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Editorial on the Research Topic

Exploring Reliable Markers and Prediction Indexes for the Progression From Subjective

Cognitive Decline to Cognitive Impairment

Alzheimer’s disease (AD) is a neurodegenerative disorder and themost common cause of dementia.
There is currently no effective treatment, which makes preclinical prediction for AD particularly
important (Huang et al., 2020). Subjective cognitive decline (SCD) has been proposed as important
preclinical stages in the development of AD (Sperling et al., 2011). A growing body of evidence
shows that SCD may be one of the earliest noticeable symptoms of AD and related dementias.
Therefore, it is required to explore reliable biomarkers and prediction indexes for patients with
high progression risks from SCD to cognitive impairment.

Taking this into consideration, the Research Topic “Exploring Reliable Markers and Prediction
Indexes for the Progression from Subjective Cognitive Decline to Cognitive Impairment” by
Frontiers in Aging Neuroscience makes a contribution with updates and different perspectives on
this important theme, developed over 19 papers. These updates focus on exploring reliable markers
and prediction indexes for the progression of SCD from multidisciplinary perspectives including
neuroimaging techniques, genetic or inflammation mechanisms, as well as Artificial Intelligence
(AI) applications.

The author Wang X. et al., focus on subjects with low and high plasma Aβ levels among
individual with SCD. They investigate the microstructural changes in white matter (WM) based
on diffusion tensor imaging from dataset of Sino Longitudinal Study on Cognitive Decline
(SILCODE). Result shows a correlation betweenWM integrity (e.g., fractional anisotropy andmean
diffusivity) and plasma β-amyloid (Aβ) 40 levels rather than Aβ42 in individuals with SCD. This
indicates plasma Aβ40 levels may represent a useful biomarker to predict different trajectories of
aging in individuals with SCD.

Another case-control study by Qiao et al., analyses the associations between WM disruptions
and cognitive declines at the early stage of subcortical vascular cognitive impairment (SVCI).
This study concludes the damage of long WM in right hemisphere in the pre-SVCI patients and
correlated with declines in executive functions and spatial processing.

The study by Huang et al., uses multi-kernel support vector machine (SVM) to examine whether
WM structural networks can be used for screening SCD and aMCI. Their findings promote the
development of potential brain imaging markers for the early detection of AD.
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Based on diffusional kurtosis imaging (DKI) and three-
dimensional (3D) arterial spin labeling (ASL), Yang et al., explore
microstructural and cerebral blood flow (CBF) abnormalities in
individuals with SCD plus and aMCI. They point out the mean
kurtosis of DKI may be used as an early potential neuroimaging
biomarker and may be more sensitive than CBF at the very early
stage of AD.

The paper by Wu Z. et al., examines group differences in
gray matter surface morphometry, including cortical thickness,
the gyrification index (GI), and the sulcus depth. The authors
aim to track the progression of the disease in different stages
of AD, including health controls, early MCIs, late MCIs, and
ADs. Based on region-of-interest (ROI) analysis, their study
shows that cortical thickness and sulcus depth indices are
predominant during AD progression while GI is insensitive. The
findings highlight the relevance between gray matter surface
morphometry and the stages of AD, laying the foundation for in
vivo tracking of AD progression.

The study by Fu et al., extracts gray matter volumes to
predict the regional densities in the whole brain in normal
control (NC), SCD, Amnestic mild cognitive impairment (aMCI)
and AD. In this study, decreased structural covariance and
weakened connectivity strength are observed in SCD compared
with NC. In addition, increased structural covariance in aMCI
and decreased structural covariance in AD are also found.
These results provide evidence to the structural disconnection
hypothesis in individuals with SCD.

The study by Li et al., points out the impairment in spatial
navigation (SN) in patients with MCI. They demonstrate that
structural connectivity network abnormalities, especially in the
frontal and parietal gyri, are associated with a lower SN accuracy,
independently of white matter hyper intensities, which providing
a new insight into the brain mechanisms associated with SN
impairment in MCI.

The study by Cui et al., points out different functional activity
of the SCD patients with aMCI patients, which suggest SCD may
be a separate stage of cognitive decline before aMCI and is helpful
to the study of preclinical cognitive decline.

Based on the topological characteristics of the WM network,
Tao et al., further identify individuals with SCD or aMCI
from healthy control (HC) and to describe the relationship of
pathological changes in these two stages. They conclude that
the neural degeneration from SCD to aMCI follows a gradual
process, from abnormalities at the nodal level to those at both
nodal and network levels.

The study by Chen Q. et al., identifies distinct functional
states and explore the reconfiguration functional connectivity
(FC) in individuals with SCD. Results indicate that the
alterations of dynamic FC may underlie the early cognitive
decline in SCD patients and could be served as sensitive
neuroimaging biomarkers.

Taking the important role of self-reference processing into
account, Wei et al., discover four interactions among self-
reference network (SRN), dorsal attention network (DAN), and
salience network (SN) using resting-state fMRI. These results
point out that the influence of the SRN in the ultra-early stages
of AD is non-negligible.

The study by Xu et al., explores the specific characteristic
based on the multimodal brain networks, including individual
morphological, structural and functional brain networks. Results
highlight the role of cortical-subcortical circuit in individuals
with SCD, providing potential biomarkers for the diagnosis and
prediction of the preclinical stage of AD.

The study by Wu L. et al., investigates the cognitive
impairment in individuals with chronic pontine stroke based
on voxel-mirrored homotopic connectivity. Results indicate the
important role of lingual gyrus and precuneus as ROIs in the
early diagnosis of cognitive impairment individuals with chronic
pontine stroke.

The study by Wang Y. et al., demonstrates that the
carotid calcifications are associated with post-stroke cognitive
impairment (PSCI). They conclude that the significant role of
large vessel atherosclerosis in PSCI should be concerned in
future study.

The study by Chen Y. et al., concludes that the methylation
of peripheral NCAPH2 could be used as a useful peripheral
biomarker in the early stage of AD screening. Low levels
of NCAPH2 methylation are observed in SCD, and which is
independent of the APOE ε4 status. In addition, there is a
positive correlation betweenNCAPH2methylation levels and the
hippocampal volumes in SCD APOE ε4 non-carriers.

The study by Dakterzada et al., compares the results
of Innotest enzyme-linked immunoassay (ELISA) with two
automated methods (Lumipulse and Elecsys). Both Lumipulse
and Elecsys methods are highly concordant with clinical
diagnoses, and the combination of Lumipulse Ab42 and P-tau
has the highest discriminating power. They recommend both
automated methods for the measurement of CSF biomarkers.

The study by Shi et al., explores whether adenosine receptor
1 (A1 R) is involved in electroacupuncture (EA) pretreatment
induced cognitive impairment after focal cerebral ischemia in
rats. The results showed that EA pretreatment revered cognitive
impairment, improved neurological outcome, and inhibited
apoptosis at 24 h after reperfusion. Pretreatment with CCPA (a
selective A1 receptor agonist) could imitate the beneficial effects.

The study by Lin et al., examines the relationship between
spinal cord injury (SCI) and olfactory dysfunction. They point
out that the SCI initiates pathological processes, including
inflammatory response and impaired neurogenesis. These
results provide a basis for pathological mechanisms of early
neurodegenerative diseases involving the olfactory bulb and
enable early clinical drug intervention.

Essential tremor (ET) is occasionally associated with a high
risk for MCI and dementia. The retrospective study by Wu P. et
al., proposes the sustained clinical efficacy of unilateral magnetic
resonance-guided focused ultrasound (MRgFUS) thalamotomy
in Chinese patients with ET.
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Background: Accumulating evidence has demonstrated that plasma β-amyloid (Aβ)

levels are useful biomarkers to reflect brain amyloidosis and gray matter structure, but

little is known about their correlation with subclinical white matter (WM) integrity in

individuals at risk of Alzheimer’s disease (AD). Here, we investigated the microstructural

changes in WM between subjects with low and high plasma Aβ levels among individuals

with subjective cognitive decline (SCD).

Methods: This study included 142 cognitively normal individuals with SCD who

underwent a battery of neuropsychological tests, plasma Aβ measurements, and

diffusion tensor imaging (DTI) based on the Sino Longitudinal Study on Cognitive

Decline (SILCODE). Using tract-based spatial statistics (TBSS), we compared fractional

anisotropy (FA), and mean diffusivity (MD) in WM between subjects with low (N = 71)

and high (N = 71) plasma Aβ levels (cut-off: 761.45 pg/ml for Aβ40 and 10.74 pg/ml

for Aβ42).

Results: We observed significantly decreased FA and increased MD in the high Aβ40

group compared to the low Aβ40 group in various regions, including the body, the

genu, and the splenium of the corpus callosum; the superior longitudinal fasciculus; the

corona radiata; the thalamic radiation; the external and internal capsules; the inferior

fronto-occipital fasciculus; and the sagittal stratum [p < 0.05, familywise error (FWE)

corrected]. Average FA values were associated with poor performance on executive and

memory assessments. No significant differences were found in either MD or FA between

the low and high Aβ42 groups.

Conclusion: Our results suggest that a correlation exists between WM integrity and

plasma Aβ40 levels in individuals with SCD.

Keywords: plasma β-amyloid, diffusion tensor imaging, subjective cognitive decline, white matter, blood-based

biomarker
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INTRODUCTION

Extracellular β-amyloid (Aβ) accumulation and intracellular tau
deposition are the core features of Alzheimer’s disease (AD;
Jack et al., 2018). Amyloid pathology is defined as the initiating
step of AD, which leads to subsequent tau deposition and
neurodegeneration (Long and Holtzman, 2019); however, the
well-established and validated biomarkers for brain amyloidosis
detection, including cerebrospinal fluid (CSF) analysis and
amyloid PET, are expensive, invasive, and difficult to implement
on a large scale in clinical practice (Sperling et al., 2011, 2014;
Dubois et al., 2014; Honig et al., 2018). Therefore, minimally
invasive and affordable techniques to support early screening are
urgently needed.

Blood-based biomarkers represent a logical alternative.
Circulating Aβ peptides are the most studied AD biomarkers
in plasma. Growing evidence has demonstrated that plasma
Aβ concentrations are highly correlated with brain amyloidosis
(Nakamura et al., 2018; Risacher et al., 2019; Schindler et al.,
2019; Vergallo et al., 2019; Doecke et al., 2020), and the plasma
Aβ42/Aβ40 ratio has an accuracy of over 90% in identifying
brain amyloid positivity (Schindler et al., 2019; Doecke et al.,
2020). Several studies have also reported an association between
plasma Aβ levels and gray matter changes, including gray matter
volume and cerebral cortex thickness, in both cognitively normal
subjects and subjects with mild cognitive impairment (MCI) and
AD-related dementia (Kaffashian et al., 2015; Llado-Saz et al.,
2015; Cantero et al., 2016; Hanon et al., 2018; Hilal et al., 2018;
Youn et al., 2019), suggesting that plasma Aβ levels may reflect
downstream neurodegeneration.

White matter (WM) neurodegeneration of associative fiber
tracts in AD may result from gray matter atrophy and Wallerian
degeneration (Hardy and Higgins, 1992). Accumulating evidence
has demonstrated disrupted WM integrity in patients with AD,
MCI, and preclinical AD, which is related to cognitive decline
(Mayo et al., 2017; Brueggen et al., 2019; Power et al., 2019).
Though studies have shown an association of plasma Aβ levels
with WM macrostructures such as lesions, hyperintensities, and
atrophy (Janelidze et al., 2016; Hilal et al., 2017; Lippa et al., 2019;
Youn et al., 2019), the relationship between plasma Aβ levels and
WMmicrostructure has not been clarified.

Subjective cognitive decline (SCD) refers to those who

experience subjective cognitive deficits without measurable

cognitive impairment (Jessen et al., 2014, 2020). It is suggested

as one of the earliest manifestations of the AD continuum, and
accumulating evidence has demonstrated that individuals with
SCD may exhibit an increased risk of progression to cognitive
impairment and of developing AD (Mitchell et al., 2014; Slot
et al., 2019) and may present increased AD pathology (Amariglio
et al., 2015). Regardless of the absence of objective cognitive
impairment (OCI), SCD might become important for clinical
practice as an early trigger for seeking medical help because of an
increase in the number of individuals with SCD in the healthcare
system (Jessen et al., 2020). Thus, taking individuals with SCD
as an interesting target population to study may enhance our
understanding of early AD diagnosis and preventive treatment.
Recently, several studies have identified the correlation between

plasma Aβ and gray matter volume by performing structural
magnetic resonance imaging (sMRI) in individuals with SCD
(Cantero et al., 2016; Youn et al., 2019). Our previous study
showed widespread WM microstructure impairment in SCD (Li
et al., 2016); however, studies on its correlation with plasma Aβ

in this stage remain lacking.
Diffusion tensor imaging (DTI) can be employed for in

vivo detection of WM microstructural properties. Fractional
anisotropy (FA) and mean diffusivity (MD) are the most
commonly used types of indices in AD research, and they reflect
microstructural neuronal dysfunctions that precede macroscopic
atrophy (Soares et al., 2013; Qin et al., 2020). In this study,
we aimed to assess whether plasma Aβ levels are related
to subclinical microstructural WM integrity as measured by
DTI, and first, we hypothesized that higher plasma Aβ40 and
lower Aβ42 levels are associated with WM integrity. Second,
we hypothesized that plasma Aβ-related WM impairment is
associated with cognitive decline.

MATERIALS AND METHODS

Participants
The baseline dataset of the Sino Longitudinal Study on Cognitive
Decline (SILCODE; Li et al., 2019) from March 20, 2017 to
September 17, 2018, was included in the study. Excluding all
cases that failed to meet the inclusion criteria, a total of 142
cognitively normal elderly Han Chinese subjects with SCD
(mean age: 66.07 ± 3.88 years) were included. In addition,
26 patients with MCI and AD-related dementia categorized
as patients with OCI in the present study were included for
complementary analyses. All participants underwent clinical
assessment, a battery of neuropsychological tests, blood sample
collections, and MRI scans.

All participants were between 60 and 80 years old. SCD is
defined as follows (Jessen et al., 2014): (1) the onset of self-
experienced persistent decline (>6 months) within the last 5
years; (2) the onset of subjective decline in memory rather than
other domains (language, attention, planning, and any other
cognitive decline); (3) participants within the normal range
upon cognitive testing (adjusted for age, sex, and education)
and failure to meet the criteria for MCI or dementia. MCI
was diagnosed if they met any one of the following three
criteria (Bondi et al., 2008; Jak et al., 2009): (1) impaired
scores (defined as >1 SD below the age-corrected normative
means) on both measures in at least one cognitive domain
(memory, language, or speed/executive function); (2) impaired
scores in each of the three cognitive domains (memory, language,
or speed/executive function); and (3) the Functional Activities
Questionnaire (FAQ) ≥9. AD-related dementia was diagnosed
based on the Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition (DSM-IV) and the National Institute
on Aging and the Alzheimer’s Association (NIA-AA) workgroup
guidelines for dementia due to AD. To eliminate the impact of
cerebral vascular disease, we excluded subjects with a history of
stroke, large-vessel disease (cortical and/or subcortical infarcts
and watershed infarcts), moderate WM changes, and multiple
lacunar infarcts (>1) on brain imaging. The SILCODE exclusion
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criteria ensured that no subjects with current major psychiatric
diagnosis; neurological disease; systematic disease that causes
cognitive decline, head trauma, or unstable medical conditions
were included. All subjects gave their written informed consent
prior to participation. The study protocol was approved by the
Medical Research Ethics Committee and Institutional Review
Board of Xuanwu Hospital. The SILCODE is listed in the
ClinicalTrail.gov registry (NCT02225964).

Neuropsychological Assessments
We performed a battery of neuropsychological tests covering
memory, language, and executive function. Auditory Verbal
Learning Test - Huashan version (AVLT)-long delayed recall and
-recognition (Xu et al., 2020) was used to evaluate memory;
Semantic Verbal Fluency Test (VFT; Guo et al., 2007) and
Boston Naming Test (BNT; Guo et al., 2006) were administered
to evaluate language; and time consumed in Shape Trail Test
A (STT-A) and B (STT-B; Zhao et al., 2013) were used
to evaluate executive function. The thresholds for memory,
language, and executive function tests are summarized in
Supplementary Table 1. The SCD questionnaire including nine
reliable SCD items (SCD-Q9) was used for the quantitative
assessment of the severity of SCD (Gifford et al., 2015). Mini-
Mental State Examination (MMSE) and Montreal Cognitive
Assessment Basic Version (MoCA-B) were used to evaluate
general cognitive ability. Besides, all subjects were assessed with
Hamilton Anxiety Scale (HAMA), Hamilton Depression Scale
(HAMD), Geriatric Depression Scale (GDS), and the FAQ.

Plasma Aβ Measurements
Blood samples were collected in the morning after an overnight
fast. After centrifugation, the samples were aliquoted, stored at
−80◦C, and thawed immediately on ice before assaying. Meso
Scale Discovery (MSD) kits (Rockville, Maryland, USA) were
used to quantify the concentrations of plasma Aβ. All the samples
were measured in duplicate using the same aliquot following the
manufacturer’s instructions. The detection limits were 20–6,000
pg/ml for Aβ40 and 2.5–1,271 pg/ml for Aβ42. The mean inter-
assay and intra-assay coefficients of variation were <10 and 6%,
respectively, for both Aβ40 and Aβ42. The 142 subjects with
SCD were then divided into low and high Aβ groups (N = 71
case/group) with the cut-off defined by the mean value (Aβ40:
761.45 pg/ml; Aβ42: 10.74 pg/ml).

Image Acquisition and Analysis
All MRI data were acquired on an integrated simultaneous
3.0 T TOF PET/MR (Signa PET/MR, GE Healthcare, Milwaukee,
WI, USA) at Xuanwu Hospital of Capital Medical University.
DTI scans were collected axially with a single-shot spin-echo
diffusion-weighted echo planar imaging (EPI) sequence. The
parameters were as follows: 30 gradient directions and 5 b0
images (b = 1,000 s/mm2), field of view (FOV) = 256 × 256
× 256, matrix = 112 × 112, repetition time = 16,500ms, echo
time = 95.6ms, slice number = 70, slice thickness = 2mm, and
voxel size = 2 × 2 × 2 mm3. Three-dimensional T1 weighted
images were acquired with a Spoiled Gradient Recalled Echo
(SPGR) sequence. Additionally, T2 weighted and resting-state

functional MR images were collected. The parameter details have
been described in previous studies (Li et al., 2019; Sun et al., 2019;
Dong et al., 2020).

The DTI data of each subject were processed with a pipeline
tool for analyzing brain diffusion images (PANDA; Cui et al.,
2013), which integrates the FMRIB Software Library (FSL; Smith
et al., 2004), the Pipeline System for Octave and Matlab (PSOM;
Bellec et al., 2012), the Diffusion Toolkit, and the MRIcron. The
main steps of data preprocessing were as follows: (1) converting
DICOM files into NIFIT format; (2) estimating the brain mask:
The bet command of FSL was used to remove the skull from
b0 image; (3) cropping the raw image: The fslroi command
of FSL was used to remove non-brain tissue; (4) correcting
for the eddy-current effect: Head motion and eddy current
distortions were corrected by registration of the diffusion-
weighted images to the b0 images using the eddy_correct
command of FSL; and (5) calculating diffusion tensor parameters:
The dtifit command of FSL was applied to calculate FA and
MD maps. Tract-based spatial statistics (TBSS) were performed
for the voxel-wise analysis of FA and MD (Smith et al., 2006).
All individual images were registered to the 1 × 1 × 1mm
Montreal Neurological Institute (MNI) standard space with the
FMRIB58_FA template as the target image (http://www.fmrib.
ox.ac.uk/fsl/data/FMRIB58_FA). Then, a mean FA average was
obtained by averaging the FA images from each subject in
the standard space and thinning to create a custom mean FA
skeleton. The mean FA skeleton was thresholded at 0.2 to include
only voxels indicative ofWM. Then, the individual FAmaps were
projected onto the FA skeleton to obtain the FA skeletons of
each participant and the deformation matrixes. This projection
information was also applied to MD. The skeletonized FA and
MDmaps were used in further statistical analysis.

Statistical Analysis
Differences between the low and high Aβ groups in demographic
data and vascular comorbidity distribution were compared using
the two-sample t-test for continuous variables and the chi-square
test for categorical variables. To compare cognitive functions,
the general linear model (GLM) controlling for age, sex, and
years of education was conducted with neuropsychological tests
as independent variables and Aβ groups as dependent variables.

Voxel-wise cross-subject comparisons were performed using
the randomize tool in FSL, which is used for non-parametric
permutation-based testing. FA and MD were compared through
a GLM with Aβ groups as dependent variables. The design
matrix included age, sex, and years of education as nuisance
covariates. Significant differences were estimated with 5,000
random permutations using threshold-free cluster enhancements
(TFCE) and FWE correction for multiple comparisons. The
significance threshold was p < 0.05 and voxels > 100 (TFCE and
FWE corrected). Then, the significant results were thickened with
the tbss_fill tool in FSL for better visualization. Finally, the John
Hopkins University (JHU) White-Matter Tractography Atlas
and JHU-ICBM-DTI-81 White-Matter Labels Atlas were used
to identify regions of statistical significance (Mori et al., 2008).
Complementary analyses were conducted using the plasma Aβ

levels as continuous variables and by assessing subclinical WM
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TABLE 1 | Demographic and neuropsychological results.

Aβ40 p Aβ42 p

Low High Low High

Age 65.68 ± 3.64 66.45 ± 4.10 0.241 66.67 ± 3.92 66.47 ± 3.83 0.215

Sex (M/F) 23/48 22/49 0.857 22/49 23/48 0.857

Education 12.51 ± 2.94 11.96 ± 3.01 0.279 12.25 ± 2.76 12.22 ± 3.18 0.944

ApoE ε4 carrier, n% 21 (29.6) 14 (19.7) 0.173 14 (19.7) 21 (29.6) 0.173

Hypertension, n% 26(36.7) 30 (42.3) 0.492 32 (45.1) 24 (33.8) 0.170

Diabetes, n% 11 (15.5) 9 (12.7) 0.629 13 (18.3) 7 (9.6) 0.148

Hyperlipidemia, n% 27 (38.0) 26 (36.6) 0.862 27 (38.0) 26 (36.6) 0.862

Smoking, n% 15 (21.1) 14 (19.7) 0.835 16 (22.5) 13 (18.3) 0.532

SCD-9 4.80 ± 1.70 4.68 ± 1.91 0.607 4.52 ± 1.63 5.03 ± 1.94 0.057

AVLT-DR 7.56 ± 1.93 6.73 ± 2.20 0.033 6.89 ± 1.87 7.41 ± 2.30 0.088

AVLT-R 22.72 ± 1.40 21.096 ± 1.74 0.008 22.27 ± 1.68 22.27 ± 1.68 0.697

STT-A 57.73 ± 15.29 64.20 ± 16.43 0.041 61.40 ± 16.68 60.52 ± 15.71 0.636

STT-B 134.18 ± 34.16 139.89 ± 31.52 0.564 141.24 ± 33.68 132.83 ± 31.73 0.060

VFT 19.79 ± 4.45 17.89 ± 4.29 0.023 19.14 ± 4.55 18.54 ± 4.38 0.470

BNT 25.30 ± 2.74 24.63 ± 2.96 0.223 24.83 ± 3.02 25.10 ± 2.71 0.628

MMSE 28.93 ± 1.18 28.59 ± 1.72 0.285 28.68 ± 1.32 28.85 ± 1.63 0.395

MoCA-B 25.97 ± 2.47 25.37 ± 2.15 0.218 25.41 ± 2.20 24.93 ± 2.44 0.117

GDS 2.41 ± 2.00 2.94 ± 2.61 0.174 2.54 ± 2.21 2.83 ± 2.46 0.358

HAMA 4.37 ± 3.17 4.56 ± 3.93 0.856 4.30 ± 3.56 4.63 ± 3.58 0.580

HAMD 3.97 ± 3.95 4.37 ± 8.39 0.438 4.21 ± 4.34 4.13 ± 3.46 0.957

FAQ 0.18 ± 0.49 0.28 ± 0.83 0.46 0.20 ± 0.50 0.27 ± 0.83 0.587

Values of p for neuropsychological tests were obtained with the general linear model adjusted for age, sex, and years of education. ApoE, apolipoprotein E; AVLT-DR, Auditory Verbal

Learning Test-long delayed recall; AVLT-R, Auditory Verbal Learning Test-recognition; STT-A Shape Trail Test A; STT-B, Shape Trail Test B; VFT, Verbal Fluency Test; BNT, Boston Naming

Test; MMSE, Mini-Mental State Examination; MoCA-B, Montreal Cognitive Assessment Basic Version; GDS, Geriatric Depression Scale; HAMA, Hamilton Anxiety Scale; HAMD, Hamilton

Depression Scale; FAQ, Functional Activities Questionnaire.

integrity correlations. The correlations were run separately in the
SCD and OCI groups.

To determine the relationships between the WM parameters
and cognitive function, partial correlation analysis controlling
for age, sex, and year of education was performed between the
impaired cognitive scores and average FA (MD) values of regions
showing significant group differences. The significance threshold
was p < 0.05.

RESULTS

Behavioral Results
Table 1 summarizes the demographic and neuropsychological
results according to plasma Aβ levels in SCD. Age, sex,
years of education, ApoE genotype distribution, and vascular
comorbidities were statistically homogeneous. The high Aβ40
group exhibited poorer performance on memory, executive, and
language tests (AVLT-DR: F = 4.652, p = 0.033; AVLT-R: F =

7.219, p = 0.008; STT-A: F = 4.271, p = 0.0341; VFT: F = 5.260,
p= 0.023). The low and high Aβ42 groups showed no significant
difference in cognitive tests in the three domains. No significant
differences in SCD-Q9 scores between the low and high Aβ

groups were detected (neither Aβ40 nor Aβ42). The demographic
and neuropsychological results in the total SCD sample and the
OCI sample are summarized in Supplementary Table 2.

Comparisons of Whole Brain WM Between
the Low and High Aβ Groups
Compared with the low Aβ40 group, the high Aβ40 group
exhibited decreased FA and increased MD in widespread WM
tracts (TFCE and FWE corrected, p < 0.05), mainly located
in the body, the genu, and the splenium of corpus callosum;
the superior longitudinal fasciculus; the anterior, superior, and
posterior corona radiata; the thalamic radiation; the external
and internal capsules; the inferior fronto-occipital fasciculus;
the sagittal stratum; the cerebral peduncle; and the fornix (see
Figure 1 and Supplementary Table 3). After FWE correction, no
significant differences were noted for FA and MD between the
low and high Aβ42 groups.

Relationship Between WM and
Neuropsychological Tests
In the extracted cluster, the relationship between average MD
and FA values and impaired cognitive tests (AVLT-DR, AVLT-
R, STT-A, and VFT) observed in the high Aβ40 group was
investigated. Age, sex, and years of education were included as
covariates. Average FA values were negatively correlated with
STT-A (r = −0.174, p = 0.041) and positively correlated with
AVLT-R (r = 0.192, p = 0.023; see Figure 2). No significant
correlation between MD values and cognitive scores was noted
(see Supplementary Table 4).
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FIGURE 1 | Comparison of the fractional anisotropy (FA) and mean diffusivity (MD) findings between the high and low Aβ40 groups. The averaged skeleton (green

color) was overlaid with significantly lower FA (blue-light color) and higher MD (red-yellow color) in the high Aβ40 group compared with the low Aβ40 group (TFCE and

FWE corrected p < 0.05, voxels > 100). The analysis controlled for age, sex, and years of education.

FIGURE 2 | Scatter plots illustrating the relationships between average white matter (WM) parameters and neuropsychological tests controlling for age, sex, and years

of education. (A) A significant negative correlation was found between the FA values and the Shape Trail Test-A (STT-A) scores. (B) A significant positive correlation

was found between FA values and Auditory Verbal Learning Test (AVLT)-recognition scores.
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FIGURE 3 | Significant association between WM microstructure parameters and plasma Aβ40 in subjective cognitive decline (SCD) and patients with objective

cognitive impairment (OCI). FA revealed a negative correlation with plasma Aβ40 in SCD (blue-light color), and MD exhibited a positive correlation with plasma Aβ40 in

both the SCD and OCI groups (red-yellow color) (TFCE and FWE corrected p < 0.05, voxels > 100). The regions with statistical significance were projected on the

averaged skeleton (green color). The scatter plots show the average values (y-axis) from the significant regions for each subject against plasma Aβ40 (x-axis) for each

participant. The analysis controlled for age, sex, and years of education.

Complementary Analysis
In the SCD group, the voxel-wise analysis using the plasma Aβ

levels as continuous variables revealed a significant association
of higher plasma Aβ40 levels with decreased FA and increased
MD values (TFCE and FWE corrected, p < 0.05), which were
located in similar regions as noted in the group comparison
(see Figure 3 and Supplementary Table 5). In the OCI group,
a positive correlation between MD and plasma Aβ40 levels
was identified in the bilateral forceps minor, the superior
longitudinal fasciculus, the inferior longitudinal fasciculus,
the anterior thalamic radiation, the inferior fronto-occipital
fasciculus, the cingulum, and the corticospinal tract (see Figure 3

and Supplementary Table 5). Both correlations between Aβ42
and FA and MD were not significant within the SCD and
OCI groups.

DISCUSSION

In the present study, we investigated the association between

plasma Aβ levels and WM microstructure. Both decreased

FA and increased MD values were found in the high Aβ40

group and were mainly located in the corpus callosum, the
superior longitudinal fasciculus, the corona radiata, the thalamic
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radiation, the external and internal capsules, the inferior fronto-
occipital fasciculus, the sagittal stratum, the cerebral peduncle,
and the fornix. Moreover, the decreased FA was associated
with poor performance on STT-A and AVLT-R; however, no
significant differences were found in the DTI parameters between
the low and high Aβ42 groups.

This study identified an association between higher
plasma Aβ40 levels and WM microstructure abnormalities
in individuals with SCD and OCI. Though some studies have
investigated the association between plasma Aβ40 levels and
WM hyperintensities, lesions and WM volume (Janelidze et al.,
2016; Hilal et al., 2017; Youn et al., 2019), we found that the
correlation between the plasma Aβ40 levels and WM integrity
remained significant after excluding those with cerebral vascular
disease. Our results were consistent with previous studies
that showed the association between plasma Aβ40 levels and
neurodegeneration biomarkers, such as hippocampal atrophy
and thinner cerebral cortex thickness, in both cognitively normal
elderly subjects and patients with AD (Kaffashian et al., 2015;
Llado-Saz et al., 2015; Hanon et al., 2018). The association
between plasma Aβ40 and WM integrity may result from the
role of Aβ40 in cerebrovascular abnormalities in AD. Aβ40
was found to reproduce the cerebrovascular alterations in
transgenic mice overexpressing the amyloid precursor protein
(APP; Niwa et al., 2000), and circulating Aβ40 could enhance
the cerebrovascular dysfunction induced by brain Aβ40, which
may contribute to WM impairment (Park et al., 2013). Though
the age was matched between the low and high Aβ40 groups and
included as a covariate for statistical analysis, we cannot exclude
the possibility that the association of age with both plasma Aβ40
levels and DTI parameters contributed to the correlation found
in our study (Kleinschmidt et al., 2016; Lovheim et al., 2017;
Jiang et al., 2019; Zavaliangos-Petropulu et al., 2019).

The correlations with Aβ40 seemed to be more widespread
and pronounced in MD compared with FA in both the SCD
and OCI groups. The biological bases of MD and FA may differ
and are not fully understood. FA corresponds to the degree
of directionality and anisotropic diffusion, which is assumed
to reflect WM impairment caused by microstructural damage
such as axonal degradation (Soares et al., 2013; Brueggen et al.,
2019). In contrast, MD is calculated based on the mean of
three eigenvalues and corresponds to the diffusion rate, which
is assumed to reflect WM impairment caused by membrane
integrity damage. FA analysis can be influenced by crossing
fibers more than MD, which may limit its power to detect WM
degeneration (Soares et al., 2013; Brueggen et al., 2019).

Contrary to our hypothesis, we did not identify significant
differences in FA andMDbetween the low and high Aβ42 groups,
where the identification is consistent with a previous study in
patients with a history of traumatic brain injury (Lippa et al.,
2019). Peripheral Aβ42 is highly correlated with brain amyloid
pathology (Nakamura et al., 2018; Schindler et al., 2019; Doecke
et al., 2020); whereas, several studies have indicated that the
loss of WM integrity reflects early tau accumulation other than
amyloid pathology (Strain et al., 2018). Kantarci et al. (2017)
reported higherMD and lower FA in higher Braak neurofibrillary
tangle staging than in those with high Aβ neuritic plaques, which

may result in the lack of association between WM parameters
and plasma Aβ42 in our study. Our results indicated that plasma
Aβ42 levels may not reflect subclinical WM impairment.

We observed significant differences between the low and
high Aβ40 groups in memory, executive, and language domains.
Subjects with increased Aβ40 performed poorly on cognitive
tests, though the performance of the participants in the present
study on cognitive tests was within the normal range. Consistent
with our findings, large population-based studies have reported
the association of increased Aβ40 with the risk of dementia
as well as with declining cognitive measurements (Hilal et al.,
2018; Verberk et al., 2018); however, some studies also found
an association between plasma Aβ42 and impaired cognition
(Llado-Saz et al., 2015). Differences in patient age, clinical status,
and analysis techniques may affect plasma Aβ quantification and
result in inconsistencies between studies (Toledo et al., 2013;
Palmqvist et al., 2018; Wang et al., 2018). We further found
an association between the STT-A and AVLT-R scores, and the
average FA values within the regions exhibit significant group
differences, indicating that plasma Aβ40-related WM structural
changes may reflect cognitive function in individuals with SCD.

Our study has several limitations. First, this study employed
a cross-sectional design. We found that higher Aβ40 levels were
associated with disrupted diffusion inWM; however, whether the
plasmaAβ40 level correlated with the cause ofWMabnormalities
in subjects with SCD was not clarified. The lack of repeated
measurements of blood Aβ concentrations limits the evaluation
of the trajectory of plasma levels in relation to WM impairment.
Thus, longitudinal studies are needed to identify the dynamic
correlation between plasma Aβ levels and WM integrity. Second,
we did not analyze brain amyloid or tau pathology; therefore,
further studies are needed to determine whether central amyloid
or tau induces the association between plasma Aβ levels and
WM integrity. Finally, additional studies should be conducted in
subjects with different cognitive statuses to determine whether
the correlations are dependent on disease progression.

CONCLUSION

In summary, the current study demonstrated different WM
microstructures between subjects with low and high Aβ40 levels
among individuals with SCD. The findings suggest that plasma
Aβ40 levels could reflect central neurodegeneration and may
represent a useful biomarker to predict different trajectories of
aging in individuals with SCD.
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Objective: To explore microstructural and cerebral blood flow (CBF) abnormalities in

individuals with subjective cognitive decline plus (SCD plus) using diffusional kurtosis

imaging (DKI) and three-dimensional (3D) arterial spin labeling (ASL).

Methods: Twenty-seven patients with SCD plus, 31 patients with amnestic mild

cognitive impairment (aMCI), and 33 elderly controls (ECs) were recruited and underwent

DKI and 3D ASL using a GE 3.0-T MRI. Mean kurtosis (MK), fractional anisotropy

(FA), mean diffusivity (MD), and CBF values were acquired from 24 regions of interest

(ROIs) in the brain, including the bilateral hippocampal (Hip) subregions (head, body, and

tail), posterior cingulate cortex (PCC), precuneus, dorsal thalamus subregions (anterior

nucleus, ventrolateral nucleus, and medial nucleus), lenticular nucleus, caput nuclei

caudati, white matter (WM) of the frontal lobe, and WM of the occipital lobe. Pearson’s

correlation analysis was performed to assess the relationships among the DKI-derived

parameters, CBF values, and key neuropsychological tests for SCD plus.

Results: Compared with ECs, participants with SCD plus showed a significant decline

in MK and CBF values, mainly in the Hip head and PCC, and participants with aMCI

exhibited more significant abnormalities in the MK and CBF values than individuals with

ECs and SCD plus inmultiple regions. CombinedMK values showed better discrimination

between patients with SCD plus and ECs than that obtained using CBF levels, with

areas under the receiver operating characteristic (ROC) curve (AUC) of 0.874 and 0.837,

respectively. Similarly, the AUC in discriminating SCD plus from aMCI patients obtained

using combined MK values was 0.823, which was also higher than the combined AUC

of 0.779 obtained using CBF values. Moreover, MK levels in the left Hip (h) and left

PCC positively correlated with the auditory verbal learning test-delayed recall (AVLT-DR)

score in participants with SCD plus. By contrast, only the CBF value in the left Hip head

positively correlated with the AVLT-DR score.
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Conclusions: Our results provide new evidence of microstructural and CBF changes in

patients with SCD plus. MK may be used as an early potential neuroimaging biomarker

and may be a more sensitive DKI parameter than CBF at the very early stage of

Alzheimer’s disease (AD).

Keywords: diffusional kurtosis imaging, arterial spin labeling, subjective cognitive decline plus, mild cognitive

impairment, Alzheimer’s disease

INTRODUCTION

Subjective cognitive decline (SCD), the first clinical manifestation
in the Alzheimer’s disease (AD) continuum, refers to a self-
experienced cognitive capacity decline and has been shown to
be associated with a high risk of conversion to AD (Tandetnik
et al., 2015). As the cognitive function in patients with SCD
is within normal limits, most neuropsychological evaluations
find it difficult to capture the subtle cognitive decline, especially
memory loss. Patients with SCD are twice as likely to develop
mild cognitive impairment (MCI) than those without SCD
(Mitchell et al., 2014). Previous studies have also shown that
SCD patients present with atrophy in the hippocampus (Hip),
the paraHip, the medial temporal, and the frontoparietal gray
matter (GM) (van der Flier et al., 2004; Saykin et al., 2006;
Wen et al., 2019); alterations in the white matter (WM) (Song
et al., 2016); decline of brain metabolism (Jeong et al., 2017);
accumulation of high β-amyloid (Aβ) (Snitz et al., 2013); and
disruption of functional activity (Sun et al., 2016). These results
showed that SCD, MCI, and AD are regarded as a spectrum of
clinical disorders (Kiuchi et al., 2014; Yan et al., 2018; Reisberg
et al., 2020). However, SCD may also be caused by many other
factors in addition to the pathophysiology underlying AD, such as
psychological factors, drug use, and othermedical or neurological
conditions (Perrotin et al., 2017). SCD plus, which leads to a
higher risk of AD than SCD, may be a very early stage of AD that
precedes amnesticMCI (aMCI). The features of SCD plus include
(Jessen et al., 2014) subjective decline limited only to memory
rather than other cognitive domains, complaints of SCD within
the last 5 years, an age at onset of SCD ≥ 60 years, concerns
(memory loss) associated with SCD, complaints of feeling worse
than others in the same age group, confirmation of cognitive
decline by an informant, and the presence of the apolipoprotein
E-ε4 (APOE-ε4) genotype and other biomarker evidence for
AD. Thus, identifying neuroimaging biomarkers for SCD plus is
essential for early detection, early intervention, and reduction of
the burden of dementia in the population.

Diffusion kurtosis imaging (DKI), developed based on
diffusion tensor imaging (DTI), can provide additional metrics
related to the non-Gaussianity of water diffusion, such as mean
kurtosis (MK), axial kurtosis, and radial kurtosis (Jensen et al.,
2005). Diffusion parameters, such as fractional anisotropy (FA)
and mean diffusivity (MD), can also be obtained from DKI.
As one of the main parameters of DKI, MK has been used
to describe the microstructural complexity or heterogeneity of
the tissue. It can assess the microstructure of both WM and
GM, particularly GM (Jensen et al., 2005). FA is mostly used

for assessing WM fiber tract integrity, and MD can assess
microstructural alterations of GM andWM.DKI has shown great
potential in diagnosing several disorders of the nervous system,
such as neurodegenerative disease, brain infarction, gliomas, and
mental illness (Guo et al., 2016; Zhao et al., 2016; Guan et al.,
2019; Haopeng et al., 2020; Huang et al., 2020; McKenna et al.,
2020). Previous studies have also reported that, in patients with
MCI and AD, DKI can detect microstructural alterations in GM
(Falangola et al., 2013; Gong et al., 2013; Struyfs et al., 2015; Chen
et al., 2017), as well as inWM (Yuan et al., 2016; Gong et al., 2017;
Song et al., 2019). Regarding GM and the subcortical nucleus,
one study found that subjects with aMCI showed significant MK
abnormalities in many regions, including the bilateral Hip, the
thalamus, the putamen, and the globus pallidus. MD revealed the
second most significant changes of the DKI parameters (Gong
et al., 2017). Another study showed that MK and FA could detect
microstructural complexities, such as the globus pallidus, the
substantia nigra, and the red nucleus, in healthy participants
(Gong et al., 2014). Thus, estimating microstructural changes
related to GM and the subcortical nucleus is very important
to improve the early diagnosis of AD. However, no report has
investigated SCD plus-related DKI regarding microstructural
alterations. Arterial spin labeling (ASL) is a valuable non-invasive
imaging tool that is used to magnetically label arterial blood
water as an endogenous contrast medium tracer to quantify
cerebral blood flow (CBF; Alsop et al., 2000). Compared with
PET imaging, the major advantages of ASL are its lower costs,
its non-invasiveness, and its reduced scan time (Henriksen et al.,
2012), particularly at 3.0 Tesla (T) (Yoshiura et al., 2009). As
the technology underlyingMRI hardware and software continues
to improve, ASL-measured CBF is becoming an increasingly
widely available method for distinguishing MCI/AD from elderly
controls (ECs) with comparable accuracy to PET (Haller et al.,
2016; Fällmar et al., 2017; Riederer et al., 2018). The most
consistent findings in ASL studies from patients with MCI and
AD have revealed brain hypoperfusion mainly in the posterior
cingulate cortex (PCC) and the precuneus (Pr), as well as in the
bilateral parietal and temporal areas. Many previous studies have
described the association of changes and vulnerable regions with
MCI/AD [including Hip, PCC, Pr, dorsal thalamus (DT), nuclei
basales,WMof the frontal lobe (FLWM) andWMof the occipital
lobe (OLWM), particularly Hip, PCC, and Pr] by structural
MRI, DTI, magnetic resonance spectroscopy, and functionalMRI
(Pennanen et al., 2004; De Jong et al., 2008; Van Straaten et al.,
2008; Jahng et al., 2011; Yang Z. X. et al., 2012). These findings
suggest that MCI and/or AD are caused by damage not to a single
brain area but to multiple areas of the brain. With advanced
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MRI techniques, DKI and ASL may supply microstructural and
hemodynamic information at the early stage of AD. Additionally,
the underlying mechanism regarding which imaging metrics
(MK, FA, MD, and CBF) changed first in subjects with SCD plus
must be precisely elaborated. Furthermore, changes in CBF in
subjects with SCD plus are rarely reported, particularly when
combined with substructural measures. To our best knowledge,
the diagnostic performance of DKI and ASL in assessing brain
microstructural and CBF alterations in subjects with SCD plus
has not been investigated.

To enhance our knowledge of the underlying dementia
processes, facilitate an early diagnosis, guide clinical trials, and
understand the characteristics of the pathophysiological basis
of the SCD plus stage, in the current study, we aimed to
evaluate brain microstructural and CBF changes in patients with
SCD plus using DKI and three-dimensional (3D) ASL imaging
measured in multiple brain regions to determine how these
regions are altered in this stage. Additionally, we also assessed
the relationships between DKI-derived parameters, CBF values,
and key neuropsychological test scores among patients with
SCD plus.

MATERIALS AND METHODS

Human Subjects and Neuropsychological
Testing
Ninety-one participants were recruited for this study from
September 2017 to July 2019, including 27 patients with SCD
plus, 31 patients with aMCI, and 33 age- and sex-matched
ECs. The SCD plus and aMCI groups were recruited from the
outpatient clinic, and ECs were recruited through a medical
examination center. Before enrollment, written informed consent
was obtained from all participants or their legal guardians.
The study was approved by the Ethical Committee of Second
Affiliated Hospital of Shantou University Medical College
(Registration No. 2017-10), and all procedures were performed
in accordance with the Declaration of Helsinki. All participants
provided their demographic and clinical data (including age, sex,
education, and living conditions) and had undergone cognitive
evaluations by two expert neurologists. All participants had
also undergone a series of standardized neuropsychological
evaluations, including tests that measured cognitive functioning
in the domains of memory, executive functioning, attention,
and language. The basic set of psychological tests included the
Mini-Mental State Examination (MMSE; Folstein et al., 1975),
the Montreal Cognitive Assessment (MoCA, Beijing version; Lu
et al., 2011), the Clinical Dementia Rating (CDR) Scale (Morris,
1993), the Global Deterioration Scale (GDS; Reisberg et al., 1982),
Chinese Huashan version of auditory verbal learning test [AVLT,
including AVLT-immediate recall, AVLT-delayed recall (AVLT-
DR), and AVLT-recognition; Xu et al., 2020], activities of daily
living assessment (Barberger-Gateau et al., 1992), the Hachinski
Ischemic Scale (HIS; Larson et al., 1989), and the Hamilton
Depression Rating Scale (HAM-D; Worboys, 2013).

Patients with SCD plus met the following criteria proposed by
the SCD Initiative (SCD-I; Jessen et al., 2014): (a) self-reported
persistent cognitive complaints of memory decline ≤ 5 years; (b)

confirmation of cognitive decline by an informant; (c) onset age
≥ 60 years; (d) feeling worse than peers of the same age and
concerns associated with SCD; (e) performance within normal
limits for age and educational attainment on the MMSE, MoCA,
and ADL after sex, age, and education adjustment; (f) a GDS
score of 2; (g) a CDR score of 0; and (h) a HIS score < 4. Patients
with aMCI met the criteria defined by Petersen et al. (2001)
as follows: (a) memory decline according to clinical judgment
or confirmed by an informant; (b) objective decline of episodic
memory, determined by the neurologists’ judgment based on
a neuropsychological evaluation; (c) normal general cognitive
function determined by a CDR score of 0.5, a GDS score of
3, a HIS score < 4, and an MMSE ≥ 24; and (d) ineligibility
for AD according to the criteria of the National Institute
of Neurological and Communicative Diseases and Stroke-
Alzheimer’s Disease and Related Disorders Association. ECs
were defined as those without subjective cognitive complaints,
without physical, psychiatric, or neurological disorders, without
abnormal findings on conventional brain MRI, and with normal
performance on neuropsychological tests. The exclusion criteria
for all participants included the following: (a) a HIS score> 4; (b)
a HAM-D score > 24; (c) specific causes of WM lesions, such as
multiple sclerosis, epilepsy, encephalitis, tumors, cranial arteritis,
and trauma; (d) AD, Lewy body dementia, frontotemporal
dementia, or Parkinson’s disease; (e) intracranial hemorrhage,
Moyamoya disease, aphasia, hepatic encephalopathy, systemic
diseases, and signs of normal pressure hydrocephalus or carbon
monoxide poisoning; and (f) alcohol dependence and other
psychoactive substance abuse history, serious medical disease, or
mental illness.

Conventional MRI, DKI, and ASL Data
Acquisition
Conventional MRI scans were acquired using a standard
quadrature eight-channel head coil with a 3.0T MRI scanner
(Signa HDx Twin speed; GE Medical Systems, Milwaukee,
Wisconsin, USA). Next, we changed the host scanning method
from the clinical mode to the research mode. Using the research
mode, DKI scanning parameters were obtained using an echo-
planar imaging (EPI) sequence as follows: repetition time
(TR)/echo time (TE)= 6,000 ms/109ms; diffusion gradient pulse
duration = 32.2ms; diffusion gradient separation = 38.8ms;
slice thickness = 4mm; slice gap = 0mm; field of view (FOV)
= 240 × 240mm; matrix = 256 × 256; number of excitations
(NEX)= 1; b-values= 0, 1,000, 2,000 s/mm2; diffusion-encoding
directions = 15; number of slices = 24; and scanning time =

250 s. 3D pseudocontinuous ASL images were acquired using
the following scanning parameters: TR/TE = 4,580/9.8ms; FOV
= 240 × 240mm; slice thickness = 4mm; slice gap = 0mm;
postlabeling delay time = 1,500ms; and scanning time = 266 s.
We used the oblique sagittal position as the scanning standard.
The bottom of the slab was positioned at the bottom of the
cerebellum, and the top of the slab was positioned at the top of the
semioval center, with coverage of mostly the cerebrum. Cushions
and cotton balls were used to reduce subject movement and
scanner noise.
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Image Post-processing and Data Analysis
All raw DKI images were transferred to a GE Advantage
Workstation version 4.6 (GE Medical System, Rue de la Minière,
France) and post-processed in the FuncTool software package
9.0 environment. Before DKI parametric maps were generated,
all raw data were automatically performed with the affine and
rigid body registrations to the B0 image for reducing EPI
distortion, eddy-current distortion, and head motion. Next, the
DKI parameters, including MK, FA, and MD, were automatically
generated by the DKI software, which was developed using
the Applied Science Laboratory of GE (http://www.nitrc.org/
projects/dke/). Quantitative MK, FA, and MD maps were
generated from the DKI model with b-values = 0, 1,000, and
2,000 s/mm2 by the following equation:

In[S(n,b)/S0] = −b
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S(n ,b) represents the diffusion encoding direction n and
diffusion signal intensity for diffusion weighting b, and S0
represents the signal intensity for minimally diffusion-weighted
imaging (b0). Dij and Wijkl represent the components of the
diffusion and kurtosis tensors, respectively. A description of the
DKI analysis method can be found in our previous studies (Guo
et al., 2016; Zheng et al., 2017).

The raw ASL data were also transferred to the GE Advantage
Workstation 4.6 and post-processed by the ReadyView software
(version 10.3.67) in the FuncTool environment. The CBF values
were reacquired before the quality control step as follows. First,
a high level of background suppression was used to suppress
the surrounding static tissue around the pseudocontinuous
labeling pulse. Second, motion correction, temporal and spatial
filtering, and partial volume effect correction were performed.
Subsequently, the CBF values were calculated by intensity
normalization. A quantitative CBF map was generated based on
the following equation:
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where T1b represents the T1 relaxation time of the blood, T1g

represents the T1 relaxation time of the GM, tsat represents the
duration time of the saturation pulse performed before imaging,
α represents the labeling efficiency, λ represents the brain/blood
partition coefficient, τ represents the labeling duration, and ω

represents the post-labeling delay time. In addition, CBF analysis
has been described in previous studies (Wu et al., 2014; Zhao
et al., 2016).

Regions of interest (ROIs) were carefully delineated and
analyzed by two independently experienced neuroradiologists
who were blinded to the status of the subjects with B0 images

as references. Each ROI was selected on the maximum level of
the structures that were best demonstrated according to each
corresponding parametric map. When the ROIs were placed, we
also tried to avoid major vascular structures, cerebrospinal fluids,
and interhemispheric regions. To ensure that the same locations
were extracted from each subject, the ROIs (the ROI areas ranged
from 18 to 22 mm2) in the brain were mainly obtained from
24 regions using mirror symmetry tools (after drawing an ROI
in the left hemisphere, it is copied and then left-to-right flipped
across the brain midline to obtain the same shape and size of
ROI) derived from FuncTool software, as shown in Figures 1A–P
for the DKI maps and Supplementary Figures 1A–D for the
ASL maps. These regions included the bilateral Hip subregions
[head; Hip (h), body; Hip (b) and tail; Hip (t)], PCC, Pr, and
DT subregions [anterior nucleus: DT (a), ventrolateral nucleus:
DT (vl), and medial nucleus (m)], lenticular nucleus (LN), caput
nuclei caudati (CNC), FLWM, and OLWM. The values of MK,
FA, MD, and CBF were calculated and averaged across three
replicates by two senior radiologists to correct and reduce offset
errors. After that, an intraclass correlation coefficient (ICC)
analysis was performed to further assess the consistency of MK,
FA, MD, and CBF obtained from the measurements taken by two
neuroradiologists (Landis and Koch, 1977). Usually, ICC values
>0.75 are regarded as a good correlation.

Statistical Analysis
Statistical analyses were performed using Statistical Package
for Social Science version 25.0 (SPSS Inc., Chicago, III, USA)
and GraphPad Prism software 8.3.0 (https://www.graphpad.
com/scientific-software/prism). Sex distributions were analyzed
using the chi-squared test among the three groups. One-way
ANOVA was used to assess age, education, imaging metrics,
and neuropsychological test results among patients with SCD
plus, patients with aMCI, and ECs. ANOVA with false discovery
rate (FDR) correction as described by the Benjamini–Hochberg
method was used to compare the DKI parameters and CBF values
using the R soft package (R for Windows v. 4.0.3, https://cran.
r-project.org) among three groups to compare the symmetrical
ROIs in the left and right cerebral hemisphere, respectively. The
non-parametric Kruskal–Wallis test was used if the data were
not normally distributed. Pearson’s correlation analysis was used
to evaluate the relationship between the measured parameters
and the key neuropsychological scores for SCD plus controlled
for age, sex, and the education level as nuisance covariates. The
measured neuroimaging parameters were determined by receiver
operating characteristic (ROC) curve analysis to evaluate the
diagnostic accuracy. To determine the predictive accuracy of
the parameters in discriminating patients with SCD plus from
patients with aMCI or ECs, the area under the ROC curve
(AUC) was calculated to assess the diagnostic ability of the
imagingmetrics, both alone and in combination. CombinedAUC
values were obtained by binary logistic regression. All data were
expressed as means ± SD, and the values of p < 0.05 were
considered statistically significant.
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FIGURE 1 | Representative locations of the regions of interest (ROIs) on corresponding axial b0 images and mean kurtosis (MK), fractional anisotropy (FA), and mean

diffusivity (MD) maps. (A–D) ROIs of the bilateral hippocampal (Hip) subregions (head, body, and tail); (E–H) ROIs of bilateral posterior cingulate cortex (PCC) and

precuneus (Pr); (I–L) ROIs of bilateral dorsal thalamus (DT) subregions (anterior nucleus, ventrolateral nucleus, and medial nucleus), lenticular nucleus (LN), and caput

nuclei caudati (CNC); (M–P) ROIs of bilateral white matter of the occipital lobe (OLWM) and white matter of the frontal lobe (FLWM).

RESULTS

Demographic and Key Neuropsychological
Assessment Scores in Participants With
SCD Plus, aMCI, and ECs
The baseline demographic characteristics and key
neuropsychological scores of the studied participants are

presented in Table 1. No significant differences were found with
respect to age, sex, and education among participants with SCD
plus, aMCI, and ECs. The AVLT, MMSE, and MoCA scores
decreased gradually among the three groups. Only the MMSE
scores and MoCA scores were lower in participants with aMCI
than in ECs. Only the AVLT-DR scores between patients with
SCD plus and ECs were significantly different. The SCD plus

Frontiers in Aging Neuroscience | www.frontiersin.org 5 February 2021 | Volume 13 | Article 62584321

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Yang et al. DKI and ASL in SCD Plus

TABLE 1 | Demographic information and key neuropsychological tests for participants with SCD plus, participants with aMCI, and ECs.

Characteristics Groups χ
2/F/t P-value Multiple comparison p-values

ECs (n = 33) SCD plus (n = 27) aMCI (n = 31) SCD plus

vs. ECs

SCD plus

vs. aMCI

aMCI vs.

ECs

Age (years) 67.061 ± 6.067 68.074 ± 7.014 68.645 ± 6.879 0.227 0.826 0.929 0.986 0.642

Sex (M/F) 13/20 12/15 12/19 0.615 0.735 0.803 0.599 0.439

Education (years) 10.061 ± 1.619 9.852 ± 1.747 9.907 ± 1.578 0.632 0.557 0.951 0.248 0.055

AVLT-immediate recall (score) 8.727 ± 1.292 8.111 ± 1.281 7.335 ± 1.119 5.035 <0.01 0.069 0.053 <0.01

AVLT-delayed recall (score) 8.970 ± 1.185 7.556 ± 0.934 5.387 ± 1.066 11.396 <0.001 <0.05 <0.01 <0.001

AVLT-recognition (score) 10.061 ± 1.166 9.370 ± 1.214 8.419 ± 1.317 6.653 <0.01 0.081 <0.01 <0.05

MMSE (score) 27.879 ± 1.783 26.856 ± 2.135 25.386 ± 1.317 3.722 <0.05 0.168 0.056 <0.05

MoCA (score) 26.324 ± 2.205 25.763 ± 2.573 22.365 ± 3.216 5.808 <0.01 0.159 0.052 <0.01

group had significantly lower AVLT-DR and AVLT-recognition
scores than the aMCI group. Additionally, all subgroups of the
AVLT scores, including AVLT-immediate recall scores, AVLT-
DR scores, and AVLT-recognition scores, were significantly
lower in patients with aMCI than in ECs.

Changes in the DKI Parameters and CBF in
Participants With SCD Plus, aMCI, and ECs
Mean kurtosis, FA, MD, and CBF values were acquired in the
bilateral Hip (h), Hip (b), Hip (t), PCC, Pr, DT (a), DT (vl), DT
(m), LN, CNC, FLWM, and OLWM among the three groups
(Supplementary Raw Data). Supplementary Table 1 showed
the ICC analysis of DKI and 3D-ASL parameters in the left
and right ROIs in individuals with SCD plus, aMCI, and ECs.
The ICC values showed that all measurements were > 0.75 and
were regarded as relatively reliable among the three groups.
Therefore, the levels of MK, FA, MD, and CBF were used for
subsequent statistical analysis. Figures 2A,B, 3A,B showed
the differences in all the measured MK and CBF values from
the left and right ROIs among the three groups, respectively.
Supplementary Figures 2A,B, 3A,B showed the differences in
the FA and MD values from the left and right ROIs among the
three groups, respectively. Supplementary Tables 2–4 showed
the differences in the MK, FA, MD, and CBF values from all the
ROIs among the three groups.

Compared with the ECs, participants with SCD plus had
significantly lower MK values in the bilateral Hip (h), left PCC,
left DT (a), and left OLWM. Decreased CBF values were also
found in the left Hip (h) and bilateral PCC. However, the MK
and CBF values were increased in the left Pr. The FA value was
decreased only in the left OLWM. No significant MD changes
were found in any ROI between the two groups.

Compared with ECs, participants with aMCI had a lower level
of MK in the bilateral Hip (h), left Hip (b), bilateral PCC, bilateral
DT (a), left DT (vl), bilateral OLWM, and left CNC. Similarly, the
level of CBF was decreased in the bilateral Hip (h), bilateral PCC,
bilateral DT (a), left OLWM, left CNC, and left FLWM. The FA
levels were also decreased in the bilateral PCC, left Pr, bilateral
OLWM, and bilateral FLWM. Additionally, the MD values were
elevated in the left Hip (h), left PCC, left DT (a), and left OLWM.

No significant differences in the MD values were found in any
right ROIs between the two groups.

Compared with participants with SCD plus, patients with
aMCI had lower MK levels in the bilateral PCC and left Pr.
Decreased FA values in the right OLWM along with the CBF
levels in the left Pr and the left DT (a) were also observed. No
significant differences were found in the MD values in any ROIs,
the FA values in the left ROIs, or the CBF levels in the right ROIs
between the two groups.

Diagnostic Performance of the MK and
CBF Values and Their Correlations With
Key Neuropsychological Scores From
Patients With SCD Plus
The above results showed that the changes in the DKI and the
ASL parameters in patients with SCD plus and patients with
aMCI are multiregional, particularly the MK and CBF values.
Thus, combined AUC values with multiple subregions, rather
than a single AUC, might better distinguish among the groups,
provide a better cumulative accuracy, and supply more useful
clinical information. Therefore, we mainly evaluated the changes
in MK or CBF, which could serve as a good imaging biomarker
for a more accurate discrimination of patients with SCD plus
from ECs or patients with aMCI using the ROC curve analysis.
When we used a single AUC, we found that the MK values
in the left Hip (h) had the best group discriminability, with
an AUC of 0.768 (95% CI: 0.648–0.887) for the “SCD plus vs.
ECs” comparison, while the CBF value in the left Pr had the
best group discriminability, with an AUC of 0.751 (95% CI:
0.629–0.874) for the “SCD plus vs. aMCI” comparison. However,
based on the combined AUC analysis method, the combined
AUC (Figure 4A) in discriminating patients with SCD plus
from ECs obtained using the MK levels of the bilateral Hip
(h), left PCC, left Pr, left DT (a), and left OLWM increased
to 0.874 (95% CI: 0.783–0.966), while the combined AUC
(Figure 4B) in discriminating the two groups obtained using
the CBF values in the left Hip (h), left PCC, left Pr, and
right PCC increased to 0.837 (95% CI: 0.737–0.937). Similarly,
the combined AUC (Figure 4C) in distinguishing patients with
SCD plus from patients with aMCI obtained using the MK
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FIGURE 2 | Groups differences in all measured MK values from the left (A) and right (B) ROIs. *p < 0.05, **p < 0.01, and ***p < 0.001. [false discovery rate

(FDR)-corrected].

values in the left PCC, left Pr, and right PCC increased to
0.823 (95% CI: 0.718–0.928). The combined AUC (Figure 4D)
in distinguishing patients with SCD plus from patients with
aMCI obtained using the CBF values in the left Pr and left
DT (a) increased to 0.779 (95% CI: 0.660–0.898). Furthermore,
correlation analyses between key cognitive scores and MK/CBF
values were performed for patients with SCD plus after adjusting
for age, sex, and education levels. Positive correlations were
found between the AVLT-DR score and the MK values in the left
Hip (h) (r = 0.423; p = 0.028) and in the left PCC (r = 0.393;
p = 0.042) (Figures 5A,B, respectively). However, the CBF level
was positively correlated with the AVLT-DR score (r = 0.386;
p = 0.046) only in the left Hip (h) (Figure 5C). No significant
correlations were found between the remaining DKI or ASL
parameters in these regions and key cognitive scores in patients
with SCD plus.

DISCUSSION

Subjective cognitive decline is known to be pervasive in elderly
individuals older than 65 years (∼25–56%), and approximately

half of them remain cognitively stable (Jonker et al., 2000).
Although SCD is associated with a risk of dementia, the rate of

development toMCI/AD is relatively low due to its heterogeneity

(Perrotin et al., 2017). To the best of our knowledge, this is
the first study to investigate brain tissue microstructural and

perfusion changes, including those in bilateral Hip and DT
subfields, in patients with SCD plus. In this study, we used
the DKI and 3D-ASL techniques, which combine features from
different regional distributions of imaging metrics, combine
output data from multiple voxels, and generate a wealth of
information. Thus, we could detect the CBF and microstructural
abnormality distribution in different brain regions and obtain
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FIGURE 3 | Groups differences in all the measured cerebral blood flow (CBF unit: ml/100g/min) values from the left (A) and right (B) ROIs. *p < 0.05, **p < 0.01, and

***p < 0.001. (FDR-corrected).

highly accurate diagnostic information using these practical
techniques. First, our main findings showed that SCD plus group
exhibits microstructural and perfusion alterations in multiple
encephalic regions, particularly in the Hip (h) and PCC. The
aMCI group exhibited more significant abnormalities in MK and
CBF values than ECs and patients with SCD plus in multiple
regions. These results indicated that patients with SCD plus
might share a similar trend of microstructural and perfusion
changes with individuals with aMCI (Sánchez-Benavides et al.,
2018; Hao et al., 2020). Second, MK seems to contribute more

significantly than CBF to the diagnostic performance in patients
with SCD plus when combined AUC values are used. Moreover,
the changes in MK values in the left Hip (h) and left PCC of the
SCD plus group were positively correlated with AVLT-DR scores,
whereas the CBF value in only the left Hip (h) was positively
correlated with the AVLT-DR scores.

In a previous series of studies, patients with aMCI and patients
with AD demonstrated aberrant microstructures according to
DKI (Struyfs et al., 2015; Chen et al., 2017; Cheng et al., 2018;
Song et al., 2019) or CBF changes according to ASL (Yoshiura

Frontiers in Aging Neuroscience | www.frontiersin.org 8 February 2021 | Volume 13 | Article 62584324

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Yang et al. DKI and ASL in SCD Plus

FIGURE 4 | Receiver operating characteristic (ROC) curves of the discriminatory power between subjective cognitive decline (SCD) plus and elderly controls

(ECs)/amnestic mild cognitive impairment (aMCI) individuals. The combined area under the ROC curve (AUC) in discriminating SCD plus from ECs obtained with MK

(A) and CBF values (B). Combined AUC in discriminating participants with SCD plus from participants with aMCI obtained with MK values (C) and CBF values (D).

FIGURE 5 | Correlations between the MK/CBF values and Auditory Verbal Learning Test-delayed recall (AVLT-DR) scores for SCD plus after adjusting for the effects of

age, sex, and the education level. Positive correlations between the AVLT-DR scores and MK levels in the L-Hip head (A) and L-PCC (B). Positive correlations

between the AVLT-DR scores and CBF in the L-Hip head (C). AVLT-DR, Auditory Verbal Learning Test-delayed recall.

et al., 2009; Haller et al., 2016; Fällmar et al., 2017; Riederer et al.,
2018) in many brain regions. In this study, we also observed
CBF and microstructural abnormalities in the Hip, PCC, Pr,
OLWM, DT, FLWM, and CNC regions in patients with aMCI,

a finding that agrees with findings from the previous study
describing the association of changes in these regions with the
likelihood of AD. Two studies investigated SCD-related ASL
findings, and the results were inconsistent. One study showed
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that, compared with ECs, patients with SCD had decreased CBF
in the medial orbitofrontal cortex and increased CBF in the
right putamen (Hays et al., 2018), while the other study found
no discrepancy in the total CBF between patients with SCD
and ECs (de Eulate et al., 2017). Our study showed decreased
CBF values in the left Hip (h), bilateral PCC, and increased
CBF in the left Pr. The inconsistent results were compared
with our results due to the inclusion criteria being different
(our study population is SCD plus, while the others mainly
chose patients with SCD). Another possible reason was the
different scanning protocols and parameters used, or different
post-processing analysis method performed, which might also
make the results different. Additionally, different sample sizes
can also lead to different results. However, our main purpose was
to explore brain microstructural changes and CBF alterations in
patients with SCD plus, as well as their relationships with key
neurocognitive scores. Additionally, we compared the advantages
of MK and CBF in distinguishing patients with SCD plus from
ECs or patients with aMCI.

Alzheimer’s disease is a diffuse neurodegenerative disease
involving many brain regions, including GM and WM (Cappa
et al., 2001). As a relatively newMRI technique, DKI is sufficiently
sensitive for detecting brain microstructural changes in GM
and WM simultaneously, similar to ASL. In this study, MK
and CBF values showed more robust and significant changes
than FA or MD values among the three groups. MK, the most
commonly used DKI parameter, is related to the complexity of
the microstructure and is considered a complex micro index.
Theoretically, non-Gaussian water molecule diffusion in the
brain tissue microarchitecture is restricted by many factors,
such as the cell membrane, axons, and myelin (Hansen, 2019).
Degeneration and atrophy of nerve cells lead to a decline in
the complexity of the brain microstructure during the course
of AD, leading to a decrease in the values of MK in turn.
The decline in CBF values may reflect neuronal dysfunction
and synaptic failure (Hays et al., 2016). A controversy remains
regarding whether the CBF values measured by ASL show
hypoperfusion or hyperperfusion patterns in SCD or MCI, and
the hypoperfusion/hyperperfusion areas may involve different
brain regions simultaneously (Alexopoulos et al., 2012; Bron
et al., 2014; Leeuwis et al., 2017; Chau et al., 2020; Kim et al.,
2020). Compared with those of ECs, we found decreased MK
values in the bilateral Hip (h), left PCC, left DT (a), and left
OLWM and increased MK values in the left Pr in participants
with SCD plus. Significantly, lower CBF values in the left Hip
(h) and bilateral PCC and higher CBF values in the left Pr were
also observed in participants with SCD plus. Both evaluations
revealed changes in most regions in the left cerebral hemisphere,
particularly in vulnerable areas such as the Hip, PCC, and Pr. The
affected brain regions (left cerebral hemisphere) more often tend
to involve functional asymmetry and cerebral laterality (Agarwal
et al., 2016). The pronounced asymmetry between the left and
right brain hemispheres is a hallmark of humans because the left
cerebral hemisphere is more involved in language skills, memory
function, and logic problems (Keller et al., 2018; Corballis, 2019).
Furthermore, the AUC in discriminating patients with SCD plus
from ECs obtained using the combined MK values was 0.874,

which was higher than the combined AUC of 0.837 obtained
using the CBF values. The combined AUC in discriminating
patients with SCD plus from patients with aMCI obtained
using the MK levels was 0.823, which was also higher than the
combined AUC of 0.779 obtained with the CBF levels. These
results showed that the combined AUC obtained with MK values
made more significant contributions to the classification between
participants with SCD plus and ECs/participants with aMCI than
those calculated using the CBF values. Several possible reasons
may explain this observation. The pathological changes in AD
are accompanied by significantly reduced numbers of neurons
as nerve cells undergo degeneration and atrophy (Morris and
Price, 2001). The course of AD is associated with disruptions
to mitochondrial function, decreased apoptosis, and decreased
neuronal shrinkage (Leuner et al., 2007). Previous articles have
suggested that mitochondrial dysfunction plays a key role in
the early stage of AD (Cadonic et al., 2016). Several reports
have indicated that the mitochondrial function is disrupted
in patients with MCI and patients with AD (Delbarba et al.,
2016; Mastroeni et al., 2017; Terada et al., 2020). Mitochondrial
dysfunction, in turn, accelerates the production of reactive
oxygen species, further contributing to oxidative stress and
damage to cell membrane lipids, intracellular proteins, and DNA
(Butterfield and Boyd-Kimball, 2020). The accumulation of β-
amyloid (Aβ) peptides decreases ATP production, impairs the
mitochondrial membrane potential, and exacerbates oxidative
stress (Swomley and Butterfield, 2015). Moreover, reactive
oxygen species generated from mitochondrial dysfunction can
drive amyloidogenesis and tau phosphorylation, thus generating
a cycle that decreases energy utilization for normal cellular
function and drives the pathology and progression of nerve cell
death in AD (Lejri et al., 2019). Due to neuron cell body death
and loss and neuronal atrophy and apoptosis, the complexity
of the brain tissue decreases, resulting in lowered MK as part
of this process. MK is also a good probe for the presence of
cell microstructural impairment and is sensitive in detecting
the underlying Aβ-induced pathology (De Santis et al., 2011).
Therefore, the slight modification in MK values found in this
study could be an early reflection of mitochondrial energy
metabolism dysfunction in conditions with a fairly high risk
of the very early stage of AD. The decrease in the CBF value
can also be attributed to the inhibited activity or dysfunction
of neurons or neural synaptic loss, as well as the changes in
neural activity due to the progression of AD pathology (Hays
et al., 2016). As described above, the mitochondria, which
convert oxygen and a metabolic product of glucose into ATP
to generate energy, are the powerhouses of cells, including
neurons; mitochondrial dysfunction in nerve cells will cause
them to function improperly. As the activity of the neuron
changes, the demand for oxygen decreases (mainly in the
mitochondria), and the demand for energy (ATP production)
decreases further, moderating the CBF (Ogoh and Ainslie, 2009).
Therefore, mitochondrial dysfunction may precede changes in
CBF. Our results also suggested that changes in MK are observed
slightly before those in CBF. Measurement of the changes in MK
seems to be a promising method for evaluating participants at
risk for dementia because they may reflect early and impaired
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energetic metabolism in the brain, a factor involved in the
pathogenesis of AD. Of course, although we excluded vascular
factors (high blood pressure, diabetes, and WM hyperintensity
lesion burden), diagnosis biases, heterogeneity factors, and/or
individual variability of disease expression with SCD plus should
still be considered (Jessen et al., 2014). Additionally, limitations
related to the ASL techniques, including their sensitivity to transit
time effects and relatively low spatial and space resolution, must
also be considered.

Our results are consistent with the findings of a study
reporting that GM hypometabolism and microstructural
abnormalities are the core characteristics of aMCI/AD (Gong
et al., 2017). The focal areas in patients with SCD plus and
patients with aMCI are mainly in the limbic system, including
the Hip, PCC, and Pr, which are predominantly related to
neuropsychological activities such as learning, memory, the
generation of emotional responses, and behavior (Zhang et al.,
2014). Moreover, the ROI analysis revealed significantly altered
values of MK/CBF in the DT and basal ganglia of participants
with SCD plus that also play an important role in attention and
working memory (Cho et al., 2014; de Bourbon-Teles et al.,
2014). Compared with the ECs, the individuals in the SCD
plus group showed the most obvious abnormalities in MK/CBF
values in the Hip (h). Previous studies have shown that the Hip
(h) plays a key role in memory performance and is the most
sensitive and vulnerable region to memory impairment among
the Hip subregions (Ouchi et al., 1998; Yakushev et al., 2010).
It may also be the earliest region susceptible to pathological
changes in patients with aMCI/AD (Gordon et al., 2013; Luo
et al., 2014). The detection of reduced MK/CBF in the left
Hip is also consistent with the previous results of DKI/ASL
perfusion studies (Dai et al., 2009; Binnewijzend et al., 2013;
Gong et al., 2017; Cheng et al., 2018; Song et al., 2019). As a
limbic cortical region, the PCC is affected relatively early in
the pathological progression to AD. The decreased MK/CBF
levels may be tightly associated with the derangement of
neurometabolism and neuronal/axonal loss (Thomas et al.,
2019). The exploration of other ROIs, such as in the left DT
(a) and left OLWM, could also aid in improving predictions.
However, decreased or increased MK/CBF can coexist in the
early stages of the neurodegenerative process. Our results
showed that compared with ECs, patients with SCD plus had
higher values of MK/CBF only in the left Pr. The hyperperfusion
patterns are thought to reflect compensatory mechanisms for
the neuronal damage that occurs early in the disease process
to counterbalance cognitive decline (Sierra-Marcos, 2017).
We speculate that the beneficial effects of elevated MK/CBF
values on cognition may be destroyed in patients with SCD
plus because decreased MK/CBF values in most brain regions
and only higher levels of MK/CBF in the left Pr cannot support
normal cognitive function within regions associated with
normal aging and AD risk. Alternatively, the results may
reflect changes in the brain microvasculature due to increased
neurocerebrovascular reactivity without any significant gains in
the cognitive performance (Miki et al., 2009; Sam et al., 2016).
Therefore, the present observations combining MK and CBF
measures clearly support this view.

Consistent with most previous DTI studies, we observed
decreased FA and increased MD values between the EC and
aMCI groups. However, decreased FA values were found only in
the left OLWM in the EC and SCD plus groups. Additionally,
abnormalities in FA values were found only in the right OLWM
between participants with SCD plus and participants with aMCI.
FA represents directional variation in water molecule diffusion,
whereas MD reflects the average diffusivity. The observed decline
in FA and increase in MD values parallel the axonal loss
and myelin damage that restrict the random motion of water
molecules along the nerve fiber tracts. Consistent with a previous
study, our results demonstrate that FA is preferable to MD for
evaluating WM (OLWM and FLWM) (Medina et al., 2006; Chen
et al., 2009). Additionally, FA is more advantageous than MD in
detecting early-stage AD (Yang D. W. et al., 2012). In general,
among the three DKI parameters, MK is themost sensitive metric
for capturing GM and WM microstructural abnormalities in
patients with SCD plus and aMCI (Struyfs et al., 2015).

Furthermore, significant correlations between AVLT-DR
scores and MK values in the left Hip (h) and PCC were observed
in patients with SCD plus. A correlation only between the AVLT-
DR scores and CBF values was observed in the left Hip. We
assumed that the decreased MK/CBF in the left Hip (h) may
be crucial for progressive memory impairment. Our correlation
results also support the possibility that changes in MK are the
strongest predictor of cognitive impairment scores, particularly
in the very early stage of AD.

CONCLUSION

Several limitations of this study should be noted. First, as a cross-
sectional study, few SCD plus patients were included. The sample
size should be increased, and a longitudinal study of this study
population is needed to identify early neuroimaging biomarkers
for the prediction of AD. Second, patients with AD were not
included in our study; therefore, the continuous spectrum of
AD could not be fully explored. Further research should be
designed with more participants to assess the distinction among
SCD plus converters, SCD plus non-converters, and probable
AD. Third, the inclusion criteria for SCD plus were based on
the number of SCD plus features met; typically, patients are
expected to meet more than three (Jessen et al., 2014). Although
the MK level is emerging as a very useful imaging marker
in AD because it may strongly relate to the presence of an
underlying amyloid pathology and neurodegeneration, we did
not test the statuses of APOE-ε4, tau protein, or Aβ, reflecting
a limitation and lack of completeness in our study. Incorporating
examinations of these objective biomarkers associated with AD
pathology may be more important for detecting patients with
SCD plus. Finally, multimodal imaging techniques and more
advanced post-processed methods (Zhang et al., 2016; Jiskoot
et al., 2019) would yield amore comprehensive understanding for
elucidating the pathophysiologic mechanisms underlying SCD
plus (Parker et al., 2020; Wang et al., 2020).

In summary, our results suggest that DKI and ASL can
provide effective information to detect the characteristics of
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CBF and microstructure abnormalities in patients with SCD
plus. MK may provide valuable information and function as
one of the earliest potential neuroimaging biomarkers associated
with AD. Changes in the MK value in the Hip (h) and
PCC appear to represent an optimal, effective, and potentially
useful non-invasive disease biomarker of the preclinical phase
of AD.
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Objective: This study assessed the methylation of peripheral NCAPH2 in individuals

with subjective cognitive decline (SCD), identified its correlation with the hippocampal

volume, and explored whether the correlation is influenced by apolipoprotein E ε4 (APOE

ε4) status.

Methods: Cognitively normal controls (NCs, n = 56), individuals with SCD (n = 81),

and patients with objective cognitive impairment (OCI, n = 51) were included from the

Sino Longitudinal Study on Cognitive Decline (NCT03370744). All participants completed

neuropsychological assessments, blood tests, and structural MRI. NCAPH2methylation

was compared according to the diagnostic and APOE ε4 status. Partial correlation

analysis was conducted to assess the correlations between the hippocampal volume,

cognitive tests, and the NCAPH2 methylation levels.

Results: Individuals with SCD and patients with OCI showed significantly lower levels

of NCAPH2 methylation than NCs, which were independent of the APOE ε4 status. The

NCAPH2 methylation levels and the hippocampal volumes were positively correlated in

the SCD APOE ε4 non-carriers but not in the OCI group. No association was found

between the NCAPH2 methylation levels and the cognitive function.

Conclusion: Abnormal changes in blood NCAPH2 methylation were found to occur in

SCD, indicating its potential to be used as a useful peripheral biomarker in the early stage

of Alzheimer’s disease screening.

Keywords: Alzheimer’s disease, NCAPH2, methylation, subjective cognitive decline, SCD

INTRODUCTION

Alzheimer’s disease (AD) is a progressive and highly debilitating neurodegenerative disorder,
accounting for about two-thirds of 50 million people with dementia worldwide (Lane et al., 2018).
There is still no therapy to treat the underlying cause of the disease or slow down its progression.
The pathogenesis of AD is complex and may involve genetic and environmental factors. A growing
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body of evidence points to the epigenetic contribution of AD,
and both global and gene-specific changes in DNA methylation
have been observed in the affected postmortem brain regions
(Bakulski et al., 2012; De Jager et al., 2014; Cronin et al., 2017).
The search for peripheral blood epigenetic biomarkers of AD is
of particular interest because of the unavailability of brain DNA
samples until postmortem and the inability to collect longitudinal
brain samples to track disease diagnosis (Bakulski et al., 2016).

Recently, two large-scale epigenome-wide association
studies (EWAS) have reported the first replicable and
robust association of brain methylation and AD pathology
in independent cohorts (De Jager et al., 2014; Lunnon et al.,
2014). Given the stable changes in DNA methylation levels in
older asymptomatic individuals with amyloid pathology, the
altered DNA methylation in the brain has been identified as
an early feature of preclinical AD. NCAPH2 is a subunit of the
condensin-2 complex involved in chromosome condensation
during mitosis andmeiosis (Martin et al., 2016). Peripheral blood
DNA methylation levels in the NCAPH2/LMF2 promoter region
were significantly decreased in patients with AD and those
with amnestic mild cognitive impairment (aMCI) (Kobayashi
et al., 2016); therefore, these are considered to be a potentially
useful biomarker for the diagnosis of AD. However, while the
hypomethylation of NCAPH2 has been reported in the Japanese
population, its presence in the Chinese population remains
unclear. Furthermore, whether NCAPH2 methylation changes
across the AD spectrum is still unknown. To date, there have
been relatively few studies devoted to the determination of
NCAPH2 methylation patterns in peripheral blood in the early
stages of AD.

Subjective cognitive decline (SCD) is characterized by
subjective self-perception of worsening cognitive capacity but
without any impairment observed in objective evaluations
(Jessen et al., 2014; Molinuevo et al., 2017). It has been suggested
that SCD precedes MCI and is the preclinical stage of AD
(Rabin et al., 2017). Several studies have shown that SCD
may be associated with risk factors for dementia, such as the
apolipoprotein E (APOE) ε4 allele and the neuropathology of AD
(Perrotin et al., 2015; Risacher et al., 2017; Vogel et al., 2017).
Thus, recognizing the early characterization of DNAmethylation
patterns in SCD may help to better understand the role of
methylation in the early stages of AD.

Recent research has demonstrated a robust decrease in global
DNA methylation in the hippocampus of patients with AD,
and this was significantly correlated with amyloid plaque load
(Chouliaras et al., 2013). Moreover, a large multisite EWAS
revealed DNA methylation in the superior temporal gyrus-
mediated associations between blood DNA methylation and
the hippocampal volume (Jia et al., 2019). These findings
suggest that DNA methylation and the relationship with the
hippocampal volume are involved in the pathophysiology of AD.
However, whether DNA methylation changes in the blood are
correlated with the hippocampal volume in the early stage of AD
remain unknown.

Thus, the objectives of this study were (1) to identify cross-
sectional differences in peripheral blood NCAPH2 methylation
among patients with SCD and objective cognitive impairment

(OCI) relative to normal control (NC) participants and (2) to
identify the correlation between the hippocampal volume, the
cognitive function, and theNCAPH2methylation levels and their
interaction with the APOE ε4 status.

METHODS

Participants
Altogether, 56 NCs, 81 participants with SCD, and 51 participants
with OCI (34 MCI and 17 AD) from the Sino Longitudinal
Study on Cognitive Decline (SILCODE) project were included
in the present research. The SILCODE project is a large,
multicenter-based longitudinal observational study in China
(ClinicalTrials.gov, NCT 03370744) that is based in Xuanwu
Hospital, Capital Medical University, China, and aims to
construct a high-precision multimodal model for the ultra-early
diagnosis of AD. The study was approved by the institutional
review board at Xuanwu Hospital in Capital Medical University,
and written informed consent was obtained from all participants.

All 188 individuals fulfilled the inclusion criteria of the
SILCODE project (Li et al., 2019). Briefly, SCD is defined using
the following criteria (Jessen et al., 2014): (1) self-experienced
persistent decline in memory rather than other domains of
cognition within the last 5 years; (2) concerns related to SCD
and a feeling of worsened performance when compared to others
of the same age group; and (3) performance on standardized
cognitive tests within age-, gender-, and education-adjusted
norms and failure to meet the criteria for MCI or dementia.
MCI was diagnosed using the Jak–Bondi approach (Bondi et al.,
2014). Impairment in a cognitive domain was defined as having
at least two tests >1.0 SD below the age-adjusted normative
means or having impaired scores in each of the three sampled
cognitive domains (memory, language, and speed/executive
functioning). The diagnosis of AD was determined by the
published diagnostic criteria (McKhann et al., 1984; Dubois et al.,
2007). Individuals with no cognitive complaints and normal
performance on the standardized neuropsychological tests were
included as controls. The exclusion criteria contained brain
trauma or disorder, including clinical stroke, severe psychiatric,
and/or severe somatic disease, that may account for symptoms,
intellectual disability or other developmental disorders, and
other systemic diseases. All participants were assessed using
a standardized clinical evaluation protocol comprised of the
Mini-Mental State Examination (MMSE), Montreal Cognitive
Assessment Basic Version (MoCA-B), Hamilton Depression
Scale (HAMD), and Hamilton Anxiety Scale (HAMA).

Peripheral NCAPH2 Methylation

Measurements
Venous blood samples were collected early in the morning
from 6:00 a.m. to 8:00 a.m. Genomic DNA was prepared
from leukocytes using the QIAamp DNA Mini Kit (Qiagen,
Hilden, Germany), with sodium bisulfite treatment performed
as described previously (Ghodsi et al., 2020). Briefly, for the
bisulfite reaction (in which cytosine is converted to uracil and
5-methylcytosine remains non-reactive), genomic DNA was
initially denatured with 0.3M NaOH. Sodium metabisulfite
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solution (pH 5.0) and hydroquinone were then added at final
concentrations of 3.0M and 0.5mM, respectively. Reaction
mixtures were incubated under mineral oil in the dark at
50◦C for 16 h. Denatured DNA was purified with Wizard
DNA Purification Resin (Promega, Fitchburg, WI, USA),
and the reaction terminated by treatment with 0.3M NaOH
at 37◦C for 15min, followed by ethanol precipitation. For
bisulfite pyrosequencing analysis, 50 ng of bisulfite-treated
genomic DNA was amplified in a DNA Engine Opticon 2
system (MJ Research, Waltham, MA, USA) using a Taq DNA
Polymerase kit, hot-start (Takara Bio, Otsu Shiga, Japan). The
sequences of the PCR amplification primers, as well as the
sequencing primer for NCAPH2, were as follows: forward:
5′-GTATTTTTTTGGGAGGGAATAGTAAAATG-3′, reverse:
5′-CCACCTCCCAATTCTTAATAAAA-3′, sequencing: 5′-
AGTAAAATGGAGTTAGAATTAGTG-3′, with an amplicon
of 187 bp. The reverse primer contained biotin at the 5′

position. The amplification conditions for NCAPH2 were
as follows: 1 cycle of 94◦C for 2min; 50 cycles of 94◦C for
20 s, 61◦C for 20 s, and 72◦C for 20 s; and 1 cycle of 72◦C for
5min. For the pyrosequencing reaction, single-stranded DNA
templates were immobilized on Streptavidin Sepharose High
Performance beads (GE Healthcare, Uppsala, Sweden) using
the PSQ Vacuum Prep Tool and Vacuum Prep Worktable
(Qiagen, Hilden, Germany) according to the manufacturer’s
instructions. Reactions were incubated at 80◦C for 2min and
allowed to anneal with the sequencing primers (0.4mM) at room
temperature. Pyrosequencing was performed using PyroMark
Gold Reagents (Qiagen) on a PyroMark Vaccum Workstation
(Qiagen), according to the manufacturer’s instructions.

APOE Genotyping
Apolipoprotein E was amplified with the following primers:
5′-ACGCGGGCACGGCTGTCCAAGG-3′ (forward) and
5′-GGCGCTCGCGGATGGCGCTGA-3′ (reverse), using the
following conditions: 1 cycle of 98◦C for 10 s, 35 cycles of 72◦C
for 5 s, and 1 cycle of 72◦C for 5min. PCR was performed in
a final volume of 30 µl, containing 10 pmol of forward and
reverse primers and 50 ng of genomic DNA template, using
PrimeSTAR HS DNA Polymerase with GC Buffer (Takara Bio),
according to the manufacturer’s instructions. Then, APOE
was genotyped using the standard Sanger sequencing method
(Sangon, Shanghai, China).

MRI Acquisition
All individuals were scanned on an integrated simultaneous
3.0 T TOF PET/MR (Signa PET/MR, GE Healthcare, WI, USA)
at Xuanwu Hospital, Capital Medical University, China. The
3D BRAVO T1-weighted sequence was obtained with the
following parameters: repetition time (TR)/echo time (TE)= 6.9
ms/2.98ms, flip angle (FA) = 12◦, inversion time (TI) = 450ms,
field of view= 256× 256mm2, matrix= 256× 256, slices= 192,
slice thickness = 1mm, no interslice gap, and voxel size = 1 × 1
× 1 mm3.

MRI Processing
Briefly, the entire workflow was as follows: (1) spatially
adaptive non-local means denoising, (2) rough inhomogeneity

correction, (3) an aligned image into the Montreal Neurological
Institute-Hospital (MNI) space, (4) inhomogeneity correction,
(5) intensity normalization, (6) non-local intracranial cavity
extraction, and (7) subcortical nucleus segmentation. Steps from
1 to 7 were implemented in the volBrain pipeline (http://volbrain.
upv.es). The left and right hippocampal volumes were presented
as relative values (%), which weremeasured in relation to the total
intracranial volume (Manjon and Coupe, 2016).

Statistical Analysis
Demographic data and neuropsychological tests were compared
by the ANOVA and the chi-squared test for continuous and
categorical variables. To compare the NCAPH2 methylation
levels and the hippocampal volumes, a one-way analysis
of covariance (ANCOVA) was conducted with age, gender,
and years of education as covariates. Bonferroni’s multiple
comparison tests were conducted for post-hoc comparison. We
also performed group comparisons among the NC, SCD, MCI,
and AD groups. A two-way ANCOVA was used to assess the
interactions between the diagnostic status and the APOE ε4
allele on NCAPH2 methylation controlling for age, gender, and
years of education. Then, several partial correlation analyses were
conducted with age, gender, and years of education as covariates.
First, we assessed the correlations between the hippocampal
volumes (left and right side) and the NCAPH2 methylation
levels in the SCD group and further in the SCD APOE ε4
non-carriers and carriers separately to examine whether the
correlation differed according to the APOE ε4 status. We also
assessed the correlation between the NCAPH2methylation levels
and the hippocampal volumes in NC and OCI groups. Second,
we evaluated the correlation between the NCAPH2 methylation
levels and the cognitive scores (MMSE and MoCA-B) in all
individuals and subgroups (APOE ε4 non-carriers and carriers
groups). All p-values were calculated using two-sided tests, and p
< 0.05 was considered statistically significant. All analyses were
performed using SPSS Statistics (version 24.0, IBM).

RESULTS

Demographic Characteristics and

Cognitive Function
Table 1 summarizes the demographic and neuropsychological
scores for each group. All groups were statistically comparable
in terms of sex distribution. The one-way ANOVA showed group
differences in age (F = 15.79, p < 0.001) and years of education
(F = 8.88, p <0.001). The OCI group was significantly older
and less educated than the control and SCD groups. There were
significant differences in the APOE ε4 prevalence among groups
(χ2 = 9.88, p = 0.007); patients with SCD and OCI had higher
proportions of APOE ε4 carriers (32.1 and 41.2%, respectively)
when compared to the controls (14.3%). Patients with OCI
showed lower MMSE and MoCA-B scores than controls and
individuals with SCD (MMSE: F = 53.85, p < 0.001; MoCA-
B: F = 92.62, p < 0.001). The SCD and OCI groups scored
significantly higher on the HAMD than the controls (F = 6.62,
p = 0.002). Similarly, the HAMA score was higher among the
patients with OCI than among the controls (F = 4.06, p =

0.019), but there was no difference between the SCD and control
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TABLE 1 | Demographics and clinical characteristics of the subjects.

NC (n = 56) SCD (n = 81) OCI (n = 51)

Age (y) 66.7 ± 5.0 66.4 ± 4.5 71.6 ± 7.3**##

Male, n (%) 23 (41.1%) 26 (32.1%) 24 (47.1%)

Education (y) 12.4 ± 3.4 12.0 ± 2.9 9.9 ± 3.9**##

APOE ε4, n (%) 8 (14.3%) 26 (32.1%)** 21 (41.2%)**

MMSE 28.7 ± 1.3 28.7 ± 1.2 22.5 ± 6.5**##

MOCA-B 26.1 ± 2.0 25.6 ± 2.3 17.6 ± 5.9**##

HAMD 3.0 ± 3.1 5.0 ± 3.7* 5.9 ± 5.5**

HAMA 3.3 ± 3.3 4.4 ± 3.6 5.5 ± 4.4*

Results are expressed as mean± standard deviation. n= number of subjects; NC, normal

control; SCD, subjective cognitive decline; OCI, objective cognitive impairment; MMSE,

Mini-Mental Status Examination; MoCA-B,Montreal Cognitive Assessment-Basic Version;

HAMD, Hamilton Depression Rating Scale; HAMA, Hamilton Anxiety Rating Scale. *p <

0.05, **p < 0.01, compared with NC; ##p < 0.01, compared with SCD.

groups. No significant differences were found in the HAMD or
HAMA scores between patients with SCD and patients with OCI
(all p > 0.1).

Group Differences in the NCAPH2

Methylation Levels
One-way ANCOVA revealed that the NCAPH2 methylation
levels were significantly different among the three groups (F
= 6.43, p = 0.002) after controlling for age, gender, and
years of education. Figure 1 shows that patients with SCD and
patients with OCI had significantly lower NCAPH2 methylation
levels than the controls (both p < 0.001; Bonferroni corrected),
but there was no difference between patients with SCD and
patients with OCI (p > 0.1; Bonferroni corrected). Further
comparison among the four groups showed that the NCAPH2
methylation levels were lower in patients with MCI and patients
with AD than the controls, but there was no difference among
patients with SCD, patients with MCI, and patients with AD
(Supplementary Figure 1).

The NCAPH2 methylation levels were significantly low
in the APOE ε4 carriers than in the APOE ε4 non-
carriers (Supplementary Table 1 and Supplementary Figure 2).
Furthermore, no significant additive interactions were observed
in NCAPH2 methylation between the diagnostic groups and the
APOE ε4 allele (F = 0.41, p= 0.665).

Group Differences in the Hippocampal

Volume
Figure 2 shows the significant differences in the volume
proportion of the bilateral hippocampus among the three groups
(right hippocampus: F = 27.95, p < 0.001; left hippocampus:
F = 25.61, p < 0.001). Compared with the controls and
SCD groups, patients with OCI exhibited significant volume
loss in the right and left hippocampus (all p < 0.001;
Bonferroni corrected). However, there were no significant
differences between the SCD and control groups (p > 0.05;
Bonferroni corrected).

FIGURE 1 | Group differences in the NCAPH2 methylation levels among the

three groups. The analysis was adjusted with age, gender, and years of

education. Asterisks indicate post-hoc comparisons with respect to controls

(Bonferroni corrected). The error bars indicated SDs. *p < 0.05, **p < 0.01;

ns, not significant. NC, normal control; SCD, subjective cognitive decline; OCI,

objective cognitive impairment.

Relationship Between the NCAPH2

Methylation Levels and the Hippocampal

Volume
In the SCD group, there was a significant positive correlation
between the NCAPH2 methylation levels and the volume
proportion of the left hippocampus (r = 0.245, p = 0.027);
however, the positive correlation in the right hippocampus
was not significant (r = 0197, p = 0.078). Moreover, the
positive correlation between the NCAPH2 methylation levels
and the volume proportion of the hippocampus was significant
in the APOE ε4 non-carriers in the SCD group (left/right: r
= 0.347/0.279, p = 0.009/0.039). Nevertheless, there were no
significant associations in the APOE ε4 carriers in the SCD group
(left/right: r=−0.017/−0.026, p= 0.935/0.900) (Figure 3).

The correlations between theNCAPH2methylation levels and
the volume proportion of the hippocampus in NC and OCI
groups were not significant (all p> 0.1, Supplementary Table 2).

Relationship Between the NCAPH2

Methylation Levels and the Cognitive

Scores
There was no correlation between the NCAPH2 methylation
levels and the cognitive scores in all individuals (MMSE:
r = 0.077, p = 0.304; MoCA-B: r = 0.126, p = 0.095,
Supplementary Figures 3, 4). Further, subgroup analysis showed
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FIGURE 2 | Group differences in the volume proportion of the right and left

hippocampus. Results were corrected for multiple comparisons (Bonferroni

corrected). **p < 0.01; ns, not significant. NC, normal control; SCD, subjective

cognitive decline; OCI, objective cognitive impairment; LH, left hippocampus;

RH, right hippocampus.

no significant correlation in both APOE ε4 carriers and non-
carriers groups (all p > 0.1, Supplementary Table 3).

DISCUSSION

In the present study, we found that NCAPH2 methylation was
decreased in the peripheral blood of patients with SCD and
patients with OCI compared to the controls. Notably, NCAPH2
hypomethylation was significantly positively associated with the
hippocampal volume in patients with SCD, especially in the
APOE ε4 non-carriers. No association was found between the
NCAPH2methylation levels and the cognitive function.

It has been reported that DNA methylation modifications
of several genes are fundamental to the development of
AD, which has been considered relevant to AD progression.
However, empirical evidence is hard to come by, and the
results thus far have been conflicting and controversial.
One study has confirmed that higher peripheral methylation
levels of brain-derived neurotrophic factor, a member of the
neurotrophin family, are associated with a significant AD
conversion propensity for patients with MCI (Xie et al., 2017).
Other β-amyloid precursor protein (APP)-related genes, such
as BACE1, were hypomethylated in the peripheral blood of
patients with AD (Marques et al., 2012). Nevertheless, one
large case-control study found that there was no difference
in the blood DNA methylation levels of PSEN1 or BACE1,
both codes for proteins directly involved in the APP cleavage,
between patients with AD and the controls, leading to the
formation of the β-amyloid (Aβ) (Tannorella et al., 2015). The
different methods of methylation analysis and small samples

of the varying population may account for divergent findings
(Fransquet et al., 2018). The decreased NCAPH2 methylation
in patients with OCI found in our study was consistent with
the hypomethylation of the NCAPH2/LMF2 promoter region
reported in a previous Japanese study (Kobayashi et al., 2016).
Moreover, the altered methylation pattern was also been found
in individuals with SCD, and no difference among patients with
SCD, patients with MCI, and patients with AD was observed.
Our results indicated that the NCAPH2 methylation levels
decreased during the SCD stage of the disease and reached
a plateau at the cognitive impairment stage, suggesting that
altered blood NCAPH2 methylation might be an early feature of
AD pathology.

The hippocampus, a brain area critical for learning and
memory, is vulnerable to damage at the early stages of AD.
In addition, altered neurogenesis in the hippocampus has
been suggested as an early critical event in AD due to its
relevance for neural plasticity and network maintenance (Mu
and Gage, 2011). DNA methylation during neurogenesis has
been shown to be responsive to many extrinsic signals, both
under normal conditions and during the development of the
disease. Our study found that there was a relationship between
the NCAPH2methylation levels and the hippocampal volume in
SCD individuals, but not in patients with MCI and patients with
AD. This is not consistent with observations from the previous
research, showing a correlation between NCAPH2/LMF2
methylation and hippocampal atrophy in AD (Shinagawa et al.,
2016). A possible explanation for this difference in outcome
could be that NCAPH2 methylation has reached a plateau phase
in the early stage of AD, leading to little meaningful variance in
methylation levels between patients with cognitive impairment.
Thus, a dissociation between NCAPH2 hypomethylation and the
markers of neurodegeneration, including hippocampal atrophy
and cognitive impairment, was observed in the late stage of AD.
Besides, we observed a significant positive association between
theNCAPH2methylation levels and the left hippocampal volume
rather than the right hippocampus in the SCD group. A previous
study of community-dwelling Chinese people showed asymmetry
patterns in the hippocampus in SCD, and the correlation between
the volume of the right hippocampus and the cognitive function
was shown (Yue et al., 2018). Another study reported that
SCD with a smaller left hippocampal volume was associated
with greater depressive symptomatology (Buckley et al., 2016).
Further work is needed to provide a better understanding of the
different correlations with hippocampal asymmetry, for instance,
in the context of brain function and compensation. Previous
studies have shown that epigenetic regulation may be involved
in defective T-cell function in NCAPH2 mutant mice (Gosling
et al., 2008). Recent work has identified numerous extravascular
CD8+ T-cells in the perivascular space of blood vessels with
cerebral amyloid angiopathy in the hippocampi of patients with
AD. Furthermore, there was a negative correlation in aMCI
and AD between T-cells and cognition (Gate et al., 2020). We
hypothesize that dysregulation ofNCAPH2methylationmay lead
to an abnormal immune response and finally to hippocampal
atrophy. Therefore, a large sample and longitudinal analyses are
required to investigate the role of NCAPH2methylation, and the
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FIGURE 3 | The relationship between the NCAPH2 methylation levels and the volume proportion of hippocampus in participants with SCD. (A) The NCAPH2

methylation levels were significantly associated with the volume proportion of the LH in participants with SCD; (B) The positive correlation was not significant in the

RH; Furthermore, the NCAPH2 methylation levels were significantly associated with the volume proportion of both the LH (C) and the RH (D) in the APOE ε4

non-carriers. There were no significant associations in the APOE ε4 carriers in the LH (E) or the RH (F). SCD, subjective cognitive decline; LH, left hippocampus; RH,

right hippocampus.

correlation with the hippocampus contributes to the pathologic
process of AD.

Among the several genes that are considered as risk factors
for late-onset AD, the APOE ε4 confers the strongest risk.
APOE ε4 isoforms have been shown to affect the disease
pathogenesis by regulating Aβ aggregation (Ramanan et al.,
2013, 2015) and impairing Aβ clearance in the brain (Castellano
et al., 2011). However, it is neither necessary nor sufficient
for incident AD; thus, it is of great interest to identify

AD risk factors for the APOE ε4-non-carriers population. In
this study, we found a positive correlation between NCAPH2
hypomethylation and smaller hippocampal volume in the APOE
ε4 non-carriers of the SCD group but not in the APOE ε4
carriers. Previous studies found that the APOE ε4 carriers
have greater hippocampal atrophy than the non-carriers in
patients with AD, cognitively normal elderly, and healthy
young adults (O’Dwyer et al., 2012; Chang et al., 2019; Dong
et al., 2019). This finding further strengthens the idea that AD
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pathology has multiple factors and suggests that hippocampal
atrophy is partly due to DNA methylation in the early stage
of the disease. It seems that NCAPH2 methylation is a useful
peripheral biomarker to be used in combination with the analysis
of genetic risk alleles to identify the disease pathogenesis,
especially in the SCD APOE ε4-non-carriers risk population
(Di Francesco et al., 2015).

This study has several limitations. First, the sample size in our
study was relatively small. The lack of amyloid biomarkers for the
underlying pathology of patients with SCD, patients with MCI,
and patients with AD is another limitation of the current study.
Further research, especially a follow-up large sample study with
biomarkers of AD-type pathology in the preclinical disease stage,
is needed to confirm this issue.

Taken together, our results indicated the NCAPH2
methylation patterns in peripheral blood of individuals with
SCD. Moreover, our data revealed the relationship between the
NCAPH2 methylation levels and the hippocampal volume in the
APOE ε4-non-carriers of SCD. This information would suggest
that changes in blood methylation may be an early indicator of
individuals at risk for dementia as well as potential targets for
intervention in the early stage of the disease.
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Accurate detection of the regions of Alzheimer’s disease (AD) lesions is critical for early

intervention to effectively slow down the progression of the disease. Although gray

matter volumetric abnormalities are commonly detected in patients with mild cognition

impairment (MCI) and patients with AD, the gray matter surface-based deterioration

pattern associated with the progression of the disease from MCI to AD stages is largely

unknown. To identify group differences in gray matter surface morphometry, including

cortical thickness, the gyrification index (GI), and the sulcus depth, 80 subjects from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database were split into healthy

controls (HCs; N = 20), early MCIs (EMCI; N = 20), late MCIs (LMCI; N = 20), and

ADs (N = 20). Regions-of-interest (ROI)-based surface morphometry was subsequently

studied and compared across the four stage groups to characterize the gray matter

deterioration during AD progression. Co-alteration patterns (Spearman’s correlation

coefficient) across the whole brain were also examined. Results showed that patients

with MCI and AD exhibited a significant reduction in cortical thickness (p < 0.001) mainly

in the cingulate region (four subregions) and in the temporal (thirteen subregions), parietal

(five subregions), and frontal (six subregions) lobes compared to HCs. The sulcus depth

of the eight temporal, four frontal, four occipital, and eight parietal subregions were also

significantly affected (p < 0.001) by the progression of AD. The GI was shown to be

insensitive to AD progression (only three subregions were detected with a significant

difference, p < 0.001). Moreover, Spearman’s correlation analysis confirmed that the

co-alteration pattern of the cortical thickness and sulcus depth indices is predominant

during AD progression. The findings highlight the relevance between gray matter surface

morphometry and the stages of AD, laying the foundation for in vivo tracking of AD

progression. The co-alteration pattern of surface-based morphometry would improve

the researchers’ knowledge of the underlying pathologic mechanisms in AD.

Keywords: gray matter, surface morphometry, Alzheimer’s disease, cognition impairment, magnetic resonance

imaging
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder and
the most common cause of dementia, which presumably starts
with the aggregation of amyloid beta (Dicks et al., 2019). Gray
matter volume reductions, a prominent AD feature because of
neuronal loss, are considered as a close biological substrate of
decline in cognitive functions. The decreases in gray matter
volume can be measured by MRI. Studies have indicated gray
matter abnormalities in patients with AD (Karas et al., 2004).
Compared with healthy controls (HCs), patients with AD showed
significantly lower global gray matter volume, lower whole brain
volume, and greater ventricles (Guo et al., 2010). As the disease
advances, gray matter abnormalities start to spread from the
bilateral hippocampus, the amygdala, the entorhinal cortex, the
posterior cingulate gyrus, and the medial thalamus to the parietal
and frontal lobes (Moller et al., 2013). The symptomatic pre-
dementia stage of AD, most commonly referred to as mild
cognitive impairment (MCI), is critical to the development of
predictive methods for early detection of AD and for further
intervention programs (Li et al., 2018; Li K. et al., 2019; Ottoy
et al., 2019;Wee et al., 2019). Differentmachine learningmethods
have been proposed to discriminate MCIs from HCs and ADs,
based on the features extracted from structural MRI (Dimitriadis
et al., 2017; Gomez-Sancho et al., 2018; Hojjati et al., 2018;
Liu et al., 2020). Furthermore, recent evidence (Dicks et al.,
2018; Tijms et al., 2018; Li R. et al., 2019; Wang et al., 2020)
suggest that neuronal alterations in brain disorders tend to
form patterns that resemble those of cerebral connectivity (co-
alteration patterns). Therefore, to monitor disease progression,
powerful non-invasive biomarkers, such as graymatter diffusivity
(Jacobs et al., 2013) and gray matter volume (Lee et al., 2016;
Qian et al., 2019), as well as their co-alteration patterns across
the whole brain, are necessary to identify AD at early MCI
stage and to advance the diagnosis, treatment, and prevention of
these disorders.

Voxel-based morphometry (VBM) has been frequently used
to examine gray matter differences across the whole brain.
Using VBM, gray and white matter volume reductions were
simultaneously detected between HCs and ADs (Baxter et al.,
2006; Guo et al., 2010; Ha et al., 2012; Beejesh et al., 2019). An
AD progression model was proposed to provide anatomically
specific predictions of disease spread over time with VBM
(Phillips et al., 2018). Dicks et al. (2019) modeled the gray
matter atrophy in AD as a function of time and aging using
Mini-Mental State Examination (MMSE) and found that the
association of atrophy with MMSE was weaker than those with
time or age. Based on VBM, local gray matter volumes were
compared between patients with late- and early-onset AD and
older and younger control subjects (Moller et al., 2013, Wu et al.,
2020), and interactions of age and diagnosis on the volumes of
the hippocampus and the precuneus were assessed, suggesting
that the patterns of atrophy might vary in the spectrum of AD
(Moller et al., 2013). Besides gray matter volume, revealing cross
effects between AD-related incipient lesions helps to understand
the progression to AD from MCI. Machine learning models
were trained on VBM and connectome estimates to detect

accurately AD-related neurodegeneration across the whole brain
in a data-drivenmanner (Wang et al., 2019). Association between
regional gray matter volume and two subtypes of psychotic
symptoms in patients with mild AD was investigated, showing
a distinct neural correlation between the paranoid and the non-
psychosis groups (Lee et al., 2016). With the VBM technique,
Cauda et al. (2018) found that structural alterations in the gray
matter tended to follow the network-like patterns, indicating
that structural co-alterations were influenced by connectivity
constraints rather than being randomly distributed. Manuello
et al. (2017) have investigated gray matter co-alterations of AD
and found a series of co-altered areas that include the left
hippocampus, left and right amygdalae, right parahippocampal
gyrus, and right temporal inferior gyrus. Based on VBM, these
studies consistently showed a widespread gray matter co-atrophy
pattern due to AD. The co-alteration pattern may accelerate the
development of neuronal abnormalities.

Unlike VBM, the surface-based morphometry methods can
measure the cortical thickness and folding patterns, as well as
the shape or curvature measures derived from brain surface
meshes (Gutman et al., 2009; Lui et al., 2010). Previous studies
demonstrated an increased accuracy of brain registration using
brain surface meshes for spatial registration, compared to
volume-based registration (Desai et al., 2005). Brain surface
meshes permit new forms of analyses, such as the GI and the
sulcus index, which measure surface complexity in 3D (Yotter
et al., 2011) or cortical thickness (Righart et al., 2017). In
addition, inflation or spherical mapping of the cortical surface
mesh raises the buried sulci to the surface so that the mapped
functional activity in these regions can be made visible. However,
few studies have attempted to monitor gray matter alterations
associated with MCIs and ADs using regions-of-interest (ROI)-
based surface morphometry based on brain surface meshing.
In this study, we investigated ROI-based surface morphometry
of gray matter in different stages of AD, including HC, EMCI,
LMCI, and AD, aiming to identify characteristic gray matter
alteration patterns in terms of cortical thickness, GI, and the
sulcus depth during AD progression.

METHODS AND MATERIALS

Subjects
Data used in this study were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (http://adni.
loni.usc.edu). The ADNI was initially launched in 2004. The
primary goal of ADNI is to identify MRI, PET, biomarkers, and
genetic characteristics that would support the early detection and
tracking of AD and improve the clinical trial design (Risacher
et al., 2009; Jack et al., 2010a; Petersen et al., 2010). Scans were
acquired with a 3.0-T head-only Siemens Medical Solutions MRI
scanner (Erlangen, Germany). T1-weighted imaging parameters
were: repetition time = 2,250ms, echo time = 2.6ms, flip angle
= 9, field of view = 256 × 256mm, acquisition matrix = 256 ×
256, voxel size = 1mm isotropic, and number of slices = 192.
The demographic data of the subjects are summarized in Table 1.
The flowchart of the ROI-based surface morphometry analysis is
shown in Figure 1.
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TABLE 1 | Demographics of healthy controls (HCs), mild cognition impairments (MCIs), and Alzheimer’s disease (ADs).

HC Early MCIs (EMCI) Late MCIs (LMCI) AD

Number of subjects 20 20 20 20

Gender 12F:8M 8F:12M 9F:11M 11F:9M

Mean age (Std) 73.75 (4.78) 75.95 (7.12) 74.35 (5.72) 74.85 (8.27)

CDR 0 0.5 0.5 0.5–1

MMSE 24–30 24–30 24–30 20–26

FIGURE 1 | Flowchart of the regions-of-interest (ROI)-based surface morphometry analysis. After brain extraction and segmentation (white matter, gray matter, and

cerebrospinal fluid), spatial normalization was performed to correct the orientation and the size of the brain. Then, the surface of gray matter was resampled and

smoothed. The ROI-based surface parameters were extracted according to the DKT40 parcellation atlas. Cortical thickness, gyrification index (GI), and sulcus depth

were used to characterize the deterioration patterns of gray matter during Alzheimer’s disease (AD) progression.

Regions-of-Interest-Based Surface

Morphometry
T1-weighted MR image preprocessing was performed using
automated procedures included in the Computational
Anatomical Toolbox (CAT12), an extension to the Statistical
Parametric Mapping (SPM12) package (http://www.neuro.uni-
jena.de/cat/). First, T1-weighted images were preprocessed with
intensity normalization and skull stripping, followed by the
normalization of the head position along the commissural axis
and the labeling of the cortical and subcortical regions. Second,
the images were segmented into gray matter, white matter,
and cerebrospinal fluid with the parameter of Markov random
fields set to 2, and co-registered to a probabilistic brain atlas
with non-linear morphing. According to the probability that a
given location is of a particular tissue class (gray matter, white
matter, and cerebrospinal fluid), the intensity of the image at
the location, and the local spatial configuration of the location
related to the labels, each MRI voxel was assigned to one specific
tissue class (Dahnke et al., 2013). In this process, all T1-weighted
images were spatially normalized using combinations of affine
linear transformation and non-linear registration to the standard

Montreal Neurological Institute (MNI) template and segmented
into gray matter, white matter, and cerebrospinal fluid. Third,
a DKT40 labeling atlas was warped from standard space to
subject space using the subject-specific inversed normalization
parameters. All results were estimated in the native space
before spatial normalization. Last, an individual brain atlas that
consisted of 68 different gray matter areas was created for each
participant according to the DKT40 parcellation atlas, as shown
in Figure 2. The names and the corresponding indices of the
parcellated regions are reported in Table 2. The pipeline used
topology correction and spherical mapping to handle the partial
volume effect, sulcal blurring, and asymmetry (Righart et al.,
2017).

In this study, three ROI-based surface morphometry
parameters were used to characterize the deterioration pattern
of gray matter, including cortical thickness, the GI, and the
sulcus depth:

Cortical Thickness
It is defined as the distance between the inner and the outer
surface estimated from brain surface meshes, was related to
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FIGURE 2 | Visualization of the DKT40 cortical parcellation atlas, comprising 68 local regions. (A) Top view, (B) Bottom view, (C) Right view, and (D) Left view.

TABLE 2 | Names and indices of the DKT40 parcellated cortical regions.

Region Region Region Region

1 bankssts_left 2 bankssts_right 3 caudalanteriorcingulate_left 4 caudalanteriorcingulate_right

5 caudalmiddlefrontal_left 6 caudalmiddlefrontal_right 7 cuneus_left 8 cuneus_right

9 entorhinal_left 10 entorhinal_right 11 fusiform_left 12 fusiform_right

13 inferiorparietal_left 14 inferiorparietal_right 15 inferiortemporal_left 16 inferiortemporal_right

17 isthmuscingulate_left 18 isthmuscingulate_right 19 lateraloccipital_left 20 lateraloccipital_right

21 lateralorbitofrontal_left 22 lateralorbitofrontal_right 23 lingual_left 24 lingual_right

25 medialorbitofrontal_left 26 medialorbitofrontal_right 27 middletemporal_left 28 middletemporal_right

29 parahippocampal_left 30 parahippocampal_right 31 paracentral_left 32 paracentral_right

33 parsopercularis_left 34 parsopercularis_right 35 parsorbitalis_left 36 parsorbitalis_right

37 parstriangularis_left 38 parstriangularis_right 39 pericalcarine_left 40 pericalcarine_right

41 postcentral_left 42 postcentral_right 43 posteriorcingulate_left 44 posteriorcingulate_right

45 precentral_left 46 precentral_right 47 precuneus_left 48 precuneus_right

49 rostralanteriorcingulate_left 50 rostralanteriorcingulate_right 51 rostralmiddlefrontal_left 52 rostralmiddlefrontal_right

53 superiorfrontal_left 54 superiorfrontal_right 55 superiorparietal_left 56 superiorparietal_right

57 superiortemporal_left 58 superiortemporal_right 59 supramarginal_left 60 supramarginal_right

61 frontalpole_left 62 frontalpole_right 63 temporalpole_left 64 temporalpole_right

65 transversetemporal_left 66 transversetemporal_right 67 insula_left 68 insula_right

cortical development (Dahnke et al., 2013), and identified as
an important biomarker for normal development and aging
(Sowell et al., 2004, 2007; Fjell et al., 2006) and pathological
changes such as AD (Kuperberg et al., 2003; Sailer et al.,
2003; Thompson et al., 2004; Rosas et al., 2008). Here, brain
tissue segmentation was used to estimate the white matter
distance and to project the local maxima (which is equal to
the cortical thickness) onto other gray matter voxels using
a neighboring relationship described by the white matter
distance. This projection-based thickness allowed the handling
of partial volume information, sulcal blurring, and sulcal
asymmetries without explicit sulcus reconstruction (Dahnke
et al., 2013).

Gyrification Index
It is defined as the ratio of the inner surface size to the outer
surface size of an outer (usually convex) hull and was computed

by averaging the absolute curvature values from each vertex of
the spherical surface mesh (Luders et al., 2006).

Sulcus Depth
It is extracted based on the Euclidean distance between the
central surface and its convex hull. Transformation with square
root is used to render the data more normally distributed.

These surface parameters were estimated using the CAT
toolbox (designed by Structural Brain Mapping Group,
Departments of Psychiatry and Neurology, Jena University
Hospital, Germany), which uses an internal interpolation to
provide more reliable results even with low-resolution images
and anisotropic spatial resolutions. Although interpolation
cannot add more details to the images, the computations would
benefit from the higher number of voxels, and the strip artifacts
in preprocessed images are greatly reduced. While cortical
thickness was estimated from the surface smoothed to 15mm
of full width at half maximum Gaussian kernel, GI and sulcus
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FIGURE 3 | Whole-brain mapping of surface thickness, gyrification index (GI), and sulcus depth maps estimated using CAT12 toolbox. From left to right, each column

represents a subject in control, early mild cognitive impairment (EMCI), late MCI (LMCI), and AD groups, respectively.

depth were computed from the surface smoothed with 20mm
full width at half maximum (Dahnke et al., 2013).

Statistical Analysis
For each region (total 68 regions in DKT40 atlas), the gender
covariate was first regressed out. Group-wise differences in
cortical thickness, the GI, and the sulcus depth were assessed
using the Kruskal–Wallis test. To additionally characterize the
structural co-alterations in the evolution of AD, the Spearman’s
correlation analysis was used to investigate whether the alteration
of a brain area was associated with the alteration of other
brain areas. Statistical analyses were performed in MATLAB.
For all analyses, significance was set at the value of p < 0.001
(uncorrected). Effect sizes for the Kruskal–Wallis tests can be
defined as the chi-squared statistic divided by (N − 1).

η2 =
χ2

N − 1
(1)

where χ2 is chi-squared statistic and N is sample size.

RESULTS

Figure 3 demonstrated whole-brain mapping of cortical
thickness, the GI, and the sulcus depth, where, from left to right,

each column represents a subject in HC, EMCI, LMCI, and AD
groups. Overall, across the four groups, the distributions of these
parameters exhibited similarities. The greatest local cortical
thickness appeared to be located in the left and right parietal
lobes. The highest local gyrification was located in the frontal
lobe, as well as in the occipital lobe, while the lowest GI in the left
and right hemispheres appears surrounding the superior parietal
gyrus and expanding into the inferior temporal gyrus. The least
sulcus depth was detected in the elongated regions along the
longitudinal fissure between the left and right hemispheres. As
demonstrated in Figure 3, there were some differences in these
surface complexity parameters across these groups, especially
in cortical thickness (first row in Figure 3). Subsequently, the
Kruskal–Wallis and Spearman’s correlation tests were used
to assess regional differences in these surface morphometry
parameters across the groups.

Figures 4–6 show the nodal distribution (mean ± SD) of
cortical thickness, GI, and sulcus depth for each group. After
the ROI-based surface complexity was estimated according to
the DKT40 atlas, the Kruskal–Wallis test was repeated for 68
regions and the regions that could be significantly identified
across four groups were provided in Table 3. As reported in this
table, statistically significant differences (p < 0.001, uncorrected)
in the regions, namely temporal lobe: 1, 9, 10, 11, 15, 16, 27, 28,
57, 58, 63, 64, and 67; frontal lobe: 22, 26, 33, 34, 51, and 52;
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FIGURE 4 | Comparison of cortical thickness across HC, EMCI, LMCI, and AD groups. (A) The nodal distribution (mean ± SD) of cortical thickness for each group.

(B) The Kruskal–Wallis test was performed, and ROIs that exhibit significant difference across four groups were listed. The value of p of the Kruskal–Wallis test is

reported in Table 3. Region indexes refer to Table 2. Red crosses denote outliers.
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FIGURE 5 | Comparison of the GI across HC, EMCI, LMCI, and AD groups. (A) The nodal distribution (mean ± SD) of the GI for each group. (B) The Kruskal–Wallis

test was performed, and ROIs that exhibit significant difference across four groups were listed. The value of p of the Kruskal–Wallis test is reported in Table 3. Region

indexes refer to Table 2. Red crosses denote outliers.

parietal lobe: 13, 14, 48, 59, and 60; and cingulate: 17, 18, 43, 44,
were found in cortical thickness. A significant difference in the GI
(p< 0.001, uncorrected) was found only in three regions, namely
22, 23, and 67. Significant sulcus depth reductions (p < 0.001,
uncorrected) over AD progression were revealed, which mainly
occurred in the local regions, namely temporal lobe: 2, 12, 16, 58,
65, 66, 67, and 68; frontal lobe: 5, 6, 26, and 33; parietal lobe: 13,
14, 41, 45, 46, 55, 56, and 59; occipital lobe: 8, 19, 20, and 24; and
cingulate: 18 and 30.

To reveal gray matter changes occurring simultaneously
in different gray matter subregions, we characterized co-
alteration patterns of ROI-based surface morphometry during
the evolution of AD with the Spearman’s correlation analysis.
Given the nodes previously designed according to the DKT40
atlas, the co-alteration matrices were constructed for cortical
thickness, GI, and sulcus depth. Figure 7A shows the Spearman’s
correlation matrices between 68 local regions in terms of cortical
thickness, GI, and sulcus depth. The matrices were binarized,
and the value of +1 indicates a perfect positive correlation,
i.e., the related subregions share the same decreased trend in

the surface morphometric metrics. The corresponding binary
networks were also illustrated in Figure 7B. Interestingly, the
three co-alteration networks are different. The node degree is the
number of connections that the node has with the other nodes,
and it was computed to evaluate co-alteration patterns of the
surface morphometric metrics over AD progression (Figure 7C).
In the co-alteration network of cortical thickness, we can find
that the degrees of 26 nodes (see Figure 7C) are 25. In the sulcus
depth network, the degrees of 23 nodes (see Figure 7C) are >20.
However, for the gyrification network, the node degrees are much
smaller (see Figure 7C). In accordance with the Kruskal–Wallis
test, the metrics of cortical thickness and the sulcus depth are
more sensitive and specific in distinguishing MCIs and ADs
from HCs.

DISCUSSION

Alzheimer’s disease is a progressive neurodegenerative disease
characterized by a decline in memory processing and cognitive
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FIGURE 6 | Comparison of the sulcus depth across HC, EMCI, LMCI, and AD groups. (A) The nodal distribution (mean ± SD) of the sulcus depth for each group. (B)

The Kruskal–Wallis test was performed, and ROIs that exhibit significant difference across four groups were listed. The value of p of the Kruskal–Wallis test is reported

in Table 3. Region indexes refer to Table 2. Red crosses denote outliers.
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function. Gray matter atrophy is considered as a close biological
substrate of decline in cognitive functioning (Jack et al., 2010b).
In this study, with ROI-based surface morphometry analyses
based on brain surface meshes, gray matter alterations over
AD progression were investigated. Besides cortical thickness,
surface complexity (GI and sulcus depth) was estimated at a local
scale, revealing a global reduction in the sulcus depth of the
MCI and AD groups. The main findings of this study provide
a novel perspective for understanding the pathophysiological
mechanisms underlying AD and could potentially enhance the
accuracy in the early detection and intervention of AD.

A clear deterioration pattern of gray matter over AD
progression was shown with the Kruskal–Wallis test. Cortical
thickness and sulcus depth were more pronounced during
AD progression (Figures 4, 6), and the GI was found to be
significantly different only in three local regions (22, 23, 67)
(Figure 5). This finding is broadly consistent with the findings
in previous studies. Patients with ADmainly exhibited significant
gray matter volume reductions in the hippocampus, the temporal
lobes, the precuneus, the cingulate gyrus, the insula, and the
inferior frontal cortex (Guo et al., 2010; Moller et al., 2013; Lee
et al., 2016; Dicks et al., 2019). Our findings also confirmed
that the brain regions exhibiting high topological centrality,
considered as brain hubs, are more likely to be affected by
AD processes, as they are located at the center of important
functional networks (Cauda et al., 2018). As reported in Table 3,
areas showing significant statistical decreases include insulae
(67 and 68); cingulate cortices (17, 18, 43, and 44); inferior,
superior, and middle temporal gyri (15, 16, 27, 28, 57, and 58);
middle and inferior frontal (22, 26, 33, 34, 51, and 52); pre-
and postcentral gyri (13, 14, 41, 45, 46, 55, and 56). Disruption
in these hub regions could impede communication between
distinct gray matter regions, resulting in impaired cognitive
functioning and the rapid development of AD abnormalities
from MCI.

Evidence suggests that pathological alteration occurs long
before the onset of clinical AD symptoms due to the toxic effects
of amyloid-beta plaques (Chetelat et al., 2010; Johnson et al.,
2014; Juan et al., 2015). In previous studies, cortical thickness
changes were found to be circumscribed to the left hemisphere
in patients with MCI and patients with AD using either VBM
(Chetelat et al., 2002; Karas et al., 2003; Thompson et al., 2003)
or the surface-based cortical thickness analysis (Lerch et al., 2005;
Vivek et al., 2006). Specifically, longitudinal studies showed that
the left gray matter loss of medial temporoparietal regions was
strongly correlated with worse cognitive performance and that
faster leftward reduction of gray matter loss was uncovered in
patients with AD (Thompson et al., 2003). Our results indicated
that eight regions in the left temporal lobe (1, 9, 11, 15, 27,
57, 63, and 67) and five regions in the right temporal lobe
(10, 16, 28, 58, and 64) displayed a significant reduction in
cortical thickness, supporting the hypothesis that AD-related
cortical thickness reduction predominantly occurs in the left
hemisphere. However, this spatial deterioration distribution was
not observed in the parietal lobe (left: 13 and 59; right: 14,
48, and 60), the frontal lobe (left: 33 and 51; right: 22, 26,
34, and 52), and the cingulate region (left: 17 and 43; right:

TABLE 3 | The Kruskal–Wallis test on cortical thickness, GI, and sulcus depth

across healthy controls (HC), early mild cognitive impairment (EMCI), late MCI

(LMCI), and AD groups.

Region index

Cortical thickness 1, 9, 10, 11, 13, 14, 15, 16, 17, 18, 22, 26, 27, 28, 33, 34,

43, 44, 48, 51, 52, 57, 58, 59, 60, 63, 64, 67

Gyrification 22, 23, 67

Sulcus depth 2, 5, 6, 8, 12, 13, 14, 16, 18, 19, 20, 24, 26, 30, 33, 41, 45,

46, 55, 56, 58, 59, 65, 66, 67, 68

The regions associated with p < 0.001 (uncorrected) were provided.

18 and 44). Additionally, in the statistical analysis of sulcus
depth, we found that five regions in the left parietal lobe
(13, 41, 45, 55, and 59) and three regions (14, 46, and 56)
in the right parietal lobe exhibited significant reduction. As
the spatial deterioration patterns of MCI and AD may be
individually different, a larger sample is needed for testing in the
next step.

The pathological brains of patients with MCI and patients
with AD are also characterized by structural co-alterations in
the gray matter, which tend to follow identifiable network-
like patterns (Cauda et al., 2018). The co-alteration patterns of
surface morphometry parameters indicated the synchronization
of gray matter deterioration between distinct gray matter parcels.
Studies have revealed that gray matter co-alteration patterns of
patients with MCI and patients with AD have a less optimal
topological organization characterized by increased segregation
and decreased integration (Yong et al., 2008; Tijms et al.,
2013; Romerogarcia et al., 2016). By considering the cortical
co-alteration pattern as a graph and by studying its edge
strength (Spearman’s correlation) features at the network level,
the cross effects between AD-related incipient lesions may be
disclosed. In this study, correlated changes in cortical thickness,
GI, and sulcus depth were used to assess the correlation
strength across the whole brain and to investigate temporal
differences in cross-cortical correlations between groups. Our
results provide evidence that alterations of gray matter thickness
and sulcus depth are network-like distributed (Figure 7B). This
co-alteration exhibits a topological structure and includes some
pathological regions that have been thought to be important
functional hubs of the brain. As shown in Figure 7C, the degree
of these local regions (Table 3) estimated from the cortical
thickness correlation matrix was between 18 and 25, except
region 48 (precuneus_right), and the degree extracted from
the sulcus depth correlation coefficient was between 8 and
22, except 8 (cuneus_right), 14 (inferiorparietal_right), and 19
(lateraloccipital_left). The finding confirms that the primary
deterioration in some atrophic regions might lead to a secondary
deterioration in other connected areas. The co-alteration patterns
of brain atrophy caused by AD appeared to considerably
resemble the patterns of brain structural connections (Cauda
et al., 2018). However, from the gray matter co-alteration
analyses, we still cannot identify the causal relationship between
the altered gray matter parcels. It may be a chance to reveal
neuropathological co-alterations patterns in patients with MCI

Frontiers in Aging Neuroscience | www.frontiersin.org 9 February 2021 | Volume 13 | Article 59389848

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Wu et al. Gray Matter Deterioration in AD

FIGURE 7 | Surface morphometric co-alteration patterns among different cortical subregions. For cortical subregion indices, please refer to Table 2. (A) Binarized

Spearman’s correlation matrices estimated from the ROI-based surface morphometric metrics, including cortical thickness, GI, and sulcus depth. The correlation

matrices were thresholded at the value of 1. The value of 1 indicates that the related subregions share the same decreased trend in surface morphometry (B) Binary

networks correspond to the Spearman’s correlation matrices in (A). (C) Degree of each cortical subregion estimated from (A).

and patients with AD, with a combination of functional and
anatomic connectivity estimation.

A novel aspect of this study is the assessment of the
ROI-based surface morphometric alteration across HC, EMCI,
LMCI, and AD groups. The findings are basically in line
with the literature showing the associations of gray matter
volume morphometry with MCIs and ADs. This might suggest

a greater sensitivity of surface estimates in detecting MCI-
and AD-related neurodegeneration compared with gray matter
voxel-based morphometry. However, the results in this study
have several limitations to be interpreted with caution. First,
this study was limited by a relatively small sample size.
Although we were able to detect effects with this sample size,
a larger sample would be optimal for surface morphometry
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analysis. Second, there is an increased risk for false-positive
results because we used uncorrected (p < 0.001) thresholds
for surface morphometry analysis due to our sample size.
Third, brain parcellation may influence the characterization of
surface morphometry during AD progression (Messe, 2019; Wu
et al., 2019), which deserves further study. Last, the education
information of participants and neuropsychological markers are
not available in the ADNI database, so they have not been
taken into account in the statistical analysis in this study.
Despite these limitations, to our knowledge, this is the first
report to show the association of brain regional gray matter
surface complexity with AD progression. Further, multimodal
neuroimaging studies are needed to investigate associations
between regional structural brain atrophy and cognition declines
in patients with AD. More rigorous methods to combine
multimodal MRI brain imaging (structural MRI, diffusion MRI,
and functional MRI) may be required. Combining structural
brain imaging and connectivity for in vivo tracking of AD-
related lesions in the asymptomatic stages may be a promising
method, facilitating an understanding of how the co-alteration
patterns found in this study were constrained by structural or
functional connectivity.

CONCLUSION

This study reported the ROI-based surface morphometry
of gray matter across HC, EMCI, LMCI, and AD groups
and identified characteristic alteration patterns in surface
morphometry during AD progression. Patients with MCI and
patients with AD showed considerable reduction in cortical
thickness and surface complexity indices. These parameters
could potentially serve as biomarkers for the prediction of
AD progression. Future longitudinal studies should determine
whether these markers are able to detect gray matter changes
with therapies aimed at slowing the disease progression. The
possibility of combining structural brain imaging and anatomical
or functional connectivity for in vivo tracking of AD-linked
lesions in the asymptomatic stages is worth further exploration.
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Purpose: To investigate the dynamic functional connectivity (DFC) and static parameters

of graph theory in individuals with subjective cognitive decline (SCD) and the associations

of DFC and topological properties with cognitive performance.

Methods: Thirty-three control subjects and 32 SCD individuals were enrolled in

this study, and neuropsychological evaluations and resting-state functional magnetic

resonance imaging scanning were performed. Thirty-three components were selected

by group independent component analysis to construct 7 functional networks. Based

on the sliding window approach and k-means clustering, distinct DFC states were

identified. We calculated the temporal properties of fractional windows in each state,

the mean dwell time in each state, and the number of transitions between each pair

of DFC states. The global and local static parameters were assessed by graph theory

analysis. The differences in DFC and topological metrics, and the associations of the

altered neuroimaging measures with cognitive performance were assessed.

Results: The whole cohort demonstrated 4 distinct connectivity states. Compared

to the control group, the SCD group showed increased fractional windows and an

increased mean dwell time in state 4, characterized by hypoconnectivity both within

and between networks. The SCD group also showed decreased fractional windows

and a decreased mean dwell time in state 2, dominated by hyperconnectivity within

and between the auditory, visual and somatomotor networks. The number of transitions

between state 1 and state 2, between state 2 and state 3, and between state 2 and

state 4 was significantly reduced in the SCD group compared to the control group. No

significant differences in global or local topological metrics were observed. The altered

DFC properties showed significant correlations with cognitive performance.

Conclusion: Our findings indicated DFC network reconfiguration in the SCD stage,

which may underlie the early cognitive decline in SCD subjects and serve as sensitive

neuroimaging biomarkers for the preclinical detection of individuals with incipient

Alzheimer’s disease.

Keywords: subjective cognitive decline, dynamic functional connectivity, independent component analysis, graph

theory, fractional windows
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INTRODUCTION

Individuals with subjective cognitive decline (SCD), a self-
perceived worsening of cognitive function without objectively
detected deficits, have been considered at higher risk of
developing Alzheimer’s disease (AD) dementia in the future
compared to those without cognitive complaints (Reisberg et al.,
2010; Jessen et al., 2014). AD is a progressive neurodegenerative
disorder that has three stages: the preclinical stage, mild cognitive
impairment (MCI), and dementia (Sperling et al., 2011). SCD
corresponds to the preclinical stage of the AD spectrum and
has the potential to be an effective symptomatic indicator for
future cognitive impairment (Dubois et al., 2016; López-Sanz
et al., 2017). Due to the lack of effective therapeutic methods
targeting late-stage AD patients, it is critical to investigate brain
alterations in the SCD stage to pave the way for early diagnosis
and intervention (Rabin et al., 2017; Jessen et al., 2020).

Resting-state functional magnetic resonance imaging (rs-
fMRI), which reflects intrinsic brain activity, has been proven
to be an effective and non-invasive approach for exploring the
neural mechanisms underlying neurological disorders (Biswal
et al., 1995; Lau et al., 2016). More specifically, functional
connectivity (FC), which is defined as the temporal correlation

of blood oxygenation level-dependent (BOLD) signals between

voxels or brain regions, indicates information processing and
transference across functionally coordinated brain networks (Fox
et al., 2005). Cognitive impairment could be partly attributable to
altered functional coupling in brain-wide networks, and previous
studies have reported aberrant FC and disrupted brain networks
in AD dementia and MCI patients (Delli Pizzi et al., 2019;
Franzmeier et al., 2019). Studies conducted in the SCD cohort
have also revealed decreased average FC in the posterior memory
system and between the retrosplenial cortex and precuneus
(Viviano et al., 2019), reduced FC in cortical midline structures
(Yasuno et al., 2015), increased FC between the retrosplenial
cortex and frontal cortex (Dillen et al., 2016), and increased
occipital and parietal FC associated with the severity of memory
complaints compared to normal controls (NCs) (Kawagoe et al.,
2019). Therefore, altered FC could be the neural basis underlying
early cognitive decline and serve as an objective imaging marker
to identify preclinically at-risk AD patients.

To date, most aforementioned rs-fMRI studies have focused
on static FC (SFC); however, researchers have suggested that the
brain is intrinsically a dynamic system with discrete FC patterns
switching rapidly during acquisition (Allen et al., 2014; Vidaurre
et al., 2017). Thus, the dynamic characteristics of FC provide
a novel perspective on the temporal aspects of information
processing across brain networks compared to SFC analysis
(Peraza et al., 2015; Schumacher et al., 2019). Currently, dynamic
FC (DFC) analysis has been proven to be a promising approach
for exploring neural substrates for a variety of neuropsychological
disorders, including Parkinson’s disease (Díez-Cirarda et al.,
2018; Fiorenzato et al., 2019), schizophrenia (Damaraju et al.,
2014), and AD (Jones et al., 2012; Córdova-Palomera et al., 2017;
Demirtaş et al., 2017; Brenner et al., 2018). More specifically,
AD dementia patients were suggested to spend less time in brain
functional states with strong posterior default mode network

(DMN) region contribution and more time in states with greater
anterior DMN region contribution compared to NCs (Jones et al.,
2012), and show alterations in local DFC within the temporal,
frontal-superior and default-mode networks, as well as decreased
global metastability between functional states compared to
patients with mild or subjective cognitive impairment and
NCs (Córdova-Palomera et al., 2017; Demirtaş et al., 2017). In
addition, studies have shown that amnestic MCI patients were
more likely to reveal a single dominant state and spent greater
time in a costly state relative to the most common state, which
may be attributable to reduced flexibility in resource allocation
(Brenner et al., 2018). Furthermore, studies have revealed higher
accuracy using DFC features to distinguish AD dementia or MCI
patients from NCs than SFC features (De Vos et al., 2018; Jie
et al., 2018). Alterations in functional network dynamics have
been suggested to be related to variations in the subclinical
range of memory performance, increased iron accumulation, and
the genetic risk of AD (Quevenco et al., 2017). However, few
studies have investigated DFC characteristics in SCD individuals.
A recent DFC study has shown changes in centrality frequency
(the proportion of time a hub with a high degree centrality
appeared across the entire time window) in the DMN in SCD
individuals, the abnormality of which was related to cognitive
performance (Xie et al., 2019). Another recent work has observed
higher classification accuracies in distinguishing SCD individuals
fromNCs using temporal flexibility and spatiotemporal diversity,
two measures of DFC, than static parameters of graph theory and
structural metrics of voxel-based morphometry analysis (Dong
et al., 2020). However, studies employing the DFC temporal
properties of fractional windows, mean dwell time, and the
number of transitions to SCD subjects are still lacking; these
features have been commonly described and proven to be
associated with cognition, behavior, and clinical variables in other
neuropsychological diseases (Kim et al., 2017; Li et al., 2017; Liu
et al., 2017; Díez-Cirarda et al., 2018; Fiorenzato et al., 2019).

Graph theory has been widely used in the investigation
of topological features of brain functional networks (Watts
and Strogatz, 1998). AD is described as a disconnection
syndrome, and previous studies have demonstrated disrupted
communication in peripheral regions and preserved organization
in rich-club regions in SCD participants (Yan et al., 2018). A
recent study based on the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) has observed higher nodal topological
properties (nodal strength, nodal global efficiency, and nodal
local efficiency) in SCD individuals than in NCs, and the altered
graphic parameters were significantly correlated with amyloid-β
and memory function, indicating the compensatory mechanism
of the functional connectome underlying SCD (Chen et al.,
2020). These findings have suggested the vulnerability of network
topology in the SCD stage.

In the present study, we aimed to investigate neuroimaging
biomarkers in SCD subjects from both dynamic and static rs-
fMRI perspectives and to explore whether temporal properties
of DFC were more sensitive than static parameters of graph
theory in the SCD stage. We also endeavored to determine
the relationships between rs-fMRI measures and cognitive
performance. Accordingly, we hypothesized that altered DFC
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temporal properties of fractional windows, mean dwell time,
and state transitions would be observed in SCD subjects, which
may improve the present understanding of the neural basis
underlying early cognitive decline and provide more promising
neuroimaging biomarkers for the detection of incipient AD
patients than global and local graphic parameters of SFC.

METHODS

Subjects
The present study included 32 SCD individuals matched for age,
gender, and years of education with 33 NCs. All participants
were recruited from the Drum Tower district of Nanjing by
advertisement. Individuals could participate in this study if they
were 55–75 years old, right-handed, and had at least 9 years
of education; in contrast, individuals with a history of stroke,
other neuropsychiatric disorders (Parkinson’s disease, epilepsy,
brain tumor, etc.), severe anxiety or depression, and MRI
contraindications were excluded. Individuals showing objective
impairment in the following cognitive evaluations were also
excluded from the present study (Li et al., 2019). Specifically,
three cognitive domains each containing two subtests were
assessed: auditory verbal learning test (AVLT) long-delayed
memory and AVLT recognition for episodic memory; trail
making test part A (TMT-A) and part B (TMT-B) for executive
function; and Boston naming test (BNT) and animal fluency
test (AFT) for language ability. Participants were considered
MCI patients if they had scores >1 standard deviation (SD)
below the normative means in both subtests within one cognitive
domain or>1 SD below the normative means in three single tests
in three different domains. Subjects with memory complaints
within the last 5 years and expressed worries associated with
memory decline were assigned to the SCD group; those without
memory complaints and cognitive impairments were recruited
as NCs. The study was conducted according to the Declaration of
Helsinki and approved by the institutional review boards of the
Nanjing Drum Tower Hospital. Written informed consent was
acquired from each participant after a detailed introduction of
the study procedure involved.

Neuropsychological Assessment
The standardized cognitive evaluation was performed by an
experienced psychologist. The mini-mental state examination
(MMSE) was used to assess global cognition. Another five
cognitive domains were evaluated: (1) episodic memory
measured with the AVLT, including immediate memory,
short-delayed memory, long-delayed memory, cued recall, and
recognition; (2) executive function tested with the TMT-A and
TMT-B; (3) language function evaluated with the BNT and AFT;
(4) processing speed tested with the symbol digit modalities test
(SDMT); (5) visuospatial ability assessed with the clock drawing
test (CDT).

Image Acquisition
Imaging data were acquired on a 3T Philips Achieva TX MRI
scanner using an 8-channel head coil in the Nanjing DrumTower
Hospital. The parameters of rs-fMRI were set as follows: field of

view (FOV) = 192 × 192 mm2; slice thickness = 4mm; matrix
size = 64 × 64; repetition time (TR) = 2000ms; echo time
(TE) = 30ms; flip angle = 90◦; number of slices = 35; voxel
size = 3 × 3 × 4mm with no gap. In total, 230 volumes were
acquired. Participants were instructed to lie quietly with their
eyes closed and stay awake during rs-fMRI scanning. The T1-
weighted images were obtained with the following parameters:
TR = 7,600ms; TE = 3,400ms; flip angle = 8◦; FOV = 256 ×

256× 192 mm3 and slice thickness= 1 mm.

Image Pre-processing
Pre-processing for rs-fMRI data was performed using the Data
Processing Assistant for rs-fMRI advanced edition (DPARSFA,
vision 4.3, http://www.restfmri.net) (Chao-Gan and Yu-Feng,
2010). Slice timing, realignment, nuisance regression (white
matter and cerebrospinal fluid (CSF) signals and Friston 24
head motion parameters), and spatial normalization to standard
Montreal Neurological Institute (MNI) space were carried out.
Then all images were smoothed with a 6mm full-width at half-
maximum (FWMH) Gaussian kernel. Realignment parameters
were checked, and none showed displacement above 3.0mm or
angular rotation higher than 3.0◦ among included participants.
Two-sample t-tests indicated no significant differences in the
mean framewise displacement (Jenkinson) (Jenkinson et al.,
2002) between the NC and SCD groups (0.11± 0.06mm vs. 0.11
± 0.07mm, p= 0.916).

Group Independent Component Analysis
After data pre-processing, spatial group independent component
analysis (ICA) was conducted to decompose the data into seven
functional networks using the Group ICA of fMRI Toolbox
(GIFT) (Calhoun et al., 2001a). Two data reduction steps were
performed in the principal component analysis (Allen et al.,
2014). First, subject-specific data were reduced to 120 principal
components and were concatenated across time. Then, the
group-level data were decomposed into 100 components with
the expectation-maximization algorithm (Roweis, 1998). We
repeated the Infomax ICA algorithm in ICASSO 20 times to
ensure stability and reliability (Himberg et al., 2004). Subject-
specific spatial maps and time courses were extracted by the back-
construction approach (GICA) implemented in GIFT software
(Calhoun et al., 2001b).

Among the resulting 100 components, we identified 33
of them to construct seven functional networks following a
previously described procedure (Allen et al., 2014). First, we
manually checked whether the peak activation coordinates were
mainly located in gray matter, showing low spatial overlap with
vascular, ventricular, or edge regions corresponding to artifacts.
Then, only components showing time courses dominated by
low-frequency fluctuations were selected (Cordes et al., 2000).
Based on the spatial correlation values between the components
and the network template (Shirer et al., 2012), we sorted and
rearranged the retained 33 independent components into seven
functional networks (Figure 1): 2 to the basal ganglia network
(BG), 2 to the auditory network (AUD), 7 to the visual network
(VIS), 4 to the sensorimotor network (SMN), 6 to the cognitive
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executive network (CEN), 8 to the DMN, and 4 to the cerebellar
network (CB).

Postprocessing steps of the time courses of 33 components
were performed according to Allen et al. (2014), including
detrending, despiking with AFNI’s 3dDespike algorithm, and
filtering using a fifth-order Butterworth filter with a 0.15Hz high
frequencies cut-off.

Dynamic Functional Connectivity Analysis
Sliding Window Approach
The DFC analysis was performed with the sliding window
approach using the DFC network toolbox in GIFT. Consistent
with previous studies, the rs-fMRI data were divided into
windows of 22 TR in size with a Gaussian of σ = 3 TRs, in steps
of 1 TR (Allen et al., 2014). The regularized inverse covariance
matrix was used to reduce the impact of insufficient information
on short time series (Varoquaux et al., 2010). We applied an L1
penalty on the precisionmatrix to promote sparsity in the graphic
LASSO framework with 100 repetitions (Friedman et al., 2008).
The FC matrices were z-transformed to stabilize the variance.

Clustering Analysis and Calculation of Temporal

Properties
All windowed FC matrices across all subjects were used to
estimate the DFC states. The k-means clustering analysis was
repeated 100 times, and the Euclidean distance was used to
measure the similarity between FC matrices and regroup them
into distinct clusters (Díez-Cirarda et al., 2018). Four was
determined as the optimal number of clusters following the elbow
criteria (Damaraju et al., 2014).

We investigated the temporal properties of DFC states
by calculating the fractional windows (the number of total

windows belonging to a given state), mean dwell time (the
number of consecutive windows belonging to a given state),
and the number of transitions (the number of transitions
between each pair of states) (Fiorenzato et al., 2019). The
differences in dynamic properties were computed by two-sample

TABLE 1 | Demographic and clinical data.

NC (n = 33) SCD (n = 32) Statistics p

Age 64.55 ± 5.33 65.22±5.02 t(63) = 0.524 0.602

Gender (M/F) 8/25 5/27 χ2
(1) = 0.754 0.385

Education years 12.97 ± 3.34 12.25 ± 2.62 t(63) = −0.965 0.338

MMSE 28.97 ± 1.31 28.66 ± 1.31 t(63) = −0.964 0.339

AVLT immediate 17.55 ± 4.57 16.94 ± 4.77 t(63) = −0.525 0.601

AVLT short

delayed

5.27 ± 2.79 4.78 ± 2.32 t(63) = −0.771 0.444

AVLT long delayed 5.00 ± 2.86 4.56 ± 2.38 t(63) = −0.669 0.506

AVLT cued recall 4.70 ± 2.32 4.53 ± 2.05 t(63) = −0.305 0.762

AVLT recognition 21.91 ± 1.44 21.50 ± 1.34 t(63) = −1.181 0.242

AFT 19.18 ± 4.00 18.38 ± 4.80 t(63) = −0.737 0.464

BNT 27.39 ± 2.45 27.03 ± 2.63 t(63) = −0.575 0.567

TMT_A 58.24 ± 21.32 60.44 ± 16.66 t(63) = 0.462 0.646

TMT_B 131.42 ± 29.66 164.06 ± 64.81 t(63) = 2.624 0.011*

SDMT 41.94 ± 9.22 36.84 ± 10.55 t(63) = −2.075 0.042*

CDT 27.91 ± 1.99 26.75 ± 3.04 t(63) = −1.825 0.073

APOE (ε3ε3/ε3ε4) 17/5 23/5 χ2
(1) = 0.183 0.669a

Values are the mean ± standard deviation. MMSE, mini-mental state examination; AVLT,

auditory verbal learning test; AFT, animal fluency test; BNT, Boston naming test; TMT-A,

trail making test part A; TMT-B, trail making test part B; SDMT, symbol digit modalities

test; CDT, clock drawing test; APOE, apolipoprotein E. *p < 0.05, aAPOE ε4 status not

determined for the whole cohort.

FIGURE 1 | Independent components (n = 33) identified by group independent component analysis. (A) Independent component spatial maps divided into seven

functional networks. (B) Group averaged static functional connectivity matrix between pairs of independent components. BG, basal ganglia; AUD, auditory; VIS,

visual; SMN, sensorimotor; CEN, cognitive executive; DMN, default mode; CB, cerebellar.

Frontiers in Aging Neuroscience | www.frontiersin.org 4 February 2021 | Volume 13 | Article 64601756

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Chen et al. DFC Alterations in SCD Subjects

t-tests, except for the state distribution compared by the chi-
square test.

Graph Theory Analysis
Graph theory parameters were analyzed using GRETNA
software (http://www.nitrc.org/projects/gretna) based on the 33
independent components obtained in the ICA (Wang et al.,

2015). The sparsity value of 0.34 was selected to maximize
global and local efficiency (Achard and Bullmore, 2007). The
global network metrics measured were global efficiency (the
efficiency of parallel information transfer in a network) and the
clustering coefficient (the mean of clustering coefficients of each
node in a network) (Wang et al., 2011). The nodal network
metrics measured were clustering coefficients (the likelihood

FIGURE 2 | The four states identified by k-means clustering analysis and the corresponding cluster centroids. The total number and percentage of the reoccurrence

times of each state are listed above each cluster (A), and the 5% strongest connections of each state are shown (B). BG, basal ganglia; AUD, auditory; VIS, visual;

SMN, sensorimotor; CEN, cognitive executive; DMN, default mode; CB, cerebellar.

FIGURE 3 | The four dynamic functional connectivity patterns of the two groups. (A) The centroid matrices for the normal controls. (B) The centroid matrices for the

subjective cognitive decline participants.
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that the neighborhoods of a given node are connected), shortest
path (the mean distance between a given node and all the
other nodes in the network), local efficiency (how efficient the
communication is among the first neighbors of a given node
when it is removed), and degree centrality (the information
communication ability of a given node in the functional network)
(Wang et al., 2011). The group differences in graph theory
parameters were compared with two-sample t-tests with false
discovery rate (FDR) correction.

Apolipoprotein E Genotyping
DNA extraction from 300 µL of whole blood per subject
was performed using an SK2884 DNA extraction kit (Sangon
Biotech, Shanghai, China). Apolipoprotein E (APOE) single
nucleotide polymorphism (SNP) genotyping was performed for
rs429358 and rs7412 using polymerase chain reaction (PCR)
technology. We determined the APOE ε4 status for 50 of
the 65 participants (22/33 of the NC group and 28/32 of the
SCD group).

Statistical Analysis
Age, years of education, and cognitive scores were compared
using two-sample t-tests, while gender and APOE ε4 status were
calculated by chi-square tests.We further calculated the Pearson’s
correlations between the altered DFC temporal properties,
graph theory parameters, and cognitive measures, adjusting for
age, gender, and years of education. Statistical analyses were
performed with SPSS version 21.0, and p < 0.05 was set as the
threshold for statistical significance.

RESULTS

Demographic and Cognitive

Characteristics
No significant differences in terms of age, gender, or years of
education were found between the SCD andNC groups. The SCD
participants showed abilities comparable to the controls in the
global cognition, episodic memory, language, and visuospatial
domains. The SCD group performed worse on the TMT-B [t(63)

FIGURE 4 | Temporal properties of dynamic functional connectivity states between the two groups. (A) Fractional windows in each state. (B) Mean dwell time in each

state. (C) The number of transitions between pairs of states. The parameters of each individual in the normal control (NC) and subjective cognitive decline (SCD)

groups are presented in blue and khaki dots respectively. The black lines indicate the mean values, and the light gray rectangles cover the data within one standard

error above and below the mean. *p < 0.05; **p < 0.01.
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= 2.624, p = 0.011] and SDMT [t(63) = −2.075, p = 0.042].
Detailed demographic and clinical information is shown in
Table 1.

Dynamic Functional Connectivity

Differences
Four DFC states of the whole cohort were identified (Figure 2)
as follows: (1) state 1, 21% of the windows, characterized by
partly strongly connected components within the VIS, CEN and
DMN, and anti-related correlations between the DMN and the
other networks; (2) state 2, 16% of the windows, distinguished
by the predominance of strong positive intra-network and
inter-network FC in the AUD, VIS, and SMN, while negative
correlations between the AUD-VIS-SMN regions and other
networks; (3) state 3, 12% of the windows, a highly connected
state demonstrating positive couplings of intra-network and
inter-network connections involving components of nearly the
whole brain; and (4) state 4, 52% of the windows, a hypo-
connected state showing sparsely connected patterns located
mostly within each network and between each pair of networks,
except for moderate FC within the VIS and DMN.

The state- and group-specific centroids of clusters for the NC
and SCD groups are shown in Figures 3A,B, respectively. The
proportion of the state differed significantly between the two
groups [χ2

(3) = 973.444, p < 0.001]. More specifically, in the
SCD group, state 1 occurred slightly less frequently than it did in
the NC group (19.85 vs. 21.40%) as did state 3 (10.10 vs. 13.35%).
Also, state 2 occurred less frequently (6.94 vs. 23.98%), whereas
state 4 occurred more often (63.12 vs. 41.27%) in the SCD group
compared to the NC group. Regarding the temporal properties

(Figure 4A), the SCD group was observed to have significantly
reduced fractional windows in state 2 [t(63) =−3.053, p= 0.003],
and increased fractional windows in state 4 [t(63) = 3.153, p =

0.002]. The SCD group also showed a significantly reduced mean
dwell time in state 2 [t(63) =−2.736, p= 0.008] and an increased
mean dwell time in state 4 [t(63) = 3.079, p= 0.003] (Figure 4B).
Additionally, significant reductions in the transitions between
state 1 and state 2 [t(63) =−2.005, p= 0.049], between state 2 and
state 3 [t(63) = −2.307, p = 0.024], and between state 2 and state
4 were observed in the SCD group compared to the NC group
[t(63) =−2.099, p= 0.040] (Table 2 and Figure 4C).

Graph Topological Parameters
After FDR correction, we observed no significant differences
either in the global or in the nodal network metrics between the
NC and SCD groups.

Relationships Between Altered

Neuroimaging Measures and Cognitive

Function
Significant associations between altered neuroimaging
measures and cognitive variables are summarized in
Supplementary Table 1. In the whole cohort, the number
of fractional windows and mean dwell time of state 4 both
showed significant positive correlations with the time spent
on the TMT-A (r = 0.343, p = 0.006; r = 0.255, p = 0.045,
respectively). The transitions between state 1 and state 2 showed
positive correlations with AVLT immediate memory scores (r =
0.265, p = 0.037), and the transitions between state 2 and state

TABLE 2 | Dynamic functional connectivity temporal properties.

NC

(n = 33)

SCD

(n = 32)

Statistics p Cohen’s d

Fractional windows State 1 44.52 ± 46.40 41.28 ± 48.41 t(63) = −0.275 0.784 0.068

State 2 49.88 ± 56.26 14.44 ± 34.37 t(63) = −3.053 0.003* 0.760

State 3 27.76 ± 43.88 21.00 ± 45.64 t(63) = −0.609 0.545 0.151

State 4 85.85 ± 56.06 131.28 ± 60.10 t(63) = 3.153 0.002* 0.782

Fractional windows (%) State 1 1469 (21.40) 1321 (19.85)

State 2 1646 (23.98) 462 (6.94)

State 3 916 (13.35) 672 (10.10) χ2
(3) = 973.444 <0.001*

State 4 2833 (41.27) 4201 (63.12)

Dwell time (windows) State 1 16.22 ± 13.72 16.52 ± 16.93 t(63) = 0.078 0.938 0.019

State 2 17.38 ± 19.17 6.49 ± 11.97 t(63) = −2.736 0.008* 0.681

State 3 12.21 ± 12.77 8.68 ± 15.14 t(63) = −1.015 0.314 0.252

State 4 26.04 ± 18.19 58.41 ± 57.52 t(63) = 3.079 0.003* 0.759

Number of transitions State 1-2 0.48 ± 1.06 0.09 ± 0.30 t(63) = −2.005 0.049* 0.501

State 1-3 0.30 ± 0.77 0.19 ± 0.40 t(63) = −0.757 0.452 0.179

State 1-4 2.82 ± 2.71 3.06 ± 2.63 t(63) = 0.369 0.713 0.090

State 2-3 0.82 ± 1.61 0.13 ± 0.55 t(63) = −2.307 0.024* 0.574

State 2-4 2.00 ± 2.26 0.97 ± 1.64 t(63) = −2.099 0.040* 0.522

State 3-4 1.03 ± 1.69 1.00 ± 1.70 t(63) = −0.072 0.943 0.018

Values are the mean ± standard deviation. *p < 0.05.
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3 were positively correlated with AVLT recognition scores (r =
0.257, p= 0.044).

In the NC group, both more fractional windows of state 4 and
longer time dwelt in state 4 correlated with lower MMSE scores
(r = −0.499, p = 0.005; r = −0.420, p = 0.021). The transitions
between state 1 and state 2 showed positive correlations with
AVLT immediate memory scores (r= 0.410, p= 0.025) and BNT
scores (r = 0.364, p= 0.048).

In the SCD group, more fractional windows in state 4 were
associated with longer time spent on the TMT-A (r = 0.370, p
= 0.048), whereas longer time dwelt in state 2 predicted higher
AVLT recognition scores (r = 0.392, p = 0.036). The transitions
between state 1 and state 3, and between state 2 and state 4 were
positively correlated with the AVLT recognition scores (r= 0.409,
p= 0.028; r = 0.376, p= 0.045).

DISCUSSION

In the present study, we combined the ICA, DFC, and graph
theory approaches to investigate the dynamic characteristics
and global/local network topology of intrinsic connectivity
networks in SCD individuals. The results revealed altered
DFC temporal properties of fractional windows, mean dwell
time, and the number of transitions in SCD subjects, which
showed significant associations with cognitive performance. No
significant differences in static parameters of graph theory were
observed. These findings shed light on the role of DFC in
the early detection of subjects with potential AD, and the
alterations in DFC may suggest the neural basis underlying early
cognitive decline.

As noted above, four distinct connectivity configurations were
identified across the entire cohort. Consistent with previous
findings (Allen et al., 2014; Kim et al., 2017; Viviano et al.,
2017; Schumacher et al., 2019; Gu et al., 2020), the hypo-
connected state occurred most frequently, that is, state 4 in the
present study, characterized by a sparse connectivity pattern
with relatively weak connections and the absence of strong
correlations. This state profile was considered the baseline
connectivity pattern, while other states with strong positive or
negative connections may reflect neuropsychological processes
(Viviano et al., 2017). The high occurrence of state 4 may indicate
that, on the whole, the human brain prefers to be in a state with
less information transfer but a more energy reservation pattern
(Gu et al., 2020). In comparison with the NC group, state 2,
showing hyperconnectivity within and between the AUD, VIS,
and SMN, occurred 17.04% less frequently in the SCD group. In
contrast, state 4 occurred 21.85% more often in SCD participants
than in the NCs. The differences in state distribution suggested
that the SCD group was more inclined to be in a state with
reduced intra-network and inter-network interaction rather than
that dominated by high AUD-VIS-SMN communication.

Variability in temporal properties of brain states during the
time of the experimentally unconstrained scanning session was
detected. The SCD group showed significantly fewer fractional
windows and shorter mean dwell time in state 2 than the NC
group, suggesting decreased within-network connectivity and

reduced AUD-VIS-SMN network integration in the SCD stage.
Increasing evidence has suggested that auditory, visual, and
sensorimotor dysfunctions are commonly involved during AD
progression and may precede the onset of cognitive impairments
and dementia (Albers et al., 2015; Deng et al., 2016). Our
results of weak connectivity in sensory domains may provide
an explanation for these deficits in the earliest stages of AD.
In addition, the reduced interaction among AUD-VIS-SMN
networks was consistent with the concept that cognitive decline
in AD is a disconnection syndrome closely associated with the
functional segregation of coordinated brain networks (Delbeuck
et al., 2003). A recent DFC study has shown significantly lower
temporal variability involving the regions of the SMN and VIS
in AD dementia patients, which could be related to reduced
flexibility in sensory, motor, and visual functions (Gu et al.,
2020). Another study has observed a significant reduction in the
frequency and mean dwell time in the state characterized by
strong positive correlations within and between the visual and
motor networks in AD dementia patients (Schumacher et al.,
2019). The present study extends previous findings by showing
that brain network reorganization in SCD individuals presents a
similar pattern to that of AD dementia patients.

The SCD group also showed significantly increased fractional
windows and a significant increase in mean dwell time in state
4 compared to the NC group. A previous study has observed
that AD dementia patients spent more time than NCs in
sparse connectivity configurations, indicating their inability to
switch out of states with low inter-network connectivity into
more highly and specifically connected network configurations;
this deficiency might be related to cognitive deterioration
(Schumacher et al., 2019). Our results of more time spent in
the sparsely connected state in the SCD group supported the
concept that SCD was a preclinical stage of the AD spectrum
from the perspective of DFC state patterns. Notably, the SCD
group showed fractional windows and a mean dwell time in
state 3 similar to those of NCs, which was dominated by strong
connections within and between distinct functional networks.
The SCD group also showed similar fractional windows and a
similar mean dwell time in state 1, which was characterized by
anti-correlations between the DMN and other networks; these
anti-correlations have been shown to be crucial for cognitive
processes (Fox et al., 2005; Baggio et al., 2015). The absence of this
antithetic association has been reported inMCI andADdementia
patients (Esposito et al., 2018; Schumacher et al., 2019). We
speculated that contrary to the symptomatic AD stage, the strong
connections in the whole brain networks and the antagonism
between the DMN and task-positive networks may remain stable
in the SCD stage to support objectively unimpaired cognition,
and this speculation remains to be further validated.

Regarding the number of transitions between distinct states,
the SCD group demonstrated significantly reduced transitions
between state 1 and state 2, between state 2 and state
3, and between state 2 and state 4 in the present study.
State transitions are believed to reflect neural metastability,
which enables multiple brain regions to engage and disengage
flexibly in coordination without being locked into fixed
interaction patterns (Li et al., 2017). Frequent transitions between
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discrete connectivity patterns also facilitate flexible information
integration and intensive information exchange across multiple
specialized subnetworks (Li et al., 2017). The configurations
of multiple brain regions interacting in complex and flexible
communication patterns may be disrupted in SCD individuals.
These results elucidated the vulnerability of rs-fMRI networks in
the SCD stage and emphasized the importance of investigating
the dynamic characteristics of the brain.

We observed significant associations between DFC properties
and cognitive performance. The more time participants spent
in state 4, the worse executive and general cognitive function
they had. State 4 represents the most hypo-connected networks
among all 4 states, including weak intra-network connectivity
in the CEN and weak inter-network connectivity between
the CEN and other brain modules, which may contribute to
ineffective information transfer and processing, thus resulting
in worse executive and general cognitive ability. The more
frequent transitions between states predicted better performance
on immediate and recognition memory tests, which may imply
potential relationships between neural flexibility and memory
function. A previous study has revealed a reduction in brain
metastability related to cognitive impairments in cognitive
flexibility, speed of information processing, and associative
memory (Hellyer et al., 2015). The inflexibility of functional
networks may result in the loss of memory encoding and retrieval
efficiency in SCD individuals. We also observed a significant
association between longer time dwelt in state 2 and better
recognition memory performance in the SCD group, indicating
that functional integration of the AUD-VIS-SMN may help
strengthen memory function. In addition, increased switches
between distinct dynamic FC states may also contribute to better
language ability. These findings provide evidence that altered
dynamic functional brain organization is linked to cognitive
function, which may further serve as the neural substrates
underlying cognitive decline in the SCD stage. Notably, the
relationships between DFC temporal properties and the cognitive
variables reported above did not survive multiple comparison
corrections and further research is needed to confirm these
exploratory results.

In contrast to the remarkable dynamic FC alterations, we
did not find differences in either global or local topological
parameters by graph theory approaches. Previous studies have
shown topological alterations in SCD subjects (Chen et al., 2020;
Xu et al., 2020), and we speculated that the discrepancies may
be attributable to the different diagnostic criteria for SCD, the
variations in demographics of the cohorts, and methodological
aspects (Wang et al., 2020). These studies also revealed no group
differences in the static analysis of global and local efficiency
between AD dementia patients and NCs (Peraza et al., 2015;
Schumacher et al., 2019). Our findings provide further evidence
that DFC, which captures the temporal variations of FC, may be
a more informative representation of functional brain networks
than SFC for the preclinical detection of incipient AD patients.

Several limitations in the present work should be considered.
First, this is a cross-sectional study conducted in a small cohort,
while AD is a progressive neurodegenerative disorder; therefore,
longitudinal studies with large cohorts are needed to elucidate the
role of DFC in the whole AD spectrum. Second, the acquisition

time of rs-fMRI data was 8min 7 s, though researchers have
suggested that DFC analysis should be performed with rs-fMRI
acquisition times> 10min. Third, no pathological evidence from
amyloid or tau positron emission tomography (PET) and CSF
was available. The impact of AD pathology on the interaction
and modulation of brain functional networks needs to be further
investigated. Notably, the p values in the correlational analysis
may not remain significant if multiple comparison corrections
were applied, and the large number of zero values may have an
impact on the results; thus, the associations between altered DFC
parameters and cognitive variables were exploratory results and
warrant further validation. Furthermore, the APOE ε4 genotype
may have an impact on the fMRI measures, thus in our future
study with a larger sample size of APOE ε4 carriers, we will
investigate differences in DFC properties between APOE ε4
carriers and non-carriers in SCD subjects.

CONCLUSION

In the present study, we investigated alternations in DFC
temporal properties in SCD individuals, with a focus on the
fractional windows, mean dwell time, and state transitions. We
observed increased fractional windows and mean dwell time in a
hypo-connected state and a reduced number of state transitions
in the SCD group compared to the NC group. Furthermore,
the altered DFC measures were significantly correlated with
cognitive variables. Our findings suggested that DFC analysis
may provide novel insights into the organization principles
of brain networks underlying early cognitive decline in the
SCD stage and benefit the preclinical detection of incipient
AD patients.
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Demirtaş, M., Falcon, C., Tucholka, A., Gispert, J. D., Molinuevo, J. L., and

Deco, G. (2017). A whole-brain computational modeling approach to

explain the alterations in resting-state functional connectivity during

progression of Alzheimer’s disease. Neuroimage Clin. 16, 343–354.

doi: 10.1016/j.nicl.2017.08.006

Deng, Y., Shi, L., Lei, Y., and Wang, D. (2016). Altered topological

organization of high-level visual networks in Alzheimer’s disease and

mild cognitive impairment patients. Neurosci. Lett. 630, 147–153.

doi: 10.1016/j.neulet.2016.07.043

Díez-Cirarda, M., Strafella, A. P., Kim, J., Peña, J., Ojeda, N., Cabrera-Zubizarreta,

A., et al. (2018). Dynamic functional connectivity in Parkinson’s disease

patients with mild cognitive impairment and normal cognition. Neuroimage

Clin. 17, 847–855. doi: 10.1016/j.nicl.2017.12.013

Dillen, K. N. H., Jacobs, H. I. L., Kukolja, J., Von Reutern, B., Richter, N., Onur, A.,

et al. (2016). Aberrant functional connectivity differentiates retrosplenial cortex

from posterior cingulate cortex in prodromal Alzheimer’s disease. Neurobiol.

Aging 44, 114–126. doi: 10.1016/j.neurobiolaging.2016.04.010

Dong, G., Yang, L., Li, C. R., Wang, X., Zhang, Y., Du, W., et al. (2020).

Dynamic network connectivity predicts subjective cognitive decline: the Sino-

Longitudinal Cognitive impairment and dementia study. Brain Imaging Behav.

14, 2692–2707. doi: 10.1007/s11682-019-00220-6

Dubois, B., Hampel, H., Feldman, H. H., Scheltens, P., Aisen, P., Andrieu,

S., et al. (2016). Preclinical Alzheimer’s disease: definition, natural

history, and diagnostic criteria. Alzheimers Dement. 12, 292–323.

doi: 10.1016/j.jalz.2016.02.002

Esposito, R., Cieri, F., Chiacchiaretta, P., Cera, N., Lauriola, M., Di Giannantonio,

M., et al. (2018). Modifications in resting state functional anticorrelation

between default mode network and dorsal attention network: comparison

among young adults, healthy elders and mild cognitive impairment patients.

Brain Imaging Behav. 12, 127–141. doi: 10.1007/s11682-017-9686-y

Fiorenzato, E., Strafella, A. P., Kim, J., Schifano, R., Weis, L., Antonini, A., et al.

(2019). Dynamic functional connectivity changes associated with dementia in

Parkinson’s disease. Brain 142, 2860–2872. doi: 10.1093/brain/awz192

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C.,

and Raichle, M. E. (2005). The human brain is intrinsically organized into

dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U.S.A. 102,

9673–9678. doi: 10.1073/pnas.0504136102

Franzmeier, N., Rubinski, A., Neitzel, J., Kim, Y., Damm, A., Na, D. L., et al. (2019).

Functional connectivity associated with tau levels in ageing, Alzheimer’s, and

small vessel disease. Brain 142, 1093–1107. doi: 10.1093/brain/awz026

Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse

covariance estimation with the graphical lasso. Biostatistics 9, 432–441.

doi: 10.1093/biostatistics/kxm045

Gu, Y., Lin, Y., Huang, L. L., Ma, J. J., Zhang, J. B., Xiao, Y., et al. (2020). Abnormal

dynamic functional connectivity in Alzheimer’s disease. CNS Neurosci. Ther.

26, 962–971. doi: 10.1111/cns.13387

Frontiers in Aging Neuroscience | www.frontiersin.org 10 February 2021 | Volume 13 | Article 64601762

https://www.frontiersin.org/articles/10.3389/fnagi.2021.646017/full#supplementary-material
https://doi.org/10.1371/journal.pcbi.0030017
https://doi.org/10.1016/j.jalz.2014.04.514
https://doi.org/10.1093/cercor/bhs352
https://doi.org/10.1002/hbm.22622
https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1016/j.ijpsycho.2018.05.001
https://doi.org/10.1002/hbm.1048
https://doi.org/10.1002/hbm.1024
https://doi.org/10.3389/fnsys.2010.00013
https://doi.org/10.1186/s40035-020-00201-6
http://www.ajnr.org/
https://doi.org/10.1038/srep40268
https://doi.org/10.1016/j.nicl.2014.07.003
https://doi.org/10.1016/j.neuroimage.2017.11.025
https://doi.org/10.1023/a:1023832305702
https://doi.org/10.1016/j.neurobiolaging.2018.10.004
https://doi.org/10.1016/j.nicl.2017.08.006
https://doi.org/10.1016/j.neulet.2016.07.043
https://doi.org/10.1016/j.nicl.2017.12.013
https://doi.org/10.1016/j.neurobiolaging.2016.04.010
https://doi.org/10.1007/s11682-019-00220-6
https://doi.org/10.1016/j.jalz.2016.02.002
https://doi.org/10.1007/s11682-017-9686-y
https://doi.org/10.1093/brain/awz192
https://doi.org/10.1073/pnas.0504136102
https://doi.org/10.1093/brain/awz026
https://doi.org/10.1093/biostatistics/kxm045
https://doi.org/10.1111/cns.13387
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Chen et al. DFC Alterations in SCD Subjects

Hellyer, P. J., Scott, G., Shanahan, M., Sharp, D. J., and Leech, R. (2015).

Cognitive flexibility through metastable neural dynamics is disrupted

by damage to the structural connectome. J. Neurosci. 35, 9050–9063.

doi: 10.1523/JNEUROSCI.4648-14.2015

Himberg, J., Hyvärinen, A., and Esposito, F. (2004). Validating the independent

components of neuroimaging time series via clustering and visualization.

Neuroimage 22, 1214–1222. doi: 10.1016/j.neuroimage.2004.03.027

Jenkinson, M., Bannister, P., Brady, M., and Smith, S. (2002). Improved

optimization for the robust and accurate linear registration and

motion correction of brain images. Neuroimage 17, 825–841.

doi: 10.1006/nimg.2002.1132

Jessen, F., Amariglio, R. E., Buckley, R. F., Van Der Flier, W. M., Han, Y.,

Molinuevo, J. L., et al. (2020). The characterisation of subjective cognitive

decline. Lancet Neurol. 19, 271–278. doi: 10.1016/S1474-4422(19)30368-0

Jessen, F., Amariglio, R. E., Van Boxtel, M., Breteler, M., Ceccaldi, M., Chételat,

G., et al. (2014). A conceptual framework for research on subjective cognitive

decline in preclinical Alzheimer’s disease. Alzheimers Dement. 10, 844–852.

doi: 10.1016/j.jalz.2014.01.001

Jie, B., Liu, M., and Shen, D. (2018). Integration of temporal and spatial properties

of dynamic connectivity networks for automatic diagnosis of brain disease.

Med. Image Anal. 47, 81–94. doi: 10.1016/j.media.2018.03.013

Jones, D. T., Vemuri, P., Murphy, M. C., Gunter, J. L., Senjem, M. L., Machulda, M.

M., et al. (2012). Non-stationarity in the “resting brain’s” modular architecture.

PLoS ONE 7:e39731. doi: 10.1371/journal.pone.0039731

Kawagoe, T., Onoda, K., and Yamaguchi, S. (2019). Subjective memory

complaints are associated with altered resting-state functional

connectivity but not structural atrophy. Neuroimage Clin. 21:101675.

doi: 10.1016/j.nicl.2019.101675

Kim, J., Criaud, M., Cho, S. S., Díez-Cirarda, M., Mihaescu, A., Coakeley, S., et al.

(2017). Abnormal intrinsic brain functional network dynamics in Parkinson’s

disease. Brain 140, 2955–2967. doi: 10.1093/brain/awx233

Lau, W. K., Leung, M. K., Lee, T. M., and Law, A. C. (2016). Resting-state

abnormalities in amnestic mild cognitive impairment: a meta-analysis. Transl.

Psychiatry 6:e790. doi: 10.1038/tp.2016.55

Li, J., Zhang, D., Liang, A., Liang, B.,Wang, Z., Cai, Y., et al. (2017). High transition

frequencies of dynamic functional connectivity states in the creative brain. Sci.

Rep. 7: 46072. doi: 10.1038/srep46072

Li, X., Wang, X., Su, L., Hu, X., and Han, Y. (2019). Sino Longitudinal

Study on Cognitive Decline (SILCODE): protocol for a Chinese longitudinal

observational study to develop risk prediction models of conversion to mild

cognitive impairment in individuals with subjective cognitive decline. BMJ

Open 9:28188. doi: 10.1136/bmjopen-2018-028188

Liu, F., Wang, Y., Li, M., Wang, W., Li, R., Zhang, Z., et al. (2017).

Dynamic functional network connectivity in idiopathic generalized epilepsy

with generalized tonic-clonic seizure. Hum. Brain Mapp. 38, 957–973.

doi: 10.1002/hbm.23430

López-Sanz, D., Bruña, R., Garcés, P., Martín-Buro, M. C., Walter, S., Delgado,

M. L., et al. (2017). Functional connectivity disruption in subjective cognitive

decline and mild cognitive impairment: a common pattern of alterations. Front

Aging Neurosci. 9:109. doi: 10.3389/fnagi.2017.00109

Peraza, L. R., Taylor, J. P., and Kaiser, M. (2015). Divergent brain functional

network alterations in dementia with Lewy bodies and Alzheimer’s disease.

Neurobiol. Aging 36, 2458–2467. doi: 10.1016/j.neurobiolaging.2015.05.015

Quevenco, F. C., Preti, M. G., Van Bergen, J. M., Hua, J., Wyss, M., Li, X., et al.

(2017). Memory performance-related dynamic brain connectivity indicates

pathological burden and genetic risk for Alzheimer’s disease. Alzheimers Res.

Ther. 9:24. doi: 10.1186/s13195-017-0249-7

Rabin, L. A., Smart, C. M., and Amariglio, R. E. (2017). Subjective cognitive

decline in preclinical alzheimer’s disease. Annu. Rev. Clin. Psychol. 13, 369–396.

doi: 10.1146/annurev-clinpsy-032816-045136

Reisberg, B., Shulman, M. B., Torossian, C., Leng, L., and Zhu, W. (2010).

Outcome over seven years of healthy adults with and without subjective

cognitive impairment. Alzheimers Dement 6, 11–24. doi: 10.1016/j.jalz.2009.

10.002

Roweis, S. T. (1998). “EM algorithms for PCA and SPCA,” in Advances in Neural

Information Processing Systems, eds M. J. Kearns, S. A. Solla, and D. A. Cohn

(Cambridge, FL: MIT Press), 626–632.

Schumacher, J., Peraza, L. R., Firbank, M., Thomas, A. J., Kaiser, M., Gallagher,

P., et al. (2019). Dynamic functional connectivity changes in dementia

with Lewy bodies and Alzheimer’s disease. Neuroimage Clin. 22:101812.

doi: 10.1016/j.nicl.2019.101812

Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V., and Greicius, M. D.

(2012). Decoding subject-driven cognitive states with whole-brain connectivity

patterns. Cereb. Cortex 22, 158–165. doi: 10.1093/cercor/bhr099

Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan,

A. M., et al. (2011). Toward defining the preclinical stages of Alzheimer’s

disease: recommendations from the National Institute on Aging-Alzheimer’s

Association workgroups on diagnostic guidelines for Alzheimer’s disease.

Alzheimers Dement 7, 280–292. doi: 10.1016/j.jalz.2011.03.003

Varoquaux, G., Gramfort, A., Poline, J.-B., and Thirion, B. (2010). “Brain

covariance selection: better individual functional connectivity models using

population prior,” in Advances in Neural Information Processing Systems, eds

J. D. Lafferty and C. K. I. Williams (Red Hook, FL: Curran Associates Inc.),

2334–2342.

Vidaurre, D., Smith, S. M., and Woolrich, M. W. (2017). Brain network dynamics

are hierarchically organized in time. Proc. Natl. Acad. Sci. U.S.A. 114,

12827–12832. doi: 10.1073/pnas.1705120114

Viviano, R. P., Hayes, J. M., Pruitt, P. J., Fernandez, Z. J., Van Rooden, S.,

Van Der Grond, J., et al. (2019). Aberrant memory system connectivity and

working memory performance in subjective cognitive decline.Neuroimage 185,

556–564. doi: 10.1016/j.neuroimage.2018.10.015

Viviano, R. P., Raz, N., Yuan, P., and Damoiseaux, J. S. (2017).

Associations between dynamic functional connectivity and age,

metabolic risk, and cognitive performance. Neurobiol Aging 59, 135–143.

doi: 10.1016/j.neurobiolaging.2017.08.003

Wang, J., Wang, X., Xia, M., Liao, X., Evans, A., and He, Y. (2015). GRETNA: a

graph theoretical network analysis toolbox for imaging connectomics. Front

Hum. Neurosci. 9:386. doi: 10.3389/fnhum.2015.00458

Wang, J. H., Zuo, X. N., Gohel, S., Milham, M. P., Biswal, B. B., and He, Y. (2011).

Graph theoretical analysis of functional brain networks: test-retest evaluation

on short- and long-term resting-state functionalMRI data. PLoS ONE 6:e21976.

doi: 10.1371/journal.pone.0021976

Wang, X., Huang, W., Su, L., Xing, Y., Jessen, F., Sun, Y., et al.

(2020). Neuroimaging advances regarding subjective cognitive

decline in preclinical Alzheimer’s disease. Mol. Neurodegener 15:55.

doi: 10.1186/s13024-020-00395-3

Watts, D. J., and Strogatz, S. H. (1998). Collective dynamics of ’small-world’

networks. Nature 393, 440–442. doi: 10.1038/30918

Xie, Y., Liu, T., Ai, J., Chen, D., Zhuo, Y., Zhao, G., et al. (2019). Changes in

centrality frequency of the default mode network in individuals with subjective

cognitive decline. Front Aging Neurosci. 11:118. doi: 10.3389/fnagi.2019.00118

Xu, X., Li, W., Tao, M., Xie, Z., Gao, X., Yue, L., et al. (2020). Effective and accurate

diagnosis of subjective cognitive decline based on functional connection and

graph theory view. Front. Neurosci. 14:577887. doi: 10.3389/fnins.2020.577887

Yan, T., Wang, W., Yang, L., Chen, K., Chen, R., and Han, Y. (2018). Rich club

disturbances of the human connectome from subjective cognitive decline to

Alzheimer’s disease. Theranostics 8, 3237–3255. doi: 10.7150/thno.23772

Yasuno, F., Kazui, H., Yamamoto, A., Morita, N., Kajimoto, K., Ihara, M.,

et al. (2015). Resting-state synchrony between the retrosplenial cortex

and anterior medial cortical structures relates to memory complaints

in subjective cognitive impairment. Neurobiol. Aging 36, 2145–2152.

doi: 10.1016/j.neurobiolaging.2015.03.006

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Chen, Lu, Zhang, Sun, Chen, Li, Zhang, Qing and Zhang. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Aging Neuroscience | www.frontiersin.org 11 February 2021 | Volume 13 | Article 64601763

https://doi.org/10.1523/JNEUROSCI.4648-14.2015
https://doi.org/10.1016/j.neuroimage.2004.03.027
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1016/S1474-4422(19)30368-0
https://doi.org/10.1016/j.jalz.2014.01.001
https://doi.org/10.1016/j.media.2018.03.013
https://doi.org/10.1371/journal.pone.0039731
https://doi.org/10.1016/j.nicl.2019.101675
https://doi.org/10.1093/brain/awx233
https://doi.org/10.1038/tp.2016.55
https://doi.org/10.1038/srep46072
https://doi.org/10.1136/bmjopen-2018-028188
https://doi.org/10.1002/hbm.23430
https://doi.org/10.3389/fnagi.2017.00109
https://doi.org/10.1016/j.neurobiolaging.2015.05.015
https://doi.org/10.1186/s13195-017-0249-7
https://doi.org/10.1146/annurev-clinpsy-032816-045136
https://doi.org/10.1016/j.jalz.2009.10.002
https://doi.org/10.1016/j.nicl.2019.101812
https://doi.org/10.1093/cercor/bhr099
https://doi.org/10.1016/j.jalz.2011.03.003
https://doi.org/10.1073/pnas.1705120114
https://doi.org/10.1016/j.neuroimage.2018.10.015
https://doi.org/10.1016/j.neurobiolaging.2017.08.003
https://doi.org/10.3389/fnhum.2015.00458
https://doi.org/10.1371/journal.pone.0021976
https://doi.org/10.1186/s13024-020-00395-3
https://doi.org/10.1038/30918
https://doi.org/10.3389/fnagi.2019.00118
https://doi.org/10.3389/fnins.2020.577887
https://doi.org/10.7150/thno.23772
https://doi.org/10.1016/j.neurobiolaging.2015.03.006
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


ORIGINAL RESEARCH
published: 18 February 2021

doi: 10.3389/fnagi.2021.621767

Frontiers in Aging Neuroscience | www.frontiersin.org 1 February 2021 | Volume 13 | Article 621767

Edited by:

Ying Han,

Capital Medical University, China

Reviewed by:

Peiyu Huang,

Zhejiang University, China

Julien Rossignol,

Central Michigan University,

United States

Zhengjia Dai,

Sun Yat-sen University, China

*Correspondence:

Caihong Wang

fccwangch@zzu.edu.cn

Jingliang Cheng

fccchengjl@zzu.edu.cn

†These authors have contributed

equally to this work

Received: 27 October 2020

Accepted: 18 January 2021

Published: 18 February 2021

Citation:

Wu L, Wang C, Liu J, Guo J, Wei Y,

Wang K, Miao P, Wang Y and Cheng J

(2021) Voxel-Mirrored Homotopic

Connectivity Associated With Change

of Cognitive Function in Chronic

Pontine Stroke.

Front. Aging Neurosci. 13:621767.

doi: 10.3389/fnagi.2021.621767

Voxel-Mirrored Homotopic
Connectivity Associated With
Change of Cognitive Function in
Chronic Pontine Stroke
Luobing Wu 1†, Caihong Wang 1*†, Jingchun Liu 2, Jun Guo 3, Ying Wei 1, Kaiyu Wang 4,

Peifang Miao 1, Yingying Wang 1 and Jingliang Cheng 1*

1Henan Key Laboratory of Magnetic Resonance Function and Molecular Imaging, Department of MRI, The First Affiliated

Hospital of Zhengzhou University, Zhengzhou, China, 2 Tianjin Key Laboratory of Functional Imaging, Department of

Radiology, Tianjin Medical University General Hospital, Tianjin, China, 3Department of Radiology, Tianjin Huanhu Hospital,

Tianjin, China, 4GE Healthcare MR Research, Beijing, China

Recent neuroimaging studies have shown the possibility of cognitive impairment after

pontine stroke. In this study, we aimed to use voxel-mirrored homotopic connectivity

(VMHC) to investigate changes in the cognitive function in chronic pontine stroke.

Functional MRI (fMRI) and behavioral assessments of cognitive function were obtained

from 56 patients with chronic pontine ischemic stroke [28 patients with left-sided pontine

stroke (LP) and 28 patients with right-sided pontine stroke (RP)] and 35 matched

healthy controls (HC). The one-way ANOVA test was performed for the three groups

after the VMHC analysis. Results showed that there were significant decreases in the

bilateral lingual gyrus (Lingual_L and Lingual_R) and the left precuneus (Precuneus_L) in

patients with chronic pontine ischemic stroke compared to HCs. However, in a post-hoc

multiple comparison test, this difference remained only between the HC and RP groups.

Moreover, we explored the relationship between the decreased z-values in VMHC and

the behavior-task scores using a Pearson’s correlation test and found that both scores of

short-termmemory and long-termmemory in the Rey Auditory Verbal Learning Test were

positively correlated with z-values of the left lingual gyrus (Lingual_L), the right lingual

gyrus (Lingual_R), and the left precuneus (Precuneus_L) in VMHC. Besides that, the

z-values of Precuneus_L in VMHC were also negatively correlated with the reaction time

for correct responses in the Flanker task and the spatial memory task. In conclusion,

first, the lingual gyrus played an important role in verbal memory. Second, the precuneus

influenced the working memory, both auditory-verbal memory and visual memory. Third,

the right-sided stroke played a greater role in the results of this study. This study

provides a basis for further elucidation of the characteristics andmechanisms of cognitive

impairment after pontine stroke.

Keywords: VMHC, fMRI, cognitive function, pontine stroke, right hemisphere
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INTRODUCTION

Cognitive impairment is common and persistent among long-
term stroke survivors (Nys et al., 2007; Delavaran et al., 2017;
Groeneveld et al., 2019). This important clinical manifestation
is not only present in patients with cortical stroke but also in
the subcortical brain regions of patients with pontine stroke
(Maeshima et al., 2012). Moreover, most patients with pontine
stroke still leave varying degrees of cognitive impairment during
follow-up (Wei et al., 2020). In fact, cognitive impairment could
exert a further negative influence on the daily lives of patients,
including deficits in memory and recall, the response capacity to
handle complex activities, and the ability to handle the challenges
of life (Shimada et al., 2016; Braga et al., 2018; Gajewski et al.,
2018), and they deserve more attention.

Characteristics of neural mechanisms are known to be linked
with clinical outcomes in patients with stroke, neuroimaging
studies like resting-state functional connectivity have provided
new insights into functional impairment and improvement.
Previous studies have shown that disturbed functional
connectivity associated with cognitive function could occur
immediately after stroke, and this alteration may persist for a
long time (Golestani et al., 2013; Liu et al., 2016). Chen et al.
(2019) reported that patients with pontine stroke might exhibit
more severe cognitive damage, especially memory processing,
compared to patients with subcortical stroke as evidenced by
different patterns of functional connectivity alterations in the
chronic phase. Multimodal MRI studies have also found that
pontine stroke poses a potential risk of memory impairment
using dynamic functional network connectivity (Wang et al.,
2020) or structural covariance networks (Wei et al., 2020).
However, the neurological mechanisms of stroke-induced
cognitive impairment in patients with pontine stroke remain to
be elucidated, and not only the memory function.

Homotopic cortical areas in both hemispheres play a crucial
role in neuroplasticity and in the reorganization of the brain.
Impaired interhemispheric functional coordination in the brain
regions that are involved in the clinical characteristics and
impairment of cognitive performance has been reported in
neuroimaging studies (Yang et al., 2017; Fan et al., 2018). As
one such approach that reflects interhemispheric homotopic
coordination by integrating brain functions underlying coherent
cognition, emotion, and behavior control (Zuo and Xing,
2014; Fan et al., 2018), voxel-mirrored homotopic connectivity
(VMHC) has been considered a reliable approach that may help
us explore and recognize the potential role of behavior-associated
alterations of interhemispheric functional connectivity. A
considerable number of studies have focused on how damage
in VMHC influences stroke (Tang et al., 2016; Shan et al.,
2018; Chen et al., 2021). In view of a previous study which
demonstrated that connectivity between homotopic FC was
significantly associated with clinical performance of the motor
control (Urbin et al., 2014), previous VMHC reports (Shan et al.,
2018) have only focused on the potential mechanisms of motor
function in chronic pontine stroke, but little is known about the
relatively hidden mechanism of cognitive impairment. However,
cross-hemispheric functional connectivity of ROI to ROI has also

revealed that interhemispheric connections involving homotopic
areas have the highest degree of efficiency in spatial cognitive
impairments after stroke (Ptak et al., 2020). Hence, we speculated
whether such patterns of memory processing and spatial
cognitive impairments are seen in patients with chronic pontine
stroke with the use of VMHC.

To address the aforementioned problems, driven by the
interest in cognitive changes of patients with pontine stroke,
we used VMHC to explore the difference between pontine
stroke patients and healthy controls (HCs). More focus should
be given to the following two points of this study. First, we
chose to predict the resting-state brain activity in the chronic
stage of stroke because couplings between resting-state functional
connectivity and individual’s task performance or behavior
change dynamically with stroke progression of an individual and
the strength of couplings increases as the recovery from stroke
progresses (Hu et al., 2017). The other reason for choosing the
chronic stage was to minimize the impact of motor function
on cognitive function, considering that the recovery of motor
function reached a stable state after stroke (Kwakkel and Kollen,
2013). Second, different lesion locations would characterize
individual contribution to functional outcomes depending on
the side of the hemispheres (Cheng et al., 2014). In addition,
differences between left and right lesions have been revealed in
previous studies (Jiang et al., 2017;Wang et al., 2019c), so patients
were subdivided into two groups: a left stroke group and a right
stroke group.

Therefore, in this study we aimed to: (1) verify the changes
in brain function as measured by VMHC after chronic pontine
stroke; (2) identify the lesion-side effect of the alterations of
VMHC in patients with pontine stroke; and (3) assess the
correlation between the significantly different brain regions and
assessments of cognition.

MATERIALS AND METHODS

Participants
Patients with chronic pontine stroke and healthy subjects were
recruited from The First Affiliated Hospital of Zhengzhou
University, Tianjin Medical University General Hospital, and
Tianjin Huanhu Hospital. The experimental protocol was
approved by the local medical research ethics committee, and
written informed consent was obtained from all participants. In
order to ensure the quality of the data, the three cooperative
hospitals jointly drafted a strict protocol that formulated and
unified the enrollment standards and scanning specifications,
organized personnel training, and coordinated the scanning
parameters with General Electric (GE) engineers. At the same
time, as much as possible, the cognitive test adopted machine
evaluation assessment without subjective color. The inclusion
criteria for patients with stroke were as follows: (a) the first-
onset of stroke with a single lesion that occurred in the pontine
area and left and right lesions could be clearly distinguished;
(b) the observation time after stroke onset was > 6 months to
ensure that the patients were at a stable chronic stage; and (c)
right-handed patients aged 40–80 years. The exclusion criteria
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were as follows: (a) a previous history of stroke; (b) bilateral
or multiple lesions; (c) excessive white matter demyelination,
with a modified Fazekas scale for white matter hyperintensities
> 1 (Fazekas et al., 1987); (d) a history of mental illness; (e)
craniocerebral trauma or other physical organic lesions; and (f)
any contraindications to MRI examination. Then, the enrolled
patients who met the criteria were subdivided into a left-sided
pontine stroke (LP) group and a right-sided pontine stroke (RP)
group according to the location of the lesion. The recruitment
requirements of the normal HC group were as follows: (a) gender,
age, and education level matched with those of the patient group;
(b) no cognitive or physical dysfunction; and (c) the exclusion
criteria listed above as for patients with pontine stroke. A total
of 91 right-handed participants (35 female; mean age, 57.1 ± 7.3
years; 28 LP, 28 RP), and 35 HCs (13 female; mean age, 55.7± 7.0
years) were included.

Behavioral Assessment
The patients were assessed and the Fugl–Meyer Assessment
(whole extremity, total 100 scores) scores were recorded. All
patients and normal volunteers who met the above criteria
underwent behavioral assessments before and after the collection
of MRI images, including: (a) the Rey Auditory Verbal Learning
Test (RAVLT) for evaluating verbal short-term memory (VSTM)
and verbal long-term memory (VLTM). The total number of
correctly recalled words was recorded as the two terms of RAVLT
scores; (b) the Flanker task and the spatial memory task. The
selective attention tasks were employed to assess the ability of
visual attention, interference suppression, and motor responses
of an individual. The details have been previously reported
(Shimada et al., 2016; Gajewski et al., 2018). The accuracy rate
(ACC, equal to the ratio of the number of correct responses
and the total number of possible correct responses) and the
average reaction time (RT) for correct responses (time between
presentation and manual response) were taken as the dependent
variables for the above two spatial tasks.

The evaluation work was supervised by two clinicians with
rich clinical experience, who jointly determined the reliability of
the results after unifying the standards.

MRI Data Acquisition
All MRI data were obtained using a GE Discovery MR750 3.0T
MRI scanner (GEMedical Systems,Waukesha,WI). The imaging
parameters for the three hospitals were consistent. These were:
(1) resting-state functional MRI (fMRI) with an echo-planar
(EPI) sequence: repetition time/echo time (TR/TE) = 2,000/30,
fractional anisotropy (FA) = 90◦, field-of-view (FOV) = 240
× 240mm, matrix = 220 × 220, slice thickness = 4mm, gap
= 0.5mm, interleaved transversal slices = 32, time-point =

180 and (2) high-resolution 3D-T1-weighted structural images
with magnetization prepared rapid gradient echo (MPRAGE)
sequence: TR/TE = 8.2/3.2, FA = 12◦, FOV = 256 × 256mm,
matrix = 256 × 256, slice thickness = 1mm. During the process
of image acquisition, participants were instructed to lie flat on
the examination bed, put noise-attenuating earplugs into both
ears to reduce the noise during the scan, and place their head
firmly between sponge pads on the left and right sides of the head

to keep the head in place and to further reduce noise exposure.
At the same time, participants were told to stay awake, breathe
smoothly, try not to make anymovements, or think intentionally.

We manually outlined the lesion profiles on high-resolution
3D-T1-weighted MRI images slice by slice on MRIcron (http://
www.mccauslandcenter.sc.edu/mricro/mricron). The generated
lesion masks along with the original 3D-T1 images were
normalized to the Montreal Neurological Institute (MNI) space
for each patient. Next, all normalized patient lesion masks were
overlapping by calculation. Finally, the individual lesion masks
were averaged and overlaid with a template to create the lesion
overlap map, as shown in Figure 1.

MRI Data Processing
The preprocessing of the resting-state fMRI data were performed
on the software Data Processing Assistant for Resting-State fMRI
(DPARSF, http://resting-fmri.sourceforge.net) with Statistical
Parametric Mapping (SPM8, http://www.fil.ion.ucl.ac.uk/spm).
Procedures were as follows: (1) the first 10 time points
were discarded considering the magnetization balance and the
subject’s adaptation to the environment; (2) time correction for
acquisition delay of slices; (3) realignment for head motion
correction, in which no participant was excluded due to excessive
head movement (rotation, translation, or head movement > 2◦

or 2mm). Moreover, mean framewise displacement (FD) was
calculated by averaging the FD of each participant across the
time points, and three patients were excluded owing to a mean
FD > 0.5, one from HC and two from RP. We also found no
significant differences inmean FD among the groups (P= 0.800);
(4) coregistration of each T1 image to the individual functional
image after motion correction, and then segmentation into gray
matter, white matter, and cerebrospinal fluid; (5) normalization
of the functional images to the MNI space and then re-sampling
into a voxel size of 3 × 3 × 3mm; (6) removal of nuisance
covariates (cerebrospinal fluid, white matter, 6-head motion
parameters, 6-head motion parameters at one time point earlier,
and the 12 corresponding squared items (Friston 24-parameter
model) as covariates) from the data by linear regression; (7)
spatial smoothing with a 6-mm full-width-at-half-maximum
(FWHM) Gaussian kernel; and (8) temporal bandpass filtering
(0.01–0.08Hz) and linear detrending.

After preprocessing, the individual VMHC maps were
calculated. Specifically, we calculated the Pearson’s correlation
coefficient between the residual time series of each voxel and
that of its symmetrical interhemispheric counterpart. Correlation
values were then Fisher Z-transformed, and z-maps were
obtained last to increase the distribution normality. The resultant
values (z-values) were referred to as the VMHC andwere used for
subsequent group-level analyses (Zuo et al., 2010).

Statistical Analysis
A two-sample t-test was used to compare demographic and
clinical characteristics between the LP and the RP groups
except for the categorical data, including the duration time
after stroke, the lesion volume, and the Fugl–Meyer Assessment
(FMA) score. The one-way ANOVA was used to compare age,
education level, and assessments of cognitive variables among
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FIGURE 1 | Lesion overlap map across stroke patients. Lesion maps were normalized to an MNI reference brain. Color bar indicates the number of patients with

stroke having lesions in each voxel. L, left-sided pontine stroke (n = 28); R, left-sided pontine stroke (n = 26); MNI, Montreal Neurological Institute.

the HC, LP, and RP groups. Gender was analyzed using a case-
weighted chi-square test as categorical data. With individual
age, gender, education level, mean FD, and lesion volumes as
covariates, one-way ANOVA analysis was also performed to
identify the differences of VMHC maps among different groups
based on the Gaussian Random Field theory with a cluster-level
family-wise error (FWE) correction (P < 0.05), accompanied by
pairwise comparisons of post-hoc multiple corrections (Scheffe).
The VMHC values of the brain regions showing abnormal
interhemispheric connectivity were then normalized, extracted,
and calculated for correlation with the scores of the clinical tasks
using the Pearson’s correlation coefficient. Statistical Product and
Service Solutions (SPSS) version 23.0 statistical software (IBM
Corporation, Armonk, NY, USA) was used to compare clinical
measurements and correlation analyses.

RESULTS

Sample Characteristics
The final population included 54 patients and 34 HCs. Among
the 54 patients, there was a mean duration after stroke of 12.5 ±
7.5 months, a mean lesion volume of 0.39± 0.43 cc3, and a mean
FMA score of 94.9 ± 11.5. No significant differences were found
for demographic and clinical characteristics between the LP and
RP groups. There were no significant differences in gender (χ2

= 1.895, P = 0.169), age (P = 0.386), and education level (P =

0.899) between the two stroke groups. There were no significant
differences in gender (χ2 = 2.350, P = 0.125), age (P = 0.225),
and education level (P = 0.359) among the groups. As for the
clinical assessment scores, no significant differences were found,
except for the ACC of the spatial memory task (P = 0.039). More
information is displayed in Table 1.

Difference in VMHC Among Groups
Three decreased VMHC values were found in the comparisons
among the HC, LP, and RP groups. These were the left lingual

gyrus (Lingual_L), the right lingual gyrus (Lingual_R), and the
left precuneus (Precuneus_L). The same significant differences
were found between the HC and RP groups on the post-hoc
multiple comparison test. There were no significant differences
in VMHC intensity in the comparison between the LP and the
RP groups or the HC and the LP groups. These details are shown
in Table 2, Figures 2, 3.

Correlational Analysis
The correlation analysis showed that the duration since stroke
was negatively correlated with the z-values of the Lingual_L,
Lingual_R, and Precuneus_L in VMHC (r = −0.31, r =

−0.31, and r = −0.28, respectively) (Figure 4). As for cognitive
assessments, both the VSTM and VLTM scores were positively
correlated with the z-values of the Lingual_L, Lingual_R, and
Precuneus_L in VMHC (r = 0.44, r = 0.40, and r = 0.42,
respectively; r = 0.35, r = 0.31, and r = 0.32, respectively)
(Figures 5, 6). The correlation between the VSTM scores and
the decreased z-values in VMHC was the strongest. In addition,
there was a negative correlation between the z-values of the
Precuneus_L in VMHC and the RTs for correct responses in the
Flanker task (r=−0.31, P< 0.01) and in the spatial memory task
(r =−0.24, P < 0.03) (Figure 7).

DISCUSSION

In this study, we have explored the change of VMHC
with patients with chronic pontine stroke and the potential
relationship between the change of VMHC and the behavior-task
scores. Our main novel findings were as follows: (1) compared
with HCs, the VMHC of the bilateral lingual gyrus and the
Precuneus_L were significantly decreased in patients with stroke,
and these alterations would get more obvious with prolonged
duration since chronic stroke; (2) compared with the LP group,
the RP group showed greater abnormalities of VMHC in the
results; and (3) the decreased z-values of the bilateral lingual
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TABLE 1 | Demographic and clinical characteristics.

Left-sided stroke

(n = 28)

Right-sided stroke

(n = 26)

P-value/t

(LP vs. RP)

Healthy Controls

(n = 34)

P-value/F

(ANOVA)

Gender(male/female) 18/10 14/12 0.169(χ2) 21/13 0.125(χ2)

Age(year) 58.7 ± 6.6 (49–78) 56.9 ± 8.3 (42–72) 0.386 55.4 ± 7.0 (44–75) 0.225

Education(year) 10.2 ± 3.8 (0–16) 10.3 ± 3.8 (22) 0.899 11.4 ± 3.0 (6–16) 0.359

Mean FD 0.14 ± 0.10 (0.05–0.43) 0.14 ± 0.08 (0.03–0.32) 0.603 0.14 ± 0.07 (0.04–0.38) 0.800

Duration(month) 11.9 ± 6.6 (6–28) 13.1 ± 8.5 (6–35) 0.574 … …

Lesion volume(cc3 ) 0.46 ± 0.53 (0.04–2.48) 0.31 ± 0.28 (0.01–1.16) 0.182 … …

FMA 95.5 ± 13.4 (30–100) 94.3 ± 9.1 (65–100) 0.700 … …

RAVLT

VSTM 42.1 ± 10.4 (22–65) 45.0 ± 13.5 (26–73) 0.391 48.8 ± 9.0 (30–71) 0.054

VLTM 10.4 ± 2.7 (4–15) 9.3 ± 3.3 (2–15) 0.238 10.9 ± 3.2 (0–15) 0.163

Flanker task

ACC 0.94 ± 0.10 0.97 ± 0.04 0.225 0.97 ± 0.05 0.211

RT(msec) 696.20 ± 215.55 693.43 ± 230.20 0.968 697.04 ± 232.54 0.998

Spatial memory task

ACC 0.85 ± 0.16 0.90 ± 0.06 0.107 0.92 ± 0.08 0.039*

RT(msec) 937.23 ± 265.61 946.96 ± 229.66 0.890 904.97 ± 206.89 0.773

Data represent as mean ± SD (minimum-maximum); *P < 0.05.

mean FD, mean frame-wise displacement (FD); FMA, the Fugl–Meyer Assessment (whole extremity, total 100 scores); RAVLT, the Rey Auditory Verbal Learning Test; VSTM, verbal

short-term memory; VLTM, verbal long-term memory; ACC, accuracy rate; RT, response time for correct response.

TABLE 2 | Results of VMHC among groups and the post-hoc multiple comparison test.

Item Peak Region(AAL) Peak coordinates MNI Cluster size (voxels) Peak Intensity

x y z

F Lingual_L −33 −69 −18 352 15.80

Lingual_R 24 −81 21 312 15.11

Precuneus_L −21 −78 21 83 17.49

HC vs. RP Lingual_L −33 −69 −18 424 4.60

Lingual_R 24 −81 21 376 4.79

Precuneus_L −21 −78 21 162 5.11

VMHC, voxel-mirrored homotopic connectivity; HC, healthy controls; RP, right-sided stroke; F, one-way ANOVA analysis among groups; HC vs. RP, the post-hoc multiple comparison

test between the HC and RP groups; AAL, Anatomical Automatic Labeling; MNI, Montreal Neurological Institute; Lingual_L, left lingual gyrus; Lingual_R, right lingual gyrus; Precuneus_L,

left precuneus.

gyrus in VMHC predicted poor RAVLT scores, the decreased z-
values of the Precuneus_L in VMHC predicted not only the poor
RAVLT scores but also the prolonged RTs for correct responses
in the spatial tasks. Collectively, these findings indicated that
the VMHC could provide neurological information to forecast
cognitive performance.

The VMHC of the patients was significantly reduced in the
occipital cortex away from the pontine. The current result might
suggest that pontine stroke has a greater effect on global function
than on the local function of the brain, which is consistent with
the previous finding that brainstem stroke significantly attenuates
long-range functional connectivity (Salvador et al., 2005). Some
studies infer that the mechanisms underlying the deficits in
VMHC could be related to widespread white matter-integrity
abnormalities, dysfunctions in local gray matter structure, and
the reorganized pattern of pathways (Yuan et al., 2012; Ding

et al., 2015). Therefore, the underlying reason for the change of
VMHC is most likely because of the special anatomical structure
of the pontine, which involves a large number of ascending and
descending fibers staggered throughout the pontine (Querol-
Pascual, 2010), and the pontine nucleus works as a relay station
for transmitting information from the cerebral cortex. Since
structural damages of patients with pontine stroke exist (Jiang
et al., 2017; Guo et al., 2019), it can lead to long-range cortical
functional damage.

A significant finding of this study was that the RP group
exhibited a more extensive VMHC decrease than the LP group
in a post-hoc multiple comparison test, although these two
groups of patients did not differ in terms of any demographic
or clinical characteristics. As shown in Figure 8, the distribution
of decreased z-values in VMHC showed an adjacent gradient
declining trend among the groups. The lesion-side effect on
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FIGURE 2 | Regions showing significant differences in VMHC among groups.

The blue to red color bar indicates the F-value from the one-way ANOVA

analysis among groups. Comparisons were corrected by using the Gaussian

Random Field theory with a cluster-level family-wise error (FWE) correction

(p < 0.05).

VMHC following chronic pontine stroke was clearly observed,
and the neural mechanisms related to this effect should be
further discussed. The change in structures of fiber tracts, the
gray matter volume, and the cortical pathways tends to be
more obvious in the right hemisphere than the left hemisphere
(Chiang et al., 2015; Liu et al., 2015, 2018; Diao et al., 2017).
Generally, the more severe the structural damage, the more
extensive the brain reorganization. As we discussed above, the
change of VMHC is closely related to structural damage. Thus,
this is possibly a neural mechanism underlying that the RP
group shows a greater contribution to the VMHC than the LP
group. In addition, all patients were right-handed, and previous
studies have inferred that an increase in physical activity in
daily life can result in increased activation of functional areas to
compensate for the damaged ipsilesional area (Verstynen et al.,
2005; Diao et al., 2017), specifically in right-handed patients
with the left-dominant hemisphere stroke (Wang et al., 2019a).
This phenomenon may suggest that the LP group will present
with less damage in functional connectivity as a result of the
compensationmechanisms compared to the RP group. Of course,
further studies are needed to clarify the neural mechanisms
underlying the lesion-side effect after chronic pontine stroke.

In the current study, the decreased bilateral lingual gyrus
may predict declined performance of verbal working memory.
As we know, the lingual gyrus is located in the ventral
occipitotemporal cortex, the region that is responsible for
word recognition and information integration to and from the
language network (Lerma-Usabiaga et al., 2018; Ludersdorfer
et al., 2019). Additionally, a previous study reported that memory
deficits are closely related to the inferior occipital gyrus and
the lingual gyrus (Kraft et al., 2014). Taken together, our results

FIGURE 3 | Regions showing significant differences in VMHC between the HC

and RP groups. The blue to red color bar indicates the t-value from the

post-hoc multiple correction test (Scheffe) between the HC and RP groups

(p < 0.05).

are in line with studies showing that the lingual gyrus in both
hemispheres plays an important role in semantic processing,
object priming, and output memory (Heath et al., 2012; Ding
et al., 2015). Notably, a previous study on acute lacunar stroke
reported increased VMHC in the lingual gyrus (Yang et al.,
2017), which seems to contradict the current finding. The
underlying mechanisms of such discrepancies remain unknown.
One possible explanation is that the patient groups in different
studies might reside in different disease stages. Furthermore, this
is not contradictory to the decreasing trend of the lingual gyrus.

In contrast to both the left and right lingual gyrus, the
precuneus was decreased only in the left hemisphere of the
brain compared with HCs. However, in the post-hoc multiple
comparison test, we found that this decreased result was most
prominent in patients with RP. The disruption of homotopic
FC is considered to be associated with structural impairment.
Specifically, previous studies have demonstrated that patients
with damage on the right side of the brain have significantly
decreased FA values in the right pathway (Grieve et al., 2007;
Liu et al., 2018). The unilateral reduced white matter integrity
led to a decreased contralateral homotopic connectivity, and this
might be a reasonable explanation for the change of VMHC in
the Precuneus_L. Additionally, the alternation of the precuneus
was consistent with the previously reported VMHC results and
was supported by a longitudinal study (Shan et al., 2018).
In our study, decreased Precuneus_L suggested a decline in
the processing of working memory, including both the verbal
working memory (VSTM and VLTM) and the visual working
memory (Flanker task and spatial memory task). The default-
mode network (DMN) is a collection of brain regions that
are typically deactivated in goal-directed tasks and activated
during rest periods. The more the default-mode activity of a
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FIGURE 4 | (A) Correlation between z-values of Lingual_L in VMHC and the duration since stroke. (B) Correlation between z-values of Lingual_R in VMHC and the

duration since stroke. (C) Correlation between z-values of Precuneus_L in VMHC and the duration since stroke.

FIGURE 5 | (A) Correlation between z-values of Lingual_L in VMHC and the VSTM scores. (B) Correlation between z-values of Lingual_R in VMHC and the VSTM

scores. (C) Correlation between z-values of Precuneus_L in VMHC and the VSTM scores.

FIGURE 6 | (A) Correlation between z-values of Lingual_L in VMHC and the VLTM scores. (B) Correlation between z-values of Lingual_R in VMHC and the VLTM

scores. (C) Correlation between z-values of Precuneus_L in VMHC and the VLTM scores.

subject correlated with the rest of the periods, the greater the
activation of that subject to the visual and auditory stimuli
(Greicius and Menon, 2004). As the main node in the DMN,
the precuneus plays a central role in cognitive function and
neural correlates of a functional connection between these
regions, which may be associated with self-referential processing,
attentional control, and working memory (Broyd et al., 2009;

Liu et al., 2017). The damage to network hubs determines the
potential for cognitive recovery after stroke (Aben et al., 2019;
Wang et al., 2019b), so the Precuneus_L in the right hemisphere
seems to be a great neurological biomarker for stroke-induced
cognitive impairment.

In this study, the ACC of the spatial memory task showed the
difference among the groups, and we have learned that the RP
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FIGURE 7 | (A) Correlation between z-values of Precuneus_L in VMHC and the RT for correct responses in the Flanker task. (B) Correlation between z-values of

Precuneus_L in VMHC and the RT for correct responses in the spatial memory task.

FIGURE 8 | The box diagram shows the distribution of z-values of Lingual_L,

Lingual_R, and Precuneus_L in VMHC among the groups (HC, LP, RP). Blue

for HC, healthy controls; green for the LP, left-sided stroke; yellow for the RP,

right-sided stroke.

group played a critical role in our results, so we infer that the
right-side stroke may be the main cause of more severe cognitive
impairment and poor performance in spatial memory tasks with
patients with chronic pontine stroke. To our knowledge, this
study is not the first time to indicate that the right hemisphere
plays a superior role in spatial tasks (Corbetta and Shulman, 2011;
Liu et al., 2018; Shimonaga et al., 2020). In general, attention
is considered to be the foundation of cognitive functions for
the processing speed, the working memory, and the visuospatial
processing we measured in the spatial memory task (Gajewski
et al., 2018). The directed attention is thought to be related
to spatial neglect, and the sustained attention is thought to
be associated with cognitive processing speed, as evaluated by

RT (Shimonaga et al., 2020, Lundqvist et al., 1997). The right
hemisphere is proved to be responsible for maintaining a balance
of attention between the two hemispheres (Fisk et al., 2002;
Corbetta and Shulman, 2011). When there is damage to the
right hemisphere, which is dominant in arousal, orientation,
and duration, the result is a lack of precision to detect targets,
leading to an increased RT (Lundqvist et al., 1997; Yuan et al.,
2012; Ptak et al., 2020; Shimonaga et al., 2020). Moreover,
mapping of the underlying neural mechanisms of the visuospatial
working memory has been shown to consistently elicit activity
in the right hemisphere of the dominant frontoparietal networks
(Cheng et al., 2014; Lamp et al., 2016). Anyhow, our findings
are congruent with the fact that the right hemisphere is more
important to the change of cognitive function after stroke.

Nevertheless, the current results have facilitated a further
understanding of cognitive function after pontine stroke.
We encourage testing the modulation of these homotopic
connectivities as potential targets for therapeutic intervention
in the early phase of the stroke. By stimulating and enhancing
such a target region of homotopic connectivity, we hope that this
contributes to the effects of cognitive intervention trials, such as
transcranial direct-current stimulation (Yun et al., 2015), which
is crucial for the overall success of post-stroke rehabilitation.

CONCLUSIONS

In this study, we explored the VMHC changes after chronic
pontine stroke among the HC, LP, and RP groups, and compared
each of the two groups using the post-hoc multiple comparison
test. In addition, we demonstrated the relationships of decreased
homotopic connectivity with cognitive impairment. Findings
highlight the critical role of the lingual gyrus in the language
network and the verbal working memory and of the value of the
precuneus in working memory, attention control, and executive
ability. Importantly, there was a lesion-side effect in decreased
VMHC after chronic pontine stroke between the LP and RP
groups. The RP group had a greater influence on the VMHC
change, which is associated with cognitive function impairment
in the cognitive task in this study; therefore, the right hemisphere
is regarded as more vulnerable in cognitive impairment. Finally,
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we hope our findings may contribute to the improvement of
cognitive performance after pontine stroke in the future.

LIMITATIONS

Although interesting results and speculations have been
discussed above, there are still several limitations in this study.
First, as discussed above, the contribution of the left and right
lesions varies between recruited patients, and more standardized
larger samples need to be studied. Additionally, although we
have learned that cognitive impairment exists in chronic stroke,
there is little information about subcortical stroke and how
this may impair the development along with the progression of
stroke following onset. Therefore, a cross-sectional experimental
design, or a longitudinal study design, should be applied in future
studies. Finally, since a lesion-side effect on cognitive impairment
after chronic pontine stroke was identified, multimodal MRI
studies are required to clarify the underlying neural mechanisms.
We hope that our results provide a basis for the development of
a comprehensive and systematic understanding of post-stroke
cognitive changes.
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Manual ELISA assays are the most commonly used methods for quantification of
biomarkers; however, they often show inter- and intra-laboratory variability that limits
their wide use. Here, we compared the Innotest ELISA method with two fully automated
platforms (Lumipulse and Elecsys) to determine whether these new methods can
provide effective substitutes for ELISA assays. We included 149 patients with AD
(n = 34), MCI (n = 94) and non-AD dementias (n = 21). Aβ42, T-tau, and P-tau were
quantified using the ELISA method (Innotest, Fujirebio Europe), CLEIA method on a
Lumipulse G600II (Fujirebio Diagnostics), and ECLIA method on a Cobas e 601 (Roche
Diagnostics) instrument. We found a high correlation between the three methods,
although there were systematic differences between biomarker values measured by
each method. Both Lumipulse and Elecsys methods were highly concordant with
clinical diagnoses, and the combination of Lumipulse Aβ42 and P-tau had the
highest discriminating power (AUC 0.915, 95% CI 0.822–1.000). We also assessed
the agreement of AT(N) classification for each method with AD diagnosis. Although
differences were not significant, the use of Aβ42/Aβ40 ratio instead of Aβ42 alone in
AT(N) classification enhanced the diagnostic accuracy (AUC 0.798, 95% CI 0.649–
0.947 vs. AUC 0.778, 95% CI 0.617–0.939). We determined the cut-offs for the
Lumipulse and Elecsys assays based on the Aβ42/Aβ40 ratio ± status as a marker
of amyloid pathology, and these cut-offs were consistent with those recommended by
manufacturers, which had been determined based on visual amyloid PET imaging or
diagnostic accuracy. Finally, the biomarker ratios (P-tau/Aβ42 and T-tau/Aβ42) were
more consistent with the Aβ42/Aβ40 ratio for both Lumipulse and Elecsys methods,
and Elecsys P-tau/Aβ42 had the highest consistency with amyloid pathology (AUC
0.994, 95% CI 0.986–1.000 and OPA 96.4%) at the ≥0.024 cut-off. The Lumipulse
and Elecsys cerebrospinal fluid (CSF) AD assays showed high analytical and clinical
performances. As both automated platforms were standardized for reference samples,
their use is recommended for the measurement of CSF AD biomarkers compared with
unstandardized manual methods, such as Innotest ELISA, that have demonstrated a
high inter and intra-laboratory variability.
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INTRODUCTION

Alzheimer’s disease (AD) is the most prevalent age-related
neurodegenerative disease, accounting for 60–80% of cases
of dementia. The extracellular amyloid plaques arising
from the accumulation of amyloid β42 protein (Aβ42) and
intracellular neurofibrillary tangles formed by aggregations
of hyperphosphorylated tau protein (P-tau) are the two main
pathological hallmarks of AD (Serrano-Pozo et al., 2011). Both
of these pathological characteristics are specific to AD, while
neurodegeneration, characterized by an increase in total-tau
protein (T-tau), is a non-specific biomarker that can be caused
by several neurodegenerative diseases (Jack et al., 2018). Aβ42,
P-tau, and T-tau are considered core AD biomarkers that can be
measured in cerebrospinal fluid (CSF). Their use increases the
accuracy of the diagnosis and prediction of the progression from
mild cognitive impairment (MCI) to AD and can differentiate
between AD and other causes of dementia or neuropsychiatric
problems (Albert et al., 2011; McKhann et al., 2011; Sperling
et al., 2011). In addition, the inclusion of these biomarkers
in diagnosis benefits populations included in clinical trials
(Jack et al., 2018).

Currently, enzyme-linked immunoassay (ELISA) is the most
widely used approach for the detection of AD core biomarkers
in CSF. However, these ELISA methods often show considerable
inter and intra-lab variability that prevents the use of standard
cut-off values and precludes the wide use of CSF biomarkers
in clinical practice. To circumvent this problem, Fujirebio
Diagnostics and Roche Diagnostics have recently developed
fully automated platforms for the analysis of CSF biomarkers.
Fujirebio has implemented four CSF analytes (Aβ42, Aβ40,
T-tau, and P-tau) on the fully automated Lumipulse G
System. The measurement method is based on a two-step
sandwich chemiluminescent enzyme-immunoassay (CLEIA).
The Lumipulse Aβ42 assay is standardized according to certified
reference material (CRM) developed by the International
Federation of Clinical Chemistry and Laboratory Medicine
(IFCC) and the Joint Research Centre (JRC). These platforms
consist of three CRMs based on human CSF, with low, middle
and high concentrations of Aβ42. However, fully automated
Elecsys assays for CSF Aβ42, T-tau and P-tau are run on
Elecsys and Cobas e immunoassay analyzers (Roche Diagnostics
GmbH, Penzberg, Germany). The measurement is performed
based on the electrochemiluminescence immunoassay (ECLIA)
in a two-step sandwich assay. The Elecsys Aβ42 assay has
been standardized by a Joint Committee for Traceability in
Laboratory Medicine (JCTLM) with an approved reference
measurement procedure (RMP). Therefore, all assay lots are
standardized to a sample set with target values derived from
liquid chromatography–tandem mass spectrometry (LC-MS/MS)
(Leinenbach et al., 2014).

Previous studies have evaluated the consistency between each
of these automated methods with manual ELISA methods or
Amyloid PET imaging (Janelidze et al., 2017; Hansson et al., 2018;
Kollhoff et al., 2018; Schindler et al., 2018; Willemse et al., 2018;
Alcolea et al., 2019; Bayart et al., 2019; Zecca et al., 2019; Kaplow
et al., 2020). However, there are no studies that have compared the

efficacy of Innotest, Lumipulse and Elecsys methods in a single
cohort of patients.

The aims of this study were (a) to assess the concordance
between core AD biomarkers measured in CSF using Innotest,
Lumipulse and Elecsys methods; (b) to evaluate the diagnostic
accuracy of biomarkers and their ratios measured by each
method; (c) to assess the discriminating power of AT(N) groups
that were generated by the results of the different biomarkers for
each of these three technologies and (d) to define the CSF cut-
off points for both Lumipulse and Elecsys assays based on the
Lumipulse Aβ42/40 status.

MATERIALS AND METHODS

Study Population
A total of 149 patients [AD (n = 34), MCI (n = 94) and
non-AD dementias (n = 21)] were included in this study.
The study population was recruited consecutively between July
2018 and July 2019 from patients attending the Cognitive
Disorders Unit at the Hospital Universitari Santa Maria (Lleida,
Spain). Inclusion criteria comprised presentation with suspected
cognitive dysfunction at the memory clinic, for which the
neurologist requested CSF analysis. The diagnosis of probable
AD and MCI was performed based on NIAA criteria (Albert
et al., 2011; McKhann et al., 2011). Each non-AD patient
fulfilled the criteria for the specific diagnostic criteria of the
disorder considered (e.g., Fronto-temporal dementia, Lewy body
dementia, etc.) (Gorno-Tempini et al., 2011; Rascovsky et al.,
2011; McKeith et al., 2017). The included patients signed an
internal regulatory document stating that residual samples used
for diagnostic procedures could be used for research studies
without any additional informed consent.

CSF Collection and Storage
Cerebrospinal fluid samples were collected between 8 a.m. and
10 a.m. after an overnight fast into 10-mL polypropylene tubes
(Sarstedt, 62.610.201). The tubes were inverted several times, and
the CSF was processed based on the recommendations provided
by each manufacturer. For the Lumipulse assay, the samples
were centrifuged at 2,000 × g for 10 min at room temperature
and aliquoted into two 2-mL polypropylene tubes (Sarstedt,
72.694.007), with each tube containing 1 mL of CSF. For the
Elecsys method, the samples were aliquoted into two 0.5-mL
polypropylene tubes (Sarstedt 72.730.005) after centrifugation.
For the Innotest assay, the CSF was aliquoted into two 2-mL
polypropylene tubes (Sarstedt, 72.694.007) after centrifugation.
The samples were stored at−80◦C until analyses.

CSF Analysis
Measurements of Aβ42 and Aβ40 (only for lumipulse), T-tau,
and P-tau were performed at the clinical laboratory of Hospital
Universitari Arnau de Vilanova, Lleida. On the day of the
analysis, samples were thawed at room temperature, and the
tubes were vortexed briefly. The biomarkers were measured
directly from the storage tube and in five separate batches for
all three methods. For each method, the same batch of reagents
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was used for each biomarker throughout the study, and for
each sample, all analytes were quantified in the same run and
from the same aliquot. For the ELISA method, Innotest Aβ42,
Innotest htau-Ag, and Innotest P-tau (181P) assays (Fujirebio,
Europe) were used. Innotest calibrator concentrations ranged
from 63 to 4000 pg/mL for Aβ42, 40 to 2300 pg/mL for T-tau,
and 16 to 1000 pg/mL for P-tau. According to previous analyses
in clinical practice, cut-offs at our center were determined
to be <600 pg/mL for Aβ42, >425 pg/mL for T-tau, and
>65 pg/mL for P-tau. For the ECLIA method, the tubes analyzed
using the Elecsys Aβ42 CSF, Elecsys T-tau CSF, and Elecsys
P-tau (181P) CSF assays (Roche Diagnostics GmbH) were
run on the cobas e 601 analyzer (Roche Diagnostics) per the
manufacturer’s instructions. Elecsys measuring ranges were as
follows: 200 to 1700 pg/mL for Aβ42, 80 to 1300 pg/mL for
T-tau, and 8 to 120 pg/mL for P-tau. For data analysis, we
used the cut-offs recommended by the manufacturer, which
were as follows: ≤1000 pg/mL for Aβ42, >300 pg/mL for
T-tau, and >27 pg/mL for P-tau. Seventeen samples had
Aβ42 levels above the upper limit of the measuring range
(1700 pg/mL) and were eliminated from the analysis. The
results of the Elecsys Aβ42 assay were standardized to the
JCTLM-approved RMP for quantitation of Aβ42 in human
CSF, based on LC-MS/MS (Leinenbach et al., 2014). For the
CLEIA technology, the CSF biomarkers were quantified using
the Lumipulse Aβ42, Aβ40, T-tau, and P-tau (181P) assays on
the LUMIPULSE G600II automated platform (Fujirebio) per
the manufacturer’s instructions. Lumipulse measuring ranges
were 9–2,335 pg/mL for Aβ42, 150–2,000 pg/mL for T-tau,
and 1.1–400 pg/mL for p-Tau. The following cut-offs that had
been determined by Fujirebio were used for data analysis:
Aβ42 < 600 pg/mL, Aβ42/40 < 0.069, T-tau > 400 pg/mL,
and P-tau > 56.5 pg/mL. The results of the Lumipulse Aβ42
presented in this work have been standardized with CRMs
developed by the IFCC and JRC (Kuhlmann et al., 2017).
The personnel involved in the CSF analyses were blind to the
clinical diagnosis.

Statistical Analyses
All statistical analyses were performed using IBM SPSS version
25 (Armonk, NY, United States). One-way ANOVA and
Chi-square tests were used for analysis of quantitative and
qualitative variables, respectively. The quantitative variables
were presented as means (±standard deviation, SD), and
the qualitative variables were presented as percentages. To
evaluate the correlation between methods, we used Pearson’s
correlation coefficient (r), paired t-tests for paired samples,
and the Bland-Altman plot. The diagnostic accuracy of the
biomarkers/AT(N) classification was analyzed using a binary
logistic regression model. In this model, the sensitivity was
defined as the percentage of correct classification of AD
diagnosis and the specificity as the percentage of correct
classification of non-AD dementias diagnosis. Furthermore, we
used this statistical model to evaluate the predictive value of
the biomarkers with respect to AD prognosis. The receiver
operating characteristic (ROC) analysis for evaluating diagnostic
accuracy was further analyzed using the Hanley and McNeil

method (Hanley and McNeil, 1982) to compare the Area
Under the Curve (AUC). Values of |z| ≥ 1.96 were considered
evidence that the true ROC areas were different. We also
performed ROC analysis to determine the cut-offs for the
core AD biomarkers and the ratios that best distinguished
Lumipulse Aβ42/40+ individuals. In addition, the cut-offs
were also determined based on the Innotest Aβ42 status. We
determined the positive percent agreement (PPA) and negative
percent agreement (NPA), and the single analyte value (or
ratio) with the highest Youden index (PPA + NPA – 1)
was identified as the cut-off value. Overall percent agreement
(OPA) was defined as the sum of the Aβ42/40 + individuals
who were positive for a CSF biomarker measure and the
Aβ42/40 − individuals who were negative for a CSF biomarker
measure divided by the cohort size, thereby providing an
estimate of accuracy.

RESULTS

Patient Characteristics
The demographic characteristics and biomarker results are
summarized in Table 1. The average age of participants
was 74 years, and 55% were female. Syndrome diagnoses
in the cohort were the following: 34 (22.8%) with AD, 94
(63.1%) with MCI, and 21 (14.1%) with non-AD dementia.
There were no significant differences between diagnostic
groups for demographic and clinical variables except for
MMSE score and hypertension (P < 0.0001 and P < 0.05,
respectively). The mean MMSE score was lower [19.6 (4.2
SD)] for AD patients compared with the two other groups,
followed by non-AD dementia patients [21.9 (4.6 SD)] and
MCI subjects [25.2 (3.1 SD)]. For all three assays, all
CSF biomarker concentrations were significantly different
between the three diagnostic groups, except Lumipulse Aβ40
(P > 0.05). For Elecsys, samples that had Aβ42 values above
the upper limit of detection (1700 pg/mL) were omitted
from analysis (n = 17 samples, MCI 11, AD 4, and 2 non-
AD patients).

Concordance Between Innotest and
Lumipulse Assays
Pearson’s correlations indicated a high correlation between
biomarkers of both methods. Figure 1 shows the correlation and
Bland-Altman plots for biomarkers quantified by Innotest and
Lumipulse. The correlation coefficient between the two methods
was 0.87 for Aβ42 (P < 0.0001), 0.95 for T-tau (P < 0.0001) and
0.95 for P-tau (P < 0.0001). The concordance between the values
of the biomarkers between the two methods was assessed using
paired sample t-tests. Our results indicated that there was high
consistency in the Aβ42 (observed slope 0.98, t-test p = 0.319)
and T-tau (observed slope 0.96, t-test P = 0.785) values between
the two methods (Figure 1). Lumipulse Aβ42 values were slightly
higher than those for Innotest, while Lumipulse T-tau values were
slightly lower than those for Innotest; however, these differences
were not statistically significant (Figure 1). As shown in the
Bland-Altman plot, the bias (mean of the differences) for Aβ42
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TABLE 1 | The demographic characteristics and biomarker results for AD, MCI, and non-AD patients.

All participants AD MCI Non-AD dementia P-value

n (%) 149 (100%) 34 (22.8%) 94 (63.1%) 21 (14.1%)

Age (years) 73.82 (6.85) 74.00 (8.78) 73.86 (6.05) 73.33 (7.07) 0.937

Sex (% female) 55.7% 67.6% 54.3% 42.9% 0.178

MMSE score 23.41 (4.29) 19.62 (4.24) 25.16 (3.07) 21.90 (4.57) <0.0001

Family history of cognitive impairment 28.9% 23.5% 29.8% 33.3% 0.7

Hypertension 57.7% 67.6% 55.3% 52.4% 0.003

Diabetes Mellitus 20.1% 26.5% 19.1% 14.3% 0.509

Dyslipidemia 44.3% 47.1% 44.7% 38.1% 0.803

Depression 35.6% 29.4% 36.2% 42.9% 0.587

Innotest

Aβ42 pg/mL 581.37 (247.46) 405.65 (115.36) 614.11 (252.18) 722.48 (239.53) <0.0001

T-tau pg/mL 507.85 (354.32) 684.47 (393.01) 450.71 (277.00) 477.67 (498.05) 0.003

P-tau pg/mL 67.55 (28.62) 83.81 (34.75) 64.68 (25.10) 53.91 (21.14) <0.0001

T-tau/Aβ42 1.130 (1.092) 1.908 (1.623) 0.935 (0.743) 0.727 (0.687) <0.0001

P-tau/Aβ42 0.148 (0.116) 0.234 (0.167) 0.130 (0.083) 0.088 (0.056) <0.0001

Elecsys

Aβ42 pg/mL 770.69 (363.12) 572.50 (179.97) 807.75 (369.95) 970.04 (433.81) <0.0001

T-tau pg/mL 287.80 (155.38) 379.65 (188.44) 261.39 (118.65) 251.37 (189.67) <0.0001

P-tau pg/mL 27.38 (17.17) 38.92 (23.19) 24.73 (13.22) 19.56 (11.71) <0.0001

T-tau/Aβ42 0.463 (0.338) 0.719 (0.470) 0.390 (0.225) 0.318 (0.242) <0.0001

P-tau/Aβ42 0.045 (0.040) 0.075 (0.060) 0.038 (0.024) 0.027 (0.022) <0.0001

Lumipulse

Aβ42 pg/mL 571.43 (276.75) 415.28 (119.15) 599.55 (289.63) 698.41 (301.96) <0.0001

Aβ40 pg/mL 10317.68 (3339.78) 10597.44 (3605.39) 10363.14 (3111.28) 9661.24 (3935.09) 0.59

Aβ42/40 0.056 (0.022) 0.041 (0.010) 0.058 (0.022) 0.073 (0.022) <0.0001

T-tau pg/mL 510.37 (356.34) 731.85 (404.16) 438.84 (256.48) 471.95 (505.21) <0.0001

P-tau pg/mL 81.50 (56.72) 122.96 (73.80) 72.76 (44.18) 53.49 (40.49) <0.0001

T-tau/Aβ42 1.144 (1.037) 1.933 (1.504) 0.940 (0.700) 0.779 (0.740) <0.0001

P-tau/Aβ42 0.190 (0.190) 0.330 (0.291) 0.159 (0.123) 0.101 (0.101) <0.0001

Unless otherwise specified, results are presented as mean (standard deviation). MMSE, Mini-mental state examination; AD, Alzheimer’s disease; MCI, mild cognitive
impairment; non-AD dementia, non-Alzheimer’s disease dementia. P-values were calculated by comparing AD, MCI, and non-AD dementia participants using one way
ANOVA for continuous variables and Pearson Chi2 for categorical variables.

was 11.320 units (pg/mL) (continuous line) between the two
methods. The regression line for the differences indicated that
there was a non-significant negative trend in the differences as the
magnitude of the measured variable increased. For T-tau, there
was a bias of −2.157 units between the two methods. However,
the results of Lumipulse and Innotest were not consistent with
respect to P-tau values (observed slope 1.884, t-test P < 0.0001).
For P-tau, there was a bias of −14.328 units (continuous line).
The regression line for the differences indicated that there was
a systematic proportional bias between the values of the two
methods with a negative trend in the differences as the magnitude
of P-tau values increased, especially for values greater than 50
pg/mL. Among all assays evaluated, approximately 95% of the
measured values were within±1.96 SD of the bias (Figure 1).

Concordance Between Innotest and
Elecsys Assays
Pearson’s correlations indicated a high correlation between
biomarkers of both methods. The correlation coefficient between

the two methods was 0.88 for Aβ42 (P < 0.0001), 0.96
for T-tau (P < 0.0001) and 0.97 for P-tau (P < 0.0001).
The paired samples t-test demonstrated that there was weak
concordance between the two methods for all of the biomarkers.
For all three biomarkers, the adjustment line (continuous
line) (observed slope of 0.52 for Aβ42, t-test P < 0.0001;
observed slope of 2.05 for T-tau, t-test P < 0.0001; and
observed slope of 1.62 for P-tau, t-test P < 0.0001) was
significantly separated from the perfect agreement line (dashed
line) (Figure 2). The Bland-Altman plot indicated that there
was a bias of −222.13 units (continuous line) between the
two methods for Aβ42 (i.e., the Elecsys method quantified on
average 222.13 pg/mL more Aβ42 than the Innotest assay).
The regression line demonstrated a proportional systematic bias
with a negative trend of differences as the magnitude of Aβ42
increased. For T-tau and P-tau, the biases (mean of differences)
were 210.70 and 40.16 units, respectively. The regression line
of the differences indicated a proportional systematic bias
for both biomarkers with a positive trend of differences as
the magnitude of these biomarkers increased. For all assays
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FIGURE 1 | The correlation and Bland-Altman plots for Aβ42, T-tau, and P-tau measurements obtained by Lumipulse and Innotest ELISA methods (n = 149). Each
point is defined as the measurements of Lumipulse and ELISA assays on the same biological sample. In correlation plots, the solid lines represent the estimated
regression line, and the dotted line represents the identity line (x = y). In the Bland-Altman plots, solid lines represent the slope observed.

evaluated, approximately 95% of measured values were within
±1.96 SD of the bias (Figure 2).

Concordance Between Elecsys and
Lumipulse Assays
There was a high correlation between all three biomarkers
for both methods. The correlation coefficient between the two
methods was 0.94 for Aβ42 (P < 0.0001), 0.95 for T-tau
(P < 0.0001), and 0.96 for P-tau (P < 0.0001). Figure 3 shows the
correlation and Bland-Altman plots for biomarkers quantified
by Elecsys and Lumipulse. The t-test results indicated that
there was weak concordance between all pairs of biomarkers
(P < 0.0001). For all three biomarkers, the adjustment line
(continuous line) (observed slope of 0.59 for Aβ42, t-test

P < 0.0001; observed slope of 2.07 for T-tau, t-test P < 0.0001;
and observed slope 3.21 for P-tau, t-test P < 0.0001) was
significantly separated from the perfect agreement line (dashed
line) (Figure 3). The Bland-Altman plot indicated that there
was a bias of 243.28 (continuous line) for Aβ42, meaning
that Lumipulse quantified 243.28 pg/mL less Aβ42 on average
than Elecsys. The regression line demonstrated a proportional
systemic bias with a positive trend of differences as the magnitude
of Aβ42 increased. For T-tau and P-tau, the biases between
the two assays were −210.754 and −54.128 units, respectively.
The regression line of the differences indicated a proportional
systematic bias for both biomarkers with a negative trend of
differences as the magnitude of these biomarkers increased. For
all assays evaluated, approximately 95% of measured values were
within± 1.96 SD of the bias (Figure 3).
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FIGURE 2 | The correlation and Bland-Altman plots for Aβ42, T-tau, and P-tau measurements obtained by Elecsys and Innotest methods (for P-tau and T-tau
n = 145; for Aβ42 n = 135). Each point is defined as the measurement of Elecsys and Innotest assays on the same biological sample. In correlation plots, the solid
lines represent the estimated regression line, and the dotted line represents the identity line (x = y). In the Bland-Altman plots, solid lines represent the slope observed.

AD Diagnostic Accuracy of the
Biomarkers Quantified by Each Method
Using binary logistic regression, we evaluated the diagnostic
accuracy of biomarkers quantified by each assay (clinical
diagnosis is generally considered the gold standard). To
discriminate AD from non-AD patients, the combined use of
Aβ42 and P-tau was the best approach for all three assays.
The Aβ42/40 ratio of Lumipulse also had high discriminating
power, comparable with the combined use of Aβ42 and P-tau,
to differentiate between the two diagnostic groups (AUC 0.882,

95% CI 0.785–0.980). Among all three methods, Lumipulse Aβ42
and P-tau had higher discriminating power with an AUC of
0.915 (95% CI 0.822–1.000). This combination of biomarkers had
91.2% sensitivity and 76.2% specificity for a correct classification
of diagnostic groups, and their predictive accuracy was estimated
to be 85.5%. However, the AUCs were not significantly different
between the three methods, as they were assessed using the
Hanley and McNeil method (|z| < 1.96). However, the sensitivity,
specificity and predictive accuracy slightly differed between
methods (Table 2).
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FIGURE 3 | The correlation and Bland-Altman plots for Aβ42, T-tau, and P-tau measurements obtained by Lumipulse and Elecsys methods (for P-tau and T-tau
n = 145; for Aβ42 n = 137). Each point is defined as the measurement of Lumipulse and Elecsys assays on the same biological sample. In correlation plots, the solid
lines represent the estimated regression line, and the dotted line represents the identity line (x = y). In the Bland-Altman plots, solid lines represent the slope observed.

TABLE 2 | Biomarkers with the best discriminating power between AD and non-AD dementia patients.

Biomarker AUC (95% CI) Sensitivity Specificity Total% of predictive accuracy* z-value**

Lumipulse Aβ42 + P-tau 0.915 (0.822–1.000) 91.2% 76.2% 85.5% z = 0.997 vs. Lumipulse
Aβ42/40; z = 0.639 vs.
Innotest; z = 1.673 vs. Elecsys

Aβ42/40 0.882 (0.785–0.980) 94.1% 71.4% 85.5% z = −0.394 vs. Innotest;
z = 0.033 vs. Elecsys

Innotest Aβ42 + P-tau 0.895 (0.801–0.989) 94.1% 76.2% 87.3% z = 0.544 vs. Elecsys

Elecsys Aβ42 + P-tau 0.881 (0.774–0.988) 91.1% 72.2% 84.6%

AUC, Area under the curve.
*The percentage of correct classification of AD + correct classification of non-AD/all cases.
**Values of |z| < 1.96 were taken as evidence that the true ROC areas were not different.
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Diagnostic Accuracy of the AT(N)
Classification for Each Method
The same statistical model was used to evaluate the
discriminating power of the AT(N) classification for each
method. We classified our study population into 6 AT(N) (0,
1, 2, 3, 4, and 5) groups based on the results of the three core
AD biomarkers (Jack et al., 2018). Biomarkers were grouped
into those for β amyloid deposition, pathologic tau, and
neurodegeneration [AT(N)]. Here, A referred to levels of Aβ42
(Aβ42/40) in CSF, T referred to levels of P-tau in CSF, and (N)
referred to levels of T-tau in CSF. We provided two AT(N)
classifications for Lumipulse, one based on the results of Aβ42,
T-tau and P-tau and the other one based on the Aβ42/40, T-tau
and P-tau values (Table 3). Patients who were grouped as AT(N)
0 were negative for all three biomarkers. Patients in the AT(N) 1
group were only positive for Aβ42 or the Aβ42/40 ratio. AT(N) 2
patients were positive for Aβ42 or the Aβ42/40 ratio and P-tau.
AT(N) 3 patients had positive results for all three biomarkers.
AT(N) 4 patients were positive for Aβ42 or the Aβ42/40 ratio and
T-tau. Finally, AT(N) 5 patients were negative for Aβ42 or the
Aβ42/40 ratio but positive for P-tau or T-tau or both biomarkers.
For Lumipulse and Elecsys assays, classification was made based
on the cut-offs provided by the manufacturers. The cut-offs for
the Innotest assay were determined in an independent cohort
of patients and controls in our lab. Our results indicated that

although AT(N) classification based on the Aβ42/40 had the
best discriminating power to correctly separate AD patients
from non-AD patients with dementia (AUC 0.798; 95% CI
0.649–0.947), there were no significant differences between the
four AT(N) classifications [i.e., Innotest, 2 lumipulse and Elecsys
biomarkers based on the AT(N) classifications] with respect to
diagnostic accuracy after comparing AUCs with the Hanley and
McNeil method (|z| < 1.96). However, the sensitivity, specificity,
and total percentage of predictive accuracy were different
between methods, especially between Lumipulse and Innotest
or Elecsys (Table 3). Among the three methods, Lumipulse
AT(N)s had the best sensitivity (91.2%) and total predictive
accuracy, while Elecsys AT(N) had the best specificity (77.8%)
for discriminating AD from non-AD dementia patients.

CSF Biomarker Cut-Offs Based on
Aβ42/40 Ratio Status
As the Aβ42/40 ratio and AT(N) had the best diagnostic accuracy,
we selected these variables to serve as references for determining
the cut-offs of biomarkers and ratios for Lumipulse and Elecsys.
The cut-offs for each biomarker or ratio were established to
be values that optimized the concordance with Aβ42/40 status
as positive/negative. The determined cut-offs in this study and
the established cut-offs by Fujirebio and Roche Diagnostics are
presented in Table 4. As displayed in Table 4, the cut-offs

TABLE 3 | Diagnostic accuracy of the AT(N) classification for each method.

AT(N) AUC (95% CI) Sensitivity Specificity Total% of predictive accuracy* z-value**

Lumipulse Aβ42/40, P-tau, (T-tau) 0.798 (0.649–0.947) 91.2% 71.4% 83.6% z = 0.432 vs. Lumipulse Aβ42,
P-tau, (T-tau); 0.288 vs.
Innotest; z = 0.307 vs. Elecsys

Aβ42, P-tau, (T-tau) 0.778 (0.617–0.939) 91.2% 71.4% 83.6% z = −0.076 vs. Innotest;
z = −0.034 vs. Elecsys

Innotest Aβ42, P-tau, (T-tau) 0.783 (0.627–0.938) 79.4% 76.2% 78.2% z = −0.052 vs. Elecsys

Elecsys Aβ42, P-tau, (T-tau) 0.780 (0.624–0.937) 67.6% 77.8% 67.3%

AUC, Area under the curve.
*The percentage of correct classification of AD + correct classification of non-AD/all cases.
**Values of | z| < 1.96 were taken as evidence that the true ROC areas were not different.

TABLE 4 | Cut-offs of CSF biomarkers that yielded maximum Youden index versus Aβ42/Aβ40 ratio status in the receiver operating characteristics analysis.

AUC (95% CI) PPA NPA Max Youden index Cut-off OPA Manufacturer cutoffs

Lumipulse T-tau 0.860 (0.791–0.930) 72.5% 89.4% 61.9% ≥399 77.9% >400

P-tau 0.925 (0.884–0.967) 86.3% 85.1% 71.4% ≥51 85.9% >56.5

Aβ42 0.923 (0.878–0.967) 82.4% 89.4% 71.7% ≤563 84.6% <600

Aβ42/40 1.000 (1.000–1.000) 100% 100% 100% ≤0.070 100% <0.069

P-tau/Aβ42 0.992 (0.984–1.000) 95.1% 97.9% 93.0% ≥0.082 95.9% –

T-tau/Aβ42 0.956 (0.906–1.000) 96.1% 93.6% 89.7% ≥0.517 95.3% –

Elecsys T-tau 0.812 (0.739–0.885) 58.0% 95.6% 53.6% ≥268.15 69.7% >300

P-tau 0.867 (0.811–0.923) 70.0% 95.6% 65.6% ≥22.175 78.0% >27

Aβ42 0.904 (0.840–0.967) 93.0% 78.4% 71.4% ≤939.150 89.1% ≤1000

P-tau/Aβ42 0.994 (0.986–1.000) 96.0% 97.3% 93.3% ≥0.023 96.4% >0.024

T-tau/Aβ42 0.974 (0.932–1.000) 96.0% 94.6% 90.6% ≥0.26 95.6% >0.28

AUC, Area under the curve; PPA, Positive percent agreement with Aβ42/40 status; NPA, Negative percent agreement with Aβ42/40 status; Max Youden index,
(PPA + NPA – 1); OPA, Overall percent agreement.
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FIGURE 4 | CSF biomarkers that yielded the maximum Youden index versus Aβ42/Aβ40 ratio status in the receiver operating characteristics analysis.

determined according to concordance with the Aβ42/40 ratio
were comparable with the manufacturer cut-offs. For Lumipulse
and Elecsys biomarkers and ratios, the AUC for discriminating
Aβ42/40 status was greater than 0.8. To discriminate between
Aβ42/40 positivity/negativity status among Lumipulse assays, the
Aβ42/40 AUC was 100, as it was used for calculating the cut-
offs. However, the P-tau/Aβ42 and T-tau/Aβ42 ratios had a high
discriminating accuracy (AUC 0.922, OPA 95.9% and AUC 0.956,
OPA 95.3%, respectively) at the cut-off values of ≥0.082 and
≥0.517, respectively. Among Elecsys markers, the P-tau/Aβ42
and T-tau/Aβ42 ratios had superior discriminating power (AUC

0.994, OPA 96.4% and AUC 0.974, OPA 95.6%, respectively) at
the cut-off values of ≥0.023 and ≥0.26, respectively. In fact, the
Elecsys P-tau/Aβ42 was the best in discriminating patients based
on Aβ42/40 status (Table 4 and Figure 4).

In addition, we determined the cut-offs for biomarkers and
ratios of Lumipulse and Elecsys based on the Aβ42 status of
Innotest (Supplementary Table 1). Among Lumipulse assays,
Aβ42 had the highest AUC (0.955, 95% CI 0.924–0.986) followed
by P-tau/Aβ42 (AUC 0.933, 95% CI 0.891–0.976) and Aβ42/40
(AUC 0.931, 95% CI 0.892–0.970). For the Elecsys assay, Aβ42
had the highest AUC (0.974, 95% CI 0.954–0.995), followed by
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P-tau/Aβ42 (AUC 0.936, 95% CI 0.894–0.978) and T-tau/Aβ42
(AUC 0.920, 95% CI 0.868–0.971).

Furthermore, all statistical analysis was performed for the
study cohort separated by sex (Supplementary Figures 1–8
and Supplementary Tables 2–7). We found a high correlation
between the three methods for both male and female subjects,
although there were systematic differences between biomarker
values measured by each method (Supplementary Figures 1–6).
Interestingly, the cut-offs of CSF biomarkers for male subjects
was lower than those of manufacturer, while in the case of female
subjects these cut-offs were comparable with corresponding
manufacturer’s cut-offs (Supplementary Tables 6, 7).

DISCUSSION

In this study, we evaluated the concordance between three
different methods for measurement of AD CSF biomarkers—
Innotest ELISA, Elecsys and Lumipulse platforms—in a cohort
of patients with AD, MCI, and non-AD dementias. We also
evaluated the diagnostic accuracy of biomarkers and their ratios
measured by each method. Furthermore, we determined cut-offs
for CSF biomarkers of AD (Aβ42, T-tau, and P-tau) and their
ratios measured on the fully automated Lumipulse and Elecsys
to optimize their concordance with Aβ42/40 status.

Although there was a high correlation between all three assays,
our results showed that there was a lack of consistency between
the three methods, except for Aβ42 and T-tau of Lumipulse
and Innotest. Because the antibodies used for the Lumipulse
assays were produced by the same manufacturer as Innotest
ELISA (Fujirebio), the similar specificity of the antibodies
between the two methods may partly explain the concordance
we observed between Aβ42 and T-tau values between these
two methods. Our results were consistent with previous studies
that had found a systematic bias between the measurements
of biomarkers by Lumipulse and Innotest (Bayart et al., 2019)
and by Elecsys and Innotest (Willemse et al., 2018). The
lack of concordance between Elecsys, Lumipulse, and Innotest
assays may be attributed to the differences that exist between
these methods. First, they have different recommended pre-
analytical procedures that can affect the measured concentration
of CSF biomarkers. Among these three biomarkers, Aβ42 is
known to be more sensitive to pre-analytical conditions. Second,
these methods use different measurement technologies (ECLIA,
CLEIA, and ELISA, respectively), which may affect the detectable
concentration. Third, the antibodies that were produced and
applied in the AD CSF assays by Roche Diagnostics and Fujirebio
Diagnostics may have different specificities. Finally, although
both Elecsys and Lumipulse have been standardized for Aβ42,
the material used for standardization differed between methods
(Bittner et al., 2016; Kuhlmann et al., 2017).

We examined the ability of Aβ42, T-tau, P-tau and their
ratios to discriminate AD patients from patients with non-
AD dementias. Aβ42 and P-tau combined were both the
best biomarkers for discriminating between the two diagnostic
groups. Both biomarkers were specific to AD; therefore,
it was not surprising that their combination had a high

discriminating power for diagnosing AD patients. However,
abnormal concentrations of T-tau in CSF, which underlies
neurodegeneration, is not specific to AD and occurs in non-
AD dementias or in non-AD elderly persons with comorbidities
(Kovacs et al., 2013). Evaluation of differences in AUC revealed
that there were no significant differences in the discriminating
power of Aβ42 + P-tau measured by each method. However, the
Innotest Aβ42 + P-tau had a better sensitivity (94%), specificity
(76%), and predictive accuracy (87%). The Aβ42/40 ratio also had
a high discriminating power for differentiating between patients
with AD and non-AD dementias. Consistent with our results,
Shoji et al. (1998) and Lewczuk et al. (2004) previously suggested
that the Aβ42/40 ratio is superior to the concentration of Aβ42
alone for discriminating AD patients.

We also assessed the discriminating power of AT(N) groups
that were generated by the results of CSF Aβ42 (Aβ42/40),
P-tau and T-tau for each method. The AT(N) classification
was proposed by the NIAA research framework (Jack et al.,
2018) and gives a biological rather than a clinical definition
of AD. We found that the use of Aβ42/40 instead of Aβ42 in
AT(N) improved the classification accuracy (AUC 0.798, 95%
CI 0.649–0.947 vs. AUC 0.778, 95% CI 0.617–0.939), However,
the sensitivity, specificity and predictive accuracy was the same
for both AT(N)s. Among all four AT(N) classifications, Elecsys
AT(N) had the highest specificity. In fact, Elecsys AT(N) had
better specificity than sensitivity in discriminating the two
diagnostic groups. The preference for higher sensitivity or
specificity depends on the purpose of different investigation
scenarios. For example, for screening purposes, higher sensitivity
is always preferable; however, high specificity might be preferable
for the selection of patients for clinical trials. These results should
be interpreted with caution because of the small population size
of both of the diagnostic groups in our study.

Finally, we defined the CSF cut-offs for both Lumipulse and
Elecsys assays based on the Lumipulse Aβ42/40 status because
of its high diagnostic accuracy in our study, its high stability
with respect to pre-analytical variations (Lewczuk et al., 2006;
Willemse et al., 2018) and the fact that the ratio probably accounts
for inter-individual variability in overall Aβ production and
CSF turnover (Janelidze et al., 2017). Given that Innotest assays
are among some of the most commonly used methods for the
detection of AD CSF biomarkers, we also provided the cut-offs
for both Lumipulse and Elecsys assays based on the Innotest
Aβ42 status.

In previous studies, amyloid PET visual read (Schindler
et al., 2018; Alcolea et al., 2019) or diagnostic accuracy (Bayart
et al., 2019) have been used for the determination of AD CSF
biomarkers cut-offs for fully automated methods and their ratios.
Our results indicated that the cut-offs based on the Aβ42/40
ratio had a close similarity to the cut-offs established by each
manufacturer; therefore, the Aβ42/40 ratio is a robust variable
that can differentiate AD from non-AD individuals. Based on
our results for both the Lumipulse and the Elecsys methods,
P-tau/Aβ42 and T-tau/Aβ42 performed better together than
each biomarker alone in discriminating Aβ42/Aβ40 ± status.
This result is consistent with the results of previous studies
where P-tau/Aβ42 (Alcolea et al., 2019) or T-tau/Aβ42
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(Bayart et al., 2019) demonstrated superior performance in
discriminating the diagnostic groups or amyloid PET status
compared with individual biomarkers (Schindler et al., 2018).

Some limitations of this study require consideration. First, our
study population lacked health control individuals. The majority
of the population consisted of MCI subjects (n = 94) with a
short follow-up time; for this reason, we decided to eliminate
patients in some analyses and retain a small number of AD
(n = 34) and non-AD demented patients (n = 21) when evaluating
the diagnostic accuracy of biomarkers. Second, instead of using
an independent method, we used the Aβ42/Aβ40 ratio status
or Aβ42 status to determine the biomarker cut-offs, and this
may have led to the overfitting of the results. Third, Aβ40
cannot be measured by Elecsys or ELISA, so, the comparison was
incomplete. Other limitation is that 17 patients were excluded of
the analyses because they had Aβ42 values above the upper limit
of detection (1700 pg/ml) for Elecsys.

The main strength of our study is that we compared, for
the first time, the clinical and analytical performance of fully
automated Elecsys and Lumipulse platforms together in the same
cohort of patients. In addition, our study population consisted of
a real population of patients who attended a memory clinic and,
therefore, provided a more realistic application of biomarkers in
daily clinical practice.

CONCLUSION

In conclusion, both Lumipulse and Elecsys methods had a
high correlation with each other and with Innotest ELISA. The
presence of systematic bias between biomarkers measured by
each method was expected as there were various pre-analytical
and analytical differences between methods. For both Lumipulse
and Elecsys methods, ratios had a better analytical performance
compared with individual biomarkers, and the Aβ42/Aβ40 ratio
had a high concordance with the diagnostic accuracy of AD.
Because the calibrators were adjusted with reference samples in
both automated platforms, it was expected that these platforms
would reduce intra- and inter-laboratory variations and enhance
reproducibility.

AUTHOR’S NOTE

Considering the importance of study of cerebrospinal fluid
biomarkers in mild cognitive impairment and Alzheimer’s
disease, we aimed to investigate the concordance between
core AD biomarkers measured in CSF using Innotest,
Lumipulse and Elecsys methods. We observed that both,

Lumipulse and Elecsys methods had a high correlation
with each other and with Innotest ELISA. The presence
of systematic bias between biomarkers measured by each
method was expected as there are various pre-analytical
and analytical differences between methods. For both
Lumipulse and Elecsys methods, ratios had a better analytical
performance compared with individual biomarkers. The
Lumipulse and Elecsys CSF AD assays showed high analytical
and clinical performances so their use is recommended for
the measurement of CSF AD biomarkers compared with
unstandardized manual methods.
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Background: Normal establishment of cognition occurs after forming a sensation
to stimuli from internal or external cues, in which self-reference processing may be
partially involved. However, self-reference processing has been less studied in the
Alzheimer’s disease (AD) field within the self-reference network (SRN) and has instead
been investigated within the default-mode network (DMN). Differences between these
networks have been proven in the last decade, while ultra-early diagnoses have
increased. Therefore, investigation of the altered pattern of SRN is significantly important,
especially in the early stages of AD.

Methods: A total of 65 individuals, including 43 with mild cognitive impairment (MCI) and
22 cognitively normal individuals, participated in this study. The SRN, dorsal attention
network (DAN), and salience network (SN) were constructed with resting-state functional
magnetic resonance imaging (fMRI), and voxel-based analysis of variance (ANOVA)
was used to explore significant regions of network interactions. Finally, the correlation
between the network interactions and clinical characteristics was analyzed.

Results: We discovered four interactions among the three networks, with the SRN
showing different distributions in the left and right hemispheres from the DAN and SN
and modulated interactions between them. Group differences in the interactions that
were impaired in MCI patients indicated that the degree of damage was most severe
in the SRN, least severe in the SN, and intermediate in the DAN. The two SRN-related
interactions showed positive effects on the executive and memory performances of MCI
patients with no overlap with the clinical assessments performed in this study.

Conclusion: This study is the first and primary evidence of SRN interactions related to
MCI patients’ functional performance. The influence of the SRN in the ultra-early stages
of AD is nonnegligible. There are still many unknowns regarding the contribution of the
SRN in AD progression, and we strongly recommend future research in this area.

Keywords: self-reference network, mild cognitive impairment, interaction, modulation, dorsal attention network,
salience network
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease
accompanied by an irreversible decline in memory, and there
is currently no effective treatment (Rafii and Aisen, 2020).
Two early stages have been defined that play key roles in AD
curative treatment, namely, mild cognitive impairment (MCI)
and subjective cognitive decline, in which patients’ network
damage is still partially reversible at the neuronal level. A
high rate of approximately 10–15% is reported for MCI which
annually progresses to AD, and subjective cognitive decline
possessing lighter cognitive symptoms is regarded as occurring
prior to MCI. Both stages have received much attention in recent
years as a possible precursor to this most common dementia state
(Cai et al., 2015).

Resting-state functional magnetic resonance imaging (fMRI)
has been widely used to investigate the pathogenesis of
networks in the course of the disease and has attracted
increasing attention. However, little evidence of a self-reference
network (SRN) has been found in AD studies. It appears
that most research placed the self-reference processing of the
SRN under that of default-mode network (DMN) concepts;
therefore, there is not much active research being done on
their differences (Whitfield-Gabrieli and Ford, 2012; Davey
et al., 2016; de Caso et al., 2017; Soch et al., 2017; Kubera
et al., 2020). SRN shares some similarities with the DMN
in brain regions and the processing function of self-reference
(Potvin et al., 2019), whereas the operational type and activated
regions (including driving and driven hubs) in the brain
have been reported to be different. Wang et al. (2020) has
defined the driving hub and driven hub, of which both are
composed of brain regions that act similarly in the activation
process within a network. The difference between them is
that the driving hub takes an active role rather than the
passive role taken by the driven hub at the initiation of
an activation.

Moreover, neuroimaging has revealed consistent activations
in the medial prefrontal cortex (MPFC) and posterior cingulate
cortex extending to the precuneus both during explicit
self-reference tasks and during rest (Whitfield-Gabrieli et al.,
2011). Importantly, the functions between dorsal medial
prefrontal cortex (dMPFC) and ventral medial prefrontal cortex
(vMPFC) are different (Schwiedrzik et al., 2018; Lieberman
et al., 2019). SRN mediates the explicit self-reference in the
dMPFC during tasks vs. the DMN actions in the default-mode
self-reference in the vMPFC during rest (Whitfield-Gabrieli et al.,
2011). The regions mentioned above are major driving hubs
within each network. According to the above, the precuneus
is involved in all self-reference processing. As mentioned in
regard to the driving hubs, the posterior cingulate cortex
and precuneus only takes part in the active role within
the activation of DMN, while serving a passive role within
the activation of SRN (Whitfield-Gabrieli et al., 2011; Wang
et al., 2020). Interestingly, dMPFC studies have attracted
less attention in AD (Xi et al., 2013; Jedidi et al., 2014;
Kurth et al., 2015). Instead, there is more concern with
social behavior (Dejean et al., 2016; Goelman et al., 2019;

Piva et al., 2019) and psychosis (e.g. depression; Shiota
et al., 2017; Schulze et al., 2018) than with neurosis in
these studies.

Regarding interactions with other networks, correlations
between emotion and attention to cognition scale performance
have been clinically discovered, and self-reference processing
may be partially involved (Berkovich-Ohana et al., 2012; Amft
et al., 2015; Catalino et al., 2020; Tomova et al., 2020; Van der
Gucht et al., 2020). The dorsal attention network (DAN) and
salience network (SN), which function across both high-level
cognitive and attention networks (Arkin et al., 2020; Shi et al.,
2020), participate in the regulation of networks between state
switching of the brain (Gao and Lin, 2012; He et al., 2014;
Chand et al., 2018). Specifically, the right fronto-insular region
of the SN plays a critical role in switching between the DMN
and the central executive network (He et al., 2014), and the
DAN modulates the in-between activity and is damaged in MCI;
thus, it is responsible for patients’ cognitive impairment (Chand
et al., 2018). The actional patterns in AD progression indicate
that the mechanisms of healthy cognition and memory are all
based on balance. Ultimately, prior stimulation then forms the
necessary sensation to attention, and the normal establishment
of those functions comes afterwards (Berger et al., 2015;
Qin et al., 2016).

Notably, the relationship of the SRN to the other networks in
AD remains unclear. In particular, the SRN effect on cognition
is associated with AD. The only closer relationship mentioned in
the last decade was the overlap between self-reference processing
and salience processing and between self-reference processing
and executive control processing regions found in amnestic MCI
(Bai et al., 2016), in which the patient’s cognitive performance
corresponded to the decoupled functional connection (FC)
within and betweenmodules of a network (Contreras et al., 2019)
but not age (Sullivan et al., 2019). Nonetheless, it is difficult to
show the directly engaged network based on the interpretation
in this research. Given that there are many investigations on
the DMN rather than the SRN in AD research, there is a
crucial need for SRN research. Furthermore, the impact of SRN
interactions that contribute to patient cognition in the disease is
nonnegligible.

In this study, we aimed to investigate the interaction of the
SRN between the DAN and the SN and the relationship of its
patterns combined with behavioral and cognitive development
in the course of the disease to promote further research on the
SRN in AD.

MATERIALS AND METHODS

Participants
A total of 65 subjects, including 43 with MCI and 22 cognitively
normal subjects as healthy controls (HC), participated in the
study. HC were free of memory complaints (beyond those of
normal aging), verified by a study partner. MCI subjects had
a subjective memory concern as reported by the subject, study
partner, or clinician. All study subjects met the ADNI inclusion
and exclusion criteria. In the ADNI, HC are nondepressed, non-
MCI, and presented without dementia and have Mini-Mental
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State Examination (MMSE) scores of 24–30 (inclusive) and a
Clinical Dementia Rating (CDR) score of 0. Inclusion criteria for
ADNI MCI were MMSE scores of 24–30 (inclusive), a subjective
memory concern, a CDR of 0.5, an absence of significant levels of
impairment in other cognitive domains, and essentially preserved
activities of daily living.

Neuropsychological Data
The demographic and clinical measures from the ADNI
included in this analysis were age; education; sex; and Clinical
Dementia Rating Scale: sum of boxes (CDRSB), Alzheimer’s
Disease Assessment Scale cognitive subscale (ADAS-Cog11,
ADAS-Cog13 and ADAS-Cog Q4), MMSE, Rey Auditory
Verbal Learning Test (RAVLT), Logical Memory Test: total
number of units recalled (LDELTOTAL), Trail Making Test-B
(TRABSCOR), Functional Activities Questionnaire (FAQ),
Montreal Cognitive Assessment (MoCA), and Everyday
Cognition test: the patient reported version (ECogPT) scores.

Alzheimer’s Disease Neuroimaging
Initiative (ADNI)
The ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies, and nonprofit
organizations as a $60 million, 5-year public-private partnership.
The primary goal of the ADNI has been to test whether
serial magnetic resonance imaging (MRI), functional MRI,
other biological markers, and clinical and neuropsychological
assessments can be combined to measure the progression
of MCI and early AD. The determination of sensitive and
specific markers of very early AD progression is intended to
aid researchers and clinicians in developing new treatments
and monitoring their effectiveness and to lessen the time and
cost of clinical trials. To date, the ADNI has three phases,
ADNI-1, ADNI-GO, and ADNI-2, consisting of cognitively
normal individuals, individuals with MCI, and individuals with
dementia or AD. For more information, see http://www.adni-
info.org.

Standard Protocol Approvals,
Registrations, and Patient Consent
The ADNI was approved by the institutional review board at
each site andwas compliant with theHealth Insurance Portability
and Accountability Act. Written consent was obtained from all
participants at each site.

MRI Acquisition
All subjects were scanned on a 3.0-Tesla MRI scanner (GE
Healthcare, Philips Medical Systems). Resting-state functional
images were obtained by an echo-planar imaging sequence (EPI:
a fast MRI technique that allows the acquisition of single images
in as little as 20 ms and the performance of multiple-image
studies in as little as 20 s (De LaPaz, 1994) with the following
parameters: 140 time points; repetition time (TR) = 3,000 ms;
echo time (TE) = 30 ms; flip angle = 80◦, number of slices = 48;
slice thickness = 3.3 mm spatial resolution = 3 × 3 × 3 mm3

and matrix = 64 × 64. All original image files are available
to the general scientific community. Detailed descriptions of
the resting-state fMRI and MRI scanner protocols are available
online1. Scan quality was evaluated by the ADNI MRI quality
control center at the Mayo Clinic to exclude ‘‘failed’’ scans
because of motion, technical problems, or significant clinical
abnormalities (e.g., hemispheric infarction).

Resting-State Functional Image
Preprocessing
The fMRI data were processed with the Data Processing
Assistant for Resting-State fMRI v2.3 (DPARSFA)2 and Resting-
State fMRI Data Analysis Toolkit3 based on the Statistical
Parametric Mapping 12 (SPM12)4 and MATLAB (The Math
Works, Inc.; Natick, MA, USA) programs (Chao-Gan and Yu-
Feng, 2010). The first 10 volumes of the scanning session
were abandoned to allow for magnetization equilibration effects.
Then, the remaining images were corrected for timing differences
in acquisition among slices and head motion effects. No
subjects performed a head motion of >3.0 mm of displacement
or >3.0◦ of rotation during the scan. Next, the obtained images
were spatially normalized into Montreal Neurological Institute
echo-planar imaging templates, resampled to 3 × 3 × 3 mm3

voxels, and smoothed with a Gaussian kernel of 6 × 6 × 6 mm3

(full width at half-maximum, FWHM). The nuisance signals,
including 24 head motion parameters and global mean, white
matter, and cerebrospinal fluid signals, were regressed out
as covariates of no interest. Finally, the resulting data were
bandpass-filtered within the frequency range of 0.01 and 0.08 Hz
to reduce the low-frequency drift and high frequency cardiac and
physiological respiration noise.

Resting-State Networks Definition
Seed-based FC analysis was used to construct resting-state
networks. The spherical region of interest (ROI) (radius = 8 mm)
centered at the dMPFC (Montreal Neurological Institute [MNI]
space: −0, 52, 26) (Andrews-Hanna et al., 2010), the medial
frontal gyrus (MFG) (MNI space: −8, 57, 12/5, 54, −15) (Jacova
et al., 2013), and the bilateral intraparietal sulcus (IPS) (MNI
space: −25, −53, 52/25, −57, 52) (Woodward et al., 2011; Ham
et al., 2015) served as seed regions for the SRN, bilateral SN,
and bilateral DAN, respectively. These seed regions have been
widely used to identify the corresponding networks in prior
studies. For each subject, an average time series for the ROI
was computed as the reference time course. Pearson cross-
correlation analysis was then conducted between the average
signal change in the dMPFC, MFG, and IPS and the time
series of whole-brain voxels. Next, Fisher’s z-transform was
used to improve the normality of the correlation coefficients
(Lowe et al., 1998). Finally, the individual maps of each network
were acquired.

1http://www.adni.loni.usc.edu/methods/documents/mriprotocols/
2http://www.rfmri.org/DPARSFA
3http://www.restfmri.net
4http://www.fil.ion.ucl.ac.uk/spm

Frontiers in Aging Neuroscience | www.frontiersin.org 3 March 2021 | Volume 13 | Article 66643789

http://www.adni-info.org
http://www.adni-info.org
http://www.adni.loni.usc.edu/methods/documents/mriprotocols/
http://www.rfmri.org/DPARSFA
http://www.restfmri.net
http://www.fil.ion.ucl.ac.uk/spm
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Wei et al. Self-reference Network in MCI

STATISTICAL ANALYSIS

Demographic and Neuropsychological
Data
The composite scores were applied to enhance statistical
reliability by means of reducing random variability and
eliminating floor and ceiling effects (Wilson et al., 2010).
The χ2 test was applied in the comparisons of sex. One-way
analysis of variance (ANOVA) was applied in the comparisons
of education. The Kruskal–Wallis test was applied in age and
other neuropsychological data comparisons, with Monte Carlo
significance at p< 0.05 due to the nonnormal distributions.

Group-Level Interaction Analysis
Two-way ANOVA with network types (i.e., SRN, left and right
DAN, left and right SN) and the two groups (i.e., HC and
MCI) was conducted to identify the brain regions showing
significant interaction between the two networks in a voxel-wise
manner. The thresholds were set at a corrected p < −0.05,
determined byMonte Carlo simulation for multiple comparisons
(AlphaSim-corrected voxel-wise p < 0.01, FWHM = 6 mm,
cluster size = 756 mm3). Post hoc analysis was conducted to
determine the internetwork differences among the groups. To
further investigate the associations between cognitive scores
and internetwork differences among the two groups, partial
correlation analysis was performed, with age, sex, and education
included as covariates. All data were analyzed using SPM12 and
SPSS Statistics 22 software (SPSS, Inc., Chicago, IL, USA),
with statistically significant differences (p < 0.05, Monte Carlo
simulation) included.

RESULTS

Demographic and Neuropsychological
Data
As shown in Table 1, no significant differences in age, years
of education, or sex were detected between the groups. In
consideration of the main disease effect, MCI subjects displayed
significantly worse performance on general cognition than the
HC subjects, excluding ECogPT Divided Attention. Notably, the
scores of CDRSB, ADASs, FAQ, TRABSCOR, and ECogPTs
and two RAVLTs (i.e., the Forgetting and Percent Forgetting)
correlated positively with the disease progression or functional
damage degree, with a score of 0 corresponding to normal or
no impairment and higher scores representing damage severity.
The higher score of MMSE, MoCA, LDELTOTAL, and the other
RAVLTs (i.e., Immediate Recall and Learning Score) correlated
positively with normal performance (Farias et al., 2008; Battista
et al., 2017; Moradi et al., 2017).

Identification of Network Interactions
The spatial maps of each reconstructed network are shown in
Figure 1. A qualitative visual inspection of networks between
the two groups showed similar patterns, in which distributions
were demonstrated across the majority of the clusters, including
diffuse subcortical and cortical sites, with a corrected threshold

TABLE 1 | Demographic and neuropsychological data.

Items HC (n = 22) MCI (n = 43) p-valuea

Demographic Data
Age (years) 73.77 (5.00) 74.22 ± 2.82 0.644
Education (years) 16.27 ± 2.05 15.66 ± 2.53 0.333b

Sex (male/female) 7/15 21/22 0.111c

Neuropsychological Data
CDRSB 0.02 (0) 1.66 (2) <0.001
ADAS11 5.38 (4) 9.88 (7) <0.001
ADAS13 8.62 (4) 15.93 (11) <0.001
ADASQ4 2.76 (2) 5.44 (4) <0.001
MMSE 28.9 (2) 27.8 (3) 0.01
MoCA 25.48 (3) 22.9 (4) 0.001
RAVLT: Immediate recall 47.38 (14) 33.59 (13) <0.001
RAVLT: Learning 6.29 (4) 3.98 (5) 0.001
RAVLT: Forgetting 3.29 (2) 4.85 (3) 0.024
RAVLT: Percent Forgetting 28.25 (21.47) 63.11 (52.91) <0.001
LDELTOTAL 14.67 (4) 6.78 (4) <0.001
TRABSCOR 89.29 (31) 107.85 (74) 0.024
FAQ 0.5 (0) 3.88 (8) <0.001
ECogPT: Memory 1.6 (0.5) 2.14 (0.94) 0.001
ECogPT: Langue 1.31 (0.44) 1.86 (0.82) 0.002
ECogPT: Visual-spatial 1.17 (0.29) 1.45 (0.79) 0.017
ECogPT: Planning 1.08 (0.2) 1.47 (0.8) <0.001
ECogPT: Organization 1.17 (0.42) 1.46 (0.67) 0.039
ECogPT: Divided attention 1.52 (0.63) 1.78 (0.75) 0.064
ECogPT: Total score 1.31 (0.29) 1.73 (0.79) <0.001

Note: values with normal distributions are presented as the mean ± standard deviation
(SD); values with nonnormal distributions are presented as the median (interquartile). χ2

test was applied in the comparisons of sex. One-way Kruskal-Wallis test was applied in
age and all neuropsychological data comparisons. aMonte Carlo significant. bThe p-value
was obtained by one-way ANOVA. cThe p-value was obtained by χ2 test. Abbreviations:
HC, healthy control; MCI, mild cognitive impairment; CDRSB, Clinical Dementia Rating
Scale: sum of boxes; ADAS, Alzheimer’s Disease Assessment Scale cognitive subscales;
MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; RAVLT,
Rey Auditory Verbal Learning Test; LDELTOTAL, Logical Memory Test: total number of
units recalled; TRABSCOR, Trail Making Test-B; FAQ, Functional Activities Questionnaire;
ECogPT, Everyday Cognition test: the patient reported version.

at p < 0.05 (Monte Carlo simulation), for example, the SRN
in medial frontal and other cortical middle regions; the DAN
in temporal and parietal regions; and the SN in frontal cortical
regions. Nevertheless, MCI patients utilized larger regions in all
constructed networks than the HC.

We found four interactions between each pair of networks
of the SRN, DAN, and SN, the details of which are shown in
Table 2 and Figure 2. The SRN demonstrated interactions with
the DAN and SN, respectively, in the left and right hemisphere,
whereas the DAN and SN demonstrated interactions in both
hemispheres: (1) the SRN and left DAN showed interactions
in the main regions of the right precuneus; (2) the left DAN
and left SN showed interactions mainly in the left and right
cerebellum regions, including the posterior lobe, the inferior
lobe, the superior lobe, pyramis, and declive; (3) the SRN and
right SN showed interactions in the main region of the right
angular gyrus; and (4) the right DAN and right SN showed
interactions mainly in the left superior temporal gyrus. The
brain regions with the interactions demonstrated above were not
limited to the defined ROI coordinates (i.e., the left or right
hemisphere) of each constructed network due to the networks’
known whole-brain distribution. Surprisingly, modulations of
the SRN through its communication with the left DAN (and right
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FIGURE 1 | Three networks constructed by region of interest. The networks of HC and MCI showed similar distribution patterns across the majority of the clusters,
including the medial frontal, temporal, parietal cortical regions (corrected threshold at p < 0.05, Monte Carlo simulation). MCI patients utilized larger regions in all
constructed networks than HC. Abbreviations: SRN, self-reference network; DAN, dorsal attention network; SN, salience network; HC, healthy control; MCI, mild
cognitive impairment.

SN) to the interactions of the DAN and SN in the left (and right)
hemisphere occurred; however, these modulations happened to
be damaged in individuals with MCI.

Post hoc tests showed the internetwork differences among
the groups. The SRN showed a decrease in all of its related
interactions, whereas the corresponding networks within those
networks were all increased in MCI patients compared with HC.
The FC of each network within the interaction between the DAN
and SN demonstrated a decrease in the DAN and an increase in
the SN in both the left and right hemispheres. All interactions
were significant (corrected p < 0.05, Monte Carlo simulation)
between HC and individuals with MCI, except the SN within the
interactions between the right DAN and right SN (p = 0.083).

Behavioral Significance of Network
Interactions
The significant results of the behavioral significance of
SRN-related interactions that correlated only with MCI (no
correlation with HC) are presented in Figure 3. The interaction
of the SRN with the left DAN correlated positively with
MCI patients’ visual-spatial performance in the ECogPT test
(r = −0.387, p = 0.016). The interaction of the SRN with the
right SN correlated negatively with the MCI patients’ clinical
test scores on the RAVLTs, including Forgetting (r = −0.454,
p = 0.004) and Percent Forgetting (r = −0.483, p = 0.002);
the FAQ (r = −0.334, p = 0.04), and the CDRSB (r = −0.363,
p = 0.025), whereas only the RAVLT: Learning Scores (r = 0.35,
p = 0.031) were positively related to the interaction due
to its assessment design. According to the above results
(‘‘Demographic and Neuropsychological Data’’ section), the
higher the scores were on the RAVLT: Learning test regarding
the score design, the better the related performance of patients

was; in contrast, higher scores on the other assessments were
associated with worse functions. All these data indicated a
positive relationship between the functional performances of
MCI patients and SRN-related interactions.

DISCUSSION

First Evidence of SRN Modulations and Its
Special Distribution Among the Other
Networks
We discovered the interactions among the three networks
and brain regions. Four interactions (Table 2 and Figure 2)
were not limited to the defined ROI coordinate (i.e., the
left or right hemisphere) of each constructed network due to
the networks’ known whole-brain distributions. The network
normally interacts between hemispheres; therefore, it might be
the crossing recruitment within network in order to adapting
to the damage functions (Ptak et al., 2020). Furthermore, SRN
anatomical structure is located in the midline of cortex. The
ROI coordinate of SRN we selected lies in middle area of
brain. Accordingly, these cross-hemisphere results shown in
SRN-related interactions is actually reasonable.

To emphasize, the SRN showed a fundamental difference
from the DMN in its relationship to the DAN and SN concerning
both self-referencing and attentional processes. The DMN tends
to be passively regulated by both the DAN and the SN,
whereas the SRN plays an active role in the relationship. For
the SRN and DMN, a lower FC between these networks has
been proven to lead to global decline in episodic memory
retrieval or the recognition of amnestic MCI (Bai et al., 2012a).
Nonetheless, selective changes within the SRN at least preserved
the partial task function of amnestic MCI (Bai et al., 2016).
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TABLE 2 | Regions showing self-reference network (SRN) interactions with the dorsal attention network (DAN) and salience network (SN).

Interactions Brain regions BA Peak MNI coordinates Peak intensity Number of cluster voxels (mm3)

x y z

SRN × Left DAN Precuneus. R 7/31 12 −42 42 13.7827 864
Left DAN × Left SN Cerebellum posterior lobe. L

Cerebellum inferior lobe. L
Pyramis. L

- −27 −72 −39 11.0646 1458

Cerebellum posterior lobe. R
Cerebellum superior lobe. R
Declive. R

- 15 −66 −21 11.4859 1080

SRN × Right SN Angular gyrus. R 39 48 −72 33 9.5474 810
Right SN × Right DAN Superior temporal gyrus. L 13/22/38 −45 9 −9 14.8657 756

Note: BA, Brodmann area; MNI, Montreal Neurological Institute; R, Right; L, Left; p < 0.01, AlphaSim corrected.

FIGURE 2 | The interactions among the three networks with group differences. Four interactions were found: the SRN demonstrated interactions with the DAN and
SN in the left and right hemispheres, respectively, whereas the DAN and SN demonstrated interactions in both hemispheres. (1) The SRN and left DAN demonstrated
interactions in the main regions of the right precuneus; (2) the left DAN and left SN demonstrated interactions in both the left and right cerebellum regions, including
the posterior lobe, inferior lobe, superior lobe, pyramis, and declive; (3) the SRN and right SN demonstrated interactions in the main region of the right angular gyrus;
(4) the right DAN and right SN demonstrated interactions in the left superior temporal gyrus. The brain regions that were demonstrated above were not limited to the
defined ROI coordinates (i.e., the left or right hemisphere) of each constructed network due to the networks’ known whole-brain distribution. Post hoc tests showed
the internetwork differences among the groups: (1) the SRN showed a decrease in FC in all its related interactions, whereas increases in FC were found in the
corresponding networks (the left DAN and right SN) within the interaction with the SRN; (2) the decreased FC in the DAN and increased FC in the SN were
demonstrated within their own interactions of both hemispheres in MCI patients compared with HC. All interactions were significant (corrected p < 0.05, Monte Carlo
simulation) between HC and MCI patients, except that of the right SN (p = 0.083) with the right DAN. Abbreviations: L, left; R, right; SRN, self-reference network;
DAN, dorsal attention network; SN, salience network; FC, functional connectivity; HC, healthy control; MCI, mild cognitive impairment; ∗Monte Carlo significant.

Most importantly, the modulation of the SRN to the interaction
between the DAN and the SN (hereafter, DAN-SN) was first
evidenced in our study. The SRN regulates the DAN-SN in
the left hemisphere through its interactions with the DAN and
regulates the DAN-SN in the right hemisphere through the SN.

Furthermore, a different distribution of the SRN interacting
with only the left DAN and only the right SN in the left and right
hemispheres, respectively, vs. the DAN and the SN interacting in
both hemispheres in this study, showed the special characteristic
of the SRN in its connection with the two networks. This may
be related to the laterality. For instance, the significance of
network functional lateralization in AD progression is as follows:
(1) in the SN, in which right lateralization has been proven

(Zhang et al., 2019), the occurrence of connections with the
SRN on the right side rather than the left side significantly
reduced FC, especially in the right prefrontal cortex, and has
been observed in subjective cognitive decline patients (Hu et al.,
2017); (2) however, in the DAN, damage patterns (Zhang et al.,
2015) and inhibition in the temporal region of the whole
brain have been observed in MCI patients (Chand et al., 2018;
Zhang et al., 2019), but evidence for lateralization remains
debatable (Corbetta and Shulman, 2002; Vossel et al., 2012;
Mayrhofer et al., 2019); and (3) in addition, the DMN also
presented left lateralization but functional decline with age and
AD (Banks et al., 2018), showing insufficient activation in the
right prefrontal region but overactivation in the left prefrontal
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FIGURE 3 | The correlation between SRN-related interactions and cognitive functions in mild cognitive impairment patients. The interaction of the SRN with the left
DAN was positively correlated with MCI patients’ visual-spatial performance in the ECogPT test. The interaction of the SRN with the right SN was negatively
correlated with the MCI patients’ clinical test scores on the FAQ, CDRSB, and RAVLTs (the Forgetting and the Percent Forgetting), whereas only the RAVLT: Learning
Score was positively correlated with the interaction. Notably, the scores of the CDRSB, FAQ, ECogPTs, and two RAVLTs (i.e., the Forgetting and the Percent
Forgetting) were positively correlated with the disease progression or functional damage degree, while a higher RAVLT: Learning Score was positively correlated with
normal performance. Therefore, all correlations indicating that these functional performance scores of MCI patients are positively correlated with FC were within
SRN-related interactions. Red arrows show the interaction patterns among the SRN, DAN, and SN. Green arrows show the significant correlations of the
SRN-related interactions to clinical assessments. The background with the oblique line shows networks in the right hemisphere; the background without the oblique
line shows networks in the left hemisphere. Abbreviations: MCI, mild cognitive impairment; SRN, self-reference network; DAN, dorsal attention network; SN, salience
network; FC, functional connectivity; ECogPT, Everyday Cognition test: the patient reported version; RAVLT, Rey Auditory Verbal Learning Test; FAQ, Functional
Activities Questionnaire; CDRSB, Clinical Dementia Rating Scale: sum of boxes.

region during memory maintenance and reasoning tasks in MCI
patients (Melrose et al., 2018). Nevertheless, the hyperactivation
in the DAN and SN and the hypoactivation in the DMN
were regarded as compensatory due to damage that had been
confirmed to be directly related to the AD pathology in the
right hemisphere (Wu et al., 2011; Li et al., 2012). Tau protein
accumulation is positively related to neurorehabilitation or
neural plasticity, regardless of neuron metabolism or nutrition,
in AD (Cope et al., 2018), and beta-amyloid appears to be
positively correlated with high neuronal activity (Bero et al.,
2011; Mormino et al., 2011). Consequently, AD pathology
preferentially occurring in the right hemisphere may be related
to the fact that the right hemisphere is dominant in most
human brains. Therefore, we believe that network lateralization
is a natural balance of the brain and affects SRN distributions.
Although lateralization does not affect FC performance, in which
the rearrangement mechanism follows different pathological
stages in AD progression (Bai et al., 2016; Banks et al., 2018),
lateralization may participate in the adaptation or compensatory
performance of each network.

SRN Exhibits Damage at the Early Stage of
the Disease
The larger region of all constructed networks shown in MCI
patients compared with HC indicates the impact of the disease
on the network modules, in which tropology mainly serves
a network function (Contreras et al., 2019). Moreover, group
differences in the discovered interaction represent differences
not only in damage patterns but also in adaptation to AD.
For MCI patients, it was shown that the SRN decreased

its participation in all its relating interactions, whereas the
corresponding networks all increased their participation within
those interactions. For the interaction between the DAN and the
SN, the FC of the DAN decreased and that of the SN increased,
as shown in both the left and right hemispheres. Accordingly,
the degree of impairment among the three networks in MCI
patients was most severe in the SRN, least severe in the SN,
and intermediate in the DAN. This result is similar to previous
studies that have proven functional damage in the DAN and SN
(Li et al., 2012; Zhan et al., 2016; Bi et al., 2018; Chand et al.,
2018) but observed only several compensatory patterns in the SN
(Balthazar et al., 2014; He et al., 2014). Another task state study
found that the DMN was capable of better reorganization than
the SRN in MCI patients with worse memory performance (Bai
et al., 2012b, 2016). Moreover, damage in SRN regions (the left
triangular part of inferior frontal gyrus) has been reported to be
a problem in maintaining longitudinal memory (Bi et al., 2018).
Based on the above, we thought that the SRN also suffered more
serious damage than other networks, as in the DMN, in which
FC alterations within and to other networks have been suggested
to be directly related to AD pathology (Ferreira et al., 2019) at
the early stage of the disease (Bai et al., 2016; Melrose et al.,
2018). The SRNmay have less damage adaptation as it has higher
specificity but smaller functionality than the DMN (Whitfield-
Gabrieli et al., 2011; Bai et al., 2012a, 2016).

SRN Functional Relationship With Multiple
Functions in MCI
The interactional performance of the SRN with the DAN in
the left hemisphere was related to only the ECogPT: Visual-
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spatial score, whereas that of the SRN with the SN in the right
hemisphere was related to FAQ, CDRSB, and RAVLTs (including
RAVLT: Learning, Forgetting and Percent Forgetting) scores in
MCI patients, showing the functional differences between these
SRN interactions.

Visual-spatial organization is reported as a fundamental
coding principle to structure the communication between distant
brain regions (Knapen, 2021). The connection between the
cognitive network and basal ganglia network, which processes
the primary integration of information, has been proven to
be positively related to visual-spatial performance (Bagarinao
et al., 2019; Hucke et al., 2020). Moreover, the attention
function is known to be closely connected to the visual system
(Sharafeldin et al., 2020; Speed et al., 2020). In addition
to engaging in the cognition process, networks composed
of frontotemporal regions function to integrate multisensory
information, and parietal regions manage attention and visual-
spatial functions. Accordingly, we suggest that it might be the
possible mechanism underlying the effect of the SRN and left
DAN interactions related to the visual-spatial performance of
MCI patients.

Researchers have previously identified the influences of other
networks on AD and MCI patients’ visual-spatial symptoms (Li
et al., 2012; Brissenden et al., 2016; Buckley et al., 2017), yet no
related study has evaluated the SRN. Our research has provided
the first evidence that the visual-spatial performance in MCI
patients is affected by the interaction between the SRN and the
left DAN.

Next, the SRN also showed an effect on executive andmemory
function within its interaction with the SN in addition to its own
self-referencing. The greater the interaction between the SRN
and the right SN is, the more normal the FAQ, CDRSB, and
RAVLT performances in MCI patients. Self-reference processing
was required more from the SRN than from the DMN when
the brain was in a task state and was reflected in the FAQ
performance, which is a self-administered functional assessment
(Battista et al., 2017) requiring more self-reference processing
than other testing scales in this study. These results show that
SRN influences are as important as DMN influences on clinical
scale scores. Moreover, the CDRSB involves partial executive
and memory function assessment, and RAVLTs are tests for
episodic memory functions (Battista et al., 2017). The effect
we found of a corresponding interaction of the SRN with the
SN showed positive enhancement of both the executive and
memory functions of MCI patients, especially with no discovery
of any two-way impact that occurred in the DMN (showing
both positive and negative influences to the cognitions that
function different but in the same category (Berger et al.,
2015; Gardini et al., 2015; Bi et al., 2018; Melrose et al.,
2018) on memory performance (e.g., the RAVLTs used in
the study).

Notably, these functions were decreased in MCI patients
compared to HC. Although the DAN and SN similarly increased
FC within SRN-related interactions, their participation in the
regulation of networks between brain-state switching as a
feedback loop influenced both themselves and the SRN (Gao and

Lin, 2012; He et al., 2014; Chand et al., 2018; Sullivan et al.,
2019), indicating a complex explanation of their compensatory
effects within SRN-related interactions. In addition, a memory
encoding failure is much more likely to occur when the
connections of self-reference processing (involved in the SRN
and the DMN) are switching between task and rest states of the
brain (Bai et al., 2016) while the patient is undergoing clinical
assessment. Accordingly, we propose that the relationship
between these functions and interactions is highly related to the
SRN compensatory ability within the related interaction, which
has also been reported to be damaged and therefore does not
last long enough to maintain or improve functional performance
(Bi et al., 2018).

LIMITATIONS

Since the primary research of this study focuses on the
SRN and cognition in AD, less emphasis is placed on
neuropsychological assessment considering the self-reference
processing function. We should further supplement the related
scales and demonstrate a better exploration of SRN development
in the course of Alzheimer’s disease at follow-up. Regarding
reproducibility, another independent sample should be recruited
to confirm the present findings. Therefore, these data should be
interpreted with caution.

CONCLUSION

We found special regulation of the SRN in cognitive function,
with a particular distribution trend between the other networks,
the DAN and SN, arranged in both cognitive and attention
network systems. The two SRN-related interactions improved
some cognitive performance in MCI patients. The fact that no
overlap was observed between neuropsychological assessments
reflects the different participations of SRN-related interactions.
We also demonstrated the damage adaptation among the three
networks and pointed out more differences between the SRN
and the DMN. On the basis of this primary research on
interactions between the SRN and both the DAN and the SN
in AD, we strongly suggest that future research should consider
the influence of the SRN on cognition. In particular, research
conducted in the ultra-early stages may be of more benefit to the
field of the disease.
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Background: Together with cerebral small vessel disease (CSVD), large vessel
atherosclerosis is considered to be an equally important risk factor in the progression
of vascular cognitive impairment. This article aims to investigate whether carotid
atherosclerotic calcification is associated with the increased risk of post-stroke cognitive
impairment (PSCI).

Methods: A total of 128 patients (mean age: 62.1 ± 12.2 years, 37
women) suffering from ischemic stroke underwent brain/neck computer tomography
angiography examination. The presence and characteristic of carotid calcification
(size, number and location) were analyzed on computer tomography angiography.
White matter hyperintensity (WMH) was assessed using Fazekas scales. PSCI was
diagnosed based on a battery of neuropsychological assessments implemented
6−12 months after stroke.

Results: Among 128 patients, 26 developed post-stroke dementia and 96 had carotid
calcification. Logistic regression found carotid calcification (odds ratio [OR] = 7.15,
95% confidence interval [CI]: 1.07–47.69) and carotid artery stenosis (OR = 6.42,
95% CI: 1.03–40.15) both significantly increased the risk for post-stroke dementia.
Moreover, multiple, thick/mixed, and surface calcifications exhibited an increasing trend
in PSCI (Ptrend = 0.004, 0.016, 0.045, respectively). The prediction model for post-
stroke dementia including carotid calcification (area under curve = 0.67), WMH (area
under curve = 0.67) and other covariates yielded an area under curve (AUC) of 0.90
(95% CI: 0.82–0.99).

Conclusion: Our findings demonstrated that the quantity and location of carotid
calcifications were independent indicators for PSCI. The significant role of large vessel
atherosclerosis in PSCI should be concerned in future study.

Keywords: stroke, cognition, atherosclerosis, calcification, Computed Tomographic Angiography

Abbreviations: AUC, area under curve; CI, confidence interval; CSVD, cerebral small vessel disease; CTA, computer
tomography angiography; ICAS, intracranial artery stenosis; IQR, interquartile range; MMSE, Mini−mental State
Examination; MRI, magnetic resonance imaging; NIHSS, National Institute of Health stroke scale; OR, odds ratio; PSCI,
post-stroke cognitive impairment; PSCIND, post-stroke cognitive impairment with no dementia; PSD, post-stroke dementia;
RI, remodeling index; WMH, white matter hyperintensity.
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INTRODUCTION

Stroke is considered to be one of the most widespread and
serious cerebrovascular diseases affecting millions of people
worldwide. With a high prevalence of 20–80%, post-stroke
cognitive impairment (PSCI) is one of the major complications
suffered during the chronic stage of ischemic stroke (Sun et al.,
2014). As cognitive function can fluctuate due to neurological
deficits and subsequent improvement of perfusion in early
phases, the diagnosis of PSCI is often postponed by at least
3 months after the onset of stroke (Gottesman and Hillis,
2010). Thus, early identification of patients at high-risk of PSCI,
based on patients’ baseline characteristics, is essential in the
orchestration of appropriate preventataive management.

Several factors, including age, education level, vascular
risk factors, extent of stroke, and neuroimaging features, are
considered to be important determinants of PSCI (Rasquin et al.,
2004; Leys et al., 2005; Lu et al., 2016). Apart from acute stroke,
pre-existing cerebral small vessel disease (CSVD) is believed
to be closely connected with both the prognosis of stroke and
the occurrence of cognitive dysfunction. It has been reported
that PSCI was significantly associated with several subtypes of
baseline CSVD, including white matter hyperintensity (WMH),
cerebral microbleed, enlarged perivascular space and brain
atrophy (Wen et al., 2004; Gregoire et al., 2012; Kebets et al.,
2015; Molad et al., 2017; Arba et al., 2018). Interestingly,
although CSVD is often accompanied by pathological changes
in large arteries, the relationship between large vessel diseases
(such as stenosis, slow blood flow, malformation, or poor
collateral circulation) and PSCI remains ambiguous. While some
research has demonstrated that large vessel stenosis was highly
predictive of PSCI (Kandiah et al., 2016; Li et al., 2017), not
all studies have shown consistent results (Chaudhari et al.,
2014). Understanding the relationship between atherosclerotic
calcification and PSCI will provide a deeper insight into
the pathology of PSCI, which would be beneficial for early
diagnosis and prevention.

Therefore, in this study, we aimed to investigate whether the
presence of carotid atherosclerotic calcification is an associated
risk factor for the development and progression of PSCI,
and whether this association depends on the characteristic
of calcification.

MATERIALS AND METHODS

Study Population and Design
We utilized a dataset from a prospective study conducted
in the Stroke Unit of Huashan Hospital, Shanghai. This
longitudinal cohort was designed to investigate the risk
factors, clinical features and outcomes of PSCI. The inclusion
criteria were as follows: (a) diagnosed with ischemic stroke
within 7 days of onset; (b) age ≥ 18 years; (c) National
Institute of Health stroke scale (NIHSS) score ≤ 25; (d)
able and willing to accept brain imaging examination and
neuropsychological assessment. Subjects with following
conditions were excluded: (a) pre-stroke dementia; (b)

unable to speak or write due to aphasia or paralysis; (c)
renal dysfunction; (d) allergy to iodine; (e) contraindications
to magnetic resonance imaging (MRI) examination;(f) patients
with abnormal calcium and phosphorus metabolism; (g)
known nervous system disease or severe chronic medical
disease; (h) mental health conditions, such as anxiety or
depression; (i) pregnancy.

The study was approved by the Ethics Committee of Fudan
University, Shanghai, China. All participants signed written
informed consent before data collection.

Imaging Acquisition
All patients underwent cranio-cervical computer tomography
angiography (CTA) within 7 days of stroke onset. CTA
was performed on a 256-section scanner (Brilliance i CT,
Phillips Medical Systems, Ohio, United States) from the
aortic arch to the vertex with parameters as follows: 120
kVp, 150 mAs, slice thickness of 1 mm, pitch of 0.7,
field of view of 220 mm, matrix of 512 × 512, helical
scanning mode and intravenous administration of 50 mL
non-ionic contrast (Ultravist, Bayer Healthcare, Berlin,
Germany) at 5 mL/s via power injector (Stellate Injection
System, Indianola, PA, United States) with an 8 s delay.
CTA raw data were processed using the Phillips Brilliance
Workspace portal software (Vision 5.0.2), including multi-planar
reformation, curved planar reformation, maximum intensity
projection and volume rendering. All MRI examinations were
performed on a 3.0 T scanner (GE Discovery750, Milwaukee,
United States, or Siemens MAGNETOM Verio, Erlangen,
Germany) using a pre-programmed protocol. The main MRI
sequences included: T1-weighted, T2-weighted fluid attenuated
inversion recovery, diffusion-weighted imaging, and apparent
diffusion coefficient.

Imaging Interpretation
All CTA and MRI images were reviewed and analyzed by two
independent neuroradiologists (C.C. Li and L.Y. Lin) with over
3 years’ experience in neurovascular imaging. Inconsistent cases
were handed to another senior neuroradiologist (Y.M. Yang) and
the final decision was made based on their consensus. Raters were
blinded to all clinical data.

Carotid arteries were divided into three segments: common
carotid arteries, cervical internal carotid arteries, and intracranial
internal carotid arteries. The presence, location, number and
maximum thickness of calcification on unilateral or bilateral
carotid arteries were analyzed and recorded. All arteries
with calcified plaques were annotated as single (<2) or
multiple (≥2), according to the number of plaques. The
calcification location was categorized as surface, deep or
mixed (with both surface and deep calcification). Surface
calcification was defined as a calcified nodule located within
or close to the intimal lumen interface. Deep calcification
was defined as a calcified nodule located within or close to
the media/adventitia border, with fibrous tissue completely
covering (Lin et al., 2017). Calcification was also classified
as thin (<2 mm), thick (≥2 mm) or mixed (with both
thin or thick calcification) based on the maximum thickness
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(Yang et al., 2018). Rim sign was defined as thin calcification
(<2 mm) within the adventitia with thick internal soft plaque
(≥2 mm) inside (Eisenmenger et al., 2016). Examples of
different radiological characteristic of calcification are illustrated
in Figure 1.

The degree of carotid artery stenosis, intracranial artery
stenosis (ICAS), remodeling index (RI), and soft plaque density
was further analyzed. Degree of lumen stenosis was calculated
and divided into three groups: mild (0−49.9%), moderate
(50−69.9%), and severe (70−99.9%), following the criteria of
the North American Symptomatic Carotid Endarterectomy Trial
(Committee, 1991). No patients with carotid artery occlusion
were enrolled in this study. Intracranial large arteries were
categorized into anterior (including anterior cerebral artery,
internal carotid artery, and middle cerebral artery) and posterior
(including posterior cerebral artery, vertebral artery, and basal
artery) circulations. ICAS was defined as moderate–severe
stenosis (≥50%) of each artery following the criteria of Warfarin-
Aspirin Symptomatic Intracranial Disease (Samuels et al., 2000).
RI was defined as the ratio of the cross-sectional vessel area at the
maximal stenotic site to the reference vessel area at the nearby
disease-free site (Miura et al., 2011). Soft plaque density was
analyzed using the mean Hounsfield unit across the whole plaque
volume (U-King-Im et al., 2010).

Lacune and WMH were diagnosed according to the Standards
for Reporting Vascular Changes on Neuroimaging criteria
(Wardlaw et al., 2013). WMH was categorized into three groups
based on the sum of Fazekas scales (periventricular and deep):
mild(0−2), moderate(3−4), severe(5−6).

FIGURE 1 | Examples of different radiological characteristics of calcified
plaques. Arrows indicate calcification with different characteristics: (A–C)
describe the relative location of calcified plaques in carotid artery (A), surface
calcification; (B), deep calcification; (C), mixed calcification). Panel (D) shows
calcification with positive rim sign.

Cognitive Function Assessment
Patients’ cognitive function was assessed within 7 days of
admission and at 6–12 months using the neuropsychological
battery, which included global function and separate cognitive
domains: (1) Global function: Mini–mental State Examination
(MMSE) and Montreal Cognitive Assessment; (2) Memory
and execution: memory and executive screening scale; (3)
Visuospatial function: visuospatial overlapping diagram from
Montreal Cognitive Assessment−Basic; and (4) Language:
language screening test. The cut-off was determined by mean
− 1.0 standard deviations (SD) or standardized values for
all the tests. A patient was considered having PSCI if at
least one cognitive domain (memory, execution, visuospatial
function and language) was impaired (Jacquin et al., 2014).
Among patients with PSCI, post-stroke dementia (PSD) was
defined using interviews, neuropsychological battery and clinical
dementia rating in accordance with the Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition. Those who
did not meet the criteria of PSD were classified as post-
stroke cognitive impairment with no dementia (PSCIND).
Pre-stroke dementia, anxiety and depression was assessed
and excluded using informant questionnaire on cognitive
decline in the elderly, geriatric depression scale and the
12-item neuropsychiatric inventory questionnaire, separately.
All neuropsychological assessments were administered by
experienced neurologists (M.Y. Ding, Y.Z. Wang and M.
Cui) in our team.

Covariates
Demographic and clinical characteristic data was collected
from the database of stroke patients at baseline and follow-
up. Obtained information included demographics (age, sex,
years of education, body mass index, etc.), vascular risk
factors (hypertension, diabetes mellitus, hyperlipidemia, etc.),
lifestyle (smoking, alcohol consumption, etc.), stroke severity
(NIHSS score), and CSVD (lacune, WMH). Hypertension
was defined as systolic pressure ≥140 mmHg and/or diastolic
pressure ≥90 mmHg, or the patient having been previously
diagnosed and treated. Diabetes mellitus was defined as
fasting plasma glucose ≥7.0 mmol/L, or postprandial 2 h
glucose ≥11.1 mmol/L, or the patient having been previously
diagnosed and treated. Hyperlipidemia was defined as
total cholesterol ≥5.2 mmol/L, or low-density lipoprotein
cholesterol ≥2.6 mmol/L, or triglycerides ≥1.70 mmol/L, or the
patient having been previously diagnosed and treated. Smoking
and alcohol consumption were divided into two statuses: current
(at least one cigarette per 3 days or at least 50 grams of alcohol per
week in the past 6 months) and past (quit smoking or drinking
for at least 1 year) (Li et al., 2019).

Statistical Analyses
Variable normality was determined using Kolmogorov−Smirnov
test. Continuous variables are presented as mean ± standard
deviation (in normality distribution) or median with interquartile
range (IQR) (in skewness distribution) and compared using
Student’s t-test or Mann−Whitney U test. Categorical variables
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are displayed as count with frequency (%) and compared
using Pearson’s chi–square test or rank sum test (for ordinal
categorical variables). Multinomial logistic regression was
conducted to estimate the odds ratios (OR), 95% confidence
intervals (CI) of PSCIND and PSD based on carotid plaque
characteristics. Binary logistic regression with the selected
covariates was used to calculate the area under the receiver
operator characteristic curve for predicting PSD. Linear
regression was performed to investigate the association of
carotid atherosclerosis and post-stroke cognitive function
in different domains. The scores of each cognitive test were
transformed into Z-scores [(individual test score – mean
score)/SD]. Ordinal logistic regression was performed to obtain
P-trend value by treating post-stroke cognitive function as an
ordinal variable.

Demographics, vascular risk factors and stroke severity
were adjusted as covariates in regression models, including
age, sex, years of education, NIHSS score at baseline
(model 1), as well as hypertension, hyperlipidemia,
WMH, and carotid artery stenosis (model 2). All
statistical analyses were performed using SPSS v19.0 or
R v3.6.2 for Mac OS. P < 0.05 was considered to be
statistically significant.

RESULTS

One hundred seventy-nine participants who met the criteria
from June 2017 to May 2018 were included in this study. Each
individual was given a standardized treatment scheme during
hospitalization. The median follow-up time was 6.9 months for
this study population. Among them, 20 subjects did not undergo
brain or neck CTA at baseline. Of the remaining 159 individuals,
29 refused to accept neuropsychological assessment at follow-up;
2 were excluded due to the recurrence of stroke. Therefore, a
total of 128 individuals with complete clinical information were
included in the final analysis. The flow chart of the enrollment
procedures of study individuals is shown in Supplementary
Figure 1. No significant difference between the baseline profiles
of participants involved in this study and those lost in follow-up
was found (Supplementary Table 1).

Basic Characteristics
The basic characteristics of the study population are
demonstrated in Supplementary Table 1. The mean age
(SD) was 62.1 (12.2) years and 37 (28.9%) of the subjects were
women. The population had a median (IQR) 12.0 (9.0, 15.0)
years of education. Median (IQR) NIHSS score at baseline
was relatively low, at 4.0 (2.0, 6.0). Lacune and severe WMH
were found in 53 (41.4%) and 21 (16.4%) patients, respectively.
Among all individuals, 96 subjects (75%) had calcification on
unilateral or bilateral carotid arteries. 21 subjects (16.4%) had
moderate to severe carotid artery stenosis. Cognitive function
assessment classified individuals as having normal cognition
(N = 27), PSCIND (N = 75), or PSD (N = 26) (Table 1).
Compared to participants with normal cognition, those who
have PSCI (both PSCIND and PSD) were older, less educated,

scored higher on NIHSS and grading of WMH at baseline using
univariate analyses (P < 0.05). The PSCI group also had a higher
proportion of calcification and moderate or severe carotid artery
stenosis (only in PSD group) (P < 0.05). There was no significant
association between soft plaque density, RI, ICAS, other vascular
risk factors and PSCI.

Carotid Calcification and Post-stroke
Cognitive Impairment
Table 2 lists the association between carotid plaque characteristic
and PSCI. In logistic regression, the presence of calcification
on carotid arteries predicted an increased risk of PSD
(OR = 7.15; 95% CI: 1.07–47.69). Moreover, we found that
the presence of multiple, thick/mixed, surface calcifications
were significantly associated with PSD, whereas single, thin,
deep/mixed calcifications were not (Figure 2). Participants
with multiple, thick/mixed, surface calcifications exhibited an
increased risk of PSCI compared to those without calcification
(Ptrend = 0.004, 0.016, 0.045, respectively). Carotid artery stenosis
also significantly increased the risk of PSD (OR = 6.42; 95%
CI: 1.03–40.15). Rim sign, RI and soft plaque density showed
no relationship with PSD in any model. In addition, no
association was found between any type of carotid plaque or
stenosis and PSCIND.

Figure 3 depicts three logistic regression models predicting
PSD. The presence of carotid calcification yielded an area under
curve (AUC) of 0.67 (95% CI: 0.55–0.79), similar to the result of
WMH (AUC = 0.67, 95% CI: 0.53–0.81). When calcification was
combined with WMH and other covariates (including age, years
of education and baseline NIHSS), the prediction model reached
an AUC of 0.90 with 95% CI 0.82 to 0.99.

Carotid Calcification and Cognitive
Impairment in Different Domains
The association between carotid plaque characteristics and
cognitive impairment in different domains is displayed in
Table 3. In liner regression, most types of calcifications correlated
with decreased MMSE score. Moreover, multiple and surface
calcifications were found to be associated with decreased Z scores
in memory domain. We also found that soft plaque density
and carotid artery stenosis had a negative impact on cognitive
function in execution and visuospatial domain, respectively.

DISCUSSION

This study investigated the association between carotid
atherosclerotic calcification and PSCI in hospitalized patients
with stroke. We found the presence of calcification, especially
multiple, thick/mixed, and surface calcification on carotid
arteries to be associated with PSCI, after full adjustment
(demographics, vascular risk factors, CSVD and stroke severity).
In general, our findings suggest that the quantity and location
of calcification in carotid atherosclerotic plaques may be
independent indicators for PSCI.

Atherosclerosis is a chronic disease affecting the structure and
function of blood vessels, leading to neurovascular dysfunction
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TABLE 1 | Comparison of clinical and imaging characteristics between groups with different post-stroke cognitive function.

Normal (N = 27) PSCIND (N = 75) PSD (N = 26) P-value (PSCIND vs. Normal) P-value (PSD vs. Normal)

Demographic characteristics
Age, mean ± SD 52.6 ± 15.6 64.3 ± 10.0 65.3 ± 9.0 0.001 0.001
Female, n (%) 7 (25.9) 19 (25.3) 11 (42.3) 0.952 0.208
Education year, median (IQR) 12.0 (9.8, 15.8) 12.0 (9.0, 12.0) 9.0 (3.0, 11.0) 0.017 0.001
Smoking (ever), n (%) 14 (51.9) 36 (48.0) 15 (57.7) 0.731 0.669
Alcohol consumption (ever), n (%) 7 (25.9) 28 (37.3) 7 (26.9) 0.284 0.934
Hypertension, n (%) 16 (59.3) 57 (76.0) 20 (76.9) 0.098 0.168
Diabetes mellitus, n (%) 5 (18.5) 23 (30.7) 10 (38.5) 0.225 0.107
Hyperlipidemia, n (%) 11 (40.7) 31 (41.3) 9 (34.6) 0.957 0.646
Baseline stroke severity
NIHSS at baseline, median (IQR) 2.0 (1.0, 4.5) 4.0 (2.0, 6.0) 5.0 (3.0, 8.0) 0.003 0.001
Cerebral small vessel diseases
Lacune, n (%) 10 (37.0) 30 (40.0) 13 (50.0) 0.576 0.590
WMH
Mild, n (%) 13 (48.1) 13 (17.3) 1 (3.8) 0.006 0.001
Moderate, n (%) 10 (37.0) 49 (65.3) 21 (80.8)
Severe, n (%) 4 (14.8) 13 (17.3) 4 (15.4)
Atherosclerotic characteristics
Calcification, n (%) 14 (51.9) 59 (78.7) 23 (88.5) 0.008 0.004
Soft plaque density (Hu), mean ± SD 38.8 ± 32.2 36.2 ± 19.7 47.4 ± 27.7 0.854 0.553
Remodeling index, median (IQR) 1.0 (1.0, 1.2) 1.0 (1.0, 1.2) 1.0 (1.0, 1.4) 0.290 0.870
Carotid artery stenosis
Mild, n (%) 26 (96.3) 63 (84.0) 18 (69.2) 0.222 0.024
Moderate or severe, n (%) 1 (3.7) 12 (16.0) 8 (30.8)
Intracranial artery stenosis
Anterior arteries, n (%) 7 (25.9) 25 (33.3) 14 (53.8) 0.601 0.135
Posterior arteries, n (%) 4 (14.8) 15 (20.0) 6 (23.1) 0.505 0.669

IQR, interquartile range; NIHSS, National Institute of Health stroke scale; PSCIND, post-stroke cognitive impairment non-dementia; PSD, post-stroke dementia; WMH,
white matter hyperintensity.

which causes cognitive decline (Shabir et al., 2018). The
progressive formation of plaque and increased stiffness in carotid
arteries accelerates cognitive dysfunction, particularly vascular

TABLE 2 | Association between carotid plaque characteristics and post-stroke
cognitive impairment.

Normal
(N = 27)

PSCIND
(N = 75)

PSD
(N = 26)

Calcification Model 1 1.0 (ref) 2.31 (0.61-8.71) 7.15 (1.07-47.69)*

Model 2 1.0 (ref) 2.09 (0.45-9.79) 8.72 (1.03-76.99)*

Soft plaque
density

Model 1 1.0 (ref) 1.00 (0.96-1.06) 1.03 (0.98-1.09)

Model 2 1.0 (ref) 1.00 (0.92-1.10) 1.03 (0.93-1.15)

Remodeling
index

Model 1 1.0 (ref) 0.35 (0.03-4.06) 1.35 (0.09-19.46)

Model 2 1.0 (ref) 0.27 (0.02-4.94) 0.83 (0.03-21.48)

Carotid artery
stenosis

Model 1 1.0 (ref) 3.34 (0.57-19.46) 6.42 (1.03-40.15)*

Model 2 1.0 (ref) 5.41 (0.76-38.51) 10.73 (1.34-85.59)*

*P < 0.05.
All results are presented as OR with 95%CI.
Model 1 was adjusted for age, sex, years of education, and baseline NIHSS; Model
2 was additionally adjusted for hypertension, hyperlipidemia, WMH, and carotid
artery stenosis (for calcification, soft plaque density, and remodeling index) based
on Model 1.
NIHSS, National Institute of Health stroke scale; PSCIND, post-stroke cognitive
impairment non-dementia; PSD, post-stroke dementia; WMH, white matter
hyperintensity.

cognitive impairment, by decreasing cerebral blood flow and
promoting a breakdown of neurovascular coupling (Girouard
and Iadecola, 2006; Jefferson et al., 2018). Atherosclerotic
calcification represents an advanced stage of atherosclerosis
pathogenesis. Although few studies have investigated whether
atherosclerotic calcification is related with PSCI, the association
between calcification and cognitive impairment at the pre-clinical
stage has been identified by a range of research. In Rotterdam
study, larger calcification volume was found to be associated with
a higher risk of dementia and cognitive decline in a population-
based cohort (Bos et al., 2012, 2015). In the CARDIA study,
subclinical atherosclerotic calcification was related with poorer
psychomotor speed and memory in midlife in a community-
based sample (Reis et al., 2013). Another hospital-based study
proved that common carotid artery calcification increased the
risk of cognitive impairment and dementia, and this association
appeared independent of arterial stiffness (Di Daniele et al.,
2019). All of these findings supported the hypothesis that the
presence and amount of calcification is related to cognitive
impairment, which is supported by our results.

The association between calcified atherosclerosis and PSCI
could be explained by several potential pathways. Firstly, chronic
hypoperfusion may enhance this association. Carotid artery
stiffness caused by calcification may attenuate resting cerebral
blood flow in several regions and increase blood-brain barrier
permeability, which can lead to disruption of microcirculation
and vasculature integrity (Muhire et al., 2019). This may
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FIGURE 2 | Panel (A–D) show the associations between different characteristics of calcified plaques and post-stroke cognitive impairment. Levels of post-stroke
cognitive function are shown on the x-axis. Values of odds ratio of specific characteristics of calcified plaques (number, size, location, and rim sign) are transformed
using logarithm (log10) and are displayed on the y-axis. Model was adjusted for age, sex, years of education, and baseline NIHSS. P for trend is given in each case.
NIHSS, National Institute of Health stroke scale; PSCIND, post-stroke cognitive impairment non-dementia; PSD, post-stroke dementia.

contribute to the pathogenesis of vascular dementia, and in
turn enhance comorbidity with neurodegenerative diseases
(Alzheimer’s disease) (Ueno et al., 2016). Secondly, carotid

FIGURE 3 | Receiver operating characteristic (ROC) curves for post-stroke
dementia by neuroimaging determinants. Blue line: the ROC curve obtained
from calcification; green line: the ROC curve obtained from WMH; red line: the
ROC curve obtained from the full adjusted model, including calcification,
WMH and covariates (age, years of education, and baseline NIHSS). NIHSS,
National Institute of Health stroke scale; ROC, receiver operating
characteristic; WMH, white matter hyperintensity.

atherosclerotic calcification could increase the risk and severity
of stroke, subsequently resulting in a higher likelihood of PSCI.
However, our findings showed that the significant association
between calcification and PSCI still existed after adjusting
baseline NIHSS score. This suggested that stroke played only
a limited role in the progression of PSCI, although it cannot
be entirely excluded as a contributing factor. Finally, multiple
microemboli induced by unstable plaques may accelerate
cognitive impairment after stroke. In our study, we found that
patients with multiple, thick and surface calcifications were more
likely to develop to PSCI. The location, shape, size and gap
between calcifications change mechanical stresses and affect cap
stability (Cardoso et al., 2014). Compared with deep or mixed
calcifications, surface calcifications increase the risk of neovessel
rupture and thrombosis by elevating plaque surface stress
(Li et al., 2007; Alfonso et al., 2013). Similar mechanisms apply
to multiple calcified plaques (Kelly-Arnold et al., 2013). Thus,
these calcifications may be representative of vulnerable plaques.
This notion is supported by findings, that superficial, multiple
and thick (≥2 mm) calcifications were independently related to
the presence of intra plaque hemorrhage (Eisenmenger et al.,
2016; Lin et al., 2017; Yang et al., 2018). Vulnerable plaques may
produce both clinically evident emboli and subclinical multiple
microemboli leading to brain atrophy and silent brain infarcts,
thus proceeding cognitive impairment (Dempsey et al., 2010).

Moreover, we found that carotid calcification, artery stenosis
and soft plaque density each had different effects on performance
in each cognitive domain. In agreement with others studies,
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TABLE 3 | Association between carotid plaque characteristics and post-stroke cognitive impairment in different domains.

MMSE Memory Execution Language Visuospatial

Calcification

Presence Model 1 −0.66 (0.18)* −0.34 (0.22) −0.22 (0.21) −0.34 (0.23) −0.41 (0.21)

Model 2 −0.69 (0.19)* −0.46 (0.23)* −0.21 (0.22) −0.30 (0.24) −0.38 (0.22)

Number

Single Model 1 −0.4 (0.25) 0.03 (0.31) −0.07 (0.29) 0.06 (0.28) −0.09 (0.32)

Model 2 −0.26 (0.3) 0.26 (0.36) 0.20 (0.32) 0.12 (0.32) 0.08 (0.36)

Multiple Model 1 −0.75 (0.19)* −0.47 (0.23)* −0.30 (0.22) −0.45 (0.25) −0.43 (0.22)

Model 2 −0.78 (0.2)* −0.60 (0.23)* −0.28 (0.23) −0.38 (0.26) −0.39 (0.24)

Size

Thin Model 1 −0.76 (0.23)* −0.19 (0.29) −0.27 (0.25) −0.34 (0.26) −0.34 (0.25)

Model 2 −0.69 (0.27)* −0.15 (0.33) −0.14 (0.29) −0.38 (0.31) −0.25 (0.29)

Thick/mixed Model 1 −0.62 (0.2)* −0.39 (0.23) −0.21 (0.23) −0.29 (0.26) −0.35 (0.24)

Model 2 −0.62 (0.21)* −0.46 (0.24) −0.17 (0.25) −0.17 (0.27) −0.31 (0.26)

Location

Surface Model 1 −0.64 (0.18)* −0.38 (0.23) −0.22 (0.20) −0.31 (0.23) −0.40 (0.21)

Model 2 −0.67 (0.19)* −0.48 (0.24)* −0.22 (0.22) −0.30 (0.24) −0.39 (0.22)

Deep/mixed Model 1 −1.13 (0.39)* 0.27 (0.42) −0.55 (0.47) −0.36 (0.37) 0.01 (0.49)

Model 2 −1.14 (0.43)* 0.45 (0.46) −0.52 (0.49) 0.11 (0.52) 0.04 (0.54)

Rim sign

Rim sign (+) Model 1 −0.61 (0.22)* −0.28 (0.23) −0.06 (0.26) −0.31 (0.25) −0.19 (0.28)

Model 2 −0.52 (0.24)* −0.27 (0.25) 0.06 (0.28) −0.33 (0.33) −0.12 (0.31)

Soft plaque density Model 1 −0.01 (0.01) 0.01 (0.01) −0.01 (0.01)* 0.01 (0.01) 0.01 (0.01)

Model 2 −0.01 (0.01) 0.01 (0.01) −0.02 (0.01)* 0.01 (0.01) 0.01 (0.01)

Remodeling index Model 1 −0.07 (0.31) −0.10 (0.36) 0.43 (0.34) −0.23 (0.36) 0.39 (0.33)

Model 2 −0.17 (0.33) −0.33 (0.37) 0.46 (0.37) 0.14 (0.42) 0.48 (0.35)

Carotid artery stenosis Model 1 −0.05 (0.13) 0.05 (0.15) −0.16 (0.14) −0.16 (0.16) −0.30 (0.14)*

Model 2 −0.07 (0.13) 0.08 (0.15) −0.16 (0.14) −0.16 (0.16) −0.32 (0.14)*

*P < 0.05.
All results are presented as standardized coefficients β with standard error. Values represent differences in Z score for MMSE and cognitive domain.
Complete data of MMSE and each cognitive domain was available in 123 participants.
Model 1 was adjusted for age, sex, years of education, and baseline NIHSS; Model 2 was additionally adjusted for hypertension, hyperlipidemia, WMH, and carotid artery
stenosis (for calcification, soft plaque density, and remodeling index) based on Model 1.
MMSE, Mini-mental State Examination; NIHSS, National Institute of Health stroke scale; WMH, white matter hyperintensity.

carotid artery stenosis and soft plaque density were significantly
associated with impaired execution and visuospatial function
(Bos et al., 2012; Gong et al., 2020). These associations could be
explained by the disruption of anterior and posterior watershed
areas caused by hypoperfusion. Whereas, multiple and surface
calcifications were found to predominantly disrupt function
in the memory domain. These unstable carotid atherosclerotic
plaques tend to be more likely to induce multiple microemboli,
and cause strategic infarcts within the cortex (Hase et al.,
2019). Unlike hypoperfusion, emboli may cause more diffuse
damage to cortical areas and subsequently impair memory
(Fearn et al., 2001). The multiple cognitive domains involved in
associations between carotid atherosclerosis and PSCI revealed
the sophisticated underlying mechanisms, which need to be
further assessed and confirmed through pathological evidence.

The strengths of our study include its longitudinal study
design, reliable brain imaging acquisition method and the
detailed cognitive function questionnaire including different
domains. Several potential limitations should also be illustrated.
Firstly, in our study, atherosclerotic calcification and plaque

characteristics were recognized by brain/neck CTA. CTA is a
sensitive, observer-independent, and reliable tool to evaluate
calcification. Compared with high-resolution MRI, CTA is faster,
with fewer contraindications, and is generally more feasible. It
is therefore widely used in clinical practice, especially for stroke
patients. However, CTA has less capacity to identify soft plaque
components, such as ulceration and intra plaque hemorrhage.
It is also difficult to determine the border of calcification due
to blooming artifacts at the vessel wall, which may cause bias
in patients with severe calcification. Secondly, the associations
which we have found, may be confounded by the lack of
quantitative analysis of calcification. Although we categorized
calcifications based on their size and numbers, the overall burden
of calcification may still influence the result. Thirdly, the limited
cases with PSD in this study cause quite broad confidence
intervals, especially when calcification was treated as a binary
covariate. As shown in Table 1, the distribution of calcification
showed significant difference between normal, PSCIND, and
PSD groups using univariate analysis. A larger sample size is
supposed to make our conclusion more accurate and solid.
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Finally, selection bias should also be considered when explaining
these associations. In our study design, patients who could not
complete cognitive function assessment due to hemiplegia or
aphasia at baseline were excluded. Thus, the included subjects
in our trial had relatively lower NIHSS score (4.0 points) than
average. This selection bias may lead to an underestimation
of the effect of stroke on PSCI. Additional screening utilizing
a cognitive function scale which is more suitable for stroke
patients, especially those whom cannot speak or write, is needed
in future studies.

CONCLUSION

In this hospital-based study, the presence of carotid calcification
was found to be associated with PSCI. This association depended
on the size, number, and location of calcifications. In addition
to CSVD, large artery atherosclerosis should be considered as an
important risk factor for PSD.

DATA AVAILABILITY STATEMENT

The data used in this study are available upon reasonable request
from the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ethics Committee of the Fudan University,
Shanghai, China. The patients/participants provided their written
informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

YinW, MD, QD, and MC conceived the cohort and take
responsibility for its all aspects. YinW and CL wrote the
manuscript. YinW completed all the statistical analysis supported
by YY and MC. MD led the data collection supported by YizW,
PL, and MC. CL, LL, and YY reviewed and commented on the
data analysis and drafts. All authors interpreted data, contributed
to critical revisions, and approved the final version of the article.

FUNDING

This work was supported by the National Natural Science
Foundation of China (Grant Nos: 81870915, 81971013, 81771788,
and 82001142), the Shanghai Municipal Science and Technology
Major Project (Grant No: 2018SHZDZX03), and the China
Postdoctoral Science Foundation (Grant No: 2020M681184).
None of these funding sources were involved in the study design,
data collection, data analysis, or interpretation, or the writing of
the report and the decision to submit the article for publication.

ACKNOWLEDGMENTS

We thank all the patients whom voluntarily participated in
this study and appreciate the special contributions of statistical
analyses by Yanfeng Jiang.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnagi.
2021.682908/full#supplementary-material

REFERENCES
Alfonso, F., Gonzalo, N., Nunez-Gil, I., and Banuelos, C. (2013). Coronary

thrombosis from large, nonprotruding, superficial calcified coronary plaques.
J. Am. Coll. Cardiol. 62:2254. doi: 10.1016/j.jacc.2013.04.106

Arba, F., Quinn, T. J., Hankey, G. J., Lees, K. R., Wardlaw, J. M., Ali, M.,
et al. (2018). Enlarged perivascular spaces and cognitive impairment after
stroke and transient ischemic attack. Int. J. Stroke 13, 47–56. doi: 10.1177/
1747493016666091

Bos, D., Vernooij, M. W., de Bruijn, R. F., Koudstaal, P. J., Hofman, A., Franco,
O. H., et al. (2015). Atherosclerotic calcification is related to a higher risk
of dementia and cognitive decline. Alzheimers Dement. 11, 639–647.e1. doi:
10.1016/j.jalz.2014.05.1758

Bos, D., Vernooij, M. W., Elias-Smale, S. E., Verhaaren, B. F., Vrooman,
H. A., Hofman, A., et al. (2012). Atherosclerotic calcification relates
to cognitive function and to brain changes on magnetic resonance
imaging. Alzheimers Dement. 8(5 Suppl), S104–S111. doi: 10.1016/j.jalz.2012.
01.008

Cardoso, L., Kelly-Arnold, A., Maldonado, N., Laudier, D., and Weinbaum, S.
(2014). Effect of tissue properties, shape and orientation of microcalcifications
on vulnerable cap stability using different hyperelastic constitutive models.
J. Biomech. 47, 870–877. doi: 10.1016/j.jbiomech.2014.01.010

Chaudhari, T. S., Verma, R., Garg, R. K., Singh, M. K., Malhotra, H. S., and Sharma,
P. K. (2014). Clinico-radiological predictors of vascular cognitive impairment

(VCI) in patients with stroke: a prospective observational study. J. Neurol. Sci.
340, 150–158. doi: 10.1016/j.jns.2014.03.018

Committee, (1991). North American symptomatic carotid endarterectomy trial.
Methods, patient characteristics, and progress. Stroke 22, 711–720. doi: 10.1161/
01.str.22.6.711

Dempsey, R. J., Vemuganti, R., Varghese, T., and Hermann, B. P. (2010). A review
of carotid atherosclerosis and vascular cognitive decline: a new understanding
of the keys to symptomology. Neurosurgery 67, 484–494. doi: 10.1227/01.NEU.
0000371730.11404.36

Di Daniele, N., Celotto, R., Alunni Fegatelli, D., Gabriele, M., Rovella, V., and
Scuteri, A. (2019). Common carotid artery calcification impacts on cognitive
function in older patients. High Blood Press. Cardiovasc. Prev. 26, 127–134.
doi: 10.1007/s40292-019-00301-z

Eisenmenger, L. B., Aldred, B. W., Kim, S. E., Stoddard, G. J., de Havenon, A.,
Treiman, G. S., et al. (2016). Prediction of carotid intraplaque hemorrhage using
adventitial calcification and plaque thickness on CTA. AJNRAm. J. Neuroradiol.
37, 1496–1503. doi: 10.3174/ajnr.A4765

Fearn, S. J., Pole, R., Wesnes, K., Faragher, E. B., Hooper, T. L., and McCollum,
C. N. (2001). Cerebral injury during cardiopulmonary bypass: emboli impair
memory. J. Thorac. Cardiovasc. Surg. 121, 1150–1160. doi: 10.1067/mtc.2001.
114099

Girouard, H., and Iadecola, C. (2006). Neurovascular coupling in the normal
brain and in hypertension, stroke, and Alzheimer disease. J. Appl. Physiol. 100,
328–335. doi: 10.1152/japplphysiol.00966.2005

Frontiers in Aging Neuroscience | www.frontiersin.org 8 May 2021 | Volume 13 | Article 682908105

https://www.frontiersin.org/articles/10.3389/fnagi.2021.682908/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnagi.2021.682908/full#supplementary-material
https://doi.org/10.1016/j.jacc.2013.04.106
https://doi.org/10.1177/1747493016666091
https://doi.org/10.1177/1747493016666091
https://doi.org/10.1016/j.jalz.2014.05.1758
https://doi.org/10.1016/j.jalz.2014.05.1758
https://doi.org/10.1016/j.jalz.2012.01.008
https://doi.org/10.1016/j.jalz.2012.01.008
https://doi.org/10.1016/j.jbiomech.2014.01.010
https://doi.org/10.1016/j.jns.2014.03.018
https://doi.org/10.1161/01.str.22.6.711
https://doi.org/10.1161/01.str.22.6.711
https://doi.org/10.1227/01.NEU.0000371730.11404.36
https://doi.org/10.1227/01.NEU.0000371730.11404.36
https://doi.org/10.1007/s40292-019-00301-z
https://doi.org/10.3174/ajnr.A4765
https://doi.org/10.1067/mtc.2001.114099
https://doi.org/10.1067/mtc.2001.114099
https://doi.org/10.1152/japplphysiol.00966.2005
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-682908 May 19, 2021 Time: 15:15 # 9

Wang et al. Calcification and Post-stroke Cognitive Impairment

Gong, L., Wang, H., Dong, Q., Zhu, X., Zheng, X., Gu, Y., et al. (2020). Intracranial
atherosclerotic stenosis is related to post-stroke cognitive impairment: a cross-
sectional study of minor stroke. Curr. Alzheimer Res. 17, 177–184. doi: 10.2174/
1567205017666200303141920

Gottesman, R. F., and Hillis, A. E. (2010). Predictors and assessment of cognitive
dysfunction resulting from ischaemic stroke. Lancet Neurol. 9, 895–905. doi:
10.1016/s1474-4422(10)70164-2

Gregoire, S. M., Smith, K., Jager, H. R., Benjamin, M., Kallis, C., Brown, M. M., et al.
(2012). Cerebral microbleeds and long-term cognitive outcome: longitudinal
cohort study of stroke clinic patients. Cerebrovasc. Dis. 33, 430–435. doi: 10.
1159/000336237

Hase, Y., Polvikoski, T. M., Ihara, M., Hase, M., Zafar, R., Stevenson, W., et al.
(2019). Carotid artery disease in post-stroke survivors and effects of enriched
environment on stroke pathology in a mouse model of carotid artery stenosis.
Neuropathol. Appl. Neurobiol. 45, 681–697. doi: 10.1111/nan.12550

Jacquin, A., Binquet, C., Rouaud, O., Graule-Petot, A., Daubail, B., Osseby,
G. V., et al. (2014). Post-stroke cognitive impairment: high prevalence and
determining factors in a cohort of mild stroke. J. Alzheimers Dis. 40, 1029–1038.
doi: 10.3233/JAD-131580

Jefferson, A. L., Cambronero, F. E., Liu, D., Moore, E. E., Neal, J. E., Terry,
J. G., et al. (2018). Higher aortic stiffness is related to lower cerebral blood
flow and preserved cerebrovascular reactivity in older adults. Circulation 138,
1951–1962. doi: 10.1161/CIRCULATIONAHA.118.032410

Kandiah, N., Chander, R. J., Lin, X., Ng, A., Poh, Y. Y., Cheong, C. Y., et al.
(2016). Cognitive impairment after mild stroke: development and validation of
the SIGNAL2 risk score. J. Alzheimers Dis. 49, 1169–1177. doi: 10.3233/JAD-
150736

Kebets, V., Gregoire, S. M., Charidimou, A., Barnes, J., Rantell, K., Brown, M. M.,
et al. (2015). Prevalence and cognitive impact of medial temporal atrophy in
a hospital stroke service: retrospective cohort study. Int. J. Stroke 10, 861–867.
doi: 10.1111/ijs.12544

Kelly-Arnold, A., Maldonado, N., Laudier, D., Aikawa, E., Cardoso, L., and
Weinbaum, S. (2013). Revised microcalcification hypothesis for fibrous cap
rupture in human coronary arteries. Proc. Natl. Acad. Sci. U.S.A. 110, 10741–
10746.

Leys, D., Hénon, H., Mackowiak-Cordoliani, M.-A., and Pasquier, F. (2005).
Poststroke dementia. Lancet Neurol. 4, 752–759. doi: 10.1016/s1474-4422(05)
70221-0

Li, S., Fang, F., Cui, M., Jiang, Y., Wang, Y., Kong, X., et al. (2019). Incidental
findings on brain MRI among Chinese at the age of 55-65 years: the Taizhou
imaging study. Sci. Rep. 9:464. doi: 10.1038/s41598-018-36893-0

Li, X., Ma, X., Lin, J., He, X., Tian, F., and Kong, D. (2017). Severe carotid
artery stenosis evaluated by ultrasound is associated with post stroke vascular
cognitive impairment. Brain Behav. 7:e00606. doi: 10.1002/brb3.606

Li, Z. Y., Howarth, S., Tang, T., Graves, M., U-King-Im, J., and Gillard, J. H. (2007).
Does calcium deposition play a role in the stability of atheroma? Location may
be the key. Cerebrovasc. Dis. 24, 452–459. doi: 10.1159/000108436

Lin, R., Chen, S., Liu, G., Xue, Y., and Zhao, X. (2017). Association between carotid
atherosclerotic plaque calcification and intraplaque hemorrhage: a magnetic
resonance imaging study. Arterioscler. Thromb. Vasc. Biol. 37, 1228–1233. doi:
10.1161/ATVBAHA.116.308360

Lu, D., Ren, S., Zhang, J., and Sun, D. (2016). Vascular risk factors aggravate
cognitive impairment in first-ever young ischaemic stroke patients. Eur. J.
Neurol. 23, 940–947. doi: 10.1111/ene.12967

Miura, T., Matsukawa, N., Sakurai, K., Katano, H., Ueki, Y., Okita, K., et al. (2011).
Plaque vulnerability in internal carotid arteries with positive remodeling.
Cerebrovasc. Dis. Extra 1, 54–65. doi: 10.1159/000328645

Molad, J., Kliper, E., Korczyn, A. D., Ben Assayag, E., Ben Bashat, D., Shenhar-
Tsarfaty, S., et al. (2017). Only white matter hyperintensities predicts post-
stroke cognitive performances among cerebral small vessel disease markers:
results from the TABASCO study. J. Alzheimers Dis. 56, 1293–1299. doi: 10.
3233/JAD-160939

Muhire, G., Iulita, M. F., Vallerand, D., Youwakim, J., Gratuze, M., Petry, F. R.,
et al. (2019). Arterial stiffness due to carotid calcification disrupts cerebral blood
flow regulation and leads to cognitive deficits. J. Am. Heart Assoc. 8:e011630.
doi: 10.1161/JAHA.118.011630

Rasquin, S. M., Verhey, F. R., van Oostenbrugge, R. J., Lousberg, R., and Lodder,
J. (2004). Demographic and CT scan features related to cognitive impairment
in the first year after stroke. J. Neurol. Neurosurg. Psychiatry 75, 1562–1567.
doi: 10.1136/jnnp.2003.024190

Reis, J. P., Launer, L. J., Terry, J. G., Loria, C. M., Zeki Al Hazzouri, A., Sidney, S.,
et al. (2013). Subclinical atherosclerotic calcification and cognitive functioning
in middle-aged adults: the CARDIA study. Atherosclerosis 231, 72–77. doi:
10.1016/j.atherosclerosis.2013.08.038

Samuels, O. B., Joseph, G. J., Lynn, M. J., Smith, H. A., and Chimowitz, M. I. (2000).
A standardized method for measuring intracranial arterial stenosis. AJNR Am.
J. Neuroradiol. 21, 643–646.

Shabir, O., Berwick, J., and Francis, S. E. (2018). Neurovascular dysfunction in
vascular dementia, Alzheimer’s and atherosclerosis. BMC Neurosci. 19:62. doi:
10.1186/s12868-018-0465-5

Sun, J. H., Tan, L., and Yu, J. T. (2014). Post-stroke cognitive impairment:
epidemiology, mechanisms and management. Ann. Transl. Med. 2:80. doi: 10.
3978/j.issn.2305-5839.2014.08.05

Ueno, M., Chiba, Y., Matsumoto, K., Murakami, R., Fujihara, R., Kawauchi, M.,
et al. (2016). Blood-brain barrier damage in vascular dementia. Neuropathology
36, 115–124. doi: 10.1111/neup.12262

U-King-Im, J. M., Fox, A. J., Aviv, R. I., Howard, P., Yeung, R., Moody, A. R.,
et al. (2010). Characterization of carotid plaque hemorrhage: a CT angiography
and MR intraplaque hemorrhage study. Stroke 41, 1623–1629. doi: 10.1161/
STROKEAHA.110.579474

Wardlaw, J. M., Smith, E. E., Biessels, G. J., Cordonnier, C., Fazekas, F., Frayne, R.,
et al. (2013). Neuroimaging standards for research into small vessel disease and
its contribution to ageing and neurodegeneration. Lancet Neurol. 12, 822–838.
doi: 10.1016/s1474-4422(13)70124-8

Wen, H. M., Mok, V. C. T., Fan, Y. H., Lam, W. W. M., Tang, W. K., Wong, A.,
et al. (2004). Effect of white matter changes on cognitive impairment in patients
with lacunar infarcts. Stroke 35, 1826–1830. doi: 10.1161/01.Str.0000133686.
29320.58

Yang, J., Pan, X., Zhang, B., Yan, Y., Huang, Y., Woolf, A. K., et al. (2018).
Superficial and multiple calcifications and ulceration associate with intraplaque
hemorrhage in the carotid atherosclerotic plaque. Eur. Radiol. 28, 4968–4977.
doi: 10.1007/s00330-018-5535-7

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Wang, Li, Ding, Lin, Li, Wang, Dong, Yang and Cui. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Aging Neuroscience | www.frontiersin.org 9 May 2021 | Volume 13 | Article 682908106

https://doi.org/10.2174/1567205017666200303141920
https://doi.org/10.2174/1567205017666200303141920
https://doi.org/10.1016/s1474-4422(10)70164-2
https://doi.org/10.1016/s1474-4422(10)70164-2
https://doi.org/10.1159/000336237
https://doi.org/10.1159/000336237
https://doi.org/10.1111/nan.12550
https://doi.org/10.3233/JAD-131580
https://doi.org/10.1161/CIRCULATIONAHA.118.032410
https://doi.org/10.3233/JAD-150736
https://doi.org/10.3233/JAD-150736
https://doi.org/10.1111/ijs.12544
https://doi.org/10.1016/s1474-4422(05)70221-0
https://doi.org/10.1016/s1474-4422(05)70221-0
https://doi.org/10.1038/s41598-018-36893-0
https://doi.org/10.1002/brb3.606
https://doi.org/10.1159/000108436
https://doi.org/10.1161/ATVBAHA.116.308360
https://doi.org/10.1161/ATVBAHA.116.308360
https://doi.org/10.1111/ene.12967
https://doi.org/10.1159/000328645
https://doi.org/10.3233/JAD-160939
https://doi.org/10.3233/JAD-160939
https://doi.org/10.1161/JAHA.118.011630
https://doi.org/10.1136/jnnp.2003.024190
https://doi.org/10.1016/j.atherosclerosis.2013.08.038
https://doi.org/10.1016/j.atherosclerosis.2013.08.038
https://doi.org/10.1186/s12868-018-0465-5
https://doi.org/10.1186/s12868-018-0465-5
https://doi.org/10.3978/j.issn.2305-5839.2014.08.05
https://doi.org/10.3978/j.issn.2305-5839.2014.08.05
https://doi.org/10.1111/neup.12262
https://doi.org/10.1161/STROKEAHA.110.579474
https://doi.org/10.1161/STROKEAHA.110.579474
https://doi.org/10.1016/s1474-4422(13)70124-8
https://doi.org/10.1161/01.Str.0000133686.29320.58
https://doi.org/10.1161/01.Str.0000133686.29320.58
https://doi.org/10.1007/s00330-018-5535-7
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-630677 June 3, 2021 Time: 11:51 # 1

ORIGINAL RESEARCH
published: 03 June 2021

doi: 10.3389/fnagi.2021.630677

Edited by:
Frank Jessen,

University of Cologne, Germany

Reviewed by:
Aaron Wilber,

Florida State University, United States
Masashi Kameyama,

Tokyo Metropolitan Geriatric Hospital
and Institute of Gerontology

(TMGH-IG), Japan
David Hike,

Florida State University, United States,
in collaboration with reviewer AW

*Correspondence:
Bing Zhang

zhangbing_nanjing@nju.edu.cn

Received: 18 November 2020
Accepted: 08 April 2021

Published: 03 June 2021

Citation:
Li W, Zhao H, Qing Z, Nedelska Z,

Wu S, Lu J, Wu W, Yin Z, Hort J, Xu Y
and Zhang B (2021) Disrupted
Network Topology Contributed

to Spatial Navigation Impairment
in Patients With Mild Cognitive

Impairment.
Front. Aging Neurosci. 13:630677.

doi: 10.3389/fnagi.2021.630677

Disrupted Network Topology
Contributed to Spatial Navigation
Impairment in Patients With Mild
Cognitive Impairment
Weiping Li1, Hui Zhao2, Zhao Qing1, Zuzana Nedelska3,4, Sichu Wu1, Jiaming Lu1,
Wenbo Wu1, Zhenyu Yin5, Jakub Hort3,4, Yun Xu2 and Bing Zhang1*

1 Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China,
2 Department of Neurology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China,
3 Department of Neurology, The Czech Brain Ageing Study, Memory Clinic, Second Faculty of Medicine–Charles University,
University Hospital in Motol, Prague, Czechia, 4 International Clinical Research Center, St. Anne’s University Hospital Brno,
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Impairment in spatial navigation (SN) and structural network topology is not limited to
patients with Alzheimer’s disease (AD) dementia and can be detected earlier in patients
with mild cognitive impairment (MCI). We recruited 32 MCI patients (65.91± 11.33 years
old) and 28 normal cognition patients (NC; 69.68 ± 10.79 years old), all of whom
underwent a computer-based battery of SN tests evaluating egocentric, allocentric,
and mixed SN strategies and diffusion-weighted and T1-weighted Magnetic Resonance
Imaging (MRI). To evaluate the topological features of the structural connectivity network,
we calculated its measures such as the global efficiency, local efficiency, clustering
coefficient, and shortest path length with GRETNA. We determined the correlation
between SN accuracy and network topological properties. Compared to NC, MCI
subjects demonstrated a lower egocentric navigation accuracy. Compared with NC,
MCI subjects showed significantly decreased clustering coefficients in the left middle
frontal gyrus, right rectus, right superior parietal gyrus, and right inferior parietal
gyrus and decreased shortest path length in the left paracentral lobule. We observed
significant positive correlations of the shortest path length in the left paracentral lobule
with both the mixed allocentric–egocentric and the allocentric accuracy measured by the
average total errors. A decreased clustering coefficient in the right inferior parietal gyrus
was associated with a larger allocentric navigation error. White matter hyperintensities
(WMH) did not affect the correlation between network properties and SN accuracy.
This study demonstrated that structural connectivity network abnormalities, especially
in the frontal and parietal gyri, are associated with a lower SN accuracy, independently
of WMH, providing a new insight into the brain mechanisms associated with SN
impairment in MCI.
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INTRODUCTION

There is growing evidence that the human brain is a large-
scale complex network (Seeley et al., 2009; Betzel et al., 2012).
A network is represented as nodes that are connected by edges
in the graph theory. A node is a brain region, and an edge is
constructed by anatomical tracts or functional correlations. The
structural network topological properties include the network
efficiency properties (local efficiency and global efficiency),
clustering coefficient (Cp), local shortest path length (Lp), and the
node degree and betweenness centrality for the node properties.
The global efficiency of a network (Eg) is measured by how
information is exchanged over the network, meaning that how
efficient the communication is between one brain region to
another, and the local efficiency (Eloc) reflects the average
efficiency of each local cluster of the network. Cp reflects that
regions that are connected to the same region tend to be
also connected to each other. Lp describes how many steps is
needed for one brain region to be connected to another. The
detailed definition of these properties coincided with several
previous studies (Watts and Strogatz, 1998; Latora and Marchiori,
2001). The white matter structural networks in the healthy
human brain usually exhibit a small-world character, which
can optimally balance information segregation and integration,
resulting in efficient organization that not only reduces the cost
of maintaining many connections but also allows for efficient
information movement (Gong et al., 2009). In contrast, patients
with Alzheimer’s disease (AD) dementia and mild cognitive
impairment (MCI) showed abnormal properties of cortical
networks and loss of small-world characteristics in previous
studies that reported either local or global structural connectivity
disruptions in these patients (Shu et al., 2012).

Spatial navigation (SN) is a complex domain that refers to the
process of determining and maintaining a trajectory from one
place to another (Lithfous et al., 2013). Specifically, there are two
basic subtypes of SN: egocentric navigation (body-centered) and
allocentric navigation (world-centered) (Nedelska et al., 2012).
Impairment in both subtypes of SN is frequently reported in both
AD dementia and MCI patients. Previous studies have indicated
that these SN impairments are related to the degeneration in
several brain regions, such as the hippocampus, caudate nucleus,
and medial temporal lobe (Wegman et al., 2014). However, given
the complexity of the human brain SN system, the structural
connectivity networks that integrate these regions may also play
critical roles in the SN process, and it would be beneficial
to investigate their possible impairment in AD dementia and
MCI. However, to the best of our knowledge, few studies
have investigated the influence of structural network topological
properties on SN.

In this study, we aimed to identify (1) which structural
network topological properties show the greatest differences
between MCI patients and normal controls (NCs) and (2)
how these network properties of specific brain regions
affect egocentric and allocentric SN accuracy in MCIs. We
hypothesized that patients with MCI would demonstrate
abnormalities in brain network topology and that these
topological properties (e.g., global efficiency, clustering

coefficient, and shortest path length) derived from the brain
structural network could influence SN, which might provide a
new insight into the structural basis of SN in the brain.

MATERIALS AND METHODS

Subjects
A total of 60 participants, 32 MCI patients and 28 NCs, were
recruited from the Department of Neurology of the Affiliated
Drum Tower Hospital of Nanjing University Medical School
from May 2015 to June 2017. All subjects gave written informed
consent to participate in the study, which was approved by the
hospital ethics committee.

Exclusion criteria for NCs were the presence of
cognitive complaints and neurological or psychiatric
disorders. All participants were right-handed and underwent
neuropsychological tests, including the Mini-Mental State
Examination (MMSE) and Montreal Cognitive Assessment
(MoCA). Patients with MCI met the clinical criteria established
by Petersen (2004). The threshold for memory impairment was
derived from the same literature and designated as scoring > 1.5
SD below the mean of age- and education-adjusted norms
on a memory test.

Spatial Navigation Tests
Spatial navigation accuracy was tested by the PC test AMUNET
(NeuroScios GmbH, Austria) that represents a human analog
of the Morris water maze (MWM) task screen, which used the
hidden goal task similar to previous studies (Weniger et al.,
2009; Nedelska et al., 2012; Laczó et al., 2014). It is designed
to distinguish two different strategies of navigation, egocentric
(“Ego”) representations concerning self-centered navigation and
encoding spatial information from the viewpoint of the navigator,
whereas allocentric (“Allo”) strategies are centered on the object
rather than on the observer (Lithfous et al., 2013). The AMUNET
SN test battery was administered using three SN subtasks. Each
subtask involved eight trials, hence 24 trials all together. The tasks
were performed in a fixed order with increasing demanded. First,
the Allo–Ego mixed subtask was first performed. A large circle
representing the overhead view of the task arena was shown on
the screen (280 pixels in diameter on a screen with a resolution of
640 × 480 pixels) (Qing et al., 2017). Participants were required
to locate the goal point using its spatial relationship with both
the starting position and the two distal orientation cues on the
circle. Next, the Ego subtask was performed, which required the
participants to use only the starting position to locate the goal
when distal orientation cues were not displayed. Finally, in the
Allo subtask, the participant was only allowed to use solely two
distal orientation cues on the arena wall during SN to the goal,
whereas the start position was randomly regenerated in each trial
and was therefore unrelated to the correct goal position. The
positions of the goal point were stable relative to (1) the positions
of the starting location and orientation cues in the mixed Allo–
Ego subtask, (2) the positions of the start location in the Ego
subtask, and (3) the positions of orientation cues in the Allo
task. The accuracy of the task was automatically recorded as
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the distance error between the participants’ final position and
the actual goal location in millimeters. The SN performance
from eight attempts per each subtask was averaged into the
average total error per task (Chen et al., 2021). The time was
unlimited to avoid the effect of individual differences in sensory
and physical functioning.

MRI Techniques
Whole-brain MRI scans were obtained using an eight-channel
phased array coil (Achieva 3.0T TX, Philips Medical Systems,
Best, Netherlands). A three-dimensional high-resolution sagittal
T1W with turbo fast echo (3D-T1TFE) acquisition was performed
with a repetition time (TR), echo time (TE), and inversion
time (TI) of 9.8, 4.6, and 900 ms, respectively. The other
acquisition parameters were as follows: flip angle, 8◦; matrix size,
256 × 256; field of view (FOV), 256 × 256 × 256 mm; isotropic
resolution, 1.0 mm; slices in the third dimension, 192; and
acquisition time, 6 min 43 s. Diffusion tensor imaging (DTI) was
encoded along 32 independent orientations, and the b-value was
1,000 s/mm2. The imaging parameters were as follows: TR/TE,
9,154/55 ms; FOV, 224 × 224 mm; slice thickness 2.5 mm; voxel
size 2× 2× 2.5 mm3; and acquisition time, 6 min 27 s.

Network Node and Edge Definition
We used the AAL atlas to parcellate the whole brain into 90
areas (45 regions in each hemisphere), which were defined as
the nodes of the brain graph. The AAL atlas was transformed
from Montreal Neurological Institute (MNI) space to T1 native
space, which was non-linearly registered from the individual
T1-weighted images.

The pre-processing of DTI data was carried out by PANDA
(a pipeline toolbox for analyzing brain diffusion images)
(Cui et al., 2013). The main procedure of PANDA includes
(1) converting DICOM files into Neuroimaging Informatics
Technology Initiative (NIfTI) imaging, (2) estimating the brain
mask by using the bet command of the FMRIB Software Library
(FSL), (3) cropping the raw images to cut off non-brain space in
the raw images, and (4) correcting for the eddy-current effect by
using the flirt and the eddy-correct FSL commands.

Then, we used PANDA to perform deterministic fiber tracking
to obtain the fractional anisotropy (FA) matrix in two steps: (1)
two nodes (regions) were considered to be structurally connected
by an edge when the FA value of fiber tracts located in these
two regions were between 0.2 and 1, and then (2) weighted
structural networks represented by symmetric 90 × 90 matrices
were constructed for each individual.

Network Parameter Analysis
Graph theoretical analysis was performed on the interregional
connectivity matrix by using GRETNA1, a graph theoretical
network analysis toolbox for imaging connectomics. The
weighted network properties were calculated, with a sparsity
range of 0.05–0.4 with a step size of 0.01. Sparsity was
defined as the total number of edges divided by the maximum
possible number of edges. Because there is no gold standard

1https://www.nitrc.org/projects/gretna

to select a single threshold, we calculated the parameters with
different thresholds. Finally, the networks were constructed
at the sparsity of 0.14, which ensured all nodes included
in the networks to present the nodal characteristics of the
networks and ensured the most characteristic small-world
topology. GRETNA was used to calculate the structural
network topological properties, including the network efficiency
properties (local efficiency and global efficiency), local Cp,
global clustering coefficient [M(Cp)], local shortest path length
(Lp), global shortest path length [M(Lp)], and the node degree
and betweenness centrality for the node properties. For each
subject, 1,000 times randomization was applied, and each time
a corresponding random network was generated. Then, the
random distribution of Cp and Lp was used to transform
real Cp and Lp into a Z score by their position in the
random distribution as previous studies (Wang et al., 2015).
The brain networks were visualized with BrainNet Viewer2

(Xia et al., 2013).

Measurement of WMH Volume
The total volume of white matter hyperintensity (WMH)
on 3D-FLAIR images was automatically detected and
quantified using the Wisconsin White Matter Hyperintensities
Segmentation Toolbox (W2 MHS), which is an open-
source toolbox. The major steps involved in WMH volume
detection and measurement are as follows: (1) a pre-
processing module in which SPM12b was used to construct
the white matter (WM) region of interest and partial volume
estimates of the tissues (WM, gray matter, and cerebrospinal
fluid); (2) a segmentation module in which the random
forest-based regression method was used to detect the
WMH; and (3) a quantification module to summarize the
WMH segmentations.

Statistical Analysis
Statistical analysis was performed using SPSS version 23.0
for the demographic data. The between-group differences of
whole-network and nodal properties and differences in SN
accuracy by average total error in each navigational subtask
were evaluated by two-sample t-tests using a threshold of
p < 0.05. For each whole-network topological property showing
a significant difference between MCI patients and NCs, a
general linear regression analysis was performed using two linear
models between each of the network properties with the SN
accuracy of each subtask. In model 1, the network property
was used as an independent variable, and SN accuracy was
used as a dependent variable, with age, sex, and education
as covariates. In model 2, WMH volume was additionally
included as an independent variable. We used a statistical
significance level of p < 0.05 for all these analyses. Similarly,
for each node showing significantly different nodal topological
properties between MCI patients and NCs, the same correlational
analyses were performed between the corresponding property
and the accuracy of each of the three SN subtasks with the
same covariates.

2http://www.nitrc.org/projects/bnv/
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RESULTS

Demographics and Behavioral Data
In this study, 32 subjects fulfilled the criteria of MCI. No
significant differences in age (p = 0.194), sex (p = 0.196), or
education level (p = 0.134) were detected between MCI patients
and NCs. As expected, pathological alteration led to significant
differences in the MMSE and MoCA scores between MCI patients
and NCs. The full demographic and clinical characteristics of the
subjects are shown in Table 1.

Spatial Navigation and Network
Topology Properties
Our statistical analyses showed significant decreases in the global
clustering coefficient and shortest path length in patients with
MCI (Table 2). Regarding SN accuracy, MCI subjects showed
worse Ego navigation accuracy compared to NCs (Table 2) with
larger average total error. The specific areas of discrepant network
properties of MCI patients and NCs are listed in Table 3 and
Figure 1, including the left middle frontal gyrus, right rectus,
right superior parietal gyrus, right inferior parietal gyrus, and left
paracentral lobule.

The Association Between Nodal Network
Topology Properties and Spatial
Navigation Accuracy
We observed a significantly positive correlation of the shortest
path length in the left paracentral lobule with both the Allo–
Ego average total error and the Allo average total error. There
are no associations between the network topological properties
and Ego average total error. A decreased Cp in the right inferior
parietal gyrus was associated with a larger average total error in
Allo navigation (Table 4).

TABLE 1 | Demographic and clinical characteristics of patients with mild cognitive
impairment (MCI) and control participants.

MCI (n = 32) NCs (n = 28) p

Age (years)

Mean ± SD 65.91 ± 11.33 69.68 ± 10.79 0.194

Sex (%)

Male 16 (50%) 19 (67.9%) 0.196

Female 16 (50%) 9 (32.1%)

Edu (years)

Mean ± SD 13.25 ± 3.46 14.54 ± 3.05 0.134

WMH (volume, mm3)

Mean ± SD 35,017 ± 37,275 38,850 ± 39,794 0.702

MMSE (score)

Mean ± SD 25.97 ± 2.36 28.93 ± 0.97 <0.001*

MoCA (score)

Mean ± SD 21.81 ± 2.13 27.43 ± 2.36 <0.001*

Data are presented as the means ± standard deviations. *p < 0.05.
MCI, mild cognitive impairment; NCs, normal controls; Edu, education; WMH, white
matter hyperintensity; MMSE, Mini-Mental State Examination; MoCA, Montreal
Cognitive Assessment, Beijing Version.

TABLE 2 | Differences in spatial navigation accuracy and the whole-brain network
topology properties of patients with MCI and normal controls.

MCI (n = 32) NCs (n = 28) T p

AEV (mm)

Mean± SD 11.28 ± 9.59 8.67 ± 4.30 −1.32 0.190

EV (mm)

Mean± SD 15.79 ± 9.86 9.73 ± 5.39 −2.89 0.004*

AV (mm)

Mean± SD 12.55 ± 8.05 10.62 ± 5.76 −1.06 0.295

Eg

Mean± SD 0.20 ± 0.03 0.20 ± 0.02 0.12 0.901

Eloc

Mean± SD 0.27 ± 0.03 0.28 ± 0.02 1.14 0.114

M(Cp)

Mean± SD 28.03 ± 5.69 31.58 ± 7.07 2.15 0.035*

M(Lp)

Mean± SD 25.02 ± 7.53 28.91 ± 7.37 2.02 0.048*

Node betweenness

Mean± SD 67.59 ± 11.33 67.52 ± 9.84 −0.02 0.981

Node degree

Mean± SD 4.35 ± 0.95 4.43 ± 0.83 0.341 0.735

Data are presented as the means ± standard deviations. The Eg and Eloc are raw
data and the M(Cp) and M(Lp) are z-score data.
MCI, mild cognitive impairment; NCs, normal controls; AEV,
“allocentric + egocentric” average total error; EV, egocentric average total
error; AV, allocentric average total error; Eg, global efficiency. Eloc, local efficiency;
M(Cp), global clustering coefficient; M(Lp), global shortest path length.
∗p < 0.05.

TABLE 3 | Nodal network topology properties in patients with MCI and
normal controls.

MCI (n = 32) NCs (n = 28) T p

Cp

L-middle frontal gyrus

Mean ± SD 0.27 ± 0.07 0.32 ± 0.10 2.393 0.020*

R-rectus

Mean ± SD 0.22 ± 0.08 0.26 ± 0.04 2.335 0.023*

R-superior parietal gyrus

Mean ± SD 0.28 ± 0.09 0.33 ± 0.09 2.169 0.034*

R-inferior parietal gyrus

Mean ± SD 0.37 ± 0.09 0.43 ± 0.08 2.687 0.009*

Lp

L-paracentral lobule

Mean ± SD 5.55 ± 1.07 5.07 ± 0.86 -2.053 0.045*

Data are presented as the means ± standard deviations.
Cp, local clustering coefficient; Lp, local shortest path length; MCI, mild cognitive
impairment; NCs, normal controls.
∗p < 0.05.

Taking the WMH volume into account, we found that the
associations of the shortest path length in the left paracentral
lobule with both the Allo–Ego average total error and the Allo
average total error were the same as the findings for model 1, as
was the decreased Cp for the right inferior parietal gyrus and Allo
average total error.
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FIGURE 1 | Graphs show differences in the nodal network topological
properties between the patients with MCI and normal controls. (A) The
location of the node with significantly altered nodal network topological
properties in MCI patients, compared with normal controls. (B–E) The nodal
clustering coefficients in the left MFG (p = 0.020), right REC (p = 0.023), right
SPG (p = 0.034), and right IPL (p = 0.009) were significantly different between
the patients with MCI and normal controls. (F) The nodal shortest path length
in the left PCL (p = 0.045) was significantly different between the patients with
MCI and normal controls. NC, normal controls; MCI, mild cognitive
impairment; L, left; R, right; Cp, local clustering coefficient; Lp, local shortest
path length; MFG, middle frontal gyrus; REC, rectus; SPG, superior parietal
gyrus; IPL, inferior parietal gyrus; PCL, paracentral lobule.

DISCUSSION

This study measured the brain network abnormality, SN, and
cognitive impairment in MCI patients. We found a lower
egocentric navigation accuracy in MCI patients compared to
NCs. We showed an abnormal organization in the structural
connectivity networks of MCI patients, reflected by decreased
Cp and decreased Lp. The brain areas of abnormal network
properties were in the left middle frontal gyrus, right rectus,
right superior parietal gyrus, right inferior parietal gyrus, and
left paracentral lobule, therefore predominantly in the frontal
and parietal gyri. Further, the abnormal network properties were
measured in several other brain regions, including the larger
shortest path length in the left paracentral lobule and decreased
Cp in the right inferior parietal gyrus. These abnormal network

properties predicted the SN impairment, irrespective of the white
matter hyperintensities.

Egocentric and allocentric navigation strategies involve
different neurobiological underpinnings. Generally, allocentric
navigation is mainly supported by the hippocampus and
parahippocampus (Muller et al., 1996). On the other hand,
egocentric navigation is supposed to rely on the parietal
lobe and the retrosplenial cortex mostly (Epstein and Ward,
2010; Nemmi et al., 2017). Successful navigation does not
rely on one single strategy but requires the ability to switch
between and combine the different spatial strategies in a
flexible manner (Colombo et al., 2017). In the previous
study, the amnestic MCI single-domain patients showed both
the allocentric and the egocentric navigation impairment
(Hort et al., 2007). Potentially, because we did not classify
our MCIs into amnestic versus non-amnestic subtypes, we
found egocentric navigation but not allocentric navigation
impairment in these MCI patients. It also might be the
relatively younger population of MCI patients in our study,
which sometimes show hippocampal sparing subtype of AD
(Jellinger, 2020).

To date, SN accuracy has not been explored regarding the
relationship to whole-brain structural network properties based
on the graph theoretical approach. Subjects using an Allo strategy
revealed stronger activations in some nearby basal regions
(hippocampus and thalamus) (Henke et al., 2003), while Ego
navigation has been shown to rely on corticostriatal regions
of the brain (Wolbers and Wiener, 2014). A previous study
found that the parietal lobe is involved in the dynamic aspects
of spatial memory and makes contribution to topographic
memory (Berthoz, 1997). We also found a hypoactive brain
structural network in the right inferior parietal gyrus is related
to worse allocentric navigation skill. Another fMRI study
found SN performance-related activation of the inferior parietal
cortex, suggesting that this area participates in the encoding
of spatial relationships between consecutive landmarks in an
egocentric reference frame, defined relative to the observer’s
direction when facing the first landmark (Wolbers et al.,
2004). A study using structural MRI study showed that the
atrophy of the right inferior parietal cortex in amnesic MCI
patients was related to the deficits in allocentric and egocentric
navigation toward a target in a familiar virtual environment
(Weniger et al., 2011).

The graph theory measures reflect how well a region is
connected to its neighboring areas and within brain modules,
providing important information on the network’s capability for
specialized processing within densely interconnected groups of
brain regions (Rubinov and Sporns, 2010). Usually, randomly
organized networks are characterized by a low Cp (a measure
that depicts the connection of immediate neighbors around
individual vertices) and a short path length (an index reflecting
the overall integration of the network). The small-world
network, characterized by a high degree of clustering and
a short path length between individual network nodes, has
been an attractive model for the description of complex
brain networks (Wu et al., 2012). Researchers have found
that both anatomical and functional brain networks are
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TABLE 4 | General linear regression analyses between nodal network topology properties and spatial navigation accuracy.

Allo–Ego Ego Allo

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

Beta (SE) p Beta (SE) p Beta (SE) p Beta (SE) p Beta (SE) p Beta (SE) p

Cp

−0.2 0.10 −0.1 −0.2 0.10 0.2 0.15 0.2 −0.2 0.07 −0.2 0.07

L-middle frontal gyrus 14 3 70 13 6 45 3 36 22 8 22 7

R-rectus −0.601 0.550 −0.075 0.594 −0.043 0.749 −0.084 0.535 0.123 0.343 0.105 0.432

R-superior parietal gyrus 0.005 0.971 0.007 0.965 −0.145 0.270 −0.156 0.233 0.011 0.929 0.005 0.967

R-inferior parietal −0.235 0.078 −0.235 0.080 −0.127 0.339 −0.126 0.337 −0.278 0.028* −0.278 0.029*

Lp

L-paracentral lobule 0.361 0.011* 0.361 0.011* 0.235 0.099 0.234 0.098 0.348 0.011* 0.348 0.011*

The spatial navigation average total errors (AEV, EV, and AV) were set as independent variables. The different network topology properties of specific brain areas in MCI
patients were set as dependent variables. In all models, we controlled for age, sex, and education and the volume of WMH was added to model 2.
Cp, local clustering coefficient; Lp, local shortest path length.
∗p < 0.05.

small-world networks (Achard and Bullmore, 2007; Bassett and
Bullmore, 2016). The brain network topology showed the
small-world characteristic in both AD dementia and MCI,
but it changed significantly compared to NCs (Liu et al.,
2012; Zhao et al., 2012). A previous study also indicated
increased short path length in AD and decreased Cp in
amnestic MCI (Bai et al., 2012). In the current study, we
found a decreased Cp in MCI patients, which is similar
to a previous study, indicating worse local communication
between the left middle frontal gyrus, the right superior
and inferior parietal gyrus, and neighboring areas in the
brain, respectively.

The brain topology alterations of specific brain node regions
were also observed, in addition to global network changes. We
found a decreased short path length of the left paracentral
lobule, which means a loss of the number of connections
between these structures and other regions of the network. This
could be related to WM integrity loss or a disruption of WM
fibers connecting these brain areas, which has been previously
observed in MCI and AD patients in DTI studies (Chua et al.,
2008). The decreased connectivity of the left paracentral lobule
to neighboring areas was related to worse SN accuracy and,
more importantly, the burden of WMH had no effects on this
relationship. This may indicate that the network alteration and
the SN impairment were due to degeneration, not ischemic
lesion, which may need to be confirmed with a larger sample
size in the future.

There were some limitations in our study. First, we
had a relatively small sample size in this study. Second,
the computerized test based on the MWM paradigm may
be a useful tool for the evaluation of SN deficits (Laczo
et al., 2014). However, it should be noted that the real-
space and computerized two-dimensional versions are not
fully interchangeable, as the computerized SN tasks lack
proprioceptive feedback that is normally available in real-world
navigation tasks and that contribute to successful navigation.
Third, in humans spatial cognition evaluation is much more

difficult, as navigation in complex real-world environments
does not allow experimental control of the tasks, making it
difficult to determine the mechanisms that sustain performances.
Fourth, we did not analyze the specific structural connection
between any two brain nodes and this would be of great
significance in the future.

In conclusion, patients with MCI demonstrate abnormalities
in brain network topology, and the disruption of these
topological properties (e.g., Cp and shortest path length)
derived from the brain structural network influences the
SN process. These results may fuel future research on the
brain structure basis of SN, which can provide new insight
into brain mechanisms in SN impairments with network
topological properties.
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Introduction: To identify individuals with preclinical cognitive impairment, researchers
proposed the concept of objectively-defined subtle cognitive decline (Obj-SCD).
However, it is not clear whether Obj-SCD has characteristic brain function changes.
In this study, we aimed at exploring the changing pattern of brain function activity
in Obj-SCD individuals and the similarities and differences with mild cognitive
impairments (MCI).

Method: 37 healthy control individuals, 25 Obj-SCD individuals (with the impairment in
memory and language domain), and 28 aMCI individuals were included. Resting-state
fMRI and neuropsychological tests were performed. fALFF was used to reflect the local
functional activity and compared between groups. Finally, we analyzed the correlation
between the fALFF values of significantly changed regions and neuropsychological
performance.

Results: We found similar functional activity enhancements in some local brain regions
in the Obj-SCD and aMCI groups, including the left orbital part of the inferior frontal
gyrus and the left median cingulate and paracingulate gyri. However, some changes in
local functional activities of the Obj-SCD group showed different patterns from the aMCI
group. Compared with healthy control (HC), the Obj-SCD group showed increased local
functional activity in the right middle occipital gyrus, decreased local functional activity in
the left precuneus and the left inferior temporal gyrus. In the Obj-SCD group, in normal
band, the fALFF value of the right middle occipital gyrus was significantly negatively
correlated with Mini-Mental State Examination (MMSE) score (r = −0.450, p = 0.024) and
Animal Verbal Fluency Test (AFT) score (r = −0.402, p = 0.046); the left inferior temporal
gyrus was significantly positively correlated with MMSE score (r = 0.588, p = 0.002). In
slow-4 band, the fALFF value of the left precuneus was significantly positively correlated
with MMSE score (r = 0.468, p = 0.018) and AFT score (r = 0.600, p = 0.002). In the aMCI
group, the fALFF value of the left orbital part of the inferior frontal gyrus was significantly
positively correlated with Auditory Verbal Learning Test (AVLT) long delay cued recall
score (r = 0.506, p = 0.006).

Conclusion: The Obj-SCD group showed a unique changing pattern; the functional
changes of different brain regions have a close but different correlation with cognitive
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impairment, indicating that there may be a complex pathological basis inside. This
suggests that Obj-SCD may be a separate stage of cognitive decline before aMCI and
is helpful to the study of preclinical cognitive decline.

Keywords: objectively-defined subtle cognitive decline, mild cognitive impairment, function activity, resting-state
functional MRI, cognitive function

INTRODUCTION

In the study of preclinical Alzheimer’s disease (AD), some
researchers have proposed that there is another kind of
cognitive impairment in addition to SCD (subjective cognitive
dysfunction), namely Objectively-defined subtle cognitive
decline (Obj-SCD). In individuals with Obj-SCD, only
subtle cognitive decline can be objectively detected; they
have a roughly normal cognitive function and have no
memory decline complaints. Obj-SCD is defined using six
neuropsychological test indicators, including two memory
function indicators, two language function indicators,
and two attention/execution indicators. Memory function
indicators include: total score of Auditory Verbal Learning
Test (AVLT) 20-min free delayed recall and total score of
AVLT recognition language function indicators includes:
Animal Fluency (total score) and 30-item Boston Naming Test
(BNT; total score) attention/execution indicators includes:
Trail Making Test (TMT) A and Trail Making Test B (time
to completion). An individual is defined as Obj-SCD if they
meet the following conditions: (1) Does not meet the standards
of Mild cognitive impairments (MCI); and (2) In two of
the three different cognitive domains (memory, language,
attention/execution), only one indicator is impaired (>1 SD
below demographically adjusted mean; Thomas et al., 2018,
2020).

Currently, the studies on Obj-SCD are mainly focused on
preclinical AD. AD is considered a continuous process that
can be diagnosed before clinical symptoms appear (Dubois
et al., 2016). The National Institute on Aging and Alzheimer’s
Association (NIA-AA) divided AD’s cognitive decline procession
into six stages; Obj-SCD locates in the middle state between
normal cognitive function and mild cognitive impairment (MCI;
Jack et al., 2018). A 10-year longitudinal study based on the AD
Neuroimaging Initiative showed that individuals with Obj-SCD
progressed to MCI 2.5–3.4 times faster than the normal group
(Thomas et al., 2018). An arterial spin labeling MRI study
reported that compared with the normal cognitive function
group, the cerebral blood flow of the Obj-SCD participants
increased in the hippocampus and inferior parietal; compared
with the MCI group, the cerebral blood flow increased in the
hippocampus, inferior parietal, and inferior temporal (Thomas
et al., 2021). A longitudinal study for 4 years found that
Obj-SCD amyloid protein accumulated faster and showed faster
thinning of the internal olfactory cortex than the normal
group (Thomas et al., 2020). However, some researchers have
used Obj-SCD to describe the early cognitive decline stage
due to other causes, such as Parkinson’s dementia (PD).
A study of PD patients revealed that participants in the

Obj-SCD stage are more likely to progress to MCI due to
PD or dementia due to Parkinson’s disease within 5 years
(Jones et al., 2021).

Amnestic MCI (aMCI) is a subtype of MCI (Petersen, 2011).
AMCI can remain stable or progress to AD; it may also develop
into other forms of dementia (Petersen et al., 2001; Caminiti et al.,
2018; Cerami et al., 2018; Curiel Cid et al., 2020). Individuals
with aMCI have objective memory disorders, subjective memory
complaints, and slightly impaired daily activities; all of the above
can be detected by neuropsychological tests.

AMCI individuals have two impaired indicators in the
memory function domain, therefore, there are similarities and
differences between memory function impaired Obj-SCD (single
memory function indicator and single another cognitive domain
indicator) and single-domain aMCI (only two indicators of
memory function are impaired). In terms of neuropsychological
performance, cognitive impairment of the single-domain aMCI
exists only in the memory domain and is severer than that
of Obj-SCD.

There are many core biomarkers used in the diagnosis
of cognitive impairment. The guidelines on AD proposed by
NIA-AA define the biomarkers for early diagnosis of AD as
A/T/N regimens, including Aβ42, total Tau, phosphorylated
Tau in cerebrospinal fluid, and the detected value of Aβ42 and
Tau by PET CT (Scheltens et al., 2016; Jack et al., 2018). The
abnormal accumulation of α-synuclein aggregates can be used
as a biomarker of some non-AD pathological dementia, such as
PD, dementia with Lewy bodies, and multiple system atrophy
(Manne et al., 2019). However, some of these biomarkers are
too expensive, and some can only be detected through invasive
tests; therefore, they are challenging to be popularized and
widely adopted.

This calls for the development of a relatively simple and
non-invasive method that is needed to detect early cognitive
impairment. MRI can be used to screen individuals at risk
of cognitive impairment (Dubois et al., 2016). In the various
research methods of MRI, Resting-state functional magnetic
resonance imaging (rs-fMRI) has been widely applied in
the study of cognitive decline (Pan et al., 2017; Bi et al.,
2020a,b; Moguilner et al., 2020). A functional connectivity study
showed that the normal cognitive individuals with amyloid
positive are characterized by decreased functional connectivity
between the medial temporal lobe and the anterior temporal
lobe system (Berron et al., 2020). Another study on default
mode network (DMN) connection found that the change of
functional connection mode in AD is mainly in the SLOW-4
and SLOW-5 bands; the change is frequency-dependent (Li
et al., 2017). However, functional connections can only reflect
the connection between different brain regions and cannot
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measure spontaneous activity intensity in a particular brain
region (Jia et al., 2020).

Therefore, there is a need for an indicator that reflects
the characteristics of local brain activity. The human brain
produces numerous oscillatory waves; low-frequency fluctuation
amplitude (ALFF) can reflect brain oscillatory activity’s local
characteristics (Zou et al., 2008). However, ALFF is easily
disturbed by physiological noise. Compared with ALFF,
fractional ALFF (fALFF) can reflect the relative contribution of
low-frequency fluctuations in a specific frequency band to the
whole detectable frequency range, and it is not easily affected by
noise (Zuo et al., 2010).

However, few studies on Obj-SCD based on fMRI have been
conducted so far. We speculate that the reason might be that
Obj-SCD is in the very early stage of cognitive decline, and
thus detection of minor pathological changes using conventional
fMRI methods is difficult. Therefore, we want to study the
change of fALFF in multiple frequency bands through frequency
division. We also included patients with aMCI in order to
understand the similarities and differences between the Obj-SCD
and the aMCI group.

This study mainly used fALFF to explore the changing
pattern of regional brain function activities of Obj-SCD
individuals in different frequency bands and explore the
similarities and differences of the patterns between Obj-SCD
and aMCI groups. We hypothesized that if Obj-SCD is indeed
a unique stage before aMCI, then the local neural activity
may have changes similar to aMCI, but some changes may
also be different from aMCI. Since Obj-SCD may be in the
pathological stage before aMCI, this difference may be related
to functional compensation. To prove this hypothesis, we
also analyzed the correlation between functional activity and
neuropsychological performance.

MATERIALS AND METHODS

Participants
In this study, 90 participants from local communities were
recruited, including 37 healthy control individuals, 25 Obj-SCD
individuals, and 28 aMCI individuals. Recruitment was carried
out through advertising from August 2018 to November 2019.

Participants in this study had to meet the following criteria:
(1) Chinese speakers; (2) have no history of disease that seriously
affects brain function, such as craniocerebral injury, brain tumor,
cerebral hemorrhage, cerebral infarction, and other systemic
diseases that affect brain function (such as vitamin B12 deficiency
and syphilis); (3) can complete neuropsychological tests, have no
severe hearing, and visual impairment; and (4) can complete the
examination of craniocerebral MRI.

Inclusion criteria of the healthy control (HC) group:
(1) Mini-Mental State Examination (MMSE) score (illiteracy >
19, 1–6 education years >22, more than six education years >
26; Katzman et al., 1988); (2) a Clinical Dementia Rating (CDR)
score = 0 (Morris, 1993); (3) Hamilton Depression Rating Scale
score of ≤12 (Worboys, 2013); (4) no memory complaints; and
(5) no evidence of memory loss provided by the observer.

Inclusion criteria of Obj-SCD group: (1) not meet Jak/Bondi
criteria for MCI (Bondi et al., 2014); and (2) have and only
have one impaired indicator (>1 SD below demographically
adjusted mean) in two different cognitive domains (memory,
language, attention/executive; Thomas et al., 2018, 2020).
Neuropsychological tests used to diagnose Obj-SCD were as
follows. Two measures of language: Animal Fluency (total score)
and 30-item BNT (total score), two scores from a measure of
attention/executive function: Trail Making Test, Parts A and B
(time to completion); two scores from a measure of memory:
Auditory Verbal Learning Test (AVLT) 20-min free delayed
recall and AVLT recognition. For the consistency of the cohort,
we included individuals with cognitive impairment in memory
and language domains.

Inclusion criteria of the aMCI group: (1) with evidence
of subjective memory complaints in the past year either
by themselves or from bystanders; (2) MMSE above cut-off
(>24/30); (3) objective memory impairment: two indicators of
AVLT (long–delay free recall and recognition of AVLT) lower
than the normal average of age correction >1 SD; (4) less than
one item in the Activity of Daily Living Scale (ADL) changed;
and (5) according to the NIA-AA criteria, there is no evidence of
dementia (Bondi et al., 2014).

Neuropsychological Tests
All the individuals participated in the following
neuropsychological tests: General cognitive function: MMSE
(total score: 30; Folstein et al., 1975).

Memory function: Auditory Verbal Learning Test (AVLT;
score: 12 per round, immediate recall score equals the sum of
the first, second, and third recall scores, recognition score: 24;
Zhao et al., 2015); Brief VisuospatialMemory Test (BVMT; score:
12 per round, immediate recall score equals the sum of the first,
second and third recall scores; Pliskin et al., 2020).

Language function: Animal Verbal Fluency Test (AFT; Zhao
et al., 2013a), BNT (total score: 30; Mack et al., 1992).

Executive function: Shape Trail Test (STT; Zhao et al.,
2013b), Stroop Test (total score: 24; Chen et al., 2019). For
cultural fairness, we use STT instead of TMT to evaluate
executive function.

Spatial Function: Judgment of Line Orientation (JLO; total
score: 30; Qualls et al., 2000).

Attention function: Digit Span Test (DST; forward score: 12;
backward score: 10; Johansson and Berg, 1989).

Functional Magnetic Resonance Imaging
MRI Data Acquisition
All Resting-state fMRI images were collected using a 3.0-
Tesla scanner (SIEMENS MAGNETOM Prisma 3.0 T, Siemens,
Erlangen, Germany). Before the scans, the participants were told
to close their eyes, stay relaxed, do not fall asleep, and move
as little as possible. The image is obtained through an echo
plane imaging sequence with the following parameters: repetition
time (TR)/echo time (TE), 800/37 ms, flip angle (FA), 52◦,
matrix size, 104 × 104, the field of view, 208 mm × 208 mm,
slice number, 72 slices, slice thickness, 2 mm, voxel size,
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2 mm × 2 mm × 2 mm. It took 404 s to get 488 slices
through scanning.

Imaging Data Processing
All functional imaging data were processed by Statistica
Parametric Mapping 12 (SPM12)1 and RESTplus2 toolkits.
The first 30 time points were discarded to stabilize the
magnetic field and make the participants adjust to the
environment. Then, the following preprocessing steps were
performed: realign the head motion (participants whose
head movement over 3 mm or more 3◦ had been excluded),
spatially normalized to the Montreal Neurological Institute
(MNI) space and resampled to 3 mm isotropic voxels,
remove linear and quadratic trends of the time-series
signals, regress out the sign (including white matter,
cerebrospinal fluid, global mean signal, and Friston-24 motion
parameters), the smoothing was done by Full Wave at Half
Maximum 6 mm.

The preprocessed data were imported into the RESTplus
toolkit and the fALFF in the normal band (0.01–0.08 Hz),
slow4 band (0.027–0.073 Hz), and slow5 band (0.01–0.027 Hz)
were calculated. For standardization, each voxel’s fALFF values
were divided by the global average fALFF values of all voxels in
the whole brain to obtain each participant’s mfALFF map.

Statistical Analysis
Demographic and neuropsychological test scores were analyzed
using SPSS (IBM SPSS Statistics, Version 26.0. IBM Corp.,
Armonk, NY, USA). The normality test of the data was
performed using the Shapiro—Wilke normality test. Mean
and the standard deviation was used to represent normally
distributed data. Median (quartile range) is used to represent
non-normally distributed data. Differences in age, education
years, sex, hypertension, diabetes, and hyperlipidemia were
analyzed using the Pearson chi-square test. ANOVA test
was used to analyze neuropsychological test scores that
fit the normal distribution between the three groups.
Nonparametric tests (the Kruskal-Wallis H test) were used
to analyze neuropsychological test scores that did not fit the
normal distribution between the three groups. Bonferroni’s
correction was used for multiple comparisons in posthoc
analysis. Spearman rank correlation analysis was used to analyze
the correlation between mfALLF and neuropsychological
test scores.

RESTplus toolkit was used in the statistical analysis of
image data. To accurately display the similarities and differences
between the three groups, we conducted ANOVA analysis on
the mFalff diagrams of the three groups, the threshold was
set to 0.05, and a binary mask was obtained to limit the
range of comparison between the groups. Multiple comparison
corrections were performed using the false discovery rate (FDR)
for the comparison between groups. Since multiple comparisons
were involved, the FDR correction threshold was set to 0.017 to
reduce the false-positive rate.

1http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
2http://restfmri.net/forum/restplus

The mfALFF values of the significant clusters were extracted
and correlated with neuropsychological tests by Spearman
rank analysis.

RESULTS

Demographic Data and
Neuropsychological Performances
There were no statistical differences in age, sex, and education
years among the three groups. There were no statistical
differences in hypertension (24.3% in HC group, 40.0% in SCD
group, 32.1% in aMCI group), hypercholesterolemia (8.1% in HC
group, 16.0% in SCD group, 10.7% in aMCI group), and diabetes
(13.5% in HC group, 20.0% in SCD group, 14.3% in aMCI group)
among the three groups (Table 1).

All the Obj-SCD individuals included in the study showed
impairment of a single neuropsychological test indicator of
memory function and language function. Compared with HC
group, Obj-SCD group had worse performance in MMSE [27
(26, 29) vs. 29 (28, 30)], AVLT immediate [13 (8, 16) vs. 18 (15.5,
20.5)], AVLT short delay free recall [4 (2, 6) vs. 6 (5, 8)], AVLT
long delay free recall [3 (2, 4) vs. 6 (5, 8)], AVLT long delay cued
recall [3 (2, 4) vs. 6 (5, 7.5)], BVMT recognition [12 (10, 12) vs.
12 (12, 12)], AFT [15 (13, 17) vs. 19 (18.5, 21)], and BNT [23 (20,
24) vs. 26 (24, 27); Table 1].

Compared with HC group, aMCI group had worse
performance in MMSE [27 (26, 28) vs. 29 (28, 30)], AVLT
immediate [12 (11, 14) vs. 18 (15.5, 20.5)], AVLT short delay
free recall [3 (2, 2.75) vs. 6 (5, 8)], AVLT long delay free recall [2
(1, 3) vs. 6 (5, 8)], AVLT long delay cued recall [2 (2, 3) vs. 6 (5,
7.5)], AVLT recognition [18 (14.25, 20.75)], BVMT 6th recall [4
(4, 4) vs. 5 (5, 6)], BVMT recognition [12 (10, 12) vs. 12 (12, 12)],
AFT [16 (14, 17.75) vs. 19 (18.5, 21)], BNT [23 (21.25, 26) vs. 26
(24, 27)], STT-A total time [52.5 (39.25, 61.25) vs. 40 (34, 51)],
Stroop test B [23 (20, 24) vs. 24 (23, 24)], and DST sequence [7
(5, 8) vs. 8 (7.5, 8.5); Table 1].

Compared with the Obj-SCD group, the aMCI group had
worse performance in BVMT 6th recall [4 (4, 4) vs. 5 (4, 6);
Table 1].

Regional Functional Activity
The Obj-SCD Group Compared with the HC Group
In the normal band, compared with the HC group, the Obj-SCD
group showed increased fALFF in the left orbital part of inferior
frontal gyrus, the right middle occipital gyrus, cerebellar vermis;
decreased fALFF in the left inferior temporal gyrus (Two-tailed
t-test; FDR p < 0.017, k > 10 voxels; Table 2, Figure 1).

In the slow-4 band, compared with the HC group, the
Obj-SCD group showed increased fALFF in the left median
cingulate and paracingulate gyri; decreased fALFF in the left
inferior temporal gyrus, and the left precuneus (Two-tailed t-test;
FDR p < 0.017, k > 10 voxels; Table 2, Figure 1).

In the slow-5 band, compared with the HC group, the
Obj-SCD group showed increased fALFF in the right middle
occipital gyrus, caudate nucleus, and cerebellar vermis (Two-
tailed t-test; FDR p < 0.017, k > 10 voxels; Table 2, Figure 1).
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TABLE 1 | Demographic data and neuropsychological tests between groups.

HC (n = 37) OBJ-SCD (n = 25) aMCI (n = 28) Test statistic

Age (year)(1) 63.86 ± 8.250 64.12 ± 6.978 65.71 ± 6.895 0.531
Sex (Male/Female)(2) 15/22 11/14 13/15 0.231
Edu years (year)(1) 12.11 ± 3.422 10.84 ± 2.511 12.19 ± 3.163 1.575
Hypertension(2) 24.3% 40.0% 32.1% 1.731
Hypercholesterolemia(2) 8.1% 16.0% 10.7% 0.947
Diabetes(2) 13.5% 20.0% 14.3% 0.528
General cognitive function

MMSE(3) 29 (28, 30) 27 (26, 29)∗ 27 (26, 28)∗ 16.268
Memory function

AVLT immediate recall(3) 18 (15.5, 20.5) 13 (8, 16)∗∗ 12 (11, 14)∗∗ 34.144
AVLT short delay free recall(3) 6 (5, 8) 4 (2, 6)∗∗ 3 (2, 2.75)∗∗ 39.854
AVLT long delay free recall(3) 6 (4.5, 7.5) 3 (2, 4)∗∗ 2 (1, 3)∗∗ 45.121
AVLT long delay cued recall(3) 6 (5, 7.5) 3 (2, 4)∗∗ 2 (2, 3)∗∗ 47.269
AVLT recognition(3) 22 (21, 23) 21 (19, 23) 18 (16, 18.75)∗∗ 52.679
BVMT immediate recall(3) 22 (16.5, 26) 14 (11, 25) 18 (14.25, 20.75) 7.646
BVMT 4th recall(3) 10 (7.5, 11.5) 8 (6, 10) 8 (5.25, 10) 6.806
BVMT 5th recall(3) 10 (8, 11.5) 8 (6, 11) 8 (5.25, 10) 7.100
BVMT 6th recall(3) 5 (5, 6) 5 (4, 6) 4 (4, 4) ∗∗,† 17.112
BVMT recognition(3) 12 (12, 12) 12 (10, 12)∗ 12 (10, 12)∗∗ 15.652

Language function
AFT(3) 19 (18.5, 21.0) 15 (13, 17)∗∗ 16 (14, 17.75)∗∗ 27.372
BNT(3) 26 (24, 27) 23 (20, 24)∗∗ 23 (21.25, 26)∗ 16.866

Executive function
STT-A total time (second)(3) 40 (34, 51) 48 (41.5, 53) 52.5 (39.25, 61.25)∗ 9.335
STT-B total time (second)(3) 113 (89, 137) 124 (107.5, 153) 127.5 (109.25, 171.00) 3.570
Stroop test A(3) 24 (24, 24) 24 (24, 24) 24 (24, 24) 2.107
Stroop test B(3) 24 (23, 24) 24 (23, 24) 23 (20, 24)∗ 10.893

Spatial Function
JLO(1) 21.2 ± 5.04 19.79 ± 4.872 21.4 ± 4.32 1.526

Attention function
DST sequence(3) 8 (7.5, 8.5) 8 (7, 8) 7 (5, 8)∗ 8.213
DST reverse(3) 5 (4, 6) 5 (4, 6) 4.5 (4, 5) 3.519

(1)ANOVA test; (2)Chi-square test; (3)Kruskal–Wallis H-test; ∗compared with HC group, p < 0.05; ∗∗compared with HC group, p < 0.001; †compared with Obj-SCD group, p < 0.05.
MMSE, mini-mental state examination; AVLT, auditory verbal learning test; BVMT, brief visuospatial memory test; AFT, animal verbal fluency test; BNT, boston naming test; STT, shape
trail test; JLO, judgment of line orientation; DST, digit span test. Bonferroni correction for post-hoc analysis.

The aMCI Group Compared with the HC Group
In the normal band, compared with the HC group, the
aMCI group showed increased fALFF in the left orbital part
of the inferior frontal gyrus, bilateral median cingulate, and
paracingulate gyri (Two-tailed t-test; FDR p < 0.001, k >
10 voxels; Table 2, Figure 2).

In the slow-5 band, compared with the HC group, the aMCI
group showed increased fALFF in the right median cingulate
and paracingulate gyri (Two-tailed t-test; FDR p < 0.001, k >
10 voxels; Table 2, Figure 2).

The Obj-SCD Group Compared with the aMCI Group
In the normal band, compared with the aMCI group, the
Obj-SCD group showed increased fALFF in the right middle
occipital gyrus (Two-tailed t-test; FDR p < 0.017, k > 10 voxels;
Table 2, Figure 2).

Correlation Analysis
In the Obj-SCD group, in normal band, the fALFF value of
the right middle occipital gyrus was significantly negatively
correlated with MMSE score (r = −0.450, p = 0.024) and AFT
score (r = −0.402, p = 0.046; Figure 3); the left inferior temporal
gyrus was significantly positively correlated with MMSE score
(r = 0.588, p = 0.002). In slow-4 band, the fALFF value of

the left precuneus was significantly positively correlated with
MMSE score (r = 0.468, p = 0.018) and AFT score (r = 0.600,
p = 0.002; Figure 3).

In the aMCI group, the fALFF value of the left orbital
part of the inferior frontal gyrus was significantly positively
correlated with AVLT long delay cued recall score (r = 0.506,
p = 0.006; Figure 3).

DISCUSSION

In the stage of Obj-SCD, the neuropsychological decline includes
two cognitive domains but is limited to one indicator of each
domain. In the next stage of dementia progression, such as
MCI, although cognitive impairment is aggravated, it may only
be manifested in a single cognitive domain. Therefore, we
speculate that the pathological characteristics of Obj-SCD may
lead to a unique changing pattern, which is both similar and
different from the next stage. Since the impairment in different
cognitive domains will show different brain function activity
changes, we made some efforts to select the cohort. For the
Obj-SCD group, we chose individuals with impairments only
in the memory domain and language domain, which is also
the most common Obj-SCD individual. For MCI individuals,
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TABLE 2 | Regions with changed functional activity (fALLF) between groups.

Normal band Slow-4 band Slow-5 band

CLUSTER (AAL) Volume
(voxels)

CLUSTER (AAL) Volume
(voxels)

CLUSTER (AAL) Volume
(voxels)

OBJ-SCD vs. HC Cluster 1 total: 13 Cluster 1 total: 12 Cluster 1 total: 11
Peak (MNI): −18 21 −24
Peak t: 4.4407

Peak (MNI): −57 −63 −12
Peak t: −4.1945

Peak (MNI): 0 −54 3
Peak t: 4.6911

Frontal_Inf_Orb_L 10 Temporal_Inf_L 6 Vermis_4_5 11

Cluster 2 total: 13 Cluster 2 total: 10 Cluster 2 total: 11
Peak (MNI): −57 −66 −6
Peak t: −4.4341

Peak (MNI): −12 0 42
Peak t: 3.9132

Peak (MNI): 30 −72 15
Peak t: 4.0551

Temporal_Inf_L 4 Cingulum_Mid_L 6 White Matter 11
Occipital_Mid_R 4

Cluster 3 total: 10 Cluster 3 total: 19 Cluster 3 total: 13
Peak (MNI): 0 −57 3
Peak t: 4.5502

Peak (MNI): −9 −51 75
Peak t: −4.6652

Peak (MNI): −18 12 21
Peak t: 5.4060

Vermis_4_5 8 Precuneus_L 18 Caudate_L 4

Cluster 4 total: 23
Peak (MNI): 30 −72 15
Peak t: 3.9545
White Matter 23
Occipital_Mid_R 10

Cluster 5 total: 11
Peak (MNI): 30 −69 24
Peak t: 4.5089
Occipital_Mid_R 8

aMCI vs. HC Cluster 1 total: 10 Cluster 1 total: 13
Peak (MNI): −18 21 −21
Peak t: 4.1979

Peak (MNI): 6 12 33
Peak t: 4.8347

Frontal_Inf_Orb_L 8 Cingulum_Mid_R 10

Cluster 2 total: 14
Peak (MNI): 6 9 33
Peak t: 4.4992
Cingulum_MID_R 13

Cluster 3 total: 13
Peak (mni):-12 0 36
Peak t: 4.7156
Cingulum_MID_L 7

OBJ-SCD vs. aMCI Cluster 1 total: 14
Peak (MNI): 30 −78 12
Peak t: 3.5639
Occipital_MID_R 8

AAL, anatomical automatic labeling; MNI, montreal neurological institute; fractional low-frequency fluctuation amplitude (ALFF).

we chose a subgroup with only memory domain impairment,
the aMCI group. The common feature of these two groups
is the impairment of memory function. The difference lies in
the degree of impairment, and the Obj-SCD group also has a
slight impairment of language function. By comparing with HC
and aMCI groups, we explored the functional activity changing
pattern in Obj-SCD individuals. We performed correlation
analysis between significant brain regions’ functional activities
and neuropsychological test scores in order to verify this pattern.

Similar Pattern Between the Obj-SCD and
aMCI Groups
Compared with the HC group, we found similar functional
activity enhancements in some local brain regions in the
Obj-SCD and aMCI groups, including the left orbital part of

the inferior frontal gyrus and the left median cingulate and
paracingulate gyri.

The frontal lobe may be an essential area of cognitive
maintenance associated with AD (Zeng et al., 2019). In terms
of cognitive function, it may be involved in episodic memory
and working memory (de Chastelaine et al., 2011; Matthews,
2015). Current evidence suggests that the orbitofrontal cortex is
associated with memory impairment in AD and frontotemporal
dementia (Liu et al., 2021). As an important node of working
memory, the orbitofrontal gyrus may play an essential role in
integrating and coordinating working memory maintenance,
execution, and monitoring (Badre, 2008; Barbey et al., 2011;
Costers et al., 2020). The cerebral accumulation of Aβ and
the following neurovascular dysfunction were considered the
most crucial pathogenesis of cognitive decline and dementia
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FIGURE 1 | Local functional change pattern of Obj-SCD group. The Obj-SCD group compared with the HC group. (A) In the normal band, fALFF increased in the
left orbital part of inferior frontal gyrus, the right middle occipital gyrus, cerebellar vermis; decreased fALFF in the left inferior temporal gyrus (Two-tailed t-test; FDR
p < 0.017, k > 10 voxels). (B) In the slow-4 band, fALFF increased in the left median cingulate and paracingulate gyri; decreased in the left inferior temporal gyrus
and the left precuneus (Two-tailed t-test; FDR p < 0.017, k > 10 voxels). (C) In the slow-5 band, fALFF increased in the right middle occipital gyrus, caudate nucleus,
and cerebellar vermis (Two-tailed t-test; FDR p < 0.017, k > 10 voxels). The numbers in brackets are voxels of significant clusters. Labels of significant clusters are
defined with the AAL (Anatomical Automatic Labeling) atlas. Abbreviations: Obj-SCD, objectively-defined subtle cognitive decline; fALFF, low-frequency fluctuation
amplitude (ALFF); HC, healthy control; FDR, false discovery rate.

FIGURE 2 | Local functional change pattern of aMCI group. (A) In the normal band, compared with the HC group, the aMCI group showed increased fALFF in the
left orbital part of the inferior frontal gyrus, bilateral median cingulate, and paracingulate gyri (Two-tailed t-test; FDR p < 0.001, k > 10 voxels). (B) In the slow-5 band,
compared with the HC group, the aMCI group showed increased fALFF in the right median cingulate and paracingulate gyri (Two-tailed t-test; FDR p < 0.001, k >
10 voxels). (C) In the normal band, compared with the Obj-SCD group, the aMCI group showed decreased fALFF in the right middle occipital gyrus (Two-tailed
t-test; FDR p < 0.017, k > 10 voxels). The numbers in brackets are voxels of significant clusters. Labels of significant clusters are defined with the AAL (Anatomical
Automatic Labeling) atlas. Abbreviation: aMCI, amnestic MCI.

(Scheltens et al., 2016; Lim et al., 2018; Parodi-Rullán et al.,
2020). Researchers (Hua et al., 2019) used arteriolar cerebral
blood volume to explore the relationship between cerebral blood
flow, APOE alleles, and Aβ accumulation in patients with MCI

and found an increased blood volume in the orbitofrontal
gyrus. Furthermore, they found the arteriolar cerebral blood
volume in the orbitofrontal gyrus is closely related to local
Aβ burden and APOE4; it also can predict cognitive decline
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FIGURE 3 | Correlation between local functional activity and neuropsychological performance. (A) In the Obj-SCD group, in the normal band, the fALFF value of the
right middle occipital gyrus was significantly negatively correlated with the MMSE score and AFT score; the left inferior temporal gyrus was significantly positively
correlated with the MMSE score. In the slow-4 band, the fALFF value of the left precuneus was significantly positively correlated with the MMSE and AFT scores. (B)
In the aMCI group, the fALFF value of the left orbital part of the inferior frontal gyrus was significantly positively correlated with AVLT 6th recall score. ∗p < 0.05.
Abbreviations: AFT, Animal Verbal Fluency Test; AVLT, Auditory Verbal Learning Test; MMSE, Mini-Mental State Examination.

within 2 years. Our study also found a similar increased local
functional activity in the orbitofrontal gyrus in both Obj-SCD
and aMCI groups, consistent with the increase of local blood flow
in this area. This enhancement of functional activity may be a
compensatory response to early cognitive decline. Considering
the role of the orbitofrontal cortex in attention and impulsivity
(Bari et al., 2020), it may also be a manifestation of nerve
recruitment disorder.

The cingulate cortex is an essential structure in the human
brain’s medial side, which plays a vital role in cognitive, motor,
emotional, and other functional activities. According to the
structure and function, the cingulate can be subdivided into
several parts, in which the middle cingulate cortex is considered
to be related to the function of the Frontoparietal Network
(Vincent et al., 2008; Gilmore et al., 2015; Caruana et al.,
2018). Specifically, the middle cingulate cortex is associated with
emotion, behavior, motor, and somatosensory function; and has
a close functional connection with prefrontal, premotor, and
primary motor networks (Oane et al., 2020). Compared with the
elderly with MCI, the elderly with normal cognition had a better
connection between themiddle cingulate and the superior frontal
gyrus, frontal eye field, orbitofrontal cortex (Cera et al., 2019).
Our study found increased functional activity on the middle
cingulate cortex in Obj-SCD and aMCI groups, which may be

intrinsically associated with the increased functional activity of
the orbitofrontal cortex.

Different Pattern Between the Obj-SCD
and aMCI Groups
Some changes in local functional activities of the Obj-SCD group
showed different patterns from the aMCI group. Compared
with HC, the Obj-SCD group showed increased local functional
activity in the right middle occipital gyrus, decreased local
functional activity in the left precuneus and the left inferior
temporal gyrus.

In the elderly with normal cognition, the connection between
the occipital lobe and the posterior cingulate and precuneus
is related to the tau protein, which may change in preclinical
cognitive impairment (Quevenco et al., 2020). In patients with
subjective cognitive decline, white matter damage across the
frontal and occipital lobes was also found; this track is thought
to be related to the gray matter damage such as the medial
prefrontal cortex and posterior cingulate cortex in the early stage
of AD (Luo et al., 2019). The close connection between the
occipital lobe and the frontal lobe is consistent with finding
abnormal functional activity in both the orbitofrontal cortex
and the occipital cortex in our study. In people with normal
cognition with Aβ deposition, it can be observed that the content
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of cerebrospinal fluid Progranulin is related to the thickening
of the occipital cortex and cognitive decline; this result reflects
that the neuroinflammatory reaction in the preclinical stage of
Alzheimer’s disease may cause the compensatory performance
in the occipital lobe (Batzu et al., 2020). Similarly, in individuals
with subjective cognitive decline, an increase in the volume of
occipital gray matter related to Aβ protein load was also found,
and this structural change was associated with the aggravation of
cognitive function symptoms (Valech et al., 2019).

Recent studies have shown that the temporal lobe is one of
the critical areas of pathological changes in multiple types of
dementia (Mak et al., 2020; Sanchez et al., 2021). In preclinical
AD, tau protein deposition and Aβ burden in the inferior
temporal gyrus is related to cognitive performance, mainly
memory function (Schultz et al., 2018; Norton et al., 2020; Scott
et al., 2020; Vila-Castelar et al., 2020). Tau accumulation in this
area may be associated with hippocampal hyperactivity, which is
not associated with Aβ (Huijbers et al., 2019). It is worth noting
that in the normal elderly without Aβ deposition and in the
elderly with cognitive impairment caused by small vessel disease,
the lower functional connection of the inferior temporal gyrus is
also related to the accumulation of tau protein (Franzmeier et al.,
2019; Rabin et al., 2019). In addition, in normal older adults, the
accumulation of tau protein in the inferior temporal gyrus is also
associated with progressive thinning of the cortex in many brain
regions, especially in the temporal lobe and parietal lobe (LaPoint
et al., 2017). Therefore, the inferior temporal gyrus might be a
susceptible region of detection of cognitive impaired risks.

In these studies, the changes in brain structure and functional
activities are similar to our results of local functional changes
observed in our research and may be related to pathological
markers. However, considering that no relevant pathological
marker detection was performed in our study, our results should
still be interpreted with caution and cannot be directly explained
by pathological changes.

The Association Between Changing
Pattern With Cognitive Function
in Obj-SCD Group
In this study, the Obj-SCD group showed a unique changing
pattern compared to the aMCI group. We analyzed the
correlation between the functional activity of the significant
brain regions found in the pattern and neuropsychological tests’
performance and found intimate associations.

The fALFF value of the right middle occipital gyrus was
increased in the Obj-SCD group and was significantly negatively
correlated with MMSE score and AFT score. These results
suggested that the increase of local functional activity in this
area may be related to the progression of the disease and
may be a compensatory manifestation of general cognitive
and language dysfunction. The functional activity of the left
inferior temporal gyrus was positively correlated with the
MMSE score, suggesting that the functional dysfunction was
related to general cognitive function. The functional activity of
the left precuneus was positively correlated with MMSE and
AFT scores, suggesting that its dysfunction was related to the

decline of general cognitive function and language function. The
correlation between these brain regions and specific cognitive
functions is consistent with previous studies. The abnormal
brain areas of the Obj-SCD group are distributed in a relatively
wide area, and there are differences between their correlations
with different cognitive impairments. We speculate that it might
because the internal pathological basis of Obj-SCD individuals is
complicated. We also speculate that if the progress of different
damage areas is inconsistent, Obj-SCD individuals’ outcomes
may differ, but this speculation needs further follow-up studies
to confirm.

Additionally, although the functional activity of the left orbital
part of the inferior frontal gyrus changed in both the Obj-SCD
and aMCI groups, only in the aMCI group the functional activity
was positively correlated with AVLT long delay cued recall score.
This can be attributed to the fact that the memory-binding
impairment in the aMCI group is more severe than that in the
Obj-SCD group.

CONCLUSION

Obj-SCD individuals have a widely distributed pattern of local
functional activity changes, and this changing pattern has some
similarities with aMCI to a certain extent. However, there were
also some differences. In this pattern, the functional changes of
different brain regions have a close but different correlation with
cognitive impairment, suggesting that there may be a complex
pathological basis inside. This suggests that Obj-SCD may be a
separate stage of cognitive decline before aMCI and is helpful to
the study of preclinical cognitive decline.

LIMITATIONS

The study still had some limitations. First, the sample size
is not enough, resulting in insufficient sensitivity of the
results. Second, there is no biomarker examination to explore
the pathological mechanism. Therefore, the results should be
interpreted with caution.
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The correlation among olfactory dysfunction, spinal cord injury (SCI), subjective cognitive
decline, and neurodegenerative dementia has been established. Impaired olfaction is
considered a marker for neurodegeneration. Hence, there is a need to examine if SCI
leads to olfactory dysfunction. In this study, the brain tissue of mice with spinal cord
hemisection injury was subjected to microarray analysis. The mRNA expression levels
of olfactory receptors in the brain began to decline at 8 h post-SCI. SCI promoted
neuroinflammation, downregulated the expression of olfactory receptors, decreased the
number of neural stem cells (NSCs), and inhibited the production of neurotrophic factors
in the olfactory bulbs at 8 h post-SCI. In particular, the SCI group had upregulated
mRNA and protein expression levels of glial fibrillary acidic protein (GFAP; a marker of
astrocyte reactivation) and pro-inflammatory mediators [IL-1β, IL-6, and Nestin (marker
of NSCs)] in the olfactory bulb compared to levels in the sham control group. The mRNA
expression levels of olfactory receptors (Olfr1494, Olfr1324, Olfr1241, and Olfr979)
and neurotrophic factors [brain-derived neurotrophic factor (BDNF), glial cell-derived
neurotrophic factor (GDNF), and nerve growth factor (NGF)] were downregulated in the
olfactory bulb of the SCI group mice at 8 h post-SCI. The administration of granulocyte
colony-stimulating factor (G-CSF) mitigated these SCI-induced pathological changes
in the olfactory bulb at 8 h post-SCI. These results indicate that the olfactory bulb is
vulnerable to environmental damage even if the lesion is located at sites distant from
the brain, such as the spinal cord. Additionally, SCI initiated pathological processes,
including inflammatory response, and impaired neurogenesis, at an early stage. The
findings of this study will provide a basis for future studies on pathological mechanisms
of early neurodegenerative diseases involving the olfactory bulb and enable early clinical
drug intervention.

Keywords: subjective cognitive decline, neurodegenerative disease, olfactory dysfunction, olfactory bulb, spinal
cord injury, neuroinflammation, granulocyte colony stimulating factor
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INTRODUCTION

The cognitive performance of patients with subjective cognitive
decline (SCD) in the objective cognitive examination is within
the standard range (Jessen et al., 2014). SCD is considered to be
the preclinical stage of Alzheimer’s Disease (AD). Approximately
25% of patients with SCD may develop mild cognitive
impairment (MCI). The risk of developing dementia within
5 years in patients with SCD was twofold higher than that in
patients without SCD (Mitchell et al., 2014) (red arrow numbered
1, Figure 1). Therefore, there is a need to further examine the
clinical characteristics of patients with SCD. Obscure cognitive
symptoms at early stage can be alleviated (Si et al., 2020). Previous
studies have reported that SCD is associated with increased glial
activation and consequently increased inflammation in the brain
(Nordengen et al., 2019; Si et al., 2020).

As shown in Figure 1 (red arrow numbered 2), the
manifestation of olfactory dysfunction is reported in various
neurological diseases, such as Parkinson’s Disease (PD)
(Altinayar et al., 2014), AD (Yoo et al., 2018), stroke (Wehling
et al., 2015), and major depression disorder (Negoias et al., 2016;
Croy and Hummel, 2017). Additionally, olfactory dysfunction
is highly correlated with SCD (Risacher et al., 2017; Jobin et al.,
2021; Wang et al., 2021), which may further progress to MCI
and neurodegenerative dementia (Devanand et al., 2015; Fullard

FIGURE 1 | Schematic diagram depicting spinal cord injury (SCI)-mediated
olfactory dysfunction and the subsequent subjective cognitive decline
(SCD)/neurodegenerative dementia. Olfactory dysfunction is an early indicator
of neurological diseases, including SCD and neurodegenerative dementia.
Previous studies have reported the correlation between SCD and
neurodegenerative disease (ND) (indicated as red arrow no. 1). Generally,
olfactory impairment is involved in the progression of ND (indicated as red
arrow no. 2) or the progression of SCD to ND (from red arrow no. 3 to 1).
Thus, SCI promotes ND (indicated as blue arrow no. 4), as well as the
progression from initial SCD to ND (from blue arrow no. 5 to red arrow no. 1).
This study demonstrated that SCI promotes neuroinflammation in the
olfactory bulb at an ultrarapid stage after SCI. Thus, SCI may mediate the
pathological mechanisms of neurodegeneration.

et al., 2016; Roberts et al., 2016; Dintica et al., 2019; Yahiaoui-
Doktor et al., 2019) (red arrow numbered 3 to 1, Figure 1).
Olfactory deficits increase the risk of developing AD dementia
from MCI by four to five times (Devanand et al., 2008). Thus,
olfactory impairment is suggested to be a marker for the early
detection of cognitive decline and AD dementia (Devanand et al.,
2015; Fullard et al., 2016; Roberts et al., 2016).

Traumatic spinal cord injury (SCI) leads to neurological
deficits or chronic disability. Acute SCIs involve both
pathophysiological primary and secondary mechanisms of
injuries. Primary injuries involve damages to the neural
structures (such as the cell membranes, myelin, axons, and
microvessels) and can contribute to the exacerbation of
secondary injuries (Kwon et al., 2004). Secondary SCIs include
neuroinflammation, production of free radicals, hyperoxidation,
and neuronal apoptosis (Tator and Fehlings, 1991; Houle and
Tessler, 2003), which lead to irreversible neurological deficits in
patients with SCI.

In addition to the spine, SCIs can adversely affect the brain
and consequently promote inflammation in the brain (Wu
et al., 2014) (blue arrow numbered 4, Figure 1). The enhanced
production of pro-inflammatory cytokines and neurotoxic
molecules post-SCI promotes inflammation in the brain (Tian
et al., 2007). In the rat models of SCI, microglial activation
promotes chronic inflammation in the thalamus, hippocampus,
and cerebral cortex (Wu et al., 2014). Furthermore, suppressed
neuroprotective mechanisms may contribute to the exacerbation
of cerebral damage post-SCI. The expression of brain-derived
neurotrophic factor (BDNF) is downregulated for at least 1 week
after SCI, which adversely affects the plasticity of the rat
hippocampus (Fumagalli et al., 2009). SCIs are reported to result
in cognitive impairment (Craig et al., 2017; Sachdeva et al.,
2018; Nightingale et al., 2020) and contribute to the development
of neurodegenerative diseases, such as AD (Yeh et al., 2018)
and PD (Yeh et al., 2016) (blue arrow numbered 5 to red
arrow numbered 1, Figure 1). Olfactory dysfunction can predict
neurodegeneration. However, the predictive value of olfactory
dysfunction for cognitive impairment and subsequent dementia
in patients with SCI has not been previously reported.

Granulocyte colony-stimulating factor (G-CSF) or colony-
stimulating factor 3 (CSF3) is widely used for the clinical
treatment of patients with neutropenia after chemotherapy,
radiotherapy, or hematopoietic stem cell transplantation (Welte
et al., 1996). The functions of G-CSF are to activate hematopoietic
stem cells and stimulate the proliferation, differentiation,
and maturation of neutrophils in the bone marrow (Holig,
2013). G-CSF is reported to exert neuroprotective effects
in neurodegenerative diseases, including PD and AD (Tsai
et al., 2007; Prakash et al., 2013a,b; Safari et al., 2016). The
plasma concentrations of G-CSF in patients with early-stage
AD are lower than those in healthy individuals (Laske et al.,
2009). The administration of G-CSF improves the cognitive
functions in patients with early-stage AD (Sanchez-Ramos et al.,
2012). Moreover, G-CSF is reported to alleviate depression and
motor function in rat PD models and increase the density
of neurons in the substantia nigra pars compacta (SNpc)
(Prakash et al., 2013a). Additionally, G-CSF can restore the
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functions of striatum and SNpc in the 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP)-induced PD mouse model (Song
et al., 2011). Furthermore, G-CSF exhibits anti-inflammatory and
neuroprotective effects in stroke and SCI (Kadota et al., 2012; Guo
et al., 2015; Cui et al., 2016; Weise et al., 2017).

As shown in Figure 1 (dotted red arrow), the effect of SCI on
olfactory function has not been elucidated. This study examined
the effect of SCI on neuroinflammation and the levels of olfactory
receptors, neurotrophic factors, and neural stem cells (NSCs) in
the mouse olfactory bulb. The findings of this study suggested
that SCI promotes olfactory dysfunction, which indicated a
correlation between SCI and neurodegenerative diseases. This
study also used a mouse spinal cord hemisection model to
investigate the therapeutic effects of G-CSF on the SCI-induced
pathological changes in the olfactory bulb.

MATERIALS AND METHODS

Animals
Adult BLTW: CD1 (ICR) male mice aged 8 weeks and weighing
31–33 g were obtained from the BioLASCO Experimental
Animal Center (Taiwan Co., Ltd., BioLASCO, Yilan, Taiwan).
The animals were housed in cages (five animals per cage) under
a regular circadian cycle with free access to food. This study
was performed according to the guidelines outlined by the
Experimental Animal Laboratory and approved by the Animal
Care and Use Committee at National Ilan University, Yilan,
Taiwan (IACUC Approval No.: 106-14).

Experimental Grouping
The animal model of spinal cord hemisection was established
as described previously (Lin et al., 2011). Briefly, the mice
were divided into the following four groups: sham-operated
control (sham control group), animals underwent laminectomy
(n = 18); vehicle-treated SCI group (SCI group) (n = 18),
animals underwent spinal cord hemisection and administered
with physiological saline; SCI + G-CSF i.p. group, SCI mice
intraperitoneally administered with G-CSF (n = 18); and SCI + G-
CSF oral group, SCI mice orally administered with G-CSF
(n = 15). Microarray, mRNA, protein, and immunofluorescence
analyses were performed using three, six, six, and three mice
from the sham control, SCI, and SCI + G-CSF i.p. groups,
respectively. As the SCI + G-CSF oral group comprised three
mice less than those in the other groups, microarray analysis was
not performed for this group.

Spinal Cord Hemisection
The animals were anesthetized using isoflurane, placed in a
stereotactic apparatus (David Kopf Instruments, Tujunga, CA,
United States) to secure the spinal cord, and subjected to
posterior decompression. Laminectomy was performed at the 9th
to 10th thoracic vertebrae with undisturbed intact dura under
a dissecting microscope. For spinal cord hemisection, the guide
of the wire knife was positioned along the vertical plane close
to the lateral surface in the lower thoracic level of the spinal
cord. The knife was turned medially and extended 1.5 mm.

Next, the guide was lifted 4.0 mm to hemitransect the spinal
cord. The sham group only underwent laminectomy but not
hemisection. The wound was closed in layers using sutures. The
animals were allowed to recover on a heating pad at 36.5◦C and
fast for 3 h post-surgery. For postoperative care, the animals
were subcutaneously injected with saline for rehydration. The
mice were returned to their preoperative housing conditions after
surgery. The whole brain and the olfactory bulb were excised
from mice in all four groups for microarray and gene expression
analyses at 8 h post-hemisection.

Administration of G-CSF in SCI Mice
The SCI + G-CSF i.p. and SCI + G-CSF oral groups were
intraperitoneally and orally administered with G-CSF (50 µg/kg
bodyweight) at 30 min post-SCI. Meanwhile, the SCI group
was intraperitoneally administered with physiological saline at
30 min post-SCI. The mice in the sham control group were not
administered with physiological saline or G-CSF.

Preparation of Recombinant G-CSF
Recombinant G-CSF (rG-CSF) was synthesized in our laboratory.
Briefly, U-87 MG cells (Bioresource Collection and Research
Center, Hsinchu, Taiwan) were cultured in Eagle’s Minimum
Essential Medium (11700-077) (GibcoTM, Thermo Scientific,
Waltham, MA, United States) supplemented with 10% fetal
bovine serum (A15-101) (PAA Cell Culture Company, BioPath
Stores, Cambridge, United Kingdom). Total RNA was extracted
from the cells (1 × 106–1 × 107 cells) using TRI Reagent R©

RNA isolation reagent (15596-018) (Invitrogen, Carlsbad, CA,
United States), following the manufacturer’s instructions. The
RNA was reverse-transcribed to cDNA before PCR. The PCR
product was purified from the agarose gel and subcloned into the
T&A vector (Yeastern Biotech, Taipei, Taiwan). The recombinant
vector was transformed into competent Escherichia coli RR1 cells.
The final sequences with a size of 525 bp were purified from
an agarose gel and subcloned into the pET-24a(+) expression
vector (Novagen, Merck KGaA, Darmstadt, Germany) to obtain
the pET-24a(+)-rG-CSF construct. Next, the pET-24a(+)-rG-CSF
plasmid was transformed into E. coli BL21 Codon Plus R© (DE3)-
RIPL cells. rG-CSF was purified using affinity chromatography
using the 6 × His-tagged tail. The levels of proteins, including
those after each purification step, were analyzed using sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).
The yield of recombinant protein was determined using the
protein assay kit (500-0006) (Bio-Rad Laboratories GmbH,
Vienna, Austria).

Preparation of Water-in-Oil-in-Water
Multiple Emulsion of the Oral Form of
G-CSF
The water-in-oil-in-water (W/O/W) multiple emulsions
were prepared using the two-step emulsified procedure with
previously reported modifications (Onuki et al., 2004). Briefly,
the droplets were emulsified using an equal volume of the
gel solution to obtain the W/O/W emulsified particles. The
composition of the three phases (inner aqueous phase:lipid
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phase:gel solution in the ratio 1:1:2) was as follows: inner
aqueous phase, G-CSF protein solution; lipid phase, glyceryl
monostearate (0.05%; v/v), span 80 (0.05%; v/v), soybean lecithin
(0.05%; v/v), and soybean oil, 0.85%; v/v); and gel solution, water
(1.0%; v/v), Tween 20 (0.4%; v/v), and sodium carboxymethyl
cellulose (0.6%; v/v). The W/O/W-emulsified particles were
stored at 4◦C for further use. The formulation was prepared on
ice to avoid degradation of protein at higher temperatures.

Microarray Analysis
Microarray analysis was performed using the Agilent mouse gene
expression microarray kit (Welgene Biotech, Taipei, Taiwan),
following the manufacturer’s instructions. Briefly, 0.2 µg of
total RNA extracted from the whole-brain lysates was labeled
with Cy3 (CyDye, Agilent Technologies, Santa Clara, CA,
United States) using the Low Input Quick-Amp labeling kit
(Agilent Technologies, Santa Clara, CA, United States) during
the in vitro transcription process. Cy3-labeled cRNA (0.6 µg)
was fragmented to an average size of approximately 50–100 nt
in fragmentation buffer at 60◦C for 30 min. The fragmented
and labeled cRNA was then pooled and hybridized to Agilent
SurePrint Microarray (Agilent Technologies, Santa Clara, CA,
United States) at 65◦C for 17 h. The microarray was washed, dried
using a nitrogen gun, and scanned using an Agilent microarray
scanner (Agilent Technologies, Santa Clara, CA, United States)
at 535 nm to detect Cy3. The scanned images were analyzed
using Feature Extraction 10.7.3.1 Software (Agilent Technologies,
Santa Clara, CA, United States), which is an image analysis and
normalization software used to quantify signal and background
intensity for each feature. The raw signal data were subjected
to quantile normalization to identify differentially expressed
genes. The differentially expressed genes were subjected to the
enrichment test for functional assay. ClusterProfiler was used for
gene ontology and Kyoto Encyclopedia of Genes and Genomes
pathway analyses.

Histological Analysis
Mice were anesthetized with Zoletil 50 (10 mg/kg i.p.; Virbac,
Carros, France) at 8 h post-SCI and perfused with an intracardial
infusion of phosphate-buffered saline (PBS; pH 7.4), followed by
perfusion with 4% paraformaldehyde in PBS (pH 7.4) at 4◦C. The
mouse olfactory bulb was immediately excised, postfixed in the
same fixative, and transferred to 30% sucrose in PBS until it sank.
The fixed tissues were embedded at −25◦C and sectioned into
20-µm coronal sections encompassing the entire olfactory bulb.

Immunofluorescence Staining
The tissue sections of the olfactory bulb were washed thrice
with PBS for 5 min and blocked with PBS containing 10% goat
serum and 0.5% Triton X-100 for 1 h. Next, the sections were
incubated overnight at 4◦C with mouse anti-glial fibrillary acidic
protein (GFAP) (MA5-12023) (1:200; Invitrogen, Carlsbad, CA,
United States) in PBS containing 5% goat serum and 0.5% Triton
X-100. The sections were then washed thrice with PBS containing
0.5% Triton X-100 for 5 min and incubated with goat anti-
mouse IgG (H + L) cross-adsorbed secondary antibody (A11001)
(1:1000) (Invitrogen, Carlsbad, CA, United States) for 3 h. After

washing thrice with PBS containing 0.5% Triton X-100 for 5 min,
the sections were incubated with 4′,6-diamidino-2-phenylindole
(1 µg/ml; Sigma-Aldrich, St. Louis, MO, United States) for
5 min. The sections were washed, mounted on coverslips, and
observed under a Zeiss AX10-Imager A1 microscope (Carl Zeiss,
Thornwood, NY, United States). All images were captured using
AxioVision 4.7 microscopy software (Carl Zeiss, Thornwood,
NY, United States). The morphological and quantitative analyses
of the olfactory bulb were performed (indicated as the region
of interest within the dashed box in Figure 2A). Cell counting
was performed at a magnification of 400 × on every sixth
section stained using the antibodies mentioned above. Only
cells exhibiting visible indications of staining were counted. All
data are presented as mean ± standard error of mean of three
consecutive measurements.

Quantitative Real-Rime Polymerase
Chain Reaction
Total RNA was extracted from the olfactory bulb tissues using
TRIzol reagent (Invitrogen, Carlsbad, CA, United States). The
RNA samples were subjected to reverse transcription using oligo-
dT and SuperScript II reverse transcriptase (Invitrogen, Carlsbad,
CA, United States). The quantitative real-rime polymerase chain
reaction (qRT-PCR) analysis was performed using the ABI
StepOne sequence detector system (Applied Biosystems, Foster
City, CA, United States) with SYBR Green. The expression levels
of the target genes were normalized to those of a housekeeping
gene (β-actin). The primer sets and product size of each cDNA
of interest were as follows: mouse IL-1β (Gene ID: 16176;
accession number: NM_008361.4), 5′-AGG CTC CGA GAT
GAA CAA-3′ and 5′-AAG GCA TTA GAA ACA GTC C-3′
(product size, 464 bp); IL-6 (Gene ID: 16193; accession number:
NM_001314054.1), 5′-CCA CCA AGA ACG ATA GTC AA-3′
and 5′-TTT CCA CGA TTT CCC AGA-3′ (product size, 227 bp);
GFAP (Gene ID: 14580; accession number: NM_001131020.1),
5′-CCA ACC CGT TCC ATA-3′ and 5′-TCC GCC TGG TAG
ACA TCA-3′ (product size, 405 bp); Olfr1494 (Gene ID: 258992;
accession number: NM_146990.1), 5′-TAT GTA GTG GGC ATC
CTG-3′ and 5′-GAT TGA GTA ATG GCG TGA-3′ (product
size, 262 bp); Olfr1324 (Gene ID: 258289; accession number:
NM_146292.1), 5′-GCC ATC TGT CAC CCA TTA-3′ and 5′-
CAA GCA AGC CTT AAC ACG-3′ (product size, 194 bp);
Olfr1241 (Gene ID: 258447; accession number: NM_146455.1),
5′-TCC ACT GCT ATC TCA CCC AA-3′ and 5′-AGG AAG
CAA ACC CGC CTA-3′ (product size, 209 bp); Olfr979 (Gene
ID: 259112; accession number: NM_147108.2), 5′-GCA CCG
AGT GTT TCC TGT-3′ and 5′-GAC CAT CTC ATT GGC TGA-
3′ (product size, 269 bp); BDNF (Gene ID: 12064; accession
number: NM_001048139.1), 5′-GGG TCA CAG CGG CAG
ATA AA-3′ and 5′-GCC TTT GGA TAC CGG GAC TT-3′
(product size, 86 bp); glial cell-derived neurotrophic factor
(GDNF) (Gene ID: 14573; accession number: NM_001301332.1),
5′-GGA CGC TTG GTG GTT GAT-3′ and 5′-ATG AGA ATG
CTG CCG AAA-3′ (product size, 161 bp); nerve growth factor
(NGF) (Gene ID: 18049; accession number: NM_001112698.2),
5′-AAG CCC ACT GGA CTA AAC T-3′ and 5′-GTC TTA
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FIGURE 2 | Spinal cord injury (SCI) can activate the astrocytes in the olfactory bulb at 8 h post-spinal cord hemisection injury in mice. Representative images of
GFAP-stained sections of the olfactory bulbs of the sham control (B), SCI (C), SCI + granulocyte colony-stimulating factor (G-CSF) i.p., and SCI + G-CSF oral
groups. (A) Schematic illustration of the olfactory bulb (marked with dashed box) of all groups subjected to mRNA, protein, and immunofluorescence analyses. The
SCI group exhibited a higher number of GFAP-positive cells [as indicated by arrow in panel (C)] than the sham control group (B). This indicated astrocytic activation
and potential astrocyte-mediated inflammatory responses in the olfactory bulb at 8 h post-SCI. The immunofluorescence intensity of GFAP significantly decreased in
the SCI + G-CSF i.p. [as indicated by arrow in panel (D)] and SCI + G-CSF oral groups [as indicated by arrow in panel (E)] [(B–C) magnification 400×]. (E) Vertical
bars indicate the mean ± standard error of mean) number of GFAP-stained cells in each group (n = 3). ***P < 0.001 and ###P < 0.001.

TCT CCA ACC CAC A-3′ (product size, 340 bp); Nestin
(Gene ID: 18008; accession number: NM_016701.3), 5′-CCC
TGA AGT CGA GGA GCT G-3′ and 5′-CTG CTG CAC CTC
TAA GCG A-3′ (product size 166 bp); and β-actin (Gene ID:
11461; accession number: NM_007393.5), 5′-CTG TCC CTG
TAT GCC TCT G-3′ and 5′-ATG TCA CGC ACG ATT TCC-3′
(product size, 218 bp).

Immunoblotting
Total protein was extracted from the mouse olfactory bulb
tissues in a lysis buffer containing 0.8% NaCl, 10% glycerol,
0.1% SDS, 1% Triton X-100, 20 mM Tris–HCl, and 1 mM
phenylmethylsulfonyl fluoride. The lysates were centrifuged at
13,000 g and 4◦C for 10 min. The total protein content in the
supernatant was determined using a protein assay kit (500-0006)
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(Bio-Rad Laboratories GmbH, Vienna, VA, United States). The
sample was then boiled for 5 min, and 20 µl (containing 20 µg
of protein) aliquot of the sample was subjected to SDS-PAGE
using a 12% gel. The resolved proteins were electroblotted to
a nitrocellulose membrane. The membrane was blocked with
the blocking reagent and incubated with the following primary
antibodies for 12 h at 4◦C: mouse anti-GFAP (MA5-12023)
(1:2500) (Invitrogen, Carlsbad, CA, United States); rabbit anti-
Nestin (tcna6785) (1:2500) (Taiclone, Taipei, Taiwan); rabbit anti-
IL-6 (tcba214) (1:1000) (Taiclone, Taipei, Taiwan); rabbit anti-IL-
1β (tcea9325) (1:1000) (Taiclone, Taipei, Taiwan); rabbit anti-β-
actin (ab8227) (1:1000) (Abcam, Cambridge, MA, United States).
Next, the membrane was washed thrice with PBS containing
0.05% Tween-20 for 5 min and incubated with goat anti-
rabbit IgG (H + L) horseradish peroxidase (HRP)-conjugated
secondary antibody (31460) (1:5000) (Invitrogen, Carlsbad,
CA, United States), and goat anti-mouse IgG (H + L) HRP-
conjugated secondary antibody (31430) (1:5000) (Invitrogen,
Carlsbad, CA, United States) for 2 h. Immunoreactive signals
were detected using SuperSignalTM West Pico Chemiluminescent
Substrate (Catalog: 34080, Thermo ScientificTM, Waltham, MA,
United States). The protein bands were visualized and quantified
using ImageQuantTM LAS 4000 (GE Healthcare Life Sciences,
Marlborough, MA, United States).

Statistical Analyses
An independent two-sample t-test was used to compare the
means of the two groups for microarray analysis. To assess
differential mRNA and protein expression, three or more
independent groups were compared using one-way analysis of
variance. In cases where the differences were apparent, multiple
comparisons were made using the Newman–Keuls method. Data
are presented as mean ± standard error of mean. All statistical
analyses were two-sided tests with the level of significance set
at 0.05. All statistical analyses were performed using GraphPad
Prism software version 5.0 (GraphPad Software, Inc., La Jolla,
CA, United States).

RESULTS

SCI Downregulated the mRNA Levels of
Olfactory Receptors in the Brain
Olfactory dysfunction can be an early indicator of neurological
disorders, such as SCD or neurodegenerative diseases. SCI
can lead to SCD or neurodegenerative diseases. This study
examined if impaired olfaction is a risk factor for SCI-mediated
neurodegeneration in the brain. An animal model of SCI was
established to examine the effect of SCI on olfactory function. The
whole-brain lysates of the mice from the sham control, SCI, and
SCI + G-CSF i.p. groups (n = 3 for each group) were subjected to
microarray analysis at 8 h post-SCI.

The microarray analysis revealed that the mRNA expression
levels of Olfr1494, Olfr979, Olfr424, Olfr122, Olfr1395, Olfr689,
Olfr1457, Olfr384, Olfr969, Olfr945, Olfr788, and Olfr1339
(olfactory receptors) in the brain of the SCI group were
significantly downregulated when compared to those in the

brain of the control group at 8 h post-SCI (∗P < 0.05 for all)
(Supplementary Table 1).

As shown in Table 1, the mRNA expression levels of Olfr1494,
Olfr979 (∗P < 0.05 and ∗P < 0.05, respectively), Mc3r (G-protein-
coupled receptor) (∗P < 0.05), Ppp3cb (regulator of calcium
ion-regulated exocytosis), Drd4 (dopamine neurotransmitter
receptor), and Gabrr3 (GABA-A receptor) in the brain of the
SCI group were markedly lower than those in the brain of the
sham control group. The mRNA expression levels of Olfr1494
(∗P < 0.05), Olfr979 (∗P < 0.05), Mc3r, Ppp3cb, Drd4, and
Gabrr3 in the SCI + G-CSF i.p. group were higher than those
in the SCI group.

Compared with those in the brain of the control group mice,
the expression levels of Mc5r (G-protein-coupled receptor) and
Ppp2r3a (regulator of protein binding and bridging) (∗P < 0.05)
were upregulated in the brain of the SCI group mice at 8 h
post-SCI. Additionally, treatment with G-CSF downregulated the
expression of Mc5r and Ppp2r3a (∗P < 0.05) in SCI mice.

These findings indicated that acute SCIs elicit inflammatory
responses in the spinal cord and the brain. Additionally, SCI can
damage the olfactory bulb and consequently decrease the number
of olfactory receptors.

SCI Promoted Inflammation in the Brain
Through the Activation of Astrocytes
The results of microarray analysis revealed that SCI promoted
brain damage as early as 8 h post-SCI, which was characterized
by downregulated expression of olfactory receptors. Olfactory
defects are highly correlated with neurodegenerative diseases.
Hence, this study focused on the pathology of the olfactory
bulb in SCI animals (shown in the dashed box in Figure 2A).
The ability of acute SCIs to induce inflammatory responses in
the olfactory bulb and the subsequent neurodegeneration in the
brain was examined.

TABLE 1 | Results of mRNA microarray analysis of mouse whole brain
8 h following SCIs.

Gene SCI/sham
(fold

change)

Significance SCI + G-
CSF/SCI

(fold change)

Significance Function

Olfr1494 0.323 * 3.607 * Olfactory reception

Olfr979 0.262 * 3.931 * Olfactory reception

Mc3r 0.176 * 2.401 G-protein coupled
receptor

Mc5r 2.142 0.460 G-protein coupled
receptor

Ppp3cb 0.459 2.267 Calcium ion
regulated exocytosis

Drd4 0.372 2.636 Dopamine
neurotransmitter
receptor

Gabrr3 0.400 2.378 GABA-A receptor

Ppp2r3a 5.757 * 0.179 * Protein binding,
bridging

*P < 0.05.
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The mice were divided into the following four groups:
sham control, SCI, SCI + G-CSF i.p., and SCI + G-CSF
oral (n = 15 for each group). Astrocytes, which are the
resident innate immune cells in the central nervous system
(CNS), can be reactivated to mediate neuroinflammation. The
reactivation is characterized by astrocytic hypertrophy and
the release of various pro-inflammatory mediators. The GFAP
immunofluorescence (arrow in Figure 2C) in the olfactory
bulb was higher and denser in the SCI group (∗∗∗P < 0.001;
Figure 2F) than in the sham control group (Figure 2B). This
indicated that astrocytes are reactivated in the olfactory bulb
at an early phase post-SCI, although the lesion was located at
the spinal cord.

The GFAP fluorescence signal in the SCI group (###P < 0.001
and ###P < 0.001, respectively; Figure 2F) was higher and denser
than that in the SCI + G-CSF i.p. (Figure 2D) and SCI + G-CSF
oral groups (Figure 2E).

SCI Promoted Neuroinflammation in the
Olfactory Bulb in vivo
To analyze the effect of SCI on neuroinflammation, the
olfactory bulb of the mice in the four groups (n = 6 for
each group) was subjected to qRT-PCR analysis. Each
experiment was performed three times. SCI promotes
the activation of astrocytes and the release of pro-
inflammatory cytokines. The mRNA expression levels
of IL-1β (∗P < 0.05; Figure 3A), IL-6 (∗∗∗P < 0.001;
Figure 3B), and GFAP (∗P < 0.05; Figure 3C) in the SCI
group were upregulated when compared with those in the
sham control group.

Treatment with G-CSF alleviated neuroinflammation in the
olfactory bulb in mice with spinal cord hemisection. The mRNA
expression levels of IL-1β, IL-6 (###P < 0.001; Figure 3B), and
GFAP (###P < 0.001; Figure 3C) were significantly lower in
the SCI + G-CSF i.p. group than in the SCI group. Similarly,
the mRNA levels of IL-1β (##P < 0.01; Figure 3A), IL-6
(###P < 0.001; Figure 3B), and GFAP (##P < 0.01; Figure 3C)
in the olfactory bulb were lower in the SCI + G-CSF oral group
than in the SCI group.

Western blot analysis was performed to verify
neuroinflammation within the olfactory bulb from four groups
of mice (n = 6 for each group) at the protein level. Unlike in the
sham control group, enhanced astrocyte reactivation (elevated
GFAP; ∗P < 0.05; Figure 3F) and glial activation-induced
pro-inflammatory cytokine production (upregulated expression
levels of IL-1β; Figure 3D and IL-6; ∗∗P < 0.001; Figure 3E) at
8 h post-SCI was observed in the SCI group. Additionally, the
SCI + G-CSF i.p. group exhibited downregulated levels of IL-1β

(Figure 3D), IL-6 (Figure 3E), and GFAP (Figure 3F). Similarly,
the SCI + G-CSF oral group exhibited downregulated levels of
IL-1β (Figure 3D), IL-6 (Figure 3E), and GFAP (## P < 0.001;
Figure 3F).

Previous studies have reported that neurodegeneration in the
brain is correlated with olfactory deficits and SCI. The findings of
this study indicated that SCI can lead to early neuroinflammation
of the olfactory bulb.

G-CSF Mitigates SCI-Induced
Downregulated mRNA Expression of
Olfactory Receptors
The qRT-PCR analysis revealed that the expression levels of the
olfactory receptors Olfr1494 (∗∗∗P < 0.001; Figure 4A), Olfr1324
(∗∗∗P < 0.001; Figure 4B), Olfr1241 (∗∗P < 0.01; Figure 4C),
and Olfr979 (∗∗∗P < 0.001; Figure 4D) in the SCI group were
significantly downregulated at 8 h post-SCI when compared with
those in the sham control group.

The mRNA expression levels of Olfr1494 (###P < 0.001;
Figure 4A), Olfr1324 (###P < 0.001; Figure 4A), Olfr1241
(##P < 0.01; Figure 4C), and Olfr979 (###P < 0.001; Figure 4D)
in the olfactory bulb of the SCI + G-CSF i.p. group were
significantly upregulated when compared with those in the
olfactory bulb of the SCI group. Compared with that in the
sham control and SCI groups, the mRNA expression level of
Olfr1241 in the olfactory bulb was significantly upregulated in the
SCI + G-CSF oral group (## P < 0.01; Figure 4C).

These results indicate that in the ultrarapid stage of CNS injury
(including SCI), the mRNA expression of olfactory receptors
is downregulated, which may further contribute to olfactory
dysfunction and potential degeneration of the olfactory neural
network and consequently neurodegeneration. Previous studies
have reported that the olfactory bulb is a sentinel station for
neurodegeneration in the brain. G-CSF can mitigate SCI-induced
changes in mRNA expression and achieve early preventive effects.

G-CSF Mitigates SCI-Induced
Downregulation of mRNA and Protein
Levels of Nestin and Neurotrophic
Factors in the Olfactory Bulb
The SCI group exhibited significantly downregulated mRNA
expression levels of BDNF (∗∗P < 0.01; Figure 5A), GDNF
(∗∗P < 0.01; Figure 5B), NGF (∗P < 0.05; Figure 5C), and Nestin
(marker of NSC) (Figure 5D) when compared with the sham
control group at 8 h post-SCI.

The mRNA expression levels of BDNF (##P < 0.01;
Figure 5A), GDNF (##P < 0.01; Figure 5B), NGF (##P < 0.01;
Figure 5C), and Nestin (###P < 0.001; Figure 5D) in the
olfactory bulb of the SCI + G-CSF i.p. group were upregulated
when compared with those in the olfactory bulb of the SCI
group at 8 h post-SCI. Compared with those in the olfactory
bulb of the SCI group, the mRNA expression levels of BDNF
(##P < 0.01; Figure 5A), GDNF (#P < 0.05; Figure 5B), NGF
(#P < 0.05; Figure 5C), and Nestin (###P < 0.001; Figure 5D)
were significant upregulated in the olfactory bulb of the SCI + G-
CSF oral group.

The protein expression of Nestin was quantified using western
blotting. Compared with that in sham control, the expression
of Nestin was significantly downregulated in the SCI group
(∗∗∗P < 0.001; Figure 5E). However, the expression levels of
Nestin in the SCI + G-CSF i.p. and SCI + oral groups (#P < 0.05;
Figure 5E) were higher than those in the SCI group.

These findings indicated that neuroinflammation of the
olfactory bulb partly affects the neurogenesis-associated
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FIGURE 3 | Neuroinflammation in the mouse olfactory bulb at 8 h post-spinal cord injury (SCI). (A–C) The mRNA expression levels of IL-1β (A), IL-6 (B), and GFAP
(C) in the olfactory bulb of the sham control, SCI, SCI + granulocyte colony-stimulating factor (G-CSF) i.p., and SCI + G-CSF oral groups at 8 h post-SCI. Vertical
bars indicate the mean ± standard error of the mean (SEM) (n = 6 for each group). ∗P < 0.05, ∗∗∗P < 0.001, ##P < 0.01, and ###P < 0.001. (D–F) The protein
expression levels of IL-1β (D), IL-6 (E), and GFAP (F) in the olfactory bulb of the four experimental groups at 8 h post-SCI. Representative immunoblots of IL-1β,
IL-6, GFAP, and β-actin (internal control) are shown in the upper panel. The lower panel indicates the ratio of target protein band intensity to β-actin protein band
intensity relative to the control group (mean ± SEM). G-CSF mitigates SCI-induced neuroinflammation in the olfactory bulb as evidenced by the decreased
expression of IL-1β, IL-6, and GFAP. Vertical bars indicate mean ± SEM (n = 6 for each group). ∗P < 0.05, ∗∗P < 0.01, and ##P < 0.01.

processes, including the generation of NSCs and the production
of associated neurotrophic factors. G-CSF treatment may
promote the generation of NSCs and the production of
neurotrophic factors and consequently mitigate SCI-induced
downregulated olfactory receptors and olfactory dysfunction.
Thus, G-CSF may mitigate neurodegeneration in other
areas of the brain.

DISCUSSION

Olfactory dysfunction is an indicator of various neurological
diseases, such as PD, AD, and depression. Patients with
neurodegeneration exhibit significantly impaired odor
sensitivity, discrimination, and identification (Altinayar
et al., 2014; Negoias et al., 2016; Yoo et al., 2018). Neurological
diseases, including PD, AD, and depression, are associated with
dysfunctional serotonergic and dopaminergic neurotransmission
(Croy and Hummel, 2017). The major transmission routes of
the serotonin and dopamine systems include the orbitofrontal

cortex, hippocampus, striatum, and amygdala (Drevets, 2007;
Hamilton et al., 2008; Gabbay et al., 2013). Additionally, odor
molecules are initially sensed by the olfactory receptors in the
olfactory bulb. Next, the olfactory signal passes through the
prefrontal cortex, hippocampus, striatum, and amygdala (Yang
et al., 2011; Negoias et al., 2016; Croy and Hummel, 2017). The
transmission route of the olfactory signals overlaps with the
dopamine and serotonin pathways. The structural and functional
impairments among these brain regions lead to dysfunctional
neurotransmission and consequently result in impaired olfactory
conduction. This explains the correlation between olfactory
dysfunction and neurodegeneration.

Several animal and human experiments have confirmed
that the olfactory bulb, which regulates the olfactory
receptors, plays an important role in neurodegeneration in
the brain. The volume of the olfactory bulb is correlated
with depression severity (Negoias et al., 2010). Patients
with depression who do not exhibit improvements with
psychotherapy are associated with severe olfactory bulb atrophy
(Croy and Hummel, 2017).
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FIGURE 4 | Spinal cord injury (SCI) decreases the expression of olfactory receptors in the olfactory bulb at 8 h post-SCI. The mRNA expression levels of (A)
Olfr1494, (B) Olfr1324, (C) Olfr1241, and (D) Olfr979 in the olfactory bulb of the sham control, SCI, SCI + G-CSF i.p., and SCI + G-CSF oral groups. Vertical bars
indicate mean ± standard error of mean (n = 6 in each group). ∗∗P < 0.01, ∗∗∗P < 0.001, ##P < 0.01, and ###P < 0.001.

Various studies have reported that pathogens, including
viruses, bacteria, prions, and toxins, can enter the brain directly
through the olfactory pathway and damage the neural structure
(Doty, 2008). The olfactory epithelium, which is in direct
contact with the external environment, is separated from the
external environment only by a thin layer of mucus. Thus,
the olfactory system is susceptible to various external factors.
The olfactory bulb has been considered as the entry point for
pathogens, which spread to the brain through the olfactory
pathway and consequently cause pathological changes (Rey et al.,
2018). Viruses, which are a risk factor for neurodegenerative
diseases, can penetrate olfactory receptor neurons. Next, viruses
are transported through axons in the space around the nerves,
spread through the cribriform plate, and transported to the
subarachnoid space and remote brain areas (Dando et al., 2014).
Moreover, pathological protein aggregation in the olfactory
bulb is detected earlier than that in other regions (Rey et al.,
2018). This indicates that the olfactory bulb is vulnerable
to environmental insults and that it is involved in early
neurodegenerative diseases.

In addition to regulating olfactory function, the olfactory bulb
is one of the sites at which NSCs are stored (Pagano et al., 2000).
The hippocampus is the other site at which NSCs are stored
(Rolando and Taylor, 2014). The characteristics of NSCs include
self-renewal and multipotent differentiation into neurons or glial
cells. NSCs have been isolated from the olfactory bulb, cortex,

hippocampus, or subventricular zone (SVZ) of lateral ventricles
of the brain (Marei et al., 2015). Generally, neural progenitors
formed during neurogenesis in the SVZ migrate forward along
the rostral migratory stream (RMS) (Whitman et al., 2009),
and combine neural circuits to develop into interneurons in
the olfactory bulb (kay-Sim, 2010). NSCs differentiate into
neural cells, including neurons and glial cells, in response to
environmental stimuli (Alizadeh et al., 2017). Additionally, NSCs
can regenerate olfactory receptor neurons (Godoy et al., 2015).
Chronic inflammation may impair the neurogenesis of olfactory
NSCs (Rustenhoven and Kipnis, 2019).

Complex mechanisms are involved in neuroblast migration
in the RMS. Astrocytes, astrocyte-released growth factors, and
neurotrophic factors are the regulatory factors that determine
neuroblast migration. The blood vessels are reported to support
forward motility during neuroblast migration (Motamed et al.,
2019). The generation of blood vessels is mediated by astrocyte-
secreted vascular endothelial growth factor (Bozoyan et al., 2012).
Astrocytes located at the boundary of RMS undergo hypertrophy
and branching and promote the wrapping of neuroblasts along
with blood vessels to form glial tubes, which results in the
separation of the neuroblasts from the surrounding tissues
(Snapyan et al., 2009; Motamed et al., 2019). BDNF, which
is secreted from the vasculature, increases the number and
motility of neuroblasts (Chiaramello et al., 2007). Astrocytes
regulate the activity and migration of neuroblasts through BDNF
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FIGURE 5 | Spinal cord injury (SCI) downregulates the expression of neurotrophic factors and the number of neural stem cells (NSCs) in the olfactory bulb at 8 h
post-SCI. (A–D) The mRNA expression levels of BDNF (A), GDNF (B), NGF (C), and Nestin (NSC marker) (D) in the olfactory bulb of the sham control, SCI,
SCI + granulocyte colony-stimulating factor (G-CSF) i.p., and SCI + G-CSF oral groups. (E) The protein expression levels of Nestin in the olfactory bulb of the four
experimental groups at 8 h post-SCI. The upper panel shows the immunoblot of Nestin (177 kDa). β-Actin (42 kDa) served as an internal control. The lower panel
indicates the ratio of Nestin protein band intensity to β-actin protein band intensity relative to the control group. Vertical bars indicate mean ± standard error of mean
for mRNA (A–D) or protein expression (E) [n = 6 in each group for panels (A–E)]. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, #P < 0.05, ##P < 0.01, and ###P < 0.001.

(Snapyan et al., 2009). GDNF serves as a directional cue for
the chemotaxis of neuroblasts from SVZ to the olfactory bulb
(Paratcha et al., 2006).

Neural stem cells migrate toward lesioned sites upon CNS
injury and promote neurogenesis (Imitola et al., 2004; Bai et al.,
2018). Similar to the migration mechanism in RMS, neuroblasts
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use blood vessels as a physical guide to migrate from SVZ to the
lesion site (Kaneko et al., 2017). Newly generated neuroblasts are
recruited into blood vessels and redirected to the lesioned site
via the chemoattractive/trophic factors, such as BDNF, stromal-
cell-derived factor-1α (SDF-1α), and metalloproteinase-9 (MMP-
9) (Ghashghaei et al., 2007; Grade et al., 2013). However, the
intrinsic neuronal repair mechanism is not effective. For example,
the endogenous BDNF levels are low and consequently the
regeneration process is impaired.

A rat model of systemic lipopolysaccharide (LPS) treatment
exhibited inflammatory response and upregulation of cytokines
in the olfactory bulb at 6 h post-LPS administration (Doursout
et al., 2013). The findings of this study indicated that the
olfactory bulb is vulnerable to environmental insults, such
as damage from the remote periphery or CNS. This study
elucidated the manifestations of neuroinflammatory responses
in the olfactory bulb and the potential mechanisms leading
to olfactory dysfunction, including the downregulation of
olfactory receptors, the production of NSC, and the secretion
of neurotrophic factors at 8 h post-SCI. In this study, SCI
promoted neuroinflammation in the olfactory bulb, which
was characterized by the activation of resident astrocytes
and the subsequent release of pro-inflammatory cytokines.
Astrocyte reactivation in the olfactory bulb may promote glial
stimulation and whole-brain inflammation and impair NSC
regeneration. Aberrant activation of innate immune cells and
the inflamed brain may lead to neurodegenerative changes in
the brain (Kung and Lin, 2021a,b). The decreased number
of olfactory receptors may reduce the turnover rate toward
the olfactory bulb, which leads to atrophy of the olfactory
bulb. The decrease in the olfactory bulb volume eventually
leads to a decline in the signal from the olfactory bulb to
the amygdala, hippocampus, striatum, and orbitofrontal cortex,
which exacerbates neurodegeneration (Croy and Hummel, 2017).
Moreover, the olfactory bulb in the SCI group exhibited
decreased Nestin expression and downregulated production
of neurotrophic factors, including BDNF, NGF, and GDNF.
The key factors that promote neurogenesis, including NSCs,
supportive neurotrophic/chemotactic factors, and protective
astrocytes for constructing glial tubes, are dysregulated, which
promotes neurodegeneration in the brain. We hypothesized
that the ultrarapid stage after CNS injury [even lesions
located at sites distant from the brain (such as SCI)] initiates
degenerative changes in the brain, which are characterized by
pathological changes in the olfactory bulb, including astrocyte-
driven neuroinflammation, olfactory dysfunction, and impaired
production of NSCs and neurotrophic factors. G-CSF can
mitigate these pathological changes in the olfactory bulb.

The olfactory bulb and the related tracts and projections
to specific brain regions, including the hippocampus and
amygdala, are responsible for the storage and recovery of
memory and emotional regulation (Roberts et al., 2016).
Neurodegenerative insults can damage the nuclei that produce
acetylcholine, dopamine, and norepinephrine and consequently
decrease the production of choline acetyltransferase, which
leads to cholinergic, dopaminergic, and noradrenergic
deficiencies (Mesholam et al., 1998; Doty, 2012). Thus, olfactory

dysfunction is exacerbated with subsequent cognitive decline and
dementia. In the amyloid beta-induced AD rat model, G-CSF
downregulated the expression of acetylcholinesterase in the brain
(Prakash et al., 2013b). G-CSF inhibits the acetylcholinesterase-
mediated hydrolysis of acetylcholine into choline and acetic acid,
which results in enhanced plasma concentration of acetylcholine.
In the MPTP-induced PD mouse model, G-CSF inhibited MPTP-
induced cell death of dopaminergic substantia nigra neurons
and attenuated the reduction of striatal dopamine (Meuer et al.,
2006). G-CSF decreases the reuptake of norepinephrine in the
peripheral sympathetic neurons and consequently increases the
release of norepinephrine (Lucas et al., 2012). In this study,
G-CSF increased the number of NSCs as evidenced by increased
expression of Nestin and neurotrophic factors, including BDNF,
GDNF, and NGF, in the olfactory bulb. The administration
of recombinant BDNF in the brain promotes neurogenesis in
the striatum and olfactory bulb (Zigova et al., 1998; Benraiss
et al., 2001) in addition to enhancing neuroblast migration to
the lesion site in the mouse injury model (Grade et al., 2013).
The beneficial effects of epidermal growth factor and fibroblast
growth factor-2 on neurogenesis in SVZ and the olfactory bulb
have been demonstrated in the PD animal model (Winner
et al., 2008). Olfactory deficiency, which is an early marker
of neurodegeneration in the brain, is associated with various
functional nuclei of olfactory projection that are involved in
cognition, memory, and dysfunction of neurotransmission.
Therefore, G-CSF can prevent olfactory dysfunction, initial
inflammation of the olfactory bulb and brain, and the subsequent
neurodegeneration in the brain.

This study is associated with several limitations. In this study,
the pathological changes of the olfactory bulb were investigated
in the ultrarapid phase after CNS injury to verify the role of
the olfactory bulb as an early lesion site of neurodegeneration
in the brain. This study demonstrated the local benefits of
G-CSF in the early stage of inflammation in the olfactory bulb.
Although previous studies have reported the correlation between
the olfactory bulb and associated functional nucleus, further
studies are needed to examine the effect of the inflammation
in the olfactory bulb on the entire brain and the consequent
development of neurodegenerative diseases. Additionally, this
study examined the markers of NSCs (Nestin) and the production
of BDNF. However, neurogenesis and migration of NSCs
in the olfactory bulb or SVZ have not been demonstrated.
The pathological manifestations of the olfactory bulb were
demonstrated in an early stage of CNS injury. Although the
mRNA levels varied, the corresponding protein levels did not
exhibit a marked change. However, the olfactory bulb exhibited
inflammation and impaired neurogenesis at 8 h post-SCI. The
novel findings of this study enable the development of clinical
interventions for neurodegenerative diseases.

CONCLUSION

Previous studies have reported that the olfactory bulb and
olfactory dysfunction are involved in neurodegenerative diseases.
This study demonstrated that CNS injury (even SCI located
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at a distant site from the brain) promotes inflammatory
response in the olfactory bulb at an early stage, which is
accompanied by downregulation of olfactory receptors, impaired
neurogenesis, and decreased production of NSCs and BDNF.
G-CSF administration can mitigate the pathological changes in
the olfactory bulb at an early stage of CNS injury in mice with
spinal cord hemisection. The findings of this study will contribute
to further studies on the pathophysiological mechanisms of early
neurodegenerative diseases involving the olfactory bulb and aid
in the development of early clinical drug interventions.
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Subjective cognitive decline (SCD) is considered the earliest stage of the clinical
manifestations of the continuous progression of Alzheimer’s Disease (AD). Previous
studies have suggested that multimodal brain networks play an important role in the
early diagnosis and mechanisms underlying SCD. However, most of the previous studies
focused on a single modality, and lacked correlation analysis between different modal
biomarkers and brain regions. In order to further explore the specific characteristic of
the multimodal brain networks in the stage of SCD, 22 individuals with SCD and 20
matched healthy controls (HCs) were recruited in the present study. We constructed
the individual morphological, structural and functional brain networks based on 3D-
T1 structural magnetic resonance imaging (sMRI), diffusion tensor imaging (DTI) and
resting-state functional magnetic resonance imaging (rs-fMRI), respectively. A t-test
was used to select the connections with significant difference, and a multi-kernel
support vector machine (MK-SVM) was applied to combine the selected multimodal
connections to distinguish SCD from HCs. Moreover, we further identified the consensus
connections of brain networks as the most discriminative features to explore the
pathological mechanisms and potential biomarkers associated with SCD. Our results
shown that the combination of three modal connections using MK-SVM achieved the
best classification performance, with an accuracy of 92.68%, sensitivity of 95.00%,
and specificity of 90.48%. Furthermore, the consensus connections and hub nodes
based on the morphological, structural, and functional networks identified in our study
exhibited abnormal cortical-subcortical connections in individuals with SCD. In addition,
the functional networks presented more discriminative connections and hubs in the
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cortical-subcortical regions, and were found to perform better in distinguishing SCD
from HCs. Therefore, our findings highlight the role of the cortical-subcortical circuit
in individuals with SCD from the perspective of a multimodal brain network, providing
potential biomarkers for the diagnosis and prediction of the preclinical stage of AD.

Keywords: subjective cognitive decline, morphological network, structural network, functional network, multiple
kernel learning

INTRODUCTION

Alzheimer’s Disease (AD) is the most common cause of dementia,
characterised by irreversible neurodegeneration and continuous
cognitive function decline (Bonte et al., 1986; Scheltens et al.,
2016). It is generally believed that the early diagnosis of AD
is crucial for early intervention and improving the therapeutic
effects of AD treatment. Subjective cognitive decline (SCD) is
considered the earliest stage of the clinical manifestations of
progressively developing AD (Jessen et al., 2014a, 2020). Thus,
SCD is valuable for the early diagnosis and prediction of AD.

Multimodal neuroimaging studies have indicated that
individuals with SCD show a greater similarity to AD in their
patterns of brain structure and function compared with healthy
controls (HCs) (Lin et al., 2019; Wang et al., 2020). In particular,
the disconnection hypothesis between different brain regions is
considered to mainly contribute to cognitive decline in patients
with SCD (Dillen et al., 2016). For instance, for the brain
network based on resting-state functional magnetic resonance
imaging (rs-fMRI), the identified connectivity disruption of SCD
focused on the middle frontal gyrus, precuneus, and cingulate
gyrus, which corresponded to the default mode network (DMN)
(Greicius et al., 2004; Hafkemeijer et al., 2013; Xu et al., 2020b).
Shu et al. analysed the graph theory metrics of structural brain
network based on diffusion tensor imaging (DTI) and found
that patients with SCD exhibited lower global efficiency and
local efficiency of global graph metrics and reduced regional
efficiency in the bilateral prefrontal regions and left thalamus
(Shu et al., 2018). Moreover, the graph theoretic analysis of the
topological properties of the morphological network based on
structural magnetic resonance imaging (sMRI) showed that
patients with SCD exhibiting lower network parameter values
were associated with an increased risk of disease progression
(Tijms et al., 2018). Therefore, these results demonstrated
that patients with SCD have altered connectivity involving
multimodal brain networks. In addition, recent studies have
suggested that individuals with SCD exhibited volume atrophy
and disconnection of the subcutaneous nuclei, such as basal
forebrain, basal ganglia, and thalamus. Some researchers even
proposed that the variation of the subcutaneous nuclei might be
earlier than the cortex (Hampel et al., 2018; Scheef et al., 2019).
However, most previous studies have focused on a single model
of the brain network. The relationship between grey matter (GM)
morphology, white matter structure and functional connectivity
in SCD remains unclear.

Furthermore, to deal with the high-dimensional information
yielded from multimodal brain networks, machine learning
with multivariate pattern analysis was used to identify potential

neuroimaging biomarkers and distinguish patients from HCs at
an individual level. At the same time, it can reveal specific spatial
distribution information useful exploring the brain network
mechanisms underlying the cognitive impairment associated
with AD. Previous studies, such as that by Yan et al. (2019)
adopted a multimodal support vector machine (SVM) combined
with structural and functional connectivity and achieved an
accuracy of 98.58% in the AD group, 97.76% in the amnestic
mild cognitive impairment (aMCI) group, and 80.24% in the SCD
group. Compared with the single modal classification based on
functional connectivity by Yu et al. (accuracy of 84.8% in AD),
these results suggested that the integration of multimodal features
can provide more comprehensive and insightful information
than single modal features and achieve a better classification
performance. However, to the best of our knowledge, there has
been no study directly combining morphological, structural and
functional brain networks to explore the relationship of different
modalities and identify patients with SCD.

Given that individuals with SCD are often associated with
abnormal multimodal brain network connectivity and the
involvement of multiple brain regions, alongside the advantages
of machine learning, we sought to apply multi-kernel SVM
(MK-SVM) for the integration of morphological, structural and
functional brain networks based on sMRI, DTI and fMRI. This
study aimed to assess (a) whether specific altered patterns of
network connectivity discovered by three modal brain networks
can discriminate patients with SCD from HCs; (b) whether there
is a correlation between different modal biomarkers and brain
regions; and (c) whether the combination of multimodal network
connectivity analyses may improve the accuracy of identifying
patients with SCD from HCs.

MATERIALS AND METHODS

Participants
The samples included in this study were acquired from
the longitudinal follow-up data of China Longitudinal Aging
Study (CLAS), a community-based study initiated in 2012. All
individuals with Han Chinese nationality aged ≥60 years in
Shanghai. A total of 67 right-handed participants involved in
the present study, who underwent a screening process including
medical history, epidemiological investigation, baseline and 7-
year follow-up assessments of neuropsychological scale, and
neuroimaging examinations. At baseline, the neuropsychological
assessments included the Mini-Mental State Examination
(MMSE) (Tombaugh and McIntyre, 1992), Montreal Cognitive
Assessment (MoCA) (Nasreddine et al., 2005), Auditory Verbal

Frontiers in Aging Neuroscience | www.frontiersin.org 2 July 2021 | Volume 13 | Article 688113142

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-688113 July 5, 2021 Time: 19:23 # 3

Xu et al. Multimodal Brain Networks in SCD

Learning Test (AVLT) (Sheline et al., 1999), and Subjective
Cognitive Decline Self-administered Questionnaire (SCD-9)
(Shirooka et al., 2018). Meanwhile, T1-weighted MR imaging
scan was performed. At 7-year follow-up, in addition to
the neuropsychological scale mentioned above, multimodal
MRI scans including T1WI, DTI and rs-fMRI were carried
out. Therefore, research on the morphological, structural, and
functional networks in this study was based on follow-up samples
after 7 years. According to the follow-up results, 22 patients with
SCD and 20 HCs were enrolled in our study. Due to the limitation
of sample size, we considered the study classifies as pilot study.

The inclusion criteria for SCD were based on the conceptual
framework proposed by the Subjective Cognitive Decline
Initiative (SCD-I) (Jessen et al., 2014b), which included the
following: (a) an onset age >60 years; (b) a self-perceived
gradual decline in memory compared with a previous normal
status within the last 5 years or as confirmed by a close
caregiver; (c) MMSE and MoCA scores within the normal range;
and (d) a Clinical Dementia Rating (CDR) score of 0. Those
who did not experience any signs of cognitive decline and
had neuropsychological tests scores in the normal range were
included as HCs. The exclusion criteria of participants were as
follows: (a) neurology-related or cerebral vascular diseases (e.g.,
Parkinson’s disease, brain tumours, or intracranial aneurysms);
(b) systemic diseases that could cause cognitive impairments
(e.g., thyroid dysfunctions, syphilis, HIV or severe anaemia);
(c) severe schizophrenia according to their medical records; (d)
severe problems in vision, hearing, or speaking; and (e) inability
to participate actively in the neuropsychological evaluation.

This study was approved by the Institution’s Ethical
Committee of Shanghai Mental Health Centre of Shanghai
Jiao Tong University School of Medicine (NCT03672448). All
participants provided written informed consent prior to any
experimental procedures in the research. In terms of the statistical
analysis of demographics and clinical characteristics between the
SCD group and HC group, two-sample t-test or a chi-squared
(χ2) test were performed by the Statistical Package for Social
Science (SPSS, v20.0)1. The significance level was set at P < 0.05.

Data Acquisition
T1-weighted structural imaging, DTI, and rs-fMRI scans were
performed on each participant simultaneously. All MRI data were
acquired on a 3.0 T MR scanner (Magnetom R© Verio; Siemens,
Munich, Germany) using a 32-channel head coil. All participants
were instructed to keep their eyes closed (but no fall asleep), think
of nothing, and move as little as possible during the scan.

T1-weighted 3D high-resolution images were acquired using
a magnetisation-prepared rapid gradient echo (MPRAGE) with
the following parameters: repetition time (TR) = 2,300 ms,
echo time (TE) = 2.98 ms, flip angle = 9 degrees, inversion
time (TI) = 1,100 ms, matrix size = 240 × 256, field
of view (FOV) = 240 × 256 mm2, slice number = 192,
thickness = 1.2 mm and voxel size = 1.0 × 1.0 × 1.2 mm3. The
scan lasted for 5 min and 12 s. DTI data were obtained using
an echo planar imaging sequence with the following parameters:

1http://www.spss.com/

64 non-collinear directions with a b-value = 1,000 s/mm2 and
one additional image with no diffusion weighting (b = 0),
TR = 13,700 ms, TE = 85 ms, FOV = 224 × 224 mm2, slice
number= 75, thickness= 2 mm and voxel size= 2.0× 2.0× 2.0
mm3. In addition, the parameters of the rs-fMRI protocol were
collected as follows: axial slices, TR = 2,000 ms, TE = 30 ms,
flip angle = 90 degrees, FOV = 224 × 224 mm2, matrix
size= 64× 64, slice number= 31, thickness= 3.6 mm and voxel
size= 3.5× 3.5× 3.6 mm3. Each scan collected 240 volumes with
a scan time of 8 min and 6 s.

Image Preprocessing
Brain tissue segmentation was performed using SPM12
(Ashburner and Ridgway, 2012). Individual T1-weighted
3D high-resolution images were segmented into the GM,
white matter, and cerebrospinal fluid using a voxel-based
morphometric analysis (Ashburner and Friston, 2000).
The segmented GM images were realigned to the Montreal
Neurologic Institute (MNI) space and normalised by DARTEL
(Ashburner, 2007). Jacobian determinants were used to modulate
and compensate for spatial normalisation effects (Mueller et al.,
2019). A spatial smoothing process with a Gaussian kernel (full
width at half maximum, 6 mm) was carried out to render the
data more normally distributed and improve the signal-to-noise
ratio (Shen and Sterr, 2013).

The PANDA toolbox (Cui et al., 2013) based on FSL
(Jenkinson et al., 2012) was used for the pre-processing processes
of DTI images, such as the removal of redundant scalp and
brain tissues, and head motion and eddy current correction.
In addition, the tensor model was fitted using a linear least-
squares fitting method, and the fractional anisotropy (FA)
value was calculated.

The processing of the fMRI scans was carried out by the
Configurable Pipeline for the Analysis of Connectomes (C-PAC),
which is a python-based pipeline tool making use of AFNI (Cox,
1996), ANTs (Tustison et al., 2014), FSL, and custom python
code. Functional pre-processing included the following steps: (1)
The first 10 time points were removed; (2) Slice-time correction
was performed; (3) Images were de-obliqued; (4) Images were
re-oriented into a right-to-left posterior-to-anterior inferior-to-
superior orientation; (5) Motion correction was performed to
averaged images to obtain motion parameters; (6) Skull stripping
was performed; (7) The global mean intensity was normalised to
10,000; (8) Functional images were registered to anatomical space
using a linear transformation, white-matter boundary-based
transformation, and the prior white-matter tissue segmentation
from FSL; (9) Motion artefacts were removed using ICA-based
strategy for Automatic Removal of Motion Artefacts (ICA-
AROMA) with partial component regression (Pruim et al., 2015);
and (10) A nuisance signal regression was applied, including (a)
mean values from the signal in the white matter and cerebrospinal
fluid derived from the prior tissue segmentations transformed
from anatomical to functional space, (b) motion parameters (six
head-motion parameters, six head-motion parameters from one
time point before, and the 12 corresponding squared items), (c)
linear trends, and (d) global signal only for one set of strategies.
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This entire analysis was accelerated and simplified through a
cloud platform (2Beijing Intelligent Brain Cloud, Inc.).

Brain Network Construction
In present study, the Human Brainnetome (BN) Atlas (Fan
et al., 2016) was used to divide the brain into 246 regions of
interest (ROIs) to define the network nodes. Nevertheless, based
on different modal brain networks, the definition of network
edge was different.

Morphological Networks
Individual morphological brain networks were constructed by
evaluating interregional similarity in the distribution of regional
GM volume with the Kullback–Leibler divergence measure
(Kong et al., 2014). First, the GM volume value of all voxels within
the brain node were extracted. Second, the probability density
function of these values was calculated with the kernel density
estimation (KDE) (Wang et al., 2016). Next, the probability
distribution function (PDF) was computed for the obtained
probability density function. The variant KL divergence between
any pair of ROI was calculated, resulting in a similarity matrix. KL
divergence is a measure of the difference between two probability
distributions from the perspective of probability theory, or of the
information lost when one probability distribution approximates
the other from the perspective of information theory. The
following formula was used:

DKL (P,Q) =
n∑

i=1

(
P (i) log

P (i)
Q(i)
+ Q(i)log

Q(i)
P(i)

)
where P and Q are two PDFs and n is the number of sample
points. We selected n = 27 in this study in reference to the
research of Wang et al. (2016). Finally, a KL divergence-
based similarity (KLS) measure were calculated to quantify
morphological connectivity between two brain regions. The KLS
was computed as below:

KLS (P,Q) = e−DKL(P,Q)

where e is a natural exponent. The KLS ranges from 0 to 1. The
higher the value of KLS, the closer GM density distribution of the
two brain regions is.

Structural Networks
After the pre-processing of DTI data, probabilistic tractography
was used to construct the structural brain network (Behrens
et al., 2007). For each seed region, probabilistic tractography was
performed by seeding from all voxels of this region. For each
voxel, 5,000 fibres were sampled. The connectivity probability
from the seed region i to another region j was defined by the
number of fibres passing through region j divided by the total
number of fibres sampled from region i (5,000 × n, where n
is the voxel number in region i). It is worth noting that the
connection probability from i to j was not necessarily equal to
that from j to i. These two probabilities were averaged to define
the non-directional connection probability Pij between regions
i and j.

2http://www.humanbrain.cn

Functional Networks
For the pre-processed fMRI data, the average time series of 246
ROIs was separately extracted to construct the functional brain
network. The Pearson correlation coefficient of ROI pair-wise
was defined as the edge of the functional connectivity, which
resulted in 30,135 (246× 245/2) edges.

The above structural and functional networks were accelerated
and simplified through a cloud platform (see text footnote 2,
Beijing Intelligent Brain Cloud, Inc.).

Hubs of Each Imaging Modality
For each modal imaging (i.e., sMRI, DTI, and fMRI), the average
value of the individual brain network was acquired to generate the
group-average network. We identified the hub nodes by ranking
the nodal degree. The rank 5% of brain regions were defined as
the hubs of the brain network (Zhao et al., 2020).

Feature Selection and Classification
In order to avoid the difficulty in identifying the contribution of
kernel combination skills or feature selection to the final accuracy
in the classification pipeline, we adopt the simplest method (t-test
with p < 0.01) for feature selection. Meanwhile, the network-
based statistic (NBS) (Zalesky et al., 2010) was used to conduct
multiple comparisons correction for multimodal connections.
The result of correction for multiple comparisons were listed
in the Supplementary Figure 1. The LIBSVM toolbox3 for
MATLAB was used to conduct the SVM classification (Xu et al.,
2020a). Due to the limited samples, we used a leave one out cross-
validation (LOOCV) strategy to evaluate the performance of
the classification method. Specifically, inner cross-validation was
carried out to determine the optimal parameter (hyper-parameter
C for MK-SVM) and outer cross-validation was carried out
to determine the classification performance. We compared the
classification performance of single modes (i.e., sMRI, DTI and
fMRI) and combinations of different modes (i.e., sMRI + DTI,
fMRI + sMRI, fMRI + DTI, and fMRI + DTI + sMRI). Multi-
kernel learning with a kernel combination trick was applied for
multimodal information combination. The details of MK-SVM
were listed as follows.

Assuming there are n training samples with connections
values and graph metrics. xC

i and xG
i yi ∈ {1,−1} represent

the connection value, the graph metrics, and its corresponding
class label of the i-th sample, respectively. MK-SVM solves the
following primal problem:

min
W

1
2

3∑
m=1

βm|| wm
||

2
+ C

n∑
i=1

ξi

s.t. yi

( 3∑
m=1

βm(wm)Tφm(xmi )+ b

)
≥ 1− ξi

ξi ≥ 0, i = 1, 2, . . . , n

where φm represents mapping from the original space to the
Represent Hilbert Kernel Space (RHKS), wm represents the
normal vector of the hyperplane in RHKS, and βm denotes the

3https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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corresponding combining weight on the m-th modality. Next, the
dual form of MK-SVM can be represented as:

max
α

n∑
i=1

αi −
1
2

∑
i,j

αiαjyiyj
3∑

m=1

βmkm(xmi , y
m
i )

s.t.
n∑

i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, 2, . . . , n

where km
(
xmi , y

m
i
)
= φm(xmi )

Tφm(xmj ) is the kernel matrix on
the m-th modality. After training the model, we tested the
new samples x = {x1, x2, . . . , xM}. The kernel between the new
test sample and the i-th training sample on the m-th modality
is defined as km

(
xmi , x

m)
= φm

(
xmi
)T
φm(xm). In the end, the

predictive level based on MK-SVM can be formulated as follows:

f (x1, x2, . . . , xM) = sign

( n∑
i=1

yiαi
3∑

m=1

βmkm
(
xmi , x

m)
+ b

)

The proposed formulation of MK-SVM is similar, but
different, to existing multi-kernel learning methods since βm
is selected based on the cross-validation scheme on the grid-
searching space with constraints

∑
m βm = 1. The range of C was

2−5 to 25.

Consensus Connections
As mentioned above, we used the most commonly applied
nested cross-validation scheme to evaluate the performance of
the multi-kernel method proposed in this study. As the selected
features by t-tests in each validation might be different, we
record all the selected connection features during the training
process. The consensus connections refer to the features that are
consistently selected in all validations (Dosenbach et al., 2010;

Zeng et al., 2012). In this study, we concentrate on consensus
connections for each modal brain network. All data processing
procedures in our study are shown in Figure 1.

Robustness of Network Analysis
To demonstrate the robustness of the network analysis, we
repeated the same network construction method and analysis
process based on the automated anatomical labelling atlas (AAL)
with 90 ROIs (Tzourio-Mazoyer et al., 2002).

RESULTS

Demographic and Clinical
Characteristics
The demographic and clinical characteristics of all participants
are summarised in Table 1. The resultant scores of the SCD-
9 in the SCD group were significantly higher than those in the
HC group (p < 0.05). There were no significant differences with
respect to age, education, sex, or any other scales.

Multimodal Brain Network Matrix
Figure 2 depicts adjacent matrices of HCs at the group
level based on morphological, structural, and functional
network. The different colour reflects the weight value of the
connectivity edges at group level. As shown in Figure 2, both
functional and morphological networks, and particularly the
functional networks, showed strong homotopic connections.
As mentioned above, the network connectivity of different
modalities pointed to different physiological mechanisms.
The individual morphological brain networks in our study
demonstrated that the morphological network showed strong
contralateral homotopic connections, indicating that the GM
density distributions in the same brain area on the left and right

FIGURE 1 | Procedures of data processing in the present study.
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TABLE 1 | Demographics and clinical characteristics of patients
with SCD and HC.

Characteristic/test SCD HC T/χ2/Z P

Age (years) 74.0 ± 5.6 71.8 ± 2.9 1.67a 0.11

Education 10.1 ± 2.0 10.4 ± 3.0 0.00c 1.00

Gender (F/M) 14/8 6/14 5.31 b 0.05

MMSE 27.6 ± 1.8 28.2 ± 1.6 −1.13c 0.26

MoCA 23.6 ± 3.9 24.1 ± 3.8 −0.48c 0.63

AVLT-immediate recall 5.5 ± 1.9 4.8 ± 1.5 −0.98 c 0.33

AVLT-short delayed recall 8.1 ± 2.6 8.2 ± 2.1 −0.14 a 0.89

AVLT-long delayed recall 30.9 ± 7.7 33.2 ± 7.6 −1.00 c 0.32

AVLT-recognition 10.2 ± 3.1 11.2 ± 3.0 −0.95 c 0.34

SCD-9 3.8 ± 1.9 2.4 ± 2.0 0.58a 0.03∗

*p < 0.05 indicates significant differences between the groups.
aT value was obtained by using the two-sample t-test.
bχ2 value was obtained using the chi-square test.
cZ value obtained by using the rank-sum test.
MMSE, mini mental state examination; MoCA, Montreal Cognitive Assessment;
AVLT, Auditory Verbal Learning Test; SCD-9, Subjective Cognitive Decline Self-
administered Questionnaire. Data are presented as the mean ± standard deviation
(SD). SCD, subjective cognitive decline; HC, healthy control.

cerebral hemispheres were the most similar. Meanwhile, the weak
homotopic connections between cortex and subcortex indicated
that the GM densities of these two parts were quite different,
resulting in lower morphological network connectivity. Thus, the
mechanisms underlying the morphological network are basically
consistent with the anatomical basis of the brain. Meanwhile, the
structural network based on DTI exhibited sparse connections,
and its connections were mainly short-distance fibre connections
between the neighbouring areas. It corresponds to the pathway
of white matter fibres in the structural brain network.

Distribution of Hubs
According to the definition of hub nodes in this study, the hub
nodes of the SCD (Table 2) and HC groups (Table 3) based
on three different modal networks were obtained. As shown in
Figure 3, the distribution of hub nodes in the morphological
and structural brain networks was similar, and most of them
were located in the subcortical nuclei such as the hippocampus,
thalamus, caudate nucleus, and amygdala. In contrast with the
morphological and structural brain networks, the hub nodes of
functional brain network were widely distributed in the frontal,

TABLE 2 | Hubs of SCD based on different modal brain network.

sMRI DTI fMRI

Label ID ROI Label ID ROI Label ID ROI

156 PoG.R.4.1 107 FuG.L.3.3 64 PrG.R.6.6

226 BG.R.6.4 37 IFG.L.6.5 88 MTG.R.4.4

227 BG.L.6.5 38 IFG.R.6.5 144 IPL.R.6.5

225 BG.L.6.4 245 Tha.L.8.8 13 SFG.L.7.7

211 Amyg.L.2.1 227 BG.L.6.5 146 IPL.R.6.6

245 Tha.L.8.8 239 Tha.L.8.5 176 CG.R.7.1

114 PhG.R.6.3 246 Tha.R.8.8 87 MTG.L.4.4

212 Amyg.R.2.1 237 Tha.L.8.4 14 SFG.R.7.7

221 BG.L.6.2 228 BG.R.6.5 143 IPL.L.6.5

222 BG.R.6.2 215 Hipp.L.2.1 175 CG.L.7.1

234 Tha.R.8.2 103 FuG.L.3.1 154 PCun.R.4.4

233 Tha.L.8.2 104 FuG.R.3.1 153 PCun.L.4.4

sMRI, structural magnetic resonance imaging; DTI, diffusion tensor imaging; fMRI,
functional magnetic resonance imaging; SCD, subjective cognitive decline; ROI:
region of interest.

temporal, and parietal lobes. Furthermore, by comparing the
hub nodes between the SCD and HC groups in the same modal
network, it was found that most of them overlapped. However,
several specific hub nodes corresponded to the different groups.
For instance, in the morphological network based on sMRI, the
precentral gyrus (PrG) and the inferior parietal lobule (IPL) only
appeared in the hub nodes of the HCs. In structural network
based on DTI, the superior temporal gyrus (STG) only appeared
in the hub node of the HC group, while the inferior frontal gyrus
(IFG) only appeared in the SCD group as the hub node. Besides,
in the functional brain network based on fMRI scans, the insula
(INS) as one of the Hubs only appears in the HC group, while the
middle temporal gyrus (MTG) as one of the Hubs only appears
in the SCD group.

Classification
After feature selection of the morphological, structural, and
functional network connections by t-tests, MK-SVM was applied
to combine the selected multimodal connections to identify
individuals with SCD from HCs. As shown in Table 4 and
Figure 4, for the single modality, the classification accuracy of
the morphological, structural and functional networks was 73.17,

FIGURE 2 | Adjacent matrices of HCs at the group level based on morphological, structural, and functional network.
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TABLE 3 | The hubs of HC based on different modal brain network.

sMRI DTI fMRI

Label ID ROI Label ID ROI Label ID ROI

161 PoG.L.4.4 73 STG.L.6.3 174 INS.L.6.6

144 IPL.R.6.5 245 Tha.L.8.8 145 IPL.L.6.6

228 BG.R.6.5 240 Tha.R.8.5 39 IFG.L.6.6

245 Tha.L.8.8 38 IFG.R.6.5 144 IPL.R.6.5

114 PhG.R.6.3 246 Tha.R.8.8 61 PrG.L.6.5

60 PrG.R.6.4 227 BG.L.6.5 146 IPL.R.6.6

227 BG.L.6.5 237 Tha.L.8.4 174 INS.R.6.6

212 Amyg.R.2.1 239 Tha.L.8.5 175 CG.L.7.1

59 PrG.L.6.4 228 BG.R.6.5 143 IPL.L.6.5

222 BG.R.6.2 215 Hipp.L.2.1 62 PrG.R.6.5

234 Tha.R.8.2 103 FuG.L.3.1 154 PCun.R.4.4

233 Tha.L.8.2 104 FuG.R.3.1 153 PCun.L.4.4

sMRI, structural magnetic resonance imaging; DTI, diffusion tensor imaging; fMRI,
functional magnetic resonance imaging; HC, healthy control; ROI, region of interest.

80.49, and 85.37%, respectively. That is, the functional network
constructed by fMRI exhibited the highest accuracy rate, followed
by the structural network constructed by DTI; finally, the

morphological network constructed by GM volume showed the
lowest accuracy rate. Furthermore, combining the morphological
and structural connections (sMRI + DTI), functional and
morphological connections (fMRI + sMRI), and functional
and structural connections (fMRI + DTI), the accuracy of
classification increased to 85.37, 87.80, and 90.24%, respectively.
In particular, the best classification performance was obtained
by combining the selected connections of three modalities, with
an accuracy of 92.68%, sensitivity of 95.00% and specificity
of 90.48%. These results suggested that the combination of
multimodal network features could significantly improve the
classification performance.

Consensus Connections
In this study, we further identified the consensus connections
for each modal brain network (Figure 5). The morphological
brain network based on sMRI yielded a total of 23 consensus
connections (Table 5), including 7 positive connections and 16
negative connections, which were mainly associated with the
frontal lobe (orbital gyrus [OrG], middle frontal gyrus [MFG],
superior frontal gyrus [SFG]), temporal lobe (MTG, entorhinal
cortex [EC]), parietal lobe (inferior parietal lobule [IPL]), and
subcortical nuclei (nucleus accumbens [NAC], occipital thalamus

FIGURE 3 | Hub nodes of the SCD and HC groups in different brain networks. (A) Hub nodes of SCD in morphological, structural and functional brain network
based on sMRI, DTI and fMRI; (B) Hub nodes of HC in morphological, structural and functional brain network based on sMRI, DTI and fMRI. The hub nodes were
mapped on the ICBM 152 template with the BrainNet Viewer package (http://nitrc.org/projects/bnv/). sMRI, structural magnetic resonance imaging; DTI, diffusion
tensor imaging; fMRI, functional magnetic resonance imaging; SCD, subjective cognitive decline; HC, healthy control.
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FIGURE 4 | ROC of classifications based on different modalities. sMRI, structural magnetic resonance imaging; DTI, diffusion tensor imaging; fMRI, functional
magnetic resonance imaging; ROC, receiver operating characteristic.

TABLE 4 | Classification performance of different modalities.

Modalities Accuracy (%) Specificity (%) Sensitivity (%) AUC

sMRI 73.17 80.00 66.67 0.8785

DTI 80.49 85.00 76.19 0.8523

fMRI 85.37 90.00 80.95 0.9047

sMRI + DTI 85.37 95.00 76.19 0.9142

fMRI + sMRI 87.80 95.00 80.95 0.9714

fMRI + DTI 90.24 90.00 80.95 0.9619

fMRI + DTI + sMRI 92.68 95.00 90.48 0.9738

AUC, area under the curve; sMRI, structural magnetic resonance imaging; DTI,
diffusion tensor imaging; fMRI, functional magnetic resonance imaging.

[Otha]). Meanwhile, the structural brain network based on DTI
had a total of 12 consensus connections (Table 6), including
7 positive connections and 5 negative connections, which were
mainly distributed in the parietal lobe (precuneus [Pcun]), frontal
lobe (OrG), insula (INS), temporal lobe (EC), and subcortical
nuclei (NAC). In addition, the functional brain network based
on fMRI scans had a total of 24 consensus connections
(Table 7), which were mainly distributed in the parahippocampal
gyrus (PhG), INS, SFG, IPL, and subcortical nuclei (medial
pre-frontal thalamus [mPFtha], pre-motor thalamus[mPMtha],
rostral temporal thalamus [rTtha], dorsolateral putamen [dlPu],

lateral amygdala[lAmyg]). Eleven of these connections were
positive connections, suggesting that the strength of functional
connections of patients with SCD was stronger than that of
HCs, and mainly distributed in the cortical-cortical connections
between the frontal lobe (MFG, SFG) and the temporal lobe
(posterior Superior Temporal Sulcus [pSTS], inferior temporal
gyrus [ITG]) and parietal lobe (postcentral gyrus [PoG]). The
other 13 negative connections were mainly distributed in
the cortical-subcortical connections between the temporal lobe
(PhG) and the subcortical nuclei (Tha, amygdala [Amyg]).
Therefore, our results indicated that the consensus connections
of these three modal networks were involved in a wide range
of cortical-subcortical circuits, especially the connection between
the cortex and the subcutaneous nucleus including the thalamus,
basal ganglia, and amygdala. Furthermore, there existed both
positive and negative consensus connections across the three
modalities. Positive connections were mainly distributed in the
frontal lobe-related connections, and negative connections were
mainly distributed in the temporal lobe and subcortical nuclei-
related connections.

Robustness of Network Analysis
As mentioned above, we repeated the same network construction
method and analysis process based on the AAL, with 90 ROIs,
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FIGURE 5 | The distribution of consensus connections identified by different modalities. (A) Morphological brain network based on sMRI; (B) Structural brain
network based on DTI; (C) Functional brain network based on fMRI. The consensus connections were mapped on the ICBM 152 template with the BrainNet Viewer
package (http://nitrc.org/projects/bnv/). Red and blue lines represent the increased and decreased connectivity weight of the SCD group, respectively. sMRI,
structural magnetic resonance imaging; DTI, diffusion tensor imaging; fMRI, functional magnetic resonance imaging.
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TABLE 5 | Consensus connections identified by the morphological brain network
based on sMRI.

ROI ROI Mean value P-value

SCD HC

OrG.R.6.1 BG.L.6.3 0.296 0.241 7.34 × 10−5

OrG.R.6.1 BG.R.6.3 0.480 0.256 8.40 × 10−5

MFG.R.7.6 PCL.R.2.2 0.767 0.509 1.27 × 10−4

PhG.R.6.4 PCun.L.4.4 0.094 0.273 2.91 × 10−4

SPL.R.5.4 IPL.R.6.5 0.387 0.027 3.19 × 10−4

MFG.R.7.3 PrG.L.6.1 0.461 0.512 4.47 × 10−4

MFG.R.7.6 CG.R.7.5 0.115 0.002 5.64 × 10−4

SFG.L.7.2 CG.L.7.1 0.342 0.257 7.98 × 10−4

pSTS.L.2.2 Tha.L.8.6 0.075 0.297 8.36 × 10−4

IFG.R.6.2 PrG.L.6.1 0.046 0.452 1.15 × 10−3

MTG.L.4.2 ITG.L.7.3 0.540 0.634 1.15 × 10−3

SPL.R.5.4 PCun.R.4.3 0.428 0.446 1.36 × 10−3

PhG.R.6.4 PCun.R.4.1 0.169 0.225 1.39 × 10−3

OrG.L.6.3 pSTS.L.2.1 0.118 0.602 1.58 × 10−3

PhG.R.6.4 pSTS.L.2.1 0.146 0.367 1.67 × 10−3

SFG.R.7.3 MFG.L.7.3 0.466 0.609 1.72 × 10−3

SPL.R.5.2 PoG.L.4.4 0.208 0.673 1.76 × 10−3

OrG.R.6.3 MTG.L.4.1 0.019 0.004 1.92 × 10−3

IPL.L.6.1 PoG.L.4.4 0.002 0.343 1.95 × 10−3

MTG.R.4.4 PhG.R.6.4 0.011 0.253 1.99 × 10−3

MFG.L.7.3 IFG.R.6.2 0.278 0.483 2.25 × 10−3

IPL.R.6.2 PoG.L.4.4 0.438 0.777 2.29 × 10−3

ITG.R.7.6 PhG.R.6.4 0.197 0.232 2.57 × 10−3

sMRI, structural magnetic resonance imaging; SCD, subjective cognitive decline;
HC, healthy control; ROI, region of interest.

TABLE 6 | Consensus connections identified by structural brain network based on
DTI.

ROI ROI Mean value P-value

SCD HC

BG.L.6.3 OrG.R.6.1 0.296 0.241 7.34 × 10−5

BG.R.6.3 OrG.R.6.1 0.480 0.256 8.40 × 10−5

PCun.L.4.4 PhG.R.6.4 0.094 0.273 2.91 × 10−4

PCun.L.4.3 MVOcC .L.5.2 0.002 0.003 3.59 × 10−4

MVOcC .L.5.3 LOcC.L.4.4 0.021 0.019 8.17 × 10−4

INS.L.6.1 INS.L.6.4 0.104 0.072 8.47 × 10−4

INS.L.6.6 INS.L.6.3 0.116 0.180 9.02 × 10−4

SPL.L.5.4 PCun.L.4.2 0.055 0.052 9.25 × 10−4

PCL.L.2.1 PCun.L.4.2 0.216 0.242 1.70 × 10−3

PCun.L.4.4 STG.L.6.2 0.003 0.001 2.22 × 10−3

IFG.L.6.1 IFG.L.6.6 0.086 0.047 2.32 × 10−3

OrG.L.6.3 BG.L.6.3 0.002 0.005 2.42 × 10−3

DTI, diffusion tensor imaging; SCD, subjective cognitive decline; HC, healthy
control; ROI, region of interest.

to demonstrate the robustness of our results. Supplementary
Figure 2 describes the multimodal networks at the group level.
In terms of the distribution of hub nodes and consensus
connections, the AAL90 template and BN template partially

TABLE 7 | Consensus connections identified by functional brain network based
on fMRI.

ROI ROI Mean value P-value

SCD HC

MFG.R.7.6 PoG.R.4.3 0.221 0.204 4.19 × 10−5

PhG.R.6.5 Hipp.L.2.1 0.095 0.557 8.91 × 10−5

Tha.L.8.1 Tha.R.8.4 0.700 0.812 3.22 × 10−4

MFG.R.7.7 pSTS.R.2.1 0.154 0.027 3.60 × 10−4

pSTS.L.2.1 pSTS.R.2.2 0.321 0.316 7.94 × 10−4

INS.R.6.5 BG.L.6.6 0.292 0.075 8.47 × 10−4

IPL.L.6.1 PCun.R.4.1 0.639 0.660 8.66 × 10−4

PhG.L.6.1 Amyg.R.2.2 0.143 0.377 1.39 × 10−3

OrG.L.6.3 ITG.L.7.4 0.443 0.156 1.40 × 10−3

MFG.R.7.6 IPL.R.6.2 0.540 0.853 1.41 × 10−3

PCL.L.2.2 BG.R.6.6 0.416 0.097 1.44 × 10−3

PhG.L.6.6 LOcC .R.4.3 0.109 0.425 1.79 × 10−3

SFG.R.7.4 PoG.R.4.3 0.282 0.197 1.90 × 10−3

PCun.L.4.2 CG.R.7.5 0.244 0.059 2.00 × 10−3

SFG.L.7.5 INS.R.6.5 0.154 0.282 2.10 × 10−3

PhG.R.6.1 Amyg.R.2.2 0.200 0.577 2.12 × 10−3

PoG.R.4.4 BG.R.6.6 0.384 0.075 2.14 × 10−3

PhG.L.6.5 Tha.R.8.2 0.138 0.232 2.27 × 10−3

ITG.L.7.2 IPL.L.6.3 0.105 0.690 2.35 × 10−3

INS.L.6.4 INS.R.6.4 0.516 0.587 2.38 × 10−3

OrG.L.6.3 IPL.L.6.3 0.173 0.192 2.40 × 10−3

MFG.L.7.4 ITG.R.7.7 0.167 0.140 2.49 × 10−3

SFG.L.7.7 CG.R.7.1 0.749 0.360 2.51 × 10−3

OrG.R.6.3 CG.R.7.5 0.170 0.217 2.57 × 10−3

fMRI, functional magnetic resonance imaging; SCD, subjective cognitive decline;
HC, healthy control; ROI, region of interest.

overlapped, involving the cortical-subcortical brain regions and
their connections (Supplementary Figures 3, 4). However, it
is worth noting that the number of these features based on
the AAL template was significantly reduced compared with
the BN template, especially in subcortical nuclei, such as the
thalamus. This may be because the AAL template has not yet
subdivided the subcortical nuclei into more detailed subregions,
resulting in a significant reduction in the number of subcortical
nuclei distribution. In addition, the classification results based
on the AAL template also demonstrated that compared
with the classification accuracy of single modality of the
morphological, structural, and functional network (73.17, 58.54,
and 78.05%, respectively), the combination of three modalities
could significantly improve the classification accuracy of SCD
(87.80%) (Supplementary Table 1 and Supplementary Figure 5).

DISCUSSION

In this study, we constructed the morphological, structural,
and functional brain networks based on sMRI, DTI and
fMRI, respectively, and aimed to explore the biomarkers of
brain network in individuals with SCD. Our results indicated
that the combination of three modalities using MK-SVM
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could significantly improve the classification performance
of individuals with SCD. More importantly, the consensus
connections based on the morphological, structural, and
functional networks identified in our study highlight the role of
the cortical-subcortical circuit in the pathological mechanisms
associated with individuals with SCD.

Alterations in Morphological Brain
Network
In our study, individual morphological brain network was
constructed based on the KLS method (Kong et al., 2014).
Compared with the previous group-level morphological brain
network obtained by estimating the interregional correlations of
morphological features (e.g., cortical thickness, cortical surface
area or GM volume) (He et al., 2008; Evans, 2013; Matsuda, 2016),
the KLS-based morphological brain network could generate
an individualised brain network for each participant according
to customised brain network nodes defined by specific brain
atlases (Kong et al., 2014). Therefore, it is more suitable to
construct efficient and stable morphological brain networks
and depict complex topological properties of brain network.
For the distribution of hubs and consensus connections of
morphological brain networks, our results indicated that most of
them were involved in cortical-subcortical circuits. Furthermore,
the consensus connections among the temporal lobe, parietal
lobe, and subcortical nuclei of individuals with SCD were weaker
than those of HCs. According to the definition of KLS, the lower
value of the KLS, the greater the difference between two brain
regions in GM volume distributions (Wang et al., 2016). Our
results hinted the heterogeneity of GM volume variation of cortex
and subcortical nuclei in SCD patients. Although previous studies
have also demonstrated that individuals with SCD exhibited
decreased GM volume in hippocampus, entorhinal cortex and
amygdala compared to the HCs (Jessen et al., 2006; Stewart
et al., 2011; Niemantsverdriet et al., 2018), our results further
highlighted the differences in volume changes of brain regions
distributed in the cortex and subcortical nuclei.

Alterations in Structural Brain Network
In terms of structural networks based on DTI, most previous
structural networks were constructed using deterministic fibre
tracking algorithms (Shu et al., 2018; Yan et al., 2018). In
comparison, the probabilistic fibre tracking algorithm of this
study considered the uncertainty of fibre direction estimation,
thereby improving the accuracy of white matter fibre tracking
(Ratnarajah et al., 2012). Regarding the distribution of hubs
and consensus connections of structural network, our results
indicated that the discriminative features of structural network
based on DTI and the morphological network based on sMRI
involved in overlapped and multiple cortical-subcortical brain
regions, such as the frontal lobe, PhG, Tha, and BG. It is
consistent with the anatomical basis of brain’s GM and white
matter distributed. Structural connections reflected the degree of
projection connections of white matter fibres between different
brain regions (Morris et al., 2008), our findings revealed that
SCD patients presented abnormalities of multiple white matter

fibre bundles in cortical-subcortical circuit. Previous studies
have indicated that most cholinergic fibres originate from the
projection of cholinergic neurons in the subcortical nuclei,
which connected with hippocampus complex and the cortex
through thalamus to constitute the basal forebrain-thalamus-
cortex circuit (Hanakawa et al., 2017; Meng et al., 2018; Villagrasa
et al., 2018). The input and output of pathway, such as Papez
circuit, have been demonstrated to play an important role in
memory, learning and attention (Semba, 2000; Aggleton et al.,
2016; Agostinelli et al., 2019).

Alterations in Functional Brain Network
Regarding the functional brain networks based on rs-fMRI,
functional connections were quantified by calculating the
pairwise Pearson’s correlation coefficients of blood oxygen level
dependent (BOLD) time series obtained for each ROI (Raichle
et al., 2001). Based on the distribution of hubs in SCD, we
found that most of them, such as the SFG, MTG, cingulate
gyrus, and precuneus, were located in the DMN. Similar to
previous studies (Greicius et al., 2004; Wang et al., 2013; Chiesa
et al., 2019), our study also demonstrated the important role
of DMN in the functional brain networks of individuals with
SCD. In addition, it is worth noting that compared with the
morphological and structural networks, the functional networks
exhibited a larger number and wider range of consensus
connections between the cortex and subcortical brain regions.
Furthermore, we found that the decreased functional connections
were mainly distributed in the temporal lobe, thalamus and
insula, which might lead to memory impairments (Aggleton et al.,
2016). Meanwhile, the increased functional connections related
to the frontal lobe might be attributed to the compensatory
changes in the functional brain network in the transition
stage of SCD.

The Relationship Between the Modalities
Based on the alterations of three different modalities mentioned
above, we found that there exists correlation between the
morphological, structural, and functional brain networks.
Regarding morphological and the structural networks, our
results indicated that the hubs and discriminative consensus
connections of structural network based on DTI and the
morphological network based on sMRI involved in overlapped
brain regions, such as the frontal lobe, PhG, Tha, and BG.
It is consistent with the anatomical basis of grey matter and
white matter distribution in the cortical-subcortical circuit.
The related brain regions (e.g., hippocampus, parahippocampal
gyrus, cingulate gyrus, amygdala, entorhinal cortex, basal
ganglia, and thalamus) were anatomically connected by the
white matter fibre bundles such as the fornix, corpus callosum,
and external capsule (Schmahmann et al., 2008). Therefore,
the alterations between these two modalities were similar.
Moreover, compared with the morphological and structural
networks, the functional networks exhibited a larger number and
wider range of consensus connections between the cortex and
subcortical nuclei. As Honey et al. (2009) have demonstrated
in previous research, functional connectivity was frequently
found between regions without direct structural linkage;
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nevertheless, its strength and spatial statistical values remained
constrained by the large-scale anatomical structure of the
brain and reflected the underlying pathologic alterations.
Therefore, different modal brain networks can provide
complementary information for detecting abnormalities in
SCD individuals.

Abnormalities in the Cortical-Subcortical
Circuit
Hub nodes play a critical role in global information transfer
and seem to be vulnerable and preferentially affected in
patients with AD (Dai and He, 2014). Our results found
the disappearance of some hubs in the SCD group, which
suggested the brain network integration function of SCD
patients may have changed. The reason may be related to
the early pathological changes of AD. In additon, for the
distribution of the hubs and consensus connections of the
morphological, structural, and functional brain networks, our
results point to significant abnormalities in the cortical-
subcortical brain regions and the connections between them in
SCD. In particular, the connections between the subcutaneous
nucleus (e.g., BG, amygdala, and thalamus) and the limbic
system (e.g., hippocampus, parahippocampal gyrus, cingulate
gyrus and entorhinal cortex) and cortex, corresponding to the
cortical-subcortical circuit, was significantly aberrant in SCD.
Among them, all the subcortical nucleus we identified are highly
complex of subnuclei. For instance, thalamus includes more
than 10 subnuclei with distinct connections. And the basal
nuclei and thalamus participate in many different neuronal
pathways, such as cholinergic pathways, with functions related
to memory, learning, emotion, attention (Ballinger et al., 2016).
Previous studies have found the fewer cholinergic neurons and
abnormal amyloid-beta accumulation in cholinergic pathways,
are considered important factors leading to the decline of
cognitive function in AD (Saxena and Caroni, 2011; Baker-
Nigh et al., 2015; Fernandez-Cabello et al., 2020). Therefore, our
study provided important clues for the early identification and
mechanisms exploration of SCD.

Classification of MK-SVM
In addition, after feature selection of the morphological,
structural, and functional network connections by a t-test, MK-
SVM was applied to combine these features for the classification.
For the single modality, we found that the functional network
based on fMRI has the highest accuracy rate compared to
the morphological and structural networks. This is consistent
with the previous study by Yan et al. (2019) that focused on
SCD classification based on structural and functional networks.
Thus, we speculated that in this stage of SCD, functional
changes in the brain were more significant than structural
changes in the GM and white matter. In addition, combining
two multimodal modalities improved the classification accuracy.
Furthermore, the combination of three modalities achieved
the best classification performance. The MK-SVM in our
study, as an innovative and optimised multimodal information
fusion method, can adaptively learn the optimal combined core

from a set of base cores and solve the problem of kernel
functions selection. Meanwhile, it may address the imbalanced
dimension issue across different modalities to some extent
and partially alleviate the high-dimensional curve representing
multiple features to discriminate individuals with SCD from
HCs. Compared with certain previously published research
(Yan et al., 2019; Chen et al., 2020), we obtained a better
classification performance in response to a multimodal brain
network combination. Combined with the model validation
based on the AAL template, our findings emphasised that the
combination of multimodal brain networks may be considered
a potential approach for the early discrimination of individuals
with SCD from HCs.

Limitations and Future Directions
Although our study sought to establish a new perspective
to explore the brain network mechanisms associated with
SCD and early-stage AD identification, several limitations exist
with scope for further study. Firstly, a large sample size
and multi-centre data are essential to training and validating
models. The participant numbers are small for a multi-variate
approach. Therefore, the study classifies as pilot study. Although
our research has confirmed the stability and repeatability
of the methodology based on the AAL template. In future
work, we need to use large samples and multi-centre data
to further verify the robustness of our proposed method
and the repeatability of the results. Secondly, a follow-up
study should be carried out for different stages of AD using
longitudinal data. In this study, we only detected brain network
abnormalities and performed the individual identification in
individuals with SCD; longitudinal follow-up studies of the
different stages of AD are needed to identify the early and
specific imaging markers for diagnosis and prediction. Thirdly,
a combination of multimodal diagnostic information should
be carried out. We only used different modal brain network
connections for the classification of SCD. In the future, we may
attempt to identify and explore the pathological mechanisms
associated with SCD by combining multimodal diagnostic
information such as that stemming from Positron Emission
Tomography (PET), Electroencephalography (EEG), and blood
biomarker information.

CONCLUSION

We applied the morphological, structural, and functional brain
networks based on sMRI, DTI, and fMRI to investigate the
pathological mechanisms and potential biomarkers of individuals
with SCD. The discriminative connections of three modal brain
networks shed light on the abnormality of cortical-subcortical
circuit in SCD. Furthermore, the disconnection between different
brain regions might lead to the cognitive decline in patients
with SCD. In addition, the combination of three modalities
with MK-SVM achieved the best classification performance for
SCD. Our findings provided novel insights into the pathological
mechanisms associated with patients with SCD presenting with
early AD pathologies, which will thereby contribute to the
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development of more effective diagnostic tools and therapies for
preclinical stages of AD.
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People with subjective cognitive decline (SCD) and amnestic mild cognitive impairment
(aMCI) are both at high risk for Alzheimer’s disease (AD). Behaviorally, both SCD and
aMCI have subjective reports of cognitive decline, but the latter suffers a more severe
objective cognitive impairment than the former. However, it remains unclear how the
brain develops from SCD to aMCI. In the current study, we aimed to investigate the
topological characteristics of the white matter (WM) network that can successfully
identify individuals with SCD or aMCI from healthy control (HC) and to describe the
relationship of pathological changes between these two stages. To this end, three
groups were recruited, including 22 SCD, 22 aMCI, and 22 healthy control (HC) subjects.
We constructed WM network for each subject and compared large-scale topological
organization between groups at both network and nodal levels. At the network level, the
combined network indexes had the best performance in discriminating aMCI from HC.
However, no indexes at the network level can significantly identify SCD from HC. These
results suggested that aMCI but not SCD was associated with anatomical impairments
at the network level. At the nodal level, we found that the short-path length can best
differentiate between aMCI and HC subjects, whereas the global efficiency has the best
performance in differentiating between SCD and HC subjects, suggesting that both SCD
and aMCI had significant functional integration alteration compared to HC subjects.
These results converged on the idea that the neural degeneration from SCD to aMCI
follows a gradual process, from abnormalities at the nodal level to those at both nodal
and network levels.

Keywords: amnestic mild cognitive impairment, subjective cognitive decline, white matter, network, Alzheimer’s
disease
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INTRODUCTION

The current status of Alzheimer’s disease (AD) clinical treatment
is not promising, which makes preclinical prediction for AD
particularly important (Huang et al., 2020). Many studies
have shown that AD manifests significant pathological changes
decades before it develops into dementia (Jack et al., 2010;
Bateman et al., 2012). Characterized by objective cognitive
impairment similar to AD, mild cognitive impairment has been
proposed as an important stage in the development of AD. In
particular, about one-third of those with amnesiac mild cognitive
impairment (aMCI) will develop AD within 5 years (Ward et al.,
2013). Similarly, the elderly with subjective cognitive decline
(SCD) also has a high risk for developing AD (Jessen et al.,
2020). Both at the early stages of AD, the major behavioral
difference between SCD and aMCI is that aMCI has severer
objective cognitive impairments than SCD. However, knowledge
about the relationship between SCD and aMCI neuroimaging
characteristics is still insufficient.

Some studies have found that aMCI and SCD have similar
structural or functional degeneration with AD (Scheef et al., 2012;
Wang et al., 2013, 2016). In general, patients with aMCI had more
extensive and severe neurological impairments than the elderly
with SCD (Sun et al., 2015). However, regions of differences in
structural and functional activities between aMCI and SCD are
not the same in different studies. For example, SCD may, in
some way, compensate for the negative effects of neurological
damage in some distracted areas to ensure that they have normal
performance when completing cognitive ability tests (Erk et al.,
2011). Recently, studies have shown that neural impairments of
aMCI and SCD are not only restricted to individual regions but
also extended to the interactions among multiple brain areas
(Dai and He, 2014; Tao et al., 2020). Consistent with this, in the
last 5 years, extensive research has been conducted on neural
substances associated with AD and its development from the
perspective of brain networks (Wang et al., 2016; Shu et al.,
2018; Lazarou et al., 2019). Graph theoretical analysis offered a
new perspective to estimate the changes of multiple properties
of brain networks, both at the local and global level, as the
disease progresses (Bullmore and Sporns, 2009; He and Evans,
2010). There were also some researchers who suggested that
brain connectome research provided a very effective way for SCD
studies (Lazarou et al., 2019).

Functional segregation, which can reflect the local information
processing, and functional integration, which is a reflection of
the global information processing, are two major aspects of the
information activity of the brain. In the graph theoretical analysis,
the index of clustering coefficient and local efficiency, global
efficiency, and path length of brain networks can effectively reflect
the two aspects, respectively (Rubinov and Sporns, 2010). One
previous study has shown that AD patients had lower brain
network integration and higher brain network segregation, and
these changes were significantly correlated with cognitive decline
(Kabbara et al., 2018). The combination of the features of brain
network integration and segregation can distinguish AD patients
from healthy elderly with high accuracy (Cai et al., 2020). An
earlier review article on the topic of structural and functional

networks in the brain reported both functional segregation
and functional integration impairments in MCI and AD (Dai
and He, 2014). Our previous work also revealed impairments
of anterior–posterior brain functional connectivity in SCD in
the resting state (Tao et al., 2020). These results may indicate
that the brain network of SCD has also been altered. In the
meantime, considering that the pathological changes of AD are
a gradual process, it is suggested that the problems with the
integration and separation of brain networks might occur at both
aMCI and SCD stages.

To be considered as a disconnection syndrome (Delbeuck
et al., 2003), the white matter (WM) connectivity plays a crucial
role in the progress of AD pathology. The microstructural
deterioration of WM caused by demyelination and axonal
deterioration may result in obstacles of information transfer
within the brain network (Bozzali et al., 2002). Both aMCI
and SCD have been reported with widespread WM impairment
in previous studies (Selnes et al., 2013; Defrancesco et al.,
2014; Shao et al., 2019), which further disrupted the topological
properties of their brain network (Wang et al., 2016; Shu et al.,
2018). Moreover, the degree of WM abnormalities is significantly
correlated with the neurofibrillary tangle pathology stage and the
severity of the disease (Kantarci et al., 2017). Since aMCI and SCD
are in different stages of AD, it is necessary to look further into the
phase-specific characteristics of aMCI and SCD WM networks to
clarify the structural basis of the specific behavior in each stage.

To address this issue, in the current study, diffusion tensor
imaging and deterministic tractography were first used to
construct the WM structural network. We then used graph
theory approaches to estimate neural indexes, including path
length, the global efficiency, the local efficiency, and the
clustering coefficient, both the nodal and network levels. Finally,
classification models were built to investigate which indexes can
significantly identify SCD or aMCI from HC. We hypothesized
that neural degeneration follows a gradual change from SCD
to aMCI. Specifically, neural differences between SCD and HC
were mainly represented by indexes at the node level, whereas
that between aMCI and HC were represented by indexes at the
network level. We also examined the functional segregation and
integration properties between SCD or aMCI and HC, and made
further assumption that SCD and aMCI are already impaired
in both, but given that they are at distinct stages, there may be
subtle differences in the manifestation of the neural impairments
between the two.

MATERIALS AND METHODS

Participants
A total of 66 participants (mean age, 64.76 ± 6.4) were recruited
in the current study, including 22 SCD, 24 aMCI, and 23 gender-,
age-, and years of education-matched HC. All participants were
sourced from the Beijing Aging Brain Rejuvenation Initiative
database, which is a project of community-based elderly health
study. Participants meeting the following criteria were included:
(1) having no less than 6 years of education and being able
to complete a series of neuropsychological measurements; (2)

Frontiers in Aging Neuroscience | www.frontiersin.org 2 July 2021 | Volume 13 | Article 687530157

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-687530 July 12, 2021 Time: 11:7 # 3

Tao et al. Brain Degeneration From SCD to aMCI

nondementia, the score of Mini-Mental Status Examination
(MMSE, Chinese version) ≥ 24; (3) no history of coronary
disease, psychotic disorders, tumors, motor neuron disease,
developmental disability, or diseases that could influence cerebral
function; (4) no clinical diagnosis of depression, schizophrenia,
and other psychiatric disorders, and no history of taking
psychoactive medications; and (5) no physical problems that are
not appropriate for MRI scan.

In addition to the above criteria, the SCD participants also
had (1) self-reported memory declines in recent years relative to
previous states but was not caused by acute events, (2) the normal
cognitive function above -1.5 standard deviations (SD) of the
Chinese norms, and (3) intact daily living function. For the aMCI
participants, they should meet the published inclusion criteria by
Petersen et al. (1999): (1) had memory declined complaints, (2)
scores of cognitive function below 1.5 SD of the Chinese norm,
and (3) no difficulty in daily life.

Neuropsychological Assessment
A series of neuropsychological assessments were used to assess
the general mental status and other cognitive functions of all
the participants. The general cognitive function was measured
by the MMSE, while the memory function was estimated by the
Auditory Verbal Learning Test (AVLT) and the Rey-Osterrieth
Complex Figure test (ROCF-recall). The Symbol Digit Modalities
Test (SDMT) and part A of the Trail Making Test (TMTa) tested
the attention ability, while the part B of the TMT (TMTb) and
part C of the Stroop Test (Stroop C) tested the executive function.

Image Acquisition
A Siemens 3.0T scanner (Siemens, Munich, Germany) was
employed to acquire the MRI imaging data at the Imaging Center
for Brain Research, Beijing Normal University. Participants
lay flat on their backs with foam pads to minimize head
motion. T1-weighted images were acquired using sagittal
3D magnetization prepared rapid gradient echo (MP-RAGE)
sequences. The acquisition parameters were as follows: repetition
time (TR) = 1,900 ms, echo time (TE) = 3.44 ms, flip angle = 9◦,
field of view (FOV) = 256 × 256 mm2, and acquisition
matrix = 256 × 256, 1 mm slice thickness, and 176 sagittal slices.
Diffusion-weighted images were obtained by an echo-planar
imaging sequence with the parameters as follows: TR = 11,000 ms;
TE = 94 ms; flip angle = 90◦, FOV = 240× 240 mm2, acquisition
matrix = 128 × 128, 2 mm slice thickness, and 70 sagittal slices.
The diffusion sensitizing gradients were applied, 1 image without
diffusion-weighted (b = 0 s/mm2) and 30 diffusion-weighted
directions (b = 1,000 s/mm2).

Image Preprocessing
MATLAB 2018a, SPM121, and PANDA (Pipeline for Analysing
Brain Diffusion Images)2 software were used to preprocess
the DTI images. Several steps were applied to the data
preprocessing: eddy current and motion artifact correction,
fractional anisotropy calculation, whole-brain fiber tracking, and

1http://www.fil.ion.ucl.ac.uk/spm
2http://www.nitrc.org/projects/panda/

diffusion tensor tractography. The fiber tracking was performed
by the continuous tracking algorithm, and the fiber tracts were
terminated if two consecutive moving directions have a crossing
angle above 45◦and the fractional anisotropy is out of the
threshold 0.2–1 (Cui et al., 2013).

Network Construction
Network nodes and edges are the most basic element of a
brain network. We used the standard procedure proposed
by Gong et al. (2009) and constructed the WM network as
Shu et al. (2018) described in their work. Network nodes
were defined using the 90 brain regions subdivided by the
automated anatomical labeling (AAL) template. The network
nodes were considered structurally connected if the number
of fibers between two nodes was ≥3 (Shu et al., 2012). We
set the thresholds to 1–5 and 10 and observed the effects of
diverse thresholds on the differential characteristics between
groups, respectively, and no significant changes were observed
between the thresholds (see Figure 1 and Supplementary
Table 1). Then, the number of valid fibers (FN) between
regions was defined as the weights of the network edges.
Eventually, each subject was constructed an FN-weighted 90× 90
matrix WM network.

Network Analysis
For each subject, the GRETNA software3 was applied to quantify
the network metric. The characteristic path length and the
global efficiency, which can reflect the structure integration,
the local efficiency, and the clustering coefficient, indicating the
structure segregation, were calculated for each participant at
both network and nodal levels. The smaller the characteristic
path length and the higher the local efficiency, the better
the structure integration. The higher the local efficiency and
the higher the clustering coefficient, the better the structure
segregation. The BrainNet Viewer4 was used to present the
network results.

Indexes at the Network Level
The characteristic path length described the mean of the shortest
path length between nodes. It can be computed as follows:

L (G) =
1

N(N− 1)

∑
i6=j∈G

dij

The global efficiency measures the efficiency of parallel
information transfer in the network. It can be computed as
follows:

Eglobal (G) =
1

N(N − 1)

∑
i6=j∈G

1
dij

The local efficiency shows how efficient the communication is
among the neighbors of each node. It can be computed as follows:

Eloc (G) =
1
N

∑
i∈G

Eglob(Gi)

3www.nitrc.org/projects/gretna/
4http://www.nitrc.org/projects/bnv/
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FIGURE 1 | Workflow of data analysis. White matter matrices were constructed based on the AAL template, an automated anatomical parcellation of the spatially
normalized single-subject high-resolution T1 volume, during which indexes (GE, SP, LE, and CE) at the network and nodal level were extracted. At the network level,
four indexes, including GE, SP, LE, and CE were used separately or combined to build a classifier. GE, global efficiency; SP, short path length; LE, local efficiency;
CE, clustering coefficient. At the nodal level, each index includes 90 features. To select the most discriminate features, LSVM (an outer LOOCV) was nested with a
feature selection produce (an inner LOOCV). LSVM, linear support vector model; LOOCV, leave-one-out cross-validation. Similar to nodal level, four indexes were
used separately or combined to build a classifier.

TABLE 1 | Demographics and neuropsychological characterizations.

HC (n = 23) SCD (n = 22) aMCI (n = 24) χ 2/F p

Gender (m/f) 14/9 11/11 11/13 1.13 0.570

Age (years) 65.91 ± 5.86 62.41 ± 5.24 65.71 ± 7.49 2.19 0.120

Education (years) 12.30 ± 2.84 10.50 ± 2.82 10.50 ± 2.96 3.02 0.056

MMSE 29.04 ± 0.93 27.14 ± 1.73 26.04 ± 1.78 21.08a < 0.001

Memory 6.05 ± 0.40 4.94 ± 0.40 4.04 ± 0.37 151.96b < 0.001

Attention 5.58 ± 0.48 5.35 ± 0.57 4.12 ± 0.83 29.79c < 0.001

Executive 5.61 ± 0.27 5.11 ± 0.43 4.31 ± 0.84 30.64b < 0.001

Values are mean ± standard deviation. All covariance analyses used gender, age, and education as covariables. The post hoc tests were corrected by Bonferroni, and
p < 0.05 was considered significant.
aHC > SCD and HC > aMCI.
bHC > SCD > aMCI.
cHC > aMCI and SCD > aMCI.

The clustering coefficient is defined as the possibility of the
neighborhoods that are connected with each other. It can be
computed as follows:

C (G) =
1
N

∑
i∈G

Ci =
1
N

∑
i∈G

2ti
ki(ki − 1)

Indexes at the Nodal Level
The shortest path length of node i shows the mean distance
between node i and other nodes. It can be computed as follows:

L (i) = max
j

d(1→ j)

The nodal efficiency for node i shows the efficiency of parallel
information transfer of this node in network G. It can be
computed as follows:

Eglob (i) =
1

N − 1

∑
j6=i∈G

1
dij

The local efficiency of node i shows the efficiency of the
communication among the first neighbors of node i when it is
removed. It can be computed as follows:

Eloc (i) =
1

Ni(Ni − 1)

∑
j6=i∈Gi

1
dij
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The clustering coefficient of node i shows the likelihood the
neighbors of node i connected to each other. It can be computed
as follows:

C (i) =
2ti

ki(ki − 1)

In all the formulas above, N is the total number of nodes in
the network, dij is the shortest path length between node i and
node j in network G, and Gi denotes the subgraphs of node i.
Ci represents the clustering coefficient of node i, N is the total
number of nodes, t is the weighted edges, and k is the number of
nodes connecting to node i.

Statistical Analysis
General statistical analyses were performed with SPSS (version
22.0, Chicago, IL, United States). Analysis of covariance
(ANCOVA) with age, gender, and years of education as covariates
was used to estimate the group difference in neuropsychological
tests, global network metrics, and nodal properties. If the main
effects of groups were significant, post hoc t-tests were performed
to further examine the difference between any two groups.
A false discovery rate (FDR) correction was performed at a
q-Value of 0.05 to correct for multiple comparisons. Receiver
operating characteristic curve (ROC) analysis was applied to
describe the discrimination of network and nodal characteristics
on HC, SCD, and aMCI. We also did partial correlation analysis
with age, gender, and years of education adjusted to reveal
the relationship between cognition and some WM indicators
that we selected.

The LSVM-Based Classification
An LSVM method was performed using LIBSVM for Matlab5

(Chang and Lin, 2011) to differentiate aMCI or SCD from
HC with WMV metrics. The leave-one-out cross-validation
(LOOCV) was applied for the cross-validation, which has been
widely used in previous studies, especially for data with a
small sample size (Cui et al., 2016; Pereira et al., 2009). In
this dataset, multiple dimensional spaces were represented by

5http://www.csie.ntu.edu.tw/~cjlin/libsvm/

all of the features, and each participant was a point in these
multiple dimensional spaces. The LSVM used a subset of data
(i.e., training set, n - 1 participants) as input to build a modal
that can best separate the input data into two categories (Cui
et al., 2016). Then, a relatively dependent dataset was used
(i.e., testing set, the last participant) to test this classifier.
Based on the features that have been used, the last participant
can be classified as any of the two classes (e.g., HC or
SCD), labeled as 1 or -1. If the predicted label is consistent
with the real label, then the classification is correct. After
the leave-one-out loop for two groups was finished, a final
accuracy represented by the probability to predict accurately
can be calculated, which demonstrated the performance of the
classification model.

Feature Selection at the Nodal Level
Each index (global efficiency, local efficiency, clustering
efficiency, and short path) at the node level was represented
by a 90 × 1 matrix. To boost classification performance, a
nested inner LOOCV loop was conducted, with the outer loop
to estimate classification accuracy and the inner loop to select
discriminative features and to eliminate the noninformative
features (Cui et al., 2016). Detailed steps were as follows.
First, N - 1 subjects were used as the training set, the last
participant served as the testing set for the outer LOOCV
loop. Second, all data were normalized (Cui et al., 2016).
Third, an inner LOOCV loop was performed, during which
two-sample t-tests were applied for each feature within N - 2
participants. Features below a given p-Value were selected
for inner classification models. The given p-Value was set
from 0.01 to 0.99 with a step of 0.01. In this way, 99 inter-
LOOCV were conducted, and 99 accuracies were obtained.
Optimal p was determined by the highest classification accuracy.
(4) Features thresholded with this optimal p-Value were
selected for the training set of the outer LOOCV loop. (5)
The resultant discriminative weight for each feature was
calculated to mark the relative importance of a feature to
a classifier (Mourao-Miranda et al., 2005). Notably, this

FIGURE 2 | The mean structural network matrix of each group built on the white matter. The horizontal and vertical coordinates represent 90 brain regions in the
AAL template. Values in each cell represent the mean FN between two brain areas.
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FIGURE 3 | Receiver operating characteristic (ROC) and area under the curve (AUC) or accuracy distribution when all indexes (i.e., global efficiency, local efficiency,
cluster efficiency, and short path) at the network level were combined. ROC maps shows the classification performance (A,B), where a greater AUC corresponds to
better performance. AUC and accuracy distribution maps (C–F) were built by permutation tests, during which group labels were randomly arranged 1,000 times.
Arrows in the distribution maps marker AUC or accuracy based on real group labels.

strict feature selection procedure was skipped for indexes at
the network level.

Definition of the Discriminate Features
Features selected for each outer loop were slightly different
because of the difference in the dataset (n - 1 participants for each
time). The absolute weight of features that were used for all outer
loops was averaged, which was used to indicate the discriminate
weight of each feature (Dai et al., 2012; Cui et al., 2016, Cui and
Gong, 2018). The higher the discriminate weight is, the greater
the contribution of the corresponding feature to the classifier is.

In the current study, the most discriminate features were defined
as those with averaged discriminate weight larger than 0.

Evaluation of Classification Performance
Accuracy, specificity, sensitivity, area under the ROC curve
(AUC) were estimated to quantify the classification accuracy.
As presented earlier, accuracy means the proportion of subjects
to be accurately classified. Specificity means the proportion of
subjects who can be accurately classified as HC or SCD (or
aMCI). Sensitivity means the proportion of subjects who can
be accurately classified as SCD (or aMCI). Furthermore, ROC
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analysis was used to estimate the effectiveness of each classifier.
The AUC indicates the classification performance of a classifier,
and a larger AUC represents a better performance (Fawcett,
2006). To estimate the significance of the accuracy and AUC, a
1,000 permutation test was performed to build null distributions,
during which labels for each participant were shuffled and the
whole classification procedure was reperformed.

RESULTS

Demographic Information
Age, gender, and years of education did not differ significantly
among the three groups. MMSE was significantly higher in
HC than in SCD and aMCI. Memory and executive functions
declined in the order of HC, SCD, and aMCI. The attentional
function was significantly stronger in both HC and SCD than
in aMCI (Table 1). We have reported these behavioral results in
another article as well (Tao et al., 2020).

The Mean Structural Network Matrix
The mean structural network matrix for the three groups is
presented in Figure 2. Notably, the number of fiber tracts
between a few brain regions was abundant (nearly 300), but
we chose only 25 as the maximum threshold to achieve a
better representation of the structural connectivity state between
most brain regions. A two-tailed t-test for group comparisons
of the structural network (p < 0.025) was presented in the
Supplementary Material. Most group differences were found
between HC and aMCI, while relatively few differences were
found between HC and SCD (see Supplementary Figure 2).

Classification With White Matter Indexes
at the Network Level
The LSVM classifier accurately discriminated aMCI from HC
when all network indexes (i.e., global efficiency, local efficiency,
cluster efficiency, and short path) were combined (brown lines

in Figure 3A). The result elucidated significant AUC (0.75,
p < 0.001; Figure 3E and Table 2) and accuracy (0.75, p < 0.001;
Figure 3C and Table 2, bold font), respectively. Then, LSVM
was also conducted by using the global efficiency, local efficiency,
clustering efficiency, and short path separately. Permutation tests
revealed significantly higher accuracy and AUC for all indexes
except for the clustering coefficiency (Table 2).

However, for SCD and HC, performance accuracies for all
classifiers either building on each index or the combined index
were all lower than 0.6, with nonsignificant AUCs close to 0.5
(Figures 3B,D,F).

Classification With White Matter Indexes
at the Nodal Level
Then, the LSVM was conducted at the node level. We first
combined all indexes to classify different groups. However, the
whole-brain anatomical connection pattern cannot significantly
separate aMCI or SCD from HC (Figures 4A,B).

Then, we exploited single-type metrics to build classifiers,
during which observed a double-dissociation pattern.
Specifically, path length can differentiate aMCI and HC but
not SCD and HC (Figure 4A). Notably, AUC for this classifier
was significant (0.66, p = 0.019; Figure 4C and Table 2, bold
font), while accuracy was marginally significant (0.66, p = 0.079;
Figure 4E and Table 2). Even though the significance was
marginal, there was still a trend that path length might be able to
identify aMCI from HC. In addition, the most 10 discriminative
WM features for this classifier were the left supramarginal gyrus;
left amygdala; right inferior frontal gyrus, opercular part; right
hippocampus; left temporal pole; middle temporal gyrus; right
superior temporal gyrus; left inferior frontal gyrus, triangular
part; left lenticular nucleus, pallidum; right inferior parietal, but
supramarginal and angular gyri; and right thalamus.

On the other hand, the global efficiency can significantly
identify SCD but not aMCI from HC (Figure 3). AUC (0.71,
p = 0.014; Figure 4D and Table 2, bold font) and accuracy (0.73,
p < 0.001; Figure 4F and Table 2) were all significant, with

TABLE 2 | Clustering performance based on each index.

HC vs. aMCI HC vs. SCD

Network level

Accuracy AUC Sensitivity Specificity Accuracy AUC Sensitivity Specificity

Combined 0.75 0.75 0.59 0.90 0.57 0.55 0.64 0.50

Global efficiency 0.68 0.77 0.59 0.77 0.45 0.34 0.73 0.18

Local efficiency 0.68 0.71 0.59 0.77 0.55 0.49 0.73 0.36

Clustering co-efficiency 0.16 0.09 0.18 0.14 0.50 0.52 0.59 0.41

Path length 0.70 0.76 0.55 0.84 0.39 0.41 0.36 0.41

Nodal level

Combined 0.52 0.52 0.50 0.55 0.43 0.39 0.41 0.45

Global efficiency 0.55 0.57 0.50 0.59 0.73 0.71 0.68 0.77

Local efficiency 0.61 0.63 0.64 0.59 0.32 0.29 0.41 0.23

Clustering co-efficiency 0.45 0.48 0.41 0.50 0.55 0.61 0.50 0.59

Path length 0.66 0.66 0.59 0.73 0.64 0.57 0.50 0.77

Frontiers in Aging Neuroscience | www.frontiersin.org 7 July 2021 | Volume 13 | Article 687530162

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-687530 July 12, 2021 Time: 11:7 # 8

Tao et al. Brain Degeneration From SCD to aMCI

FIGURE 4 | Receiver operating characteristic (ROC) maps and area under the curve (AUC) or accuracy distribution of a classifier built on indexes at the nodal level.
ROC maps show the classification performance (A,B), where greater AUC corresponds to better performance. AUC and accuracy distribution maps (C–F) were built
by permutation tests, during which group labels were randomly arranged 1,000 times. Arrows in the distribution maps marker AUC or accuracy based on real group
labels.

most discriminative WM features consisting of the left lenticular
nucleus, pallidum; right fusiform gyrus; and right lenticular
nucleus, pallidum.

Correlation Between Network Metrics
and Cognition
We also calculated the correlation between network properties
and cognition with gender, age, and years of education as
covariates in each group. In the SCD group, the path length of the
left supramarginal was positively correlated with memory ability

(r = 0.723, p < 0.001), but this was not the situation in the group
of HC and aMCI (Figure 5).

DISCUSSION

We investigated the topological characteristics of the WM
network that can successfully identify SCD and aMCI from HC.
Compared to the HC group, the combination of multiple indexes
at the network level was able to significantly distinguish aMCI,
but not SCD. The classifiers built on different indexes at the nodal
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FIGURE 5 | Correlation between network metrics and memory in different
groups.

level can identify SCD and aMCI from HC. Specifically, the short-
path length at the nodal level was able to significantly distinguish
aMCI from HC, whereas the global efficiency at the nodal level
was able to identify SCD from HC. The most discriminative
short-path length features include the left supramarginal, the left
amygdala, the opercularis part of the right inferior frontal, the
right hippocampus, and the left temporal pole, whereas the most
discriminative global efficiency features contain the left pallidum,
the right fusiform, and the right pallidum. Besides, we found that
the short-path length of the left supramarginal was significantly
correlated with memory performance in the SCD group.

Abnormalities in white matters, which were responsible
for transmitting information between brain regions, often
cause impairments of higher cognitive functions requiring the
collaboration of multiple brain regions. The impairments of
WM in AD have been reported in previous studies, which have
observed that WM impairments are significantly associated with
cognitive decline in AD (Overdorp et al., 2014; Bilello et al., 2015).
WM damages are one of the typical features of the pathological
development of AD (Lee et al., 2016). This WM degeneration,
representing demyelination and microhemorrhages, is also
frequently reported in aMCI and SCD (Ohlhauser et al., 2019;
Bangen et al., 2020; Li et al., 2020). In the current study, we
focused on structural properties (white matter metric) of the
brain; therefore, we selected the AAL template that was built on
high-resolution T1 volume and has been widely used in previous
brain network research (Feng et al., 2015; Qi et al., 2015; Zhuo
et al., 2018). Consistent with other studies (Wang et al., 2016;
Shu et al., 2018), disconnection symptoms and dynamic network
failure in AD were found to be of great significance in the
preclinical stages of AD, and this provides the neurostructural
basis for the altered behavioral manifestations in these stages.

Compared to aMCI, SCD is at a much earlier stage, where
the individual’s cognitive abilities are still relatively intact. Our
findings also reveal the stage-specific characteristics of WM
network disruption in each group. Both aMCI and SCD exhibit
impairments in network topological properties at the nodal
level, but indexes at the network level can only significantly
distinguish aMCI from HC, with no significant classification
power in discriminating between SCD and HC. This suggests a
progressive degeneration of whiter matter from SCD to aMCI,
from WM impairments at the local level to both local and global
levels. There is extensive evidence that SCD has similar WM
degeneration to aMCI and AD (Selnes et al., 2012; Li et al., 2016),
and the degree of degeneration is often intermediate between HC
and aMCI (López-Sanz et al., 2017). Our current study further
shows that the WM network damage in SCD has not reached
the overall level of the whole brain network as in aMCI but is
only limited to some local nodes. In this case, SCD may also
be able to compensate for the problems caused by local node
degeneration through resource allocation at the overall network
level or nodes that has been impaired, just like the alternative
enhancement of partial regional activation reported by previous
authors in functional MRI (Erk et al., 2011). This may be one of
the reasons why SCD is still able to maintain good performance
in cognitive tasks.

Based on the nodal-level analysis, we found that the
attributes that best distinguish SCD and aMCI from HC are
the global efficiency and the short-path length. These are
two indicators representing the extent of function integration
among brain regions (Bullmore and Sporns, 2012). The results
suggest that both SCD and aMCI might have pronounced
functional integration issues. They may have much more
difficulties in accomplishing those higher cognitive functions that
require multiple brain regions to collaborate together. Several
previous studies have reported altered functional integration and
functional segregation in both preclinical stages of AD (Lazarou
et al., 2019), and some investigators have suggested that enhanced
functional segregation compensates for the problems associated
with functional integration impairments (Xu et al., 2020), but the
latter was not as evident in our study. In addition, those elderly
with amyloidosis are more likely to have functional integration
problems (Fischer et al., 2015). This further confirms that SCD
and aMCI are two important preclinical risk stages for AD.

We used the fiber number of WM to build the network. The
change in the short-path length in aMCI suggests that some
of the WM pathways between the nodes have been impaired.
The changes in the global efficiency of some nodes in SCD also
indicate that the efficiency of information exchange between
these nodes and other regions of the brain has been impaired.
Some of the nodes with the greatest discriminatory validity
were identified in our analysis, and these nodes were mainly
distributed in temporal and frontal regions, which is consistent
with the sequence of pathological development in early AD
(Serrano-Pozo et al., 2011). We found a significant correlation
between the left marginal superior gyrus and memory in the
SCD group. Some studies suggest that thinner volumes in this
region are associated with an increased risk of AD (Verfaillie
et al., 2016). As part of the attentional network (Yeo et al., 2011),
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the marginal supramarginal gyrus has shown an important role
in memory encoding in several studies (Staresina and Davachi,
2006; Rubinstein et al., 2021). In addition, the literature shows
that supramarginal gyrus is often functionally involved in action
execution, simulation, and observation (Grezes and Decety,
2001), and some researchers have suggested that activation
of this component when subjects are memorizing items may
reflect the action-oriented approach to memory adopted by the
subjects (Russ et al., 2003). However, somewhat curiously, we
found that the mean path length of the left marginal superior
gyrus, in relation to other nodes of the whole brain, showed
a significant positive correlation with memory performance in
the SCD group. It appears that better structural segregation
of this region from other nodes contributes to better memory
performance. In fact, it can be observed from the scatter plot
(Figure 4) that the HC group did also have a longer mean
path length than the aMCI group. We speculate that perhaps
the region is undergoing a transition from a cost-effective
network to a random network during the SCD stage and that
some unnecessary connections to this brain region may cause
interference with memory function. This is consistent with the
phenomenon of brain dedifferentiation in aging and disease
development (Goh, 2011; Caldwell et al., 2020). This is still only
our conjecture, and follow-up studies need more experimental
evidence to further validate it.

Some limitations of our study should be mentioned. First,
our study sample is relatively small, which may affect the
generalizability of our current findings, and the seniors who
participated in the current study were from the community.
While we believe in the importance of focusing on the
community elderly, SCD from the clinic did have a higher
AD conversion rate (Jessen et al., 2020). Second, the current
study is only a cross-sectional study, and the findings need to
be confirmed by future longitudinal studies. Third, combining
other neuroimaging features such as cerebrospinal fluid markers
with the WM network alterations in the current study will
help to reveal a more comprehensive picture of the preclinical
pathological changes in AD. In conclusion, our study shows
that both SCD and aMCI have impairments in the functional
integration of WM networks relative to HC and that network
impairments in aMCI have undergone a quantitative change from
the nodal level to the network level.
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Background: Essential tremor (ET) is a common movement disorder among elderly

individuals worldwide and is occasionally associated with a high risk for mild cognitive

impairment and dementia. This retrospective study aimed to determine the clinical

outcome of unilateral magnetic resonance-guided focused ultrasound (MRgFUS)

thalamotomy in Chinese patients with ET.

Methods: In total, 31 male and 17 female patients with drug-refractory ET were enrolled

in this research study from January 2017 to September 2019. The severity of tremor and

disability were assessed using the Clinical Rating Scale for Tremor (CRST) within a 2-year

follow-up period.

Results: The mean age of the participants was 59.14 ± 13.5 years. The mean skull

density ratio (SDR) was 0.5 ± 0.1. The mean highest temperature was 57.0 ± 2.4◦C.

The mean number of sonications was 10.0 ± 2.6. The average maximum energy

was 19,710.5 ± 8,624.9 J. The total CRST scores and sub-scores after MRgFUS

thalamotomy significantly reduced during each follow-up (p < 0.001). All but four (8.3%)

of the patients had reversible adverse events (AEs) after the procedure.

Conclusions: MRgFUS had sustained clinical efficacy 2 years after treatment for

intractable ET. Only few patients presented with thalamotomy-related AEs including

numbness, weakness, and ataxia for an extended period. Most Chinese patients were

treated safely and effectively despite their low SDR.

Keywords: MR-guided focused ultrasound, focused ultrasound, essential tremor, thalamotomy, functional

neurosurgery
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INTRODUCTION

Essential tremor (ET) is a common movement disorder
worldwide, and it affects about 1% of the overall population and
4–5% of elderly individuals (≥65 years old) (Louis and Ferreira,
2010). In a survey conducted in Beijing, the prevalence of ET
among people aged ≥55 years is 3.29% (Sun et al., 2020). The
condition is characterized by stereotypic tremors at a frequency
of 8–12Hz, and tremors can severely affect daily living. Further,
it is occasionally associated with a high risk of mild cognitive
impairment and dementia (Louis et al., 2019). Although medical
treatment is initially effective, tremors are rarely suppressed with
time (Findley et al., 1985; Koller and Vetere-Overfield, 1989; Diaz
and Louis, 2010).

Traditionally, the choice of treatment other than drugs
includes either thalamotomy, which involves ablation of the
ventral intermediate nucleus (VIM) of the thalamus, or thalamic
deep brain stimulation (DBS). The latter is an invasive procedure,
which includes the insertion of a device inside the brain.
Although it has been the standard treatment for medically
intractable ET due to its safety and efficacy for long-term
tremor control, adverse effects such as hemorrhage, infection,
and hardware-related failures are not unusual (Blomstedt and
Hariz, 2005; Engel et al., 2018). Further, DBS requires repetitive
sittings with increasing expenditures.

For over 50 years, ablative treatment has evolved from
invasive radiofrequency to noninvasive gamma knife radiation
to magnetic resonance-guided focused ultrasound (MRgFUS). In
2016, the United States Food and Drug Administration (FDA)
had approved MRgFUS for the treatment of ET (Ito et al.,
2020). Taking into consideration the safety of the noninvasive
and radiation-free procedure, it is preferred over other ablative
methods for patients with medically refractory ET (Health
Quality Ontario, 2018).

However, the efficacy and adverse events (AEs) of MRgFUS
among Chinese people have not yet been evaluated extensively.
The clinical characteristics of ET might differ between Asians
and Caucasians. Therefore, this study aimed to evaluate the
outcome of MRgFUS thalamotomy among Taiwanese patients
with refractory ET.

METHODS

Patients
This retrospective study included patients with ET treated
with focused ultrasound thalamotomy at an MRgFUS Center
in Taiwan from 2017 to 2019. The procedure was performed
by an experienced team. Patients with a neurodegenerative
disorder such as Parkinson’s disease (PD), cognitive impairment
(Mini-Mental State Examination score of < 24), coagulopathy,
and severe depression and those who were not followed up
were excluded (Elias et al., 2016). Only patients with ET who
underwent unilateral MRgFUS VIM thalamotomy with a follow-
up duration of at least 6 months were included in the study. All
patients underwent a preoperative brain CT scan, and data on
cranial parameters including skull thickness, skull density ratio
(SDR), and skull area were obtained. SDR was calculated by

obtaining the average ratio of the cancellous to the cortical bone
within the skull via a CT scan. Patients with an SDR of≥0.3 were
considered forMRgFUS treatment (Wintermark et al., 2014). The
study was approved by the institutional review board of Show
Chwan Memorial Hospital, Taiwan (IRB approval no.: 1090908).

Magnetic Resonance-Guided Focused
Ultrasound
Patients were treated with unilateral VIM thalamotomy with
transcranial, noninvasive MRgFUS without general anesthesia.
The head of the patient was shaved before treatment, and the
scalp was examined for any scars or lesions that might interfere
with ultrasound transcranial transmission. TheMRI unit General
Electric (Chicago, IL) 1.5T Optima MR450W was prepared. The
stereotactic frame with a spherical coil and a water-cooling elastic
diaphragm was placed over the head of the patient. The setup
was connected to the ultrasound transducer (Exablate Neuro,
InSightec, Tirat Carmel, Israel) coupled with a software unit.

The treatment targeted the VIM of the thalamus contralateral
to the dominant side. VIM was localized from a functional
viewpoint, and indirect targeting was performed based on data
from stereotactic brain atlases and the previous experience of
neurosurgeons (Figure 1) (Sharifi et al., 2014). The presumptive
site of the VIM was localized at 14mm from the midline or
11mm from the lateral wall of the third ventricle and 1/3 from
the posterior commissure (PC) on the intercommissural line or
7mm anterior to the PC onMRI (Elias et al., 2013; Lipsman et al.,
2013; Chang et al., 2015).

Patients underwent serial sonications for thalamic lesioning,
starting with short and low energy, which produced focal heating
of up to 44◦C and progressed incrementally, thereby generating
increasingly larger concentric lesions. The ultrasound energy was
transmitted via 1,024 transducer elements, and it focused on the
thalamus, creating the ablation at the focus by heating, which is
tracked usingMRI thermometry (Elias et al., 2013, 2016; Lipsman
et al., 2013; Chang et al., 2015). The size and location of the lesion
and clinical effects were continuously monitored. In particular,
changes in tremors were closely monitored in the treated arm
by asking patients for the presence of any AEs during treatment.
Lesions progressively enlarged by increasing the temperature or
duration of sonication until either tremor suppression is achieved
or AEs are encountered. MRI was performed before treatment,
immediately after the procedure, 1 day after the procedure, and 6
months after the procedure (Figure 2).

Outcome Parameters
The Clinical Rating Scale for Tremor (CRST) is the standard
assessment test for tremors in ET, and the CRST score was the
primary outcome in this study. CRST has three parts (A, B, and
C). Part A rates resting, postural, and action tremors for location
and severity of tremors; part B rates hardwiring, drawing, and
pouring of specific motor tasks; and part C rates speaking, eating,
drinking, hygiene, dressing, writing, working, and social activities
for functional disabilities. The score of each item ranges from 0 to
4 (total: 148), and a higher score indicates greater disease severity
(Stacy et al., 2007). The dominant tremor score (maximum of
32) was defined as the sum of tremors in parts A and B for the
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FIGURE 1 | Networks correlated with essential tremor (ET). VIM: ventral intermediate nucleus.

FIGURE 2 | Lesion location on T2-weighted images before and after MRgFUS thalamotomy in one patient. (A) Pre-intervention. (B) Day 1. The target lesion was in

the left VIM of the thalamus (red circle). (C) Six months. MRgFUS: magnetic resonance-guided focused ultrasound. VIM: ventral intermediate nucleus.

treated hand. All patients were assessed using CRST by the same
neurologists before treatment and were followed up after 1 week;
1, 3, and 6 months; and 1 and 2 years.

The incidence rate of AEs was considered the secondary
outcome. AEs were classified as frame-, sonication-, and
thalamotomy-related AEs for analysis purposes. Frame-related
AEs included ptosis, pin-site bleeding, edema, and pain.

Sonication-related AEs included vertigo or dizziness, headache,
and nausea. Thalamotomy-related AEs included sensory-related
events (numbness or paresthesia of various parts of body
and taste disturbance), strength-related events (weakness of
extremities), balance-related problems (dysmetria), and ataxia.
Dysarthria and dysphagia were thalamotomy-related AEs (Elias
et al., 2016). The AEs were recorded and followed up during the
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TABLE 1 | Baseline demographic and clinical characteristics.

Variables Mean ± SD

Age, year 59.2 ± 13.5

Sex (male/female), N (%) 31 (64.6)/17 (35.4)

Treated side (left/right), N (%) 41 (85.4)/7 (14.6)

Family history (positive/negative/uncertain), N (%) 21 (43.8)/20 (41.7)/7 (14.5)

Disease duration, year 19.2 ± 13.6

SDR 0.5 ± 0.1

Average skull thickness, cm 7.1 ± 1.0

Skull area, cm2 366.2 ± 24.9

Average IA, degree 12.7 ± 1.1

No. of IA, < 20 892.2 ± 62.3

No. of IA, < 25 969.6 ± 34.9

Active elements 985.4 ± 32.0

No. of sonications 10.0 ± 2.6

No. of sonications, ≥ 50◦C 4.6 ± 2.2

T max, ◦C 57.0 ± 2.4

Average total energy, J 97908.6 ± 60052.6

Average maximum energy, J 19710.5 ± 8624.9

SD, Standard Deviation; SDR, Skull Density Ratio; IA, Incident Angle; T max, Maximum

Temperature reached after completion of the procedure.

treatment day and after 1 day, 1 week, 3 and 6 months, and 1 and
2 years.

Statistical Analysis
The total CRST scores and sub-scores during each follow-up
were compared with the baseline scores using one-way repeated
measures ANOVA with the least significant difference post-
hoc analysis.

The relationships between skull factors and treatment
parameters were evaluated via Pearson’s correlation analysis
and using the chi-square test. The skull factors included SDR,
average skull thickness, skull volume, and skull area. Meanwhile,
the treatment parameters included a total number of active
elements (out of 1,024) in the spherical transducer, total
energy transmitted, the maximum temperature reached upon
completion of the procedure (Tmax), and sonication number
and duration.

A p-value of< 0.05 was considered statistically significant, and
all analyses were conducted using the Statistical Package for the
Social Sciences software version 24.0 (IBM Corp., Armonk, NY,
the USA).

RESULTS

Participants
In total, 48 patients, with a mean age of 59.2 ± 13.5 years and
a mean duration of disease of 19.2 ± 13.6 years, were included
in the analysis. Approximately 64.6% of patients were men, and
43.8% had a family history of ET. The dominant treated side was
in the left (85.4%), and the mean SDR was 0.5 ± 0.1 (Table 1).
The maximum, minimum, and median values of SDR were 0.7,
0.3, and 0.45. Twenty patients (25%) had SDRs of 0.40 or less.

Tremor
The total CRST score at baseline (parts A, B, and C) was 45.6
± 15.4, and it reduced to 36.4 ± 17.6, 30.6 ± 17.1, 29.4 ±

15.1, 30.3 ± 15.7, 30.5 ± 14.4, and 31.9 ± 15.8 after 1 week, 1
month, 3 months, 6 months, 1 year, and 2 years, respectively (p<

0.001). The baseline dominant tremor score was 14.7± 4.9, and it
reduced to 9.8± 7.3, 8.6± 6.2, 6.2± 5.0, 6.6± 5.3, 7.0± 5.5, and
7.4± 5.8 after 1 week, 1 month, 3 months, 6 months, 1 year, and 2
years, respectively (p < 0.001). The total disability score (part C)
significantly improved from 13.4 ± 4.6 to 10.2 ± 5.9, 8.0 ± 5.6,
7.6± 4.8, 7.8± 5.0, 7.6± 4.6, and 8.3± 5.4 after 1 week, 1month,
3 months, 6 months, 1 year, and 2 years, respectively (p < 0.001).
Furthermore, parts A and B were decreased at any posttreatment
stage (p < 0.001, Table 2). The trends in the total CRST scores
and sub-scores during follow-up are shown in Figure 3.

Adverse Events
Frame-related events were not observed after 1 month.
Sonication-related AEs were predominant on the day of
treatment. However, they were transient and subsided after
1 week in all patients. Ataxia was the major thalamotomy-
related AE. The incidence rates were 83.3, 41.7, 10.4, 6.3, and
4.2% after 1 day, 1 week, 1 month, 3 months, and 6 months,
respectively. Complete disappearance was observed after the 6-
month follow-up. Approximately 8% of patients complained of
sensory-related AEs, including numbness of the tongue and/or
fingertip, which persisted during the 2-year follow-up. However,
worsening or new AEs were not observed during the 2-year
follow-up (Table 3).

DISCUSSION

Pharmacological agents such as propranolol and primidone are
the primary choice of most physicians as they are recommended
by the American Academy of Neurology (AAN) (Zesiewicz et al.,
2011). However, even if these agents do not cause AEs, the
efficacy rate is only 50–70% (Haubenberger and Hallett, 2018).
Recent studies have shown that propranolol may be associated
with an increased risk of PD (Mittal et al., 2017; Gronich et al.,
2018; Hopfner et al., 2019). Surgical interventions including DBS
and MRgFUS are recommended for medically refractory cases;
MRgFUS is a novel technique that is less invasive than DBS
(Shanker, 2019). Hence, in Taiwan, patients with refractory ET
are more likely to be treated with MRgFUS than DBS.

In this retrospective study including 48 patients with drug-
refractory ET, MRgFUS thalamotomy significantly reduced hand
tremor immediately, and the effect persisted until the 2-year
follow-up period. The total CRST scores improved by 35.3, 33.5,
and 32.5% after 3 months, 1 year, and 2 years, respectively. The
dominant tremor scores improved by 64.0, 60.1, and 58.2% after
3 months, 1 year, and 2 years, respectively. The outcome in this
study was not worse than that in previous larger studies (N,≥ 30;
Table 4) (Elias et al., 2016; Chang et al., 2018; Meng et al., 2018).
After the achievement of postoperative reduction, the beneficial
effect was maintained until the 2-year follow-up period.

The AEs were mostly transient and mild. The incidence rates
of sensory deficit and imbalance after the intervention ranged
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TABLE 2 | Total CRST scores and sub-scores during each follow-up (N = 48).

Evaluation time Part A Part B Part C Total Dominant tremor score

Baseline 15.2 ± 6.5 17.0 ± 7.2 13.4 ± 4.6 45.6 ± 15.4 14.7 ± 4.9

1 week 12.9 ± 6.2* 13.3 ± 7.8* 10.2 ± 5.9* 36.4 ± 17.6* 9.8 ± 7.3*

1 month 11.7 ± 6.5* 10.8 ± 6.9* 8.0 ± 5.6* 30.6 ± 17.1* 8.6 ± 6.2*

3 months 11.7 ± 6.4* 10.1 ± 6.0* 7.6 ± 4.8* 29.4 ± 15.1* 6.2 ± 5.0*

6 months 11.9 ± 6.3* 10.7 ± 6.3* 7.8 ± 5.0* 30.3 ± 15.7* 6.6 ± 5.3*

1 year 12.2 ± 5.4* 10.7 ± 6.8* 7.6 ± 4.6* 30.5 ± 14.4* 7.0 ± 5.5*

2 years 12.1 ± 6.0* 11.5 ± 7.2* 8.3 ± 4.8* 31.9 ± 15.8* 7.4 ± 5.8*

CRST, Clinical Rating Scale for Tremor. *Significant level at p < 0.001 compared with the initial score. Data were presented as mean ± SD. Analyses were performed using one-way

repeated measures ANOVA with the least significant difference post-hoc analysis.

FIGURE 3 | The trend in sub-scores during the 2-year follow-up. CRST: Clinical Rating Scale for Tremor. Error bars were plotted with SE.

from 13% to 19% (Park et al., 2019; Sinai et al., 2019). In
this study, the frame- and sonication-related AEs disappeared
within 1 week. Vasogenic edema over the outer layer, which was
treated with dexamethasone, was correlated with symptom relief.
However, 6.3 and 8.3% of patients experienced sensory problems
that lasted for 1 and 2 years, respectively. The incidence rates of
long-term thalamotomy-related AEs in Chinese individuals were
not higher than that inWestern individuals according to previous
reports (Elias et al., 2016; Chang et al., 2018; Meng et al., 2018).
Interestingly, during follow-up, diminished leukoaraiosis was
observed on T2-weighted-fluid-attenuated inversion recovery
(T2 FLAIR), and the accumulation of hemosiderin was observed

on susceptibility-weighted imaging (SWI) series (Figure 2).
We hypothesized that this might be the difference between
functional lesioning by focused ultrasound and traditional
lesioning by radiofrequency ablation. The accumulation of
hemosiderin deposits may influence the connection of the
dentatorubrothalamic tract. In addition, the SDR values were
proportionally correlated with the incidence of AEs. In addition,
while a blood-oxygen-level-dependent (BOLD) signal in resting-
state functional MRI (fMRI) analysis reveals a focal lesion in
the MRgFUS VIM thalamotomy that results in symptom-related,
long-term alterations in the effective connectivity of the dentate
nucleus in the motor circuit, a similar experiment also could be
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TABLE 3 | Adverse events after MRgFUS thalamotomy (N = 48).

Subgroups Frame-related AEs Sonication-related AEs Thalamotomy-related AEs Others

Sensory-related Strength-related Balance-related Dysarthria and

dysphagia

0 day 0 (0) 27 (56.3) 2 (4.2) 0 (0) 0 (0) 0 (0) 3 (6.3)

1 day 0 (0) 2 (4.2) 4 (8.3) 2 (4.2) 40 (83.3) 1 (2.1) 3 (6.3)

1 week 1 (2.1) 1 (2.1) 3 (6.3) 3 (6.3) 20 (41.7) 1 (2.1) 10 (20.8)

1 month 0 (0) 0 (0) 5 (10.4) 3 (6.3) 5 (10.4) 2 (4.2) 7 (14.6)

3 months 0 (0) 0 (0) 4 (8.3) 2 (4.2) 3 (6.3) 2 (4.2) 8 (16.7)

6 months 0 (0) 0 (0) 3 (6.3) 2 (4.2) 2 (4.2) 0 (0) 5 (10.4)

1 year 0 (0) 0 (0) 3 (6.3) 2 (4.2) 0 (0) 0 (0) 3 (6.3)

2 years 0 (0) 0 (0) 4 (8.3) 0 (0) 0 (0) 0 (0) 0 (0)

AEs, Adverse Events; MRgFUS, Magnetic Resonance-guided Focused Ultrasound.

Data were presented as numbers (%).

TABLE 4 | Comparison of outcomes between the current and previous studies

with a larger sample size (N ≥ 30).

Author, year N Rate of improvement rate in dominant

tremor scores

6 months 1 year 2 years

The study 48 55.1% 52.4% 49.7%

Meng et al., 2018 37 No data 42.4% 43.4%

Chang et al., 2018 76 56.6% 55.0% 55.6%

Elias et al., 2016 56 44.0% 39.8% No data

conducted to explore the effective connectivity difference among
AEs (Park et al., 2017).

The proportion of men and women affected by ET is equal.
However, hand tremor was more severe in men than in women,
and head and voice tremors were more severe in women than in
men (Shanker, 2019). MRgFUS thalamotomy is more promising
in controlling peripheral tremors, and this may be the reason
why more male patients received this treatment. Identifying
brain targets for resolving head and voice tremors under safety
procedures will be an important issue in future studies.

From a technical viewpoint, the energy efficiency is lower
in the low SDR group than in the high SDR group (Chang
et al., 2016, 2020). Patients can be at risk for long treatment
duration due to different kinds of discomforts, including the
tightness and pressure from the silicon membrane attached to
the head of the patient, the headache caused by cold water
between the transducer and the membrane, the pain caused by
the pins of the stereotactic frame, and deep vein thrombosis.
Based on a balance between clinical benefits and risks, patients
with a high SDR (>0.45) must be selected, which is based on the
recommendation of the FDA (U.S. Food Drug Administration,
2020a,b). However, this study had shown that there were no
significant differences in terms of clinical outcome and safety
profile between patients with a low SDR (0.3–0.4) and those
with a high SDR (>0.4). Similar reports of Japan and Korea also
showed that patients with low SDR can be successfully treated
(Chang et al., 2019; Yamamoto et al., 2019). As reported

previously, 50% of Chinese and 78.6% of Japanese patients
had SDRs of 0.40 or less (Yamamoto et al., 2019; Tsai et al.,
2021). Increasing the efficacy of ablation in treating such patients
with low SDR is an important issue. During the preparation
of the patient, we attempted to enlarge the skull surface, if
possible, by placing the membrane as inferior as possible to
prevent exceeding the safety limit of 100 J/cm2. Meanwhile, the
membrane fold could be excluded from the region of focused
ultrasound penetration. Hence, to achieve better focus, the
number of active elements can be increased (Yamamoto et al.,
2020).

In this study, we used the conventional stereotactic coordinate
to determine the initial target location for the VIM thalamotomy.
The tremor control (Figure 3) and the reported AE (Table 3)
indicated that this targeting strategy leads to similar clinical
outcomes as the other reports (Elias et al., 2016; Chang et al.,
2018; Meng et al., 2018). Recently, the diffusion-weighted MRI
was reported and reviewed (Lehman et al., 2020) to facilitate
the targeting of the dentatorubrothalamic tract in order to
improve symptom control (Chazen et al., 2018) or avoid the
potential adverse effects (Krishna et al., 2019). Although there
is an existing limitation of diffusion-tensor imaging (DTI)
regarding the image distortion and the manual error of this seed-
based tractography targeting, this advanced targeting strategy
is still promising and could be a valuable reference for this
MRgFUS procedure.

Lesion size is associated with the clinical efficacy of MRgFUS
thalamotomy in ET (Federau et al., 2018; Harary et al., 2018).
At the time of treatment, 3–6 sonications are normally applied
to align the center of the hot spot to the selected target;
then, the following sonications are used to stimulate the
patient, achieve the therapeutic temperature, and consolidate
the lesion if there is any. Empirically, the energy efficiency
can be lower, and the perifocal edema can be larger if the
number of sonications is higher. Hence, instead of moving
around the target region to identify a more effective location,
a small number of sonications were used, and the treatment
was completed to address the aforementioned issues. To date,
a high temperature is utilized to create the lesion and control
the tremor.
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This study was not a randomized controlled trial to ensure
efficacy and safety (Elias et al., 2016) but is based on the real-
world data like other similar research for safety, effectiveness,
and long-term outcomes (Chang et al., 2018; Katkade et al.,
2018; Meng et al., 2018; Park et al., 2019; Sinai et al., 2019).
It had some limitations. First, retrospective data were collected
only for up to 2 years. Hence, a longer follow-up duration is
necessary. Second, further analyses of lesions and procedures,
which are important in improving the efficacy of treatment and
reducing the incidence of AEs, were not performed. Third, the
Quality of Life in Essential Tremor Questionnaire (QUEST) was
not used. Hence, the quality of life among patients with ET was
not evaluated.

In conclusion, the incidence of tremor and disability
decreased after MRgFUS thalamotomy among patients with
drug-refractory ET. The outcome of this study was similar
to that of previous studies, which had <2 years of follow-
up. MRgFUS can be performed successfully for patients with
normal and low SDR. Therefore, this study suggests the
possibility that lowering the cutoff value of SDR (≥0.3) may
result in more patients being treated with this nonsurgical and
nonionizing intervention.
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Objective: Individuals with subjective cognitive decline (SCD) or amnestic mild cognitive
impairment (aMCI) represent important targets for the early detection and intervention
of Alzheimer’s disease (AD). In this study, we employed a multi-kernel support vector
machine (SVM) to examine whether white matter (WM) structural networks can be used
for screening SCD and aMCI.

Methods: A total of 138 right-handed participants [51 normal controls (NC), 36 SCD, 51
aMCI] underwent MRI brain scans. For each participant, three types of WM networks
with different edge weights were constructed with diffusion MRI data: fiber number-
weighted networks, mean fractional anisotropy-weighted networks, and mean diffusivity
(MD)-weighted networks. By employing a multiple-kernel SVM, we seek to integrate
information from three weighted networks to improve classification performance. The
accuracy of classification between each pair of groups was evaluated via leave-one-out
cross-validation.

Results: For the discrimination between SCD and NC, an area under the curve (AUC)
value of 0.89 was obtained, with an accuracy of 83.9%. Further analysis revealed that
the methods using three types of WM networks outperformed other methods using
single WM network. Moreover, we found that most of discriminative features were from
MD-weighted networks, which distributed among frontal lobes. Similar classification
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performance was also reported in the differentiation between subjects with aMCI and
NCs (accuracy = 83.3%). Between SCD and aMCI, an AUC value of 0.72 was obtained,
with an accuracy of 72.4%, sensitivity of 74.5% and specificity of 69.4%. The highest
accuracy was achieved with features only selected from MD-weighted networks.

Conclusion: White matter structural network features help machine learning algorithms
accurately identify individuals with SCD and aMCI from NCs. Our findings have
significant implications for the development of potential brain imaging markers for the
early detection of AD.

Keywords: subjective cognitive decline, mild cognitive impairment, support vector machine, white matter,
diffusion tensor imaging

INTRODUCTION

Subjective cognitive decline (SCD) refers to self-perceived
cognitive decline relative to a previously normal status, without
impaired performance on standardized neuropsychological tests
(Jessen et al., 2014; Molinuevo et al., 2017). There is gathering
evidence that SCD may be the first symptomatic manifestation
of Alzheimer’s disease (AD) occurring prior to amnestic mild
cognitive impairment (aMCI) (Jessen et al., 2014; Rabin et al.,
2017). Patients with aMCI, even those who temporarily revert to
normal cognition, are at higher risk of progressing to dementia
than age-matched normal controls (NCs) (Petersen et al., 2018).
Effective intervention to delay or prevent pathologic cognitive
decline may best be targeted at the SCD or MCI stage, in which
cognitive function is still relatively preserved (Smart et al., 2017;
Petersen et al., 2018). In consideration of this, it is critical to find
sensitive, low-cost methods for the early detection of individuals
at risk for further cognitive decline and incident AD dementia.

Recent advances in neuroimaging research suggest that
elderly people with SCD have an increased likelihood of
AD biomarkers across a range of modalities (Rabin et al.,
2017). Diffusion tensor imaging (DTI) is a quantitative MRI
technique that has been applied to delineate white matter (WM)
microstructure through the characterization of the underlying
water molecule diffusion (Amlien and Fjell, 2014). Using DTI
measures, previous studies observed WM abnormalities in
SCD subjects compared with the normal control (NC) group
(Selnes et al., 2012; Li et al., 2016). Such alterations may
predict medial temporal lobe atrophy and dementia (Selnes
et al., 2013). In addition to the raw features obtained from
DTI, characterization of the global architecture or topological
property of WM connection patterns has recently drawn a
great deal of interest (Sporns et al., 2005; Bullmore and
Sporns, 2009). Previous studies suggested that patients with
SCD and MCI exhibit global disruption of brain connectivity
and topologic alterations of the whole-brain connectome rather
than in a single isolated region (Shu et al., 2012, 2018). The
topographical metrics of patients with SCD and MCI correlating
with impaired cognitive performance suggest their potential use
as biomarkers for the early detection of cognitive impairment in
elderly individuals.

Over the past decades, neuroimaging measures have been
increasingly integrated into imaging signatures of AD by

means of classification frameworks, offering promising tools
for individualized diagnosis and prognosis (Sajda, 2006;
Rathore et al., 2017). Peter et al. (2014) suggested that, even at
the SCD stage, structural MRI combined with the SVM method
is a sensitive method for identifying subtle brain changes that
correspond to future memory decline. Although SVM has
been used successfully in several AD and MCI imaging studies
involving WM connectivity network measure-based methods
(Wee et al., 2012; Prasad et al., 2015; Rathore et al., 2017), it is
scarce in SCD populations.

In this study, we wanted to assess the usefulness of multiple-
kernel SVM approaches to accurately identify SCD and aMCI
patients from normal aging based on different weighted structure
networks. The primary aim of this study was to combine
multiple weighted networks using multiple-kernel SVM with
an SVM machine learning algorithm for each single weighted
structure network approach and the direct data fusion method.
The study further investigated the effect of feature number and
constraint parameter C on classifying NC, SCD, and aMCI.
Finally, information on which regions contributed most to the
group separation was assessed, allowing for different types of
discriminative features to be interpreted with respect to the
underlying neurobiology of SCD and aMCI.

MATERIALS AND METHODS

Subjects
This study included 138 right-handed and Mandarin-speaking
subjects (51 NC, 36 SCD, and 51 aMCI) who were recruited
at the memory clinic of Beijing Xuanwu Hospital of Capital
Medical University and the local community in China from May
2011 to June 2016. Written informed consent was obtained from
all subjects before inclusion. This study has been registered to
ClinicalTrials.gov (NCT022259641).

The patients with aMCI were diagnosed on the basis of
Petersen’s criteria (Petersen, 2004) and the National Institute
on Aging Alzheimer’s Association criteria for aMCI due to
AD (Albert et al., 2011) as follows: (a) with subjective
memory complaint, preferably confirmed by an informant; (b)
objective memory impairment confirmed by Mini-Mental State

1https://www.clinicaltrials.gov/
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Examination (MMSE), Montreal Cognitive Assessment (MoCA),
Auditory Verbal Learning Test (AVLT); (c) a Clinical Dementia
Rating (CDR) score of 0.5; (d) did not fulfill the criteria for
dementia according to the Diagnostic and Statistical Manual
of Mental Disorders, fourth edition, revised (DSM-IV); and (e)
hippocampal atrophy observed by structural MRI.

The inclusion criteria of SCD, based on the research criteria for
SCD (Jessen et al., 2014) and described in our previous study (Sun
et al., 2016), included the following: (a) self-reported persistent
cognitive decline within the last 5 years, which was confirmed
by an informant; (b) performance within the normal range on
a Chinese version of the MMSE and the Beijing version of the
MoCA (adjusted for age, sex, and education); and (c) a score
of 0 on the CDR.

The NC participants were healthy volunteers who met the
following conditions: (a) no subjective or objective cognitive
decline concerns; (b) normal performance on neuropsychologic
test scores; and (c) CDR score of 0.

Subjects were excluded if they had any of the following: (a)
structural abnormalities that could impair cognitive function
other than cerebrovascular lesions, such as tumor, subdural
hematoma, and contusion from a previous head trauma;
(b) a history of stroke, addictions, neurologic or psychiatric
diseases, or treatments that would affect cognitive function;
(c) focal neurologic signs or symptoms (e.g., paralysis, sensory
disturbances, dysarthria, gait disorder, and Babinski sign); (d)
depression (a score of >7 on the Hamilton depression rating
scale); (e) large-vessel disease (e.g., cortical and/or subcortical
infarcts and watershed infarcts); (f) and diseases with WM
lesions (e.g., normal pressure hydrocephalus and multiple
sclerosis). The diagnosis was performed by three neurologists
who had between 8 and 28 years of experience. Clinical
and demographic data for all 138 participants are shown in
Table 1.

Data Acquisition
All of the participants were imaged with a 3.0-T MR imager
(Magnetom Trio Tim; Siemens, Erlangen, Germany) at the

Department of Radiology, Xuanwu Hospital, Capital Medical
University. The T1-weighted images were acquired using a
magnetization prepared rapid gradient echo sequence with the
following parameters: repetition time (TR) = 1,900 ms; echo time
(TE) = 2.2 ms; flip angle = 9◦; acquisition matrix = 256 × 224;
field of view (FOV) = 256 × 224 mm2; slice thickness = 1 mm;
no gap; 176 sagittal slices; and average = 1. The DTI data were
acquired using a single-shot EPI sequence with the following
parameters: TR = 11,000 ms; TE = 98 ms; flip angle = 90◦;
acquisition matrix = 128 × 116; FOV = 256 × 232 mm2; slice
thickness = 2 mm; no gap; 60 axial slices; and average = 3. Thirty
non-linear diffusion weighting directions with b = 1,000 s/mm2

and one b0 image were obtained. All images were reviewed, and
leukoencephalopathy and vascular comorbidity were evaluated
by an experienced neuroradiologist with 18 years of experience
in clinical radiology.

Image Preprocessing
All DTI imaging data preprocessing was performed with the
FDT toolbox in FSL2. Briefly, each diffusion-weighted image
was coregistered to the b0 image for eddy current and head
motion correction. Accordingly, the b-matrix was reoriented
based on the transformation matrix (Leemans and Jones, 2009).
For each voxel, the diffusion tensor elements (Basser et al., 1994),
fractional anisotropy (FA) value and mean diffusivity (MD) were
estimated (Basser and Pierpaoli, 1996).

Network Construction
A network consists of nodes and edges. As shown in
Supplementary Figure 1, the following procedures were applied
to construct WM structural networks.

Network Node Definition
The automated anatomic labeling (AAL) template (Tzourio-
Mazoyer et al., 2002) was used to parcel the brain into 90
regions of interest (Supplementary Table 1), which represent

2https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

TABLE 1 | Clinical and demographic of amnestic mild cognitive impairment (aMCI), subjective cognitive decline (SCD), and normal controls (NC).

NC SCD aMCI P value

NC vs. SCD vs. aMCI NC vs. SCD NC vs. aMCI SCD vs. aMCI

N (M/F) 51 (18/33) 36 (15/21) 51 (22/29) 0.70a 0.55a 0.42a 0.89a

Age, years 62.22 ± 9.14 63.47 ± 8.78 64.06 ± 9.54 0.59b 0.52c 0.32c 0.77c

Education, years 11.23 ± 4.63 11.44 ± 4.59 9.55 ± 4.14 0.08b 0.84c 0.06c 0.05c

AVLT: immediate recall 8.83 ± 1.92 8.14 ± 1.87 5.70 ± 1.53 <0.0001b 0.10c <0.0001c <0.0001c

AVLT: delayed recall 10.04 ± 3.00 8.56 ± 2.79 3.32 ± 2.87 <0.0001b 0.02c <0.0001c <0.0001c

AVLT: recognition 11.69 ± 3.23 10.89 ± 2.28 7.38 ± 4.17 <0.0001b 0.21c <0.0001c <0.0001c

MoCA 28.14 ± 1.99 25.74 ± 2.10 19.34 ± 4.27 <0.0001b 0.62c <0.0001c <0.0001c

MMSE 28.14 ± 2.01 27.53 ± 1.72 23.78 ± 3.29 <0.0001b 0.14c <0.0001c <0.0001c

Plus-minus values are means ± S.D.
aThe P value for gender distribution in the three groups was obtained by Chi-square test.
bThe P values were obtained by an analysis of covariance.
cThe P values were obtained by a two-sample t-test.
MMSE, Mini-Mental State Examination; NC, normal control; SCD, subjective cognitive decline; aMCI, amnestic mild cognitive impairment.
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nodes in the WM structural network. The procedure was
performed using SPM8 software3 and has been previously
described (Zalesky et al., 2010; Bai et al., 2012; Cao
et al., 2013). Briefly, we first coregistered individual T1-
weighted images to the b0 images in DTI space. Then, we
transformed the T1 images in DTI space into the ICBM152
T1 template in Montreal Neurological Institute (MNI)
space. Next, the AAL template from the MNI space was
warped to the DTI native space by applying the inverse
transformation obtained from the previous step. We used a
nearest-neighbor interpolation method to preserve discrete
labeling values.

WM Tractography
Diffusion tensor tractography was carried out with the “fiber
assignment by continuous tracking (FACT)” method (Mori et al.,
1999) included in the Diffusion Toolkit software4. Briefly, we
seeded the voxels with FA greater than 0.2 to compute all
the tracts in the diffusion-tensor imaging dataset. For each
voxel, eight seeds were evenly distributed. Each streamline
was reconstructed starting from each seed following the main
diffusion direction from voxel to voxel. The tractography was
terminated if it turned at an angle greater than 45◦ or reached
a voxel with an FA less than 0.2.

Network Edge Definition
Each pair of nodes was considered structurally connected if there
was at least one streamline whose end points were located in
the pair (Zalesky et al., 2011; Bai et al., 2012; Shu et al., 2012).
Then, three weighted networks were constructed for each subject:
the fiber number (FN)-weighted network, which used the fiber
number between two regions as the weight of edges; the FA-
weighted network, which used the mean FA of all the voxels on
all the fibers between two regions as the weight of edges; and the
MD-weighted network, which used the mean MD of all the voxels
on all the fibers between two regions as the weight of edges. These
three networks had the same topology but conveyed different
biophysical properties (Wee et al., 2011). The networks provide
the fiber numbers, degree of anisotropy and average diffusivity of
fibers connecting a pair of regions.

The 4,005 × 3 = 12,015 edges in the three networks were
extracted for each subject as features that were used to classify
the NC, SCD, and aMCI.

Feature Selection
Selecting a small subset of features with the greatest
discriminative power has been shown to improve the
classification performance and avoid overfitting (Dosenbach
et al., 2010) because some features are irrelevant or redundant
for classification. Several studies have suggested this can also
speed up computation (De Martino et al., 2008; Pereira et al.,
2009). Therefore, we adopted a univariate feature-filtering step in
this study. Given a training dataset xk, k = 1, . . . ,m, if n+ and
n− are the number of positive instances (i.e., SCD) and negative

3https://www.fil.ion.ucl.ac.uk/spm/
4http://www.trackvis.org/dtk/

instances (i.e., NC), respectively, then the F-score of the i-th
feature can be calculated as:

F (i) =
(x̄(+)i − x̄i)2 + (x̄

(−)
i − x̄i)2

1
n+−1

∑n+
k=1(x

(+)
k, i − x̄(+)i )2 + 1

n−−1
∑n−

k=1(x
(−)
k, i − x̄(−)i )2

(1)
Where x̄i, x̄(+)i , x̄(−)i are the average of the i-th feature of the
whole, positive, and negative data sets, respectively; x(+)k, i is the

i-th feature of the k-th positive instance; and x(−)k, i is the i-th
feature of the k-th negative instance. The numerator indicates
the variance between groups, and the denominator indicates the
variance within each of the two groups. The larger the F-score
is, the more likely the feature is to be more discriminative.
Therefore, we used this score as a feature selection criterion.

Considering that univariate feature selection may overlook
the multivariate pattern, we also used a multivariate method,
lasso regression, to select features and compared the performance
of these two feature selection methods. Because lasso is a
penalized least squares method, it performs continuous shrinkage
and automatic variable selection simultaneously. There is a
hyperparameter to control the degree to norm regularization.
We used a nested fivefold cross validation to obtain the optimal
hyperparameter.

Multiple-Kernel SVM
Given n training samples with xi =

{
x(1)i , . . . , x(M)i

}
denoting

the feature vector of the i-th sample (M = number of
white matter networks, m = 1, . . . ,M and x(m)i ={
edge(m)i (1) , . . . , edge(m)i (4005)

}
), yi ∈ {−1, 1} denoting

the corresponding label, the primal optimization problem of a
conventional single kernel SVM is defined as

minw,b,ξi
1
2
||w||2 + C

n∑
i=1

ξi, (2)

subject to yi ×
(
WTφ (xi)+ b

)
≥ 1− ξi

and ξi ≥ 0, for i = 1, . . . , n

where w, C, ξi, φ(· ), and b denote the normal vector to the
hyperplane, the model parameter that determines the number
of constraint violations, the distance of the i-th misclassified
observation from its correct side of the margin, the kernel
function and the bias term, respectively.

Normally, Eq. (2) is solved using its dual form with the kernel
approach. The dual form is given as

maxα

n∑
i=1

αi −
1
2

∑
i, j

αiαjyiyj × k
(
xi, xj

)
, (3)

subject to
n∑

i=1

αiyi = 0;

and 0 ≤ αi ≤ C, for i = 1, . . . , n
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where α is the Lagrange multiplier and k
(
xi, xj

)
is the kernel

function for training samples, xi and xj .
To integrate the three networks, we used a multiple kernel

SVM whose primal optimization problem can be defined as

minw(m),b,ξi
1
2

M∑
m=1

βm||w(m)||2 + C
n∑

i=1

ξi, (4)

subject to yi ×

[ M∑
m=1

βm

((
w(m)

)T
φ(m)

(
x(m)i

)
+ b

)]
≥ 1− ξi

and ξi ≥ 0, for i = 1, . . . , n

where βm is the weighting factor on the m-th networks. Similarly,
the corresponding dual form is given as

maxα

n∑
i=1

αi −
1
2

∑
i, j

αiαjyiyj
M∑

m=1

βmk(m)
(
x(m)i , x(m)j

)
, (5)

subject to
n∑

i=1

αiyi = 0;

and 0 ≤ αi ≤ C for i = 1, . . . , n

where k(m)
(
x(m)i , x(m)j

)
is the kernel function for the m-

th networks.
Given a new test sample x =

{
x(1), . . . , x(M)

}
, the decision

function for the predicted label can be determined as

F (X) = sign

( n∑
i=1

αiyi
M∑

m=1

βmk(m)
(
x(m)i , x(m)

)
+ b

)
. (6)

The multiple kernel SVM can be naturally embedded into
the conventional single kernel SVM framework by noting

k
(
xi, xj

)
=

M∑
m=1

βmk(m)
(
x(m)i , x(m)j

)
as a mixed kernel between

the multiple networks training samples xi and xj and k (xi, x) =
M∑

m=1
βmk(m)

(
x(m)i , x(m)

)
as a mixed kernel between the multiple

networks training samples between xi and the test sample x.

Support Vector Machine Training and
Classification
The SVM classifier was trained based on the simple MKL
(Rakotomamonjy et al., 2008) toolbox, which can train the
weighting factors of different kernels. Due to the size limitations
of the dataset, leave-one-out cross validation (LOOCV) was used
to estimate the performance of the classifier. In LOOCV, each
sample was considered the test sample, while the remaining
samples were used to train the classifier. Before feature selection
performed in training samples, the features of the test samples
and training samples were normalized by using the mean value
and standard deviation of the training sample. Then, the kernel

matrix for each network was calculated. Finally, we trained and
tested the classifier with the test sample. To obtain optimal
performance, the hyperparameter C and feature number were
determined by grid searching. The procedure for multi-kernel
SVM training and classification is shown in Figure 1. We
also applied the same pipeline to train a single-kernel SVM
classifier with a single weighted network and a single-kernel
SVM with multiple weighted networks. The accuracy, sensitivity
and specificity were used to quantify the performance of the
classifier.

Accuracy =
TP + TN

TP + FN + TN + FP
(7)

Sensitivity =
TP

TP + FN
(8)

Specificity =
TN

TN + FP
(9)

where TP, FN, TN, and FP denote the number of positive
instances correctly predicted, the number of positive instances
classified as negative instances, the number of negative instances
correctly predicted and the number of negative instances
classified as positive instances, respectively.

Identification of the Most Discriminative
Features
The essence of classification is determining a separating
hyperplane. Previous studies have shown that the coefficients of
the separating hyperplane quantify the power of discriminative
feature information (Mourao-Miranda et al., 2005). The
absolute value of the coefficients was multiplied by the
weight of the corresponding network as feature weights.
The higher the feature weights were, the more discriminative
the corresponding features were. In every fold of LOOCV,
the selected features differed slightly from fold to fold.
Therefore, only the features that appeared in every fold
of LOOCV were considered the most discriminative
features. Each feature weight was averaged from all
folds of LOOCV. To further explore which edge is most
discriminative, the weights of each edge were obtained
by summing the corresponding edge weights of different
networks. We also determined the total weights of each
network by computing the sum of feature weights from the
corresponding network.

RESULTS

Classification Based on Multi-Weight
Networks
A LOOCV was used to estimate the generalizability of the
classifier. As shown in Table 2, the models using F-score
outperformed those using lasso, so the subsequent analyses
were based on the results from F-score. The proposed multiple
kernel SVM-based multi-weight network approach achieved a
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FIGURE 1 | The multi-kernel support vector machine (SVM) procedure. First, features were extracted from three weighted networks and normalized with the mean
value and standard deviation of the training sample. Then, features were selected according to F-score and kernel matrices were computed based on the selected
features. Next, the kernel matrices were used to train the models, and the label of the test sample was predicted with trained models. Finally, we evaluated the
model performances and identified the most discriminative features. FA, fractional anisotropy; FN, fiber number; MD, mean diffusivity.

classification accuracy of 83.9%, with a sensitivity of 77.8%
and a specificity of 88.2% in the discrimination between NC
subjects and SCD subjects. For the classification between NC
subjects and aMCI subjects, the proposed method yielded an
accuracy of 83.3%, with a specificity of 84.3% and a sensitivity
of 82.4%. The task of discriminating between aMCI subjects and
SCD subjects was more difficult than the other classifications,
and the proposed method achieved an accuracy of 72.4%, with
a specificity of 69.4% and a sensitivity of 74.5%. The three
pairs of classification performances using single and multi-
weight networks are summarized in Table 2. The receiver
operating characteristics (ROC) curves for all compared methods
in the three pairs of classifications are shown in Figure 2.
Overall, multiple kernel SVM-based multi-weight networks
approach achieved relatively high performance in three pair

of classifications, while other methods were not robust across
different tasks.

Effect of Constraint Parameter C in
Linear Kernel and Nonlinear Kernel
Function
To investigate the influence of different constraint parameter C
on the classification performance, the feature number was fixed,
and the constraint parameter C was varied from 0.5 to 5 in steps of
0.5. The three pairs of classification accuracies with multi-kernel
SVMs using different kernel functions and the corresponding C
value are shown in Figure 3.

For every value of C, the multi-kernel SVM with a linear
kernel yielded the highest accuracy compared to the multi-kernel
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TABLE 2 | Classification performance of the single network and multi-network methods.

Feature selection Method NC and SCD NC and aMCI SCD and aMCI

Acc (%) Sen (%) Spe (%) Acc (%) Sen (%) Spe (%) Acc (%) Sen (%) Spe (%)

F-score Multi-kernel (FA, FN, and MD) 83.9 77.8 88.2 83.3 82.4 84.3 72.4 69.4 74.5

Single-kernel (FA, FN, and MD) 85.1 77.8 90.2 77.5 78.4 76.5 71.3 69.4 72.6

FA 58.6 47.2 66.7 54.9 56.9 52.9 52.9 50.0 54.9

FN 56.3 44.4 64.7 53.9 60.8 47.1 64.4 52.8 72.6

MD 56.3 47.2 62.7 75.5 56.9 74.5 73.6 69.4 76.5

Lasso Multi-kernel (FA, FN, and MD) 73.6 72.2 74.5 75.5 78.4 72.5 62.1 60.8 63.9

Single-kernel (FA, FN, and MD) 75.9 77.8 74.5 71.6 72.5 70.6 69.0 70.6 66.7

FA 49.4 63.9 39.2 51.0 45.1 56.9 39.1 49.0 25.0

FN 56.3 55.6 56.9 52.9 51.0 54.9 54.0 68.6 33.3

MD 51.7 55.6 49.0 60.8 68.6 52.9 62.1 70.6 50.0

Acc, accuracy; Sen, sensitivity; Spe, specificity; NC, normal control; SCD, subjective cognitive decline; aMCI, amnestic mild cognitive impairment; FA, fractional anisotropy;
FN, fiber number; MD, mean diffusivity. The bold values represent the best performance.

FIGURE 2 | Receiver operating characteristics (ROC) of three pairs of classifications. (A) ROC curves of classifying SCD and NC with different models. (B) ROC
curves of classifying aMCI and NC with different models. (C) ROC curves of classifying SCD and aMCI with different models. M3, multi-kernel with FA, FN, and MD
weighted network; S3, single-kernel with FA, FN, and MD weighted network. ROC, receiver operating characteristic; NCs, normal controls; SCD, subjective cognitive
decline; aMCI, amnestic mild cognitive impairment; FA, fractional anisotropy; FN, fiber number; MD, mean diffusivity.

SVM with a polynomial kernel and radial basis function
(RBF) kernel. The multi-kernel SVM with a linear kernel
was the most robust to C. The performance of the proposed
method was nearly unchanged under the variation of constraint
parameter C.

Effect of Number of Features in the
Linear Kernel and Nonlinear Kernel
Function
In the proposed framework, the F-score was applied to select
a subset of features with the most discriminative power. The
features with higher F-scores were input to train the model.
Therefore, the percentage of features to be selected is determined
by the predefined value. In this subsection, to explore the
robustness of the multi-kernel SVM, the constraint parameter C
was fixed as 1, and the percentage of feature numbers was varied
from 0.0014 to 0.0028 in steps of 0.00005. The three pairs of
classification accuracies with multi-kernel SVMs using different
kernel functions and the corresponding percentage of selected
features are summarized in Figure 4.

The multi-kernel SVM with a linear kernel yielded the
highest accuracy compared to the multi-kernel SVM with
polynomial and RBF kernels at the corresponding percentage of
feature numbers. For a higher percentage of feature numbers,
classification accuracy decreased because the larger amount of
features included some redundant and confounding features.

The Most Discriminant Regions
In the classification of SCD and NC, 35 features (14 features
from the MD network, 14 features from the FA network, and 7
features from the FN network) appeared in every fold of LOOCV
(Supplementary Table 2). As shown in Figure 5A, the edges
with great relative classification power included the connection
between the left medial orbital of the superior frontal gyrus
(ORBsupmed) and left rectus (REC), the connection between
the left putamen (PUT) and left inferior partial lobe (IPL), the
connection between the left orbital of the middle frontal gyrus
(ORBmid) and left orbital of the superior frontal gyrus (ORBsup),
the connection between the right ORBsup and right REC, and the
connection between the right ORBsupmed and right ORBsup.
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FIGURE 3 | Classification accuracy of three pairs of classifications under different parameter C value and different kernel functions. (A) The performance of
classifying SCD and NC under different C values. (B) The performance of classifying aMCI and NC under different C values. (C) The performance of classifying SCD
and aMCI under different C values. NC, normal control; SCD, subjective cognitive decline; aMCI, amnestic mild cognitive impairment.

FIGURE 4 | Classification accuracy of three pairs of classifications under different feature numbers and different kernel functions. (A) The performance of classifying
SCD patients and NC under different selected feature numbers. (B) The performance of classifying aMCI and NC under different selected feature numbers. (C) The
performance of classifying SCD and aMCI under different selected feature numbers. NC, normal control; SCD, subjective cognitive decline; aMCI, amnestic mild
cognitive impairment.

FIGURE 5 | Edges with most discrimination power. (A) In the classification of SCD and NC, 27 edges appeared in every fold of leave-one-out cross validation
(LOOCV). (B) For the discrimination of aMCI and NC, 20 edges appeared in every fold of LOOCV. (C) Between SCD and aMCI, 18 edges appeared in every fold of
LOOCV. The thickness of the edges represents the weight. NC, normal control; SCD, subjective cognitive decline; aMCI, amnestic mild cognitive impairment.

The total weights of the MD network, FA network, and FN
network are 183.75, 145.84, and 47.58, respectively.

For the discrimination of aMCI and NC, 28 features (15
features from the MD network, nine features from the FA
network, and 14 features from the FN network) appeared in
every fold of LOOCV (Supplementary Table 3). As shown in
Figure 5B, the edges with great relative classification power
included the connection between the left precuneus (PCUN) and

right PCUN, the connection between the right fusiform gyrus
(FFG) and right thalamus (THA), the connection between the
left middle temporal gyrus (MTG) and left posterior cingulum
gyrus (PCG), and the connection between the right PUT and left
PUT. The total weights of the MD network, FA network and FN
network are 479.90, 137.37, and 115.09, respectively.

Between SCD and aMCI, 27 features (nine features from
the MD network, 10 features from the FA network, and eight
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features from the FN network) appeared in every fold of LOOCV
(Supplementary Table 4). As shown in Figure 5C, the edges
with great relative classification power included the connection
between the right ORBsup and right REC, the connection
between the right amygdala (AMYG) and right caudate (CAU),
the connection between the left ORBsup and left inferior occipital
gyrus (IOG), the connection between the right hippocampus
(HIP) and left superior temporal gyrus (STG), and the connection
between the right middle occipital gyrus (MOG) and right
PCUN. The total weights of the MD network, FA network, and
FN network are 183.43, 109.39, and 85.47, respectively.

DISCUSSION

In the current study, we established an efficient classification
framework using a multi-kernel SVM based on multi-weight
networks, enabling us to distinguish SCD and aMCI patients
from NCs with accuracies of 83.9 and 83.3%, respectively.
Previous studies have reported accuracy levels ranging from
59.2 to 88.9% for DTI data in the classification of aMCI and
NC (Wee et al., 2012; Dyrba et al., 2015; Prasad et al., 2015).
In our classification of SCD and NC, an area under the curve
(AUC) value of 0.89 was obtained, with an accuracy of 83.9%,
sensitivity of 77.8%, and specificity of 88.2%. Considering the
relatively subtle alternations in the SCD population, our methods
indicate its excellent diagnostic power. Moreover, our proposed
classification framework herein relies on a simpler DTI scanning
protocol and thus requires less image acquisition effort. This
makes the approach more economical and clinically feasible.

In the classification of patients and NCs, the classification
accuracy of the multi-kernel approach and direct data fusion
method was significantly higher than that of any single weight
network approach. The limited information provided by a single
WM-weighted network may not be enough for distinguishing
SCD and aMCI patients from NCs, as indicated by the
much smaller AUC values. Although the multi-kernel approach
resulted in slightly inferior accuracy than the direct data fusion
method in classification between SCD and NC and the MD-
weighted network in discrimination of aMCI and SCD, it was a
great overall performer for the three pairs of classifications.

Direct data fusion method suffers from a major pitfall that it
may produce models that effectively ignore the modalities that
have less features while multi-kernel method does not have this
problem because it treats all modalities as equivalent no matter
how many features they have (Rathore et al., 2017). In this study,
all modalities had the same number of features. So it seems
that multi-kernel method did not have clear advantages in the
classification between SCD and NC.

In the classification between SCD and aMCI, the results
showed MD-weighted network outperformed other models,
even the models from multi-weight networks. In addition,
MD- and FA-weighted network almost equally contributed to
the classification between SCD and NC, while the classification
between aMCI and NC was mainly determined by MD-
weighted network. It’s probably because that MD is more
sensitive than FA and FN in revealing early pathological process

(Wang et al., 2020). Hence, FA- and FN- weighted network were
so redundant for the classification between SCD and aMCI that
adding them into the classification lowered the performance.

Comparing the performance between the classification
between NCs and SCD patients and the classification between
NCs and aMCI patients, we found that the model classifying
SCD patients from NCs had slightly higher accuracy as it had
comparatively higher specificity. However, the model classifying
aMCI patients from NCs had higher sensitivity. These evidences
means the classifier between aMCI and NC is more sensitive
to patients than the classifier between SCD and NC. It’s
probably because SCD patients’ WM alterations are subtle and
intermediate between those in aMCI and NC (Brueggen et al.,
2019). So the model classifying SCD patients from NCs tended to
label test sample as NC while the model classifying aMCI patients
from NCs can better identify patients.

Compared with NC, WM structural network patterns of
patients with SCD and aMCI were significantly altered. The
most discriminant regions selected for accurate detection
of individuals with SCD were from MD- and FA-weighted
networks, which include connections among the prefrontal
cortex, orbitofrontal cortex, parietal lobe and temporal regions.
Some regions like ORBsupmed and hippocampus locate in the
default mode network, which are most vulnerable by amyloid
(Wang et al., 2020). This indicates that the early deposition of
amyloid may impaired the WM connectivities in these regions.
From the view of graph theory, we have previously observed less
network efficiency and connection strength of the brain structural
connectome among these regions in the SCD group (Shu
et al., 2018). Moreover, this impaired capacity of information
transfer may derive from WM microstructure abnormalities with
decreased FA and increased MD patterns observed in SCD
subjects, which were demonstrated by previous studies (Selnes
et al., 2012; Li et al., 2016). Between aMCI patients and NCs, most
discriminative features were from the MD-weighted network
and were distributed across parietal, temporal, and frontal lobes,
which is largely in line with previous studies (Wee et al., 2011;
Selnes et al., 2012; Shu et al., 2012). We can see that there
was a difference in the distribution of selected features between
the two models. In the classification between SCD and NC, the
major features were the connections in frontal lobe while the
features mostly located in posterior parietal lobe like precuneus
and subcortical nuclei such as hippocampus and thalamus
when classifying aMCI and NC. This difference may indicate
a pathological development of AD that initial impairment in
frontal lobe diffuses to the parietal lobe and subcortical nuclei,
which is consistent with a preview study (Yan et al., 2019).

In addition, we investigated the effect of the constraint
parameter C and selected feature number for classification
performance. The multi-kernel SVM with a linear kernel was
found to be most stable and robust to constraint parameter
C and feature number compared with the multi-kernel SVM
with a polynomial kernel and RBF kernel. These results
suggest that the dataset that we acquired and analyzed in this
study is more linearly separable than nonlinearly separable.
This may be contradictory to reports in a previous study
(Wee et al., 2011, 2012). The discrepancy might be due to
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methodological differences in parameter selection and image
analysis. The performance of the model decreased with an
increase in the selected feature number when the feature number
exceeded a value, which was nearly consistent among models
with different kernel functions. This suggests there were some
irrelevant and redundant features that had adverse impact on
model performance. Therefore, it is important to perform feature
selection before training models.

There are some limitations of our study that should be
considered. One limitation of our current study is the relatively
limited sample size compared to the dimensionality of the
connectivity measurements. Although the LOOCV accuracy
obtained may be optimistic, the restricted sample size did not
allow us to explore other cross-validation techniques since
the nonlinear SVM classifier used might be undertrained.
Second, we only identified classification performance in
patients with SCD, and longitudinal follow-up studies of
the same study population are needed to further confirm
our results. Third, the diagnosis of SCD and aMCI were
not confirmed by amyloid PET. Forth, the generalizability
of the findings is unclear without independent validation
dataset. Finally, we only studied WM structural networks.
In future studies, whether a combination of multimodal
imaging (i.e., structural and/or functional MR imaging)
and CSF biomarkers and genetic data provides additional
diagnostic accuracy for the SCD population should be
further clarified.

In conclusion, a multiple-kernel SVM based on a
multi-weight network approach has been proposed to
describe the complex WM connectivity patterns for
automatically identifying individuals with SCD and aMCI
from NCs. The promising results indicate that the proposed
classification framework can facilitate and possibly improve
individualized clinical diagnosis of alterations in brain structure
associated with SCD.
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Objective: Emerging evidence suggests that white matter (WM) disruption is associated
with the incidence of subcortical vascular cognitive impairment (SVCI). However, our
knowledge regarding this relationship in the early stage of SVCI is limited. We aimed to
investigate the associations between WM disruptions and cognitive declines at the early
stage of SVCI.

Method: We performed a case–control study, involving 22 cases and 19 controls. The
cases were patients at the early stage of SVCI, which was defined as subcortical
ischemic vascular disease with normal global cognitive measures (pre-SVCI). The
controls were healthy people matched by age, sex, and education years. We assessed
the differences in a battery of neuropsychological tests between the two groups,
investigated the diffusion changes in 40 WM tracts among the participants via an
atlas-based segmentation strategy, and compared the differences between the cases
and controls by multiple linear regression analysis. We then evaluated the relationships
between diffusion indices and cognitive assessment scores by Pearson’s correlation.

Results: The pre-SVCI group exhibited significant differences in the Montreal cognitive
assessment (MoCA), Rey–Osterrieth Complex Figure (R-O)-copy, and Trail Making Test
(TMT)-B test compared with the controls. Compared with the controls, some long
associative and projective bundles, such as the right anterior corona radiata (ACR),
the right inferior fronto-occipital fasciculus (IFOF), and the left external capsule (EC),
were extensively damaged in cases after Bonferroni correction (p < 0.05/40). Damages
to specific fibers, such as the right ACR, IFOF, and posterior thalamic radiation (PTR),
exhibited significant correlations with declines in MoCA, R-O delay, and the Mini-Mental
State Examination (MMSE), respectively, after Bonferroni correction (p < 0.05/14).
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Conclusion: Long WM tracts, especially those in the right hemisphere, were extensively
damaged in the pre-SVCI patients and correlated with declines in executive functions
and spatial processing. Patients of pre-SVCI are likely at an ultra-early stage of SVCI,
and there is a very high risk of this condition becoming SVCI.

Keywords: subcortical vascular cognitive impairment, subcortical ischemic vascular disease, diffusion tensor
imaging, white matter hyperintensities, cognitive impairment

INTRODUCTION

Subcortical ischemic vascular disease (SIVD) is widespread
among elderly individuals with asymptomatic lacunes and
subcortical white matter (WM) hyperintensities (Carey et al.,
2008), which is a homogeneous and the most common
subtype of cerebral small vessel disease (CSVD) (Román et al.,
2002; Rosenberg et al., 2014). Subcortical vascular cognitive
impairment (SVCI) has a relatively insidious onset with gradual
cognitive deterioration and a severe prognosis. In contrast
to Alzheimer’s disease (AD), SVCI is widely considered a
disease that can be prevented and improved (Sachdev et al.,
2014). Therefore, early identification is crucial for preventing
SIVD from developing into vascular cognitive impairment
(VCI) or dementia.

Most previous studies focused on the moderate and severe
stages of SVCI, including subcortical vascular mild cognitive
impairment (SvMCI) and subcortical vascular dementia (SVaD).
They have revealed significant brain abnormalities in SVCI, such
as declines in executive function, attention, processing speed,
learning and memory, and lower brain perfusion or abnormal
resting-state functional connectivities (FCs) in the thalamus,
temporal lobe, inferior frontal lobe, and medial prefrontal cortex
(Zhang et al., 2013; Reijmer et al., 2016; Sun et al., 2016; van
Leijsen et al., 2019). Among them, WM damage is attracting ever-
increasing attention because the pathomechanisms of cognitive
injury in SIVD seem to be most closely related to diffuse areas
of WM damage with neuronal loss, demyelination, and gliosis
(D’Souza et al., 2018).

However, clinicians have also encountered many patients
with moderate to serious SIVD with normal global cognition
measures, such as the Mini-Mental State Examination (MMSE).
The diagnostic criteria for vascular cognitive disorders (VASCOG
statement) (Sachdev et al., 2014) suggest that vascular brain
damage can exist without any evident cognitive impairment, and
such asymptomatic individuals may be at an increased risk of
future decline. This stage can be referred to as the pre-stage of
SVCI (pre-SVCI). Limited studies focused on these pre-SVCI
stage patients. Carey et al. (2008) found that although these
patients appear “normal” with normal global cognition measures,
they already have poorer executive functions and processing
speed based on detailed assessments in different cognitive
domains. Moreover, these patients have already exhibited
extensive areas of microstructural changes in WM fibers and FC
of resting-state networks (Liu et al., 2019a,b). However, these
studies mostly used the MMSE as the screening scale. Compared
with the Montreal cognitive assessment (MoCA), the MMSE
lacks sensitivity in detecting executive function mediated by the

frontal lobes where SIVD is often the most prevalent (Tullberg
et al., 2004; Carey et al., 2008; Dong et al., 2010, 2016). Using the
MMSE alone may lead to a false-negative bias when screening
cognitively normal people at the pre-SVCI stage. Therefore, the
application of the MMSE and MOCA together as screening scales
can more accurately distinguish “normal” patients at the pre-
SVCI stage.

Diffusion tensor imaging (DTI) is a sensitive and reliable
method used to detect early WM alterations (Nitkunan et al.,
2008). Recent DTI studies have demonstrated that patients with
cognitive impairment exhibit decreased fractional anisotropy
(FA) and increased mean diffusivity (MD), and different
combinations of changes in axial diffusivity (DA) and radial
diffusivity (DR) of WM tracts especially those located in
thalamic- and caudate-prefrontal pathways, such as the corpus
callosum (CC), external capsule, and superior and anterior
thalamic radiations (ATR) (Chen et al., 2015; Reijmer et al.,
2016; D’Souza et al., 2018). These WMs are significantly related
to the cognitive domains of executive function, attention, and
processing speed. However, limited studies using DTI have
been performed in pre-SVCI patients and those that have been
performed indicated inconsistent results (Liu et al., 2019a,b; Du
et al., 2020). While Liu et al. (2019b) thought the pre-SVCI group
exhibited widespread damages in whole-brain WM skeletons, Du
et al. (2020) demonstrated well-preserved rich-club organization,
less nodal strength loss, and disruption of connections shown
in the local connections in the preclinical stage of SVCI.
Therefore, to identify pre-SVCI patients at the early stage, we
used DTI, which can identify changes in WM microstructure,
to perform the current study. The early identification of pre-
SVCI should contribute to promoting the further longitudinal
studies and the early prevention and treatment of cognitive
impairment due to CSVD.

In this explorative case–control study, using a battery of
neuropsychological tests and DTI, we aimed to assess changes in
40 WM tracts that can mainly contain the key WMs in the brain
(Zhang et al., 2014; Chen et al., 2015) and cognitive domains,
including memory, spatial processing, language, attention, and
executive function, between pre-SVCI patients and healthy
controls. We hypothesized that WM integrity damage and
cognitive decline already exist in pre-SVCI patients.

MATERIALS AND METHODS

Study Design and Participants
This case–control study, with prospective recruitment of
pre-SVCI cases and a healthy control group, was performed
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between January 2016 and January 2018 in the Department of
Neurology in the China–Japan Friendship Hospital. Vascular risk
factors including hypertension (HT), hypercholesterolemia
(HC), coronary atherosclerotic disease (CAD), diabetes
mellitus (DM), and smoking and alcohol history were collected
from all patients.

The patients with pre-SVCI (case group) were defined as
having SIVD on MRI with normal global cognitive measures.
Two different radiologists assessed the anatomical MRI scans
which contained T1-weighted, T2-weighted, fluid-attenuated
inversion recovery (FLAIR) and gave nearly the same reports.
The patient will be excluded to whom the two radiologists
give the different reports. The SIVD patients met the following
brain imaging criteria of SIVD (Román et al., 2002): (1)
Binswanger-type WM lesions: hyperintensities extending into
the periventricular and deep WM, extending caps (>10 mm as
measured parallel to the ventricle) or irregular halos (>10 mm
with broad, irregular margins and extending into deep WM),
and diffusely confluent hyperintensities (>25 mm, irregular
shape) or extensive WM changes (diffuse hyperintensity without
focal lesions); (2) lacunar cases: multiple lacunas (>2) in
the deep gray matter and at least moderate white-matter
lesions; and (3) absence of hemorrhages and cortical and/or
territorial infarcts and watershed infarcts, signs of normal-
pressure hydrocephalus, and specific causes of white-matter
lesions. In addition, the visual Fazekas scale was used on FLAIR
images to rate the severity of WM hyperintensities (WMHs) into
mild (grade 1), moderate (grade 2), and severe (grade 3) WMHs
(Fazekas et al., 1987).

The inclusion criteria for the pre-SVCI included (1) literate
Han Chinese, education ≥ 6 years, and aged 50–80 years; (2)
met with the brain imaging criteria of SIVD above (Román et al.,
2002); (3) no cognitive complaints; (4) no impairments of daily
life activities with clinical dementia rating (CDR) = 0.5 (Hughes
et al., 1982); activities of daily living (ADL) < 23 (Salloway
et al., 2004); and (5) normal cognitive screening assessments with
MMSE > 26, and MoCA-Beijing version score ≥ 26 (Folstein
et al., 1975; Petersen, 2004).

The healthy controls were defined as persons with no
neurological and psychiatric disorders, no abnormal findings on
conventional brain MRI (brain anatomical MRI was reported
normal by the same two radiologists who assessed the MRI for
the pre-SVCI group) (Carey et al., 2008; Liu et al., 2019a,b),
and no cognitive complaints. For each case, one control was
matched by age (within 2 years), sex, and years of education.
All enrolled subjects underwent a clinical interview, neurologic
examinations, comprehensive neuropsychological assessments,
and MRI scanning.

Subjects who met the following criteria were excluded: (1)
no completion of neuropsychological testing; (2) Hamilton
depression scale score > 17, or anxiety; (3) new strokes
within 3 months before baseline; (4) signs of large vessel
disease, such as cortical and/or cortico-subcortical non-lacunar
territorial infarcts and watershed infarcts or hemorrhages; and (5)
leukoencephalopathy as a result of other causes, such as normal
pressure hydrocephalus, multiple sclerosis, brain irradiation, and
metabolic diseases.

Neuropsychological Evaluation
We evaluated the cognition status of the subjects with a modified
National Institute of Neurological Disorders and Stroke and
Canadian Stroke Network-Canadian Stroke Network protocol
(Hachinski et al., 2006; Wong et al., 2013). The following
cognitive variables were included in the present analysis: (1)
global cognition was measured by the MMSE and MoCA; (2)
episodic memory was evaluated by the Auditory Verbal Learning
Test (AVLT) and the Rey–Osterrieth Complex Figure Delay Tests
(R-O delay); (3) language function was examined by the Boston
Naming Test (BNT) and the Category Verbal Fluency Test;
(4) visuospatial ability was assessed by the Clock Drawing Test
(CDT) and the Rey–Osterrieth Complex Figure Copy Test (R-O
copy); (5) executive function was assessed by the Trail Making
Tests B (TMT-B) and the Stroop Test C right and time; and (6)
attention was evaluated by the Digital Span Test (DST) and the
Trail Making Test A (TMT-A). The evaluations of all participants
were conducted by the same qualified psychologist, and each
evaluation required 90 min.

MRI Acquisition
The MRI data were acquired on a 3.0T Siemens MAGNETOM
Prisma MRI scanner. Participants lay supine with the head
snugly fixed by a belt. Foam pads were used to restrict head
motion, and earplugs were used to minimize the scanner noise.
Subjects were told to relax, keep their eyes closed, and remain
awake. T1-weighted, sagittal 3D magnetization prepared rapid
gradient echo sequences were acquired and covered the entire
brain [192 sagittal slices, repetition time (TR) = 2,300 ms, echo
time (TE) = 2.32 ms, slice thickness = 0.90 mm, flip angle = 8◦,
inversion time = 900 ms]. T2-weighted images (TR = 5000 ms,
TE = 105 ms, slice thickness = 3 mm, flip angle = 150◦, number
of slices = 33) and T2-FLAIR images (TR = 9000 ms, TE = 81 ms,
slice thickness = 3 mm, flip angle = 150◦, number of slices = 25)
were acquired. Two sets of DTI data scans were acquired for every
subject and then averaged during the data preprocessing. DTI
images covering the whole brain were acquired using a single-
shot, twice-refocused, diffusion-weighted echo-planar imaging
sequence with the following scan parameters: TR = 8,000 ms;
TE = 60 ms; 30 diffusion-weighted directions with a b value of
1,000 s/mm2, and a single image with a b value of 0 s/mm2;
slice thickness = 2 mm; no interslice gap; 75 axial slices; field of
view = 282 mm2; and voxel size = 2 mm3.

DTI Image Processing
All of the DTI image preprocessing and analyses described below
were implemented using a pipeline tool for diffusion MRI, named
“Pipeline for analyzing brain diffusion images” (PANDA) (Cui
et al., 2013). A similar procedure was shown in our previous
studies (Chen et al., 2015; Zhang et al., 2015). First, the DICOM
files of all subjects were converted into NIfTI images using
the dcm2nii tool embedded in MRI cron. Second, the brain
mask was estimated, which was required for the subsequent
processing steps. Third, the non-brain spaces in the raw images
were removed, leading to a reduced image size, which reduced
memory cost and sped up processing in subsequent steps.
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Fourth, each diffusion-weighted image (DWI) was coregistered
to the b0 image using an affine transformation to correct the
eddy-current-induced distortions and slow bulk motion-induced
inter-gradient misalignment (Chen et al., 2015). The diffusion
gradient directions were adjusted accordingly. Fifth, a voxel-wise
calculation of the tensor matrix and the diffusion tensor metrics
were yielded for each subject, including FA, MD, DA, and DR.

Mean Diffusion Metrics by an
Atlas-Based Segmentation Strategy
White matter atlases (Mori et al., 2008) (e.g., the ICBM-DTI-
81 WM labels atlas and the JHU WM tractography atlas) in the
standard space allow for parcelation of the WMs into multiple
regions of interest (ROIs), each representing a labeled region in
the atlas. In our current study, to investigate the diffusion changes
in specific tracts, the ICBM-DTI-81 WM label atlas was used to
parcel the WMs into 48 ROIs, and only the 40 ROIs in cerebral
regions (we focused on the 40 WM tracts within the cerebrum
and did not consider the other 8 ROIs within the cerebellum and
brain stem) were used for the analysis. Then, the regional mean
diffusion metrics including the FA, the MD, the DA, and the DR
(Soares et al., 2013; Amlien and Fjell, 2014) were calculated by
averaging the values within each region of the WM atlas.

Statistical Analysis
We used IBM SPSS Statistics for Windows version 22.0 (IBM
Corp., Armonk, NY, United States) for all statistical analyses.
We assessed the normality of the data with Shapiro–Wilk tests
and Q–Q plots. Independent two-sample t-tests were used
to assess between-group differences for quantitative variables.
The Pearson Chi-square test and Fisher exact probability test
were used to compare proportions for categorical variables.
Multiple linear regression analysis was used to evaluate the group
differences in neuropsychological assessments and diffusion
metrics including FA, MD, DR, and DA of the atlas-based ROIs.
Age, gender, education years, and groups are the variables when
the multiple linear regression analysis was performed. Pearson’s
correlation analysis was used to calculate the correlation between
diffusion metrics of atlas-based tracts with significant group
effects and behavior performance (age, gender, and education
years were included as covariates). For all analyses, a two-tailed
p value< 0.05 was considered statistically significant. Bonferroni
correction was performed in multiple comparisons of 40 atlas-
based ROIs (p < 0.05/40) and correlation between diffusion
metrics of atlas-based tracts with significant group effects and
neuropsychological assessments (p< 0.05/14).

RESULTS

Demographics and Neuropsychological
Testing
According to the inclusion and exclusion criteria, we ultimately
enrolled 22 cases and 19 healthy controls. Figure 1 shows the
participant enrollment process. The demographic and clinical
characteristics of the participants are presented in Table 1. The

distribution of age and education years was normal. There were
no significant differences in age, sex, years of education, history
of DM, CAD, HC, alcohol intake, and smoking. As expected,
there was a significant difference in the history of hypertension
between the two groups.

Table 2 presents the cognitive assessment results. The pre-
SVCI group exhibited significant differences in the MoCA,
Rey–Osterrieth Complex Figure (R-O)-copy, and TMT-B test
compared with the H group.

Results of the Atlas-Based Tract ROIs
Table 3 shows the diffusion metrics of WM tracts which are
significantly different when comparing the pre-SVCI group to
the H group. Compared with the control group, the pre-SVCI
group exhibited significantly decreased FA in the right anterior
corona radiata (ACR) and inferior fronto-occipital fasciculus
(IFOF) (p < 0.05). Meanwhile, increased MD in the right side of
the posterior thalamic radiation (PTR), the inferior longitudinal
fasciculus (ILF), the IFOF, and the left side of the external capsule
(EC) were observed (p < 0.05). The case group also exhibited
increased DA on the bilateral side of the ILF, the EC, and the
right side of the PTR and increased DR in the left EC and
the right IFOF (p < 0.05). Among them, FA values of right
ACR, MD values of left EC and right IFOF, DA values of left
EC, and DR values of right IFOF are still significantly different
after Bonferroni correction (p < 0.05/40) for the multiple
comparisons (Figure 2).

Correlations Between ROI-Wise
Diffusion Metrics and Behaviors
We examined the relationship between the mean values of the
diffusion metrics of the ROIs extracted from the significant WM
regions and neuropsychological scores of the pre-SVCI group and
healthy controls. In the pre-SVCI group, the mean FA values
of the right ACR were significantly correlated with the MoCA
(r = 0.699, p = 0.001). The R-O delay was positively correlated
with the mean FA values (r = 0.600, p = 0.003) but negatively
correlated with the MD values (r = −0.441, p = 0.040) of the right
IFOF. Negative correlations were observed between the mean
MD value of the left EC and the Category Verbal Fluency Test
(CVFT) (animal) (r = −0.564, p = 0.006). Negative correlations
can be seen between the mean MD value of the right PTR and
the Stroop C-right and MMSE scores (r = −0.458, p = 0.032 and
r = −0.607, p = 0.003, respectively). Notably, the correlations
between the FA of right ACR and MoCA, the FA of right IFOF
and RO-delay, and the MD of right PTR and MMSE were still
significant after Bonferroni correction (p < 0.05/14) for multiple
comparison (Figure 3).

In the control group, there was no negative or positive
correlation between the diffusion metrics of the significant WM
tracts and neuropsychological scores.

DISCUSSION

In the current study, we evaluated WM alterations and cognitive
declines in the early stage of SVCI (pre-SVCI), compared with a
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FIGURE 1 | Flowcharts for study enrollment of case participants and control participants. Pre-SVCI is subcortical ischemic vascular disease with normal global
cognition measures.

TABLE 1 | Demographics and clinical characteristics of each group.

Pre-SVCI (n = 22) H (n = 19) t/X2 Sig

Sex (male/female) 10/12 7/12 0.312 0.577

Age (years) 65.14 ± 1.67 61.58 ± 1.80 −1.543 0.131

Education (years) 12.36 ± 0.76 12.68 ± 0.81 0.304 0.763

Smoking (n) 8 (36.4%) 5 (26.3%) 0.475 0.491

Alcohol (n) 2 (9.1%) 0 (0%) – 0.490

HT (n) 11 (50.0%) 2 (10.5%) 5.627 0.018*

HC (n) 11 (50.0%) 4 (21.1%) 2.540 0.111

CAD (n) 4 (18.2%) 2 (10.5%) 0.062 0.804

DM (n) 8 (36.4%) 5 (26.3%) 0.475 0.491

Values are mean ± SD. The comparisons of years of age and education between the two groups were performed using the t-test. The Pearson chi-square was used
when expected cell counts are equal to 5 or more. Continuity correction was used when expected cell counts ≥ 1 and < 5. If these conditions are not met, the Fisher
exact probability test was be used instead of the chi-square test. P < 0.05 was considered significant. *P < 0.05; HT, hypertension; HC, hypercholesterolemia; CAD,
coronary atherosclerotic disease; DM, diabetes mellitus; pre-SVCI, subcortical ischemic vascular disease with normal global cognition measures; H, healthy.

well-matched healthy group. We made several observations. (1)
Executive function and spatial processing were already declined
in the pre-SVCI patients. (2) Some long associative and projective
bundles were damaged in the pre-SVCI group. In particular, the
right IFOF was found to have decreased FA, increased MD, and
increased DR. (3) The mean values of the diffusion indices in
some specific WM tracts in the pre-SVCI group were significantly
correlated with neuropsychological assessments that related to
executive functions or spatial processing.

According to the brain connectome theory, disruptions in the
global connections between cortical and subcortical networks
are partially related to damage in WM fibers (Lo et al., 2010).
Thus, SVCI which is characterized by extensive cerebral WM
lesions in the periventricular/deep cerebral WM (Román et al.,
2002; Rosenberg et al., 2014; Tu et al., 2017), tends to result
in cognitive impairment. Previous studies (Biesbroek et al.,
2017; Tu et al., 2017; Liu et al., 2019b) have revealed that
SVCI patients exhibit nearly global changes with decreased
FA and increased MD in WM tracts especially those located
in thalamic-prefrontal and caudate-prefrontal pathways. It has
been proven that these two pathways are markedly related to
neuropsychological assessments of executive function, attention,

and processing speed in many task-related functional studies
(Block et al., 2007; Müller-Oehring et al., 2015; Liu et al.,
2018). Our study showed that the TMT-B assessment was
significantly different between the patients and healthy controls.
However, the above studies mainly focus on patients at the
stages of SvMCI or SVaD and neglect the asymptomatic stage
of disease when individuals suffer vascular damage without
cognitive impairment.

Our study found that some types of long associative
and projective WM such as right ACR, IFOF, and left EC
were extensively damaged in the pre-SVCI group even given
the strictest Bonferroni correction for multiple comparisons.
However, Liu et al. (2019b) found that approximately all
cerebral WMs were symmetrically involved in the pre-SVCI
group but were less distinct than those in the SVCI group.
Our different result from the previous study was mainly due
to the discrepant inclusion criteria for including the pre-SVCI
group. We used two screening scales, i.e., the MMSE and
MoCA, both to include patients with normal global measures.
The MoCA is considered more sensitive for screening VCI,
which surpasses the well-known limitations of the MMSE (Dong
et al., 2010). Because of the lack of sensitivity in detecting
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TABLE 2 | Neuropsychological tests result for each group.

Pre-SVCI (n = 22) H (n = 19) t-value Effect sizes (standardized beta) p-value

General mental status

MMSE MoCA 27.95 ± 1.53 26.55 ± 0.67 28.79 ± 1.36 27.97 ± 0.74 −1.302 −3.984 −0.208 −0.544 0.201 <0.001*

Episodic memory

AVLT-delay 7.73 ± 5.86 6.95 ± 2.46 0.132 0.022 0.895

AVLT-total 32.55 ± 7.42 33.79 ± 6.75 −0.444 −0.076 0.660

R-O delay 18.23 ± 6.89 17.47 ± 7.71 −0.696 −0.115 0.491

Spatial processing

R-O copy 34.55 ± 2.24 35.37 ± 0.96 −2.151 −0.405 0.045*

CDT 24.00 ± 6.44 24.32 ± 6.77 0.176 0.030 0.861

Executive function

Stroop C-time 98.57 ± 10.35 78.82 ± 11.40 1.982 0.311 0.055

Stroop C-right 47.80 ± 2.26 45.31 ± 2.49 1.186 0.194 0.243

TMT b 163.57 ± 15.56 113.71 ± 17.16 5.746 0.700 <0.001*

Language ability

BNT 26.68 ± 1.89 25.79 ± 2.02 1.302 0.213 0.201

CVFT 42.00 ± 12.98 49.58 ± 9.36 −1.946 −0.312 0.059

Attention

SDMT 34.77 ± 17.08 39.37 ± 7.96 −0.633 −0.099 0.531

TMTa 51.82 ± 31.76 51.84 ± 12.23 −0.087 −0.015 0.931

The differences in neuropsychological scores between the two groups were tested for significance with multiple linear regression analysis adjusted for age, sex, and
education. P < 0.05 was considered significant. *P < 0.05; MMSE, Mini-Mental State Examination; MoCA, Montreal cognitive assessment; AVLT, Auditory Verbal
Learning Test; R-O delay, Rey–Osterrieth Complex Figure delay tests; R-O copy, Rey–Osterrieth Complex Figure copy test; CDT, Clock drawing task; BNT, Boston Naming
Test; CVFT, Category Verbal Fluency Test; SDMT, Symbol Digit Modalities Test; TMT, Trail Making Test; Clock Drawing Test; pre-SVCI, subcortical ischemic vascular
disease with normal global cognition measures; H, healthy.

TABLE 3 | Group comparisons of mean DTI diffusion metrics of white matter tracts in two groups.

Pre-SVCI (n = 22) H (n = 19) t-value Effect sizes (standardized beta) p-value

ACR.R

FA 0.3778 ± 0.0213 0.4013 ± 0.0213 −4.150 −0.566 <0.001*

ILF.L

DA (10−3) 1.290 ± 0.495 1.250 ± 0.260 2.549 0.402 0.015

EC.R

DA (10−3) 1.084 ± 0.415 1.046 ± 0.198 3.269 0.471 0.002

PTR.R

MD (10−4) 8.025 ± 4.056 7.749 ± 3.484 2.885 0.436 0.007

DA (10−3) 1.329 ± 0.441 1.297 ± 0.443 2.352 0.367 0.024

ILF.R

MD (10−4) 8.129 ± 3.673 7.887 ± 2.014 2.294 0.361 0.028

DA (10−3) 1.277 ± 0.438 1.250 ± 0.261 2.307 0.366 0.027

EC.L

MD (10−4) 7.938 ± 3.569 7.537 ± 2.232 4.331 0.586 <0.001*

DA(10−3) 1.103 ± 0.457 1.058 ± 0.261 3.893 0.550 <0.001*

DR(10−4) 6.391 ± 0.366 6.016 ± 0.247 3.399 0.505 0.002

IFOF.R

FA 0.43795 ± 0.0219 0.4575 ± 0.0301 −2.337 −0.369 0.025

MD (10−4) 7.703 ± 2.302 7.436 ± 1.519 3.841 0.540 <0.001*

DR(10−4) 5.690 ± 0.265 5.371 ± 0.226 3.780 0.538 <0.001*

The differences in diffusion metrics (i.e., FA, MD, DA, and DR) of white matter tracts between the two groups were tested for significance with multiple linear regression
analysis adjusted for age, sex, and education. P < 0.05 was considered significant. * is significant at p < 0.05/40 after Bonferroni correction; FA, fractional anisotropy;
MD, mean diffusivity; DA, axial diffusivity; DR, radial diffusivity; pre-SVCI, subcortical ischemic vascular disease with normal global cognition measures; H, healthy. L, left;
R, right. For the abbreviations of WM tracts, see Supplementary Table 1.

subtle cognitive changes, particularly visuospatial and executive
function impairments, using the MMSE alone may lead to
a false-negative bias in the recruitment of patients. In our

study, the patients had a significant difference compared with
the healthy controls in MoCA, but not the MMSE, further
confirming the above view.
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FIGURE 2 | The tracts where diffusion metrics remained significant between the two groups after Bonferroni correction for multiple comparisons. (A) Mean FA values
of ACR.R; (B) Mean MD, DA, and DR values of EC.L; (C), mean FA, MD, and DR values of IFOF.R. *is significant at p < 0.05/40 after Bonferroni correction. FA,
fractional anisotropy, MD, mean diffusivity; DA, axial diffusivity; DR, radial diffusivity; pre-SVCI, subcortical ischemic vascular disease with normal global cognition
measures; H, healthy; L, left; R, right; ACR, anterior corona radiata; EC, external capsule; IFOF, inferior fronto-occipital fasciculus.

FIGURE 3 | The significant correlations between ROI-wise diffusion metrics and behaviors in the pre-SVCI group and the H group after Bonferroni correction for
multiple comparisons. (A) MoCA. (B) R-O delay. (C) MMSE. MoCA, Montreal cognitive assessment; R-O delay, Rey–Osterrieth Complex Figure delay tests; MMSE,
Mini-Mental State Examination; FA, fractional anisotropy, MD, mean diffusivity; pre-SVCI, subcortical ischemic vascular disease with normal global cognition
measures; H, healthy; L, left; R, right; ACR, anterior corona radiata; IFOF, inferior fronto-occipital fasciculus; PTR, posterior thalamic radiation.

Our results demonstrated that IFOF might be one kind of WM
tracts that are much more easily demyelinated in vascular disease.
Notably, three of the DTI-derived indices changed with decreased
FA, increased MD, and increased DR in the right IFOF. IFOF is

one of the longest major associative bundles that was recognized
and depicted in 2007 (Schmahmann and Pandya, 2007). It
connects the occipital cortex, the superior parietal lobe, and the
temporo-basal areas to the frontal cortex (Martino et al., 2010).
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Some DTI studies have shown that the IFOF is a probable crucial
tract in reading, attention, and visual processing, especially the
right IFOF in spatial attention and neglect (Catani and Thiebaut
de Schotten, 2008; Urbanski et al., 2008, 2011). Consistently,
based on the correlation analysis between WM impairment and
cognitive decline, we found that the RO-delay, which represents
long-term memory and visuospatial function, was positively
correlated with the FA value of the right IFOF after the strictest
Bonferroni correction, which further identified that the damage
of IFOF is correlated with the decline of visual processing. The
right IFOF may be impaired at the early stage because of its long
course, which can easily result in myelin injury. According to
our findings, the DR of IFOF.R was significantly increased. An
increasing DR reflects a decline in myelin sheath integrity (Soares
et al., 2013). Thus, we can further infer that long tracts, such as
the IFOF, which course from the front regions to the end of the
brain, are probably predamaged before the prefrontal thalamus
circus. Furthermore, we found that the significantly damaged
tracts in the pre-SVCI patients were mainly concentrated in
the right hemisphere. The integrity of IFOF, PTR, and ATR
in the right hemisphere was extensively damaged which were
also correlated with the declines in visuospatial and executive
functions. So far, studies (Kleinman et al., 2007; Giussani et al.,
2010; Kontaxopoulou et al., 2017; Vilasboas et al., 2017; Bernard
et al., 2018) have increasingly found that the non-dominant right
hemisphere is responsible for primary cognitive functions such
as visuospatial, intentional process, and social cognition. This is
consistent with the findings in our study. But why the WMs in
right hemisphere are damaged earlier than left hemisphere in
SIVD patients is not clear.

There are several limitations in this study. First, although
according to previous studies, we supposed that SIVD patients
with normal global cognitive measures could be pre-SVCI
patients, we could not clearly determine whether these pre-
SVCI patients will develop into SVCI, remain unchanged, or
improve as a consequence of brain plasticity or reserve capacity.
This bias leads our results to underestimate the difference
between the cases and the controls. Besides, as previous studies,
we did not report measures of head motion for each group
and just rely on registration-based correction methods that
cannot eliminate the full effects of head motion on the DW
images (Yendiki et al., 2014). Therefore, longitudinal follow-up
studies with a large-scale and more accurate and comprehensive
methods to correct head motion artifacts are needed in the
future. Second, our study focused on only WM alterations, but
whether cerebral blood perfusion or other elements are correlated
with cognitive decline still needs further exploration. Moreover,
we did not assess the degree of gray matter atrophy, which
can have an impact on cognitive functions. Third, this study
involved Chinese individuals, and other ethnic groups need to be
further studied.

CONCLUSION

In summary, our study indicated that in SIVD patients, even
with normal global cognitive measures, some types of long

course tracts, especially the tracts in the right hemisphere, were
damaged. Furthermore, damage to these tracts was associated
with a decline in some specific cognitive domains, such as
executive functions and spatial processing domains. These
results indicated that pre-SVCI patients are likely at an ultra-
early stage of SVCI, and there was a very high risk of
this condition becoming SVCI. To prevent the progression
of SVCI, longitudinal studies are needed to explore the
dynamic changes from the early stage to the clinical stage
of SVCI and to evaluate the value of DTI in predicting the
process of SVCI.
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A previous study has demonstrated that pretreatment with electroacupuncture (EA)
induces rapid tolerance to focal cerebral ischemia. In the present study, we investigated
whether adenosine receptor 1 (A1 R) is involved in EA pretreatment-induced cognitive
impairment after focal cerebral ischemia in rats. Two hours after EA pretreatment, focal
cerebral ischemia was induced by middle cerebral artery occlusion for 120 min in male
Sprague-Dawley rats. The neurobehavioral score, cognitive function [as determined by
the Morris water maze (MWM) test], neuronal number, and the Bax/Bcl-2 ratio was
evaluated at 24 h after reperfusion in the presence or absence of CCPA (a selective A1
receptor agonist), DPCPX (a selective A1 receptor antagonist) into left lateral ventricle, or
A1 short interfering RNA into the hippocampus area. The expression of the A1 receptor
in the hippocampus was also investigated. The result showed that EA pretreatment
upregulated the neuronal expression of the A1 receptor in the rat hippocampus at
90 min. And EA pretreatment reversed cognitive impairment, improved neurological
outcome, and inhibited apoptosis at 24 h after reperfusion. Pretreatment with CCPA
could imitate the beneficial effects of EA pretreatment. But the EA pretreatment effects
were abolished by DPCPX. Furthermore, A1 receptor protein was reduced by A1 short
interfering RNA which attenuated EA pretreatment-induced cognitive impairment.

Keywords: EA pretreatment, A1 receptors, cognitive impairment, ischemia–reperfusion, cerebral ischemia

INTRODUCTION

Stroke is one of the leading causes of morbidity and mortality worldwide, and is a serious threat
to human health (Tsai et al., 2013). And cerebral ischemia is one of the main causes accounting
for more than 80% of stroke (Goldstein et al., 2001). These patients with cerebral ischemia may
have different degrees of memory problems and learning impairment (Longstreth and Dikmen,
1993), and more than 75% of stroke patients suffer from selective cognitive impairment including
memory, orientation, language, and attention (Cumming et al., 2013). The hippocampus is the
main area for memory and learning behavior in the brain (Lagali et al., 2010), especially, the
CA1 region in the hippocampus is so sensitive to ischemia that neurons are easily damaged
(Caraci et al., 2008). Although many studies have explored the mechanism of ischemic stroke, the
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study of cognitive function recovery caused by stroke still needs
to be further explored to determine effective treatment.

Adenosine is an essential neuromodulator in the brain,
and has been shown to play a role in neuroprotection
(Bortolotto et al., 2015). And adenosine functions as a signaling
molecule through the activation of four distinct adenosine
receptors—denoted as A1, A2A, A2B, and A3 (Cunha, 2001).
Adenosine receptors are part of the serine/threonine kinase
family and widely expressed in the brain (Lopes et al., 2011).
High levels of A1 receptors (A1R) are found in the hippocampus,
cortex, and cerebellum, while lower levels are found in the
striatum (Shen et al., 2008). It has been shown that adenosine
A1 receptors tend to play a role in inhibiting presynaptic nerve
activity (Gomes et al., 2011). And adenosine may regulate
memory and prevent cognitive impairment (Bortolotto et al.,
2015). Adenosine A1 receptors mediate dopamine, glutamate,
and BNDF signaling via adenosine, regulate synaptic plasticity in
the learning and memory area of brain, and act at a molecular
and cellular level to regulate cognitive function (Chen, 2014).
In addition, studies about humans and animals support the fact
that adenosine receptor activity leads to cognitive enhancement,
neuroprotection, and reversal of cognitive impairment in animal
models of Alzheimer, Parkinson, Huntington, and schizophrenia
(Chen et al., 2014). A subsequent study suggests a more
central role for A1R in the selective pattern of neuronal
loss in the hippocampus, which is associated with global
ischemia (Okamura et al., 2004). The results indicate cognitive
impairment caused by cerebral ischemia may be mediated
through the adenosine neurotransmitter system (Mioranzza
et al., 2011). Therefore, the role of adenosine A1 receptors in
cognitive impairment caused by cerebral ischemia has not been
studied in depth.

Acupuncture is critical to traditional Chinese medicine,
while electroacupuncture (EA) combines traditional Chinese
acupuncture and modern electrical techniques. In addition,
studies have shown that electroacupuncture pretreatment can
mediate cognitive impairment of cerebral ischemia reperfusion
injury through the CaM-CaMKIV-CREB (Zhang et al., 2016b)
and Wnt pathways (He X. et al., 2016; Chen et al., 2020).
Meanwhile, electroacupuncture treatment can prevent the
impact of cognitive impairment in the brain, heart, and
limbs of ischemia reperfusion patients (Chen et al., 2012;
Yuan et al., 2014). Furthermore, several recent studies have
reported that A1R may confer acute tolerance to cerebral
ischemic/reperfusion injury by electroacupuncture, which plays
a neuroprotective role via reducing the release of glutamate
(Constantino et al., 2015), limiting postsynaptic depolarization
and Ca2+ influx (Lubitz et al., 1995). However, the link between
electroacupuncture pretreatment effect in cognitive function and
adenosine A1 receptors is not entirely clear, and more evidence is
needed to prove it.

The aim of our study is to investigate the relationship
between electroacupuncture pretreatment and adenosine A1
receptors at pharmacological and genetic levels, and to
show that electroacupuncture pretreatment prevents cognitive
impairment induced by cerebral ischemia–reperfusion via
adenosine A1 receptors.

MATERIALS AND METHODS

Animals
Male Sprague Dawley rats (270–310 g) obtained from the
Laboratory Animal Center of Sliaike in Shanghai, China were
used in the study and were housed at a constant temperature
(24 ± 0.5◦C) with a humidity of 55 ± 5% on a controlled 12 h
light/dark cycle (light on at 7 a.m.) with free access to food and
water. The experimental protocol was approved by the Special
Committee on Animal Welfare of Wenzhou Medical University,
and all animals were treated humanely according to the National
Institutes of Health for Care and Use of Laboratory Animals (NIH
Publication No. 85-23, 1996, United States). All efforts were made
to minimize animal discomfort and the number of animals used.

Electroacupuncture Treatment
EA pretreatment was performed as described previously (He X.
et al., 2016). Before intraperitoneal injection of chloral hydrate
(3 ml/kg), the rats fasted for 12 h. The stainless acupuncture
needles (diameter of 0.3 mm) were inserted into the Baihui (GV
20) acupuncture point at a depth of 2–3 mm, which is located
at the intersection of the sagittal midline and the line linking the
rat ears. Stimulation was generated by the EA apparatus (Model
No. 200110510586; Nanjing Jisheng Medical Technology Co.,
Ltd., Nanjing, China), and the stimulation parameters were set
as follows: Disperse wave, 2/15 Hz; electric current, 1 mA; 30 min
of each treatment.

Surgery
Focal cerebral ischemia was induced by middle cerebral artery
occlusion (MCAO) using the intraluminal filament technique as
previously described (He X. et al., 2016). Two hours after EA
pretreatment, the SD rats were deeply anesthetized by chloral
hydrate (3 ml/kg). Following exposure of the left common carotid
artery (CCA), internal carotid artery (IC), external carotid artery
(EC), and proximal branches of the EC, the left MCA was
occluded by an insertion of a 0.38 ± 0.02 nylon monofilament
suture (Beijing Cinontech Co., Ltd., China) with its tip rounded
through the CCA, resulting in the occlusion of the left MCA
at its origin. Regional cerebral blood flow was monitored using
a transcranial laser Doppler flow meter (PeriFlux5000; Perimed
AB, Sweden). MCAO was considered sufficient if the regional
cerebral blood flow demonstrated a sharp decrease to 20% of
the baseline (pre-ischemic) level; if not, the animal was excluded.
Reperfusion was accomplished by withdrawing the suture after
120 min of ischemia. In the group of sham-operated rats, all
of the surgical procedures were performed, however, the ICA
was not occluded. Following surgery, the rats were transferred
to their cage until the animals were completely conscious.
Just after reperfusion, the rats were kept in the preoperative
state until sampling.

During surgeries for AV-shA1R (1∗1011 PFU/ml) or
AV–shCTRL, 2-chloro-N6-cyclopentyladenosine (0.01 mmol/L,
CCPA, Sigma- Aldrich, United States), and 8-cyclopentyl-1,
3-dipropylxanthine (0.01 mmol/L, DPCPX, Sigma-Aldrich,
United States) injections were conducted under chloral hydrate
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(3 ml/kg, ip). Using aseptic techniques, the rats were injected
stereotaxically into the left hippocampus at anterior-posterior = -
4.80 mm, medial-lateral = 3.20 mm, and dorsal-ventral = -3.2 mm
from the bregma or lateral ventricles at anterior-posterior = -
0.05 mm, medial-lateral = 1.80 mm, and dorsal-ventral = -4.8 mm
from the bregma of the left hemisphere with recombinant. A 33 g
needle was inserted under the epineurium of the nerve, 5 µl of
virus, CCPA, or DPCPX solution was injected at 0.25 µl/min,
using a 10 µl syringe (Hamilton, Switzerland) mounted onto the
stereotaxic apparatus and connected to pump. After the injection
was completed, the needle was left for 10 min before being
removed to stabilize the injection. Then the skin was sutured
together and the wound was closed. Animals were allowed
to fully recover from the surgery. At 1 h 30 min after the EA
treatment, the rats were injected with CCPA or DPCPX and
underwent surgery for MCAO. At 48 h after the AV injection, rats
underwent surgery for EA and MCAO which were performed as
described above.

Neurobehavioral Evaluation
Twenty-four hours after reperfusion, an observer who was blind
to the animal groups assessed the rats using a neurobehavioral
test as described previously (Feng et al., 2013). And the scores
were determined as follows: Score 0, no neurological deficit; score
1 (failure to fully extend the effect side), mild deficits; scores
2 (circling to the effect side) and 3 (falling to the effect side),
moderate deficits; and score 4 (loss of walking), severe deficits.

Morris Water Maze
The Morris water maze (MWM) test was performed as described
previously (Wang et al., 2012) with some modifications. This
test was used to assess the effects of EA pretreatment on
MCAO-induced learning and memory dysfunctions in rats. This
consisted of a circular pool of 100 cm in diameter and 60 cm in
height, which was divided factitiously into four equal quadrants
(SW, NW, NE, and SE). The pool was filled with water (25± 1◦C)
premixed with black non-toxic paint to make it opaque; a
platform (10 cm in diameter) was immersed 2 cm under the
surface of the water in one of the four identical quadrants. The
pool was located in an illuminated room with some external cues,
which remained in the same location throughout the training
and testing period.

After induction of global cerebral ischemia for 120 min with
EA treatment, each animal was subjected to an acquisition
trial and a probe trial. In each acquisition trial, the rats were
individually placed in the pool facing the wall at one point
randomly selected from different starting points. Rats (n = 6)
were trained for six blocks on the MWM (three trials per block)
24 h after reperfusion, with a 30-min rest period between trials.
During the acquisition trial, the rats were allowed to escape by
swimming to the platform and the escape latency was recorded
with a cutoff time of 60 s. If the rats failed to locate the platform
within 60 s, they were gently guided to the platform and allowed
to stay on it for 15 s. Mean escape latency time (MES) to locate
the hidden platform in the water maze was recorded as an index
of acquisition or learning. Animals that could not swim due to
injury following ischemia were eliminated. After the training, the

platform was removed from the pool to start the 60 s spatial
probe trial test initiated 1 h following the completion of the last
trial. Swimming behaviors, including escape latency, swimming
speed, and the average time spent in the target quadrant, were
monitored using a computer-controlled video-tracking system
(CG-400 Image Acquisition System; Institute of Materia Medica,
Chinese Academy of Medical Sciences, Shanghai, China). The
distance swum, entries and time spent in the target quadrant, and
the mean swimming speed were recorded. The mean time taken
by the animal searching for the hidden platform in the target
quadrant was noted as an index of spatial memory.

Western Blotting and RT-PCR
To investigate alterations in A1 receptor, Bcl-2, and Bax
protein expression, the rats were anesthetized with 10% chloral
hydrate (3 ml/kg, ip) and decapitated, the hippocampus of
the left hemispheres were dissected and stored at –80◦C
until analysis. In brief, the brain tissues were sonicated by
radioimmunoprecipitation assay lysis buffer (Solarbio, Beijing,
China) with phenylmethylsulfonyl fluoride on ice. Tissue extracts
were centrifuged at 12,000 × g at 4◦C for 15 min. Samples (40
µg of protein each) were separated by electrophoresis in 12%
polyacrylamide gels and transferred to a polyvinylidene fluoride
(PVDF) membrane. Non-specific bindings were blocked with 5%
non-fat dry milk in Tris buffer saline (TBS) in 0.1% Tween-20
at room temperature for 120 min. After washing, membranes
were subsequently incubated with respective primary antibodies:
Anti-A1 receptor antibody (1:1,000, Abcam, Cambridge,
United Kingdom), β-actin polyclonal antibody (1:5,000, Biogot
Technology, Co., Ltd., United States), Anti-Bcl-2 antibody
(1:1,000, Abcam, Cambridge, United Kingdom) and Anti-Bax
antibody (1:5,000, Abcam, Cambridge, United Kingdom) in
primary antibody dilution buffer (beyotime, China) at 4◦C
overnight. Subsequently, the samples were incubated for 1 h at
room temperature with horseradish peroxidase-conjugated goat
anti-rabbit secondary antibodies (1:5,000, Biogot Technology,
Co., Ltd., United States). Membranes were developed by an ECL
(Electro-Chemi-Luminescence) technique. The signal intensity
of the blots was measured through Image Lab analysis software
(Bio-Rad, United States).

Total RNA was extracted from the hippocampus of the left
hemispheres with TRIzol reagent (Invitrogen, Carlsbad, CA). The
reaction mixture was incubated at 50◦C for 30 min for reverse
transcription. The continuous amplification program (CFX96
Real-Time PCR Detection System) consisted of one cycle at 95◦C
for 15 min and 40 cycles at 94◦C for 20 s, 60◦C for 20 s, and
72◦C for 35 s. The expression of GAPDH was used as the internal
reference gene and relative quantification was performed using
the 2-11Ct method.

Nissl Staining
Nissl staining was performed to detect neuronal injury. The
brain tissue was collected from the rat after removing its head
and then embedded with paraffin. Sections were cut to 3 µM
thickness using a sliding microtome. Following washing with
phosphate-buffered saline (PBS; pH 7.4), tissue sections were
dried at 65◦C for 2 h, Nissl stained (Leagene, Beijing, China),
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and dehydrated with 70, 80, 90, and 100% ethanol, respectively,
for 5 min each. The sections were cleared in xylene for 5 min
twice and finally mounted with neutral balsam (Solarbio, Beijing,
China). Stained tissue sections were observed in the hippocampus
by light microscopy (BX60; Olympus, Tokyo, Japan).

Statistical Analysis
Statistical analysis was performed using SPSS 12.0 for Windows
(SPSS Inc., Chicago, IL). Data are expressed as the means± SEM,
with the exception of neurobehavioral scores which are
expressed as median. All the data were analyzed using one-way
analysis of variance (ANOVA) with Fisher’s protected least
significance difference test, with the exception of the data
of the neurobehavioral scores which were analyzed by the
Kruskal-Wallis H test and the data of the water-maze acquisition
trials, which were analyzed by multivariate ANOVA with block as
a dependent variable, group as a fixed factor, and swimming speed
as a covariate followed by Fisher’s least significant difference test.
Statistical significance was considered when P < 0.05.

RESULTS

EA Pretreatment Upregulated A1
Receptor Expression in the
Hippocampus
The effects of EA treatment on A1 receptor expression are shown
in Figure 1. The A1 receptor protein expression level 30 min

after EA pretreatment increased significantly in the 90 min group
compared to the level in the sham group (∗P < 0.05). There was
no significant difference in the level of adenosine A1 receptor
mRNA in each time period (P > 0.05).

CCPA Imitated the Effect of EA
Pretreatment on Cognitive Function
To determine whether CCPA and EA treatment reversed
cognitive impairment, we examined memory performance in
the Morris water-maze test in rats treated with CCPA and
EA. Multivariate ANOVA comparisons revealed significant main
effects for group (P < 0.05), but not for group × swimming
speed interaction (P > 0.05). Fisher’s least significant difference
test revealed reduced escape latencies in the EA + MCAO
group compared to the MCAO group in all acquisition trials
(EA + MCAO vs. MCAO all P < 0.05). Escape latency also
reduced in the CCPA + MCAO group (CCPA + MCAO
vs. MCAO; all P < 0.05). During the probe trials, the
CCPA + MCAO group and EA + MCAO group had a
significantly longer time spent in the target quadrant and faster
swimming speed than the DMSO + MCAO group and MCAO
group (Figure 2).

EA Treatment and CCPA Reduce the
Damage in the Hippocampus Following
Ischemia–Reperfusion
In order to examine the effects of EA treatment and CCPA on
nerve function recovery (as shown in Figure 3), we initially

FIGURE 1 | Effects of electroacupuncture (EA) on A1R expression (n = 4), as assessed using Western blot and RT-PCR. (A,B) Pretreatment with EA significantly
increases the expression of A1R protein at 90 min after the completion of EA; (C) there is no significant on the expression of A1R mRNA at the times after the
completion of EA. *P < 0.01 vs. the sham group.
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FIGURE 2 | Effects of electroacupuncture (EA) on cognitive function,as assessed using the Morris water maze (MWM) test at 24 h after reperfusion(n = 6).
(A) Changes in the escape latency (i.e., the time required to locate and climb onto the platform) during six-block acquisition trials. EA pretreatment and
administration of CCPA decreases the escape latencies in all trials; (B,C) effects of EA pretreatment and administration of CCPA on (B) mean speed and (C) time in
quadrant. (D) The swimming tracks of rats in different conditions in the probe trial test. *P < 0.01 vs. the sham group, #P < 0.05 vs. the MCAO group, **P < 0.05 vs.
the MCAO group, &P < 0.05 vs. the MCAO group.

investigated the neurological score and the ratio of Bcl-2/Bax
which decreased in the MCAO group (Sham vs. MCAO; all
P < 0.05). But the neurological score and the Bcl-2/Bax ratio
was significantly increased in the CCPA and EA-treated rats
(EA + MCAO vs. MCAO; CCPA + MCAO vs. MCAO; all
P < 0.05), suggesting that there is a neuroprotective effect of
CCPA and EA against apoptosis in the rat hippocampus. Whereas
DMSO pretreatment had no effect on the EA pretreatment
(DMSO+MCAO vs. MCAO; P > 0.05). These results suggested
that EA treatment and CCPA effectively reduce the neurological
dysfunction of cerebral ischemia in the hippocampus, promoting
nerve functional recovery.

EA pretreatment and CCPA significantly attenuated neuronal
loss in the CA1 region of the hippocampus, a feature that was
not observed in the MCAO group (EA + MCAO vs. MCAO,
P < 0.05). No significant differences in the number of viable
neurons were detected between the MCAO and DMSO+MCAO
groups (DMSO+MCAO vs. MCAO; P > 0.05) (Figure 3).

DPCPX Reversed the Effect of EA
Pretreatment on Cognitive Function
Whether the cognitive protection of EA pretreatment was
reversed by DPCPX pretreatment was examined by the Morris

water maze test. The escape latencies in the EA +MCAO group
were lower compared to the MCAO group in all acquisition
trials (all P < 0.05). These findings were reversed by DPCPX
(EA + DPCPX +MCAO vs. EA +MCAO, P < 0.05; Figure 4).
The probe test revealed a significant difference between the
EA + DPCPX + MCAO and EA + MCAO groups with regard
to swimming speed (P < 0.05; Figure 4). We also found that
rats with focal cerebral ischemia spent less time in the target
quadrant compared to the sham rats (Sham vs. MCAO; P< 0.05).
EA pretreatment significantly extended the time spent swimming
in the target quadrant following MCAO (EA + MCAO vs.
MCAO, P < 0.05; Figure 4). No significant differences were
detected between the MCAO and DPCPX + MCAO groups or
between the EA + DMSO + MCAO and EA + MCAO groups
(DPCPX + MCAO vs. MCAO; EA + DMSO + MCAO vs.
EA+MCAO; all P > 0.05).

DPCPX Reversed the Effect of EA
Pretreatment Reducing the Damage in
the Hippocampus Following
Ischemia–Reperfusion
In order to examine the effects of DPCPX on nerve function
recovery, the neurological score and the Bcl-2/Bax ratio were
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FIGURE 3 | Effect of electroacupuncture (EA) pretreatment and administration of CCPA on the effect of hippocampus damage. (A,B) Western blot analysis for Bcl-2
and Bax protein expression in the hippocampus (n = 3). (C,D) Nissl staining of hippocampus 24 h after reperfusion. Cell counting shows a significant decrease in the
number of viable neurons in the hippocampal CA1 region for the middle cerebral artery occlusion (MCAO) group, while the number is significantly increased in the
EA + MCAO group and CCPA + MCAO group (n = 3). (E) Neurologic behavior scores were determined 24 h after reperfusion. *P < 0.05 vs. the sham group, #P <
0.05 vs. the MCAO group, **P < 0.05 vs. the MCAO group.
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FIGURE 4 | Effects of DPCPX, an adenosine receptor 1 (A1R) antagonist, on cognitive function induced by electroacupuncture (EA) pretreatment (n = 6). (A) EA
pretreatment decreases the escape latencies in all trials; this is reversed by DPCPX; (B,C) effects of EA pretreatment with or without DPCPX on (B) mean speed and
(C) time in quadrant. (D) The swimming tracks of rats in different conditions in the probe trial test. *P < 0.01 vs. the sham group, #P < 0.05 vs. the MCAO group,
&P < 0.05 vs. the EA + MCAO group, **P < 0.05 vs. the EA + MCAO group.

investigated. The MCAO group demonstrated a significant
decreased ratio compared with the ratio of the EA + MCAO
group (EA + MCAO vs. MCAO, P < 0.05). Furthermore,
DPCPX reversed the beneficial effects of EA pretreatment
(EA + DPCPX + MCAO vs. EA + MCAO, P < 0.05), but
did not exert an effect when administered alone (MCAO vs.
DPCPX+MCAO, P > 0.05).

DPCPX inhibited the beneficial effects of EA
pretreatment-attenuated neuronal loss (EA + DPCPX +MCAO
vs. EA + MCAO, P < 0.05). No significant differences in the
number of viable neurons were detected between the MCAO
and DPCPX + MCAO groups (MCAO vs. DPCPX + MCAO,
P > 0.05) (Figure 5).

The Effect of AV-shA1R in the
Hippocampus
We examined the effects of AV-shA1R in the hippocampus and
found that AV-shRNA3 on the nerve cell was effective. And
48 h after administration of AV-shA1R,the expression of the
A1R protein was downregulated in the hippocampus of the rats
(shA1R vs. sham, P < 0.05) (Figure 6).

The Effect of AV-shA1R on Cognitive
Function
In order to examine the effects of AV-shA1R on cognitive
function, we examined memory performance in the Morris water
maze test in rats treated with AV-shA1R. And we found there
was no significant difference between the two groups (P > 0.05)
(Figure 7).

AV-shA1R Reversed the Effect of EA
Pretreatment on Cognitive Function
To determine whether EA pretreatment without the A1 receptor
affected cognitive function, we examined memory performance
in the Morris water maze test in rats treated with AV-shA1R. As
shown in Figure 8, escape latency in the EA + MCAO group
was reduced compared with the shA1R + EA + MCAO group
(EA + MCAO vs. shA1R + EA + MCAO; all P < 0.05) or the
MCAO group in all acquisition trials (EA + MCAO vs. MCAO;
all P < 0.05). During the probe trials, the shA1R+ EA+MCAO
group had a significantly longer time spent in the target quadrant
(EA + MCAO vs. shA1R + EA + MCAO; all P < 0.05)
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FIGURE 5 | Effect of DPCPX on hippocampus damage induced by electroacupuncture (EA) pretreatment. (A,B) Western blot analysis for Bcl-2 and Bax protein
expression in the hippocampus (n = 3). (C,D) EA pretreatment significantly increases the number of viable pyramidal neurons in the hippocampal CA1 region (n = 3),
whereas DPCPX attenuates these beneficial effects. (E) Neurologic behavior scores were determined 24 h after reperfusion. *P < 0.05 vs. the sham group, #P < 0.05
vs. the MCAO group, **P < 0.05 vs. the EA + MCAO group.

(Figure 8). Consistent with this finding, behavioral tracking
showed increased exploration time in the target quadrant for
the EA + MCAO and EA + shCTRL + MCAO groups

compared with the MCAO group. No significant differences
were detected between the EA + shCTRL + MCAO and
EA+MCAO groups.
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FIGURE 6 | Effect of AV-shRNA on the nerve cells of rats 48 h after administration of AV-shA1R. (A,B) Western blot analysis for adenosine receptor 1 (A1R) protein
expression and PCR shows A1R mRNA expression (n = 3). (C,D) A total of 48 h after administration of AV-shA1R and AV–shCTRL on the rats, Western blot analysis
for A1R protein expression. *P < 0.05 vs. the sham group.

Selective Deletion of A1 Receptor in the
Left Hippocampus of Rats Eliminates the
Damage in the Hippocampus After EA
Pretreatment
Forty-eight hours after administration of AV-shA1R or
AV-shCTRL, the western blot result showed that the expression
of A1 receptor protein in rats was significantly downregulated in
the AV-shA1R administration group (shA1R vs. Sham, shA1R
vs. shCTRL; P < 0.05), suggesting that the injection sites were on
target and AV-shA1R was effective in the rats. The A1R protein
deleted by AV-shA1R attenuated the neurological score and the
Bcl-2/Bax ratio of EA pretreatment (shA1R + EA + MCAO
vs. EA + MCAO, all P < 0.05 Figure 9), whereas AV-shCTRL
had no effect on EA pretreatment (shCTRL + EA + MCAO vs.
EA+MCAO, P < 0.05) (Figure 9).

DISCUSSION

In our study, we found that the A1 receptor protein in
the hippocampus was significantly increased at 90 min after
electroacupuncture pretreatment of Baihui (GV20). And there
was no statistical difference in the levels of adenosine A1

receptor mRNA transcription in each time period. This finding
suggests that the adenosine A1 receptor may be involved in the
effect of electroacupuncture-preconditioned MCAO model rats.
After the subsequent experiments, we explored the hypothesis
at the drug level and genetic level. First, we injected the A1
receptor agonist CCPA or A1 receptor antagonist DPCPX into
the lateral ventricle of the rats 1 h 30 min after electroacupuncture
pretreatment. It was found that A1 receptor activation in
MCAO model rats could have the effect of cognitive function
recovery. And CCPA imitated the beneficial effects of EA
pretreatment. However, DPCPX reversed the protective effect
of electroacupuncture. Then we used the transfection technique
at the gene level to delete the expression of A1 receptor
protein in the hippocampus, which could reverse the protective
effect of electroacupuncture. And these results suggest that the
A1 receptor is involved in electroacupuncture pretreatment to
mediate cognitive impairment after cerebral ischemia, which is
a new participatory mechanism.

Previous studies have shown that electroacupuncture
pretreatment can be one adjuvant therapy of stroke, and the
prospect is considerable (Gosman-Hedstrom et al., 1998).
Pretreatment with EA at the Baihui acupoint (GV 20) induces
a rapid tolerance 2 h after EA to cerebral ischemic insults
(Zhou et al., 2013). And electroacupuncture mediates through

Frontiers in Aging Neuroscience | www.frontiersin.org 9 August 2021 | Volume 13 | Article 680706205

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-680706 July 28, 2021 Time: 13:50 # 10

Shi et al. Electroacupuncture Prevents Cognitive Impairment

FIGURE 7 | Effects of AV-shA1R on cognitive function (n = 6). (A) Changes in the escape latency during six-block acquisition trials; (B,C) effects of AV-shA1R on (B)
mean speed and (C) time in quadrant. (D) The swimming tracks of rats in different conditions in the probe trial test.

the CB1 receptor (Wang et al., 2009; Du et al., 2010; Ma
et al., 2011), Wnt signaling pathway (He X. et al., 2016),
and an adenosine A1 receptor-related mechanism against
transient cerebral ischemia, by inhibiting apoptosis, producing
antioxidant protection, reducing inflammatory mediators, and
reducing excitotoxicity to produce brain protection (Shen et al.,
2016). In addition, these studies have shown that hippocampus
ischemic tolerance is associated with GluR2 elevating after
electroacupuncture pretreatment (Liu et al., 2015). And some
studies have shown that electroacupuncture pretreatment
for hippocampus-related diseases resulted in convalescence
(He X. L. et al., 2016; Wang et al., 2016; Liu et al., 2017).

The hippocampus, an important part in the limbic system,
is not only very sensitive to cerebral ischemia–reperfusion
injury (Lee et al., 1986), where the vertebral neurons of the
CA1 region are sensitive and fragile to harmful injury (Caraci
et al., 2008), but also plays a major role in the formation
and consolidation of learning and memory (Lagali et al., 2010;
Bartsch and Wulff, 2015). Simultaneously, the destruction in the
hippocampal CA1 area is associated with cognitive impairment
(Zhang et al., 2016b). So, the hippocampus is the main tissue to
explore in our research. The study has demonstrated that after
electroacupuncture pretreatment, the neurobehavioral score was
improved, the escape latency was decreased, and target quadrant

was increased in the MCAO rats, as in a previous study (He X.
et al., 2016). And we also found that after CCPA administration in
the MCAO rats, the behavioral score and the results in the water
maze test were comparable to electroacupuncture pretreatment,
but the effect was reversed after DPCPX administration.

CCPA is an agonist of the adenosine A1 receptor (Cristalli
et al., 1986) and is used in A1 receptor-related experiments
(Lohse et al., 1988). CCPA administration has protective effects
on ischemic neuronal injury (Goda et al., 1998). DPCPX is
an adenosine A1 receptor antagonist (Okamura et al., 2004)
and is also used in A1 receptor-related experiments. DPCPX
administration reduces neuroprotective effects (Yoshida et al.,
2004) and attenuates cerebral ischemic tolerance (Nakamura
et al., 2002). The adenosine-related drugs are used for the
treatment of human cognitive and memory-related pathologies,
which is used to treat schizophrenia, panic disorder, and
anxiety (Lopes et al., 2011). And other studies show that after
cerebral ischemia, A1 receptors attempt to inhibit presynaptic
glutamate release and to limit postsynaptic depolarization and
Ca2+ influx (Lubitz, 1998). In this study, we found that the
A1 receptor protein in the hippocampus was significantly
increased 90 min after electroacupuncture pretreatment. And
under hypoxic conditions, the A1 receptor density in the
hippocampus was decreased (Lee et al., 1986). The result suggests
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FIGURE 8 | Effects of electroacupuncture (EA) on cognitive function (n = 6). (A) EA pretreatment decreases the escape latencies in all trials; this is reversed by
AV-shA1R; (B,C) effects of EA pretreatment with AV-shA1R on (B) mean speed and (C) time in quadrant. (D) The swimming tracks of rats in different conditions in
the probe trial test. *P < 0.01 vs. the sham group, #P < 0.05 vs. the MCAO group, **P < 0.05 vs. the MCAO group, &P < 0.05 vs. the EA + MCAO group, **P < 0.05
vs. the EA + MCAO group.

that A1 receptors may be involved in the electroacupuncture
pretreatment mechanism. Meanwhile A1 receptors are associated
with neuroprotection (Fedele et al., 2006), and the A1 receptor
is necessary to mediate cerebral ischemic tolerance in ischemic
conditions (Yoshida et al., 2004). Electroacupuncture has now
been used for cerebral ischemic disease (Gao et al., 2006; Wang
et al., 2009), and studies have shown that electroacupuncture
may stimulate adenosine A1 receptors to mediate rapid cerebral
ischemic tolerance and cognitive function (Zhang et al., 2016b).
In order to explore the association between A1 receptors and
electroacupuncture, CCPA and DPCPX were injected into the
lateral ventricle in the rats. We confirmed that CCPA can
replicate the effect of electroacupuncture to inhibit neuronal
apoptosis in the MCAO rats, whereas DPCPX can reverse
this effect, as in a previous study. We also found that
electroacupuncture pretreatment stimulates A1 receptors to
inhibit neuronal apoptosis and play a protective role in cognitive
function after cerebral ischemia, whereas DPCPX can also reverse
this protective effect and aggravate cerebral ischemic injury.
So, these results suggest that the A1 receptor is involved in
electroacupuncture preconditioning-induced cognitive recovery
after cerebral ischemia. To further confirm that, we used

the transfection technique to silence the A1 receptor. The
adenovirus with the shA1R sequence downregulated the
expression of A1 receptor protein in the hippocampus. And the
cognitive protection effect of electroacupuncture pretreatment
was inhibited after the A1 receptor was downregulated. These
findings further elucidate that the protective effect on cognitive
function induced by electroacupuncture pretreatment is related
to the A1 receptor-related signaling pathway.

Cerebral injury is caused by ischemia and hypoxia mainly in
the CA1 area of the hippocampus; the hippocampus was the focus
in our research. And we found that the memory of animals with
hippocampal damage was impaired in the Morris water maze test
(Boissardm et al., 1992). So, we chose the Morris water maze to
detect the learning and memory function of SD rats. In our study,
the memory of AV-shA1R rats and sham-operated rats was no
different, indicating that the learning and memory function of
rats with downregulated A1 receptors is unchanged. A previous
study (Lang et al., 2003) confirmed that the spatial learning ability
and exploratory ability of A1 receptor-knockout mice were at
normal levels. In our study, the transfection technique reduced
the expression of A1 receptor protein in the hippocampus, which
reversed the effect of pretreatment electroacupuncture in the
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FIGURE 9 | Effect of AV-shA1R on neuroprotection. (A,B) Western blot analysis for Bcl-2 and Bax protein expression in the hippocampal CA1 region (n = 3). (C,D)
EA pretreatment significantly increased the number of viable pyramidal neurons in the hippocampal CA1 region (n = 3),whereas AV-shA1R attenuated these
beneficial effects. (E) Neurologic behavior scores were determined 24 h after reperfusion. *P < 0.01 vs. the sham group, #P < 0.05 vs. the MCAO group, **P < 0.05
vs. the EA + MCAO group.

cognitive impairment induced by cerebral ischemia–reperfusion
in the rats. For further study, the expression of A1 receptor
protein can be overexpressed by the transfection technique in
the hippocampus, and the cognitive impairment induced by
cerebral ischemia–reperfusion in rats can be observed. And

cognitive impairment caused by hippocampal injury can also
be tested by a light and dark shuttle test (Wang et al., 2012;
Wang et al., 2020) and other tests. The study needs more
cognitive behavioral tests to explore cognitive function. Because
Bcl protein and Bax protein activity are critical to the activation
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and inhibition of apoptosis and may be associated with the
mechanism of brain injury (Goda et al., 1998), we assessed the
ischemic injury of the hippocampus by Bcl-2/Bax ratio and the
localization of the nucleus and the type and the distribution
of neurons by Nissl staining (Zhang et al., 2016a). We used
Nissl staining to determine the viable neurons in the CA1
region of the hippocampus. In the end, the results suggest that
electroacupuncture pretreatment had an effect on the learning
and memory dysfunction of rats, which reduced the degree of
hippocampal injury.

Our study demonstrates that electroacupuncture
pretreatment can prevent cognitive impairment from cerebral
ischemia–reperfusion, in which the effect is mediated through the
A1 receptor. The mechanism of electroacupuncture pretreatment
reduces cognitive dysfunction by reducing neuronal damage
in the hippocampus. The A1 receptor has neuroprotective
effects due to adenosine in presynaptic receptors, reducing
excitatory neurotransmitters and the activation of postsynaptic
receptors that results in K+ channel hyperpolarization (Ciruela
et al., 2012). Previous studies have shown that adenosine
of adult animals can inhibit NMDA receptor activation and
reduce Ca2+ influx to reduce excitotoxicity (Cunha, 2005). And
A1 receptor activation has an effect on NMDA receptors to
reduce harmful substance release (Constantino et al., 2015).
Meanwhile A1 receptors may have an effect on Glu A2 to
reduce hippocampal injury after ischemia (Liu et al., 2015;
Stockwell et al., 2016). And whether these mechanisms are
also involved in A1 receptor-mediated cognitive impairment
with cerebral ischemia by electroacupuncture preconditioning
requires exploration.
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Alzheimer’s disease (AD) has a long preclinical stage that can last for decades prior
to progressing toward amnestic mild cognitive impairment (aMCI) and/or dementia.
Subjective cognitive decline (SCD) is characterized by self-experienced memory decline
without any evidence of objective cognitive decline and is regarded as the later stage of
preclinical AD. It has been reported that the changes in structural covariance patterns
are affected by AD pathology in the patients with AD and aMCI within the specific
large-scale brain networks. However, the changes in structural covariance patterns
including normal control (NC), SCD, aMCI, and AD are still poorly understood. In this
study, we recruited 42 NCs, 35 individuals with SCD, 43 patients with aMCI, and 41
patients with AD. Gray matter (GM) volumes were extracted from 10 readily identifiable
regions of interest involved in high-order cognitive function and AD-related dysfunctional
structures. The volume values were used to predict the regional densities in the whole
brain by using voxel-based statistical and multiple linear regression models. Decreased
structural covariance and weakened connectivity strength were observed in individuals
with SCD compared with NCs. Structural covariance networks (SCNs) seeding from
the default mode network (DMN), salience network, subfields of the hippocampus, and
cholinergic basal forebrain showed increased structural covariance at the early stage
of AD (referring to aMCI) and decreased structural covariance at the dementia stage
(referring to AD). Moreover, the SCN seeding from the executive control network (ECN)
showed a linearly increased extent of the structural covariance during the early and
dementia stages. The results suggest that changes in structural covariance patterns as
the order of NC-SCD-aMCI-AD are divergent and dynamic, and support the structural
disconnection hypothesis in individuals with SCD.

Keywords: structural covariance network, subjective cognitive decline, structural MRI, default mode network,
amnestic mild cognitive impairment, Alzheimer’s disease
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INTRODUCTION

Alzheimer’s disease (AD), beginning with cognitive impairment,
is the most common type of dementia, characterized by
progressive and irreversible pathology with a long preclinical
phase (Masters et al., 2015). Mild cognitive impairment (MCI)
is the early symptomatic stage of AD, characterized by objective
cognitive impairment, but largely preserves the daily functioning
of individuals compared with dementia (Albert et al., 2011;
Jack et al., 2018). Subjective cognitive decline (SCD) refers
to the self-perceived worsening of cognitive ability, which is
defined at the preclinical stage of AD and is independent of
the neuropsychological tests (Jessen et al., 2014, 2020). The
majority of individuals with SCD will not show sustained
cognitive decline or progress to AD (Jessen et al., 2020) because
the associations between self-perceived cognitive decline and
objective cognitive impairment are complex. However, most of
the studies have shown that symptoms of SCD may represent
the earliest alert of AD, and individuals with SCD are at
higher risk for developing AD or MCI (Rabin et al., 2017;
Jessen et al., 2020; Wang et al., 2020b). Early diagnosis and
intervention to preserve cognitive function is an important way
to combat AD (Livingston et al., 2017); thus, it is critical to
investigate the associations among biomarkers of SCD, MCI,
and AD to provide a better opportunity for an early therapy
(Jessen et al., 2020).

Reliable markers are crucial for diagnosis, intervention, and
therapy in neurodegenerative diseases (Gao et al., 2020; Yang
et al., 2020). For instance, the Aβ/Tau/neurodegeneration in
AD-related disease (Jack et al., 2016), the “Hot cross bun” in
multiple system atrophy with cerebellar ataxia (Zhu et al., 2021),
and the motor abnormalities and α-synuclein in Parkinson’s
disease (PD) (Xie et al., 2019) have been proven to be potential
biomarkers for an early detection of these diseases. Focusing
on AD pathology, both the accumulation of amyloid-β (Aβ) in
plaques and aggregation of the protein tau in neurofibrillary
tangles are biomarkers that can be used to monitor the
progression of AD (Jack et al., 2016). Moreover, the initial
locations of Aβ deposition are in the frontal lobes, temporal lobes,
hippocampus, and limbic system; and pathologic tau originates
in the medial temporal lobes and hippocampus (Braak et al.,
2011; Braak and Del Tredici, 2015; Masters et al., 2015). Studies
based on neuroimaging have described hippocampal atrophy
as an effective biomarker in patients with AD (Zhao et al.,
2019; Wang et al., 2020b) and patients with MCI (Jack et al.,
2010), and individuals with SCD (Cantero et al., 2016; Zhao
et al., 2019). In addition, studies based on the resting-state
functional magnetic resonance imaging (rs-fMRI) techniques
have revealed that a specific set of brain regions (including
the posterior cingulate cortex, anterior medial prefrontal cortex,
medial temporal lobe, lateral temporal cortex, and inferior
parietal lobule) forms a functional network associated with
the resting states (Buckner et al., 2008; Yeo et al., 2011;
Montembeault et al., 2016), named as the default mode network
(DMN). With regard to the neurodegeneration within the
DMN, reduced gray matter (GM) volume in DMN regions
in patients with AD (Liu et al., 2011) and patients with MCI

(Liu et al., 2011; Tosun et al., 2011), and individuals with SCD
(Hafkemeijer et al., 2013) has been found in multiple studies.
It is worth noting that pathologic tau and Aβ accumulation in
the cholinergic nucleus basalis emerged early in AD (Arendt
et al., 1988; Mesulam et al., 2004), and volume reductions
in the basal forebrain were observed in patients with AD
(Kilimann et al., 2014) and individuals with SCD (Scheef et al.,
2019). Collectively, the pathology of Aβ/tau/neurodegeneration
in regions of the DMN, hippocampus, and basal forebrain
has been investigated but much remains to be learned about
the variations in coordination with other regions in normal
controls (NCs) and those in SCD, amnestic mild cognitive
impairment (aMCI), and AD.

Mapping whole-brain GM correlations with seed regions to
construct a GM structural covariance network (SCN) based
on structural magnetic resonance imaging (sMRI) has been
proposed to investigate the covariance in GM density (Mechelli
et al., 2005; Alexander-Bloch et al., 2013; Evans, 2013). Although
the biological basis of the SCN is not very clear, there
are many hypotheses, such as a result of mutually trophic
influences (Mechelli et al., 2005), common experience-related
plasticity (Mechelli et al., 2005), common neurodevelopmental
blueprints for axonal guidance and neuronal migration (Zielinski
et al., 2010), or a combination of these factors (Seeley et al.,
2009). However, the SCN technique has been used in many
studies, such as those examining development (Zielinski et al.,
2010), sex differences in healthy adults (Mechelli et al., 2005),
brain plasticity in adults (Guo et al., 2020), and connectivity
alterations in patients with MCI (Wang et al., 2018) and
patients with AD (Seeley et al., 2009; Montembeault et al.,
2016; Li et al., 2019a). In studies of AD, decreased structural
associations were observed within the DMN, and increased
structural associations were shown within the salience network
(SN) and executive control network (ECN) (Montembeault
et al., 2016; Li et al., 2019a), which is partially in line
with functional network studies (Seeley et al., 2009; Zhou
et al., 2010). Moreover, SCNs seeded from subfields of the
hippocampus in patients with MCI showed an increased
extent of structural association compared with NCs (Wang
et al., 2018). It is worth noting that increased functional
connectivity in the DMN was observed in individuals with
SCD (Hafkemeijer et al., 2013). However, the pattern changes
in SCNs as the order of NC-SCD-aMCI-AD are still poorly
known. This information may provide a better understanding
of the underlying neuropathological mechanisms of SCD and
the association between SCD- and AD-related diseases at
the network level.

In the present study, we employed the SCN to explore
changes in structural connectivity in specific large-scale
networks as the order of NC-SCD-aMCI-AD. We defined
10 seed regions at three levels: (1) spheres anchored in
the DMN, SN, and ECN; (2) anatomical regions of the
bilateral anterior and posterior hippocampus; and (3)
two anatomical subregions of the basal forebrain. Our
results indicated that the trajectory of change patterns
in SCNs along NC-SCD-aMCI-AD potentially provides
structural covariance insight into better understanding
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of the progressive mechanism of cognitive decline due to
AD-related pathology.

MATERIALS AND METHODS

Participants
In the present study, 35 individuals with SCD, 43 patients
with aMCI, and 41 patients with AD were recruited from
the memory clinic of the Neurology Department of XuanWu
Hospital, Capital Medical University, China. Then, 42 NC
individuals were enrolled from local communities in Beijing,
China. This study was performed in accordance with the rule
of ethics of the Medical Research Ethics Committee in Xuanwu
Hospital, and every subject gave their written informed consent
to participate. The sample size was calculated by the analysis of
covariance (ANCOVA) model in G∗Power 3.1.9.7 (Faul et al.,
2007). The power (1-β) was 80%, α was 0.05, the effect size
was 0.35, and the number of groups and covariates was 4. This
calculation rendered a total sample size of 142, and 161 is larger
than 142. The standard clinical assessments mainly included
medical history investigations, neurological examinations, and
neuropsychological tests. Cognitive tests included the Montreal
Cognitive Assessment (MoCA, Beijing version) (Lu et al., 2011),
auditory verbal learning test (AVLT) (namely, three memory
tests: the AVLT immediate recall, the AVLT-delayed recall, and
the AVLT recognition), the clinical dementia rating (CDR)
(Morris, 1993), the Hamilton Depression Rating Scale (HAMD),
the Activities of Daily Living (ADL) Scale, the Hachinski Ischemic
Scale, and the Center for Epidemiologic Studies Depression
Scale (Dozeman et al., 2011). In addition, the volunteers received
a neuropsychological evaluation from two neurologists, each with
more than 2 years of clinical experience in neurology.

The diagnostic criteria for individuals with SCD were based
on the conceptual framework within the context of AD research
proposed by the Subjective Cognitive Decline Initiative (Jessen
et al., 2014), were described in our previous study (Fu et al.,
2021), and included the following: (1) self-perceived memory
decline without changes in other cognitive domains (last within
5 years); (2) feeling of worse performance than others of the same
age group; (3) MoCA scores in the normal range (threshold was
determined based on the different levels of education: primary
school or below >19, secondary schooling >22, and university
>24); (4) only one of the two memory tests (AVLT-delayed
recall and AVLT recognition) was abnormal (one SD below NC
performance); and (5) CDR score was 0. The patients with aMCI
were identified with the Petersen criteria (Petersen, 2004), which
included the following: (1) memory decline confirmed by an
informant; (2) objective memory impairment measured by the
MoCA and AVLT adjusted for education years (1.5 SD below
NC performance); (3) CDR score of 0.5; (4) exclusion of subjects
with other types of MCI, such as subcortical vascular MCI; and
(5) exclusion of subjects with memory impairment of sufficient
severity to affect the activities of daily living of the subject. The
patients with AD were diagnosed based on the criteria of the
National Institute of Aging-Alzheimer’s Association (NIA-AA)
(Sperling et al., 2011) for clinically probable AD, which included

the following: (1) symptoms consistent with the diagnostic
criteria for dementia; (2) brain atrophy in the hippocampus based
on sMRI; (3) gradual onset lasting more than 6 months rather
than a sudden attack; and (4) CDR scores equal to 1 or higher.

The exclusion criteria for all subjects in the present study
were as follows: (1) HAMD scores higher than 24 and a score
on the Center for Epidemiologic Studies Depression Scale higher
than 21; (2) the Hachinski Ischemic Scale in the abnormal range
(higher than 4); (3) left-handedness; (4) impaired executive,
visual, or auditory functions; (5) cognitive function decline
due to non-AD neurological diseases (e.g., brain tumor, brain
injury, PD, encephalitis, and normal pressure hydrocephalus); (6)
history of stroke; (7) history of alcohol or drug abuse/addiction
within 2 years; (8) large-vessel disease; (9) any other systemic
diseases or uncertainty preventing the completion of the project;
and (10) frequent head motion that may influence the quality of
MRI data. The main demographic and clinical characteristics of
the subjects are summarized in Table 1.

Image Acquisition
All T1-weighted images were acquired with a 3.0 T Siemens
system (Magnetom Trio Tim; Erlangen, Germany) by a 3D
sagittal magnetization-prepared rapid gradient echo (MPRAGE)
sequence at the Department of Radiology, Xuanwu Hospital,
Capital Medical University, Beijing, China. The parameters were
as follows: TR = 1,900 ms; TE = 2.2 ms; TI = 900 ms; flip
angle = 9◦; FOV = 22.4 cm × 25.6 cm; matrix size = 448 × 512;
number of slices = 176; and slice thickness = 1 mm (Zhao et al.,
2019; Fu et al., 2021).

Image Preprocessing
The non-uniformity intensity (N3) correction was first
performed on anatomical T1 images by using FreeSurfer
(version 6.0) (Fischl, 2012). After N3 correction, the images
were analyzed with the CAT12 toolbox1. The pipeline in CAT12
includes removing noise with a spatial-adaptive non-local means
denoizing filter (Manjón et al., 2010), segmenting the brain
tissues into GM, white matter, and cerebrospinal fluid by local
adaptive segmentation, partial volume estimation, and adaptive
maximum a posteriori techniques, normalizing the images to
a standard Montreal Neurological Institute (MNI) space by
diffeomorphic anatomic registration through exponentiated Lie
algorithm (Ashburner, 2007). Moreover, the GM images were
modulated by Jacobian determinants to preserve the regional
volume information. Finally, the GM images were smoothed in
SPM122 with a 6-mm (subregions of hippocampus and basal
forebrain) and 12-mm (DMN, SN, and ECN) full-width at
half-maximum Gaussian kernel.

Definition of Seed Regions
Anatomical differentiation and functional segregation have
been shown along the long axis of the hippocampus, and
specializations arise out of differences between the anterior
hippocampus and posterior hippocampus in large-scale network

1http://dbm.neuro.uni-jena.de/cat/
2https://www.fil.ion.ucl.ac.uk/spm/
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TABLE 1 | Demographic characteristics and neuropsychological data.

NC Group (42) SCD Group (35) aMCI Group (43) AD Group (41)

Age (y) 64.24 ± 6.16 64.54 ± 7.29 67.47 ± 10.03 68.88 ± 7.86

Sex (men/women) 15/27 15/20 21/22 17/24

Education (y) 11.17 ± 5.61 11.83 ± 3.67 10.44 ± 4.96 9.68 ± 4.71

eTIV (* 106 mm3) 1.40 ± 0.12 1.44 ± 0.14 1.47 ± 0.16 1.40 ± 0.13

MoCA 26.02 ± 2.95 25.26 ± 2.27 19.67 ± 4.28aaabbb 13.10 ± 5.46aaabbbccc

AVLT immediate recall 9.32 ± 1.94 8.54 ± 1.82 5.84 ± 1.34aaabbb 3.53 ± 1.58aaabbbccc

AVLT delayed recall 10.43 ± 2.31 8.86 ± 2.78a 3.19 ± 2.81aaabbb 0.98 ± 1.60aaabbbccc

AVLT recognition 12.07 ± 2.13 11.37 ± 2.20 6.58 ± 4.28aaabbb 3.51 ± 3.08aaabbbccc

NC, normal control; aMCI, amnestic mild cognitive impairment; SCD, subjective cognitive decline; AD, Alzheimer’s disease; MoCA, Montreal Cognitive Assessment (Beijing
version); AVLT, auditory verbal learning test; eTIV, estimated total intracranial volume.
The values represent the mean ± standard deviation.
aDenotes a significant difference between the NC group and other groups (ap < 0.05, aap < 0.01, and aaap < 0.001).
b Indicates a significant difference between the SCD group and the other groups (bp < 0.05, bbp < 0.01, and bbbp < 0.001).
cRepresents a significant difference between the aMCI and other groups (cp < 0.05, ccp < 0.01, and cccp < 0.001).

connectivity (Poppenk et al., 2013). In this study, the anterior
hippocampus and posterior hippocampus were defined based
on the previous studies (Poppenk et al., 2013; Li et al., 2018;
Nordin et al., 2018), and we adopted the automated anatomical
labeling (AAL) (Tzourio-Mazoyer et al., 2002) atlas for the
segmentation of the hippocampus. In MNI coordinates, the
anterior hippocampus masks from Y: −2 to −18 mm and
the posterior hippocampus masks from Y: −24 to −42 mm.
The seed regions representing functional large-scale networks
were selected within the right entorhinal cortex (R EC) (MNI
coordinates: 25, −9, and −28), left posterior cingulate cortex (L
PCC) (MNI coordinates: −2, −36, and 35), right frontoinsular
cortex (R FIC) (MNI coordinates: 38, 26, and −10), and right
dorsolateral prefrontal cortex (R DLPFC) (MNI coordinates: 44,
36, and 20). These regions anchor the DMN (medial temporal
lobe subsystem and midline core subsystem), SN, and ECN
(Montembeault et al., 2016; Li et al., 2019a). Then, analyses of
the contralateral regions of the R EC, L PCC, R FIC, and R
DLPFC were performed. Finally, the subregions of the basal
forebrain were defined by a basal forebrain atlas in MNI space
that has been widely used in the previous studies (Kilimann
et al., 2014; Scheef et al., 2019; Chen et al., 2021). The Ch4p
(cholinergic system of the posterior nucleus basalis Meynert) and
Ch1/2 (cholinergic system of combined clusters of the medial
septum and the vertical limb of the diagonal band) with observed
volume reductions in SCD (Scheef et al., 2019; Chen et al.,
2021) and AD (Kilimann et al., 2014) were selected as seed
regions. The volume of the hippocampus and basal forebrain
subregions were represented by mean values of the modulated
GM voxels within the masks in MNI space. For the functional
large-scale network seed regions, 4-mm radius sphere masks were
constructed by using the MarsBaR toolbox3, and the mean GM
intensity was calculated.

Structural Covariance Analysis
Multiple regression models combined with voxel-based
statistical analysis were performed on the modulated GM

3http://marsbar.sourceforge.net/

images to investigate the structural covariance between
seed regions and whole brain voxels in each group. The
mean values extracted from the seed regions, age, sex,
education years, and estimated total intracranial volume
(eTIV) were used as covariates. We performed specific T
contrasts to identify voxels expressing a positive correlation
within each group (NC, SCD, aMCI, and AD). The resulting
maps for each group were thresholded at p < 0.05, and
the false discovery rate (FDR) was employed for multiple
comparison correction. Cluster sizes larger than 100 voxels
(337.5 mm3) were reported.

Furthermore, the between-group differences in structural
covariance compared with the NC group were assessed by
differences in slopes. We used a linear interaction model
combined with dummy coding, and the mean values extracted
from the seed regions, group, interaction term (group × mean
values of seed regions), age, sex, education years, and eTIV were
used as covariates. Specific T contrasts were established to map
the significantly different structural covariance voxels in slopes
between two groups, including positive and negative correlations.
We set the threshold at p < 0.01 at the voxel level and p < 0.05
at the cluster level with two-tailed Gaussian random field (GRF)
correction. Cluster sizes larger than 100 voxels (337.5 mm3) were
reported. The coordinates of the peak intensity of the cluster
within the scope of the AAL template were reported, except when
there was only one cluster.

To investigate the correlation between the volume of
structural covariance peak regions and clinical tests, we
performed two-tailed partial correlation analysis within each
group, which showed a significant difference in the structural
covariance (Li et al., 2019a), and the effects of age, sex, and
education years were ruled out (p < 0.05). The GM volume of
the peak regions was extracted by spheres with a radius of 4 mm
around the peak intensity coordinates.

Group differences in age, years of education, eTIV, and
neuropsychological test scores (MoCA and AVLT) were evaluated
by ANOVA (p < 0.05), and Bonferroni post hoc analysis was
performed. The chi-square test was used to investigate the
sex distribution.
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RESULTS

Demographics
There were no significant differences in age, sex, education years,
or eTIV for each pair of groups. The AVLT-delayed recall scores
were significantly lower in the SCD group compared with the NC
group (p< 0.05). Moreover, all the neuropsychological test scores
(MoCA and AVLT) in the aMCI group were significantly lower
than those in the NC and SCD groups (p < 0.001). In addition,
all the neuropsychological test scores (MoCA and AVLT) in the
AD group were lower than those in the other groups (p < 0.001).
The results are shown in Table 1 and Supplementary Figure 1.

Patterns of Structural Covariance Within
Groups
To qualitatively compare the patterns of positive correlations
across subjects within all groups, statistical maps are displayed
in Figures 1–3, and the details are shown in Supplementary
Tables 1–12. Regarding the DMN medial temporal subsystem,

DMN midline core subsystem and SN, the aMCI group showed
a greater extent of structural association than the other groups.
In the ECN, the AD group exhibited an increased extent of
structural association compared with the SCD, aMCI, and NC
groups. The SCD group showed a decreased extent of structural
covariance in both DMN subsystems, SN and ECN. In the DMN
medial temporal subsystem, DMN midline core subsystem and
SN, the number of clusters in the SCD group, aMCI and AD
groups were decreased compared with the NC group. Regarding
the bilateral anterior hippocampus and posterior hippocampus,
the aMCI group showed a greater extent of structural covariance
than the other groups. In all the subfields of the hippocampus,
the subjects in the SCD group presented a decreased extent
of structural covariance compared with the NC group. In the
SCNs, seeded from subregions of the basal forebrain, both Ch4p
and Ch1/2 showed a greater extent of structural covariance
in the aMCI group than in the other groups. The results of
contralateral seeds for the DMN subsystems, SN, and ECN,
obtained by changing the sign on the x coordinate of each
seed, are listed in Supplementary Tables 1–4. In addition, the

FIGURE 1 | Structural covariance networks seeding from the default mode network, salience network, and executive control network within groups. T-statistic
maps, p < 0.05, corrected by false discovery rate (FDR) with cluster size larger than 100 voxels. L, left; R, right; EC, entorhinal cortex; PCC, posterior cingulate
cortex; DLPFC, dorsolateral prefrontal cortex; FIC, frontoinsular cortex; AD, Alzheimer’s disease; NC, normal control; aMCI, amnestic mild cognitive impairment;
SCD, subjective cognitive decline.
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FIGURE 2 | Structural covariance networks seeding from the anterior and posterior hippocampus within groups. T-statistic maps, p < 0.05, corrected by false
discovery rate (FDR) with cluster size larger than 100 voxels. The small clusters are circled by the red circles, and they are enlarged. L, left; R, right; aHPC, anterior
hippocampus; pHPC, posterior hippocampus; AD, Alzheimer’s disease; NC, normal control; aMCI, amnestic mild cognitive impairment; SCD, subjective cognitive
decline.

results of other subregions of the basal forebrain are listed in
Supplementary Tables 9–12.

Significant Between-Group Differences
in the Structural Covariance GM Network
Regarding the DMN medial temporal subsystem, the subjects in
the NC group showed increased strength in structural covariance
compared with those in the SCD group in the right supramarginal
gyrus (2,280 voxels) and in the left precentral gyrus compared
with the aMCI (3,034 voxels) and AD (10,492 voxels) groups.
Regarding the DMN midline core subsystem, the subjects in
the NC group showed significantly increased strength in the
structural covariance compared with those in the SCD group
in the right inferior temporal gyrus (5,277 voxels), those in
the aMCI group in the left middle frontal gyrus (7,638 voxels),
and those in the AD group in the left precentral gyrus (1,743
voxels). Regarding the SN, the subjects in the NC group
showed significantly increased strength in structural covariance
compared with those in the SCD group in the left inferior

parietal gyrus (2,289 voxels) and those in the aMCI group in
the right precentral gyrus (1,541 voxels); the subjects in the
NC group showed decreased strength in structural covariance
in the right middle temporal gyrus compared with subjects in
the aMCI group (3,646 voxels). Regarding the ECN, the subjects
in the NC group showed significantly increased strength in
structural covariance compared with those in the SCD group in
the right inferior temporal gyrus (865 voxels); the subjects in the
NC group showed decreased strength in structural covariance
compared with those in the aMCI group in the right median
cingulate (269 voxels) and those in the AD group in the right
precuneus (934 voxels). The results are shown in Table 2 and
Figure 4.

Within the SCN seeding from the left anterior hippocampus,
decreased strength in structural covariance were observed in
the SCD (left middle temporal gyrus; 313 voxels), aMCI (right
precentral gyrus; 2,119 voxels), and AD (right superior temporal
gyrus; 2,665 voxels) groups compared with the NC group.
Moreover, within the SCN seeding from the left posterior
hippocampus, decreased strength in structural covariance was
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TABLE 2 | Significant between-group (NC-SCD, NC-aMCI, and NC-AD) differences in structural covariance seeding from the DMN, SN, and ECN.

Seed Contrast Peak region MNI coordinates Extent Peak intensity

X Y Z

R entorhinal cortex NC > SCD SupraMarginal_R 63 −24 43.5 2280 −3.9511

NC > aMCI Precentral_L –7.5 −7.5 39 3034 −3.9178

NC > AD Precentral_L –3.5 −6 43.5 10492 −4.5574

NC < AD ParaHippocampal_R 18 −1.5 –2.5 273 3.267

L posterior cingulate cortex NC > SCD Temporal_Inf_R 49.5 −36 –6.5 5277 −4.2714

NC > aMCI Frontal_Mid_L –5.5 24 34.5 7638 −5.4367

NC > AD Precentral_L –6.5 –6.5 72 1743 −3.7043

NC < SCD Precuneus_R 3 −51 45 357 3.2657

NC < aMCI Temporal_Mid_R 51 –58.5 16.5 431 3.3112

NC < AD Temporal_Mid_R 42 –52.5 19.5 1034 4.0244

R frontoinsular cortex NC > SCD Parietal_Inf_L –34.5 −45 48 2289 −3.8531

NC > aMCI Precentral_R 15 −27 79.5 1541 −4.7806

NC > AD Precentral_R 15 −27 75 751 −3.8561

NC < aMCI Temporal_Mid_R 49.5 –46.5 6 3646 3.2717

NC < AD Supp_Motor_Area_R 12 −18 49.5 489 3.1579

R dorsolateral prefrontal cortex NC > SCD Temporal_Inf_R 54 −48 −27 865 −3.3482

NC > AD Calcarine_L −15 –49.5 10.5 106 −3.0684

NC < SCD Occipital_Mid_L −39 –67.5 1.5 313 3.4323

NC < aMCI Cingulum_Mid_R 7.5 −39 43.5 269 3.1672

NC < AD Precuneus_R 12 −57 40.5 934 3.602

L, left; R, right; AD, Alzheimer’s disease; NC, normal control; aMCI, amnestic mild cognitive impairment; SCD, subjective cognitive decline; MNI, Montreal
Neurological Institute.

FIGURE 3 | Structural covariance networks seeding from the Ch4p and Ch1/2 within groups. T-statistic maps, p < 0.05, corrected by false discovery rate (FDR) with
cluster size larger than voxels. L, left; R, right; AD, Alzheimer’s disease; NC, normal control; aMCI, amnestic mild cognitive impairment; SCD, subjective cognitive
decline.

shown in the SCD group (right middle temporal gyrus; 4,204
voxels) compared with the NC group; subjects in the NC
group showed decreased structural covariance compared with
those in the aMCI (right middle temporal gyrus; 1,656 voxels)
and AD (left angular gyrus; 603 voxels) groups. Then, within
the SCN seeding from the right anterior hippocampus, the

subjects in the NC group showed increased strength in structural
covariance compared with those in the SCD (right supramarginal
gyrus; 1,307 voxels) and AD (left middle frontal gyrus; 1,900
voxels) groups. Within the SCN seeding from the right posterior
hippocampus, the subjects in the NC group showed increased
strength in structural covariance compared with those in the
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SCD (left superior frontal gyrus; 2,815 voxels) and AD (right
parahippocampal gyrus; 3,511 voxels) groups. In addition,
within the SCN seeding from the Ch4p, the subjects in the
NC group showed increased strength in structural covariance
compared with those in the aMCI (right superior temporal
gyrus; 5,533 voxels) and AD (right median cingulate gyrus;
10,790 voxels) groups. In addition, within the SCN seeding
from the Ch1/2, the subjects in the NC group showed increased
strength in structural covariance compared with those in the
SCD (left parahippocampal gyrus; 1,044 voxels) and AD (left
superior frontal gyrus; 1,161 voxels) groups. The results are
summarized in Tables 3, 4 and Figure 5. The results with
the contralateral seeds for the DMN subsystems, SN and
ECN, obtained by changing the sign on the x coordinate of

each seed, are listed in Supplementary Tables 13–15, and the
results of other subregions of the basal forebrain are listed in
Supplementary Tables 19–21.

Correlation Analysis Between Peak
Cluster Volume and Cognitive Test
Scores
We then performed partial correlation analysis between the peak
cluster volumes with significant interaction effects and cognitive
test scores within each group. The correlations were mainly
located in the SCN seeding from DMN regions such as the
hippocampus and posterior cingulate cortex. In the SCD group,
the left anterior hippocampus-anchored (r = −0.351, p = 0.049)

TABLE 3 | Significant between-group (NC-SCD, NC-aMCI, and NC-AD) differences in structural covariance networks seeding from anterior and posterior hippocampi.

Seed Contrast Peak region MNI coordinates Extent Peak intensity

X Y Z

L anterior hippocampus NC > SCD Temporal_Mid_L –52.5 –49.5 0 313 −3.7864

NC > aMCI Precentral_R 43.5 −12 61.5 2119 −4.0192

NC > AD Temporal_Sup_R 40.5 −27 10.5 2665 −4.0872

NC < aMCI Hippocampus_L –25.5 –13.5 –13.5 239 5.0774

NC < AD Precuneus_R 3 −48 60 411 3.6251

L posterior hippocampus NC > SCD Temporal_Mid_R 49.5 −48 15 4204 −5.1987

NC > aMCI Precentral_R 16.5 −27 73.5 878 −4.3176

NC > AD Frontal_Sup_L −18 16.5 49.5 1193 −3.9886

NC < aMCI Temporal_Mid_R 48 –58.5 13.5 1656 4.5496

NC < AD Angular_L −52.5 −69 30 603 4.1876

R anterior hippocampus NC > SCD SupraMarginal_R 58.5 –28.5 42 1307 −4.3683

NC > aMCI Temporal_Sup_R 57 –31.5 15 206 −4.1619

NC > AD Frontal_Mid_L −28.5 28.5 36 1900 −4.4319

NC < SCD Occipital_Mid_L −42 –73.5 1.5 123 3.788

NC < AD Insula_R 43.5 13.5 −7.5 382 4.2362

R posterior hippocampus NC > SCD Frontal_Sup_L −16.5 22.5 63 2815 −4.5136

NC > aMCI Precentral_R 15 −27 75 571 −4.0688

NC > AD ParaHippocampal_R 33 −36 −4.5 3511 −4.4366

NC < aMCI Temporal_Mid_R 49.5 −60 13.5 570 3.9456

L, left; R, right; AD, Alzheimer’s disease; NC, normal control; aMCI, amnestic mild cognitive impairment; SCD, subjective cognitive decline; MNI, Montreal
Neurological Institute.

TABLE 4 | Significant between-group (NC-SCD, NC-aMCI, and NC-AD) differences in structural covariance networks seeding from the Ch4p and Ch1/2.

Seed Contrast Peak region MNI coordinates Extent Peak intensity

X Y Z

Ch4p NC > SCD Temporal_Mid_L –52.5 −51 1.5 133 −3.5685

NC > aMCI Temporal_Sup_R 55.5 −30 16.5 5533 −5.6571

NC > AD Cingulum_Mid_R 1.5 36 31.5 10790 −5.0984

NC < SCD Occipital_Mid_L –40.5 −72 3 126 3.5079

Ch1/2 NC > SCD ParaHippocampal_L −30 −18 –22.5 1044 −4.1796

NC > aMCI Temporal_Sup_R 57 −30 15 279 −4.4193

NC > AD Frontal_Sup_L −24 6 64.5 1161 −4.2794

NC < AD Temporal_Pole_Sup_R 55.5 16.5 –13.5 287 3.8021

Ch4p, cholinergic system of posterior nucleus basalis Meynert; Ch1/2, cholinergic system of combined clusters of the medial septum and the vertical limb of the diagonal
band; AD, Alzheimer’s disease; NC, normal control; aMCI, amnestic mild cognitive impairment; SCD, subjective cognitive decline; MNI, Montreal Neurological Institute.
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FIGURE 4 | Between-group (NC-SCD; NC-aMCI; and NC-AD) differences in structural covariance networks seeding from the default mode network, salience
network, and executive control network. T-statistic maps, p < 0.01 at the voxel level and p < 0.05 at the cluster level, two-tailed Gaussian random field (GRF)
correction with cluster size larger than 100 voxels. The small clusters are circled by the red circles, and they are enlarged. L, left; R, right; EC, entorhinal cortex; PCC,
posterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex; FIC, frontoinsular cortex; AD, Alzheimer’s disease; NC, normal control; aMCI, amnestic mild
cognitive impairment; SCD, subjective cognitive decline.

and posterior hippocampus-anchored (r = 0.505, p = 0.003)
peak volumes (middle temporal gyrus) showed significant
correlations with AVLT recognition scores. In the aMCI group,
the peak volume in the hippocampus (left anterior hippocampus-
anchored) significantly correlated with AVLT-delayed recall
(r = 0.351, p = 0.027) and AVLT recognition (r = 0.456, p = 0.003)

scores; the peak volume in the middle temporal gyrus (left
posterior hippocampus-anchored) significantly correlated with
AVLT recognition scores (r = 0.420; p = 0.007); the peak volume
in the middle temporal gyrus (right posterior hippocampus-
anchored) significantly correlated with AVLT recognition scores
(r = 0.463; p = 0.003); the peak volume in the middle temporal
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FIGURE 5 | Between-group (NC-SCD; NC-aMCI; and NC-AD) differences in structural covariance networks seeding from the left anterior and posterior
hippocampus and Ch4p. T-statistic maps, p < 0.01 at the voxel level and p < 0.05 at the cluster level, two-tailed GRF correction with cluster size larger than 100
voxels. The small clusters are circled by the red circles, and they are enlarged. L, left; R, right; aHPC, anterior hippocampus; pHPC, posterior hippocampus; AD,
Alzheimer’s disease; NC, normal control; aMCI, amnestic mild cognitive impairment; SCD, subjective cognitive decline.

gyrus (DMN midline core subsystem-anchored) significantly
correlated with AVLT recognition scores (r = 0.401; p = 0.010);
and the peak volume in the middle temporal gyrus (SN-
anchored) significantly correlated with AVLT recognition scores
(r = 0.376; p = 0.017). In the AD group, the peak volume in the
precuneus showed a significant correlation with AVLT-delayed
recall scores (r = 0.450, p = 0.005). The results of the correlation
analyses are summarized in Supplementary Tables 22–24.

DISCUSSION

The present study aimed to investigate the AD-related changes in
the GM in SCNs in individuals with SCD and the patients with
aMCI and AD. Regarding the DMN and SN, the subjects in the
aMCI and AD groups showed increased and decreased structural
associations, respectively. Regarding the ECN, the subjects in
the aMCI and AD groups exhibited linearly increased structural

associations. Specifically, the SCNs anchored to the DMN, SN,
and ECN decreased in the SCD group compared with the NC
group. The pattern changes of SCNs seeding from the anterior
hippocampus, posterior hippocampus, Ch4p, and Ch1/2 as the
order of NC-SCD-aMCI-AD showed similar trends to the SCNs
anchored to the DMN. However, the connectivity strength of
the SCNs seeding from the DMN, SN, anterior hippocampus,
posterior hippocampus, Ch4p, and Ch1/2 decreased in the
individuals with SCD, aMCI, and AD compared with the NCs.
In addition, the connectivity strength of the SCNs seeded from
the ECN was increased in the patients with aMCI and AD.
Our results suggest that the pattern changes in the SCNs as
the order of NC-SCD-aMCI-AD are dynamic and divergent,
which may provide evidence for disconnection in SCNs in
individuals with SCD.

The results are partially consistent with previous studies
showing changes in the DMN (Seeley et al., 2009; Zhou et al.,
2010; Li et al., 2015; Chang et al., 2018; Xue et al., 2019), SN
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(Zhou et al., 2010; Li et al., 2015), and ECN (Weiler et al., 2014;
Li et al., 2015) in patients with MCI and AD based on fMRI
analysis. Moreover, the results in this study were generally in line
with the previous studies based on SCNs, which observed changes
in the DMN, SN, and ECN in patients with AD (Montembeault
et al., 2016; Chang et al., 2018; Li et al., 2019a) and MCI
(Shu et al., 2018). The possible underlying mechanism is that
Aβ/tau/neurodegeneration pathological processes originate and
concentrate in the DMN regions (Masters et al., 2015), the
connectivity strength within the DMN is weakened, and more
tissue is needed for the functional compensation. However,
functional compensation by a large-scale network was shown in
the SN and ECN due to AD pathology in our results. In our
opinion, performing functional compensation is a more complex
process, indicating that there may be multiple ways to participate
in this process, not just compensation by large-scale networks.
Although the results from the SCN analysis do not perfectly
overlap the results with the functional network, many researchers
agree that SCN analysis is an effective tool to investigate the
topological organization of the brain and serves as a measure of
network integrity in the cross-sectional group studies (Zielinski
et al., 2010; Alexander-Bloch et al., 2013; Montembeault et al.,
2016; Li et al., 2019a).

SCNs seeded from the anterior hippocampus and posterior
hippocampus have been used to investigate the effects of
aging (Li et al., 2018; Nordin et al., 2018), memory (Nordin
et al., 2018), plasticity (Guo et al., 2020), and sex (Persson
et al., 2014). However, the connectivity changes of SCNs
induced by AD-related pathology seeding in the anterior
hippocampus and posterior hippocampus remain poorly
understood. Although the hippocampus belongs to the
DMN medial temporal lobe subsystem, the function of the
hippocampus is more focused on memory. With specialization
along the long axis, the hippocampus was divided into two
anatomical structures, the anterior hippocampus and the
posterior hippocampus. Moreover, long-range connections
between the anterior hippocampus and the perirhinal cortex,
amygdala, hypothalamus, temporal lobe, insula, and prefrontal
cortex; and long-range connections between the posterior
hippocampus and the parahippocampal cortex, cingulate cortex,
cuneus, precuneus, prefrontal cortex, and parietal lobe have
been confirmed in humans (Poppenk et al., 2013). Our results
suggested that the pattern changes in SCNs seeded from the
anterior hippocampus and posterior hippocampus were similar
to those of SCNs seeded from the DMN. However, a greater
extent of structural covariance was shown in the anterior
hippocampus than in the posterior hippocampus in all groups,
which was consistent with a previous study (Li et al., 2018).
The possible mechanism is that the neurodegenerative diseases
were similar to the accelerated aging, and the age-related
functional connectivity strength in healthy adults between
the posterior hippocampus and DMN was stronger than the
connectivity between the anterior hippocampus and DMN
(Damoiseaux et al., 2016), while the connectivity changes
in the DMN induced by AD-related pathology may have
a greater impact on the connections between the posterior
hippocampus and DMN compared with the connections

between the anterior hippocampus and DMN. In addition,
a previous study based on SCNs reported that structural
connectivity between the hippocampus and DMN regions
was limited to the anterior hippocampus, although these
discrepancies may have been due to methodological differences
(Li et al., 2018).

Atrophy in the cholinergic basal forebrain has been observed
in advanced age (Grothe et al., 2012), individuals with SCD
(Scheef et al., 2019; Chen et al., 2021), and patients with
AD (Grothe et al., 2012; Kilimann et al., 2014). Specifically,
a functional network analysis seeding from the anterior basal
forebrain observed positive functional connectivity of the
anterior basal forebrain mainly located in the DMN; and
connectivity of the posterior basal forebrain mainly located in
the SN in individuals with SCD (Chiesa et al., 2019). In the
present study, the structural connectivity of Ch4p and Ch1/2 was
mainly located in the DMN medial temporal subsystem in the
individuals with SCD. Thus, the discrepancies may be due to
methodological differences and different delineation protocols.
However, structural connectivity of the Ch4p and Ch1/2 in
the patients with aMCI located in both the medial temporal
subsystem and midline core subsystem of the DMN and SN
was observed. In addition, the pattern changes of SCN seeding
from the Ch4p were similar to the pattern changes of SCN
seeding from the R EC, and the pattern changes of SCN seeding
from the Ch1/2 were similar to the pattern changes of SCN
seeding from the L PCC as the order of NC-SCD-aMCI-AD. In
addition, the pattern changes of SCN seeding from the Ch4p
were similar to the pattern changes of SCN seeding from the
hippocampus as the order of NC-SCD-aMCI-AD. As described
in a previous study, a significant association between the volume
in the Ch4p and right precuneus hypometabolism was shown
in SCD (Scheef et al., 2019). In summary, the atrophy of Ch4p
has the potential to be a neurodegeneration biomarker in the
early stages of AD.

Regarding the DMN, studies based on the functional network
showed that connectivity within the DMN was dysfunctional
due to the pathology of AD (Seeley et al., 2009; Zhou et al.,
2010), and studies based on the SCN showed that the structural
connectivity within the DMN medial temporal subsystem was
disrupted due to the pathology of AD (Montembeault et al., 2016;
Li et al., 2019a). In the present results, the structural covariance
within the DMN medial temporal subsystem in patients with
AD was increased compared with that in NCs. Genetic effects
may be a reason (Bi et al., 2019; Chang et al., 2019; Huang
et al., 2019; Li et al., 2019b; Tao et al., 2019), and studies
focusing on the effect of Bcl-2 rs956572 (Chang et al., 2018) and
MTHFR C677T (Chang et al., 2017) based on SCN showed that
homozygotes and heterozygotes exhibited different SCN patterns,
although the subjects were all diagnosed with AD. Moreover,
different diagnostic criteria and acquisition parameters may be
a reason, and the patients with AD in the Alzheimer’s disease
Neuroimaging Initiative database4 are at early stages of AD
(CDR > 0.5), but the patients with AD in the present study
included those in the early, mid-term, and late stages of AD

4http://adni.loni.usc.edu
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(CDR ≥ 1). However, our results are partially in line with
those of an SCN-based study, in which the structural covariance
in patients with AD increased compared with NCs within the
DMN midline core subsystem (Li et al., 2019a). Specifically,
although the scope of structural covariance in the AD-related
patients increased compared with the NCs, the connectivity
strength weakened in the AD-related patients compared with the
NCs. The weakened connections in our results in individuals
with SCD, aMCI, and patients with AD were mainly located
in the precentral gyrus, temporal lobe, prefrontal cortex, and
parietal lobe. Conclusively, we speculate that the structural
covariance of the DMN showed structural hyperconnectivity at
the aMCI stage, and then hypoconnectivity was observed in
the dementia stage.

The large-scale network referred to as the SN due to its
consistent activation in response to emotionally significant
internal and external stimuli showed altered function in AD-
related patients (Zhou et al., 2010; Li et al., 2019a). Our results
showed that the structural covariance of the SN increased in
the AD-related patients compared with the NCs, which was
consistent with a previous study (Montembeault et al., 2016).
This result suggested that enhancement of connectivity in the SN
may compensate for dysfunction in the DMN due to AD-related
pathology (Zhou et al., 2010; Montembeault et al., 2016). Then, a
linear increase in structural covariance of the ECN was observed
with the progression through the NC-aMCI-AD continuum,
which may support the hypothesis that AD is associated with
opposing connectivity in the DMN and ECN (Zhou et al.,
2010; Montembeault et al., 2016; Li et al., 2019a). In addition,
we speculate that the ECN acts as a compensatory large-scale
network for disconnections in the DMN due to AD pathology.

The SCNs seeded from the DMN, SN, ECN, anterior
hippocampus, posterior hippocampus, Ch4p, and Ch1/2 in the
SCD group showed a decreased extent of structural covariance
compared with the NC group. However, the interaction model
revealed that loss of connectivity strength of SCNs was observed
within the DMN, SN, ECN, anterior hippocampus, posterior
hippocampus, Ch4p, and Ch1/2 in the individuals with SCD.
Regarding the ECN, the subjects with SCD showed enhanced
connectivity strength in the middle occipital gyrus with a
small cluster (313 voxels). In addition, a previous study based
on the functional network revealed that increased functional
connectivity in DMN regions was observed in individuals with
SCD compared with NCs (Hafkemeijer et al., 2013). However,
there are no reported studies based on SCN to explore SCD.
Combined with a previous study (Hafkemeijer et al., 2013), the
results in the present study suggested that structural associations
decreased in individuals with SCD, and functional compensation
was observed, but structural compensation was not found. These
results are potential to indicate that individuals with SCD are at
high risk of cognitive decline further.

Not only AD but also the other neurodegenerative
diseases and cerebral small vessel disease (Zhu et al., 2019)
may show cognitive decline at the early stage, such as
progressive supranuclear palsy (Yang et al., 2021), cerebral
autosomal dominant arteriopathy with subcortical infarcts
and leukoencephalopathy (CADASIL) (Guo et al., 2021), and

subcortical vascular MCI (Wang et al., 2018). Therefore, a specific
biomarker is very important for disease diagnosis, intervention,
and therapy. This study aimed to explore the imaging markers
of SCD, aMCI, and AD based on sMRI at the network level. The
results showed that the pattern changes in the SCNs as the order
of NC-SCD-aMCI-AD are dynamic and divergent. In addition,
the decreased extent of SCNs and the weakened connectivity
strength of SCNs compared with NC are potential to be the
imaging biomarkers for SCD. It is worth noting that the atrophy
of the entorhinal cortex was observed both in patients with AD
and PD (Jia et al., 2019). In the future, it will be interesting
to investigate whether the SCNs seeding from the entorhinal
cortex present distinct patterns in patients with AD and PD for
understanding the pathology of two neurodegenerative diseases.

There were some limitations in the present study. First, the
study was based on cross-sectional data. Although we examined
NCs and those with SCD, aMCI, and AD to investigate the
pattern changes of SCN, a further longitudinal study should be
conducted. Indeed, a longitudinal study is more appropriate to
investigate the pattern changes across time. Second, this study
used SCN analysis based only on sMRI to explore the connectivity
changes of large-scale networks, and a future study combined
with a functional network based on fMRI should be done.
The combination of multiple modality images may provide a
better understanding of the mechanism of neurodegenerative
diseases from both structural and functional sight. Third, there
is a very limited neuropsychological battery in this dataset, and
more neuropsychological tests should be included in our next
dataset. Fourth, previous studies demonstrated that diabetes
would affect cognition in patients with PD (Wang et al., 2020a),
whether the diabetes would affect cognition in SCD is still poorly
known. Moreover, cognitive decline may be induced not only by
neurodegenerative diseases but also by mental state or physical
frailty (Ma and Chan, 2020), such as depression and anxiety,
and more information will be collected in our next cohort study.
Finally, the relationship between neurocognitive function and
neuropathogenesis is complex, a future study combined with
integrated results of neuroimaging and the AD biomarkers such
as Aβ and tau should be more persuasive.

CONCLUSION

In the present study, we investigated the connectivity changes
of GM SCNs in individuals with SCD, aMCI, and AD.
A decreased extent of structural covariance and weakened
structural connectivity strength were observed in individuals
with SCD compared with NCs. Moreover, the divergent and
dynamic connectivity changes of SCNs seeding from the DMN,
SN, and ECN as the order of NC-SCD-aMCI-AD were shown in
this study. Then, the patterns of SCN seeding from subregions
of the hippocampus and basal forebrain were similar to those
of SCN seeding from the DMN. In summary, the divergent
trajectory of change patterns in SCNs along NC-SCD-aMCI-
AD potentially provides structural covariance insight into better
understanding the progressive mechanism of cognitive decline
due to AD-related pathology at preclinical and early stages.
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