is divided
into three categories: “cellular component,” “biological process,”
and “molecular function.” Genes appear in more than one level
in each of the three categories, but no relation between genes is
described (apart from them being in the same group). The bio-
logical pathway database cured by the Kyoto University (Kyoto
encyclopedia of genes and genomes, KEGG; Kanehisa and Goto,
2000) is probably the most known: it groups genes into pathways
of interacting genes and substrates, and contains specific links

between genes and substrates that interact directly. Both databases
are manually curated but incomplete, also because the knowl-
edge of gene functions and interactions is still evolving. Each gene
belonging to the GO database belongs to several categories, nested
as in a phylogenetic tree: starting from a gene, we can reach the
root through several branches, representing all the categories it
belongs to. A limit of GO is the choice of the categories, that might
not be so rigorous or univocal. KEGG provides instead a more
detailed organization of the genes, since the relations are the exact
biochemical interactions occurring inside the cell, but it contains
information on fewer genes than GO, since fewer genes are so
clearly characterized in terms of their products and interactions.

Different approaches have been proposed to identify significant
gene groups based on lists of differentially expressed genes. Several
methods have been implemented that can be directly applied to
existing gene-grouping schemes. GOstat (Beissbarth and Speed,
2004) compares the occurrences of each GO term in a given list
of genes (tested group) with its occurrence in a reference group
(typically all the genes on the array) assigning a p value to each
term. In the context of pathway analysis, a similar approach is
used by Pathway Miner (Pandey et al., 2004) which ranks path-
ways by p values obtained via a one-sided Fisher exact test. Other
methods allow investigators the possibility to define their own
gene-grouping schemes. For example, Global Test package (Goe-
man et al., 2004) applies a generalized linear model to determine
if a user-defined group of genes is significantly related to a clinical
outcome. With the gene set enrichment analysis (GSEA; Mootha
et al., 2003) an investigator can test if the members of a gene set
tend to occur toward the top or the bottom of a ranked gene list
obtained from the differential expression analysis, and therefore
are correlated with the phenotypic class distinction.
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In this paper, we extend the significance analysis of gene
pathways to higher order structures, i.e., networks of pathways
whose intersections contain a significant number of differentially
expressed genes. Network structure can reveal the degree of coor-
dination of different biological functions as a consequence of the
treatment, as well as the presence of “focal areas” in which groups
of genes play central roles. We show examples in which some
biological functions (related to specific pathways) are biologically
relevant for the studied process, due to their position inside the
pathway network. This analysis can be extended to groups of genes
at the “interface” between pathways, whose imbalance can affect
more than one biological function.

Our approach is aimed at understanding how external pertur-
bations, such as gene activation or tumor induction, can induce in
various types of cells, cell lines or derived tissues, behaviors that
can generate, integrate, and respond to dynamic informational
cues.

The broad question that we are trying to answer is how a cell
converts perturbations of its signaling activity into a “binary,” or
at least discrete, decision, resulting in the appearance of a given
phenotype. Thus the signaling activity has to be diffused within
the cell between and within pathways. A signaling pathway is not
a rigid unit, since it can achieve one ore more functions with
different subsets of its elements. The communication with other
pathways, due to the fact that many elements are shared between
several pathways, may be captured by looking at those elements
belonging to the interface between pathways.

NETWORKS AND MULTIPLEX FOR BRAIN MODELING AND
DATA ANALYSIS
THE PATHWAY MAPPING
According to the theory of neuronal circuits, a neuronal pathway is
formed by a series of interconnected neurons that can be associated
with a given response. With this definition, we can use methods
for pathway analysis initially designed for gene expression studies
and based on network theory (Remondini et al., 2005).

Biological pathways can be identified in two ways:

(1) By a priori biological knowledge (supervised method)
(2) By a data driven approach (unsupervised method)

The “a priori biological knowledge” approach is based on the
idea that we have expert information on pathway structure and
interconnections. The classical example is the metabolic and sig-
naling pathways as coded by biochemistry experts (see KEGG,
ReconX). In the field of neuroscience this corresponds to rely-
ing on the vast literature in brain areas identification based on
functional imaging.

The data driven approach, is based on some properties of the
collected data. For example, we can define a pathway as a set of
neurons (a network) whose activity is associated in time. Corre-
lation with its variants (e.g., parametric and non-parametric) can
be used for this purposes. Moreover, it is possible to characterize
the causality relationships between data (e.g., brain areas) with
several methods. Granger causality (Granger, 1988), is a way to
test if a time series X Granger-causes Y, by comparing lagged val-
ues of X and Y. It can be used both for searching many-to-one
or one-to-one relationships, but for a high-throughput dataset

(e.g., fNMR voxel data dynamics) it can be computationally very
demanding. Other methods are based on partial correlation (for
review Mirowski et al., 2009) and also on the so called Gaussian
Graphical Models (Yin and Li, 2012).

Relevance networks (Butte and Kohane, 1999) are a popular
method for the analysis of time series of expression levels. The
basic idea is to construct a network of similarity of the time
patterns. Several similarity measures have been used, such as cor-
relation and mutual information. This technique can represent
multiple connections, and capture negative as well as positive cor-
relations. Once the matrix containing the similarity measure for
all pairs of genes has been computed, a threshold is used to define
the significant links in the network. Network validation can be
obtained by permutation testing, i.e., by randomly shuffling the
time series or just shifting the phase (Schreiber and Schmitz, 2000).
A similar approach has been applied to metabolic networks (Mar-
tins et al., 2004; Camacho et al., 2005) using computed metabolite
correlations to infer changes in regulation using samples from
different physiological states.

An alternative approach is offered by graphical Gaussian
models (GGM) that use partial correlation as a measure of inde-
pendence between two genes. Partial correlations are related to
the inverse of the correlation matrix, and in GGMs missing edges
indicate conditional independence. One of the biggest problems
with GGMs is that the correlation matrix is usually singular and
cannot be inverted. Different approaches have been proposed to
circumvent this problem: restrict the number of elements analyzed
to less than the number of samples (Kishino and Waddell, 2000;
Waddell and Kishino, 2000; Toh and Horimoto, 2002) use partial
correlation coefficients of limited order (de la Fuente et al., 2004;
Magwene and Kim, 2004; Wille et al., 2004); approach the matrix
inversion as an ill-posed inverse problem through regularization
methods (usually via empirical Bayes, such as variance reduction,
see Dobra et al., 2004; Schafer and Strimmer, 2005).

Although co-expression is not a direct indication of
co-regulation, and it is neither capable to give informations about
causal relationship due to its intrinsic symmetry, it is a very useful
tool that can be used to interpret the effect of a perturbation in
eliciting different phenotypes when combined with an ontology
analysis. Moreover, in a time-series correlation-based approach,
the choice of the time window can be critical. Most of the state-
of-the art analysis (e.g., for defining functional areas in the brain)
are based on whole time-series analysis (one long time window)
but recent works seem to show that useful information can be
extracted also at shorter time scales (Liu and Duyn, 2013). The
key point is to assess if the time resolution available by fMRI is
enough for these purposes: some simulation works seem indeed
to point in this direction, thus justifying the use of small time
windows (Honey et al., 2007). The choice of optimal time window
size, besides depending on the time resolution of the experimental
setup (fMRI and EEG are very different from this point of view),
also depends on the characteristic time scales involved in the brain
activity process. This also remains an open issue, even if many
experimental observations (Buzsáki and Draguhn, 2004) and the-
oretical models (Haimovici et al., 2013) show a sort of chaotic,
or anyway multiscale on a broad range, spectrum of time scales
related to brain activity.
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FIGURE 5 |Time series of the 121 features analyzed during EEG recording in three different conditions: (A,B) sleep; (C) dream activity.

FIGURE 6 | Correlation coefficients distribution (over the whole time

series of each experiment) as in Figure 5: (A,B) sleep; (C) dream activity.

It can be easily seen that the histograms have similar shapes (in terms of

number and range of values) for the two similar rearing states (A and B,
sleep). This picture does not allow to specify if the same links (correlation
between features) have similar values.

FIGURE 7 | Reconstructed networks in the three cases of Figure 5:

(A,B) sleep; (C) dream activity. Starting from the correlation
matrices, an arbitrary threshold value was set (r > 0.8, but the
results were qualitatively similar for a broader range of threshold
values, from 0.75 to 0.85) in order to define significant links

between features (expressing similarity over time of the linked
features). These networks show which features are highly correlated
during the different recordings, thus topological observables related
to these network may provide a generalized representation of the
different rearing states.
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FIGURE 8 | Multiplex-like representation of correlation-based

networks. In the picture are shown the three square adjacency
matrices (121 by 121, corresponding to the EEG extracted features)
obtained for states (A–C; from bottom to top, respectively). Blue dots:
no link; red dots, existing link. The overlap between the states is higher
for cases (A,B), expressing a similar brain state (corresponding to a

sleep state): about 5.2% of the possible N (N − 1) links are the same
for networks (A) and (B), whereas for the other intersections the
values are about 10 times smaller (0.3–0.5%). Adequate sampling
statistics may help to define specific patterns characterizing each rearing
state, and similarity measures can be performed to classify the different
states.

As an example, here we apply the methods described previ-
ously in the cases of reconstruction of the gene expression data
to experimental measurements obtained from the EEG device. As
it can be seen (Figure 5), novel feature extraction methods can
emphasize the differences and similarities between brain states.
As a second step, a network reconstruction starting from time
correlation of the selected features can be performed (Figures 6
and 7): the multiplex structure applied on the adjacency matri-
ces in the three states (highlighting the links rather than the node
structure of the network, Figure 8) allows to find which parts of
the network are overlapping for the different states. An increasing
number of recordings in different states, applied to different sam-
ples (in order to build a “compendium” of observations) will help
in building a “library” onto which new experimental observations
can be mapped.

CONCLUSION
In our opinion, novel techniques (such as fNMR) and more
classical techniques (such as EEG) must be integrated by novel
processing and analysis tools, able to extract relevant features of
the signal at the single-trace level, but also able to reveal significant
interconnections (causal or associative) between traces. Moreover,
any possible relevant biological information (e.g., about anatomic
regions) must be integrated with the experimental data, in order
to enrich the statistical significance of the performed analysis and
its biological interpretation.

For these purposes, a great emphasis must be given to feature
extraction methods (overcoming the classical Fourier analysis) and
to network and multiplex approaches, that may allow to integrate
the different informations both in time and space, and to take
into account the global complexity of the signal. From this point
of view, the panorama of analysis methods for brain data can
be enormously enriched by the transfer of knowledge of already
existing tools coming from the field of Systems Biology, which is
exploiting network approaches and a priori biological knowledge
since its beginning.

The pathway analysis and its generalization to networks and
multiplexes gives the enormous possibility to merge in a unify-
ing framework heterogeneous data as those arising from “omics”
measurements and those arising from imaging and EEG. This
possibility opens new scenarios for combining microscopic and
macroscopic information on single patients that can shed new
light in the field of personalized medicine.
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GLOSSARY
NETWORK
A network Newman (2003) is the schematical representation of a
set of relationships (links) between elements (nodes). Mathemat-
ically it can be represented by a NxN square matrix (adjacency
matrix, with N the number of nodes) with non-zero elements
(equal to one for topological networks and to a real value for
weighted networks) where a link exists between two nodes. Other
representations are available, eg. a NxL incidence matrix (N num-
ber of nodes and L number of links) in which −1 and 1 values
are put in each row corresponding to the leaving and the entering
node. This formalism represents a sort of “generalized” derivative
(or better a finite difference) for a function defined on the nodes,
and is the basis for the Laplacian Operator formalism for networks.

CENTRALITY
Measures for nodes, links or network subsets that help ranking
these elements based on their topological/structural characteris-
tics. Common centrality measures are connectivity degree (num-
ber of incoming/outgoing links), betweenness centrality (ratio of
shortest paths passing through a node/link), eigenvalue centrality
(like Google PageRank, in which a node is important if it is con-
nected to important nodes, leading to an eigenvalue problem for
the adjacency matrix). More recent measures, working in particu-
lar for dense and weighted networks, are salient links (Grady et al.,
2012) and spectral centrality (Pauls and Remondini, 2012).

MULTIPLEX
A multilayer network (multiplex) represents a set of networks
in which the same nodes may appear onto different layers with
different relationships. A multiplex can be thought for genes,
which proteins appear in Transcription networks (as transcription

factors), in Protein–Protein interaction networks (as proteins),
and in Metabolic networks (as enzymes controlling metabolic
reactions). In neuroscience, we can define a multiplex con-
sidering anatomical vs. functional networks, or neuronal net-
works characterized by different classes of neurotransmitters and
receptors.

COMMUNITIES
Networks very often can be dissected into parts, reflecting special
relationships between nodes belonging to the same community.
These groups can be defined by a priori knowledge (like differ-
ent anatomical or functional regions) or deduced by network
topological properties. Clustering methods can be applied to the
network as a function of the chosen metrics (e.g., by paths or
measures of overlap between node neighborhoods), or communi-
ties might arise from dynamical processes applied to the network
(e.g., considering transient states of random walks over the
network).

NETWORK-BASED STATISTICS
More and more often Systems Biology is integrating common sta-
tistical tests (Student’s T test, ANOVA and their nonparametric
variants) with null models derived from the network structure
in which data are embedded. Single-probe statistics (for genes,
proteins, neurons) can be scaled up to higher structures like
biochemical pathways or brain regions in a recursive manner
(Francesconi et al., 2008), and can be enriched by information
about significance of their neighbourhood. Moreover, differ-
ent network structures can be compared and a probability can
be assigned to such comparisons in order to assess biological
relevance of the observed structure (see a recent comment on
Singleton, 2014).
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The Library of Integrated Network-based Cellular Signatures (LINCS) project is a
large-scale coordinated effort to build a comprehensive systems biology reference
resource. The goals of the program include the generation of a very large multidimensional
data matrix and informatics and computational tools to integrate, analyze, and make
the data readily accessible. LINCS data include genome-wide transcriptional signatures,
biochemical protein binding profiles, cellular phenotypic response profiles and various
other datasets for a wide range of cell model systems and molecular and genetic
perturbations. Here we present a partial survey of this data facilitated by data standards
and in particular a robust compound standardization workflow; we integrated several
types of LINCS signatures and analyzed the results with a focus on mechanism of action
(MoA) and chemical compounds. We illustrate how kinase targets can be related to
disease models and relevant drugs. We identified some fundamental trends that appear
to link Kinome binding profiles and transcriptional signatures to chemical information
and biochemical binding profiles to transcriptional responses independent of chemical
similarity. To fill gaps in the datasets we developed and applied predictive models. The
results can be interpreted at the systems level as demonstrated based on a large number
of signaling pathways. We can identify clear global relationships, suggesting robustness
of cellular responses to chemical perturbation. Overall, the results suggest that chemical
similarity is a useful measure at the systems level, which would support phenotypic drug
optimization efforts. With this study we demonstrate the potential of such integrated
analysis approaches and suggest prioritizing further experiments to fill the gaps in the
current data.

Keywords: systems-biology, data integration, drug profiling, chemical similarity, kinome profiles, transcriptional

signatures

INTRODUCTION
Modern molecular biomedical science relies to a great extent
on understanding gene function, and significant progress was
made in understanding the roles of numerous individual genes
(Silverman and Loscalzo, 2012). However, the most critical unmet
medical needs correspond to complex diseases caused by a com-
bination of genetic and environmental factors, such as in cancer.

Many studies have demonstrated that cancer emerges from
abnormal protein-protein, regulatory and metabolic interactions
caused by concurrent structural and regulatory changes in mul-
tiple genes and pathways (Nagaraj and Reverter, 2011; Acencio
et al., 2013). Further advances in the prevention, diagnosis and
treatment of cancer require a more comprehensive knowledge
of the molecular mechanisms that lead to the malignant state.
Therefore, understanding cancer pathogenesis requires knowl-
edge of not only the specific contributory genetic mutations but

also the cellular framework in which they arise and function
(Hong et al., 2008). Cancer cell lines and primary cancer cells
have recently been established as powerful model systems to study
cancer biology and the pharmacology of drug responses in cancer
subtypes. To deconvolute, model, and understand drug sensitivity
relies on systems-wide approaches to integrate large-scale biolog-
ical responses in diseased and healthy cell states, involving various
molecular entities such as drugs, proteins, genes, transcripts, cel-
lular, and molecular processes, characteristics (e.g., genetic) of
the cell model systems, etc. (Barretina et al., 2012; Heiser et al.,
2012; Yang et al., 2013). Of particular interest for the devel-
opment of novel drugs is their molecular mechanism of action
(MoA). MoA describes biochemical interaction through which a
drug modulates the corresponding target resulting in a pheno-
typic response (or pharmacological effect of the drug). Although
there are studies linking drug pharmacology to transcriptional
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responses (Lamb et al., 2006), the connection to drug targets
and the chemical structure of drugs is underexplored, partially
because of a lack of large-scale profiling data. Such insights
are of particular interest for the rational development of next-
generation poly-pharmacology drugs (Hopkins, 2008). Here we
present such a study based on data generated at the Library of
Integrated Network-based Cellular Signatures (LINCS) project1.

It is one of the major goals of the LINCS project to gener-
ate an extensive reference set of cellular response signatures to
representative small molecule and genetic perturbations that can
facilitate the development of computational systems-level mod-
els of complex diseases and drug action. Common patterns from
these data (signatures) include information about gene tran-
scription, protein binding, cell proliferation, cell signaling and
other cellular phenotypes with a particular focus on cancer. The
LINCS data matrix extends into several dimensions including
the model systems (cell lines, primary cells), the perturbations
(such as small molecules), and the readout including the genome-
wide transcriptional profiles, Kinome-wide binding profiles, and
cell-viability and phenotypic profiles against a broad range of
cell lines. These biological responses are currently generated, col-
lected, and standardized to facilitate their integration. Data and
tools generated in the LINCS consortium are available to the
research community via the LINCS website (http://lincsproject.
org). The integration of these data and their analysis relies on
robust metadata standards developed at LINCS (Vempati et al.,
2014). There are also a few recently published approaches that uti-
lize specific LINCS data sets such as transcriptional profiles (Chen
et al., 2013a,b) or kinase inhibition profiles (Shao et al., 2013).

Here we apply these standards and report their implemen-
tation with a focus on small molecules. We report several case
studies involving multi-level integration of such diverse LINCS
datasets. Based on large amounts of publically available kinase
inhibition and binding data beyond LINCS, we built and applied
computational models to fill gaps in the LINCS data matrix to
enable much more comprehensive integrative data analyses. We
demonstrate some global trends that link chemical features of
small molecule perturbations, chemical biology, genomics and
cell viability profiles illustrating the complexity and scope of
LINCS data and how datasets can be mined. In several exam-
ples we show meaningful and biologically interpretable linkages
among different signature types in the context of small molecule
drugs and known signaling networks.

We hope that our survey and integrative analyses illustrates the
wide scope and potential of the LINCS project and will motivate
others to use LINCS generated data and knowledge to enhance
their research on diverse biological and biomedical problems.

MATERIALS AND METHODS
LINCS ASSAYS AND DATASETS
LINCS datasets cover a range of assays and technologies. Details
about LINCS assays, data and tools are available at the LINCS
project website (http://lincsproject.org/). For the analyses pre-
sented here we used three different types of LINCS data. All

1http://lincsproject.org/

data used here can also be obtained via our LINCS Information
FramEWork (LIFE) search system2.

Transcriptional response profiling data (L1000)
For the purposes of this study we selected two L1000 experiments
(Peck et al., 2006) with fairly dissimilar cell lines, A549 (non-small
cell lung carcinoma) with 1027 compounds tested, and VCAP
(prostate carcinoma) with 741 compounds tested, in order to
compare expression profiles among the same cell lines as well as
between different ones. Although there is no simple measure of
cell line similarity (LINCS is one of the first systematic efforts
that contribute to the large-scale generation of cellular response
signatures), for the purposes of this study we consider these cell
lines in the basis of their origin from different organs. In total,
here we investigate 1768 “is_ gold” signatures, corresponding to
1,729,104 data points (total number of Z-scores; perturbagens ×
transcribed genes measured × cell lines). All LINCS L1000 data
and signatures are available at the Broad LINCS Cloud3. For more
details on the L1000 data see Supplementary Material.

KINOME-wide binding profiles (KINOMEscan)
LINCS kinase biochemical profiles were generated at Harvard
Medical School (HMS) using the DiscoveRx KINOMEscan
technology4 , which is a competition binding assay. A panel of
478 purified kinases was profiled against 78 small molecule com-
pounds. However, the majority of LINCS compounds were not
profiled in the KINOMEscan assay and we therefore generated
predicted KINOME-wide inhibition/binding profiles based on
classification models (described below).

Cell growth inhibition profiles
Cell growth inhibition datasets (assay developed at the Center
for Molecular Therapeutics at Massachusetts General Hospital)
(McDermott et al., 2007; Garnett et al., 2012) were retrieved from
the LIFE database and the data were aggregated by averaging
replicates. 39 small molecules were tested against 582 previously
standardized cell lines at different concentrations (in the range
from 0.004 to 15 µM) and one time point (72 h) and number of
surviving cells counted. The measured cell viability values center
around mean of 81% (corresponding to 19% growth inhibition)
with a standard deviation of 31.68 across all concentrations.

SMALL MOLECULE CHEMICAL STRUCTURE STANDARDIZATION,
IDENTIFICATION, AND ANNOTATIONS
Compound information for small molecule perturbagens was
received from the LINCS Data Production centers, HMS and
Broad Institute. To identify unique and common compounds
required a rigorous structure standardization pipeline that we
implemented for the LINCS program. We used Pipeline Pilot
8.0 (Pipeline Pilot, 2011) components to generate the struc-
tures and remove addends and they were then subjected to the
PubChem5 chemical structure standardization procedure using

2http://life.ccs.miami.edu
3http://lincscloud.org/
4http://www.discoverx.com/technologies-platforms/competitive-binding-
technology/kinomescan-technology-platform
5http://pubchem.ncbi.nlm.nih.gov/
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the Power User Gateway (PUG) service. In order to further
identify PubChem CIDs we used additional service provided by
PubChem PUG. The entire process was automated in a custom
protocol using Pipeline Pilot. Using this process, a total of 5364
(as of October, 2013) unique LINCS compounds were obtained
and LINCS small molecule (LSM) IDs assigned. More details on
the procedure can be found in the Supplementary Material.

Additional information and annotations for the standardized
structures were retrieved from PubChem but also from numer-
ous external resources including DrugBank6 , the NCBI7 MLP
probe reports, the NCATS pharmaceutical collection (NPC), and
the Protein Data Bank (PDB) (Berman et al., 2003). Compounds
were annotated as approved drugs, kinase inhibitors, MLP probes,
PDB ligands and, if information available, as kinase inhibitor of
type I or type II (defined by the kinase ATP-binding site con-
formation in the ligand-bound form) (Dar and Shokat, 2011).
All compound information can be queried, browsed and down-
loaded via the LIFE search system (http://life.ccs.miami.edu) and
the LIFE project website8.

To characterize the diversity in chemical space of the tested
LINCS compounds, we generated a histogram of their pair-
wise chemical similarities based on the Tanimoto metric using
extended-connectivity fingerprints of length 4 (ECFP4) (Rogers
and Hahn, 2010).

Based on unique LSM IDs we identified overlap of screened
compounds among the different LINCS assays. While many com-
pounds were tested in the L1000 gene-expression assay at the
BROAD Institute, only few of those were tested in different assays
at HMS.

SMALL MOLECULE KINASE INHIBITOR MODELS
We generated predicted kinase inhibition/binding profiles for all
LINCS compounds to fill missing information of those com-
pounds not (yet) tested in the HMS KINOMEscan assay. For that
purpose we built Laplacian-corrected naïve Bayesian classifica-
tion models using the procedure previously described (Schurer
and Muskal, 2013); the models used here were rebuilt based
on the new kinase inhibition data that doubled in the mean-
time illustrating rapid growth in published kinase inhibition
data. Small molecule kinase activity data was extracted from the
Q2 2013 release of the Kinase Knowledge Base (KKB, Eidogen-
Sertanty)9 . After standardization and aggregation based on
unique kinases and compounds as previously described, the data
amounted to more than 510,000 kinase structure data points with
more than 270,000 actives (pIC50 > 6) and more than 590,000
total compounds covering the entire human Kinome. For each
model, the number of total data points and actives was consid-
ered and only models for kinases with reasonable amount of data
were built. For computational kinase profiling, we selected only
models with the area under the receiver operating characteristic
(ROC) curve greater than 0.9 and if they were based on at least
20 unique activity data points with 10 of them being considered

6http://www.drugbank.ca/
7http://www.ncbi.nlm.nih.gov/
8http://lifekb.org/
9http://eidogen-sertanty.com/kinasekb.php

active (pIC50 > 6). This selection resulted in 229 kinase mod-
els for which we could make confident predictions (for these 229
kinase models the additional information regarding their charac-
teristics [target, number of data points, number of actives, ROC
score, and enrichment factor for 1% for leave-one-out cross vali-
dation] can be found in Dataset 1 in the Supplementary Material).
The model classifier outcome is a prediction of a compound being
active (prediction value is true) or inactive (prediction value is
false) for a given kinase. The outcome of performing all mod-
els against the LINCS compounds was converted into a 229-bit
binary fingerprint for each compound.

KINASE AND SMALL MOLECULE KINASE INHIBITOR ANNOTATIONS
To integrate KINOMEscan results and kinase models, we manu-
ally mapped them to Uniprot, standardized descriptions includ-
ing mutations and posttranslational modification and we added
external annotations such as protein name, symbols, IDs and
alternate names, and also important details such as gatekeeper
amino acid residues. We organized all kinase domains by an
extended phylogenetic classification tree that we based largely on
the Sugen kinase classification (Manning et al., 2002)10.

For LINCS standardized compounds a set of additional anno-
tations were derived from the LINCS datasets. We defined active,
selective, group selective and promiscuous kinase inhibitors based
on the number and the group membership of kinases that are
measured in the KINOMEscan assay. Compounds were con-
sidered active if they inhibited a kinase more than 90%. If a
compound is active toward 5 or more kinases (belonging to dif-
ferent kinase groups) it was considered promiscuous. Compound
was defined as selective kinase inhibitor if it is active toward only
one kinase, or group selective if it was active only against kinases
from the same kinase group. This data is available via the LIFE
search system and the LIFE project website.

CELL LINES ANNOTATIONS
Numerous cancer cell lines and non-transformed primary cul-
tures are used as disease model systems in the LINCS project. To
facilitate integration and analysis of large-scale cell-based screen-
ing profiles generated at LINCS, cell lines were systematically
annotated with controlled terms identifying associated organs
and diseases (Vempati et al., 2014). Ongoing and future LINCS
datasets are also being expanded toward primary tissues, iPS
cells and their differentiated derivatives. Here we leverage disease
annotations, which are available from the HMS LINCS website11,
and can also be queried in the LIFE search system (http://life.ccs.
miami.edu).

BIOPROFILE- AND CHEMICAL STRUCTURE-BASED FINGERPRINTS AND
SIMILARITIES
To facilitate comparative analysis of LINCS datasets, we defined
several bioprofile fingerprints for tested compound. These
bioprofile fingerprints were constructed based on categori-
cal outcomes (active/inactive) in the different LINCS pro-
filing assays. The Tanimoto metric was then used as a

10http://kinase.com/
11http://lincs.hms.harvard.edu/
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similarity measure of these profiles (similarities KinomeSim,
KinomePredSim, and TranscriptSim for KINOMEscan, predicted
kinase inhibition profile, and transcriptional expression pro-
file, respectively). Advantages of this approach include sim-
plicity (binary fingerprints) and computational efficiency (i.e.,
compute Tanimoto similarities). Chemical similarity of LINCS
compounds (ChemSim) was determined based on topological
fingerprints derived from the chemical structures also employ-
ing the Tanimoto metric. The definition of the fingerprints is
provided in the Supplementary Material.

KINASE ENRICHMENT IN CELL GROWTH INHIBITION DATA
We integrated and analyzed the KINOMEscan data and cell
growth inhibition assay data, which were retrieved from the
LIFE database (http://life.ccs.miami.edu). KINOMEscan data
consists of 78 small molecules tested against the panel of 478
kinases (including clinically relevant mutants, lipid, atypical, and
pathogen kinases), corresponding to 382 unique kinase UniProt
IDs. Cell growth inhibition data represents results of 39 small
molecules tested in 582 cell lines (standardized as described
above) at different concentrations (in the range from 0.004 µM
to 15 µM) and one time point (72 h). Twenty one compounds
were tested across the two described datasets and were used to
integrate the data. For each kinase we calculated an enrichment
score to reflect how much more likely it is to find activity in the
cell growth inhibition assay among compounds that inhibit that
particular kinase over the background probability of a compound
inhibiting cell growth (the further details are provided in the
Supplementary Material). Kinase enrichment scores were further
used in the hierarchical clustering analysis performed by TIBCO
Spotfire software (TIBCO Spotfire, 2013). Clustering was based
on the single linkage method and the Euclidian distance was used
as a distance measure.

PI3K/AKT/mTOR PATHWAY ANALYSIS
In order to demonstrate systems-level data integration, we
considered kinases in the PI3K/AKT/mTOR signaling pathway
(Laplante and Sabatini, 2012). We identified and downloaded
213 proteins (including cellular localization variation) from
PI3K/AKT/mTOR pathway from Reactome (Joshi-Tope et al.,
2005; Vastrik et al., 2007). By matching their genes to the stan-
dardized kinase genes symbols in the KKB, we identified 26
unique kinases. We then queried the aggregated KKB (the data
that was also used for building the models) for those small
molecules with a pIC50 value greater than 6 against any of these
kinases and we identified 24,158 unique kinase inhibitors. Their
(standardized) structures were compared to the LINCS com-
pounds and we identified an overlap of 35 compounds. Based on
the KKB activities, they inhibit 21 out of 26 PI3K/AKT/mTOR
pathway kinases. For these 35 compounds that theoretically affect
PI3K/AKT/mTOR pathway, we analyze their L1000 responses and
the effect on the cell growth inhibition.

SYSTEMATIC PATHWAY ANALYSIS
For the systematic pathway analysis our starting point was
the curated pathway database of the National Cancer Institute

(NCI)12. We retrieved the tab delimited file “NCI-Nature Curated
Pathway–UniProt mapping” from their website (http://pid.nci.
nih.gov/download.shtml). This file contains a total of 8420
records, which represent a combination of 2688 unique Uniprot
IDs and 224 pathways (as of April 3, 2014).

In order to identify kinases, we grouped proteins by the path-
ways and compared their UniProt IDs to the kinase annotations
in the KKB. For each pathway we further identified LINCS com-
pounds that were predicted (by the kinase models, as described
above) to be active for the kinases identified in the given pathway,
and consequently active in that pathway. For such pathway-
active compounds we compared their transcriptional similarities
and computed p-values between TranscriptSim of pathway-active
and pathway-inactive LINCS compounds in order to demon-
strate that (predicted) pathway-active compounds lead to (statis-
tically) significantly more similar transcriptional profiles than the
pathway-inactive compounds.

STUDENT T -TEST CALCULATIONS
All Student t-test calculations reported here were performed
using the R Statistics13component “R Two-Variables Tests” imple-
mented in Pipeline Pilot 8.0.

RESULTS
CHARACTERIZATION OF LINCS SMALL MOLECULE PERTURBAGENS
Small molecules tested in different LINCS datasets were com-
piled, and after removing salts and addends, were submitted to
the PubChem web services first for the compound standardiza-
tion and then for retrieving the PubChem CID identifiers. Unique
LSM parent compound IDs were assigned based on the standard-
ized chemical structure representations; a total of 5364 unique
compounds were identified across the LINCS assays. Among
them, we identified previously known kinase inhibitors, approved
drugs, MLP probes, PDB ligands etc. (described in the Materials
and Methods). These annotations are illustrated in Figure 1; they
are available and can be browsed and queried at the LIFE project
website (http://lifekb.org/) and the LIFE search engine (http://life.
ccs.miami.edu).

We explored the diversity of compounds in the LINCS chem-
ical space by pairwise Tanimoto similarities based on extended-
connectivity fingerprints (Figure 2).

As shown in the similarity histogram (Figure 2), the distri-
bution is skewed toward low similarity suggesting LINCS com-
pounds are fairly diverse (Tanimoto coefficient below 0.4). LINCS
compounds were selected by the centers to cover a broad biolog-
ical space including known drugs, kinase inhibitors and probes
from the Molecular Libraries program.

OVERLAP OF LINCS COMPOUNDS AND CELL LINES ACROSS ASSAYS
Cell lines were previously standardized by a joint effort of several
LINCS centers (Vempati et al., 2014).

Standardized compounds and cell lines were compared across
the LINCS Data Generation Centers and selected assays. One
hundred and fifty compounds and thirty one cell lines were tested

12http://pid.nci.nih.gov/index.shtml
13http://www.r-project.org/
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FIGURE 1 | Identified known PDB ligands, MLP probes, approved

drugs, and kinase drugs among LINCS compounds.

FIGURE 2 | Distribution of pairwise chemical similarity of LINCS

compounds.

at both centers (HMS and Broad) across different assays. For
the assays considered in this study the overlap between tested
compounds and cell lines is shown in Figure 3.

From this analysis it becomes obvious that only a small
number of compounds were tested in several different assays
limiting comprehensive analysis. In order to generate data that
would facilitate cross-datasets integration, we built and applied
229 small molecule kinase inhibition models (as described in
Materials and Methods) to predict the kinase inhibition pro-
files for all LINCS compounds. We used these predictions to fill
the gaps in the experimental data and to deconvolute the trends
between biological responses as described below.

INTEGRATION AND ANALYSIS OF KINASE PROFILING AND CELL
GROWTH INHIBITION PROFILING DATASETS
The integration of Kinome-wide small molecule inhibition
profiles and phenotypic responses offer a powerful approach
to deconvolute likely mechanisms of action of pharmacologi-
cally active compounds. Similar, cell line panels, in particular

cancer cell lines, are an established approach to characterize
small molecule pharmacologically. Using standardized LINCS
KINOMEscan and cell growth inhibition signatures generated for
the same compounds enables us to map chemical biology bind-
ing profiles to cancer cell viability profiles with the potential to
contribute to the identification of key kinases and pathways that
are relevant for specific cancer subtypes. To investigate this, we
generated all combinations of tested kinases and cell lines and
for each combination computed a kinase enrichment score that
quantifies how much more likely a compound is to be active if it
is an inhibitor of a given kinase over the background probability
of inhibiting cell growth (see Materials and Methods). Scores of
greater than one indicate that inhibitors of that kinase are more
likely to inhibit cell growth, suggesting that the pathways to which
these kinases belong may be involved in cell death (desirable out-
come for the cancer cell lines). Conversely, enrichment scores of
less than minus one indicate that such inhibitors would be less
likely to kill the cells.

Using the enrichment scores, we performed hierarchical clus-
tering of kinases and cell lines. The resulting heat map is shown
in Figure 4 where red areas represent high kinase enrichment
scores, white no enrichment and blue derichment; gray area
reflect combinations of kinases and cell lines without overlapping
compounds tested in two assays.

KINASE ENRICHMENT AND DERICHMENT IN CANCER
Although there is no clear clustering pattern of kinases vs. dis-
eases in Figure 4 (which cannot be expected in a relatively limited
dataset and cell line model systems), we can still identify individ-
ual kinases that are enriched in certain cell lines. For example,
kinases ALK, PRKD1, MYLK, CAMKK1, CAMKK2, DAPK3,
EGFR, GAK, DCAMKL1 emerge to be more relevant for the lung
squamous cell carcinoma (few cell lines originating from this dis-
eased tissue) while kinases MRCKA, MRCKB, DMPK2, HIPK4,
CDK2, CDK8, CDK11, PIK3CA, NEK5, ERK3, and CSNK1D
appear to be not affected by compounds causing cell death in
the same cell lines. Therefore, after identifying kinases that are
enriched in one (or several) disease, one could possibly identify
novel drug targets or previously known targets that show activity
in a new disease and therefore find a case for drug repurposing.
In this way, previously unknown side effects of a compound may
be discovered and off-targets can be identified among a subset of
enriched kinases.

Our analysis approach illustrates how LINCS data can poten-
tially be leveraged to gain important insight into molecular
mechanisms that lead to the cell malignant state, especially in
the future with the currently expanding LINCS data. The results
shown here should be considered as an illustration for data inte-
gration and how they can be interpreted. Even with this limited
dataset, we were able to identify several examples of known drugs
that would confirm potential conclusions derived from this anal-
ysis. For example Lapatinib, an approved drug for breast cancer
is very potent in the MCF7 breast cancer cell line by killing 83%
of cancerous cells (at 2.5 µM). Its known drug target is EGFR. We
also found that this drug inhibits EGFR at 100%, as well as major-
ity of its other modifications/mutations in the KINOMEscan
panel.
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FIGURE 3 | (A) Overlap between compounds tested in KINOMEscan, cell growth inhibition, and L1000 assays and (B) overlap between cell lines tested in cell
growth inhibition and L1000 assays.

BIOCHEMICAL AND PHENOTYPIC RESPONSE SIGNATURES ARE
RELATED AND INTERPRETABLE BASED ON CHEMICAL SIMILARITY
After defining bio-fingerprints to represent cellular signatures
generated in the number of LINCS assays (as described in
Materials and Methods) we analyzed them to identify correlations
and trends between different biological and cellular phenotypic
response profiles.

Kinome-wide binding activity (KINOMEscan) profiles
We calculated pairwise Tanimoto similarities (KinomeSim) based
on the kinase binding (KINOMEscan) profiles for 78 compounds
that were tested in that assay (see Materials and Methods). For
the same compounds we computed the corresponding pairwise
molecular similarities (ChemSim). KinomeSim thus represents
the similarity of a compound pair based on their biochemical
(kinase) binding profile while ChemSim quantifies the similarity
of two compounds based on features of their chemical structures.
Chemical structure similarity is an important concept in chem-
informatics where it is generally assumed that more structurally
similar compounds are more likely to have similar biological
activity (similarity property principle) (Martin et al., 2002). Here
we apply this concept to a biological profile. Figure 5 illustrates
the global relationship between pairwise biological profile and
chemical similarities; specifically ChemSim is binned and within
each bin the average KinomeSim is calculated and shown as
the corresponding bar height. As Figure 5 illustrated, there is a
general trend that highly similar compounds also have very sim-
ilar kinases panel activity (KINOMEscan) profiles. A two-sided
Student t-test confirmed the statistical significance of this trend.
For example using a ChemSim cutoff of 0.8, which can be con-
sidered reasonable similar for the fingerprints applied here (see
Materials and Methods), the average biological profile similarities
of the corresponding KinomeSim distributions are (statistically)
significantly different with a p-value of 1.9·10–61.

Predicted small molecule kinase inhibition profiles
Using predicted kinase inhibition profiles rather than the exper-
imental binding profiles allowed us to investigate a much larger
number of compounds. Whereas KINOMEscan profiles were

available for 78 compounds, we generated predicted kinase inhi-
bition profiles for all 5364 LINCS standardized compounds as
described in Material and Methods. Although we don’t expect
perfect predictions, we have shown that the predictors are highly
accurate (Schurer and Muskal, 2013); we only applied models
with sufficient data and very good cross-validation performance.
An important characteristic of the kinase classification models
is that they are derived from a large corpus of published and
patented results comprising many different assay technologies
and assay conditions aggregated by unique chemical structures
and kinase protein target. It may therefore be the case that such
results are in fact more robust in terms of reproducibility as
oppose to comparing just two different assay methods or assay
conditions, which can sometimes give considerably different out-
comes (Haibe-Kains et al., 2013). It was therefore of much interest
how the predicted profiles would perform statistically.

In the same manner as described above, we compared pair-
wise similarities based on (predicted) kinase activity profiles
(KinomePredSim) and chemical structural features (ChemSim).
Figure 6 illustrates the global trend.

As before, structurally similar compounds exhibit similar
(in this case predicted) biological response profiles. We cor-
roborated this trend by a t-test comparing two distributions
of KinomePredSim corresponding to a ChemSim split of 0.8
(reflecting similar and dissimilar compound pairs) and obtained
a p-value of 1.62·10–79. As expected no such trend is observed
when the kinase predictions are randomized.

Gene expression (L1000) profiles
After demonstrating a robust, perhaps expected trend that the
similarity of compounds based on their biochemical activity pro-
files (KINOMEscan as well as predicted) increases significantly
with their chemical similarity, it was of interest to compare chem-
ical similarity to gene expression similarity. To evaluate transcrip-
tional similarity we considered not just one response (active vs.
inactive) for each feature (e.g., kinase target), but two responses,
overexpressed and underexpressed for each feature (i.e., gene);
this was implemented in a binary fingerprint simply by doubling
the features as described in Materials and Methods. With that
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FIGURE 4 | Heat map of kinase enrichment across cell lines as described

in the text. Two circles focused on the area of high enrichment (red) and
derichment (blue), respectively (the gradient color mode range shown from

red, for the maximum enrichment score of 3.13, via white for average score
of −0.32, to blue color corresponding to minimum derichment score
of −5.50). Kinases, cell lines and diseases are annotated.
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FIGURE 5 | Global trend of kinase binding profile similarities

(KinomeSim) and chemical structure similarities (ChemSim) for 78

compounds, illustrated as average KinomePredSim values by

ChemSim ranges.

FIGURE 6 | Global trend of pairwise predicted kinase inhibition profile

similarities (KinomePredSim) and chemical structure similarities

(ChemSim) for 5364 compounds, illustrated as average

KinomePredSim values by ChemSim ranges.

we can again compare pairwise similarities, this time based on
the gene expression profiles (TranscriptSim) vs. chemical simi-
larity (ChemSim). We found that a similar global trend holds
even in this case, when there are no direct interactions between
small molecule perturbagens and the molecular entity underlying
the biological profiles, i.e., transcribed gene in this case. Figure 7
illustrates this trend for two dissimilar cell lines, A549 (non-small
cell lung carcinoma) and VCAP (prostate carcinoma).

As before we quantified the statistical significance of this trend
by the two-tailed t-test using a ChemSim cutoff of 0.8 to dif-
ferentiate similar vs. dissimilar compounds. The p-values of the
corresponding TranscriptSim distributions are 2.06·10–14 and
9.64·10–14, for the A549 and VCAP cell lines, respectively.

In the same way we also compared compound L1000 response
profiles across both cell lines. Although there is the general trend
of increasing transcriptional similarity with molecular similarity
holds, the effect is much smaller (about half the average simi-
larity) compared to the trend on one cell line alone (shown in
Figure 8). This is expected, because the cell lines can be expected

to have a very different response to the same compounds; in par-
ticular that is the case for kinase inhibitors that was evaluated
above. The response of kinase inhibitors tested (for example) in
A549 and VCAP growth inhibition assays can be explored in our
LIFE software (http://life.ccs.miami.edu). A global effect across
two very different cell lines is noteworthy and probably related to
conserved pathways.

Relating small molecule predicted kinase inhibition profiles and
gene expression profiles
After establishing a general global trend of biochemical and tran-
scriptional similarity with compound similarity, it was of interest
to compare gene expression (L1000) signatures and kinase inhi-
bition profiles. Because of the limited number of experimental
KINOMEscan profiles and encouraged by our results, we com-
pared compound pairwise similarities based on transcriptional
response profiles to the predicted kinase inhibition profiles. As
shown in Figure 9, compounds that are more similar based
on their biochemical kinase profile are also more similar with
respect to changes in gene expression. We estimated statistical
significance of this trend for the KinomePredSim cutoff of 0.8
(above the cutoff considered similar biochemical kinase profile)
with the p-values of 1.28·10–21 and 6.70·10–30 for A549 and
VCAP, respectively. While it is known that kinases are mech-
anistically related to downstream gene expression via various
signaling pathways and networks, these results suggest some level
of global systems-wide stability of gene transcription with respect
to modulating the entire human Kinome. We did not incor-
porate any systems-level information to group kinases (this is
described in more detail below), but look only at the global
profiles.

Earlier observed trend of increasing transcriptional similar-
ity for more similar chemical purturbagens reasonably could be
rationalized based on the assumption that more similar com-
pounds are more likely to bind to similar targets. The kinase
profile similarity analyses above confirm that assumption, even at
large scale of more than 5000 compounds using predicted kinase
profiles. To investigate further the dependencies of chemical sim-
ilarity, biochemical similarity and transcriptional similarity we
analyzed TranscriptSim vs. KinomePredSim for different cut-
offs of ChemSim as shown for the two cell lines, A549 and
VCAP in Figures 10A,B, respectively. Specifically Figure 10 com-
pares three ChemSim cutoff values, namely 1 (keep all com-
pounds, green), 0.8 (remove compound pairs with similarity
higher than that, blue), and 0.5 (leave practically only non-similar
compounds, red).

As Figure 10 illustrates, as chemically similar compounds are
removed from the analysis, the observed trend between transcrip-
tional similarity and biochemical similarity of compound pairs
decreases, but still holds even for only dissimilar compounds
(ChemSim cutoff 0.5). This is the case again for two very different
cell lines.

To evaluate these trends statistically, we performed Student
t-tests for the different datasets corresponding to a ChemSim
cutoffs of 0.8 (426,331 and 219,163 compound pairs for A549
and VCAP, respectively) and 0.5 (425,452 and 218,648 of com-
pound pairs for A549 and VCAP, respectively). In both cases the
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FIGURE 7 | Global trend of pairwise transcriptional similarity (TranscriptSim) in (A) A549 cells and (B) VCAP cell and chemical structure similarities

(ChemSim) for 1027 and 741 compounds per cell line, respectively, illustrated as average TranscriptSim values by ChemSim ranges.

FIGURE 8 | Global trend of pairwise transcriptional similarity

(TranscriptSim) across A549 and VCAP cells and chemical structure

similarities (ChemSim) for 1027 and 741 compounds per cell line,

respectively, illustrated as average TranscriptSim values by ChemSim

ranges.

dataset was split by a KinomePredSim cutoff of 0.8 (similar and
dissimilar based on their predicted kinase inhibition profile) and
p-values characterizing the difference in mean for the correspond-
ing distributions of transcriptional similarity were calculated.
The p-values for the ChemSim cutoff of 0.8 are 2.15·10–19 and
1.15·10–28 for A549 and VCAP cell lines, respectively, while for
the ChemSim cutoff of 0.5 the p-values are 0.004 and 0.014 for
A549 and VCAP cells, respectively. These results confirm that the
observed trend between the biochemical kinase profile and tran-
scriptional profile similarities is statistically significant even for
structurally dissimilar compound pairs. This is noteworthy as a
global trend suggesting that transcriptional response signatures
may be modeled based on biochemical response profiles alone.
With this, it is of course not surprising that this trend is more pro-
nounced with increasing chemical similarity, because—as shown
above—chemical similarity would results in higher biochemical
similarity. For example, Figure 11 illustrates two highly similar

compounds (ChemSim = 0.88) with high KinomePredSim (of
0.70) and TranscriptSim (of 0.56).

An example of high biochemical similarity and high gene
expression similarity for two structurally dissimilar compounds
is illustrated in Figure 12; specifically ChemSim = 0.25,
KinomePredSim = 0.83, and TranscriptSim = 0.47. Identifying
pharmacologically similar, but structurally diverse compounds
as demonstrated here using LINCS signatures, is an important
approach in drug lead development; for example to overcome
undesired physicochemical properties, such as solubility or brain
penetration, or for patent reasons.

SYSTEMS-LEVEL INTEGRATION AND ANALYSIS OF LINCS SIGNATURES
The above analyses suggested that the transcriptional profiles are
correlated (to some extent) to the MoAs of kinase inhibitors as
characterized by their kinase inhibition profiles. We therefore
anticipated that small molecule perturbagens that affect same
pathway would also exhibit similar transcription. To demon-
strate that in a specific example, we selected and analyzed the
PI3K/AKT/mTOR pathway, which is in the regulation of cell
apoptosis and a target of many cancer drug discovery studies. For
this example we extracted experimental kinase inhibitor activities
from the KKB to identify those compounds that would interact
physically with a protein target in the pathway.

In addition we pursued a systematic approach analyzing tran-
scriptional response for all currently available pathways from the
NCI database. Here we used the kinase models (described above)
to predict LINCS compounds that could affect kinases in the
considered pathways.

PI3K/AKT/mTOR pathway analysis
For 21 kinases previously identified in the mTOR pathway
we identified (using the KKB) 35 active kinase inhibitors
among LINCS compounds (see Materials and Methods; see
Supplementary Material Dataset 2 for the list of mTOR pathway
proteins, 21 mTOR pathway kinases with the inhibition data, and
35 active compounds). For these, pathway-active, compounds
we compared L1000 fingerprint similarities. We found that for
the two cell lines, the pairwise mTOR pathway inhibitors’ L1000
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FIGURE 9 | Global trend of pairwise transcriptional similarity (TranscriptSim) in (A) A549 cells and (B) VCAP cells as a function of predicted kinase profile

similarity (KinomePredSim) for 1027 and 741 compounds per cell line, respectively, illustrated as average TranscriptSim values by KinomePredSim ranges.

FIGURE 10 | Effect of the chemical similarity (ChemSim) of compound

pairs on the trend of the average TranscriptSim as a function of

KinomePredSim in (A) A549 cells and (B) VCAP cells. ChemSim cutoff

applied are: 1.0 (green) including all compound pairs, 0.8 (blue) removing
compound pairs more similar than 0.8, and 0.5 (red) leaving only dissimilar
compound pairs (ChemSim < 0.5).

FIGURE 11 | Similar compounds (ChemSim of 0.88) with high KinomePredSim and TranscriptSim (based on L1000 in A549 cells).
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FIGURE 12 | Dissimilar compounds with high KinomePredSim and high TranscriptSim (based on L1000 in A549 cells).

responses are on average more similar then the L1000 responses of
all LINCS compounds: for the A549 cell line, the global pairwise
L1000 similarity average is 0.035 versus mTOR-pathway com-
pounds’ pairwise L1000 similarity average of 0.057; in VCAP
cells these number are 0.028 versus 0.043, respectively. The cor-
responding Student test p-values are 1.38·10–28 and 1.1·10–14
for A549 and VCAP, respectively, providing a strong evidence
that small molecule perturbagens that interfere with the same
pathway (by inhibiting specific kinases in that pathway) result
in significantly more similar transcriptional profiles compared to
compounds active across different pathways.

Systematic pathway analysis
We also performed a more systematic study by using the NCI
pathway database. We utilized the kinase inhibition models to
predict the most likely pathway-active LINCS compounds in
order to cover as much data as possible. We first annotated all
kinase targets covered by our models by pathways (using a total of
224 NCI pathways). Once we had the kinase list for each pathway,
we identified LINCS compounds that were predicted to be active
for kinases in a given pathway, i.e., pathway-active compounds.
Pairwise TransciptSim values of these pathway-active compounds
were compared to the TranscriptSim numbers of the remain-
ing tested compounds and for each pathway the corresponding
p-values were calculated. The requirement for the p-value calcu-
lation for each pathway was the presence of at least three pathway-
active compounds, i.e., two similarities between them (necessary
for the t-test mean distribution calculation). This reduced the
number of pathways that could be investigated in formal statistics
to 191. For the A549 cell line, 156 of 191 pathways have p-value
below 0.05, suggesting that the greater transcriptional similarity

is not random, while for the VCAP cell line we identified 162 of
191 pathways with p-value of less than 0.05. Kinases identified
per pathway, as well as pathway-active compounds, can be found
in the Supplementary Material Datasets 3 and 4 along with the
corresponding p-values for cell line A549 and VCAP, respectively.

Even though our approach used a simplified assumption of
pathway independence (we analyzed each pathway separately and
not as a part of the network), it can be seen that transcrip-
tional expression profiles originating from the same pathway (as
defined by the participating kinases) are on average significantly
more similar compared to result based on compounds that are
not related to the same pathway. This is the case for majority
of the pathways. For the pathways where this is not the case, we
anticipate that additional information of pathway coexistence and
dependence may be needed. However, our results provide strong
indication that targeting a particular pathway will most likely lead
to a certain transcriptional expression profile. And, importantly,
it suggests that we can identify pathway-active compounds based
on large-scale published data (KKB) or predict their activity via
models based on these datasets.

KINASE SIGNATURES SUGGEST DIFFERENT CELL GROWTH INHIBITION
PATHWAYS FOR A549 AND VCAP
After illustrating that transcriptional profiles are on average
more similar when corresponding to the same cell line then
when they are arising from two different cell lines (Figure 8),
we were interested to contrast the enrichments of kinases for
the two cell lines. We used the enrichment scores (as described
in Materials and Methods and depicted in Figure 4) to iden-
tify kinases that are relevant for each cell line. Based on the
experimental data we found that, for example, kinases PIK3CG,
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NEK5, ERK3, NEK2, PIK3CA, PRKCE, CSNK2A2, PIM1, PKN2,
and CAMK2D are enriched in non-small lung carcinoma A549
cell line while kinases DYRK1B, PCTK1, HIPK1, ICK, CDKL5,
DYRK1A, MAK, ERK8, CLK1, and CLK2 are enriched in prostate
carcinoma VCAP cell line. Mapping these kinases to pathways
suggests that cell toxicity may be mediated by different path-
ways. For example, for VCAP enriched kinase MAK one pathway
was identified from the NCI pathway collection: Co-regulation
of Androgen receptor activity. In contrast, for A549 multiple
pathways were related to the enriched kinases, but 7 pathways
had more than one of these kinases as members: PDGFR-
beta signaling pathway, CDC42 signaling events, Atypical NF-
kappaB pathway, E-cadherin signaling in the nascent adherens
junction, IL3-mediated signaling events, IL5-mediated signaling
events, GMCSF-mediated signaling events, IL2-mediated sig-
naling events, Role of Calcineurin-dependent NFAT signaling
in lymphocytes, RhoA signaling pathway, IL8- and CXCR1-
mediated signaling events, CXCR4-mediated signaling events,
Class I PI3K signaling events, Thromboxane A2 receptor signal-
ing pathway. These results illustrate the different (systems-wide)
characteristics of the two cell lines and likely underlying mecha-
nisms of action related to their growth inhibition. This is valuable
for the development of selective and efficacious drugs based on
prioritized and cell line-/disease-specific drug targets.

KINASE BINDING AND CELL VIABILITY PROFILES TO GUIDE DRUG
REPURPOSING
In contrast to the example above where there appear to be no
common kinase targets, repurposing of known drugs is now a
common strategy to quickly identify approved drugs that can be
applied to a new disease. Here we show an example of Crizotinib
(LSM-1027), approved drug for some non-small cell lung carci-
nomas. Based on the LINCS KINOMEscan data one can identify
kinases that are inhibited by this drug (INSR, AURKB, SRC,
IGF1R, ROS1, MAP3K1, TYRO3, EPHB4, AXL, TXK, MET, FGR,
FLT3, ALK). Furthermore we can identify the related pathways
(NCI pathways described in Material and Methods). Although
there are several pathways that may be implicated in multiple dis-
eases, we can also identify specific ones, for example Glypican 1
(NCI Pathway ID 200026), which is associated through kinases
SRC and FGR. This pathway is implicated in pancreatic cancer
(Aikawa et al., 2008). Therefore by using approved non-small lung
carcinoma drug Crizotinib, it may be possible to target SRC or
FGR and therefore find its new uses in different cancer types.

DISCUSSION AND CONCLUSIONS
The LINCS project is a large-scale coordinated effort to gener-
ate a comprehensive systems biology reference resource of cellular
and molecular response signatures for a wide range of cell lines,
primary cells and stem cells, molecular, genetic, and other per-
turbations. The goals of the program include the generation
of a very large multidimensional data matrix and informatics
and computational tools to integrate, analyze, and make readily
accessible such diverse data as genome-wide transcriptional pro-
files, biochemical protein binding, large-scale cellular phenotypic
response signatures, and also proteomics and metabolomics data.
To produce an integrative view of large and diverse datasets like

those in the LINCS project, it is important to systematically stan-
dardize and annotate all data. Multiple efforts were carried out
within our group and the LINCS consortium to define standards
specifications and apply them to annotate a variety of perturb-
ing or detected molecular entities cell model systems and other
relevant concepts (Vempati et al., 2014). These efforts continue
as the project moves into the next phase. Via tools developed in
the program, for example the LIFE search engine (http://life.ccs.
miami.edu), LINCS data can already be queried by standardized
annotations across different sources.

Here we are particularly interested in small molecule perturba-
tions, because of the potential of small molecules to be developed
into therapeutic drugs and a general shift from purely target
focused toward a systems poly-pharmacology based approach to
drug development that could gain great insights from LINCS. To
facilitate the cross-comparison of LINCS signatures, we estab-
lished a fairly automated process for the standardization of small
molecule compounds, which simplifies identification of com-
pounds tested across several assays and also facilitates mapping
and annotating of compounds using external sources such as
DrugBank, the NCBI MLP probe reports, the NPC collection, and
the Protein Data Bank (PDB). Unique compound IDs are also
required to better coordinate data generation across centers; as
illustrated in Figure 3, there are still gaps to be filled in order to
achieve a complete data matrix across LINCS assays.

Nevertheless, important insights can be gained by bringing
together the current datasets. For example we illustrated the inte-
gration of kinase binding profiles (KINOMEscan assay) and cell
growth inhibition profiles. We combined these datasets using
unique small molecules profiles across and used statistical enrich-
ment to identify kinases that may play a role in the certain cell
lines or diseases. The nature of the LINCS data matrix consisting
of standardized response profiles enables the prioritization of sets
of interesting kinases (signatures) that influence any of the tested
cell lines. In that way kinases shared across many cell lines can be
identified and such discovery may lead to new target identifica-
tion or at least novel hypotheses. Also, by discovering common
kinases between cell lines related to different diseases may lead to
novel starting points for (cancer) drug repurposing.

We demonstrated that the similarity of compounds based on
their chemical structure is related to their kinase binding profiles.
This could be expected based on the similarity-property dogma,
however is still noteworthy at a global level where each profile can
represent a characteristic signature, implying that such signatures
are related to chemical structures. Looking at the genome-wide
transcriptional profiles for a much larger number of tested com-
pounds at the Broad institute (see Materials and Methods), there
was a similar trend that relates chemical similarity to global tran-
scriptional similarity. It was more pronounced in the same cell
line, but also detectable across cell lines. These chemical similar-
ity trends can be interpreted as a generalization of the classical
similarity-property principle, which underlies targeted lead opti-
mization efforts. In particular in the case of transcriptional pro-
files, which have been related to disease phenotypes and models
thereof (Lamb, 2007), these findings appear to support the feasi-
bility of phenotypic lead optimization and utility of phenotypic
structure-activity-relationships for drug development.
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To link transcriptional responses to the underlying MoA, we
compared the transcriptional profiles to the kinase binding pro-
files. Because of the quite small intersection of compounds for
which L1000 and KINOMEscan profiles were available, we devel-
oped and applied kinase inhibition classification models based
on a very large corpus of published data and applied these to all
compounds tested in L1000. In addition to predicting activities
for non-tested compounds and extending the current datasets to
identify patterns in the data, these computational results can be
also used to prioritize compounds for further experimental test-
ing. For example the models could be used to identify a set of
diverse compounds that are most likely to efficiently dissect the
entire Kinome activity space or to prioritize compounds most
likely to interfere in a given biological pathway, or any desirable
poly-pharmacology profile to help deconvolute mechanisms of
cellular responses.

As expected, the trend we observed for the experimental
kinase binding profiles that chemically similar compounds are
more likely to have similar kinase inhibition profiles, was also
confirmed for the predicted kinase profiles just for all LINCS
compounds as the modeling enabled it. We already knew that
structurally very similar compounds were also more likely to
have similar transcriptional profiles. However, their biochem-
ical kinase similarity appeared related to transcriptional simi-
larity independently from chemical similarity, at least to some
extent. This would confirm a mechanistic relationship (by path-
ways), but more importantly a global response suggests a level
of robustness in the cellular responses to chemical perturba-
tion; i.e. small changes in biochemical binding do not have a
huge effect on transcriptional response. This may be one rea-
son why most drugs are well tolerated, despite (previously not
known) poly-pharmacology and in some cases even alternate
indications (drug repurposing). We anticipated that downstream
gene expression signatures would be much more closely related
by signaling pathways; i.e. compounds inhibiting kinases within
a specific pathway should have more similar transcriptional pro-
files. We tested and confirmed this using actual data for the
PI3K/AKT/mTOR pathway and using the kinase inhibition mod-
els for a large number of pathways from the NCI database.
Although we applied a simplified approach of analyzing indi-
vidual pathways, we observed that for the majority of path-
ways the transcriptional expression profiles resulting from small
molecules that are active against any kinase in the same pathway
are indeed more similar than transcriptional expression pro-
files of compounds that do not share activity against the same
pathway.

Facilitated by common data standards and annotations we
were able to integrate diverse biochemical, transcriptional, and
phenotypic cell growth inhibition profiles for small molecule
drug like molecules. After computing various similarity measures
based on the response signatures and chemical information, we
illustrated some insightful trends and elucidated the results at the
systems-level. Our approach and findings to relate biochemical
and transcriptional responses to chemical similarity as well as use
of predictive models appear relevant to inform the development
of novel poly-pharmacology drugs. We hope that some of the data
integration and analysis presented here can inspire others in the

research community to leverage LINCS data and the annotations
we provided for their own studies and in novel ways.
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