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Editorial on the Research Topic

Nanotechnology for Precision Cancer Therapy: Advances in Gene Therapy, Immunotherapy,
and 3D Bioprinting

Cancer is a significant health hazard of the 21st century, andGlobal Observatory of Cancer (GLOBOCAN)
predicts increasing cancer incidence in the coming years. Nanotechnology has sparked a rapidly growing
interest in cancer nanomedicine, promising to solve several issues associated with conventional therapeutic
agents, including their poor water solubility, cargo degradation, nonspecific distribution, lack of release at
the tumor site, systemic toxicity, and low therapeutic index. Thus, this Frontiers Research Topic brings
relevant contributions to nanobiotechnology for cancer therapies, associating biotechnologies in genetic,
epigenetic, proteomic, immunotherapy and 3D-bioprinting to current nanotechnologies tools.

Circulating tumor DNA (ctDNA) represents an emerging biomarker of liquid biopsies,
contributing to the development of translational medicine for early diagnosis, therapeutic effect
monitoring, and patient’s prognosis with cancer (Reinert et al., 2018). However, sensitive detection of
ctDNA remains a challenge, due to their short half-life and low concentrations in blood samples.
Miao et al. reported a new method to address this challenge by integrating cycled enzymatic DNA
amplification technique and Au nanoparticle@silicon-assisted surface-enhanced Raman scattering
(SERS) technique, demonstrating the ultra-high sensitivity and specificity of the method.

RNA interference (RNAi), a post-transcriptional gene regulationmechanism, has significantly obtained
high attention in cancer therapy as result of its precision to multi-targeted gene silencing. However, its
direct administration has not been fruitful due to inherent lower half-lives and instability in the biological
systems. Swaminathan et al. highlighted different types of nanotechnology-based delivery strategies for
engineering nano-RNAi-based bio drugs, which are entering the preclinical and clinical evaluation.
Promising results indicate these new combinatorial therapies can successfully and safely be used to inhibit
target genes in cancer patients, shaping the future for next generation cancer therapeutics. Al-Sowayan and
Al-Shareeda discussed the advantages of establishing a nanogenomics-artificial intelligence-based breast
cancer diagnostic approach, compared to the gold standard radiology- or histology-basedmethods that are
currently being adapted to artificial intelligence. Furthermore, they highlighted advantages of building the
diagnostic and prognostic biomolecular profiles for breast cancers based on the exosome encapsulated
content, instead of the free circulating microRNA and other biomolecules.

Brar et al. focused on the recent advancement of nanotechnology to colorectal cancer (CRC)
diagnosis and treatment. The application of light-sensitive photosensitizer drugs loaded gold and
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silica nanoparticles can be successfully used for CRC diagnosis and
targeted delivery of anti-cancer drugs to kill CRC cells. In addition,
Perumal et al. discussed the presence of gut microbiota influences the
route of biomarker detection and the route of the interaction of
nanoparticle/drug complexes with target cells. Thereby, the
development of nanoparticles with appropriate sizes, morphologies,
chemical compositions and concentrations might overcome this
fundamental barrier for the CRC diagnosis and treatment.

Nanotechnology can be a powerful approach to overcome the
hydrophobicity and low aqueous solubility issues of anti-parasite/
worm drugs such as the benzimidazole (BMZ) family. Movahedi
et al. developed a nanocrystal lipid-coated calcium phosphate
system, which enhance BMZ solubility, specifically targeting
melanoma cells, as an optimistic anti-cancer therapy. Silva
et al. established a new third-generation photosensitizer,
consisting in hybrid nanostructures of lipid carriers coated
with porphyrin-chitosan. They demonstrated that physical and
chemical properties of nanoparticles are relevant to improve the
porphyrin photodynamic activity in bladder cancer cells.

Among different cancers, lung tumors has low response to therapy
and new therapeutic approaches have been developed, especially
against primary tumors and secondary lung metastasis (Howlader
et al., 2020). Donkor and Jones explored the pulmonary route as an
attractive drug delivery pathway to treat lung tumors and discuss the
potential of nanotechnology to delivery cancer vaccine vectors to
prevent the seeding of tumors in the lung. Ahmad et al. reviewed the
interactions between an approved cancer nanomedicine with tumor
microenvironment immunology and discussed the challenges that
need to be addressed for the full clinical potential of ongoing cancer
nanomedicines despite the encouraging preclinical data.

Recently, spheroids and organoids have been largely explored as 3D
solid tumor models for recreating in vitro tumorigenesis, being
considered as suitable models for drug assessment and high-
throughput screening (Jensen and Teng, 2020). The main
advantages of 3D bioprinting are its ability to engineer complex and
controllable 3D tissue models in a higher resolution (Datta et al., 2018).
Although 3D bioprinting represents a promising technology, main
challenges need to be addressed to improve the results in cancer
research. Kronemberger et al. explored the principal cell components
and extracellular matrix composition to reconstruct the solid tumor’s
microenvironment, the recapitulation of in vitro tumorigenesis through

spheroids and organoids 3D models as well as the opportunities,
challenges, and applications of 3D bioprinting in cancer research.

Overall, this collection of articles covers recent advances and
contributes to the research topic with innovative designs and
concepts in multifunctional and intelligent nanomedicine. The bio-
nano engineered approach is not only the key strategy to overcome the
intrinsic limitations of nanomaterials but also providing new aspects of
the nanotechnology role in diagnostic, delivering drugs for enhancing
the cancer therapy, as well as reducing drugs side effects. Therefore,
nanotechnology is a promising approach to offer new opportunities of
patient’s treatment against cancer. The editors hope that the selected
articles on this Research Topic will inspire future work to further
advance to drug delivery through specific nanomaterials at the tumor
sit, offering an efficient and personalized cancer therapy. In addition,
nanotechnology couldmotivate basic and clinical research and industry
support to accelerate the clinical trials implementation and approval in
this field.
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The Proposition of the Pulmonary
Route as an Attractive Drug Delivery
Approach of Nano-Based Immune
Therapies and Cancer Vaccines to
Treat Lung Tumors
Michael Donkor and Harlan P. Jones*

Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX,
United States

Lung cancer is the leading cause of cancer related deaths globally, making it a major health
concern. The lung’s permissive rich microenvironment is ideal for supporting outgrowth of
disseminated tumors from pre-existing extra-pulmonary malignancies usually resulting in high
mortality. Tumors occurring in the lungs are difficult to treat, necessitating the need for the
development of advanced treatment modalities against primary tumors and secondary lung
metastasis. In this review,we explore the pulmonary route as an attractive drug delivery approach
to treat lung tumors.Wealsodiscuss thepotential of pulmonarydelivery of cancer vaccine vectors
to induce mucosal immunity capable of preventing the seeding of tumors in the lung.

Keywords: lung, cancer, immune, therapy, nasal, delivery, pulmonary, nanotechnology

INTRODUCTION

TheWorldHealthOrganization (WHO) reported lung cancer to be themost common cause of cancer
deaths worldwide, contributing to 1.76 million deaths in 2018 alone (Ferlay et al., 2019). In 2020, the
United States (US) estimates 228,820 new cases of lung cancer and 135,720 projected deaths;
the highest among all cancer related deaths (Siegel, Miller et al., 2020). Despite advances in
treatment, the 5-year survival rate for primary lung cancer remains at 19% compared to prostate
cancer, melanoma of skin and female breast cancer having 5-year survival rates of 98, 92, and 90%,
respectively (Lu et al., 2019, Siegel et al., 2020). The persistent low survivorship among lung cancer
patients is in part due to the large proportion of patients (57%) diagnosed with metastatic disease, for
which the 5-year relative survival is a meager 5% (Howlader et al., 2020). This suggests a further unmet
need to improve treatment strategies that can reduce lung cancer occurrence and prevent metastasis
thereby increasing survival rates. Lung cancer is broadly categorized into small cell lung cancer
(SCLC) and non-small cell lung cancer (NSCLC). NSCLC is the most prevalent form, accounting for
about 85% of all lung cancer cases and has a 5-year survival rate of 24% (Howlader et al., 2020).
NSCLC is further classified into adenocarcinoma, squamous cell carcinoma and large cell carcinoma.
SCLC represents the most aggressive type of lung cancer with the poorest 5-year survival rate of 6%
(Howlader et al., 2020).

In addition to primary lung cancer, extra-pulmonary tumors are capable of remodeling the lung
microenvironment to support the establishment and outgrowth of disseminated tumor cells to
generate secondary metastatic tumors in the lung (Peinado et al., 2017) (Figure 1). Circulating tumor
cells (CTCs) that reach the lungs directly through blood circulation via intravasation or through the
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lymphatics are termed disseminated tumor cells (DTCs). Successful
colonization of the lungs by DTCs require the initial formation of a
permissive microenvironment; often referred to as a pre metastatic
niche through an interplay between tumor derived components,
the rich lung stromal tumor microenvironment and mobilized
bone marrow derived cells (BMDCs) (Liu and Cao, 2016). The
tumor derived molecular components that govern pre-metastatic
niche formation include extracellular vesicles (exosomes,
microvesicles and large oncosomes) and tumor derived secreted
factors (growth factors, cytokines and chemokines). These induce
certain changes in the lung microenvironment leading to the
recruitment of BMDCs into the lung, where they act together to
support metastasis. Such cross talk among various tumor derived
factors, the lung stromal microenvironment and the mobilized
BMDCs promotes metastasis by mechanisms including
immunosuppression, inflammation, angiogenesis and
lymphangiogenesis (Liu and Cao, 2016). For example, lung
tropic 4,175 exosomes were identified to co-localized with
S100A4-positive fibroblasts and lung epithelial cells expressing
the surfactant protein C where they induced the expression of
pro-inflammatory and metastatic inducible S100 genes (Hoshino
et al., 2015). Small nuclear RNA enriched exosomes were reported
to induce chemokine secretion in the lung and promote
recruitment of neutrophils to the pre metastatic niche by
activating alveolar epithelial TLR3 (Liu et al., 2016).
Extracellular vesicles secreted by cancer associated fibroblasts
carrying protein cargos have been implicated in the formation
of pre metastatic niche in the lung by targeting lung fibroblasts
through TGF-B signaling enhancing remodeling of the extracellular
matrix (Kong et al., 2019). Furthermore, primary tumor derived
chemokine, CCL2 induces the expression of TLR4 ligands, S100A8

and SAA3 by lung club cells to support vascular permeability in the
lung and stimulate the migration of myeloid cells (Maru, 2015).

Lung metastases are identified in 20–54% of all cancer patients
and spread to the lungs is usually a marker of advanced malignant
disease which is associated with poor survival (Mohammed et al.,
2011).Table 1 below lists the leading primary cancerswith high risk
of lung metastasis and low survival rates. Consequently, prevention
or successful treatment of secondary lung metastasis due to an
existing primary extrapulmonary tumor is considered the gold
standard to improve 5-year survival rates in cancer patients.
However, tumors occurring in the lung either as a primary
tumor or metastasis from an existing extra pulmonary tumor
remain difficult to treat despite advancements in current
treatment approaches involving surgery, chemotherapy, radiation
and immunotherapy. In this review, we provide a summary of
current treatments and prospective future directions to improve the
management of tumors that occur in the lungs either as a primary
tumor or metastasis from extra-pulmonary tumors. We focus
primarily on immunotherapy as an option to prevent the
seeding of tumor cells in the lungs following the occurrence of
extra pulmonary tumors by highlighting the pulmonary route as an
attractive strategy to deliver “prophylactic” cancer vaccines.

CONVENTIONAL TREATMENTS OF
PRIMARY AND SECONDARY METASTATIC
LUNG CANCER
Surgical removal is the primary course of treatment for non-
metastatic lung cancers where tumors are confined in the lung as
seen in stage I and II NSCLC (Lackey and Donington, 2013). The

FIGURE 1 | Events of lungmetastasis. The primary tumor regulates the development of metastasis in a distal organ such as the lung by secreting factors such as (cytokines
and exosomes) that primes pre-metastatic niche formation. Following local invasion by primary tumor cells, the broken away tumor cells intravasate into circulation as circulating
tumor cells (CTCs). Upon surviving shear stress as a result of blood and immune surveillance, CTCs that reach a distal organwith a premetastatic niche extravasate into the organ
with the help of the pre metastatic niche where they exist as disseminated tumor cells (DTCs). The pre-metastatic niche promotes the survival of DTCs and remodel the
microenvironment by inducing immunosuppression and other events to drive micro-metastasis and eventual colonization of the distal organ by the primary tumor cells.
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5-year survival rate in resected stage 1 NSCLC patient is 70%, but
this drops to 25% in stage III patients (Imperatori et al., 2010).
Thus, surgery becomes ineffective as the tumor progresses,
requiring alternative treatment modalities. In cases of lung
metastases from distal primary tumors, surgery may be
effective in prolonging survival in patients with metastases that
is limited to pulmonary parenchyma without the involvement of
other organs (Warwick and Page, 2007). By comparison, surgery
is rarely an option for SCLC, the most aggressive type of lung
cancer (Barnes et al., 2017; Xu et al., 2019).

Chemotherapy is the primary treatment for SCLC due its
propensity to spread quickly to distal organs (Ganti et al., 2007;
Karim and Zekri, 2012; Yang S. et al., 2019). Initial chemotherapy
for SCLC patients usually consists of a combination of etoposide
and a platinum agent (either carboplatin or cisplatin) (Ganti et al.,
2007; Yang S. et al., 2019). In terms of NSCLC involving the lymph
nodes, neoadjuvant chemotherapy given months before surgical
resection of tumors in the lung is the standard course of action
(McElnay and Lim, 2014). Chemotherapy given months before
surgical procedure increases the cure rate in patients with stage III
NSCLC (McElnay and Lim, 2014). Chemotherapy can also be
given after surgical resection (adjuvant chemotherapy) in patients
with NSCLC. This is beneficial because at the time of surgery there
may be micrometastasis which may not be detected and removed
as part of surgical procedure and may lead to recurrence of the
tumor. Pulmonarymetastasis is a sign of advanced systemic disease
and systemic chemotherapy is usually part of the model of therapy
(Chojniak et al., 2006). Depending on the type and nature of
primary tumor and extent of lung involvement, it may be
combined with surgery either as neoadjuvant or adjuvant
chemotherapy to treat lung lesions and the primary tumor. For
example, patients with primary osteosarcoma and pulmonary
metastases (e.g., Less than eight metastatic lesions) who were

treated with neoadjuvant ifosfamide, surgical resection of both
primary and metastatic tumors and high dose methotrexate,
ifosfamide, doxorubicin and cisplatin had a five-year disease
free survival rate of 66.7% (Harris et al., 1998).

In contrast to chemotherapy, radiation therapy is a suitable
option for early stage lung cancer especially in cases where the
patient is inoperable due to compromised pulmonary function or
co-morbid conditions such as hypertension and diabetes
(Timmerman et al., 2010). Although conventional radiation
therapy in management of early stage lung cancer is
disappointing, advancement in the field following the adoption
of stereotactic technology has improved treatment outcomes.
Stereotactic body radiation therapy (SBRT) enables the delivery
of high dose radiation to tumors while sparing healthy tissues.
Although radiation is highly targeted, it is not effective in
eliminating tumors when it has spread from the lung. SBRT may
be effective in treating patients with limitedmetastatic disease due to
high rate of local control and minimal toxicity (Carvajal et al., 2015;
Filippi et al., 2016; Rieber et al., 2016; Agolli et al., 2017).

EMERGING IMMUNE-BASED CANCER
TREATMENT FOR PRIMARY AND
SECONDARY LUNG METASTASIS
The Concept of Immunotherapy
The hallmark of the immune system is the ability to recognize,
eradicate and establish memory defenses against pathogenic
encounters and foreign substances (Schreiber et al., 2011). The
immune defense system is also considered the first line against the
genesis and progression of tumors (Davis et al., 2015). During
tumor development, mutations occur leading to potentially
immunogenic cancer cells that can be recognized and killed by

TABLE 1 | Leading primary cancers with high risk of lung metastasis.

Cancer type Incidence Lung metastasis prevalence References

Bladder It is the 10th most common cancer, accounting for 2.1% of
all cancer-related deaths worldwide

The lung is the third most common site of metastasis after
the lymph node and bone

Bray et al. (2018), Ferlay et al.
(2019), Saginala et al. (2020)

Breast Approximately 12% of women in the U.S. will develop
invasive breast cancer over the course of their lifetime
which makes up 30% of all newly diagnosed cancer in
women

21–32% of patients with breast cancer develop lung
lesions with a median survival of only 25 months

Wu et al. (2017), Xiao et al.
(2018), Siegel et al. (2020)

Colorectal Second most common cause of cancer deaths in the U.S.
It is estimated to contribute to over 53,000 deaths in 2020

10–15% of patients with systemic metastasis have
lesions in the lung

Mitry et al. (2010), Siegel et al.
(2020)

Kidney Renal cell carcinoma, the most common type of kidney
cancer makes up approximately 2% of all tumors

Lung lesions are the most common and are identified in
about 45% of kidney cancer patients

Bianchi et al. (2012), Siegel et al.
(2020)

Melanoma Melanoma only makes up approximately 1% of skin
cancers but most skin cancer deaths are attributed to
melanoma. It is estimated to affect about some 100,350
people in the U.S. in 2020

Lung metastasis is common especially in advanced
stages. 89% of patients with stage IV melanoma as
described by the American Joint Committee on cancer
have metastatic lung lesions

Neuman et al. (2007), Siegel
et al. (2020)

Neuroblastoma Most common malignant disease in children less than one-
year old accounting for 6% of cancers that occur in children

The bone marrow, bone, lymph nodes, CNS, liver and
lung are all sites of metastases

D’Ambrosio et al. (2010), Siegel
et al. (2020)

Prostate Approximately 1 in every 9 men will have prostate cancer. It
is the second leading cause of cancer death among men
in U.S.

More than 40% of patients are diagnosed with secondary
lung metastasis

Gago et al. (2016), Siegel et al.
(2020)

Wilms tumor Most common kind of kidney cancer in children.
Approximately 500–600 children are diagnosed with
Wilms’s tumor in the U.S. each year

Lung is the most common site of metastasis Elayadi et al. (2020), Siegel et al.
(2020)
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the host immune system (Pandya et al., 2016). For example, non-
self-antigens expressed by tumor cells can be presented on MHC-
1 molecules and recognized by cytotoxic T-cells leading to T-cell
activation and killing of tumors (Speiser and Ohashi, 1998).
Hence, infiltration of solid tumors by immune cells (T-cells
and B-cells) has been identified as a good prognostic
biomarker in most types of cancers as it correlates to favorable
clinical outcomes. Therefore, immune surveillance is able to
prevent the occurrence of primary tumors as well as the rise
of metastasis. Yet, tumors can evade the immune system by
suppressing immune cell function through various mechanisms
that mimic immune tolerance to escape immune surveillance
(Cacan, 2017; Claisse et al., 2017; Noguchi et al., 2017). Tumor
cells achieve this through deliberate loss of antigenicity by
downregulating the expression of tumor antigens required for
initiation of an immune response and through mechanisms that
disrupt antigen presentation, such as loss of major
histocompatibility complex-1 (Schreiber et al., 2011). Tumor
cells again evade immune surveillance by exploiting immune
cell intrinsic mechanisms of immune tolerance by expressing PD-
L1, where PD-1/PD-L1 interaction between tumors and cytotoxic
T-cells have been shown to play a vital role in limiting antitumor
immunity (Pardoll, 2012; Sharma and Allison, 2015). Other
mechanisms include release of immunosuppressive cytokines
by tumors and tumor cell intrinsic aberrations/unique
metabolic pathways that lead to impaired T-cell activation and
accumulation in the tumor microenvironment aiding in tumor
evasion (Spranger et al., 2015; Casey et al., 2016; Koyama et al.,
2016; Peng et al., 2016). For example, the activation WNT/B-
catenin signaling, PTEN loss, Myc signaling and HIF-1 alpha
signaling are known for poor T-cell priming and reduced
intratumoral accumulation of cytotoxic T-lymphocytes
(Spranger et al., 2015; Zelenay et al., 2015; Casey et al., 2016;
Koyama et al., 2016; Peng et al., 2016).

Immunotherapy is aimed at augmenting immune responses
and/or inhibiting the suppressive activity by tumors from
immune system’s antitumor attack. Earlier immunotherapy
drugs, such as recombinant cytokine administration, were used
to activate and expand the immune system to fight against
tumors. Most notable, was the administration of high dose
interleukin-2 (IL-2), which is approved for management of
metastatic renal cell carcinoma and melanoma (Schreiber
et al., 2011). IFN-alpha is also one of the earliest approved
immune-based adjuvant therapies used for patients with
resected high-risk melanoma (Hancock et al., 2004). These are
less commonly used today because of their toxic effects which
warranted the development of newer advanced agents.

Current Advances in Immunotherapy
Recently more advanced approaches have arisen as the immune
suppressive mechanisms exploited by tumor cells became clearer.
Agents targeting the programmed death -1 receptor and its ligand
(PD-1 and PD-L1) axis, termed as immune checkpoint inhibitors
(ICIs) have emerged as effective therapeutic approaches in lung
tumors because it restores T-cell mediated immunity (Pardoll,
2012). In 2015, nivolumab, an antibody disrupting the PD-1 and
PD-L1 pathway was approved as the first immune checkpoint

inhibitor for NSCLC (Altorki et al., 2019). Since then, other ICIs
have been approved to be used in different stages of lung cancer.
Pembrolizumab is the standard treatment for patients having PD-L1
expression greater than 50% whereas nivolumab and atezolizumab
are all available options for patients who do not respond to
treatment after platinum doublet chemotherapy (Sapalidis et al.,
2018; Lim et al., 2020). By extension, the immune check inhibitors
may be beneficial in pulmonary metastases if the extra thoracic
primary tumor expresses high levels of PD-L1. Other check point
inhibitors target the CTLA-4 axis which limits the proliferation and
survival of T cells. CTLA-4 antibodies turn off this inhibitory
mechanism leading to the activation of cytotoxic T cells involve
in killing tumors (Zhao et al., 2018). However, emerging research
has shown that, the mechanism behind therapeutic CTLA-4
antibodies is their ability to cause selective depletion of Tregs in
the tumor microenvironment (Liu and Zheng, 2018; Hoy et al.,
2019). Some examples are ipilimumab and tremelimumab, with
ipilimumab being the first drug in this category to be approved for
clinical use as part of first line or second line regimen for treating
advanced melanoma (Lipson and Drake, 2011; Robert et al., 2011).
In May 2020, the FDA approved the combination of nivolumab, an
ICI, plus Ipilimumab (anti-CTLA4 antibody) as first line regimen
for patients with metastatic NSCLC cancer with PD-L1 tumor
expression ≥1%. Thus, CTLA-4 responsive tumors may be
efficacious in preventing pulmonary metastasis. An additional
immunotherapy recently developed is the chimeric antigen
receptor (CAR) T-cells therapy. It has been very successful in
treating hematological malignancies but has been disappointing
thus far in solid tumors due to lack of antigenic targets (Chen
et al., 2019). The identification of some antigenic targets on lung
cancers such as mesothelin, disialoganglioside (GD2), MUC 1, NY-
ESO-1, human epidermal growth factor and epidermal growth
factor receptor has begun research into testing the efficacy of
CAR T-cells therapy in lung cancer (Hu et al., 2020). Currently,
CAR T-cell therapy targeting the above mentioned antigens are in
different stages of clinical trials as potential immunotherapy against
thoracic malignancies (Kiesgen et al., 2018; Oliveres et al., 2018).

Other immunotherapy strategies include the use of
monoclonal antibodies that target receptors that play crucial
roles in the lung microenvironment signaling pathways to
support tumor growth in the lung (Hanahan and Coussens,
2012; Pitt et al., 2016). For example, bevacizumab, a VEGF
antibody inhibiting tumor angiogenesis has been approved for
use in combination with chemotherapy for management of
advance, non-squamous NSCLC (Pilotto et al., 2014).

Table 2 provides a list of current immunotherapies used in
primary and secondary lung cancers.

PULMONARY DELIVERY APPROACHES TO
MANAGE LUNG CANCER AND
SECONDARY LUNG METASTASIS
The Historical Use and Benefit
Nasal-Pulmonary Drug Delivery Systems
The pulmonary route, either intranasally or via inhalation is a
common form of drug delivery. It has been used in the treatment
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of respiratory diseases such as asthma, chronic obstructive
pulmonary disease (COPD) and viral infections (e.g.,
influenza) that affect the airways where corticosteroids, beta-
2 adrenergic agonist and antiviral agents are administered
directly into the lung (Levin et al., 1996; Mossad, 2003; Lee
et al., 2010). The advantages are well known including
accessibility, efficient high drug concentrations in the lung
and hence a minimal amount of the drug is needed to
achieve higher efficacy with minimal side effects in the
above-mentioned conditions (Rau, 2005). Currently, there is
considerable attention in formulation of drugs for pulmonary
delivery for substantial reasons. Pulmonary delivery is not
affected by first pass metabolism as the lungs exhibit very
low metabolic activity (Pilcer and Amighi, 2010).
Importantly, the lung’s anatomy aids its use as an entryway
of drugs. It has a large surface area (100 m2) and thin absorption
membrane (0.1–0.2 μm) that supports rapid absorption of
substances including drugs and high blood flow (5 L/min)
which quickly distributes molecules throughout the body.
This supports the reason for the use of pulmonary route to
treat systemic diseases such as diabetes (inhaled insulin) (Chan
and Cheng-Lai, 2017), making it ideal to be considered as a
viable option in the treatment of primary lung cancer and
secondary lung metastasis.

Inhaled Chemotherapy
In recent years, pulmonary delivery has been considered an
improved drug delivery approach in delivering
chemotherapeutic drugs locally to the tumor site in the lungs
as it offers several benefits such as increase in the amount of drug
deposited in tumors, less drug concentration required to achieve
efficacy and minimal toxicity due to limited systemic distribution
of drugs (Zarogoulidis et al., 2012b; Zarogoulidis et al., 2012c;
Goel et al., 2013; Sardeli et al., 2020). Evaluation of this delivery
approach in human subjects has shown promising results. For
example, inhaled 5-fluorouracil (5-FU) in human subjects led to
higher drug concentrations in tumors than in surrounding tissues
(Tatsumura et al., 1993). Zarogoulidis et al. also showed that
inhaled carboplatin provided improved anticancer efficacy and
prolonged survival of patients with NSCLC compared with
patients who received intravenous carboplatin (Zarogoulidis
et al., 2012b). However, the physicochemical properties of
chemotherapeutics such as molecular weight and solubility,
may limit their penetration and accumulation into pulmonary
tumors despite improved localization of these drugs in the lung
following pulmonary delivery (Minchinton and Tannock, 2006;
Zarogoulidis et al., 2012a). Again, the nature of the tumor
including size, cellularity and density of interstitial tissues may
limit drug penetration following pulmonary administration

TABLE 2 | Current Immunotherapies to combat primary and metastatic lung cancers.

Immunotherapy Category Indication References

IL-2 Cytokine therapy Inhaled form has been shown to have some activity against
secondary lung metastasis in patients with melanoma and renal cell
carcinoma

Enk et al. (2000), Posch et al.
(2014)

Interferon alpha Cytokine therapy Subcutaneous injection of IFN-alpha in combination with S-1 was
effective against secondary lung metastasis from hepatocellular
carcinoma

Akita et al. (2015)

Trastuzumab Monoclonal antibody targeting HER2
protein

Went into phase II clinical trial to test efficacy against HER-2 positive
non-small cell lung cancer

Hotta et al. (2018)

Ibritumomab tiuxetan and
tositumomab

Radiolabeled monoclonal antibody Effective against pulmonary metastasis in non-Hodgkin’s lymphoma
where the burden of lung metastasis is not high. Tositumomab was
more effective

Song et al. (2007)

Cetuximab Monoclonal antibody that targets
EGFR

Cetuximab plus chemotherapy improved overall survival in patients
with advanced EGFR positive NSCLC compared with chemotherapy
alone in a phase III clinical trial

Pirker and Filipits (2012)

Bevacizumab Monoclonal antibody targeting VEGF Bevacizumab has been approved to be used with standard
chemotherapy as first line treatment in patients with advanced or
recurrent non squamous NSCLC.

Sandler et al. (2006), Matikas
et al. (2016)

Ado-transtuzumab emtasine Chemo labeled monoclonal antibody
targeting HER2 protein

In a phase II clinical trial, ado-transtuzumab ematasine was effective
in patients with HER2-mutant lung cancers

Li B. T et al. (2018)

Pembrolizumab PD-1 inhibitor Pembrolizumab has supplanted cytotoxic chemotherapy as first line
therapy for patients with advanced NSCLC whose tumor proportion
score of programmed death ligand 1 (PD-L1) is 50% or more.
Currently, its efficacy and safety as a combined regimen together
with chemotherapy is being investigated in metastatic non-small cell
carcinoma

Gandhi et al. (2018), Lim et al.
(2020)

Nivolumab PD-1 inhibitor Nivolumab has been approved by the FDA as second line treatment
in patients with advanced NSCLC

Somasundaram et al. (2016)

Atezolizumab PD-L1 inhibitor Atezolizumab has been approved as part of a second drug
combination for the management of people with non-squamous
NSCLC with no alteration in the EGFR or ALK genes

Chen et al. (2018)

Ipilimumab CTLA-4 inhibitor The FDA has approved the combination of ipilimumab and
nivolumab as first line regimen for patients with metastatic non-small
cell lung cancer with PD-L1 tumor expression ≥1%

Mankor et al. (2020)
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(Mangal et al., 2017). These characteristics ultimately decrease the
anti-tumor efficacy of chemotherapeutics following pulmonary
delivery and may lead to unwanted side effects due to the
potential exposure of healthy cells in the lung to the toxic
effects of chemotherapeutics due to their inability to penetrate
and accumulate into tumors.

Nanotechnology has been used to offset similar barriers in the
administration of systemic chemotherapy (Senapati et al., 2018).
The success of this approach has fomented an interest in
exploring the prospects of incorporating chemotherapeutics
into nano-based systems such as liposomes, polymeric
nanoparticles and micelles capable of pulmonary delivery.
Nanoparticles are able to penetrate and accumulate in solid
tumors by a phenomenon known as the enhance permeability
and retention effect (Mohanty et al., 2012) due to the uniqueness
of tumor tissue vasculature (poor fenestrations) and inefficient
lymphatic drainage. Also, unlike free drug, nanoparticle
encapsulated drug can be taken up directly by tumor cells via
endocytosis leading to enhanced accumulation of the drug in
tumors (Guo et al., 2018). Importantly, nanoparticle encapsulated
chemotherapeutics are more efficacious and safer because they
are able to accumulate more in pulmonary tumor tissues, thereby
sparing healthy cells due to less systemic drug circulation.
Nanoparticle encapsulating chemotherapeutic agents delivered
via the pulmonary route have been shown to have increased
efficacy in treatment of primary lung tumors and inhibiting
metastasis from an existing extra-pulmonary primary tumor.
For example, Inhaled lipid coated formulation of 5-FU
achieved sustained drug release and enhanced anticancer
properties (Hitzman, et al., 2006a; Hitzman, et al., 2006b).
Lemarie et al. also showed that pulmonary delivery of
nanoparticle encapsulating gemcitabine leads to minimal
systemic cytotoxicity due to lower plasma drug concentration
(Lemarie et al., 2011). In addition, nanoparticles can be surface
functionalized with a targeting moiety such as molecules that are
only expressed on the surface of tumors to allow for targeted
delivery of drugs (Mout et al., 2012). This receptor ligand
conjugation approach further enhances the concentration of
drug locally with reduced doses and less cytotoxicity to
healthy tissues. However, the adverse effects of pulmonary
administration of chemotherapeutic drugs including its effect
on the lung parenchyma needs to be properly assessed.
Neurotoxicity was noted to be associated with pulmonary
delivery of paclitaxel liposome aerosol as treatment to inhibit
pulmonary metastasis from an extra-pulmonary tumor
(Koshkina et al., 2001). Inhaled doxorubicin has been
associated with severe cardiotoxicity (Hershey et al., 1999).
Two phase I and phase I/II trials indicated metallic taste, mild
bronchospasm and moderate reduction of pulmonary function
test as side-effects associated with aerosol treatments
(Zarogoulidis et al., 2012a).

Inhaled Immunotherapy
The efficacy of chemotherapeutics administered into the lungs via
pulmonary delivery supports the potential for a strategy to be
employed for the purpose of immunotherapy delivery approaches
via the nasal-pulmonary tract. The potential advantages are a safe

and non-invasive alternative to current approaches that require
direct injection of immunomodulators into tumors (Hamid et al.,
2020) which are typically hard to reach by direct injection such as
those located in the lungs. Notwithstanding, in situations that
require repeated injection to maintain immune responses, the
pulmonary administration offers a noninvasive approach
allowing for non-invasive repeated treatment modalities that
directly target the lung without the potential for systemic
adverse effects. In efforts to reduce toxicities from systemic
administration of IL-2, the pulmonary route has been
investigated as a viable alternative where low dose IL-2 has
shown some efficacy for the treatment of lung metastasis in
patients with melanoma and renal carcinoma (Enk et al., 2000;
Huland et al., 2003; Posch et al., 2014). Recently in efforts to make
ICIs more efficacious while reducing side effects, methods of
sustained and tumor targeted delivery of ICIs are being explored.
Some of the delivery strategies currently under investigation
include: the use of viral vectors, delivery using bacteria and
delivery of ICIs as DNA encoded monoclonal antibodies
(Engeland et al., 2014; Lin et al., 2017; Perales-Puchalt et al.,
2019; Reul et al., 2019; Gurbatri et al., 2020). However, most of the
above delivery strategies require intratumoral or intravenous
injections requiring hospitalization. This makes pulmonary
delivery of ICIs an attractive alternative that requires much
attention and research in treating both primary lung cancer
and secondary lung metastasis as pulmonary delivery such as
inhalation can easily be performed in an outpatient setting.

PULMONARYDELIVERYOF THERAPEUTIC
LUNG CANCER VACCINE AS PART OF
INHALED IMMUNOTHERAPY
Dendritic Cell-Based Cancer Vaccines
The immune system does not only recognize and eliminate
substances that are non-self but also generates memory after
eliminating these substances (Schreiber et al., 2011). This forms
the basis of vaccination; the ability of the immune system to
mount a robust and specific immune response upon exposure to a
previously eliminated antigen. This approach of inducing
immunity is being used to mobilize antitumor immunity to
help patients that do not benefit enough from current
immunotherapies such as checkpoint inhibitors. The direct
induction of antitumor immunity by vaccination relies on
dendritic cells (DC) because of the unique role they play as
part of the immune system where they serve as a bridge between
the innate and adaptive immunity by initiation and directing the
adaptive immune response (Harari et al., 2020). There are two
broad strategies in which DCs are being used to promote
anticancer immunity. The first approach involves the release
of tumor antigens into the body either through in situ
vaccination approaches or direct introduction of tumor
antigen carried by a vaccine vector and the ex-vivo approach,
which relies on loading patients DCs with tumor antigen in vitro
followed by administration of those DCs back to the patient
(Disis, 2014). Although studies have shown less clinical benefits,
DC-based vaccines could still be an essential part of an integrated
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anticancer strategy in managing tumors occurring in the lungs.
This will require the identification of a suitable tumor antigen
capable of invoking robust anticancer immunity, an appropriate
vaccine vector for delivery of the antigen and an appropriate
delivery strategy into the body.

Cancer Vaccine Antigens
Therapeutic cancer vaccines either employs whole tumor cells or
lysates which contains a broad range of antigenic repertoire or a
single/few selected and validated cancer antigens in the form of
peptide or recombinant proteins. Most cancer vaccines target
tumor associated antigens (TAAs), which are abnormally or
overexpressed proteins by cancer cells due to mutations in
proteins that drive their transcription. TAAs include cancer
germline antigens which are normally expressed only in
trophoblast tissue and germline cells (e.g., MAGE- A1, MAGE
A3, and NY-ESO-1), cell lineage differentiation antigen, which
are normally expressed by cells early in life but usually absent
during adulthood (e.g., prostate specific antigen (PSA) and
prostate acid phosphatase (PAP) and antigens that are present
at relatively low levels on normal cells but overexpressed by
cancer cells (e.g., HER2 and MUC-1). Because they are not
exclusively expressed by cancer cell but are expressed by
certain normal cells early on in life or at relatively low levels,
immune activation to these antigens is low because T cells and
B cells that strongly recognize these antigens are clonally deleted
from the repertoire during negative selection. Vaccination with
TAAs therefore require strong vaccine adjuvants and repeated
vaccination to generate robust immune response capable of
immunological memory. However, this may lead to the
expansion of self-reactive T cells causing autoimmune disease.
For instance, Palmer et al., showed that adoptive transfer of CD8+

T cells specific for melanoma associated antigen triggered severe
ocular autoimmunity in mice as this antigen is also expressed in
eye melanoma cells (Palmer et al., 2008). The potency and off
target effects of vaccines must be critically evaluated when it
involves TAAs. The etiology of approximately 10% of human
cancers is viral infection. This means that vaccination to prevent
or treat viral infection that induces the cancer can lead to cancer
prevention. For example, vaccination against Hepatitis B Virus, a
known cause of hepatocellular carcinoma is known to decrease
both the rate of infection and incidence of hepatocellular
carcinoma.

Neoantigens are non-self-proteins that arise due to cancer
specific mutations. They could specifically be recognized by T-cell
receptors specific for the antigen in the groove of MHC
molecules. In this regard, neoantigens are potentially ideal
targets for the construction of therapeutic cancer vaccines.
Unlike TAAs, neoantigens are unlikely to mediate immune
tolerance and autoimmunity when used with strong vaccine
adjuvants. The expression of neoantigens is driven by
mutations hence they differ in patients having same type of
tumor. The benefit of neoantigen as a cancer vaccine is fully
realized when personalized for each patient type where the
patient tumor genome is sequenced to identify mutations from
which neoantigens are expressed. The identified neoantigen can
then be delivered to the patient to induce immune response

(Castle et al., 2019). The advantage of using a selected few of
validate cancer antigens is the generation of a more focused
immune response. However, the ability of tumors to
downregulate the expression of antigenic targets may render
such vaccines ineffective (Odunsi et al., 2007). This can be
corrected with the use of whole tumor cell lysate that
generates a strong and broad polyclonal T cell responses from
its polyvalent antigens hence preventing the emergence of tumors
that are immune-resistant because of their ability to downregulate
the expression of some antigenic targets (Chiang et al., 2015). In
addition, the use of whole tumor cell lysate does not require prior
knowledge of the patient’s HLA haplotype and allows for the
induction of both CD4+ and CD8+ T cells (González et al., 2014).
However, such mechanisms cannot be guaranteed with the use of
peptides and recombinant proteins. The disadvantage of using
whole tumor cell lysate is that they contain self-antigen that can
mediate tolerance and immunoregulatory cytokines and factors
that dampens immune response. Whole tumor cell lysate may
contain IL-10 and transforming growth factor which inhibits the
expression of MHC molecules and co stimulatory molecules by
APCs and inhibits T-cell proliferation (Loercher et al., 1999),
major histocompatibility complex class 1 related proteins A and B
(MICA and MICB) that inhibits killing of tumors mediated by
immune cells expression of NKG2D (Groh et al., 2002), Fas
ligand which may cause lymphocyte death (Rabinowich et al.,
1998) and VEGF which suppresses DCs function (Dikov et al.,
2005). Inducing immunogenic cell death (ICD) in tumor cells
through irradiation, HOCl oxidation and hyperthermia
treatments prior to extraction of whole tumor cell lysate have
been found to increase the immunogenicity of the lysate
(Vandenberk et al., 2015). ICD leads to the expression of
NKG2D ligands, heat shock proteins and calreticulin on the
surface of cells and release of immunostimulatory factors that
can stimulate immune effectors (Zhou et al., 2019). The priming
and boost approach can also help derive the full benefit from
whole tumor cell lysate (Harari et al., 2020). In this approach,
cancer specific T-cell responses are first induced by
administration of whole tumor cell lysate in the priming
phase. The patient’s immunological response is then analyzed
to identify and characterize effective cancer epitopes. The
validated cancer antigens are then used to prepare a
personalized synthetic vaccine which is administered to the
patient to sustain T cell responses in the boosting phase.
Therapeutic cancer vaccine against lung cancer in the form of
pulsing patients’ dendritic cells in vitro with whole tumor cell
lysate followed by administration of the dendritic cells to the
patients showed mixed responses in patients (Um et al., 2010;
Kamigaki et al., 2013).

Utility of the Pulmonary Route for Delivery of
Cancer Vaccine Vectors—A Case for the
use of Nanoparticles
The selection of an appropriate vaccine vector capable of
pulmonary delivery of antigens to dendritic cells in the lung
and regional lymph nodes may be helpful in generating a robust
mucosal immunity in the lung that can eliminate a primary lung
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tumor or prevent the seeding of an existing extra-primary tumor
to the lung. Although some works have been done with regards to
respiratory infections where the pulmonary administration of
vaccines has been shown to induce robust mucosal immunity
against infections when studied using influenza, tuberculosis and
more recently Covid-19 models (Bhide et al., 2018; Hassan et al.,
2020; Jiang et al., 2020), the pulmonary route has so far not been
considered in delivering vaccines against lung tumors although it
offers a promising alternative for generating robust respiratory
antitumor immunity capable of restricting the growth of primary
lung tumors and preventing the seeding of extra pulmonary
tumors in the lung. So far, DC—based vaccines have been
delivered to individuals through intravenous, subcutaneous,
intradermal, intralymphaitc and intratumoral route (Fong
et al., 2001; Dohnal et al., 2007; West et al., 2009). For lung
occurring tumors, the intravenous and subcutaneous route have
been exploited as a way of vaccine delivery into the body to
combat lung lesions (Um et al., 2010; Wurz et al., 2014). The
pulmonary delivery of DCs that have been primed in vitro by a
tumor antigen or administration of antigens to prime DCs in the
lungs can lead to the sensitization of a large percentage of T-cells
in the lungs. Easy accessibility, non-invasiveness and the potential
of administration in the out-patient setting are advantages of
vaccine delivery by the pulmonary route.

Currently, cancer vaccine vectors that have been studied
include cellular vaccines, virus vector vaccine and molecular
vaccine (Hollingsworth and Jansen, 2019). Cellular vaccines
include the use of killed tumor cells or adoptive transfer of
antigen presenting cells (APCs) from the cancer patient loaded
with tumor antigens. Bacteria and yeast can be used as vectors in
the formulation of cellular vaccine to deliver tumor antigens
(Nascimento and Leite, 2012). Viral vaccine vectors involve the
use of viruses that encode a tumor antigen to stimulate immune
response against the tumor antigen (Choi and Chang, 2013).
Molecular vaccine has to do with the administration of a peptide
derived from the tumor antigen or DNA/RNA that encodes a
tumor antigen or peptide to drive immune response. Pulmonary
delivery of these vaccine vectors to induce lung specific immunity
have so far been tested against respiratory infections in mice. For
example, Jiang et al. showed that there was generation of specific
lung and localized immune response against mycobacterium
tuberculosis following intranasal administration of
mycobacterium antigens carried by the vector Listeria ivanovii
(Jiang et al., 2020). Intranasal delivery of peptides and DNA
vaccine have also been proven to induce lung specific immune
response in mice (Tesoro Cruz et al., 2008; Yang J. et al., 2019).
Immune response against vectors (viral or bacterial) carrying a
tumor antigen can neutralize the vector, limiting repeated
vaccination which is required to generate immune response
capable of immunological memory (Saxena et al., 2013). This
can be a drawback with the use of vectors (viral or bacterial) for
pulmonary vaccine delivery. Again, the administration of naked
proteins, peptides and DNA are easily cleared by mucosal ciliary
movement before they are able to induce immune response.

In view of this, nanotechnology is emerging as an approach to
target anticancer therapies to the lung including their potential
use in activation of immune responses in the lung (Marasini et al.,

2017; Al-Halifa et al., 2019; Alshweiat et al., 2019).
Nanotechnology have been used to target antigens to dendritic
cells either in vivo or ex vivo as a way of improving the clinical
outcomes of therapeutic cancer vaccines as summarized in
Table 3. Nanoparticles protect antigens susceptible to
degradation by proteases and enhance their cellular uptake by
antigen presenting cells (APCs), they allow for co-loading and co-
delivery of antigens and adjuvants in a sustained released manner
enhancing the priming of cytosolic T-lymphocytes (CTL)
(Goldberg, 2015). During active targeting, the surface of
nanoparticles can be decorated with DC receptor ligands such
as ligands for Fc receptors and the C-type lectin receptor family
leading to the induction of strong immune response compared to
non-targeted nanoparticles conjugates encapsulating antigens
(Tacken et al., 2007). These therapeutic cancer vaccines based
on nano formulations can be targeted to dendritic cells in the lung
via pulmonary delivery. Besides the potential to generate potent
mucosal immunity due to the direct delivery of antigens and
adjuvants into the lungs where proteolytic activity is low, it offers
a noninvasive alternative route to deliver vaccines (Al-Halifa
et al., 2019). These advantages of pulmonary deliver of nano-
based vaccines make it ideal to considered as a viable model in the
management of lung occurring tumors where it can serve as
adjunct treatment for primary lung cancer to mobilize the body’s
immune system to fight the tumor following chemotherapy and/
or radiation treatment especially in cases where the tumor has not
spread beyond the lung draining lymph nodes. Again, protection
against secondary lung metastasis from an existing primary
tumor can be achieved following pulmonary administration of
a nano-based vaccine against the primary tumor.

The deposition of particles in the respiratory tract following
inhalation is size dependent such that particles smaller than the
average mesh spacing of the airway mucus are able to penetrate it,
escaping physiological mucus clearance to be deposited in the
alveolar spaces of the lung parenchyma where their clearance is
delayed (Schneider et al., 2017). Once particles get in the gas
exchange region, the main mechanism of clearance is by alveolar
macrophages. Particles less than 200 nm are less efficiently
cleared increasing their retention time in the lung parenchyma
compared to larger particles (Blank, et al., 2013). These make
nanoparticles ideal for targeting antigens to dendritic cells in the
lung parenchyma. Following the deposition of antigens, these
antigens are required to be picked up by resident dendritic cells
and migrate to a regional lymph node where they can activate
naïve T-cells to induce anti-tumor immunity. Smaller particles,
however, can easily traffic to the lymph nodes from the site of
delivery where they will encounter a high proportion of antigen
presenting and naïve T-lymphocytes that can be activated to
generate anti-tumor immunity (Choi et al., 2010). For
nanoparticles targeting dendritic cells in the lungs, size is
important to ensure effective antitumor immunity.
Nanoparticle size ranging from 20 to 50 nm are detected in
higher quantities in the lung draining lymph node compared
to larger nanoparticles (Blank et al., 2013). Again, higher
frequencies of nanoparticles ranging from 20 to 50 nm are
trafficked by lung parenchyma dendritic cells to regional
lymph nodes where they induce stronger antigen specific
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TABLE 3 | Nanoparticle platforms used in targeting tumor antigens to dendritic cells.

Nanoparticle type Use Properties References

Inorganic nanoparticles
Gold nanoparticles
(AuNP)

AuNP were used to deliver antigens to dendritic cells
by decorating the surface with a red fluorescent
protein that served as a model antigen and CpG as a
vaccine adjuvant. This construct exhibited significant
antitumor efficacy in RFP expressing melanoma
tumor model and allowed for vaccine tracking and
detection by CT imaging

AuNPs have dual ability to serve as carriers for
biomolecules as well as imaging agents to track
and detect these biomolecules, it is nontoxic and
biocompatible, its size can easily be manipulated to
adapt to different applications and the surface can
be easily be functionalized

Lee et al. (2012), Mieszawska
et al. (2013)

Iron nanoparticles Superparamagnetic iron oxide nanoparticles coated
with zinc oxide (ZnO) carrying a ZnO binding peptide
were linked to a tumor antigen (carcinoembryonic
antigens). This modified nanoparticle led to tumor
growth attenuation whiles allowing for the in vivo
monitoring of dendritic cell migration when tumor
bearing mice were immunized with dendritic cells that
were pulsed with the nanoparticle-CEA complex

Have dual ability to serve as carries for
biomolecules and imaging agents

Cho et al., 2011, Perica et al.
(2014)

In an interesting approach, perica et al., synthesized
nano-scale artificial antigen presenting cells (nano-
aApc) by conjugating MHC-peptide complex and co-
stimulatory anti CD 28 to a paramagnetic iron-dextran
nanoparticle. The iron based aAPC induced antigen
specific T-cell proliferation and restricted tumor
growth in-vivo

Mesoporous silica
nanoparticles (MSN)

DC vaccination based on human epidermal growth
factor receptor 2 (HER-2) loaded MSN produced a
strong anti-tumor immunity by inducing cross
presentation and eliciting type 1 interferon production

Easy to synthesize, have large and tunable pore
size making it ideal to incorporate various biological
agents. They are ideal for immunotherapy because
they possess an intrinsic adjuvant property

Xia et al. (2015), Wang et al.
(2016), Cha et al. (2018)

MSN with extra-large pores that carried antigenic
OVA and CpG ODNs delivered them efficiently to
dendritic cells to induce strong anticancer immunity
against OVA expressing tumors

Carbon dots (CDs) PEGylated CDs carrying tumor antigens enhanced
antigen uptake and maturation of dendritic cells
leading to potent activation of T-cells that significantly
restricted tumor growth in a melanoma tumor model

Have good water solubility, chemically stable, ease
of surface conjugation and large-scale production

Wang et al. (2019), Shields et al.
(2020)

Organic nanoparticles
PLGA PLGA have been used to demonstrate effective

targeting to solid tumors. PLGA nanoparticles
developed to deliver antigenic peptides (TRP2 and
GP100) with Freud’s complete adjuvant induced
potent cytotoxic T lymphocyte in melanoma
burdened mice

An FDA approved polymer, it is both biodegradable
and biocompatible, safe and easy to synthesize

Zhang et al. (2011), Fang et al.
(2014), Kokate et al. (2016), Min
et al. (2017)

In a recent development, min et al., developed PLGA
nanoparticles with motifs able to selectively capture
disseminated tumor antigens following tumor
irradiation for dendritic cell uptake. Rutika et al.,
formulated a tumor antigen encapsulated
nanoparticle from PLGA polymer which was surface
functionalized with CpG, a vaccine adjuvant. This
construct restricted the growth of primary breast
tumor by inducing a potent T-cell immunity
PLGA nanoparticle encapsulating adjuvants coated
with cell membrane derived from cancer cells
effectively delivered membrane proteins to dendritic
cells leading to the generation of antitumor immunity
against cancer membrane antigens

Polypropylene sulfide
(PPS) nanoparticles

Pluronic -stabilized poly (propylene) sulfide (PPS)
nanoparticles used to target adjuvants to tumor
draining lymph node, presumably already bathed in
tumor antigens promoted anti-tumor immunity and
restricted tumor growth by facilitating uptake of
antigens by dendritic cells

Resistant to degradation by most stimuli except
reactive oxygen species (ROS) making it ideal for
degradation in tissues producing high amount
of ROS.

Lee et al. (2013), Thomas et al.
(2014)

(Continued on following page)
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CD4 T -cell proliferation compared to larger nanoparticle size
(Nochi et al., 2010; Blank et al., 2013). However, intranasal
administration of cationic liposome-hyaluronic acid hybrid
with average size of 250 nm was able to induce antigen
specific immunity (Fan et al., 2015).

The behavior of inhaled particles (aerodynamic behavior) is
guided by their aerodynamic diameter which is the diameter of
a sphere of unit density and affects how they are deposited in
the lungs. Particles with aerodynamic diameter >5 μm are
deposited predominately in the upper airways by inertial
impaction due their inability to change their trajectory with
tidal air (Sturm and Hofmann, 2009). Particles with
aerodynamic diameter between 1 and 5 μm are
predominately deposited in the lower airways involving the
bronchioles and alveoli by gravitational sedimentation (Rissler
et al., 2017). Particles with aerodynamic diameter to be less
than 1 μm do not get deposited but remain suspended in the
airstream leading to their likelihood to be exhaled following
inhalation (Mangal et al., 2017; Rissler et al., 2017). Because
nanoparticles have the tendency to aggregate to form
uncontrolled sizes leading to inconsistent and unpredictable
aerosolization, nanoparticles are often administered as
particles/droplets with an aerodynamic diameter of 1–5 μm
(Desai, 2012) to enhance their delivery in the lung parenchyma.
This is facilitated with the use of nebulizers and metered dose
inhalers (MDIs) that are able to convert nanoparticle
suspensions into inhalable droplets.

Although the surface charge of nanoparticles does not impact
their distribution in the lung, it influences their interaction with lung
dendritic cells. Positively charged nanoparticles are preferentially

taken up by lung dendritic cells whiles their negatively charged
counterparts are engulfed by alveolar macrophages leading to their
clearance (Fromen et al., 2016). This means that cationic
nanoparticles are more successful at inducing stronger adaptive
immune response following pulmonary delivery.

The use of nanoparticle-based vaccines for pulmonary delivery
continues to show promise. For example, Nochi et al. created an
adjuvant free intranasal vaccine from nanogels made from self-
assembly pullulan polymers modified with cholesteryl and
clostridium botulinum type A neurotoxin that was able to
induce both IgG and IgA antibodies response (Nochi et al.,
2010). Fan et al. induced potent humoral immune responses
through the intranasal delivery of cationic liposome-hyaluronic
acid hybrid nanoparticles made to deliver antigens against
Yersinia pestis (Fan et al., 2015). Li et al. have developed
carbon dots nanoparticles capable of intranasal delivery that
enhanced immunization efficacy by significantly increasing
humoral immunity and memory T-cell formation (Li S. et al.,
2018). These examples together with the recent study by Zhao
and his coworkers where they synthesized an inhalable
phosphatidylserine coated liposome loaded with
immunostimulants (STING agonist cyclic guanosine
monophosphate-adenosine monophosphate—cGAMP) that
stimulated APCs activation and cross presentation and
synergizes with radiation treatment to protect against
secondary lung metastasis following the occurrence of a
primary breast tumor after intranasal administration (Liu
et al., 2019) show that nanoparticles can be used to deliver
tumor antigens to induce antitumor respiratory immunity
following pulmonary delivery.

TABLE 3 | (Continued) Nanoparticle platforms used in targeting tumor antigens to dendritic cells.

Nanoparticle type Use Properties References

lipid-Calcium phosphate
(LCP) nanoparticles

Multi-functionalized LCP nanoparticles used to co
deliver the peptide antigen TRP2 and vaccine
adjuvant, CpG induced robust T-cell antitumor
immunity against primary melanoma and its
associated secondary lung metastasis

Has high endosomal escape facilitating cross
presentation. Has the ability to encapsulate
phosphorylated moieties. These make them
attractive vehicles for immunotherapy

Xu et al. (2013), Huang et al.
(2018)

Liposomes Liposomes have been used to deliver peptide antigen
consisting gonadotropin releasing hormone to
dendritic cells for the generation of tumor specific
cytosolic T-lymphocytes against prostate cancer

Their cell membrane like structure enables efficient
cell affinity and increases cellular uptake. They can
be loaded with both hydrophobic and hydrophilic
molecules

Cruz et al. (2011), Iwama et al.
(2016), Kranz et al. (2016)

Liposomes coupled with the TAA—glypican -3
(GPC3) and CpG ODN as vaccine adjuvant on its
surface effectively induced GPC3 specific CTLs that
restricted the growth of GPC3 expressing
hepatocellular carcinoma in mice following
intradermal administration
Cationic liposomes have been used to deliver RNA
encoding neoantigens to dendritic cells to elicit robust
tumor specific CTL response against melanoma

Carbon-based nanostructures
Carbon nanotubes
(CNTs)

Multiwalled CNTs were synthesized to deliver
ovalbumin (OVA), anti-CD40 and CpG ODNs to
dendritic cells that led to the induction of ova-specific
anti-tumor immunity

Nontoxic and easily taken up by phagocytic cells
making them ideal for immunotherapy. Their high
surface areas are easily accessible to attach high
densities of adjuvants and antigens which
increases their interactions with antigen presenting
cells

Hassan et al. (2016), Shields et al.
(2020)
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Host derived extracellular vehicles (EVs) such as exosomes are
also emerging as attractive vehicles to target antigens to dendritic
cells. Exosomes are nano-sized EVs (size ranging from 30 to
100 nm) that play important roles in cell-to-cell communication
(Meng et al., 2019). Endogenous drug delivery systems such as
exosomes have advantage over synthetic nano formulations
because of their native biocompatibility in vivo which helps
them enhance drug delivery and therapeutic efficiency
(Batrakova and Kim, 2015; Peng and Mu, 2016). Tumor
derived exosomes are rich sources of tumor rejection antigen
capable of inducing tumor specific immunity (Luan et al., 2017).
However, tumor cell derived exosomes can also contain
immunosuppressive proteins that dampens immune response
enabling tumor cells to escape immune surveillance (Xu et al.,
2020). Antigen presenting cells such as dendritic cells derived
exosomes have shown great promise in delivery of tumor antigens
to induce antitumor immunity (Whiteside, 2016). They have the
capacity to transfer peptide -MHC complexes that have been
exposed to an antigen to other DCs that have not encountered
similar antigens (Wahlund et al., 2017). The pulmonary delivery
of exosomes loaded with a tumor antigen can serve as an
appropriate drug delivery platform to treat lung tumors.

THE CONCEPTUAL FRAMEWORK

Therapeutic cancer vaccines have been used to treat tumors and
prevent metastasis by targeting the primary tumor. If the seed soil
hypothesis by Stephen Paget that explains metastasis is anything
to go by, then targeting the soil (future metastatic sites) may serve
as a means to prevent metastasis. The seed soil hypothesis

proposes that, the primary tumor secreted factors prepares the
soil (future metastatic sites) for colonization by detached cells
form the primary tumor (seed) that reach the distal organ either
through circulation or the lymphatics. As stated in the
introduction one of the events that occurs in the future
metastatic sites as a result of molecular and cellular changes
fashioned by the tumor derived factors is immune suppression.
For the seed to successfully colonize future metastatic sites they
have to evade immune surveillance by CD8+ T-cells and NK cells
that directly kill tumor cells. Tumor cells derived chemokines and
cytokines recruits suppressive and regulatory immune cells such
myeloid derived suppressor cells (MDSCs), tumor associated
macrophages (TAMs), Tumor associated neutrophils and
Tregs into distal organs to support metastasis by inducing
immunosuppression. Pulmonary Tregs, MDSCs and alveolar
macrophages have been shown to restrain antitumor T-cells
response. Targeted induction of respiratory immunity can
reverse the immunosuppression induced in the lung prior to
lung metastasis from an extra pulmonary malignancy by creating
an immune protective microenvironment to prevent and/or
minimize the seeding of tumors in the lungs. This has great
potential to serve as a prophylactic approach to preclude immune
evasion by CTCs that reach the lungs. Although many studies
have demonstrated the promise of mobilizing antitumor
immunity using vaccination strategies, its efficacy in the
protection against lung metastases, particularly in the context
of existing extra pulmonary primary tumor development has not
been tested. The design of an appropriate vaccine capable of
intranasal administration may serve as a prophylactic cancer
vaccine to prevent lung metastasis from extra pulmonary
malignancies by generating robust mucosal anti-tumor

FIGURE 2 | Conceptual framework. Pulmonary administration of immunostimulant coated nanoparticles encapsulating tumor antigens induced lung specific anti-
tumor immunity capable of forestalling immunosuppression by the premetastatic niche leading to the ability of immunosurveillance mediated by cytotoxic T-cells and
antibodies to clear disseminated tumor cells and prevent the colonization of the lung by the existing extra-pulmonary tumor.
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immunity in the lungs. Its success will have a significant impact
on the number of deaths caused by extra-pulmonary
malignancies. The ease of administration, as such therapy can
be self-administered will be an added advantage (Figure 2).
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GLOSSARY

NSCLC Non-small cell lung cancer

SCLC Small cell lung cancer

CTCs Circulating tumor cells

DTCs Disseminated tumor cells

BMDCs Bone marrow derived cells

MHC Major histocompatibility complex

PD-L1 Programmed death-ligand 1

PD-1 Programmed cell death protein 1

WNT Wingless-related integration site

B-catenin Beta-catenin

PTEN Phosphate and tensin homolog

HIF-1 alpha Hypoxia-inducible factor 1-alpha

IFN-alpha Interferon-alpha

ICIs Immune check point inhibitors

CTLA4 Cytotoxic T-lymphocyte-associated protein 4

Tregs Regulatory T cells

VEGF Vascular endothelial growth factor

CAR T-Cells Chimeric antigen receptor T cells

HER-2 Human epidermal growth factor receptor-2

EGFR Epidermal growth factor receptor

ALK Anaplastic lymphoma kinase

IL-2 Interleukin-2

TAA Tumor associated antigen

MAGE-A1 Melanoma-associated antigen 1

MAGE-A3 Melanoma-associated antigen 3

NY-ESO-1 New York esophageal squamous cell carcinoma 1

PSA Prostate-specific antigen

PAP Papanicolaou test

ICD Immunogenic cell death
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Application software is utilized to aid in the diagnosis of breast cancer. Yet, recent

advances in artificial intelligence (AI) are addressing challenges related to the detection,

classification, and monitoring of different types of tumors. AI can apply deep learning

algorithms to perform automated analysis on mammographic or histologic examinations.

Large volume of data generated by digitalized mammogram or whole-slide images

can be interoperated through advanced machine learning. This enables fast evaluation

of every tissue patch on an image, resulting in a quicker more sensitivity, and more

reproducible diagnoses compared to human performance. On the other hand, cancer

cell-exosomes which are extracellular vesicles released by cancer cells into the blood

circulation, are being explored as cancer biomarker. Recent studies on cancer-exosome-

content revealed that the encapsulated miRNA and other biomolecules are indicative

of tumor sub-type, possible metastasis and prognosis. Thus, theoretically, through

nanogenomicas, a profile of each breast tumor sub-type, estrogen receptor status,

and potential metastasis site can be constructed. Then, a laboratory instrument, fitted

with an AI program, can be used to diagnose suspected patients by matching their

sera miRNA and biomolecules composition with the available template profiles. In this

paper, we discuss the advantages of establishing a nanogenomics-AI-based breast

cancer diagnostic approach, compared to the gold standard radiology or histology based

approaches that are currently being adapted to AI. Also, we discuss the advantages of

building the diagnostic and prognostic biomolecular profiles for breast cancers based

on the exosome encapsulated content, rather than the free circulating miRNA and

other biomolecules.

Keywords: artificial intelligence, machine learning, exosome, cancer, screening, diagnosis

For years now, a number of application software are being utilized to aid in the screening and
diagnosis of breast cancer. However, these software come with limitations related to the detection,
classification, treatment, and monitoring of different types of breast tumors. Therefore, recent
advancements in computer science and artificial intelligence (AI) are focusing on addressing
these limitations. Unlike previous detection and diagnostic computer-aided software, AI allows
the computer to employ algorithms to reach machine-based conclusions in a manner similar to
the reasoning-based cognition of the human brain. Machine learning (ML) is a subdomain of AI;
ML-based algorithms allow the computer to draw new interfaces based on the available training
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data (Tran et al., 2019). A branch of ML that is being employed
in medical diagnosis is deep learning (DL). DL employs what
are called “artificial neural networks” (ANNs). These networks
have the structure of a biological nervous system, in that they
are multilayer systems where different layers form synaptic
connections with each other. Each layer of the network collects
input from the lower layer and forms amore complex output. The
more the number of layers, themore complex the final output will
be (McBee et al., 2018).

For breast cancer diagnosis, DL models are mainly applied
to perform analysis on the “gold standard” mammographic
examinations. Digitalizedmammogram images are interoperated
through advanced ML. Most of the DL models used for the
analysis are based on the convolutional neural network (CNN)
algorithm, which is a class of ANN that is designed to work
with data in the form of two-dimensional images (Geras et al.,
2019). Several research groups have developed and validated
different algorithms using images of breast cancer positive, false-
positive, and negative mammogram examinations. Then, they
compared the diagnostic performance of certified radiologists
with and without the aid of AI. In all of these retrospective
studies, the performance of the radiologists, including sensitivity
and recall rate and time, was improved when supported by
AI (Rodríguez-Ruiz et al., 2019a; Watanabe et al., 2019; Pacil
et al., 2020). Until now, there is no single algorithm that could
surpass the performance of human radiologists (Schaffter et al.,
2020). Nevertheless, scientists continue to improve on previous
work, and recent publications are reporting very promising
outcomes for AI-based detection as a stand-alonemammography
reading practice (Rodríguez-Ruiz et al., 2019b; Shen et al., 2019;
Dembrower et al., 2020; Kim et al., 2020; Sasaki et al., 2020).
DL models are also being developed for digitalized hematoxylin-
eosin (H&E)-stained whole-slide images. This approach is crucial
for the detection of malignancies in the breast and other body
tissue biopsies including the prostate and the colon. It was
reported that AI-based-histological evaluation enabled the fast
evaluation of every single tissue patch on the slides of the
patients, which led to a performance level comparable to that of
a pathologist (Argov et al., 2002; Liu et al., 2019; Shamai et al.,
2019; Raciti et al., 2020; Ström et al., 2020). Other groups are
attempting to create DL models that rely on non-image data sets.
For example, one group used spectral data that reflect changes
in collagen, lipids, and nucleic acid content of malignant breast
tissues (Dulay et al., 2019). Meanwhile, another group analyzed
tissue microarray data in conjunction with DL. This allowed
for algorithm-automated gene selection and tumor classification
with better performance than when compared to the standard
methods (Dashtban and Balafar, 2017).

In addition to the conventional breast cancer screening and
diagnostic tests, DL models are also being developed for novel
cancer detection. Cancer cell-exomes, which are extracellular
vesicles released by cancer cells into the bloodstream, are
arising as vital cancer diagnostic and prognostic biomarkers (Al-
Sowayan et al., 2019). Exosomes isolated from blood samples of
patients with breast cancer were revealed to have characteristic
content, mainly proteins and miRNA, which are indicative of
the tumor sub-type, possible metastasis, and prognosis (Lee

et al., 2019; Tutanov et al., 2020; Wu et al., 2020). However, the
utilization of exosomal genetic and proteomic data as a diagnostic
tool is confined by the difficulties related to vast data analysis of
the multiple molecular biomarkers. Therefore, it is only logical
that DL models be developed also for the automated analysis
of exosome-related data. One study developed an algorithm for
clustering and candidate motif detection in exosomal miRNAs.
This study used miRNA sequences downloaded from the
“miRBase” database as training and testing data. The results
revealed that the algorithm successfully completed the desired
function with no human intervention (Gaur and Chaturvedi,
2019). In another study, a DL model that combines the
measurement of eight exosomal miRNA biomarkers was used.
Then, the model was applied on real-time PCR data of miRNA
extracted from exosomes in the plasma of the patients. The
algorithm successfully created predictive panels and classified
patients with pancreatic cancer from healthy controls (Ko et al.,
2017). Meanwhile, in another study, an algorithm that combines
the measurement of four exosomal surface biomarkers to detect
pancreatic cancer and breast cancer from plasma samples was
used. The surface biomarkers were detected with quantitative
super-resolution imaging. Then, the model was used to analyze
the output of these multiple markers, which led to an accuracy
level of 100% (Chen et al., 2019). In addition to exosomal miRNA
and surface markers, researchers have also implemented ML in
exosomal spectral data, where algorithms were used to build
distinctive spectral profiles for cancer exosomes derived from the
plasma of patients with lung cancer (Shin et al., 2020) and the
saliva of patients with oral cancer (Zlotogorski-Hurvitz et al.,
2019); the algorithms yielded an accuracy level of more than 90%.

This nano-AI-based approach could prove to be an
advantageous screening and diagnostic method compared
to the radiology- or histology-AI-based approaches. Exosomes
hold enormous potential in cancer diagnostics as they contain
a wealth of proteomic and genetic information. This not only
presents a new insight into cancer biology but also enables
an elevated level of personalized medicine and thus superior
treatment outcomes. Moreover, examining the exosome-
encapsulated content as biomarkers is reported to be more
reliable compared to examining free-circulating miRNA and
other biomolecules. This is due to the fact that exosomal content
is highly sensitive to the status of the releasing cancer cell
and its microenvironment. In addition, exosome-encapsulated
miRNAs are highly stable when compared with free-circulating
miRNAs since they are well-protected by the membrane bilayer
of the exosome (Yuan et al., 2019). Moreover, the process
of blood sample collection is less painful, less dangerous,
less time-consuming, less expensive, and does not require
a high level of proficiency to obtain when compared to the
standard mammograms or biopsies. Theoretically, as proven
in principle by the above mentioned studies, exosomes can
be isolated from blood samples of patients with breast cancer
with known diagnoses and prognoses. Then, the isolated
exosome content can be investigated using arrays and analyzed
by the computer-aided applications of bioinformatics. When
sufficient data are collected, an “exosome-content-signature”
for each tumor subtype, the estrogen-receptor statuses, and the
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FIGURE 1 | The Nano-AI instrument; schematic illustration of the possible nano-AI instrument workflow for the diagnosis of cancer. Proposed principles of operation

include nanogenomics-AI applications and are based on published literature.

possible metastases can be constructed into distinct data sets.
These data will serve as the training data for the algorithm to
create the DL model. The blood samples are collected from
females at any convenient location such as hospitals, family
clinics, pharmacies, homes, prisons, and mobile clinics in rural
areas. Then, the collected samples are brought back to the
designated laboratory with the instrument fit with nano-AI.
The instrument will isolate the exomes from the plasma/serum
and then extract the data to allow the algorithms to analyze the
exosomal composition and match it with the available profiles
(Figure 1).

Of course, to realize such applications, there are few
obstacles that need to be overcome. One main obstacle
is the quality control issues related to the isolation and
purification of the exosomes from patient samples. Obtaining
a consistently pure and measurable yield of exosomes from
the sera/plasma of patients is still a work in progress.
However, recent advancements in nanotechnology are expected
to circumvent all technical issues. Another major obstacle is
algorithm creation; it is no doubt that the vast intratumor
and interpatient heterogeneities will make it very challenging
to assemble distinct molecular profiles for each diagnostic
and prognostic variant. Moreover, a major concern in AI
applications in general is the algorithm bias that results
from using biased training data sets. In medical applications,
biased data sets are a consequence of the underrepresentation
of certain segments of the population in the evidence base
e.g., ethnic minorities (Carter et al., 2020). Therefore, it is
crucial to make sure that the clinically adopted algorithm

is designed to perform at the highest level with all the
patients. This can only be done by using an all-inclusive
training data set to create the model, then further validating
it using patients with diverse demographic characteristics.
In addition to the challenges of exosome isolation and
training data creation, there are also general concerns about
the utilization of AI in medical applications. These include
the ethical and legal matters related to data acquisition
such as consenting, confidentiality, ownership, etc. Also, the
absence of infrastructure required to adopt the new technology
and the fear of increased unemployment among medical
professionals are also notable challenges. Nevertheless, the
increasing amount of capital invested in the medical applications
of AI (investments in start-ups implementing AI in healthcare
reached $4 billion in 2019, compared to $2.7 billion in 2018)
(Pifer, 2020) is expected to expedite the overcoming of these
challenges and encourage a rapid regulation of the ethical,
legal, operational, and social issues related to implementation.
The clinical value of AI is projected to be fully realized
in the very near future. When such nanogenomics-AI-based
breast cancer screening approaches are applicable, a wider-
spread, early detection of breast cancer will be achieved.
This will positively impact the life of every female regardless of
her social, economic, or geographical limitations.
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Circulating tumor DNA (ctDNA) represents an emerging biomarker of liquid biopsies
for the development of precision cancer diagnostics and therapeutics. However,
sensitive detection of ctDNA remains challenging, due to their short half-life and low
concentrations in blood samples. In this study, we report a new method to address
this challenge by integrating cycled enzymatic DNA amplification technique and Au
nanoparticle@silicon-assisted surface-enhanced Raman scattering (SERS) technique.
We have demonstrated a reproducible identification of a single-base-mutated ctDNA
sequence of diffuse intrinsic pontine gliomas (DIPGs), with the limit of detection (LOD)
as low as 9.1 fM in the spiked blood samples. This approach can be used to analyze
trace amounts of ctDNA in translational medicine for early diagnosis, therapeutic effect
monitoring, and prognosis of patients with cancer.

Keywords: surface-enhanced raman scattering (SERS), enzymatic amplification, circulating tumor DNA (ctDNA),
DNA nanotechnology, biomarker

INTRODUCTION

Circulating tumor DNA (ctDNA) carries genetic information, such as point mutations,
methylation, and copy number variations of sequences, of the tumor cells in patients with cancer,
thus simultaneously serving as a diagnostic as well as a prognostic cancer biomarker based on liquid
biopsies (Dawson et al., 2013; Weiss et al., 2013; Alix-Panabieres and Pantel, 2016; Wan et al., 2017;
Reinert et al., 2018). Previous studies suggest that ctDNA is mainly derived from the processes of cell
apoptosis, necrosis, and secretion (Diaz and Bardelli, 2014). The typical concentration of ctDNA
in the clinical samples is in the range of 0.01−0.1 ng ml−1, accounting for only a small fraction
(nearly 1%) of the total cell-free DNA (cfDNA; Diehl et al., 2008; Wan et al., 2017). In addition,
ctDNA features a much shorter half-life (<2 h) compared with other protein biomarkers, which
usually remain for several weeks (Dawson et al., 2013; Bettegowda et al., 2014), and susceptibility
to the variants in the liquid biopsy handling procedure. Technically, it is challenging to distinguish
ctDNA with the fewest point mutations from wild-type DNA (W) and quantify the concentrations
of ctDNA from the complicated background interference of biological samples.

The most widely used technologies for ctDNA detection include varieties of methods based on
PCR, such as digital PCR (dPCR; Vogelstein and Kinzler, 1999; Taly et al., 2013); amplification
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refractory mutation system (ARMS; Newton et al., 1989;
Li et al., 2006); beads, emulsion, amplification, magnetics
(BEAMing; Li et al., 2006); next-generation gene sequencing
(NGS) technology (Forshew et al., 2012; Lai et al., 2018); and
Sanger sequencing (Janne et al., 2006). However, there are
concerns of generating false-positive results due to the ultra-high
amplification capacity enabled by polymerases (Kitchin et al.,
1990; Mathai and Adhikari, 2013). Many researchers have been
trying to develop non-PCR-based techniques to detect ctDNA,
including electrochemistry (Drummond et al., 2003; Yang et al.,
2016), colorimetry (Li et al., 2017), and fluorescence (Li et al.,
2016). Among them, surface-enhanced Raman scattering (SERS)
spectroscopy has been considered an effective solution, due to its
several advantages, such as ultra-high sensitivity, identification
with characteristic fingerprint peaks, and the compatibility of
both solid-form and liquid-form samples (Liang et al., 2019;
Szekeres and Kneipp, 2019; Chen et al., 2020; Du et al., 2020; Fan
et al., 2020; Langer et al., 2020; Li et al., 2020). Lin et al. (2019)
reported sensitive detection of ctDNA for a good diagnostic
sensitivity of 83.3% and a specificity of 82.5% in distinguishing
patients with nasopharyngeal cancer from normal control groups
by using the SERS substrate of Ag nanoparticles. Wee et al.
designed a new laser wrapped graphene–Ag array to sensitively
detect the methylated DNA by using SERS technology and
demonstrated a limit of detection (LOD) of as low as 0.2 pg µL−1

(Wee et al., 2016). There is still a great need to improve the LOD
for the translational research of ctDNA.

Herein, we report a new method for sensitive detection of the
sequence of ctDNA (H3.3 mutation) in diffuse intrinsic pontine
gliomas (DIPGs) by using a combination of cycled enzymatic
DNA amplification and Au nanoparticle@silicon (Au NP@Si)-
assisted SERS technology. DIPGs are high-grade glial tumors
located in the pons of the brain and are the leading cause of
fatal brain tumors in children. The traditional diagnostic methods
of DIPGs heavily rely on in vivo imaging, which can become
difficult for identification because of the deep location of the
tumor sites in the brain. In this study, we have designed a SERS-
tag-labeled probe DNA (P), which complements the H3.3 mutant
DNA (T) to form a blunt end. The cleavage assisted by EXO
III can generate a large amount of residual DNA in a cycled
manner to greatly improve the LOD of the SERS technique. We
have demonstrated an ultra-high sensitivity (with the LOD of
7.9 fM) and specificity (being able to distinguish a single-base
mutation) using this strategy. This is a promising approach for
the sensitive detection of nucleic acids as a translational tool of
ctDNA research.

EXPERIMENTAL SECTION

Materials and Reagents
Magnesium chloride hexahydrate (MgCl2·6H2O), sodium
chloride (NaCl), acetone, and phosphate buffer saline (PBS) were
purchased from Sinopharm Chemical Reagent Co., Ltd. (China).
Exonuclease III was provided by Thermo Fisher Scientific Co.,
Ltd. (United States). Tris borate EDTA (TBE) buffer (5×), tris
EDTA (TE) buffer (1×), sodium dodecyl sulfate (SDS, 10%, w/v)

buffer, loading dye buffer solutions (6×), agarose, and saline-
sodium citrate (SSC, 20×) buffer solutions were obtained from
Solarbio Science & Technology Co., Ltd. (China). GelRed Neuclic
Acid Gel Stain was purchased from Biotium, Inc. (United States).
DNA ladder was provided by Sigma-Aldrich Co., Ltd. (China).
QIAamp DNA Blood Mini Kit was purchased from Qiagen
Co., Ltd. (Germany). All chemicals in our experiments were of
analytical grade and used without further purification. Aqueous
solutions were prepared using deionized water (≥18 M�,
Milli-Q, Millipore). The SERS substrates were provided by
Nanova Biomaterials Inc. (United States). High-performance
liquid chromatography (HPLC)-purified oligonucleotides were
provided by Sangon Biotechnology Co., Ltd. (China).

Instruments
The Raman microscope equipped with a He–Ne laser (633 nm,
20 mW) and a 100× objective (NA: 0.9) was used to detect
the Au NP@Si substrates (HR800, Horiba Jobin Yvon, France).
SERS data were collected under a 100× visible objective with a
633 nm laser radiation, with an acquisition time of 10 s and an
accumulation count of one time. The scan of the wave number
typically ranged from 1,000 to 1,800 cm−1. The Raman spectral
data were analyzed by the LabSpec5.6 Software. For each sample,
50 random spots on the substrate were tested for SERS signal. All
SERS spectra have been elaborated by removing the baseline, with
an example shown in Supplementary Figure 1. The correlation
of the major Raman bands to the chemical bonds of Cy5 is
summarized in Table 1. A DNA thermostat hybridization oven
(HL-2000 HybriLLinker, UVP, United States) was used for the
incubation experiments involving DNA. The substrate surface
was characterized by contact angle measurement instrument
(DataPhysics OCA). The gel electrophoresis of various sample
mixtures was performed on a horizontal electrophoresis tank
instrument (VE-186), followed by image acquisition with a Gel
Imaging System (Tanon-2500).

Electrophoresis Experiments
The hybridization and the Exo III-assisted cleavage of different
DNA samples were evaluated by agarose gel electrophoresis.
Agarose (2%, w/w) was prepared in the buffer of 1× TBE and
mixed with 3 µL of GelRed stain. Specifically, 10 µL of the DNA
sample was mixed with 2 µL of 6× loading dye buffer solution.
Different DNA samples were tested by gel electrophoresis under a
voltage of 110 V for 25 min. The DNA sample mixtures included
P, T, the hybridization of P and T (P + T), the mixture of the P, T,
and Exo III (P + T + Exo III), and the residual DNA (R).

TABLE 1 | List of the oligonucleotide sequences in the experiments.

Oligonucleotides Sequence (5′ → 3′)

Probe DNA (P) Cy5-AAAATGAGTGCGTAGTTAGGGTTAGATA
AGGGCGCACTCATGCGA

Mutant DNA (T) TCGCATGAGTGCGCCCTCTACT

Wildtype DNA (W) TCGCAAGAGTGCGCCCTCTACT

Capture DNA (C) GCACTCATTTTTAATTTAA

Residual DNA (R) Cy5-AAAATGAGTGCGTAGTTAGGGTTAGATA

Frontiers in Molecular Biosciences | www.frontiersin.org 2 May 2021 | Volume 8 | Article 67606528

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-676065 April 28, 2021 Time: 17:21 # 3

Miao et al. Circulating Tumor DNA

ctDNA Detection on the Au NP@Si
Substrate
The SERS signals of ctDNA testing experiments were harvested
from the Au NP@Si substrate. In the first step, the Au NP@Si
substrate was modified with the capture DNA (C) sequence. The
substrate was precleaned with acetone, rinsed with DI water
for three times, and dried in an oven at 200◦C for 10 min.
The pretreated substrate was incubated overnight with 10 µL
of C (10 µM) and 400 µL of the PBS solution at 37◦C for
bioconjugation through Au–S bonds. The sodium chloride (1 M)
solution was used in the aging step for immobilization of C
(15 µL, three times with an interval of 20 min). The substrate
was incubated overnight in the DNA thermostat hybridization
oven at 37◦C, followed by sequential washing with PBS and
DI water three times. The reaction of cycled enzymatic DNA
cleavage/amplification was carried out by mixing 10 µL of P
(10 µM), 10 µL of ctDNA in the testing concentrations, 3 µL
of Exo III (60U), and 17 µL of the enzyme-reaction buffer at
37◦C for 2 h. Afterward, the mixture was incubated at 75◦C for
10 min in order to inactivate the Exo III enzyme. The product
mixture was obtained after the reaction was diluted with 360 µL
of PBS buffer and then incubated with the as-prepared substrate
at 37◦C for 2 h. The substrate was washed with 2× SSC solution
containing 0.1% (w/v) SDS for 5 min, washed with DI water
several times, and dried before the Raman signal measurement.

Control Experiments in SERS
Measurements
The feasibility of our assays was verified by a series of control
groups in the tests, including (A) C; (B) C + P; (C) C + P + M; (D)
C + M + Exo III; (E) C + P + W + Exo III; and (F) C + P + M + Exo
III. All control groups were performed in the identical conditions.

Limit of Detection of the Assay
A series of ctDNA with gradient concentrations were prepared
to determine the LOD of our assay. About 10 µL of P (10 µM)
and 10 µL of ctDNA with different concentrations were mixed
for incubation at 37◦C for 2 h. The final concentrations of mutant
ctDNA were in the range of 10–100 nM.

Treatment of Blood Samples
The blood samples from healthy human donators were collected
and treated according to the standard protocol. All human care
and experimental procedures were conducted in compliance with
relevant laws and the guidelines approved by the institutional
committees for Human/Animal Experiments of the School of
Basic Medical Sciences of Soochow University. An informed
consent was acquired from all human subjects. The serum
was obtained from the whole blood and mixed with H3.3-
mutated ctDNA of various concentrations. Then, H3.3-mutated
ctDNA was extracted from the serum according to the extraction
procedure of QIAmp DNA Blood Mini Kit. Briefly, 100 µL
of serum mixed with H3.3-mutated ctDNA was taken into
a 1.5 mL centrifuge tube, then 10 µL of protease K and
100 µL of AL buffer were added, and later incubated at 56◦C
for 10 min. After adding 50 µL of ethanol, the solution was

centrifuged for 1 min at 8,000 rpm. About 500 µL of AW1
and 500 µL of AW2 were added to the separation tube and
centrifuged for 1 min at 8,000 rpm. After 100 µL of AE
eluent was added, the solution was balanced for 1 min at
room temperature and centrifuged for 1 min at 14,000 rpm to
collect the eluent.

Statistical Analysis
Statistical analyses were assessed with one-way ANOVA by
using Prism 5.0 software (GraphPad Prism, United States).
All intensities at the specified SERS peaks are presented
as mean± SD.

RESULTS AND DISCUSSION

The Assay Principle of ctDNA Detection
and Characterization of the Substrate
The assay is featured with integration of the cycled enzymatic
DNA cleavage/amplification and SERS for the sensitive detection
of ctDNA (Figure 1A). An oligonucleotide probe is designed
to be folded in a stem–loop hairpin structure, tagged with
cyanine dye Cy5 at the 5’ end. The hairpin structure is stable,
minimizing the undesired side hybridization with W sequence.
In contrast, the stem–loop structure of the oligo probe can
undergo changes to form a new double helix by hybridizing
its 3’ end with the target sequence of the mutant ctDNA.
Consequently, the protruding 3’ end in the new double helix
can specifically be recognized by Exo III enzyme for the
cleavage into nucleotides in a stepwise manner. Importantly,
after completion of the cleavage process, the target sequence
of ctDNA can be released into the solution and recycled for
the next round of enzymatic DNA cleavage of the oligo probe.
In this way, the residual DNA sequence generated by the
digestion of the oligo probe can be accumulated to a great
number by this cycled reaction. Hybridization of the amplified
R and C preimmobilized on Au NPs@Si will bring the Cy5 tag
close to the substrate, producing intensive SERS signals with
a high efficiency. Therefore, a trace amount of ctDNAs can
initiate the cycled generation of residual DNA sequences for
amplified SERS detection.

Scanning electronic microscopy (SEM) (Figure 1B) suggested
that the gold nanoparticles were uniform in size (60 nm)
on the Au NP@Si substrate with a good distribution. The
reproducibility in generating SERS signals was evaluated by
scanning the substrate for spectral acquisition of up to 50
randomly selected spots. As shown in Figures 1C,D, there were
minimal spot-to-spot variations of the intensities in the SERS
spectra, with the coefficient variation values at the characteristic
peaks of Cy5 at 1,309 cm−1 (CV < 9.88%), 1,366 cm−1

(CV < 9.73%), and 1,509 cm−1 (CV < 13.70%) and enhancement
factor (EF) > 1.9 × 106. The details of calculating the EF are
listed in the Supplementary Information. We tested the SERS
spectra at different laser powers by triturating the laser filters
(Supplementary Figure 2A) and demonstrated the robustness of
spectral data acquisition by switching laser power grades (high or
medium) in five cycles (Supplementary Figure 2B). Therefore,
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FIGURE 1 | (A) The integration of cycled enzymatic DNA cleavage/amplification and surface-enhanced Raman scattering (SERS) for sensitive detection of ctDNA.
(B) The scanning electron microscopy (SEM) image of the Au NPs@Si substrate. (C) SERS spectra of testing Cy5 collected from 50 random spots on the Au
NPs@Si substrate in a single assay. (D) Averaged SERS intensities at 1,309, 1,366, and 1,509 cm−1 peak from the 50 random spots, respectively (excitation
wavelength: 633 nm, acquisition time: 10 s, laser power: 20 mW, the filter: d0.3).

the Au NP@Si substrate can serve as a reliable platform for SERS
measurements of a trace amount of molecules.

Oligo Sequence Optimization for ctDNA
Detection
The DNA sequences, including P, T, C, R, and W, are summarized
in Table 1. Based on the literature reports (Schwartzentruber
et al., 2012), the H3.3-mutated ctDNA from DIPG is different
from W in the healthy samples by a single nucleotide mutation
(A to T), as specified in Table 1. A theoretic analysis using
the online software (NUPACK) was performed to determine the
minimum free energy (MFE) secondary structures of these oligos
and hybridization efficiencies between each other (Figure 2). P
tended to keep hairpin structure in the solution with a relatively
favorable free energy (−40.35 kJ mol−1) for the secondary

structure (Figure 2A). The addition of H3.3-mutated ctDNA (T)
to the solution would hybridize a segment of P competitively,
thus changing its initial hairpin structure to form a partly
hybridized helix with a 3’ blunt end. This hybridization was
driven by the decrease of free energy (1G = −61.20 kJ mol−1).
In addition, we compared the MFE changes for hybridization
between W and P (1G = −47.09 kJ mol−1), which suggested
that P would prefer to hybridize H3.3-mutated ctDNA, even if
W had only one base change. We also calculated the occupancy
rates of the various oligos by NUPACK, in order to investigate
their hybridization efficiency in silica at 37 oC. The calculation
indicated that P was inclined to be hybridized with H3.3-mutated
ctDNA with a high efficiency (nearly 47%); besides hybridization
of 3% of W with P, the remaining W maintains its own structure
(47%), leaving only 3% of the target DNA unhybridized in the
solution (Figure 2J above, pie chart). We further compared the
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FIGURE 2 | The structures of different oligos (A–E) (oligo P, T, C, R, and W) and oligo hybridization with annotation of free energy calculated by NUPACK (F–I) (T∩P,
W∩P, C∩R, C∩P). Theoretical calculations of the energy changes for the competitive hybridization between DNA oligos at 37◦C (J).

MFE changes for the hybridization scenarios between C and
R (C∩R, 1G = −57.77 kJ mol−1) or between C and P (C∩P,
1G = −36.67 kJ mol−1). The results suggested that C would
hybridize R, even when unreacted P was present in the solution.
When the three kinds of DNA were mixed equally in mass, P
would maintain its stable hairpin structure (48%), and most of
the hybridization happened between C and R (45%, Figure 2J
down, pie chart). This suggested that the presence of P (leftover
after the cleavage reaction) would not influence the hybridization
between R and C. Therefore, the oligo sequence design would
promote the performance of our assay by minimizing the side
reactions/hybridization of W∩P or C∩P as the sources of false-
positive signals.

Feasibility Tests of the Assay
Agarose gel electrophoresis was employed to test DNA
hybridization and Exo III enzyme–assisted DNA cleavage. As
shown in Figure 3A, the bands in Lane 1, Lane 2, and Lane 5

were corresponding to P, H3.3-mutated ctDNA (T), and R in the
gel electrophoresis, respectively. The hybridized product of T∩P
was present as the dark band in Lane 3, with the light bands
attributed to a small amount of the free oligos of P. After the
addition of Exo III in Lane 4, the hybridized product of T∩P
disappeared, suggesting an efficient DNA cleavage assisted by
the Exo III enzyme. The residual DNA was observed after the
enzymatic digestion, which highly contributed to the degradation
of the hybridized product of T∩P by Exo III. GelRed usually
stains double-stranded nucleic acids than single-stranded nucleic
acids. It was interpreted that the band of T or R was weak because
T tended to form only a short segment of double helix structure,
while R was mostly single-stranded.

The feasibility of our assay was also validated with SERS
measurements of a series of DNA oligo mixtures with or
without Exo III enzyme, including five negative control groups
and one positive experimental group (Figure 3B). There were
no detectable SERS signals when only C was present on the
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FIGURE 3 | (A) The image of agarose gel electrophoresis to test the
enzymatic reaction assisted by Exo III enzyme. (B) Surface-enhanced Raman
scattering (SERS) spectra of a series of control samples on the capture
DNA-Au NPs@Si substrate. (C) Intensity quantification of the SERS signals at
the 1,309 cm, 1,366, and 1,509 cm-1 peak, respectively. Sample (A) C, (B)
C+P, (C) C+P+T, (D) C+T+Exo III, (E) C+P+wild-type DNA+Exo III, and (F)
C+P+T+Exo III. Error bar: standard deviation (n = 3). The significant difference
was calculated using one-way ANOVA, between the sample F and the
negative controls (A–E) at the SERS peak of 1,366 cm-1. ***P < 0.001
(excitation wavelength: 633 nm, acquisition time: 10 s, laser power: 20 mW,
the filter: d0.3).

substrate (curve A in Figure 3B); the group of C+P (curve
B) and C+P+T (curve C) observed the same trend. These
experiments suggested that C would not hybridize to P, which

was consistent to our design and the theoretical calculation.
We did not observe SERS signals for C+T+Exo III (curve
D) or C+P+W+Exo III (curve E). In contrast, there was a
significantly intensive SERS signal on the Au NPs@Si substrate
in the positive experiment containing C, P, T, and Exo III
(Curve F in Figure 3B). The signal intensity of the positive
group (F) was nearly six to seven times higher than the
other negative groups of B, C, D, and E at the characteristic
peaks of Cy5 tag, such as 1,309, 1,366 cm, or 1,509 cm−1

(Figure 3C). The SERS signal comparison between E and F
verified that the assay was highly selective to distinguish a
single-nucleotide difference between W and M sequences. In
addition, we performed the reaction (C+P+target DNA+Exo III)
in two separate substrates in parallel to evaluate the substrate-
to-substrate variation, which suggested reproducible SERS signal
acquisition (Supplementary Figure 3).

FIGURE 4 | (A) A surface-enhanced Raman scattering (SERS) image of
wild-type DNA with a concentration of 1 pM mixed with mutant DNA in
different ratios. (B) Intensity quantification of the SERS signals at 1,309,
1,366, 1,509 cm-1 peak, respectively. Error bar: standard deviation (n = 3).
The significant difference was calculated using one-way ANOVA, between the
individual titrated samples and the control (0:1) at the SERS peak of
1,366 cm-1. ns: no significant difference, *P < 0.05, **P < 0.01, and
***P < 0.001 (excitation wavelength: 633 nm, acquisition time: 10 s, laser
power: 20 mW, the filter: d0.3).
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Specificity and Limit of Detection
The specificity of the assay was further examined by mixing
the W (1 pM) and H3.3-mutated ctDNA oligos in gradient
concentrations at different ratios (1 pM, 0.1 pM, 0.01 pM, 1 fM,
and 0 fM). As shown in Figure 4A, when the concentrations
of H3.3-mutated ctDNA were reduced from 1 pM to 0 fM, the
SERS signal intensities gradually decreased with the gradient
changes, while maintaining the spectral patterns of Cy5 tag.
Quantitative analysis of the characteristic peak intensities at
1,306 cm, 1,366 cm, and 1,509 cm−1 also demonstrated this trend
(Figure 4B), suggesting that the assay can specifically distinguish
the samples when the H3.3-mutated ctDNA oligos were diluted
by 2 or 3 orders of magnitude with W.

The LOD of the assay was evaluated by titrating the H3.3-
mutated ctDNA oligo concentrations in the PBS buffer and
the human serum, separately. As shown in Figures 5A,B, the
SERS signal intensities of the characteristic peak at 1,366 cm−1

decreased when the ctDNA oligo concentration was diluted from
10 to 100 nM in PBS buffer. There was a good linear relationship
(R2 = 0.980) between the SERS signal intensities and ctDNA
oligo concentrations, with an LOD of 7.9 fM (1.0 pg mL−1)
(signal-to-noise ratio ≥ 3).

Furthermore, we performed a pilot experiment to test the
assay in human serum samples. H3.3-mutated ctDNA oligos
were spiked into the human serum samples from healthy

donors with a concentration gradient from 10 to 100 nM.
The DNA samples were then extracted from the mixture
by referring to a standard DNA extraction procedure, in
order to remove serum proteins or other contamination
sources. As shown in Figures 5C,D, we observed a strong
correlation (linearity R2 = 0.991) between the SERS signal
intensities and the spiked concentrations of the H3.3-
mutated DNA oligos. The LOD was estimated to be 9.1 fM
(1.2 pg mL−1) according the criterion of the signal-to-noise
ratio ≥3. The experiments suggested that the SERS/enzyme
amplification technique allowed for sensitive detection of M in
complicated samples, thus offering a useful tool for potential
clinical translation.

Diffuse intrinsic pontine gliomas is a brainstem tumor of
malignancy in childhood for which median survival is below 1
year (Hoffman et al., 2018). More than 90% of patients with DIPG
are estimated to have the point mutation in H3.3 (65% of tumors)
or H3.1 (25% of tumors), while the rest are estimated to have
histone 3 wild-type tumors (Vanan and Eisenstat, 2015). Among
those mutations, the averaged survival span of H3.3 mutation
is the shortest (10.4 months) (Cordero et al., 2017), thus being
in an urgent need of developing sensitive diagnostic tools. By
using the spiked blood samples, we have demonstrated an ultra-
sensitive detection of the target DNA sequence for H3.3 mutation
of DIPG with an LOD of 9.1 fM (1.2 pg ml−1), nearly 10–100

FIGURE 5 | (A,B) Surface-enhanced Raman scattering (SERS) intensity and the linear fitting of signal-to-noise ratios at the SERS peak of 1,366 cm-1 with circulating
tumor DNA in phosphate buffer solution (PBS). (C,D) SERS spectra and the linear fitting of signal-to-noise ratios at the SERS peak of 1,366 cm-1 with ctDNA in the
blood. Error bar: standard deviation (n = 3). The significant difference was calculated using one-way ANOVA, between the individual titrated samples against the
most diluted one (100 nM) at the SERS peak of 1366 cm−1. *P < 0.05, **P < 0.01, and ***P < 0.001 (excitation wavelength: 633 nm, acquisition time: 10 s, laser
power: 20 mW, the filter: d0.3).
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folds lower than the typical ctDNA concentration range (0.01–
0.1 ng ml−1) of the disease. This study has not tested the blood
samples from patients with DIPG yet due to a limitation of the
clinical resources. It is necessary to further validate this technique
in carefully grouped patient blood samples with references to the
clinical outcomes in the future.

In our technique, the design of P is very flexible for the
introduction of any target DNA sequence, thus allowing for an
easy translation to sensitive detection of the ctDNA of other
types of cancers without changing the enzyme. For instance,
researchers have identified a variety of clinically useful mutations
in the ctDNA samples, including G protein subunit alpha Q
(GNAQ) Q209L mutation (626A > T) in metastatic uveal
melanoma (Madic et al., 2012), p110a catalytic subunit of the
class 1A PI3K (PIK3CA) E545K mutation (1633G > A) in
breast cancer (Board et al., 2010), or epidermal growth factor
receptor (EGFR) T790M mutation (2369C > T) in non-small-
cell (Normanno et al., 2017). The applications of the technique
on the sensitive detection of these mutations are promising in
facilitating the early diagnosis of the diseases and treatment
with personalized medicine. The key for successful development
of a new assay by the technique is careful optimization of
the competitive hybridization segment of P for minimal side
reactions of hybridizing W or C.

CONCLUSION

In summary, we have developed a method that integrates
cycled enzymatic DNA amplification and SERS spectroscopy for
sensitive detection of ctDNA, by combining the advantages of
highly efficient amplification by the Exo III enzyme and the SERS
technique. It brings the LOD to as low as 7.9 fM in the mixture
solution or 9.1 fM in the spiked serum samples. Our approach can
differentiate a single-base mismatch between wide-type DNAs
and mutated DNAs, which has better applications in medical
laboratory research and translation for early clinical diagnosis.
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Cancer is a significant health hazard of the 21st century, and GLOBOCAN predicts increasing
cancer incidence in the coming decades. Though several conventional treatment modalities
exist, most of them end up causing off-target and debilitating effects, and drug resistance
acquisition. Advances in our understanding of tumor molecular biology offer alternative
strategies for precise, robust, and potentially less toxic treatment paradigms for
circumventing the disease at the cellular and molecular level. Several deregulated
molecules associated with tumorigenesis have been developed as targets in RNA
interference (RNAi) based cancer therapeutics. RNAi, a post-transcriptional gene regulation
mechanism, has significantly gained attention because of its precise multi-targeted gene
silencing. Although the RNAi approach is favorable, the direct administration of small
oligonucleotides has not been fruitful because of their inherent lower half-lives and
instability in the biological systems. Moreover, the lack of an appropriate delivery system
to the primary site of the tumor that helps determine the potency of the drug and its reach, has
limited the effective medical utilization of these bio-drugs. Nanotechnology, with its unique
characteristics of enhanced permeation and better tumor-targeting efficiency, offers promising
solutions owing to the various possibilities and amenability for modifications of the
nanoparticles to augment cancer therapeutics. Nanoparticles could be made multimodal,
by designing and synthesizing multiple desired functionalities, often resulting in unique and
potentially applicable biological structures. A small number of Phase I clinical trials with
systemically administered siRNA molecules conjugated with nanoparticles have been
completed and the results are promising, indicating that, these new combinatorial
therapies can successfully and safely be used to inhibit target genes in cancer patients to
alleviate some of the disease burden. In this review, we highlight different types of nano-based
delivery strategies for engineering Nano-RNAi-based bio drugs. Furthermore, we have
highlighted the insights gained from current research that are entering the preclinical
evaluation and information about initial clinical developments, shaping the future for next
generation cancer therapeutics.

Keywords: cancer, combinatorial therapy, nanotechnology, non-coding RNAs, RNA interference, targeted drug
delivery
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INTRODUCTION

With the growing global burden and economic impact, cancer has
become the most significant public health challenge of this
century. Cancer, an exemplar of deregulated genetic function,
arises from a complex interplay of genes and their products.
Conventional therapeutic regimens include surgical resection,
chemotherapy, radiotherapy, and anticancer drugs or a
combination of all these. Despite the fact that these treatment
approaches have increased the overall patient survival for many
cancers in their early stages, the lack of specificity, off-target
effects, and acquisition of drug resistance stand as a hindrance in
the path of considering these treatment methods as effective and
patient-friendly. The significant distress caused by these side
effects in patients is often a leading impediment in the course
of adopting these as mainstream treatments. With the
identification of several novel molecules, their mechanisms
and pathways involved in cancer, it has become even more
imperative to further distinguish and isolate the molecules
which could help in the management of the disease.

Recently, much attention has been paid to the development of
cancer therapeutics based on RNA molecules. RNA interference
(RNAi), a process that involves sequence-specific gene silencing,
is an endogenous post-transcriptional regulation process that
consists of non-coding RNAs like microRNAs (miRNAs),
small interfering RNAs (siRNAs), long non-coding RNAs
(lncRNAs), and circular RNAs (circRNAs), which target and
silence messenger RNAs (mRNAs) in a sequence-specific manner
(Chalbatani et al., 2017). With the added benefit of
simultaneously targeting multiple genes that share homology,
RNAi is fast, economical, and has the potential for site-specific
targeting. The primary role of RNAi in cells would be to
downregulate the expression of their target gene and thereby
the encoded proteins thus bringing about the desired results
(Mahmoodi Chalbatani et al., 2019). Through careful sequence
selection and synthesis of tailored non-coding RNAs (ncRNAs),
this powerful approach could be used to circumvent conventional
cancer therapy limitations, thus paving the way for next
generation therapeutics (Lorenzer et al., 2015).

The in vitro experimental data obtained using RNA
interference has shown promising results, demonstrating its
feasibility to be taken from bench to bedside. Though
advantageous in in vitro scenario, several impediments lie on
its path in achieving gene silencing in vivo and making gene
therapy a reality. The major hurdles being instability of RNA
molecules, its low transfection efficiency and half-life, lack of site-
specific targeting and distribution in the target tissue,
heterogeneity of the tumor, etc. add up to the challenges of
onsite delivery of drugs using RNAi. The unique characteristics of
nanoparticles have enabled researchers to successfully
demonstrate them as efficient chaperones for the delivery of
RNAi molecules to the primary site of the tumor.
Nanoparticles usually exist as particulate dispersions or solid
particles with sizes ranging between 10–1,000 nm (Nagal and
Singlab, 2013). Their enhanced permeability and retention (EPR)
effect, capacity to prevent RNAi molecules from undergoing
enzymatic degradation, and transportation efficiency across the

cell membrane make them a perfect carrier of RNAi molecules for
targeted therapy (Xin et al., 2017). The conjugation of
nanocarriers with the RNAi molecules widely opens the door
to targeting mediators in cancer progression, identifying
molecular targets, and engineering delivery vehicles conjugated
with DNA/RNA as therapeutic devices, thus representing an ideal
approach. Currently, a small number of Phase I clinical trials with
systemically administered ncRNA molecules conjugated with
different nanoparticles as delivery vehicles are already
complete, indicating that these new therapeutics can safely
inhibit targeted gene products in patients with cancer. In spite
of elucidation of the immense potential of RNAi in cancer
therapy in many explorative research trials, there is still a long
way to go for successfully translating this exciting result from
bench to bedside.

In this review, we discuss the importance of harnessing
ncRNAs as next generation cancer therapeutics. We also
discuss critical delivery strategies that are based on
nanoparticles and the parameters to be considered for RNAi-
based drug development. Furthermore, we have highlighted the
insights gained from current research that are entering the
preclinical evaluation and information about initial clinical
developments, shaping the future for RNAi-based therapeutics
in cancer.

DEBILITATING EFFECTS OF
CHEMOTHERAPY AND THE NEED FOR
NOVEL STRATEGIES
The practice of using chemicals to reduce the burden of cancer
saw its beginning in the early decades of 20th century and has
continued to treat this disease over the years. While surgery and
radiation therapy were leading the cancer treatment, their failure
to target inoperable metastatic lesions placed chemotherapy at an
advantageous position. Therefore, most of the times an evidence
driven choice was made to use a combination of these three
modalities to induce remission of cancer (DeVita and Chu, 2008).
While chemotherapy had become the standard care in numerous
cancers, the ill effects of the chemicals on multiple organ systems
of the body were also well known. The debilitating after effects
and overall decreased quality of life that patients endure, directed
research interest towards innovating novel strategies that are
equally, if not more, effective as chemotherapy while being better
tolerable by the human body (Gegechkori et al., 2017; Pearce
et al., 2017).

Chemotherapy is harmful due to the lack of specificity and
patients placed under any chemotherapeutic regimen report
dissatisfaction due to undesired symptoms generated. It is also
often an added factor for depression and anxiety in patients
diagnosed with cancer (Niedzwiedz et al., 2019). Subjects placed
on chemotherapy experience side effects that can range frommild
(nausea, vomiting and diarrhea) to life threatening
(cardiomyopathy with decreased ejection fraction,
development of secondary malignancies such as leukemias)
after effects. These can arise during the treatment phase (long
term effects) or years later (latent effects) (Stein et al., 2010).
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Chemotherapy regimen places patients in a loop wherein for
minimizing adverse effects of one drug, they will be forced to take
additional drugs and the cycle continues, often affecting their
mental health and emotional state (Pearce et al., 2017). Pregnancy
is another physiological state where chemotherapy is deemed
unsafe and the detrimental effects include intrauterine growth
restriction, limb anomalies and stillbirth etc. (Koren et al., 2013).

Chemotherapy affects rapidly dividing cells without
differentiating the neoplastic and non-neoplastic cell.
Gastrointestinal tract, germ cells, hematopoietic cells and hair
follicles are prime targets, considering their replicative potential
(Agarwal, 2016). Nonspecific targeting of gastric mucosal cells
presents as diarrhea (immediate onset and late onset) is common
with drugs like topoisomerase II inhibitors (irinotecan,
topotecan), 5-Fluorouracil, taxanes (docetaxel/paclitaxel),
antibodies against epidermal growth factor receptors and
calcineurin inhibitors. Though there are treatment options like
opioid based formulae and somatostatin analogs that are used to
alleviate the pain and discomfort caused due to chemotherapy,
these drugs too present with their very own set of side effects
(Rock and Kono, 2008).

Meiotic cells are also affected by chemotherapy and this raises
concerns about fecundability in female (often resulting in
premature ovarian failure) and male subjects alike. While
ovarian follicles and the endocrine axis are disrupted in
females, males have diminished semen quality with
spermatozoa that are low in number and/or of poor quality.
Secondary sexual characteristics are affected in pubertal and
prepubescent children undergoing chemotherapy which has an
impact on their self-confidence (Vakalopoulos et al., 2015;
Waimey et al., 2015; Poorvu et al., 2019). Chemotherapy
induced alopecia is reported in numerous clinical and
standard of practice trials which are considered a distressing
effect as it affects the emotional state and body image of subjects
(Saraswat et al., 2019). Hair loss is observed on the scalp, axillae,
groin and all over non-glabrous skin surfaces which indicates the
effects chemotherapy has on vellus and terminal hairs in a non-
specific manner (Muth, 2017). Chemotherapy has an impact on
childhood cancer subjects to an extent of impacting self-esteem in
over two thirds of them and inducing significant stress among
their parents. Chemotherapy in children in certain cases
invalidates their germ cells and gonads resulting in decreased
fertility and the psychological impact this creates often needs
anticipatory counseling in their adolescence. Understanding the
pathophysiology of chemotherapy induced alopecia to a certain
extent has led to the use of techniques and medications such as
hypothermia, YHO618 to minimize hair loss and improve hair
growth but substantial research still needs to be done as no
prevention and treatment guidelines are currently in place (You
et al., 2019; Rossi et al., 2020).

Nervous system impact in subjects undergoing chemotherapy
is well studied and includes impact on the central and peripheral
nervous system manifesting as cognitive dysfunction, neuropathy
and mental health concerns (Stone and DeAngelis, 2016).
Chemotherapy results in a variety of neurological
complications that include mood disorders, seizures, memory
impairment ocular toxicity, ototoxicity and uncertain effects

when there is unspecified neuro-degeneration (Yang and
Moon, 2013). Peripheral neuropathy is well noted with a
variety of chemotherapeutic drugs like paclitaxel, vincristine,
bortezomib and cisplatin. As the peripheral nervous system
includes nerves constituting the autonomic and enteric
nervous systems, effects such as gastroparesis and orthostatic
hypotension can be observed post chemotherapy. These
neurological effects have been understudied and the
mechanisms and their prevention or treatment is limited
(Zajaczkowską et al., 2019; Loprinzi et al., 2020).

Secondary malignancies are encountered years after
chemotherapeutic regimens and drugs that are known to have
such effects include alkylating agents (cyclophosphamide,
ifosphamide, nitrogen mustards, melphalan), daunorubicin and
doxorubicin. A life-long follow up is recommended to screen for
the development of leukemias and lymphomas which are the
most common secondary malignancies (Vega-Stromberg, 2003).
The risk of secondary malignancies is higher in subjects placed on
chemotherapy independent of irradiation status indicating the
impact chemotherapy has on cells and their replicative potential
(Nutalapati and Jain, 2018). Chemotherapy impacts essential
organ systems, overall quality of life, causes functionally
impairing fatigue, distorts body image and self-esteem,
compromises fecundability and with the risk of unpredictable
secondary malignancies.

Therefore, there is an imminent need to replace chemotherapy
with biological therapies. With the advent of various next
generation technologies in genomics, transcriptomics,
proteomics and high throughput data analysis, the molecular
path to next generation drugs has been set in. One of the
promising technologies is in the area of non-coding RNA
based drugs that are considered to be next generation
molecules in the field of molecular medicine. These molecules
are classified as miRNAs, lncRNAs and circRNAs etc. They can
act independently or in co-ordination with circular endogenous
RNAs (ceRNAs) to bring about the regulation of genes.
MicroRNAs (miRNAs) are short 22–25 nt non-coding RNAs
that regulate a wide array of biological process including
carcinogenesis. These molecules have revolutionized the field
of cancer ever since their discovery as they have the capability
of silencing multiple targets involved in one or different pathways
thus bringing about a co-ordination among large oncogene
regulatory networks. These miRNAs (miRs) are known to be
deregulated in different stages of cancer development as they are
known to regulate the expression of genes involved in onset and
development of tumors, and such miRNAs are called oncomiRs.
Thus these molecules along with numerous agents that can
efficiently be part of molecular targeted therapy are being
developed that can target cellular processes, such as
angiogenesis, signal transduction, cell cycle regulation,
apoptosis induction, protein translation, and metastases
(Rishabh et al., 2021). To enhance the likelihood of achieving
a positive response to this targeted therapy, further studies have to
be done to understand the precise molecular mechanisms of
cancer in each patient, then carefully designing bio-drugs to deal
with the situation paving the way for personalized cancer
therapeutics.
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RNA INTERFERENCE AND ITS
APPLICATIONS IN VARIOUS CANCERS

RNA Interference: An Introduction
RNAi is an evolutionary, endogenous, conserved, post-
transcriptional, gene silencing pathway that involves double-
stranded RNA-mediated degradation of mRNA. Usually
mediated by small RNA molecules like siRNAs, lncRNAs,
miRNAs, ceRNAs; RNAi in eukaryotes initiated by the RNase
III enzyme called DICER that cleaves long double-stranded RNAs
(dsRNAs) into mature small interfering RNAs (siRNAs) with an
overhang at the 3’ end. Constituting a passenger strand and a
guide strand, siRNAs are incorporated into the RNA Induced
Silencing Complex (RISC), where the guide strand complement
pairs with the target mRNA sequences and initiates
endonucleolytic cleavage through the action of induced
Argonaute protein (Borges and Martienssen, 2015). Among
these, miRNAs are well studied and known regulators of gene
expression in various cellular processes like cell development,
differentiation, apoptosis, and proliferation (Hutvágner and
Zamore, 2002). The disruption of miRNAs and their cellular
functions has been reported to be responsible for the initiation
and progression of various cancers and other fatal human
ailments. Though their functions are elucidated as oncogenes
and tumour suppressors, the complete function of miRNAs,
especially in humans, is not fully understood. Thus the
function of RNAi and its biological significance within the
organism’s body in which it is present is also a mystery to the
scientific world. The accurate and expeditious nature of RNA
interference technology makes it a popular strategy to learn the
gene expression of various organisms. Loss of function studies
and systemic RNAi-based genetic screens performed on
organisms like plants, C. elegans, and drosophila highlighted
the role of this technique in functional genomics. The fact that
transfecting mammalian cells with long dsRNAs induced
interferon response leading to global gene silencing and,
consequently apoptosis, hindered the use of RNAi in
mammalian cells in the earlier stages. This was at a time when
the structures of these molecules were not elucidated. However,
chemical synthesis of siRNA molecules specific to mRNA targets
in later years has enabled efficient targeting and silencing of a
particular gene, leading to the widespread use of the same in
mammalian cells (Karagiannis and El-Osta, 2005).

RNAi and Cancer
With a complex etiology, cancer cells with their characteristic
lesion often resemble their normal counterparts except for the
difference in a series of genetic alterations (Wilda et al., 2002). It is
well known that the mutations in the gate keeping genes are the
ones that give rise to tumorigenesis in the first place. Subsequent
mutations in different genes that belong to cellular oncogenes
(c-onc), viral oncogenes (v-onc), tumor suppressor genes (TSG)
classes also cause tumor initiation and progression. Different
experimental approaches have been used to compare tumor cells
with normal cells and have shown that deregulation of a set of
non-coding RNAs (ncRNAs) that might be acting as a master
switch, might be vital in their differences. The earliest example of

a non-coding RNA involved in cancer was the H19 gene
(Hao et al., 1993). Cellular oncogenes usually encode various
proteins like growth factors and their receptors, signal
transducers, and transcription factors associated with tumor
initiation and progression. The downregulation of the K-Ras
gene through the RNAi pathway is among the first RNAi-
mediated deregulations discovered. The silencing of the K-Ras
gene, was found to trigger anchorage-independent growth and
thus tumorigenesis (Brummelkamp et al., 2002). Various other
cellular oncogenes that code for Bcl-2, CDK-2, Mdm-2, PKC-α,
TGF-β1, H-Ras, VEGF, and GFP proteins are cognate targets for
siRNAs, effectively leading to suppression of cancer cell
proliferation. Viral oncogenes, integrated into the host genome
through DNA and RNA viruses, are also found to be regulated by
RNAi. In cervical cancers and hepatocellular carcinomas (HCC)
that are caused by HPV and HBV viruses, respectively, these viral
oncogenes turn out to be the target for cancer treatment
(McCaffrey et al., 2003; Yoshinouchi et al., 2003). Belonging to
the tumor suppressor gene prototype, Retinoblastoma protein
(RbP) is found to undergo somatic inactivation in various
cancers. In order to study RbP in cancer, components of the
dE2F/dDP/RBF pathway were silenced by RNAi, and a
remarkable division of labor between family members of this
pathway was analyzed through examination of gene expression
changes (Agami, 2002). DNA damage-based biological response
is usually governed by the effectiveness of DNA repair processes
called the checkpoint cell cycle responses and induction of
processes that favor or inhibit pathways leading to apoptosis
of the cell. The viability of the cell may not be affected by the
defects in DNA repair enzymes, but it can lead to genomic
instability, and thereby enhancing the rate of genetic changes
and thus the rate of tumor formation. Suppression of Rad51 gene,
a DNA damage repair gene, by RNAi method, elucidated the role
of the same after both endogenous and exogenous double-strand
break formation. This was complemented by mutating SPO11
and MRE11 proteins (Takanami et al., 2003). RNAi-based
functional genomic approaches have also enabled the
identification of chromosomal DNA degradation mediating
nucleases like CPS6 and NUC1. siRNAs developed against the
ATR gene have also been in use to analyze its role in checkpoint
responses, along with p53 binding protein. These have turned out
to be a significant target in clinical application since then (Cortez
et al., 2001; Morales et al., 2003).

During invasion and metastasis, tumor cells can undertake
either single-cell locomotive or cohort migration strategies. The
membrane-anchored glycoprotein RECK inhibits tumor
metastasis and angiogenesis by negatively regulating matrix
metalloproteinases (MMPs). RNAi-mediated inhibition of
RECK in CL-1 human lung cancer cells exterminated the
inhibitory effect of trichostatin A (TSA), and HDAC inhibitor,
on MMP-2 activation (Liu et al., 2003). RNAi studies done on
MDA-MB-231 human breast cancer cells showed the
overexpression of CXC chemokine receptor-4 (CXCR4) could
be controlled by knockdown of the gene and thereby metastasis.
Matrix metalloproteases MMP-9 and cathepsin B promote
invasion and metastasis of gliomas through matrix
degradation. Studies showed that the suppression of gene
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expression of these proteins is caused due to short hairpin RNAs
in SNB19 cells, leading to a significant reduction in cell-cell
interaction of human microvascular endothelial cells (Lakka
et al., 2004).

Angiogenesis is a major contributor to the development and
growth of cancer. Various proteins involved in angiogenesis have
been targeted by RNAi technology. The angiogenic factor VEGF
is regulated by the interaction of its GC-rich motif with that of Sp
protein. RNAi-based studies have been done on Sp proteins to
analyze their role in the regulation of VEGF. Sequential
knockdown of the Sp1, Sp3, or Sp4 gene with the help of
siRNA showed that all three proteins regulated transactivation
in pancreatic cancer cells transfected with the pVEGF1, pVEGF2,
and pVEGF3 constructs containing VEGF promoter inserts. This
indicates that Sp1, Sp3, and Sp4 cooperatively regulate VEGF
expression in tumor cells (Abdelrahim et al., 2004). Another
molecule that regulates the function of VEGF is HIF. RNAi
approach has been used successfully to determine functional
differences between HIF-1α and HIF-2α in different human
cell lines (Warnecke et al., 2004). HIF-1α knockdown in
cervical cancer cell lines reduced hypoxia-induced mRNA
stimulation of glucose transporter 1 GLUT1, lactate
dehydrogenase A (LDH-A), VEGF, carbonic anhydrase IX
(CA IX), and HIF prolyl hydroxylase 2 (PHD2) by 40–60%. In
contrast, HIF-2α knockdown had no effect on these HIF target
genes. Tie-2 is a small molecule inhibitor of endothelial cell-
specific tyrosine kinases, which, when interrupted by RNAi, make
endothelial cells lose their viability. This was further investigated
and found to be due to AKT signaling inhibition, leading to
increased thrombospondin expression (Niu et al., 2004). The
tumor growth occurs due to the imbalance between cell
proliferation and apoptosis. The livin gene expressed in
numerous cancers is found to have an anti-apoptotic function.
A study based on vector-based livin-siRNAs plasmid found that it
silenced endogenous livin gene expression through association
with caspase-3 activation, thus, in turn, enhancing apoptotic rate
(Crnkovic-Mertens et al., 2003). Bcl-2 and xIAP are other anti-
apoptotic factors. Studies showed that the sensitivity of MCF-7
breast cancer cells to treatment with the drugs etoposide and
doxorubicin is increased after silencing of Bcl-2 or xIAP by
siRNA (Lima et al., 2004). RNAi is developing from a
powerful tool utilized to elucidate the function of novel genes
to a potential therapeutic modality in cancer therapy. Further
research is needed to understand and unravel the precise
mechanism, by which RNA interference modulates gene
expression inside the body, especially during cancer, and to
exploit this powerful tool and use it to its full potential.

RNA MOLECULES AS NEXT-GENERATION
THERAPEUTICS IN CANCER

With the development of novel therapeutic strategies like gene
silencing and genome editing, diverse RNA molecules have come
to the forefront as potential therapeutic molecules (Fire et al.,
1998; Cong et al., 2013; Mali et al., 2013). The fact that they can
interact with all the major biological molecules like DNA, RNA,

and protein led to the idea of RNA therapeutics, which is now the
primary reason for the expansion in the range of druggable
targets, including conventional proteins and previously
undruggable transcripts and genes. Basically, RNA can take up
three different roles in therapy. Firstly, RNAs can form
oligonucleotide molecules called aptamers that can bind to the
extracellular, cell surface, or intracellular proteins targeted by
small molecule drugs thus bringing about silencing (Gragoudas,
2004). Secondly, siRNAs, miRNAs, and their mimics/knockdown
molecules can target specific mRNAs leading to gene silencing or
control of gene expression for treatment of diseases. Thirdly,
mRNAmolecules can be transfected in the cells where they can get
translated into protein and thus be a part of vaccination or protein
replacement therapy (Sahin et al., 2014; Lieberman, 2018). Though
scientists knew that the transcription of many genes in eukaryotic
cells are repressed, genes are transcribed intomRNA that never gets
translated, post-transcriptional mechanisms are in place to add
another level of control over this already existing complex system,
identification of the function of these endogenous and exogenous
molecules revolutionized the way gene expression can be
manipulated (Christopher et al., 2016).

MicroRNA
MicroRNA plays a significant role in gene regulation
transcriptionally and translationally. The fact that one miRNA
can compromise the expression of several different target genes
simultaneously indicates that it has a very different role in
pharmaceutical targeting when compared to siRNAs. Ambros
and colleagues discovered the first miRNA lin-4 in 1994 (Lee
et al., 1993). As an extension to this discovery, various other
miRNA molecules like let-7 were identified and were observed to
perform sequence-specific RNA-RNA interaction with mRNA,
leading to inhibition of gene expression (Rawoof et al., 2020).
These non-coding RNA molecules were found to possess highly
conserved nature suggesting that these molecules are essential
gene regulatory factors. Hsa-miR-15a and miR-16–1 were the
first cancer-related miRNAs discovered. These were tumor-
suppressing miRNAs found in chronic lymphocytic leukemia
that induced apoptosis through repression of the Bcl-2 gene
(Calin et al., 2002). Further studies on the deletion of miR-15
and miR-16–1 cluster in mice recapitulated chronic lymphocytic
leukemia-associated phenotypes observed in humans. This
convincingly demonstrated that these two miRNAs are crucial
for tumor suppression (Klein et al., 2010). Hsa-miR-143 and
miR-145 are often found deregulated in lung cancer, resulting in
decreased expression of both miRNAs. The abnormal expression
of certain miRNAs can also be due to the deregulation of various
transcription factors like c-Myc and p53. c-Myc is found to
repress the transcriptional activity of tumor-suppressive
miRNAs like miR-15a, miR-26, miR-29, miR-30, and let-7,
thus setting in proliferation (Chang et al., 2008). Tumor
suppressor gene p53, on the other hand, positively regulates
the expression of various miRNAs like miR-34, miR-605, miR-
1246, and miR-107.

The failure of chemotherapy in cancer has paved the way for
development of miRNA molecules as therapeutic targets,
especially for patients with drug resistance issues. The fact that
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there exists an alteration in the expression of these miRNAs in
cancer makes it possible to manipulate miRNA expression in
such tumor tissues. These manipulations are often facilitated by
injecting miRNAs similar to the use of antisense mRNAs. By
identifying signature miRNAs, their mechanism of action in
cancer, and strategies to attain this miRNA molecule delivered
at the target, miRNA therapeutics can be applied more efficiently
in cancer therapy and thus would emerge as a novel therapeutic
tool (Kumar et al., 2020).

Long Non-coding RNA
After the discovery of the first long non-coding RNA (H19)
associated with a tumor, several ncRNAs have been identified,
implicated to have functions in different cancers. These ncRNAs
usually constitute small and long ncRNA, and some of these long
ncRNAs can even give rise tomiRNAs (Metzler et al., 2004; Eis et al.,
2005). Recent studies have revealed the role of lncRNA in cancer
development and in maintaining the hallmarks of cancer. This is
mainly by virtue of their ability to interact with the major biological
molecules like DNA, RNA, and protein, or even a combination of
them. LINE-1, HERV, Satellites, and TERRA are specific lncRNAs
that can contribute to disease progression through immune response
activation. Other than this, LINE-1 is also found to support
chromatin formation. TERRA, on the other hand, supports
alternative lengthening of telomeres (Parasramka et al., 2016).
Highly upregulated lncRNA in liver cancer (HULC) is a molecule
that has a prominent role in the early stages of cancer progression.
The binding of the promoter region of HULC to that of CREB
protein is found to activate an autoregulatory loop involving HULC
and miR-372, which further leads to phosphorylation of CREB and
thus the chain of similar events (Wang et al., 2010). HULC also
promotes HCC proliferation by targeting and suppressing p18 and
IGF2BP1 (Hämmerle et al., 2013). Metastasis associated lung
adenocarcinoma transcript 1 (MALAT1) is another lncRNA
upregulated in HCC and non small cell lung carcinoma
(NSCLC) cells that is associated with the alternative splicing of
various precursor mRNAs (Ji et al., 2003; Schalken et al., 2003; Lee
et al., 2011; Lai et al., 2012). Detection of certain lncRNAs in body
fluids and serums has propounded the idea of using these molecules
as cancer biomarkers. Plasma levels of HULC are higher in patients
with HCC when compared to healthy humans. PCA3 is a prostate-
specific lncRNA found usually upregulated in patients and thus is
used as a biomarker (Lee et al., 2011). Prostate-Specific Gene 1
(PCGEM1), small dendritic non-translatable RNA BC1, and DD3
ncRNA genes are also over expressed in prostate tumors compared
to normal and primary tumor specimens. DD3 is an ideal molecule
for cancer therapy as it has not been detected in any of the healthy
tissues like breast, bladder, testis, gastrointestinal organ, and
musculoskeletal tissue (Schalken et al., 2003). Similarly, BC200
ncRNA, a brain-specific small cytoplasmic RNA, is found to be
expressed in cancers like breast, cervix, esophagus, lung, ovary,
parotid, and tongue though absent in healthy individuals (Chen
et al., 1997).

Circular RNA
The circRNAs are functional non-coding RNAs that lack 3’ and 5’
ends, existing as circular transcripts. Expressed tissue specifically,

these transcripts, identified to be coded by thousands of genes,
were till recently considered aberrant spliced by-products. Nigro
and colleagues in 1991 identified the first circRNA in mammalian
cells (Nigro et al., 1991). They observed the transcript of the DCC
tumor suppressor gene to lack 3’ and 5’ end and existed as circular
molecules. They termed it as scrambled exons. With the
development of high-throughput sequencing and
bioinformatics pipelines, the identification of more and more
circRNAs became accessible in the past decade (Santer et al.,
2019). Themost frequently described function of circRNAs is that
of sponging. With one circRNA having the ability to target more
than one miRNA, these non-coding RNAs bind to miRNA
molecules and prevent them from binding onto its canonical
targets. The circRNA CDR1as have more than 70 conserved
binding sites for miRNA-7 (miR-7), inhibiting its activity
(Memczak et al., 2013). Studies in liver cancer showed that
circHIPK3 was upregulated and could sponge at least nine
different tumor suppressor miRNAs with a total of 18
potential miRNA-binding sites (Zheng et al., 2016). Some of
the circRNAs were found to have the protein-interacting ability.
Circular RNA, circ-FOXO3 is one of them, with expression levels
negatively correlating with cell proliferation, inhibition of circ-
FOXO3 function promoted cell proliferation, whereas
overexpression repressed cell cycle progression (Du et al.,
2016). Though numerous challenges are there on the path of
knocking down this circular transcript, various gain and loss of
function experiments are being conducted that can elucidate the
function of circRNAs. The success of such research will decide the
potential of using circRNAs as diagnostic and therapeutic tool for
clinical application.

Eventhough we celebrate the potentiality of RNA interference,
there are immense challenges to be overcome to take this from
bench to bedside. The RNAi molecules being negatively charged,
their capability to get infused through a cell membrane and to
stay stable in the cellular matrix is questionable. Though studies
that anchor on increasing the half-life of these molecules in the
serum through chemical modification exist, the chance of them
becoming immunotolerant inside an organism’s body is meager.
Thus, the development of carrier molecules that is in nanoscale,
which can stay undetected or are pH-sensitive, is required for the
development of RNAi to a potent therapeutic molecule. With the
advancement in nanotechnology and its application in medicine
and pharmaceutical companies, more and more molecules are
being experimented for stable and safe delivery into the target tissue.

NANOTECHNOLOGY BASED DELIVERY
SYSTEMS FOR RNA INTERFERENCE

The advent of gene therapy in clinical realm has facilitated the use
of nucleic acids or oligonucleotides like plasmid DNAs, small
interfering RNAs, short hairpin RNA etc. in therapeutic
approaches, opening a new paradigm for treating wide range
of genetic, innate and acquired diseases including cancer. A
comprehensive approach in the oligonucleotide delivery deals
with two major aspects. Firstly, to assimilate the oligos into a type
of carrier that helps determine their precise morphology, tissue
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distribution, half-lives and other biological interactions, and
secondly, to attempt the possible modifications in the
nucleotide itself, say with a targeting ligand without altering
the nature of the conjugate (Juliano, 2016). In order to address
the complications associated with therapeutic intervention,
efforts are being made to comply homeostasis within the
therapeutic findings and shell out the prospects of desired
outcomes. Drug delivery is a crucial part of treatment having
its own attributes and advantages. However, regardless of the
significant potential of bio-drugs in gene silencing, a key
limitation in transition to bedside is the lack of appropriate
delivery systems that do not reduce the drug efficacy. Even
though the phenomenon of RNAi is promising, direct
administration of small oligos has not been fruitful because of
the lower half-lives of the oligos and presence of nucleases in
biological fluids. Furthermore, its low molecular weight hinders
oligos to effectively penetrate the endothelial lining and diffuse
into the extra-cellular matrix. In addition to these biological
perturbations, nucleic acid itself possesses negative charge
which lowers its penetration efficiency through the negatively
charged cellular membrane. Also, the endosomal pathway offers
harsh environment, resulting in degradation of these bio-
molecules. The pursuit to make a viable novel antisense drug
has given birth to various strategies, delivery approaches and
modifications that address limitations associated with direct
assimilation of bio-molecules. These strategies facilitate the
targeted carriage of bio-molecules, evading biological barriers

of the body and they confer better in vivo stability, tissue
bioavailability, and targeted cellular delivery to the bio-drugs
(Figure 1). Both viral and non-viral vectors have been developed
for improving target cell penetration as well as minimizing
toxicity by off-target hybridization.

Nanoparticle-Based Delivery Systems
The multifaceted nature of science has paved the way for novel
combinatorial and synergistic approaches in clinical terms from
bench to bedside. Nanoparticles are versatile vehicles that can be
used as drug carriers because they can be tweaked to address the
limitations of delivery systems by permitting concurrent
transport of numerous therapeutic agents for active therapy.
Nanotechnology enables the design and assemblage of
intended drugs with unprecedented control over their size and
shape. Nanoscale methods have focused on developing adaptable
bio-composites by conjugating therapeutic agents of interest into
them, offering prominent advantages in drug delivery and
imaging. Intracellular targeting describes the site where the
drug has to be delivered; whether a tissue, an organelle or a
compartment. Nanoparticles being sub-cellular and sub-micron
in size, have the ability to penetrate deep into tissues or any other
desired region by crossing the epithelial lining, ultimately getting
permeated into the cell for achieving their therapeutic effects
(Vinogradov et al., 2002). The enhanced permeation and
retention effect (EPR effect) in cancerous tissues is essentially
exploited by adopting various drug delivery methods, particularly

FIGURE 1 | A schematic representation of various modes of Bio-drug delivery. Various modes of in vivo drug delivery like oral guvaging, tail vein (hydrodynamic),
intratumoral, intraperitoneal etc have been shown here. Drug delivery methods such as viral based and non-viral based like antibody, mini cell and various nanoparticles
like liposomal, dendrimer, gold, peptide and aptamer based is also been demonstrated. The action of the RNAi drug by gene silencing within the cell by post
transcriptional and translational block after receptor based endocytosis has been displayed.
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with nano-based techniques. The defective tissue morphology
and leaky vasculature of cancers increase the EPR effect, making
them accurate targets for effective drug delivery (Brannon-peppas
and Blanchette, 2004). The nanoparticle-based delivery systems
can further be segregated into solid, lipid, and polymer based and
in the next section we deal with each of these three systems taking
appropriate examples.

Solid based Delivery Systems
Recently biocompatible magnetic nanoparticles have been used to
deliver small oligos with high gradient external magnets attracting
the drug complex, to the target site within the body providing great
transfection efficiency (Nagal and Singlab, 2013), (Xin et al., 2017).
Halloysite nanotube (HNT) based carrier was recently developed to
deliver antisense oligonucleotides to target anti-apoptotic genes in
cancer. In order to study the functionality of the carrier as well as the
target gene, HNT carriers were surface modified with
γ-aminopropyltriethoxysilane and the oligonucleotides were
labelled with fluorescein. Confocal and transmission electron
microscopic images recorded efficient cellular uptake and the
variable gene expression (Shi et al., 2011). Conducive to construct
efficient delivery systems, efforts were directed to preserve the
bioactivity of oligonucleotides throughout the administration,
from start to target site. Two different strategies have been
devised which could be used to bind siRNA on gold
nanoparticles. A covalent approach, based on thiolated siRNA
bound to nanoparticle surface, and an ionic approach based on
the electrostatic interaction between the negatively charged siRNA
backbones. Both methodologies proved to be efficient for siRNA
delivery, attaining precise gene silencing in both in vitro and in vivo
biological systems (Tortiglione and de la Fuente, 2019). In leukemia
mouse models, administration of cancer cell-specific mRNA drug
conjugatedwith gold nanoparticles resulted in efficient drug delivery,
appropriate release, and competent cellular uptake in both in vitro
and in vivo experiments (Gossai et al., 2019). Also, gold
nanoparticles have shown to act as a functional scaffold for
various medicinal applications such as drug delivery, imaging etc.
A gold nanoparticle (AuNP) based non-viral delivery system was
created to direct siRNA into prostate cancer cells. Consequently,
polyethylenimine (PEI) capped AuNPs were synthesized and
combined with folic acid, a targeting ligand for folate receptors
(AuNPs-PEI-FA) which could effectively integrate siRNA through
electrostatic interactions. Flow cytometric analysis showed that,
AuNPs-PEI-FA could exactly deliver siRNA into LNCaP cells, a
prostate cancer cell line overexpressing prostate specific membrane
antigen (PSMA). To inspect and counter-validate the complex,
internalization of siRNA into PC-3 cells, a prostate cancer cell
line not expressing PSMA or folate receptors, remained
unattained via AuNPs-PEI-FA, signifying the potential of
AuNPs-PEI-FA for targeted delivery in treatment of prostate
cancer (Rahme et al., 2019).

Lipid based Delivery Systems
Lipid nanoparticles (LNPs) are the most progressive nanocarriers
for siRNA delivery due to their high encapsulation efficacy and
potent gene knockdown ability. For precisely targeting the subsets
of lymphocytes and to offer RNAi payloads in a cell-specific

fashion, targeted lipid nanoparticles (tLNPs) were used as a
unique favorable approach holding abundant potential for the
manipulation of gene expression. This method exploits particular
antibodies that adorn the lipid nanoparticle that is aimed at
targeting lymphocyte subsets (Hazan-Halevy et al., 2019).
Antisense oligonucleotides were designed and conjugated with
Liposome-Polycation-DNA (LPD) nanoparticles linked with
animoside, a targeting ligand to study the down-regulation of
an anti-apoptotic protein called survivin in lung cancer (Hill and
Carolina, 2006). 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine
(DOPC) based nanoliposomes were used to deliver siRNA
directly into the tumor cells in vivo, with greater efficiency.
Xenograft and orthotopic tumor models treated with DOPC
incorporated siRNA, resulted in substantial regression in the
tumor size and target genes causing no distress or toxicity
(Ozpolat et al., 2010). Multi-stage delivery systems
demonstrated the advancement of nanovectors. Nanovectors
with spherical, quasi-hemispherical and discoidal silicon
microparticles have unique roles in cellular adhesion and
internalization, and the fabrication of such nanovectors have
considered size, shape, and design. In vivo studies report
increased therapeutic efficiency of liposome coated siRNA
when administered through multi-stage systems as compared
to free nanoparticles (Serda et al., 2011). Cervical cancer being
one of the most life threatening types of cancer among the
women, is generally known to be resistant to chemotherapy.
Formulations of different solid lipid nanoparticles (SLNs) having
chemotherapeutic agent and genetic material (Paclitaxel and
siRNA against Bcl-2 oncogene) were tailored respectively. The
intent of the study was to understand efficacy with respect to
release amount of siRNA, when administered through vaginal
suppositories (Büyükköroğlu et al., 2019). Multifunctional
envelope typed nano device (MEND) was designed to address
the novelty of non-viral gene delivery system. It comprises a
complex nucleic acid core, a ligand for specific targeting,
fusogenic lipids to enhance endosomal escape and a cell-
penetrating peptide to increase the intracellular availability of
novel drugs (Hatakeyama et al., 2011). Specific antisense
oligonucleotides were incorporated into Cationic amphiphilic
bolaamphiphiles (CABs), which were created and tested for
their potential to form nano-sized vesicles based on various
properties. Results demonstrated significant effect in treating
C. difficile infection (CDI) by effective targeting and
controlling the disease. For treatment options, antisense
therapies promise to be a feasible alternative to the
conventional antibiotic therapies (Sharma et al., 2018).

Polymer based Delivery Systems
Numerous carriers have exhibited promising results in terms of
delivering antitumoral oligonucleotides like siRNAs to xenograft
tumor models, where the formulation was administered through
intravenous mode. Chitosan-coated poly (isobutylcyanoacrylate)
nanoparticles were used as transporter molecules to deliver
siRNAs in xenograft tumor mice models. siRNAs coupled with
the nanoparticles by adsorption made the polyelectrolyte
complexes formed between the chitosan and nucleic acids very
stable and non-toxic (Vauthier, 2019). Treatment of mammary
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tumors with intratumoral delivery of c-Myc shRNA complexed to
rhodamine labelled nanoparticles in Brca2/p53 conditional
knockout mouse models, resulted in regression of tumors,
prolonging the survival, indicating the suppression of tumors
treated with c-Myc shRNA linked-nanoparticles compared to
control (Tangudu et al., 2015). Some malignancies like pancreatic
cancers, being refractory for regular treatment options
(chemotherapy), have the potential to play an important role
in precision medicine for cancers by silencing the expression of
genes when small-interfering RNAs (siRNAs) are used. For
targeted carriage, star-shaped polymeric nanoparticles were
developed which self-assembles siRNA into them, for delivery
into pancreatic cancer cells in orthotopic mouse pancreatic tumor
models. Results indicated substantial reduction in the tumor size
and slow recovery in health of the mice after successful
administration (McCarroll et al., 2019). Spherical Nucleic
Acids (SNAs) are nanostructures that typically consist of a
core where functional repositories such as siRNA, miRNA
mimics or antagonists could be housed and used as gene
regulators. It is known to confer heightened resistance towards
degradation, facilitate ease of cell entry in the absence of
transfection vehicles. In murine models of glioblastoma,
precisely administered siRNA or miRNA conjugated with
SNAs, penetrate blood-brain and blood-tumor barriers,
regressing tumor progression (Tommasini-Ghelfi et al., 2019).

Aptamer-Based Delivery Systems
For tumor-targeted drug delivery, currently aptamers are being
used when addressing cancer treatment with a therapeutic
approach. In a recent study, a 64Cu-labeled modified A10
aptamer was designed to target prostate cancer by conjugating
with the drug (p-SCN-Bn-NOTA), labeled with 64 Cu
radioisotope. This extends the hope for diagnostic potential,
non-invasive imaging, and to trace their bio-distribution in vivo
paving the way for clinical applications (Kang et al., 2019).
Tumor-specific carrier systems for siRNA delivery have
extended the scope for reaching targets in treatment of
cancer. For targeted combinatorial approach, Folate-
conjugated siRNA polyplexes were developed based on
sequence-defined oligomer platforms. In vivo and in vitro
experiments validated the efficiency of these polyplexes in
gene silencing, receptor-directed killing of cancer cells (Lee
and Wagner, 2019). Synergistic combinations of
oligonucleotides and drugs are the new edges in finding
effective therapeutic approaches. To expound active
combinations in triple negative breast cancer cell models,
resourceful protocols to screen siRNA libraries were
developed. For validation of effective transfection reagent for
intracellular delivery of siRNA, lipid-grafted low molecular
weight (1200Da) Polyethylenimines (PEIs) were used owing
to its advantages (Thapa et al., 2019). Optimized DNA
nanosuitcases was constructed as tractable DNA prisms that
can encapsulate and selectively release siRNA upon recognizing
an oligonucleotide trigger. It was designed with much
adaptability of oligonucleotides, where it could be made to
respond to an oligonucleotide trigger of interest like shRNA
or miRNA, thus aiding dual therapeutic approaches (Bujold

et al., 2016). Dendrimers being nano sized and radially
symmetric molecules have been used as a carrier in gene
delivery systems. For specific gene delivery in head and neck
squamous cell carcinomas (HNSCC), a fluorescently labeled folic
acid-decorated polyamidoamine (PAMAM) dendrimer was
conjugated with folic acid (FA) as targeting moiety. When
linked with a plasmid or siRNA, this complex is known to
significantly enhance the gene transfection or knockdown
efficiency in mouse xenograft models (Xu and Yang, 2019).
Trastuzumab (TZ) is a monoclonal antibody that binds
explicitly to human epidermal growth factor 2 (HER2)
receptors and is presently being used for the treatment of
HER2-positive breast cancer. A targeted carrier system made
up of trastuzumab-conjugated poly (amido) amine dendrimers
demonstrated a strategy for site-specific carriage of siRNA to
HER2-positive breast cancer cells, subsequently resulting in
definite targeting without off-target effects (Kulhari et al.,
2019). Higher levels of miRNAs in cancer cells are frequently
related with oncogenic effects. Targeted delivery of synthetically
modified antagomiR molecules to malignant myeloid cells and
B cells by linking with single stranded phophorothioated
oligodeoxynucleotides (PSO), reported to persuasively reduce
the levels of target miRNA. Therefore, the PSO-antagomiR has
demonstrated its role, by virtue of regulating the expression of
downstream protein targets, both in vitro and in vivo (Su et al.,
2019). Synergistic approach by delivery of small interfering RNA
(siRNA) and chemotherapeutic agent (cisplatin) for Human
antigen R (HuR) mRNA in cancer cells by means of a
polyamidoamine (PAMAM) dendrimer, was developed. In
vitro results established that this strategy was effective in lung
cancer cell lines H1299 and A549, along with reduced toxicity
in normal lung fibroblast MRC9 cells (Shivdasani, 2006). During
invasion and metastasis of cancer from a primary organ,
patients have to undergo treatment with anti-tumor drugs by
means of systemic administration, instead of local injection.
Unfortunately, when oligonucleotides are administered, they
tend to be degraded by ribonucleases in the blood leading to
poor accumulation of the effector molecules in target sites. To
overcome this, double-stranded RNA/DNA chimera (dsRDC)
was used as a strategy instead of small interfering RNAs in in
vivo breast cancer models. This kind of chimera sidesteps off-
target properties leading to the formation of RISC complex
by the sense strand, thereby conferring more durability and
stability in bloodstream (Taniguchi and Imai, 2019). DNA
nanostructures offer a simple yet powerful technique for
the self-assembly of designed oligonucleotides into them.
Multivalent DNA nanostructures consisting of unmethylated
CpG motifs were prepared and tested for their ability to
withstand nuclease degradation, stability, and transfection
efficiency. Studies demonstrated that CpG motifs are
recognized by toll-like receptors of the cell, proving their
specificity and high potential in drug targeting (Li et al.,
2011). Engineered gold nano-shell based oligonucleotides
were therapeutically designed to discharge its cargo on
mandate upon illumination with near-infrared laser
irradiation at 800 nm. A fluorescently labeled Green
fluorescent protein (GFP) expressing human lung cancer
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H1299 cell line in vitro, was used to determine the cellular
uptake, controlled release, and gene silencing induced by the
desired siRNA (Huschka et al., 2012).

Peptide and Cell-Based Delivery Systems
Peptide-based nanoparticles form a stable complex of proteins
and nucleic acids. These nanoparticles facilitate efficient delivery
of cargo into cells highlighting the importance of cellular uptake,
independent of the endosomal pathway. Cell-penetrating peptides
initiate electrostatic interactions with proteoglycans, allowing
modification of actin network in the extracellular matrix,
thereby facilitating the uptake of nanoparticles (Crombez et al.,
2008). In one study, a morpholino based oligonucleotide was
constructed and linked to a tumor-targeting RGD peptide to
form oligoconjugates. These were further bound to a single
molecule of human serum albumin. The resultant
nanoconjugate showed a greater enhancement in receptor-
specific intracellular delivery of oligonucleotides and markedly
boosting the functional activity at low nanomolar
concentrations, overcoming the limitations of cytotoxicity (Ming
et al., 2013). The delivery of siRNA through modular L1, a peptide
carrier bearing CXCR4 targeting ligand was evaluated for its ability
to condense siRNA, mediating endosomal escape. This resulted in
forming complexes with siRNA to provide efficient VEGFA gene
knockdown by substantial reduction of VEGFA gene expression in
EA.hy 926 endothelial cells and in A172 glioblastoma cells
(Egorova et al., 2019). Biodegradable nanoparticles developed
from poly D, L-lactide-co-glycolide (PLGA) were studied for
their localization, release, and delivery of therapeutic proteins,
plasmid DNA, and small molecules suggesting that they are
efficient in overcoming the endo-lysosomal compartment, thus
moving into the cytosol after administration (Panyam and
Labhasetwar, 2012). An innovative biomolecule compound
Atelocollagen was developed to deliver tumor-specific siRNAs in
nudemice. Atelocollagen being positively charged forms a complex
with siRNA by electrostatic interactions. In orthotopic tumor
models of prostate cancer in nude mice, this complex overcame
degradation by nucleases and was proficiently transported in the
bloodstream to the target tumor tissues, where the siRNA/
atelocollagen complex integrated through endocytosis, promoting
anti-metastasis and tumor regression (Takei, 2019). The usage of
cationic polymer Polyethylenimine-Polycaprolactone-Polyethylene
glycol (PEI-PCL-PEG) showed increased efficiency as it formed a
superior complex with nucleic acids and thus proved better for gene
delivery. Moreover, this polymer permits targeting moieties to be
coupled to the micelleplex, the overexpressed receptors found within
tumors. With this approach, indium labeled siRNA encapsulated
with PEI-PCL-PEG nanoparticles and folic acid targeting ligand was
developed for their evaluation in in vivo tumor targeting in
orthotopic ovarian cancer models (Feldmann et al., 2019).
Bacterial minicells, nanosized enucleated cells, have been
exploited as a productive delivery method for nucleotide based
therapeutics. Minicells retain all of the molecular components of
the parent cell, except chromosome, lacking the ability to divide. Due
to numerous advantages like convenience, efficient packaging of si/
shRNA, stability, and easy surface modification with antibodies/
ligand for active targeting, they can be manifested selectively to

tumor cell-surface receptors with any targeting moieties conjugated
on minicells. The functionality of minicells was observed in vivo in
xenograft mice tumormodels and in in vitro selected cancer cell lines
(Jivrajani and Nivsarkar, 2019).

RNA INTERFERENCE AND
NANOTECHNOLOGY IN PRE-CLINICAL
STUDIES: AN INSIGHT INTO BOTH
IN VITRO AND IN VIVO METHODS IN
DIFFERENT CANCERS

The detailed understanding of molecular targets underlying cancer
has paved way for personalized therapy, overcoming the intrinsic
complexity and asymptomatic nature of various cancers. With an
ability to interfere with the function of specific molecular targets,
targeted therapy controverts the conventional and empirical approach
of developing cytotoxic chemotherapeutics. The past decades have
witnessed the manipulation of diverse molecules like tyrosine
inhibitors, serine/threonine inhibitors, small molecule drug
conjugates, and monoclonal antibodies into developing targeted
therapeutics with anti-cancer activity. Although these molecules
were effective compared to the conventional methods, researchers
found it challenging to circumvent the challenges related to protein
durability. This is where RNA interference interceded and
revolutionized targeted therapies. With an uncanny ability to target
cancer-related genes, the RNAi pathway employs non-coding RNAs
to bind messenger RNAs and silence gene expression in eukaryotic
cells. Although profuse alternatives for gene silencing exist like
CRISPR/Cas and TALENs, RNA interference remains the most
favored option due to its precise functional mechanism, high
potentiality, high specificity of gene silencing, and scanty side
effects (Mansoori et al., 2014). The emergence of RNAi-based
cancer therapies has materialized the usage of nanoscale particles
as delivery molecules. With an enhanced ability to accumulate in
tumor cells compared to normal cells due to the EPR effect,
nanoparticles protect the RNAi molecules from undergoing
enzymatic degradation and prevent them from being recognized
by the immune system, thereby showing higher transportation
efficiency compared to other carriers (Xin et al., 2017). However, a
detailed preclinical characterization of the nano molecule and studies
on the mode of offloading the loaded non-coding RNAs by these
carrier particles have to be analyzed both in vitro and in vivo before
taking these molecules to clinical trials. Evaluation of rate, extent, and
perpetuation of silencing and the time-frame of delivery of the
nanocarriers to the cancer niche is crucial in preclinical studies
and the information generated enhances the chance of success in
clinical trials (Wu et al., 2014). Almost every cancer tissue with a
prominent biomarker and a potential to regress after gene silencing
has been targeted for RNAi-based anti-cancer therapy. We are
summarizing the results of pre-clinical obtained with nanoparticle-
RNAi system in each type of cancer.

Breast cancer
Advancement in gene therapy has accentuated the potentiality of
RNAi molecules in breast cancer therapy over recent years. Lu
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Han et al. targeted HOX transcript antisense intergenic RNA
(HOTAIR) by using specific siRNAs and by transfecting it into
three human breast cancer cell lines (MCF-7, MDA-MB-231, and
SKBR-3) resulting in repressed proliferation, invasion, and
migration of cancer cells (Han et al., 2018). Studies have
analyzed the interaction between miR-145 and Hepatitis B
virus X-Interacting Protein (HBXIP), an oncoprotein
promoting breast cancer progression and metastasis. Anti-
miR-145 and si-HBXIP upon transfection revealed that miR-
145 directly targets HBXIP and is a useful therapeutic target
(Jiang et al., 2019). In order to knock down the expression of
Ubiquitin-associated protein 2-like (UBAP2L), an oncogene
associated with various cancers like prostate cancer, colorectal
cancer, breast cancer, and glioma, shRNAs targeting the same has
been transfected into breast cancer cell lines like ZR-75–30 and T-
47D, successfully regressing the tumor (He et al., 2018). Other
than these, Ca+2-dependent phospholipid and membrane-
binding proteins, Annexin A3 (ANXA3), underwent gene
knockdown in MDA-MB-231 cells with the help of sh-
ANXA3 containing lentiviral vectors leading to inhibition of
cell proliferation, migration, and invasion (Zhou et al., 2017).

A large intergenic non-coding RNA-regulator of
reprogramming (lincRNA-ROR) is a newly identified lncRNA
associated with initiation, development, and metastasis of
multiple tumors, including breast cancer. This lincRNA-ROR
has been shown to enhance the resistance of radio- and chemo-
therapy of cancer cells along with the ability to inhibit the
gemcitabine (Gem)-induced apoptosis and autophagy of breast
cancer cells (Takahashi et al., 2014; Chen et al., 2016a; Yang et al.,
2017a). Even after tamoxifen (TAM) has been clinically proven to
reduce the risk of development of breast cancer, its resistance
towards therapy is still a drawback. Thus, shRNA targeting
lincRNA-ROR has been transfected into MDA-MB-321 BC
cells. This showed decreased cell proliferation and increased
TAM sensitivity by reducing its resistance (Lu et al., 2019).
TAM is also found to promote apoptosis by suppressing the
activation of the P13K/Akt/mTOR signaling pathway. The PRDI-
BF1 and RIZ (PR) domain zinc finger protein 14 (PRDM14) is
found to be overexpressed mostly in three out of five breast cancer
patients, out of which some exhibit gene amplification. siRNA
targeted against PRDM14 in nude mice successfully reduced size
of breast tumors and lung metastases (Taniguchi and Imai, 2019).

Colon cancer
Previous studies have revealed the hindrance of colon cancer
proliferation and invasion in vitro via the down-regulation of
TSPAN1 expression (Chen et al., 2010). Enacting the role of a
potential prognostic factor in colorectal carcinoma, TSPAN1,
through its inhibition by miRNA mediated RNAi, paved the way
to the deduction of miR-638 as a tumor suppressor miRNA
(Zhang et al., 2014). Similarly, a knock-down study on s100p gene
in colon cancer cells using lentivirus-mediated RNAi, indicated
significant reduction of tumor growth and liver metastasis in vivo
(Jiang et al., 2011). Via in-silico screening, forced overexpression
of miR-124 in colon cancer cells reduced Collagen prolyl-4-
hydroxylase α subunit 1 (P4HA1) expression and subsided its
malignant phenotype. The malignant phenotype was also

diminished by treating the cancer cells with diethyl-pythiDC, a
small molecule inhibitor of P4HA1 (Agarwal et al., 2019). Colo-
320 cells were transfected with two complementary pairs of short-
hairpin siRNA oligomers specific to human BRCP/ABCG2
cDNA sequence which led to a significant reduction in protein
expression and chemoresistance (Hu et al., 2017).

Colon cancer-associated transcript 2 (CCAT2) is an lncRNA
which is found to be highly overexpressed in microsatellite-stable
colorectal cancer. A meta-analysis on the same revealed that the
overexpression of CCAT2 gene can be used as a novel prognostic
factor in several cancers (Fan et al., 2017). Thus, shRNAi plasmids
targeting CCAT2 have been transfected into human gastric
cancer BGC-823 cell lines. The corresponding silencing of the
CCAT2 gene reduced the tumor cell proliferation and promoted
apoptosis and autophagy in BGC-823 cells (Yu et al., 2018). The
regulatory interlink between HOTAIR and insulin like growth
factor 2 mRNA-binding protein 2 (IGF2BP2) has been shown to
influence the invasion and migration of colon cancer LoVo cells
(Wu et al., 2019). The lncRNA, upon targeting and silencing
HOTAIR, could significantly lower the proliferation of tumor
cells as well as promote apoptosis through suppression of
IGF2BP2 and Epithelial to Mesenchymal Transition (EMT).
LINC01234, a highly abundant mammalian noncoding RNA
has been proven to be a novel molecule in the field of tumor
biology with associations with almost all types of cancers like
breast, gastric, ovarian and colon cancers (Guo et al., 2016; Gu
et al., 2017; Guo et al., 2017). Serine hydroxymethyltransferase 2
(SHMT2) is an enzyme regulating the serine/glycine metabolism
pathway, a pathway identified to be critical in tumor metabolism
since they have high energy and anabolic consumption capability.
shRNA interference vectors targeting LINC01234 and SHMT2
were injected into BALB/c nude mice which had already been
transplanted with tumor through subcutaneous injections of
LoVo and HCT119 cell lines. Knockdown of LINC01234
arrested serine/glycine metabolism pathway thereby
suppressing the cell proliferation and invasion (Lin et al.,
2019a). Furthermore, LINC01234 was identified to be
functioning as a competitive endogenous RNA (ceRNA) for
miR-642a-5p, thus implying that LINC01234-miR642a-5p-
SHMT2 axis plays a critical role in colon cancer proliferation.

Nuclear paraspeckle assembly transcript 1 (NEAT1), one of
the nuclear lncRNAs is found to be associated with the
deteriorated prognosis of colorectal cancer (CRC). siRNA and
antisense oligonucleotides targeting NEAT1 as well as
knockdown of miR-193a-3p modulated KRAS proteins, thus
providing a therapeutic and diagnostic marker for CRC (Zhu
et al., 2019). Similarly, the function of Tripartite Motif Containing
25 (TRIM29) was explored in colorectal cancer cells by
transfecting HT-29 and SW1116 cells with si-TRIM29. This
knockdown reduced tumor cell proliferation, migration and
invasion followed by reducing the phosphorylation levels of
JAK2 and STAT3, which are the regulators of JAK/STAT
signaling pathway (Xu et al., 2016).

A novel oncogenic lncRNA, Sprouty4-Intron 1 (SPRY4-IT1) is
found to be upregulated in multiple cancers regulating cell
growth, invasion and apoptosis (Li et al., 2017a). To
knockdown its expression, CRC (LoVo and SW480) cell lines
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were transfected with siRNA sequences specific to SPRY4-IT1
(Shen et al., 2017). Thus, cell proliferation, migration and
invasion of CRC cells were suppressed via EMT-related gene
modulation by negatively regulating the expression of miR-101-
3p (target of SPRY4-IT1).

Cervical cancer and Prostate cancer
Cervical cancer is one among the most common types of cancer
found in women worldwide. Several non-coding RNAs have been
associated with cervical cancer and a few of them were taken
forward for preclinical analysis. In 2012, Gibb et al found the
abnormal expression of growth arrest specific 5 (GAS5) lncRNA
by performing serial analysis of gene expression (SAGE) in
cervical cancer (Gibb et al., 2012). In order to downregulate
GAS5, RNAi sequence targeting this lncRNAwas transfected into
cervical cancer HeLA cell lines using liposome INTERFERin and
its regulatory role was unraveled (Li et al., 2018a). Mitogen-
activated protein kinase 1 (MAPK1), identified as a direct target
of miR-329-3p, is upregulated in cervical cancer tissues and found
to depict an inverse correlation with miR-329-3p expression. The
knockdown of MAPK1 by transfecting human cervical cancer cell
lines with si-MAPK1 significantly inhibited tumor cell growth,
migration and invasion (Li et al., 2017b). These results were
similar to the results obtained by overexpression of miR-329-3p
inferring its therapeutic ability in cervical cancer.

Diverse cell-penetrating peptides (CPPs) have been in use to
deliver anti-VEGF siRNA into cancer cells (Choi et al., 2010;
Kanazawa et al., 2012; Egorova et al., 2016; Chung et al., 2017).
With inadequate cell-type specificity being a major drawback,
CPPs like BR2 specific to cancer cells have been reported (Lim
et al., 2013). An amalgamation of siVEGF and BR2, when
delivered intracellularly in HeLa cell lines, down regulated
VEGF levels notably reducing toxicity, increasing antitumor
efficacy indicated a specific and efficient delivery of siRNA by
BR2 CPP (Lee et al., 2018).

Prostate cancer (PCa) is the most prevalent visceral cancer in
men worldwide (Chen et al., 2015). Special AT-rich sequence-
binding protein 1 (SATB1), a transcriptional factor is found to be
overexpressed in various types of malignant cancers like
nasopharyngeal carcinoma, cutaneous malignant melanoma,
osteosarcoma and small cell lung cancer (Chen et al., 2014a;
Hou et al., 2016; Lee and Pelletier, 2016; Xiong et al., 2017a).
Three siRNAs targeting SATB1 region containing nucleotides
2,147–2,185 of complementary DNA were synthesized and were
transfected into prostate cancer cell line DU145 using siPORT
lipid transfection reagent (Mi et al., 2016). Tumor cell growth,
invasion and migration capabilities were significantly inhibited
in vitro implying that SATB1 siRNA could be a potential agent for
human PCa therapy. Playing a major role in Ca+2 homeostasis,
transient receptor potential cation channel subfamily M member
8 (TRPM8) has also emerged as a potential therapeutic target in
PCa (Fidaleo et al., 2015), (Cao et al., 2017). The specific siRNA
complementary to TRPM8 complexed with Lipofectamine 2000
was transfected into prostate cancer (LNCaP) cells thus,
inhibiting cell proliferation and enhancing epirubic in
chemosensitivity of cancer cells via promoting apoptosis (Chen
et al., 2012). Prostate stem cell antigen (PSCA) is a

glycosylphosphatidylinositol (GPI)-anchored cell membrane
glycoprotein which is highly expressed in prostate cancer (Gu
et al., 2000). Prior study by Zhigang Zhao and team produced
in vitro validation that 21-nt long siRNA targeting PSCA could
significantly inhibit cell proliferation and invasion of human PCa
(PC-3M) cells (Zhao et al., 2016). The same group of researchers
in the pursuit of validating in vivo, injected si-PSCA
subcutaneously into male SCID mice bearing PCa xenografts
(Leconet et al., 2018). The expression of PSCA was completely
shut down as shown by immunohistochemical analysis as well as
the reduced tumor growth volumes and metastasis onset. As
ZEB1 was overexpressed in malignant cancers like prostate
cancer (Heinrich et al., 2018), when the antisense lncRNA
ZEB1-AS1 was expressed it positively regulated ZEB1
expression promoting tumor growth and metastasis via
functioning as an oncogene in primary liver cancer (Huang
et al., 2020). Based on these observations when two different
siRNA vectors targeting ZEB1-AS1 were transfected into prostate
cancer cell lines they inhibited ZEB1 overexpression and thereby
the cell proliferation (Su et al., 2017).

Lung cancer
In 2019, Fei cao et al., reported that targeting epidermal growth
factor receptor (EGFR) mutations by RNAi can possibly treat
residual lung cancer. PEG-PEI-EGFR siRNA nanocomposite was
created by conjugating PEG-PEI polymer with siRNA targeting
EGFR. This when injected intratumorally significantly reduced
cell proliferation and invasion of tumor cells in BALB/c nude
mice which had been subcutaneously injected with HCC827 lung
cancer cells, subsequently rejecting the human lung xenograft
model in mice (Cao et al., 2019). Growth arrest-specific 5 (GAS5)
is known to be a vital tumor suppressor lncRNA in some types of
cancers. NSCLC cells were transfected with plasmid vectors of
GAS5 siRNA sequences. This study determined that miR-205 was
a direct target of GAS5 in lung cancer and the Phosphatase and
Tensin homologue (PTEN) was a direct target of miR-205.
Upregulation of GAS5 aided in the suppression of tumor
growth and invasion via miR-205/PTEN axis (Dong et al.,
2019). On the contrary to this, X inactive-specific transcript
(XIST) is known to function as an oncogenic lncRNA in
bladder cancer, CRC and NSCLC (Fang et al., 2016; Xiong
et al., 2017b; Chen et al., 2017). In order to unzip the
correlation between XIST and TGF-β induced EMT, siRNA
sequences targeting XIST and zinc finger E-box-binding
protein (ZEB2) were transfected into human NSCLC (A549)
cells using Lipofectamine 2000 transfection reagent. The
knockdown of XIST repressed ZEB2 expression thereby
inhibiting TGF-β induced EMT, cell proliferation and
invasion. In addition to in vitro validation, the sh-XIST
sequences were intravenously injected into female nude mice
along with stable A549 cells. The decreased pulmonary metastasis
observed frommetastatic nodules on the lung surface revealed the
role of XIST and ZEB2 in promoting EMT (Li et al., 2018b).

Programmed death receptor 1 (PD-1), being a specific
programmed death receptor ligand 1 (PD-L1), plays a major
role in immune escape by malignant tumor cells and is found to
be overexpressed in most of the cancer types. The antitumor
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effects of dendritic cell (DC) immunization have been observed to
be inhibited by the signaling functions of PD-1/PD-L1. The
shutdown of the PD-L1 expression by lentivirus-mediated
RNAi in SCID-hu mice injected with human pancreatic cancer
PaTu8988 cells (Wang et al., 2019), reduced the tumor growth
and lung metastasis thereby increasing the survival time of SCID-
hu mice. Staphylococcal nuclease domain-containing protein 1
(SND1), also termed as P100 is a major component of RISC
complex which regulates gene expression at both transcriptional
and translational levels. Various studies have revealed the
interaction of P100 with c-Myc, STAT5 and STAT6 (Dash
et al., 1996; Yang et al., 2002; Välineva et al., 2005). Anna
et al (year) reported the upregulation and chemoresistant
characteristics of P100 in lung cancer (Zagryazhskaya et al.,
2015). So, when miR-320a targeting P100 was transfected into
human lung cancer cell lines, it inhibited cell migration, thus
potentiating the biomarker effects in prognosis of lung cancer
(Xing et al., 2018). Cancer cells require enhanced lipid
biosynthesis since the fatty acids and phospholipids supplied
by the gut and the liver alone are insufficient when compared to
the consequent increase in the expression and activity of crucial
enzymes like fatty acid synthase (FASN). Ning Zhan and his team
constructed a lentiviral vector containing shRNA complementary
to FASN and then transfected it into human non-small cell lung
cancer (A549) cells making use of Lipofectamine 2000 as
transfection reagent (Zhan et al., 2018). They observed that
the FASN knockdown increased the radiosensitivity of NSCLC
cells by effectively promoting apoptosis.

Aquaporins (AQP) which are integral membrane proteins
facilitating water transport between cells are known to be
prominently abundant in diverse malignant tumors, promoting
cell proliferation and angiogenesis (Hu et al., 2006), (Verkman
et al., 2008). In particular, AQP3 has been reported to be regulating
cancer cell growth, invasion and migration (Lieberman, 2018),
(Christopher et al., 2016) and hence inhibition of it can decrease
the proliferation of NSCLC cells (Chen et al., 2015). So, two
siRNA oligonucleotides targeting AQP3 were transfected into
lung cancer (XWLC-05) cells and nude mice were
subcutaneously inoculated with lung cancer cells transfected
with si-AQP3. Cellular experiments revealed the inhibition of
cell proliferation and invasion promoting apoptosis whereas
reduced tumor growth was observed in in vivo studies (Xiong
et al., 2017a). Lung cancer (A549) cell lines were transfected with
four siRNA oligonucleotides cloned into lentiviral expression
vectors to silence RNA helicase (DHX9), a protein
overexpressed in a wide variety of cancer (Fidaleo et al., 2015;
Lee and Pelletier, 2016; Mi et al., 2016). Subsequently using
enoxacin to inhibit cell proliferation, this particular knockdown
ofDHX9 completely suppressed lung cancer cell growth (Cao et al.,
2017). The combined effect of RNAi and tyrosine kinase inhibitors
(TKIs) by targeting EGFR in NSCLC cells and subsequently
silencing the gene in the cancer has also been reported (Chen
et al., 2012).

Gastric cancer
Being rarely diagnosed at early stages, gastric cancer (GC), though
could be treated using surgery, radiation, and chemotherapy at its

earlier stages is very unresponsive to the same at its advanced and
metastatic stage. The use of RNA interference has been thus
emphasized in gastric cancer treatment to enhance both diagnosis
and prognosis. The MYCL1 being a proto-oncogene, has been
found to be upregulated in most of the gastric cancer cells. The
usage of lentiviral MYCL1 shRNA expression vectors to
knockdown the overexpression of this gene reduced migration
and invasion of MGC-803 cell line in vitro (Qin et al., 2019). This
effect ofMYCL1 gene onmigration phenotype can be exploited to
enhance the prognosis rate of gastric cancer patients.
Plasmacytoma variant translocation 1 (PVT1), has been
reported to be a potential lncRNA biomarker for Gastric
cancer patients. The shRNA targeting lncRNA PVT1 when
transfected into BGC823 and AGS cells using lipofectamine ,
the expression of c-Myc was reduced which in turn decreased
migration and invasion ability of tumor cells (Ren et al., 2019).

Methyltransferase-like 3 (METTL3) is known not only for N6-
methyladenosine (m6A) modification of mRNA but also for
regulating the translation of oncogenes. Human gastric cancer
cell lines, AGS andMKN45 when transfected by shRNA targeting
METTL3, it significantly decreased Bcl2 and increased Bax and
active Caspase-3 implying activation on the apoptotic pathway.
Thus, downregulation of METTL3 suppressed the proliferation
and invasion of human gastric cancer cells (Lin et al., 2019b).
Many researchers have reported the role of lncRNA LINC00978
in lung cancer, breast cancer and gastric cancer (Yang et al., 2015;
Ke et al., 2017; Fu et al., 2018). In order to understand the
biological function of this lncRNA in gastric cancer, Min Fu and
his colleagues targeted the lncRNA using its specific shRNA in
human gastric cancer (MGC-803 and SGC-7901) cell lines using
LipoFiter as transfection reagent. The knockdown of this
overexpressed lncRNA induced apoptosis by suppressing cell
cycle progression. Also, since the migration and invasion of
GC cells were found to be inhibited, LINC00978 could serve as
a prognostic biomarker for gastric cancers (Fu et al., 2018).

Another lncRNA involved in cell proliferation, apoptosis and
tumor development in liver and gastric cancer is small nucleolar
RNA host gene 15 (SNHG15) (Zhang et al., 2016). The
knockdown of this gene, in human NSCLC (A549) cells using
Lipofectamine 2000, using specific siRNA oligonucleotides
significantly suppressed cell proliferation, invasion and
metastatic abilities of cancer cells thereby initiating apoptosis
(Chen et al., 2016b). In order to investigate the role of TRIM25 in
gastric cancer, two different siRNA oligonucleotides specific to
TRIM25 were transfected into GC cell lines (MGC-803 and
AGS). This silencing of TRIM25 expression decreased cell
migration and invasion by regulating TGF-β signaling pathway
(Dong et al., 2018). Being a transmembrane protein, the IQ motif
containing GTPase-activating protein three gene (IQGAP3) is
known to be upregulated in gastric cancer cells and could serve as
therapeutic target (Yasui et al., 2011). So, the siRNA sequences
targeting IQGAP3 were conjugated with Lipofectamine RNAi-
MAX and then transfected into human GC (MKN-1) cells.
Performing spheroid colony formation assay elucidated that
both the number and size of the spheres formed by GC cells
were remarkably reduced (Oue et al., 2018). Another
transmembrane glycoprotein shown to be overexpressed in GC
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is liver-intestine cadherin (CDH17). Lentiviral-mediated RNAi
performed by transfecting human GC (MKN28) cells with
shRNA oligonucleotides specific to CDH17, promoted
apoptosis by notably inhibiting cell proliferation of GC cells.
Furthermore, subcutaneously injected GC mice xenografts
showed significant lessening of tumor growth and volume
thereby restricting tumorigenicity (Su et al., 2008).

Other Cancers
First ever trials of RNAi in humans were focused on assessing the
potentiality and activity of lipid nanoparticles (LNPs) formulated
with siRNAs targeting VEGF and kinesin spindle protein (KSP)
in liver (Tabernero et al., 2013). With this, not only intravenous
administration of ALN-VSP liver was shown to be effective and
safe but also complete regression of liver metastases was observed
in endometrial cancer. Endometrial cancer (EC) being the most
common malignant female genital cancer in the world, one of the
candidate biomarkers of EC, chitinase-3-like protein 1 (YKL-40)
is overexpressed in patients diagnosed (Fan et al., 2013) has a
pivotal role in cancer cell proliferation (Brøchner et al., 2012),
angiogenesis (Francescone et al., 2011) and anti-apoptosis (Lee
et al., 2009). In order to silence the expression of YKL-40, siRNA
oligomers targeting it were first cloned into retroviral vectors and
then transfected into EC (HEC-1A) cells using Lipofectamine
2000 followed by lentiviral-mediated transduction (Li et al.,
2018c). Tumor cell attributes like cell proliferation, migration
and invasion were found to be inhibited consequently increasing
the mean cellular apoptotic rate. One of the oncogenic lncRNAs,
HOTAIR, has been reported to be mediating chemoresistance to
cancer cells (Liu et al., 2013). In order to ascertain the role of this
lncRNA in endometrial cancer, the Ishikawa human EC cell line
along with cisplatin-resistant clones were transfected with three
si-HOTAIRs with the help of Lipofectamine 2000 as transfection
reagent (Sun et al., 2017). This knockdown of HOTAIR inhibited
the cell proliferation of EC cells thereby decreasing their cisplatin-
induced chemoresistance.

The oncogenic transmembrane glycoprotein MUC1, being
overexpressed in several tumors, upon silencing via RNAi
inhibited the growth of Hepatocellular carcinoma cells
indicating its crucial role in tumorigenicity (Li et al., 2014).
The following study performed by the same group of
researchers indicated that MUC1 initiates the autocrine TGF-β
signaling in HCC cells by activating JNK/AP-1 pathway (Li et al.,
2015). JNK, being a member of the MAPK family, has been
displaying its role in HCC development and progression (Ozpolat
et al., 2010). In order to collectively target both MUC1 and JNK,
this team (Wang et al., 2017) firstly transfected HCC (SMMC-
7721) cells with si-MUC1 and si-JNK1/2 or SP600125 (inhibitor
of JNK) separately complexed with X-fect transfection reagent.
Cell viability of MUC1-transfected cells was decreased and
showed similar results with si-JNK and its inhibitor. Since
unmodified siRNA is not stable in bloodstream and does not
get transported through cell membranes (Whitehead et al., 2009),
both the si-MUC1 and si-JNK were chemically modified by
conjugating with 5’-cholesterol and 2’-O-methyl groups and
then intratumorally injected into tumor bearing mice which in
fact did not show variable results compared with negative control.

Thus, a more effective delivery method has to be innovated or
developed to inhibit JNK/AP-1 pathway.

Most of the human malignancies which have epithelial origin
of cells are associated with overexpressed EGFR. So, shRNA
targeted against EPS8 (EGFR pathway substrate 8) conjugated
with polyamidoamine dendrimers through receptor-mediated
delivery has been utilized to assess the phenotype of head and
neck squamous carcinoma cells (Yuan et al., 2019). This showed
that it inhibited cell growth, proliferation, migration and
malignancy of tumor cells. Signal peptidase complex 18
(SPC18), encoded by SEC11A gene has been reported to
induce the secretion of transforming growth factor (TGF-∝),
which phosphorylates EGFR and stimulate pathways involved in
cell proliferation and anti-apoptosis. So, siRNA targeting SEC11A
was transfected into human bladder cancer (T24 and KMBC-2)
cell lines using Lipofectamine RNAi-MAX. The knockdown of
SEC11A prominently inhibited cell growth and invasiveness
contrary to the forced expression of SEC11A (Shigematsu et al.,
2019). Small Nucleolar RNAHost gene 7 (SNHG7), an lncRNA has
been found to be overexpressed in bladder cancer tissues and cell
lines. Thus, such overexpression has been downregulated by siRNA-
mediated RNA interference. This downregulation not only had
regulatory effect on Epithelial-Mesenchymal Transition (EMT)
related markers but also inhibited cell proliferation and invasion
thereby promoting apoptosis (Zhong et al., 2018; Katoch et al., 2021).

Bone cancer pain (BCP) has both the components: nociceptive
and neuropathic. The nociceptive component is associated with
the release of algogenic substances by tumor and thus plays a
pivotal role in inducing cancer-related deaths. The neuromedin U
receptor 2 (NMUR2) has been shown to be upregulated in rat
models which were injected with walker 256 cells (Peng et al.,
2019). Thus, siRNA targeted to silence NMUR2 successfully
relieved pain by assessing paw withdrawal threshold (PWT) value.

Recent studies have shown that the hypoxia pathway is
dysregulated in pancreatic cancer. Also, glucose transporter-1
being a transmembrane transporter is upregulated in many types
of cancers and is responsible for transformation into malignant
tumor. Folic acid receptor is overexpressed on almost all the
malignant tumor cell surfaces since it is the essential vitamin
for proliferative cells. The siRNA complementary to HIF-1α
which has been transfected with graphene oxide nanoparticles
targeting folate receptor was injected intravenously into nude
mouse tumor models with pancreatic cancer PaTu8988 cells
(Wan et al., 2019). This shutdown of the expression of HIF-1α
and GLUT1 under hypoxic conditions significantly inhibited the
proliferation and metastasis of tumor cells and thereby speeding
up the apoptosis of tumor cells. In addition, hypoxic state of
tumor tissues was reduced, which is usually higher in malignant
tumor cells.

Tumor-derived exosomes (TEXs) are not only widely
distributed in body fluids of cancer models but also have
significant molecular level effects on immune cells like NK cells
(Andre et al., 2002; Kim et al., 2007; Dai et al., 2008; Reiners et al.,
2014). In order to determine the mechanistic role of oral cancer-
derived exosomes (OCEXs), Yang and his colleagues performed
in vitro knockdown of NF-κβ-activating kinase-associated protein
1 (NAP1) using siRNA in human oral cancer (OC) cell lines using
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Lipofectamine RNAi-MAX transfection reagent, and observed that
OCEX derived NAP1 induces activation of interferon regulatory
factor 3 (IRF-3). Thus, exosomal NAP1 enhances the tumor-
suppressing functions of NK cells specifically cytotoxicity
towards tumor cells and could be used as immunotherapy for
treating oral cancer (Wang et al., 2018).

Research has shown that, Human antigen R (HuR) being the
most ubiquitously expressed RNA-binding protein in eukaryotes
is one of the key regulators in post-transcriptional gene
expression mechanisms (Schwanhüusser et al., 2011)
consequently causing several types of cancers like breast
cancer, ovarian cancer and colon cancer (Govindaraju and
Lee, 2013; Wang et al., 2013). Balden et al. demonstrated that
HuR is overexpressed also in thyroid cancer (Baldan et al., 2016)
and to determine its biological activity, the siRNA targeting HuR
were transfected into anaplastic thyroid cancer cell lines (SW1736
and 8505C) using Dharma-FECT 1 as transfection reagent and
this, reduced colony forming ability (Allegri et al., 2018). Apart
from using the RNAi mechanism to silence HuR, SAHA an FDA
approved drug was also used in mouse epidermal JB6 C141 cells.

Urinary bladder cancer (UBC) is another most common
genitourinary malignancy worldwide. ASAP1-Intron 1 (ASAP1-
IT1), is an intronic transcript of ASAP1 whose overexpression has
been implied in cancer development (Guo et al., 2018). Human
UBC cell lines were transfected with si-ASAP1-IT1 cloned into a
lentiviral vector using Lipofectamine 3,000 transfection reagent
thereby reducing stemness of UBC (Yang et al., 2017b). Also, Snail-
1 is one of the crucial transcription factors in the process of
regulation of EMT. Musavi Shenas et al. transfected EJ-138
bladder cancer cells with three different siRNA sequences
targeting Snail-1 (Musavi Shenas et al., 2017). The expression of
a fewmiRNAs involved in EMT such as miR-29b, -21 and -203was
shown to be reduced significantly by the knockdown of Snail-1. In
addition, Snail-1 siRNA aided in induction of apoptosis as
measured by the TUNEL test.

The human trophoblast cell surface antigen 2 (TROP2), is a
cell surface glycoprotein and its overexpression in several cancers
has been linked to tumorigenicity, poor survival and metastasis
(Cubas et al., 2009). Though Chen et al. reported the association of
TROP2 overexpression with poor prognosis in gall bladder
carcinoma (GBC), mechanisms underlying proliferation and
metastasis are still unknown (Chen et al., 2014b). To determine
this, human GBC cell lines were transfected with shRNA targeting
TROP2 conjugated with Lipofectamine 2000 reagent. In addition
to this, BALB/c mice were subcutaneously injected with GBC cells
transfected with sh-TROP2. The in vitro results confirmed the
inhibition of cell proliferation, invasion and migration of GBC cells
whereas, in vivo studies showed the postponed EMT of cancer cells
analyzed by immunohistochemistry (Li et al., 2017c).

RNAi AND NANOTECHNOLOGY-BASED
CLINICAL TRIALS: WHERE DOWE STAND?

In a world where the development of new drugs is painfully slow
and the pipeline of new therapeutics frightfully thin, the discovery
of RNA interference has paved way for the development of

relatively rapid approaches towards cancer drug design. The
transition from preclinical work to clinical trials requires a
novel therapeutic that shows sufficient promise to be effective
and safe in treating human diseases. The fact that the number of
nanocarriers that have reached the phase of clinical approval is
meager and the high diversity of the nano platform makes
concluding a particular nanoparticle to be “promising” is
complicated (Mirkin et al., 2015). However, with the success
and validation in in vivomodels, various RNAi and nanoparticle-
based molecules were taken for clinical trials in the past decade.

Approximately 25 different siRNA/shRNA molecules have
been approved for clinical trials till now for anti-cancer
therapy (Ozcan et al., 2015). Unlike other antisense therapies
that have a stoichiometric effect on mRNA, siRNA’s ability to
reduce off-target toxicity along with its ability to act with
increased potency, makes it a better contender than any other
therapeutic molecules. These RNAi molecules can be transported
to the patient’s body via either natural carriers like bacteria or
virus and using synthetic nanocarriers, the strategic use of these
depends on the application, the required duration of the
therapeutic, and the targeted tissue (Burnett et al., 2011;
Chakraborty et al., 2019). Usually in clinical trials, the natural
carriers are used to deliver to target cells ex vivo, which are then
reinfused back inside the patient’s body. These bacteria and
viruses often possess shRNAs that will undergo intracellular
modifications to become functional siRNAs. Synthetic carriers
like nanoparticles are often delivered systemically through IV
injections (Whitehead et al., 2009).

Being that most predominant molecules coming under the
category of ‘FDA approved small RNA drugs’ to enter the
paradigm of clinical application, nano-conjugated miRNA
molecules have not still entered the United States government’s
website recording clinical trials. Several pharmaceutical and
biotech companies have launched miRNA projects based on
miRNA mimics and antagomiRs. Several companies like
Dharmacon, BioSyn and GenScript tried to produce natural and
chemically modified RNA, to stabilize and reduce the high reactive
nature of RNA molecules. While some companies have shown
some success, most of them are struggling to impact patient
outcomes. For example, FDA halted the Phase1 clinical trial by
MiRNA Therapeutics on miRNA mimic, MRX34, as a
consequence of adverse side effects in patients caused due to
lack of immune tolerance (Ling et al., 2017). MiRagen
Therapeutics is actively developing MRG-106, an LNA
antagomiR that targets miR-155 and is now in phase1 and
phase2 clinical trials. Several companies work in preclinical and
large screening studies to identify potential biologic miRNA such
as CURNA program by Opko, Alnylam Pharmaceuticals, Interna
Technologies and Mello Biotech (Bonneau et al., 2019). The first
siRNA-based delivery system that was approved for clinical trials
was that of the cyclodextrin polymer (CDP). Denoted as CALAA-
01, this CDP polymer attached to polyethylene glycol (PEG), steric
stabilization agent, and human transferrin targeted transferrin
receptors that are usually found upregulated in cancer cells
(Davis, 2009). Calando Pharmaceuticals (Pasadena, CA,
United States) in 2010 conjugated siRNA targeting M2 subunit
of ribonucleotide reductase to CALAA-01 regressing the tumor
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growth (Davis et al., 2010). Though there was an intratumoral
downregulation of ribonucleotide reductase, the fact that the trial
took place only in a few patients made these results preliminary.

Liposomes, being a potential agent in transferring siRNA to
the target tissue, many liposome conjugated siRNAs have been
sanctioned by the FDA for clinical trials. With an ability to
improve siRNA entrapment efficiency, 1,2-dioleoyl sn-glycero-3-
phosphatidylcholine (DOPC) when used to encapsulate EphA2
siRNA showed promising results in orthotopic ovarian
carcinoma. This conjugate was taken for Phase I clinical trial
and is currently in the recruiting phase (Landen et al., 2005).
Atu027 is a lipoplexed siRNA that can target the protein kinase
N3. Constituting a positively charged AtuFect01, a neutral,
fusogenicDPhyPE helper lipid and the PEGylated lipid MPEG-
2000-DSPE (Schultheis et al., 2014), Atu027, due to its success in
treating lymph node metastases in mouse models of the prostate,
pancreatic cancer, and lung metastasis, was approved for clinical
trials (Aleku et al., 2008). Silence Therapeutics (London,
United Kingdom) conducted Phase I clinical trials and found
that it is tolerable and does not show dose-dependent toxicity
(Strumberg et al., 2012). The efficacy of Atu027 in clinical trials is
also being tested with gemcitabine in metastatic and advanced
pancreatic cancer patients.

Stable Nucleic Acid Lipid Particles (SNALP), due to their
high bioavailability and enhanced permeability and retention,
has become a notable carrier of siRNA in clinical trials. Found to
be well tolerated at high dose, SNALP encapsulated version of
siRNA targeting PLK1 was taken for Phase I trials by Tekmira
Pharmaceuticals Corporation (Burnaby, BC, Canada).
Moreover, SNALP was used to create the first dual-targeted
siRNA drug. ALN-VSP02, developed by Alnylam
Pharmaceuticals (Cambridge, MA, United States), targeted
both VEGF and KSP and in Phase I trial was well tolerated
at high doses in hepatic and extra hepatic tumor patients
(Morrissey et al., 2005; Shen et al., 2012). The first dual-
target nanoparticle-based RNAi showed promising results as
one of the patients exhibited complete response, and the rest
were stable for eight to twelve months of treatment (Mahmoodi
Chalbatani et al., 2019). DCR-PHXC-101 is another lipid
formulation that has entered the Phase I trial. It targets the
transcription factor Myc and is showing metabolic response in
patients with solid tumors, multiple myeloma, and lymphoma
(Tolcher et al., 2015). Besides these, miniature biodegradable
polymeric matrices were loaded with KRASG12D-targeting
siRNA to target the K-Ras gene in pancreatic cancer patients.
Phase I and II clinical trials on the same showed no evidence of
cancer progression (Strand et al., 2019). A summary of the
nano-conjugated siRNAs in clinical trials has been presented in
the table below (Table 1).

CHALLENGES FACED BY RNAi AND
NANOTECH-BASED THERAPEUTIC
STRATEGIES
Despite RNA interference being a promising therapeutic strategy
in cancer therapy, it faces a lot of hurdles during the process of

being recruited from bench to bedside. Potent and effective gene
silencing in the tumor cells is mandatory for determining the
efficiency of siRNA-based drugs in combating cancer. To achieve
such effective gene knockdown in vivo and in clinical trials,
efficient delivery of RNAi molecules to the target tissues is
required (Petrocca and Lieberman, 2011). The efficient uptake
of siRNA molecules by the cell is usually intercepted due to its
high negative charge. These molecules need to survive in the
extracellular matrices that constitute the RNA degrading
endonucleases. Although endocytosis of these molecules is an
elegant strategy to enter the cells, the hassle of releasing the RNA
efficiently from the endosome and preventing it from undergoing
endosomal degradation is unavoidable. This, along with the fact
that siRNAs undergo rapid excretion via the renal system after
intravenous injection, is what reduces the potency of naked
siRNA-based therapy (Bora et al., 2012).

Another major obstacle to RNAi-based therapeutic strategy is
intracellular delivery. This is primarily in the case of treating
disseminating cancer cells that cannot be removed through
surgery. To combat this, many biotechnological and
pharmaceutical companies have come up with multiple
delivery strategies. Chemical conjugation of siRNAs to specific
molecules, being one of them, has, to an extent, increased the half-
life of these molecules in vivo and has thus enhanced the potency
of the same in the serum (Braasch et al., 2003; Chiu and Rana,
2003; Layzer et al., 2004). Modification of these nucleic acid
molecules so as to have extended cholesterol, glycan, and folate
branches that bind to cell receptors and incorporating these
within nanocarriers, liposomes, and aptamers to do cell-
specific targeting have shown promising results when induced
in mice and non-human primates (Elmén et al., 2008).
Nevertheless, the fact that only a few siRNAs among these
have entered clinical trials and various companies are still
working to resolve this RNAi-based molecule delivery problem
shows that none of these current solutions are ideal, and the
payoff for the same could be enormous.

Besides accomplishing target specificity, developing
therapeutic strategies that give minor off-target effects is
another major challenge (Jackson et al., 2003). The ultimate
answer to such a problem would be to develop an efficient
delivery system. Site specific delivery of siRNA, if appropriate,
would reduce the number of normal cells exposed, favoring the
uptake by cancerous cells and thus reducing the potential off-
target effects. This would also minimize the dose to be
administered, lowering potential dose-related detrimental side
effects. Some of the siRNA molecules can also induce
immunostimulatory effects. RNAi-based molecules can induce
the innate immune system to release inflammatory cytokines,
such as interferon-α, tumor necrosis factor-α, and interleukin-6,
which may lead to considerable toxicity (Elbashir et al., 2002;
Karikó et al., 2004; Hornung et al., 2005).

However, despite all these drawbacks, RNAi-based cancer
therapeutics is still the best option available in bringing about
apoptosis of highly malignant cells in a specific manner especially
for the tumor cells resistant to conventional therapy. The
development of personalized cancer therapies that combine
monoclonal antibodies with RNAi has come up due to their
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ability to complement each other’s vulnerabilities (Schultheis
et al., 2016). This is also considered more effective than using
either alone. RNAi being a revolutionary tool to treat several
diseases, through rational strategies that take into consideration
all the cautionary drawbacks, could be developed into a powerful
weapon that can combat cancer.

CONCLUSION AND FUTURE PROSPECTS

Arising from a complex interplay of oncogenes and tumor
suppressor genes, cancer is a collective manifestation of
deregulated gene functions. In spite of the innovation of various
approaches of therapeutic modalities like chemotherapy,
radiotherapy, and immunotherapy to combat cancer, the fact
that these strategies have encountered numerous limitations
compelled the scientific world to go on a quest for a better
treatment paradigm. This is where RNA interference entered
basic and clinical research, and revolutionized it. Termed as
‘next generation therapeutic molecules’, alongside recombinant
protein and monoclonal antibody, RNAi has shown propitious
results in vitro due to its high efficacy, and specificity. Despite its
potential, several hurdles arise on the path of using RNAi in vivo due
to its instability and short half-life in the serum. To overcome these
problems, use of non-viral vector delivery systems that protect the
RNAi molecules from degradation have been extensively explored.
Drug delivery systems at the nanoscale have a promising future with
the demonstrated superiority (by virtue of targeted approach,
minimal collateral damage and accumulation at pharmacological
levels at the desired site) compared to the traditional chemotherapy
modalities. The addition of active targeting molecules to
nanoparticles is found to enhance the tumor-targeting and
transfection efficiency towards tumor cells. However, the use of
nanoparticles too has its own limitations due to cytotoxicity, hurdle
of delivery, and immunogenicity that prevents the reach of RNAi
from bench to bedside. As constant progress is being made to
achieve improved tumor targeting accuracy, interaction of these

nanoparticles with the immune system of the host remains an
interesting current and future prospect (Zolnik et al., 2010;
Bolkestein et al., 2016). The increased uptake of liposomal
preparations in therapeutics by tumor cells has been attributed
to certain defining features ofmalignancy such as increased vascular
permeability, the microenvironment that is created by the
neighboring stroma, the presence or absence of sustentacular
cells, the lymphatic composition and mononuclear cell presence
etc (Bolkestein et al., 2016). The interaction of chemical mediators
such as bradykinin, nitrous oxide and physical factors (such as the
smooth muscle in the blood vessel wall) in controlling nanoparticle
movement and reach to the tumor site have been demonstrated in
certain studies as the real hindrances in large scale adoption of
nanoparticles as therapeutic vehicles (Stylianopoulos et al., 2012).
These factors are fundamental to the enhanced permeability and
retention effect (EPR effect) which holds great importance in
nanoparticle and tumor biology (Stylianopoulos et al., 2012;
Bolkestein et al., 2016; Golombek et al., 2018).

The immune status of the preclinical model appears to play a
role in dictating tumor targeting efficacy of RNAi-nanoparticle
therapeutics. Some factors which have been demonstrated to have
an effect are opsonization (which is the process of making a target
‘ready’ for an immune system interaction), structural and
electrochemical features of the nanoparticle and the duration
of nanoparticle presence in the host (retention effect)
(Zahednezhad et al., 2019). Mice models with deficient
adaptive immune system were demonstrated to have low levels
of neoplastic growth inhibition when the kinase inhibitor
sorafenib was used, indicating the probable prerequisite of an
intact adaptive immune status for the nanoparticles to function
(Zhao et al., 2018). The interaction of nanoparticles with immune
system components like the complement system and
mononuclear phagocyte system has led to clinically observed
effects such as CARPA (complement activation-related
pseudoallergy) and increased clearance of therapeutic
nanoparticles. The variability in antitumor efficacy with the
use of CTLA-4 and PD-1 inhibitors (implying the immune

TABLE 1 | A summary of the nano-conjugated siRNAs in clinical trials.

Sl.
No

Name Type Target Company Status Reference
Identifier number
(clinicaltrials.gov)

1 CALAA-01 Cyclodextrin Polymer
based nanoparticle

M2 subunit of ribonucleotide reductase in
solid tumors

Calando Pharmaceuticals
(Pasadena, CA, United States)

Completed NCT00689065

2 EphA2-targeting
DOPC-encapsulated
siRNA

DOPC-liposome EphA2 in advanced malignant solid
neoplasm

M D Anderson cancer center,
Houston, Texas, United States

Recruiting NCT01591356

3 Atu027 Liposome Protein kinase N3 in solid cancers and
metastatic pancreatic cancer

Silence therapeutics (London,
United Kingdom)

Completed NCT00938574
NCT01808638

4 TKM-PLK1 SNALP PLK1 in solid tumors, lymphomas,
adrenocortical carcinoma, liver cancer,
and neuroendocrine tumors

Tekmira pharmaceuticals
corporation (burnaby, BC,
Canada)

Completed NCT01262235

5 ALN-VSP02 Lipid based NP VEGF and KSP in solid tumors Alnylam pharmaceuticals
(cambridge, MA,
United States)

Completed NCT00882180

6 DCR-PHXC-101 Lipid based NP Myc in solid tumors, multiple myeloma,
non-hodgkin’s lymphoma

Dicerna pharmaceuticals, Inc. Terminated NCT02110563

7 siG12D LODER LODER polymer KRAS in pancreatic cancer Silenseed Ltd. Recruited NCT01676259
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status) has led to the question of validity of preclinical models
being used (La-Beck and Gabizon, 2017).

The extent of interaction between the immune system and
nanoparticles drives the need to test these drug delivery systems in
immuno-competent models and humanized mice models (which are
often achieved by reconstituting SCID mice with human bone
marrow introduction). As the immune system is complex,
interaction with other subgroups such as the Th1 and Th2
systems needs to be studied further to have better outcomes (La-
Beck and Gabizon, 2017). The gap between the pre-clinical and
clinical stages of nanoparticle therapeutics needs to be bridged and
the progress might be seen when hurdles such as clearance and
toxicity of nanoparticles are circumvented and the use of humanized
models is adopted for large scale studies (Rosenblum et al., 2018).
With backing of the advantages they offer, this combinatorial
therapeutics have the potential to be game changers in attacking
cancer cells and tissues and are expected to yield revolutionizing
clinical outcomes. Such a future is possible through constant
improvement in the materials used in the nanoparticle drug
delivery system and by moving towards an individualized and
patient centric approach (Golombek et al., 2018), (Navya et al., 2019).

In spite of the remarkable progress made till now in terms of
increasing the efficiency of nanobased RNAi delivery system with
novel complexation or conjugation approaches, there are still
specific challenges posed by cell types in different target organs to
be resolved. Therefore, as an important strategy, RNAi
therapeutics must be validated for varied targets to obviate
this challenge. It would then be conceivable to promptly
advance RNAi therapeutics innovatively and empirically to
target different tissues and organs by fine tuning nano-based
delivery system through experimental studies. Furthermore, the
detailed molecular mechanism behind the RNA interference and
its off-target effects are to be deciphered as the multi-targeting
network of their pathways are often very complicated and

challenging. Considering the immense influence our
understanding of RNAi regulatory network in neoplasia has in
the development of RNAi based anti-cancer therapeutics, there is
a compelling need to decipher such networks to place RNAi based
therapeutics on a firm footing. Even though novel clinical studies
on the same have ushered hope, there is a necessity for the
development of more multi-centered, randomized, and placebo-
controlled treatment methods that would be effective irrespective
of the racial or ethnic variations among the patients. With the
development of safe, biocompatible, and biodegradable targeted
delivery systems for the clinical application and with proper
knowledge on the RNAi networks, this promising alliance of
nanotechnology and RNA interference is sure to transform anti-
cancer therapeutic methods and interventions in future.
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Encapsulating Anti-Parasite
Benzimidazole Drugs into
Lipid-Coated Calcium Phosphate
Nanoparticles to Efficiently Induce
Skin Cancer Cell Apoptosis
Fatemeh Movahedi1, Wenyi Gu1, Christiane Pienna Soares2 and Zhi Ping Xu1*

1Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, Australia,
2Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil

Benzimidazole (BMZ) family of anti-worm drugs has been now repurposed as anti-cancer
drugs. However, offering a general reformulationmethod for these drugs is essential due to
their hydrophobicity and low aqueous solubility. In this work, we developed a general
approach to load typical BMZ drugs as tiny nanocrystals within lipid-coated calcium
phosphate (LCP) nanoparticles. BMZ drug-loaded LCP nanoparticles increased their
solubility in PBS by 100–200% and significantly enhanced the anti-cancer efficacy in
the treatment of B16F0 melanoma cells. These drug-LCP nanoparticles induced much
more cancer cell apoptosis, generated much more reactive oxygen species (ROS) and
inhibited Bcl-2 expression of cancer cells. Moreover, BMZ drug-loaded LCP nanoparticles
caused morphological change and extension disruption of cancer cells, and significantly
reduced migration activity, representing high possibility for inhibition of tumor
dissemination and metastasis. Very advantageously, BMZ drug-loaded LCP
nanoparticles did not show any obvious toxicity, Bcl-2 inhibition and morphological
changes in HEK293T healthy cells. In conclusion, BMZ drug-incorporated LCP
nanoformulations may be a valuable nanomedicine that is able to inhibit primary
tumors and prevent tumor dissemination with minimum side effects on healthy cells
and tissues.

Keywords: benzimidazole family of anti-worm drugs, lipid-coated calcium phosphate nanoparticles, enhanced
solubility, enhanced anti-cancer toxicity, inhibition of cancer dissemination

INTRODUCTION

Benzimidazoles (BMZs) are a family of anti-helminth drugs widely used in humans and livestock
since 1960s to treat parasitic infections (Stasiuk et al., 2019). Many members of this family including
albendazole (ABZ), fenbendazole (FBZ), mebendazole (MBZ) and thiabendazole (TBZ), are cost-
effective FDA-approved drugs which are associated with very mild side effects (Carvalho and
Gadelha, 2007). In recent years, many studies have reported the anti-cancer effect of these drugs on a
broad range of cancers (Noorani et al., 2015; Castro et al., 2016). The new findings have a great
importance not only because of offering cancer chemotherapeutics with minimum side effects but
also due to the considerable reduction of Research and Development (R & D) and commercialising
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costs compared to the costs of developing new anti-cancer agents,
a substantial challenge of global pharmaceutical industry at the
moment (Pushpakom et al., 2018).

Because of various similarities between parasites and cancer
cells (Dorosti et al., 2014), benzimidazole drugs are also potent to
suppress cancer through anti-parasite mechanisms such as
inhibiting tubulin polymerization, disrupting the formation of
mitotic spindle, causing cell cycle arrest, and inducing apoptosis
(Hasanpourghadi et al., 2016). However, the clinical anti-cancer
application of these drugs is still limited due to low aqueous
solubility and limited bioavailability (Daniel-Mwambete et al.,
2004).

Providing a small size and a large surface area to volume ratio,
nanoformulation has been considered as a promising approach
for repositioning the poorly water-soluble drugs such as BMZs
(Kumar et al., 2020) by improving their solubility, dissolution rate
and bioavailability (Thorat and Dalvi, 2012). In addition,
nanoparticles provide the possibility of drug penetration
through the tight junctions of the skin and blood brain barrier
as well as offering enhanced permeability and retention (EPR)
effect, stimuli-responsive and targeted delivery (Kohane, 2007).
Having the benefits of both calcium phosphate (CaP)
nanoparticles and liposomes, lipid-coated calcium phosphate
(LCP) nanoparticles are considered as ideal carriers for
nanoformulation of BMZ drugs due to pH-responsiveness,

controlled size and the possibility for targeted delivery (Tang
et al., 2015).

To demonstrate the capability of LCPs as benzimidazole drug
carriers for the general cancer therapy, it is essential to examine
apoptosis induction in tumor cells, inhibit resistance-mediating
factors such as B-cell lymphoma 2 (Bcl-2), and reduce tumor cell
dissemination. As schematically shown in Scheme 1, our new
approach for preparing ABZ-loaded lipid-coated calcium
phosphate (LCP) nanoparticles (Movahedi et al., 2020) is
generalized. Since BMZ-drug is protonated and dissolved in
acidic aqueous solution, BMZ drug is first dissolved in acidic
CaCl2 solution, which is then made into the first W/O emulsion.
The second W/O emulsion is made to contain phosphate and
base, which will neutralize and precipitate upon mixing with the
first emulsion. During the mixing, protonated BMZ-drug
molecules are neutralized and then precipitate as tiny
nanocrystals within the simultaneously precipitated calcium
phosphate matrices, which are then encapsulated with the
lipid bilayer after hydration (Scheme 1). Such LCP
nanoparticles are expected to retain the tiny drug crystals
within CaP nanoparticles in physiological solution but release
the drug in a pH-responsive way upon exposure to acidic
organelles (endosome and lysosome) in tumor cells, leading to
enhanced anti-cancer efficacy due to facilitated cellular uptake
and improved solubility.

SCHEME 1 | Schematic procedures for drug-loaded LCP nanoparticle preparation.
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The objectives of this research were thus to: 1) generalize our
approach for preparation of BMZ drug-loaded LCP nanoparticles
(such as ABZ, FBZ, MBZ, and TBZ); 2) show enhanced solubility
of these drugs in the LCP nanoparticle form; 3) confirm the
cytotoxic effect against B16F0 melanoma cells but not healthy cell
line HEK293T in the LCP form; and 4) demonstrate the
apoptosis-induced mechanisms, such as inhibition of Bcl-2
expression and overproduction of reactive oxygen species
(ROS), morphological changes and reduction of tumor cell
migration. This research has specifically shown the potential of
BMZ-LCP nanoparticle formulations as promising anti-cancer
nanomedicines.

MATERIALS AND METHODS

Materials
Albendazole (ABZ), fenbendazole (FBZ), mebendazole
(MBZ), thiabendazole (TBZ), igepal-CO520, calcium
chloride, sodium phosphate, DMSO and cholesterol were
purchased from Sigma-Aldrich, cyclohexane from Merck
(Germany), and 1,2-dioleoyl-sn-glycero-3-phosphate (DOPA)
and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) from
Avanti polar lipids. MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide] was obtained from Invitrogen
and 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA)
from Promokine (Germany). Apoptosis kit was provided by
Biolegend and Bcl-2 FITC Antibody was purchased from
eBioscience. All other chemicals were obtained from Sigma-
Aldrich unless indicated. Water was deionised Milli-Q water
(18.2 MΩ cm at ambient temperature).

Lipid-Coated Calcium Phosphate
Nanoparticle Preparation and
Characterisation
In order to synthesise drug-loaded LCPs (ABZ/FBZ/MBZ/TBZ-
LCP), drugs were incorporated into calcium phosphate core of
LCPs as illustrated in Scheme 1. In brief, acidic drug solution
(625–5,000 μg/ml) in CaCl2 aqueous solution was dispersed in
cyclohexane/Igepal CO-520 (7/3 v/v) to prepare a well-dispersed
microemulsion. After stirring for 10 min, the microemulsion was
mixed with the other well-dispersed DOPA (20 mM in
chloroform)-containing W/O microemulsion consisting of
aqueous solution of ammonia and Na2HPO4. After stirring for
another 20 min, absolute ethanol was added to collect drug-
loaded calcium phosphate (CaP) cores by centrifugation at
10,000 g for 20 min and washing with absolute ethanol thrice.
CaP cores were then redispersed in chloroform and mixed with
cholesterol and DOPC chloroform. Chloroform was evaporated
under reduced pressure and the resultant film was hydrated with
PBS (pH 7.4), followed by gentle ultrasonication to obtain the well
dispersed LCP NP suspension.

As summarized in Supplementary Table S1 ABZ/FBZ/MBZ/
TBZ-LCP #1-4 were denoted for nanoparticles prepared at
various drug concentrations in acidic solutions (630, 1,250,
2,500 and 5,000 μg/ml), respectively.

The hydrodynamic diameter, PDI and zeta potential of drug-
loaded LCPs were determined by Zetasizer (DLS, Zetasizer Nano,
Malvern, United Kingdom). The microscopic images of drug-
loaded LCP NPs were taken in a transmission electron
microscope (TEM, JEM-3010, ZEOL, Tokyo, Japan) operated
at the voltage of 100 kV.

To determine the encapsulation efficiency, drug-loaded LCP
NPs were incubated with Tris Buffer (2 mM EDTA and 0.05%
Triton X-100 in pH 7.8) at 65°C for 10 min. The resultant samples
were centrifuged for 15 min at 20,000 g, and the drug
concentration in the supernatant was calculated by the
absorbance measured at 290 nm for albendazole (ABZ),
305 nm for fenbendazole (FBZ), 235 nm for mebendazole
(MBZ) and 300 nm for thiabendazole (TBZ), respectively.

Cell Growth Inhibition
The growth inhibition of B16F0 cells and HEK293T cells by BMZ
family drugs in the free form and the LCP form was assessed by
MTT assay. Briefly, 4,000 cells in 100 µl of DMEM per well were
seeded in a 96-well plate after incubation overnight at 37°C and
5% CO2. Then, culture medium was replaced with fresh one
containing variable amounts of drugs in the free or LCP form
(ABZ/FBZ/MBZ/TBZ-LCP) and cells were incubated for 24 h.
After removal of culture medium, MTT in DMEM (5 mg/ml) was
added and incubated for another 4 h at 37°C and 5% CO2. Then,
DMEM containing MTT was carefully removed and replaced
with 50 µl DMSO to dissolve formazan crystals. After shaking the
plate for 10 min, the absorbance was read at 570 nm, and cell
viability was calculated based on the absorbance compared to that
of untreated cells.

Apoptosis Analysis
B16F0 cells were treated with BMZ drugs in the free or LCP form
for 24 h. The cells were then detached by trypsinisation (0.25%
trypsin) and centrifuged at 2000 rpm for 5 min. Resultant cell
pellets were washed with PBS and resuspended in 100 µl of
Annexin V Binding Buffer and added with 5 µl of FITC
Annexin V and 10 μl of propidium iodide solution. After
incubation for 15 min in dark, 400 μl of Annexin V Binding
Buffer was added to each tube and fluorescence of the cells was
evaluated with a flow cytometer (CytoFLEX, Beckman,
United States) and analysed by CytExpert software.

Reactive Oxygen Species Detection
B16F0 or HEK293T cells were treated with BMZ drugs in the free
or LCP form for 6 h at 37°C and 5% CO2, and then co-cultured
with 2′,7′-dichlorodihydrofluorescein diacetate (20 μM) for
30 min. The cells were collected and analysed in a flow
cytometer (CytoFLEX, Beckman, United States).

Bcl-2 Detection
To determine the level of Bcl-2, cells were incubated in DMEM
media with drug-loaded LCP NPs for 24 h at 37°C and 5% CO2,
then detached by trypsinisation (0.25% trypsin) and centrifuged at
2000 rpm for 5 min, followed by washing with PBS twice. Then,
cold fixation buffer (2% PFA) was added dropwise while vortexing
the cells. After incubating for at least 30min at 4°C, cells were
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centrifuged for 5 min at 300 g and washed twice with cold PBS.
Cells were then resuspended in permeabilisation buffer (0.1% in
triton-X in PBS) and incubated for 15 min at room temperature,
followed by centrifugation for 5 min and washing twice with
PBS. Afterward, 150 µl of blocking buffer (0.5% BSA, 2% FBS in
PBS) was added to cells. The cells were vortexed and incubated
for 30 min, then centrifuged and resuspended in 100 µl of
antibody solution, followed by incubation for another 30 min
on ice in dark. Samples were washed twice with FACS buffer (2%
FBS in PBS) and analysed using a flow cytometer (CytoFLEX,
Beckman, United States) or spectrophotometer.

Migration Assay
To evaluate the effect of the treatment on migration activity of
B16F0 or HEK293T cell line, cells were incubated in a 12-well
plate overnight to form a confluent monolayer. Then the scratch
was artificially made using a 100 µl pipette tip. The suspended
cells and debris were washed away with PBS twice, and the cells in
the plate were incubated in DMEM containing free drugs or drug-
loaded LCP NPs for 4 h. Olympus IX81 microscope was used to
take the images and the relative migration was calculated as the
percentage of the number of control cells.

Statistical Analysis
Data presented asmean± SDwere analysed by t-test usingGraphPad
7.03 software. The p value less than 0.05was considered as statistically
significant. p < 0.05: *; p < 0.01: **; p < 0.001: ***.

RESULTS AND DISCUSSION

General Physicochemical Characteristics of
Benzimidazole Family-Loaded
Lipid-Coated Calcium Phosphate
Nanoparticles
As demonstrated in TEM images (Figure 1), all typical LCP NPs,
i.e., loaded with about 15 wt% of drug molecules, were spherical
in shape. The average size and the size distribution of these typical
drug-loaded LCPNPs were very similar (Figure 1E;Table 1) with
a similar distribution profile (polydispersity index (PDI) of
0.3–0.4). Relatively, FBZ-LCP and ABZ-LCP NPs were smaller
with the number-mean diameter of 44.0 ± 5.1 and 49.5 ± 6.3 nm,
respectively, while MBZ-LCP and TBZ-LCP NPs had the
number-mean diameter of 58.8 ± 5.3 and 57.8 ± 4.2 nm

FIGURE 1 |Morphology and size of BMZ drug-loaded LCP NPs. (A–E) TEM images of BMZ drug-loaded LCP nanoparticles; and (F) the size distribution of BMZ
drug-loaded LCP NPs.

Frontiers in Nanotechnology | www.frontiersin.org June 2021 | Volume 3 | Article 6938374

Movahedi et al. Benzimidazole Drugs Delivery for Cancer Therapy

64

https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles


(Table 1). In specific, MBZ-LCP NPs had a clear core with the
diameter of ∼40 nm and a thick layer (∼30 nm) as well as a very
rough surface (Figure 1D). The core size seems to be very similar
to that of ABZ-LCP and FBZ-LCP NPs (Figures 1B,C). In
contrast, the cores were not seen in TBZ-LCP NPs, which had
a very hairy surface (Figure 1E). While factors such as calcium/
phosphate molar ratio andmixing style affect the size of LCPs, the
optimized condition was adopted from previous studies in our lab
(Tang et al., 2015) to achieve the mean size of LCPs lying in the
ideal range for cancer therapy to avoid recognition by the
immune system (>200 nm) or clearance by kidneys (<5 nm)
(Liu et al., 2013).

The surface charge of all drug-loaded LCP NPs was almost
similar, varying from −19 to −16 mV. The negative surface charge
of LCPs would reduce the adsorption of serum proteins, and
benefit the prolonged half-life in blood circulation and enhanced
tumor accumulation of NPs (Blanco et al., 2015).

Variable Loading and Enhanced Solubility of
Benzimidazole Drugs in Lipid-Coated
Calcium Phosphate NPs
Alteration in encapsulation efficiency and loading capacity was
examined by varying the initial concentration of BMZ family
drugs in the nanoemulsion, as illustrated in Figure 2;
Supplementary Table S1. The loading capacity of these
drugs was varied from 0–15.3% (TBZ) to 0–23.2% (FBZ)
(Supplementary Table S1). In general, the encapsulation
efficiency (EE) was relatively high (>50%). Especially, the EE
was 60–85% and 59–93% for ABZ and FBZ, and 40–80% and
39–67% for MBZ and TBZ, respectively. The lower
encapsulation efficiency for MBZ and TBZ may stem from
their relatively higher aqueous solubility of these two drugs
in PBS, particularly in the case with the high drug loading
(Supplementary Table S1).

As represented in Figure 3, the commercial MBZ and TBZ
were found to have a solubility of 30 and 45 μg/ml, while it was 10
and 6 μg/ml for commercial ABZ and FBZ, respectively, which
are similar to that reported for these anti-parasite drugs
elsewhere. For example, the solubility of TBZ was reported to
be 50 μg/ml at 25°C (Thiabendazole-DrugBank), MBZ 1–70 μg/ml
in physiological conditions (Swanepoel et al., 2003) and that of
ABZ and FBZ 1–8 μg/ml (at pH 6–8) (Kang et al., 2015) and 6 μg/ml
in physiological conditions (Ryu et al., 2013), respectively.
Consequently, the higher aqueous solubility of MBZ and TBZ
may lead to a lower precipitation rate during formation of CaP

cores, resulting in a smaller amount of the drug being
encapsulated.

Furthermore, as demonstrated in Figure 3; Supplemenatry
Table S2, the solubility of all drugs was almost doubled in the
LCP form. As discussed in our previous study, the enhanced
solubility arises from incorporation of tiny drug nanocrystals in
the CaP matrix (a few nm in size) -with crystalline structure
confirmed by XRD results-, which is significantly smaller than
very large crystals in the free form of commercial drugs
(>1,000 nm confirmed by TEM imaging) (Movahedi et al.,
2020). After the lipid bilayer and the CaP matrix are dissolved
partly (particularly in acidic environment of tumor), the tiny drug
nanocrystals are exposed to the aqueous phase and dissolved
much more than large crystals (commercial products) due to
enhanced surface area, thinner diffusion layer and higher
differential concentration (Kumar et al., 2020). Melian et al.,
also have reported the improved solubility of fenbendazole by
nanocrystallisation (Melian et al., 2020). Additionally, at lower
pH of tumor environment, the released drug becomes more
hydrophilic due to protonation process of the aromatic amines
(Chen et al., 2015).

We further hypothesise that some surface MBZ and TBZ tiny
nanocrystals may be already dissolved partially during hydration,
and the left LCP-BMZ cores may interact the lipid molecules and
form some complex structures, such as a hairy/rough surface, as
observed in TEM images (Figures 1D,E).

In summary, LCP-based BMZ drug-loaded NPs were
controllably made in the number-mean diameter of 40–60 nm
with the BMZ drug loading capacity varying from 0 to ∼25 wt%.
Once encapsulated in LCP NPs, these hydrophobic BMZ drugs
showed a double solubility in PBS. Thus the preparation
approach would be a general strategy for encapsulating acid-
soluble hydrophobic drugs into the CaP matrix, a general way to
enhance the bioavailability and activity of the drugs, as presented
in the following sections, taking these MBZ-loaded LCP NPs as
examples for the cellular anti-cancer therapy.

In Vitro Cell Growth Inhibition by
Benzimidazole-Loaded Lipid-Coated
Calcium Phosphates
The cytotoxic effect of BMZ family drugs in the free and LCP
forms is shown in Figure 4. No B16F0 toxicity was observed
for blank LCP NPs (Figure 4A). All drugs demonstrated a
dose-dependent anti-cancer effect against B16F0 cells in both
forms, while BMZ-LCP NPs were significantly more active

TABLE 1 | The average size, PDI and the zeta potential of typical LCP NPs loaded with about 15 wt% of BMZ drugs.

Sample Size
(d.nm)

PDI Zeta Potential
(mV)

Encapsulation Efficiency
(%)

Loading Capacity
(wt%)

Blank LCP 35.7 ± 5.2 0.32 ± 0.06 −17.0 ± 3.1 – –

ABZ-LCP 49.5 ± 6.3 0.35 ± 0.10 −16.5 ± 4.9 65.4 14.9
FBZ-LCP 44.0 ± 5.1 0.36 ± 0.08 −17.1 ± 2.5 80.0 15.6
MBZ-LCP 58.8 ± 5.3 0.33 ± 0.05 −19.1 ± 4.8 40.0 15.6
TBZ-LCP 57.8 ± 4.2 0.39 ± 0.03 −16.4 ± 4.7 39.1 15.3
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than that of their corresponding free form (Figures 4A–D).
Approximately, IC50 values (Figure 4E) were varied from 7 to
>10 μg/ml for the free drugs. In sharp contrast, the IC50 value
was remarkably decreased to 2.7–3.8 μg/ml for their
corresponding LCP forms. Enhanced cytotoxicity of BMZ-
LCP NPs may come from improved solubility, as discussed
previously, and moreover, facilitated cellular uptake via LCP
NP carriers (Wu et al., 2017).

The reported anti-cancer effect of these BMZ drugs in their
free form is comparable to our observations. For example, 85%
cell viability was observed after 24 h treatment of B16F0
melanoma cells at 0.32 μg/ml of free ABZ, which is very
similar to 90% cell viability for A375 and A2058 melanoma
cell lines after 12 h treatment at 1 µM (0.265 μg/ml) of ABZ
and ∼70% after 72 h treatment (Patel et al., 2011). B16F0 cell
viability was 54 and 49% at 2.56 and 5.12 μg/ml of free FBZ in the

FIGURE 3 | Comparison of the solubility of BMZ family drugs in free form and LCP form after 24 h dissolution in the physiological buffer (pH 7.4) at room
temperature.

FIGURE 2 | Profiles of the encapsulation efficiency (%) and loading capacity (wt%) of BMZ family drugs loaded into LCP NPs at different initially added
concentrations (Supplementary Table S1).
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current test, which is similar to 40% viability of EMT6 cells upon
treatment with 10 µM (4 μg/ml) of FBZ (Duan et al., 2013).
Similarly, MBZ showed some anti-cancer effect on cell lines
such as MCF7, T47D, and MDA-MB-231 breast cancer (Zhang
et al., 2019) in the drug dosage range of 1–10 µM (0.3–3 μg/ml). In
addition, daily intraperitoneal injections of 50 mg/ml TBZ led to
almost 75% tumor reduction in the HT1080 fibrosarcoma
xenograft mouse model after 27 days treatment, representing
high anti-cancer efficacy of this drug (Cha et al., 2012). Clearly,
LCP-based BMZ drug NPs developed in this research have
demonstrated much higher anti-cancer activity than their free
forms, which is the motivation of this research to repurpose
these anti-parasite drugs for anti-cancer therapy.

Very interestingly, the highest drug dosage examined in the
LCP form showed no obvious toxicity to healthy cell line
HEK293T (Figure 4F). This is similar to that no obvious
toxicity to HUVEC healthy cells was observed after treatment
with MBZ at the dosage highly toxic to lung cancer cell lines
(Mukhopadhyay et al., 2002). Similarly, ABZ did not show any
toxicity to HOSE normal ovary cells, but to ovarian cancer cell
lines in the similar dose range (Noorani et al., 2015). Thus, the
safety of BMZ family drugs is a principal advantage over many
chemotherapeutics as these drugs have the minimum side effects
on healthy tissues/organs and are widely used orally by humans at
the dose of up to 15–20 mg/kg every day for an adult
(Despommier et al., 2017).

Apoptosis Induction through Reactive
Oxygen Species Augmentation and Bcl-2
Inhibition
Apoptosis induction by BMZ family drugs in the free form and
the LCP form was analyzed by Annexin V-FITC/PI double
staining method (Supplemenatry Figure S1). As represented
in Figure 5A, both forms of drugs induced major late
apoptosis while the LCP form induced a much higher level of
late apoptosis (45–56% compared to 26–30% for the free drugs).
There was also a few percent of early apoptosis and necrosis in all
treatments. The elevated later apoptosis may be the reason behind
the higher cytotoxic effect of these drugs in the LCP form, which
may be attributed to the enhanced solubility and facilitated
cellular uptake of drugs via the LCP NP carriers (Tang et al.,
2015).

Since the defect in apoptosis plays a fundamental role in
cancer pathogenesis, providing time for genetic mutation,
increasing angiogenesis and promoting invasion apoptosis
induction is considered as the most promising non-surgical
approach for cancer therapy (Pfeffer and Singh, 2018). Some
studies have confirmed apoptosis induction in cancerous cells by
BMZ family drugs. These reported data included 30% apoptosis
of human NSCLC cells induced with 1 µM (0.3 μg/ml) of FBZ for
32 h and 50% of Ehrlich carcinoma cells in animals with 20 mg/kg
of ABZ (Castro et al., 2016).

FIGURE 4 |Cytotoxicity of BMZ drug-loaded LCPNPs to B16F0 and HEK293T. (A–D)Dose-dependent growth inhibition of B16F0 cells by the free and LCP forms
of BMZ drugs upon 24 h treatment; (E) IC50 values of BMZ drugs in the free and LCP form; and (F) growth inhibition of HEK293T cells by the BMZ drug-loaded LCPNPs
containing 5.12 μg/ml of each drug upon 24 h treatment.
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Both the free and LCP forms of BMZ drugs elevated the ROS
level in B16F0 cells, as demonstrated in Figure 5B;
Supplementary Figure S2. Similar to apoptosis induction, the
ROS level was augmented much higher upon treatment with the
LCP form of BMZ drugs (32–47%) than that with the free form of
drugs (20–31%). As reported by Castro et al., ROS in MCF7 cells
was overgenerated upon treatment with 25 µM (6.6 μg/ml) of
ABZ for 1 h (Castro et al., 2016), and treating A549 cells with
10 µM (3 μg/ml) of FBZ for 4 h significantly enhanced ROS
production (Dogra and Mukhopadhyay, 2012). Since ROS
plays a key role in regulation of cell signalling and pathways
of apoptosis, ROS augmentation may be responsible for enhanced
apoptosis in drug-loaded LCP NP-treated cells.

ROS enhancement was much lower in the healthy cells, e.g.,
HEK293T cells treated with both free ABZ and ABZ-LCP NPs

(Figure 5C; Supplementary Figure S3). Considerably lower ROS
induction by ABZ -as the representative of BMZ drugs- in
HEK293T cells was demonstrated just to support the fact that
these drugs are selectively toxic on cancer cells by unbalancing the
ROS level. In comparison with cells treated without any drugs,
ROS enhancement was 10–20 fold in drug-treated B16F0 cells
(Supplementary Figure S2), but it was only 1.5–2.5 fold in drug-
treated HEK293T (Supplementary Figure S3). This may be the
reason that increased ROS generation by only 1.5–2.5 fold did not
affect HEK293T cell viability (Figure 4F). Thus ROS generation
enhanced by BMZ-LCP NPs can selectively kill cancer cells but
not healthy cells, as a selective approach for cancer therapy
(Perillo et al., 2020).

Consistently, the relative level of Bcl-2 (Figure 5D) was
all significantly dropped in B16F0 cells after treatment with

FIGURE 5 | Apoptosis, ROS generation and Bcl-2 expression induced by BMZ drugs in the free and LCP forms. (A) Annexin V-FITC/PI double staining analysis
data of apoptosis induction in B16F0 cells treated with BMZ family drug (2.5 μg/ml) upon 24 h treatment; (B) ROS augmentation in B16F0 cells treated with BMZ drugs
(2.5 μg/ml) for 6 h in the free and LCP forms; (C)ROS generation of HEK 293T cells treated with ABZ and ABZ-LCP (2.5 μg/ml) for 6 h; (D,E)Relative Bcl-2 level in B16F0
cells and HEK293T cells treated with BMZ drug loaded-LCPs (2.5 μg/ml) for 24 h.
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drug-loaded LCP NPs, with 28–34% reduction compared
to untreated cells. Since cancer cells normally overexpress
Bcl-2, the pro-survival founder member of Bcl family
(Campbell and Tait, 2018), and protect themselves from
ROS-mediated apoptosis induction through the activation
of endogenous antioxidants (Hildeman et al., 2003), Bcl-2
inhibition by BMZ drug-loaded LCP NPs further contributes
to inducing apoptotic response in addition to ROS over-
production. This observation is consistent with the report
that ABZ reduced the expression of apoptosis-related

proteins such as Bcl-2, Bcl-xL, Bax and Bad (Doudican
et al., 2008).

Once again, no obvious alteration in the Bcl-2 level was
observed in HEK293T cells (Figure 5E) upon the same
treatment with BMZ drug-loaded LCP NPs, indicating the
safety of the drugs to healthy cells. This is also similar to the
report that melanocytes did not alter the Bcl-2 expression even
after MBZ treatment (Doudican et al., 2008). Thus the
comparison between B16F0 cancer cells and HEK293T healthy
cells may reveal that BMZ drug treatment in free or LCP form just

FIGURE 6 | Effect on cell morphology. (A)Morphology changes of B16F0 cells treated with BMZ drug-loaded LCPNPs (2.5 μg/ml); and (B) The similar morphology
of HEK293T cells upon ABZ treatment at 2.5 μg/ml in the free and LCP forms. Scale bar � 50 µm.
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inhibits the overexpressed Bcl-2 in cancer cells but does not
interfere the general Bcl-2 level in the normal cell line.

Morphological Changes and Cell Migration
Inhibition
Treatment of B16F0 cells with drug-loaded LCP NPs
substantially changed their morphology, as illustrated in
Figure 6A. The untreated cells showed the natural spindle-
like shape, which was transformed upon the treatment of drugs
either in the free form or the LCP form. Furthermore, the
cellular extensions were disrupted. Disruption of tubular
extensions of tumor cells limits their access to nutrients
(Siemann, 2011). Thus, cellular extension disruption not only
inhibits tumor growth but is also vital for tumor cell
dissemination and metastasis (Ross and Hunger, 2017).
Similar morphological changes in MCF7 and MDA-MB-231

cells as a result of albendazole treatment is reported
(Racoviceanu et al., 2020).

Morphological transformation and extension deformation by
BMZ family drugs arise from their inhibition of tubulin
polymerization (Kamal et al., 2012). This inhibition has been
reported to alter microtubule organization of Chinese hamster
cells after exposure to TBZ (Pisano et al., 2000), inducing
abnormal spindle formation and enhanced tubulin
depolymerization in non-small cell lung cancer cells treated
with MBZ (Sasaki et al., 2002), and disruption of mitotic
bundles in 1A9 ovarian cancer cells exposed to ABZ (Chu
et al., 2009). Oxidative stress caused by BMZ drug treatment
can also cause morphological changes and consequently motility
alteration (Alexandrova et al., 2006).

Again, no obvious morphological changes such as spindle
deformation or disruption of mitotic bundle was observed in
HEK293T cells upon the similar treatment with BMZ family

FIGURE 7 | Assessment of cell migration upon BMZ drug treatment in the free and LCP forms for 4 h. (A) Images of B16F0 cell migration; (B) number of migrated
cells; and (C) relative migration percentage. Scale bar � 200 µm.
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(Figure 6B), which may be attributed to less susceptibility to ROS
(Figure 5C) (Katoh et al., 2006).

As cells with more rounded shape are supposed to have less
capability of dissemination because of the microtubule
destabilization (Young et al., 1985), less migratory activity of
BMZ drug-treated cells was observed, as shown in Figure 7A. All
free BMZ family drugs inhibited cell migration to some degree at
the dose of 2.5 μg/ml. Interestingly, their LCP forms were more
effective in inhibition of cell migration by 15–30% in terms of the
cell number (Figure 7B) and 20–40% in terms of the relative
migration (Figure 7C), due to the enhanced solubility and
cellular uptake in the LCP form. This inhibition results are
comparable with previous studies about cell migration
inhibition by BMZ family drugs. For instance, 24 h treatment
of PE/CA-PJ15 cells (human oral squamous carcinoma) with
5 µM (∼1.5 μg/ml) of FBZ and MBZ reduced cell migration very
significantly (Kralova et al., 2018). Treatment with 0.6 µM
(0.16 μg/ml) of ABZ halved migration activity of SW1990 and
PANC-1 pancreatic cancer cells after 24 h treatment (Chen et al.,
2020).

Since tumor cell migration is not only a prerequisite for tumor
dissemination but also a contributor to tumor metastasis
(Entschladen et al., 2004), inhibition of cell migration is vital
for a comprehensive cancer treatment. Thus, BMZ family drugs,
especially loaded in LCP NPs, may be considered as a treatment
beyond the primary tumor inhibition, without obvious side effects
to healthy cells or organs. This is a sharp contrast to other
conventional chemotherapeutics such as paclitaxel, doxorubicin
and cisplatin that are associated with various toxicities to healthy
organs such as neurotoxicity, cardiotoxicity, nephrotoxicity,
hepatotoxicity and hematotoxicity (Cersosimo, 1993; Juaristi
et al., 2001; Guastalla and Diéras, 2003).

CONCLUSION

LCP nanoparticles provide a versatile nanoplatform to load anti-
worm BMZ family drugs and repurpose their applications for
cancer treatment. Having superior cytotoxic effect on cancer cells
but almost no toxicity to healthy cells, BMZ drugs were
successfully loaded by LCPs and showed even more efficient

inhibition of cancer cell proliferation via enhanced solubility and
cellular uptake. We further found that BMZ drug-loaded LCPs
induced more later apoptosis through Bcl-2 reduction and ROS
augmentation. Moreover, BMZ-LCP NPs were able to control
tumor cell dissemination through induction of morphological
changes and inhibition of cell migration. Overall, LCP-based
nanoformulated BMZ drugs would be considered as promising
nanomedicines not only to treat primary tumors but also to
potentially control tumor dissemination and metastasis with
minimum side effects.
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Cancer is considered one of the most predominant diseases in the world and one of the
principal causes of mortality per year. The cellular and molecular mechanisms involved
in the development and establishment of solid tumors can be defined as tumorigenesis.
Recent technological advances in the 3D cell culture field have enabled the recapitulation
of tumorigenesis in vitro, including the complexity of stromal microenvironment. The
establishment of these 3D solid tumor models has a crucial role in personalized medicine
and drug discovery. Recently, spheroids and organoids are being largely explored as
3D solid tumor models for recreating tumorigenesis in vitro. In spheroids, the solid
tumor can be recreated from cancer cells, cancer stem cells, stromal and immune
cell lineages. Organoids must be derived from tumor biopsies, including cancer and
cancer stem cells. Both models are considered as a suitable model for drug assessment
and high-throughput screening. The main advantages of 3D bioprinting are its ability to
engineer complex and controllable 3D tissue models in a higher resolution. Although 3D
bioprinting represents a promising technology, main challenges need to be addressed
to improve the results in cancer research. The aim of this review is to explore (1)
the principal cell components and extracellular matrix composition of solid tumor
microenvironment; (2) the recapitulation of tumorigenesis in vitro using spheroids and
organoids as 3D culture models; and (3) the opportunities, challenges, and applications
of 3D bioprinting in this area.

Keywords: tumor microenvironment, tumorigenesis, 3D cell culture, spheroids, organoids, drug assessment,
high-throughput screening, 3D bioprinting

INTRODUCTION

Cancer remains one of the most predominant diseases in the world in the 21st century, affecting
millions of patients per year (Roy and Saikia, 2016). Rather than responding appropriately to signals
that maintain cell behavior, cancer cells grow and proliferate without control, invading normal
tissues and organs, and eventually spreading throughout the organism (Chambers et al., 2002).
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The cellular and molecular mechanisms involved in the
development and establishment of solid tumors is known as
tumorigenesis. It is widely accepted that tumorigenesis is a
multistep process, depending on a sequential accumulation of
mutations of tissue cells (Ashkenazi et al., 2008). The tumor
microenvironment is composed of non-cancerous cells with
functions in all stages of tumorigenesis by both stimulating
and/or facilitating abnormal cell proliferation (Arneth, 2019).

In recent years, literature has advanced in the better
understanding of tumor microenvironment (DeBerardinis,
2020). The non-cancerous cell types include fibroblasts,
endothelial cells, and immune cells (Casey et al., 2015; Jarosz-Biej
et al., 2019). In addition, depending on the type of tumor, organ-
specific interstitial cells are also present. According to previous
descriptions, these cells are denominated as “tumor stroma”
and, together with the extracellular matrix (ECM), oxygen
levels and pH, constitute the tumor microenvironment (Briest
et al., 2012; Hirata and Sahai, 2017). This complex interaction
between tumor and non-tumor cells leads to an altered
metabolism and ECM production. The better understanding
of tumor microenvironment is a key challenge to address,
contributing to the development of new drugs and treatments
(Valkenburg et al., 2018).

In this context, 3D cell culture has gained space in
literature due to its advantages compared with “classical”
2D cell culture. 3D cell culture can recreate a sort of tissue
microenvironment, providing more accurate data about cell-
to-cell interactions, cell-to-extracellular matrix interactions,
tumorigenesis, drug discovery, gene expression, metabolic
profiling, and protein profiling of the cells. 3D cell culture, such
as spheroids and organoids, has the potential to provide
alternative models to study tumor microenvironments
(Nath and Devi, 2016; Jensen and Teng, 2020). In tumor
biology, spheroids are represented by cancer cell lineages
self-assembled in rounded shape and organoids by cells
derived from tumor biopsies, including cancer stem cells,
self-assembled in amorphous shape. Furthermore, cell culture
platforms of tumor spheroids and organoids start to be
adapted as a model for drug assessment and high-throughput
screening (HTS) (Kondo et al., 2019; Heredia-Soto et al., 2020;
Renner et al., 2020).

3D bioprinting is a promising emergent bottom–up
technology to develop complex tissue models in vitro. 3D
bioprinting is a form of additive manufacturing, where cells,
biomaterials, and soluble factors can be assembled layer by
layer (Mandrycky et al., 2016). From 3D bioprinting, it is
possible to hierarchically organize tissues, as they are found
in vivo, and faithfully recapitulate their morphology as well as
functional aspects (Datta et al., 2018). Although 3D bioprinting
represents a promising technology, main challenges still
remain such as the speed of bioprinters and better bioinks for
improving cell survival and function in cancer research. The
main objective of this review is to explore the cellular and
molecular composition of solid tumor microenvironment, the
recapitulation of tumorigenesis and drug assessment using
spheroids and organoids, and the opportunities and challenges
of 3D bioprinting in this field.

THE TUMOR MICROENVIRONMENT

Background
The tumor microenvironment is heterogeneous, composed
mainly of tumor cells and endogenous stromal cells (non-
cancerous) that are later recruited by the tumor itself. This
microenvironment also contains extracellular components: ECM
proteins, extracellular vesicles, cytokines, growth factors, and
hormones nourished by a vascular network. The stromal
cells are represented by endothelial cells, mesenchymal
stem/stromal cells (MSCs), fibroblasts, and macrophages
(Wu and Dai, 2017; O’Loghlen, 2018). During tumorigenesis,
tumor cells interact greatly and evolve with this surrounding
microenvironment, having profound effects on therapeutic
efficacy (Bussard et al., 2016).

All tumor microenvironment components communicate
continuously with each other mainly by (1) cell-to-cell
interactions, (2) cell-to-extracellular matrix interactions,
and (3) the network of cytokines, proteins, and chemokines that
can favor the immune system or the tumor growth. Thus, any
disruption in tumor microenvironment signaling will reflect
changes of the balance between immune system and tumor (Hui
and Chen, 2015; Merlano et al., 2019).

One of the most crucial factors for tumor microenvironment
maintenance and progression to metastasis is the vascular
network (Naumov et al., 2008; Quail and Joyce, 2013). Tumor
vasculature is characterized as being disorganized and leaky,
which is associated with altered endothelial cell adherents
junction and tight junction formations, both critical to maintain
vascular barrier functions. In addition, tumor cells induce
programmed necrosis of endothelial cells, thus, increasing
vascular leakiness and tumor cell extravasation and metastasis
(Yang and Lin, 2017).

Cell Components of Tumor
Microenvironment
In solid tumors, mesenchymal stem cells and fibroblasts, also
named as cancer-associated fibroblasts (CAFs), are the main
cellular components of the microenvironment. It is well known
that in healthy tissues, fibroblasts support tissue repair and
homeostasis; however, CAFs is a heterogeneous population that
serves a different function compared with resident fibroblasts
(Petrova et al., 2018; Ayan et al., 2020), as suggested by Sugimoto
et al. (2006) and Kobayashi et al. (2019). The principal functions
of CAFs in the tumor microenvironment are: (1) stimulate tumor
cell proliferation by growth factor secretion, (2) modify cancer
ECM, which will induce tumor progression and metastasis,
and (3) modulate the inflammatory components that facilitate
tumor initiation, progression, and metastasis (Servais and Erez,
2013; Raffaghello and Dazzi, 2015). Furthermore, CAFs support
endothelial cells to start tumor angiogenesis. Endothelial cells
offer nutritional support for tumor growth and development,
showing a key role in tumor cell protection from the immune
system (Arneth, 2019). Tumor endothelial cells are considered
one of the main targets of anti-angiogenic therapy (Hida et al.,
2013). A study published by Maishi et al. (2016) showed with
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two different tumor models that endothelial cells in the tumor
microenvironment are able to promote tumor metastasis by
direct interaction with tumor cells.

Myo-fibroblasts are specialized fibroblasts, a subpopulation
of CAFs, which express the alpha-smooth muscle actin protein
and are considered major players in the development of different
fibrotic diseases, mainly due to their capacity to remodel the
ECM (Yazdani et al., 2017; Ribatti and Tamma, 2019). In
tumors, these activated fibroblasts can enhance tumorigenesis,
angiogenesis, and metastasis by secreting growth factors and
cytokines. Besides fibroblasts and endothelial cells, MSCs are
present in the tumor microenvironment as well, interacting with
tumor cells via the secretion of growth factors or cytokines,
and by transferring mitochondria or microRNAs. Residing in
tumors, MSCs form a fibrovascular network by differentiating
into smooth muscle cells and vascular pericytes, contributing
to vascular network extension (Guo and Deng, 2018). At the
beginning of tumorigenesis, MSCs have been shown to drive
tumor cells toward an invasive, premetastatic state. However,
some studies showed that MSCs can also have an inhibitory
effect on tumor growth by reducing cytotoxicity effects,
pluripotency, and even by influencing macrophage polarization
(Ridge et al., 2017).

Pericytes are multipotent perivascular cells with an established
role in vasculature development. Studies have already shown
that these cells present immune properties and might serve as
a reservoir of MSCs to influence in the in vivo regeneration
of diverse tissues. Pericytes located in the vessels play a
significant role in the homeostasis of these vessels, and when
recruited, they change their activation stage to MSCs in order to
participate in injury events of the tissue (Meirelles et al., 2013).
In addition, pericytes are capable of realizing tumor homing
and are considered an important cell component of the tumor
microenvironment (Ribeiro and Okamoto, 2015). In cancer,
pericytes have been explored because of their capacity to stabilize
blood vessel structure and permeability. Due to this, it was
discovered that pericytes can affect tumor growth and metastasis
positively or negatively. The effects of tumor growth are related
to establishing a stable vascular network, which will ensure a
proper delivery of nutrients to allow tumor cells maintenance
and proliferation. However, these cells can prevent tumor
cell dissemination by maintaining the permeability of blood
vessels (Barrow and Colonna, 2019). Furthermore, many studies
have shown that cancer vessels are characterized by abnormal
pericyte population of cells and altered pericytes/endothelial
cell interactions, which can effectively contribute to metastasis
process and progression of cancers, especially perivascular
ones such as glomus tumor, myopericytoma, and solitary
fibrous tumor/hemangiopericytoma (Mravic et al., 2014;
Chen et al., 2016).

Another cell type whose role is largely explored in tumor
microenvironment is the adipocyte. Adipose tissue is composed
of adipocytes and non-adipocyte cells, including MSCs from
adipose tissue and macrophages. These cells release a variety
of molecules that enable them to play a paracrine effect
in pathological processes such as breast and ovarian cancer
(Robado de Lope et al., 2018).

The macrophage is the most prominent immune cell type in
the tumor microenvironment (Arneth, 2019). Macrophages have
an active role from early carcinogenesis to tumor progression and
metastasis, constituting up to 50% of a tumor mass depending
on the type of tumor. Previous studies suggest that after
infiltrating tumors, macrophages polarize to a M2 phenotype,
take on the functions of tumor growth and angiogenesis,
tissue remodeling, and suppression of antitumor immunity
(Kim and Bae, 2016). Zhang A. et al. (2017) reported that
CAFs promoted M2 polarization of macrophages in pancreatic
ductal adenocarcinoma, which enhanced tumor cell growth,
migration, and invasion.

Another immune population of cells present in the tumor
microenvironment is the natural killer cells (NK). NK cells
are large granular lymphocytes that control tumor growth
by interaction with tumor cells or because they can affect
the function of other innate and adaptative cell populations
(Melaiu et al., 2020). Interestingly, NK cells show antitumor
activity as they have the efficient and fast capacity to recognize
and kill tumor cells. This function is mediated through cell-
surface receptors, which examine tissue microenvironments for
changes in surface and secretory phenotypes, and then alerts the
immune system for the presence of infection or of a malignancy
agent. Therefore, this function is largely explored for cancer
immunotherapy treatments (Bi and Tian, 2017; Barrow and
Colonna, 2019; Zhang et al., 2020). According to Fang et al.
(2017), the main approaches used for cancer immunotherapy
with NK cells are based on the use of cytokines, as IL-2 and
isoforms, antibodies, and the adoptive transfer of ex vivo NK cells.

T cells also play important functions in the tumor
microenvironment, where it is common to find inhibitory
receptors. These can inhibit T cell metabolism and influence T
cell signaling, both directly and through release of extracellular
vesicles. When isolated from tumors, T cells generally show
signs of exhaustion and present distinct metabolic features
(Lim et al., 2020). Other immune cells that are present and
modulate the tumor microenvironment are granulocytes, such
as the mastocytes. Early mastocyte cell infiltration has been
reported in human and animal tumors, especially in malignant
melanoma, breast, and colorectal cancer (Liu et al., 2011;
Komi and Redegeld, 2020). Mastocytes have different functions
in the tumor microenvironment such as: (1) modulating
tumor biology, by influencing in cell proliferation, survival,
angiogenesis, and metastasis; and (2) establishing crosstalk
with other tumor-infiltrating cells in the microenvironment
(Aponte-López and Muñoz-Cruz, 2020).

Currently, different studies discuss the concept and functions
of cancer stem cells (CSC) in tumor microenvironments. These
cells, also called stem-like cells or tumor-initiating cells (TICs),
were first described in 1994 and are a distinct subpopulation
of tumor cells. Recently, this subpopulation of cells has been
described as having a unique ability to initiate tumor growth and
maintenance. In this context, CSC is considered an important
target for cancer immunotherapies (Nassar and Blanpain,
2016; Codd et al., 2018). The quantity of CSC in the tumor
microenvironment varies according to the tumor type. These
cells can be responsible for preserving tumor heterogeneity by
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retaining self-renewal and differentiation properties. In addition,
CSC also plays a role in innate resistance to cancer therapies,
which in turn links to their persistence of the tumor in a specific
tissue, which can lead to disease recurrence and metastatic spread
(Albini et al., 2015). A study performed by Chen et al. (2014)
demonstrated that CAFs enrich CSCs through de-differentiation
process and reacquisition of stem cell-like properties in lung
cancer. Briefly, the main results showed that CAFs develop a
paracrine signaling that induce Nanog expression and promote
stemness in cancer niche. What is interesting is that it is possible
to discover new therapeutic targets to act in this paracrine
signaling of CAFs to CSCs.

The Extracellular Matrix in Tumor
Microenvironment
The ECM contains a diversity of proteins, which influence the
cell phenotype of specific tissues due to their biochemical and
biophysical properties. The principal ECM proteins secreted by
cells in the tumor microenvironment are collagen, fibronectin,
laminin, vitronectin, and tenascin (Cheng et al., 2020). It is
well known that the ECM is highly dynamic because it is
constantly being remodeled and degraded from embryogenesis
until maturity. This remodeling is crucial for tissues homeostasis;
however, dysregulation of ECM dynamics is common in the
development of diseases as cancer (Bonnans et al., 2014;
Walker et al., 2018).

In the tumor microenvironment, two main modifications
are commonly observed in the ECM: stiffness (rigidity) and
degradation. The increase in cross-linking between ECM proteins
can cause stiffness (Najafi et al., 2019). The enhancement of tumor
ECM stiffness is mainly induced by ECM deposition, remodeling
by resident fibroblasts and by the transformed epithelium. In
addition, the presence of chemokines and growth factors lead
to an inflammation state. The inflammation state induces CAFs
activation and their transdifferentiation into myofibroblasts,
causing tissue desmoplasia. Then, myofibroblasts deposit ECM
proteins, secrete growth factors, and apply contraction forces on
the tumor ECM. In the end, newly deposited ECM proteins will
generate larger and rigid fibers that turn the ECM rigid (Frantz
et al., 2010). However, the disruption in the signaling between
these ECM proteins will result in degradation, mainly caused by
the activation of metalloproteinases (MMPs) (Najafi et al., 2019).
The MMPs cleave collagen fibers of tumor ECM and reorganize
them into tube-like structures to facilitate cell migration in the
microenvironment (Malik et al., 2015).

The MMP genes were previously associated with increased
risk and evolution of breast cancer. In the study developed
by Slattery et al. (2013), the genetic variation of MMP1 (nine
SNPs), MMP2 (eight SNPs), MMP3 (four SNPs), and MMP9
(three SNPs) together with breast cancer risk was evaluated in
Hispanic and Non-Hispanic women. The results showed that
MMPs have associations with breast cancer progression and
prognosis. Overall, MMP-2 showed the strongest gene association
with breast cancer development.

Regarding ECM modifications in breast cancer, another study,
published by Boghaert et al. (2012) showed, with a 3D cell culture

model, that the regions where the tumor cells invaded the breast
tissue more was directly correlated with a higher mechanical
stress of the host epithelial tissue. The use of a 3D cell culture
model to recapitulate the breast tumor microenvironment can
then aid in the better understanding of in vivo mechanisms.

One of the first studies published correlating abnormal ECM
and the progression of cancer was performed by Neglia et al.
(1991), which investigated the risk of cancer in patients with
cystic fibrosis. The study was developed with North American
and European patients with cystic fibrosis, and the results
showed that, in fact, these patients had an increased risk
to develop digestive tract cancers. In cancer, the abnormal
ECM affects the progression of the disease by promoting
changes in host cells normal functions. In addition, ECM
anomalies are also capable of (1) deregulating the behavior
of stromal cells, (2) promoting angiogenesis and inflammation
associated with the tumor, (3) leading to the generation and
maintenance of an established tumorigenic microenvironment,
and (4) can also induce metastatic dissemination (Lu et al., 2012;
Seager et al., 2017).

Not only cancer cells but also CAFs lead the modification
and remodeling of the ECM during cancer progression. The
biochemical cross talk between the cancer cells and CAFs, and
the biomechanical changes of the ECM are major contributors
to tumor cell migration and invasion, which will influence
tumor progression to metastatic state. Additionally, growth
factors, chemokines, and metabolic changes released from
the ECM contribute to the maintenance and progression
of the tumor microenvironment (Erdogan and Webb, 2017;
Eble and Niland, 2019).

Due to the importance of ECM modification in the tumor
microenvironment, studies are being conducted in order to
develop therapeutic treatments to target the cancer ECM. Van
der Steen et al. (2017) explored the functionalization of drug-
loaded lyophilisomes (albumin-based biocapsules) loaded with
doxorubicin and functionalized with antibodies, to act in the
ECM, or stroma, of ovarian carcinomas, in order to evaluate its
potential to eliminate cancer cells. The principal results showed
that drug-loaded lyophilisomes were effective to induce cancer
cell death and can be considered as a therapeutic agent to
specifically target ECM components of the tumors. In addition,
Zhang et al. (2018) explored the use of cyclopamine, a special
inhibitor of the hedgehog-signaling pathway, which contributes
to ECM formation of pancreatic ductal adenocarcinoma, to
ameliorate solid stress and improve nanomedicine delivery to
tumor site. The principal results showed that the drug was able to
disrupt ECM in pancreatic ductal adenocarcinoma, reduced solid
stress of the tumor together with an improvement of function of
tumor vessels, which allowed a better perfusion in the tumor area.

Although the drugs discovered recently to target tumor
ECM might effectively reduce the number of cancer cells and
reduce solid stress, there are still many challenges that ECM
components in tumor microenvironment can set that could
interfere with therapeutic treatments. Briefly: (1) ECM proteins
act as a physical barrier, which makes drug delivery more
difficult, (2) ECM proteins can de-differentiate non-CSCs into
CSCs, and this can make it harder for the elimination process
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of CSCs in the microenvironment, (3) the ability of ECM to
modulate immune responses, and (4) complex nature of ECM,
with its different molecules and isoforms (Nallanthighal et al.,
2019). Therefore, the ECM in the tumor microenvironment
has a considerable impact in cancer progression and further
metastasis. Due to this, a better understanding of the interactions
between cancer cells and ECM is needed and might only be
addressed by 3D cell culture models, especially in order to have
more faith in the results of drug screening to target cancer
(Drost and Clevers, 2018).

3D MODELS RECAPITULATING THE
TUMORIGENESIS IN VITRO

Background
The tumorigenesis of cancer disease is heterogeneous in
growth rate, invasiveness, drug sensibility, and individual patient
derived characteristics (McGranahan and Swanton, 2017; Fan
et al., 2019). Therefore, the in vitro and in vivo preclinical
studies fail in emulating the microenvironment of the tumor
to predict its sensibility or its resistance to drugs, or the
metabolic and molecular pathways. This explains the low
success rate of drug acceptance for oncologic drugs at 3.4%
(Wong et al., 2019).

Immortalized cell lines are a valuable resource to investigate
the physiological mechanisms and body–environmental
interactions between healthy cells and cancerous cells due to
their ease of growing and manipulating in vitro. Monolayer
assays employing immortalized cancer cells are characterized
by low cost, less complexity, and are readily employed in the
HTS of drug trials and molecular biomarkers (Fan et al., 2019).
However, because of the fast proliferation of the monolayers, it
is likely that the culture might be affected by problems such as
de-differentiation or abnormal gene expression profiles, which
may influence the result of experiments as well as be contrasting
to in vivo tests (Shah et al., 2018). Furthermore, monolayer assays
glean so little about the gene expression, reorganization, and
responses involved in the tumorigenesis, mainly due the absence
of a tumor microenvironment (Gao and Chen, 2015).

To fill the gap between these insufficient or inappropriate
models, 3D cultures arise as an urgent tool to improve
the prediction system and mechanism of understanding
tumorigenesis in humans. 3D cultures allow for systematic
investigation into the several unidentified metabolic pathways
and cascades (Sawant et al., 2016).

The classical scaffold-based approach in tissue engineering has
focused on devising cells, bioactive factors, and scaffolds with
biocompatible biomaterials to produce models able to maintain
the tumor phenotype (Molina et al., 2020). In these models, it is
possible to co-cultivate epithelial and stromal cells and observe
the crosstalk of multiple cell types interacting, which regulate
normal and neoplastic development (Sawant et al., 2016).

In contrast to scaffold-based methods, scaffold-free
approaches emerge as 3D tumor models. The scaffold-free
approaches are aggregates of cells, producing several common
features that are similar to the solid tumor in vivo such as cellular

heterogeneity, cell-cell signaling, hypoxia, membrane protein
distribution, and gene expression patterns (Zhao et al., 2019).

Tumor Spheroids
The development of 3D models such as spheroids made it
possible to engineer several cancer-like microenvironments
in vitro. Many papers claim to have developed their protocols
to build tumors such as glioblastomas, colorectal, breast, liver,
lungs, among others (Kelm et al., 2003; Hirschhaeuser et al., 2010;
Chimenti et al., 2017; Eilenberger et al., 2018; Froehlich et al.,
2018; Oraiopoulou et al., 2019; Foglietta et al., 2020; Lee et al.,
2020).

The breast cell line MCF-7 is an adenocarcinoma-luminal
subtype one. The cell morphology is epithelium-like resulting in
their ability to self-aggregate into a steady shape, which makes it
easier to maintain their viability and to use it for implantation
in mice for in vivo studies (Do Amaral et al., 2011; Comşa et al.,
2015; Froehlich et al., 2018).

HEPG-2 is an epithelial-like hepatocellular carcinoma that,
due to the liver cells’ role of the metabolism, is considered a
valuable option to study cell genotoxicity (Luckert et al., 2017;
Shah et al., 2018). 3D models using HEPG-2 can be used alone in
drug screening or as a co-culture with other tumor cell lines (Lan
et al., 2010; Jung et al., 2017).

Some aspects must be considered when working with
spheroids. One of them is the quality of the 3D protocol, which
is related to some variables such as the kind of support for the
culture, the non-adherent medium used, the number of cells that
are seeded, the spheroid formation technique, the temperature,
and the amount of CO2 and O2 available (Mironov et al., 2009;
Mehta et al., 2012; Däster et al., 2017). All these factors are highly
changeable according to the tumor line chosen.

The role of hypoxia and the capacity of a tumor to induce
neovascularization in its microenvironment using spheroid
models have been debated since the early 1990s. It has been
established that genetic changes can cause an “angiogenic switch”
as the newly mutated cells acquire the ability to upregulate the
production of angiogenic factors in comparison to healthy cells,
especially in hypoxic niches (Shweiki et al., 1995; Catalano et al.,
2013).

Studies using colorectal spheroids and the 5-Fluorouracil drug
have indicated that hypoxia and necrosis induction is associated
with tumor progression and cell resistance to chemotherapy
treatments. The difference in the spheroid size is a variation that
also shows its importance in determining whether the mentioned
effects moderately or intensely impact the aggressiveness of
the tumor (Karlsson et al., 2012; Däster et al., 2017). On the
contrary, other studies developed with multicellular spheroids
also have demonstrated that when hypoxia–reoxygenation is
induced, the levels of vascular endothelial growth factor (VEGF)
are downregulated by the tumor cells, as well as it activated DNA
damage repair markers (Kondoh et al., 2013; Riffle et al., 2017).

Nevertheless, managing these elements and controlling the
long-term viability of the spheroids is an arduous task due to
their natural propensity of apoptosis, as a result of poor gaseous
and nutrients diffusion (Zhang W. et al., 2016). One possible
solution is to use microfluidic systems to allow continued flow
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of the molecules needed for the spheroids to keep metabolizing
and proliferating (Moshksayan et al., 2018). Human lung
adenocarcinoma A549 cells, for instance, can be seeded with
human endothelial cells in a collagen-I–Matrigel microfluidic
device containing a micro-pump to supply the system with
oxygen and nutrients. It is a useful protocol for further respiratory
system cancer studies (Lee et al., 2019).

Colorectal tumors are likely to be formed at elderly ages,
especially over 50 years. It is also the third cause of death
among men and women in the United States (Siegel et al., 2020).
The communication promoted by cells in the spheroid allows
studies to explore the interactions between drugs and the 3D
model (Elliott and Yuan, 2011). Concerning this approach, it was
shown through spheroid models that the anticancer drug KP1339
triggers an immune cell death in vitro, which matches arrays that
showed preclinical activity in vivo (Wernitznig et al., 2019).

Coming up with a model that mimics the microenvironment
of mammary tissue requires a complex mixture of several cell
types and tissues, as well as functional ECM and long-term
sustainable cell–cell and cell–ECM interactions. In this regard,
adipose tissue might work well when co-cultured with mammary
cell lines (Kim et al., 2004; Picollet-D’hahan et al., 2016). As a
complex tissue, adipose is constituted of several populations of
cells such as adipocytes, MSCs, endothelial progenitor cells, pre-
adipocytes, lymphocytes, pericytes, and macrophages (Schäffler
and Büchler, 2007; Hu and Polyak, 2008).

Studies with co-culture between MCF7 line and MSCs
have shown that this mesenchymal population can improve
tumor aggressiveness in vivo in comparison with MCF7
culture alone. Similar to immune cells, MSCs demonstrate
tropism for spots consisting of damaged tissue including
tumor microenvironmental sites, cooperating with migration and
metastasis (Koellensperger et al., 2017; Chen et al., 2019).

Tumor Organoids
Different from spheroids, tumor organoids must be derived
from human tumor biopsies (Drost and Clevers, 2018; Wang
et al., 2020). The advantages and applications of tumor
organoids are related to the tissue-specific mutagenic processes
accumulating specific types of somatic mutations during
malignant transformation in patients. Single stem cell-derived
and long-term-cultured organoids were used to determine the
genome-wide mutation patterns in distinct healthy stem cells
(Wang et al., 2020).

The ability to grow organoids with high efficiency from
healthy human adult stem cells has paved the way to grow
tumor tissue patient-derived organoids (PDO). So far, long-term
organoid cultures have been established from primary colon,
esophagus, pancreas, stomach, liver, endometrium, and breast
cancer tissues, as well as from metastatic colon, prostate, and
breast cancer biopsy samples (Drost and Clevers, 2018).

Another 3D model is the cultivation and testing of the patient-
derived tumor xenografts (PDTX) generated in animal models.
PDTX is about the implantation of small pieces of tumors from
human biopsies into highly immunodeficient mice. After tumor
growth, the tumor is transferred into secondary recipient mice.
PDTXs often maintain the structures of the original tumors at

molecular, cellular, and tissue levels (Drost and Clevers, 2018).
Thus, it is able to recapitulate the heterogeneity of the tumor and
its native microenvironment; however, it is more incompatible
to HTS due to its expensive, time consuming and complex
procedure (Hidalgo et al., 2014). Besides PDTX, it is also possible
to induce the tumor directly into animal models. However,
animals present great phylogenetic distance to humans, have
different metabolism, size, and lifespan, which all misdirect the
drug development during human clinical trials (Wang, 2019).

The generation of cancer spheroids and organoids, like PDO
are low cost, fast compared with PDTX, can be adapted to HTS
and allow investigation of the alterations occurring during the
initiation and progression of tumorigenesis (Fatehullah et al.,
2016; Fan et al., 2019). This is one of the reasons why tumor
organoids have been increasingly used as a faithful in vitro model
system to study cancer metastasis (Fan et al., 2019).

Tumor organoids keep the main pathophysiological features
required to identify the critical factors in the acquisition of cancer
metastatic potential, which may elucidate mechanisms involved
in the metastasis cascade (Fan et al., 2019). On the other hand,
one of the intrinsic limitations is the lack of stroma, blood vessels,
and immune cells in cultured organoids, especially the immune
cells (Wang et al., 2020) due to their regulatory roles in epithelial
cell growth and differentiation, invasion, and metastasis (Mueller
and Fusenig, 2002; Sawant et al., 2016).

One very interesting strategy when studying tumor organoids
is to associate healthy organoids with tumor ones in a fluidic
platform called organ-on-a-chip aiming to study metastasis
via the circulatory system. These devices mentioned before
are microfabricated to emulate a precise microenvironment,
controlled, with continuous flow perfusion culture, and high-
throughput format (Fan et al., 2019). Jeon et al. (2015) studied
3D vascularized organotypic microfluidic assays to study breast
cancer cell extravasation, while Xu et al. (2016) projected a four-
organ chip to assess lung cancer metastasis. Huang et al. (2009)
found out that the laminar flow properties of microfluidic devices
have been leveraged to compartmentalize human mammary
fibroblasts in an ECM gel side-by-side with another ECM gel
containing breast ductal carcinoma in situ cells; this setup
revealed that the fibroblasts had to be in contact with the tumor
cells to induce the transition to the invasive phenotype (Huang
et al., 2009; Benam et al., 2015).

High-Throughput Screening and 3D
Models
Pre-clinical studies fail around 85% in the oncological drug
trials, not demonstrating sufficient safety or efficacy (Gao et al.,
2015). To overcome this issue, the approaches that enable
high-throughput (thousands of cells per experiment) are best
suited to efficiently sample the complex cellular diversity in
organoids and to understand organoid-to-organoid variability
(Brazovskaja et al., 2019).

High-throughput screening provides a practical method
to investigate large numbers of pharmaceutical compounds
in in vitro monolayers assays, being a universal assay in
pharmaceutical and Biotech industries (Pereira and Williams,
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2007). It has also spawned a billion-dollar industry that
supports the increasing demands for speed, capacity, and cost-
effective screening of vast libraries of compounds (Pereira and
Williams, 2007). The accessibility of HTS data merged with the
ToxCastTM/Tox21 databases allows for elucidative toxicological
considerations seen below (Suh et al., 2018).

Based on the advantages of tissue engineering scaffold-
free approaches in recapitulating the tumor microenvironment,
mainly represented by spheroids and organoids, a paradigm shift
in HTS placing them at the forefront of drug discovery (Li
et al., 2016) together with the need to adapt the protocols for
the HTS. Spheroids have been adapted for use with several HTS
technologies. On the other hand, organoids represent a challenge,
mainly due to the presence of hydrogels and their heterogeneity
of shape (Figure 1). Furthermore, the most common read-
out of HTS technologies is still based on imaging systems
making spheroids and organoid depths and their associated light
scattering a technical challenge (Li et al., 2016).

So far, tumor spheroids, tumor organoids, and PDTXs are
allowed for testing of multiple individual drugs prior to in vivo
analysis (Beshiri et al., 2018). Gao et al. (2015) established∼1,000
PDXs with a diverse set of driver mutations against 62 treatments
across six indications. Mateo et al. (2015) showed the presence of
a homologous recombination deficiency genotype in Metastatic
castrate-resistant prostate cancer and predicted responsiveness to
Olaparib, which is the first genomic biomarker-driven therapy on
track for FDA approval. Another example is for human kidney
organoids, where Czerniecki et al. (2018) produced automated
organoids and assessed drug effects by HTS.

Liu et al. (2020) review that Kita et al. (2019) screened
2,098 compounds in bladder cancer organoid cell lines. They
also discovered that Disulfiram, an anti-alcoholism drug, and
cisplatin had a cooperative effect. Lampis et al. (2018), after
screening 484 compounds in six cholangiocarcinoma’s organoid
cell lines, presented that the sensitivity of HSP90 inhibitors was
related to the mutation of MIR21 gene. Kondo and Inoue (2019)
reported an advanced system for the HTS of 2,427 drugs using the
cancer tissue-originated spheroid; those lines exhibited diverse
sensitivities to the hit compounds, demonstrating the usefulness
of this system for investigating highly heterogeneous disease.

There is now increasing evidence that the tumor
microenvironment affects the efficacy of drugs on the
cancer cells (Lal-Nag et al., 2017). Several complex ovarian
cancer models have already been published, such as the
3D omental mesothelium model and models that include
microfluidics, which demonstrates this (Watters et al., 2018).
Currently, the mesothelium model is the only 3D organotypic
microenvironment model of ovarian cancer that is used by
multiple research groups (Kenny et al., 2007). The mesothelium
model recapitulates the main physiological aspects of ovarian
cancer cells in the mesothelium lining (Watters et al., 2018).
Lal-Nag et al. (2017) proved that several classes of targets were
more efficacious in cancer cells growing in the absence of the
metastatic microenvironment, and other target classes were less
efficacious in cancer cells in pre-formed spheres compared with
forming spheroids cultures. These methods were adapted to
HTS and to more than 100,000 small-molecule compounds that

can potentially identify novel treatments (Watters et al., 2018).
Hasan and group reported the use of bioprinting for in vitro
ovarian cancer tissue modeling for research applicable to HTS.
Human ovarian cancer was printed on MatrigelTM to form
multicellular acini (Hasan et al., 2011). This approach allows for
physiologically relevant cell fabrications and can also provide an
alternative to animal testing (Matai et al., 2020).

Tumor Organoids and Personalized
Medicine
As explained in the sections before, tumor organoids must be
derived from human biopsies. This outstanding characteristic
from tumor organoids has given rise to the creation of tumor
biobanks highlighting the concept of personalized medicine to
predict effective drugs before the start of the treatment. One
crucial challenge to be addressed related to drug testing for
cancer models is that the majority of drugs show intratumor
heterogeneity, while others are uniformly toxic in all cases.
Furthermore, as organoids can be produced from a patient’s
own cells, the genetic analyses and drug screening results will be
specific to the patient’s tumor (Tellez-Gabriel et al., 2018; Kondo
et al., 2019). Some examples are described below.

An organoid biobank of breast cancer tissues from >100
patients was established (Sachs et al., 2018). These organoids
represented genetic and histopathological features of breast
cancer and maintained the expression of breast cancer
biomarkers. This means organoid biobanks have predictive
value for drug efficacy in the treatment of individual patients
(Wang, 2019), allowing personalized cancer treatment.

Van de Wetering et al. (2015) established tumor organoid
cultures from 20 consecutive colorectal carcinoma patients. The
results showed that organoids were able to resemble the original
tumor characteristics, and gene expression analysis indicated
that the majority of consecutive colorectal carcinoma molecular
subtypes were properly represented.

Sachs et al. (2018) described a protocol to produce a biobank
of human mammary epithelial organoids. The organoids were
able to recapitulate the diversity of the disease. Additionally,
histological, hormonal, and gene expression analysis resembled
the status of the original tumor. Furthermore, the organoids
allowed proper drug screening tests when compared with in vivo
xeno-transplantations.

Yan et al. (2017) developed a primary gastric cancer
organoid biobank that comprises normal, dysplastic, cancer, and
lymph node metastases from 34 patients. The results showed
that organoids were able to closely mimic the morphology,
transcriptome, and gene expression profiles when compared with
in vivo original tumors. It was also seen that organoids were
sensitive to unexpected drugs (recently approved or in clinical
trials) after drug screening tests.

3D BIOPRINTING

Background
As discussed previously, 3D cell culture models as spheroids
and organoids are capable of better mimicking the tumor

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 7 June 2021 | Volume 9 | Article 68249880

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-682498 June 16, 2021 Time: 15:56 # 8

Kronemberger et al. Recapitulating Tumorigenesis: Opportunities and Challenges of Bioprinting

FIGURE 1 | Differences in fabrication of tumor spheroids and organoids. (A) Cell types used to produce tumor spheroids and organoids. Spheroids can be
fabricated from cancer stem cells, cancer cells/cancer cell lineages, or cancer tissue. Organoids must be fabricated from human cancer biopsies. (B) After the
fabrication process, tumor spheroids show different zones because of the distinct gradient concentrations of O2 and CO2. The zones from spheroids inside out are
necrotic, senescent, and proliferative. Organoids are usually produced in a hydrogel substrate and do not present a homogeneous size and shape.

microenvironment that is found in vivo by recapitulating
cellular and molecular events. However, spheroids and organoids
follow a non-guided spontaneous formation of tissues and
organs by self-assembly mechanism. In this context, because
of the ability to precisely guide and organize the position
of different cell types and growth factors and also perfusable
networks, 3D bioprinting has a potential to improve current
models and guide recapitulation of the tumor microenvironment
(Datta et al., 2020). The ability to engineer controllable
cancer tissue models in high resolution can considerably
accelerate cancer research and improve personalized medicine,
improving the treatment and life expectancy of cancer patients
in the future (Knowlton et al., 2015; Belgodere et al., 2018;
Langer et al., 2019).

3D bioprinting is one of the most widely used technologies in
tissue engineering and regenerative medicine to develop complex
tissues and organs that mimic their native microenvironment
(Murphy and Atala, 2014; Moroni et al., 2018). As 3D
bioprinting is a process where bioinks, usually composed
of hydrogels, and cells are turned into functional tissue-
engineered constructs from digital models, it is constantly
showing more advantages compared with classical scaffold-
based tissue engineering. One of the principal aims of using

3D bioprinting techniques so far is to biofabricate vascular
structures (Vijayavenkataraman et al., 2018). This technique
integrates biomaterials, living cells, and automated controlled
systems to create complex microstructures and precise control
over the structures developed compared with other currently
available methods (Mandrycky et al., 2016).

Usually, 3D bioprinting begins with a computer-assisted
process in order to deposit biologically relevant biomaterials,
growth factors, and living cells to generate a desired tissue
or organ model. Basically, it is possible to divide the 3D
bioprinting process in three: (1) pre-processing for acquiring
the 3D computer-aided design (CAD) model of the tissue to
be bioprinted, (2) automated deposition of cells, spheroids,
biomaterials, or other biological component of interest, and (3)
maturation of the tissue constructs (Zhang Y. S. et al., 2017;
Datta et al., 2018).

The principal 3D bioprinting techniques are (1) inkjet, (2)
extrusion-based, and (3) laser-assisted bioprinting (Huang et al.,
2017). In inkjet bioprinting, it is possible to precisely control both
the size of the desired tissue pattern, as well as the generated
droplets. In this way, it is possible to determine the volume,
size, and quantity of a sample to be bioprinted. In terms of
precision, it is possible to control the number of the cells per
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droplet, which is an advantage when scaffolds are being used
(Zhang and Zhang, 2015).

Extrusion-based bioprinting is the most used technique that
uses the principles of a fluid-dispensing system with a robotic
one for extruding materials, which can then be applied to
different 3D bioprinting approaches. The fluid-dispensing system
can be directed by pneumatic, mechanical, or solenoid forces.
Through extrusion-based bioprinting, it is possible to precisely
deposit cells, which can be encapsulated in a pre-established
design of geometrical filaments and then bioprinted (Ozbolat
and Hospodiuk, 2016). However, one of the biggest challenges
of this technique is the resolution level that can be reached
(Ning and Chen, 2017).

Laser-assisted bioprinting is based on the laser-induced
forward transfer (LIFT) principle and is considered a “direct-
write” method, which can precisely control the virtual deposition
of cells, growth factors, and biomaterial containing droplets at a
MHz range speed. Therefore, with this technique, it is possible
to achieve high resolution (Devillard et al., 2014). However, the
principal disadvantage is the use of the laser directly on the cells,
which can damage cell viability (Derakhshanfar et al., 2018).

In order to authentically develop the desired tissue construct,
the hydrogel choice is crucial, mainly because the hydrogel
will provide the physical and biochemical properties to guide
cell proliferation, differentiation, and the final maturation of
the engineered construct. In this way, the hydrogel must
contain similar properties of the desired tissue when in vivo
(Gopinathan and Noh, 2018). Several hydrogel formulations have
been developed, such as decellularized ECM, alginate, gelatin,
hyaluronic acid, and polymers (such as methacrylated gelatin,
polyethylene glycol and poly lactic acid) to serve as functional
bioinks (Parak et al., 2019).

Scaffold-Free 3D Bioprinting
The use of bioinks is the foundation of bioprinting. This approach
is based on cells and/or biomaterials with specific formulations
for each type of cell (Hospodiuk et al., 2017). The ideal
formulation of bioinks should meet each cell type’s biological
requirements without toxicity to the cells (Gungor-Ozkerim et al.,
2018). Their desired properties include printing, mechanical
properties, biodegradation, and post-bioprinter maturation
(Hong et al., 2018). These properties depend on different
parameters such as solution viscosity, surface tension of the
bioink, the ability to interconnect on its own, and the properties
of the printer nozzle surface. The living cells encapsulated in
the bioink grow and occupy the space to form predefined tissue
structures (Huang et al., 2017; Gungor-Ozkerim et al., 2018).

However, an important limitation of this approach is that,
although cells can be manipulated individually, they do not form
mechanically stable assemblies in many cases unless intercellular
adhesions are made very strong, possibly by chemical means,
which is not ideal for mimicking the tissue microenvironment
(Goulart et al., 2019). Additional structural cohesion needs to be
produced by the cells, like their own secreted ECM. However, this
is a long-term process and depends on the cell type and the ECM
deposition quality (Ong et al., 2018; Heo et al., 2020).

The alternative approach of using cells with a pre-assembly
of spheroids has been widely studied, as it improves the
production capacity of its ECM, in addition to providing greater
biomechanical cohesion in larger-scale constructs for bioprinting
(Swaminathan et al., 2019). Also, spheroid-based methods are
generally milder and, therefore, induce much less or no cell
damage during bioprinting (De Moor et al., 2018). Another
attractive feature of spheroid bioprinting is its efficiency, as the
speed of bioprinting can be increased using large building blocks
such as spheroids (Gutzweiler et al., 2017).

An alternative method, still considered to be scaffold-free,
can provide temporary support to the spheroids and, thus,
facilitate their fusion and maturation in tissue models using a
set of microneedles ("Kenzan"). The Kenzan bioprinting method
provides a high-resolution biofabrication process, facilitating the
fusion of spheroids into larger tissue constructions in a needle
matrix removed after spheroid fusion. This method is used in
the Bio-3D Regenova Printer marketed by Cyfuse Biomedical
(Moldovan, 2018; Murata et al., 2020).

Recently, bioinks were developed using formulations
composed only of spheroids with several thousand cells. Studies
have shown that spheroids can form tissue threads up to 8 cm
in length with rapid spheroid fusion without using aggressive
chemicals as crosslinkers or as support materials (Bakirci
et al., 2017; Ji and Guvendiren, 2017; Osidak et al., 2019). The
spheroid bioinks showed better results than the individual cells
because they preserved the integrity of the ECM. The use of
bioinks without structure, composed only of cells, has been
attracting more and more attention as a bioprinting method
for the 3D construction of complex tissues, through which the
application of ball-beading constructions is widely addressed
(Skardal et al., 2016).

Several spheroid bioprinting techniques have been reported
in the literature. One of the first techniques widely explored
was extrusion-based bioprinting, in which the spheroids were
loaded into a syringe cylinder and extruded into a controlled
distribution gel medium. However, the spheroid tips easily
deform in the syringe and are subject to breakage during the
extrusion process. Simultaneously, the support structures need
to be printed in 3D to facilitate the aggregation of extruded
ball tips (Mandrycky et al., 2016). A significant advance was
made using the Kenzan method. However, the method has
limitations inherent to the accuracy of the 3D bioprinting process
(Moldovan et al., 2017). To overcome some of the greatest
challenges of the current techniques, recent studies have shown
that aspiration-assisted bioprinting allows accurate bioprinting of
spheroids over sacrificial or functional gel substrates (Chimene
et al., 2016). In a mold of sacrificial material, such as alginate
or agarose, the material is discarded as the bioprinted tissue
matures and subsequently deposits its components in the ECM
(Ayan et al., 2020).

Although methods using sacrificial gel substrates do not
present the common problems of inkjet and microextrusion
(such as nozzle clogging), they still have their technical
limitations (Vijayavenkataraman et al., 2018; Adhikari et al.,
2021). One of these limitations is the time necessary to form
and maturate spheroids prior to bioprinting. In addition,
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the development of specific bioinks compatible with the
characteristics of most spheroid types is essential for the viability
and correct maturation of each tissue (Li et al., 2016).

Large-scale production is also still a great challenge (Datta
et al., 2020). Studies on standardization and automation of
spheroid production are essential for building more complex
and genuine-sized tissues in the future. Moreover, an important
implication in biofabrication is training for the unique skills
and techniques required of this technology’s users and operators.
Finally, the bioprinting of 3D cell constructs originating from
spheroids composed of various types of cells has been studied to
increase the functionality of these 3D constructs (Sasmal et al.,
2018; Swaminathan et al., 2019).

3D Bioprinting of Tumor Models
For recreating the tumor microenvironment, there is a need
of tumor ECM reconstitution and the recreation of tumor
vasculature (Liu et al., 2020). In Figure 2, the essential
steps and bioinks to recreate the tumor microenvironment
by 3D bioprinting are proposed. The ECM of the tumor
microenvironment is composed of different proteins and stromal
cells, but it is known that the composition of tumor ECM is tumor
and patient specific. In addition, the biomechanical properties
of tumor ECM can regulate tumor behavior and progression
(Zhang Y. S. et al., 2016).

Recently, a considerable number of studies were performed
to develop tumor models by 3D bioprinting. Table 1 reviews

some of these studies. Dai et al. (2017) focused on replicating
tumor microenvironments by improving tumor and stromal cell
interactions in 3D bioprinted constructs. Their strategy relied on
the self-assembly of multicellular heterogeneous brain tumor cell
fibers by extrusion-based bioprinting. These fibers were part of
the tumor ECM of the brain tumor. The morphological results
showed that the construct was viable, proliferative, and presented
tumor-stromal cell interactions. Hermida et al. (2020) used
extrusion-based bioprinting to engineer glioblastoma models
made of cancer, microglia, and stromal cells bioprinted within
alginate modified with RGDS cell adhesion peptides, hyaluronic
acid, and type I collagen. The glioblastoma cells presented
more resistance to chemotherapeutic drugs in 3D engineered
bioprinted constructs compared with monolayer cultures.

Despite the development described above for spheroid
bioprinting strategies, several studies have shown the
spontaneous formation of spheroids after 3D bioprinting,
reaching the mimicry of specific cancer types. Jiang et al. (2017)
developed a proof of concept study by bioprinting a cross-linked
alginate/gelatin hydrogel composed of breast cancer lineage
cells and fibroblasts. After 1 week in culture, breast cancer cells
formed viable spheroids that increased in size over time and
attracted migrating fibroblasts through a matrix region of the
hydrogel, which infiltrated the breast cancer spheroids.

Using the technique of 3D bioprinting named “laser direct
write,” Kingsley et al. (2019) used microbeads to allow the
formation and growth of multicellular tumor spheroids with

FIGURE 2 | Steps and bioinks to biofabricate the tumor microenvironment by 3D bioprinting. (A) Steps to start the biofabrication process. First, it is necessary to
choose a bioprinting method, which will complement the desired output. The majority of studies to develop cancer models are done with extrusion-base techniques.
Then, the 3D design of the cancer model must be made by software or can be based on images. Next, it is necessary to choose the biological (cells or spheroids)
and biomaterial (usually hydrogels) components of the bioinks. Finally, the bioprinting process can be started and tissue maturation can be carried out post printing.
(B) Bioinks to replicate tumor microenvironments. In order to mimic the tumor microenvironment, the main bioinks are tumor spheroids, immune cells, endothelial
cells, and a hydrogel to support cells proliferation and survival.
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homogeneous size and shape. The decellularized rat and human
breast tissue ECM was used as a bioink for organoid formation
by 3D bioprinting (Mollica et al., 2019). The principal advantage
in this strategy is that these ECM hydrogels keep the structural
and signaling cues of the breast cancer environment, which can
determine a cell’s fate. The results showed that the hydrogel
supported the production of breast cancer cell organoids allowing
their use to engineer more complex organoids models to pre-
clinical assays.

Schmidt et al. (2019) compared the interaction of different
bioprinted hydrogels with melanoma cells. In total, five hydrogels
were tested: matrigel and two different types of commercially
available bioinks, with or without RGD sequence/laminin
mixture. In Matrigel, melanoma cells were able to spread,

proliferate, and produce networks in the construct, while
in gelatin methacrylate melanoma cells grow in clusters. As
expected, the choice of the bioink is crucial for the behavior of
cancer cells in engineered constructs.

Human breast epithelial cell lines can be bioprinted as a cell
suspension or as formed spheroids in alginate-based bioinks.
These cells only formed spheroids in Matrigel-based biolinks and
pre-formed spheroids kept their morphology and viability after
bioprinting. When spheroids were formed, breast cancer cells
were more resistant to drug assessment, replicating the tumor
microenvironment (Swaminathan et al., 2019).

Maloney et al. (2020) used an immersion printing technique
approach to perform the 3D bioprinting of tissue organoids in
96-well plates. The results showed that the bioink allowed the

TABLE 1 | Biofabrication of cancer models by 3D bioprinting.

Authors and year Aim Bioprinting
technique

Bioink Main result Article title and journal

Dai et al., 2017 Improve tumor and stromal
cell interactions by the
development of 3D
bioprinted constructs

Extrusion Cancer cells within alginate,
gelatin and fibrin

The construct was viable
and resembled properly
tumor and stromal cell
interactions found in the
in vivo tumor

Coaxial 3D bioprinting of
self-assembled multicellular
heterogeneous tumor
fibers. Scientific reports.

Hermida et al.,
2020

Engineer a 3D construct of
a glioblastoma model by
bioprinting

Extrusion Cancer, microglia and
stromal cells within
alginate/RGDS, hyaluronic
acid and collagen I
hydrogels

The biofabricated
glioblastoma model was
functional and showed
resistance to drugs

Three dimensional in vitro
models of cancer:
Bioprinting multilineage
glioblastoma models.
Advances in biological
regulation.

Jiang et al., 2017 3D bioprinting of cells to
produce complex
spheroids models

Extrusion Cancer and fibroblasts cells
within alginate/gelatin
hydrogel

The biofabricated spheroids
were viable and increased
in size over time

Directing the Self-assembly
of Tumor Spheroids by
Bioprinting Cellular
Heterogeneous Models
within Alginate/Gelatin
Hydrogels. Scientific
reports.

Kingsley et al.,
2019

Biofabrication of tumor
organoids by 3D bioprinting

Laser-
assisted

Decellularized rat and
human breast tissue
extracellular matrix

The hydrogel supported the
biofabrication of breast
cancer cell organoids

Laser-based 3D bioprinting
for spatial and size control
of tumor spheroids and
embryoid bodies. Acta
Biomaterialia.

Schmidt et al.,
2019

Biofabrication of melanoma
constructs

Extrusion Melanoma cells within
matrigel, two different types
of commercially available
bioinks, with or without
RGD
sequence/laminin-mixture

The melanoma cells were
able to spread, proliferate
and create networks in the
hydrogels

Tumor Cells Develop
Defined Cellular
Phenotypes After
3D-Bioprinting in Different
Bioinks. Cells.

Swaminathan et al.,
2019

Biofabrication of breast
cancer spheroids by 3D
bioprinting

Extrusion Breast epithelial cells and
alginate

Spheroids were formed and
resistant to drugs,
replicating better the tumor
microenviroment

Bioprinting of 3D breast
epithelial spheroids for
human cancer models.
Biofabrication.

Maloney et al.,
2020

Biofabrication of
glioblastoma and sarcoma
organoids by 3D bioprinting

FRESH Cancer cells within
hyaluronic acid and
collagen

The organoids were
biofabricated, presented a
spherical shape and can be
used for drug screening
tests

Immersion Bioprinting of
Tumor Organoids in
Multi-Well Plates for
Increasing Chemotherapy
Screening Throughput.
Micromachines.

Han et al., 2020 Recapitulate tumor
microenviroment with
spheroids by 3D bioprinting

Extrusion Fibroblasts and endothelial
cells in gelatine, alginate
and fibrinogen

Microvessel sprouting in the
construct, increase of
spheroids size and efficacy
in drug screening tests

3D Bioprinted Vascularized
Tumor for Drug Testing.
International journal of
molecular sciences.
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TABLE 2 | Current 3D models for recapitulating tumor microenvironment.

3D models Materials for 3D models preparation Cell types Mimicry level

Spheroids • Plates and rotors for cultivation such as spinner flasks,
rotary cell culture systems, liquid overlay, micropatterned
plates, low binding plates, microfluidics device
• Culture in the presence or absence of fetal bovine serum

(FBS)

• Can be obtained from cancer stem cell (CSC) population,
tissue-derived tumor spheres such as lung, bladder,
prostate, or breast cancer tissue and uveal melanoma,
including cell lineages
• Some tumor cells form spheres spontaneously, while others

require additional manipulations

+

Organoids • Cultured on diverse matrices such as Matrigel, collagen
type I, HA (hyaluronic acid) hydrogel, PEG hydrogel,
fibrin/laminin hydrogel

• Can be obtained from tumor cells isolated from tumor
tissue such as metastatic colorectal carcinoma tissue,
cervical carcinoma biopsy tissue, tumors of the
gastrointestinal tract, prostate tumor cell lines
• Can also be obtained from non-tumor organoids using

gene-editing techniques

++

Bioprinting • The 3D computer models containing information such as
complex 3D geometries surface information can be created
using MRI or CT scans
• Bioreactors for tissue maturation in post-processing

• Multiple types of cancer cells including primary cancer cells,
circulating tumor cells, and stromal cells including
fibroblasts, endothelial cells and stem cells can be used for
printing personalized tumor construct

+++

3D models Advantages Disadvantages

Spheroids • Presence of gas, nutrient and pH gradients
• Co-culture
• Cultures without expensive cultivation methods
• Reproduction of cell-cell and cell-ECM interactions
• The screening of personalized drug can be performed with

very small quantities of chemotherapeutic candidates

• Gradient structure complicates drug testing
• Fragile structure
• Difficulty of forming homogeneous spheroids
• Cannot completely recapitulate the cellular and microenvironmental heterogeneity

of physiological tumor tissue

Organoids • Reproduction of cell-cell and cell-ECM interactions
• Co-culture Primary tumor cells
• Long-term cultivation
• Stable at passaging

• Gradient of gases, nutrients and pH is not always reproducible
• Therapeutic responses may depend on the matrix
• High cost method

Bioprinting • Enables the generation of cell laden cancer tissue
constructs that can recapitulate the features of various
types of cancers
• Expressed characteristics of in vivo tumor tissues, such as

high growth rates of cancer cells, aggressive invasiveness,
angiogenesis, metastasis, high resistance to anticancer
drugs.
• Can supplement animal xenograft models because they

maintain cancer–stromal cell interactions.
• Can integrate perfusable vascular networks, automation

and high-throughput testing
• The inkjet bioprinting have low cost, fast printing and widely

accessible
• Non-contact and high cell viability in the Laser-assisted

bioprinting (LAB)
• Deposition of high-density cells in the Extrusion bioprinting

• A single bioprinting method cannot yet produce synthetic tissues and organs at all
scales and complexities.
• The inkjet bioprinting has drawbacks in terms of material viscosity.
• The microextrusion bioprinting may need materials having crosslinking mechanisms

or shear reduction properties not to affect cell viability
• The difficulty in developing well-established vascular network within tumors
• Require a labor -intensive and high cost
• The inkjet bioprinting may have Nozzle clogging
• Complex operation and time consuming preparation in laser-assisted bioprinting

(LAB)
• Low cell viability in extrusion bioprinting

3D models Adaptable tothe HTS system References

Spheroids +++ Sutherland, 1988; Wartenberg et al., 2001; Del Duca et al., 2004; Mazzoleni et al.,
2009; Hardelauf et al., 2011; Li et al., 2011; Vinci et al., 2012; Froehlich et al., 2018;
Ruiz et al., 2019

Organoids + Fujii et al., 2016; Nanki et al., 2018; Xu et al., 2018; Fan et al., 2019; Lin et al.,
2019; Nunes et al., 2019; Fiorini et al., 2020

Bioprinting N/A Hopp et al., 2005; Koch et al., 2010; Gruene et al., 2011; Murphy and Atala, 2014;
Orloff et al., 2014; Mandrycky et al., 2016; Zhu et al., 2016; Peng et al., 2017;
Mohammadi and Rabbani, 2018; Datta et al., 2020; Emmermacher et al., 2020

+, means less mimicry; ++, means intermediary mimicry; +++, higher mimicry.

maintenance of the organoid structure. In the study, the bioink
was composed of hyaluronic acid and collagen and was printed in
a support bath made of gelatin. This innovative strategy, named
as “Freeform Reversible Embedding of Suspended Hydrogels”
(FRESH) is being largely explored to bioprint soft tissues without

a scaffold, because it allows the maintenance of the biological
structure after the removal of the support bath. To the best of
our knowledge, this is the only technique at the moment that
can be used to bioprint organoids. More importantly, the authors
proved with patient-derived glioblastoma and sarcoma organoids
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that it is possible to use the method for drug screening
tests in vitro.

Han et al. (2020) used 3D bioprinting to recapitulate the tumor
microenvironment using spheroids. The method consisted of the
biofabrication of a blood vessel layer engineered by fibroblasts
and endothelial cells in gelatin, alginate, and fibrinogen, followed
by the seeding of multicellular tumor spheroids of glioblastoma
cells onto this blood vessel layer. The main results showed the
sprouting of blood vessels with an increase in spheroid size.
In addition, drug testing was performed and the biofabricated
construct was sensitive to the treatment, showing that it can be
used for drug efficacy tests in vitro.

However, there is an important limitation of these models
that use hydrogels for drug testing. HTS analysis based on
luminescence/fluorescence cannot be applied to these models due
to the presence of hydrogels which are high viscous biomaterials.
Another issue related to hydrogels is the small volume used in
some applications because it can impair HTS tests (Yu et al.,
2018). Table 2 summarizes the main characteristics, advantages,
and disadvantages of 3D models described in this review.

PERSPECTIVES

Some studies already used 3D bioprinting to develop successful
tumor models; however, to the best of our knowledge, the
use of spheroids as a printable bioink to biofabricate tumor
models has not been largely explored yet. As spheroids
are a 3D model with complex cell-to-cell and cell-to-
extracellular matrix interactions, it would be advantageous to
use them as the main component of the bioink associated
with the stromal components and immune cells. Tumor
organoids show the main advantage of being derived from
human cancer biopsies; however, their 3D bioprinting is
still in its infancy due to their shape heterogeneity, lack of
reproducibility, and complexity.

Furthermore, patient-derived 3D bioprinted tumor models
could be successfully used for in vitro drug screening of
anticancer drugs in large scale. However, some challenges need
to be addressed before this step, especially related to the hydrogel
composition. Some studies are already exploring how to optimize
the hydrogel to not impair HTS tests and analysis (Barata et al.,
2016; Sarkar and Kumar, 2016; Lee et al., 2018). In addition,
ongoing studies are focusing on the development of combined
microfluidic/bioprinted constructs to minimize the cost and
facilitate HTS of a large number of cancer drugs for a particular
patient in order to improve personalized medicine approaches
(Augustine et al., 2021).

CONCLUSION

3D bioprinting is a recent and innovative approach that offers
the ability to create highly complex hierarchical 3D constructs
with cells, biomaterials, and growth factors. Bioprinting methods
have been developed and optimized in recent years in order to
accurately replicate the morphology, functions, and physiology
of a specific tissue and their in vivo microenvironment. As
tumor microenvironments are complex in cell and extracellular
matrix composition, 3D bioprinting holds great potential for
applications in cancer research, in order to mimic more reliable
tumor models and their vasculature (Knowlton et al., 2015;
Albritton and Miller, 2017).

The use of 3D bioprinting can allow the positioning of
tumor spheroids or organoids and the surrounding stromal
and immune cells, commonly associated with this complex
tumor microenvironment. The recapitulation of tumorigenesis
will provide more reliable results to drug screening tests (Satpathy
et al., 2018; Meng et al., 2019) and personalized medicine
(Ma et al., 2018).
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Nanoparticles have tremendous therapeutic potential in the treatment of cancer as they
increase drug delivery, attenuate drug toxicity, and protect drugs from rapid clearance.
Since Doxil®, the first FDA-approved nanomedicine, several other cancer nanomedicines
have been approved and have successfully increased the efficacy over their free drug
counterparts. Although their mechanisms of action are well established, their effects
towards our immune system, particularly in the tumor microenvironment (TME), still
warrant further investigation. Herein, we review the interactions between an approved
cancer nanomedicine with TME immunology. We also discuss the challenges that need to
be addressed for the full clinical potential of ongoing cancer nanomedicines despite the
encouraging preclinical data.

Keywords: tumor micoenvironment, immunogenicity, hypersensitivity, cytotoxicity, drug development

TUMOR IMMUNOLOGY

Tumor immunology is the interaction between cells of the immune system with tumor cells which
lead to our understanding in the mechanisms of both tumor rejection and tumor progression (Copier
and Dalgleish, 2013). In cancer, tumors may undergo “spontaneous regression” in which a tumor
disappears on its own. This phenomenon can be attributed to the active immune system that is
triggered by a secondary immune stimulation such as an active infection, which can then initiate an
antitumor cell immune response (Tadmor, 2019).

In principle, our immune system protects us against cancer through three primary roles which are
1) elimination of the potentially virus-induced tumor infection, 2) prompt resolution of
inflammation that is conducive for tumorigenesis, and 3) identification and elimination of
tumor cells based on their expression of tumor-specific antigens (Swann and Smyth, 2007). The
third process is called immune surveillance that ideally eliminates all tumors promptly upon
identification of their antigen. However, some malignancies appear to escape immune
surveillance by either inducing tolerance rather than an active immune response or the immune
system eventually is too overwhelmed and hence the tumor progresses (Ostrand-Rosenberg, 2008;
Mak et al., 2014).

In immune surveillance, tumor antigens (TAs) play important parts in the development of the
tumor microenvironment (TME). They generally fall into two classes, tumor-associated antigens
(TAAs) and tumor-specific antigens (TSAs), TAs are presented by major histocompatibility complex
(MHC) I and II on the surface of tumor cells and trigger immune response in the host (Mak et al.,
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2014). TAAs are normal proteins or carbohydrates expressed in a
way that is abnormal relative to its status in the healthy, fully
differentiated cells in the surrounding tissue of origin. For
example, they may be expressed in abnormal concentrations
and at wrong locations and times. Meanwhile, TSAs are new
macromolecules that are unique to the tumor and are not
produced by any type of normal cells. Due to their non-self
nature, TSAs constitute true immunogens capable of eliciting an
immune response. Overall, TAs can be categorized into several
types including oncofetal, oncoviral, overexpressed or
accumulated, cancer-testis, lineage-restricted, mutated, post-
translationally altered, and idiotypic (Zarour et al., 2003).
Hence, identification of TAAs and TSAs serve as a reliable
biomarker for tumor diagnosis as well as a target for the
development of cancer vaccines (Aly, 2012).

In the TME, there are two possible interactions that might
happen. First is the antitumor immunity that works to prevent
tumorigenesis in the first place (Munhoz and Postow, 2016). In
antitumor immunity, both innate and adaptive immune
responses are activated by TAs leading to tumor control. In
this immunity, leukocytes such as tumor-infiltrating
lymphocytes (TILs) which are mature CD4+ or CD8+ or
B cells directly respond to the presence of a tumor cell (Mak
et al., 2014). The second interaction is the evasion of antitumor
immunity or immune escape as the immune system does not
always succeed in controlling tumorigenesis. It is widely accepted
that tumor immunoediting is a dynamic process that not only
involves antitumor immunity, but shapes the immunogenicity of
developing tumors as well. There are three distinct phases of
tumor immunoediting which are elimination, equilibrium, and
escape (Muenst et al., 2016). All three phases of tumor
immunoediting are manifested through metabolic and cellular
changes, in which the differences influence different types of
cancer (Teng et al., 2008; Wenbo and Wang, 2017).

Elimination is a phase where evolving tumors are successfully
rejected by the innate and adaptive immune response through
various mechanisms (IFNγ, Perforin, TRAIL, IFNα/β, NKG2D)
(Swann and Smyth, 2007). Then, some of the tumor cells that
are not completely eliminated may enter the equilibrium phase
when the immune system controls tumor outgrowth and tumor
cells enter a dormant state or continue to evolve over a period of
time (Dunn et al., 2004). In this phase, the constant interaction
of tumor cells with the immune system over a period of time
may edit the phenotype of the developing tumor into a less
immunogenic state (Teng et al., 2008). Being in this state, the
tumor cells are no longer susceptible to immune attack and this
is where the tumor cells may escape from immune control and
proliferate in an unrestricted manner, leading to clinically
apparent tumors (Muenst et al., 2016). According to Mak et
al., 2014, there are two forms of escape from immune control
that are thought to be associated with all TMEs, regardless of
which leukocytes respond to the malignancy. First is the
abnormal property of the tumor vasculature comprised of
capillaries that wind in and out of a tumor mass that hinder
leukocyte extravasation into the tumor site. The second form of
escape is from the elevated levels of plasma TGFβ that is
established to promote malignant transformation of

fibroblasts and stimulate angiogenesis within the tumor,
termed as immunosuppression.

DEVELOPMENT OF APPROVED
NANOMEDICINE

Over the years, the Food and Drug Administration (FDA) in the
US and its equivalent in the EU, the European Medicines Agency
(EMA), have certified a number of nanomedicine-based drugs for
cancer diagnostic and therapeutic purposes, and many other
formulations are currently being evaluated (Martinelli et al.,
2019). Worldwide, nearly 250 formulations based on the
nanotechnology platform have been approved for the market
or are in various clinical stages for evaluation (Bremer-Hoffmann
et al., 2018) (Table 1). The approval process for nanomedicine in
humans regulated by the FDA is essentially the same as for any
other regulated drug, device, or biologic (Eifler and Thaxton,
2011). According to the FDA, development of a drug and its
approval is categorized into three major phases as outlined in
Figure 1. Following discovery of the material, the pre-clinical
phase of testing usually involves animal studies to demonstrate
the efficacy, safety, and toxicity profile and to identify appropriate
dose ranges (Tinkle et al., 2014). The FDA approval process is
time consuming, labor intensive, and rigorous, hence it is
estimated that it takes approximately 10–15 years to develop a
new medicine (DiMasi et al., 2003). For nanomedicine, the
important aspect regarding its R&D, highlighted by the FDA,
is the comprehensive characterization of the nanomaterial
considering its efficacy, toxicity, and physiochemical properties
(Bobo et al., 2016). These findings are compiled into an
Investigational New Drug (IND) application for FDA
consideration. Upon approval of an IND, clinical trials, which
are divided into three phases, are conducted to determine the
safety and efficacy of the new nanomedicine. Since 2005, more
than 30 new and abbreviated drug applications involving
nanomaterials have been approved by the FDA (D’Mello et al.,
2017). This is remarkable for a newly developing field. By
comparison, for recombinant proteins and for antibody-based
therapeutics, it took almost 2 decades of developments before the
first drugs started to make it to the market (Reichert, 2003). More
than 50 drug products containing nanomaterials are FDA
approved for clinical use and more than a dozen of them have
been approved in the last decade (Bobo et al., 2016; D’Mello et al.,
2017).

EFFECT OF NANOMEDICINE TOWARDS
IMMUNE RESPONSES

Previously, most cancer therapies were designed to directly killed/
removed tumor cells either by pharmacological agents, surgery, or
radiotherapy. Then it moved to targeted therapy when specific
drugs with some molecular targets such as selective kinase
inhibitors and monoclonal antibodies were developed (Falzone
et al., 2018). While these therapies significantly improved quality
of life as well as survival of cancer patients, variable efficacy and
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TABLE 1 | Approved nanomedicine in cancer.

Type Nano
medicine

Nanomaterial Active substance Indication Approval
year

Advantage Reference

Liposome Doxil/Caelyx PEGylated liposome Doxorubicin Ovarian cancer 2005 Improved delivery Barenholz (2012),
Tejada-Berges et al.
(2014)

Multiple myeloma 2008 Decrease systemic
toxicity

HIV-related kaposi
sarcoma

1995 Less cardiotoxic

DaunoXome Liposome Daunorubicin HIV-related kaposi
sarcoma

1996 Improved delivery Pillai (2014)
Decrease systemic
toxicity
Less cardiotoxic

Myocet Non-PEGylated
liposome

Doxorubicin Metastatic breast
cancer

2002 Less cardiotoxic Batist et al. (2005)

Marqibo Liposome Vincristine sulfate ALL 2012 Improved delivery Pillai and
Ceballos-Coronel (2013)Decrease systemic

toxicity
Mepact Liposome Mifamurtide Bone sarcoma 2009 Improve OS Hartmann et al. (2013)
Onivyde Liposome Irinotecan Pancreatic cancer 2015 Reduced AE Havel et al. (2016)
Vyxeos
CPX-351

Liposome Cytarabine AML 2017 Improve OS Krauss et al. (2019)
Daunorubicin

Depocyt Liposome Cytarabine Lymphomatous
malignant meningitis

1999 Improved delivery Patra et al. (2018)
Decrease systemic
toxicity

Inorganic and
metallic

NanoTherm SPION Aminosilane Glioblastoma 2010 Less invasive
ablation therapy

Massadeh and Al Aamery
(2016)

Reduce risk of
overtreatment

Protein Abraxane Albumin Paclitaxel Breast cancer 2005 Increased solubility Gradishar et al. (2005),
Fu et al. (2009)NSCLC 2012 Reduced IR

Pancreatic cancer 2013 —

Ontak Recombinant DNA-
derived cytotoxic
protein

IL-2 and diphtheria
toxin

Cutaneous T cell
lymphoma

1999 Targeted delivery Ventola (2017)

Oncaspar PEGylated protein
conjugate

L-asparaginase Acute lymphoblastic
leukemia

2006 Improved stability
of drug load

Brandenburg et al. (2020)
2016

Polymer SMANCS Polymeric conjugate Neocarzinostatin Hepatocellular
carcinoma

1994 Decrease toxicity Maeda (2001)

Genexol-PM Polymeric micelle Paclitaxel NSCLC 2006 Controlled drug
release

Guo et al. (2016)

Breast cancer Targeted delivery
Ovarian cancer —

Eligard Polymeric NPs Leuprolide acetate Advanced prostate
cancer

2002 Controlled drug
release

Sartor (2003)

Longer circulation
time

HIV—human immunodeficiency virus, SPION—superparamagnetic iron oxide nanoparticle, NSCLC—non-small cell lung cancer, AML—acute myeloid leukemia, ALL—acute lymphoid
leukemia, PEG—polyethylene glycol, AE—adverse event, OS—overall survival, IR—immune response.

FIGURE 1 | Process of new drug development according to the FDA, adopted from (Lipsky and Sharp, 2001).
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safety issues persistently limited the full capacity of cancer
therapies. Nanomedicine offers these therapies a better
targeting approach that would increase drug accumulation into
a tumor without affecting other healthy cells, thus reducing
systemic toxicities (Gao et al., 2019). Furthermore,
nanomedicine is established to address several issues with
current cancer therapies including the low response rate of
free drugs as well as the emergence of drug resistance. Like
the drug itself, introduction of NPs would induce a different
interaction in the body, particularly with the immune system,
either targeted or spontaneous.

Immunogenicity
Cancer chemotherapy is often immunosuppressive and drug
resistance usually occurs after a short period of tumor shrinkage.
Certain chemotherapeutic drugs such as doxorubicin have the
potential to increase tumor immunogenicity through activation
of immunogenic cell death (ICD). ICD is defined as the chronic
exposure of damage-associated molecular patterns (DAMPs) in the
TME, which provide long-lasting antitumor immunity (Zhou et al.,
2019). Doxil is shown to increase the expression of CD80 onmature
dendritic cells which activate an anti-tumor T cell response (Rios-
Doria et al., 2015), improve macrophage immunostimulatory (M1)
content in tumor tissue and efficacy of immune checkpoint
blocking antibodies anti-CTLA-4/anti-PD-1 (Panagi et al., 2020),
upregulate MHC-1 and Fas, and sensitize CTL killing and Fas-
mediated death in vitro (Alagkiozidis et al., 2009). Meanwhile,
Abraxane is taken up by macrophages viamacropinocytosis which
inducesM1 cytokine expression and promotes nitric oxide synthase
expression, thus increasing cytotoxicity towards tumor cells (Cullis
et al., 2017). Furthermore, Abraxane is shown to enhance drug
uptake and penetration into tumors in vitro, hence the superior
efficacy in numerous cancer types compared to Taxol alone (Yuan
et al., 2020).

Mepact is a liposome conjugated to a synthetic analog of a
bacterial cell wall component and is used as an adjuvant in
standard chemotherapy. This potent, non-specific
immunomodulator mediates the activation of monocytes and
macrophages, thus modulating the balance of immune responses
such as increased circulating TNF and IL-6 (Punzo et al., 2020).
Not only that, Mepact is demonstrated to be a possible anti-
resorption agent by reducing pro-osteoporotic markers, thus
explaining the improved overall survival from osteosarcoma
(Ando et al., 2011; Bellini et al., 2017). Oncaspar, a PEGylated
form of native Escheria coli-asparaginase is indicated for
treatment of acute lymphoblastic leukemia. The PEGylation
showed diminished asparaginase immunogenicity without
affecting its enzymatic properties (Heo et al., 2019). Reduction
of Oncaspar’s immunogenicity is portrayed by the decrease of
neutralizing antibodies that may induce hypersensitivity and/or
loss of enzyme activity. Ontak is an engineered fusion protein of
IL-2 and diphtheria toxin that targets the IL-2 receptor, such as
CD25 on tumor-infiltrating cells regulatory T cells (Tregs), the
internalization releases diphtheria toxin, causing apoptosis (Foss,
2006). The effect of Ontak on immunosuppressive Tregs further
enhances anticancer immune responses. Furthermore, CD25 that
can be targeted by the IL-2 fusion protein on Ontak is also present

on lymphoid tumor cells and dendritic cells effector T cells,
making this recombinant protein a great pharmacological
intervention strategy (Lutz et al., 2014). However, due to
production issues related to bacterial immunotoxin, Ontak was
discontinued in 2014 although currently there are several Ontak-
like formulations under development that use other bacterial
expression systems (Shafiee et al., 2019).

TME Normalization
The tumor microenvironment (TME) consists of a complex
ecosystem with blood vessels, immune cells, fibroblast,
extracellular matrix, cytokines, and hormones that promote the
growth of cancer. So, the normalization of the TME to a normal
tissue environment may inhibit the growth of cancer and improve
cancer therapeutics including checkpoint blockers and TNFR
agonists. In in vitro studies, nanoparticles such as gold have been
demonstrated to facilitate TME normalization, increase blood
perfusion, and reduce hypoxia (Li et al., 2016; Li et al., 2017;
Xiao et al., 2017). Instead of playing a role in TME
normalization directly, the efficacy of nanomedicine is enhanced
when adjuvanted with several approaches of TME normalization
including anti-inflammatory agents, immune checkpoint blockade,
and stromal and tumor vessel normalization (Zheng andGao, 2019).
Furthermore, studies showed that TME normalization improves the
delivery of nanomedicine in a size-dependent manner (Chauhan
et al., 2012). Delivery of Doxil, with a diameter of ∼100 nm is
hindered upon normalization of blood vessels by the VEGFR-2
blocker while enhanced delivery of the smaller diameter Abraxane
was demonstrated, hence greater accumulation within the TME.
Meanwhile, Onivyde, liposomal irinotecan, is shown to enhance
accumulation of active metabolites within the TME, thus improving
its antitumor activity with minimal systemic toxicity (Zhang, 2016).
Another issue in pharmacological intervention in cancer that needs
to be addressed is their defective vasculature. Due to this,
macromolecules such as drugs could not be retained in tumor
cells and leak out into interstitial space, limiting its efficacy.
Nanoparticles, due to their physiochemical properties, could be
utilized to address this issue using the principle of enhanced
permeability and retention (EPR) (Maeda, 2017). SMANCS, a
conjugate of a hydrophobic polymer with antitumor
Neocarzinostin is the first nanomedicine using this EPR principle,
was developed to selectively deliver drugs to solid tumors and
prolong intratumoral concentration of the drug (Maeda, 2012).

Tolerability
Chemotherapy is known to induce several side effects such as
myelosuppression, cardiotoxicity, and even skin toxicity which is
a dose-limiting factor that often limits drug efficacy. Since
chemotherapy suppresses the hematopoietic system and
impairs its protective mechanism, neutropenia is one of the
serious adverse events associated with the risk of life-
threatening infections. Doxil is reported to be much less toxic
to the immune system than free doxorubicin with comparable
efficacy (O’Brien et al., 2004). In a systematic review, Abraxane is
demonstrated to induce a higher number of hematological toxic
effects (neutropenia, leucopenia, increased alanine
aminotransferase and aspartate aminotransferase) and frequent
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non-hematological toxic effects (peripheral sensory neuropathy)
compared to the free drug-paclitaxel group (Zong et al., 2017).
Abraxane is also reported to cause drug-induced immune
hemolytic anemia, a rare but fatal adverse event that affects
only one patient in a one million population (Thomas and
Shillingburg, 2015). Marqibo is designed to overcome the
dosing and pharmacokinetic limitation of Vincristine. Marqibo
is demonstrated to increase the circulation time with targeted and
intense delivery of Vincristine without augmented toxicities
including hematologic toxicity (Deitcher et al., 2014). Most
common adverse events for Onivyde and Vyxeos are
neutropenia, abdominal pain, and diarrhea that are considered
manageable, except for prolonged severe neutropenia in patients
receiving Vyxeos (Zhang, 2016; Tzogani et al., 2020).
Cardiotoxicity is another toxicity induced by chemotherapeutic
drugs including nanomedicine. Doxil and Daunoxome are both
demonstrated to reduce the rate of cardiotoxicity compared to
their free drugs, Doxorubicin and Daunorubicin, which are
significantly limited by dose-dependent cardiotoxicity (O’Brien
et al., 2004; Fassas and Anagnostopoulos, 2009). Palmar-plantar
erythrodysesthesia or hand-foot syndrome is a type of skin
toxicity that could develop from some cancer treatments. This
type of skin toxicity is demonstrated to often occur in patients
receiving PEGylated liposomal doxorubicin such as Doxil (Huang
et al., 2018; Ni et al., 2020). Polymer-based nanomedicine

including Genexol and Eligard are demonstrated to show good
safety profiles in terms of the absence of increased toxicities and
occurrence of adverse events (Sartor, 2003; Kim et al., 2004).

Infusion-Related Reaction
Hypersensitivity upon administration of a variety of drugs is
common, including nanomedicine formulation. Doxil is reported
to cause hypersensitivity, which is a non IgE-mediated allergy caused
by activation of a complement referred to as complement activation-
related pseudo allergy (CARPA) (Chanan-Khan et al., 2003). The
mechanism of CARPA upon administration of Doxil is partly
associated with some pre-existing anti-PEG antibodies (Neun
et al., 2018). Since solvent-based taxane administration such as
paclitaxel induces a high rate of hypersensitivity, albumin-bound
paclitaxel, Abraxane, represents a valid treatment option as fewer
hypersensitivity reactions towards Abraxane compared to free
paclitaxel have been reported (Zong et al., 2017; Parisi et al.,
2019). Unlike PEG, the absence of cross-reactivity between a
previous history of hypersensitivity towards taxanes and Abraxane
indicate the advantageous safety profile of this nanomedicine
(Pellegrino et al., 2017). However, another approach of
PEGylation of E. coli asparaginase in Oncaspar successfully
reduced immunogenicity of the enzyme, which subsequently
reduced the occurrence of hypersensitivity (Heo et al., 2019). As
an immunomodulator, Mepact could activate immune responses

FIGURE 2 | Immune responses of cancer nanomedicine. Combination of nanoparticles with cancer drugs induce a different effect towards immune responses
compared to free drugs in terms of (A)Normalization of the tumor microenvironment, (B) Immunogenicity, (C)Hypersensitivity, and (D) Tolerability. (A)Due to permeable
vasculature in the tumor microenvironment, nanomedicine is designed with an enhanced permeability and retention (EPR) effect to enhance the effect of the drug.
(B)Upon introduction of nanomedicine, immune cells such as antigen-presenting cells (APC) and T cells promote the release ofmediators and induce immunogenic
cell death (ICD) pathways. (D) Nanomedicine is demonstrated to increase the tolerability of drugs due to targeted release into tumor cells. (C) However, nanomedicine
could provoke the immune response to release complements responsible for hypersensitivity reactions. Created with BioRender.com.
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with a standby effect, thus causing a hypersensitivity reaction such as
pericardial effusion (Şimşek et al., 2020). The mechanism of this
reaction might be due to both the active and inactive ingredients of
Mepact that target immune cells in the lungs (Anderson et al., 2010).
The most common related effects for Mepact are chills, fever, and
headache in the initial dose and delayed fatigue in the subsequent
doses (Jimmy et al., 2017).

In conclusion, incorporation of NPs with cancer drugs induce
a different effect towards host immune responses compared to
free drugs, either intended or spontaneous. Its immunogenicity,
normalization of the TME, tolerability, and other infusion-related
reactions could be due to NPs’ own physiochemical
characteristics or interaction between the drugs (Figure 2).

CHALLENGES FOR CLINICAL USE

Although involvement of NPs in human clinical settings
increased a decade ago, extensive research to improve
biocompatibility and efficacy of NPs is still needed. Despite
several challenges that need to be addressed in the application
of NPs as a nanomedicine, its advantages outweigh those
challenges, making NPs a highly potential tool (Table 2).

Despite the abundance of encouraging experimental data on
NPs for medical purposes, only a few reach clinical use. This
statement is supported by Greish et al., who explored more than
20,000 scientific papers published on nanomedicine, and found
of these, only 15 nanoparticle-based anti-cancer drugs had
reached the market as of 2017. It is clear that the number of
publications claiming to have found new, effective, and safe
anticancer formulations, compared to the number of
compounds that actually reached the clinic, is remarkably
small (Greish et al., 2018). In their review, Greish et al.
discuss different biological aspects that hinder the clinical
progression of cancer nanomedicine, which include
misconception of EPR phenomenon, overlooking the
acquired pharmacokinetics and clearance of nanomedicine
through reticuloendothelial system, and accelerated blood
clearance. The limitations of animal models and
heterogeneity of human tumors further restricted the clinical
application of formulated nanomedicines.

Safety is the most important aspect in the development of new
drugs. Although the size of nanoparticles represents their strength,

for some nanomedicines it has also brought some shortcomings.
The small size of NPs cause some of these particles to accumulate in
the spleen and liver, which is a major safety concern in patients
(Resnik and Tinkle, 2007). In some cases, the injected doses of
nanosized molecules are cleared by reticuloendothelial system cells
with a minimal percentage of the drug dose reaching the tumors
which lowers the efficacy of the treatment.

Even when some studies reach clinical validation, logistics
issues including mass production, consistency, and
reproducibility of complex nanomedicine systems are the main
hurdles. Furthermore, the controlled and scale-upmanufacture of
each component, batch-to-batch reproducibility, and stability of
designed nanomedicines are essential for approval by the
regulatory authorities (Greish et al., 2018). Not only that,
regulation and standards for nanomedicine by regulatory
bodies are severely lacking and could be geographically
differed as one nanomedicine is approved in one country but
not in others (Zhang et al., 2020). Due to these challenges (Figure
3), hundreds of nanomedicine formulations have failed in
different phases of clinical trials, or even worse, some are
withdrawn from the market even after its approval.

TABLE 2 | Advantages and challenges of nanoparticles to be translated into nanomedicine.

Advantages Challenges

• As a non-invasive therapeutic vehicle or agent or device for theranostic application
on human diseases Poirot-Mazeres (2011)

• Less value was given to toxicity and safety of the patients Seigneuric et al. (2010)

• A smaller size of NPs helps in boosting the theranostic purpose in terms of
increasing the drug dissolution rate, saturation solubility, and intracellular uptake of
drugs in the human body Bawa (2011), Galvin (2012)

• Theranostic NPs can present unexpected toxic effects compared to usefulness
Seigneuric et al. (2010)

• Enhancing bioavailability of drugs at specific sites in the right proportion for a
prolonged period of time Galvin (2012)

• Induction of oxidative stress and formation of free radicals lead to further damage of
lipids, proteins, DNA, and other biological components through oxidation Bhaskar
et al. (2010)

• Targeting only the diseased cells without affecting normal healthy cells Sajja et al.
(2009)

• Accumulation, storage, and slow clearance of NPs from the body will lead to toxicity
of the organs such as liver and spleen Seigneuric et al. (2010), Galvin (2012)

FIGURE 3 |
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To overcome these issues, several solutions can be proposed.
In order to address the biological challenges of nanomedicine
in cancer that is a heterogenous disease, thorough designation
of nanomedicine and identification of the right animal
models and patients in preclinical investigations should be in
mind when designing a new drug entity. Good laboratory practice
(GLP) is a standard to ensure the safety and quality of new
therapeutics during clinical transition by many countries.
However, GLP for nanomedicine has not been made available
yet, hence it is imperative to formulate GLP for nanomedicine to
enhance its success rate in the market (Zhang et al., 2020). In
addressing logistic issues, careful examination of the cost-benefit
analysis should be done during the early stage of nanomedicine
development.

CONCLUSION

Despite challenges, the latest technologies and advantages of
nanoparticles continue to encourage research communities to
develop new, better nanomedicines. It is recognized as a proven
strategy to alleviate the side effects of cancer therapies and
enhance their efficacies. Nevertheless, development of
nanomedicine should always accentuate their interactions with

host immune responses, as in cancer, it’s tangibly interlinked
between one another. Although there are several aversions to
nanomedicine due to the induction of unwanted hypersensitivity,
available findings suggested that targeted approach of
nanomedicine provides a favorable effect in the immune
system, from its immunogenicity and interaction in the TME
to its tolerability. With this understanding of the interaction of
nanomedicine with the immune system, the future of
nanomedicine is promising as long as the shift to improve the
clinical impact of nanomedicine moves alongside it.
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Recent years have witnessed an unprecedented growth in the research area of
nanomedicine. There is an increasing optimism that nanotechnology applied to
medicine will bring significant advances in the diagnosis and treatment of various
diseases, including colorectal cancer (CRC), a type of neoplasm affecting cells in the
colon or the rectum. Recent findings suggest that the role of microbiota is crucial in the
development of CRC and its progression. Dysbiosis is a condition that disturbs the
normal microbial environment in the gut and is often observed in CRC patients. In order to
detect and treat precancerous lesions, new tools such as nanotechnology-based
theranostics, provide a promising option for targeted marker detection or therapy for
CRC. Because the presence of gut microbiota influences the route of biomarker
detection and the route of the interaction of nanoparticle/drug complexes with target
cells, the development of nanoparticles with appropriate sizes, morphologies, chemical
compositions and concentrations might overcome this fundamental barrier. Metallic
particles are good candidates for nanoparticle-induced intestinal dysbiosis, but this
aspect has been poorly explored to date. Herein, we focus on reviewing and discussing
nanotechnologies with potential applications in CRC through the involvement of gut
microbiota and highlight the clinical areas that would benefit from these new medical
technologies.

Keywords: dysbiosis, microbiota, nanoparticle, immunomodulation, colorectal cancer

INTRODUCTION

Colorectal cancer (CRC) is the second most common cancer in females and third most
common cancer in males worldwide. Over time, it has become a leading cause of morbidity
and mortality. There is a broad geographical variation in the incidence of CRC globally, and
there has been a rapid rise in its incidence in Asian countries for the past few years (Siegel
et al., 2020). In Malaysia, for example, the National Cancer Patient Registry has reported that
CRC is the second most common cancer in both males and females, with a total number of
4,501 cases diagnosed from 2008 to 2013 (Abu Hassan et al., 2016). In general, CRC incidence
is higher in the developed countries as compared to the developing ones; however, the burden
of this disease is rising globally, including that in the low-to-middle-income nations (Siegel
et al., 2020).
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Currently, ample research is being conducted in order to find
the definite cause of CRC. Based on the actual findings, it is
theorized that the bacteria present in the human colon are linked
to the development of carcinogenesis (Saus et al., 2019). Large
numbers of bacterial cells live in commensal relationships with
the host. However, once the gastric ecosystem is altered, various
bacterial species become prone to develop pathogenic phenotypes
(Sekirov et al., 2010). In recent years, there has been a surge of
interest in assessing the relationship between the gut microbiota
and the gut modifications that eventually lead to CRC. From here
on, modification in the composition of the gut microbe is
suggested as the cause underlying the development of
colorectal malignancies (Saus et al., 2019).

Nanomedicine can be broadly defined as comprehensive
monitoring, control, construction, repair, defense and/or
improvement of all human biological systems, working from the
molecular level to more complex wholes, with the use of
nanomaterials. Nanoparticles (NPs) have been increasingly applied
in the disease diagnosis and treatment during the last few decades.
This use of NPs formedical purposes has led to encouraging prospects
of their use for the betterment of human health (Riaz Rajoka et al.,
2021). Diagnostic and therapeutic research on nanomedicine
formulations has brought about a number of effective platforms,
including those for combined diagnosis, targeted drug delivery and
therapy (Saini et al., 2010). Still, despite the immense prospect of
nanomedicine for improving human health, the prognosis for
advanced stages of CRC is still relatively poor. The current
treatment method for CRC includes surgery and/or chemotherapy.
Although CRC is curable, the survival rates are still low. With the
current advancements in the world of nanomedicine, it is expected
that utilization of NPs will be a vital future approach in CRC
theragnostics (Werner and Heinemann, 2016). Correspondingly,
this review primarily elaborates on the dysbiosis condition that
leads to the development of CRC, and the clinical aspect of NPs
and their limitations based on published research.

MICROBIOTA

Human body is inhabited by a vast number of bacteria, archaea,
viruses and unicellular eukaryotes. The collection of
microorganisms that live in peaceful coexistence with their
hosts has been referred to as the microbiota, microflora or
normal flora (Dieterich et al., 2018). By far the most heavily
colonized organ is the gastrointestinal tract (GIT); the colon alone
is estimated to host over 70% of all the microbes in the human
body (Jandhyala et al., 2015). The concentration of microbiota
increases steadily along the GIT. Hence, lesser concentrations of
microbiota are found in our stomach and significantly higher in
the colon (Anselmo and Mitragotri, 2019), as shown in Figure 1.

The GIT shelters trillions of microbes which mostly live in a
harmonized relationship with the host. In spite of the fact that
most of the microbiome shows a favorable symbiotic relationship
with the host, when the microbiome composition and function
get disturbed, preconditions for various diseases arise, including
cancers, obesity, metabolic diseases, diabetes, allergies, depression
and disorders of the immune system (Quigley, 2013). Here, a
selective group of bacteria such as Enterococcus faecalis,
Bacteroides fragilis, Escherichia coli and Fusobacterium
nucleatum are seen as fundamental causes of the pathogenesis
of CRC (Kong and Cai, 2019). These bacteria are listed in Table 1.

Immunomodulation Through
Host-Microbiota Interactions
Host-microbiota interactions are fundamental for the
development of immune system. The early life colonization of
the human gut mucosal surfaces plays a pivotal role in the
maturation of the human immune system (Zheng et al., 2020).
Gut microbial community composition is modified by many
environmental factors, such as geographical location, host diet,
and administration of antibiotics and other medicines. Local

FIGURE 1 | Variations in the number and composition of microbiota across the GIT.

Frontiers in Nanotechnology | www.frontiersin.org July 2021 | Volume 3 | Article 6817602

Perumal et al. Nanoparticles in Colorectal Cancer

102

https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles


immune responses are triggered bymicrobes via interactions with
immune cells that express pattern recognition receptors (PRRs).
Local dendritic cells (DCs) get activated by microbes or microbe-
derived elements such as constituents, products, metabolites via
interactions with PRRs. Activated DCs travel from the
gastrointestinal tract to mesenteric lymph nodes (mLNs),
where they present microbe-derived antigens and subsequently
induce the differentiation of immature T cells into effector T cells,
particularly regulatory T cells (Tregs) and T helper 17 (Th17)
cells (Inamura, 2021). A subset of these effector T cells migrates
back to the gastrointestinal tract and influences local immune

responses. The remaining population enters the systemic
circulation and influences systemic immunity. The conversion
of the immune system from a pro-inflammatory to an anti-
inflammatory state occurs through the release of anti-
inflammatory cytokines such as IL-10, TGF-β or the
engagement of DCs mediated by Tregs. Conversely, Th17 cells
mediate the conversion of the immune system to a pro-
inflammatory state by secreting immunostimulatory cytokines
(e.g., IL-17) or by activating and recruiting neutrophils. This
intriguing relationship strongly suggests the vital role of microbes
in Th17 cell activation (Inamura 2021).

TABLE 1 | Comparison of the gut microbiota.

Bacteria Characteristic Shape Probiotics Symbiotic
relationship

Medicinal
value

Other
pathological
condition

Molecular
condition
leads
to CRC

References

Enterococcus
faecalis

Gram-positive,
facultative
anaerobic

Cocci Yes Commensal
in GIT

Treats chronic
sinusitis and
bronchitis

Leads to urinary tract
infection, endocarditis,
persistent endodontic
disease bacteraemia,
chronic periodontitis

E. faecalis shows
harmful activities
due to its ability to
damage colonic
epithelial cell of
DNA which sooner
or later leads to
development
of CRC

de Almeida et al.
(2018), Fiore
et al. (2019),
Kong and Cai
(2019)

Bacteroides
fragilis

Gram-negative,
obligately
anaerobic

Rod Yes Commensal in
GIT and
opportunistic
pathogen

Contribute to
the host’s
nutritional status
as well as
mucosal and
systemic
immunity

Abscess formation in
multiple body site
abdomen, brain, liver,
pelvis and lungs and able
to act as opportunistic
pathogens

B. fragilis able to
induce alterations
in mucosal
permeability, which
favors the
translocation of
bacteria and
bacterial toxins,
causing gut
inflammatory
response that
contributes to the
development and
progression
of CRC

Wexler (2007),
Wick and Sears
(2010), Sears
and Garrett
(2014), Sears
et al. (2014),
Purcell et al.
(2017)

Escherichia coli Gram-negative,
facultative
anaerobic

Rod Yes Commensal
in GIT

Promoting
normal intestinal
homeostasis
and preventing
colonization by
pathogens

Rarely causes disease
except in
immunocompromised
hosts

E. coli polyketide
synthetase,
genomic permit the
sysnthesis of
colibactin, a
genotoxic protein
which has been
linked to DNA
damage and
mutation, cell cycle
arrest and
chromosomal
instability in human
cells

Kaper et al.
(2004), Delmas
and Bonnet
(2015),
Wassenaar
(2018), Iyadorai
et al. (2020)

Fusobacterium
nucleatum

Gram-negative,
obligately
anaerobic

Rod No Commensal in
oral and
opportunistic
pathogen

None Leads to sinusitis,
endocarditis, septic
arthritis, tonsillitis and
abscesses of the brain,
skin and liver

F. nucleatum
stimulates CRC
cancer growth by
modulating the
E-cadherin/b
catenin signaling
via its unique FadA
adhesin

Allen-Vercoe
et al. (2011), Han
(2015), Brennan
and Garrett
(2019)
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Impact of Nanoparticles and Gut Microbiota
NPs could be present in food in the form as additives,
supplements and packaging and directly impact the
composition and/or metabolic activities of the gut microbiota
(Lamas et al., 2020). Furthermore, inorganic NPs, particularly,
such as silver, titanium dioxide, silicon dioxide and zinc oxide
have been shown to affect gut microbiota through their
interaction with immune system. This alteration in gut
microbiota-immune axis is associated with many chronic
diseases such as inflammatory bowel disease (IBD), diabetes
and even colorectal cancer (Ni et al., 2017; Meijnikman et al.,
2018; Richard et al., 2018). Silver NPs are used in hundreds of
commercial products due to their anti-microbial properties and
intentional and accidental uptake of silver NPs, which might
affect the gut microbiome, are underestimated. Dahiya et al.
(2018) have reviewed evidence from both animal and human
studies and concluded that silver NPs altered the gut microbiota,
thus making the host susceptible to certain diseases. They also
illustrated that the mucus present in the gut lining prevents
absorption of silver NPs into intestinal cells, hence the
interaction with gut microbiota. Meanwhile, titanium dioxide
NPs, which are commonly available in daily products, also cause
changes in both gut microbiota morphology and metabolism
(Juan et al., 2018; Mao et al., 2019; Zhangjian et al., 2019).
Specifically, a mix of commensal and pathogenic bacteria was
modulated upon administration of titanium dioxide NPs and
manifested as oxidative stress and inflammatory responses in the
intestine (Zhangjian et al., 2019). However, another study
indicates that titanium dioxide NPs have limited effect on gut
microbiota compared to silver NPs that drastically changes the
commensal density. In this study, titanium dioxide NPs formed
large agglomerates that appeared to loosely interact with
microbial cells, whereas Silver NPs were found both within
and outside of microbial cells. This explains the significantly
lower effect of titanium dioxide NPs on community growth
(Agans et al., 2019). There is also optimistic opportunity of
NPs in their interaction with gut microbiota. Selenium NPs
are shown to be a promising tool in livestock industry due to
their efficacy in intestinal pathogen control (Gangadoo et al.,
2019). These NPs are observed to reduce emerging poultry
pathogen, Enterococcus cecorum, without any significant
disturbance to the gut total commensal community. Another
type of NPs, fullerenol NPs with good biocompatibility
properties, markedly increased the production of short-chain
fatty acids (SCFAs)-producing bacteria in vivo (Li et al., 2018).
Fullerenol NPs contain furan- and pyran-like structure which is
similar to those of polysaccharides in dietary fiber such as inulin,
thus the capacity to promote this kind of gut microbes. The
increase of this gut main metabolites-producing bacteria is
accompanied with anti-hyperlipidemic effect of fullerenol NPs
when both triglycerides and total cholesterol levels in liver and
blood were decreased. Interestingly, fabrication of fullerenol NPs
to form carbonyls in low pH would induce a peroxidase-like
activity and eradicate Helicobacter pylori both in vivo and in vitro
(Zhang C. et al., 2020). In addition, approach to design NPs with
natural sources and line up into a systematic drug delivery tool is
demonstrated to be beneficial to gut microbiota. Curcumin- and

ginger-derived NPs are shown to improve absorption by gut
microbiota, so that they can produce their respective effects
(Ohno et al., 2017; Teng et al., 2018). Curcumin NPs are
shown to suppress development of mouse colitis through the
increase of butyrate-producing bacteria and regulatory T cells
(Tregs) while ginger NPs is design to contain microRNA that
could ameliorate mouse colitis. Another natural sources such as
milk is developed as extracellular vesicles and these NPs
modulated intestinal SCFAs metabolites and increased
intestinal immunity (Tong et al., 2020).

NANOMEDICINES AND COLORECTAL
CANCER

The unique optical, magnetic, and electrical properties of metallic
NPs such as gold and silver have rendered these systems a great
tool for the detection of several markers of cancer. For example,
fluorescent gold NPs have been used to detect mechano-growth
factor (MGF), a unique marker of colon cancer (Kasprzak and
Szaflarski, 2020). Another study demonstrated that the
incorporation of theragnostic gold nanorods as cores inside
tumour-specific antibody shells as allowed to make the
distinction between the different types of tumors and destroy
the surrounding tumor cells (Lee et al., 2015). A non-invasive NP-
based breath sensor was also shown to distinguish between the
healthy and cancerous patients, including those with CRC (Peng
et al., 2010). This nanomaterial-based sensor array would analyze
volatile organic compounds associated with and differently
regulated in different diseases using cross-reactive absorption
sites on nanomaterials such as gold NPs, thus producing a unique
breath fingerprint (Xu et al., 2013). Local staging of colon cancer
is routinely done with computerized tomography (CT) scans and
magnetic resonance imaging (MRI), which both benefit from the
use of NPs, which can improve the sensitivity for the detection of
tumor invasion (Nerad et al., 2017). In MRI, superparamagnetic
iron oxide (γ-Fe2O3 or Fe3O4) NPs coated with a polymer are
demonstrated as promising contrast agent for MRI, whereas
conjugation with doxorubicin further displayed the
multimodality of these NPs in both diagnostic and therapeutic
assays.

Conjugation of these NPs to chemotherapeutic drugs did not
only effectively kill tumor cells via active targeting, but also
inhibited tumor growth using near-infrared (NIR) irradiation
due to the photothermal activity of the NPs (Fan et al., 2019). In
another study, Fe2O3-gold NPs were observed to accumulate
within the tumor mass instead of other organs in a colon
cancer model, while also enhancing the tumor detection
selectivity as MRI contrast agents in a pancreatic cancer model
(Kumagai et al., 2010). Conventional chemotherapy has been
reported to be associated with severe side effects, mainly due to
the nonspecific biodistribution, whereby both the cancer cells and
the healthy cells are affected by the therapy. In CRC, common
side effects over the course of chemotherapy include fatigue,
diarrhea, constipation and dyspnoea, as reported in routine
healthcare settings (Pearce et al., 2017). However, over the
past three decades, the concept of enhanced permeability
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retention (EPR) effect conditioned by the hypervasculature in
solid tumors, as proposed by Matsumura and Maeda (1986),
greatly improved the logistics of cancer treatments using NPs
(Matsumura and Maeda, 1986). Nowadays, the application of
NPs in cancer therapeutics enhances the efficacy of the
conventional cancer management, particularly relative to that
of chemotherapy. This enhanced efficacy is largely owing to the
passive targeting of tumors by the NPs, which are able to pass
through the tumor vascular pores and accumulate the
nanomedicine in the tumor zone. Furthermore, the poor
response to anticancer drugs due to the development of
multidrug resistance (MDR) phenotypes has shown
improvement following the incorporation of NPs in various
chemo-photothermal therapies (Wang et al., 2017; Jiang et al.,
2020).

Various preclinical and clinical studies have explored the
potential of nanomedicines, including metallic NPs, in the
CRC treatment. Drugs such as 5-fluorouracil (5-FU) and
doxorubicin (DOX) have been incorporated into NP delivery
systems to enhance the efficacy of the treatment of CRC. One
example of a recent in vitro study using NPs was that of
enhancing the antitumour efficacy in a CRC model, as
reported by Jiang et al. (2020). In this study, DOX-resistant
SW620/Ad300 cells treated with a nanocomposite based on
mesoporous silica-coated gold nanorods (GNRs/mSiO2)
loaded with DOX showed a higher toxicity compared to the
free DOX treatment, the reason being the increased intracellular
DOX accumulation achieved by the NP drug carrier. Apart from
biocompatibility, the GNRs exhibit a highly efficient
photothermal conversion, which enabled the chemo-
photothermal therapy on CRC cells through functionalization
with anticancer drugs (Zhou et al., 2017). In another study,
manganese-based (Mn) NPs stabilized by L-arginine were
developed as a nanocarrier system to deliver 5-FU to colon
cancer cell lines (Jain et al., 2020). In that case, cell viability
was significantly reduced after the treatment with 5-FU-loaded
Mn-based NPs as compared to the treatment with free 5-FU,
being twice lower in the former specimen group than in the latter.

Previously, CRLX101, a 30–40 nm NP consisting of
camptothecin (CPT), a topoisomerase 1 (topo-1) and hypoxia-
inducible factor 1-alpha (HIF-1α) inhibitor, conjugated to
cyclodextrin and polyethylene glycol (PEG) was designed to
enhance the CPT efficacy against CRC (Weiss et al., 2013).
Promising findings of CRLX101 in a human-phase trial with
advanced solid tumors has led to further studies in other in vitro
and in vivo systems to support or complement the ongoing
clinical trials. Nonetheless, the local recurrence of tumors has
been a major concern in these tumor treatments. Thus, CRLX101
with 5-FU incorporation was investigated in a subcutaneous
mouse xenograft model of CRC following radiotherapy (Tian
et al., 2017). It was reported that the nano-formulation had the
highest therapeutic effect by eradicating tumor repopulation after
chemoradiotherapy. Meanwhile, a comparative study involving
the use of gold-based NPs in a radio-iodide cancer treatment
reported that iodine-131 alone reduced the tumor growth by 15%,
while the incorporation of iodine-131 inside the NPs reduced the
tumors by 50%, suggesting that functionalized NPs may open up

a new venue for radiopharmaceutical therapies in cancer
management (Le Goas et al., 2019).

The branch of nanomedicine is emerging into the biomimetic
NPs, particularly cell membrane-based NPs to avoid the immune
system clearance and, thereby, increase their therapeutic effects.
This biomimetic approach mimics the native cells to mediate the
interactions at the nano-bio interface as the fate of NPs in vivo is
governed by their physicochemical surface (Sushnitha et al.,
2020). The presence of natural cell membrane coatings to
camouflage NPs offers the ability to remain the NPs in
circulation and eventually to achieve targeted delivery. Red
blood cell (RBC) membrane-coated NPs have been one of the
most studied cell membrane-based nanocarriers in drug targeting
delivery to enhance tumor cell death. Fabricating NPs with RBC
membrane suited in vivo circulation due to the expression of
CD47 protein on their surface to ensure self-recognition by the
RES to allow longer circulation (Liu et al., 2019). In addition,
RBCs have limited nuclei and are easily isolated from the blood
donor (Zhang et al., 2017). Poly(lactic-co-glycolic acid) (PLGA)
NPs loaded with gambogic acid (GA) possessed antitumour
potential when covered with RBC membrane obtained by
BALB/c mice. They found that RBC membrane-GA/PLGA
NPs showed significant inhibition of tumor growth in CRC in
vivo model via necrosis. Comparing GA toxicity with RBC
membrane-coated NPs to the free GA without NPs, they
observed the higher median survival rate recorded at 30 days
compared to the free-GA group that lasted for 4 days only. It
should be noted that, RBC membrane-coated NPs also improved
the poor aqueous solubility of GA, just as with the poor water
solubility of the available chemotherapy drug in the market such
as paclitaxel.

Still, to date, limited numbers of clinical trials have been
conducted on CRC treatments using nanomedicine. The most
prominent NPs used in these studies have been polymer-based.
For instance, a phase I clinical study using PEGylated liposomal
mitomycin C (NCT01705002) and PEG conjugate of SN38
(NCT00931840) showed that both nano-formulations were
well-tolerated at higher doses compared to the free antitumour
drugs (Norris et al., 2014; Golan et al., 2015). Nevertheless,
further studies are warranted to evaluate therapeutic efficacies
of nanomedicine formulations in CRCmanagement. However, to
our knowledge, no clinical trials using metallic NPs in CRC
treatments have been reported yet. Still, considering the
number of promising preclinical findings, the metallic NPs are
expected to be utilized in human-phase trials with CRC patients
in due time.

ADVANTAGES AND CHALLENGES IN
NANOMEDICINE

Nanomedicine aims to provide more efficient tools for prevention
and treatment of various diseases as it possess potential
advantages (Desai, 2012), and might someday provide answers
to long lasting problems in medical research, such as poor drug
solubility and lack of target specificity for therapeutic compounds
(Bawa, 2011). This field give new perspectives for the biomedical

Frontiers in Nanotechnology | www.frontiersin.org July 2021 | Volume 3 | Article 6817605

Perumal et al. Nanoparticles in Colorectal Cancer

105

https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles


area as well as clinical for prevention, diagnosis, and treatment of
severe diseases such as cancer (Chow and Ho, 2013). Making
remarkable enhancements in drug delivery systems (Butcher,
Mortimer et al., 2016), medical imaging and diagnosis
platforms have been accounted as nanotechnology effects in
health and medicine (Bayford et al., 2017).

Biological Barrier
NPs impart a range of properties to drugs that they carry into a
living organism. Due to specific characteristics such as efficient
transport through capillary blood vessels, longer circulation
duration, higher binding capacity to biomolecules, higher
accumulation in target tissues, and reduced inflammatory and
oxidative stress in tissue, various nanomedicines have been
developed and commercially applied in clinical and non-
clinical areas as their characteristics are differ from those of
conventional medicine (Liu et al., 2011). This range of improved
properties often translates to a greater therapeutic efficacy of
nanomedicines than that of conventional medicines. These
features also endow nanomedicines with lower toxicity,
improved bioavailability, and enhanced pharmacokinetics
compared to the conventional drug therapies. Thus,
nanomedicines overcome obstacles that limit conventional
drugs, and have the potential to meet future market demands
for disease treatments (Wang et al., 2018).

Specific Surface Area
Namomedicines often exhibit greater therapeutic efficacy than
conventional small molecular drugs due to their size, large
specific surface area, and flexibility of surface functionalization.
These features endow nanomedicines with low toxicity, improved
bioavailability, and enhanced pharmacokinetics and therapeutics
effect. Thus, nanomedicines overcome obstacles that limit
conventional drugs, and have the potential to meet future
market demands for disease treatments (Wang et al., 2018).
Nanomedicine is used in versatile aspects of the disease
management process, including diagnosis, treatment and
monitoring (Sajja et al., 2009). In view of the ability of NP
carriers to slow down the release of drugs and prolong the
pharmacokinetic half-life for many of them, nanomedicine has
a key role in the controlled delivery of drugs or other biological
products to improve the human health.

Solubility and Permeability
NPs are also capable of ensuring the solubility and permeability of
insoluble drugs across biological barriers. Drugs with low
bioavailability can thus be delivered directly to the target site
(Galvin et al., 2012). Moreover, the large surface area and a higher
reactivity of nanomedicines may allow for the dose reduction of a
drug, which can improve toxicity profiles and patient compliance
(Bawa, 2011; Galvin et al., 2012). The large surface area of
nanomedicines can also increase the dissolution rate, the
saturation solubility, and the intracellular uptake of the drugs,
thereby improving in vivo performance (Bawa, 2011). In addition,
combining encapsulation, release modalities, and surface
modifications to improve targeting or bioavailability could
improve the therapeutic efficacy (Bharali and Mousa, 2010).

Currently, 65% of nanomedicines undergoing clinical trials
focus on cancer applications, as nanomedicine can offer great
contributions for a better treatment and early diagnosis of this
disease (Germain et al., 2020). In addition to the cancer
treatments, nanomedicine has also been used to combat
infectious, ophthalmic, neurological and other disease, as well
as to facilitate gene editing, immunotherapies, and so on.

Challenges
The development of nanomedicines is growing rapidly; however,
each of the nanomedicines has its own challenges such as safety,
biological challenges, scale-up, cost, and regulation (Grenha, 2011).
In addition, the development of nanomedicines requires massive
preclinical research, carefully conducted clinical trials, and
appropriate clinical indications (Etheridge et al., 2013). The
drug development process takes years, and any mistakes or
negative results may delay these process (Etheridge et al., 2013).
Thus, to understand the current situation of nanomedicine,
including common challenges and future demands for
nanomedicines development (Moghimi et al., 2005) is important.

Specific and Precise Targeting
One of the highest priorities for the next generation of
nanomedicines is to create precise and highly efficient drugs
that accumulate in targeted pathological tissues and not effect the
healthy tissue. There are many nanomedicines that cannot avoid
damage to healthy tissues because they do not specifically target
the pathological tissues. Recently, smart drug delivery systems
that possess active targeting and stimuli responsiveness are
actively being developed. These smart drug delivery systems
represent a promising strategy to eliminate pathological tissues
while protecting normal tissues (Zhang J. et al., 2020).

Safety and Quality
It is imperative to understand the toxicology of the drugs, the
physicochemical properties of NPs, and the properties of
nanocarriers since safety is the crucial issues for
nanomedicines, even after a nanomedicine is approved for
clinical use, it can be withdrawn from the market due to
safety issues. In human body, nanomedicines get exposed to
biological environments such as the blood, extracellular matrix,
cytoplasm, and cellular organelles, which may alter their
biological performance, but also elicit undesired toxicities.
Currently, there is a lack of standardized methods for
evaluation of the safety of nanomedicines. It should be
emphasized that the methods used for traditional drugs cannot
accurately evaluate the safety of nanomedicines (Wolfram et al.,
2015). For example, drugs such as paclitaxel or doxorubicin,
which have been extensively studied, still facing the complex
toxicity issues when used with novel nanomedicines and
nanocarriers (Hua et al., 2018). To increase the safety and
quality, many countries and organizations have enacted and
implemented good laboratory and manufacturing practices. It
is important to formulate good laboratory practices for
nanomedicines to improve the success rate and to promote
the development of safe and effective nanomedicines (Zhang
J. et al., 2020).
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Biodistribution of Drugs
Other challenges involve the drug biodistribution and biological
barrier penetration which aim to enhance the accumulation of the
drug at the target site and reduced the accumulation in healthy
tissues (Lu et al., 2021). Biodistribution is affected by interactions
with external and internal biological barriers, for which reason
the interaction between nanomedicines and biological barriers
must be well understood (Elsabahy and Wooley, 2012).
Furthermore, nanomedicines often do not directly interact
with living cells, but instead become coated with a protein
corona, which alters the biological effects of the NPs and
influences the cell uptake, biodistribution, clearance, toxicity,
and immune response. Therefore, it is important to also focus
on the protein coronae formed around NPs and the resulting
biological responses to nanomedicines (Mahmoudi et al., 2016).

Scale up, Cost and Regulations
Additionally, nanomedicines may fail to enter the market because
unmeet the requirements of scale-up synthesis and
reproducibility. In both laboratory or preclinical investigations
and in clinical studies, nanomedicines have been mainly
synthesized in small batches (Anselmo and Mitragotri, 2019).
Not only the manufacturing cost of nanomedicines scale-up high,
but the cost of preclinical and clinical development is also
increasing. Acquiring regulatory approvals is difficult for new
nanomedicines, especially when existing products on the market
have the same target indication (Ventola, 2017). The lack of
regulation and standards for nanomedicines in manufacturing
practices, quality control, safety, and efficacy evaluation are all
barriers for the development of nanomedicines. There are
currently no global regulatory standards specific to clinical
translation of nanotherapeutics. Only initial guidance
documents for nanotechnology products have been issued by
regulatory authorities such as the FDA to provide guidance.
There are also significant differences between different
geographical regions in addressing the application of

nanomedicines, so that nanomedicines approved in one
country may not be approved in other countries.
Strengthening of regulatory standards is a major challenge but
must be overcome to achieve efficient nanomedicine
development (Mühlebach, 2018).

CONCLUSION

This review has highlighted the existing use of diverse
nanomedicines for the diagnosis and treatment of CRC.
Despite the fact that the field is young and growing, a number
of studies have reported on how combining metallic NPs and
multiple targeting strategies establishes conditions for the
improved treatment and diagnosis of CRC. Although
considerable challenges and issues remain to be addressed, the
potential impact of nanomedicine on the diagnosis and treatment
of CRC is extensively recognized. As discussed through several
examples in this review, careful modification and characterization
of metallic NPs is needed in order to exploit the potential impact
of nanomedicine on the clinical management of CRC and
advance its use in the CRC treatment and early diagnosis.
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Colorectal cancer (CRC) is the third most frequently occurring tumor in the human
population. CRCs are usually adenocarcinomatous and originate as a polyp on the
inner wall of the colon or rectum which may become malignant in the due course of
time. Although the therapeutic options of CRC are limited, the early diagnosis of CRC may
play an important role in preventive and therapeutic interventions to decrease the mortality
rate. The CRC-affected tissues exhibit several molecular markers that may be exploited as
the novel strategy to develop newer approaches for the treatment of the disease.
Nanotechnology consists of a wide array of innovative and astonishing nanomaterials
with both diagnostics and therapeutic potential. Several nanomaterials and nano
formulations such as Carbon nanotubes, Dendrimer, Liposomes, Silica Nanoparticles,
Gold nanoparticles, Metal-organic frameworks, Core-shell polymeric nano-formulations,
Nano-emulsion System, etc can be used to targeted anticancer drug delivery and
diagnostic purposes in CRC. The light-sensitive photosensitizer drugs loaded gold and
silica nanoparticles can be used to diagnose as well as the killing of CRC cells by the
targeted delivery of anticancer drugs to cancer cells. This review is focused on the recent
advancement of nanotechnology in the diagnosis and treatment of CRC.

Keywords: colorectal cancer, nanotechnology, detection, treatment, targeted therapy

INTRODUCTION

Colorectal cancer (CRC) is a severe health problem and has the third-highest occurrence within the
cancer-causing conditions that influence the populations of developing and developed countries (da
Paz et al., 2012). Among populations of western countries, a major cause of death and morbidity is
CRC (Arvelo et al., 2015). Various routine factors and the growing age are the common reason of
CRC with only a few cases being the outcome of genetic disorders (Bours et al., 2015; Gulbake et al.,
2016). It generally starts in the bowel lining and can extend into the wall of the bowel and beneath
muscle layers if not treated properly at the earliest (Datta et al., 2016). In addition to these, there are
genetic and environmental factors that can interact in various ways to enhance carcinogenesis (Bours
et al., 2015). Regarding the CRC pathogenesis four central theories have been established. In the first
theory, epigenetic and genetic variation generate the formation of colon cancer promotes CRC.
Second, cancer emerges due to a multistep process at both molecular and morphological levels. The
third and crucial molecular step is the loss of genetic stability in cancer formation. Fourth, hereditary
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cancer diseases usually belong to germline forms of an important
genetic disorder, for which somatic occurrences force the
manifestation of sporadic colon cancers (Kheirelseid et al.,
2013). However, various factors that contribute to and affect
the start and establishment of disease, continue to increase the
number of potential targets (Hutchinson et al., 2015). Ultimately,
this targeting potential will show the way for the success of an
effective technique for disease management and will provide
better treatments to the patients. Several decades of research
have been concentrating on the establishment of novel methods
and techniques in cancer research, especially in the areas of
detection, giving rise to earlier cancer therapy to decrease
mortality.

CRC is the most devastating disease identified among the most
common malignancies and can be recorded as the second leading
reason for cancer-associated deaths in women and the third-
highest common disease in men worldwide (Huyghe et al., 2020).
Current situations have been shown that up to 2030, the chances
and mortality rate of CRC will enhance by 60% worldwide (Brand
et al., 2017; Huyghe et al., 2020). With the existing diagnostic
techniques and treatments, patients suffer long invasive
techniques with unwanted side effects to remove CRC. Hence,
a new detection method requires further research to improve
their specificity and affectivity (Bray et al., 2019).

Nanotechnology has opened up a new way to the development
of novel and efficiently organized nanomaterials with the
capability of enhanced performance in screening, detection,
and treatment of CRC cancer along with other types of
tumors (Gulbake et al., 2016; Bray et al., 2019). The role of
nanotechnology interventions to CRC includes the nanomaterial-
based screening of tumors, customization of targeted drug
delivery systems, and advanced treatment modalities (Upendra
et al., 2016; Minakshi et al., 2017; Minakshi et al., 2018; Minakshi
et al., 2020). Currently, nanotechnologies have found worldwide
consideration due to their capability to improve existing
standards and methods for the screening, diagnosis, and
treatment of CRC. The present review has the main emphasis
on the discussion of nanotechnology-based precision methods for
screening, detection, and treatment of colorectal cancer.

During the preparation of this review, recent and appropriate
information was collected using several scientific search engines
including PubMed, Medline, Google Scholar. Several research
and review articles were collected, thoroughly studied and a
comprehensive manuscript is prepared. Under this review
article several aspects of colorectal cancer (CRC) including
their different clinical stages, recent diagnostic and therapeutic
approaches using several nano-formulations such as Quantum
dots, Iron oxide, Carbon nanotubes, Liposomes, Silica
Nanoparticles, Nanoemulsion, Gold nanoparticles, etc. have
been discussed. Apart from the use of individual medicines,
the efficacy of combinatorial nanomedicine against CRC has
also been explored.

Colorectal Cancer Stages
The survival rate in CRCmainly depends upon the stages of CRC
disease and it usually ranges from 90% in the case of localized
stage to 10% in the case of patients diagnosed with metastatic

cancer. If the stage of diagnosis is earlier, the higher the chance of
survival rate (Haggar and Boushey, 2009). The exact stage of the
tumor, which explains the level of cancer in a patient’s body, is
one of the very significant factors in deciding which therapy is
useful and how successful therapy might be (Schroy et al., 2016).
Figure 1 describes the various stages of colorectal cancer.
Abnormal cells arise from colonic wall mucosa, may become
tumors, and divides in stage 0. During stage I, cancer has formed
in the colon wall mucosa and emerges into submucosa as well as
muscularis propria. Stage II cancer further progresses from
muscularis propria into pericolorectal tissues (IIA), and then
emerges to the visceral peritoneum (IIB), then directly penetrates
into the attached organs (IIC). Stage III cancer emerges into
muscularis propria metastases in nearby tissues or 1–3 regional
lymph nodes and spreads in submucosa with metastases in 4–6
lymph nodes in IIIB and 7 or more regional lymph nodes (IIIC).
Metastasis confines to one organ such as liver ovary, lung,
regional node, etc. in stage IV, and again stage IV cancer is
further divided into IV A and IV B stages (Xynos et al., 2013; Lai
et al., 2016). Five years survival rate percent researches showed
90% survival in the case of stage 1 CRC and 10% survival in the
case of stage IV CRC (Pesta et al., 2016). Physical inactivity, eating
more processed meat, long-term smoking, obesity, alcohol
addiction, and a diet with fewer vegetables and fruits are the
most common lifestyle-related threats and major causes of CRC.
Family history is also connected with CRC, a person with chronic
inflammatory bowel disease, type 2 diabetes, or genetic disease
likelynch syndrome has been linked with augmented risk (Young
et al., 2014). Stages 0, I, II, and III may be curable but stage IV
CRC is not often curable but it may be managed based on growth
and spreading disease (Young et al., 2014; Sun et al., 2016).

Existing Screening Methods for Colorectal
Cancer
Various screening methods have been established to screen CRC
before symptoms start, when it may be easily treatable. Few of the
screening methods that identify polyps and adenomas at an early
stage may assist in the detection and early removal of tumor
growth which might otherwise lead to further progression of
cancers. Hence early detection of colorectal cancer may be
another method of cancer prevention. Different tests are
prevalent for suitable screening of colorectal cancer (Table 1).
Stool tests detect minute quantities of blood that cannot be
possibly seen visually from both adenomas and polyp cancers
(Imperiale et al., 2004; Burch et al., 2007; Ansa et al., 2018;
Qaseem et al., 2019).

In the colonoscopy entire colon and rectum are screened for
cancer using a colonoscope, having a flexible tube light with a lens
for seeing and a tool for excising the abnormal tissue (Kahi et al.,
2016). A complex analysis of six studies showed that screening
using colonoscopy reduces the chances of establishment and
dying of people from CRC (Brenner et al., 2014). Conversely,
the test is costly and unpleasant. Virtual colonoscopy or
computed tomographic (CT) colonography and double-
contrast barium enema are the optional choices for patients,
who cannot go through a routine colonography due to the
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anesthesia risk, which prevents a complete examination. In both
the methods, x-rays are used to observe the colon from outside
the body (Pickhardt, 2013; Kuipers and Spaander, 2015). The
occurrence of colorectal neoplasm was detected using double-
contrast barium enema (DBEM) screening in people of Thailand
and reported a diagnostic outcome of 0.4% for CRC and 0.7% for
advanced adenoma (Lohsiriwat et al., 2013). Insigmoidoscopy
test for checking cancer, polyps, and other abnormalities using a
flexible tube having light at the end is inserted into the lower
colon and rectum (Guo et al., 2015). Many of the clinical trials
reported that sigmoidoscopy reduces the chances of
establishment and prevents persons from dying from CRC
(Atkin et al., 2010; Segnanet al., 2011; Elmunzer et al., 2012;
Schoen et al., 2012; Holme Kalager, 2014). All these screening
tests for CRC have differed in respect to their preparation
requirements, patient expediency, amount of colon and rectum
evaluated along with their limitations.

Along with these general tests, the CellSerch® assay (Janssen
Diagnostics, LLC, South Raritan, NJ, United States) which is based
on circulating tumor cell (CTC) diagnostic technology is used for the
diagnosis of meta-static colorectal cancer along with other cancers
such as breast and prostate cancers. US FDA cleared circulating
tumor cell (CTC) diagnostic technology for metastatic CRC along
with other cancers such as prostate and breast cancers (Allen et al.,
2014). It gives prediction-related information in metastatic CRC,
regardless of the metastatic site. Currently, various new systems such

as MagSweeper, Cynvenio, IsoFlux, VerIFASt, AdnaGen, and
magnetic sifters have been established to further enhance the
identification speed and efficiency (Mostert et al., 2015). Most of
the current screeningmethods are very expensive and not easy at the
point of care. Hence, the development of more sensitive, fast, low
cost, and specific screening of CRC is very essential.

Recent Advancements of Nanotechnology
in Cancer Theranostics
Recent development in nano-sciences has allowed fabrication of
several nanoparticles (NPs)-based systems for therapeutics and
diagnostics. Although the clinical applications of nano-based
theranostics are still limited probably due to their complex
pharmacokinetics, NPs can improve the knowledge of
biochemical and physiological principles of several diseases
and their treatments (Siddique and Chow, 2020). NPs have
been used in the enhancement of capability of several imaging
techniques such as positron emission tomography (PET) by use
of radioisotope chelator-free NPs, and iron oxide-based NPs in
magnetic resonance imaging (MRI) (Rosado-de-Castro et al.,
2018). Similarly, in the optical imaging system, persistent
luminescence nanoparticles (PLNPs) have been used as a
novel optical nanoprobe to utilize the characteristic long-
lasting near-infrared (NIR) luminescence (Lecuyer et al., 2016)
which allows the functioning of optical imaging without constant

FIGURE 1 | Schematic representation of different stages of CRC.
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excitation and autofluorescence (Liu et al., 2019). The NPs act as
excellent contrast agents because of their small size, high
sensitivity, and specific chemical composition. Similarly, NPs
are also widely used for the therapeutic purpose of cancer. In
therapeutic use, it improves the accumulation and release of
pharmacologically active compounds at the pathological site
leading to enhanced therapeutic efficacy and reduced toxic
side effects. Moreover, recently developed NPs have the
capability for integrating therapeutic and diagnostic agents
into a single NP that can be easily used for theranostic
purposes (Siddique and Chow, 2020). Studies have also
revealed that theranostic NPs may have the capability for
future use as personalized nanomedicine-based therapies
(Baetke et al., 2015). In the coming future, multifunctional
NPs can be designed by using various functional materials
leading to the development of simultaneous diagnosis and
therapeutics known as theranostics (Kim et al., 2017).

Existing Treatment Methods for Colorectal
Cancer
At present, various treatment methods with their merits and
demerits are available (Table 2). The most general method for
the treatment of CRC is surgery and most commonly known as
surgical resection. Surgery is the most common treatment for CRC
and is often called surgical resection. It is a significant first line of the

protective system against any particularly well-defined tumor or any
cancer (Lee, 2009; Chu, 2012). During surgical treatment in CRC, a
portion of the healthy rectum or colon will also be excised. In
addition to the surgical resection, other surgical options for CRC
comprise colostomy for rectal cancer, radiofrequency ablation,
laparoscopic surgery, etc. Radiation therapy is most widely used
for the treatment of rectal cancer for the reason that this cancer tends
to continue to the site where it grows initially. Radiation therapy is
given to the patient in a scheduled manner comprising a defined
number of treatments at defined time intervals (Joye and
Haustermans, 2014). Stomach upset, mild skin infections, fatigue,
etc. are the main side effects of radiation therapy. In the
chemotherapy treatment method, drugs are used to deactivate
cancer cells, generally by stopping the activity of tumor cells to
grow and multiply. At present various approved drugs are used for
the treatment of CRC (Jayakumar et al., 2015). Vomiting, nausea,
neuropathy, mouth sores, and diarrhea are the main causes of
chemotherapy. Treatment that targets the defined genes of tumor
cells or defined tissue environment is known as targeted therapy.
Such type of treatment inhibits the growth and division of the
cancerous cells although limiting the harm to normal cells. To find
out an efficient and reliable treatment of CRC, new methods should
be established for effective detection of proteins, genes, and
additional factors in a patient’s cancer. For CRC
treatment epidermal growth factor receptor (EGFR) inhibitor
therapy, anti-angiogenesis therapy is an option. The most

TABLE 1 | Different methods for CRC screening.

Method Explanation Advantages Disadvantages References

Stool tests Stool tests are kits that can
detect abnormal blood or DNA
markers. In gFOBT stool tests a
chemical is used to detect heme
from blood protein. The FIT test
method uses antibodies for the
detection of specifically
hemoglobin protein. The FIT-
DNA test identifies hemoglobin
with certain DNA biomarkers for
the detection of CRC.

Colon cleansing is not essential
before the sample is taken. No
dietary requirements are needed in
FIT. Samples can be collected at
home. The Stool test is a low-cost
method as compared with other
bowl tumor-screening methods

Stool test cannot detect nonbleeding
cancers

Ansa et al. (2018),
Bibbins-Domingo and Grossman
(2016), Shapiro et al. (2017),
Collins et al. (2005)

Colonoscopy It allows visualization of the entire
inner lining of the colon and
rectum of a person for the
detection of the tumor

This method detects all minute
polyps along with large polyps and
cancers, subsequently reducing
the risk of development and death
due to CRC.

It requires sedation Brenner et al. (2014), Kahi et al.
(2016)It may lead to serious bleeding or a

tearoftheintestinalwall

CT colonography CT scanner is used in this
technique for capturing two- and
three-dimensional images of the
entire colon. These images allow
a radiologist to screen if cancers
or polyps are present

Sedation is not required in this
method. It does not require
sedation. CT colonography is
noninvasive and the entire colon
can be examined for CRC.

Colon cleansing is not essential before
the test. It may screen other
abnormalities along with colon cancer
and polyp

Ouyang et al. (2005), Kuipers and
Spaander (2015), Pickhardt
(2013)

Sigmoidoscopy It allows the physician to directly
examine the lining of the rectum
and the lower section of the colon

It detects the cancers and polyps
in the descending rectum and
colon with a high degree of
accuracy

It cannot screen the cancers or polyps
present on the right side

Holme and Kalager (2014),
Elmunzer et al. (2012)

Double-contrast
barium enema

In this method, barium sulphate is
introduced into the rectum with
air via a flexible tube and x-ray
images are then captured

This test mainly allows the
examination of the whole colon
and the rectum. Sedation is not
required and complications are
rare

Colon cleansing is very necessary for
this method; otherwise, it will give false-
positive results

Lohsiriwat et al. (2013)
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common side effects of the targeted therapy include rashes on upper
body parts and the face.

During the treatment of CRC, poor drug response to
chemotherapy is frequently reported which might be primarily
due to the appearance of the multidrugresistance (MDR) in
tumor cells (Wu et al., 2018). Several studies have shown the
mechanism of drug resistance in colorectal cancer cells. Some of
the studies revealed that the effect of cetuximab and panitumumab
can be inactivated by themutations in PIK3CAor BRAF gene, or due
to gene amplification of MET, KRAS, and ERBB2 resulting in the
prevention of EGFR signaling (Dienstmann et al., 2015). The
overexpression of dihydropyrimidine dehydrogenase (DPD) gene
may lead to resistance against 5-FU, becauseDPDmay convert the 5-
FU into the inactive metabolite (DeNardo and DeNardo, 2012). In
addition, decreased expression of RFC-1 (reduced folate transporter
1) and PCFT (proton-coupled folate transporter) may block the LV
(Odin et al., 2015). Similarly, altered levels of metallothioneins and
glutathione reductase (GR) may affect the response of oxaliplatin
(OXA). Moreover, the increased activity of UDP-
glucuronosyltransferases (UGT) or induced DNA damage repair
mechanism such as TDP1 (tyrosyl-DNA phosphodiesterase 1) may
limit the effect of IRI (Jensen et al., 2015). To overcome themultidrug
resistance, nanomedicine appears as a recent strategy to enhance the
prognosis in CRC patients.

Applications of Nanotechnology in
Screening, Detection, and Treatment of
Colorectal Cancer
More than four decades ago application of nanotechnology
foundations is laid down for their diagnostic and therapeutic

uses in a very précised manner (Fortina et al., 2007).
Nanotechnology is a most important branch of research which
plays a very important role in screening, detection, and treatment
of day-by-day increasing diseases (Upendra et al., 2016). It plays a
major role in the discovery and delivery of drugs with specific
action at a specific target site with an enhanced success rate. The
development of these nano-formulations includes liposomes,
quantum dots, silica NPs, gold NPs, liposomes, dendrimers,
nano-emulsions as a coating material in imaging at
pathological sites, and nano-drug delivery (Bose et al., 2015;
Yallapu et al., 2015).

Various important nanotechnological applications have been
verified in cancer biology, comprising early screening and
detection of cancers and establishment of new treatment
approaches that cannot be gained using the existing
conventional methods (Laroui et al., 2013). In de facto, in
certain tumors, nano-sized particles of different shapes and
compositions have emerged out as important and promising
novel tools for colorectal cancer staging, diagnosis, and
therapeutics (Figure 2) (Dong et al., 2016). Early screening
and detection of CRC is the main solution for impediments
and it can impact the long-lasting survival of CRC patients. Early
detection of CRC is the key, and it can impact the long-term
survival of patients with CRC. In this review, we discuss the
current achievements of NPs that provide a new way for early
screening and flourishing treatment of CRC.

Quantum Dots
Quantum dots (QDs) are semiconductor nanocrystals which
fluoresce with light excitation and have special optical features,
comprising high brightness, the ability to emit fluorescence at

TABLE 2 | Various existing methods with merits and demerits for the treatment of CRC.

Method Description Advantages Disadvantages References

Surgery It is a very common method for the
treatment of CRC and generally known
surgical resection. It includes colostomy for
renal cancer, laparoscopic surgery, and
radiofrequency ablation

Surgical excision of the cancer is one of
the important first lines of treatment
against CRC, specifically when cancer
is well defined

Surgery has been identified to enhance the
risk of death due to metastasis in confined
cancer patients by mechanical disruption
of cancer integrity. Tenderness and pain in
the part of operation are other
disadvantages

Chu (2012), Lee
(2009)

Radiation
therapy

It uses high-energy X-rays to destroy tumor
cells

For CRC, it is used before surgery and
known as neo adjuvant therapy, to
shrink cancer so that it can be easily
removed. It may also be used after
surgery for the death of remaining tumor
cells. Both the methods have worked
for the treatment of disease. It may also
be used after surgery to destroy any
remaining cancer cells

It may also damage the healthy cells and
also cause DNA damage, which is very
harmful. It may cause damage to the
healthy cells

Joye and
Haustermans
(2014)

Chemotherapy It uses drugs to destroy the tumor cells,
which usually block the capability of CRC
cells to grow and multiply

It is a well-established treatment
modality

It may cause nausea, vomiting, mouth
sores, or neuropathy

Jayakumar et al.
(2015)

Targeted
therapy

It is a treatment that targets the tumor-
specific gene or tissue environment that
contributes cancer growth and survival

It stops the growth and dividing of
cancer cells while limiting damage to
uninfected cells

Targeted treatments have side reflects
such as rash on the upper body and face

Xie et al. (2020)

Immunotherapy Immunotherapies used for the treatment of
CRC include monoclonal antibodies,
cancer vaccines, immune modulators,
adjuvants, and cytokines

This system uses body’s self-immune
system and fewer side effects and can
provide ling-term survival by 30%

Some of the immunotherapy drugs have
high cost, severe side effects, and
possible short-term efficacy

Johdi and Sukor
(2020)
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varying wavelengths, and resistance to photo-bleaching. Owing to
QDs chemical and optical advantages, QD-based nanotechnology
is acting as a promising platform for studying various tumors
including the CRC (Fang et al., 2012; Pericleou et al., 2012; Zeng
et al., 2015). QD-based immune histochemistry (QD-IHC) has
been used for qualitatively analyzing the expression of large
external antigens from CRC tissue samples and compared with
conventional-IHC (Wang et al., 2016), QD-IHC offered various
detectable advantages for quantification of protein marker. These
showed simpler operation, higher sensitivity, less human
interference, and better capability for concurrent multifactor
analysis; would produce more accurate clinical detections.
Therefore, QD-IHC is a better option for conventional IHC in
therapeutic applications. QD-based immune cytochemistry using
QD-probes studies mainly focuses on marker identification in
tissue sections, IHC combined with imaging quantitative analysis
for screening of large external antigen in living cells showed
results that were the same as obtained using flow cytometry and
expending the applications of QD-probes for clinical applications
(Wang et al., 2016). In another study, a sensitive method was
developed to identify Aldo-keto reductase family 1 member B10
(AKR1B10) in the serum that acts as a therapeutic target and
prognostic predictor for CRC using QDs. The QDs possess
stability against photo bleaching along with size-controlled

luminescence activity that makes QDs a suitable agent for
photoelectrochemical-based tumor marker detection from
biological samples. However, QDs are still not used for the
detection of AKR1B10 from serum samples (Wang et al.,
2015; Liu et al., 2021). This technique played a great role in
the early detection of CRC with high specificity and sensitivity.

A highly sensitive and specific technology was developed,
which enables concurrent detection of biochemical
fluorescence and morphological changes during CRC
progression and development using optical coherence
tomography or laser-induced tomography that allows
nondestructive internal visualization of CRC (Carbary-Ganz
et al., 2015). A probe QDot655 specific to vascular endothelial
growth factor receptor 2 (QD655-GEGFR2) restricted to the
colon used in carcinogen-treated mice and provides
significantly high contrast between infected and healthy tissues
with specificity and sensitivity ex-vivo (Carbary-Ganz et al.,
2015). These probes act for in vivo magnetic resonance
imaging (MRI) and further biopsy of CRC, an exceptional
cell-specific, paramagnetic double-signal fluorescent molecular
multipurpose nanoprobe (GdDTPA-BSA@QDs-PCAb) was
designed using surface engineering of QDs with DTPA-BSA-
Gd3+ large molecular complex by ultrasonic conditions. These
nanoprobes act as promising tools for use in contrast-enhanced

FIGURE 2 | Schematic explanation role of nanotechnology in CRC. (A) NPs routes for administration, (B) various kinds of polymer NPs and metallic along with
necessary parameters for use in CRC therapy cancer therapy (C) screening and detecting the tumor respectability using multimodal imaging and involvement of
increased permeability and retention effect on antitumor drug synthesis for CRC targeting therapy.
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MRI diagnosis of CRC and have no cytotoxic effects inMTT assay
(Xing et al., 2015). QDs-bevacizumab nanoprobes have been
successfully used for targeted CRC detection in both in-vitro
and in-vivo systems. During detection, they enhanced the tumor-
specific signal after subsequent injection of the QDs and act as a
significant achievement in VEGF-directed noninvasive imaging
systems during clinical practices (Gazouli et al., 2014).

Under defined conditions subtractive Cell-SELEX technology
is used for the production of a panel of seven aptamers (Apts) that
precisely attach metastatic CRC cells (LoVo) along with other
metastatic tumor cells with great affinity, and hence provides a
broad spectrum specific detection of metastatic tumor cells (Li
et al., 2014b). This research showed that Apts selected from a
single Cell-SELEX can alone act as functionalized for several
purposes based on target biochemical properties, thereby
increasing the applications of the Cell-SEARCH approach.
This receptor-specific Apt W14 was used as the targeted
carrier for doxorubicin-specific delivery to defined cells to
reduce the toxicity of this drug (Li et al., 2014b).

QDs conjugated with non-membrane receptor binding Apt
W3 were used as a molecular probe for specified imaging of
metastatic tumor-bearing sections, metastatic tumor cell lines,
and formalin-fixed paraffin-embedded tissues from the CRC
persons (Li et al., 2014). Hence QDs are great technological
modalities in progress that can reform the CRC treatment and
diagnosis.

IRON OXIDENANO-FORMULATIONS

Iron oxide NPs have the two-fold capability to work as both
photo-thermal and magnetic agents for human applications as
MRI agents. They also have brilliant biodegradability in vivo and
after dissolution, iron ions can be adjusted by the body by a highly
regulated physiological phenomenon (Espinosa et al., 2016). A
smart multi functional magnetic nano vehicles encapsulating an
antibody targeting peptide AP1 (MPVA AP1), which are
consistent in size and also water soluble, anti-cancerous drug
has been developed (Kuo and Liu, 2016). These nano-vehicles are
easily dispersed in aqueous solutions and exhibit no cytotoxic
effects in L929 fibroblasts, and showed their capability for
therapeutic applications (Kuo and Liu, 2016). A CRC cell
(CT26-IL4R) trial discovered that the MPVA-AP1 showed
outstanding selectivity and targeting. A steady storage test
revealed no leakage of encapsulated drugs without the
stimulus of the magnetic field. In disparity, nano-vehicles
loaded with doxorubicin burst upon treatment of high
frequency of magnetic field, which is fast, accurate, and
controlled release. Furthermore, in vivo investigations
recognized that magnetic nano-vehicles exhibited obvious
chemotherapeutic and thermotherapeutic effects. Hence, smart
magnetic nano-vehicles e.g. MPVA-AP1 have the noteworthy
capability for specified doses and precise controlled release in
antitumor applications (Kuo and Liu, 2016).

The usefulness of polylactide-co-glycolic acid (PLGA)
nanoparticle as a5-fluorouracil (5-FU) vehicles with or without
an iron oxide and hyperthermia at DNA damage point in an HT-

29 colon tumor cell line spheroid culture model by alkaline comet
assay (Esmaelbeygi et al., 2015) and found that less DNA damage
in case 5-Fu loaded nanoparticles as compared with
hyperthermia. Hence hyperthermia is a damaging agent and
NPs are an efficient drug delivery system to CRC. The iron
oxide NPs enhanced the effect of hyperthermia and could be
extremely beneficial in the diagnosis of CRC (Esmaelbeygi et al.,
2015).

The paclitaxel (PTX), as well as super-paramagnetic iron oxide
(SPIO), is encapsulated inside the core of PEAL Ca micelles and
studied for significant tumor therapy (Feng et al., 2014). The drug
release in this research showed that PTX in the micelles was
released with a lower rate at neutral pH and a faster rate at pH 5.0.
Cell culture studies also showed that PTX-SPIO-PEALCa was
successfully absorbed by the CRCLoVo cells and PTX was likely
internalized by lysosomal cells. Additionally, successful inhibition
of CRC LoVo cell growth was verified. Hence, micelles play a
great role in MRI visible drug release methods for CRC treatment
(Feng et al., 2014).

The lectin-Fe2O3 @AuNPs are synthesized by joining lectins
on the Fe2O3@AuNPs via bifunctional polyethylene glycol (PEG)
NHS ester disulfide (NHS-PEG-S-S-PEG-NHS) linkers. Both
in vitro and in vivo studies are done for checking the activity
of lectins- Fe2O3@AuNPs and found that it could be useful for
dual-mode MRI and X-ray CT imaging of CRC. Hence results
obtained proposed that lectins could be applicable as cancer-
targeting ligands in nano-formulations based on contrast agents
(He et al., 2014).

Poly Lactic-co-Glycolic Acid Nanoparticles
Eco-friendly Poly lactic-co-glycolic acid (PLGA) NPs have been
used as carriers for proteins, peptides, vaccines, drugs, and
nucleotides. These can help in shielding drug moieties from
breakdown and subsequently ensure the effective release of
drugs (Sah et al., 2013) and are extensively studied for their
potential use in tumor therapy, specifically for CRC. Using the
emulsion-solvent evaporation method curcumin-loaded PGLA
NPs (C-PNPs) are successfully synthesized for colon delivery
(Akl et al., 2016). C-PNPs exhibit significantly higher cellular
uptake in HT-29 cells in comparison with pure curcumin solution
due to their sustained release, greater colloidal stability in
gastrointestinal fluids, and smaller size. Therefore, C-PNPs
have great potential as an early platform for the further
establishment of a sufficient oral targeted drug system to the
colon, mainly if it is additionally functionalized with a specific
targeting ligand (Akl et al., 2016).

Scientists also prepared chitosan polymeric NPS using the
solvent extraction emulsification technique, with different ratios
of polymer, and showed potential application in the successful
delivery of active pharmaceutical components to the CRCs
(Tummala et al., 2015). Total health center complex N-38 is
an effective treatment against many cancers but the delivery
system is not easy due to its low solubility. SN-
38encapsulatedin poly(D,L-lactide-co-glycolide)NPs were
prepared by the spontaneous emulsification solvent diffusion
method to improve its solubility, stability, and cellular uptake
(Essa et al., 2015). To study cellular uptake and cytotoxicity of
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SN-38 encapsulated NPs, the colorectal adenocarcinoma cell line-
205 (COLO-205) was used and found considerably reduced cell
proliferation and death. Hence, SN-38 loaded NPs are potentially
essential drug delivery systems for the treatment of CRC (Essa
et al., 2015).

Carbon Nanotubes
Carbon nanotubes (CNTs), allotropes of carbon cylindrical
in shape, have rolled graphene sheets with a diameter of
fewer than 1 μm and a few nanometers in length (Rastogi
et al., 2014). Owing to CNT chemical and physical
properties such as high surface area, needle-like
structure, heat conductivity, and chemical stability enable
its potential uses in several fields such as immunotherapy,
diagnosis, gene therapy, and a carrier in the drug delivery
system (Hampel et al., 2008).

Various researches showed that several strategies have been
developed in which CNTs have been used for carrying
antitumor drugs. For the delivery of paclitaxel in Caco-2
cells single-walled carbon nanotubes conjugated with a
synthetic polyampholyte were used. Paclitaxel-SWCNT-
treated Caco-2 and HT-29 cells showed greater anticancer
effects when compared with alone paclitaxel (Lee and
Geckeler, 2012; Wu et al., 2015). The same types of results
have been found in Eudragit®-irinotecan loaded CNTs (Zhou
et al., 2014). Oxaliplatin and mitomycin C-coated CNTs,
induced by infrared light rays in colon cell lines, found
considerably higher drug delivery and localization in cancer
using thermal treatment of cell membrane (Levi-Polyachenko
et al., 2009). One study revealed that SWCNTs modified with
TRAIL (a ligand that binds to specific receptors and causes
apoptosis process in cancer) increased the cell death 10 times
in comparison with alone delivery of TRAIL in carcinoma cell
lines (Zakaria et al., 2015).

Dendrimer
They are three-dimensional macromolecular structures. They
possess central core molecules surrounded by consecutive
layers. The dendrimer exhibit a high degree of molecular
consistency along with shaping characteristics, fine molecular
weight distribution, and multivalency. The specific
physicochemical properties along with biodegradable
backbones facilitate several applications of dendrimer in
nanopharmaceuticals development (Abbasi et al., 2014; Huang
et al., 2015a; Wu et al., 2015). Some of the studies revealed that
dual antibody conjugates can provide advantages of capturing
circulating tumor cells (CTCs) in contrast to single-antibody
counterparts (Xie et al., 2015). The study also revealed that the
surface-active dendrimers can be successively shielded with two
antibodies against the human colorectal CTCs surface biomarkers
Slex and EpCAM. Dual antibody-coated dendrimers exhibit
improved specificity in the detection of CTCs in both patient
blood and nudemicein comparison to single antibody-coated
dendrimers. Moreover, dual antibody-coated conjugates may
downregulate the captured CTCs. Thus, theoretically, it can be
assumed that biocompatible two antibodies conjugated to a
nanomaterial may have the capability to capture and

downregulate the CTCs that can be used as a new strategy for
the prevention of metastasis (Xie et al., 2015).

Similarly in another study, HT29 cells (colon cancer cells)
were successfully captured by employing Sialyl Lewis X
antibodies (aSlex)-conjugated Poly(amidoamine)
dendrimers (Xie et al., 2015b). The colon cancer cells were
characterized using aSlex-coated dendrimer conjugate and
examined by flow cytometry and microscopy. The study
revealed that conjugate possessed an enhanced capacity to
capture HT29 cells in a concentration-dependent manner. The
aSlex-coated dendrimer conjugate showed optimum potential
in capturing and detaining CTCs in the blood (Xie et al.,
2015b). The maximum capture competence was obtained
within 1 h of exposure.

Apart from the diagnostic value, dendrimer may also be used
for therapeutic purposes. In one of the studies, telodendrimers
were suspended with linear PEG-blocking dendritic oligomer of
vitamin E and cholic acid, designed for the delivery of gambogic
acid (GA) and other natural anticancer compounds were used
(Huang et al., 2015a). The study revealed that high GA-loading
ability and subsequent drug release were obtained with these
optimized telodendrimers. Moreover, these novel nano-
formulations of GA were found to exhibit similar in vitro
cytotoxic activity as the free drug against the colon cancer
cells (Huang et al., 2015a).

Later, a new platform for drug delivery was developed with the
reengineering of nano-scale dendrimers for the capture of CTCs
in the blood (Xie et al., 2014). These nano-scale dendrimers were
lodged with dual antibodies to aim the two surface biomarkers
specific to colorectal CTCs with the capacity to particularly
recognize and bind CTCs and downregulate the activity of
CTCs by arresting cell division in the S phase. Moreover,
dual-antibody conjugates revealed enhanced specificity and
competence in controlling the CTCs in vitro as well as in vivo
in comparison with their single-antibody counterparts. Thus,
these studies revealed an innovative way of effective
prevention of metastatic initiation by binding and restraining
CTCs that were usually achieved by the traditional cytotoxic
killing of cancer cells (Xie et al., 2014).

Liposomes
Chemically, liposomes are lipid-based vesicles that act as
artificial carriers with a small and spherical aqueous core
that are nontoxic (Silva et al., 2011). Owing to their smaller
size, ability to incorporate various substances, and
phospholipid bilayer in nature, they are considered the
most effective drug delivery systems into cells with
decreased side effects (Suntres, 2011; Patil and Jadhav,
2014). In 1961, liposome was described as the first
nanoparticle platform for drug delivery in clinical medicine
(Bangham et al., 1965). It is one of the most used for drug
delivery systems especially for peptides, nucleic acids, and
proteins as nano-liposomes (Abreu et al., 2011).

Liposomes can be divided into three categories viz., long-
circulating liposomes, active targeting liposomes, and liposomes
with special properties that include thermo-sensitive, pH-
sensitive, magnetic, and positive (Akbarzadeh et al., 2013; Nag
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and Awasthi, 2013; Noble et al., 2014). For clinical practice,
liposome formulation carrying the drug such as daunorubicin
(DaunoXome®) and Doxorubicin (Doxil®) has been approved by
FDA in the mid-1990s (Barenholz, 2012). The study revealed that
Doxil is approximately 100 nm in size and has much less
gastrointestinal and cardiac toxicity (Rivera, 2003). Later, FDA
has approved Marqibo® as a liposomal drug that is a cell cycle-
dependent anticancer drug (Lammers et al., 2008; Lam and Ho,
2009; Allen and Cullis, 2013).

Drug resistance is a common problem in anticancer
therapy. Several efforts have been made to fight drug
resistance obtained when administrating liposome-based
drugs such as Doxorubicin. In one of the studies during the
administration of high dosages of an antitumor drug such as
Doxorubicin (DOX) an aptamer-based drug delivery system
assists in delivering high dosages of the active drug toward the
target cancer cells (Li et al., 2014). Similarly, Thermodox®
(thermo-sensitive liposome Doxorubicin) is used for
colorectal liver metastases treatment in combination with
radiofrequency ablation (Figure 3). In this treatment
procedure, liposomal Doxorubicin formulation releases the
active drug in response to the mild hyperthermic signal (Stang
et al., 2012). The study revealed that Thermodox can
effectively deliver twenty-five-fold more Doxorubicin to
tumor cells than ordinary intravenous. Doxorubicin dose is

five fold more effective than to standard liposomal
formulations in animal models.

Silica Nanoparticles
Silica materials are broadly categorized as xerogels and
mesoporous silica nanoparticles (MSN). Silica nanoparticles
possess numerous advantages such as a highly porous
framework, biocompatibility, and easy functionalization
(Amato, 2010; Wei et al., 2010). MSNs consist of a bee’s-hive-
like porous structure that assists in packing large amounts of
bioactive molecules. Moreover, MSN also possesses important
features such as adjustable size of cavities in the range of 50–300
and 2–6 nm respectively (Stang et al., 2012), very low level of
toxicity, easy endocytosis, the ability of large quantity of medicine
loading along with resistance to heat and pH (Bharti et al., 2015).
For more precise drug delivery and action to cancer cells,
amesoporous silica nanoparticle-protamine hybrid system
(MSN-PRM) was also used which can selectively release the
drugs in the proximity of cancer cells and get activated with
specific enzymes to trigger the anticancer activity (Radhakrishnan
et al., 2013). In another study conjugated the hyaluronic acid to
MSNs was done as HA-MSN and it was proved that the amount
of DOX loading into HA-MSNs increases significantly than bare
MSNs (Yu et al., 2013). Moreover, the cellular uptake of DOX-
HA-MSNs conjugate was also increased which was reflected by

FIGURE 3 | Schematic representation of Doxorubicin mechanism for colorectal cancer treatment, Doxorubicin accumulation in colon tumor, Doxorubicin molecular
mechanism in the nucleus increase of topoisomerase II and induced by Doxorubicin, causes more DNA breaking which consequently gives rise to apoptosis but in
mitochondria molecular mechanism of Doxorubicin, Fe2+-conjugated Doxorubicin causes Reactive oxygen species production that induces apoptosis and Doxil inhibits
the mitochondrial kinases, consequential in apoptosis induction.
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the enhanced cytotoxicity to the human colon carcinoma cell line
(HCT-116 cell line) (Gidding et al., 1999). Similarly, in another
study, MSNs were functionalized with polyethyleneimine-
polyethylene glycol (PEI-PEG) and polyethylene glycol (PEG)
which was resulted in an increased amount of loading of
Epirubicin hydrochloride (EPI) and exhibited improved
antitumor activity (Hanafi-Bojd et al., 2015). Silica
nanoparticles can also be used along with photosensitizer
chemicals to kill the CRC cells. Researchers at the University
of Buffalo and Roswell Park Cancer Institute have developed a
silica-based nano shell that encases photosensitizer molecules.
The nano shells are designed in such a way that they are easily
taken up by the tumor cells and, upon exposure of cells to light the
photosensitizers are activated and release the reactive oxygen
molecules to kill the cancer cells (Advances in Colorectal Cancer
Research, 2016). Currently, this technique is under clinical trials.
Moreover, the second-generation photosensitizer-loaded nano
shell is also in the developing phase where tumor-targeting
and imaging agents will be incorporated to deliver at the
tumor-specific sites that will assist in image-guided therapy for
cancer (Advances in Colorectal Cancer Research, 2016). Thus,
nanoparticles may also be allowed for molecular imaging of
cancer cells followed by earlier diagnosis and targeted drug
delivery.

Nano-Emulsion System
It is a transparent solution consisting of oil, water, and
surfactant. It possessed thermodynamically uniform and
stable physical properties. Nano-emulsions possess specific
features such as facilitation of transferring drugs and drug
combinations protection against external factors such as heat
and pH (Bilensoy et al., 2009), lower toxicity, higher stability,
and better efficiency along with the dissolution of nonpolar
compounds (Patil and Jadhav, 2014). In one of the studies,
the synergistic effect of gold nanoparticles (AuNPs) and
lycopene (LP) on the HT-29 colon cancer cell line was
studied. The experiment was designed in such a way that
the first case consisted of a system of nano-emulsion having
Tween 80 as emulsifiers along with LP and AuNPs and the
second system consisted of a mixture of AuNPs and LP
without any emulsion. The results revealed that the nano-
emulsion system consists of dosages of LP and AuNPs as 250
and 125 times respectively lesser in comparison with their
mixture mode, but the apoptosis induced by nano-emulsion
was found three times higher than the mixture model (Chen
et al., 2015; Huang et al., 2015b). Similarly, in another study,
an ion-pairing complex of Oxaliplatin (OXA) with a
deoxycholic acid derivative (Nα-deoxycholyl-l-lysyl-
methylester, DCK) (OXA/DCK) was prepared for oral
delivery of OXA and 5-fluorouracil (5-FU) to the
colorectal cancer patient. The study revealed that in
CT26 tumor-bearing mice, the tumor was inhibited by
73.9, 48.5, and 38.1% in comparison with tumor volumes
in the control group and the oral OXA and 5-FU groups,
respectively, which indicated the application of OXA/DCK
and 5-FU as an oral combination therapy for CRC (Pangeni
et al., 2016).

Core-Shell Polymeric Nano-Formulations
Nowadays there is an increasing interest in the manufacturing of
core/shell nanoparticles with two or more materials (Zhou et al.,
1994; Kumar et al., 2020). Such nanomaterials possess a core-shell
structure where the outer surface atoms differ from those of the
interior core atoms. The surface chemistry of core-shell type
nanomaterials is usually characterized by multiple techniques
such as secondary ion mass spectroscopy and X-rayphotoelectron
spectroscopy (Simonet and Valcárcel, 2009; Zielińska et al., 2020).
In core/shell nanoparticles combinations of different materials
such as organic/organic, organic/inorganic, inorganic/inorganic
can be used (Ghosh and Paria, 2012) with specific purposes
including increasing the stability, functionality, and dispersibility
of the core particles. Moreover, specifically designed core-shell
particles may also provide a controlled release of the core and
therefore, allow the reduced consumption of precious materials
(Kalele et al., 2006). The core/shell particles possess specific
applications in the biomedical field such as bio-imaging for
cell labeling, controlled drug delivery, and tissue engineering
practices (Bai et al., 2006; Sounderya and Zhang, 2008; Stanciu
et al., 2009). Some other types of nanomaterial such as
Lactobacillus reuteri biofilm coated with zinc gallogermanate
(ZGGO) mesoporous silica may also be used as a bacterial
inspired bio-nanoparticle system (ZGGO@SiO2@LRM). This
nano system was found possessed with the unique property of
targeted delivery of 5-FU to the tumor of colorectum area.
Further study revealed that in comparison with 5-FU alone,
the ZGGO@SiO2@LRM nanosystem decreased the tumor
number per mouse to one-half during in-vivo chemotherapy.
Additionally, this system was found capable of tolerating the
digestion of gastric acid and thus may support the targeted drug
delivery of oral medicines into the colorectum region. Moreover,
ZGGO also assists in the hassle-free photo luminescence (PL)
bioimaging where LRM coating accurately targets the tumor of
the colorectum region (Wang et al., 2019). Similarly, other silica-
based core-shell nanoparticles such as mesoporous silica
nanoparticles coated with PEG or hydrochloride dopamine
along with epithelial cell adhesion molecule aptamer (MSN@
PDA-PEGApt) were also used for targeted delivery of maytansine
derivative (DM1) with 94% drug loading efficiency to treat
colorectal cancer in mice (Li et al., 2017).

Metal-Organic Frameworks
Metal-organic frameworks (MOFs) are manufactured using
metal nodes and organic linkers (Jiao et al., 2018). The MOFs-
based biosensors have currently been applied for the detection of
various targets, such as heavy metal ions (Zhang et al., 2017),
hazard molecules (Liu et al., 2017), and living cancer cells (Gu
et al., 2019). Most of the biosensors have been designed either for
the detection of cancer markers (Jayanthi et al., 2017; Huang et al.,
2018) or small biomolecules released from cancer cells for the
early diagnosis such as the PBA(Ni-Fe):MoS2 hollow nanocubes
for hydrogen peroxide detection (Zhang et al., 2019) and 3D
bimetallic Au/Pt nanoflowers for the identification of cellular
ATP secretion (Zhu et al., 2020).

Later on, integrated MOFs with electrochemically active other
components have also become an efficient strategy to exploit the
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MOF-based cytosensors. In one such study bimetallic TbFe-
MOFs have been developed using MOF on MOF strategy and
was used for the anchoring of carbohydrate antigen 125 aptamers
for identification of living Michigan Cancer Foundation-7 (MCF-
7) cells (Li et al., 2020). Similarly, the bimetallic ZrHf-MOF doped
with carbon dots was used in the identification of human
epidermal growth factor receptor-2 (HER2) and HER2
expressed in MCF-7 cells (Gu et al., 2019). In another study,
multicomponent Zr-MOFs were used for the detection of MCF-7
cells with an extremely low limit of detection as 31 cell ml−1 (Li
et al., 2020).

Later, combinations of MOFs with different types of
nanomaterials such as metal oxide, metal nanoparticles, and
carbon-based nanomaterials were used to create newer forms
of multifunctional composites/hybrids (Liang et al., 2018; Al-
Sagur et al., 2019). Several organic compounds such as
metallophthalocyanines (MPcs) (e.g., CuPc, FePc, CoPc, and
NiPc) possess electro catalysis activity for the oxidation of
biological compounds (Liu et al., 2017). The biological tissue
of CRC possessed CT26 cells. Therefore, it is essential to detect
the living CT26 cells for the early diagnosis of CRC (Peng, et al.,
2020). In one of the studies a specific electrochemical cytosensor
was described which was constructed on the Cr-MOF@CoPc
nano hybrids for the detection of living CT26 cells (Duan et al.,
2020). A Chlorin-Based nanoscale metal-organic framework was
used for photodynamic therapy of colon cancers using mouse
models and found that these have a great potential for clinical
translation (Kuangda et al., 2015). In a recent study, zirconium-
based metal-organic framework (MOF), PCN-223, was
synthesized and used as a potential vehicle for 5FU for rectal
delivery in diagnosis for CRC (Nea et al., 2020).

Gold Nanoparticles
Among the noble metal, gold nanoparticles (AuNPs) are
considered the most stable nanomaterial that is used for the
preparation of nanostructure with various structures and shapes
such as nanocubes, nanospheres, nanorods, nanoflowers,
nanobranches, nanowires, nano-bipyramids, nanoshells, and
nanocages (Chen et al., 2008; Ramalingam et al., 2014; Li
et al., 2015; Xiao et al., 2019). The recent advancement in
technology has led to accurate surface coating of Au NPs with
specific particle shape and size. These specificities of gold
nanomaterials make it safer and specific anticancer and drug
delivery agent (Siddique and Chow, 2020). Moreover, Artificial
Intelligence and mathematical modeling-based study revealed
that gold nanoparticle has the capability to adjust its optical
densities, light absorbency, wavelengths. Therefore, adjusting the
ideal wavelength with nanoparticle size may allow the higher
amount of light absorbance within the nanoparticle itself leading
to enhanced efficacy of gold nanoparticle against cancer cells
(Moore and Chow, 2021). In a recent study gold NPs increase
cisplatin delivery and potentiate chemotherapy by decompressing
of CRC vessels (Zhao et al., 2018). Gold NPs along with nucleic
acids used as molecular method for cellular uptake (Graczyk et al.,
2020).

AuNPs have the property of easy to functionalize with
biologically active organic molecules along with high physical

and chemical stability leading to their excellent biocompatibility
that is an essential feature to be used in the medical field
(Pissuwan et al., 2019). Moreover, AuNPs can directly
conjugate with several other molecules including antibodies,
nucleic acids, proteins, enzymes, fluorescent dyes, and drugs
which enhance their applications in medical and biological
activities (Ramalingam, 2019). Gold nanoshells or gold
nanospheres have also been intensively studied over the past
decade because of their specific and localized surface plasmon
resonance. Gold nanospheres can also easily be conjugated with
several imaging reporters and can carry genes, drug payloads, and
other chemotherapeutic agents for theranostic applications. Gold
nanoparticles usually passively accumulate in tumors and exert
specific pharmaceutical effects with active targeting ligands such
as Apts, antibodies, and peptides to the required targets
(Singhana et al., 2015).

In one of the studies, cellular prion protein (PrPC) aptamer
(Apt) conjugated with AuNPs was used for targeted delivery of
doxorubicin (Dox) to CRC as PrPC-Apt-functionalized
doxorubicin-oligomer-AuNPs (PrPC-Apt DOA). The result
revealed that in comparison with free Dox treatment, the
oligomer PrPC-Apt DOA decreased the growth and increased
the apoptosis of CRC cells to a significant extent. This indicated
the possibility of the application of PrPC-Apt DOA as a
therapeutic agent for CRC (Go et al., 2021). The gold
nanoparticles (GNPs) may also be used to enhance the
anticancer efficacy of 5-FU and reduce its side effects. The 5-
FU can be loaded to GNPs using thiol-containing ligands,
thioglycolic acid (TGA), and glutathione (GSH) as 5-FU/GSH-
GNPs. Further study revealed that the release of 5-FU from GNPs
was slow and induced apoptosis in colorectal cancer cells. Overall,
5-FU/GSH-GNPs showed two-fold higher anticancer efficacies
than that with free 5-FU (Safwat et al., 2016). Moreover, the
electroporation-GNPs technique may also provide the
opportunity for colon cancer therapy especially for the highly
immunogenic cancers where otherwise tumors are unresectable
(Arab-Bafrani et al., 2020). The gold nanoparticle can also be used
for the early diagnosis of CRC cells using colonoscopy. The
Center of Cancer Nanotechnology at Stanford University
developed a technique where gold nanoparticles are specifically
allowed to bind the CRC cells. Subsequently, light from a
colonoscope is allowed to shine, the gold nanoparticle
bounded cancer cells stand out from the normal cells that can
be removed easily. This technique is going to begin a clinical trial
for safety evaluation in human patients soon (Advances in
Colorectal Cancer Research, 2016).

Other Nanoparticles in Colorectal Cancer
Detection and Treatment
Nanodrug delivery system can be used to encapsulate the
chemotherapeutics agent to targeted drug delivery to cancer
cells which can avoid the adverse effect of conventional
treatment. In recent years several nano carriers with diverse
characteristics have already been tested where polypeptide-
based copolymers were found substantial consideration for
their biocompatibility, slow biodegradability, and considerably
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lower toxicity. One such example assessed is poly(trimethylene
carbonate)-block-poly(L-glutamic acid) derived polymersomes,
targeted against the EGFR. It was loaded with plitidepsin and
tested for efficacy and specificity in LS174T and HT29 cell lines
(Goni-de-Cerio et al., 2015). Moreover, a systematic in vitro
cytotoxicity study was also conducted with the unloaded
polymersomes to determine the cell membrane asymmetry,
viability, biocompatibility check, etc. which recognized the fine
biocompatibility of plitidepsin-unloaded polymersomes. Further
study revealed that the cellular uptake and cytotoxic effect
exhibited by the EGFR-targeted plitideps in loaded
polymersomes in CRC cell lines were found much more
sensitive to anti-EGFR drug-loaded in comparison with
targeted drug-loaded polymersomes. Moreover, untargeted
polymersomes reduce the plitideps in cytotoxicity and cellular
uptake which revealed the use of targeted nano-carrier in cell lines
may be a line of treatment for CRC without any adverse effect on
normal cells (Goni-de-Cerio et al., 2015).

Recently, one of the near-infra-red fluorescent proteinoid-
poly(L-lactic acid)(PLLA) NPs preparation was described where a
P(EF-PLLA) random copolymer was prepared using thermal
copolymerization of L-phenylalanine(F), L-glutamicacid(E),
and PLLA (Kolitz-Domb et al., 2014). The study revealed that
under optimal conditions, the proteinoid-PLLA copolymer can
self-assemble into hollow nano-sized particles that can be used to
encapsulate the indocyanine green and NIR dye. Further study
revealed that the encapsulation process enhances the photo
stability of the dye. The anti-CEA antibodies and tumor-
targeting ligands such as peanut agglutinin can be covalently
conjugated to the surface of P (EF-PLLA) NPs and increases the
detectable fluorescent signal from tumors. The efficacy of P (EF-
PLLA) NPs for colon tumor detection has been demonstrated in
the chicken embryo (Kolitz-Domb et al., 2014).

Over the years, several nano-formulations were being used to
improve curcumin delivery to cancer sites (Figure 4). Nano-
formulations are primarily used to enhance curcumin water
solubility and to present a better consistent delivery for
curcumin (Wong et al., 2019). Preferably, nano-formulation of
curcumin for tumors should have improved anticancer activity as
compared when curcumin alone and also nontoxic to normal
cells. For CRC nano-formulation of curcumin has been
documented in several investigations comprising micelles
(Javadi et al., 2018), nano-gels (Madhusudana Rao et al.,
2015), liposomes (Sesarman et al., 2018), polymeric NPs (Xiao
et al., 2015), cyclodextrins (Ndong Ntoutoume et al., 2016),
phytosomes (Marjaneh et al., 2018), solid lipid nanoparticles
(Chirio et al., 2011), and gold NPs (SanojRejinold et al., 2015).
Different nanomaterials for CRC detection and treatment have
been discussed in Table 3. Although several nano formulations
are undergoing clinical trials, the number of nano formulations
used in clinical trials against the CRC is limited. Some of the nano
formulations used for the appropriate clinical trials against the
CRC are summarized in Table 4.

Combinatorial Nanomedicine and
Colorectal Cancer Therapy
Nanomedicine has proved its efficacy in revolutionizing the
therapeutics and diagnostics of cancers with the advancement
in the development of nano devices. NPs have been used for the
delivery of multidrug especially to mediate the drug resistance in
relapsing cancers (Maya et al., 2014; Anitha et al., 2016). Recently,
a study showing an improved efficacy of 5-FU assisted
chemotherapy as a combinatorial strategy for colon cancer
treatment was described (Anitha et al., 2014a; Maya et al.,
2014). In combinatorial nanomedicine efficacy of both the

FIGURE 4 | Different types of curcumin nano-formulations for the treatment of colorectal cancer.

Frontiers in Nanotechnology | www.frontiersin.org September 2021 | Volume 3 | Article 69926612

Brar et al. Nanotechnology Precision Therapy for Colorectal Cancer

121

https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles


drugs was enhanced due to nano encapsulation where 5-FU was
used along with a nontoxic polymeric carrier system thiolated
chitosan. In combinatorial use the dosage of 5-FU was decreased
which was reflected with enhanced chemotherapeutic efficacy
and beneficiary effect on CRC patient cases. The nano-sized drug-
encapsulation systems possess specific efficacy in terms of passive
retention of more drug-loaded NPs in the vicinity of cancer cells.
These strategies have assisted in the development of the next
phase of anticancer nanomedicine (Anitha et al., 2014; Malarvizhi
et al., 2014; Maya et al., 2014; Linton et al., 2016).

Nanotechnology and Chemoprevention
Given side effects associated with chemotherapy, implementation
of the nanotechnology-based formulation is very essential for
cancer prevention, diagnosis, and treatment because it allows
drug targeting and possible drug reduction which can

furthermore increase the safety of drugs by minimizing
nontargeted toxicities.

NSAIDs are most extensively used for colon cancer
prevention (Alizadeh et al., 2012; Drew et al., 2016; U.S.
Preventative Service Task Force, 2016; Pan et al., 2018).
The epidemiological investigations demonstrate that out of
all the NSAIDs, the most promising agent reported is aspirin
in reducing adenomatous tumor recurrence due to the
accessibility consistent result with minimum
gastrointestinal toxicity and no cardiovascular risk
(Umezawa et al., 2019). Additionally, Grade B
recommendation has been provided for aspirin by the U.S.
Preventative Service Task Force (2016) for its utilization as
chronic prophylaxis means for CRC (Dehmer et al., 2015).
Although aspirin alone or in combination has been proved for
colon chemo preventive activity, nano encapsulation of aspirin

TABLE 3 | Summary of nano formulations used in the detection and treatment of CRC.

Nano-
formulations

Structure Characteristics Applications References

Iron oxide nano-
crystals

1–100 nm diameter iron oxide particles.
Methotrexate, superparamagnetic iron oxide
nanoparticles (SPIONs), and Wheat germ
agglutinin (WGA)

Diverse application in different fields and
superparamagnetic properties

Cancer detection Yang et al. (2014),
Lima et al. (2017)

Dendrimers Synthetic polymer of hyper branched pattern
with regular repeating monomer unit

Structurally perfect molecules arranged in a
characteristic fashion

Treatment & Detection Xie et al. (2015)

Quantum dots Nanocrystals of semiconductor ranging in
diameter 2–10 nm

Show best optical properties such as photo
bleaching resistant, high brightness, and
tuneable wavelength

Treatment and detection Wang et al. (2016)

Gold nano shells Gold Surface Plasmon resonant made up of
silica nano core shell surrounded by ultra-thin
shell of gold

Plasmonic nanoparticles exhibit diverse
applications as used in cancer therapy,
sensing and used as optical filters

Detection and cancer
treatment

Singhana et al.
(2015)

Nano cells or PLGA
nanoparticles

Different structural variants of PLGA
copolymers that are used as efficient drug
delivery carrier

Easily biodegradable biopolymer on hydrolysis
forms the simple monomers as glycolicacid,
lacticacid, etc.

US FDA approved therapy
and detection technique

Akl et al. (2016)

Liposomes Lipid bilayer self-assembled structure closed
and colloidal in nature

Artificial vesicles of phospholipid bilayer which
can effectively transport hydrophilic
substances inside and outside the cell

Treatment and detection Chibaudel et al.
(2016)

CUR-CS-NP Chitosan nanoparticles covering the curcumin By muco-adhesion process efficient action of
curcumin to cancerous cells. Moreover
enhance the cell cycle arrest at G2/M phase
and apoptosis in HT29 cells

Detection and treatment Chuah et al. (2014)

Oxaliplatin/DCK
and 5-FU

Hydrophilic 5-FU loaded with nano emulsion
and N-deoxycholyl-L-lysl-methylester (DCK)
linked with amphiphilic Ox-aliplatin

Reduction in tumor volume and enhanced
availability of oxaliplatin

Treatment Pangeni et al.
(2016)

NP SQ-
emcitabine/
isoCA-4

Precipitates of squalene, gemcitabine, and
isocombretastatin A-4 (isoCA-4)

Enhanced anti-proliferative and cytotoxic
effect. Moreover regresses the tumor

Treatment Maksimenko et al.
(2014)

PFA@PTX NPs poly(ferulic acid)(PFA) NPs and paclitaxel
(PTX)-loaded PFA NPs

poly(ferulic acid) PFA inhibit tumor growth and
good drug carrier along with nanoparticles

Treatment and detection Zheng et al. (2019)

Nanogel 5-FU acts as a cross linker between beta
cyclodextrin and nanoparticles in aqueous
solution and forms nanogels. Nanogels are the
biocompatible and efficiently released drug

For colorectal cancer cells nanogels loaded
with grapheme oxide, HA-based irinotecan
cure cells

Treatment Hosseinifar et al.
(2018)

Carbon nanotubes Single-walled carbon nanotubes (SWCNTs)
conjugated with a synthetic polyampholyte for
delivering paclitaxel in cancerous cells

Exhibit more effective antitumor effects Diagnosis and treatment Lee and Geckeler
(2012)

SN-38 liposome SN38-PA was synthesized by conjugating
palmitic acid to SN38 via ester bond at C10

position and then this prodrug was
encapsulated into liposomal carrier using the
film dispersion method

Act as most potent antitumor analogues Used in treating patients
having metastatic
colorectal cancer CRC

Wu et al. (2019),
Canton et al. (2019)
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can enhance its efficacy with a reduced dose. The chemo
preventive effect of the combination of calcium, folic acid,
and aspirin has been studied on azoxymethane-treated 7-
week-old Sprague-Dawley male rats and found that 1.7 fold
higher effective during chemoprevention as compared with
their un-modified complement regimen (Prabhu et al., 2007;
Chaudhary et al., 2011). Another NSAID is Celecoxib that is
being broadly explored in clinical uses for its chemoprevention
potential; however, it offers pharmacokinetic variability and
cardiotoxicity (Solomon et al., 2005). Celecoxib polymeric

NPs have been prepared using ethyl cellulose with lipid
hybrid NPs, sodium casein ate bile salt and micro
emulsions enhanced its bioavailability allowing a decrease
in dose, crystallization, and related toxicity (Margulis-
Goshen et al., 2011; Tan et al., 2011; Morgen et al., 2012).
Naturally extracted plant-based chemicals are phytochemicals
that are broadly studied as potential chemo preventive sources
for their nontoxicity and pleiotropic effects (Thomasset et al.,
2007; Zubair et al., 2017; Wong et al., 2019). In colon and
intestinal cancer, curcumin has reported competent chemo

TABLE 4 | Nanoparticle-based FDA drugs and drugs in clinical trials on CRC patients.

S.
No

Nanomaterial/nanosystem
used

Drug description Applications Clinical trial
or FDA

approval status

References

1 Liposome Vincristine Colorectal cancer, Acute Lymphoblastic
Leukemia, Sarcoma, Neuroblastoma,
Leukemia, Lymphoma, Brain tumors

FDA approved Gidding et al.
(1999)

2 Liposome Doxorubicin Colon cancer with liver metastasis Phase II trial Celsion (2016)
3 Liposome SN-38 liposome Metastatic colorectal cancer Phase 2 trial

(subsequently
terminated

US National
Institute of Health
(2016)

4 Liposome Liposome-encapsulated IRI
(Irinotecan) hydrochloride PE

Second-line therapy for metastatic
colorectal cancer

Phase 2 trial
(subsequently
terminated)

US National
Institute of Health
(2016)

5 Liposome Liposomal Cisplatin Analog
(Aroplatin)

Colorectal cancer Phase I/II trial Pillai (2014)

6 Liposome SN38 Metastatic colorectal cancer Phase II trial Bala et al. (2013)
7 Liposome Irinotecan, PEGylated

Liposome (Narekt -102)
Breast and colorectal cancer Phase III l trial Pillai (2014)

8 CPX-1 liposome Liposomal IRI (irinotecan)
hydrochloride and floxuridine

Advanced colorectal cancer Phase II trial Cabeza et al. (2020)

9 PEP02 liposome Liposomal IRI hydrochloride +
5-FU and LV (leucovorin)

Metastatic colorectal cancer Phase II trial Cabeza et al. (2020)

10 MM-398 Liposomal IRI Advanced cancer of unresectable nature Phase Ib trial Cabeza et al. (2020)
11 PROMITIL PEGylated liposomal

mitomycin C
Metastatic colorectal cancer Phase I trial Cabeza et al. (2020)

12 Nal-IRI Liposomal IRI Colorectal cancer along with advanced
gastrointestinal cancers

Phase I/II trial Cabeza et al. (2020)

13 Polymer 5-fluorouracil (5-FU) and
DAVANAT (carbohydrate
polymer)

Treatment of colorectal cancer Phase I/II trial
(subsequently
terminated)

Xiao et al. (2015)

14 Regulatory lymphocytes (Tregs):
anti-CTLA-4 ipilimumab and anti-
PD-L1 atezolizumab

Cytotoxic antibodies expressed
on surface of Tregs

colorectal cancer FDA approved Rampado et al.
(2019)

15 NKTR-102/IRI Formulation for prolonged
release of IRI conjugated with
PEG/IRI

Metastatic CRC with KRAS-mutant II clinical trial Cabeza et al. (2020)

16 Cyclodextrin nanoparticle Camptothecin Solid tumors, rectal cancer, renal cell
carcinoma, non-small cell lung cancer

Phase I/II trial Giglio et al. (2015)

17 PEG-PGA polymeric micelle SN-38 Colorectal, lung, and ovarian cancers Phase II trial Hamaguchi et al.
(2018)

18 Carbon NPs Carbon NPs Laparoscopic surgery of colorectal cancer Phase I trial Cabeza et al. (2020)
19 TKM-080301 Lipid NPs with serine/threonine

kinase inhibitor
Colorectal cancer with liver metastases and
ovarian, gastric, esophageal, and breast
cancer

Phase I trial Cabeza et al. (2020)

20 PEG-rhG-CSF PEGylated recombinant human
granulocyte colony stimulating
factor (CSF)

Solid malignant tumors (colorectal, ovarian,
lung, head, and neck cancer)

Phase IV trial Cabeza et al. (2020)

21 Silica NPs Fluorescent cRGDY-PEG-
Cy5.5-C dots

Breast cancer and colorectal malignancies Phase I-II trial Cabeza et al. (2020)

22 Polymeric NPs + cetuximab +
somatostatin analogue

Combination of NPs Cetuximab
and Somatostatin analogue

Metastatic colorectal cancer Phase I trial Cabeza et al. (2020)
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protective activity, but it has poor absorption, minimum water
solubility, and low bioavailability. To conquer the problem,
curcumin whey protein nano capsules were synthesized, which
not only found >70% release within 48 h but also showed improved
bioavailability and cell internalization (Jayaprakasha et al., 2016).
In other research, it was found that curcumin encapsulated in
polymeric nano carrier enhanced the solubility of curcumin and
showed less structural abnormalities, considerable reduction in
tumors and beta-catenin in the treated group with curcumin NPs
as compared with the group treated only with curcumin (Alizadeh
et al., 2012).

CONCLUSION AND FUTURE
PROSPECTIVE

With the advancement in nanotechnologies, there has been
increased research on the development of medical devices,
targeted therapies, and novel drug delivery systems.
Nanotechnology enabled the development of medical products
from a single mode of action to multifunctional platforms such as
nano theranostics to combine diagnostics and therapeutics. The
preclinical study of nanomaterials has proved its efficacy as a
therapeutics purpose of cancer. The detailed study of predictive
immuno toxicity assays, nanoparticle surface characterization,
and quantitative evaluation of encapsulated versus free drug
fractions has highlighted the importance of nanotechnology in
modern medicine. The advancement in drug delivery systems
with the capability to modify the tissue uptake, bio-distribution of
drugs, and pharmacokinetics of therapeutic agents has immense
significance in biomedical research. Some of the nano carriers are
even able to cross the blood-brain barrier (BBB) and may act at
the cellular level. Moreover, several nanoparticle-based studies
have focused on the development of techniques to customize
novel drug conjugates and diagnostics as well as therapeutic
devices. Nano carriers can also be programmed to release the
therapeutic agents, fluorescent molecules, or even magnetic

materials to the colorectal cancer site to increase the
bioavailability, drug solubility, stability, and tumor specificity
of therapeutics agent in comparison with free molecular cargo.
Moreover, nano carriers-based therapeutics agents may decrease
the tumor multidrug resistance resulting in ineffective treatment
by reducing the overall drug requirement and potential side
effects. In recent years, the nanotechnology applied to CRC
has evolved enough to complement the latest advances in
tumor diagnosis and therapy far beyond the traditional
systems. It can be combined with completely newer concepts
of diagnostics and therapeutics synergistically with available
methodology. Thus, in the coming future despite the several
challenges in the application of nanotechnology, nanomedicine is
going to gain the capability to play a critical role in the
management of human CRC. The specific research on new
methods directed at the understanding of nano-bio interface
may reveal some additional relationships between the
nanoparticle structure and its biological activity. Such
information may be used in devising new strategies for further
development of nanotechnology to improve the existing
pharmaceuticals and development of novel therapeutics
products in the future.
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Photodynamic therapy (PDT) is a potential non-invasive approach for application
in oncological diseases, based on the activation of a photosensitizer (PS) by
light at a specific wavelength in the presence of molecular oxygen to produce
reactive oxygen species (ROS) that trigger the death tumor cells. In this context,
porphyrins are interesting PS because they are robust, have high chemical, photo,
thermal, and oxidative stability, and can generate singlet oxygen (1O2). However,
porphyrins exhibit low solubility and a strong tendency to aggregate in a biological
environment which limits their clinical application. To overcome these challenges, we
developed hybrid nanostructures to immobilize 5,10,15,20-tetrakis[(4-carboxyphenyl)
thio-2,3,5,6-tetrafluorophenyl] (P), a new third-generation PS. The biological effect
of this system was evaluated against bladder cancer (BC) cells with or without
light exposition. The nanostructure composed of lipid carriers coated by porphyrin-
chitosan (P-HNP), presented a size of ca. 130 nm and low polydispersity (ca. 0.25).
The presence of the porphyrin-chitosan (P-chitosan) on lipid nanoparticle surfaces
increased the nanoparticle size, changed the zeta potential to positive, decreased the
recrystallization index, and increased the thermal stability of nanoparticles. Furthermore,
P-chitosan incorporation on nanoparticles increased the stability and enhanced the self-
organization of the system and the formation of spherical structures, as observed by
small-angle X-ray scattering (SAXS) analysis. Furthermore, the immobilization process
maintained the P photoactivity and improved the photophysical properties of PS,
minimizing its aggregation in the cell culture medium. In the photoinduction assays,
the P-HNP displayed high phototoxicity with IC50 3.2-folds lower than free porphyrin.
This higher cytotoxic effect can be correlated to the high cellular uptake of porphyrin
immobilized, as observed by confocal images. Moreover, the coated nanoparticles
showed mucoadhesive properties interesting to its application in vivo. Therefore, the
physical and chemical properties of nanoparticles may be relevant to improve the
porphyrin photodynamic activity in BC cells.
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INTRODUCTION

Photodynamic therapy (PDT) is a non-invasive approach to treat
oncological and non-oncological diseases (Figueira et al., 2014;
Kwiatkowski et al., 2018; Mesquita et al., 2018a,b; Gazzi et al.,
2019; Negri et al., 2019; Castro et al., 2020; Gomes et al., 2020;
Lee et al., 2020). PDT is a clinically approved treatment based on
the activation of a photosensitizer (PS) by the light of a specific
wavelength, in the presence of molecular oxygen to produce
reactive oxygen species (ROS), resulting in neoplastic cell death
(Agostinis et al., 2011; Bogoeva et al., 2016). When the PS is
activated, its molecules absorb photons, transmitting energy to
molecular oxygen and triggering the production of singlet oxygen
(1O2) (type II), such as other ROS production by an electron
transfer mechanism (type I) (Dougherty, 2002; Castano et al.,
2004; Purushothaman et al., 2019). These ROS may activate
a complex cascade of biochemical and physiological reactions
able to induce tumor cell death by apoptosis, necrosis, or
autophagy. The damage of microvessels suppresses the malignant
tissue nutrition, oxygenation, and promotes adaptive antitumor
immunity activation (Garg et al., 2010; Agostinis et al., 2011;
Bacellar et al., 2015; Luiza Andreazza et al., 2016).

Bladder cancer (BC) is the tenth highest occurring malignant
disease worldwide and the sixth with more incidence in men
(Ferlay et al., 2019). In 2018, about 550,000 new cases were
reported worldwide (Ferlay et al., 2019). Moreover, 75% of
BC cases are diagnosed as non-muscle invasive bladder cancer
(NMIBC) or superficial (Tse et al., 2019; Ramuta et al., 2020).
Thus, due to the easy access to the bladder and the high exposition
of malignant tissue on the bladder surface in cases of NMIBC,
PDT has been suggested to enhance the effectiveness of BC
therapy (Agostinis et al., 2011; Gomes et al., 2020).

Several porphyrins and their reduced derivatives (chlorins)
have been developed and used in the clinic and clinical trials for
cancer treatment (e.g., Photofrin or 5-ALA) (Dougherty, 2002;
Master et al., 2013; Li et al., 2015; Zhang et al., 2016; Kou et al.,
2017; dos Santos et al., 2019).

Porphyrins are aromatic heterocycle compounds formed
by four pyrrole rings linked by four methyl bridges. These
compounds are robust and have a high chemical, photo, thermal,
and oxidative stability (Ptaszyńska et al., 2018). Porphyrins with
varied structures and characteristics can be isolated from nature
or synthesized. The ability of these derivatives to generate singlet
oxygen enables its use as a photosensitizer in PDT (Plaetzer et al.,
2003; Allison and Moghissi, 2013; Kou et al., 2017).

Although the use of porphyrin has been proposed as PS used
in PDT, the disadvantages of this compound class have been
observed, as it has clinical limitations due to its aggregation
process (Nawalany et al., 2009; Liang et al., 2014). It is well
established in literature that the photosensitizer must maintain
a monomeric form to be photoactive (Ricchelli et al., 1998;
Chen et al., 2005; Nawalany et al., 2009; Rabiee et al., 2020).
Furthermore, several of these photosensitizers have shown low
selectivity by cancer tissues (Purushothaman et al., 2019),
resulting in the deactivation or reduction of the photosensitizer
action. To overcome these challenges, several nanostructures
have been developed as a photosensitizer delivery system to

increase their selectivity (Zhou et al., 2016; Battogtokh and Ko,
2017; Ujiie et al., 2019).

Berndt-Paetz et al. (2019) reported the success of PDT using
tetrahydroporphyrin-tetratosylat (THPTS) encapsulated into
liposomes. This system was able to inhibit BC cell growth, trigger
cells to apoptosis or necrosis, mainly due to their subcellular
localization through the cytoplasm and in lysosomes (Berndt-
Paetz et al., 2019). Similar results were reported by Gomes et al.
(2020) using polyvinylpyrrolidone micelles containing a triazole-
porphyrin derivative.

Mucoadhesive nanoparticles and lipid nanostructures have
also been used as PS delivery systems to enhance PDT. The
porphyrin 5,10,15,20-tetrakis(m-hydroxyphenyl) (mTHPP) was
encapsulated in PLGA nanoparticles coated with poly(ethylene
glycol) (PEG) or chitosan (Anderski et al., 2018; Mahlert et al.,
2019). These systems showed an increase in the intracellular
accumulation of mTHPP in HT-29-MTX and Caco-2 cells.
Moreover, PEG-PLGA-mTHPP nanoparticles showed superior
cytotoxicity to chitosan-PLGA-mTHPP nanoparticles. The PS
chlorin e6 (Ce6) (Lee et al., 2011) and protoporphyrin IX
(Lee et al., 2009) conjugated with chitosan nanoparticles and
exhibited efficient accumulation in the tumor, exhibiting a
superior therapeutic efficacy to free PS in tumor-bearing mice
models. The encapsulation of verteporfin in nanostructured lipid
carriers (NLCs-verteporfin) increased the uptake of this PS in 2D
and 3D models of ovarian cancer cells and triggered a higher
phototoxicity effect compared with free verteporfin (Michy et al.,
2019). An enhancement of the phototoxic effect of meso-(tetra
hydroxyphenyl) chlorin (mTHPC) in breast cancer cells was also
obtained when this porphyrin was encapsulated in solid lipid
nanoparticles (Navarro et al., 2014). Zhang et al. (2019) developed
a NLC with a surface modified with folate to co-delivery Ce6
and paclitaxel. This nanostructured system enhanced the Ce6 and
PTX internalization in cancer cells and showed, in an animal
model, a significant decrease in the tumor volume compared with
groups in dark conditions (Zhang et al., 2019).

Another strategy explored is the use of hybrid nanoparticles.
Hybrid nanosystems can be obtained by the combination of
different materials (organic–inorganic or organic–organic),
combining the attributes of each material to obtain a
nanostructure with unique properties (Bochicchio et al.,
2018; Mukherjee et al., 2019; Ferreira Soares et al., 2020).
Hybrid chitosan-coated gold nanoparticle conjugated with
meso-tetrakis(4-sulphonatophenyl) porphyrin (TPPS) exhibited
high photothermal conversion efficiency, enhancing the cellular
uptake of TPPS in HepG2 cells, and showed superior cytotoxicity
to free TPPS (Zeng et al., 2018). Thus, the association of PS
with nanostructures can improve the photodynamic action,
reduce its side effects in healthy tissue (Battogtokh and Ko, 2017;
Kwiatkowski et al., 2018; Ujiie et al., 2019), improve its stability
and tissue penetration, and enhance the PS uptake in cancer cells
(Ujiie et al., 2019).

This study reports on the immobilization of the
new 5,10,15,20-tetrakis[(4-carboxyphenyl) thio-2,3,5,6-
tetrafluorophenyl] porphyrin (P) (Supplementary Figure S1)
in a biodegradable hybrid nanoparticle of the NLCs coated with
chitosan, aiming to minimize the aggregation process, enhance
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cellular uptake, and consequently improve the efficiency of this
PS in PDT against BC cells.

EXPERIMENTAL SECTION

Materials
In general, the materials were purchased from Sigma-Aldrich
without further purification. The Crodamol SS was obtained from
CRODA and the N,N-Dimethylformamide (DMF) from Exodo.

Porphyrin Synthesis and Quantum Yields
of Singlet Oxygen Determination
The porphyrin derivative was prepared according to
the literature, following two steps: briefly. (1) The
precursor 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin
[H2(TPFPP)] was synthesized by condensation of pyrrole
with pentafluorobenzaldehyde in the presence of acetic acid
and nitrobenzene under reflux conditions. (2) The tetra-
substituted porphyrin 5,10,15,20-tetrakis[(4-carboxyphenyl)
thio-2,3,5,6-tetrafluorophenyl] (simplified by P) was obtained
by structural modification of [H2(TPFPP)] in the presence of
the nucleophile 4-mercaptobenzoic acid and pyridine, using
DMF as solvent at room temperature for 24 h (Castro et al.,
2015). The compound P was characterized by 1H and 19F NMR
(Bruker Avance 300 spectrometer at 300.13 and 282.38 MHz),
UV-Vis (Agilent 8453 spectrophotometer), and fluorescence
(F4500 – Hitachi spectrofluorometer) spectroscopies. In the
fluorescent analysis, the widths of both excitation and emission
slits were set at 3.0 nm. Additionally, the quantum yield of
singlet oxygen (φ1) was determined from the rate of decay
of the 1O2 phosphorescence at 1270 nm using an Edinburgh
F900 instrument consisting of a Rainbow OPO (Quantel Laser-
France) 10 Hz, 2 mJ/pulse, which was pumped by a Brilliant
NdYAG laser (Quantel Laser-France) and using 5,10,15,20-
tetraphenylporphyrin (TPP) as standard in DMF (φ1 = 0.65)
(Castro et al., 2020). The absorbance of the sample in DMF was
adjusted to 0.1 at the excitation wavelength (420 nm).

Porphyrin Immobilized in Chitosan
(P-Chitosan)
Chitosan solution in pH 5.2 at a concentration of 6.6 mg/mL
was slowly dripped on a porphyrin solution in acetone (0.83 M)
under magnetic stirring. The mixture was stirred (900 rpm)
in dark conditions for 72 h at room temperature to acetone
evaporation. Then, the homogeneous dispersion of the P-
chitosan was incorporated into the aqueous phase of the
nanoparticle’s preparation process (see below).

Hybrid Nanoparticle Preparation
The nanostrutured lipid carriers-NLCs (NP) coated with chitosan
or P-chitosan (hybrid nanoparticles, HNP or P-HNP) were
prepared in one step by the emulsification-ultrasonication
method, a simple and scalable method (Pivetta et al., 2019). The
lipid phase composed of 1.4% (m/v) of Crodamol SS and 0.4%
(m/v) of oleic acid was melted at 70◦C in a water bath. Thereafter,

the aqueous solution of Tween R© 80 (1.25% m/v) containing or
not 0.24% (m/v) of chitosan, or P-chitosan at 70◦C was added
to the lipid phase. The hot emulsion was sonicated for 10 min
(Sonics VCX 750, probe of 13 mm, 40% of amplitude) and then
the dispersion was cooled at 25◦C.

Particle Size and Zeta Potential
The diameter by intensity and polydispersity index (PdI) were
measured by dynamic light scattering using NanoSize ZS
(Malvern R©) with a scattering angle of 90◦. The zeta potential (ZP)
was determined by electrophoretic light scattering (ELS) using
NanoSize ZS (Malvern R©). Samples (NP, HNP, and P-HNP) were
diluted with deionized water (for size) and KCl solution (for ZP)
and analyzed at 25◦C.

Porphyrin Immobilization Efficiency
(IE%)
The efficiency of porphyrin immobilization in the hybrid
nanoparticles was calculated based on free porphyrin (P) amount
in the dispersion, an indirect method (Equation 1). For this,
500 µL of the P-HNP dispersion was centrifugate at 5000 × g
in an Amicon filter system from 10 kDa for 10 min. The filtrate
containing the free P was diluted in DMSO and the absorbance
was assessed using a UV-Vis (Agilent 8453 spectrophotometer).
The concentration of non-immobilized P into nanoparticles
dispersion was quantified using the molar extinction coefficient
(ε) (127,902 M−1 cm−1) of P in DMSO, previously determined
using calibration curves. In the equation below, the total amount
of P added to the nanoparticle was considered 100%.

IE% =
([P]total−[P]free)

[P]total
× 100 (1)

[P]total, total concentration of P; [P]free, free
porphyrin concentration.

Atomic Force Microscopy
The morphology of the HNP was performed in a Shimadzu
Scanning Probe Microscope (SPM-9600 model) operating in
tapping mode. A probe of silicon (PPP-NCHR) was used with a
length of 125 ± 10 µm, a resonance frequency of 204–497 kHz,
and a constant force of 10–130 N/m. The HNP dispersion was
dripped on mica, followed by evaporation for 24 h at room
temperature before the analysis.

Cryogenic Transmission Electron
Microscopy
The size and the morphology of coated nanoparticles were
determined by cryogenic transmission electron microscopy
(Cryo-TEM). The HNP and P-HNP dispersions were dripped
in a grid. After 24 h, dry samples were frozen at −184◦C and
analyzed in a high-resolution transmission electron microscope
FEI TECNAI G2 F20 (Thermo Fisher Scientific, United States),
operating a beam voltage of 200 KeV. TEM images were analyzed
in the ImageJ software (NIH, United States) to determine the size
distribution of HNP and P-HNP.
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Differential Scanning Calorimetry
The crystallinity of nanoparticles and their compounds were
analyzed by differential scanning calorimetry (DSC) (Shimadzu
DSC-50). The lyophilized samples were hermetically sealed in
an aluminum pan and heated in the temperature range of
15–350◦C. The heating rate was 10◦C/min under nitrogen gas
flow (3 kgf/cm2). The recrystallization index percentage (% IR)
was calculated following Equation 2 (Shah and Pathak, 2010).

% IR =
4Hnanoparticle

4Hbulk lipid x fraction of lipid phase
× 100 (2)

Thermogravimetric Analysis (TGA)
Thermogravimetric analysis (TGA) was carried out using
Shimadzu DSC-50. The previously dried samples were
hermetically sealed in an aluminum pan. Then, the samples
were heated under an inert atmosphere with a rate of 10◦C/min
in a temperature range from 30 to 880◦C.

Small-Angle X-Ray Scattering
The equipment was adjusted for a sample detector distance
of 3.7 m to investigate sizes around 100 nm. The radiation
used was Copper Kα (λ = 1.54 Å) and a measurement range
of 0.038 < q < 1.03 (nm−1). Scattering data were collected
using a two-dimensional Pilatus 300K detector. To guarantee
the normalization of the data and the correct subtraction of
medium contribution, capillary sample holders glued on steel
liners were used. The azimuthal integration of the images was
performed with the FIT2D program (Hammersley, 2016). Data
processing was carried out according to standard procedures
(Oliveira, 2011). The data were normalized to an absolute scale
using water as a primary standard. Ten frames of 30 min were
obtained for each sample. The treated data were compared
to evaluate the stability of the sample and, later, experimental
data were optimized. For the analysis, the Indirect Fourier
Transformation method (Glatter, 1977) was used on a slightly
different implementation (Oliveira et al., 2009). As a result, the
theoretical fit of the scattering intensity and the corresponding
pair distance distribution function [p(r)] are obtained. The
overall shape of the p(r) curve provides indications of the particle
shape in the system (Oliveira, 2011).

Evaluation of Porphyrin Photophysical
Properties
Free porphyrin (P), P-chitosan, and P-HNP at 200 nM were
evaluated regarding UV-Vis (Agilent 8453 spectrophotometer)
and fluorescence (F4500 – Hitachi spectrofluorometer)
spectroscopies. P-HNP and P-chitosan were prepared in
deionized water, whereas free porphyrin (P) was prepared in
DMSO 1% (v/v). The controls of chitosan, NP, and HNP were
prepared in deionized water according to the same volume used
for the P samples. All samples were excited at 420 nm. In the
fluorescent analysis, the widths of both excitation and emission
slits were set at 3.0 nm. The absorption and emission spectra
were normalized.

Accelerated Stability
The accelerated stability of the nanoparticles was performed
in a Dispersion Analyzer LUMiSizer 6120 centrifuges (L.U.M.
GmbH, Berlin, Germany) using the SEPView v.6.4 software.
This dispersion analyzer allows simultaneous recording of the
intensity of transmitted light (808 nm) in dispersed systems
as a function of time and the position of the sample in the
cuvette using space and time resolved extinction profiles (STEP-
technology) (Caddeo et al., 2013; Tan et al., 2016; Zielinska et al.,
2019). NP, HNP, and P-HNP were added in 2 mm disposable
polycarbonate sample cells. Measurements were performed at
25◦C and the light transmission profile was acquired by the
detector every 70 s for 250 min (200 profiles) at a rotation speed
of 3801 rpm and light factor of 1. This analysis allows to detect
signs of instability such as sedimentation, creaming, coalescence,
flocculation, or phase separation (Caddeo et al., 2013; Tan et al.,
2016; Zielinska et al., 2019). Instability indexes were calculated
by SEPView v.6.4. The parameters used in this experiment mimic
the stability or shelf life of 12 months (Caddeo et al., 2013; Tan
et al., 2016; Zielinska et al., 2019).

Mucoadhesion Studies in vitro
To assess the mucoadhesive property of the coated nanoparticles
in vitro, a mucin solution (1 mg/mL) was titrated under the
nanoparticle dispersions diluted 50 times. This titration was
performed in an MPT-2 accessory of the ZetaSizer Nano ZS. The
concentration range analyzed was 0–0.05 mg mL−1. For each
point of the titration, the ZP of HNP and P-HNP was determined.

T24 Bladder Cancer Cells Culture
The human BC cells T24 were obtained from the Rio de Janeiro
Cells Bank (BCRJ). T24 cells were cultured in RPMI medium
supplemented with 10% of fetal bovine serum and 1% of a
streptomycin-penicillin mixture and kept at 5% of CO2 and 37◦C
(MCO-170AIC-PE, PHCbi, Canada).

Cytotoxicity (Dark Condition)
The cytotoxicity of free porphyrin (P), HNP, and P-HNP
was evaluated by the resazurin assay. T24 cells were seeded
in 96-well plates at a density of 2 × 104 cells/well. After
24 h, the cells were treated with different concentrations of
the samples (12.5–300 nM) prepared in RPMI phenol red free
medium supplemented with 2% of fetal bovine serum and 1% of
streptomycin-penicillin mixture (RPMI medium with 2% FBS). P
stock solutions were prepared in DMSO (1 mM) and then diluted
in RPMI medium [(DMSO) <0.5%]. After 6 or 24 h, the cells were
washed with 200 µL PBS and then 200 µL of resazurin solution
(25 µg/mL) in RPMI medium without phenol red and serum was
added to each well. The cells were incubated at 37◦C for 4 h. After
this period, the fluorescence was then measured with excitation
at 530 nm and emission at 590 nm in a microtiter plate reader
spectrophotometer (SynergyTM HTX Multi-Mode Microplate
Reader, BioTek). DMSO (20% v/v) was used as positive control
and untreated cells (cells+ RPMI medium) were used as negative
control.
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Photocytotoxicity
Photodynamic studies were carried out in T24 cells with free
porphyrin (P), HNP, and P-HNP using the resazurin assay.
Briefly, 2× 104 cells/well were seeded and then incubated at 37◦C
for 24 h. After incubation, cells were treated with the samples
at the same concentrations used in the cytotoxicity experiment.
After 6 or 24 h of incubation, the cells were washed with PBS, and
then fresh RPMI medium with 2% FBS was added in each well.
Immediately, the cells were irradiated at room temperature using
a set of LEDs with the emission band ranging between 385 and
425 nm at an irradiance of 24.5 mW cm−2 with a total light dose
of 5 or 10 J/cm−2. The cells were incubated for 20 h at 37◦C in a
CO2 incubator. Then, the resazurin solution was added and the
cells were incubated for 4 h. After incubation, fluorescence was
evaluated under the same conditions described previously. In the
assay with a treatment time of 6 h, the cells were irradiated with
only the fluence of 10 J/cm2.

The phototoxicity was also evaluated in T24 cells using
Cell-titer Glo 2.0 Cell Viability Assay Kit in the same
condition described above. After incubation, cells were treated
with the samples at the range concentrations (12.5–300 nM)
and then incubated. After 6 h, the cells were washed with
PBS, and then fresh RPMI medium with 2% FBS was
added in each well. The cells were exposed to 10 J/cm2

at room temperature. Then, the cells were incubated at
37◦C in a CO2 incubator for 20 h. After incubation, Cell-
titer Glo 2.0 reagent was added to each well according
to Promega Protocol, and cells were incubated at room
temperature. After 10 min, samples were transferred to 96
wells opaque plates, and luminescence was measured in a
microtiter plate reader spectrophotometer (Synergy TM HTX
Multi-Mode Microplate Reader, BioTek). For those studies,
the positive and negative controls were the same as those
used for cytotoxicity assays. The IC50 values were calculated
using Prism 5.01 (GraphPad Software Inc., San Diego, CA,
United States) software.

Evaluation of Porphyrin Uptake by Laser
Scanning Confocal Microscopy
For the laser scanning confocal microscopy studies, 80,000
cells were placed in each well of a glass-bottom plate (four
divisions/wells, CELL view dish-Greiner Bio-One, Brazil). After
24 h, the cells were treated with P or P-HNP at 10 µM
for 30 min. Then, the cells were washed twice with PBS and
marked using Fluoroshield with DAPI (nucleus probe, Sigma-
Aldrich). After 2 h of incubation, the cells were analyzed
by a laser scanning confocal microscope (LEICA-TCS SP2)

using a magnification of 64× a diode and HeNe laser with
blue filter for DAPI and P (λexcitation = 405 nm). Untreated
cells (cells + RPMI medium) market with DAPI were used
as a negative control. The bandwidth established for emission
detection ranged from 411 to 540 nm for DAPI and from 630 to
710 nm for P.

Statistical Analysis
The results of size, PdI, and ZP were analyzed by Prism
5 (GraphPad Software Inc., San Diego, CA, United States)
software, using one-way analyses of variance (ANOVA)
followed by Tukey. Phototoxicity results were analyzed
using two-way analyses of variance followed by Bonferroni
post-tests, with a significance level of 5% (0.05), 1%
(0.001), and 0.1% (0.001). Data were expressed as
mean± standard deviation (SD).

RESULTS AND DISCUSSION

Physicochemical Characterization of
Nanostructures
This study explored 5,10,15,20-tetrakis[(4-carboxyphenyl) thio-
2,3,5,6-tetrafluorophenyl] porphyrin (P) as a photosensitizer.
It was chosen due to its interesting photophysical properties
and encouraging results when immobilized in chitosan film,
against Listeria monocytogenes biofilm after the light exposition
(Castro et al., 2017). This porphyrin has never been applied as a
photosensitizer against cancer cells.

Porphyrins have been immobilized or encapsulated in
nanostructures as a strategy to avoid the potential problems
intrinsic to these compounds, such as aggregation (Zhou et al.,
2016). Furthermore, this strategy may increase the delivery of
these compounds within the target cells, leading to an interesting
intracellular localization to potentialize the effect of this PS on
PDT (Lavado et al., 2015; Zhao et al., 2016; Kwiatkowski et al.,
2018). Among the nanostructures, chitosan nanoparticles, and
lipid nanoparticles have been explored as PS delivery systems
(Anderski et al., 2018; Mahlert et al., 2019; Michy et al.,
2019; Zhang et al., 2019). However, our group developed solid
lipid–polymer hybrid nanoparticles to immobilize porphyrin
on its surface, a new particle that has not to date been
explored in the PDT area. Lipid–polymer hybrid nanoparticles
are a powerful approach to mitigate disadvantages to lipid and
polymeric nanoparticles, achieving a nanostructure with superior
features (Wong et al., 2006; Wang et al., 2018; Khan et al.,
2019).

TABLE 1 | Values of size, polydispersity index (PdI), zeta potential (ZP), pH of the formulations NP, HNP, and percentage of immobilization efficiency (%IE) of P-HNP.

Samples Size (nm) Size SD PdI PdI SD ZP (mV) ZP SD pH IE% SD IE%

NP 71.3 3.2 0.122 0.07 –11.3 0.7 3.7 – –

HNP 100.9 11.1 0.207 0.009 22.5 0.3 5.29 – –

P-HNP 127.4 4.5 0.249 0.018 27.1 1.2 5.22 95.9 1.2

IE%, percentage of immobilization efficiency; SD, standard deviation, n = 3.
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FIGURE 1 | Atomic force microscopy image of HNP in phase mode (A); Cryo-TEM images of HNP (B) and P-HNP (D); size distribution histograms of HNP (C) and
P-HNP (E).

The polymer chitosan is a non-toxic and biodegradable
polysaccharide that plays a special role in porphyrin
immobilization due to its ability to form stable complexes
with negative charge compounds and substances (Knorr,
1984; Muzzarelli, 1996; Yang et al., 2009; Ferreira et al., 2016;

Castro et al., 2017). In the pH of chitosan solution and the hybrid
nanoparticles dispersions (pH ca. 5.2), the chitosan amino
groups (–NH2) are protonated (–NH3

+), with high positive
density, and may interact with carboxylate meso-substituents
groups from porphyrin (Knorr, 1984; Muzzarelli, 1996;
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TABLE 2 | Enthalpy, melting point, and recrystallization index (RI) of solid lipid
(Crodamol SS), NP, HNP, and P-HNP.

Samples Enthalpy (J/g) Melting point (◦C) RI (%)

Crodamol SS 156.3 48.2 100

NP 60.0 47.0 27.4

HNP 55.3 46.1 25.3

P-HNP 62.0 48.6 28.3

Khunawattanakul et al., 2008; Yang et al., 2009; Mohammed
et al., 2017). This interaction was promoted in two steps: (1) A
solution of porphyrin in acetone was mixed with a homogeneous
chitosan solution (pH = 5.2) under stirring to immobilize P
on the chitosan surface by electrostatic interaction; (2) The
homogeneous dispersion of P-chitosan acetone-free was mixed
with an aqueous surfactant solution that then, after heating,
was added to the melted lipid phase to obtain NLC coating
with porphyrin-chitosan (P-HNP). The NP showed negative
ZP while the hybrid nanoparticle (HNP and P-HNP) exhibited
a positive value (Table 1). This result confirmed the success of
the carrier’s coating process with the hypothesis of the chitosan
adsorption in NP negative surface since this natural polymer
is well known for its positive charge (Cheung et al., 2015; Liu
et al., 2016a). Furthermore, values of ZP > |20 mV| could
prevent aggregates formation by electrostatic repulsion forces
(Feng and Huang, 2001).

The nanoparticle surface modification with chitosan and
P-chitosan significantly increased the hydrodynamic size and
changed the ZP of HNP and P-HNP (p < 0.05, one-way ANOVA)
(Table 1). Several studies have described the increase of lipid
nanoparticles after the chitosan coating process (Liu et al., 2016a;
Vieira et al., 2018; Malgarim Cordenonsi et al., 2019). However,
the PdI was only significantly influenced by the incorporation of
P-chitosan (p < 0.05, one-way ANOVA) (Table 1). Additionally,
PdI values were below 0.3 for all nanoparticles, which is a
characteristic of nanoparticles with low polydispersity and a
narrow range of size distribution (Üner et al., 2004; Tomasina
et al., 2013).

The percentage of immobilization efficiency (IE%) of
porphyrin on HNP was measured through an indirect method
and was high (ca. 96%).

The accelerated stability study showed that NP presented a
low instability index of 0.065 and kept its transmittance profile

practically unchanged over the 1-year, being considered
stable in this period at a storage temperature of 25◦C
(Supplementary Figure S2). The hybrid nanoparticles HNP
and P-HNP, over 1 year at 25◦C, exhibited a tendency to
instability phenomena, with signs of creaming (Supplementary
Figure S2), exhibiting instability indexes of 0.818 and
0.700 (Pereira et al., 2018). However, over 31 days, the
P-HPN was considered stable with instability indexes of
0.105, showing a stability time 1.6-fold higher than HNP.
Thus, the porphyrin incorporation increased the HNP’s
long-term stability.

Atomic Force Microscopy and
Transmission Electron Cryo-Microscopy
The image of atomic force microscopy (AFM) in the phase
mode shows a color variation on the particle, suggesting the
structure core-shell of HNP due to the difference of materials
in the surface (Figures 1A,B). The histograms from the Cryo-
TEM analysis showed that both HNP and P-HNP exhibited a
homogeneous distribution with well-defined nanoparticles size
(Figures 1D,E). The HNP size ranged from 30 to 65 nm,
whereas the size of P-HNP varied between 20 and 55 nm
(Figures 1D,E).

Thermal Analysis: Differential Scanning
Calorimetry and Thermogravimetry
The chitosan addition decreased the recrystallization index
(RI) of nanoparticles from 27.4 to 25.3%, probably because
of the enhancement of lattice defects in the lipid matrix of
NP triggered by the interaction among chitosan, lipids, and
surfactants (Table 2; Vieira et al., 2018; Malgarim Cordenonsi
et al., 2019).

Furthermore, the porphyrin incorporation increased the
melting point (◦C) of the nanoparticles from 46.1 to 48.6◦C and
the RI from 25.3 to 28.3% when compared with nanoparticles
without porphyrin (Table 2).

Both chitosan and P-chitosan coating increased the thermal
stability of nanoparticles as shown in TGA (Table 3). HNP and
P-HNP showed a remaining weight percentage (RW %) of 37.5
and 40.5%, respectively, for the second maximum degradation
temperature (Tdmax2), whereas NP had only 20.7% of remaining
weight for a lower temperature of 415◦C (Table 3). Furthermore,
the HNP presented a lower weight percentage (ca. 4.4% less) than

TABLE 3 | Thermogravimetric data of the porphyrin (P), chitosan (Ch), nanostructured particles (NP), hybrid nanoparticles (HNP), and hybrid nanoparticles with
porphyrin (P-HNP).

Sample Tdi
a (◦C) RW (%) Tdmax1

b (◦C) RWc (%) Tdmax2 (◦C) RW (%) Tdmax3 (◦C) RW (%) Tdmax4 (◦C) cRW (%)

P 290 84.7 336 80.3 400 70.4 456 62.8 622 44.9

Ch 260 87.3 315 73.6 – – – – – –

NP 188 96.6 369 47.2 415 20.7 – – – –

HNP 246 96.8 360 68.8 422 37.5 511 10.8 – –

P-HNP 252 90.5 350 71.0 424 40.5 507 15.2 – –

aTdi , initial degradation temperature.
bTdmax , maximum degradation temperature.
cRW%, remained weight percentage.
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FIGURE 2 | Experimental data from SAXS and Indirect Fourier Transform (IFT) modeling. (A) Experimental data (symbols) and theoretical model (solid lines).
(B) Curves of distance distribution between pairs [p(r)] obtained for each sample.

the values obtained for P-HNP at Tdmax3, which suggests that the
incorporation of P improves the P-HNP heating resistance.

Small-Angle X-Ray Scattering
For a better understanding of the changes in the structure of
nanoparticles after chitosan and P-chitosan incorporation, X-ray
scattering analysis was carried out. The X-ray scattering intensity
in the origin, I (0), and radius of gyration (Rg) of NP, HNP, and
P-HNP are shown in Figure 2 and Table 4, respectively. Small-
angle X-ray scattering (SAXS) intensity varies according to the
concentration and size of nanoparticles (Li et al., 2016). Thus,
the results suggested that the addition of coatings modulated
the size and concentration of the nanoparticles. HNP and
P-HNP exhibited well-defined size and higher concentrations
of nanostructures when compared to nanoparticles without
chitosan, which can be correlated with the increase in X-ray
scattering (Figure 2A). Consequently, nanoparticles prepared
with chitosan showed greater efficiency in the self-organization

TABLE 4 | Values of X-ray scattering intensity in the origin [I(0)] and radius of
gyration (Rg) of NP, HNP, and P-HNP.

Sample I(0) (cm−1) Rg (nm)

NP 0.076 21.8

HNP 14.64 25.7

P-HNP 27.19 29.9

of components. Furthermore, the p(r) function for (HNP) or (P-
HNP) with bell-shape suggests the interaction of the chitosan
with other formulation components to form globular (spherical)
nanostructures, while non-defined size and morphology were
verified for NP (Figure 2B). These results agree with the AFM
and Cryo-TEM images (Figure 1).

Photophysical Properties
The absorption and emission spectra of the porphyrin are
shown in Figure 3. The non-immobilized porphyrin (P) showed
the typical Soret band at 421 nm attributed to the S0 → S2
transitions, and four weak Q-bands between 506 and 584
attributed to the S0 → S1 transitions (Gouterman, 1961).
The value of singlet oxygen quantum yield (φ1) found to
P was 0.69 (Supplementary Figure S3). The UV-Vis spectra
of the P-chitosan and P-HNP materials showed the typical
porphyrin absorption profile. Additionally, the spectra of
the nanoparticles (HNP) and raw chitosan did not present
bands in the region of 400 nm (Figure 3A), confirming the
successful immobilization.

Castro et al. (2017) and Ferreira et al. (2016) immobilized
porphyrins in a chitosan film and observed the broadening and
slightly red-shifted in the solid state. The same behavior was
observed for P-chitosan in solution when compared to the P in
an aqueous solution of DMSO (1%) at a concentration of 10 µM,
red-shifted of Soret (ca. 4–5 nm) and Q-bands (ca. 4–5 nm). For
P-HNP, the Soret and Q-bands are blue-shifted (ca. 5–11 nm).
The emission spectra of P-chitosan and P-HNP also exhibited
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FIGURE 3 | Normalized absorption and emission spectra of free porphyrin (P), immobilized porphyrin (P-chitosan and P-HNP), and controls (NP, chitosan, and
HNP). (A) Absorption spectra; (B) emission spectra, λexc = 420 nm.

FIGURE 4 | Zeta potential values of HNP and P-HNP as function of mucin concentration in the mucoadhesion assays.

two emission peaks with the first fluorescence vibrational mode
more remarkable than the second one, slightly red-shifted or
blue-shifted effects were observed, respectively, compared to
the non-immobilized porphyrin P according to the absorption
spectra. These shifts are attributed to the small alterations in the
porphyrin molecular environment to maximize the interaction
with the support. Non-immobilized porphyrin (P) displayed two
emission peaks at 663 and 711 nm, whereas P-HNP exhibited
peaks at 655 and 710 nm, upon excitation at 420 nm (Figure 3B).
Typical emission features of free or immobilized porphyrin allow
cellular uptake studies and subcellular localization. As expected,
both the nanoparticles and chitosan in absence of porphyrin P
are non-luminescent. Furthermore, these results confirm that the
process of nanoparticle preparation did not interfere with the
photophysical properties of P to act as PS.

Mucoadhesion Evaluation in vitro
In general, when the drugs are administered in the bladder
in an intravesical way, it shows a short residence time with
easy elimination by the periodic emptying bladder, which
decreases the therapeutic effect (Weintraub et al., 2014). A strong
interaction of drugs or nanoparticles with the mucous bladder
layer (the most superficial layer) may increase the residence time
of the drug. Thus, the dose and number of administrations might
be lower, and the biological effect improved (Weintraub et al.,
2014). Chitosan can extend the residence time of nanoparticles in
mucous membranes (Fonte et al., 2011; Liu et al., 2016b; Anderski

et al., 2018). Additionally, this natural polymer was described as
absorption-promoting due to its capacity of open tight junctions
(Artursson et al., 1994; Sonaje et al., 2012). Hence, nanoparticles
coated with chitosan are an interesting strategy to improve the
permanence of nanoparticles in the bladder (Erdoğar et al., 2012).

The main expected mechanism accountable for the
mucoadhesive property of nanocarriers is the electrostatic
interaction (Yoncheva et al., 2011; Bhatta et al., 2012). The
in vitro mucoadhesion studies employed by us explored the
ionic interaction between the positive charge surface of hybrid
nanoparticles and the negative sialic groups of mucin. This ionic
interaction can be observed by the change in the ZP value of the
nanoparticle as shown in Figure 4. A decrease in the positive
charge of HNP and P-HNP by mucin concentration increase
can be observed, indicating a mucoadhesive property of these
particles (Figure 4). At 0.4 mg/mL of mucin, the HNP and
P-HNP exhibited a negative ZP. Rençber et al. (2016) showed
that polymeric nanoparticles coated with chitosan also displayed
a reduction in the ZP after incubation with 0.1% of mucin.

Cytotoxicity and Phototoxicity Assays
The study in the dark condition revealed that HNP, P-HNP,
and free P were considered no cytotoxic for T24 cells once the
results showed cell viability above 76% for all concentrations
evaluated (Figure 5A; ISO, 2009). These data are relevant because
the property of PS to be non-toxic under dark is crucial to its
application in clinical trials (Nawalany et al., 2009).
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FIGURE 5 | Cell viability of T24 assessed by resazurin. (A) Cytotoxicity of hybrid nanoparticles (HNP), free porphyrin (P), and immobilized porphyrin on hybrid
nanoparticles (P-HNP) after 24 h of treatment in the dark conditions. (B) Phototoxicity of free porphyrin (P) and porphyrin immobilized on hybrid nanoparticles
(P-HNP) after 24 h of treatment followed by laser irradiation. a5 and b10 J/cm2 dose of light. Negative control (NC)-untreated cells (cells + RPMI medium). The
results are presented as mean ± SD of three independent experiments performed in triplicate. Significant differences relative to P and P-HNP, in each
photoinduction dose, are indicated with an asterisk. Statistical significance: ***p < 0.001, **p < 0.01, *p < 0.05. Data obtained by two-way ANOVA analysis followed
by Bonferroni post-test.

FIGURE 6 | Phototoxicity of free porphyrin (P) and porphyrin immobilized on hybrid nanoparticles (P-HNP) in T24 cells evaluated by resazurin after 6 h of treatment
followed by photoinduction with a dose of 10 J/cm2. Negative control (NC)-untreated cells (cells + RPMI medium). The results are presented as mean ± SD of three
independent experiments performed in triplicate. Significant differences relative to P and P-HNP, in each photoinduction dose, are indicated with an asterisk.
Statistical significance: ***p < 0.001, *p < 0.05. Data obtained by two-way ANOVA analysis followed by Bonferroni post-test.

The experiments of PDT using 24 h of treatment showed that
P-HNP and P displayed a light dose-dependency phototoxicity
(Figure 5B), while HNP did not show phototoxicity against
T24 cells for both fluences assessed (Supplementary Figure S4).
P, as well as P-HNP, were phototoxic to T24 cells for
concentrations above 50 nM. In the concentration of 300 nM,
P reduced the cell viability to 32.5%, whereas P-HNP was
reduced to 16.3%. The IC50 for P-HNP was 2.2-fold smaller
for cells exposed to 10 J/cm2 (IC50 = 66.5 nM) than for
the cells exposed to 5 J/cm2 (IC50 = 149.5). Comparing

the fluences of 5 and 10 J/cm2, the IC50 of P-HNP were,
respectively, 3.2- and 2.5-fold lower than free P (IC50 = 483.7
and 165.8 nM). Thus, P-HNP exhibited superior phototoxicity
than P.

A phototoxicity assay using reduced treatment time (6 h) at a
fluence of 10 J/cm2 was also performed. This study suggested that
6 h of treatment is enough for P-HNP delivery of P into cells and
improves their phototoxicity. For the concentrations of 300, 200,
and 100 nM, P-HNP significantly reduced the cell viability when
compared to free P (Figure 6). The P-HNP IC50 was 130.6 nM,
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FIGURE 7 | Phototoxicity of free porphyrin (P) and porphyrin immobilized on hybrid nanoparticles (P-HNP) in T24 cells using ATP bioluminescent assay after
treatment of 6 h followed by PDT with 10 J/cm2 of fluence. Negative control (NC)-untreated cells (cells + RPMI medium). The results are presented as mean ± SD
(n = 3). Significant differences relative to free P and P-HNP are indicated with an asterisk. Statistical significance: ***p < 0.001, **p < 0.01. Data obtained by
two-way ANOVA analysis with post-tests of Bonferroni.

FIGURE 8 | Subcellular localization of porphyrin (P) in bladder cancer cells T24 determined by confocal laser scanning microscopy. (A) P-HNP uptake. (B) Free P
uptake. a: DAPI (blue fluorescence), b: porphyrin (red fluorescence), c: merged, d: control (untreated cells + DAPI, emission 630–710 nm). T24 cells were incubated
sequentially with P or P-HNP for 30 min and marked with DAPI (nucleus probe).

whereas the IC50 of free P could not be estimated because it was
non-toxic for cells.

Furthermore, a bioluminescence ATP assay was carried out
to evaluate the free P and P-HNP phototoxicity against T24
BC cells. This assay was chosen because it is considered more
sensitive, robust, and precise than colorimetric and fluorescence
assays. It also has a high correlation between ATP detection
and cell viability values, since ATP production is immediately
interrupted during cell death (Maehara et al., 1987; Zumpe et al.,
2010).

The same phototoxicity profile observed in resazurin assay
for P and P-HNP were also verified in the ATP experiment,
confirming the significant phototoxic effect of P-HNP (Figure 7).

As result, P-HNP exhibited significantly higher phototoxic effects
when compared with free P for all concentrations except to
12.5 nM. The IC50 of P-HNP was 86.12 nM, while the free P was
non-toxic for cells in the concentration range evaluated.

The superior activity of P-HNP compared to free P can
be attributed to the favorable physical and chemical properties
of hybrid nanoparticles, which promoted a quick and efficient
P delivery into cells, avoiding P aggregation. In this context,
we evaluated the photophysical properties of PS in the cell
culture medium under dark conditions. The free porphyrin
(P) exhibited a broad Soret band when compared to free P
in DMSO 1% (Supplementary Figure S5A). P self-aggregation
changed drastically its absorption spectral profile, once the bands
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enlarged and decreased the absorption intensity as shown in
Supplementary Figure S4. Consequently, the emission intensity
decreased, and new bands appeared. Such changes may be
due to the mixture of monomeric and aggregates species of
porphyrin that trigger fluorescence quenching (Supplementary
Figure S5B). However, when assessed in cell culture medium,
P immobilized in nanoparticles (P-HNP) was stable, and its
aggregation was minimized since the absorption and emission
spectra of the PS were similar to those shown in Figure 3.

Evaluation of Porphyrin Uptake by Laser
Scanning Confocal Microscopy
Figure 8A showed the high uptake of immobilized P (P-HNP)
into T24 cells for only 30 min of incubation (red fluorescence).
This high and fast porphyrin internalization explains the
enhancement of the phototoxicity of P-HNP previously described
(see Figures 5–7). The use of nanoparticles as a PS delivery
system increased the accumulation of P at strategic points in
the cancer cell. In contrast, the free P, in the same conditions
of incubation, exhibited a weaker fluorescence when compared
with P-HNP that may be due to the free aggregation phenomena
in cell culture medium (Figure 8B). According to Nawalany
et al. (2009) and Brezaniova et al. (2016), the high internalization
and accumulation of PS are responsible for the great phototoxic
effect of porphyrin.

Photosensitizer is supposed to be in specific organelles from
cells to trigger the mechanism involved in cellular death by
the production of ROS including singlet oxygen (Nawalany
et al., 2009; Bacellar et al., 2015; Gazzi et al., 2019). The
merged fluorescence images showed that P-HNP is distributed
throughout the cell, including the nucleus (Figures 8A,B).
Nevertheless, free P was localized only in the nucleus. Some
studies describe that the DNA can also be oxidized in PDT
treatments (Bacellar et al., 2015). This is a strategy explored
in cancer treatment (Zhu et al., 2017; Kadhim et al., 2019).
Porphyrin and metalloporphyrins can break DNA single-strand
by photoinduction mechanisms with singlet oxygen action or by
cleavage of the sugar moieties from nucleic acids (Defedericis
et al., 2006). Anti-tumor drugs into nuclei can inhibit the
replication and transcription of DNA, wrecking genetic material
and inducing cells to apoptosis (Wang et al., 2011). Therefore,
targeting-nuclei drugs are considered interesting and efficient to
kill cancer cells (Zhu et al., 2017). However, nucleus and organelle
dual-targeting drugs have been applied successfully in cancer
therapy once the drugs can act trigger two different mechanisms,
increasing drug efficiency on tumors as reported by Zhu et al.
(2017). Thus, those results suggest that the dual-targeting and the
reduced aggregation showed by the immobilized P (P-HNP) can
explain the higher phototoxic effect of this PS compared to free
P in BC cells.

CONCLUSION

The unique properties of the hybrid nanoparticles developed in
this study increased the stability, improved the photophysical
properties of the porphyrin in the cell culture medium, and

quickly and efficiently delivered it within T24 cells. The
application of P-HNP triggered a potent phototoxic effect
(low IC50 = 66.5 nM) in PDT against T24 BC cells. Thus,
this study represents an advance to the development of
macrocycle incorporation in biodegradable hybrid nanoparticles
as a possibility to potentialize their PDT action. Furthermore,
the hybrid nanoparticles presented mucoadhesive properties in
studies in vitro. This property is interesting for BC treatment
since it might improve the permanence time of nanoparticles
in the bladder after its intravesical administration. When these
results are together, the porphyrin delivery system developed
in this study has the potential to be applied in other cancer
models and should be explored in animal models with the aim
of enhancing PDT.
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Erdoğar, N., Iskit, A. B., Mungan, N. A., and Bilensoy, E. (2012). Prolonged
retention and in vivo evaluation of cationic nanoparticles loaded with
Mitomycin C designed for intravesical chemotherapy of bladder tumours.
J. Microencapsul. 29, 576–582. doi: 10.3109/02652048.2012.668957

Feng, S., and Huang, G. (2001). Effects of emulsifiers on the controlled release
of paclitaxel (Taxol) from nanospheres of biodegradable polymers. J. Control.
Release 71, 53–69. doi: 10.1016/s0168-3659(00)00364-3

Ferlay, J., Colombet, M., Soerjomataram, I., Mathers, C., Parkin, D. M., Piñeros,
M., et al. (2019). Estimating the global cancer incidence and mortality in 2018:
GLOBOCAN sources and methods. Int. J. Cancer. 144, 1941–1953. doi: 10.
1002/ijc.31937

Ferreira, D. P., Conceição, D. S., Calhelha, R. C., Sousa, T., Socoteanu, R., Ferreira,
I., et al. (2016). Porphyrin dye into biopolymeric chitosan films for localized
photodynamic therapy of cancer. Carbohydr. Polym. 151, 160–171. doi: 10.
1016/j.carbpol.2016.05.060

Ferreira Soares, D. C., Domingues, S. C., Viana, D. B., and Tebaldi, M. L. (2020).
Polymer-hybrid nanoparticles: current advances in biomedical applications.
Biomed. Pharmacother. 131:110695. doi: 10.1016/j.biopha.2020.110695

Figueira, F., Pereira, P. M. R., Silva, S., Cavaleiro, J.a.S, and Tomé, J. P. C.
(2014). Porphyrins and phthalocyanines decorated with dendrimers: synthesis
and biomedical applications. Curr. Org. Synth 11, 110–126. doi: 10.2174/
15701794113106660089

Fonte, P., Nogueira, T., Gehm, C., Ferreira, D., and Sarmento, B. (2011). Chitosan-
coated solid lipid nanoparticles enhance the oral absorption of insulin. Drug
Deliv. Transl. Res. 1, 299–308. doi: 10.1007/s13346-011-0023-5

Garg, A. D., Nowis, D., Golab, J., and Agostinis, P. (2010). Photodynamic therapy:
illuminating the road from cell death towards anti-tumour immunity. Apoptosis
15, 1050–1071. doi: 10.1007/s10495-010-0479-7

Gazzi, A., Fusco, L., Khan, A., Bedognetti, D., Zavan, B., Vitale, F., et al. (2019).
Photodynamic therapy based on graphene and MXene in cancer theranostics.
Front. Bioeng. Biotechnol. 7:295. doi: 10.3389/fbioe.2019.00295

Glatter, O. (1977). A new method for the evaluation of small-angle scattering data.
J. Appl. Crystallogr. 10, 415–421. doi: 10.1107/s0021889877013879

Gomes, A. T. P. C., Fernandes, R., Ribeiro, C. F., Tomé, J. P. C., Neves, M. G. P. M.
S., Silva, F. C. D., et al. (2020). Synthesis, characterization and photodynamic
activity against bladder cancer cells of novel triazole-porphyrin derivatives.
Molecules 25:1607. doi: 10.3390/molecules25071607

Gouterman, M. (1961). Spectra of porphyrins. J. Mol. Spectrosc. 6, 138–163.
Hammersley, A. (2016). FIT2D: a multi-purpose data reduction, analysis and

visualization program. J. Appl. Crystallogr. 49, 646–652. doi: 10.1107/
s1600576716000455

ISO (2009). ISO 10993-5:2009 Biological Evaluation of Medical Devices — Part 5:
Tests for in vitro Cytotoxicity [Online]. Available online at: https://www.iso.org/

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 13 September 2021 | Volume 9 | Article 679128143

https://www.frontiersin.org/articles/10.3389/fbioe.2021.679128/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbioe.2021.679128/full#supplementary-material
https://doi.org/10.5946/ce.2013.46.1.24
https://doi.org/10.1016/j.ejpb.2018.05.018
https://doi.org/10.1016/j.ejpb.2018.05.018
https://doi.org/10.3390/ijms160920523
https://doi.org/10.1016/j.nano.2016.10.014
https://doi.org/10.1158/1535-7163.mct-18-1194
https://doi.org/10.1158/1535-7163.mct-18-1194
https://doi.org/10.1016/j.ijpharm.2012.04.060
https://doi.org/10.1039/c8ra07069e
https://doi.org/10.1016/j.pdpdt.2016.01.012
https://doi.org/10.1016/j.jconrel.2016.09.009
https://doi.org/10.1016/j.jconrel.2016.09.009
https://doi.org/10.1016/j.colsurfb.2013.06.016
https://doi.org/10.1016/j.colsurfb.2013.06.016
https://doi.org/10.1016/s1572-1000(05)00007-4
https://doi.org/10.1016/s1572-1000(05)00007-4
https://doi.org/10.1039/d0pp00085j
https://doi.org/10.1039/d0pp00085j
https://doi.org/10.1016/j.dyepig.2016.10.020
https://doi.org/10.1016/j.dyepig.2016.10.020
https://doi.org/10.1016/j.apcata.2014.12.048
https://doi.org/10.1517/17425247.2.3.477
https://doi.org/10.1517/17425247.2.3.477
https://doi.org/10.3390/md13085156
https://doi.org/10.3109/02652048.2012.668957
https://doi.org/10.1016/s0168-3659(00)00364-3
https://doi.org/10.1002/ijc.31937
https://doi.org/10.1002/ijc.31937
https://doi.org/10.1016/j.carbpol.2016.05.060
https://doi.org/10.1016/j.carbpol.2016.05.060
https://doi.org/10.1016/j.biopha.2020.110695
https://doi.org/10.2174/15701794113106660089
https://doi.org/10.2174/15701794113106660089
https://doi.org/10.1007/s13346-011-0023-5
https://doi.org/10.1007/s10495-010-0479-7
https://doi.org/10.3389/fbioe.2019.00295
https://doi.org/10.1107/s0021889877013879
https://doi.org/10.3390/molecules25071607
https://doi.org/10.1107/s1600576716000455
https://doi.org/10.1107/s1600576716000455
https://www.iso.org/standard/36406.html
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-679128 September 13, 2021 Time: 12:30 # 14

Silva et al. Hybrid Nanoparticles Loaded-Porphyrin for Cancer

standard/36406.html: ISO - International Organization for Standardization.
(accessed 2021)

Kadhim, A., Mckenzie, L. K., Bryant, H. E., and Twyman, L. J. (2019). Synthesis
and aggregation of a porphyrin-cored hyperbranched polyglycidol and its
application as a macromolecular photosensitizer for photodynamic therapy.
Mol. Pharm. 16, 1132–1139. doi: 10.1021/acs.molpharmaceut.8b01119

Khan, M. M., Madni, A., Torchilin, V., Filipczak, N., Pan, J., Tahir, N., et al. (2019).
Lipid-chitosan hybrid nanoparticles for controlled delivery of cisplatin. Drug
Deliv. 26, 765–772. doi: 10.1080/10717544.2019.1642420

Khunawattanakul, W., Puttipipatkhachorn, S., Rades, T., and Pongjanyakul,
T. (2008). Chitosan-magnesium aluminum silicate composite dispersions:
characterization of rheology, flocculate size and zeta potential. Int. J. Pharm.
351, 227–235. doi: 10.1016/j.ijpharm.2007.09.038

Knorr, D. (1984). Use of chitinous polymers in food—a challenge for food research
and development. Food Technol. 38, 85–97.

Kou, J., Dou, D., and Yang, L. (2017). Porphyrin photosensitizers in photodynamic
therapy and its applications. Oncotarget 8, 81591–81603. doi: 10.18632/
oncotarget.20189

Kwiatkowski, S., Knap, B., Przystupski, D., Saczko, J., Kȩdzierska, E., Knap-Czop,
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