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Source Parameters of
Moderate-To-Large Chinese
Earthquakes From the Time Evolution
of P-Wave Peak Displacement on
Strong Motion Recordings
Yuan Wang1*, Simona Colombelli 2, Aldo Zollo2, Jindong Song1 and Shanyou Li1*

1Key Laboratory of Earthquake Engineering and Engineering Vibration of China Earthquake Administration, Institute of Engineering
Mechanics, China Earthquake Administration, Harbin, China, 2Department of Physics, University of Naples Federico II, Naples,
Italy

In this work we propose and apply a straightforward methodology for the automatic
characterization of the extended earthquake source, based on the progressive
measurement of the P-wave displacement amplitude at the available stations deployed
around the source. Specifically, we averaged the P-wave peak displacement
measurements among all the available stations and corrected the observed amplitude
for distance attenuation effect to build the logarithm of amplitude vs. time function, named
LPDT curve. The curves have an exponential growth shape, with an initial increase and a
final plateau level. By analyzing and modelling the LPDT curves, the information about
earthquake rupture process and earthquake magnitude can be obtained. We applied this
method to the Chinese strong motion data from 2007 to 2015 with Ms ranging between 4
and 8. We used a refined model to reproduce the shape of the curves and different source
models based on magnitude to infer the source-related parameters for the study dataset.
Our study shows that the plateau level of LPDT curves has a clear scaling with magnitude,
with no saturation effect for large events. By assuming a rupture velocity of 0.9 Vs, we
found a consistent self-similar, constant stress drop scaling law for earthquakes in China
with stress drop mainly distributed at a lower level (0.2 MPa) and a higher level (3.7 MPa).
The derived relation between the magnitude and rupture length may be feasible for real-
time applications of Earthquake Early Warning systems.

Keywords: P-wave amplitude parameter, magnitude, rupture length, stress drop, earthquake early warning

INTRODUCTION

The characterization of the seismic source in terms of earthquake magnitude and source radius (or
length of the rupture) is now a routinely operation in any standard seismological laboratory.
However, both parameters are generally computed off-line, through fairly complex procedures,
mainly performed in the frequency domain. The seismic moment, for example, is estimated from the
low frequency amplitude of displacement spectra. The source radius is typically obtained from the
spectral corner frequency (Brune, 1970; Madariaga, 1976) or from time-domain, source duration
measurements, generally available several minutes after the earthquake occurrence (Boatwright,
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1980; Duputel et al., 2012). Although the fitting of spectral shapes
is a straightforward operation, a major issue is the adequate
correction of the observed spectra for path attenuation and site
response effects.

In the context of Earthquake Early Warning (EEW), the point
source characterization is usually based on the measurement of a
few parameters (typically peak amplitude and/or characteristic
period) in the early portion of the recorded P waves (3–4 s). These
parameters are related to the earthquake size or to the peak
ground shaking through empirical relationships (Allen and
Kanamori, 2003; Kanamori, 2005; Wu and Zhao, 2006; Zollo
et al., 2006; Böse et al., 2007; Wu and Kanamori, 2008; Zollo et al.,
2010).

More recently, new strategies have been proposed to improve
the accuracy of source parameter estimation for EEW
applications and provide an estimate of the rupture area
extent and the slip distribution on the fault. Among these
strategies, some of them are based on the rapid inversion of
geodetic and/or accelerometer data or fitting the spectrum in real-
time (Allen and Ziv, 2011; Ohta et al., 2011; Colombelli et al.,
2013; Caprio et al., 2011; Ziv and Lior, 2016). However, the rapid
inversion of geodetic and/or accelerometer data need a catalog of
the active faults for the construction of a rupture model plane in
real-time (Colombelli et al., 2013). The azimuth dependency and
the simplifying assumptions (e.g., directivity and segmentation)
may introduce large discrepancies between modeled and
observed spectra, leading to large variability in corner
frequency estimates during the real-time spectrum inversion
method (Ziv and Lior, 2016).

A second class of algorithms is based on the real-time spatial
assessment of ground motion values. The FinDer algorithm (Böse
et al., 2012), indeed, provides an estimate of the fault rupture
extent and strike by continuously monitoring the spatial
distribution of ground motions in real time. The results of this
approach can be affected by the accuracy of near/far source
classification and by the shortcomings in the GMPE used for
the template generation (Böse et al., 2012, 2015).

More innovative approaches to EEW bypass the real-time
source parameter estimation (location and magnitude) and use
physics-based data assimilation techniques to directly predict the
incoming evolution of ground shaking (PLUM) algorithm
(Hoshiba and Aoki, 2015).

Recently, Colombelli and Zollo (2015) looked at the time
evolution of the early P-wave information and used it as a
proxy for the rupture process of earthquakes to extract the
seismic moment and rupture extent of moderate-to-large
Japanese earthquake records., Nazeri et al. (2019) explored a
similar approach using strong-motion data of the 2016–2017
Central Italy sequence and estimated moment magnitude, fault
length and average stress drop for each single event. The
proposed method accounts for the effects of azimuth and
distances by averaging the distance-corrected peak
displacement among many stations, distributed over azimuth
and distance, to approximate the moment rate function (MRF)
and can be applied to general geometries with no need of prior
knowledge of fault information. The proposed method is a
remarkably simple and straightforward approach that does not

require any complex calculation for automatically estimating two
main source parameters (the earthquake magnitude and the
expected length of the rupture) before the rupture has finished.

Since 2005, the National Strong Motion Observation Network
System of China was established. Stations in the network were
mainly equipped with force balance accelerometers with a
broadband frequency range of 0–80 Hz, which ensures that the
network is reliable to record large quantities of high-quality
strong-motion data for research purposes (Li et al., 2008).

Following the idea of Colombelli and Zollo (2015) and Nazeri
et al. (2019), in this study we use a database of moderate-to-large
Chinese earthquake records and explore a similar approach to
estimate the earthquake magnitude and rupture length, and to
provide an approximate estimate of the average stress drop to be
used for Earthquake Early Warning and rapid response purposes.
The aim is twofold: 1) establish source scaling relationships for
moderate to large earthquakes in China and 2) build the
foundation for further studying the feasibility of a network-
based EEW method based on the time evolution of the early
P-wave peak displacement amplitude.

DATA AND METHODOLOGY

Data Selection and Construction of LPDT
Curves
For the present analysis, we selected the earthquakes occurred in
China in the period 2007–2015. The magnitude of all the events
(surface wave magnitude, Ms) varies between 4.0 and 8.0. To
avoid the inclusion of bad quality data in our analysis, we selected
seismic records with an epicentral distance smaller than 120 km,
but for the M8 event we expanded the limit to 200 km and
required that each event had at least three records. A total of 1293,
3-component accelerometric waveforms, relative to 88
earthquakes and 540 stations were used for the regression of
P-wave peak displacement amplitude attenuation relationship,
among which we selected 31 earthquakes (for a total of 617
records) with at least ten recording stations for the computation
of the LPDT curve. Figure 1A shows the epicentral position of the
selected earthquakes and the location of stations, in which two
main seismic regions (Sichuan-Yunnan and Xinjiang regions) in
China have been enlarged for clarity. Figure 1B shows the
histogram distribution of the analysed records as a function of
the epicentral distance and magnitude.

We identified the onset of the P wave on the vertical
component of acceleration records, using a standard short-
term/long-term average method for automatic picking (Allen,
1978). Then, we visually inspected all the available waveforms and
made manual picks where necessary, to adjust potential mistakes
from the automatic picking algorithm. After removing the mean
value and the linear trend, the acceleration waveforms are
integrated once to velocity and twice to get displacement.
Finally, we applied a 0.075 Hz high-pass Butterworth filter to
remove the low frequency drift on displacement records. We
impose the zero-crossing of the signal amplitude at the onset of
the P-wave, to eliminate any potential residual noise
contaminations resulting from the double integration operation.
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We then measure the absolute maximum of the initial P-wave
amplitude on the vertical component of displacement (named
Pd) using an expanding time window, starting at the arrival of the

P-wave and moving forward with a time step of 0.01 s. The peak
amplitude is related to the earthquake magnitude (M) and to the
source-to-receiver distance (R) through an attenuation

FIGURE 1 | Data distribution. Plot of (A) the epicentral position of the selected earthquakes and the location of stations and (B) the distribution of the analysed
records as a function of the epicentral distance and magnitude.
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relationship of the general form (Wu and Zhao, 2006; Zollo et al.,
2006):

log10(Pd) � A + BM + Clog10(R) (1)

where Pd is the P-wave peak measurements and A, B and C are
coefficients empirically determined from select dataset using 2 or
3 s after the P-wave arrival. Unlike the previous study, here we
calibrated the coefficients by performing a specific least-squares
multiple regression analysis, in which we fixed the distance
attenuation coefficient (C) and chose a fixed length of the
P-wave time window for the parameter measurements, which
was set at 3 s for M ≤ 7 and 9 s for 5.5 < M ≤ 7, respectively.
Further details about the estimation of the coefficients of Eq. 1 are
provided in Supplementary Material.

For the computation of the LPDT curve of each event, the peak
amplitudes Pd of all records are measured at every P-wave time
window and the distance-corrected amplitudes (logPcd) are
obtained as logPcd � logPd − ClogR. In order to avoid the
contamination by the S-waves on the selected portion of the
P-wave, we picked out four stations with clear seismic phase
randomly from the dataset in each distance bin (every 20 km). A
total number of 40 records were used, and their S-wave arrival
time were manually picked to estimate the coefficients of the
following equation:

TS − TP � bR (2)

where Tp is the P-wave onset time, Ts is the arrival time of the
S-wave, R is the hypocentral distance in km, b � 0.13 is the

coefficient derived from a linear regression analysis. To minimize
any potential S-wave contamination, we regarded Tp+0.8bR as
the expected S-wave arrival. As the time window increases, the
stations with the expected S-wave arrivals were automatically
excluded to make sure only P-wave part involved in the
computation. Finally, the LPDT curve is obtained by averaging
the distance-corrected amplitude of all the valid stations at each
time window. The computation of the curves stops when the
number of stations is less than a minimum of data (Five stations).

Observation and Modelling of LPDT Curve
Figure 2 shows an example of the generated LPDT curve for the
M4.6 event. The LPDT curve has an exponential growth shape
with an initial increase, a gradual intermediate curvature and a
final plateau level. Generally, the LPDT curve of larger event
needs more time to reach the plateau and the plateau level of the
curves scale with the final magnitude (Figure 3A).

The shape of the LPDT curve, as obtained from the average of
many stations distributed over azimuth and distance, can be
interpreted as a proxy of the Moment Rate Function (MRF), from
the initial time up to its maximum peak value. Therefore, two
essential features of the MRF, i.e., peak value and peak time,
which are both related to the source properties, should be
embodied in the LPDT curves. Following the idea of
Colombelli and Zollo (2015), for near-triangular source time
functions, the peak value of the MRF (related to the magnitude)
will correspond to the plateau level of the LPDT curve, and the
peak time of the MRF (related to rupture half-duration) is a proxy
for the time at which the LPDT curve reaches its plateau level
(Plateau Time). With this in mind, the magnitude and rupture
duration can be estimated from the plateau level and the plateau
time of the curves.

To model the LPDT curves, we fit data using the following
function (Colombelli et al., 2020):

log10Pd(t) � PL{1 − [ae− t
T1 + (1 − a)(e− t

T2)]} + y0 (3)

where y0 is fixed as the first point of the curve, PL is the interval
between y0 and the plateau level, a is the weighting factor which is
set to 0.5, T1, and T2 are the time parameters (here we define the
larger value as T2). T1 controls the very initial part which usually
has a faster increasing speed and T2 represents the second part,
whose increasing speed gradually becomes slower. This double
corner time, exponential model accounts finely for the two
different behaviors of LPDT curve-that is to say, a sharp
increase to the plateau (ramp-like) for small events and a
more gentle and smooth increase (exponential) for large
events. The model parameters are shown in Figure 2.

We used a non-linear, weighted-fitting approach to model our
curves, accounting for the standard error on each point of LPDT
curves. Specifically, at each time step, the weight is obtained as:

Weight � 1/(N · SE2) (4)

where SE is the standard error in each P-wave time window, N is
the number of stations used for that time window. Figure 3B
shows that the LPDT curves of all the events are quite well

FIGURE 2 | The LPDT curve of M4.6 event and the model parameters.
The grey triangles stand for the corrected amplitude PdC for the available
stations at each P-wave time window, then the circle represents the average
PdC value of all these stations. Our exponential fit model is shown in
black line. The time parameters T1 and T2 are shown in the empty triangles.
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reproduced by the fitting model, with an average residual of 0.3.
Generally, at the beginning of the curve computation, several
stations from a broad range of distances and azimuths are
involved in the calculation, so that the scatter of data is large
and the fitting procedure gives a smaller weight to this part, as
compared to the plateau of the curves, which is instead, well

reproduced. A slightly larger (about 0.7) difference between the
real data and the model is observed for the initial part of the curve
of the M 8.0 Wenchuan earthquake, which could be related to the
complexity of the source process of this peculiar event. Indeed,
when looking at the seismic moment release of this event
(Figure 4), a small peak value is observed at 4–5 s, before the

FIGURE 3 | The LPDT curve and the misfit. (A) The average peak amplitude with distance corrected at each P-wave time window for different magnitude with color
scale. (B) The difference between the observed value and the value from the fit model. (C) The normalized histograms of the misfit value.

FIGURE 4 | The LPDT curve of the M 8.0 Wenchuan earthquake and its
fit model. The grey and the dashed line represent the observed data and the
best fit model, respectively. The standard error of the corrected amplitude PdC

for the available stations at each P-wave time window is shown by the
vertical error bars. The moment rate function of this event provided by the
USGS was shown in the bottom with grey area.

FIGURE 5 | Scaling relationship between PL* andmagnitude. The circles
present the PL* value of each event. The dashed line indicates the best-fit
relation between PL* and magnitude.
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arrival of the absolute main peak value (at about 25 s), and this
leads to a sag of the LPDT curve around 4 s.

RESULTS

We fit the LPDT curves with our exponential model and obtain
the three relevant parameters mentioned above (T1, T2, PL) while
y0 has been fixed to the first point amplitude. For simplicity, we
defined a new variable called PL* � PL + y0 to represent the true
plateau level of the LPDT curves. Both the amplitude parameter
(PL*) and the two characteristic times (T1 and T2) scale with
earthquake magnitude. Figure 5 shows the plateau level PL* as a
function of magnitude. A good correlation between PL* and
magnitude (the correlation coefficient reaches 0.95) can be
found. The parameters T1 and T2 extracted from our fitting
model are shown in Figure 6 as a function of magnitude. As the
best fitting line indicates, both parameters linearly increase with
magnitude (in logarithmic scale). Due to the very rapid initial
increase of the curves, T1 and T2 are close to each other for small
events, while they gradually separate when the magnitude
becomes larger and the initial part of the curves increases gently.

Magnitude Estimation
Once the observed amplitude has been corrected for the distance
effect, the LPDT value at each P-wave time window can be
associated to a corresponding magnitude using the coefficients
of Eq. 1 (Supplementary Table S1). Figure 3 shows the dynamic
process of estimating magnitude for the LPDT curve. The y axis
on the left stands for the distance corrected Pd, and the
corresponding magnitude or estimated magnitude scale is
shown on the right. The magnitude then can be estimated
accurately based on the true plateau level of the LPDT curves
and the coefficients of Eq. 1 listed in Supplementary Table S1. As

shown in Figure 3, the occurrence of the plateau for large events
(M > 6–7) needsmore than 9 s after the P-wave arrival, suggesting
that the typical approaches for the magnitude estimate using fixed
3–4 s P-wave time windows (PTWs) would provide
underestimated magnitudes for such large events. Moreover,
the B coefficient (calibrated using a 3 s PTW) could not be
suitable to compute the corresponding magnitude based on
the PL* obtained in a longer time window. We therefore
choose two magnitude ranges, with two different PTW
lengths, to calibrate and use the optimal coefficients
(Supplementary Table S1) for magnitude estimation. In this
way, when an event reached its plateau within 4 s, we use the
relation coefficients A and B for fixed 3 s PTW, while we used the
coefficients A and B established with a fixed 9 s PTW when its
LPDT curve keeps increasing after 4 s.

The estimated final magnitude based on the PL* for the LPDT
curve and obtained with the two sets of coefficients for small and
large events respectively, is plotted in Figure 7 as a function of the
catalog magnitude. As it can be seen in Figure 7, most of the
points are distributed around the dashed line representing the 1:1
relationship between the estimated magnitude and the catalog
magnitude. The scatter of data is rather small, with an average
estimated error of 0.23 magnitude units.

Prediction of Rupture Length and
Estimation of Stress Drop Δσ
The rupture duration is the total duration of a seismic event, given
by the whole-time length of the moment rate function (Vallée,

FIGURE 6 | Scaling relationship between T1 and T2 as a function of
magnitude. Triangles and circles represent T2 and T1 for LPDT curves,
respectively. The error bars which represent the standard deviation of the
parameters fitted by our exponential model are shown as black lines
(where visible). The best fitting line for each parameter is shown as dashed line.

FIGURE 7 | The estimation of the magnitude and catalog magnitude.
The dashed line corresponds to the 1:1 scaling. The triangles and circles
indicate the estimated magnitude with PL* using the relation coefficients A and
B for a fixed 3 s PTW and a fixed 9 s PTW, respectively.
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2013). It is generally observed that the rupture duration scales
with magnitude and is related to the rupture length, assuming a
value for the rupture velocity (Wells and Coppersmith, 1994). As
the moment rate function can be simplified as a symmetric
triangle (Bilek et al., 2004), the peak time of the MRF,
corresponding to the plateau time (TPL) of the LPDT curve, is
a measure of the Half-duration of each event (Colombelli and
Zollo, 2015; Nazeri et al., 2019). Having in mind the Sato &
Hirasawa model (Sato and Hirasawa, 1973) here we investigate
the relation between parameter T2 of LPDT curves and TPL, the
time at which occurs the peak of theMRF. In the Sato &Hirasawa
model, the rupture spreads radially outwards at a constant
velocity with a circular fault, and stress drop (Δσ) and rupture
velocity (Vr) are two relevant parameters controlling the
earthquake rupture process. Since Δσ and Vr of earthquakes
can vary significantly for each event (Allmann and Shearer, 2009),
we performed a set of dedicated simulations to explore stress drop
values between 0.05 and 20 MPa with rupture velocities between
0.5 Vs (S-wave velocity) and 0.9 Vs, for a total of 55 combinations
of the two parameters.

For each given magnitude, we fixe Δσ and Vr, and generate the
corresponding Sato & Hirasawa moment rate Function (SHF) by
changing the polar angle of the observation point from 0o to 90o

and computing the average SHF (an example of M � 5 event

shown in the Figure 8A). We then compute the log of the SHF
and keep unchanged after the SHF reaches its peak to get a curve
(hereinafter LSHF) with a similar shape of our LPDT curve. Since
most of the selected earthquakes in our database occurred at an
average depth of about 10 km, we set the Vp � 6.2 km/s, Vs �
3.4 km/s based on the velocity model for this region (Wang et al.,
2014). Examples of the average SHF with fixed Vr � 0.7 Vs andΔσ
� 0.1 MPa is shown in Figure 8, while examples with other Δσ
values are shown in the Supplementary Material. For each
available couple of stress drop and rupture velocity, we used
the exponential model (Eq. 3) to fit the LSHF curve and extract
the T2 parameter for different magnitudes. As expected, we found
that T2 has linear relationship with TPL obtained directly from the
peak time of the generated SHF (in logarithmic scale) for the
entire magnitude range with a small deviation when exploring the
Δσ and Vr, suggesting that the T2 parameter extracted from the
observed curves can be used to predict TPL:

log10(TPL) � 1.111(0.051)log10(T2) + 0.542(0.030) (5)

For the circular model with a symmetric triangular shaped
MRF, the obtained TPL can be regard as the Half-Duration (HD)
of the source function. Considering all azimuthal coverage
around the fault, the relation between averaged half-duration

FIGURE 8 | The exploratory simulations for Δσ � 0.1 MPa. (A) Fitting of the Sato & Hirasawa function with exponential model. The SHF and LSHF stand for the Sato
& Hirasawa moment rate Function (SHF) and the log of the SHF (LSHF), respectively. The grey hatched curves display different SHFs, obtained by changing the polar
angle of the observation point from 0o to 90o. The black solid line shows the average SHF forM � 5 event. The blue and green line represent the averaged SHF forM � 4.5
andM � 5.5 event, respectively. The dashed line represents the fitted model. (B) Relationship between T2 and TPL for magnitude from 4 to 8 with an interval of 0.1
magnitude units. The dashed line shows the fitting relationship between T2 and TPL.
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and the source radius was given as follows (Aki and Richards,
2002):

TPL � 〈HD〉 � ∫π
2

0
a
Vr
(1 − Vrsinθ

VP
)dθ

π
2

� a
Vr

(1 − 2
π

Vr

VP
) (6)

where a is the source radius, Vr is rupture velocity, θ is the polar
angle of the observation point and Vp is the P-wave velocity.
Given the half-duration of the source, the source radius of the
analysed events can be estimated.

Figure 9 shows the predicted source radius as a function of
magnitude and its corresponding half-duration with a fixed
rupture velocity of 0.9 Vs. Based on the computation of stress
drop (Δσ) for the circular model using the source radius (a) and
the seismic moment (M0) (Keilis-Borok, 1959), Δσ � 7

16
M0
a3 , the

theoretical scaling lines of the source radius as a function of M
with a constant Δσ � 0.1 and 10 MPa were given in the same
figure as a comparison. The predicted source radius shows a
similar increasing trend with the theoretical lines, indicating that
the source radius of the analysed events has a consistent self-
similar, constant stress drop scaling with magnitude. We fit the
source radius with a weight-based fitting approach (same as Eq. 4,
here, the SE is the standard error of the source radius computed
from the predicted TPL and its error obtained by the error
propagation theory) to obtain the best-fit constant stress drop
of 0.4 MPa. In addition, we repeated the process by setting Vr �
0.7 Vs and Vr � 0.8 Vs, and found that the mean value of Δσ are
1.0 and 0.6 MPa, respectively.

The definition of rupture length changes in case of a circular fault
(rupture length� rupture radius) and long-rectangular fault (rupture
length � larger rectangular fault dimension). For a circular fault, the
rupture lengths (source radius) predicted from LPDT curve were

shown in Figure 10. As the figure indicates, most of our predicted
rupture lengths as a function of magnitude agrees with the
magnitude-rupture scaling relation studied by Cheng et al. (2019)

FIGURE 9 | The scaling relation between source radius and magnitude with a fixed rupture velocity of 0.9 Vs. The right y-axis represents the corresponding Half-
duration. The circles stand for the TPL parameter extracted from LPDT curve. The estimated errors computed through the error propagation theory are shown by the
vertical error bars. The dotted line and dashed line represent the theoretical scaling with constant Δσ � 0.1 and 10 MPa, respectively. The averaged constant Δσ of the
analysed dataset are shown in the solid line.

FIGURE 10 | The scaling relationship between the predicted rupture
length and M. The circles and the squares are the predicted rupture length
from circular model and Haskell model, respectively. The dashed line is the
linear regression relationship inmainland China calibrated by Cheng et al.
(2019). The dotted line represents the relationship proposed by Wells and
Coppersmith (1994). The diagonal cross and cross are the results of M 8.0
Wenchuan earthquake by Zhang et al. (2014) and M 7.0 Lushan
earthquake by Fang et al. (2013), respectively. The estimated errors
computed through the error propagation theory are shown by the
vertical error bars.
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using 91 earthquakes in Mainland China and the empirical scaling
relation for strike-slip earthquakes with M 4.8 to M 8.1 proposed by
Wells and Coppersmith (1994). However, our predicted results were
smaller than the rupture length of two models in the moderate-large
magnitude range (M 7.0 Lushan earthquake and M 8.0 Wenchuan
earthquake). To better assess the performances of our LPDT scheme
in predicting rupture length, we collect the rupture lengths of these
two largest events derived from other methodologies. Our approach
provides a rupture length of 34 km for theM 7.0 Lushan earthquake,
which is consistent with the results of relocated aftershocks by Fang
et al. (2013) (L∼35 km) and the inversion results by Liu et al. (2013)
(L∼28 km). For the M 8.0 Wenchuan earthquake, our predicted
rupture length of 135 km is obviously underestimated as compared
to the inversion results of Zhang et al. (2014) (L∼300 km) and the
observed aftershock distribution over a length of 330 km (Huang
et al., 2008).

The circular model is well suitable for small-to-moderate
magnitudes (i.e., M < 6). Here, we also investigated the results of
large magnitudes when applying the rectangular source model of
Haskell. The far-field displacement radiated by a Haskell type fault
model is equivalent to the convolution of two box-car functions of
different amplitude and durations: rise time (τ) and rupture time
(TR). The resulting function has a trapezoidal shape with total
duration given by the sum of τ + TR. The rupture time TR

depends on the finite length of the fault (L) and the azimuth (θ)
between source and receiver (Haskell, 1964):

TR � L
Vr

(1 − Vr

VP
cosθ) (7)

The rise time τ is independent of azimuth (Hwang et al., 2011)
and can be obtained using the following relationship derived by
Melgar and Hayes (2017) from a database of finite faults:

log10(τ) � −5.323 + 0.293log10(M0) (8)

Figure 11 shows an example of the average total duration of
Haskell model with azimuth (θ) changed from 0o to 180o.
Assuming that TPL is the middle point of the average
trapezoid plateau, the following relationship between L and
TPL can be obtained and be used for estimating rupture length
of large events when assuming the Haskell model:

TPL � 1
2
(τ + L

Vr
(1 − Vr

VP
)) (9)

We computed the predicted rupture length for the two largest
events using the Haskell model. As shown in Figure 10, with the
same TPL, applying the Haskell model appears to predict larger
rupture lengths than the results using circular model. Specifically,
we obtain an estimate of rupture length of 326 km without
underestimation for Wenchuan earthquake, whereas the
rupture length of Lushan earthquake has been overestimated
(L � 77.3 km). The circular model produced a triangle-like MRF,
as the Sato & Hirasawa moment rate Function of M � 5 event
shown in the Figure 8A indicates, the peak time (TPL) is almost
half-duration. However, as the MRF of M 8.0 Wenchuan
earthquake (download from USGS, shown in Figure 4)
indicates, the MRF of some large events usually have the
major peak occurring at the beginning of the rupture and
followed by a long-time duration coda (Vallée, 2013). In this
case, the circular model with a triangle-shape MRF may be not
able to correctly reproduce this kind of source time function, and
considering the peak time as the half-duration of the large events
may result into underestimated rupture lengths. The averaged
MRF from Haskell model shown in Figure 11 reaches its peak
(TPL) around 1/5 of the total duration, which is more like the
characteristic of MRF of the large magnitude earthquakes stated
above. Moreover, for large earthquakes, the width (W) of the fault
is already saturated, i.e., equal to the thickness of the brittle
fracturing zone in the lithosphere. Accordingly, the growth of the
fault area with increasing seismic moment (M0) is in the length
direction only (Bormann et al., 2009; Cheng et al., 2019).
Therefore, in the situation of L >> W for large events, the
Haskell model is more appropriate. Since the rupture surface
of Lushan earthquake presents the focal characteristics of small-
moderate earthquakes (L ≈ W) (Chen et al., 2013; Hao et al.,
2013), the Haskell model is not suitable for this event leading to
an overestimated rupture length.

According to the derived rupture length of the analysed events,
the stress drop can be computed based on different geometrical
faults. Madariaga (1977) proposed that the general form Δσ �
Mo
CSW � Mo

CS3/2 (S is the rupture surface), where C � 16
7π for a circular

fault, same as Keilis-Borok (1959)’s formula Δσ � 7
16

M0
a3 and C � π

2
for a long rectangular fault (L >> W) as follows:

Δσ � 2
π

M0

W2L
(10)

where W is the rupture width. Referring to the observation of
Cheng et al. (2019) that large events with M > 6.7 have a nearly
constant rupture width of ∼20 km, here, we set W to 20 km.

FIGURE 11 | The trapezoid-like moment rate function (MRF) and the
averagedMRFwith azimuth from 0o to 180o. The dashed black line represents
that the TPL of the LPDT curves (Plateau time) occurs at the middle point of the
average trapezoid plateau.
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We therefore suggest to use the circular model for small-
moderate-strong events (M ≤ 7) and the Haskell model
(rectangle model) for large events (M > 7) in the estimation of
rupture length and stress drop. The computed stress drop of each
event is shown in Figure 12. After applying the rectangle source
model for M 8.0 Wenchuan earthquake, the derived stress drop �
4.9 MPa is comparable with the results of Meng et al. (2019)
(3.5 MPa). However, the circular model in this study provides an
underestimated stress drop of 0.4 MPa for M 7.0 Lushan
earthquake when comparing with the results (1.8 MPa)
obtained by Li et al. (2017). As Figure 12B shows, the stress
drops vary from 0.01 to 10 MPa. We divide the events into two
groups based on Δσ � 0.6 MPa and calculate the averaged stress
drop for these two groups. The higher stress drop group (Δσ >
0.6 MPa) has an averaged stress drop of 3.7 MPa, which is close to
the world-wide measured median value of 4 MPa (Allmann and
Shearer, 2009). The lower stress drop group with an averaged
stress drop of 0.2 MPa consists of 19 events, in which half of the
events are the aftershocks of theM 8.0Wenchuan earthquake and
the M 7.0 Lushan earthquake. Consistent withWang et al. (2018),
the lower stress drop of aftershocks may result from the
remaining locked parts on the fault plane of the mainshock.
All these source parameters of the analyzed events (M ≥ 5.5) are
summarized in Table 1.

DISCUSSION AND CONCLUSION

In this study, we generalized the approach proposed by
Colombelli and Zollo (2015) to estimate the source parameters
of a set of Chinese earthquakes with magnitude ranging from 4 to
8. The methodology is based on the use of the time evolution of
the P wave (LPDT curve) as a proxy for the source time function
to extract earthquake magnitude and rupture duration.

Comparing with the previous works by Colombelli and Zollo
(2015) and Nazeri et al. (2019), we used the double corner time,
exponential model proposed by Colombelli et al. (2020) for better
modeling the behavior of LPDT curves. We improved the
magnitude estimation based on the plateau level of LPDT
curve, by using two different scaling coefficients with fixed C,
which have been properly calibrated. Based on the analysis of 31
events in the magnitude range between 4 and 8, we found that the
plateau level of LPDT curves has a strong correlation with
magnitude (the coefficient of correlation is up to 0.95).
Comparing with the catalog magnitude of the analyzed events,
our predicted magnitude from the displacement data shows an
average deviation of 0.23 magnitude units. The time at which
these estimates are available implicitly depends on the event itself.
Small events have a rapid initial increase and reach the plateau
quickly, and for these events, the magnitude estimates would be
available within a short time from the first P-wave detection. For
the large events, like Wenchuan earthquake (M 8.0), the time
needed to reach the plateau is longer. The near-source stations
with a short fraction portion of the P-wave time-series cannot
provide robust magnitude estimates for these large events, which
is consistent with our observation that the LPDT curve at this
stage is still growing and the plateau has not yet been reached.
However, the expansion of hypocentral distance allows to capture
longer P-wave signal portion of large events, and thus we provide
a magnitude estimation of 8.3 for theWenchuan earthquake after
the LPDT curve reaches its plateau. By capturing the curve that
reaches its plateau or looking at larger distances, our approach
can estimate the magnitude of large events accurately, without
saturation effects, typically observed when using shorter P-wave
time windows (Lomax and Michelini, 2009; Bormann and Saul,
2009; Colombelli et al., 2012).

Together with the plateau level, the plateau time (TPL) of the
LPDT curve has also a clear scaling with magnitude, being

FIGURE 12 | The estimated stress drop of the analyzed earthquakes. (A) The distribution of the estimated stress drop. The circles and the squares are the
predicted stress drop from circular model and Haskell model, respectively. The estimated errors computed through the error propagation theory are shown by the
vertical error bars. Events have been divided into two groups based on Δσ � 0.6 MPa. The average stress drops of these two groups are shown as the dashed lines. The
diagonal cross and cross are the results of M 8.0Wenchuan earthquake byMeng et al. (2019) andM 7.0 Lushan earthquake by Li et al. (2017), respectively. (B) The
normalized histograms of the predicted stress drop.
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approximately related to the half-duration of the source. In order
to estimate the plateau time, we performed a series of simulations
based on the Sato and Hirasawa (1973) circular rupture model
and on the assumption that TPL corresponds to the peak time of
the MRF.We generated a set of MRFs exploring Δσ and Vr values
and studied the relation between TPL and the time characteristic
parameter T2. Finally, we established a linear scaling relationship
between the two parameters for predicting the TPL.

Considering the circular model with a symmetric
triangular-shaped MRF, the obtained TPL can be regarded
as the Half-Duration (HD) of the events to predict the
source radius. The obtained source radius in this study
shows a consistent self-similar, constant stress drop scaling
with magnitude. We obtained the best-fit stress drop (0.4 MPa)
for the 31 analysed events, with fixing rupture velocity to
0.9 Vs. This value is lower than world-wide measured median
value of 4 MPa (Allmann and Shearer, 2009), but it is
comparable with the mean value of 0.5 MPa by studying the

strong-motion recordings of the Wenchuan aftershocks
(2008–2013) (Wang et al., 2018).

One major result of this paper concerns the determination of
the scaling law of earthquakes in China. We obtained the rupture
length of the analysed events using circular model and found the
M 8.0 Wenchuan earthquake has a shorter predicted rupture
length with comparing to other results. We realize that for the
largest events in the sequence, the circular fault model may
underestimate the total rupture length. Thus, we suggested to
estimate the rupture length of the large events (M > 7) assuming
the Haskell, rectangular fault model. Our predicted rupture
length of different source models as a function of M is close
to the rupture scaling relationship proposed by Cheng et al.
(2019) and Wells and Coppersmith (1994).

The most critical issue of the proposed methodology is to
assume a triangular shape to represent the source function. The
assumption of a circular fault model can be inadequate to describe
the complexity of the source for large events, for which multiple

TABLE 1 | List of source parameters including catalog magnitude (Ms), predicted magnitude (MsPRED), half duration, Rupture length (RL) and stress drop (Δσ) determined in
this study for moderate-larger events (M ≥ 5.5).

No Location Date Epicenter Magnitude Half duration Rupture parameters References

Lat. Long. MS MS
PRED MW

(source)
LPDT GCMT RL (km) RL

(WC94)
SSD
(MPa)

1 Wenchuan 2008/
05/12

31.00 103.40 8.0 8.3 7.9 (GCMT) 30.4 21.8 135.5 (circular) 290 0.2 This study
326 (Haskell) 4.9

300 Zhang, wang,
zschau, et al. (2014)

330 Huang et al., 2008
3.5 Meng et al., (2019)

2 Wenchuan
(aftershock)

2008/
05/13

31.43 104.06 5.8 5.9 5.6 (GCMT) 0.8 1.6 3.4 (circular) 9.7 5.3 This study
4.3 0.7 Wang et al., (2018)

3 Wenchuan
(aftershock)

2008/
05/14

31.34 103.63 5.8 5.7 5.4 (GCMT) 2.7 1.3 12.2 (circular) 9.7 0.1 This study
7.5 0.2 Wang et al., (2018)

4 Yaoan 2009/
07/09

25.60 101.03 6.3 5.7 5.7 (GCMT) 3.6 1.8 16 (circular) 21.0 0.3 This study

5 Yiliang 2012/
09/07

27.56 104.03 5.6 5.6 5.3 (GCMT) 3.1 1.1 14 (circular) 7.1 0.04 This study

6 Eryuan 2013/
03/03

25.93 99.72 5.5 5.3 5.4 (GCMT) 1.7 1.2 7.4 (circular) 6.1 0.2 This study

7 Changji 2013/
03/29

43.40 86.80 5.6 5.4 5.4 (GCMT) 1.5 1.3 6.7 (circular) 7.1 0.4 This study

8 Lushan 2013/
04/20

30.30 103.00 7 7.0 6.6 (GCMT) 7.6 4.9 34 (circular) 61.9 0.4 This study
77.3 (Haskell) 0.7

35 Fang et al., (2013)
28 Liu et al., (2013)

1.8 Li et al., (2017)
9 Minxian 2013/

07/22
34.54 104.21 6.7 6.6 6.0 (GCMT) 2.4 2.4 10.6 (circular) 38.9 4.2 This study

10 Ludian 2014/
08/03

27.11 103.33 6.6 6.5 6.2 (GCMT) 6.7 2.9 30.0 (circular) 33.4 0.1 This study
12 Cheng et al., (2015)

11 Kangding 2014/
11/22

30.29 101.68 6.4 6.2 6.1 (GCMT) 2.2 2.8 9.8 (circular) 24.5 1.9 This study
20 Fang et al., (2015)
16 Jiang et al., (2015)

12 Kangding 2014/
11/25

30.20 101.75 5.9 5.6 5.7 (GCMT) 0.7 1.8 3.2 (circular) 11.3 9.0 This study

13 Jinggu 2014/
12/06

23.32 100.50 5.9 6.0 5.5 (GCMT) 1.0 1.5 4.4 (circular) 11.3 3.6 This study

MS
PRED � predicted ms, RL � rupture length � source radius (circular model), WC94 � Wells and Coppersmith (1994), SSD � statics stress drop, GCMT data are available at www.

globalcmt.org (last accessed May. 6, 2020).
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peaks of moment release can occur. Moreover, the rupture
process of an earthquake is a chaotic process, and the simple
exponential LPDT curve may hardly represent the complex
nature of this process, especially at the very beginning.
However, the now massive and well documented observation
of LPDT empirical curves analysed in many worldwide seismic
regions and in a wide magnitude and distance range confirm that
the general ramp-like behavior of the curves is a universal
evidence (Colombelli et al., 2012; Colombelli et al., 2015;
Colombelli et al., 2020; Melgar et al., 2015; Trugman et al.,
2019) which is well matched by the chosen exponential model
(Colombelli et al., 2020). When the curve has reached its peak, the
schematic representation with two parameters (plateau time and
amplitude), may properly catch the essential features of the
process we are interested in.

Concerning the anelastic attenuation effect on LPDT curves,
the overall features of the curves are essentially dominated by the
event magnitude, which mainly controls the plateau level and the
time to reach this plateau, for each curve. Using similar LPDT
curves, Colombelli et al., (2020) recently investigated the effect of
anelastic attenuation on the shape of the curves. This was done
both theoretically and through a careful and detailed analysis of
real earthquake data. They found that the chosen anelastic
attenuation parametrization (Eq. 1) is appropriate to correct
the distance attenuation effect on LPDT curves and this does
not produce a systematic effect on plateau and TPL parameter
determination in all the observed curves in the same
distance range.

The source parameters of the larger events are a major focus
of - and motivation for - the proposed methodology. Although
the selected dataset has a relatively wide magnitude range from
4.0 to 8.0, there is an obvious lack of large-magnitude data for
events with magnitudes between 7 and 8. The proposed
methodology would be better verified through the application
to other seismic areas, once that the proper calibration of scaling
coefficients has been done. It is worth to mention that the
findings (e.g., rupture scaling relation and stress drop
distribution) obtained through applying the methodology to
the selected events (31 earthquakes) are mainly based on the
data from Sichuan-Yunnan region, and may not be applicable to
other areas as they are.

We notice that in the presence of a jump in the increasing
shape of the LPDT curve, our approach likely fits the curve
with a longer T2 thus resulting in a lower stress drop value.
Supplementary Figure S2 shows the LPDT curve for the M 6.6
Ludian earthquake: a jump in the curve is clearly visible
around 3.5 s. A similar magnitude event (M 6.4) which has
a normal LPDT curve shape without jumps is selected for
comparison. Our double corner time, exponential model (Eq.
3) fits the LPDT curve of this M 6.4 event with a T2 � 0.66 s.
However, due to the presence of jump, our exponential model
tends to find a parameter (T1 and T2) with slower growth to fit
the middle part (2 ∼ 4 s) of the LPDT curve for M 6.6 Ludian
earthquake. This resulted in our model fitting the LPDT curve
with a longer T2 � 1.8 s. We further justify the effect of LPDT
curve shape on the exponential fitting model in
Supplementary Figure S3. The virtual LPDT curve with

normal LPDT curve shape was generated as follow: the
initial increasing part (0 ∼ 1.85 s) and the approach plateau
part (4.26 ∼ 6 s) are the same as the observed LPDT curve, and
only the middle part, we add points with exponential growth.
After using our exponential model to fit the curves separately,
we obtained a T2 � 1.46 s for the virtual LPDT curve with a
normal shape and a slightly longer T2 (1.8 s) for the observed
LPDT curve with a jump in the middle. Thus, based on the
relationship between T2 and TPL, the predicted TPL (plateau
time) of LPDT curve with normal shape then will be 5.3 s,
whereas the TPL of the LPDT curve with jump will be 6.7 s. The
jumps on the curve can be given by different effects, both
related to the source process itself, such as multiple peaks on
the Moment Rate Function, and/or to propagation effects, such
as the arrival of intermediate phases (preceding the S-wave
arrival), arriving at a receiver within the coda of P-wave phase.
However, the presence of jumps on the LPDT curves is not
frequently observed in our catalogue, only happens in two
events. Meanwhile, the jump in the LPDT curve does not have
a serious impact on the derived parameters. Thus, we believe
that, on average, this is a negligible effect on the overall
estimation of rupture length and stress drop.

The shape of the curves may change in real-time, when we do
not have all the available stations. As a perspective of the work, we
could evaluate the feasibility of application in real-time, that can
be relevant for EEW applications. The accurate estimation of the
rupture extent and magnitude at the early stage of the process can
be a useful piece of information to add to the early shake-map
computation, and the estimation of ground shaking can be
strongly improved by considering the effect of the finite fault
(Colombelli et al., 2013). While in this off-line study we used the
post-earthquake location instead of the real-time estimation, a
reliable estimation of the earthquake location is needed for the
real-time application. Having in mind that the far-field stations
must wait enough time to reach the plateau of the curve for large
events, we need more time to get the plateau information. Hence,
the real-time application performance and the timeliness based
on the network distribution for this approach will be further
studied. A possible method could be that we can estimate the final
curve at each time step with a given probability and study the real-
time curve reached how many percent of the final curve (maybe
after T2) can give a reliable probability for estimating final curve.
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Magnitude estimation is a vital task within earthquake early warning (EEW) systems
(EEWSs). To improve the magnitude determination accuracy after P-wave arrival, we
introduce an advanced magnitude prediction model that uses a deep convolutional
neural network for earthquake magnitude estimation (DCNN-M). In this paper, we use
the inland strong-motion data obtained from the Japan Kyoshin Network (K-NET) to
calculate the input parameters of the DCNN-M model. The DCNN-M model uses 12
parameters extracted from 3 s of seismic data recorded after P-wave arrival as the
input, four convolutional layers, four pooling layers, four batch normalization layers, three
fully connected layers, the Adam optimizer, and an output. Our results show that the
standard deviation of the magnitude estimation error of the DCNN-M model is 0.31,
which is significantly less than the values of 1.56 and 0.42 for the τc method and
Pd method, respectively. In addition, the magnitude prediction error of the DCNN-M
model is not affected by variations in the epicentral distance. The DCNN-M model has
considerable potential application in EEWSs in Japan.

Keywords: earthquake early warning, magnitude, estimation, P-wave, deep convolutional neural network

INTRODUCTION

Earthquake early warning (EEW) systems (EEWSs) depend on stations located near the earthquake
source area to monitor earthquakes and obtain location, ground shaking, and magnitude
information using data from the first few seconds after P-wave arrival. They then send EEW
information to the target sites before destructive seismic waves arrive (Allen and Kanamori, 2003).
Over the past few decades, EEWSs have been shown to be an effective earthquake hazard mitigation
approach and have been applied in many regions around the world, such as Japan (Hoshiba
et al., 2008), Mexico (Aranda et al., 1995), Taiwan (Wu and Teng, 2002; Chen et al., 2015),
California (Allen et al., 2009a), southern Italy (Zollo et al., 2009; Colombelli et al., 2020), and Iran
(Heidari et al., 2012).

Magnitude estimation is an essential EEW task. Reliable EEW information and estimates
of damage areas both rely on accurate magnitude determination. EEWSs estimate earthquake
magnitudes based on the initial few seconds after P-wave arrival (Allen et al., 2009b). The final
earthquake magnitude may be determined by the initial rupture rather than the overall earthquake
rupture process (Olson and Allen, 2005; Wu and Zhao, 2006). The existing magnitude estimation
methodologies mainly establish the regression functions between the parameter extracted from
the initial several seconds after P-wave arrival and the catalog magnitudes (CMs) to predict the
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earthquake magnitudes. The τc method, which establishes the
empirical relationship between the average period (τc) and
the CMs, was proposed by Kanamori (2005) and has been
demonstrated to have a relationship with the magnitude that is
acceptable for EEWSs (Wu and Kanamori, 2008; Yamada and
Mori, 2009). Wu and Zhao (2006) proposed the Pd method,
which establishes an empirical correlation between the peak
amplitude of displacement during the first 3 s after P-wave
arrival and the CMs and was applied to predict magnitudes in
southern California. The Pd method provides robust magnitude
estimation, and it is feasible to use the peak amplitude of
displacement during the first several seconds after P-wave arrival
to predict magnitudes for EEWSs (Zollo et al., 2006; Tsang et al.,
2007; Lin et al., 2011). The squared velocity integral (IV2), which
was proposed by Festa et al. (2008), is related to the early radiated
energy and can be used to determine earthquake magnitudes.

However, since a single parameter might provide little
magnitude information regardless of whether it is governed
by the frequency, amplitude, or energy, the accuracy of
EEW magnitude estimation still needs to be improved. More
accurate magnitude estimation will lead to more effective
hazard mitigation. With the development of artificial intelligence,
some researchers have combined magnitude estimation and
support vector machines (SVMs) and indicated that artificial
intelligence has excellent potential for use in EEW magnitude
estimation applications (Reddy and Nair, 2013; Ochoa et al.,
2017). In this study, we developed an advanced magnitude
prediction model by using a deep convolutional neural network
for magnitude estimation (DCNN-M). Following the analyses
by Kanamori (2005), Wu and Kanamori (2005), and Wu
and Zhao (2006), we also used the 3-s time window after
P-wave arrival for DCNN-M model estimation. We used 12
magnitude estimation parameters from P-wave arrival for EEW
related to the frequency, amplitude, and energy as input,
which make the DCNN-M model interpretable, and trained
the DCNN-M model using the training dataset. Then, the test
dataset was used to test the DCNN-M model performance,
and DCNN-M model magnitude estimates were compared to
the τc method and Pd method results. Furthermore, as a
test, we used the DCNN-M model to predict 31 additional
earthquake events and obtained reliable magnitude estimates.
We show that the DCNN-M model is robust enough to predict
magnitudes in Japan and that it has considerable potential for
application to EEWSs.

DATA AND PROCESSING

In this study, we used strong-motion data from October 2007
through October 2017, which were obtained from the Kyoshin
Network (K-NET) stations of the National Research Institute for
Earth Science and Disaster Prevention (NIED) in Japan1 (Aoi
et al., 2011). The sampling rate of the strong-motion data was
100 Hz. We selected inland earthquakes from the K-NET catalog
with magnitudes within the 3 ≤ MJMA ≤ 8 range and focal

1http://www.kyoshin.bosai.go.jp/

depths shallower than 10 km. We had no epicentral distance
requirements for the strong-motion data.

There were 1,836 inland earthquakes (Figure 1A)
characterized by 19,263 three-component seismograms recorded
by the K-NET stations (Figure 1B). The data were composed
mainly of events within 3 ≤ MJMA ≤ 6.9 but included three
MJMA7 and MJMA7.4 events (see Supplementary Table 1).
The P-wave arrival was determined automatically using the
short-term averaging/long-term averaging algorithm (Allen,
1978). Acceleration records were integrated once and twice to
obtain velocity and displacement seismograms, respectively.
Then, the displacement seismograms were processed by using
a Butterworth filter with a high-pass frequency of 0.075 Hz to
remove low-frequency drift (Wu and Zhao, 2006). Moreover,
selected seismic records were randomly divided into two
datasets: a training dataset (15,410 three-component seismic
records), which accounted for 80% of the strong-motion data,
was used to train the DCNN-M model, and a test dataset (3,853
three-component seismic records), which accounted for 20% of
the strong-motion data, was used to assess the DCNN-M model
performance after training (Figure 2).

THE INPUT PARAMETERS

The P-wave parameters used to predict magnitude mainly include
three categories for EEW: parameters related to amplitude,
frequency and energy. Since a single parameter provides little
earthquake magnitude information, multiple parameters might
provide more information useful in magnitude prediction; thus,
for EEW, 12 magnitude estimation parameters of the P-wave
arrival related to the frequency, amplitude, and energy are
selected as inputs to the DCNN-M model to make the DCNN-
M model interpretable. It is important that these 12 P-wave
parameters are correlated with magnitude in this paper. In this
study, these P-wave parameters are introduced in the following
paragraphs. Following the analysis of Kanamori (2005), Wu and
Kanamori (2005), Wu and Zhao (2006), we also used the 3-s
time window after P-wave arrival for DCNN-M model magnitude
estimation. Furthermore, we corrected the parameters related
to amplitude, energy and derivative parameters for the distance
effect by normalizing them to a reference distance of 10 km
(Zollo et al., 2006).

First, P-wave parameters related to amplitude include peak
displacement (Pd), peak velocity (Pv), and peak acceleration
(Pa), which provide information on the earthquake size and
these amplitude-related parameters have relationships with the
magnitude (Wu and Kanamori, 2005; Wu and Zhao, 2006). The
single data points for the P-wave parameters related to amplitude
as a function of magnitude are shown in Supplementary
Figure 1. In addition, these parameters are defined as:

Pd = max
0≤t≤T

∣∣dud (t)
∣∣ (1)

Pv = max
0≤t≤T

|vud (t)| (2)

Pa = max
0≤t≤T

|aud (t)| (3)
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FIGURE 1 | (A) The epicenter locations of the 1,836 inland earthquakes used in this paper. Solid red circles of different sizes indicate magnitudes within the range of
3 ≤ MJMA ≤ 7.4. (B) The distribution of the stations (solid blue triangles) that recorded the strong-motion data used in this paper.

where dud(t), vud(t), and aud(t) are the vertical components of
the displacement, velocity, and acceleration time histories of
the strong-motion data, respectively. Zero is the P-wave arrival
time, and T is the length of the P-wave time window. In this
paper, the linear relationship between the amplitude parameters,
the magnitude and the hypocentral distance is shown in
Supplementary Table 3, and the linear relationship between the
amplitude parameters after normalization to a reference distance
of 10 km and magnitude is shown in Supplementary Table 4.

Next, the P-wave parameters related to frequency include the
average period (τc), product parameter (TP), and peak ratio
(Tva). The average period has been proven to have an acceptable
relationship with the magnitude (Kanamori, 2005) and it can be
calculated as:

r =

∫ T
0 v2

ud (t) dt∫ T
0 d2

ud (t) dt
(4)

τc =
2π
√

r
(5)

The correlation of TP and magnitude was proposed by Huang
et al. (2015), which has correlations with τc and Pd, and TP is
defined as:

TP = τc × Pd (6)

where τc is the average period and Pd is the peak displacement.
The peak ratio reflects the frequency components of the ground
motion and has a correlation with magnitude (Böse, 2006; Ma,
2008), which has correlations with Pv and Pa, and it can be
calculated as:

Tva = 2π (Pv/Pa) (7)

where Pv and Pa are the peak velocity and peak acceleration,
respectively. The single data points for the P-wave parameters

related to frequency as a function of magnitude are shown in
Supplementary Figure 2. In this paper, the linear relationship
between the frequency parameters and the magnitude is shown
in Supplementary Table 5.

Finally, P-wave parameters related to the power of earthquakes
include the P-wave index value (PIv) (Nakamura, 2003), velocity
squared integral (IV2) (Festa et al., 2008) and cumulative absolute
velocity (CAV) (Reed and Kassawara, 1988; Böse, 2006). The
single data points for the P-wave parameters related to energy as
a function of magnitude are shown in Supplementary Figure 3.
In addition, these parameters are calculated as:

PIv = max
0≤t≤T

log |aud (t) · vud (t)| (8)

IV2 =
∫ T

0
v2

ud (t) dt (9)

CAV =
∫ T

0
|a3 (t)| dt (10)

a3 (t) =
√

a2
ud (t)+ a2

ew (t)+ a2
ns (t) (11)

where a3(t) is the total acceleration of the three components. In
this paper, the linear relationship between the energy parameters,
the magnitude and the hypocentral distance is shown in
Supplementary Table 6, and the linear relationship between the
energy parameters after normalization to a reference distance
of 10 km and magnitude is shown in Supplementary Table 7.
Because, CAV considers the influence of both the amplitude and
the duration of motion, we proposed three derivative parameters
according to the CAV. They are cumulative vertical absolute
displacement(cvad), cumulative vertical absolute velocity(cvav)
and cumulative vertical absolute acceleration(cvaa). The single
data points for the derivative parameters as a function of
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FIGURE 2 | The distribution of the epicentral distance and magnitude records. A histogram for the number of selected seismic records with the magnitude is shown
at the top. An interval of 0.5 is used for each magnitude bin. A histogram of the number of selected seismic records with the epicentral distance is shown at the
bottom left. An interval of 25 km is used for each epicentral distance bin. The distribution between the magnitude and epicentral distance is shown at the bottom
right. Solid blue circles indicate the training dataset used to train the DCNN-M model. Solid red circles indicate the test dataset used to test the DCNN-M model
performance.

magnitude are shown in Supplementary Figure 4. These
parameters are calculated as:

cvad = sum
0≤t≤T

(∣∣dud (t)
∣∣) (12)

cvav = sum
0≤t≤T

(|vud (t)|) (13)

cvaa = sum
0≤t≤T

(|aud (t)|) (14)

In this paper, the linear relationship between the derivative
parameters, the magnitude and the hypocentral distance is
shown in Supplementary Table 8, and the linear relationship
between the derivative parameters after normalization to a
reference distance of 10 km and magnitude is shown in
Supplementary Table 9.

To prevent numerical problems caused by large variations
between the ranges of the parameters and to improve the training
efficiency of the model, these parameters are linearly scaled to
[−1, 1] as the input of the deep convolutional neural network
(Tezcan and Cheng, 2012). When scaled to [−1, 1], every
parameter becomes:

xnorm =
2x− (xmax + xmin)

xmax − xmin
(15)

where xnorm is the original P-wave parameter and xmax and
xmin are the maximum and minimum values of every P-wave
parameter extracted from the strong-motion data in this
study, respectively.
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THE DCNN-M MODEL

Earthquake early warning magnitudes are usually predicted
via the empirical relationship between a single parameter
extracted from the seismic data collected during the first
few seconds after P-wave arrival and CMs. Since a single
parameter provides little earthquake magnitude information,
multiple parameters might provide more information useful
in magnitude prediction. In addition, to make the model
interpretable, for EEW, we used 12 magnitude estimation
parameters related to the amplitude, frequency, and energy
following the P-wave arrival (see Supplementary Text 1) as the
inputs of the DCNN-M model.

The DCNN-M model was constructed based on a deep
convolutional neural network and was used to predict
magnitudes for EEW. The architecture of the DCNN-M
model comprised 12 parameters extracted from the 3 s period
after P-wave arrival as inputs, four convolutional layers, four
batch normalization layers, four pooling layers, three fully
connected layers, and an output (Figure 3). The output was
the predicted magnitude (PM). The four convolutional layers
had 124, 150, 190, and 250 filters. In each convolutional layer,
the kernel size of the filter was 4, the stride was 2, the padding
type was “same,” and the initialization was “TruncatedNormal.”
A batch normalization layer followed each convolutional
layer. The batch normalization layers made the setting of

the hyperparameters freer, the network convergence speed
faster, and the performance better (Ioffe and Szegedy, 2015).
A pooling layer followed each batch normalization layer;
we used max pooling, each max pooling size was 2, each
stride was 2, and each padding type was “same.” The final
pooling layer was flattened and then fed to the first fully
connected layer. The three fully connected layers had 250,
125, and 60 neurons.

To prevent overfitting and ensure better generalizability,
we applied L2 regularization with a regularization rate of
10−4 to the convolutional layers and dropout with a dropout
rate of 0.5 following the last fully connected layer (Srivastava
et al., 2014; Jozinović et al., 2020). Moreover, the rectified
linear unit (ReLU) activation function (Nair and Hinton, 2010)
followed each pooling layer and fully connected layer. Because
larger batch sizes lead to worse generalization performance
(Keskar et al., 2016), we used 76 batch sizes and 48 epochs
based on a tradeoff between efficiency and generalizability.
We used a training dataset to train the DCNN-M model
based on the Adam optimizer with a learning rate of 0.001
by optimizing a loss function defined as the mean squared
error of the output (Kingma and Ba, 2014). In this study,
the DCNN-M model was programmed using TensorFlow
GPU 2.3 and trained using the training dataset, requiring
approximately 1.5 min on an Nvidia Quadro T1000 GPU
with 12 GB memory.

FIGURE 3 | The architecture of the DCNN-M model. Twelve parameters related to the frequency, amplitude, and energy extracted from the 3-s period after P-wave
arrival are used as the inputs of the DCNN-M model. The hyperparameters of the DCNN-M model include the filter size, stride, padding, initialization, optimizer,
learning rate, regularization, and dropout, etc.
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RESULTS

In this study, the difference between the PM and CM is defined as
the error (ω). The error (ω) and the standard deviation (σ) of the
errors are expressed as:

ω = PM− CM (16)

σ =

√√√√ 1
N

N∑
i=1

(ωi −$)2 (17)

where N is the number of records and $ is the mean of the errors.
Figure 4 depicts magnitude estimation for the training

dataset (Figure 4A) and the test dataset (Figure 4B) based
on the DCNN-M model. The PMs approximate the CMs in
the training and test datasets. The standard deviations of the
magnitude estimation errors are 0.31 for both the training
and test datasets. This finding indicates excellent generalization
performance and an absence of overfitting within the DCNN-
M model.

The τc method and Pd method are widely used in the
study of EEWS magnitude prediction (Kanamori, 2005;
Wu and Kanamori, 2005; Wu and Zhao, 2006; Zollo
et al., 2006; Colombelli et al., 2014). To evaluate the
performance of the DCNN-M model, the τc method and
Pd method were used to predict the magnitudes, and the
results were compared.

For the same test dataset and the 3-s time window after P-wave
arrival, Figures 5A–C show the τc method, Pd method, and
DCNN-M model estimation results, respectively. The magnitude
estimates of the τc method and Pd method are obtained based on
Supplementary Tables 4, 5, respectively. The relationships used

for magnitude estimation by the τc method and Pd method are
given by:

log (τc) = −1.07 (±0.02)+ 0.19(±0.01)M (18)

log
(

P10km
d

)
= −4.84 (±0.02)+ 0.78(±0.01)M (19)

Compared to the DCNN-M model results, the magnitude
estimation results from the τc method and Pd method exhibit
considerable scatter. The standard deviations of the magnitude
estimation error are 1.56, 0.42, and 0.31 for the τc method, Pd
method, and DCNN-M model, respectively. There is obvious
magnitude overestimation (MJMA ≤ 5) from the τc method and
Pd method, but this issue is improved considerably in the DCNN-
M model results. The magnitudes predicted by the DCNN-M
model are closer to the vs. than those from the τc method and
Pd method.

Furthermore, the variation in the magnitude estimation error
with the epicentral distance is presented in Figure 5 for the
τc method (Figure 5D), Pd method (Figure 5E), and DCNN-
M model (Figure 5F). It can be observed from the distribution
of circles that the τc method and Pd method exhibit larger
errors than the DCNN-M model. In addition, the magnitude
estimation errors from the τc method and Pd method have larger
discreteness (black bars) than those from the DCNN-M model,
and the means (red squares) of the magnitude estimation errors
from the τc method and Pd method clearly vary with increasing
epicentral distance. This phenomenon is especially true for the
τc method. The mean (red square) of the DCNN-M model
magnitude estimation errors is nearly zero, and the DCNN-
M model magnitude estimation errors are not affected by the
epicentral distance.

FIGURE 4 | Correlations between the predicted and catalog magnitudes. (A) Magnitude estimation for the training dataset used to train the DCNN-M model. (B) The
magnitude estimation of the test dataset used to test the DCNN-M model performance. When a data point is on the solid black 45◦ line, the predicted magnitude is
equal to the catalog magnitude. The two black dashed lines indicate the range of one standard deviation of error.
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FIGURE 5 | Catalog magnitudes versus predicted magnitudes produced using the test dataset by (A) the τc method, (B) the Pd method, and (C) the DCNN-M
model. On the solid black 45◦ line, the predicted magnitude is equal to the catalog magnitude. The two black dashed lines indicate the locations of one standard
deviation of error. The relationship between the epicentral distance and the error in the predicted magnitude for (D) the τc method, (E) the Pd method, and (F) the
DCNN-M model. The epicentral distance is divided into seven sections: (0 km, 30 km), (30 km, 60 km), (60 km, 100 km), (100 km, 150 km), (125 km, 175 km),
(150 km, 200 km), and (200 km, 200+ km). The position of the solid red square represents the mean of the errors within an epicentral distance. The length of the
black bar shows the standard deviation of the magnitude estimation errors within an epicentral distance, which reflects the discreteness of the errors.

For a given test dataset, Table 1 compares the distribution
of the magnitude estimation absolute errors for the τc method,
Pd method, and DCNN-M model. As shown in Table 1, the
absolute magnitude estimation errors of the DCNN-M model
are concentrated mainly in the range of 0.6 magnitude units of
approximately 2σ, and the results for the DCNN-M model are
nearly 60 and 10% greater than those of the τc method and
Pd method, respectively, in the range of 0.6 magnitude units.
Moreover, for the absolute magnitude estimation errors greater
than 1.2 magnitude units, the percentage of DCNN-M model
results is nearly zero and is much less than those from the τc
method and Pd method. These analyses also indicate that the

DCNN-M model is more accurate than the τc method and Pd
method and has considerable EEW application potential.

OFFLINE APPLICATION OF THE
DCNN-M MODEL

To test the robustness of the DCNN-M model in analyzing new
earthquake events, we tested the magnitude prediction of 31
additional events. These events were not included in the training
and test datasets. These events (see Supplementary Table 2)
occurred mainly between April 2018 and December 2019. Due
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TABLE 1 | The distribution of the magnitude estimation errors for the τc method,
Pd method, and DCNN-M model.

Absolute error range Percentage of records

τ c method
(%)

Pd method
(%)

DCNN-M
model (%)

0 ≤ | error| ≤ 0.6 34.13 86.71 94.78

0.6 < | error| ≤ 1.2 27.82 12.30 4.98

1.2 < | error| 38.05 0.99 0.24

to the small number of large earthquakes with MJMA ≥ 6 in this
time period, we also selected seven earthquakes with MJMA ≥ 6
that occurred before October 2007. The distribution of stations
and epicenters for the 31 events and the magnitude prediction for
these events are shown in Figures 6A,B, respectively. The solid
red circle shows the mean estimated magnitude of the DCNN-
M model for an earthquake event. The PMs of these events are
quite similar to the CMs, and nearly all of the PMs are within the
standard deviation (0.31) of the errors for the DCNN-M model.
In addition, the standard deviation of the errors for these events
is 0.21. Moreover, reliable results without obvious magnitude
overestimation and underestimation are obtained for events with
MJMA ≤ 7.2.

DISCUSSION AND CONCLUSION

For the past several decades, EEW magnitudes have been
determined by establishing regression functions between a single
P-wave parameter and the CMs. The τc method and Pd method
have been widely used in the study of EEW magnitude estimation

(Kanamori, 2005; Wu and Kanamori, 2005; Wu and Zhao, 2006;
Zollo et al., 2006; Colombelli et al., 2014). Since a single parameter
might provide little magnitude information, we introduce an
advanced magnitude prediction model named DCNN-M in this
paper. DCNN-M uses a deep convolutional neural network to
perform magnitude estimation. We used a training dataset to
train the DCNN-M model and 12 parameters extracted from
the initial 3 s of the P-wave record as inputs to the DCNN-M
model. These parameters are related to the frequency, amplitude,
and energy, which make the DCNN-M model interpretable.
Additionally, although many of these input parameters might not
be independent of each other, they are not completely the same,
and more parameters might provide more information about the
magnitude. In addition, a test dataset was used to test the DCNN-
M model performance. The results were compared to those from
the τc method and Pd method. As a further test, we used the
DCNN-M model to predict 31 additional events.

In this study, we used 1,836 inland earthquakes from the
K-NET catalog with magnitudes in the 3≤MJMA ≤ 7.2 range and
focal depths shallower than 10 km. To use more accurate P-wave
arrival information, first, we use the short-term averaging/long-
term averaging algorithm (Allen, 1978) to determine the P-wave
arrival automatically. Then compared with the P-wave arrival
determined manually, the records that have a larger difference
between the P-wave arrival determined automatically and the
P-wave arrival determined manually are discarded. For the
test dataset, DCNN-M magnitude estimation provided smaller
errors and no obvious overall magnitude underestimation or
overestimation relative to the τc method and Pd method. In
principle, the DCNN-M model can be extended to earthquakes
in other regions. We plan to test it with strong-motion data from
China because most earthquakes in China are inland earthquakes

FIGURE 6 | (A) The distribution of the epicenter locations and stations for 31 additional earthquakes. The solid red circles of different sizes represent magnitudes of
3 ≤ MJMA ≤ 7.2. The solid blue triangles represent stations that recorded the 31 events. (B) Magnitudes determined using the DCNN-M model versus the catalog
magnitudes for the 31 additional events. On the solid black 45◦ line, the predicted magnitude is equal to the catalog magnitude. The two black dashed lines indicate
the locations (0.31) of the one standard deviation of errors for the DCNN-M model. The solid red circles show the mean of the estimated magnitudes of the DCNN-M
model for the earthquake events. The length of the black bar shows the standard deviation of the magnitude estimation errors for each event.
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with focal depths shallower than 10 km (Song et al., 2018). In
this study, the problem of the possible underestimation of large
earthquakes did not appear in the dataset of earthquakes with
magnitudes in the 3 ≤ MJMA ≤ 7.2 range. The problem of
underestimation of large earthquakes (MJMA ≥ 7.5) remains to
be studied. Extending the training dataset magnitude range or
the time window after P-wave arrival may solve problems related
to larger (MJMA ≥ 7.5) earthquakes (Colombelli et al., 2012;
Chen et al., 2017).

The DCNN-M model trained using the training dataset could
provide ideal test dataset magnitude estimation results. The
standard deviations of the magnitude estimation errors of the
training and test datasets were both 0.31. This finding indicates
that the DCNN-M model provided good generalizability with
no overfitting. Our results show that the magnitudes predicted
by the DCNN-M model, which provided a standard deviation
of 0.31 based on the 3-s time window after P-wave arrival,
exhibited better agreement with the CMs than the magnitudes
predicted using the τc method and Pd method, which provided
standard deviations of 1.56 and 0.42, respectively. In addition, the
magnitude estimates from the τc method provided considerable
scatter and overestimation at MJMA ≤ 5. These phenomena
are consistent with the results of Carranza et al. (2015). In
contrast, the PMs from the DCNN-M model significantly
approximate the CMs. The τc parameter is used as an input to
the DCNN-M model, but there is no significant overestimation
at MJMA ≤ 5. The reason may be that the DCNN-M model
training reduces the influence of τc on the model magnitude,
and the correlation between the frequency content of the τc
parameter and magnitude is learned. The magnitude estimates
from the DCNN-M model were not affected by the epicentral
distance, unlike those of the τc method and Pd method.
For the same test dataset, the absolute magnitude estimation
errors of the DCNN-M model are mainly concentrated in
the range of 0.6 magnitude units at approximately 2σ, and
the percentage of the magnitude estimation error is 94.78%
greater than those of the τc method and Pd method. This
finding means that the DCNN-M model has better magnitude
determination performance than the τc method and Pd method,
and the probability that the magnitude estimation error is
in the range of 0.6 magnitude units is 94.78%. Furthermore,
we obtained reliable magnitude estimates without obvious
magnitude overestimation and underestimation for 31 additional
events using the DCNN-M model. These results indicate that the
DCNN-M model has considerable EEW magnitude estimation
application potential in Japan.

In Japan, magnitude is measured with the magnitude scale
MJMA; hence, the magnitude scale MJMA is used as the target
predicted by the DCNN-M model for the area of Japan in this
paper. For different magnitude scales and user requirement,
we could use the conversion relationship between different
magnitude scales or use a different magnitude scale (likely Mw) as
the target predicted by the DCNN-M model. Different magnitude
scales might influence our results. We mainly propose a new
magnitude model (DCNN-M) for magnitude determination in
this paper for EEW. In the next step we will deeply study the
influence of different magnitude scales on the DCNN-M model.

Importantly in this study, we corrected the parameters related
to amplitude, energy and derivative parameters for the distance
effect by normalizing them to a reference distance of 10 km
(Zollo et al., 2006). In our application, based on real-time
earthquake locations provided by an EEWS, the magnitude
estimation of the DCNN-M model is determined. The method
used to determine real-time earthquake locations is similar to
that of Zollo et al. (2010), which was developed by Satriano
et al. (2008). Moreover, it also provides the possibility to detect
earthquake locations based on the deep learning method (Perol
et al., 2018; Zhang et al., 2019, 2020) and has potential for future
application in EEW.

However, the DCNN-M model hyperparameters, the size of
the training dataset and the input parameters are also important
in magnitude estimation. The hyperparameters include the
number of layers, number of filters, dropout rate, optimizer,
learning rate, batch size, and stride. In this paper, we tried
several times to debug each hyperparameter of the DCNN-M
model manually to identify those hyperparameters that might not
be optimal. However, the comparison of the DCNN-M model
magnitude estimates with those produced via the τc method and
Pd method indicated that the DCNN-M model has considerable
potential for EEW applications and provides robust magnitude
estimation. In this study, we use 12 parameters extracted from
the initial 3 s of the P-wave record as inputs to the DCNN-M
model, and we may find that more parameters with magnitude
information could be used as the input of the DCNN-M model in
the future. To improve the performance of the DCNN-M model
with regard to the magnitude estimation accuracy, the DCNN-
M model hyperparameters and the input parameters need to be
optimized, and the amount of strong-motion data still needs to be
expanded (Perol et al., 2018). The DCNN-M model will be more
effective at avoiding false EEW alarms than the τc method and
Pd method.
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Earthquake early warning (EEW) systems provide a few to tens of seconds of warning
before shaking hits a site. Despite the recent rapid developments of EEW systems around
the world, the optimal alert response strategy and the practical benefit of using EEW are still
open-ended questions, especially in areas where EEW systems are new or have not yet
been deployed. Here, we use a case study of a rail system in California’s San Francisco Bay
Area to explore potential uses of EEW for rail systems. Rail systems are of particular interest
not only because they are important lifeline infrastructure and a common application for
EEW around the world, but also because their geographically broad yet networked
infrastructure makes them almost uniquely well suited for utilizing EEW. While the most
obvious potential benefit of EEW to the railway is to prevent derailments by stopping trains
before the arrival of shaking, the lead time for warnings is usually not long enough to
significantly reduce a train’s speed. In reality, EEW’s greatest impact is preventing
derailment by alerting trains to slow down or stop before they encounter damaged
track. We perform cost-benefit analyses of different decision-making strategies for
several EEW system designs to find an optimal alerting strategy. On-site EEW provides
better outcomes than source-parameter-based EEW when warning at a threshold of
120 gal (the level of shaking at which damage might occur) regardless of false alarm
tolerance. A source-parameter-based EEW system with a lower alerting threshold (e.g.,
40 gal) can reduce the exposure to potentially damaged track compared to an on-site
system alerting at 120 gal, but a lower alerting threshold comes at the cost of additional
precautionary system stops. The optimal EEW approach for rail systems depends strongly
on the ratio of the cost of stopping the system unnecessarily to the potential loss from
traversing damaged tracks.

Keywords: earthquake early warning, cost-benefit analysis, rail systems, San Francisco Bay area, natural hazards
warning
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INTRODUCTION

The original idea for EEW is generally credited to a piece by Dr
J. D. Cooper in the November 3, 1868, San Francisco Daily
Evening Bulletin (Nakamura, 1996; Saita and Nakamura, 2003).
The idea as first proposed was to send an electrical signal from a
network of earthquake sensors to trigger an alarm in the city. The
first practical implementation of an EEW system began nearly a
hundred years later, in 1965, when a M6.1 earthquake led what is
now the Japan Railways Group (JR) to install seismometers every
20–25 km along the Shinkansen bullet train tracks to issue an
alert to slow trains if horizontal accelerations exceeding 40 gal
were observed (Saita and Nakamura, 2003). In 1984, this EEW
system was supplemented by JR’s Coastline Detection System
based on seismometers placed along the coast to detect offshore
earthquakes. A P-wave scaling relationship was then used to
estimate source magnitude and thus decide whether a warning
should be issued to the inland Shinkansen system. The Coastline
Detection System was later upgraded and replaced with the
Urgent Earthquake Detection and Alarm System (UrEDAS)
(Saita and Nakamura, 2003). In 2004, JR replaced the
UrEDAS with another new EEW system that also estimates
source parameters, while continuing its ground-motion-based
system of stopping trains if acceleration, bandpass filtered
between 0.5 and 5 Hz, exceeds a given threshold (Yamamoto
and Tomori, 2013).

In the past three decades, EEW systems designed to notify the
general public have been developed all around the world. Some,
such asMexico’s Seismic Alert System (SAS) that began operating
August 1991 (Aranda et al., 1995), used similar approaches to JR’s
coastline system with near-coast seismometers detecting offshore
earthquakes and transmitting warnings to inland population
centers. Other systems, such as the Japan Meteorological
Agency (JMA) EEW system for Japan (Hoshiba et al., 2008;
Doi, 2011), the Central Weather Bureau (CWB) system for
Taiwan (Hsiao et al., 2009), and the United States’ ShakeAlert
system, which provides warning to the States of California,
Oregon, and Washington, take a fundamentally different
approach: they all use a network of stations (both onshore and
offshore) to detect earthquakes within, and provide warning to, a
broad region. In contrast, the JR and original SAS systems were
designed only to protect a localized area. Despite this
fundamental difference with the JR and original SAS systems,
these regional EEW systems typically use methods similar to
UrEDAS: seismic data are used to infer the source parameters of
the earthquake (i.e., location and magnitude), and this
information is then input to a ground motion prediction
equation (GMPE) in order to forecast whether the expected
shaking will exceed some critical threshold for triggering a
warning.

In recent years, different EEW approaches have proliferated,
such as algorithms that utilize geodetic data (Murray et al., 2018)
or store seismogram filter banks (Meier et al., 2015). JMA has
updated their source parameter algorithm using the Integrated
Particle Filter (IPF) method and complemented that approach
with the ground-motion-based Propagation of Local Undamped
Motion (PLUM) method. The IPF method uses a particle filter

technique to combine, in a Bayesian estimation framework,
ground motion observations and information about where
shaking has not been observed (Tamaribuchi et al., 2014). The
PLUMmethod is noteworthy for using ground motion to directly
forecast ground motion without first estimating earthquake
source parameters (Kodera et al., 2018). But with a few
exceptions such as the PLUM method, EEW systems are still
largely divided into two camps: source-parameter-based methods
(which infer earthquake location and magnitude, and then input
that information into a GMPE to identify which regions should be
alerted) and on-site methods (which trigger alerts to specific
assets when strategically placed seismometers observe shaking
above some critical threshold). The ShakeAlert and UrEDAS
systems are typical examples of the former, whereas the original
JR EEW system exemplifies the latter.

Despite the rapid advancement of EEW in recent years, studies
on effective applications of EEW are few, often focusing on
creating a cost-benefit analysis framework for rapid decision-
making under uncertain EEW information (Iervolino, 2011; Wu
et al., 2013). Those studies that have been done on specific EEW
engineering applications have tended to explore rather simple
scenarios, such as elevator control (Wu et al., 2016), although
Cauzzi et al., 2016 focused on the complexities of utilizing EEW
for nuclear power plants. Even fewer are the studies that look at
specific EEW engineering examples for complex systems and
attempt to optimize the EEW system’s performance for that
application, with Veneziano and Papadimitriou (2003) being a
notable exception. In that study, the authors compared different
approaches for determining which sections of the Shinkansen rail
system the JR early warning system should close for inspection
while minimizing both the total system delay and expected
number of derailments.

One of the major challenges of studying EEW applications
comes from the complexity of the uncertainty of the EEW system
itself interacting with the uncertainty of human decision-makers,
especially because EEW-related decisions often involve the
potential for human casualties. Another major challenge
comes from the physical limitations of EEW. For example, the
on-site approach has obvious limitations on the amount of
warning it can provide because an alert cannot be issued until
shaking is already impinging somewhere along the rail system.
On the other hand, previous studies have demonstrated the
difficulty in providing timely source-parameter-based EEW
especially for the very strong levels of shaking that pose a
hazard to heavy infrastructure (e.g., Meier, 2017; Minson
et al., 2018; Trugman et al., 2019).

While understanding the role of EEW in a real application is
extremely difficult, knowing the true value of EEW and finding an
optimal EEW-based emergency response strategy for mitigating
seismic risk is essential. In this study, we considered a rail system
based on the Northern California Bay Area Rapid Transit (BART)
system as an example of a special type of infrastructure network
where it is critical not just to forecast shaking at the user’s
(i.e., train’s) current location but also at distant parts of the
track that the train will later encounter in its route. This presents
an almost unique opportunity for EEW since long warning times
are possible when an earthquake damages track far from any
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train’s current location. However, this usefulness is tempered by
the fact that trains require a significant amount of time, and thus
track length, to stop. By going through an end-to-end case study
(from event catalog to cost-benefit analysis of the decision to stop
trains), we examine the performance of several different EEW
alerting strategies for a rail network located in California.
Furthermore, our approach demonstrates a general framework to
design decision-making strategies for large-scale EEW applications.

While our goal is to present a framework that can be employed by
the relevant decision-makers to guide EEW application to rail
systems, it would not be appropriate here to make specific
recommendations for rail system operations. Rather than
focusing on a specific application, we instead present an example
of our framework in which we evaluate the utility of different EEW
system designs assuming the theoretical performance of an ideal
system with zero noise, data latency, or computational delays, thus
quantifying the maximum possible risk reduction from EEW. In so
doing, we quantify the maximum theoretical potential benefit of
EEW for rail systems, that is, the amount of risk reduction that can
be accomplished with EEW given physical limitations such as the
closeness between the faults and the track system, and the relative
speeds of seismic waves and trains.

EXAMPLE EARTHQUAKE EARLY
WARNING SCENARIO

Distributed infrastructure networks such as rail systems can
utilize EEW uniquely well because there is value to be had
from protecting the network as a whole even if timely warning
is not possible in the near field where shaking is strongest. An
example cartoon of EEW applied to a rail system is shown in
Figure 1. Useful EEW for a train directly threatened by the
earthquake is actually quite difficult because it takes significant
time to bring a train to a complete stop (In the examples that
follow, a commuter train in the United States takes ∼17 s to stop
while a Shinkansen bullet train can take more than a minute (Arai
et al., 2008).) Thus, it would be nearly impossible to halt a train
before shaking arrives at its location, especially for trains in the
near field of the rupture where shaking is strongest. However, the
goal of using EEW to slow and stop trains is generally not to
prevent the train from being directly derailed by ground shaking;
in fact, being stopped does not necessarily prevent a train from
being toppled (e.g., Veeraraghavan et al., 2019). Instead, the goal
is to slow or stop the train before it encounters damaged track that
might itself trigger a derailment (Veneziano and Papadimitriou,
2003). This means that, except in the unfortunate case where the
train’s current location is hit with damaging ground shaking, the
train has additional time to stop or take other protective action
before it encounters damaged track.

OVERVIEW OF THE RAIL SYSTEM CASE
STUDY

For this study, we use the track geometry of the BART system, the
light rail serving California’s San Francisco Bay Area (Figure 2).

To assess seismic hazard, we use a 1,000-year-duration catalog of
earthquake rupture scenarios generated from the earthquake
probabilities of the Third Uniform California Earthquake
Rupture Forecast with spatiotemporal clustering (UCERF3-
ETAS) (Field et al., 2017) (Figure 2A). For each scenario
rupture, we calculate the expected horizontal peak ground
acceleration (PGA) at all track locations using the Chiou and
Youngs (2014) GMPE with the Vs30 model of Allen and Wald
(2009) (Figure 2B). Our analysis is done on the rail system as a
whole: when potentially damaging shaking is expected at any
location along the tracks, all trains are signaled to start braking
and potentially halted to allow track inspection. We assume that
an alert is issued when the expected shaking exceeds a low level of
non-damaging shaking (40 gal) with the goal of slowing or
stopping trains before they encounter potentially damaged
track (Figure 2C) (40 gal is ∼4% g, equivalent to Modified
Mercalli Intensity, MMI, IV-V.) We further assume that track
damage occurs at accelerations greater than 120 gal (∼12% g,
equivalent to about MMI VI) (Figure 2D). These shaking levels
(including the use of units of gal) are taken directly from the
original design of the JR EEW system for Japan’s Shinkansen
bullet train. In the original system, trains were halted when
seismometers detected shaking along the tracks that exceeded
40 gal (Nakamura and Tucker, 1988; Nakamura and Saita, 2007).
Shaking corresponding to 40 gal, or MMI ∼ IV, is also a good
comparison point for EEW performance in California; when
ShakeAlert went live in December 2018, the initial public
alerting threshold was set to MMI IV, although that level has
since been lowered (Cochran and Husker, 2019). A study of Japan
earthquakes that caused track damage found that damage was
concentrated at shaking levels exceeding 120 gal (Nakamura,
1996), which is also the level used for triggering stops based
on shaking at coastal seismometers (Ogura, 2006; Japan
Transport Safety Board, 2013; Strauss and Allen, 2016). More
recently, 120 gal has been adopted as a general shaking threshold
for safe operation of high-speed rail (Hu et al., 2014).

If those criteria were applied to BART track locations using
UCERF3-ETAS seismic hazard probabilities, we would expect
the rail system to be alerted to PGA>40 gal shaking
approximately once per year (Figure 2C), but most of those
system alerts would be precautionary. No individual site is
expected to be impacted by damaging shaking (PGA>120 gal)
more than once per decade (Figure 2D), but damage anywhere
could impact system operations everywhere. The rate of
earthquakes with hazardous expected ground motions
impinging anywhere on the track system is ∼2/decade.
These numbers are average shaking rates based on median
ground motions, neglecting hazard from small magnitude
earthquakes with anomalously strong shaking and temporal
clustering of earthquakes. Earthquakes are often clustered in
time with, for example, periods of little to no seismicity
separating productive mainshock-aftershock sequences. In
our 1,000-year chronology, location 13 (city of Fremont)
goes as long as 126 years between earthquakes that are
expected to produce potentially damaging shaking
(PGA>120 gal), but also experiences 12 such events within a
one-year period.
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All trains in the rail system will be alerted to slow down (and
potentially stop) if an alert is triggered for any track location. 78%
of system alerts will be precautionary, that is the peak shaking
somewhere along the track is forecast to exceed 40 gal (triggering
an alert) but potentially damaging shaking (PGA>120 gal) is not
experienced anywhere along the tracks. However, this is
calculated for median expected ground motions. In reality,
ground motion variability can result in a greater number of
smaller magnitude earthquakes producing greater than
expected shaking (e.g., Minson et al., 2021) making some of
these precautionary alerts, in fact, necessary (Minson et al., 2019).

Shaking hazard is not the same everywhere. Among the 22% of
alerts that are necessary for the rail system because potentially
damaging (PGA>120 gal) shaking occurred somewhere along the
tracks (assuming median expected shaking), some track locations

are more likely to be directly threatened by shaking and some are
more likely to be alerted to stop for shaking in some other part of
the rail system. In Figure 3, we plot the breakdown between how
often each of 15 sample locations along the tracks will itself be
threatened vs. be alerted for potentially damaging shaking
elsewhere in the system. Strong shaking is more probable
along the southern Hayward Fault and Santa Clara Valley
(Figure 2D), and thus sites such as location 12 and location
13 (city of Fremont) are more likely to be directly threatened.
However, other locations, such as location 2 (southern San
Francisco) and location 9 (eastern exurbs) have low shaking
hazard because they are farther from high hazard faults. These
locations are mostly alerted to stop when some other part of the
system is expected to be in danger due to shaking, their local track
is less likely to be damaged, and they are more likely to have

FIGURE 1 | Cartoon example of EEW for a rail system. (A) An earthquake nucleates (star) and when shaking reaches a seismometer (black inverted triangle), all
trains are signaled to start braking. As time increases (B–D), decreasing amplitudes of shaking reach the locations of more distant trains, which will have been able to
further slow. The trains will still be traveling at 32 MPH when the shaking reaches the closest train (B), they will have slowed to 14 MPH by the time shaking reaches the
middle train (C), and the trains will be completely stopped just as shaking reaches themost distant train (D). While all but the most distant train will still be traveling at
significant speed when the shaking arrives at their locations, they can all be successfully slowed and stopped before traveling to a region where they might encounter
damaged track (denoted by hatches). Black wiggles show move-out of P-wave and S-wave, and how shaking amplitude decays with distance. Seismic wave arrival
times and amplitudes are calculated assuming a Poisson medium with S-wave velocity of 3.5 km/s and shear modulus of 30 GPa.
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plenty of time to slow or stop before encountering damaged track
elsewhere. For example, of the 22% of alerts where >120 gal is
expected somewhere in the track system, location 13 (Fremont),
situated near the Hayward Fault in the flatlands of the East Bay,
experiences >120 gal in 36% of those events, while location 2
(south San Francisco) experiences >120 gal in just 10% of those
events. Again, note that these percentages are calculated for
median expected ground motions.

CONVENTIONAL EARTHQUAKE EARLY
WARNING VIEW: HOW MUCH WARNING
DOES EACH LOCATION RECEIVE?
To date, most EEW analyses focus on how much warning time a
particular location receives, defined as the time difference
between when a location is alerted until when hazardous
shaking arrives at that location (e.g., Meier, 2017; Minson
et al., 2018). With trains, the main goal is to give the train

enough warning to stop not before the shaking gets to the train’s
current location, but before the train traverses damaged tracks.
For completeness and comparison to existing studies, we first
analyze how much warning time a train gets before it experiences
shaking. But then, in the next section, we instead explore how the
distributed nature of track systems makes them ideal for EEW
because there is potentially significant time to take protective
action before a train encounters damaged track.

The amount of warning time at any location will be the elapsed
time from when the rail system is alerted until shaking arrives at
that location. But when is the rail system alerted? The answer
depends on the type of EEW system deployed.

In Japan, the first EEW system installed by JR was what might
be termed an on-site ground-motion-based EEW system:
seismometers were deployed along the tracks and if shaking
above 40 gal was detected anywhere, the local tracks were de-
energized (Nakamura and Tucker, 1988). More recently, this
system has been augmented with a network source-parameter-
based EEW system that uses seismic waveforms to estimate the

FIGURE 2 | (A) Plot of 1,000 years of ruptures generated with UCERF3-ETAS probabilities. Red box is area shown in plots b-d. (B) Vs30 from topographic proxy.
Black lines show train tracks. Numbers in circles show sample locations along tracks for which detailed results will be shown. (C) Frequency of groundmotion exceeding
40 gal, i.e., how often alerts to stop trains would be generated. While no location is expected to trigger an alert more than five times per decade, when shaking is
expected anywhere, the entire system is alerted. The total number of times the train system would be stopped for this catalog is ∼10 times per decade or once per
year. (D) The frequency of potentially damaging ground motions exceeding 120 gal. Text labels denote San Andreas Fault (SAF), Hayward Fault (HF), Calaveras Fault
(CF), and the Santa Clara Valley (SCV).
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location andmagnitude of an earthquake, inputs that information
into a GMPE to forecast shaking, and, if the predicted shaking
exceeds the alerting threshold, issues an alert. This latter system
design is the same as the ShakeAlert EEW system being operated
in California, Oregon, andWashington States (Given et al., 2018).

At each second as the rupture expands, we compute the peak
shaking at every point along the tracks to determine when an
on-site ground motion system could issue an alert (i.e., when
shaking exceeds 40 gal) and when dangerous shaking arrives
(i.e., shaking exceeds 120 gal). Because we assume ideal noise-
free EEW system performance, one station exceeding 40 gal is
sufficient to trigger an alert. Real-world system operators might
prefer to use data from multiple seismometers (co-located or
not) to confirm an event before issuing an alert, but not
necessarily. The original on-site JR system de-energized track
and warned controllers when any seismometer exceeded 40 gal
(Nakamura and Tucker, 1988).

We also input the current accumulated magnitude and
rupture extent at each second of the evolving rupture into a
GMPE (Chiou and Youngs, 2014) to forecast shaking at every
point along the tracks to determine when a source-parameter-
based system could issue an alert. Note that this is an ideal limit to
how fast EEW could operate. We have ignored all system
latencies including data telemetry, analysis, and alert
distribution, and have implicitly assumed an infinitely dense
seismic network. We have further assumed that all EEW
shaking forecasts are perfect when, in reality, ground motion

is highly variable and will cause source-parameter-based EEW to
have many missed alerts and some false alerts even if the source
parameters of the earthquake rupture are known perfectly
(Minson et al., 2019; Saunders et al., 2020).

Several points are worth noting about how ground motion
variability affects EEW performance and how we treat shaking
variability in this study. While ground motion models
(i.e., GMPEs) constrain the variability of shaking at any
location due to an earthquake rupture, unfortunately little is
known about the spatial covariance of shaking. Thus, for much of
the analyses that follow, all ground motions by necessity are fixed
to the median expected value predicted by the GMPE. We
compute the hazard exposure of the rail system, and potential
gains and losses, as long-term expected values so that the specific
spatial variation of shaking in any particular earthquake averages
out. But two important caveats about our analysis remain. First,
we will be missing additional exposure from earthquakes that
produce unusually strong shaking for their magnitude. Second, as
discussed earlier, because ground motion varies from median
expected values, real source-parameter-based EEW shaking
forecasts will be uncertain, leading to missed and false alerts
when shaking turns out be stronger or weaker than expected,
respectively. On-site ground-motion-based EEW systems,
barring some sort of instrumental malfunction, never produce
these types of missed and false alerts because they are triggering
warnings based on the actual observed shaking. (These missed
and false alerts are separate and in addition to unnecessary stops

FIGURE 3 | In this example, we consider only median expected ground motions and the system is alerted to stop all trains when 40 gal is observed (for on-site
systems) or forecast (for source-parameter-based systems) somewhere on the tracks. Based on the 1,000-year catalog of ruptures, 78% of these alerts will be
unnecessary because, although shaking exceeds 40 gal, it does not exceed 120 gal anywhere on the tracks, and thus is not damaging. Of the 22%of cases where stops
were required because 120 gal was exceeded somewhere along the tracks, we categorize the alerts into an alert required because >120 gal shaking was recorded
at the marked location vs. those required to accommodate stopping the whole system and inspecting for damage because 120 gal was recorded somewhere along the
tracks. Shaking of 120 gal is most frequently observed on sites along the southern Hayward Fault (e.g., locations 12 and 13). Locations far from high rupture probability
faults (e.g., location 9) most frequently stop due not to local strong shaking but instead strong shaking elsewhere in the train network. Background color shows
population density, with darker blues indicating more population.

Frontiers in Earth Science | www.frontiersin.org June 2021 | Volume 9 | Article 6204676

Minson et al. Earthquake Warning for Rail

35

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


resulting from the alerting threshold being lower than the shaking
threshold at which damage is expected, as in our example where
we alert at 40 gal but damage is expected at PGA>120 gal.) By
ignoring forecasting errors from source-parameter-based EEW
systems, our analysis inflates the potential usefulness of source-
parameter-based approaches relative to both their real-world
performance and the performance of on-site ground-motion-
based approaches.

It is worth noting that ground motion variability is not
addressed explicitly in most EEW systems. Instead, the most
common way that EEW systems incorporate ground motion
variability is by setting an alerting threshold that is
significantly less than the target level of ground motion for
which the user would actually like to take action, thus helping
ensure that the user is alerted to take action in cases that an
earthquake produces stronger shaking than expected. For
example, the original on-site JR EEW system used an alerting
threshold of 40 gal even though damage is not expected for
shaking that is less than 120 gal (Nakamura and Tucker, 1988;
Nakamura, 1996; Nakamura and Saita, 2007; Hu et al., 2014).
Another example would be the ShakeAlert EEW system in the
United States. When the system went live in December 2018, the
alerting threshold was MMI IV for a target level of MMI VI. Since
then, the target level has been decreased to felt shaking (MMI IV)
and the alerting level has been correspondingly lowered (Cochran
and Husker, 2019).

Most trains in the BART system have a maximum speed of 70
MPH and make 20-s stops at each station [http://bart.gov/about/

history/facts]. We assume that a train in motion has an average
speed of 50 MPH. When braking, BART trains can decrease their
speed by 3MPH every second requiring just under 17 s to come to
a complete stop over a distance of 0.1 mi (186 m) (https://www.
bart.gov/guide/safety/earthquake).

In Figures 4, 5, we present an example of the performance, in
the conventional EEW view, of a source-parameter-based EEW
system that alerts when forecast shaking exceeds 40 gal (although
damage is not expected unless shaking exceeds 120 gal). (Up to
now our analysis has held equally for on-site and source-
parameter-based systems.) For each earthquake in the full
1,000-year-duration UCERF3-ETAS catalog, we compute the
final velocity to which a train at each of the 15 example
locations in Figure 1 could decelerate before peak shaking
arrives. (For simplicity, we assume that peak shaking is carried
by the direct S-wave.) These example locations were chosen to
explore the variety of experiences a train could encounter from
being close to a high hazard fault to far from any fault, from being
in a place with high local ground motion amplification to being
on a hard rock site.

The average amount of warning is 8.4 s, averaged over all
track locations for all earthquakes in the scenario catalog. This
is about half the time necessary to completely stop a train
traveling at 50 MPH, and it is rare for any location to receive
enough warning to completely halt a train before peak shaking
arrives (Figure 4). However, not all trains are traveling at full
speed, and 8 s is sufficient to decrease train velocity by more
than 20 MPH.

FIGURE 4 | Based on the 1,000-year UCERF3-ETAS rupture catalog, we plot the percentage of earthquakes for which trains traveling at 50 MPH have sufficient
warning time to stop, to slow to less than 12.5 MPH, to slow to 12.5–25 MPH, 25–37.5 MPH, 37.5–50 MPH, or have no warning at all. In general, the no warning
outcome only occurs for locations very close to major faults, such as locations 12–13 on the southern Hayward Fault. But locations that are far from major faults, e.g.,
location 3 in downtown San Francisco, always receive at least some warning. However, at every location, warning is usually not sufficient to decrease velocity by
even half. Background color shows population density, with darker blues indicating more population. Warning times are calculated for a source-parameter-based EEW
system that alerts all trains to stop when 40-gal shaking is forecast anywhere in the track system.
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The above statistics are for all earthquakes in the 1,000-year
catalog, including the events that did not cause hazardous shaking at
the example location. In Figure 5, we separate outcomes based on
whether hazardous shaking (defined as PGA>120 gal or ∼12% g) is
experienced at that specific location (assuming median ground
motions). Locations that experience hazardous shaking typically
have short warning times such that only minimal braking can
occur. For example, at location 13 (Fremont), of the 78 events
with hazardous median expected shaking (>120 gal or ∼12% g), 63
events (81%) result in such little warning that a train could only
decelerate <10 MPH before dangerous shaking arrived.

Neglecting any false alarms due to technical or forecasting errors,
an EEW system (either on-site or source-parameter-based) that alerts
at 120 gal would have zero unnecessary stops (Figure 6). However,
raising the alert threshold to 120 gal would decrease potential warning
times since the EEW system would have to wait for the waveforms to
increase in amplitude (for on-site EEW systems) or wait for more
moment to be released by the evolving rupture (for source-parameter-
based EEW systems) before it could issue an alert. If an on-site system
is triggered by the S-wave arrival, the average warning time across the

track system would be 7.3 s for an on-site system and 7.1 s for a
source-parameter-based system. The source-parameter-based system
lags slightly behind the on-site system despite benefiting from
observations near the earthquake source because it takes substantial
time for the earthquake source process to release sufficient magnitude
that the source-parameter-based system can forecast at least 120 gal
shaking anywhere along the tracks (Minson et al., 2018), while the on-
site system can issue an alert as soon as strong shaking impinges
anywhere on the track system. If we consider only sites along the track
that experience damaging shaking (PGA>120 gal), the average
warning time decreases to just 3.6 and 3.3 s for on-site and source-
parameter-based EEW, respectively.

Conversely, warning times could be increased by lowering the
alerting threshold. However, lower alerting thresholds also increase
the frequency with which the train system would be halted
unnecessarily. It is worth noting that seismicity rates are so low
in the San Francisco BayArea that choosing an alert threshold of just
10 gal (∼1%g) would cause ∼3.5 system stops per year, but allow for
an average of 11.7 s warning at all sites and 7.5 s at sites exceeding
120 gal for a source-parameter-based EEW system.

THE SPECIAL UTILITY OF EARTHQUAKE
EARLY WARNING FOR RAIL SYSTEMS:
AVOIDING DAMAGED TRACK
The preceding analysis looks at the ability to stop a train at any
location before dangerous shaking arrives at that location. But

FIGURE 5 | Final train velocity at all locations due to all earthquakes in the
1,000-year UCERF3-ETAS catalog. Each circle represents the final velocity to
which a train at that location could decelerate for a single earthquake. Circles
are colored red if the median expected ground motion is at least 120 gal
at that location and thus could cause damage at the train’s current location,
blue otherwise. Marginal histograms show total frequency of occurrence.
While trains can often be slowed to low velocities, most damaging shaking (red
circles) arrive with little warning time, generally allowing trains to only slow by
10 MPH or so. EEW system design is same as Figure 4.

FIGURE 6 | Number of system stops for different choices of the forecast
ground motion level that triggers an alert. This represents both the number of
stops for a source-parameter-based system that perfectly forecasts observed
shaking or an on-site system neglecting ground motion variability.
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when it comes to protecting rail systems, EEW does not need to
stop (or slow) the train before the shaking arrives at the train’s
location. It primarily needs to stop the train before it arrives at a
location where the tracks are damaged. In this section, we
consider how EEW can best accomplish this (much more
achievable) goal.

We again assume that the entire rail system is halted if
observed (for on-site EEW systems) or forecast (for source-
parameter-based EEW systems) shaking exceeds the alerting
threshold anywhere along the tracks. If the train’s current
location is not itself subject to damaging shaking, it is
assumed that the train can be safely slowed or stopped
without danger of encountering damaged track. If the PGA at
the current location does end up being so large as to potentially
cause damage, the train is assumed to be able to begin safely
slowing. However, once the S-wave arrives, the tracks might be
damaged, and the train faces the hazard of traversing potentially
damaged track for the distance of track it travels from that time
until it comes to a complete stop. If braked at 3 MPH/second, it
takes about 186 m to come to a stop from an initial speed of 50
MPH. The longer the advance warning the train receives from the
EEW system, the more braking will occur before the S-wave
arrives, and the stopping distance from that reduced velocity (that
is, the amount of potentially damaged track traversed) will be
proportionately lowered.

Exposure to Potentially Damaged Track for
On-Site and Source-Parameter-Based
Earthquake Early Warning Systems
We compute the distance of potentially damaged track that a
train at two sample locations (3-San Francisco and 13-Fremont)
is expected to traverse based on the 1,000-year-duration
UCERF3-ETAS catalog given alerts from ideal on-site and
source-parameter-based EEW systems (Figures 7A,B). The

distance of potentially damaged track crossed in each
earthquake is simply the fraction of the stopping distance that
is traveled after the arrival of potentially damaging (>120 gal)
shaking. (Peak shaking at each point along the track is calculated
as described in the Methodology section.)

We also plot the average exposure to potentially damaged
track across the whole system (Figure 7C). San Francisco and
Fremont represent end-members: San Francisco is farther from
hazardous faults, and thus less often directly impacted by
dangerous shaking (Figure 3), so trains located there more
often can completely avoid encountering damaged track.
Fremont is close to the hazardous Hayward Fault, more often
directly impacted, and thus trains there will more often encounter
damaged track. The expected exposure averaged over all locations
in the track system is, as expected, in between these two end-
members.

In addition to considering an alerting threshold of 40 gal, we
examine how different alerting thresholds change the outcomes.
Lower alerting thresholds allow alerts to be issued earlier because
less of the rupture has to be observed to forecast that shaking will
exceed a lower threshold than a higher threshold (Minson et al.,
2018), and earlier alerting means braking initiates sooner after the
earthquake begins and reduces stopping distance over potentially
damaged track (Figure 7). However, the cost of lowering the
alerting threshold is that the EEW system will issue more
precautionary alerts, resulting in possibly many stops for
smaller earthquakes that never go on to produce potentially
damaging shaking (Figure 6). For the source-parameter-based
EEW system, we consider expected outcomes for alert thresholds
ranging from 10 gal (∼1% g) to the damage threshold (120 gal, or
∼12% g).

Ideally, we would repeat this comparison of different alerting
thresholds for on-site EEW as well. Indeed, we should note that
the original threshold for triggering a warning based on
observations at along-track seismometers (as opposed to

FIGURE 7 | Exposure to potentially damaged track, that is, track that is expected to experience at least 120 gal shaking, in miles per year. Blue lines and symbols
show expected performance for a source-parameter-based EEW system as a function of the threshold expected shaking that triggers an alert. Performance is shown for
track locations in (A) San Francisco and (B) Fremont, and (C) averaged over the entire track system. For comparison, we also show the expected dangerous track
traversed for an on-site EEW system (that alerts when 120 gal is observed anywhere in the train system), an instantaneous EEW system that alerts at the instant the
earthquake nucleates, and the situation of no EEW system in which case the train began braking once shaking arrived. The lower the alerting threshold, the earlier an alert
is triggered, and the less stopping distance occurs after shaking has arrived and potentially damaged the track.
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coastal seismometers) is not the damage threshold of 120 gal but
rather 40 gal (Nakamura and Tucker, 1988; Nakamura and Saita,
2007), which presumably yields additional warning time from
when the 40 gal threshold is crossed until shaking reaches 120 gal
at the cost of causing unnecessary system stops when an event
that causes 40 gal shaking does not go on to produce 120 gal
shaking. However, given limited knowledge of the ratio of S-wave
amplitudes to P-wave amplitudes, or the evolution of shaking
amplitudes throughout an earthquake rupture, we cannot reliably
model when specific thresholds of shaking will be exceeded in a
waveform. So we can only consider the performance of a
reference on-site ground-motion-based EEW system that is
triggered when the S-wave impinges somewhere on the track
system and, for simplicity, we assume that the threshold that
triggers alerts is set to 120 gal and thus there are zero unnecessary
system stops.

We also consider the reference case of a rail system that does
not have the benefit of EEW. For this case, we assume that the
train operator begins braking as soon as they feel shaking,
specifically the arrival of the S-wave (This assumption is based
on author S.N.’s interview with JR drivers, 2008.) If the S-wave
amplitude is > 120 gal, then the train is exposed to potentially
damaged track for the full stopping distance.

The final case we explore is that of a system that receives an
EEW alert the instant that an earthquake nucleates that will
eventually grow to produce damaging shaking and which never
triggers unnecessary system stops. This is not a realistic
scenario. The purpose of this scenario is not to explore any
actual potential EEW system performance but rather to
quantify how much damaged track is simply impossible to
avoid given the geometry between earthquake ruptures and
track locations, as well as the stopping distance of trains. The
performance of any other EEW system design should then not
be evaluated based on whether it eliminates the possibility of
traversing any damaged track but rather on how close the
amount of potentially damaged track traversed is to this
theoretical floor.

We find that on-site warning systems provide more
protection (as measured by the amount of potentially
damaged track traversed) than source-parameter-based
EEW systems when the alerting threshold is set to the level
of potentially damaging shaking (120 gal, or ∼12% g).
However, a source-parameter-based EEW system that
utilizes an alerting threshold less than 120 gal could
potentially provide trains with additional braking time
before the S-wave arrives, decreasing the amount of
potentially damaged track traversed. Lowering the ground
motion level that triggers an on-site alert would presumably
also increase warning time and decrease the amount of
hazardous track traversed. Unfortunately, we cannot
quantify whether it adds more or less warning time than
lowering the source-parameter-based EEW alerting
threshold. Regardless of the type of EEW system, alerting at
lower thresholds comes at the cost of more systemwide stops
(Figure 6); but, for on-site systems, the number of stops may
be further increased by ground motion variability triggering an
alert due to outlier motions from small earthquakes.

Cost-Benefit Analysis
We can perform a rudimentary cost-benefit analysis by assuming
that there is some expected loss for running a train over a unit
distance of potentially damaged track (track that has been
exposed to 120 gal or higher) and that there is also some loss
associated with stopping the system be it necessarily (to inspect
potentially damaged tracks) or unnecessarily (when an alert was
issued for an earthquake too small to cause damage). Following
the approach in Minson et al., 2019, Minson et al., 2020, and
Saunders et al., 2020, we non-dimensionalize the costs by defining
a ratio, r, the false alarm tolerance of the system. That is, r is the
expected loss per unit distance of potentially damaged track
traveled to the cost for stopping the train system (either
necessarily or unnecessarily). If this ratio is large, then the
system is very false-alarm tolerant and it is advantageous to
alert for little earthquakes just in case they grow into damaging
earthquakes even though that will result in unnecessary system
stops. If r is small (a relatively false-alarm-intolerant system),
then the optimal strategy is to stop the system only when it is very
likely that damage could occur so as to minimize the number of
relatively costly system stops (Figure 8).

Each rail system must determine its own false alarm tolerance,
r, in order to identify the optimal EEW alerting strategy for that
rail system. The value may vary from system to system depending
on factors such as infrastructure fragility, train speeds and
braking ability, seismicity rates, shaking hazard, and public
expectations about earthquake safety and public transit
reliability. The considerations surrounding EEW for
Shinkansen trains are not the same as California commuter
rail systems in almost every aspect from operations (e.g.,
speed), to seismic hazard (the most significant earthquakes in
Japan are offshore while onshore continental faults dominate in
California), to the expectations of its ridership. But what we can
say is that, if r is large, then a source-parameter-based approach
with a low alerting threshold (such as has been adopted by both
JR and the new ShakeAlert EEW system) may be the best
approach. But if r is smaller, then the winning approach is to
use on-site ground-motion-based alerting (similar to the original
JR system). Further, on-site EEW provides better outcomes than
source-parameter-based EEW when warning at the damage
threshold of 120 gal regardless of false alarm tolerance.

For the systemwide analysis (Figure 8C), the minimum r value
for which source-parameter-based EEW could outperform on-
site EEW is just less than r � 800 (for an alerting threshold of
80 gal or ∼8% g). So, for example, if running over 1 mi of track
exposed to >120 gal shaking has a 50% chance of causing a
derailment costing $1.6 million in loss (so that the expected loss is
$800,000) and the loss to the rail operator and its passengers for
stopping the entire system unnecessarily is just $1,000, then r �
800. If the cost of halting all trains unnecessarily is relatively
higher than this example ratio, then on-site EEW is the winning
strategy; if the expected loss for running a train over a unit length
of dangerous track is relatively higher, then source-parameter-
based EEW with a low alerting threshold is the optimal choice.

However, that conclusion comes with two enormous caveats.
First, we were unable to quantify the effects of lowering the
alerting threshold for on-site EEW, and thus we cannot
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determine how an on-site EEW system with low alerting
threshold compares to a source-parameter-based system with
low alerting threshold. Second, this cost-benefit analysis assumed
that the source-parameter-based EEW system could perfectly
forecast shaking without error or uncertainty. But ground motion
is in reality highly variable; observed ground motions are log-
normally distributed with typically a factor of 2 scatter (e.g.,
Gregor et al., 2014). Minson et al., 2019 demonstrated that the
effects of this variability are so large that, even if a source-
parameter-based EEW system always perfectly forecast the
median expected shaking, the choice to alert or not alert for
an earthquake would turn out to be incorrect the majority of the
time when an earthquake expected to be dangerous ended up
producing weaker-than-expected shaking or a small earthquake
thought inconsequential ended up producing hazardous shaking.
Because of this, source-parameter-based EEW systems must be
tuned to alert for smaller earthquakes than those expected to
cause damaging shaking so as to avoid missing an alert when an
earthquake produces shaking stronger than the median expected
shaking that is forecast when its magnitude and location are input
to a GMPE. In contrast, on-site ground-motion-based EEW is in
a sense a perfect shaking forecast: either shaking was seen at the
tracks and an alert was required, or there was no shaking and no
alert was needed. This contrast between the large uncertainty in
source-parameter-based EEW systems and relative lack of
uncertainty in on-site ground motion systems, combined with
neglecting increased warning times for on-site systems with low
alerting thresholds, might mean that the on-site approach is
favorable for all values of r. Further, we have not considered
system latencies, such as telemetry latencies to send networked
data back to a processing center, or latencies to transmit messages

to slow trains or trigger de-energization. If these latencies are
significant, on-site systems may have additional advantages in
that they do not need to send data to a center for processing and
may even be able to directly trigger automated actions.

Alternatively, perhaps the effects of the uncertainty in the
shaking forecast would be absorbed into the desire to alert for low
levels of shaking so as to potentially give trains additional warning
time. (This is especially likely for systems where r is large.) Or
perhaps JR’s approach of combining source-parameter-based and
on-site EEW systems provides optimal protection. Untangling
these factors would require a much larger study and knowing the
value of r for real-world rail systems.

DISCUSSION

While EEW has been utilized for rail systems in Japan since 1966
(Nakamura and Tucker, 1988), public EEW in California did not
begin until the end of 2018. There are several important
differences between United States rail systems and JR’s
Shinkansen line. On one hand, United States trains travel
much slower than bullet trains and can be stopped sooner; a
Shinkansen train traveling at full speed has similar braking speed
but takes an order of magnitude longer to stop: 4,000 m or
2.5 miles (Arai et al., 2008) compared to 186 m or 0.1 miles
for BART. On the other hand, seismic hazard in California is
dominated by continental faults such that hazardous earthquakes
rupture much closer to railways than the subduction zone events
that contribute significantly to seismic hazard in Japan, and thus
warning times will tend to be shorter in California. In fact, the
only derailment of an in-service passenger train due to

FIGURE 8 |Cost savings for different alerting strategies as a function of false alarm tolerance. Each colored line is the cost savings that could be realized if a source-
parameter-based EEW system alerted when the forecast shaking exceeded a specified threshold (ranging from 10 to 120 gal). The black dashed line shows the cost
savings for a perfect instantaneous EEW system that alerted at the moment the earthquake nucleated. This is the maximum possible cost savings that could be realized
but is less than 100% due to the physical limitations that trains require a finite distance to stop and the fact that even necessary stops due to hazardous shaking
incur some cost. Finally, the red dashed line shows the expected cost savings from an on-site EEW system that triggers an alert when 120 gal is observed anywhere
along the tracks (The two red lines present cost savings for EEW systems with alerting thresholds of 120 gal. The dashed red line is an on-site EEW system and the solid
red line is a source-parameter-based EEW system.) Cost savings is computed for locations in (A) San Francisco and (B) Fremont, and averaged over the entire track
system (C).
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earthquake shaking suffered in the 40-year history of the
Shinkansen line was caused by the 2004 Mw6.6 Niigata-
Chuetsu earthquake, an onshore earthquake that occurred too
close to the tracks (Horioka, 2013). Additionally, a test train
derailed during the 2011 Mw9.0 Tohoku-oki earthquake
(Horioka, 2013; Japan Transport Safety Board, 2013), an in-
service train derailed in 2013 in poor weather (Straits Times,
2013), and an out-of-service train derailed during the 2016
Kumamoto sequence (Goda et al., 2016).

By analyzing a 1,000-year chronology of scenario earthquake
ruptures from UCERF3-ETAS, we have explored how effective
EEW might be for California rail systems and how it can best be
utilized. Despite the slower speed of the trains, the warning is
generally only enough to slow but not completely stop trains
before dangerous shaking arrives. However, rail systems are
uniquely good candidates for utilizing EEW, because it is just
as important to stop trains before they reach some other part of
the track system that may have been damaged. In this second,
unique framework, there is significant potential for EEW to limit
trains’ exposure to damaged tracks. Although, it is worth noting
that even so, one of EEW’s greatest benefits may be psychological
(in terms of reassuring the ridership) (Nakayachi et al., 2019) or
as a training opportunity for rail systems to practice earthquake
response. In fact, of the 100 times that the Shinkansen system was
stopped due to EEW alerts in the first 20 years that its EEW
system was operating, only twice were tracks deformed and, in
both cases, the deformation was so minor that it did not pose a
derailment hazard (Nakamura and Tucker, 1988).

Rail systems can additionally benefit from EEW because
warnings have value even if the warning time is too short to
complete protective actions. Many potential EEW protective
actions are all or nothing or, worse, may lead to increased harm
if shaking arrives mid-action. For example, some piece of
infrastructure that is in the process of being moved into a
protected state may be more vulnerable to shaking than if it had
been left in its normal operational state. But even if a train does not
receive sufficient warning to completely stop before encountering
damaged track, it can still utilize whatever warning it does receive to
slow as much as possible before reaching the damaged area.

These observations indicate that EEW should be seen less as a
standalone system and more as part of a continuum of real-time
and near-real-time earthquake information. Here, too, rail
systems have been forerunners. Long before ShakeAlert
development began in the United States, the United States
Geological Survey provided freight and passenger trains with
normal (non-EEW) locations of M5+ earthquakes as soon as they
were available so that the railroads could slow and stop trains and
inspect tracks (Hasenberg, 2019). This is not EEW in its strict
definition as the alert came after the earthquake rupture had
finished and shaking had ceased. But it functioned exactly as
EEW should; it provided users with warning so that their trains
could take protective action before they encountered dangers
caused by earthquake shaking.

In this paper, we have explored the many ways that rail
systems can especially benefit from EEW or even real-time
earthquake information that is too slow to be considered early
warning in other applications. Other types of networked

infrastructure could similarly derive these extra benefits.
Besides passenger and freight rail, any type of transportation
system that involves moving discrete items, such as road
networks, should be able to receive similar benefits. While
systems that involve continuous flow, such as power and gas
lines, may not be able to achieve all the benefits of discrete systems
like rail (where there is always some chance that the shaking will
impact an unoccupied section of the network), our analysis
illustrates how warnings can be used to mitigate loss across
the system even if the warning does not come early enough to
prevent exposure and loss everywhere in the system.

CONCLUSION

Our analysis indicates that on-site EEW provides better outcomes
than source-parameter-based EEW when warning at the damage
threshold of 120 gal regardless of false alarm tolerance. This is
because it takes too long for an earthquake rupture to evolve to a
large enough magnitude that a source-parameter-based system
can forecast that shaking will exceed 120 gal (See Conventional
Earthquake Early Warning View: How Much Warning Does Each
Location Receive? for warning time comparison andMinson et al.,
2018 for background discussion.). A source-parameter-based
EEW system with a lower alerting threshold (e.g., 40 gal) can
further reduce the exposure to potentially damaged track
compared to an on-site system alerting at 120 gal, increasing
the average warning time to 8.4 s compared to 7.9 s for on-site
warning. However, this comes at the cost of more frequent
halting of the rail system unnecessarily. An alerting threshold
of 40 gal would result in one stop/yr on average, which is about
4.5 times the rate of earthquakes whose median expected ground
motion is potentially damaging (>120 gal) anywhere in the
system. The optimal EEW approach for rail systems depends
strongly on the ratio of the cost of traversing damaged tracks to
the cost of halting the system, with a higher potential benefit if
that ratio is large.

We demonstrated a framework with which to examine the
application of EEW to distributed systems. Our framework uses
earthquake rupture probabilities and ground motion models to
forecast both hazard and potential warning times across a
geographically distributed infrastructure network. It then uses
a cost-benefit analysis that considers expected gains and losses
across the entire network as well as potential marginal increases
in gain with changes in warning time (also varying across the
network) to guide selection of the optimal EEW system design.
Real-world use of this framework to make actionable decisions on
the appropriate alerting threshold will be highly dependent on
what amplitude of ground motion is damaging, r values, and
other considerations of the specific application. In this paper, we
have developed the framework for application to rail systems, but
each rail system must consider and assign values (including
monetary and societal consideration) to the costs associated
with precautionary stops and the benefit from slowing trains
when damaging shaking occurs.

Lack of knowledge limits our analysis in two areas. First, we
lack models for the spatial covariance of ground motions,
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limiting our ability to calculate shaking hazard across the
entire rail system. Second, the lack of models for S to P
ratios and for how shaking amplitudes evolve with time
during a rupture prevents us from considering how
lowering the alerting threshold for on-site ground-motion-
based EEW systems could increase warning time. If the
seismological community were to develop models for
shaking covariance and evolution, it could potentially have
significant impacts on the EEW community including
improved performance assessments of ground-motion-based
EEW methods such as PLUM, quantifying the potential utility
of EEWmethods that aim to predict peak shaking from P-wave
amplitudes (Kodera, 2018), and improving real-time shaking
forecasts.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

SM, EC, and SW jointly designed the analysis. SM conducted
the analysis. SN provided technical data on EEW and rail
systems. SM, EC, SW, and SN jointly prepared the
manuscript.

ACKNOWLEDGMENTS

The authors would like to thank a host of people at BART for
helpful background discussions on EEW for rail systems. These
kind people include Kevin Copley, Chung-Soo Doo, Kristyl
Horton, and Charles Weiland. Morgan Page and Kevin
Milner generously provided a chronology of scenario
earthquakes drawn from the UCEF3-ETAS model (Field
et al., 2017). The authors would also like to thank Bob
deGroot for facilitating this collaboration; and Annemarie
Baltay, Andy Michael, and Evelyn Roeloffs for reviewing the
manuscript.

REFERENCES

Allen, T. I., and Wald, D. J. (2009). On the Use of High-Resolution Topographic
Data as a Proxy for Seismic Site Conditions (VS30). Bull. Seismological Soc.
America 99, 935–943. doi:10.1785/0120080255

Arai, H., Kanno, S., and Yanase, N. (2008). Brake System for Shinkansen Speed
Increase. JR East Tech. Rev. 12, 12–15.

Aranda, J. M. E., Jimenez, A., Ibarrola, G., Alcantar, F., Aguilar, A., Inostroza, M.,
et al. (1995). Mexico City Seismic Alert System. Seismological Res. Lett. 66 (6),
42–53. doi:10.1785/gssrl.66.6.42

Cauzzi, C., Behr, Y., Le Guenan, T., Douglas, J., Auclair, S., Woessner, J., et al.
(2016). Earthquake Early Warning and Operational Earthquake Forecasting as
Real-Time hazard Information to Mitigate Seismic Risk at Nuclear Facilities.
Bull. Earthquake Eng. 14 (9), 2495–2512. doi:10.1007/s10518-016-9864-0

Chiou, B. S.-J., and Youngs, R. R. (2014). Update of the Chiou and Youngs NGA
Model for the Average Horizontal Component of Peak Ground Motion and
Response Spectra. Earthquake Spectra 30 (3), 1117–1153. doi:10.1193/
072813EQS219M

City of Los Angeles Emergency Management Department’s 2019 Report,
“Earthquake Alerts: City of LA Announces New Earthquake Early Warning
App”. (last accessed December 18, 2019).

Cochran, E. S., and Husker, A. L. (2019). How Low Should We Go when Warning
for Earthquakes? Science 366, 957–958. doi:10.1126/science.aaz6601

Doi, K. (2011). The Operation and Performance of Earthquake Early Warnings by
the Japan Meteorological Agency. Soil Dyn. Earthquake Eng. 31, 119–126.
doi:10.1016/j.soildyn.2010.06.009

Field, E. H., Milner, K. R., Hardebeck, J. L., Page, M. T., van der Elst, N., Jordan, T.
H., et al. (2017). A Spatiotemporal Clustering Model for the Third Uniform
California Earthquake Rupture Forecast (UCERF3-ETAS): Toward an
Operational Earthquake Forecast. Bull. Seismological Soc. America 107 (3),
1049–1081. doi:10.1785/0120160173

Given, D. D., Allen, R. M., Baltay, A. S., Bodin, P., Cochran, E. S., Creager, K., et al.
(2018). Revised Technical Implementation Plan for the ShakeAlert System-An
Earthquake Early Warning System for the West Coast of the United States.
Geol. Surv. Open-File Rep. 2018–1155, 42. doi:10.3133/ofr20181155

Goda, K., Campbell, G., Hulme, L., Ismael, B., Ke, L., Marsh, R., et al. (2016). The 2016
Kumamoto Earthquakes: Cascading Geological Hazards and Compounding Risks.
Front. Built Environ. 2, 2–17. doi:10.3389/fbuil.2016.00019

Gregor, N., Abrahamson, N. A., Atkinson, G. M., Boore, D. M., Bozorgnia, Y.,
Campbell, K. W., et al. (2014). Comparison of NGA-West2 GMPEs.
Earthquake Spectra 30, 1179–1197. doi:10.1193/070113eqs186m

Hasenberg, C. (2019). Development of Earthquake Early Warning Systems.
Geological Society of the Oregon Country. Available at:

Horioka, K. (2013). Clarification of Mechanism of Shinkansen Derailment in the
2011 Great East Japan Earthquake and Countermeasures against Earthquakes.
JR East Tech. Rev. (27), 13–16.

Hoshiba, M., Kamigaichi, O., Saito, M., Tsukada, S. Y., and Hamada, N. (2008).
Earthquake Early Warning Starts Nationwide in Japan. Eos Trans. AGU 89 (8),
73–74. doi:10.1029/2008eo080001

Hoshiba, M. (2013). Real-time Prediction of Ground Motion by Kirchhoff-Fresnel
Boundary Integral Equation Method: Extended Front Detection Method for
Earthquake Early Warning. J. Geophys. Res. Solid Earth 118, 1038–1050. doi:10.
1002/jgrb.50119

Hsiao, N. C., Wu, Y. M., Shin, T. C., Zhao, L., and Teng, T. L. (2009). Development
of Earthquake Early Warning System in Taiwan. Geophys. Res. Lett. 36 (5),
L00B02. doi:10.1029/2008gl036596

Hu, Q., Gao, N., and Zhang, B. (2014). High Speed Railway Environment Safety
Evaluation Based on Measurement Attribute Recognition Model. Comput.
Intell. Neurosci. 2014, 1–10. doi:10.1155/2014/470758

Iervolino, I. (2011). Performance-based Earthquake Early Warning. Soil Dyn.
Earthquake Eng. 31 (2), 209–222. doi:10.1016/j.soildyn.2010.07.010

Japan Transport Safety Board (2013). “Train Derailment Accident in the Premises
of Sendai Station of the Tohoku Shinkansen of the East Japan Railway
Company,” in Railway Accident Investigation Report. Available at: (Accessed
February 22, 2013).

Kodera, Y., Yamada, Y., Hirano, K., Tamaribuchi, K., Adachi, S., Hayashimoto, N.,
et al. (2018). The Propagation of Local Undamped Motion (PLUM) Method: a
Simple and Robust Seismic Wavefield Estimation Approach for Earthquake
Early Warning. Bull. Seismol. Soc. America 108, 983–1003. doi:10.1785/
0120170085

Kodera, Y. (2018). Real-time Detection of Rupture Development: Earthquake Early
Warning Using P Waves from Growing Ruptures. Geophys. Res. Lett. 45,
156–165. doi:10.1002/2017GL076118

Meier, M. A., Heaton, T., and Clinton, J. (2015). The Gutenberg Algorithm:
Evolutionary Bayesian Magnitude Estimates for Earthquake Early Warning
with a Filter Bank. Bull. Seismol. Soc. America 105 (5), 2774–2786. doi:10.1785/
0120150098

Meier, M.-A. (2017). How "good" Are Real-Time GroundMotion Predictions from
Earthquake Early Warning Systems? J. Geophys. Res. Solid Earth 122,
5561–5577. doi:10.1002/2017JB014025

Minson, S. E., Meier, M.-A., Baltay, A. S., Hanks, T. C., and Cochran, E. S. (2018).
The Limits of Earthquake Early Warning: Timeliness of Ground Motion
Estimates. Sci. Adv. 4, eaaq0504. doi:10.1126/sciadv.aaq0504

Frontiers in Earth Science | www.frontiersin.org June 2021 | Volume 9 | Article 62046713

Minson et al. Earthquake Warning for Rail

42

https://doi.org/10.1785/0120080255
https://doi.org/10.1785/gssrl.66.6.42
https://doi.org/10.1007/s10518-016-9864-0
https://doi.org/10.1193/072813EQS219M
https://doi.org/10.1193/072813EQS219M
https://doi.org/10.1126/science.aaz6601
https://doi.org/10.1016/j.soildyn.2010.06.009
https://doi.org/10.1785/0120160173
https://doi.org/10.3133/ofr20181155
https://doi.org/10.3389/fbuil.2016.00019
https://doi.org/10.1193/070113eqs186m
https://doi.org/10.1029/2008eo080001
https://doi.org/10.1002/jgrb.50119
https://doi.org/10.1002/jgrb.50119
https://doi.org/10.1029/2008gl036596
https://doi.org/10.1155/2014/470758
https://doi.org/10.1016/j.soildyn.2010.07.010
https://doi.org/10.1785/0120170085
https://doi.org/10.1785/0120170085
https://doi.org/10.1002/2017GL076118
https://doi.org/10.1785/0120150098
https://doi.org/10.1785/0120150098
https://doi.org/10.1002/2017JB014025
https://doi.org/10.1126/sciadv.aaq0504
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Minson, S. E., Baltay, A. S., Cochran, E. S., Hanks, T. C., Page, M. T., McBride, S.
K., et al. (2018). The Limits of Earthquake Early Warning: Accuracy and
Best Alerting Strategy. Scientific Rep. 9 (1), 2478. doi:10.1038/s41598-019-
39384-y

Minson, S. E., Saunders, J. K., Bunn, J. J., Cochran, E. S., Baltay, A. S., Kilb, D. L.,
et al. (2020). Real-Time Performance of the PLUM Earthquake Early Warning
Method during the 2019 M 6.4 and 7.1 Ridgecrest, California, Earthquakes.
Bull. Seismol. Soc. Am. 110, 1887–1903. doi:10.1785/0120200021

Minson, S. E., Baltay, A. S., Cochran, E. S., McBride, S. K., and Milner, K. R. (2021).
Shaking Is Almost Always a surprise: the Earthquakes that Produce Significant
Ground Motion. Seismol. Res. Lett. 92, 460–468. doi:10.1785/0220200165

Murray, J. R., Crowell, B. W., Grapenthin, R., Hodgkinson, K., Langbein, J. O.,
Melbourne, T., et al. (2018). Development of a Geodetic Component for the
U.S. West Coast Earthquake Early Warning System. Seismol. Res. Lett. 89 (6),
2322–2336. doi:10.1785/0220180162

Nakamura, Y., and Saita, J. (2007). “UrEDAS, the Earthquake Warning System:
Today and Tomorrow,” in Earthquake Early Warning Systems. Berlin,
Heidelberg: Springer, 249–281.

Nakamura, Y., and Tucker, B. E. (1988). Japan’s Earthquake Warning System:
Should it Be Imported to California? Calif. Geology., 33–40.

Nakamura, Y. (1996). “Real-time Information Systems for Hazards Mitigation,” in
Proceedings of the 11th World Conference on Earthquake Engineering.
Mexico: . Acapulco. doi:10.2514/6.1996-2078

Nakayachi, K., Becker, J. S., Potter, S. H., and Dixon, M. (2019). Residents’
Reactions to Earthquake Early Warnings in Japan. Risk Anal. 39 (8),
1723–1740. doi:10.1111/risa.13306

Ogura, M. (2006). The Niigata Chuetsu Earthquake-Railway Response and
Reconstruction. Jpn. Railway Transport Rev. 43 (44), 46–63.

Saita, J., andNakamura, Y. (2003).EarlyWarning Systems forNatural Disaster Reduction.
Berlin, Heidelberg: Springer, 453–460. doi:10.1007/978-3-642-55903-7_58

Saunders, J. K., Aagaard, B. T., Baltay, A. S., and Minson, S. E. (2020). Optimizing
Earthquake Early Warning Alert Distance Strategies Using the July 2019 Mw
6.4 and Mw 7.1 Ridgecrest, California, Earthquakes. Bull. Seismol. Soc. America
110 (4), 1872–1886. doi:10.1785/0120200022

Straits Times (2013). High-speed Bullet Train Derails in Japan: Media. Available at:
(Accessed March 2, 2013).

Strauss, J. A., and Allen, R. M. (2016). Benefits and Costs of Earthquake Early
Warning. Seismological Res. Lett. 87 (3), 765–772. doi:10.1785/0220150149

Tamaribuchi, K., Yamada, M., and Wu, S. (2014). A New Approach to Identify
Multiple Concurrent Events for Improvement of Earthquake Early Warning.

Jssj 67 (67), 41–55. (in Japanese with English abstract and figure captions).
doi:10.4294/zisin.67.41

Trugman, D. T., Page, M. T., Minson, S. E., and Cochran, E. S. (2019). Peak Ground
Displacement Saturates Exactly when Expected: Implications for Earthquake
Early Warning. J. Geophys. Res. Solid Earth 124, 4642–4653. doi:10.1029/
2018jb017093

Veeraraghavan, S., Heaton, T. H., and Krishnan, S. (2019). Lower Bounds on
Ground Motion at Point Reyes during the 1906 San Francisco Earthquake from
Train Toppling Analysis. Seismological Res. Lett. 90 (2A), 683–691. doi:10.1785/
0220180327

Veneziano, D., and Papadimitriou, A. G. (2003). “Optimizing the Seismic Early
Warning System for the Tohoku Shinkansen,” in Early Warning Systems for
Natural Disaster Reduction. Berlin, Heidelberg: Springer, 727–734. doi:10.1007/
978-3-642-55903-7_97

Wu, S., Beck, J. L., and Heaton, T. H. (2013). ePAD: Earthquake Probability-based
Automated Decision-making Framework for Earthquake Early Warning.
Computer-Aided Civ. Infrastruct. Eng. 28 (10), 737–752. doi:10.1111/mice.
12048

Wu, S., Cheng, M. H., Beck, J. L., and Heaton, T. H. (2016). An Engineering
Application of Earthquake Early Warning: ePAD-Based Decision Framework
for Elevator Control. J. Struct. Eng. 142 (1), 04015092. doi:10.1061/(asce)st.
1943-541x.0001356

Yamamoto, S., and Tomori, M. (2013). Earthquake Early Warning System for
Railways and its Performance. J. JSCE 1, 322–328. doi:10.2208/journalofjsce.1.
1_322

Disclaimer: Any use of trade, firm, or product names is for descriptive purposes
only and does not imply endorsement by the United States Government.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Minson, Cochran, Wu and Noda. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Earth Science | www.frontiersin.org June 2021 | Volume 9 | Article 62046714

Minson et al. Earthquake Warning for Rail

43

https://doi.org/10.1038/s41598-019-39384-y
https://doi.org/10.1038/s41598-019-39384-y
https://doi.org/10.1785/0120200021
https://doi.org/10.1785/0220200165
https://doi.org/10.1785/0220180162
https://doi.org/10.2514/6.1996-2078
https://doi.org/10.1111/risa.13306
https://doi.org/10.1007/978-3-642-55903-7_58
https://doi.org/10.1785/0120200022
https://doi.org/10.1785/0220150149
https://doi.org/10.4294/zisin.67.41
https://doi.org/10.1029/2018jb017093
https://doi.org/10.1029/2018jb017093
https://doi.org/10.1785/0220180327
https://doi.org/10.1785/0220180327
https://doi.org/10.1007/978-3-642-55903-7_97
https://doi.org/10.1007/978-3-642-55903-7_97
https://doi.org/10.1111/mice.12048
https://doi.org/10.1111/mice.12048
https://doi.org/10.1061/(asce)st.1943-541x.0001356
https://doi.org/10.1061/(asce)st.1943-541x.0001356
https://doi.org/10.2208/journalofjsce.1.1_322
https://doi.org/10.2208/journalofjsce.1.1_322
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


feart-09-626908 June 5, 2021 Time: 16:56 # 1

ORIGINAL RESEARCH
published: 10 June 2021

doi: 10.3389/feart.2021.626908

Edited by:
Angela Isobel Chung,

University of California, Berkeley,
United States

Reviewed by:
Sarah Minson,

United States Geological Survey,
United States

Masumi Yamada,
Independent Researcher, Kyoto,

Japan

*Correspondence:
Ting-Yu Hsu

tyhsu@ntust.edu.tw

Specialty section:
This article was submitted to

Solid Earth Geophysics,
a section of the journal

Frontiers in Earth Science

Received: 07 November 2020
Accepted: 25 March 2021
Published: 10 June 2021

Citation:
Hsu T-Y and Huang C-W (2021)

Onsite Early Prediction of PGA Using
CNN With Multi-Scale

and Multi-Domain P-Waves as Input.
Front. Earth Sci. 9:626908.

doi: 10.3389/feart.2021.626908

Onsite Early Prediction of PGA Using
CNN With Multi-Scale and
Multi-Domain P-Waves as Input
Ting-Yu Hsu* and Chao-Wen Huang

National Taiwan University of Science and Technology, Taipei, Taiwan

Although convolutional neural networks (CNN) have been applied successfully to many
fields, the onsite earthquake early warning by CNN remains unexplored. This study aims
to predict the peak ground acceleration (PGA) of the incoming seismic waves using
CNN, which is achieved by analyzing the first 3 s of P-wave data collected from a
single site. Because the amplitude of P-wave data of large and small earthquakes can
differ, the multi-scale input of P-wave data is proposed in this study in order to let the
CNN observe the input data in different scales. Both the time and frequency domains
of the P-wave data are combined into multi-domain input, and therefore the CNN can
observe the data from different aspects. Since only the maximum absolute acceleration
value of the time history of seismic waves is the target output of the CNN, the absolute
value of the P-wave time history data is used instead of the raw value. The proposed
arrangement of the input data shows its superiority to the one directly inputting the raw
P-wave data into the CNN. Moreover, the predicted PGA accuracy using the proposed
CNN approach is higher than the one using the support vector regression approach
that employed the extracted P-wave features as its input. The proposed CNN approach
also shows that the accuracy of the predicted PGA and the alert performances are
acceptable based on data from two independent and damaging earthquakes.

Keywords: PGA, CNN, on-site earthquake early warning, multi-scale, single station

INTRODUCTION

Earthquake early warning (EEW) approach aims to issue alerts for impending intense ground
shaking events. The alerts will be issued when faster and smaller P-waves are detected after an
earthquake has occurred. Public earthquake early alerts during several recent large earthquakes
have been provided successfully (Fujinawa and Noda, 2013; Cuéllar et al., 2014; Yamada et al., 2014;
Hsu et al., 2016, 2018, 2021; Kodera et al., 2016; Allen and Melgar, 2019; Wu et al., 2019). The
algorithms of EEW techniques can be classified into regional and onsite warning ones based on
their concept required to estimate an earthquake’s parameters. Compared to regions that are located
farther away, the regions surrounding the epicenter suffer much higher seismic intensity. However,
existing regional warning techniques involve the collection of data from several seismic stations
and some computational time is needed to acquire source parameters, such that there is sometimes
little to no lead time before a destructive wave hits. On the other hand, an onsite warning system
may provide a longer lead time for regions surrounding an epicenter because it only requires the
data of the target site for predicting the intensity of the impending seismic waves.

Frontiers in Earth Science | www.frontiersin.org 1 June 2021 | Volume 9 | Article 62690844

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2021.626908
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/feart.2021.626908
http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2021.626908&domain=pdf&date_stamp=2021-06-10
https://www.frontiersin.org/articles/10.3389/feart.2021.626908/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-09-626908 June 5, 2021 Time: 16:56 # 2

Hsu and Huang CNN-Based Early Prediction of PGA

Most of the onsite EEW techniques issue alerts based on
simple parameters extracted from the initial P waves observed
at a seismic station. For instance, Kanamori (2005) estimated
the magnitude using a predominant frequency of P wave.
Odaka et al. (2003) proposed using fitting parameter of the
waveform envelope and the P-wave amplitude to estimate the
magnitude and epicentral distance. Wu and Kanamori (2005)
obtained for a relationship between the peak displacement
amplitude of the P wave (Pd) and the peak ground velocity
(PGV). They proposed issuing an alert based on the value
of Pd. Zollo et al. (2010) proposed using the thresholds of
both the Pd and the predominant period of seismic waves to
issue alerts. Nakamura et al. (2011) used the inner product of
acceleration and velocity to predict the PGV. All these algorithms
tried to establish simple empirical functions between the
extracted P-wave parameters and interested source parameters
and seismic intensity.

Because only one to two P-wave parameters could be
dealt with when establishing the empirical functions and only
simple empirical functions could be established based on
observation, artificial intelligence became a powerful alternative
approach for establishing the complex relationship between
more P-wave parameters and the source parameters or seismic
intensity. Böse et al. (2012) proposed using fully connected
artificial neural networks to estimate the PGA, epicenter
distance, and magnitude using the acceleration, velocity, and
displacement of the three-component waveforms. Hsu et al.
(2013) proposed to estimate the peak ground acceleration
(PGA) of an incoming earthquake by relying on a support
vector regression (SVR) approach. Six P-wave features—the
peak displacement, peak velocity, peak acceleration, cumulative
absolute velocity, effective predominant period, and the integral
of the squared velocity—extracted from of the first few seconds
after trigger of the vertical acceleration component were
used to predict the PGA of the target site. The regression
model to predict the PGA according to these P-wave features
was established based on the SVR approach. The algorithm
they developed has been implemented successfully to issue
alerts during several large earthquakes (Hsu et al., 2016,
2018, 2021). Furthermore, site effects on the PGA have been
accommodated by including the horizontal-to-vertical spectral
ratio into the input of an artificial neural network prediction
model (Hsu et al., 2020). These approaches, however, require
the extraction of the P-wave parameters in advance before being
input into the neural networks or support vector regression
models. In these approaches, only some important P-wave
parameters (instead of the original and complex acceleration
time history) are used so other important P-wave-related
information may be ignored.

Deep convolutional neural networks (CNN) are capable of
extracting features from raw data (LeCun et al., 2015). Recently,
CNN has been applied successfully to many fields, including face
identification (Sajjad et al., 2018), speech recognition (Abdel-
Hamid et al., 2014), playing “Go” (Silver et al., 2016), and
crack detection (Xu et al., 2019). In other research, Wu and
Jahanshahi (2019), Wu et al. (2019) showed the ability of
CNN to estimate structural dynamic responses accurately and

identify the structurally dominant frequency of the acceleration
signal. Yu et al. (2018) showed the proposed CNN method
had outstanding identification accuracy for structural damage
of a benchmark building than other commonly used machine
learning methods. Shrestha and Dang (2020) customized a CNN
framework for real-time auto classification of bridge vibration
data. As for earthquakes, Mousavi et al. (2019) applied the
CNN and recurrent units to earthquake signal detection. Perol
et al. (2018) tried to detect the earthquakes’ occurrences and
classify the locations of the epicenters within seven predefined
regions using three-component seismic waveforms recorded
on a seismic station using CNN. Jozinovic et al. (2020) tried
to estimate the intensity measurements of ground-shaking
earthquake events within Central Italy by simultaneously using
the seismic waveform data of 39 stations located close to
epicenters with the input of the CNN.

In this study, we propose to implement CNN for onsite EEW.
The original measured P-wave data at a single station were
inputted into the CNN for predicting the PGA of the coming
earthquake without a loss of any information in the seismic
waveforms. To the authors’ best knowledge, our attempt is the
first in the literature to perform onsite EEW using CNN, i.e.,
to predict the coming seismic intensity at one site using the
measured data at the same site. However, because the amplitude
of the P-wave data of large earthquakes and small earthquakes
can be very different, the multi-scale inputs of the P-wave data are
proposed in this study in order to let the CNN observe the input
data in different scales. Note that the multi-scale input proposed
in this study is different from the down-sampling approach
that reduces the dimension along the time-series direction (Cui
et al., 2016). The multi-scale proposed in this study scales the
input along the amplitude direction. Moreover, both the time
and frequency domains of the P-wave data are combined into
multi-domain input, hence the CNN can observe the data in
different aspects.

In the Methodology section of this paper, a brief description
of the CNN is summarized because it has been applied to many
fields and the basic details have been well-documented in many
studies in the literature. Instead, we focused on describing how
we designed both the input data and the architecture of the
CNN. The earthquake data and the process of training and
validation are also described in this section. Next, in Results and
Discussions, the effect of input is studied first, followed by a
discussion of the performance of the earthquake data using the
proposed CNN. Finally, the Concluding Remarks summarizes
this study’s results and implications for the future.

MATERIALS AND METHODS

Brief Description of CNN
Convolutional neural networks has a great capability to extract
features from raw data and has been successfully employed to
solve many real-world problems. A typical CNN usually consists
of convolution, pooling, activation, and fully connected layers.
The convolution layer extracts features from the input data using
different kernels, thus enabling a large number of features to be
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obtained. During the convolution, users can design specific stride
sizes to scan through the input data and then obtain feature maps
with different weights.

The pooling layer subsamples the feature maps and extracts
the dominant information in these maps, and by doing this
reduces the dimensionality of the feature maps and keeps their
essential information at the same time. As the CNN can be deeper,
multiple convolution and pooling layers can be stacked together
to solve more complex problems. Finally, fully connected layers
with activation functions are used to classify or do regressions
using the flattened feature maps.

Input Data of the CNN
In order to perform onsite EEW, the initial ground motion
observed at a site was used to predict the peak value of the
incoming ground motion. In this study, after the first 3 s post-
triggering, the observed acceleration time history was used for
predicting the PGA, the maximum absolute value of the entire
acceleration time history in three components. Note that the
differences between the amplitudes of the P-wave data of large
and small earthquakes can be very large. The amplitude of input
data with relatively small values may have fewer effects on the
loss function when training the CNN compared to the one with
larger values. In order to obtain better regression results for data
with different amplitudes, for example, predicting the PGA more
accurately for earthquakes with different intensities, we had tried
to use logarithm values of the acceleration time history as the
input of the CNN, but because the time history does not follow
the lognormal distribution, the prediction results were quite bad.
As a result, we propose to use the multi-scale inputs of P-wave
data for observing the data in different scales when performing
feature extraction using the CNN.

For the first 3 s of the P-wave data in this study, the maximum
amplitude of most of the data (99.9%) was below 250 gal (cm/s2).
This indicates that one of the scales of time history data could
be chosen as ± 250 gal. That is, the original time history data
with values larger than 250 gal and smaller than −250 gal were
truncated and set to 250 and −250 gal, respectively (Truncation
Step). Then the truncated data were rescaled to have values
between −1 and 1 (Normalization Step). Four more scales with
ranges of ±2.5, ±8, ±25, and ±80 gal were also considered to
extract the features of time history data with different amplitudes.
These range of scales is referred to the seismic intensity scale of
the Central Weather Bureau (CWB), Taiwan. The discussion of
determining the scales of time history data are provided in section
3.1 Effect of Input.

It is well-known in the geoscience research community that
the seismic ground motions caused by a longer fault-rupture
process may contain signals with longer periods (Satriano et al.,
2011). This identifies the frequency content of the P-wave as
very important. However, because it is not easy to identify the
frequency content clearly by observing the complex and chaotic
ground acceleration time history directly, the frequency domain
of the P-wave data was also included in the input into the CNN.
As a result, both the time and frequency domains of the P-wave
data are combined as multi-domain input so that the CNN can
observe the data in different aspects.

Similar to the time history of the P-wave data, three different
scales of the Fourier spectrogram, i.e., 1, 20, and 40 gal/Hz,
were also considered in order to observe the frequency content
more clearly in different scales using the CNN. The Fourier
spectrogram is the amplitude obtained by using fast Fourier
transformation of the first 3 s of P-wave data. Take the scale
20 gal/Hz as an example, the original Fourier spectrogram with
values larger than 20 gal/Hz was truncated and set to 20 gal/Hz
(Truncation Step). Then the truncated data were rescaled to have
values between −1 and 1 (Normalization Step). For 3 s of three
components’ time history with a 200 Hz sampling rate, the size
of each scale of P-wave time history data was 600 × 3. However,
because most of the energy of the P-wave data is located within
a frequency range between 0 and 50 Hz, only the spectrogram of
this range was used (150 points in length). In order to have the
same dimensions for both the time and frequency domain data,
600 points, the spectrogram was linearly interpolated. Finally,
there were five multi-scale and multi-domain P-wave data as the
input of the CNN, as shown in Figure 1, and the dimensions of
the input data were 600× 3× 5.

Architecture of the CNN
It is well known that intensive periodicity may exist in the time-
domain vibration signals and the signals at different time points
could be deeply related to each other in a large range. Hence,
it may be difficult to find valuable information about periodic
data and the relationship behind the time history signals by using
kernels with short lengths along the time dimension. As for the
data in the frequency domain, the relationship between higher
and lower frequencies can be extracted using kernels with longer
lengths along the frequency dimension. For instance, Yu et al.
(2018) successfully identified structural damage using a 1,000× 1
kernel size for extracting features from frequency spectra along
the frequency dimension. In this study, 16 1-D kernels 150 × 1
in size in the first layer were implemented to extract the features
of the data for both the time and frequency domains. Then a max
pooling layer with 1-D kernels with a size of 3 × 1 and a stride
of 3 × 1 was used to extract the maximum value of the features
along the time-series direction. Figure 1 shows the architecture
of the proposed CNN. The max pooling could greatly improve
the statistical efficiency and computational speed of the neural
network. The schematic diagrams of the operation of convolution
and pooling, as well as the resulting sizes of the feature maps, are
shown in Figure 2.

After the feature maps were extracted from the time history
data and frequency spectra, we treated these feature maps more
like 2-D images. Therefore, the second convolution layer with
32 2-D kernels that were 5 × 3 in size and a pooling layer with
kernels of 3× 1 in size were employed to extract more condensed
features. And the third convolution layer with 32 kernels 1× 3 in
size and a pooling layer with kernels 3× 1 in size were employed
again to further extract more condensed features.

Finally, after the features were flattened, two fully connected
layers of 128 neurons that served as feature-selection layers
were utilized to transform the feature maps into the output
PGA value, so as most unnecessary or redundant features will
be cast aside in the fully connected layers. The details of
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FIGURE 1 | The proposed CNN architecture in this study.

FIGURE 2 | The schematic diagram of the operation of convolution and pooling, as well as the resulted size of the feature maps.

the sizes of the convolution and pooling operations, as well
as the resulted sizes of the feature maps, are summarized in
Table 1. The rectified linear unit (ReLU) activation function
was employed in this study (Nair and Hinton, 2010), and the
dropout operation was applied to avoid over-diffing problems
(Srivastava et al., 2014).

Earthquake Data
The earthquake data provided by the Taiwan Strong Motion
Instrument Program (TSMIP) were employed in this study.

TABLE 1 | The detail of the size of the convolution and pooling operations, as well
as the resulting sizes of the feature maps of the proposed CNN.

Layer Kernel Size (a, b) Output feature size (p, q, r)

Input N/A (600, 3, 5)

CL 1 (150, 1) (451, 15, 16)

ML 1 (3, 1) (150, 15, 16)

CL 2 (5, 3) (146, 5, 32)

ML 2 (3, 1) (48, 5, 32)

CL 3 (1, 3) (48, 3, 32)

ML 3 (3, 1) (16, 3, 32)

Flatten N/A 1,536

FCL 1 N/A 128

FCL 2 N/A 128

Output N/A 1

High-quality strong ground motions caused by earthquakes
around Taiwan were collected by the TSMIP network, which
is operated by the CWB. In total, data on 10,000 earthquakes
(denoted as T-data) were selected from the TSMIP data
covering the period from July 29, 1992, to December 31, 2006.
All the earthquake data with PGAs larger than 250 cm/s2

(gal) and less than 2.5 gal in the TSMIP data were selected
because they are quite rare. As for the earthquake data
with PGAs between 2.5 and 250 gal, data on more than
2,000 earthquakes were selected. The number of T-data within
different ranges of PGA when performing training, validating
and testing for the CNN is summarized in Table 2. For
instance, the number of all the data with PGAs larger than
400 gal in the TSMIP data was only 78, and 50, 12, and 16
of these data were used for training, validation, and testing,
respectively. The number of events within different ranges of
PGA is also summarized in the same table. There were 2,279
earthquake events in the T-data, and the magnitude (Mw)
range is 1.66∼7.6. Besides the Chi-Chi earthquake event with
a magnitude 7.6, there were also some large earthquake events
in the T-data and the number of earthquake events with a
magnitude not smaller than 6.5 was 17. The frequency of
the magnitude for training, validation, and testing datasets
is illustrated in Supplementary Figure 1. The magnitude vs.
hypocentral distance of the T-data is shown in Supplementary
Figure 2. The Short-Term-Average through Long-Term-Average
algorithm was employed herein to pick the arrival time of
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TABLE 2 | The 10,000 TSMIP earthquake data used for training, validating, and testing for the CNN.

Dataset PGA (cm/s2)

0.8∼ 2.5 2.5∼ 8 8∼ 25 25∼ 80 80∼ 250 250∼ 400 400∼

Number of events Total 99 694 729 721 697 80 37

Number of data Training 75 1,443 1,443 1,443 1,821 127 50

Validation 19 361 361 361 455 32 12

Test 23 450 450 450 569 39 16

Total 117 2,254 2,254 2,254 2,845 1,98 78

P-wave automatically, and the T-data were used to train, validate,
and test the CNN.

In addition, two earthquake datasets recorded during the
2016 Meinong earthquake event (Mw = 6.53) and 2018 Hualien
Earthquake event (Mw = 6.2) in Taiwan were adopted herein
to understand the capability of the proposed CNN approach for
PGA prediction. The Meinong earthquake event resulted in 117
deaths and damaged to 253 buildings (six totally collapsed). The
Hualien earthquake event caused 17 fatalities and caused serious
damage to 179 buildings (four totally collapsed). Another typical
earthquake dataset recorded during a relatively small earthquake
event with magnitude 5.3 Mw occurred in 2016 (denoted as M5.3
earthquake) was also adopted to see how the performance of
the proposed CNN approach varies with magnitude. The M5.3
earthquake was selected because of its number of the recorded
earthquake data were relatively large among the earthquake
events with a magnitude between 5.0 and 5.5.

Training and Validation
The goal of the CNN was to predict the PGAs as accurately as
possible for small and large earthquakes. However, the differences
between these PGAs were quite enormous. To be more specific,
the PGAs of large earthquakes could be almost 1,000 times those
of the small ones. When the root mean squared errors was used to
estimate the loss of the CNN, only the PGAs of larger earthquakes
were predicted with high accuracy because the error of these
earthquakes contributed to the root mean squared errors much
more than did the small earthquakes. In this study, the root mean
squared logarithmic errors (RMSLE) was employed to estimate
the loss of the CNN, denoted as E, as defined in Equation (1).

E =

√√√√ 1
N

N∑
j=1

(
log(ypj + 1) − log(yrj + 1)

)2
(1)

where yrj and ypj were the real and predicted PGA of the jth

earthquake, respectively. N is the total number of earthquakes.
The T-data of each PGA range in Table 2 was randomly

split into training (64%), validation (16%), and test (20%) sets.
We trained the network on one NVIDIA RTX 2080 GPU. We
updated the CNN parameters using the Adam optimizer with
β1 = 0.9, β2 = 0.999, and decay = 0, and learning rate = 0.001
(Kingma and Ba, 2015). During the train process, the CNN was
updated by evaluating and reducing the loss on a batch-by-batch
basis with batch size = 32. When the loss of the validation dataset

was larger than the one of the training dataset for five epochs
successively, the training process was stopped. Supplementary
Figure 3 illustrates the typical training process of the CNN.

RESULTS

Effect of Input
In this section, we studied the effects of the input on the PGA
predictions using CNN. First, the effects of adding one more scale
of P-wave time history data or spectrogram were studied as an
initial study to understand if adding one different measure of the
input help the PGA prediction or not. The means of the RMSLE
of 15 repeated trials of the 2,000 test data of these cases are
summarized in Supplementary Table 1. The results of using only
a single scale of the P-wave time history, i.e., scale of 250 gal, are
also listed in the same table for comparison. The results show that
adding one more scale of P-wave time history data or spectrogram
reduced the RMSLE values quite a lot, especially when one scale
of the spectrogram was included.

Next, the effects of combinations of three different scales of
P-wave time history data were studied. These results were also
compared to the ones using only a single scale of the P-wave time
history data (Case TH1). These are the five scales of P-wave time
history data that were considered: 2.5, 8, 25, 80, and 250 gal. In
total, one single-scale (Case TH1) and 10 different combinations
of these five scales (Case TH2 to TH11) were studied, as listed
in Table 3. The box plots of the RMSLE of 15 repeated trials of
the 2,000 test data are plotted in Figure 3. Apparently, all the
combinations of three different scales of P-wave time history data
outperformed the single-scale one. Among the combinations of
the three different scales of P-wave time history data, the RMSLE
of Case TH5 to TH8 is relatively smaller than the others, as can
also be observed from the mean of the RMSLE as listed in Table 3.
Nevertheless, these results indicate that combining different
scales of P-wave time history data helped the CNN extract more
informative features and achieve a better PGA prediction.

Since only the maximum absolute acceleration value of the
entire time history of seismic waves is the target output of the
CNN, it is possible the signs of the P-wave time history are
not so informative, but the amplitude may already provide the
necessary information. Therefore, for the input data of CNN, we
tried to replace the raw P-wave time history data of the studied
combinations with the absolute ones. The box plots of the RMSLE
of 15 repeated trials of the 2,000 test data of these combinations
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using absolute values are plotted in Figure 4. Again, all of the
combinations of the three different scales of P-wave time history
data outperformed the single-scale one. Based on these results,
taking the absolute value of P-wave time history data seems to
help the CNN predict the PGA more accurately because the errors
are lower in general, and the mean of the RMSLE of all the 11
cases using absolute values are 0.02∼0.03 smaller than the ones
using raw values, as listed in Table 3. Besides, the mean of the
RMSLE of Case TH6 (the combinations of 2.5++25+250 scales)
was the smallest one. Since both the mean and the box plot of the

TABLE 3 | The details of the combinations and the RMSLE of cases TH1 to TH11.

Case Combination of scales* RMSLE

Raw Absolute

TH1 E 0.6439 0.6169

TH2 A + B + C 0.6174 0.5878

TH3 A + B + D 0.6089 0.5859

TH4 A + B + E 0.6084 0.582

TH5 A + C + D 0.6084 0.5856

TH6 A + C + E 0.6043 0.5740

TH7 A + D + E 0.6044 0.5827

TH8 B + C + D 0.6051 0.5827

TH9 B + C + E 0.6057 0.5829

TH10 B + D + E 0.6111 0.5866

TH11 C + D + E 0.6171 0.5967

*Scale A: 0∼2.5 cm/s2; Scale B: 0∼8 cm/s2; Scale C: 0∼25 cm/s2; Scale D:
0∼80 cm/s2; Scale E: 0∼250 cm/s2.

RMSLE of Case TH6 outperforms the others, the combination of
2.5+ 25+ 250 scales using absolute values was selected.

Next, the effects of including a spectrogram on the PGA
prediction using CNN were studied. Because the range of the
spectrogram amplitude of small and large earthquakes was not
as large as the range of the time histories’ amplitudes, only
three scales of the spectrogram were considered herein: 0∼1,
0∼20, and 0∼40 gal/Hz. In total, five combinations of the best
studied combinations of three different scales of P-wave time
history data (Case TH6), and the three scales of the spectrogram
were studied as listed in Table 4: cases TH6+F3, TH6+F12,
TH6+F13, TH6+F23, and TH6+F123. The box plots of the
RMSLE of 15 repeated trials of the 2,000 test data are plotted
in Figure 5. It is evident that including the spectrogram can
achieve much smaller RMSLE values than the one without any
spectrogram. These results indicate that combining the frequency
domain with the time domain P-wave data helped the CNN
understand more deeply the P-wave data for PGA prediction.
Among the five cases, case TH6+F12, which includes the smallest
two scales of the spectrogram, has the smallest RMSLE value, as
can also be observed in Table 4, hence it should be employed in
future studies. Finally, the procedures to obtain the multi-domain
and multi-scale input for the CNN as described previously are
summarized in Figure 6.

Results of the T-Data
Based on the results of the input study, we took case TH6+F12,
which has three scales of the absolute value of the P-wave
time history data and two scales of the Fourier spectrograms
of the original value of the P-wave data, as the final input of

FIGURE 3 | The box plots of the RMSLE of the Cases TH1 to TH11 (using raw values of time history data).
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FIGURE 4 | The box plots of the RMSLE of the Cases TH1 to TH11 (using absolute values of time history data).

the CNN used in this study. The predicted PGA distribution
of the 2,000 test data is illustrated in Figure 7A. Besides, the
predicted PGA distribution of all 10,000 T-data is illustrated in
Figure 7B. Apparently, the PGA distributions of the test data
and all the T-data are quite similar. The RMSLE of all the T-data
was still quite small at 0.454, which indicates that overfitting had
not occurred. For easier comparison to other approaches, the
standard variation (σ) of the errors between the predicted and
real PGAs in natural logarithmic scale of all the T-data was also
calculated, and its value was 0.512.

The PGA distribution using the best combination, case
TH6+F12, can be found in Figure 7. Despite most of the
predicted PGAs being quite close to the real PGAs, there
are still some earthquakes with larger real PGAs that are
apparently underestimated (e.g., a PGA greater than 80 gal).
These earthquakes actually belong to the Chi-Chi earthquake
event on September 21, 1999, as marked in Figure 7 and

TABLE 4 | The details and RMSLE of the combinations of cases TH6+F3 to
TH6+F123.

Case Combination of scales RMSLE

TH6+F3 A + C + E + C′* 0.5287

TH6+F12 A + C + E + A′ + B′ 0.4911

TH6+F13 A + C + E + A′ + C′ 0.5067

TH6+F23 A + C + E + B′ + C′ 0.5197

TH6+F123 A + C + E + A′ + B′ + C′ 0.5043

* Scale A′: 0∼1 gal/Hz; Scale B′: 0∼20 gal/Hz; Scale C′: 0∼40 gal/Hz.

separately illustrated in Figure 8A. This is mainly because only
the first few seconds of P-wave data is employed to predict PGA,
but the Chi-Chi earthquake event had at least two asperities,
which makes the slip propagation process quite long and complex
(Ma et al., 2001). More specifically, the Chi-Chi earthquake
intensity was predominantly contributed by the major asperity
rupture 13 s after another minor one, making the PGA prediction
based on the first few seconds of the P-wave harder. Hsu et al.
(2013) has illustrated the PGA can be predicted much closer to
the real PGA if the information of the longer P-wave data is
used. More details about the discussion the PGA prediction of
the Chi-Chi earthquake event using the SVR approach are in
Hsu et al. (2013). Herein, the PGA prediction results using the
SVR approach with the same first 3 s of time history after the
triggering of the Chi-Chi earthquake are illustrated in Figure 8B
for comparison. The RMSLE of the Chi-Chi earthquake using
the proposed CNN and the SVR approaches was 1.419 and
1.867, respectively. Evidently, the proposed CNN approach can
predict the PGAs of these earthquakes more accurately than
the SVR approach.

Results of the Test Earthquakes
In addition to the T-data, we tested the performance of the
proposed CNN approach using the independent 2016 Meinong
earthquake event and the 2018 Hualien earthquake event. The
predicted PGA distribution of these two earthquake events are
illustrated in Figures 8C,D. The RMSLE of the Meinong and
Hualien earthquake events are 0.561 and 0.476, respectively. It
seems the proposed CNN can, in general, predict the PGAs of
separate damaging earthquake events with anticipated accuracy.
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FIGURE 5 | The box plots of the RMSLE of the Cases TH6+F3 to TH6+F123.

FIGURE 6 | The summarized procedures to obtain the multi-domain and multi-scale input for the CNN.

Besides, in order to understand the performance of PGA
prediction using the CNN approach during a typical earthquake
event with a smaller magnitude (between 5 and 5.5), the predicted
PGA distribution during the M5.3 earthquake is illustrated in
Figure 8E. The RMSLE of the PGA prediction results of the M5.3
event is only 0.378. It seems the proposed CNN approach can
predict the PGAs of the typical earthquake event with a smaller
magnitude quite well. For easier comparison to other approaches,

the standard variation (σ) of the errors between the predicted
and real PGAs in natural logarithmic scale of these three test
earthquake events and the Chi-Chi earthquake event was also
listed in Table 5.

To further understand the potential alert performance using
the proposed CNN of these two earthquake events, the confusion
matrix was employed herein. The threshold was set to 25 gal,
which is identical to the one used in the onsite EEW algorithm
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FIGURE 7 | The predicted PGA distribution of (A) the 2,000 test data and (B) all the 10,000 T-data.

FIGURE 8 | The predicted PGA distribution of the Chi-Chi earthquake event using (A) the proposed CNN approach and (B) the SVR approach in Hsu et al. (2013).
The predicted PGA distribution of (C) the Meinong earthquakes, (D) the Hualien earthquakes, and (E) the M5.3 earthquake using the proposed CNN approach.

of the EEW System of the National Center for Research on
Earthquake Engineering, Taiwan (NEEWS) during these two
earthquake events (Hsu et al., 2016, 2018). In order to focus on
the discussion of the accuracy of the predicted PGAs, the lead-
time of all the earthquakes was assumed as valid. As a result, as

summarized in the confusion matrix of Figure 9A, if both the
predicted PGA and the real PGA are ≥25 gal, we considered
this result a true positive (“TP”). Conversely, if the predicted
PGA is ≥25 gal, but the real PGA never reached the threshold,
we considered this result a false positive (“FP”). If both the
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predicted PGA and the real PGA are <25 gal, we considered
this result a true negative (“TN”). If the final ground motion
amplitude reached the threshold, but the predicted PGA did
not, then we considered this result a false negative (“FN”). The
performance metrics based on the confusion matrix, such as
F1-score, precision, and recall are shown in Table 5.

As proposed by Meier (2017), to evaluate the classification
performance of the EEW system, a tolerance range can be used.
We use the same tolerance as the NEEWS (Hsu et al., 2018)
during these three earthquake events, i.e., a ± 1 level of CWB
intensity scale, to evaluate the performance of the proposed CNN
herein, as shown in Figure 9B. The performance metrics based
on the confusion matrix with a tolerance are also summarized
in Table 5. The values of the precision, recall, and F1-score
when no tolerance is allowed are approximately between 81% and
100%, while the ones when the tolerance is allowed increased to
approximately at least 97%. Hence in general, the overall potential
alert performance using the proposed CNN during these three
test earthquake events seems quite promising.

In Comparison With the SVR and
GMPE-Based Approaches
As described in the Introduction section, the SVR approach
developed previously has been employed in the NEEWS in
Taiwan and has successfully demonstrated its ability during
several damaging earthquakes. Six P-wave features are extracted
from the first 3 s of the vertical acceleration and then used as
the input to the SVR prediction model for PGA prediction. The
same T-data were used herein to know if the predicted PGA
of the proposed CNN is more accurate than the one using the
SVR or not. The PGA distributions of the T-data earthquakes
using the SVR prediction model of the NEEWS are illustrated
in Figure 10A, with the RMSLE and σ value equal to 0.748 and
0.664, respectively. These values are much larger than the ones
using the proposed CNN approach. These results indicate the
superiority of the CNN for PGA prediction.

Many EEW systems around the world use a ground motion
prediction equation (GMPE) to forecast shaking based on
estimates of the source parameters (location and magnitude).
For comparison, under the assumption that the location and
magnitude could be accurately estimated, the PGA could be
predicted based on the GMPE. The GMPE accommodating site
effects developed by Jean et al. (2006) was employed herein
and the same T-data were used to compare the proposed CNN
with the typical GMPE-based approach. The PGA distributions
of the T-data earthquakes using the GMPE-based approach are
illustrated in Figure 10B, with the RMSLE and σ value equal to
0.870 and 0.896, respectively. Again, these values are much larger
than the ones using the proposed CNN approach, which indicates
the accuracy of the CNN for PGA prediction is quite promising.

DISCUSSION

In this study, the CNN is proposed as having successfully
predicted the PGA of the incoming seismic wave at the same
site based on the information of the first 3 s of P-wave data
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FIGURE 9 | The confusion matrix (A) without a classification tolerance and (B) with a classification tolerance range of ± 1 level of CWB intensity scale.

FIGURE 10 | The predicted PGA distribution of the 10,000 T-data earthquakes using (A) the SVR approach in Hsu et al. (2013), and (B) the GMPE-based approach.

after an event is triggered. Due to this specific application
to EEW, the proposed CNN is specially designed. The novel
multi-scale input of the CNN is proposed to deal with the
enormous differences of the amplitudes of the input data. The
multi-domain information of the P-wave data (both the time
history and Fourier spectrogram) is also proposed as helping
to achieve better PGA prediction accuracy for the CNN. The
multi-scale and multi-domain input data are treated as different
aspects of the P-wave data. Moreover, the absolute value of
the time history data is employed when input to the CNN,
instead of the raw one, since only the maximum absolute
acceleration value of the coming seismic wave is needed to be
predicted for the CNN. Note that we aim to propose using
the combination of different scales of both the P-wave time
history data and spectrogram, but not to propose the best

combination of that. Therefore, not all the possible combinations
were considered in this study.

The proposed arrangement of the input data shows its
superiority to the one directly inputting the raw P-wave data
into the CNN. In addition, the proposed CNN approach also
shows its superiority for PGA prediction without extracting any
P-wave features in advance to the SVR approach employed by the
NEEWS where P-wave features must be extracted in advance.

Two independent damaging earthquake events that occurred
recently in Taiwan were employed to understand the capability
of the proposed CNN. The results show the accuracy of the
predicted PGAs of these earthquakes are quite acceptable. The
potential alert performance using the proposed CNN under the
assumption that the lead-time of all the earthquakes were valid
was also studied. The F1-score of the proposed CNN during these
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two damaging earthquake events was approximately 93.4% and
increased to approximately 98.8% if the tolerance of ± 1 level of
CWB intensity scale was acceptable. Besides, the proposed CNN
also shows its performance during a typical smaller earthquake
event (Mw = 5.3) could be also quite promising.

Based on the results of the T-data and the three test earthquake
events, the proposed CNN approach seems quite promising for
PGA prediction. However, for the Chi-Chi earthquake event
with a long and complex slip propagation process, using only
the first few seconds of P-wave data for PGA prediction is still
very difficult. This limitation of the proposed CNN approach
has been pointed out, and further studies are still required to
develop a PGA prediction model for such an earthquake event.
One of the possible approaches is to train multiple CNNs for
longer durations and change to different ones as the earthquake
progresses for better PGA prediction; however, the response
time will be sacrificed, as discussed in Hsu et al. (2013) using
the SVR approach.

The SVR approach and the proposed CNN approach use
seismic wave measured at one seismic station and predict the
coming peak ground shaking of the same station. On the other
hand, the GMPE-based approach forecast shaking based on
estimates of the source parameters. Based on the experience
of two real earthquake events, the accuracy of the predicted
PGAs of SVR and GMPE-based approaches was quite similar,
but the SVR approach could provide a longer lead time for
near-epicentral sites (Hsu et al., 2018, 2021). We believe the
CNN approach would show similar performance to the SVR
approach because their computation time is similar. There are
other approaches that use shaking to directly predict shaking,
such as the propagation of local undamped motion (PLUM)
and the approximation by local pseudo-hypocenter attenuation
(ALPHA) approaches developed by the JMA (Kodera et al., 2018;
Kodera, 2019). Based on the results of the first-year performance
of the PLUM approach, this kind of approach seems to have
great potential to provide a more accurate prediction of ground
motion intensity and a longer lead time than the GMPE-based
approach, especially for destructive earthquakes. However, it
is still difficult to provide timely ground motion predictions
for near-epicentral sites. Nevertheless, more researches on the

performance, comparison, and combination of different EEW
approaches are necessary in the future in order to provide better
EEW for the public.
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Earthquake Early Warning System in
Israel—Towards an Operational Stage
Ran N. Nof1*, Itzhak Lior2,3 and Ittai Kurzon1

1The Geological Survey of Israel, Jerusalem, Israel, 2Université Côte d’Azur, CNRS, Observatoire de la Côte d’Azur, IRD, Géoazur,
Valbonne, France, 3The Institute of Earth Sciences, The Hebrew University, Jerusalem, Israel

The Geological Survey of Israel has upgraded and expanded the national Israeli
Seismic Network (ISN), with more than 110 stations country-wide, as part of the
implementation of a governmental decision to build a national Earthquake Early
Warning (EEW) system named TRUAA. This upgraded seismic network exhibits a
high station density and fast telemetry. The stations are distributed mainly along the
main fault systems, the Dead Sea Transform, and the Carmel-Zfira Fault, which may
potentially produce Mw 7.5 earthquakes. The system has recently entered a limited
operational phase, allowing for initial performance estimation. Real-time performance
during eight months of operation (41 earthquakes) matches expectations. Alert delays
(interval between origin-time and Earthquake Early Warning alert time) are reduced to
as low as 3 s, and source parameter errorstatistics are within expected values found in
previous works using historical data playbacks. An evolutionary alert policy is
implemented based on a magnitude threshold of Mw 4.2 and peak ground
accelerations exceeding 2 cm/s2. A comparison between different ground motion
prediction equations (GMPE) is presented for earthquakes from Israel and California
using median ground motion prediction equations values. This analysis shows that a
theoretical GMPE produced the best agreement with observed ground motions, with
less bias and lower uncertainties. The performance of this GMPE was found to
improve when an earthquake specific stress drop is implemented.

Keywords: TRUAA, earthquake early warning, epic, Israel, ground motion prediction

INTRODUCTION

Earthquake Early Warning Systems (EEWS) are a tool to reduce earthquake risk. Their basic
approach is to issue an alert as soon as possible following the occurrence of an earthquake, before
damaging seismic waves arrive at a target. Some EEWS are based on identifying P-wave onsets or a
preset acceleration threshold crossing, and to raise an alert that can be used to mitigate the effects of
the expected ground shaking. Earthquake detection, by either single or multiple seismic or geodetic
stations, can be done “on-site” close to the target or “regional” close to the source (Nakamura, 1988).
Various algorithms are currently available—operational or under development around the world
based on point-source, finite fault, and ground motion models (Allen and Melgar, 2019 and
references therein).

Israel’s main seismic risk is attributed to the tectonically-active plate boundary fault system
of the Dead Sea Transform (DST) and its branches (Figure 1) (e.g., Garfunkel et al., 1981), with
earthquake magnitude potential of up to Mw7.5 (Hamiel et al., 2009). The increase in
population density and in industrial and commercial infrastructures have amplified the
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seismic risk for Israel and led the Israeli government to
appoint the Geological Survey of Israel (GSI) as responsible
for establishing an EEWS, named TRUAA; TRUAA refers
to the Hebrew word for the sounds of trumpet and of
the traditional Jewish horn (Shofar), used for both,
religious ceremonies and alerting (e.g. Joshua 6:20, Holy
Bible: KJV).

The Israeli EEWS consists of three main components: 1)
Seismic data acquisition system (Kurzon et al., 2020; 2) EEW
Algorithm (Nof and Kurzon, 2021; 3) Dissemination system.
While the former two are under the responsibility of the GSI, the
latter is under the responsibility of the Home Front Command
(HFC), of the Israeli Defense Force.

In Israel, several geographical and seismological
considerations pose unique challenges for EEW. Since the
country’s shape is narrow and sub-parallel to the main
hazardous fault system (DST is oriented north-south), most of
the population lives in proximity to potential earthquakes. Thus,
the main challenge is the expected short response times, defined
as the interval between earthquake alert issuing time and S-wave
arrival time at a certain location. In addition, the DST coincides
with the international border and the seismic network is deployed
only on its western side. Therefore, the performance of the system
suffers from limited azimuthal coverage, which results in reduced
accuracy and increased uncertainties for automatic earthquake
locations (Nof and Allen, 2016; Nof et al., 2019). Finally, EEW
optimization and calibration using real time or historical
playbacks, as commonly used elsewhere (Nof and Allen, 2016;
Cochran et al., 2017; Meier et al., 2020), is challenged by the low
seismicity rate (e.g., ∼ten times lower than California) and limited
historical data.

TRUAA INFRASTRUCTURE AND
ACQUISITION SYSTEM

Until 2017, the Israeli Seismic Network (ISN) consisted of 23
broadbands and short period sensors, collecting data in real-time
at the Seismological Division data center formerly of the
Geophysical Institute of Israel, located at the city of Lod
(central Israel). Data acquisition and network geometry were
not optimized for EEW, with high latencies (∼3 s) and large data
packets (∼6 s), leading to poor performance in real-time (Nof and
Allen, 2016).

TRUAA infrastructure follows one of the main principals
set by the EEW international committee (Allen et al., 2012),
requiring a state-of-the-art real-time seismic network, as the
underlying foundation for efficient and reliable EEWS.
Therefore, the ISN has gone through significant upgrades
and modifications, since September 2017. In order to
overcome the main challenge of short response times (see
previous section), the network was designed to minimize
alert delays, by densifying the station distribution (Kuyuk
and Allen, 2013b) along the main seismic sources [DST and
the Carmel-Zfira Fault System (CF)], and significantly
reducing telemetry latencies. The resulting seismic
network currently has 110 working stations, out of 121
planned stations, with below 1s data packets, and station-
intervals of 5–10 km along the major faults (Figure 1). All
stations are equipped with strong motion Titan
accelerometers, and Centaur dataloggers, sampling in 200
samples per second; some (25 stations) have collocated
broadband Trillium 120 s seismometers; seismic instrumentation
is provided by Nanometrics. A full overview on TRUAA
infrastructure is given by Kurzon et al. (2020). In order to
increase reliability and robustness of the EEWS, several layers of
redundancy were implemented at all network scales: 1) each station
has two telemetry routes, the main and fast route, by ethernet or
cellular, with latencies of 600–900 ms, and the backup route, by
cellular or satellite, with latencies of 700–1500ms; 2) there are two

FIGURE 1 | Location map of TRUAA seismic stations network. Strong
motion sensors are marked as yellow circles. Co-located broadbands are
marked as red circles and GNSS receivers are marked as blue dots. Active
faults (red lines) are after Sharon et al., 2020. DST—Dead Sea Transform,
CF—Carmel Fault, Lod—Lod data center, Jer—Jerusalem data center.
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data centers synchronized and working in parallel using an active-
active cluster configuration, the main one in Jerusalem and the
backup in Lod; 3) Each data center hosts two parallel acquisition
and processing chains (hence, a total of four independent chains).

The acquisition system is based on Nanometrics’ Apollo
Servers which forward the data for both routine seismic
monitoring procedures and the EEWS at each data center.
Each data packet is multi-casted separately via the two routes
and reaches each of the four separate acquisition systems. Since
Jerusalem main data center is located ∼20 km from the DST,
this redundant configuration of four independent EEWS is
expected to provide high robustness in case of a catastrophic
event.

TRUAA EARTHQUAKE EARLY WARNING
ALGORITHM

The collected seismic data is processed using the
United States. West Coast ShakeAlert’s Earthquake Point-
source Integrated Code (EPIC) EEW algorithm (Given et al.,
2018; Kohler et al., 2020), providing rapid alerts for
potentially damaging earthquakes. The EPIC algorithm,
formerly under the codename ElarmS (e.g. Chung et al.,
2019), is a regional (network based) point source
algorithm. In order to issue an alert, the algorithm
requires P-wave detections by a minimum of four
different stations and at least 40% of active stations in the
P-phase wave-front area. The earthquake location is
obtained by a 200 × 200 km grid search, in which the
residuals of the calculated and observed arrival-times are
minimized based on a one-dimensional layered global
velocity model, AK135 (Kennett et al., 1995). Then, event
magnitude is estimated from the hypocenteral distances
combined with the peak displacement (Pd) values,
calculated from accelerations or velocities measured at the
different stations (Kuyuk and Allen, 2013a; Sadeh et al.,
2014). The event’s magnitude estimate used is the average of
the estimates at all near-source stations and an uncertainty
on this value is also computed but not used for alerting
purposes. As time progress and additional data become
available, the origin-time, location, Pd values and
magnitude are all updated with higher accuracy (e.g.
Kohler et al., 2020). Modifications and developments of
ShakeAlert are carefully examined and implemented after
adjustments to the local seismic network and conditions
(Nof and Allen, 2016; Nof and Kurzon, 2021). The
TRUAA EEWS consists of TRUAA’s acquisition system,
EPIC’s Waveform Processor (WP), and Event Associator
(EA) that identifies events and sends alerts to a Decision
Module (DM) that forwards alerts based on a predefined
magnitude and geographic location. ActiveMQ messaging
system (Kohler et al., 2018; Chung et al., 2019) is used for
communication between the modules. In our
implementation, EPIC EA alert messages, limited to M >
2.5, are shared between all four DM instances and each DM
finally converges the EA alerts to produce a single EEW alert

with updating intervals of 1 s. The HFC listens to the DM
alerts and is responsible for disseminating proper alerts to
the public. Although the HFC alert dissemination system is
actively working for various threats, currently, earthquake
alerts are distributed only to a limited test group via a cellular
application. In addition to the HFC alerting channels, a test
group receives alerts via a dedicated GSI Telegram bot.

TRUAA EARTHQUAKE EARLY WARNING
ALGORITHM PERFORMANCE

The deployment phase of TRUAA, ongoing since September
2017, provided the opportunity to test the EEW algorithm in real-
time. As data centers were being configured and additional
stations deployed, telemetry and stations have shown
variability in performance and availability, with occasional
data outage in all or in parts of the network, and variable
latencies or completeness levels. Nevertheless, the available
data was sufficient to examine the performance of ElarmS, and
carefully upgrade the EEW into EPIC (Nof and Kurzon, 2021). In
this work, we attempt to assess the expected performance of the
EEWS in terms of alert-delays and source parameter accuracy
(location, origin-time and magnitude) by analyzing statistics of
the available data between May 2020 and January 2021. Although
most of the stations were already deployed during this period, we
note that not all stations were available to the system at all times
and occasional outages occurred. We use data from a real-time
testing system utilizing a single processing chain (e.g. WP and
EA) which has the most complete real-time data record and its
performances are similar for the four operational processing
chains.

Expected Alert Delays in Israel
The expected performance, in terms of alert delays, were
estimated as the minimal alert delay for earthquakes
occurring in and around Israel, i.e., estimating the
theoretical time for EPIC to provide EEW to the HFC
dissemination system, given an earthquake location and
seismic network geometry (Nof and Kurzon, 2021). This
analysis presented by Nof and Kurzon (2021; their Figure 3)
shows that the minimal delay time is 4.7 s, where the seismic
network is most dense. This estimation assumes an
earthquake depth of 10 km and processing and telemetry
times of 1 s, each. Typically, latency and processing times are
less than 1 s. Longer telemetry delays as well as deeper
hypocenters would result in longer alert delays. Alert
delays are expected to be ∼5 s for events occurring along
the main hazardous fault lines. Assuming a very conservative
S-wave velocity of 3.5 km/s and depth 10 km this delay
would translate into a ∼15 km blind-zone (∼22 km with
added 2 s for alert dissemination), wherein S-wave would
precede alert issuance. This is a significant improvement
relative to previous blind-zone estimation of over 30 km
(Pinsky, 2015). Slower S-wave velocity would yield smaller
blind zone while shallower events might yield larger
blind zone.
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Real Time Performance
Since it’s installation on May 5th, 2020, EPIC version 3.2.1-
2020-04-17 was running in real-time. Until January 1st, 2021,
EPIC EA has identified and alerted on 154 events of M > 2.5
(EPIC magnitude estimation). In order to assess the EEW
algorithm performance, the GSI catalog (earthquake.co.il last
access 2021-03-01) is considered as a reference and a careful
association is required between the two datasets. We first
use large area catalog events to associate EPIC events and
then process only those associated with catalog events
located in a more local area that corresponds to the
TRUAA coverage.

For this period, the GSI catalog includes a total of 2,674
events (525 with Mw > 3) located between 27–36 latitudes and
32–38 longitudes with maximal magnitude of Mw 6.7 (the 2020-
10-30 11:51 Aegean Sea earthquake). While the catalog’s
geographic coverage is larger than the expected EEW
coverage (limited to ∼200 km from the seismic network
stations) distant events may trigger an alert with large
location errors and therefore should be considered. We
associate the GSI catalog records with EPIC’s EA alerts based
on a time window of 130 s to allow association of distant events.
For the 2674 GSI catalog events only six are categorized as “Felt”
(e.g. were reported by the public to be felt) and 1,610 events are
categorized as quarry blasts or explosions (all with Mw < 3,
some without recorded catalog magnitude).

Out of the 154 EPIC alerts, two were not associated with any
catalog event (False alerts) and one was associated with an un-
cataloged teleseismic event (2020-10-06 Mw 5.9 Fiji). The EPIC

first magnitude estimation for these three events was in the range
of 2.6—3.1. For the six felt events that occurred during this
period, five were identified and alerted by EPIC and one missed -
the Mw 5.3 2020-12-05 Near Antalya, Turkey. This missed felt
event was a distant event (>450 km from ISN) and as such should
not be considered, though it was widely felt in Israel (21 reports at
the USGS “did you feel it” with MMI III).

As previously mentioned, TRUAA is yet to be fully
operational and data acquisition in real-time suffer from
different challenges. We use the EPIC alerts database to
investigate the system performance in terms of alert delay
times, magnitude errors and locations errors. These
parameters are of high importance for decision makers in
establishing the appropriate public alerting approach in
Israel. Previous analysis of historical playbacks have found
median and standard deviation (σ) of 3.7 km (σ 32.26 km) and
0.8 s (σ 4.33 s) for the location errors and time errors,
respectively, and mean magnitude error of 0.41 (σ 0.43) for
the population of all 49 felt events (2.8 < Mw < 4.8) during
January 2012 to March 2020 (Nof and Kurzon, 2021). In order
to compare these findings with current real-time performance
we use all 41 catalog events (2.1 < Mw < 3.7) that occurred at
the same spatial reference of 29o–35o Latitudes and
32.5o–36.5o Longitudes and their first EPIC EA alerts.
Figure 2 summarizes these statistics with a mean
magnitude error of 0.38 (σ 0.28), median location error of
5.08 km (σ 17.42 km) and median time errors of 0.8 s (σ 5 s).
These obtained statistical values are similar to those
previously found using historical events playbacks (Nof

FIGURE 2 | EPIC real-time performance evaluation. (A) magnitude errors; (B) location errors; (C) origin time errors; (D) measured alert delays vs. expected alert
delays (Nof and Kurzon, 2021; See their Figure 3 for expected alert delays spatial distribution). Dots denote events with catalogmagnitude of Mw < 3, gray circles denote
events with catalog magnitude Mw > 3, red circles represent felt events, dark dashed line represents a 1:1 fit between expected and measured alert delay, gray dashed
lines represent ±1 s from the 1:1 fit line; All errors are referenced to the ISN catalog.
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and Kurzon, 2021). The alert-delays (Figure 2D) show good
fit with the expected alert delays, detailed in Expected Alert
Delays in Israel section, especially for the stronger events with
catalog magnitude of Mw ≥ 3. All four felt events in the
analyzed subset are within ±1 s of the expected alert-delays.
Significant deviations, with larger than the expected alert-
delays can be explained by small events (Mw < 3) that require
additional time to fulfill the required magnitude threshold of
M ≥ 2.5 in order to trigger an alert by the algorithm or by
distant location from the seismic network. Although the
datasets are limited in numbers and magnitude range, the
EEWS performance within reported felt events is in
accordance with expectations in terms of alert delays (see
Expected Alert Delays in Israe Section) and in terms of
location and magnitude errors based on historical data
estimations (Nof and Kurzon, 2021). The results show that
the EEW algorithm performance in real-time is as expected
and that decision makers may rely on these findings to
determine the alert approach for Israel.

ALERT APPROACH FOR ISRAEL

The initial earthquake alert approach for Israel was to alert
educational institutions country-wide in case of a Mw ≥ 5.5
earthquake. Nof and Kurzon (2021) discussed the potential
limitations of TRUAA and proposed an alternative approach
for Israel. This alternative approach adopted herein. The main
challenge is the potential earthquake magnitude under or over-
estimation, which may respectively lead to damage (structural,
personal physical or psychological) when alert should have
been issued or unnecessary disturbance when alert was not
required.

Given the inherent EPIC point source algorithm limitations
and the need to balance between the short time for disseminating
useful alerts and reducing needless alerts (e.g., alerting when
damage is not expected), the proposed alerting approach is now
approved by the decision makers and will allow for an
“evolutionary” alert to both educational institutions and the
general public. Currently, it is not scheduled to deliver EEW

FIGURE 3 | “Evolutionary” EEW alert. With time, magnitude estimation is updated and the alerted area (pink) increases. Population numbers represent units of
1,000 per alert area. In a different scenario, where magnitude estimation would not increase (e.g. magnitude is stable at Mw 4), the alerted area is minimal and other areas
are not disturbed. Alert area limit is calculated as 2 cm/s2 using Lior and Ziv (2018) GMPE around the epicenter (red mark). Blue and red circles indicate the front of the P-
and S- waves, respectively. Black and gray circles are 10 s intervals for S-wave front e.g. the expected S-wave front within 10 and 20 s, respectively.

Frontiers in Earth Science | www.frontiersin.org June 2021 | Volume 9 | Article 6844215

Nof et al. Israel’s EEWS-Towards Operational Stage

61

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


to sensitive infrastructures due to the current high
uncertainty of the solutions and the sensitivity of
infrastructures to unrequired alerts. In the following, we
present the current EEW policy in Israel and the
considerations for this approach.

TRUAA Alerting Policy
Following the recommendations of Nof and Kurzon (2021) for
an “evolutionary” alert (Figure 3), similar to the USGS
ShakeAlert’s approach (Given et al., 2018), alerts for
magnitudes in the range of 4.2 ≤ Mw < 6.0 will be limited to
areas where the ground shaking is expected to be above 2 cm/s2

(pink zone in Figure 3), which is well felt (MMI II-III), but
should not cause any significant structural damage (Worden
et al., 2012). For events with magnitude Mw ≥ 6—A country-
wide alert will be assigned.

The described approach is aimed to balance the need to
alert as soon as possible for potentially damaging events and
the need to avoid alerting for regions where no action is
required (Cochran and Husker, 2019; Le Guenan et al., 2016;
Minson et al., 2018). While public demand and expectations
in some places are to receive alerts even when no physical
damage is expected (MMI > III), such as following the 2019
Ridgecrest earthquake in California (Cochran and Husker,
2019), in other places alerts are expected only for more
damaging events, such as in New Zealand (Becker et al.,
2020). Common public alert approaches are aimed at
higher intensities such as the JMA L5 in Japan (Hoshiba
et al., 2008) and the initial alert threshold of MMI IV in
California (Given et al., 2018). The relatively low threshold of
2 cm/s2, balanced with a low magnitude threshold of Mw 4.2,
allows to account for local amplifications and the
uncertainties in magnitude, location and ground motion
prediction equations (GMPEs) (Minson et al., 2019). The
apparent public acceptance and tolerance for receiving
alerts even where no damage occurred (Allen, 2017; Allen
et al., 2018) allows the use of such a low threshold to ensure
alerts are sent only to areas that are expected to feel shaking
(Worden et al., 2012) and reduce disturbance to the public
where no action is required. The Mw 4.2 threshold mitigates
the risk of delaying alerts for initially underestimated large
earthquakes (Böse et al., 2012; Meier, 2017; Melgar and Hayes,
2017; Minson et al., 2018; Meier et al., 2020) while avoiding
unrequired alerts to non-damaging lower magnitude events.
Since for large magnitude earthquakes additional time might
be required in order to converge to its maximal peak
displacement (Trugman et al., 2019), hence, as additional
information is gathered and becomes available for the
EEWS, magnitude estimation is expected to be more
accurate and corresponding alert area would increase.
Initiating the alert to a limited area at an early stage
reduces the “blind zone” where alerts are received after
S-wave arrivals. In addition to the lower-bound magnitude
threshold, a second threshold was selected at Mw six to spread
an alert country-wide. Since most of the country is likely to be
included in the 2 cm/s2 zone, extending the alert to the whole

country mitigates the point-source algorithm potential
saturation at magnitudes larger than Mw six (e.g. Brown
et al., 2009).

FIGURE 4 | Alert panel screenshot taken from the HCF app. Red frame
surrounding dedicated earthquake icon with the name of user place, action
instructions, date, time and type of threat (earthquake in this case). A unique
alerting sound and additional instructions are also available. Instructions
include information on how to react at different places (indoors, outdoors,
cars, coastline).
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TRUAA Alert Dissemination to the Public
Currently, disseminating alerts is the responsibility of the
HFC. EPIC’s DM point source solutions are acquired from the
ActiveMQ messaging system as XML format by a dedicated
new module and translated into Common Alerting Protocol
(CAP) format (Jones et al., 2010). A pre-calculated
magnitude-distance table is used to set the alert radius
around the epicenter, based on the selected thresholds and
GMPEs. The EPIC alert is forwarded to the HFC
disseminating system in less than 0.5 s (∼400 milliseconds).
HFC can forward the alerts to the public using various
methods (cellular application, emergency sirens, TV, radio
etc.) which adds an additional 1–10 s depending on the alert
medium. Currently, a test group of subscribers to the HFC
alert applications can receive alerts. The subscriber can
register to any location (city/settlement) and receive simple
informative push messages in case of an alert to these
locations. In addition, a full alert panel will appear in case
of an alert to the device’s current location. The alert panel
(Figure 4) includes red colors, earthquake icon, user location
name, date, time and type of threat (earthquake in this case).
A unique alerting sound and additional instructions are also
available in Hebrew, English, Arabic and Russian.
Instructions include information on how to react at
different places (indoors, outdoors, cars, coastlines).
Emergency sirens are currently designed to sound verbally
the word “Earthquake” in Hebrew to distinguish from other
threats. The system is yet to be operational on a
national level.

SELECTION OF THE APPROPRIATE
GROUND MOTION PREDICTION
EQUATIONS FOR EARTHQUAKE EARLY
WARNING IN ISRAEL

Following real-time magnitude and location
determination—alert issuance and alert region are
determined based on GMPEs. GMPE development requires
large earthquake dataset with a wide magnitude range. The
low seismicity rate in the region limits the development of
rigorous local GMPEs, thus, several global GMPEs are tested
to determine the optimal one for TRUAA. The appropriate
GMPEs should meet the following criteria: 1) regionally
adjustable; 2) Based and validated on a large global dataset
with 3 ≤ Mw ≤ 7; and 3) Yields low standard deviations

between observed and predicted median values of ground
motions, in particular when tested against regionally
recorded earthquakes. The latter is crucial for EEW, due
to the limited information available in real-time (Magnitude
and epicentral distance). In this section, the performance of
three different GMPEs is compared: the model-based GMPE
of Lior and Ziv (2018, LZ18), the empirical GMPE of
Abrahamson, Silva and Kamai (2014, ASK14) and the
empirical GMPE of Cua et al., 2009, CH09. The LZ18
GMPE is formulated as follows (Eq. 20c in Lior and Ziv,
2018):

PGA � 3.3M
1
3
0Δτ

2
3βA

R

�������������������
κ[ 1
κCS

( 7M0

16Δτ)
1
3 + R/CS

√
][1 + 1.5−14πκkCS(16Δτ7M0

)1
3]2

(1)

where PGA is peak ground accelerations, M0 is the seismic
moment, Δτ is the stress drop, βA is a constant, R is the
source-to-site distance, κ is the high-frequency attenuation
parameter, k is a source model dependent constant (e.g.,
Brune, 1970; Madariaga, 1976), and CS is the S-wave velocity.
Parameter values are set to those used by Lior and Ziv (2020):
βA � 2.05 · 10− 8m2s

kg , κ � 0.025 s , (Lior and Ziv, 2018),
k � 0.21, (Madariaga, 1976) and CS � 3.2 km/s (Lior and Ziv,
2020). The CH09 GMPE is presented in Eq. 4 of Cua and Heaton
(2009):

log10(PGA) � aM + b(R1 + C(M)) + d · log10(R1 + C(M)) + e

(2)

wherePGA ismeasured in cm,M ismagnitude, R1 �
������
R2 + 9

√
, R is the

epicentral distance (in km),C(M) � c1ec2(M−5) × (arctan(M − 5) + π
2)

and e is a constant. The coefficients for hard rock sites were used
(Table three of Cua and Heaton, 2009): a � 0.73, b � −7.2 × 10−4,
c1 � 1.16, c2 � 0.96, d � −1.48 and e � −0.42. We tested the fit
between observed PGA and the CH09 GMPE using both the
“hard rock” and “soft soil” coefficients and found a better
agreement using the “hard rock” coefficients. This is not
surprising given that the vast majority of ground motion
records used in this study were recorded at hard rock sites.

For ASK14, we use the basic form of the GMPE since many
coefficients are unknown for Israel. This formulation is
presented in Eqs 2–4 of Abrahamson, Silva and Kamai
(2014):

log(PGA) �
⎧⎪⎨⎪⎩

a1 + a5(M −M1) + a8(8.5 − M)2 + [a2 + a3(M −M1)]log(R) + a17RRUP M >M1

a1 + a4(M −M1) + a8(8.5 − M)2 + [a2 + a3(M −M1)]log(R) + a17RRUP M2 ≤M <M1

a1 + a4(M2 −M1) + a8(8.5 − M2)2 + a6(M −M2) + a7(M − M2)2 + [a2 + a3(M −M1)]log(R) + a17RRUP M <M2

(3)
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Where R �
����������
R2
RUP + c24M

√
and

c4M �
⎧⎪⎨⎪⎩

c4 M > 5
c4 − (c4 − 1)(5 −M) 4<M ≤ 5

1 M ≤ 4
(4)

RRUP is the closest distance to the rupture plane, equivalent to the
epicentral distance for small earthquakes. The following coefficient
values were used: c4 � 4.5,M1� 6.75,M2� 5, a1� 0.587, a2 � −0.79, a3
� 0.275, a4� −0.1, a5� −0.41, a6� 2.154, a7� 0.0, a8� -0.015 and a17�
−0.0072 (Abrahamson et al., 2014). Both CH09 and ASK14 describe
the median PGA while LZ18 describes a theoretical PGA, based on
commonly used seismological models (Brune, 1970; Anderson and
Hough, 1984). The validation of LZ18 to a diverse data set of
earthquakes, mainly from Japan and California, revealed low
uncertainties of 0.7 in natural log units (0.3 is 10 base log units)
(Lior andZiv, 2018), comparable to 0.31 determined forCH09 (10 base
log units) (Cua and Heaton, 2009). For ASK14, standard deviation are
not reported specifically for the base form of the GMPE used here.

All GMPEs meet criteria 2) so they will be appraised based on
criteria 1) and 3). The tested GMPEs are compared using locally
recorded earthquakes, as well as the 2019 Mw 6.4 and Mw 7.1
Ridgecrest earthquakes to compensate for the lack of large
magnitude events in our local seismic record. In contrast to the
empirical GMPEs (ASK14 and CH09), which are a function of
magnitude and epicentral distance (under the EEW algorithm
point source assumption), the LZ18 GMPEs also depend on stress
drop. Since stress drop is currently not resolved in real-time, it will

be estimated using the magnitude—stress drop relation established
for California earthquakes by Lior and Ziv (2018; their Eq. 18a):

log10Δτ � 4.57 + 0.14log10M0 (5)

This relation, determined for earthquakes of similar
mechanism (mostly strike-slip), provides a good fit to
observed ground motions, as further shown.

To examine the performance of the different GMPEs, they
are compared to recorded ground motions. Predicted PGA
are calculated using the different GMPEs and catalog
magnitudes and source-to-site distances. We focus on the
median predictions of the GMPEs, neglecting their
uncertainties, since the EEW alerts are binary—either
alert or not and these GMPEs uncertainties cannot be
considered in real-time. Thus, we do not perform a
complete evaluation of each GMPE. Figure 5 shows the
discrepancies between observed and predicted PGA (using
different GMPEs) as functions of magnitude and distance,
and Figure 6 shows observed PGA as a function of distance,
along with a fit to the different GMPEs, for four different
earthquakes in Israel and California. In Figure 5, only PGA
>1 cm/s2 are considered, since lower values are of little
interest for EEW. Figure 5 reveals that the residuals are
invariant to magnitude and distance for all GMPEs. The
average discrepancies and the standard deviations of the
residuals (µ and σ, respectively, in the legends of Figure 5A
and Figure 6) indicate that LZ18 produces a better fit to the
observations compared with the two empirical GMPEs,

FIGURE 5 | The logarithm of predicted PGA (PGAGMPE) minus the logarithm of observed PGA (PGAOBS) as functions of (A) catalog moment magnitude and (B)
source-to-site distance. Discrepancies calculated using CH09, ASK14 and LZ18 are indicated by blue circle, black line and red dots, respectively. Average discrepancies
(µ) and standard deviations to the residuals (σ) between predicted and observed PGAs are indicated in the legend.
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showing a lower standard deviation, and a more symmetric
residual distribution (µ closer to 0). The negative average
discrepancies, typically observed for CH09 and ASK14,
indicate a general ground motions underestimation. Such
underestimation has been previously reported by Nof and
Allen (2016) who implemented a simple globally derived
GMPE for real-time magnitude estimation of Israeli
earthquakes. Thus, we conclude that LZ18 is the more
suitable GMPE, producing lower ground motion
uncertainties, as required by criteria 3) defined earlier.

Since LZ18 explicitly includes the stress drop, we test
whether implementing an earthquake specific Δτ improves
PGA predictions. Unlike the stress drops given by eq. 5, which
describes stress drop averaged for many investigated
earthquakes in California, an earthquake specific Δτ is
determined for each individual earthquake separately.
Average earthquake stress drops are calculated for each
event using the single-step source parameter inversion of
Lior and Ziv (2018). To obtain reliable stress drop
estimates, only stations at hypocentral distances of less
than 50 km are used. Predicted LZ18 PGA calculated using
earthquake specific stress drops, provide a better fit to

observed data, as indicated by the blue curves in Figure 6.
These results demonstrate the ability to locally adjust the
LZ18 GMPE (criteria one), and confirms that shaking
intensities may be better predicted by incorporating real-
time stress drop determination (e.g. Lior and Ziv, 2020). In
contrast to the large additional dataset required to locally
adjust CH09 or ASK14, the real-time stress drop calculation
may be implemented in the EEW algorithm without
additional seismic data.

The underestimation of PGA using CH09 and ASK14
(Figures 5, 6) typically results in smaller alert areas
compared to those imposed by LZ18. To demonstrate this
effect, Figure 7 shows magnitude as a function of the predicted
alert area radius for the different GMPEs. Here, alert radius
corresponds to the predefined threshold of peak ground
accelerations >2 cm/s2. Similar alert radii are predicted for
small magnitudes (M<∼4), while at larger magnitudes, the
LZ18 GMPE is the most conservative, producing the largest
alert areas. The latter characteristic is particularly appealing
for the early stages of TRUAA’s operation, where public
expectation and long-term performance are still unclear.
We conclude that LZ18 will produce the most reliable and

FIGURE 6 | PGA as a function of distance for (A) MW 3.9 in the eastern Mediterranean Sea, (B) MW 4.4 in north Israel, and (C) MW7.1 and (D) MW6.4 near
Ridgecrest California. Magnitudes and the number of data points are indicated at the bottom left corner of each panel. The GMPEs of LZ18, ASK14, CH09, and LZ18
with earthquake specific stress drop (LZ18Δτ) are indicated by red, black, blue and green curves, respectively. Average discrepancies (μ) and standard deviations to the
residuals (σ) are indicated in the legends.
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robust ground shaking predictions, which may be improved if
a real-time stress drop estimate is available.

CONCLUSION

The State of Israel’s TRUAA EEWS, along with its new real-
time seismic network, achieve state-of-the-art real-time
capabilities owing to the: 1) fast telemetry, 2) high station
density along the main fault systems, and 3) local
implementation of the EPIC algorithm. In this manuscript
we demonstrated that the real-time performance of the EPIC
EEW algorithm is in-line with the expected alert-delays and
source parameters error uncertainty. We evaluated the real-
time performance of TRUAA between May 5th, 2020 and
January 1st, 2021 using 41 events with catalog magnitude
range of (2.1 < Mw < 3.7) and found that all felt events within
the seismic network coverage led to accurate and timely alerts.
We found mean magnitude error of 0.38 (σ 0.28), median
location error of 5.08 km (σ 17.42 km) and median time errors
of 0.8 s (σ 5 s). These statistics are robust and similar to
previously reported values (Kurzon et al., 2020; Nof and
Kurzon, 2021). The suggested “evolutionary” alert has been
approved and alerts to limited areas will be provided for 4.2 ≥
Mw < 6. For Mw ≥ 6 a country-wide alert will be issued. We
note that the dataset used in this research lacks large
magnitude events and the seismic network is yet to be fully
completed. Thus, the performance statistics may change in the
future and further assessments would be required.

This alerting approach is expected to balance the need for
rapid alerts in the presence of high uncertainties, on the one
hand, and the desire to reduce alerts for areas with low ground
motions, on the other hand. This balance is achieved by setting
a lower alert magnitude threshold, and alerting to a radial
distance from the epicenter, where ground accelerations are

predicted to be higher than 2 cm/s2. This threshold may be
adjusted in the future, considering TRUAA’s performance and
public expectations, to provide more accurate and targeted
alerts. A comparison between three different GMPEs
concluded that the model-based GMPE of Lior and Ziv
(2018) produces the better agreements between predicted
median values and observed PGA. In addition, this GMPE
has the potential to be further adjusted by implementing real-
time stress-drop, a parameter that can be reliably determined
in real-time. Thus, the limited alert area is determined using
this GMPE.

A complementary essential component to EEWS is public
outreach, education and exercise of earthquake response (Allen
et al., 2009 and references therein; Santos-Reyes, 2019; Wald,
2020). These are critical for a successful EEWS, especially in areas
with low seismic activity, where public awareness is low, such as
in Israel, and should be addressed in the near future, as TRUAA
becomes fully operational.
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Comparing the Performance of
Regional Earthquake Early Warning
Algorithms in Europe
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Several earthquake early warning (EEW) algorithms have been developed worldwide for
rapidly estimating real-time information (i.e., location, magnitude, ground shaking, and/or
potential consequences) about ongoing seismic events. This study quantitatively
compares the operational performance of two popular regional EEW algorithms for
European conditions of seismicity and network configurations. We specifically test
PRobabilistic and Evolutionary early warning SysTem (PRESTo) and the
implementation of the Virtual Seismologist magnitude component within SeisComP,
VS(SC), which we use jointly with the SeisComP scanloc module for locating events.
We first evaluate the timeliness and accuracy of the location and magnitude estimates
computed by both algorithms in real-time simulation mode, accounting for the continuous
streaming of data and effective processing times. Then, we focus on the alert-triggering
(decision-making) phase of EEW and investigate both algorithms’ ability to yield accurate
ground-motion predictions at the various temporal instances that provide a range of
warning times at target sites. We find that the two algorithms show comparable
performances in terms of source parameters. In addition, PRESTo produces better
rapid estimates of ground motion (i.e., those that facilitate the largest lead times);
therefore, we conclude that PRESTo may have a greater risk-mitigation potential than
VS(SC) in general. However, VS(SC) is the optimal choice of EEW algorithm if shorter
warning times are permissible. The findings of this study can be used to inform current and
future implementations of EEW systems in Europe.

Keywords: earthquake early warning, PRESTo, Virtual Seismologist, SeisComp, scanloc, warning time, timeliness,
accuracy

INTRODUCTION

The goal of an earthquake early warning (EEW) system is to deliver a rapid alert about impending
strong shaking that provides sufficient time for protective, loss-mitigating actions to be taken by
targeted end users. The process of EEW generally consists of the following steps: 1) detection of an
event in the early stages of fault rupture; 2) prompt prediction of the relevant source parameters (e.g.,
location and magnitude) and/or the intensity of the consequent ground motion; and 3) warning
issuance to end users before they experience the strong shaking that might cause damage and losses.

EEW systems may be broadly classified as “regional,” “on-site,” or “hybrid.”We specifically focus
on regional systems, which are based on a dense sensor network covering a geographical area of high

Edited by:
Simona Colombelli,

University of Naples Federico II, Italy

Reviewed by:
Matteo Picozzi,

University of Naples Federico II, Italy
Elisa Buforn,

Universidad Complutense de Madrid,
Spain

*Correspondence:
Carmine Galasso

c.galasso@ucl.ac.uk

Specialty section:
This article was submitted to
Geohazards and Georisks,

a section of the journal
Frontiers in Earth Science

Received: 26 March 2021
Accepted: 12 May 2021
Published: 01 July 2021

Citation:
Zuccolo E, Cremen G and Galasso C
(2021) Comparing the Performance of

Regional Earthquake Early Warning
Algorithms in Europe.

Front. Earth Sci. 9:686272.
doi: 10.3389/feart.2021.686272

Frontiers in Earth Science | www.frontiersin.org July 2021 | Volume 9 | Article 6862721

ORIGINAL RESEARCH
published: 01 July 2021

doi: 10.3389/feart.2021.686272

69

http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2021.686272&domain=pdf&date_stamp=2021-07-01
https://www.frontiersin.org/articles/10.3389/feart.2021.686272/full
https://www.frontiersin.org/articles/10.3389/feart.2021.686272/full
https://www.frontiersin.org/articles/10.3389/feart.2021.686272/full
http://creativecommons.org/licenses/by/4.0/
mailto:c.galasso@ucl.ac.uk
https://doi.org/10.3389/feart.2021.686272
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2021.686272


seismicity. When an earthquake occurs, these systems typically
estimate source parameters from the early portion of signals
recorded at sensors close to the rupture. Location (and resulting
source-to-site distance, R) is generally computed by accounting
for geometrical constraints associated with both triggered and
not-yet-triggered stations; earthquake magnitude (M) is typically
calculated based on empirical relationships relating the
earthquake size to parameters obtained in the first 3–4 s of P-
and (sometimes) S-wave signals. Figure 1 illustrates the
principles of a conventional regional EEW system. For a more
detailed review of various approaches to estimate location and
magnitude in regional EEW systems, interested readers are
referred to Cremen and Galasso (2020).

R and M estimates can be continuously updated (through
Bayesian approaches or otherwise) by adding new station data as
the P-wave front propagates through the regional EEW network.
The real-time values are then used to predict, with quantified
uncertainty, ground-motion intensity measures (IMs) at sites far
away from the source (where target structures/infrastructure of
interest and end users are located), by using, for example, ground-
motion models (GMMs). If probabilistic distributions of M and R
are available, the prediction of different IMs (e.g., Iervolino et al.,
2006; Convertito et al., 2008) may be performed by analogy to the
well-known Probabilistic Seismic Hazard Analysis (PSHA)
framework but in real-time, as discussed in detail in Iervolino
et al. (2009). Regional EEW systems typically require the arrival of
P-wave signals at a number of stations to provide stable early
estimates of R, M, and IM. Thus, event detection is a fundamental
task for EEW. Erroneously detected or inaccurate phases, along
with poor event associations, lead to inaccurate location and
magnitude estimates and, ultimately, possible false or missed
alerts. It is worth noting that most regional EEW algorithms

assume a point-source model of the earthquake source and
isotropic wave amplitude attenuation, which neglects the finite
geometry of earthquake ruptures. These assumptions are
generally suitable for estimating the final magnitude of events
with M 6.5 7.0 (Meier et al., 2020), which are consistent with the
largest seismicity that is typically observed in Europe (i.e.,the
focus of our study) and the range of magnitudes we consider
(5.5–6.9). We acknowledge that M > 7.0 events can occur in
Europe, like the 1755 moment magnitude (MW) 8.5 Lisbon
earthquake, which is the largest listed in the SHEEC catalog
(the “SHARE European Earthquake Catalog,” Grünthal et al.,
2013; Stucchi et al., 2013). However, these types of events were
not accounted for in this study given their very low
occurrence rate.

European approaches to regional EEW have been promoted
and progressed through recent EU-funded research projects
(Clinton et al., 2016), such as SAFER (“Seismic early warning for
Europe”) and REAKT (“Strategies and tools for real-time
earthquake risk reduction”). These two projects have
facilitated the development and testing of the PRESTo
(Probabilistic and Evolutionary Early Warning System) and
VS(SC) (Virtual Seismologist in SeisComP) regional EEW
algorithms, which are the most widely applied regional EEW
algorithms in Europe to date (Cremen and Galasso, 2020) and
are therefore the focus of our investigations in this paper.
PRESTo is currently operating in Southern Italy (Irpinia
region), Turkey, Romania, and Southern Iberia (Carranza
et al., 2017). It has also been tested for application at the
border of Italy, Austria, and Slovenia (Picozzi et al., 2015).
Instead, VS(SC) is currently operational in Switzerland and has
been tested for use in Greece, Turkey, Romania, and Iceland
(Behr et al., 2016).

FIGURE 1 | The principles of a standard regional EEW system and conceptual outline of the corresponding EEW process. Information from an EEW system sensor
network is input to an EEW algorithm to detect events and compute estimates of earthquake location, magnitude, and ground-motion amplitude. An alert may then be
issued to warn end users of impending shaking.
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Efforts to compare the performance of PRESTo and VS(SC)
are currently underway within the Early Warning Test Center of
the EPOS (“European Plate Observing System”) EU project.
However, they have so far been limited to the Irpinia region
of Italy. We build on the attempts of the Early Warning Test
Center in this study by comparing the performance of the
PRESTo and VS(SC) algorithms for multiple European
conditions of seismicity and existing seismic network
configurations (i.e., geometries and densities). We specifically
consider five European geographic areas - Southern Italy,
Pyrenees, Southwest Iceland, Western Greece, and the Vrancea
region in Romania - that represent a range of hazard levels and
various seismotectonic settings: collisional/subduction complex
with a complicated back-arc/fore-arc/trench system (Southern
Italy), continent-continent collision with the evolution of an
orogenic belt (Pyrenees), oceanic crust interplate transform
faulting (Southwest Iceland), interplate subduction zones
(Western Greece), and intermediate-depth subcrustal seismicity
(Romania).

We quantitatively assess the operational performance of the
PRESTo and VS(SC) algorithms in real-time simulation mode by
using playbacks of recorded seismic waveforms or those
simulated through a physics-based method. EEW alerts need
to be both timely and sufficiently accurate to be useful (Meier,
2017), especially in Europe, where most earthquake-prone target
sites are associated with short available lead times, significant
exposure, and earthquake-related vulnerability (e.g., Picozzi et al.,
2015). Therefore, our performance assessment focuses on the
algorithms’ capability to both quickly and correctly characterize
the earthquake source (location and magnitude). We also use
GMMs to investigate the impact of the source-parameter
predictions on the temporal trend and quality of the resulting
ground-motion amplitude estimations. Note that a further
performance assessment of the two algorithms is carried out
in our companion paper (Cremen et al., 2021), which focuses on
the accuracy and uncertainty of the underlying methods from a
theoretical perspective using similar event data.

The purpose of our comparison is to identify the best-
performing regional EEW algorithms to be implemented in
the TURNkey FWCR (Forecasting–Early
Warning–Consequence Prediction–Response) platform, a
comprehensive information system for facilitating operational
earthquake forecasting, EEW, and post-earthquake rapid
response actions across the continent. This platform is being
developed as part of the TURNkey (“Towards more Earthquake-
resilient Urban Societies through a Multi-Sensor-based
Information System enabling Earthquake Forecasting, Early
Warning and Rapid Response Actions”) EU Project and will
rely on SeisComP (version 3-Jakarta release) for waveform
acquisition. SeisComP (Helmholtz-Centre Potsdam - GFZ
German Research Centre for Geosciences and gempa GmbH,
2008) is a freely available and widely distributed standard real-
time earthquakemonitoring platform developed by the GEOFON
Program at Helmholtz Center Potsdam, GFZ German Research
Centre for Geosciences and gempa GmbH (Hanka et al., 2010). It
is based on a comprehensive software framework, which includes
waveform acquisition (SeedLink), automated earthquake

detection, source location and characterization, manual event
relocation, event alerting, waveform archiving and dissemination.
SeisComP follows a modular approach in which standalone
programs communicate through a messaging system
connected to a shared database that contains events and
station metadata. This modular structure also facilitates the
incorporation of seismological and EEW algorithms, which
can be individually used for estimating different parameters.
TURNkey will ultimately be tested for adoption across six
regions with varying characteristics of seismicity in Italy,
France, Iceland, Greece, Romania, and the Netherlands.

The paper is organized as follows. We first introduce the
considered algorithms and the relevant input data required. We
then describe the methodologies used for evaluating the
performance of the algorithms. We next assess and compare
the algorithms. The paper ends with a discussion of the results,
which includes recommendations on the most appropriate
algorithms for the TURNkey platform.

ALGORITHMS

We specifically focus on the performance of PRESTo and VS(SC)
in this study. PRESTo (Lancieri and Zollo, 2008; Satriano et al.,
2008; Satriano et al., 2011) is a free and open-source software
platform specifically developed for EEW, which was designed by
the Ricerca in Sismologia Sperimentale e Computazionale
research group (RISSC-Lab) at the University of Naples
Federico II, Italy. It processes real-time waveforms that are
streamed from stations using a SeisComP server via the
SeedLink protocol and produces hypocentral location estimates
in the form of a multivariate normal probability density function
(PDF), using the RTLoc method developed by Satriano et al.
(2008). According to the RTMag procedure proposed by Lancieri
and Zollo (2008), a Bayesian framework is used for predicting
magnitude. The RTMag regression-law coefficients that we adopt
in this study are listed in Table 1.

PRESTo uses the picker algorithm FilterPicker initially
proposed by Vassallo et al. (2012) to detect an event, which
operates on continuous data-streams by applying a multiband
signal processing procedure (i.e., the signal is analyzed in
different predetermined frequency bandwidths). The event
declaration is constrained to a predefined number of picks
within a given time window. Full details of the PRESTo

TABLE 1 | Coefficients (A, B, C) and SE of the RTMag regression law used in this
study for PRESTo (Festa, not published, implemented in the available release
of the PRESTo platform).

phase Time window
(s)

A B C SE

P 2 −7.69 ± 0.06 1.00 ± 0.00 −1.89 ± 0.03 ±0.2
P 4 −7.69 ± 0.06 1.00 ± 0.00 −1.89 ± 0.03 ±0.2
S 2 −7.30 ± 0.06 1.00 ± 0.00 −1.80 ± 0.03 ±0.2

This law has the form: M � (log10(Pd) − A − C · log10(R/10))/B, where Pd is the peak
displacement (m) in different time windows and R is the hypocentral distance in km. See
Lancieri and Zollo (2008) for more details about the functional form of the regression law.
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platform can be found in its technical manual (http://www.
prestoews.org/documentation.php).

VS(SC) (Virtual Seismologist in SeisComP) (Behr et al., 2016) is
the magnitude likelihood component of the Virtual Seismologist
EEW algorithm (Cua, 2005; Cua and Heaton, 2007; Cua et al.,
2009) that is implemented in SeisComP. It incorporates phase picks
and location estimates provided by other SeisComP modules. The
coefficients for magnitude estimation are hard-coded in SeisComP
(scvsmag module) and provided in Cua (2005).

SeisComP allows a free configuration of recursive filters and
filter chains before picking, which is performed by the scautopick
module. Several types of filter can be applied, but we use the
default option in this study that involves subtraction of the
running mean for a given time window, a single application of
a one-sided cosine taper at the beginning of new data streams, a
Butterworth bandpass filter, and a Short Time Average over Long
Time Average (STA/LTA) filter, i.e., the ratio of a short-time
average signal amplitude to a long-time average calculated
continuously in two partially overlapping time windows of
different length. The STA/LTA approach is used as the basis
for many triggering algorithms (Allen, 1982). A trigger is declared
when the STA/LTA exceeds a certain threshold. A second-stage
picker can refine the final pick of the phase. We use the Akaike
Information Criterion picker for this purpose, which implements
the non-AR algorithm (Maeda 1985; Zhang et al. 2003). The
picker is re-initialized after a data gap.

SeisComP location estimates are typically performed using the
scautoloc module, which is optimized for teleseismic phase
association and requires at least 6 P-wave detections to
determine a location estimate. However, we instead pair
VS(SC) with the scanloc location module of SeisComP
(Roessler et al., 2016; Grigoli et al., 2018) in this study, which
is more appropriate for EEW purposes. scanloc can produce fast
location estimates with very few P- and S- wave detections from
nearby stations (i.e., 2 to define the general epicentral area and 3
to obtain a unique epicenter). It makes use of an advanced cluster
search algorithm (DBSCAN) to automatically associate phase
detections to potential earthquakes; when a cluster of at least a
prescribed minimum number of P-wave picks is identified, all
picks within configured time windows and maximum epicentral
distance ranges are provisionally associated with it. It should be
noted that the cluster search itself is based on P phases only;
however, in a second step, more P and S phases are associated and
used for locating the earthquake.

For the sake of simplicity, the suite of modules used to produce
EEW estimates from SeisComP (which include scanloc and
VS(SC)) are referred to as the “VS(SC) algorithm” throughout
the rest of the paper. To maintain consistency in our terminology,
we herein refer to the PRESTo platform as the “PRESTo algorithm.”

INPUT DATA

Seismic Waveforms
We use observed recordings from past events and physics-based
synthetic seismograms to test the two algorithms’ performance.
Specifically, we consider observed recordings from Southwest

Iceland, Western Greece, and Romania, while synthetic
seismograms are computed for Southern Italy and the
Pyrenees to compensate for the lack of empirical data from
moderate-to-large events in these regions. The use of
seismograms from different regions enables the performance
of the considered EEW algorithms to be evaluated across a
wide range of focal mechanisms, magnitudes, hypocentral
depths, and seismic network densities/configurations.

We select observed seismograms from earthquakes with Mw

greater than 5.5 that occurred in the last 20 years and were
recorded by at least eight of the seismic stations we examined in
this study, which were constrained by the availability of
recordings in the consulted databases. Recordings for Greece
and Romania are retrieved from the European Integrated Data
Archive (EIDA, see Data Availability Statement). We consider
only strong-motion and broadband sensors. We use one sensor
per station, which is always the strong-motion instrument (where
present); in all other cases, the broadband seismograms are
clipped to prevent the use of saturated velocigrams. Strong-
motion recordings from Iceland are obtained from the
Internet Site for European Strong-motion Data (ISESD, see
Data Availability Statement).

The synthetic seismograms for Southern Italy and the
Pyrenees are computed from physics-based numerical
simulations, using the broadband ground-motion simulation
code described in Crempien and Archuleta (2015), which can
simulate the high-frequency content of seismic waves and has
already proved to be suitable for EEW feasibility studies (Zuccolo
et al., 2016). We specifically generate seismograms for one
scenario earthquake on each active fault in both regions.
Faults parameters are retrieved from the European Database of
Seismogenic Faults (ESDF; Basili et al., 2013). The magnitude of
each scenario earthquake is randomly determined by assuming a
uniform distribution between 5.5 and the maximum magnitude
associated with the fault. The hypocentre is assumed to be located
in the center of the fault plane’s horizontal projection, at the
minimum fault depth plus 2/3 of the fault’s vertical width (i.e., the
difference between the maximum and minimum fault depths).
The focal mechanism is defined based on the average strike, dip,
and rake values. Rupture fault dimensions are estimated from the
Wells and Coppersmith (1994) relationships, and the position of
the hypocentre on the fault plane (i.e., along the width and along
the length of the fault) is established using the distributions by
Causse et al. (2008). The average rupture velocity is determined
by assuming a uniform distribution between 65 and 85% of the
shear wave velocity on the fault plane. The corner frequency is
estimated from the stress drop (Allmann and Shearer, 2009),
which is assumed to be equal to 3 MPa (Caporali et al., 2011) for
both regions. The seismograms are computed at the location of
currently operating permanent stations according to the
Incorporated Research Institutions for Seismology (IRIS)
database (see Data Availability Statement), up to a maximum
epicentral distance of 100 km. Finally, white noise is added to the
computed seismograms to facilitate the STA/LTA algorithm’s
operation. A detailed engineering validation of these physics-
based simulated ground motions (e.g., Galasso et al., 2012;
Galasso et al., 2013) is outside the scope of this study.
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We consider 27 events in total; their locations are
highlighted in Figure 2, and their main features are listed
in Table 2, along with the considered seismic networks.
Throughout the rest of the paper, we refer to all
magnitude, longitude, latitude, and depth values listed in
Table 2 as “bulletin” values (for both observed and
simulated events).

Velocity Models
We use rocky regional velocity models from the literature (see
Table 3) for both location estimation and the computation of
synthetic seismograms. Where not explicitly defined, P-wave
velocities are converted into S-wave velocities (and vice-versa),
using the Poisson solid’s approximation. Densities are converted
from P-wave velocities using the Nafe-Drake relationship
(Ludwig et al., 1970). The quality factors (QS and QP),
necessary for the computation of synthetic seismograms, are
set as follows: QS � 100 × VS, where VS is the shear wave
velocity (km/s), and QP � 9/4 × QS (Lay and Wallace, 1995).

To run PRESTo, we compute 3D travel-time grids for both P-
and S-waves at all stations (introduced in Seismic Waveforms),
using the NonLinLoc software (Lomax et al., 2000). Grid
dimensions adopted for the NonLinLoc software are defined
according to the size of the considered regions (1 × 1 × 1 km
for Iceland, 2 × 2 × 2 km for the remaining regions). For
SeisComP, the locator is user-defined; we apply LocSAT (Bratt
and Nagy, 1991) with travel-time tables prepared by replacing the
shallow layers of the IASP91model (Kennett and Engdahl, 1991)
with the local velocity models of Table 3.

Ground-Motion Models
The most appropriate IM to characterize ground motion for
earthquake engineering applications of EEW systems is
application-specific. Since we compute ground-motion
estimates only for comparison purposes in this study, we use
Peak Ground Acceleration (PGA) as the selected IM in all cases,
given its widespread use in the literature. The choice of GMM also
has a significant impact on the estimated IM. Despite the
availability of region-specific GMMs for various European
regions (e.g., Zuccolo et al., 2017; Huang and Galasso 2019),
we use European and global GMMs to estimate PGA, since
identifying optimal GMMs for each target site is outside the
scope of this paper. We specifically use the hypocentral distance
version of the GMM by Akkar et al. (2014) for all earthquakes
with hypocentral depth <30 km and the model of Youngs et al.
(1997) for the intermediate-depth Vrancea earthquakes
(Vacareanu et al., 2013). Note that we approximate the
rupture distance metric of the Youngs et al. (1997) GMM
using hypocentral distance, which is a valid assumption for
the magnitude range of the deep events considered in this
study (Cauzzi et al., 2015).

We estimate PGA values at the following target sites
(Figure 2): port of Gioia Tauro (15.91 E, 38.46 N) for
Southern Italy, Andorra (1.60 E, 42.54 N) for the Pyrenees,
Reykjavík (21.94 W, 64.15 N) for Southwest Iceland, Patras
(21.73 E, 38.25 N) for Western Greece and Bucharest (26.10 E,
44.43 N) for Romania. We assume representative rock ground
conditions for all target locations, given that site class is not
relevant for the comparative analyses performed in this paper.

FIGURE 2 | Locations of the earthquakes (red circles) and target sites (green squares) considered in this study. Blue triangles represent the considered seismic
stations. The target sites are the Port of Gioia Tauro for Southern Italy, Andorra for the Pyrenees, Reykjavík for Southwest Iceland, Patras for Western Greece and
Bucharest for Romania.
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METHODOLOGY FOR COMPARISON

We run playbacks of the seismic waveforms associated with the
27 considered events (Figure 2) through the PRESTo and VS(SC)
algorithms. We evaluate and compare the performance of both
algorithms in terms of their source-parameter estimates and the
corresponding ground-shaking predictions at the selected target
sites.

Performance in Terms of Source
Parameters
The comparison of the algorithms’ performance is first
assessed in terms of both the timeliness and accuracy of
location and magnitude estimates. We specifically examine
the most probable hypocentral estimates and the maximum
likelihood magnitude estimates of each algorithm at two
specific temporal instances:

a) time of the first estimate, which is the time, with respect to the
actual origin time, required to produce the first joint estimate
of location and magnitude;

b) time of stable estimate, which is the time at which the EEW
estimates stop changing significantly, i.e., the time from

which the difference between the estimated and final
values is consistently less than a prefixed difference
threshold. Different stable estimate times are defined
with respect to the epicenter, depth, and magnitude
estimates. For epicentral distance, the difference
thresholds are fixed at 5 km if the final estimated depth
is less than 30 km and are fixed at 10 km for larger depths.
For depth and magnitude, the thresholds are fixed at 5 km
and 0.2 units, respectively.

Figure 3 demonstrates the temporal evolution of the
algorithms’ source-parameter performance for two sample
earthquakes (i.e., the 2000-06-17 South Iceland event in the
left column and the 2016-09-23 Vrancea event in the right

TABLE 2 |Magnitude, longitude, latitude, and depth of the events considered in this study (retrieved from the seismological agencies provided in the table footnote), along
with the seismic networks used in each region.

Region Fault ID Origin time Mw Lon (°) Lat (°) Depth (km) Seismic networks

Southern Italya ITCS042 5.6 15.03 38.35 17.0 IV, AM, MN
ITCS016 6.9 15.60 38.03 9.3
ITCS053 6.2 16.19 38.63 8.3
ITCS055 5.9 15.91 38.23 9.0
ITCS068 6.4 16.49 38.87 11.0
ITCS080 5.6 16.18 38.42 9.0
ITCS082 6.3 16.02 38.37 8.3

Pyreneesa ESCS071 5.6 2.47 42.10 6.8 AM, CA, ES, FR
ESCS112 6.0 3.26 42.04 6.8
FRCS007 6.2 2.07 42.48 10.3
ESCS126 5.7 0.64 42.64 6.3
FRCS002 6.0 2.77 42.51 10.3
ESCS125 6.5 0.89 42.67 6.7

Southwest Icelandb 1998-06-04T21:36:53 5.5 −21.29 64.04 5.9 SM
2000-06-17T15:40:41 6.4 −20.37 63.97 6.4
2000-06-17T15:42:50 5.7 −20.45 63.95 5.4
2000-06-21T00:51:47 6.5 −20.71 63.97 5.0
2008-05-29T15:45:58 6.3 −21.07 63.97 5.1

Western Greecec 2014-01-26T13:55:43.0 6.0 20.53 38.22 16.4 AC, CL
2014-02-03T03:08:44 5.9 20.40 38.25 11.3 HA, HC
2015-11-17T07:10:07 6.4 20.60 38.67 10.7 HI, HL
2018-10-25T22:54:49 6.7 20.51 37.34 9.9 HP, HT
2018-10-30T15:12:02 5.8 20.45 37.46 5.5 MN

Vrancea, Romaniad 2014-11-22T19:14:17.2 5.6 27.16 45.87 39.0 BS, GE
2016-09-23T23:11:20.2 5.7 26.62 45.71 92.0 MD, RO
2016-12-27T23:20:56.3 5.6 26.61 45.72 91.0
2018-10-28T00:38:10.8 5.5 26.40 45.60 151.0

Details on the seismic networks can be retrieved from The International Federation of Digital Seismograph Networks (FDSN; see Data Availability Statement). European Database of
Seismogenic Faults (EDSF) fault IDs and origin times are also provided for simulated and observed earthquakes, respectively.
aEvent parameters of simulated earthquakes.
bEvent parameters retrieved from a catalog assembled and revised by Panzera et al. (2016).
cEvent parameters retrieved from the National Observatory of Athens (NOA) earthquake catalog.
dEvent parameters retrieved from the European Mediterranean Seismological Center (EMSC) earthquake catalog.

TABLE 3 | Regional velocity models used in this study.

Region Velocity model

Southern Italy Barberi et al. (2004)
Pyrenees Theunissen et al. (2017)
Southwest Iceland Tryggvason et al. (2002)
Western Greece Rigo et al. (1996)
Vrancea region, Romania Raykova and Panza (2006)–Vrancea cell
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column) that capture the range of magnitudes and depths
considered in this study. These plots demonstrate the full
temporal evolution of the epicentral error, the depth error,
and the magnitude error. Bulletin values are assumed to be
correct, such that magnitude and depth errors are computed
by subtracting these values from the corresponding estimates of
the algorithms, while epicentral errors are estimated as the
distance between the bulletin and estimated epicenter
locations. The timeline plots enable us to assess the timeliness
of EEW (i.e., how quickly each algorithm can produce the first
joint location-magnitude estimate and the time necessary to
achieve stable source estimates, as defined above), and the
accuracy of the source parameters (i.e., how much these
parameter estimates deviate with respect to the bulletin values
listed in Table 2).

Performance in Terms of Ground Motion
We also explore the effect of location and magnitude
estimates on the corresponding PGA predictions at the
selected target sites. We compute the ground shaking for
both algorithms by applying a GMM to the algorithms’
location and magnitude estimates, as described in Ground-
Motion Models. We perform two analyses in terms of ground
motion. The first analysis examines the temporal evolution of
PGA estimates, and the second analysis investigates their
accuracy.

Because of the temporal evolution of the location and
magnitude estimates (Figure 3), the resulting computation
of PGA also changes in time. This is an important
consideration, as some EEW systems trigger an alert based
on a prefixed threshold associated with the predicted ground
shaking (Cremen and Galasso, 2020). For example, a warning
may be issued if there is an unacceptable probability of a
critical PGA value (PGAc) being exceeded, according to
Iervolino (2011):

Pr[PGA> PGAc] � 1 − ∫IMc

−∞
f (PGA)dPGA≥ Prc 1

where Prc is a critical risk threshold related to potential damage
associated with the incoming event (Cremen and Galasso,
2020), and f (PGA) is the PDF of PGA, which is dependent
on real-time estimates of location and magnitude at a given
temporal instant.

Since location and magnitude estimates can evolve in time
in a non-monotonic way, the predefined ground-motion-
related threshold can be exceeded at a certain instant, but
not exceeded at a subsequent instant, then exceeded again

FIGURE 3 | Temporal evolution (starting from the origin time) of the estimates by the PRESTo and VS(SC) algorithms for two example earthquakes: (A) the 2000-
06-17 observed event in South Iceland; and (B) the 2016-09-23 observed event in Vrancea. Top: epicentral error timeline; middle: depth error timeline; and bottom:
magnitude (M) error timeline. All error values are computed by subtracting the bulletin values from the corresponding estimates of the algorithms. Different symbols
distinguish the two algorithms.

FIGURE 4 | Demonstration of the GMM evaluation procedure, which
measures the difference between the true and estimated GMM CDF for a
given set of location and magnitude predictions. The light gray shading
indicates PGA exceedance thresholds for which the predicted ground
shaking is greater than the true value, which may lead to a false alert. The dark
gray shading indicates exceedance thresholds for which the predicted
shaking is less than the true value, which may lead to a missed alert.
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later in time, and so on (Wu et al., 2013; Wu et al., 2016). This
behavior can raise questions about the integrity of an issued
alarm and should be addressed when designing a decision-
support system for EEW. Therefore, we perform a
comparison by evaluating the number of trend inversions
in the temporal evolution of the predicted PGA at the selected
target sites provided in Ground-Motion Models.

In line with our companion paper (Cremen et al., 2021),
ground-shaking prediction accuracy is quantified using the
MD metric for sensitivity analyses (Chun et al., 2000), which
has already been leveraged to examine the performance of
GMMs (Cremen et al., 2020). MD measures the difference
between the cumulative distribution function (CDF) of PGA
produced when the bulletin source parameters are used in the
GMM and the CDF obtained for a given algorithm’s source-
parameter estimates at a prescribed temporal instant
(considering the total standard deviation of the GMM in
both cases); see Figure 4. Since the GMMs used in this
study provide lognormal distributions of PGA, we calculate
MD according to the following equation:

MD �

�������������������������������������
~y2i exp(2β2i ) + ~y2o exp(2β2o) − 2~yi~yoexp((βi+βo)

2

2 )
√

~yoexp(β2o
2)

2

The i and o subscripts respectively refer to the GMM CDF
computed using the algorithmic source-parameter estimates and
the GMM CDF produced by the bulletin source parameters. ~y is
the median predicted PGA and β is the total logarithmic standard
deviation of the PGA prediction. A lower MD value indicates a
higher similarity between the GMM distributions based on
estimated and bulletin source parameters. This type of
comparison is useful, as discrepancies in the CDFs indicate the
potential for erroneous decisions by an end user, if EEW alerts are
issued based on a given probability of exceeding a prescribed
value of PGA, as discussed above.

PERFORMANCE ASSESSMENT: RESULTS
AND DISCUSSION
Timeliness of Location and Magnitude
Estimates
The timeliness comparison of both algorithms is provided in
Figure 5. Our analysis reveals that the first EEW estimates are
provided slightly faster by PRESTo, with an average time-to-first-
estimate ratio between PRESTo and VS(SC) of 0.94. This is
partially related to the fact that VS(SC) requires 3 s of P-wave
information at a single station to estimate magnitude, while

FIGURE 5 |Comparison between the PRESTo and VS(SC) algorithms in terms of timeliness. The average ratio between the times of PRESTo and VS(SC) estimates
is: (A) 0.94; (B) 1.3; (C) 1.5; and (D) 0.7. Note that times shown are relative to actual event times. Filled and empty markers indicate observed and simulated events,
respectively. Diamond and circle markers indicate shallow and deep events, respectively.
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RTMag uses only 2 s of P-wave signal to deliver a first magnitude
estimate. VS(SC) location estimates retrieved from scanloc
converge to stable values faster than those of PRESTo (the
average time-to-stable-estimate ratio between PRESTo and
VS(SC) is 1.3 for the epicenter and 1.5 for the depth); in
contrast, VS(SC) magnitude estimates require a longer time to
become stable (the average time-to-stable-estimate ratio between
PRESTo and VS(SC) is 0.7), which confirms a similar observation
by Chung and Allen (2019).

Accuracy of Location and Magnitude
Estimates
The comparison in terms of accuracy is given in Figure 6 and
Table 4 for the temporal instances associated with the first and
stable estimates.

The first estimates of epicentral distance and depth by VS(SC)
are more accurate than those provided by PRESTo (by
approximately 5 km for the epicenter and 3 km for the depth).
The location performance of both algorithms is fairly similar at the

FIGURE 6 |Comparison between the PRESTo and VS(SC) algorithms in terms of (A,B) epicentre; (C,D) depth; and (E,F)magnitude (M) accuracy. Each histogram
contains results for all 27 considered events. The left column provides errors associated with first estimates. The right column provides errors associated with stable
estimates. Magnitude and depth errors are computed by subtracting the bulletin values from the corresponding estimates of the algorithms, while epicentral errors
represent the distance between the bulletin and estimated epicentre locations.
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stable instant, although the dispersion of the stable depth estimate
error for PRESTo (9.28) is almost 2.5 times that for VS(SC) (3.82).

The first magnitude estimate is generally underestimated with
respect to the bulletin value for both algorithms due to a sparsity of
recorded data. The corresponding error distributions for PRESTo
and VS(SC) have respective medians of −0.32 and −0.49 and
respective means of −0.46 and −0.55, which imply that the
underestimation of VS(SC) is larger than that of PRESTo.
However, PRESTo magnitude estimate errors are associated
with a larger standard deviation (0.84) than those of VS(SC)
(0.59). In contrast, the stable magnitude estimates computed by
VS(SC) are more accurate than those computed by PRESTo; the
corresponding error distributions for VS(SC) and PRESTo have
respective medians of 0.01 and 0.20, and respective means of 0.03
and 0.13. However, accurate magnitude estimations from VS(SC)
require a significantly longer time (Figure 5), whichmay not justify
the greater amount of accuracy achieved.

It should be highlighted that the accuracy of the computed
location and magnitude estimations is directly affected by the
performance of each algorithm’s event-detection capability
(i.e., phase picking and the seismic phase association
methodology). Phase detection and association are difficult
and error-prone tasks, especially during intense aftershock
sequences (Meier et al., 2020). The event-detection algorithms
(for both PRESTo and VS(SC)) are optimized consistently for
each region of interest through an ad-hoc tuning of the relevant
parameters that considers overall seismicity and the network
geometry. However, discrepancies in phase picking and event
association can still remain due to differences in the parameters
and related procedures used in both algorithms. It should also be
noted that the most appropriate tuning for a certain area could be
different from that used in this study, which was calibrated using
only the small sample of events analyzed.

Moreover, it should be mentioned that we do not consider an
optional Bayesian prior distribution for PRESTo, to be consistent

with the format of the VS(SC) magnitude calculation. Inclusion of
this prior may improve PRESTo’s magnitude estimates. Finally, it
should be highlighted that the empirical scaling relationships used
for magnitude computation in RTMag and VS(SC) may not be
appropriate/optimal for the regions considered in this study,
especially for the deep events of the Vrancea region (for
example, the VS(SC) relationships were calibrated for Californian
events by assuming a depth of 3 km). The need for conducting
region-specific recalibration of the relationship coefficients should
always be investigated when implementing an EEW system in a new
region (see, for example, Carranza et al., 2013). Otherwise, it may be
most practical to simply evaluate and add empirically derived offsets
(if any) to the magnitudes estimated for particular regions.

Trend of PGA Estimates
Figure 7 shows the number of trend inversions that occur over
time for themedian PGA predictions computed using the locations
and magnitudes estimated by both algorithms. To eliminate
insignificant changes in trend, we only consider inversions that
result in at least a 20% change with respect to the previous PGA
estimate. Our analysis shows that the number of inversions for
VS(SC) is lower on average (1.52, compared to 3.37 for PRESTo)
and has a smaller standard deviation (1.69, compared to 4.45 for
PRESTo). VS(SC) has also a slightly greater number of cases with
zero inversions, which correspond to situations in which there is no
significant variation of the computed PGA in time (ideal case, in
which the maximum possible lead time is achieved if the alert
threshold is exceeded and the PGA is predicted correctly), or there
is a near monotonic increase of its estimated value. Conversely,
PRESTo has some cases with more than ten trend inversions,
corresponding to two Greek offshore events and one event located
in the central Pyrenees. They are related to erroneous PRESTo
location predictions due to particular geometric network
conditions that have a significantly negative effect on ground-
motion estimation, thus contributing to the multiple inversion
cases observed. Therefore, we conclude that the integrity of the

TABLE 4 |Median (η), mean (μ), and standard deviation (σ) of the error distributions
shown in Figure 6.

Component/time Algorithm

PRESTo VS(SC)

a) Epicentre: First estimate (km) η � 7.97 η � 2.48
μ � 11.00 μ � 8.68
σ � 12.14 σ � 15.27

b) Epicentre: Stable estimate (km) η � 2.05 η � 1.75
μ � 3.51 μ � 3.02
σ � 3.14 σ � 3.61

c) Depth: First estimate (km) η � −5.54 η � −1.72
μ � −13.10 μ � −6.29
σ � 32.46 σ � 16.85

d) Depth: Stable estimate (km) η � −0.59 η � −0.83
μ � 0.01 μ � −0.23
σ � 9.28 σ � 3.82

e) Magnitude: First estimate η � −0.32 η � −0.49
μ � −0.46 μ � −0.55
σ � 0.84 σ � 0.59

f) Magnitude: Stable estimate η � 0.20 η � 0.01
μ � 0.13 μ � 0.03
σ � 0.30 σ � 0.19

FIGURE 7 | Number of trend inversions in the evolution of PGA
estimates for both considered algorithms. The median (η), mean (μ) and
standard deviation (σ) of the distributions are: η � 2.00, μ � 3.37, σ � 4.45 for
PRESTo, and η � 1.00, μ � 1.52, σ � 1.69 for VS(SC).
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EEW alarm issued by the VS(SC) algorithm is higher than that for
PRESTo.

Ground-Shaking Prediction Accuracy
We specifically investigateMD values for the algorithms’ source-
parameter estimates at temporal instances that correspond with
three different lead times at target sites: 15, 10, and 5 s. The lead
time at a given target site is defined as the time difference between
the S-wave arrival and the first EEW estimate; a 1 s transmission
delay is also accounted for. For each lead-time analysis, only the
scenario events capable of providing that lead-time at the target
site of interest are considered. This means that 16 events are
examined for the 15 s lead time, 19 events are examined for the
10 s lead time, and 23 events are examined for the 5 s lead time.
The results of the ground-shaking prediction assessments are
presented in Figure 8. It can be observed that PRESTo provides
more accurate ground-motion estimates at the largest lead times
considered; PRESTo averageMD (MD) value for 15 s lead time is
0.45, whereas the corresponding VS(SC) MD value is 0.86.
However, VS(SC) produces more accurate ground-shaking
predictions than PRESTo for the smallest considered lead time
(5 s); in this case, the PRESTo MD value is 0.82 and the VS(SC)
MD value is 0.42. The average MD values are similar for the
intermediate considered lead time (10 s). Note that the temporal
variations in the optimal algorithm for ground-motion accuracy
reflect those observed for magnitude accuracy in Accuracy of
Location and Magnitude Estimates.

CONCLUDING REMARKS

This study used scenario earthquakes across five European
regions to quantitatively compare the performance of the
PRESTo and VS(SC) (using scanloc for location) regional
EEW algorithms. Our overall aim was to identify the best
options for EEW location and magnitude estimation in the
TURNkey platform, a multi-sensor-based information system

to be implemented in Europe for earthquake forecasting, EEW,
and post-earthquake rapid response actions.

We first assessed the ability of PRESTo and VS(SC) to
produce rapid and accurate source (i.e., location and
magnitude) estimates of events. We then evaluated the
accuracy of the algorithms’ corresponding ground-shaking
predictions for various lead times at prescribed target sites.
We found that PRESTo may have a greater risk-mitigation
potential than VS(SC) in general. This is because PRESTo
produces faster and more accurate early magnitude estimates,
which result in better ground-motion estimates for long lead
times (15 s) that potentially enable significant earthquake
preparation actions to take place, such as shutting down
industrial equipment, evacuating the ground floors of
buildings, and stopping surgical procedures (Goltz, 2002).
Predictions by VS(SC) are eventually more accurate than
those of PRESTo; however, the length of time this requires
results in smaller warning windows that may only allow
stakeholders to take simple automatic risk-mitigation
actions like stopping traffic (i.e., turning lights red) or
switching on semi-active control systems for structures
(Goltz, 2002; Iervolino et al., 2008). It is also important to
note that we did not use an optional Bayesian prior
distribution for the RTMag magnitude algorithm of
PRESTo. Its inclusion may have resulted in an even better
performance of the PRESTo magnitude estimates and the
associated ground-motion predictions.

We, therefore, ultimately recommend that, out of the two
considered regional EEW algorithms, PRESTo is used for EEW
in the TURNkey platform, which is consistent with the
conclusions of our companion paper (Cremen et al., 2021).
Alternatively, the PRESTo RTMag algorithm could be
independently implemented within SeisComP (and,
therefore, the TURNkey platform) as an additional module
for EEW magnitude evaluation. This configuration would also
enable scanloc to be used within the TURNkey platform, which
we found to be the best algorithm for location estimation.

FIGURE 8 |Comparing the ground-shaking prediction accuracy of both considered algorithms for three lead times: (A) 15 s, (B) 10 s, and (C) 5 s. The averageMD
(MD) estimate is: (A) MD � 0.45 for PRESTo and MD � 0.86 for VS(SC), (B) MD � 0.47 for PRESTo and MD � 0.47 for VS(SC), (C)MD � 0.82 for PRESTo and
MD � 0.42 for VS(SC).
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Therefore, the combination RTMag plus scanloc may facilitate
more accurate EEW ground-motion estimates than those
provided by the full PRESTo algorithm.

This study’s results were obtained through playbacks of the
seismic waveforms and EEW parameters associated with 27
historic/simulated earthquakes representative of different
tectonic environments and regional European variation in
station distributions and densities. We used actual network
configurations for testbeds where synthetic seismograms were
used (i.e., Southern Italy and the Pyrenees). The availability of
recordings constrained the number of considered stations for
all other regions examined (i.e., Greece, Romania, and
Iceland). Therefore, the study’s outcome should be
interpreted as an average performance of the examined
algorithms across different seismicity and network
geometries in Europe. A more detailed feasibility study is
recommended for target- or region-specific applications of
the algorithms.
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Performance Evaluation of an
Earthquake Early Warning System in
the 2019–2020 M6.0 Changning,
Sichuan, China, Seismic Sequence
Chaoyong Peng1,2*, Peng Jiang3, Qiang Ma4, Peng Wu3, Jingrong Su3, Yu Zheng1 and
Jiansi Yang1

1Institute of Geophysics, China Earthquake Administration, Beijing, China, 2Key Laboratory of Earthquake Source Physics, China
Earthquake Administration, Beijing, China, 3Sichuan Earthquake Administration, Chengdu, China, 4Institute of Engineering
Mechanics, China Earthquake Administration, Harbin, China

China is currently building a nationwide earthquake early warning system (EEWS) which will
be completed in June 2023. Several regions have been selected as pilot areas for
instrumentation, software system and dissemination verification. For these regions,
their construction tasks will be completed in advance with trial runs being carried out
in June 2021. Before the trial operation, we need to understand the actual processing
capabilities of different EEWSs. In this work, we focus on the system deployed in Sichuan
province and evaluate its real-time performance during the 2019–2020 M6.0 Changning
seismic sequence. This period was divided into two stages. The first stage was the time
from the occurrence of theM6.0 (Mw5.7) mainshock (June 17, 2019) to the end of October
2019 with no MEMS-based stations around the Changning seismic sequence deployed
and most of the broadband and short period seismic stations not upgraded to low latency
streaming, and the second one was from the beginning of November 2019 to March 2021
with deployments of more than 700 MEMS-based stations and low latency upgrades of
∼30 seismic stations. Median errors for the epicentral locations, depths and magnitude
estimations were almost the same for both stages, 1.5 ± 6.0 km, 0.0 ± 3.6 km and −0.1 ±
0.46 for the first stage and 2.3 ± 3.0 km, −3.0 ± 3.6 km and −0.2 ± 0.32 for the second one.
However, an obvious underestimation of the magnitude for earthquakes with M 5.0 +
occurring in the first stage was observed, which would be caused by the clipped
waveforms, sensors deployed in short period seismic stations and MEMS-based
stations, the adopted magnitude estimation method, and the method used to
computer the network magnitude. The median reporting time was significantly
improved from 10.5 ± 3.0 s after origin time for the first stage to 6.3 ± 3.5 s for the
second stage because of introduction of newly deployed MEMS-based stations. The
results obtained from the second stage indicate that the system has entered a stable
operating stage and we can officially launch the trial operation in the pilot areas for public
early warning services.

Keywords: earthquake early warning, hybrid seismic network, magnitude estimation, location accuracy, reporting
time, data latency, changning earthquake
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INTRODUCTION

As an effective way to mitigate seismic hazards, earthquake early
warning (EEW) systems (EEWSs) have shown their great
potential by providing alarms immediately after a destructive
earthquake occurs and before damaging seismic waves reach the
target areas. They can enable people and automated systems to
take action for preventing the potential damage, such as “drop,
cover and hold on,” slowing high-speed trains, shutting down gas
pipelines, and stopping elevators at the nearest floor (Allen and
Melgar, 2019; Cremen and Galasso, 2020). Nowadays, EEWSs are
under testing or operational in many earthquake-prone countries
and regions, like Japan (Hoshiba et al., 2008), Mexico (Cuéllar
et al., 2017), the West Coast of the United States (Chung et al.,
2020), China (Peng et al., 2011; Zhang et al., 2016; Peng et al.,
2019; Peng et al., 2020), Turkey (Alick et al., 2009), Taiwan (Wu,
2014; Wu et al., 2016; Hsu et al., 2018), South Korea (Sheen et al.,
2017), Italy (Zollo et al., 2009; Satriano et al., 2011), and India
(Mittal et al., 2019).

In June 2018, China started to build a nationwide EEWS. This
project, namely the National System for Fast Seismic Intensity
Report and Earthquake Early Warning project (hereafter called
the National System project), was led by the China Earthquake
Administration (CEA) and its implementation cycle is five years.
Detailed information can be found in Peng et al. (2020). To make
the project effective as soon as possible, several regions have been
selected as pilot areas for instrumentation, software system and
dissemination verification, including Sichuan province, Yunnan
province, and the Beijing-Tianjin-Hebei region. For these pilot
areas, all construction tasks will be completed in June 2021, and
the trial run will then be carried out in advance for providing the
second-level EEW information service to the public.

Before the trial operation, we need to understand the actual
processing capabilities of different EEWSs.We have evaluated the
real-time performance of the demonstration EEWS deployed in
the Sichuan-Yunnan border region during the test period
(2017–2018). Although the results showed excellent magnitude
estimation and epicentral location, the average report time for the
first alert was relatively long, approximately 13.4 ± 5.1 s and
26.3 ± 13.5 s after the origin time respectively for the earthquakes
occurring inside and outside the seismic network (Peng et al.,
2020). This means that the average radius of blind zone was more
than 45 km considering an S-wave velocity of 3.5 km/s and a
shallow seismicity depth of 10 km, and it was unable to meet the
key time goal of the National System project (4–6 s after the first
trigger in the four key seismic zones). Here using the time after
the first trigger as one of the system goal is that it would not be
influenced by the varied focal depth (from several kilometers to
more than 30 km) and whether an earthquake occurs inside or
outside the seismic network.

Within the past 2 years (2019–2020), the EEWS has been
upgraded by introducing more newly constructed stations and
optimizing EEW algorithms. And for improving the 3G/4G
network environment, all the micro-electro-mechanical system
(MEMS) accelerometer based stations belong to the National
System project were directly built in the houses of the cellular
towers maintained by the China Tower company (https://ir.

china-tower.com/en/business/macro.php), and about
50 MEMS-based stations deployed in the Sichuan-Yunnan
border region (Peng et al., 2020) were moved to the same
environment. In addition, an M6.0 (Mw5.7) Changning
earthquake with many aftershocks of M3.0 + occurred in this
period, which was the largest event occurring in the four key
seismic zones since the build-out of the first prototype EEWS in
2009 (Peng et al., 2011). This seismic sequence provides us an
outstanding opportunity to reevaluate the EEWS performance in
the current situation.

In this study, we focus on the system deployed in Sichuan
province and evaluate its real-time processing capabilities during
the 2019–2020 M6.0 Changning, Sichuan, China, seismic
sequence. We start by briefly summarizing the Changning
seismic sequence. In the Sichuan Seismic Network, we
introduce the Sichuan seismic network and present the
network latency for different types of seismic stations. Then,
we discuss the EEWS performances for the M6.0 Changning
mainshock and all the selected aftershocks. The performance
analysis is based on comparing the location, origin time, and
magnitude estimated by the EEWS with the reference catalogs. In
addition, we also analyze the report time of the first alert for the
selected aftershocks.

CHANGNING SEISMIC SEQUENCE

The Changning area is located on the southern margin of Sichuan
Basin and the western margin of the Yangtze Plate (Figure 1). It is
one of the main salt (well and rock) and shale-gas production
regions, with fluid injection wells drilled to ∼3 km depths, and
was considered as one of the sites of induced seismic events (Lei
et al., 2019; Meng et al., 2019; Hu et al., 2021). The enhanced
seismicity has been observed in the last ∼10 years and the
occurrence of earthquakes has recently increased significantly.
According to the China Earthquake Networks Center (CENC),
there were no earthquakes of M 5 or higher in this area before
December 2018. However, since the occurrence of December 16,
2018 Xingwen M5.7 earthquake, a devastating and long-lasting
earthquake sequence with manyM 5 + events started to shake this
region, resulting in 13 people dead, more than 200 injured and
thousands of buildings damaged (Yi et al., 2019; Li et al., 2020).
Here, the generic symbolM denotes either local magnitudeML or
the surface-wave magnitude transferred from an empirical
estimating equation MS � 1.13ML—1.08, for earthquakes
below or above ML5, respectively (Chen et al., 2014).

Until now, the seismic sequence generated more than 100
events with M larger than 3.0 (Figure 1). The largest magnitude
event (M6.0 Changning earthquake) occurred on June 17, 2019,
at 22:55 Beijing Time (14:55 UTC), locating in the southwestern
margin of Sichuan Basin with a very shallow focal depth of ∼5 km
(Table 1). It was a doublet with two faulting styles (Liu and
Zahradník, 2020). The initial thrust faulting could be associated
with previously known reverse faults, which were favorably
oriented to the regional stress field, while the following strike-
slip faulting was probably facilitated by increased pore pressure
because of previous injections. The event caused Modified
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Mercalli Intensity VIII near the epicenter, with the affected area
larger than VI being about 2,538 km2. The shock was widely felt
in many places of Sichuan, Yunnan, Chongqing, and Guizhou
provinces, including Chengdu city approximately 260 km from
the epicenter.

SICHUAN SEISMIC NETWORK

The Sichuan seismic network is operated by the Sichuan
Earthquake Administration. It was constructed by several
projects, including the National System project, the Sichuan-

Yunnan Demonstration project (Peng et al., 2019; Peng et al.,
2020), the Western Sichuan Earthquake Monitoring Capability
Improvement project, the Jiuzhaigou Earthquake Recovery and
Reconstruction project, and the Kangding Earthquake Recovery
and Reconstruction project. The stations are classified into three
types: seismic stations, strong-motion stations, and low-cost
MEMS-based stations. A seismic station is equipped with a
three-component broadband seismometer and a force-balanced
accelerometer, and a strong-motion station is only equipped with
a force-balanced accelerometer. Detailed information is shown in
Table 2. In addition, some stations built by other agencies are also
included into the seismic network, such as reservoir stations

FIGURE 1 | (A) Station distribution of the currently used Sichuan Seismic Network (March 31, 2021). F1, F2, and F3 are the Longmenshan, Xishuihe, and Xiaojiang
fault zones, respectively. (B) Station distribution in the area around the Changning seismic sequence for the first stage. Purple triangles, black diamonds and brown
hexagons represent MEMS-based stations, short period seismic stations and broadband seismic stations, respectively. The blue circle shows the epicenter of the June
17, 2019M 6.0 Changning earthquake. A largemapwith themarked studied area is shown in the inset. Green circles indicate the earthquakes withM 3.0 ormore in
the Changning seismic sequence, and their sizes are proportional to their magnitudes. Black lines are faults presented by Deng et al. (2003).

TABLE 1 | Earthquake catalogs for five M5.0 + events occurring during the 2019–2020 Changning seismic sequence.

Event number Name Origin time
(yyyy/mm/dd hh:mm:ss)

Longitude (°N) Latitude (°E) Depth (km) M

1 Changning M6.0 2019/06/17 22:55:44 104.886 28.361 5.1 6.0
2 Gongxian M5.3 2019/06/17 23:36:04 104.802 28.423 8.5 5.3
3 Changning M5.1 2019/06/18 07:34:33 104.880 28.385 3.3 5.1
4 Changning M5.6 2019/06/22 22:29:56 104.793 28.440 3.9 5.6
5 Gongxian M5.5 2019/07/04 10:17:58 104.740 28.430 7.0 5.5
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(equipped with short period seismometers) and other
provincial stations in the border regions. For a newly
constructed station, to ensure its stable operation, we need
it to go through a trial run of 3 months before being included
into the EEWS. Until now, although construction of ∼80% of
the seismic stations and strong-motion stations belong to the
National System project and the Jiuzhaigou Earthquake
Recovery and Reconstruction project was completed, these
stations are at the stage of data quality verification and
have not been included into the EEWS. The total number of
stations currently used in the EEWS is approximately 2000,
containing 363 seismic stations and 1631 MEMS-based
stations (Figure 1A).

All stations are operated at a sampling rate of 100 Hz and
the real-time continuous data are transferred to the Sichuan
Earthquake Data Processing and Alert Issuing Center and
processed by the Java-based EEWS (JEEWS; Peng et al., 2020).

Most MEMS-based stations were installed in the houses of the
cellular towers and used their field supervision unit (FSU) for
data transmission, which could significantly improve the
network environment and lower maintenance costs. Except
for some not upgraded broadband and short period seismic
stations, most of the data loggers at the stations integrate a low-
latency data packetizing function which is designed specifically
to support the EEWS (Peng et al., 2015; 2017a). Theoretically,
the data packetizing length can be reduced to 0.1 s. Here,
for reducing network load, we chose either an interval of 0.5
or 1.0 s to packetize the real-time data depending on the
telemetry type. For those not upgraded seismic stations,
they still used the high-latency data transmission protocol
with 512 bytes packet.

In JEEWS, the Pd scaling from Kuyuk and Allen (2013) is
adopted for EEW magnitude estimation. When the system
detects S-wave for stations close to an earthquake epicenter
(<10 km), the local ML scaling is directly used to calculate the
magnitude for avoiding S-wave contamination (Colombelli et al.,
2012). The reason is that the peak ground motion will reach these
stations soon after the S-wave arrival, generally in 1 or 2 s (Peng
et al., 2020). If we still use S-wave data to estimate the Pd
magnitude, a larger deviation will be introduced.
Immediately after the magnitude estimated, a point-source
algorithm based on the traditional ground motion prediction
equation (GMPE) is used to compute seismic intensities at
different target sites.

Using the method similar to Stubailo et al., 2021, we
measured data latencies for all stations in March 2021
(Figure 2). Here data latency is defined as the time
difference between the time when the last sample of the data
packet was recorded and the time when the same packet is
received by the data processing center. Because data processing
by the station and waveform-receiving server at the center
are very rapid, the measured latency can be interpreted as
the delay of data transmission in the telemetry system.
Therefore, we ignored the delay awaited between subsequent
packets, approximately the packet length. The median values
for broadband seismic stations, short period seismic stations,
MEMS-based stations and all stations were 2.9 ± 1.61 s, 0.87 ±
1.54 s, 0.5 ± 0.42 s and 0.59 ± 1.1 s, respectively. The relative
large standard deviations for broadband and short period
seismic stations were due to the high data latencies
introduced by those not upgraded stations.

TABLE 2 | Number of stations under construction in different projects.

Project name Construction time Station number

Seismic station Strong-motion
station

MEMS-based
station

The national system project 2018–2021 210 261 727
The Sichuan-Yunnan demonstration project 2015–2017 150
The western Sichuan earthquake monitoring capability improvement project 2018 70
The Jiuzhaigou earthquake recovery and reconstruction project 2018–2021 29 56 136
The Kangding earthquake recovery and reconstruction project 2015–2016 30

FIGURE 2 | Normalized data latency distribution (%) for the Sichuan
Seismic Network. Here distribution in each class of instrument is normalized to
its total number of sample. All MEMS-based stations sent 0.5 or 1.0 s data
packets; for the upgraded broadband and short period seismic stations,
they used the same low-latency data packetizing function as the MEMS-
based stations and acquired data with data packetizing of 0.5 or 1.0 s; for the
broadband and short period seismic stations not upgraded, they sent data
after the data packet is full and compressed.
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PERFORMANCE OF JEEWS

System Performance for the Changning
Seismic Sequence
To evaluate the system performance for the Changning seismic
sequence, we investigated the real-time results of 101 earthquakes

of M 3.0 or more from the occurrence of the M6.0 mainshock to
March 2021, including 17 light aftershocks (4.0 ≤ M ≤ 4.9) and
four moderate aftershocks (5.0 ≤ M ≤ 5.9). This period could be
divided into two stages. The first stage was the time between the
occurrence of the M6.0 mainshock (June 17, 2019) to the end of
October 2019, and the second one was from the beginning of

FIGURE 3 | Normalized number of earthquakes (%) vs. deviations between the first alert estimates for the 93 successful alerts output by JEEWS and the China
Earthquake Network Center (CENC) catalogs for (A) epicenter, (B) depth, (C) origin time, and (D) magnitude. (E) Normalized number of earthquakes (%) vs. reporting
time. This is a comparison of CENC and JEEWS earthquake parameter estimates for all Changning events studied, 55 from the first stage and 38 from the second stage.
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November 2019 to March 2021. In the first stage, the MEMS-
based stations around the Changning seismic sequence were not
deployed, and most of the broadband and short period seismic
stations were not upgraded (Figure 1B). The nearest MEMS-
based station belong to the Sichuan-Yunnan Demonstration
project (Peng et al., 2019; Peng et al., 2020) was 50 km away
from the sequence. Additionally, most of the short period seismic
stations were temporary stations and transferred real-time data
with the old high-latency protocol. Therefore the report time for
earthquakes occurring in this stage would be significantly
influenced and we needed to evaluate the performance of the
two stages separately.

For the 101 earthquakes, 62 occurred in the first stage and 39
happened during the second one. All earthquakes with M 5.0 +
occurred in the first stage. Here the first alert was selected to
derive all statistics because of its importance for EEW. Although
other EEW projects have moved towards more ground motion
based metrics and warning time calculations (Cochran et al.,
2018; Chung et al., 2020; Meier et al., 2020), at this stage of the
National System project, we are mainly concerned about the
correctness of results of the first alert. The result of each
earthquake identified by the EEWS was compared with those
in the China Earthquake Network Center (CENC) catalogs. In
addition, three alert levels were defined according to the catalog
magnitude of an earthquake. They are successful alert (SA), false
alert and missed alert. Based on these definitions, as for the M
3.0 + earthquakes, JEEWS issued 55 SA events and missed seven
events for the first stage and 38 SA events and missed one event
for the second stage. No false alert was issued during the both
periods. Detailed results for the SA events are shown in
Figure 3.

Figure 3A represents the epicentral error of SA events. The
median deviations in epicenter location for the first and second
stages were 1.5 ± 6.0 and 2.3 ± 3.0 km respectively. About
84% of the SA events had an error of less than 5 km. Among
the earthquakes with epicentral errors of more than 10 km,
there were 5 (9.1%) in the first stage and 2 (5.3%) in the
second stage.

For an EEWS, depth is usually difficult to be determined
correctly, especially for earthquakes occurred outside the seismic
network (Carranza et al., 2017). Many studies have ignored this
parameter and not analyzed it (Zhang et al., 2016; Sheen et al.,
2017; Peng et al., 2020). From Figure 3B, one can observe that
depth errors for most earthquakes lie between −5 and 5 km, with
median errors of 0.0 ± 3.6 and −3.0 ± 3.6 km for the first and
second stages, respectively. This means that the depth value of the
first alert is excellent, although the depth error for the second
stage is relatively large, which was caused by the MEMS-based
stations and the events themselves being of a relatively smaller
magnitude. In the second stage, most of the triggered stations
contributing to the events were the newly constructed MEMS-
based stations. Because of their high noise levels relative to the
seismic stations, it is difficult to accurately identify P-wave
arrivals from their recorded data for small earthquakes with
magnitude less than 4.0, leading to a relatively large depth error.

Generally events with a large deviation in epicenter estimate
also had a large deviation in the OT (Figures 3A,C). For the first

and second stages, the median differences in OT were 0.4 ± 0.7 s
and 0.3 ± 0.4 s, respectively. And ∼69 and ∼89% of the events in
both stages had errors of less than 0.5 and 1.0 s. There were eight
events (14.5%) with an OT error larger than 1.0 s for the first stage
and 4 events (10.5%) for the second stage.

Figure 3D shows the deviation inM. About 83% of the events
had an error of no more than 0.5 and 61% of the events had a
deviation of less than 0.4. The median magnitude differences for
the first and second stages were −0.1 ± 0.46 and −0.2 ± 0.32
respectively. For the larger events with M ≥ 4.0 and M ≥ 5.0, the
deviations were −0.5 ± 0.55 and −0.9 ± 0.71 respectively, indicating
that JEEWS significantly underestimated the magnitude.

We further compared the magnitudes obtained from events in
both stages according to JEEWS with those in the CENC catalogs
(Figure 4). The magnitudes estimated at broadband seismic
stations, short period seismic stations, and MEMS-based
stations are indicated by empty circles, crosses, and triangles,
respectively, while the network magnitudes, the average value of
all station magnitudes, are presented as blue circles. Here, both
Pd magnitude and ML based station contributions are shown in
the graph. The same trend of magnitude underestimation for
larger events could also be found in Figure 4. It is alarming that
an extrapolation of Figures 4A,C,E suggests that a M7.0
earthquake would get a MEEW 5.5. However, the broadband
seismic station magnitudes are better correlated with the CENC
magnitudes relative to the short period station and MEMS-
based station magnitudes, especially for the larger earthquakes.
In addition, we also considered each type of station’s
performance in magnitude bins [3, 4), [4, 5) and [5, 6],
shown in Table 3. From Figure 4 and Table 3, one can
observe that:

•Measurements for the broadband seismic stations in general
slightly overestimateM3-4 events and slightly underestimate
earthquakes with higher magnitude. Scatter is generally
lower for this station type.

•Measurements for the short period seismic stations in
general more strongly overestimate M3-4 events, are good
forM4-5 and slightly underestimate earthquakes with higher
magnitude. However, scatter is very large (up to two
magnitude units) for this station type. This may be a
result of the deployment sites for this sensor type. Most of
the short period seismic stations were temporary stations
directly deployed on the hard soil layer. This would lead to
amplification effects on the recorded ground motion.

• For the MEMS-based stations, measurements in general
slightly overestimate M3-4 events, are good for M4-5 and
more strongly underestimate earthquakes with higher
magnitude. Scatter is similar to the broadband seismic
stations, except for the magnitude bin [5, 6].

Reporting time, as another important feature, directly
influences the effectiveness of an EEWS. From Figure 3E we
can find that there was a huge difference in the reporting time for
earthquakes occurring between the first and second stages. The
median reporting times for the first and second stages were 10.5 ±
3.0 s and 6.3 ± 3.5 s, respectively.
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Real-Time Results for the M 5 +
Earthquakes
From the occurrence of the M6.0 mainshock, five earthquakes
with magnitudes larger than 5.0 struck the Changning area. The
list of events is presented in Table 1. All these earthquakes
occurred in the first stage with no MEMS-based stations
introduced and no broadband and short period seismic

FIGURE 4 | Comparison of the JEEWS magnitudes of the Changning seismic sequence for both stages. (A, C, E) JEEWS vs. the China Earthquake Network
Center (CENC) catalogs for different station types. Empty circles, broadband seismic station magnitude; crosses, short period seismic station magnitude; triangles,
MEMS-based station magnitude; blue circle, network magnitude. (B, D, F) Histograms of the magnitude differences for different station types.

TABLE 3 | Median and standard deviation of the uncertainty on magnitude
estimation for each type of station, computed in different magnitude bins.

Station type Magnitude bin

[3, 4) [4, 5) [5, 6]

Broadband seismic stations 0.24 ± 0.40 −0.38 ± 0.30 −0.22 ± 0.45
Short period seismic stations 0.63 ± 0.55 −0.16 ± 0.52 −0.24 ± 0.76
MEMS-based seismic stations 0.26 ± 0.46 −0.11 ± 0.47 −1.92 ± 0.84
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stations upgraded (Figure 1B). Therefore the first reporting time
for these earthquakes was long (Figure 5), with an average of
11.6 ± 1.2 s after origin time. For the two Gongxian events, they
are faster due to closer to the non-MEMS sub-networks.
Additionally, although the location and depth errors were small
with slight variations, the magnitudes for these earthquakes were
significantly underestimated with large fluctuations and did not seem
to converge toward the catalog values, except the Changning M5.1
event. Considering an S-wave velocity of 3.5 km/s, these earthquakes
had a blind zone with radius of more than 30 km.

DISCUSSION AND CONCLUSION

After several years of construction, the number of stations of the
Sichuan seismic network had reached ∼2000, and the average
distance between stations was about 12 km, which is comparable to

the Italian Strong Motion Network used for PRESTo (Festa et al.,
2018) and the California Integrated Seismic Network used for
ShakeAlert (Chung et al., 2020). In some regions, such as the
Xianshuihe, Longmenshan and Xiaojiang fault zones (Figure 1A),
the average interstation distance was less than 10 km. In addition,
most stations integrated a low-latency data packetizing function for
real-time continuous data transmission (Peng et al., 2015; 2017a).
These factors have greatly improved the EEW capabilities, which
could be observed from the EEW results of all earthquakes with
M3.0 or more in the Changning seismic sequence.

However, during the first stage, the MEMS-based stations
around the Changning seismic sequence were still under
construction and most data loggers installed in the broadband
and short period seismic stations were not changed to those
specially designed for EEW purposes, such as EDAS-24GN
(http://www.geolight.com.cn/p.aspx?id�49&&type�2) and HG-
D (http://www.szadpr.cn/a/yewufangxiang/xianjindizhenyiqishebei/

FIGURE 5 | Real-time processing results of JEEWS for five M5.0 + earthquakes occurring in the Changning seismic sequence. (A) Changning M6.0 (2019/06/17
22:55:44); (B) Gongxian M5.3 (2019/06/17 23:36:04); (C) Changning M5.1 (2019/06/18 07:34:33); (D) Changning M5.6 (2019/06/22 22:29:56); (E) Gongxian M5.5
(2019/07/04 10:17:58). From left to right, each panel is the number of triggered stations, the magnitude error, the location error, and the depth error as a function of time,
respectively. Vertical lines indicate the first alert time.
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20200716/442.html), leading to reporting time more than 10 s for
the first alerts of most earthquakes. In the second stage, with the
introduction of more than 1,000 MEMS-based stations, the reporting
time has been significantly improved to 6.3 s, meaning that radii of the
blind zones for most events have been reduced to ∼20 km under an
S-wave velocity of 3.5 km/s and a shallow seismicity depth of 7 km.
This is an impressive result and is comparable to those obtained by
other excellent EEWSs, such as ShakeAlert (Chung et al., 2020),
NEEWS (Hsu et al., 2018), on-site P-Alert system (Wu et al., 2019),
and PRESTo in Italy (Festa et al., 2018). In addition, this result can
meet the key time goal requirement of the National System project.

As to the seismic stations not upgraded, they adopted a fixed-size
packet of 512 bytes for data transmission. Generally, during an
earthquake, fixed-size data packet will be filled out quicker with large
amplitudes, leading to shorter duration. However, the delay for
transmitting and receiving the packet might become problematic
during a large earthquake as stations sending high data rates will be a
significantly additional stress for the telemetry infrastructure
(Stubailo et al., 2021). One example is shown in Figure 6. For
those not upgraded seismic stations transferring data with cellular
modems (Figure 6A), huge latency could be observed after shaking
onset. However, for the seismic stations delivering data over fiber
lines (Figure 6B), a clear downward trendwas presented because the
packet was filled out quicker during the earthquake. Only a slight
fluctuation was observed for the MEMS-based stations because of
their low resolution (14–15 bits). The sensitivity of all MEMS-based
accelerometers has been corrected to 500 counts/cm/s2. This means
that 1 count is equal to 0.002 cm/s2. Usually, in the quiet time, the

recorded data for an MEMS-based station vary between ±0.1 gals
(±50 counts). During a large event, if the PGA value recorded can
reach ±100 cm/s2, the counts will fluctuate between ±50,000,
significantly lower than the seismic stations with waveforms
clipped and approximately ±8,000,000 counts (23 bits resolution).
Therefore, to lower the large latency introduced by the seismic
stations, we can upgrade the data loggers by integrating a low-latency
data packetizing function and increase the telemetry bandwidth by
substituting the cellular modem links with fiber lines.

In terms of earthquake location and magnitude estimation,
most of the deviations were within 5 km and 0.5 magnitude units, a
significant improvement compared to the results reported in Peng
et al. (2020). In addition, most of the depth errors lied in ±5 km.
The reason is mainly related to the increase in station density and
the improvement of the network environment. However, eight
earthquakes with M3.0 or more were missed by JEEWS, all of
which occurred within a short time after earthquakes at the same
location. Currently, a time threshold of 49 s, an empirical value, is
used for an event detection to avoid declaring a secondary trigger at
the same station as a new earthquake. This is an inherent limitation
of JEEWS, especially in case of a foreshock and the mainshock
occurring in a short time, which cannot be avoided because
reducing the time threshold for new event detection would be
controversial and could lead to many false alerts (Carranza et al.,
2017; Peng et al., 2020). To reduce the impacts of this limitation on
JEEWS, some effective methods like the integrated particle filter
(IPF; Tamaribuchi et al., 2014), propagation of local undamped
motion (PLUM; Kodera et al., 2016) algorithms or using an

FIGURE 6 | Data latency responses of different stations types with real-time data being transmitted by (A) cellular modem links and (B) fiber lines to the June 17,
2019 M 6.0 Changning earthquake.
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TABLE 4 | Result comparison of the same earthquakes with the first alert triggered by two stations and the second alert triggered by more stations.

Catalog Errors of JEEWS

OT (UTC+8) (yyyy/mm/dd
hh:mm:ss)

Lat. (°N) Lon.
(°E)

M Depth
(km)

Nsta OT_err
(s)

Loc_err
(km)

M_err

2019/06/18 04:11:08 28.43 104.75 3.4 8 2 −6.9 51.9 −2.9
4 −0.2 1.6 0.3

2019/06/18 05:49:15 28.41 104.80 3.7 7 2 −7.7 7.9 −4.6
8 −0.2 0.7 −0.3

2019/06/19 03:25:30 28.41 104.82 3.0 6 2 −0.4 5.4 0.3
3 −0.4 0.8 0.4

2019/06/20 10:55:52 28.40 104.83 3.0 5 2 0.1 5.5 −0.2
5 −0.6 0.4 0.1

2019/06/21 06:56:49 28.44 104.78 3.3 5 2 −1.3 5.0 0.7
4 −0.6 1.1 −0.1

2019/06/22 22:29:56 28.44 104.79 5.6 4 2 −2.6 24.4 −1.6
5 −0.7 14.1 −1.4

2019/06/23 05:08:24 28.44 104.78 3.4 6 2 0.1 3.1 −0.2
5 −0.1 1.0 0.1

2019/07/03 12:26:54 28.39 104.85 4.6 9 2 0.0 1.5 −0.3
5 −0.1 0.8 −0.4

2019/07/04 06:45:19 28.40 104.85 3.4 8 2 0.0 2.2 0.5
4 −0.2 1.1 0.1

2019/07/04 07:34:06 28.41 104.84 3.0 2 2 −0.7 1.4 1.1
4 −0.6 1.4 0.4

2019/07/08 00:37:40 28.40 104.85 3.0 8 2 −0.7 3.8 1.2
4 −0.2 0.8 0.3

2019/07/19 01:21:29 28.19 104.74 3.4 9 2 −4.8 34.5 0.6
4 −−0.3 1.1 0.5

2019/07/22 16:26:38 28.39 104.94 4.0 8 2 −1.6 7.2 −4.9
7 −1.8 7.8 −0.7

2019/08/13 06:31:54 28.37 104.87 4.3 10 2 −1.3 1.9 0.1
4 −0.9 1.0 −0.5

2019/09/06 15:25:34 28.45 104.78 4.1 7 2 0.2 6.1 −1.0
3 −0.3 1.5 −0.1

2019/09/12 20:17:55 28.41 104.80 4.0 10 2 −2.4 14.0 0.2
8 −0.8 3.7 −0.2

2019/11/10 21:28:07 28.44 104.74 3.3 7 2 0.1 5.6 0.0
3 −0.3 1.5 0.3

2019/12/29 08:47:13 28.38 104.97 4.2 13 2 0.2 4.1 −1.1
3 0.0 4.4 −0.6

2020/01/08 01:09:39 28.25 104.93 4.2 10 2 −1.9 8.3 −0.7
5 −1.6 4.2 −0.5

2020/02/03 23:55:51 28.46 104.75 3.7 8 2 0.2 4.8 −0.5
3 0.3 1.5 −0.6

2020/04/09 09:14:24 28.10 104.83 3.2 8 2 0.1 9.3 −0.2
4 0.5 12.0 0.0

2020/04/27 09:37:12 28.17 104.78 3.2 7 2 0.5 7.8 −0.5
4 0.0 1.4 0.0

2020/05/10 15:42:28 28.14 104.77 3.4 6 2 0.3 6.0 −0.2
4 −0.1 2.0 0.1

2020/05/22 03:12:50 28.16 104.77 3.7 8 2 0.1 2.6 −0.7
4 0.1 1.9 −0.2

2020/06/28 05:37:41 28.35 104.95 3.0 4 2 −0.2 4.6 0.1
3 0.2 2.9 −0.3

2020/07/02 20:44:17 28.34 104.89 3.3 5 2 −0.2 3.4 −0.1
7 −0.1 1.8 −0.1

2020/07/27 16:07:00 28.39 104.95 3.4 7 2 0.5 2.8 −0.6
7 −0.1 1.5 0.1

2020/08/17 12:43:33 28.15 104.74 3.0 8 2 −0.4 9.0 −0.1
4 0.4 2.1 0.0

2020/09/16 15:03:08 28.45 104.80 3.4 6 2 −0.4 4.8 −0.5
4 −0.6 2.3 −0.4

2020/09/26 04:34:09 28.09 105.08 3.8 13 2 1.3 12.0 −1.0
3 1.0 6.6 −0.4

2020/11/13 03:18:12 28.18 104.72 4.3 7 2 −0.4 2.0 −0.4
4 −0.4 2.3 −0.6

OT, origin time; Lat., latitude; Lon., longitude; Nsta., number of used stations; OT_err, origin time error; Loc_err, location error; M_err, magnitude error.
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intensity threshold can be introduced to process multiple
simultaneous events within a short time and distance.

In JEEWS, one of the alert filters was the event being triggered
by at least two stations. It can be seen from the results in Table 4
that this alert filter would lead to larger location and magnitude
errors. For earthquakes occurring in the second stage, with seismic
network density increased and seismic stations upgraded, most of
the first alerts were triggered by three or more stations and the
reporting time was not significantly influenced. Therefore, when in
the trial operation, the alerting strategy should be adjusted for the
pilot areas, requiring at least three stations to take part in the EEW
processing for declaring an earthquake. However, for other regions
with different station densities, the number of stations would
probably varies from place to place.

From the results of earthquakes with magnitude larger than
5.0, there was an obvious underestimation of the magnitude,
which persisted even as time increased with more triggered
stations. This may be caused by the following four reasons:

One is the seismic stations with clipped waveforms. Due to
these larger earthquakes occurring in the first stage, except for
someMEMS-based stations 50 km away from the epicenter, most
stations used to estimate magnitude were seismic stations.
Waveforms from the seismic stations close to the epicenter
clipped, and some even clipped in the first second immediately
after the P-wave arrival. These clipped data were not excluded and
still used for EEW processing. To avoid this problem, we need to
introduce a strategy to eliminate the clipped seismic stations, such
as with a threshold on the number of counts.

The second reason comes from the sensors deployed in short
period seismic stations and MEMS-based stations. It is well-known
that the short period sensors have saturation problemswhen using to
estimate the magnitude of a large earthquake (Xu et al., 2008),
because they will miss the long period vibration of large events.
However, the magnitude contributions are surprisingly good for
these stations (Figure 4C). The reason may be related to the energy
release of the large earthquakes themselves, which is out of the scope
of this paper. As to theMEMS-based stations, except for the GL-P2B
device (Peng et al., 2017a, 2019, 2020), most of the deployed sensors,
including Palert (Wu, 2014;Wu et al., 2019; Peng et al., 2020), with a
low signal resolution (14–15 bits) and dynamic range (less than
90 dB), had a relative high noise level, making them difficult to
clearly record pwave arrivals of small earthquakes andmore suitable
for earthquakes with M4.0+ (Figure 4E).

The third one is the adopted magnitude estimation method
itself (Kuyuk and Allen, 2013). The data selected to deriving the
Pd magnitude relationship were records from broadband seismic
stations and strong motion stations. In JEEWS, we also used short
period seismic stations andMEMS-based stations. For the sensors
deployed in these stations, they had different frequency bands
and noise levels. From Figures 4C–F, we could find that this
magnitude estimation method was not working well for these two
types of stations. Therefore we need to calibrate new relationships
with data directly recorded by the stations.

The final one lies in the method used to compute the network
magnitude. In the current system, the network magnitude
outputted is directly obtained by averaging the magnitude of
each triggered station. This would lead to magnitude

underestimation because of the magnitudes calculated from the
newly triggered stations (Melgar and Hayes, 2019; Trugman et al.,
2019; Chung et al., 2020) using a short P-wave time window (less
than 2 s), especially for the MEMS-based stations ∼50 km away
from the epicenter (Table 3). Usually, for a large earthquake with
rupture duration longer than 4 s, the magnitude calculated from
such a short window will be significantly underestimated (Meier
et al., 2016, 2021; Trugman et al., 2019). To avoid this risk, we can
use the time window length of each triggered station as a weight for
computing the network magnitude. The effectiveness has been
proved in Colombelli et al. (2012) and Peng et al. (2017b).

For theM 3.0 + earthquakes that occurred in the second stage,
JEEWS obtained excellent results, indicating that the system has
entered a stable operating state. However there is a high risk that
is lack ofM 7.0 + earthquake verification. So far, the largest intra-
network event handled by JEEWS was the 2019 ChangningM6.0
earthquake. In JEEWS we adopted a simple point-source
algorithm to calculate seismic intensities at different target
areas. This would lead to significant ground-motion
underprediction for devastating (M 7.0+) earthquakes because
fault finiteness was not considered (Chung et al., 2020). This
limitation can be efficiently solved by introducing FinDer (Böse
et al., 2012, 2018) or other algorithms (Yamada et al., 2007;
Crowell et al., 2016) into JEEWS.

Recently we are developing a decision module which is used
for combining results from different EEW algorithms. In this
module, some rules are currently adopted, such as 1) the first alert
is the fastest received result; 2) if multiple results are received in a
time window of less than 1 s, the origin time, epicenter and depth
from the one with the largest number of triggered stations are
selected as the source parameters, and the magnitude is set as the
largest one. Based on the results after decision, peak ground
motion estimates at different target sites are calculated by using
GMPEs. As the system runs, more suitable rules will be integrated
into this module for further improving accuracy of the system.

Besides, in the near future we need to consider providing
customized services from the perspectives of an end user, such
as triggering interpretable alerts according to probabilistic risk-
based estimation optimized for the preferences of a given
stakeholder (Cremen and Galasso, 2020), or providing an open
public (event or groundmotion-based) service to users for building
their own customized applications. This will further improve the
efficiency of an EEWS and transform it into a more useful tool.
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Earthquake Early Warning System for
Structural Drift Prediction Using
Machine Learning and Linear
Regressors
Antonio Giovanni Iaccarino1*, Philippe Gueguen2, Matteo Picozzi1 and Subash Ghimire2

1Dipartimento di Fisica “Ettore Pancini”, Università Degli Studi di Napoli, Federico II, Napoli, Italy, 2ISTerre, Université Grenoble
Alpes, CNRS/IRD/Univ Savoie Mont-Blanc/Univ Gustave Eiffel, Grenoble, France

In this work, we explored the feasibility of predicting the structural drift from the first
seconds of P-wave signals for On-site Earthquake Early Warning (EEW) applications. To
this purpose, we investigated the performance of both linear least square regression (LSR)
and four non-linear machine learning (ML) models: Random Forest, Gradient Boosting,
Support Vector Machines and K-Nearest Neighbors. Furthermore, we also explore the
applicability of the models calibrated for a region to another one. The LSR and ML models
are calibrated and validated using a dataset of ∼6,000 waveforms recorded within 34
Japanese structures with three different type of construction (steel, reinforced concrete,
and steel-reinforced concrete), and a smaller one of data recorded at US buildings (69
buildings, 240 waveforms). As EEW information, we considered three P-wave parameters
(the peak displacement, Pd, the integral of squared velocity, IV2, and displacement, ID2)
using three time-windows (i.e., 1, 2, and 3 s), for a total of nine features to predict the drift
ratio as structural response. The Japanese dataset is used to calibrate the LSR and ML
models and to study their capability to predict the structural drift. We explored different
subsets of the Japanese dataset (i.e., one building, one single type of construction, the
entire dataset. We found that the variability of both ground motion and buildings response
can affect the drift predictions robustness. In particular, the predictions accuracy worsens
with the complexity of the dataset in terms of building and event variability. Our results
show that ML techniques perform always better than LSR models, likely due to the
complex connections between features and the natural non-linearity of the data.
Furthermore, we show that by implementing a residuals analysis, the main sources of
drift variability can be identified. Finally, the models trained on the Japanese dataset are
applied the US dataset. In our application, we found that the exporting EEW models
worsen the prediction variability, but also that by including correction terms as function of
the magnitude can strongly mitigate such problem. In other words, our results show that
the drift for US buildings can be predicted by minor tweaks to models.

Keywords: earthquake early warning, onsite EEW, structural drift, machine learning regressors, building monitoring

Edited by:
Maren Böse,

ETH Zurich, Switzerland

Reviewed by:
Stephen Wu,

Institute of Statistical Mathematics
(ISM), Japan

Enrico Tubaldi,
University of Strathclyde,

United Kingdom

*Correspondence:
Antonio Giovanni Iaccarino

antoniogiovanni.iaccarino@unina.it

Specialty section:
This article was submitted to
Geohazards and Georisks,

a section of the journal
Frontiers in Earth Science

Received: 10 February 2021
Accepted: 21 June 2021
Published: 08 July 2021

Citation:
Iaccarino AG, Gueguen P, Picozzi M

and Ghimire S (2021) Earthquake Early
Warning System for Structural Drift
Prediction Using Machine Learning

and Linear Regressors.
Front. Earth Sci. 9:666444.

doi: 10.3389/feart.2021.666444

Frontiers in Earth Science | www.frontiersin.org July 2021 | Volume 9 | Article 6664441

ORIGINAL RESEARCH
published: 08 July 2021

doi: 10.3389/feart.2021.666444

96

http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2021.666444&domain=pdf&date_stamp=2021-07-08
https://www.frontiersin.org/articles/10.3389/feart.2021.666444/full
https://www.frontiersin.org/articles/10.3389/feart.2021.666444/full
https://www.frontiersin.org/articles/10.3389/feart.2021.666444/full
https://www.frontiersin.org/articles/10.3389/feart.2021.666444/full
http://creativecommons.org/licenses/by/4.0/
mailto:antoniogiovanni.iaccarino@unina.it
https://doi.org/10.3389/feart.2021.666444
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2021.666444


INTRODUCTION

Seismic risk is one of the main concerns for public authorities in
seismic prone regions. Earthquake Early Warning Systems
(EEWSs) are complex infrastructures that can mitigate the
seismic risk of citizens and losses by the rapid analysis of
seismic waves (Gasparini et al., 2011). Typically, EEWS
analyzes seismic data in real-time for automatically detects
and predict the earthquake size using the first seconds of
P-wave signals. Generally, by these pieces of information,
EEWSs attempt predicting the ground motion (e.g., Peak
Ground Acceleration, PGA) at specified targets. Hence,
EEWSs disseminate alerts to targets where the shaking
intensity is expected to overcome a damage threshold.

There are two main families of EEWS: on-site and regional
systems (Satriano et al., 2011). The on-site approaches use a single
station, or a small seismic network, installed near the target. On
the other hand, in regional systems, a seismic network is placed
near the seismogenic zone, which normally is placed sufficiently
far from the target area to protect. Furthermore, on-site systems
use P-waves information to directly predict ground motion
through empirical scaling laws, while regional ones exploit
primarily P-waves, but also S-waves information, from stations
close to the epicenter for estimating the source location and
magnitude, which in turn are feeding GMPEs (Ground Motion
Prediction Equation) for predicting the ground motion at targets.

A fundamental EEWS parameter is the time available to
mitigate the seismic risk at a target before damaging ground
motion related to S-waves or surface waves reach it (hereinafter
called “lead-time”). Depending on the hypocentral distance
between seismic source and target, the lead-time of the EEWS
approaches is different: at higher distances, the lead-time is
greater for regional systems; at shorter distances, on-site
EEWSs are faster and can provide useful alerts when the
regional systems fail (Satriano et al., 2011).

In the last 2 decades, several works have proposed the use of
P-wave features in on-site EEW framework. Wu and Kanamori
(2005) proposed the inverse of the predominant period, τc,
measured on the first 3s of P-wave waveforms to predict the
magnitude. The same authors have also proposed the Peak of
Displacement, Pd, on 3s window to predict the Peak Ground
Velocity, PGV (Wu and Kanamori, 2008). Brondi et al. (2015)
used the Pd and the Integral of squared Velocity, IV2 to predict
the PGV and the Housner Intensity, IH. Spallarossa et al. (2019)
and Iaccarino et al. (2020) explored the use of Pd and the IV2 and
for predicting PGV and the Response Spectra of Acceleration,
RSA, amplitudes at nine periods, respectively, using a mixed-
effect regression approach aiming to account for site-effects.

Besides the ground motion in free field, recently, efforts to
predict the structural response in EEWS applications have also
been proposed (i.e., applications where the Structural Health
Monitoring, SHM, meets the EEWS goal to disseminate real-
time alerts). The outputs of these methods can, for instance,
trigger automatic isolation systems (Chan et al., 2019; Lin et al.,
2020) based on damage level predictions through Engineering
Demand Parameters (EDP). For example, Picozzi (2012)
proposed to combine P-wave features with the structural

building response retrieved by interferometry and a multi-
sensors system (Fleming et al., 2009) to predict both the
earthquake parameters and the structural response. Kubo et al.
(2011) proposed a built-in EEWS for buildings that is able to
automatically stop the elevator, start an acoustic alert at each
floor, and predict displacement intensity and story drift angle at
each floor. In perspective, the use of new advanced technologies,
such as Internet of Things and 5G, will significantly facilitate for
the easy and huge implementation of such systems (D’Errico
et al., 2019).

This work aims to explore the use of P-wave parameters
(i.e., Pd, IV2 and the integral of squared displacement, ID2) to
predict the structural response in on-site EEWS applications. In
particular, following Astorga et al. (2020), we considered the drift
ratio (Dr.) as a robust and reliable parameter to link in the
building response. The parameter Dr. is computed as the relative
displacement between two sensors in the building (one placed at
the top floor and the other at the bottom floor of the building)
divided by the height difference between the sensors.

To this purpose, we investigated the performance of different
algorithms to develop robust empirical model between our EEWS
parameters and Dr Specifically, we explored both Least Square
Regression (LSR) and Machine Learning (ML) techniques. Since
Mignan and Broccardo (2019) have demonstrated that complex
MLmodels are often overused, one of our goal is to verify whether
MLs, considering their complexity and the difficulties in a suitable
training, provide advantages or not with respect to simpler linear
models in EEW applications.

We investigated four different machine learning regressors:
Random Forest (RF, Breiman, 2001), Gradient Boosting (GB,
Friedman, 2001), Support Vector Machine (SVM, Cortes and
Vapnik, 1995) and K-Nearest Neighbors (KNN, Altman, 1992).
These MLs are used to parameterize models aiming to predicting
log10Dr from the three P-wave proxies and three time-windows
(i.e., 1, 2, and 3 s). For each regressor, we tune two hyper-
parameters by comparing the results of K-fold cross-validation
(with K � 5) using the training set (Stone, 1974). Then, the best
hyper-parameters set is used to train the ML algorithms with the
entire training set (i.e., 80% of the data), and finally, we test their
performance with a testing set (i.e., 20% of the data). This
procedure allows us to assess in a robust way the regression
performance. In parallel, we calibrated models also using linear
least square regressors (LSR). To this aim, we used two strategies:
we calibrated LSR models for single P-wave features (i.e., three
P-wave proxies times three time-window lengths); we used all the
features together for calibrating LSR models, mimicking what is
done for ML. Therefore, we compare the ML performance with
the LSR models.

The calibration and performance analysis are carried out by
progressive steps, where the complexity of the dataset is increased
at each step. In the first analysis, we focused on the Shiodome
Annex (ANX) building, a Japanese Steel-Reinforce-Concrete
(SRC) building. With its 20 years-long history of earthquakes
recording, ANX represents the perfect starting case study to
understand the capabilities of the methods.

In the second step, we considered all the Japanese SRC
buildings. The rationale in this choice is that, even if they are
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of the same typology of ANX, we expect that the combination of
the buildings response with different site conditions can
contribute to inflate the drift variability.

Finally, in the third step we used the complete Japanese dataset,
and we performed a residuals analysis de-aggregating them for
building and earthquake characteristics. The aim of this last analysis
is to explore the possibility of retrieving correction factors that in future
EEW applications can be used for improving the drift predictions.

Finally, we verified the validity of the ergodic assumption for
the EEWS calibrated models, a typical problem in seismology
when models calibrated for a region are applied to data in other
areas. To this aim, we applied the models calibrated using the
Japanese dataset to the waveforms recorded in U.S. buildings.

DATASETS AND METHODS

Datasets
We consider 3-components waveforms recorded at Japanese and
U.S. buildings (Astorga et al., 2020). The considered buildings
belong to three different types of construction (Table 1): steel
(ST), reinforced concrete (RC) and steel-reinforced concrete
(SRC, only Japanese buildings). All buildings have one sensor
at the ground floor and one at the top floor. We measure P-waves
EEW parameters (Pd, IV2, ID2; hereinafter we refer to them in
general way as XP parameters) for different signal lengths (i.e., 1,
2 and 3 s) from the station at the ground level, while Dr. is
measured using both sensors.

The Japanese dataset (Figure 1A) is made up by 5,942
waveforms collected from 2,930 earthquake recorded at 34
buildings. The magnitude of the events, from the Japan
Meteorological Agency (JMA), ranges from MJMA 2.6 to MJMA

9, and the epicentral distances vary between 2.2 and 2,514 km.
The US dataset (Figure 1B) is formed by 240 waveforms from

90 events recorded at 69 buildings. The magnitude of these events
ranges from Mw 3.5 to Mw 7.3, while the epicentral distance
ranges from 2.7 to 391 km.

Table 1 presents the buildings classification according to
construction material and height. The largest set of data is
available for ANX (Figure 1A), an SRC building in Japan that
includes 1,616 waveforms recordings. Since the height is
considered important in determining the buildings response,
we used the number of floors to divide the dataset into two
categories: 1) low-rize buildings when the number of floors is less
than eight; 2) high-rize buildings for the others. This classification
is similar to the one done in Astorga et al., 2020, but, here, low-
rize and mid-rize categories are merged in the low-rize category.

P-Wave Features
Waveforms are filtered using a narrow bandpass Butterworth
filter between the frequencies 0.5 and 2 Hz. This choice was made
following Astorga et al. (2019) and is motivated by the aim of
selecting signals that are strongly related to the structural
response. Indeed, for the building as those considered in this
study the co-seismic fundamental frequency is usually within this
range (Astorga et al., 2020).

Since our objective is to calibrate models for on-site EEW
application, we considered as proxy of drift parameters estimated
from P-wave signal windows of limited lengths (i.e., 1, 2 and 3 s
after the P-waves first arrival). The rationale behind this choice is
that the three time windows can allow to capture the temporal
evolution of the drift, and also to assess the consistence/
robustness of the estimates in time. Furthermore, selecting a
fixed time window length in EEW systems is not a trivial task.
Indeed, two contrasting effects play a role in taking this decision.

TABLE 1 | Dataset summary.

Japanese dataset US dataset

Low-rize High-rize Low-rize High-rize

RC 10 3 13 9
SRC 5 7 0 0
ST 1 8 28 19

FIGURE 1 |Map of the dataset used in the study. The stars indicate the events, the color and the size refer to the magnitude following the legends in the figure. The
black squares indicate the buildings, the green one in figure a) is the ANX building.
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From one hand, the signal windows should be as shorter as
possible to increase the lead-time. On the other hand, since the
rupture duration increases with magnitude, selecting too short
time-windows lead to the saturation of the prediction, which
results in wrong prediction for large earthquakes (i.e., in analogy
with the typical magnitude saturation problem in seismology). In
this study, using time windows withmaximum length equal to 3 s,
we expect our P-wave proxies to saturate around magnitude Mw
7 (e.g., Yamada and Mori, 2009).

To assess the structural response, we consider the
dimensionless structural drift, Dr., defined as (Astorga et al.,
2020)

Dr � (PTD − PGD)/h (1)

where PTD is the Peak of Displacement in the top of the building,
PGD is the Peak of Displacement at the ground level of the
building and h is the distance between the two sensors.

Concerning the P-waves features, we rely on the peak of
displacement (Pd), the integral of the squared velocity (IV2)
and the integral of the squared displacement (ID2).

These features are computed on the vertical component
following Iaccarino et al. (2020).

ID2 � ∫tp+τ

tp

d2(t) dt (2)

IV2 � ∫tp+τ

tp

v2(t) dt (3)

Pd � max
tp ≤ t ≤ tp+τ

|d(t)| (4)

where tp is the first arrival time, t is the window length, d(t) is the
displacement, and v(t) is the velocity. Pd is measured in cm, IV2 in
cm2/s and ID2 in cm2·s. Since we measure these three XPs on
three different windows, we have a total of nine different features:
ID2

1s, ID
2
2s, ID

2
3s, IV

2
1s, IV

2
2s, IV

2
3s, Pd1s, Pd2s, Pd3s.

Case Studies
The availability of two rich datasets, relevant to two countries
with different building typology and tectonic contexts, motivated
us to explore the effect of the dataset complexity in the robustness
of EEWmodel predictions. It is quite common in seismology, and
especially in EEW applications, to use an ergodic approach in the
use of EEWmodels. In other words, models calibrated combining
datasets from different regions are exported to further areas
assuming that regional effects do not play role in the model
uncertainty (Stafford, 2014). However, results of recent EEW
studies (e.g., among others Spallarossa et al., 2019; Iaccarino et al.,
2020) have shown the opposite; that is to say, regional
characteristics can play an important role in the robustness
and accuracy of the EEW predictions, leading to increase the
epistemic uncertainty (Al Atik et al., 2010). For this reason, we
proceeded setting four different case studies using datasets of
increasing order of heterogeneity. We started calibrating EEW
models from a specific building (i.e., ANX in Japan); then, we
moved forwards including more buildings from the same
typology and region (i.e., SRC from Japan); and then, the
same region but with different construction typology. Finally,

we applied the models calibrated with Japanese data to those
recorded at U.S. buildings. Our strategy of assessing the
performance of LSR and ML models in progressively harder
conditions (i.e., varying dataset size and composition) aims to
unveil eventual drawbacks and limitations in their use.

To set a robust assessment of the models calibrated by
different approaches (i.e., ML and linearized algorithms) and
datasets (i.e., #1 ANX, #2 SRC-JAPAN, #3 all JAPAN buildings,
#4 U.S. buildings), we define a training set (80% of the data) and a
testing set (20% of the data) for each of the case studies. In all
cases, the data for training and testing are selected by randomly
splitting the dataset. The training set is used to tune the model
parameters. Then, the trained model is used to predict the drift of
the testing set. This will provide a trustworthy way to compare
LSR and ML models. This procedure will avoid any bias in the
evaluation of the models.

Case 1. The ANX building is considered for a building specific
analysis (i.e., the same site conditions and building features
characterize all the data). Therefore, the variability of data in
terms of amplitude and duration length is, in this case, due to only
the within-event and aleatory variability (Al Atik et al., 2010).
Case 2. In the second step of our analysis, we considered the
dataset formed by all the data from SRC buildings in Japan.
This second dataset is made up by 3,086 waveforms from 2,034
events and 12 buildings (of course including also ANX). This
analysis, thus, allows us to study the variability related to
different site conditions and building responses.
Case 3. We considered the complete Japanese dataset. With
respect to the previous one, this dataset also includes the
complexity due to differences in the seismic response between
different types of construction.
Case 4. We studied the implications of exporting the retrieved
model for Japan to another region. To do this, we apply the
models trained on the Japanese dataset to the U.S. dataset.
Clearly, this application is expected to be the more difficult
since different aspects can play a role in degrading the model
prediction capability. First of all, there are well-known tectonic
and geological differences between Japan and California. The
main difference is that the former is a subduction zone with a
prevalence of thrust earthquakes, while, in the latter, most of
the earthquakes are associated to strike-slip faults. Another
important aspect to account for is that differences may exist
within the building type of construction, due to different
building design codes between Japan and United States.

Linear Least Square Regression
The selected nine XPw (see P-Wave Features) are strongly
covariant, since they are relevant to the same P-wave signals
observed in different domains (i.e., displacement, and velocity)
and time (i.e., 1, 2 and 3 s). While ML techniques can address this
issue, the LSR approaches are prone to problems in cases where
the dependent variables are correlated each other. For this reason,
we applied the LSR in two different ways.

In the first approach, we used the features separately. This
leads us to have nine different linear models that, for the sake of
simplicity, have the same functional form, as:
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log10Dr � a + bplog10XPw (5)

where XPw can be any of the P-wave parameters (Eqs 2–4) at a
specific window-length w (i.e., 1, 2 or 3 s). We will refer to these
models as “LSR XPw”.

For all these techniques, we calibratedMLmodels by adopting an
approach that mimics increase of information with time typical of
EEW applications (i.e., the temporal evolution of time-windows in 1,
2, and 3°s). In particular, for the first time-window (1 s), we use only
the 3 P-wave parameters available at that time. For the second time-
window (2 s), we consider the information available at this moment
(i.e., the features at 1 and 2 s, for a total of 6 features). Finally, for the
3 s window, we use all nine features.

In the second approach we mimic the increasing of
information with time typical of EEW applications (i.e., the
temporal evolution of time-windows in 1, 2, and 3 s). In
particular, for the first time-window (1 s), we use only the 3 P-
wave parameters available at that time. For the second time-
window (2 s), we consider the information available at this
moment (i.e., the features at 1 and 2 s, for a total of 6
features). Finally, for the 3s window, we use all nine features.
We will refer to three combined models as “LSRw”.

In total, we will compare 12 linear models.

Machine Learning Regressors
As previously said, we use four different ML techniques: Random
Forest (RF, Breiman, 2001), Gradient Boosting (GB, Friedman,
2001), Support Vector Machine (SVM, Cortes and Vapnik, 1995)
and K-Nearest Neighbors (KNN, Altman, 1992). In this section,
we shortly present them focusing on hyper-parameters tuned by a
K-fold cross validation. Of course, we refer to the referenced
works for their deeper understanding.

RF Regressor
RF regressor (Breiman, 2001) is an ensemble of a specified
number of decision tree regressors (Ntr). A decision tree
regressor works as a flow-chart in which, for each node, a
feature is selected randomly to subdivide the data in two
further nodes through a threshold. This latter is chosen to
minimize the node impurity, as follows:

I � 1
N

∑N
i�1

(yi − ŷ)2 (6)

where N is the number of the training data in the node, yi is the
real value of the target for the ith datum and ŷ is the predicted
value of the end node in which the ith point is assigned. The
predicted value of the end node is simply the mean value of the
data in the end node itself. The depth of the trees is controlled by a
tolerance factor that stops the subdivision procedure if the gain in
impurity is not enough, or by reaching a maximum depth value
Mdep. The final regression is given by the average prediction of all
the trees. We select Ntr andMdep as the hyper-parameters to tune.

GB Regressor
In a similar way to RF, the GB regressor is an ensemble of Ntr

decision tree regressors (Friedman, 2001). The main difference

between the two is that in GB the steepest descent technique is
applied to minimize a least square loss function. In this algorithm,
each decision tree plays the role of a new iteration, while the
procedure is controlled by the hyper-parameter learning rate (Lr).
From preliminary studies, we decide to fix Ntr � 300 and we tune
Mdep and Lr.

SVM Regressor
The SVM regressor searches the best hyperplane to predict the
target value also minimizing the number of predictions that lies
outside an ε-margin from the hyperplane (Cortes and Vapnik,
1995). The result is achieved solving the problem:

min
ω,b,ξ

⎡⎣1
2
ωTω + C∑

i

(ξi + ξpi )⎤⎦ (7)

whereω ∈ Rp and b ∈ R are the linear regression parameters for p
features, C is a penalty factor, and ξi , ξpi are positive slack
variables representing the distance from the lower or the
upper margins. It is worth to note that the slack variables
(ξi and ξpi ) are both non-zero only if the datum lies inside the
margins. Furthermore, to include any nonlinear trends, we used a
Gaussian kernel with σSVM as variance. In summary, the main
hyper-parameters for this technique are ε, C and σSVM. Looking at
preliminary testing results, we fixed ε � 0.1 and we tuned C
and σSVM.

KNN Regressor
Finally, the KNN regressor predicts the target of a certain datum
as the weighted average of the KN nearest data target, where the
weights are the opposite of the distance (Altman, 1992). This
technique is a lazy learner because the training step consists only
in the memorization of a training set. We use the Minkowski
distance of order p (van de Geer, 1995). We use KN and p as
hyper-parameters to tune.

For all these techniques, we calibrated ML models by adopting
an approach similar to the one adopted for combined LSR
models. That is to say, we will use all the available features at
each second (i.e., 3 features at 1s, 6 at 2s and, finally, nine features
at 3s) to calibrate the ML models. In this way, we have three
configurations for each ML regressor with a total of 12 ML
models. Hereinafter, we will refer to these models as MLw,
where ML can be RF, GB, SVM or KNN, and w is the time
window used.

Validation Process
For all ML methods, we apply the logarithm base 10 to all the
features and then we standardize them to have a unit variance.
For each ML algorithm, we apply a K-fold cross-validation
(Stone, 1974) on the training set with K � 5 for each set of
hyper-parameters. We use the coefficient of determination R2 as
comparative score, so as to find the optimal configuration for
each model. This effort is done to avoid two critical issues that are
well-known with ML techniques: underfitting and overfitting
(Dietterich, 1995; Hawkins, 2004; Raschka and Mirjalili, 2017).
A model is underfitted when it is too simple and is not able to
retrieve good predictions even on the training set (e.g., this can
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happen also when LSR is performed on strongly non-linear
databases). On the other hand, a model is overfitted when it
performs very well on the training set but presents a lack of
accuracy on the testing set. This problem arises when a model is
so complex that it results too linked with the training data
variability.

ANX AND SRC ANALYSIS

In this section, we analyze the EEW models calibrated
considering the ANX and SRC buildings subsets.

Least Square Regression Models
As said above, we develop 12 linear models (i.e., derived
combining three P-wave proxies and three different windows,
and the combined LSR models) for the two datasets. As example,
we show in Figure 2 the results of the regression performed for Pd
considering the three windows on the ANX (similar figures are
shown for IV2 and ID2 as supplementary information,
Supplementary Figures S1, S2). Figure 2 shows that both the
training set (gray circles) and testing set (green triangles) have the
same variability around the fit. We report the results of all the
linear regressions, for ANX in Table 2, and for SRC in Table 3,
whereas the first two columns report the regression parameters as

in Eq. 5 (for LSRw models, we reported the regression coefficients
in Supplementary Table S1). Moreover, the third column, σtrain,
contains the standard deviation of the residuals for the training
set, while the fourth column, σtest, contains the same but for the
testing set. Finally, in the last two columns, we report the R2 value
for training and testing sets.

Looking at the results shown inTable 2 (i.e., ANX), themodels
perform slightly better on the testing set both in terms of σ and R2.
This difference is probably due to the different amount of data
within the two sets. It is worth to note that the prediction
improves with the increasing of the window length for all the
models, i.e., looking at Pd, σtest is 0.52 at 1 s, 0.47 at 2 s and 0.44 at
3 s. In the end, comparing XPs, we note that IV2 and Pd have
similar performances, while ID2 is the worst. The combined
models perform always better than the single-feature models
looking window-by-window. LSR3s provides the best
performances with σtest � 0.39 and R2

test � 0.60 (these values
are bolded in Table 2).

From Table 3, we can note that the performance of the LSR
models for the Japanese SRC buildings is always slightly worse
than that for ANX. This result is probably due to the increase
in the between-buildings variability of the observations, that
can also be affected by different site conditions (we will focus
on this important aspect in the following section). An
improvement of predictions with the time window lengths

FIGURE 2 | Dr. vs. Pd (cm) of the ANX dataset for three different windows. Gray dots refer to train set data. Green dots refer to test set data. The red lines are the
least square regression performed for the train set. The black lines, instead, represent the ±σtrain confidence level. The equation of this line is written in the upper part of
each figure with its own test residual variability, σtest.

TABLE 2 | Least square regression results, ANX dataset.

XPw a b σtrain σtest R2
train R2

test

ID2
1s −3.41 0.21 0.56 0.54 0.22 0.25

ID2
2s −3.13 0.27 0.51 0.49 0.35 0.39

ID2
3s −3.01 0.31 0.48 0.46 0.43 0.46

IV21s −3.56 0.22 0.54 0.52 0.27 0.31
IV22s −3.42 0.27 0.49 0.47 0.40 0.43
IV23s −3.34 0.30 0.46 0.44 0.46 0.49
Pd1s −3.22 0.47 0.54 0.52 0.26 0.29
Pd2s −2.94 0.60 0.49 0.47 0.39 0.43
Pd3s −2.77 0.67 0.46 0.44 0.47 0.50
LSR1s 0.53 0.51 0.30 0.34
LSR2s 0.44 0.43 0.51 0.53
LSR3s 0.41 0.39 0.57 0.60

TABLE 3 | Least square regression results, SRC dataset.

XPw a b σtrain σtest R2
train R2

test

ID2
1s −3.25 0.22 0.53 0.54 0.32 0.33

ID2
2s −3.17 0.26 0.50 0.51 0.41 0.40

ID2
3s −3.14 0.28 0.47 0.48 0.47 0.46

IV21s −3.49 0.22 0.53 0.54 0.34 0.33
IV22s −3.47 0.25 0.49 0.51 0.42 0.41
IV23s −3.47 0.27 0.47 0.48 0.47 0.47
Pd1s −3.18 0.47 0.52 0.54 0.35 0.33
Pd2s −3.08 0.54 0.49 0.51 0.43 0.39
Pd3s −3.03 0.58 0.46 0.49 0.49 0.45
LSR1s 0.52 0.54 0.36 0.33
LSR2s 0.46 0.49 0.49 0.45
LSR3s 0.44 0.46 0.54 0.51

Frontiers in Earth Science | www.frontiersin.org July 2021 | Volume 9 | Article 6664446

Iaccarino et al. EEWS for Structural Drift Prediction

101

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


is again observed. In this case, the combined models improve
the predictions only for 2 s, and 3 s windows. Finally, we
obtain again the best results for LSR3s with σtest � 0.46 and
R2
test � 0.51 (bolded in Table 3).
We show, in Figure 3, the predicted Dr. vs. the real Dr. using

the LSR model calibrated using the combined model LSRw for the
three windows on the ANX (Figures 3A–C) and SRC (Figures
3D–F) testing datasets as red triangles. We also plot the standard
deviation references as red dashed lines. From these results, we

can see the improving of the performances due to the increasing
of the window length.

Machine Learning Regression
Tables 4, 5 report the results for 12 ML regression models (see
Linear Least Square Regression) for the ANX and SRC datasets,
respectively. In these tables, each row refers to a different MLw.
The parameters σtrain and R2

train are the mean of the same
parameters obtained by the K-fold cross-validation on the

FIGURE 3 | Predicted Dr. vs. Real Dr. for three different windows for ANX dataset (A–C) and for SRC dataset (D–F). Red triangles refer to the prediction made least
square regression using combined LSR for both datasets measured at the reference window. Blue squares refer to the predictions of the SVM regressor at the reference
window. The black line Real Dr. � Predicted Dr. reference line. The dotted lines represent ±σtrain confidence level for LSR (red) and ML (blue) models.

TABLE 4 | ML regression results, ANX dataset.

MLw σtrain σtest R2
train R2

test

RF1s 0.49 0.49 0.38 0.38
RF2s 0.44 0.42 0.51 0.53
RF3s 0.42 0.39 0.55 0.60
GB1s 0.50 0.49 0.36 0.38
GB2s 0.44 0.42 0.50 0.53
GB3s 0.43 0.39 0.53 0.59
SVM1s 0.49 0.47 0.39 0.43
SVM2s 0.42 0.40 0.54 0.57
SVM3s 0.40 0.37 0.58 0.64
KNN1s 0.49 0.50 0.37 0.35
KNN2s 0.44 0.42 0.51 0.54
KNN3s 0.42 0.39 0.56 0.59

TABLE 5 | ML regression results, SRC dataset.

MLw σtrain σtest R2
train R2

test

RF1s 0.50 0.51 0.41 0.40
RF2s 0.46 0.46 0.50 0.51
RF3s 0.44 0.43 0.54 0.57
GB1s 0.50 0.51 0.40 0.40
GB2s 0.46 0.46 0.50 0.51
GB3s 0.44 0.44 0.54 0.55
SVM1s 0.49 0.50 0.42 0.41
SVM2s 0.45 0.45 0.52 0.53
SVM3s 0.42 0.42 0.57 0.58
KNN1s 0.50 0.51 0.39 0.39
KNN2s 0.46 0.47 0.49 0.49
KNN3s 0.43 0.44 0.55 0.55
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training set. After the training, we apply the calibrated models to
the testing dataset.

Looking at Table 4, σtest and R2
test are in general equal or

slightly better than the values for the training set. A similar result
has been observed also in the least square regression analysis
(Table 2). Since our predictions do not worsen on the testing set,
we are confident that we are avoiding overfitting. Furthermore,
applyingML analyses, the prediction performance is improved by
using the longest time window available. Lastly, SVM3s is the best
ML among the tested ones, with σtest � 0.37 and R2

test � 0.64
(bolded in Table 4).

As for the least square regression analysis results, also in this
case we observe that drift prediction worsens increasing the
building numbers (i.e., going from ANX to SRC buildings).
This result shows us that despite buildings are of the same
construction typology, the varying site conditions can play a
significant role in increasing the drift estimates variability. As for
the ANX analysis, the SVM technique provides the best Dr.
predictions; in particular, SVM3s provides the best model with
σtest � 0.42 and R2

test � 0.58.
Figure 3 shows the comparison between the best LSR model

(i.e., combined LSR for both datasets, red triangles) and the best
ML technique (i.e., SVM for both datasets, blue squares). As
expected, we observe for both datasets that the model prediction
improves with the time window length (i.e., predictions and
observations get closer to the 1:1 reference line; black line),
especially for higher Dr. values.

Our results highlight also that the SVM technique provides
slightly better predictions than LSR models for both ANX and
SRC datasets. Indeed, the variability of prediction for SVM is
smaller than that from the linear regression models. This effect is
even more evident looking at low and high Dr. values (Figure 3),
for which the linear regression models lead to higher variability in
the prediction (i.e., especially for SRC buildings, panels d–f).

Such underestimation increases with drift amplitude, which is
clearly function also of the events magnitude. For this reason, we
hypothesize that the drift underestimation is due to two main
effects: 1, for larger magnitude earthquakes (i.e., Mw > 7.5) the
moment rate function is longer than 3 s, leading the maximum
time-window (3s) to saturate, which in turns makes it difficult to
predict Dr.; 2, differently from most of the datasets, the
waveforms of large magnitude events are recorded at very

large hypocentral distances and can be dominated by high
amplitude surface waves. The dominance of surface waves in
such signals can pose a problem to our analyses, because our
dataset is mostly dominated by moderate to large magnitude
events (the 90% of the Japanese data is between Mw 3.6 and 7.0)
and the larger ground motion is related to the S-waves. Therefore,
models calibrated for estimating the drift associated to S-waves
are not efficient in predicting Dr. associated to very large
magnitude earthquakes at large hypocentral distances
generating high amplitude surface waves.

The analysis on the ANX and SRC datasets suggest us that it is
possible to predict in real-time Dr. using P-wave parameters. The
best predictions are obtained using the 3stime-windows and
using ML models (i.e., the model SVM3s).

JAPANESE DATASET ANALYSIS

In this section, we discuss the development and testing of
prediction models considering the entire Japanese dataset.

Least Square Regression Laws
Table 6 reports the results for LSR models calibrated on the
Japanese dataset. In this case, we observe that the performances
on training and testing set are very similar. Again, we notice an
overall worsening of both the scores with respect to the ANX
(Table 2) and SRC buildings (Table 3). Clearly, this outcome was
expected, given that the Japanese dataset includes more variability
than the other two datasets.

In this case, all the P-wave proxies (XPs) show basically the
same results in terms of σtest and R2

test for the same windows. On
the other hand, combined LSR models perform slightly better at 2
and 3s. We have the best results for LSR3s, as in the other cases,
σtest � 0.48 and R2

test � 0.41. Despite such low fitting score can
generate skepticism about these LSR models utility, in the
following Residual Analysis, we will show that by a residual
analysis we can identify some of the component generating
the large variability of predictions.

Machine Learning Regression
Table 7 is the analogue of Tables 4, 5 for the Japanese dataset. As
for the previous cases, MLs perform better than LSR for the same

TABLE 6 | Least square regression results, Japanese dataset.

XPw a b σtrain σtest R2
train R2

test

ID2
1s −3.52 0.18 0.54 0.54 0.23 0.24

ID2
2s −3.46 0.21 0.52 0.52 0.29 0.30

ID2
3s −3.41 0.23 0.50 0.50 0.33 0.34

IV21s −3.75 0.17 0.54 0.54 0.22 0.24
IV22s −3.72 0.20 0.52 0.52 0.28 0.29
IV23s −3.71 0.22 0.51 0.50 0.32 0.34
Pd1s −3.48 0.37 0.54 0.54 0.23 0.24
Pd2s −3.38 0.43 0.52 0.52 0.30 0.29
Pd3s −3.32 0.48 0.50 0.50 0.35 0.34
LSR1s 0.54 0.54 0.23 0.25
LSR2s 0.50 0.50 0.35 0.34
LSR3s 0.47 0,48 0.41 0,41

TABLE 7 | ML regression results, Japanese dataset.

MLw σtrain σtest R2
train R2

test

RF1s 0.52 0.52 0.28 0.29
RF2s 0.48 0.48 0.39 0.39
RF3s 0.46 0.46 0.43 0.46
GB1s 0.52 0.52 0.28 0.29
GB2s 0.49 0.49 0.38 0.38
GB3s 0.47 0.46 0.43 0.44
SVM1s 0.52 0.52 0.27 0.31
SVM2s 0.49 0.48 0.38 0.40
SVM3s 0.46 0,45 0.43 0,47
KNN1s 0.53 0.53 0.26 0.28
KNN2s 0.48 0.48 0.38 0.40
KNN3s 0.46 0.45 0.43 0.46
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time window. In this case also, the best model is SVM3s, with σtest
� 0.45 and R2

test � 0.47. In Figure 4, we compare the predictions of
LSR3s for one of the best LSR models (Table 5) with that of
SVM3s. This comparison clearly shows us that the cloud of SVM3s

estimates is thinner than that for LSR. Despite that, both models
seem to saturate above Dr. equal to 4*10–4.

The performances of the calibrated models seem to be worse
than those proposed by on-site EEW studies (among others,
(Olivieri et al., 2008; Wu and Kanamori, 2008; Zollo et al., 2010;
Brondi et al., 2015; Caruso et al., 2017). A direct comparison
among different approaches is however unfair. Indeed, despite
the appearance, we must consider that generally on-site EEW
studies focus on the prediction of ground motion parameters
(e.g., peak ground acceleration, PGA) using data collected in free
field. On the contrary, in this study, we predict an engineering
demand parameter (Dr.) using data from in-building sensors.
Our approach is certainly challenging because building responses
inflate the variability of our predictions. Furthermore, we must
also consider that recent studies (Astorga et al., 2020; Ghimire
et al., 2021) explored the prediction of drift from PGA measures
using the same dataset considered here and found a prediction
variability similar to that of our models. Moreover, other studies,
such as Tubaldi et al., 2021, pointed out that event-to-event
variability contributes significatively to the uncertainties in the
damage prediction, even for single structure models.

Residual Analysis
As we saw in Tables 6, 7, the fitting scores for all the methods are
generally rather low. This can be due to numerous factors. One

reason can be the lack of information of the EEW input features
that, as said, are extracted from p waves, while the final building
drift is related to S and surface waves. Anyway, this effect is
unavoidable in onsite EEW and also difficult to quantify. Instead,
we can try to assess which other factors influence the variability of
our methods. So, to better understand the strengths and
weaknesses of the calibrated models, we performed a residual
analysis (Al Atik et al., 2010). To this purpose, we disaggregate the
residuals (predicted minus real Dr. values) by site and event
characteristics. In Figure 5, we compare the testing set residuals
for the LSR model considering Pd3s (red error-bars) and the
equivalent for SVM3s (blue error-bars). For each group, we show
the mean and the standard deviation of residuals. In all sub-plots
of Figure 5, we also show the ±σtrain references for both methods
(i.e., 0.50 for Pd3s represented as red lines, and 0.46 for SVM3s

represented as blue lines).
Figure 5A presents the residuals grouped by buildings, which

are ordered by the mean of the residuals for the two methods. We
colored the labels of the buildings by type of construction (pink
for RC, light green for SRC, blue for ST) and the edge of the label
by the height (brown for low-rize, green for high-rise). At first
glance, we observe that the two methods show similar
performance in terms of mean of the residuals for all the
buildings. Looking at residual variability, however, we observe
that in most of the cases ML performs better than LSR, especially
for two buildings “YKH1” and “SKS”.

A more detailed examination to residuals variation for
different buildings suggests conclusions similar to those of Al
Atik et al. (2010) for ground motion prediction equations
(GMPEs). These authors, indeed, explored the epistemic
uncertainty by splitting it into source, path, and site
contributions. If we consider one or many of these factors in
our model, we are relaxing the ergodic assumption which states
that the variability of the dataset is completely aleatory. The
variability of the residuals in Figure 5A is the result of the site-
effect, which in our particular case is a term used to describe the
response of the soil-structure system that can lead to a very
complex behavior. Nevertheless, the full investigation and
explanation of the causes of these site conditions is beyond the
aim of this paper. In our opinion, the significant variation in
residuals shown in Figure 5A is not surprising, being in
agreement with other studies (Spallarossa et al., 2019;
Iaccarino et al., 2020); which have recently discussed how to
reduce the prediction variability considering site-effect terms in
EEW model using the mixed-effect regression approach
(Pinheiro and Bates, 2000).

As second step, we analyze the residuals grouping them for
building characteristics and height (see Table 1 and Figure 5B).
Our results show that themean of residuals for all building groups
are close to zero, except for low-rize ST buildings. This latter class,
however, includes only the building KWS, that also in the
previous analysis showed a peculiar response (Figure 5A).
Being the average of residuals consistent with zero, the
predictions seem independent from the type of construction
and the height of the buildings.

In Figures 5C,D, we show the residuals vs. the event
parameters magnitude and distance. It is worth noting that

FIGURE 4 | Predicted Dr. vs. Real Dr. of the test set for the Japanese
dataset for 3s windows. Red triangles refer to the predictions with LSR3s. Blue
squares refer to the predictions of the SVM3s model. The black line Real Dr. �
Predicted Dr. reference line. The dotted lines represent ±σtrain
confidence level for LSR (red) and ML (blue) models.
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these are not “sufficiency analysis” as intended by Luco (2002).
Indeed, in the sufficiency analysis a cinematic parameter is
defined as sufficient for predicting an engineering demand
parameter (e.g., Dr.) if the predictions are independent from
magnitude and distance. To confirm this property, a probabilistic
analysis would be needed (Ghimire et al., 2021), but that is
beyond the aim of this study.

Figure 5C shows the error bars, the residual mean and
standard deviation in bins of 1 unit centered on the
magnitude value. From these results, we can clearly see that
the magnitude has a great effect on the prediction. In particular,
we see that the predictions are good between magnitude 4 and 7,
while we overestimate Dr. at lower magnitudes and
underestimate Dr. at higher magnitudes. The overestimation at
magnitudes lower than 3.5 is probably due to the fact that the
predominant frequencies of such events are too high to stimulate
an effective response of the building (i.e., we consider a
frequencies range between 0.5 and 2 Hz). On the other hand,
as previously discussed, the underestimation for magnitude
greater than 7.5 is likely due to: 1) the window length of 3 s,
which is too small compared to the rupture duration and lead to
saturation problems of the prediction; 2) the measured Dr. can be
affected by the presence of surface waves associated to large
magnitude events. Measures of Dr. form signals dominated by

surface waves, indeed, might add non-linear terms to the
equation between our XP and Dr. itself. The underestimation
at high magnitudes can be also caused by the lower number of
recordings in the dataset with respect to those for the smaller
magnitudes, i.e. a typical problem for all the EEWS (Hoshiba
et al., 2011; Chung et al., 2020). Moreover, another possible bias
that big events can introduce are the non-linear responses of site
and buildings, especially during long sequence of earthquakes
(Guéguen et al., 2016; Astorga et al., 2018). The saturation of Dr.
predictions for earthquakes with M > 7.5 is certainly a big issue
for the application of the calibrated models in operational EEW
systems in areas where very large earthquakes are expected, and
further studies are necessary to deal with it. Nevertheless, our
results indicate that the calibrated models can be useful in
countries characterized by moderate to large seismic hazard
(e.g., Italy, Greece, Turkey; where the seismic risk is high due
to high vulnerability and exposure). A more in-depth analysis of
the performances for EEW systems using the models calibrated is
beyond the aim of this study, because it would require target
dependent economic cost-benefit analyses (Strauss and Allen,
2016; Minson et al., 2019).

Interestingly, SVM3s seems providing better results than LSR
for both for lowest and highest magnitude events. In our opinion,
this result suggests a higher performance of non-linear models.

FIGURE 5 | Decomposition of the residuals of Dr. prediction for Japanese test set. The residuals are computed as real Dr. - predicted Dr., so positive values mean
overestimation, and negative residuals mean underestimation. In each panel we show the residuals for two different models: LSR3s with circles representing the single
prediction and red errorbars representing the mean prediction of the group; SVM3s with stars for the single prediction and blue errorbars for the group mean. Red and
blue lines represent the ±σtrain for LSR3s and SVM3s, respectively. The labels in panels (A) and (B) are colored by construction type and height: pink for RC; light
green for SRC; blue for ST; brown edges for low-rize; green edges for high-rize. In panel (A) we decompose the residuals by buildings. In (B) we group them by building
type of construction and height. In panel (C) we use the magnitude to decompose residuals, the groups are evenly spaced and the errorbars are placed in the center of
the bin. In panel (D) the residuals are grouped by distance in km, the groups are evenly spaced and the errorbars are placed in the center of the bin.
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Finally, Figure 5D shows the residuals grouped by the
distance, using 6 bins evenly spaced in logarithmic scale from
100.5 to 103 km. The mean of residuals and the associated
standard deviation are plotted at the center of each
corresponding bin. We observe that all the residuals are close
to zero. Nevertheless, we observe a small overestimation of the
prediction at distances lower than 20 km. This effect is partially
connected to the overestimation seen for low magnitudes
(Figure 5C), because in this range of distances the magnitude
is limited between 2.6 and 5.2. In this case too, the machine
learning seems able to learn how to solve the bias.

The results of the residual analysis suggest: 1) SVM3s is
confirmed as the best model; 2) decomposing the residuals
with respect to buildings, construction type, magnitude, and
distance, we found a broad variation of the mean residuals
with the buildings typology. This result suggests that site-
correction terms should be included in future EEW
application to buildings. 3) The residuals are correlated to the
magnitude, while they seem be much less dependent from the
distance.

US DATASET APPLICATION

In the last part of this work, we apply the models calibrated using
the Japanese dataset to the U.S. dataset. Our aim is to verify if the
usual ergodic assumption often used in EEW application is valid
or not, and eventually to look for strategies that could allow to
successfully export the models from one region to another.

Least Square Regression Laws
Table 8 reports the results for the linear regression performed on
the complete dataset. The most noticeable aspect here is the R2

test

column that presents all negative value. This is due to a quite
important bias in the prediction of Dr. for U.S. building. In
Figure 6, we show the mean residual for U.S. dataset, which are
plotted as orange error bars with the length equal to σtest/σtrain.
Since the residuals are computed as differences between predicted
and observed Dr., the linear regression of the Japanese dataset
underestimates the Dr. of the U.S. buildings of about 1σ. We find
a similar bias also for ML techniques. These observations confirm
that exporting EEW models among different regions,

independently from the algorithm used for their calibration, is
not a straightforward operation.

In the next section, we analyze the causes of this bias, and we
propose a solution.

Bias Analysis
We present here the results of the residual analysis carried out on
the U.S. buildings predictions. Figure 6 shows the results as
orange error-bars for LSR with IV2

2s. We selected this particular
model because, as we will show also later, after the application of a
correction term it becomes the best predictive model for drift on
U.S. buildings.

To correctly evaluate the effectiveness of the method, we
divided the U.S. dataset in two subsets (60 and 40%): whereas
the first subset is used to compute the correction terms and the
second one is used to test the models. The residuals for the
corrected model are plotted as green error-bars for the U.S. train
set and as light blue for the U.S. test set. We report as reference
level the ±σtrain as black lines (see also Table 8).

First, we consider only the uncorrected residuals (i.e., orange
error-bars). In Figure 6A, we plot only the results for U.S.
buildings with at least 3 records, grouping the remaining ones
as “Others”. The buildings are ordered for increasing mean value
of residuals. We observe a general smaller variability of the
residuals with the buildings than for Japanese buildings
(Figure 5A), but at the same time we notice that the majority
of the buildings have predictions underestimated and non-zero
residuals. These results indicate that there is a bias in the global
trend of predictions with respect to the buildings.

Looking at Figure 6B, we can note that, while a small bias is
still present for high-rize buildings, the majority of the bias is due
to low-rize buildings. However, this difference between building
classes is not significant since all the bars are consistent with
each other.

In Figure 6C, as for Figure 5C, we notice a strong correlation
between residuals and magnitude. We can see, indeed, that the
predictions worsen with the increasing of the magnitude.

Finally, in Figure 6D, the residuals for U.S. dataset seem to be
not significantly affected by the distance. Indeed, the residuals
remain equally underestimated but in the second range that goes
from about 6 to 18 km. The anomaly in this range of distances is
probably connected to data distribution. In fact, here we find
events with magnitude between 3.5–4.5 and we can relate this
result with what we observe for low magnitude in Figure 6C.

Bias Correction
In this section, we propose a methodology to account for the bias
observed from the residual analysis applied to U.S. buildings drift
predictions. To this aim, we borrowed the strategy adopted in
seismic hazard studies where the decomposition of the variability
in the ground motion predictions can be used to improve the
estimates (Al Atik et al., 2010).

We consider, as correction terms, the residuals for magnitude
classes, ΔDrM, computed for the U.S. training set (Figure 5C,
orange error-bars). Estimating the magnitude in EEW
applications is a well-established task, with a large number of
operational, reliable algorithms and a wide literature, at least for

TABLE 8 | Least square regression results, complete dataset.

XPw a b σtrain σtest R2
train R2

test

ID2
1s −3.52 0.18 0.54 0.48 0.23 −0.45

ID2
2s −3.46 0.21 0.52 0.46 0.29 −0.37

ID2
3s −3.42 0.23 0.50 0.46 0.34 −0.25

IV21s −3.75 0.17 0.54 0.47 0.23 −0.48
IV22s −3.73 0.20 0.52 0.45 0.28 −0.39
IV23s −3.72 0.22 0.51 0.46 0.33 −0.25
Pd1s −3.49 0.37 0.54 0.48 0.24 −0.44
Pd2s −3.39 0.43 0.52 0.46 0.30 −0.36
Pd3s −3.33 0.47 0.50 0.46 0.35 −0.25
LSR1s 0.54 0.47 0.24 −0.44
LSR2s 0.50 0.46 0.35 −0.35
LSR3s 0.48 0.54 0.41 −0.32
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earthquakes with magnitude smaller than Mw 7.5. For example,
Mousavi and Beroza (2020) showed that by ML approaches
reliable estimation of earthquake magnitude from raw
waveforms recorded at single stations can be obtained
(standard deviation ∼0.2). We thus foresee similar
achievements in EEW in the next future. Here, we considered
suitable to set corrections for our models be magnitude
dependent. Therefore, for the sake of simplicity, we assume
that magnitude estimates are provided in real-time by other
EEW systems and are available as input for our Dr. predictions.

It is worth noting that for very large earthquakes (Mw > 7.5)
the 3-s P-wave windows considered in our study do not include
enough information to estimate the magnitude (Hoshiba et al.,
2011; Chung et al., 2020). Therefore, the proposed magnitude
dependent correction is considered valid only for events smaller
than Mw 7.5.

The ΔDrM terms computed using the EEW magnitude
estimates as input can thus be subtracted to the predicted Dr.
in order to set at zero the mean residual in each magnitude range:
log10Dr

corr � log10Dr − DrM .
Table 9 shows the R2 scores for all the models and time

windows after that we have applied the DrM corrections on the

testing dataset. We observe that, in this case, the 2s predicting
models performs better than the 3s ones. Moreover, LSR3s has still
negative R2 and so the correction in this case is ineffective. It is
difficult to understand if this effect is due to the correction or to
the window that can include more S-wave content at 3s for these
events. The most interesting aspect is that the LSR methods with
single feature perform now better than combined LSR, and ML
models. This result is probably connected to the characteristics of
ML techniques. In fact, ML algorithms are typically less able than
LSR ones to extrapolate the predictions outside the features’

FIGURE 6 | Decomposition of the residuals of Dr. prediction for US dataset using Japanese model. The residuals are computed as real Dr. - predicted Dr., so
positive values mean overestimation, and negative residuals mean underestimation. In each panel we show the residuals for LSR IV22s model in three cases: for the
training set without corrections, with orange tringles representing the single prediction and orange errorbars representing the mean prediction of the group; for the
training set with magnitude dependent correction with green triangles for the single prediction and green errorbars for the group mean; for the testing set with
magnitude dependent correction with light blue triangles for the single prediction and light blue errorbars for the groupmean. Black lines represent the ±σtrain for LSR IV22s.
The labels in panels (A) and (B) are colored by construction type and height: pink for RC; light green for SRC; blue for ST; brown edges for low-rize; green edges for high-
rize. The “Others” label is white. In panel (A)we decompose the residuals by buildings. In (B) we group them by building type of construction and height. In panel (C) we
use the magnitude to decompose residuals, the groups are evenly spaced and the errorbars are placed in the center of the bin. In panel (D) the residuals are grouped by
distance in km, the groups are evenly spaced and the errorbars are placed in the center of the bin.

TABLE 9 | R2 scores for US dataset corrected drift prediction.

Model 1s 2s 3s

LSR-ID2 0.21 0.26 0.25
LSR-IV2 0.27 0,30 0.27
LSR-Pd 0.20 0.24 0.20
Combined LSR 0.22 0.21 −0.03
RF 0.21 0.19 0.09
GB 0.23 0.21 0.08
SVM 0.16 0.21 0.18
KNN 0.10 0.15 0.16
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domain of the training set. In addition, some of them, like RF or
KNN, cannot predict target values outside the target domain for
the training set by construction. Probably, combined LSR models
also suffer of the same problems of ML techniques because of
their complexity.

The best model after the DrM correction is the LSR with IV2
2s.

As anticipated, this is the reason why we plotted the result for this
model in Figure 6.

By construction, after the magnitude correction, the error-bars
(green) have all zero-mean, but we can see that also the residuals
for the test set are consistent with zero (Figure 6C). Figure 6A
now shows that residuals for the training set have the same
number of buildings with underestimated and overestimated
predictions. Moreover, the residuals for the testing set are
consistent the training one, but for three buildings
(i.e., “14,654”, “54,341”, and “58,776”). This variability well
agrees with Figure 5A and as discussed, it depends on site
and buildings effects. In Figure 6B, for both training and
testing set, we find again the difference in mean residuals for
low-rize and high-rize buildings, but this effect is present
especially for ST buildings. Moreover, the drift for high-rize
ST buildings is now meanly overestimated. In the end, in
Figure 6D, we see that, despite some oscillation, the residuals
have not any more dependence with distance, as seen for Japanese
buildings in Figure 5D.

As conclusion of this analysis, we can state that when the
models retrieved considering the Japanese dataset are applied to
the U.S. dataset, the Dr. predictions present a severe bias.
However, by including a magnitude dependent correction term
seems a relatively simple and practice solution to solve the
problem. We have also found that the LSR models, after the
correction, perform better than ML models. The best model, in
this case, is the LSR with IV2

2s.

CONCLUSION

In this work, we tested the performance of several predicting
models for building drift using three different EEW P-wave
parameters computed considering three time-window lengths,
for a total of nine features. We used a dataset of almost 6,000
waveforms from in-building sensors recorded in Japan and
California. We compared linear least square and non-linear
machine learning regressions for a total of 21 different models.
We set up four different case-studies to understand how the data
variability affects the predictions.

Our results can be summarized as follow:
Analyzing a single building (“ANX”) with a very long history

of records, then all the data for the steel-reinforced concrete
buildings (which contains “ANX”), and finally the entire Japanese
dataset, we show that the training and the testing set have the
same kind of variability and ML models perform always better
than least square regression. In particular, MLmodels result more
efficient in dealing with the non-linearity of the problem, likely
because they are able to get more information from features
combining them together. Moreover, the results prove that the
increasing of the time window always improves the predictions.

The results showed us that it is possible to retrieve building
specific EEW models for Dr. prediction. This result is probably
also related to the large size and good quality of the ANX dataset.

The results for the steel-reinforced concrete buildings dataset
show that we can retrieve reliable models also grouping data from
similar buildings. Having a lot of data from more buildings can
help to overcome the problems of a few data from a single
building, but at the price of a decrease in the accuracy of the
predictions. Indeed, we observed a further reduction in accuracy
when we used the entire Japanese dataset. So, increasing in
variability of the dataset lead to models prone to precision of
the predictions problems that should be considered accurately.

To better understand this issue, we used models retrieved on
the entire dataset to explore the residuals correlation with
buildings, types of construction, magnitude, and distance. This
analysis has shown that the prediction residuals are strongly
dependent from buildings and magnitude. In particular, we have
found that some buildings are not well described by the models.
This effect can be considered as a site-effects, which is in this
application due to effects of many combined factors (e.g., 1D-to-
3D soil amplification, soil-structure interaction, building
resonance). Instead, looking at the magnitude, we observed a
drift overestimation at lower magnitude (M < 4) and an
underestimation at higher magnitude (M > 7.5). Such latter
effect is the more worrying for EEW applications and it is
likely due to both the lack of data in this range of larger
magnitude, and to the time window length of 3s that does not
contain enough information about the source size.

We have applied the Japanese models to predict the Dr. in
U.S. buildings, and we have found that in this case the
predictions are biased leading Dr. being underestimated. An
important warning from our study is that EEWmodels for drift
prediction are not directly exportable. This bias may be mainly
due to geological and seismological differences between Japan
and California. An analysis of residuals decomposed for
different factors has shown a strong dependency from site-
effects and magnitude.

We proposed a method to correct the prediction bias resulting
from exporting EEW model to other regions from those of
calibration. We showed that by applying a magnitude
dependent correction terms to the predictions the biases can
be removed. Hence, we showed that by the suggested method, the
predictions become reliable again.

Finally, an interesting result is that, in the particular case of
exporting models to another region, the linear models perform
better than machine learning. This result, despite is not very
surprising since it is well-known that the non-linear models are
less able to extrapolate predictions outside the features’ domain of
the training set, can be a useful warning for the EEWS community
approaching to ML regressors.

Future studies will explore the application of the proposed
methodology considering dataset from different regions. For
those areas characterized by very large earthquakes, as Japan
or Chile, we will explore the use of larger P-wave time-windows.
We believe that this study can stimulate applications of non-
linear ML models in the on-site EEW framework. Indeed, future
studies can use similar approaches for the computation of ground
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motion parameters (i.e., PGV, PGA, etc.), as well as of other
engineering demand parameters.

A final key point coming out from our analysis is the
importance to better understand how the inner variability of a
dataset affects the predictions. Our results suggest in fact that by
increasing the datasets, we can improve the characterization of
the prediction variability ascribed to site effects (e.g. soil-
conditions, building response, soil to structure interaction, etc.).
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Real-Time Characterization of Finite
Rupture and Its Implication for
Earthquake EarlyWarning: Application
of FinDer to Existing and Planned
Stations in Southwest China
Jiawei Li 1, Maren Böse2*, Yu Feng1,3 and Chen Yang4

1Institute of Risk Analysis, Prediction and Management (Risks-X), Academy for Advanced Interdisciplinary Studies, Southern
University of Science and Technology (SUSTech), Shenzhen, China, 2Swiss Seismological Service (SED), Swiss Federal Institute
of Technology Zürich (ETH Zürich), Zürich, Switzerland, 3Department of Civil and Mineral Engineering, University of Toronto,
Toronto, ON, Canada, 4China Earthquake Networks Center (CENC), China Earthquake Administration (CEA), Beijing, China

Earthquake early warning (EEW) not only improves resilience against the risk of earthquake
disasters, but also provides new insights into seismological processes. The Finite-Fault
Rupture Detector (FinDer) is an efficient algorithm to retrieve line-source models of an
ongoing earthquake from seismic real-time data. In this study, we test the performance of
FinDer in the Sichuan-Yunnan region (98.5oE–106.0oE, 22.0oN–34.0oN) of China for two
datasets: the first consists of seismic broadband and strong-motion records of 58
earthquakes with 5.0 ≤ MS ≤ 8.0; the second comprises additional waveform
simulations at sites where new stations will be deployed in the near future. We utilize
observed waveforms to optimize the simulation approach to generate ground-motion time
series. For both datasets the resulting FinDer line-source models agree well with the
reported epicenters, focal mechanisms, and finite-source models, while they are
computed faster compared to what traditional methods can achieve. Based on these
outputs, we determine a theoretical relation that can predict for which magnitudes and
station densities FinDer is expected to trigger, assuming that at least three neighboring
stations must have recorded accelerations of 4.6 cm/s2 or more. We find that FinDer likely
triggers and sends out a report, if the average distance between the epicenter and the
three closest stations, Depi, is equal or smaller than log10 (M

a + b) + c, where a � 1.91, b �
5.93, and c � 2.34 forM �MW ≥ 4.8, and c � 2.49 forM �MS ≥ 5.0, respectively. If the data
used in this study had been available in real-time, 40–70% of sites experiencing seismic
intensities of V-VIII (on both Chinese and MMI scales) and 20% experiencing IX-X could
have been issued a warning 5–10 s before the S-wave arrives. Our offline tests provide a
useful reference for the planned installation of FinDer in the nationwide EEW system of
Chinese mainland.

Keywords: earthquake early warning, fault rupture, ground-motion prediction equation, Sichuan-Yunnan region,
national system for fast report of intensities and earthquake early warning
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INTRODUCTION

Earthquake early warning (EEW) systems quickly detect
earthquakes (possibly while still evolving) and alert users (e.g.
the public, automated response applications, situational
awareness users) prior to the onset of strong ground shaking
at a given location (Allen et al., 2009; Satriano et al., 2011; Allen
and Melgar, 2019). In the last few decades, EEW systems have
been used successfully and are generally regarded as a promising
tool for earthquake risk reduction (Strauss and Allen, 2016).

Many countries around the world have operational EEW
systems; among them the systems in Japan, Mexico and
Taiwan are probably best known and advanced (Espinosa-
Aranda et al., 1995; Nakamura and Saita, 2007; Wu et al.,
2007). Other countries and regions, such as Romania, Turkey,
South Korea, Israel and the West Coast of the United States, have
installed EEW systems, and these systems have provided valuable
warnings to the public and automated emergency systems of key
infrastructures (Clinton et al., 2016; Sheen et al., 2017; Suárez
et al., 2018; Kohler et al., 2020; Kurzon et al., 2020). Some regions
(e.g. Italy, Chinese mainland, Switzerland, Chile, Nicaragua,
Costa Rica and El Salvador) are currently testing EEW systems
within their seismic monitoring networks (Clinton et al., 2016;
Leyton et al., 2018; Massin et al., 2019; and see next section for
details of Chinese mainland), while others are only at the stage of
discussing the need and feasibility of developing EEW systems
(Bird et al., 2008; Stankiewicz et al., 2015; Romeu Petit et al., 2016;
Sokos et al., 2016; Zuccolo et al., 2016; Ogweno et al., 2019).
Recently, crowdsourcing (Hammon and Hippner, 2012) has been
applied as a promising new technique to EEW, allowing the
general public to record seismic data/records with micro-electro-
mechanical systems (MEMS) in smart devices and to receive
earthquake alerts in real-time on a global or regional scale
(Minson et al., 2015). Some well-known examples are the
Earthquake Network (Finazzi, 2016), MyShake (Kong et al.,
2016), Quake Catcher Network (Cochran et al., 2009), Home
Seismometer (Horiuchi et al., 2009), and Google’s EEW effort
based on Android phones (Stogaitis et al., 2020).

EEW algorithms, such as the Virtual Seismologist (VS; Cua
and Heaton, 2007), ElarmS (Chung et al., 2019) or OnSite (Wu
and Kanamori, 2005), have demonstrated their usefulness for
providing earthquake source parameters in near real-time.
Although these algorithms are fast, they assume that seismic
sources are a point in time and space, which is unsuitable for large
magnitude earthquakes. Since ignoring the finiteness of
earthquake ruptures, the point-source model fails to capture
the true temporal-spatial variance of the radiation of high-
frequency seismic energy in earthquakes with M > 6, and
tends to saturate in earthquake magnitude estimation (Allen
and Melgar, 2019). Furthermore, point-source model-based
algorithms typically rely on early information from P-wave
and/or rupture nucleation to predict the final size of the
(evolving) fault rupture, even though earthquake rupture
predictability remains controversial (Ide, 2019; Hutchison
et al., 2020; Meier et al., 2020). Hence, a multi-dimensional
characterization of the source model to represent the
complexities of a large earthquake is necessary to improve EEW.

Several geodetic and seismic algorithms have been developed
to estimate the extended size of fault ruptures in (near) real-time.
For example, the G-larmS (Grapenthin et al., 2014a; 2014b),
G-FAST (Crowell et al., 2016, 2018), BEFORES (Minson et al.,
2014) and REGARD (Kawamoto et al., 2016, 2017) algorithms
use high-rate GPS/GNSS (Global Positioning System/Global
Navigation Satellite System) observations for real-time source
inversion. Although usually providing an accurate
characterization of seismic sources, these algorithms require
dense network observations and tend to be computationally
time-consuming. Moreover, GPS/GNSS-based algorithms are
usually unable to provide earthquake alerts to sites that are
close to the epicenter due to the sparsity of the existing
monitoring networks (McGuire et al., 2021). A promising
alternative is to adopt the seismic Finite-Fault Rupture
Detector (FinDer) algorithm (Böse et al., 2012, 2015, 2018),
which uses the spatial distribution of seismic high-frequency
ground-motions to estimate the centroid, length (L) and strike
(Θ) of an assumed line-source.

In this study, we explore the feasibility of operating FinDer in
Chinese mainland, where a nationwide EEW projects are
currently underway, including the installation of several
thousands of low-cost MEMS sensors. We will begin this
article with a review of Chinese EEW efforts. Then, using
waveform playbacks of both real and simulated waveform data
of recent seismicity, we will test FinDer for existing and planned
stations, and discuss its performance with a view to possible
future operation of FinDer in Chinese mainland.

DEVELOPMENT OF EEW IN CHINESE
MAINLAND

In 1994, the first EEW system in Chinese mainland was deployed
at the Daya Bay nuclear power plant; since then, Chinese
mainland has been continuously developing and evolving
EEW systems in order to improve their performance for
earthquake risk mitigation (Li et al., 2004).

Top-Level Design
Around the turn of the 21st century, a series of scientific projects
related to EEW and fast earthquake intensity reports, organized
by the China Earthquake Administration (CEA), were launched
(Li, 2014). Mainly due to constructions between 2001 and 2008,
the density of broadband seismic and strong-motion networks in
Chinese mainland has been greatly increased (Figure 1A), and all
stations have been digitized (Zhou, 2006; Liu et al., 2008).

City/Infrastructure Scale
In 1994, a small earthquake alert system with 12 strong-motion
stations was deployed on-site around Daya Bay nuclear power
plant. This system issued a warning when a trigger threshold of
0.01 g was exceeded. Following this, similar alert systems were
installed at more than 10 additional nuclear power plants. In
2001, PetroChina Dalian Branch developed an alert system for
petrochemical enterprises. In 2007, an earthquake monitoring
and alarm system was developed for the Hebei-Nanjing gas
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pipeline. In the same year, as part of China’s digital strong-
motion network, a fast earthquake intensity report system was
deployed in some Chinese cities, including Beijing, Tianjin,
Lanzhou, Urumqi and Kunming (Zhou, 2006). For the Three
Gorges water conservancy project, 15 seismic and 16 mobile
stations were deployed to provide EEW and earthquake
information service. In addition, the EEW system is
functioning for more than 20 lines of high-speed railways such
as the Beijing-Tianjin, the Beijing-Shanghai, the Chengdu-
Chongqing, the Beijing-Shijiazhuang-Wuhan lines (Li, 2014).

Provincial Scale
To demonstrate the feasibility of EEW on provincial scale, China
has implemented prototype test systems in three areas (Sichuan
Earthquake Administration, 2015). In 2007, the Institute of
Geophysics at CEA and the Department of Geosciences at
National Taiwan University built an EEW prototype system
for the Beijing Capital Region (Peng et al., 2011). This system
was based on the Capital Circle Seismograph Network of China
and included 94 broadband and 68 short-period stations, with an
average interstation spacing of roughly 50 km. In 2014, six years
after the WenchuanMS 8.0 earthquake, new system in the region
was expanded to 130 broadband seismic and 80 strong-motion
stations with an average interstation spacing of around 40 km for
whole covered land, and around 15 km in urban area. The seismic
network allows data to be transmitted to the data center in real-

time. In March 2015, an earthquake fast report system was
deployed in this region, which integrated additional data from
100 intensity sensors in the Tangshan region. The second
provincial EEW demonstration system deployed in Fujian
province was completed in September 2013 and consists of
128 stations with an average interstation spacing of around
30 km. The system accesses data from 16 stations of Taiwan in
real-time and provides warning for the earthquakes in Taiwan
(Zhang et al., 2016). The Lanzhou EEW demonstration system
was completed in October 2014, and connected to 83 broadband
seismic and 80 strong-motion stations from the provincial
networks of Gansu, Qinghai and Ningxia. Additional EEW
demonstration systems were built in the Sichuan-Yunnan
region and the east part of Guangdong successively over the
last years.

National Scale
In order to improve the capability of EEW, earthquake parameter
and fast intensity reports, and earthquake seismological research
on a nationwide scale, the National System for Fast Report of
Intensities and Earthquake Early Warning project of Chinese
mainland, led by the CEA, was launched and implemented in
2015 and 2018, respectively. A nationwide EEW system covering
five key EEW zones (north China, central China north-south
seismic belt, southeast coast, middle section of Tianshan
Mountains of Xinjiang, and Lhasa of Tibet; Figure 1D) is

FIGURE 1 | (A) Existing (as of 2018) and (B) planned (as of 2022) stations, deployed or upgraded as part of the National System for Fast Report of Intensities and
Earthquake Early Warning of Chinese mainland. Red dots show the epicenters (from China Earthquake Networks Center, CENC) of the 2008 MS 8.0 Wenchuan and
57 5.0 ≤MS < 7.0 earthquakes studied in this paper. White lines show the fault locations. (C)Magnitude distribution of earthquakes shown in (A) and (B). (D) The larger
tectonic setting with the five key EEW regions: 1) north China, 2) central China north-south seismic belt, 3) southeast coast, 4) middle section of TianshanMountains
of Xinjiang, and 5) Lhasa of Tibet.
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currently being built, with an average interstation spacing of
around 10–15 km. It is expected that by 2022, close to around
2,000 broadband stations (equipped with three-component
broadband or very broadband seismometers and all with
accelerometers), around 3,200 strong-motion stations
(equipped with three-component accelerometers), and around
10,200 low-cost intensity sensors (equipped with MEMS; Peng
et al., 2017) will be deployed or upgraded throughout Chinese
mainland. The EEW system will build on the Jopens seismic
monitoring platform developed by CEA. Some areas (e.g.
Sichuan-Yunnan and Beijing-Tianjin-Hebei regions) that have
completed most of the station deployment have taken the lead in
testing EEW algorithms (China Earthquake Administration,
2020; Peng et al., 2020). The system successfully provided
early warning services for the 2018 Yongqing MS 4.3
earthquake of Hebei, the 2019 Hualian MS 6.7 earthquake of
Taiwan, and 2019 MS 6.0 earthquake of Sichuan. At present, the
project is actively supporting and guiding social entities to
participate (Song et al., 2021), e.g. the Institute of Care-life at
Chengdu.

THE FINITE-FAULT RUPTURE DETECTOR

The Finite-Fault Rupture Detector (FinDer) is an efficient
algorithm to compute a line-source model of an ongoing
earthquake fault rupture from real-time high-frequency
seismic data using template matching (Böse et al., 2012,
2015, 2018). The resulting model has four independent
parameters that characterize the seismic source: length,
strike, centroid, and rupture directivity. In recent years,
FinDer has been adopted in various EEW systems,
including the U.S. West Coast ShakeAlert warning system
(Given et al., 2018; Chung et al., 2019; Kohler et al., 2020).
FinDer is also undergoing real-time testing in Central America
(Nicaragua, Costa Rica, and El Salvador), Chile, and
Switzerland (Böse et al., 2018). Integration of FinDer into
the nationwide EEW system of Chinese mainland is underway.
Furthermore, Böse et al. (2021) recently applied FinDer to
calculate line-source models for large (M > 6) global
earthquakes using felt reports.

FinDer Algorithm
FinDer determines earthquake line-source models by matching
the spatial distribution of the recorded high-frequency strong
ground-motion (usually acceleration) amplitudes with theoretical
template maps, which are computed for different line-source
lengths and magnitudes. The strike of the fault rupture, Θ, is
determined by rotating the templates around various trial angles
and calculating the respective misfit with the spatial distribution
of recorded PGA. Combined with the optimum spatial position
and orientation, the template with the smallest misfit and highest
correlation with the recorded amplitudes is found from a
combined grid-search and divide-and-conquer approach (Böse
et al., 2018). FinDer is computationally highly efficient and allows
updating outputs every second until peak shaking across the
seismic network is reached.

Ground-Motion Prediction Equations
Ground-motion prediction equations (GMPEs) are an essential
element of FinDer. They are used to generate templates that FinDer
matches with spatial distributions of observed peak ground
acceleration (PGA) amplitudes. In most installations, FinDer
adopts the GMPEs developed by Cua and Heaton (2009) that
were derived from strong-motion records in California (M 2–M
7.3) and the Next Generation Attenuation (NGA) strong-motion
dataset (M 2–M 8). Real-time and offline tests of FinDer in the U.S.
West Coast, Switzerland, Italy, Japan, and China (Böse et al., 2012,
2015, 2018, 2021; Li et al., 2020a) have confirmed that the templates
are globally applicable to crustal earthquakes. In previous work (Li
et al., 2020a), we compared the GMPE of Cua and Heaton (2009)
with the regional relationship used in the fifth-generation hazard
zoning map in southwestern China, as well as with PGA values,
that were observed during the 2008MS 8.0Wenchuan, 2013MS 7.0
Lushan and 2017 MS 7.0 Jiuzhaigou earthquakes. We found that
the GMPEs and PGA values are in good agreement, so we use the
same templates based onCua andHeaton (2009) here in this study.

FinDer Magnitude
For small earthquakes (M < 5.5) and at the early stage of rupture in
larger events, the FinDer magnitude,MFD, is determined from the
regression of P- and S-wave acceleration amplitudes using relations
of Cua and Heaton (2009). For larger events (M ≥ 5.5) MFD is
computed from empirical rupture length-magnitude relationships
(typically Wells and Coppersmith, 1994) using the length of the
FinDer determined line-source. FinDer line-source models were
introduced to characterize the temporal-spatial distribution of
high-frequency ground-motions (PGA) rather than to provide
an accurate source characterization (Li et al., 2020a). These
high-frequency ground-motions are of primary concern in
practice and therefore are critically important to real-time
seismology. Because of its high-frequency physical background,
MFD is more consistent with the energy magnitude (Picozzi et al.,
2017) rather than the long-period MW. In general, MFD can be
thought of as a scaling factor that quantifies the level and temporal-
spatial distribution of high-frequency ground-motions (Böse et al.,
2018; Li et al., 2020b). MFD does not necessarily show great
agreement with other magnitude scales, especially with those
that are sensitive to longer periods such as MW. Compared to
the magnitude scales that are based on seismic displacement
amplitudes, MFD has the strong advantage that it does not
saturate in large earthquakes. This is because FinDer does not
use absolute amplitudes, but spatial patterns of ground-motions in
order to derive source dimensions which scale with magnitude.

STUDY REGION AND AVAILABLE
DATASETS

The Sichuan-Yunnan Region
We select the Chinese Sichuan and Yunnan provinces
(98.5oE–106.0oE, 22.0oN–34.0oN) as our study area (Figure 1).
This region is exposed to a very high earthquake risk and has been
hit by a number of large and damaging earthquakes in the past,
including the 1833 Songming M 8 earthquake with about 6,700
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fatalities, the 1879 Wudu M 8 earthquake with about 22,000
fatalities, and the 2008 Wenchuan MS 8.0 earthquake with about
90,000 fatalities (Department of Earthquake Disaster Prevention
of the State Seismological Bureau, 1995; Department of
Earthquake Disaster Prevention of the China Earthquake
administration, 1999). Since January 1, 2009, roughly 530,000
earthquakes have been recorded in this region and their
waveforms have been archived by the China Strong Motion
Networks Center (CSMNC) and the China Earthquake
Networks Center (CENC; Zheng et al., 2010) at CEA.

Before 2008, 105 broadband seismic and 383 strong-motion
stations were deployed in the study region (Figure 1A). These
stations had interstation distances of around 30 km along the line
from Chengdu to Kunming and of 15–20 km in some key areas
(Figure 2A). The median interstation distance in the current
networks is around 60 km; in 30% of the study area the
interstation distance is less than 35 km (Figure 2C). We
computed these values from the average distance of a given
site to its closest three broadband and/or strong-motion
stations (Kuyuk and Allen, 2013) using a mesh of 0.1 × 0.1
resolution.

By 2022, 434 broadband seismic stations (equipped with
three-component seismometers and accelerometers),
488 strong-motion stations (equipped with three-component
accelerometers) and 1,609 low-cost intensity sensors (equipped
with MEMS) will be added or upgraded throughout the study
region through the construction of the National System for Fast
Report of Intensities and Earthquake Early Warning (Figure 1B).

With these installations, three quarters of Sichuan and Yunnan
region is expected to reach a mean interstation distance of about
30 km; 70 and 40% of the area will have interstation distances of
less than 30 and 15 km, respectively. In large parts of Chengdu
and Kunming urban areas, the interstation distance will be even
10–15 km only (Figure 2C).

Waveform Data
In this study, we use seismic waveform records of the 2008
Wenchuan MS 8.0 earthquake and of 57 earthquakes with 5.0
≤ MS ≤ 7.0 and depth of H ≤ 35 km that occurred in the study
region between January 1, 2009 and August 4, 2019 (Figure 1 and
Table 1). Based on their moment magnitude,MW, we divide these
58 earthquakes into two groups: for earthquakes in the first group
(with MW < 6) we use both broadband and strong-motion
records; for the second group, consisting of six earthquakes
with MW ≥ 6, we use strong-motion records only. Throughout
this paper, we will treat the earthquakes in the first group as
point-source events, and those in the second group as finite-
source events (with rupture lengths of 10–300 km).

Observed Waveforms
For each of the earthquakes in our dataset, we exclude the
recordings of obviously malfunctioning broadband/strong-
motion sensors and those with PGA smaller than 3 cm/s2. For
baseline correction we subtract from each trace the mean noise
amplitude taken over a time window of several seconds before the
P-wave onset.

FIGURE 2 |Maps showing the interstation distances for the (A) existing, and (B) planned network shown in Figure 1. Areas colored in dark green have the densest
station coverage. For any given site (computed on a grid of 0.1 × 0.1 resolution), the interstation distance is calculated as the average distance to the three closest seismic
stations. In order to compare with networks in Japan, California and Beijing Capital Region, we apply the same color scale range as in Kuyuk and Allen (2013) and Li et al.
(2016). The histogram in (C) shows the variability in the interstation distances across the Sichuan-Yunnan region. The interstation distance is currently around
60 km for half of the study region and will be reduced to around 30 km for three quarters of the whole region by 2022.
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TABLE 1 | Source parameters of the 2008WenchuanMS 8.0 and 57MS ≥ 5.0 earthquakes (2009-01-01–2019-08-04) in the study region (98.5oE–106.0oE, 22.0oN–34.0oN)
from China Earthquake Networks Center (CENC) and the Global Centroid-Moment-Tensor (GCMT).

No Yyyy-mm-dd Lat1 [o] Lon1 [o] H1 [km] MS
1/MW

2 Strike1/dip1/rake12

hh:mm:ss1 Strike2/dip2/rake2 [o]
1 2008-05-12 31.01 103.42 16 8.0/7.9 231/35/138

14:28:04 357/68/63
2 2009-06-30 31.46 103.96 24 5.5/5.3 212/29/54

02:03:51 71/67/108
3 2009-06-30 31.46 103.98 24 5.0/4.9 206/41/83

15:22:20 34/49/96
4 2009-07-09 25.60 101.03 6 6.3/5.7 204/84/-3

19:19:14 294/87/-174
5 2009-07-10 25.60 101.05 10 5.4/5.2 21/83/4

17:02:01 291/86/173
6 2009-09-19 32.90 105.56 8 5.2/4.9 350/40/82

16:54:13 180/50/96
7 2009-11-02 25.94 100.69 10 5.0/4.9 286/84/180

05:07:16 16/90/6
8 2009-11-28 31.23 103.80 15 5.0/4.9 43/44/80

00:04:04 236/47/99
9 2010-02-25 25.42 101.94 20 5.2/5.2 14/76/-9

12:56:51 106/81/-166
10 2010-04-28 30.60 101.45 8 5.0/5.1 236/79/176

04:22:27 327/86/11
11 2010-05-25 31.17 103.49 20 5.0/5.0 14/44/59

14:11:53 233/53/116
12 2011-04-10 31.28 100.80 10 5.4/5.4 313/75/-7

17:02:42 45/83/-165
13 2011-06-20 25.05 98.69 10 5.3/5.0 271/44/82

18:16:49 103/46/98
14 2011-08-09 25.00 98.70 11 5.2/5.1 251/86/1

19:50:17 161/89/176
15 2011-11-01 32.60 105.30 6 5.2/5.0 232/44/70

05:58:15 79/50/108
16 2012-06-24 27.71 100.69 11 5.7/5.6 313/46/-126

15:59:33 179/55/-59
17 2012-09-07 27.51 103.97 14 5.7/5.6 350/51/35

11:19:41 236/63/136
18 2012-09-07 27.56 104.03 14 5.6/5.3 234/58/155

12:16:30 338/69/34
19 2013-01-18 30.95 99.40 15 5.5/5.6 208/86/179

20:42:50 298/89/4
20 2013-03-03 25.93 99.72 9 5.5/5.4 337/42/-113

13:41:15 187/52/-71
21 2013-04-17 25.90 99.75 10 5.1/5.3 332/52/-131

09:45:55 206/54/-50
22 2013-04-20 30.30 102.99 17 7.0/6.6 212/42/100

08:02:47 19/49/81
23 2013-04-20 30.32 102.92 10 5.0/- −/−/-/

08:07:30 −/−/-
24 2013-04-20 30.24 102.94 15 5.4/5.4 215/45/100

11:34:16 21/46/80
25 2013-04-21 30.36 103.05 27 5.0/4.8 177/42/74

04:53:44 17/50/103
26 2013-04-21 30.34 103.00 17 5.4/5.2 35/45/86

17:05:23 221/45/94
27 2013-08-28 28.20 99.33 9 5.2/5.2 66/50/-125

04:44:52 294/51/-55
28 2013-08-31 28.15 99.35 10 5.9/5.7 97/42/-95

08:04:16 284/48/-85
29 2014-04-05 28.14 103.57 13 5.1/4.9 360/45/45

06:40:33 235/60/125
30 2014-08-03 27.11 103.33 10 6.6/6.2 71/81/-175

16:30:12 340/86/-9
31 2014-08-17 28.12 103.51 7 5.2/5.1 317/78/5

06:07:59 226/86/168
32 2014-10-01 28.38 102.74 10 5.2/5.2 254/66/169

(Continued on following page)
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The broadband seismic records provided by the Data
Management Centre of China National Seismic Network at
Institute of Geophysics of CEA start from the origin time
(OT) of the earthquakes, so there is no need for time
corrections. We only correct for the sensor gain and
differentiate the time series to obtain acceleration. A large

number of high-gain broadband seismic waveforms recorded
during the large earthquakes, however, are clipped. Therefore,
we only use broadband data for earthquakes in the first group
with MW < 6. In real-time operation, FinDer uses both strong-
motion and broadband station data, but discards sensors with
clipped amplitudes. In smaller and distant earthquakes,

TABLE 1 | (Continued) Source parameters of the 2008 Wenchuan MS 8.0 and 57MS ≥ 5.0 earthquakes (2009-01-01–2019-08-04) in the study region (98.5oE–106.0oE,
22.0oN–34.0oN) from China Earthquake Networks Center (CENC) and the Global Centroid-Moment-Tensor (GCMT).

09:23:29 349/80/25
33 2014-10-07 23.40 100.55 10 6.9/6.1 329/81/174

21:49:39 60/84/9
34 2014-11-22 30.29 101.68 20 6.4/6.1 143/85/-1

16:55:28 233/89/-175
35 2014-11-25 30.20 101.75 16 5.9/5.7 238/89/179

23:19:09 328/89/1
36 2014-12-06 23.32 100.49 10 5.9/5.6 79/72/9

02:43:45 346/81/162
37 2014-12-06 23.33 100.50 10 5.9/5.5 339/71/173

18:20:00 71/84/19
38 2015-01-14 29.30 103.20 20 5.0/4.9 158/44/89

13:21:40 340/46/91
39 2015-03-01 23.50 98.94 11 5.5/5.3 69/66/9

18:24:39 336/82/156
40 2015-10-30 25.04 99.44 10 5.0/4.9 177/45/-118

19:26:39 35/51/-64
41 2016-05-18 26.08 99.58 17 5.1/5.0 293/86/177

00:48:48 23/87/4
42 2016-09-23 30.08 99.60 19 5.2/5.2 281/47/-55

00:47:13 56/53/-122
43 2016-09-23 30.11 99.61 16 5.2/5.2 288/47/-61

01:23:16 69/51/-117
44 2017-03-27 25.89 99.80 12 5.1/5.1 318/85/179

07:55:01 48/89/5
45 2017-08-08 33.20 103.82 10 7.0/6.5 151/79/-8

21:19:48 243/82/-168
46 2017-09-30 32.25 105.05 10 5.4/5.1 21/54/42

14:14:37 263/57/135
47 2018-08-13 24.18 102.72 14 5.1/5.1 201/61/3

01:44:24 110/88/151
48 2018-08-14 24.19 102.73 6 5.0/4.9 206/77/9

03:50:36 113/81/167
49 2018-09-08

10:31:29
23.26 101.53 17 5.9/5.7 126/80/-178

36/88/-10
50 2018-09-12 32.75 105.67 11 5.3/5.1 75/83/-176

19:06:34 344/86/-7
51 2018-10-31 27.62 102.09 20 5.1/5.0 183/84/2

16:29:56 92/88/174
52 2018-12-16 28.24 104.95 12 5.7/5.3 79/81/-174

12:46:07 348/84/-9
53 2019-01-03 28.19 104.88 15 5.1/5.0 349/41/43

08:48:08 223/63/122
54 2019-06-17 28.34 104.90 16 6.0/5.7 184/40/123

22:55:43 323/57/65
55 2019-06-17 28.43 104.77 16 5.1/5.1 178/43/115

23:36:01 326/52/69
56 2019-06-18 28.37 104.89 17 5.3/4.8 155/33/116

07:34:33 305/61/74
57 2019-06-22 28.43 104.77 10 5.4/5.2 343/45/71

22:29:56 190/48/108
58 2019-07-04 28.41 104.74 8 5.6/5.5 11/39/75

10:17:58 210/52/102

1Data sources: CENC;
2Data sources: GCMT.
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(unclipped) broadband records can serve as an important
supplement to strong-motion records if station density is
sparse. The broadband seismic three-component traces for
each event in the first group are provided in the
Supplementary Material.

The strong-motion records are obtained from CSMNC. These
records start at a certain time (usually 20 s) before the P-wave
arrival. To recover the absolute time, we take the source
parameters in Table 1 and align the theoretical P-wave arrival
(assuming VP � 6.0 km/s) with the P-arrival in each record.
FinDer uses the temporal-spatial distribution of PGA,
including the information that certain stations have not yet
recorded strong shaking at a given time. Therefore, we fill pre-
event data gaps with random noise amplitudes that we determine
from the recorded noise before the P-wave. As this is only for
testing FinDer, we are not concerned about the details of this
noise, but are primarily interested in simulating realistic
amplitudes and a representative temporal evolution of PGA.
The simulated noise before P-wave arrivals does not impact
the FinDer results. All strong-motion three-component traces
for the studied earthquakes are shown in the Supplementary
Material.

Seismic waveform data recorded by low-cost intensity sensors
have not yet been systematically archived. As described in the
next section, we simulate these records from an empirical
waveform envelope approach. In order to make these
simulations as realistic as possible, we add observed

background noise. The typical noise level of a low-cost
intensity sensor is shown in Figure 3 in the time domain and
in Supplementary Figure 1 in the frequency domain. The
waveforms were originally in velocity. To convert them to
acceleration we applied the same differentiation method as
used for the broadband records. The maximum pulse
acceleration of the horizontal (north-south and east-west) and
the vertical components in Figure 3 is ±1 cm/s2 and ±8 cm/s2,
respectively. The background noise level for all three-component
traces is ±0.5 cm/s2. The background noise level is obviously
higher than that recorded by broadband seismic (usually about
±0.01 cm/s2) and strong-motion (usually about ±0.05 cm/s2)
stations.

Simulated Waveforms
To simulate the acceleration time series and the temporal
evolution of PGA at sites where broadband, strong-motion
and low-cost intensity sensor stations are expected to be
deployed in the future (Figure 1B), we compute waveform
envelopes developed by Cua and Heaton (2009) for the first
group of earthquakes (MW < 6), and combine stacked waveform
envelopes (Yamada and Heaton, 2008) with stochastic
simulations (Böse et al., 2012) for the second group (MW ≥ 6).
For the second group, the fault rupture is divided into a number
of smaller sub-faults, each radiating P- and S-waves once the
rupture front arrives. The radiated waves from each sub-fault are
computed from a stochastic time series assuming a simple Brune

FIGURE 3 | Three-component noise time series recorded at a low-cost intensity sensor (23.67oN, 116.64oE). The records start on February 19, 2019, and are 50 h
long. The noise is largest on the vertical component, likely due to human activities. See Supplementary Figure S1 for frequency domain plot.
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source model (Brune, 1970), random phase, and a characteristic
waveform envelope (Cua and Heaton, 2009). Based on the
reference line-source model in Supplementary Table 1 (which
is derived from the 1 day-long aftershock distribution), we model
the Wenchuan earthquake with 25 sub-faults of 10 km length
(around M 6); for the other five earthquakes we use sub-fault of
5 km length (aroundM 5.5). We assume a constant rupture speed
of 2.8 km/s and use the crustal velocity model of Wang et al.
(2003) (Supplementary Table 2) for the Sichuan-Yunnan region
to model the onsets of the P- and S-wave envelopes.

In order to make our simulated waveforms as realistic as
possible (in terms of both the envelope shape and peak
amplitudes), we compare them to the observed broadband
seismic and strong-motion data at the same station (see
Supplementary Material) and conduct the following
corrections: first, we use the observed broadband records (that
have reliable timemeasurements) to calibrate the phase arrivals in
the simulations. Second, we use both strong-motion and

(unclipped) broadband records to calibrate peak
amplitudes (PGA).

Figure 4 shows the peak values (PGA) and temporal evolution
of amplitudes for both the observed and simulated series at each
station before and after the calibration. This figure compares the
times of when the series reach PGA (diamonds) and first reach
4.6 cm/s2 (rectangles), respectively. We select 4.6 cm/s2, because
this is the FinDer trigger threshold that we will use later (see
FinDer Thresholds). Results for other thresholds are shown in
Supplementary Figure 2. We determine the following
corrections: 1) using the P-wave arrivals of observed
broadband records as benchmarks for our calibration, we
move the phase arrivals in the simulations forward by 2 s (that
is the onsets of the original simulations tend to be 2 s late); we
apply the same time correction also to the simulated data at
strong-motion stations, and 2) using the peak amplitudes of the
observed strong-motion and broadband records as a reference,
we amplify the amplitudes in the synthetics by a factor of 2 for the

FIGURE 4 | Comparison of observed and simulated waveforms for the 58 studied earthquakes in terms of (A) peak ground acceleration (PGA) amplitudes and, (B)
the time when they first reach PGA and 4.6 cm/s2 (which we will later use as a trigger threshold for FinDer), respectively, before correction. Inf means that the three-
component records of the corresponding station never reach this threshold. (C) and (D) show the same comparison after amplitude and time correction.
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strong-motion stations; amplitude corrections for simulations of
broadband records are not required.

Adopting these corrections, we simulate the time series at sites
where new stations are expected to be deployed in the future
(Figure 1B). We add Gaussian white noise with power spectral
density (PSD) of −120 cm2/(s4·Hz) and −100 cm2/(s4·Hz) to
broadband seismic and strong-motion stations, respectively.
Additionally, we use a series of random time windows to
intercept the observed MEMS data in Figure 3 and add them
as background noise to the simulated data in low-cost intensity
sensors. In this process, we do not remove the large background
ground-motion spikes, in order to make our simulations as
realistic as possible. As an example, Figure 5 shows the
observed and simulated vertical envelopes/waveforms for two
events with MW ≥ 6 and MW < 6, respectively. The simulated
envelopes/waveforms for the other events are shown in the
Supplementary Material.

RESULTS

With the processing described above, we obtain two datasets:
dataset 1 contains the observed data recorded at the existing
stations (Figure 1A); dataset 2 contains both the data from
dataset 1 plus the simulations at future stations (Figure 1B).
In this section, we use these two datasets to simulate and analyze

the off-line performance of FinDer in Chinese mainland. In order
to mimic the temporal evolution of the FinDer estimated line-
source models, we determine in this retrospective study the peak
absolute ground-motion amplitudes (taken over all three
waveform/envelope components) in time windows of 1 s and
feed the logarithmic value of these amplitudes into FinDer (Böse
et al., 2018). However, before running the waveform playbacks,
we first need to configure the FinDer trigger thresholds, which
depend on station density.

FinDer Trigger Thresholds
As described in Böse et al. (2018), FinDer uses a cascade of
increasing PGA thresholds for its binary template matching. The
smallest PGA threshold (and the minimum number of stations at
which this threshold needs to be exceeded) controls the triggering
of the algorithm. Typically, these parameters are set as 2 cm/s2

and 3, respectively (Böse et al., 2018). However, it is necessary to
tune these values in order to account for the respective station
density and noise characteristics of the network in which FinDer
is applied. In this study, we use the 2008Wenchuan earthquake to
define the trigger parameters.

We are testing in Figure 6 four PGA trigger thresholds for the
Wenchuan earthquake (2.0, 4.6, 10.5, and 23.2 [cm/s2]),
corresponding to the average peak acceleration caused by an
earthquake of M � 2.5, 3.0, 3.5, and 4.0 at 5 km distance will
produce (Cua and Heaton, 2009). In parallel, we vary the

FIGURE 5 | Observed and simulated waveforms (vertical component) for the (A) 2008 Wenchuan MW 7.9 earthquake and (B) a smaller MW 4.9 earthquake,
corresponding to events no.1 and 48 in Table 1. TheWenchuan earthquake is modelled frommultiple stacked envelopes and a stochastic time series; the smaller event
from a single waveform envelope. See main text for further details.
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minimum number of triggered stations from 1 to 4. Details are
given in Supplementary Table 3. For some configurations, e.g.
for a trigger threshold of 2 cm/s2, FinDer creates multiple
solutions (split events), which is not desired.

As a compromise between the accuracy and timeliness (the
lower the threshold and the fewer stations are required, and the
faster the first FinDer model is calculated) we chose for this study
a trigger threshold of 4.6 cm/s2 and a minimum number of three
stations at which this threshold needs to be exceeded. With this
setting, FinDer triggers 12 s after the OT of the Wenchuan
earthquake (neglecting data latencies). The final FinDer line-
source model is estimated as L � 249 km long (corresponding
MFD 7.9) and with the strike of 55o. These values are in good
agreement with the results of field surveys following the

Wenchuan earthquake that identified two separate parallel
surface ruptures of L � 240 km and L � 90 km at a strike of
N45oE (Xu et al., 2008). The FinDer line-source model
characterizes the entire fault rupture including those segments
with no surface exposure. Compared with the results of Li et al.
(2020a), who tested FinDer with a larger trigger threshold
(20 cm/s2), the length of the line-source model is
underestimated by about 50 km (corresponding to 0.1
magnitude units). This difference is caused by sparse station
density around the Wenchuan earthquake as discussed in Li
et al. (2020b).

To determine the FinDer trigger parameters for this study
(Figure 6), we used the Wenchuan records in Dataset 1, which
contains only observed data, i.e. no simulations at future stations. In

FIGURE 6 | Testing FinDer trigger parameters for different PGA thresholds (top to bottom: 2.0, 4.6, 10.5, and 23.2 cm/s2) andminimum numbers of stations (left to
right: 1–4), at which this threshold needs to be exceeded, using the 2008MS 8.0Wenchuan earthquake. The maps show the final FinDer line-sourcemodels (black lines)
for the respective trigger configuration. In general, the trigger parameters depend on the density and noise conditions of the network in which FinDer is applied. For some
configurations, e.g. for a trigger threshold of 2 cm/s2, FinDer creates multiple solutions (split events). As a compromise between accuracy and timeliness of the line-
source models, we chose in this study a trigger threshold of 4.6 cm/s2 and a minimum number of three stations.
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general, we expect that the trigger threshold can be chosen to be
lower, the denser the network. The choice of the threshold, however,
should be discussed in the context of the whole system: higher
thresholds come at the cost of the systembeing triggered later, which
means less available warning time. In practice, one can only trade-
off the threshold (i.e. the system trigger time) and the accuracy.
There is currently no strict empirical relationship between threshold
and station density. For a better comparison of the performance of
FinDer in a sparse and dense sensor network, we will adopt for this
study the same trigger parameters for both datasets.

Relationship Between FinDer Trigger
Thresholds and Station Density
In this section, we investigate the relationship between the FinDer
trigger thresholds and station density. Using the trigger
configuration optimized for the Wenchuan earthquake
(4.6 cm/s2 at three or more stations) we plot in Figure 7 all
earthquakes that trigger FinDer and those that do not. A first-
order function to separate triggered and non-triggered events can
be determined from a representative GMPE. This is illustrated by
the blue line in Figure 7A, which is determined by transforming
the GMPE of Cua and Heaton (2009) into an explicit function of
the epicentral distance, Repi, andMW, Repi � log10 (M

a + b) + c. For
our trigger threshold of 4.6 cm/s2 and 0 ≤ Repi ≤ 120 km, we find
a � 1.91, b � 5.93, and c � 1.64. As shown in Figure 7A (blue line),
this relation, however, does not provide a satisfying boundary
between triggered and non-triggered events. This is expected,
because our data is plotted as of function of Depi, that is the
average distance between the epicenter to the closest three
broadband seismic and/or strong-motion stations, and not of
Repi. Keeping the same functional form and coefficients a and b,
we find that FinDer has a high probability to trigger, ifDepi ≤ log10
(Ma + b)+c, where a � 1.91, b � 5.93, and c � 2.34 forM �MW ≥
4.8, and c � 2.49 for M � MS ≥ 5.0, respectively (red lines in

Figures 7A,B). Note, however, that these functions provide a
first-order approximation only, because there is in general
considerable variability in the seismic ground-motions and the
two datasets (observed data v.s. observed + simulated data)
cannot fully constrain these relations as we will discuss later.

When calculating Depi in Figure 7, we also included stations
that did not work properly. This means that our results consider
the possible failure of stations. This likely explains the two data
outliers in Figure 7: a MW 4.8 for which FinDer triggers even
though station density is sparse (Figure 7A), and a MS 5.1 event
that FinDer misses (Figure 7B). Of course, in general there is also
a significant level of variability in the radiation of high-frequency
motions.

Based on the results in Figure 7, we can roughly determine a
magnitude completeness, MFDc, which defines the lowest
magnitude at which FinDer is likely to trigger, given a certain
interstation distance, Depi. For one-third of the Sichuan-Yunnan
region, where the current interstation distance is around 30 km,
the smallest detectable events are MFDc ≈ MS 5.3. With the
planned network densification with interstation distances of
around 20 km in half of Sichuan-Yunnan after 2020, we
expect MFDc ≈ MS 5.0 and MFDc ≈ MS 4.4 in some urban areas.

Playback Results
Figures 8–11 and Supplementary Table 4 illustrate and
summarize the FinDer playback results for all 58 earthquakes.
Additional information is given in the Supplementary Material.
Figure 8A shows the magnitude difference between the FinDer
estimated final magnitude, MFD, and the reported MW from
GCMT and MS from CENC, respectively. The average
difference is 0.73 for MW and 0.53 for MS in dataset 1, and
0.64 forMW and 0.47 forMS in dataset 2. Overall,MFD tends to be
more consistent withMS, which is in line with the high-frequency
physical background of MFD as discussed in FinDer Magnitude.
The comparison of the two datasets suggests that the future

FIGURE 7 | Testing FinDer trigger settings (4.6 cm/s2 at neighboring three stations) for all 58 earthquakes as a function of interstation distance, Depi, and (A)
moment magnitude, MW (here of GCMT) and (B) surface-wave magnitude, MS (here of CENC), respectively. Depi is defined as the average distance between the
epicenter to the three closest stations. The blue line shows the GMPE of Cua and Heaton (2009) for PGA � 4.6 cm/s2. The two red lines illustrate the boundary condition:
FinDer is expected to trigger, if Depi ≤ log10 (M

a + b)+c, where a � 1.91, b � 5.93, and c � 2.34 forM �MW ≥ 4.8, and c � 2.49 forM �MS ≥ 5.0, respectively. The
datasets used here, however, cannot fully constrain these relationships, and our boundary conditions provide a rough estimate only.
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networks will be able to better constrain earthquake magnitudes
once more stations are deployed.

Figure 8B illustrates the distance between the estimated final
centroid as the midpoint of the line-source and the reported
epicenter (for MW < 6)/centroid (for MW ≥ 6). The FinDer

centroid defines the mid-point of the FinDer line-source.
Therefore, Figure 8B also shows the distance between the
estimated and reported epicenters of the six larger
earthquakes. It should be noted that 22 out of 25 earthquakes
that do not generate FinDer triggers in dataset 1, produce triggers

FIGURE 8 | (A)Difference between the final FinDer estimatedmagnitude,MFD, and the reportedMW/MS. (B)Distance between the estimated final epicenter (for
MW ≥ 6 only)/centroid (for all events) and the reported epicenter/centroid. The solid and dashed lines show the average values for MW and MS for dataset 1 (black)
and dataset 2 (gray), respectively.

FIGURE 9 | Temporal evolution of FinDer magnitude, MFD, from event origin time (OT) for all 58 earthquakes (neglecting data latencies).
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for the extended dataset 2, which includes additional simulations
at future stations. Except for the significant difference between the
two datasets for the two major earthquakes, the results for the
other events are similar (Figure 8B). This can be explained by the
fact that for the 33 earthquakes that triggered FinDer in dataset 1,
the additional stations in dataset 2 have little impact on the
epicenter constraints. This implies that the FinDer estimated
epicenter/centroid is stable even when the network is quite sparse
(provided that the azimuthal gap is not too large; see Böse et al.
(2021)). In Figure 8B, the average value of the epicenter/centroid
difference (18 km) obtained from dataset 2 is smaller compared
with that from dataset 1 (24 km). This means that the 25
earthquakes that triggered FinDer only for the denser network
in dataset 2 all have smaller epicenter errors.

Figures 9–10 show the temporal evolution of MFD for all 58
earthquakes, as well as the distance between the FinDer
epicenter/centroid and reported ones from OT, respectively.
For the Wenchuan earthquake, FinDer yields its final line-
source around 120 s after OT. For the other five large
earthquakes (M 6.0–6.9), the final results are obtained
within 30–40 s after OT. For the smaller earthquakes (M <
6), the final values are usually reached within 10–20 s. In
general, FinDer provides 5–10 s faster and more accurate
estimates of the final rupture for the earthquakes in dataset
2, which simulates a denser network. Figure 11 shows the final

FinDer strike from dataset 1 with the background of the focal
mechanism from GCMT. The line-source model calculated by
FinDer immediately after the earthquake can help to quickly
determine the underlying seismogenic fault if prior local
tectonic/geological information is available, and that is of
great significance in the likelihood of strong aftershocks,
time-dependent seismic hazard assessment, and even
operational earthquake forecasting (OEF). Note, however,
that FinDer does not require any prior information on fault
locations.

Implications for EEW
The goal of EEW is to estimate the earthquake’s damage potential
and to issue an alarm of expected ground-motions to areas before
the strong shaking starts. The primary concern of EEW is the time
delay between triggering and OT as this time is directly related to
the EEW blind-zone (or no-warning zone). Figure 12 illustrates
the relationship between Depi and the time when FinDer triggers
relative to OT, Ttri. Based on a series of evenly distributed
modelled point-sources and stations, Kuyuk and Allen (2013)
determined a semi-quantitative empirical curve that describes the
relationship between the minimum number of triggered stations,
the average interstation distance and the radius of the blind-zone.
In Figure 12 we regress a similar curve for Ttri as the function of
Depi and find that

FIGURE 10 | Temporal evolution of the distance between the FinDer centroid and the reported epicenter (forMW < 6)/centroid (forMW ≥ 6) from event origin time
(OT) for all 58 earthquakes (neglecting data latencies).
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Ttri � 2.5exp(0.04Depi) (1)

Ttri can be converted into the radius of the no-warning zone by
simply multiplying the S-wave velocity (e.g. VS � 3.5 km/s).

The regression curve in Figure 12 has two characteristics: 1)
forDepi > 15 km, Ttri (and thus the radius of the no-warning zone)
grows exponentially with Depi, which means that network
densification has a very strong impact on reducing Ttri; 2) for
Depi < 15 km, Ttri saturates and further network densification has
little impact on Ttri. However, it should be noted that this does not
imply that a densification beyond 15 km is useless. Given the
actual operation of a seismic network, it is common for a subset of
stations to malfunction. In a threshold triggered system (e.g.
based on FinDer), stations near the epicenter that are not
functioning properly have the same effect as an increase in
Depi. Densifying networks thus effectively controls the growth
of no-warning areas (Li et al., 2016).

The on-going network densification in Sichuan-Yunnan from
the current mean value of Depi � 60 km (Figure 2A) to Depi �

FIGURE 11 | Comparison of the strike of the final FinDer line-source and the GCMT focal mechanism for all 58 earthquakes. The absence of FinDer strike means
that FinDer has not been triggered.

FIGURE 12 | Relationship between the interstation distance, Depi,
defined as the average distance between the epicenter to the three closest
stations, and FinDer trigger time from OT, Ttrig.
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30 km (Figure 2B) will significantly reduce Ttri (and thus no-
warning areas) across the whole region after 2020: based on Eq. 1
we expect Ttri to decrease from currently around 8–9 s for one-
third of the region to around 4–5 s for half, and even 3–4 s in the
key urban areas. These estimates do not include data latencies.
Preliminary tests for newly-built and upgraded stations suggest
that data latencies of 1 s are a realistic expectation (Peng et al.,
2020; Wenhui Huang, written communication, 2021).

Finally, we investigate how much warning time FinDer could
provide for different levels of ground-shaking (again neglecting
data latencies). We doing this by analyzing the potential
performance on a per-station basis. We define the warning time
(at each station) as the time interval between the first prediction
(which is not necessarily in the first report) that ground-motions
will exceed 10 cm/s2 using the GMPEs developed by Cua and
Heaton (2009) and the actual first exceedance of this level. If the
observed and predicted PGA values both exceed that threshold, the
station is considered to have hit the warning (i.e. true positive, TP).
The occurrence of peak shaking usually occurs later, so the true
warning times might actually be a bit longer.

Figure 13 shows the TP ratios of stations with successful alerting to
the total number of stations for different intensity bins and for different
ranges of warning time (≥1 s, ≥ 5 s, ≥ 10 s, ≥ 15 s, and ≥ 20 s). The
results are calculated for the Chinese intensity scale, but the difference
to the MMI scale is small (Hu, 2009). If the set of broadband seismic
and strong-motion data used in this study had been available in real-
time and without (or with short) delay, 40–70% of sites experiencing
intensities of V–VIII and 20% experiencing IX-X could have been
issued a warning with 5–10 s for the current station network
(Figure 13A). Once the full network is deployed, these warning
times are expected to increase: as shown in Figure 13B the TP
ratios are expected to increase by 5–20% for 5–20 s of warning for
V and VIII, and by almost 20% for IX for all warning time intervals.
Adapting the FinDer trigger setting to account for the denser network,
will probably lead to additional improvements in the new network.

DISCUSSION

The triggering of an EEW algorithm obviously depends on the
earthquake magnitude and the network density near the
epicenter. We found that FinDer has a high probability to
trigger if the network density around the epicenter, Depi, is less
than log10 (M

a + b) + c, where a � 1.91, b � 5.93, and c � 2.34 for
M � MW ≥ 4.8, and c � 2.49 for M � MS ≥ 5.0, respectively. The
relationship is unlikely linear. Otherwise, it would suggest that
FinDer will not trigger for any earthquake below magnitude 4.5,
regardless of station density. Real-time and offline tests of FinDer
in other parts of the world, however, have shown that earthquakes
as small asM 2.5 can be detected (Böse et al., 2018). Our dataset is
probably insufficient to fully constrain the boundary condition
for FinDer triggering.

Peng et al. (2020) recently analysed the alert performance of a
hybrid demonstration EEW system installed in the same region as
studied here. This system is equipped with MEMS-based sensors
and broadband seismic stations with low-latency data
transmission of 0.5–1.5 s, and determines the magnitude by
the Pd scaling algorithm. For nearly half of the 130 ML 3.0–5.1
earthquakes that occurred in this region between 2017 and 2018
the demonstration system triggered and sent first alerts within
15 s from OT. Using a different dataset and a larger magnitude
range (M 5.0–8.0), our results in Figure 12 suggest that FinDer
could detect nearly two-thirds of the events within 12 s from OT
(neglecting latencies).

FinDer determines seismic line-sourcemodels assuming that the
dislocations are evenly distributed along this model. Such a model
can be understood as the integral of the Haskell model (Haskell,
1964, 1966, 1969) in time and the width of the rupture surface. This
assumption is theoretically reasonable. Using a list of candidate
source models (homogeneous slip model, triangular slip model,
k-square model, slip tip taper model, and restricted stochastic
source model), Li et al. (2020b) applied the Akaike information

FIGURE 13 | Percentage of true positives (TP) for different levels of intensity (both Chinese andMMI scale) and different ranges of warning time using FinDer models
for the (A) current network (dataset 1) and (B) future network (dataset 2). Numbers in brackets on x-axis give station counts for each intensity bin.
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criterion (AIC) to identify the model that is most consistent with
inverted slip distributions for the 2011 Van (Turkey) MW 7.1
earthquake. The authors found that the homogeneous slip model
with the smallest degree-of-freedom is only inferior to the k-square
model and the triangular slip model. This suggests that the
homogeneous slip model performs reasonably well.

The recently proposed extension of FinDer, FinDerS (+),
assumes an elliptical slip model described by two independent
parameters: the maximum slip and a skewness factor that
controls the asymmetry of the slip profile (Hutchison et al., 2020;
Böse et al., 2021). This model has similar features and the same
degree-of-freedom like the triangular slip model, so this could be an
important improvement, even though a systematic evaluation of
source models for a representative set of earthquakes is needed, such
as provided through the Source Inversion Validation (SIV) project
and US Geological Survey finite-source earthquake database.

Combing different (point-source/finite-fault) algorithms
allows EEW systems to deliver fast and accurate alerts for a
large range of magnitudes. However, this combination in an
actual EEW system is challenging. In the US ShakeAlert system,
for instance, the Solution Aggregator (SA) module associates the
source parameters from the EPIC and the FinDer algorithms if
locations are within 100 km and OTs within 30 s, respectively.
The combined source parameters are then determined as the
average of the estimated parameters weighted by the normalized
uncertainties of each algorithm (Kohler et al., 2020). In the future,
both the event association and solution combination will likely
move to the ground-motion space (Minson et al., 2017).

CONCLUSION

Rapid finite-rupture information, such as provided by FinDer, is
important for EEW (and rapid response), in particular in large
earthquakes (Böse et al., 2012; Li et al., 2020b; Böse et al., 2021). In
this study, we tested the performance of the FinDer algorithm
(Böse et al., 2018) for 58 5.0 ≤ MS ≤ 8.0 earthquakes in the
Sichuan-Yunnan region of China. We used playbacks of
waveforms recorded by the high-gain seismic network stations
and simulated waveforms/envelopes for planned future station
installations. Based on the 2008 Wenchuan earthquake, we
determined the optimum FinDer trigger setting as 4.6 cm/s2 at
neighboring three stations as a compromise between speed and
accuracy of alerts. Overall, the FinDer estimated line-source
models agree well with the catalog source parameters and
focal mechanisms, but they can be computed faster compared
to traditional approaches. The planned densification of seismic
networks in Chinese mainland in the near future is expected to
further reduce magnitude uncertainties and allow to better
constrain epicenter and centroid. In another study (Böse et al.,
2021) we recently developed an empirical equation that relates
FinDer performance (in terms of length, strike, and location of
the line-source) to the azimuthal gap between observing stations.
While calibrated for the moment magnitude MW, we compared
FinDer magnitudes in this study also to the surface wave
magnitude MS, which is more commonly used in China. We
found that the overall difference between MFD and MS is smaller

than between MFD and MW, which is consistent with the high-
frequency physical background of MFD.

We estimated the magnitude of completeness for FinDer,MFDc,
as 5.3 for one-third of the Sichuan-Yunnan region with interstation
distance of around 30 km, and as 4.4 in some urban areas after
2022. The FinDer trigger time, Ttri, may be reduced from currently
around 8–9 s for one-third of the Sichuan-Yunnan region withDepi

� 30 km to around 4–5 s for half, and to 3–4 s in the key urban
areas (plus data latencies). If the waveform data used in this study
had been available in real-time, 40–70% of sites experiencing
intensities of V–VIII and 20% experiencing IX-X could have
been issued a warning with 5–10 s, before the arrival of the S-wave.

This study provides a useful reference for the planned future
installation of FinDer in the nationwide EEW system of Chinese
mainland. With the increasing number of broadband seismic,
strong-motion and low-cost intensity stations with low latency
being deployed in the near-future, FinDer has the potential to
quickly report finite-source parameters (e.g. length, strike,
rupture direction, rupture velocity etc.), and is expected to
significantly improve both EEW and rapid loss estimates in
China (Li et al., 2020a).
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An Earthquake Early Warning System
for Southwestern British Columbia
Angela Schlesinger1*, Jacob Kukovica1, Andreas Rosenberger1, Martin Heesemann1,
Benoît Pirenne1, Jessica Robinson1 and Michael Morley2

1Ocean Networks Canada, University of Victoria, Victoria, BC, Canada, 2Fisheries and Oceans Canada Pacific Region, Sidney,
BC, Canada

Southwestern British Columbia (BC) is exposed to the highest seismic hazard in Canada.
Ocean Networks Canada (ONC) has developed an Earthquake Early Warning (EEW)
system for the region. The system successfully utilizes offshore cabled seismic instruments
in addition to land-based seismic sensors and integrates displacement data from Global
Navigation Satellite Systems (GNSS). The seismic and geodetic data are processed in real-
time onsite at 40 different stations along the coast of BC. The processing utilizes P-wave
and S-wave detection algorithms for epicentre calculations as well as incorporation of
geodetic and seismic displacement data into a Kalman filter to provide magnitude
estimates. The system is currently in its commissioning phase and has successfully
detected over 60 earthquakes since being deployed in October 2018. To increase the
coverage of the EEW system, we are in the process of incorporating detection parameters
from neighbouring networks (e.g., the Pacific Northwest Seismic Network (PNSN)) to
provide additional information for future event notifications.

Keywords: earthquake early warning, Cascadia subduction zone, subsea instrumentation, global navigation satellite
system, onsite processing, British Columbia, Canada, earthquake hazard

INTRODUCTION

Earthquake Early Warning (EEW) systems rapidly detect and characterize earthquakes to generate
alerts so that protective action can be taken before strong ground shaking occurs. Currently, EEW
systems operated in Mexico, Japan, South Korea, Taiwan and the United States provide public alerts
for some areas with acute seismic hazard. Allen and Melgar (2019) provide a review of currently
operational systems and the rapid development that took place over the last 10 years. In comparison
to traditional observation-based seismology, the problem setting for an EEW system is different
because of the limited time available to make an accurate earthquake detection. The time needed to
analyze the full-waveform seismic data over the total duration of an earthquake cannot be afforded;
hence algorithms to estimate the location and magnitude of an earthquake are based on the initial
P-wave arrival times. In Canada, the southwestern coast of British Columbia (BC) and Vancouver
Island are situated tens of kilometres east of the locked portion of the Cascadia Subduction Zone
(CSZ) where the Juan de Fuca plate is subducting beneath the North American plate; exposing the
region to the highest seismic hazard in the country (Adams et al., 2019). This imposes a great demand
for an EEW system that could provide timely notifications for damaging earthquakes, including
tsunamigenic megathrust events.

In 2015 Ocean Networks Canada (ONC), in collaboration with Natural Resources Canada
(NRCan) (1975), started developing an EEW system for southwestern BC that currently consists of
32 land-based stations and eight seafloor stations (Figure 1). The EEW system combines land-based
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seismic sensors with seafloor-installed seismic instruments that
are connected to ONC’s subsea cabled network (NEPTUNE:
North-East Pacific Time-series Undersea Networked
Experiments). NEPTUNE is the world’s first multi-node
cabled ocean observatory consisting of an 800 km cable loop
that drapes across the CSZ (Barnes and Tunnicliffe, 2008).
Seismic sensors located at nodal points along the cabled
network on top and seaward of the inter-seismically locked
portion of the CSZ aim to contribute to more accurate results
of offshore earthquake locations and may also lead to more rapid
detection times for some events.

The addition of seafloor seismic instrumentation into a real-
time warning system has only been successfully implemented in
Japan. The Dense Oceanfloor Network System for Earthquakes
and Tsunamis (DONET1) was first installed in 2006 with a series
of cabled seafloor nodes that connect various seismic instruments
and pressure sensors to monitor the hypocentral region of the
Nankai Through, Japan. The Seafloor Observation Network for
Earthquakes and Tsunamis (S-net) was installed following the
damaging Mw 9.0 Tohoku earthquake and tsunami in 2011. This
additional network consists of 150 pressure gauges deployed
along the Japan Trench linked by fiber-optic cables
(Yamamoto et al., 2016; Wang and Satake, 2021).

By incorporating 3-axial accelerometers to co-located Global
Navigation Satellite System (GNSS) stations onshore, the
accuracy of calculated magnitudes from P-wave displacements
can be significantly improved (Crowell et al., 2009; Bock et al.,
2011; Melgar et al., 2013; Niu and Xu, 2014; Li 2015). In
collaboration with the Federal Government’s (Natural
Resources Canada (NRCan), 1975), its Canadian Hazard
Information Service (CHIS), and the Canadian Geodetic
Survey, land-based seismic stations have been added and
upgraded with geodetic instruments to acquire accurate
geospatial displacement information on-site.

Precise point positioning (PPP) algorithms use corrections
from the Canadian Spatial Reference System to allow for
centimeter-level precision of ground displacements
(Rosenberger et al., 2018; Hembroff et al., 2019). Data are
then analyzed by applying a Kalman filter (Kalman, 1960;
Smyth and Wu, 2007; Bock et al., 2011; Rosenberger et al.,
2018) that combines the geodetic and seismic displacement
values. The computational complexities involved in reliably
combining real-time acceleration and geodetic data streams
make ONC’s implementation unique as it takes advantage of
the co-location of the two instrument types, the on-site
processing of the raw data streams, and the minimal data
latency of all sensors. Ongoing research into the viability and
contribution of geodetic information in an EEW system is under
development by various groups such as Geng et al. (2013),

FIGURE 1 |Overviewmap of EEW sites. Purple triangles display sites that have both GNSS and seismic instruments. Green triangles represent sites that only have
seismic instruments deployed. The red star marks the location of the M6.6 Sovanco earthquake from October 22, 2018 as identified in the NRCan earthquake catalog.
The yellow star displays the location calculated by our EEW system for the same event (see Preliminary Results). Circles with waveform symbols display the
geographic locations of sites that contributed to the first notification of this event as described in Preliminary Results. Triangles are stations that did not contribute
to detection of the Sovanco earthquake. Data sources: Plate margin boundaries are obtained fromHyndman andWang, 1995. Digital Elevationmodel derived fromRyan
et al., 2009 NRCAN topography, and Canadian Hydrographic Service bathymetry.

1https://www.jamstec.go.jp/donet/e/.
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Murray et al. (2018), Goldberg et al. (2019), Ruhl et al. (2019), and
Hodgkinson et al. (2020).

In addition to the presence of offshore seismic and pressure
sensors located across the locked portion of the subduction zone,
the most significant aspect of the EEW system is the capability to
process real-time waveform acceleration data and GNSS
observations on-site at each onshore station, after which the
relevant detection information is sent to a central server to
associate detections and issue notifications. This is not
common practice in other EEW systems where the full-
waveform seismic data from each station are sent via network
to a central processing location (e.g., ShakeAlert; Wurman et al.,
2007; Hartog et al., 2016; Kohler et al., 2018; Kohler et al., 2020).
The specific topographical, geological, and environmental
challenges of Vancouver Island increase the difficulty and cost
to ensure a reliable, high-bandwidth network coverage to all
deployed locations. With on-site processing of seismic and
geodetic data, and by transmitting only parametric information
to a central server (associator), bandwidth efficiency is greatly
improved and operational costs are reduced, alleviating the need
for an extensive communication infrastructure.

The EEW system is now successfully operating in testing mode
with over 60 successful detections to date. Within this paper we
only focus on the detected events between October 2018 and
October 2020.

THE EARTHQUAKE DETECTION
ALGORITHMS

Several algorithms which determine the epicentre of an event
from just the first arrival times of a wave (in the case of

earthquakes, the P-wave) have initially been developed in
acoustical engineering rather than in seismology
(Friedlander, 1987; Schau and Robinson, 1987; Huang and
Benesty, 2000; Pirinen et al., 2003; Pirinen, 2006; Gillette and
Silverman, 2008).

With the arrival of a P-wave at an individual seismic station,
the earthquake detection processing is initiated. The seismic
signal is processed onsite with a polarization filter and detection
algorithms utilizing short time average, long time average ratios
(STA/LTA). P-wave detection parameters from at least four
seismic stations within a given time window are processed
using two independent algorithms to calculate the earthquake
epicentre; Direct Grid Search (DGS) and Linearized Least
Squares (LLS) (see Figure 2 and Magnitude Estimates).

We describe the implemented methods for epicentre and
magnitude calculations in the following sections.

P- and S-Wave Detection
EEW systems are dependent on the rapid identification of
P-waves and S-waves that arrive at a seismic station. P-wave
particle motions exhibit small incidence angles and
approximately linear polarization in the direction of
propagation (Aki and Richards, 2002; Rosenberger, 2010;
Rosenberger, 2019). Hence, P-waves can be distinguished from
background noise, or other seismic waves such as S-waves,
through polarization filtering. The mathematical approach is
discussed in more detail in Rosenberger (2010).

Transient signals within the background noise are detected at
each station using STA/LTA ratios (Allen, 1982; Küpperkoch
et al., 2012; Rosenberger, 2019). An STA/LTA detector works by
computing the ratio of twomoving-averages with different sizable
time window lengths ΔT such that

FIGURE 2 | Schematic representation of the EEW detection process. The waveform data are processed on site and the detection parameter are sent to a
centralized server. There the two algorithms, Direct Grid Search (DGS) and Linearized Least Squares (LLS) method are independently calculating an epicentre location. A
more detailed schematic for the EEW system is shown in Figure 4.
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S(t) � y(t)ΔTshort
y(t)ΔTlong

(2.1)

where y(t) is the moving average for the signal y(t) at time t for
varying window lengths. When a detection ratio S(t) exceeds a
programmable threshold, a detection is recorded. Ideally, STA
time windows are selected for a given station to be longer than a
few periods of a typically measured seismic signal (Trnkoczy,
2012). If the STA time window is too short, the detector will be
highly sensitive to spike-like events in the signal. The overall
sensitivity of the detector decreases with an increasing time
window. For the LTA, a longer time window makes the
detection more sensitive to P-wave signals (Trnkoczy, 2012).
The initial STA and LTA window sizes for P-wave detections
from all land-based and subsea sites were 1 –10 s, respectively. For
S-wave detections the window sizes were 3 –30 s, respectively.
Fine-tuning of these parameters on a site-by-site basis will be
followed up in the EEW system commissioning phase.

The Direct Grid Search and Linear Least
Squares Algorithms
When four or more stations within the network detect a P-wave
within a given time window of 120 s, two independent algorithms
calculate the earthquake epicentre. Within the DGS algorithm,
the region of interest is overlain by a grid of geographical
coordinates of appropriate resolution (0.15° × 0.15°; ∼15 km)
(Moni and Rickard, 2009; Rosenberger et al., 2019a). The current
grid limits are set to be within 46°N and 52.2°N, and 131.75°W and
123°W. The hypocentre depth is fixed at 25 km, which is
approximately the depth of the down-dip limit of partial
locking of the CSZ (as discussed in McCrory et al., 2004;
Wang and Trehu, 2016; Bilek and Lay, 2018). The potential
epicentre of an earthquake can be determined with a grid-search
based on the time differences of P-wave arrivals (TDOAs) at
seismic stations (N). For each grid point, the hyperbolic
intersection forward problem is computed and the possible
source location based on two stations at a time is computed
(i.e., the TDOA between stations 1 and 2, the TDOA between
stations 2 and 3, etc . . . ). The sum of these values at each grid
point indicates the maximum likelihood estimate of the source
location. The DGS algorithm, from our experience during the
commissioning phase, has proven to be very robust in the
presence of errors. Additionally, a staggered grid approach,
which is described in more detail by Rosenberger et al.
(2019a), is used to improve the results and decrease
computation times by starting with the larger cell size (0.15°;
∼15 km) and gradually decreasing the overlain grid size (0.05°;
∼5 km). To account for the quality (further referred to as quality
factor) of the solution the root-mean-square (RMS) value from all
TDOA combinations is calculated as

ΔTRMS �

�������������������������������
2

N(N − 1) ∑N−1

m�1
∑N

n�m+1
(���δtm,n‖ − ‖σm,n‖)2

√√
(2.2)

where δt are the measured and σ the theoretical TDOAs derived
from the current epicentre.

The LLS algorithm follows a method suggested by Gillette and
Silverman (2008) as a “one step” source location calculation based
on TDOA. The basic algorithm provides two source station
coordinates from initially four seismic stations which have
detected the signal. By expressing the location problem as a
set of linear equations, the epicentre can be resolved by
calculating the obtained inverse matrix. As described in
Gillette and Silverman (2008) using a singular value
decomposition (SVD) to compute the inverse matrix is
justified by the fact that for arbitrary source-receiver
geometries the matrix may have a high condition number (γ)

c � σ0

σN
(2.3)

The problem is ill-conditioned, meaning small errors in the
data may cause large errors in the solution.

The quality of the best solution for the LLSmethod depends on
the choice of the reference sensor r, as the one yielding the
smallest product of condition number and TDOA residual:

C � c(r) p ΔTRMS (2.4)

Further details on ONC’s implementation of the DGS and LLS
algorithms can be found in Rosenberger et al. (2019a).

When epicentre results from both methods converge within
less than 80 km, an earthquake event is reported with the
epicentre location being the mean of both results. A constant
initial P-wave velocity of 7,000 m/s is used for the DGS and
LLS epicentre calculations (Rosenberger et al., 2019a). The
results are refined by testing if smaller or larger velocities
would produce a more accurate epicentre based on the quality
indicators within these two algorithms. The most accurate
epicentre result is determined based on P-wave velocities
between 6,000 m/s and 8,000 m/s with an incremental step-
size of 500 m/s.

Magnitude Estimates
In the last 10 years several research publications have
discussed methods that incorporate the information
contained in the first few seconds of a P-wave record to
estimate reliable event magnitudes quickly (e.g. Kuyuk and
Allen, 2013). This is an area of active research and in
consequence there is no single, generally accepted set of
methods. Additionally, seismologists engaged in EEW
research propose a variety of empirical scaling relationships
to address different tectonic settings.

For earthquakes with smaller moment magnitudes (M; <M5)
two independent algorithms are applied in the EEW system to
estimate the magnitude; one based on the frequency content of
the early seismic signal (Lockman and Allen, 2007; Wurman
et al., 2007), the other based on initial displacement amplitudes
(Kuyuk and Allen, 2013). The first algorithm based on Wurman
et al. (2007) uses empirically derived scaling relationships
incorporating the maximum predominant period (τmax

p ) of the
waveform signal from the first 4 s after the initial P-wave
detection. The latter contains the frequency content of the
P-wave signal and therefore acts as an indicator of the size of
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an event (Allen and Kanamori, 2003; Wurman et al., 2007).
Wurman et al. (2007) describe the estimated magnitude based on
the scaling relationship valid for Northern California as,

M � 5.22 + 6.66 p log10(τmax
p ) (2.5)

The second method relies on the peak amplitude information
of the P-wave displacement (PD), which is derived from the
vertical component waveform data. Again the first 4 s of the
P-waveform are utilized to retrieve the absolute maximum value
(Kuyuk and Allen, 2013). The empiric relationship between the
peak displacement (PD) and the epicentral distance (R) to an
individual station (i) gives the magnitude estimate,

Mi � 1.23(log10 PDi) + 1.38(log10 Ri) + 5.39 (2.6)

Kuyuk and Allen (2013) state that this relationship is valid
globally and not restricted to one particular tectonic setting. τmax

p
and PD are further referred to as the seismic Berkeley
(Rosenberger et al., 2019a; Rosenberger, 2019). The mean of
these two magnitude estimates determines the final magnitude
used by the EEW system. If either of the two magnitudes is
smaller than M1 the other would be chosen. In the case of both
magnitude estimates being smaller than M1 or both differing by
more than twomagnitudes, the event association process does not
declare an event.

For larger earthquakes (≥M6), the magnitude estimates will be
continuously updated using data from the unbiased
displacements over the total duration of the earthquake
(Crowell et al., 2013). Assuming the magnitude can be
determined from the GNSS data (see next sections), it will be
selected as the estimated event magnitude value, otherwise the
magnitude will be solely computed from the seismic data.

Incorporation of GNSS Data
More recent research shows that incorporating real-time
displacement data from GNSS will provide more robust
magnitude estimates and updates during a large earthquake
(Crowell et al., 2009; Crowell et al., 2013; Hodgkinson et al.,
2020; Melgar et al., 2020). The technique to integrate a GNSS
component into a seismic station is relatively new and currently
only a small number of sites with collocated instruments exist
world-wide. The algorithms for the joint processing of seismic
and GNSS data to-date have been verified with recorded data in
offline experiments (Bock et al., 2011; Melgar et al., 2013; Niu and
Xu, 2014; Li, 2015). During large earthquakes greater than M5,
these data will provide more reliable magnitude estimates in the
early stages of a developing earthquake, especially a megathrust
event. The initial algorithms developed within ONC for an EEW
system using only acceleration data have been extended to
incorporate GNSS data to produce an unbiased displacement
time series (Rosenberger, 2019).

Magnitude Estimates From Utilizing GNSS Data
In general, accelerometer data provide the high frequency
information while applying a high-pass filter to remove any
bias. The low frequency content of the derived displacement
data is reconstructed when incorporating the GNSS data.

Adding these data provide the system with two magnitude
parameters – peak displacement (PD) and peak ground
displacement (PGD) (Crowell et al., 2013) - that are derived
from processing the GNSS data using three separate instances
of PPP functions (Zumberge et al., 1997; Collins et al., 2009; Geng
et al., 2013; Melgar et al., 2020; Hodgkinson, et al., 2020). The
three PPP instances produce independent data streams referred
to as the Orbit, Floating-point, and Integer ambiguity solutions
based on their increase in accuracy, respectively.

Unbiased displacement values are computed by combining the
individual displacement values retrieved from each separate PPP
stream with the incoming acceleration values from the seismic
instrument, applying a Kalman filter. The two horizontal
displacement values are used to calculate the PD, whereas the
horizontal and vertical displacement values provide the PGD.

Although the incorporation of GNSS data presents challenges,
the solution yields reliable results with added redundancy.
Crowell et al. (2013) described empirical relationships for
geodetic derived PD and PGD values as,

MPD � log10 PD + 0.893 + 1.73 log10 R
0.562

(2.7)

MPGD � log10 PGD + 5.013
1.219 − 0.178 log10 R

(2.8)

where R is the hypocentral distance in units of kilometres. PD and
PGD displacements are in units of centimetres. For larger events
(>M6) the final magnitude estimate from the PGD scaling
relationship (Eq. (2.8)) will be prioritized over all other
magnitude estimates in the EEW system (Rosenberger et al.,
2019c).

Experiment-Based Validation of the GNSS Data
Incorporation
ONC in collaboration with NRCan experimentally proved the
viability of combining GNSS measurements with acceleration
data by using the test system consisting of a Nanometrics Titan
SMA accelerometer and GNSS antenna both attached to a
rotating base with a radius of 50 cm (Figure 3) (Rosenberger,
2018). The mechanical system, designed by engineers at NRCan,
keeps the orientation of the accelerometer fixed in one
directionwhile the platform rotates. The unbiased displacement
time-series from real-time PPP and acceleration data were
obtained with the system conducting six experiments with
varying rotational periods between 2.0 and 12.5 s
(Rosenberger, 2018). Acceleration data was subjected to a
0.075–5 Hz band-pass filter before processing to replicate real-
time conditions in the online processing. Positional results from
the Kalman filter matched well with an average standard
deviation (STD) of 0.83 cm.

The Event Association
Each land-based station hosts an accelerometer and a fitlet2

computer; a small fanless high-performance mini PC.

2https://fit-iot.com/web/products/fitlet2/.
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FIGURE 3 | The rotating system of an accelerometer and GNSS antenna used for testing the EEW detection algorithms. The base holding the antenna and
accelerometer does not change relative orientation while testing. The plan and design was developed by Natural Resources Canada (NRCan) (1975) and the Geodetic
Survey of Canada (GSC).

FIGURE 4 | Schematic overview of data flow from one land-based site to the event association in ONC’s data centre. The raw acceleration data are processed to
obtain the detection times of P-wave and S-wave onsets and the seismically derived Berkeley parameters. The raw acceleration data and the data from the three PPP
streams are combined in the Kalman Filter algorithm to obtain unbiased displacement values. These unbiased displacements are correlated with the Berkeley parameter
values and the P-wave and S-wave detection times to compute an epicenter and magnitude estimate for the detected event. Parameter data from all sites that
detected an event are sent to ONC’s data center where the event is associated, archived, and event notifications are sent out.
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Additionally, most land-based sites are equipped with GNSS
antennas and receivers to obtain the GNSS data. The three-
component raw acceleration waveform data are recorded
continuously with a 100 Hz sample rate and sent to the fitlet
computer, where the detection algorithms (see P- and S-wave
Detection) are deployed to compute P-wave and S-wave detection
times as well as the seismic Berkeley parameters: τmax

p and PD (see
The Direct Grid Search and Linear Least Squares Algorithms).
The 100 Hz raw waveform data are also sent to the Kalman
algorithm deployed on the fitlet computer to be co-processed with
the three incoming PPP data streams sampled at 1 Hz. The
resulting unbiased displacement values, seismically derived
Berkeley parameters, and detection times of P-wave and
S-wave onsets, are then processed to calculate the final PD and
PGD values that contribute to the magnitude calculation. For
subsea based accelerometers, raw waveform data are sent to the
network server located at the shore station in Port Alberni, BC,
where the seismic Berkeley parameters and the P-wave and
S-wave detection times are computed.

All data are sent from each site (fitlet computer on land-based
stations; Port Alberni shore station server for subsea instruments)
to the ONC data centre located at the University of Victoria, BC
(UVic) and to a redundant data centre in Kamloops, BC. Data are
then evaluated (associated), archived, and event notifications are
sent out (Figure 4).

Algorithm Testing
The robustness and accuracy of the algorithms applied in the
EEW system were tested by simulating a large number (>2000) of
magnitude M7 earthquakes (Rosenberger et al., 2019b). However,
only the epicentre algorithms were tested at this stage.
Simulations of GNSS displacement data were not available at
the time of testing. The simulated earthquakes were placed at a
hypocentral depth of 20 km on individual points of a regular

geographical grid (UTM Zone 10N projection) with a grid cell
size of 15 km by 15 km. The grid encompasses the locked zone of
the CSZ as outlined in Gao et al. (2018). For a limited number of
stations in the EEW system, an epicentral distance was calculated
for each simulated event. The theoretical arrival times of P-wave
and S-wave were computed based on a spherical Earth model
travel-time algorithm using the TauP-toolkit hosted at IRIS (see
Acknowledgements and Data Resources). The seismic Berkeley
parameters, PD and τmax

p , were derived based on the empirical
relationship of magnitude and epicentral distance (Eqs 2.5 and
2.6; Incorporation of GNSS Data).

In this testing approach the first arrivals of four and then ten
stations were used in the event association to simulate the progression
of time as more stations detected the event. The condition number γ
for thematrix inversion of the LLS algorithm serves as afirst proxy for
the quality of a solution. Figure 5 shows results of the first four
stations that detected an event from anywhere in the geographic
region. Higher condition numbers (>30) represent areas where an
epicentre was more difficult to calculate from P-waves arriving at
these few stations. The geographical locations of these poorly
constrained regions (yellow to red) are in alignment with the
seismic sensor distribution of the network (Figure 5; yellow
circles; Note: The testing was performed prior to all EEW stations
being deployed hence the sparse distribution.).

Waiting for ten stations to detect the same event shows a rapid
improvement in quality of the solution (Figure 6). However, the
condition numbers for events occurring underneath most of
Vancouver Island and less than 200 km offshore from central
Vancouver Island only showed slight improvements when
including more stations in the detection algorithms.

High condition numbers amplify errors in the real-time data
and affect epicentre relocations as well as magnitude estimates.
Figure 7 represents spatial errors between true (simulated) and
calculated epicentre locations obtained from the averaged

FIGURE 5 | Results from the LLS algorithm for the first four stations that detected an event located anywhere in the geographic region. Condition numbers greater
than 30 are connected predominately to regions where the relative base-line of the respective four station array is short. Yellow circles mark the location of the seismic
stations that were included in the modelling approach.
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solution of the DGS and the LLS algorithms. The results represent
the event association from P-wave arrival detections at the first
ten stations. Areas with greater distance errors (>30 km) are
related to the station array consisting of the first ten stations
having increased uncertainty within the Gaussian function
utilized by the DGS algorithm as the distances between
sources and stations increases (Rosenberger et al., 2019a).

PRELIMINARY RESULTS

While the EEW system was only partially installed and
algorithms were still under development, the first successful
event detection occurred in late 2018, when a series of seismic

events along the Sovanco Fracture Zone (red star; Figure 1) was
detected. According to the NRCan earthquake catalog the first
earthquake (M6.1) occurred at 05:39:35 (UTC) on October 22,
2018. The hypocentre was located 218 km SW off the northern tip
of Vancouver Island at a depth of 11 km. The first EEW event
notification was sent after the P-wave was detected on six stations
within the network (see Figure 1; contributing sites are indicated
with round symbols). The detections were made within 45 s after
the origin time (Figure 8). The notification was issued 4 s later
(49 s after the origin time). The initial magnitude reported by the
EEW system was M6.6 and later updated to M6.75. The
calculated epicentre from the EEW system (yellow star,
Figure 1) was within 30 km of the epicentre reported in the
NRCan catalog (red star, Figure 1). This event is so far the only

FIGURE 6 | Results from the LLS algorithm for the first ten stations that detected an event located anywhere in the geographic region. Condition numbers greater
than 30 are connected predominately to regions where the relative base-line of the respective 10 station array is short. Yellow circles mark the location of the seismic
stations that were included in the modelling approach.

FIGURE 7 | The distribution of errors in epicentral distances from the combined algorithms after the first ten stations have detected the P-wave arrival. Yellow circles
mark the location of the seismic stations that were included in the modelling approach.
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earthquake detected within the EEW system that used the
unbiased displacements from GNSS for magnitude
calculations, due to all other detected events being of
magnitudes less than M6. It is important to note the first
P-wave from this event was detected on two subsea stations,
Clayoquot Slope Bullseye (NC89) and Cascadia Basin (CBC27);
8 s prior to the first land-based station detecting the same event
(Figure 8). This allowed for the EEW system to begin classifying
the earthquake earlier than if the system relied solely on
detections from land based stations. Three aftershocks within
the geographical range of the first detection were also recorded by
the EEW system and confirmed as successful detections based on
results from the NRCan and USGS catalogs.

EVENT NOTIFICATION

This EEW system does not deliver warnings to the general public
but rather notifications of a detected event that occurred within
the current grid boundaries of the EEW system. The notification
is a small data package that conforms to the Common Alerting
Protocol (CAP) format. It details the earthquake epicentre
coordinates, the magnitude estimate, the estimated event
origin time, and the number of stations that contributed to
the detection.

The notification is sent to each subscriber, assumed to be an
operator of critical infrastructure or responsible authority in
charge of important assets. The distributed software

architecture implemented by ONC allows each subscriber to
run codes, triggered by the arrival of the notification package,
to calculate the time left before shaking starts and the expected
Modified Mercalli Intensity (MMI) for their specific locations of
concern. Subscribers have the ability to utilize the newly
calculated information to trigger their own automated event
response workflow based on safety protocols they have
designed. For example, a mass transit operator could calculate
the MMI for the different locations of their trains across their
network and determine the best course of action to maximize the
safety of their passengers. ONC aims to reliably provide messages
for earthquakes of M4 and greater that are relevant for the region.

DISCUSSION

Observations made in empirical tests and associated real-time
detections show good initial performance of the system. The first
successful event detection for the Sovanco earthquake series shows
the EEW system can detect earthquake events occurring further
offshore from Vancouver Island with a magnitude of >M6. The
calculated magnitude values and epicentre locations aligned with
those reported by the NRCan and USGS catalogs. Following this first
successful event detection, improvements on the algorithms and the
overall EEW system were implemented with many subsequent
earthquake events successfully detected between October 22, 2018
andOctober 20, 2020 withmagnitudes ranging fromM1.7 toM6.5 as
confirmed with the NRCan and USGS catalogs.

FIGURE 8 |Waveforms that contributed to the first notification for the Sovanco earthquake that happened on October 22, 2018. Time is given in seconds after the
origin time (5:39:35 UTC) as identified in the NRCan catalog. The first twowaveforms were recorded at offshore stations (CBC27: Cascadia Basin: ODPSite 1027, NC89:
Clayoquot Slope—ODP Site 889) while the following four traces were recorded onshore (BCOV: Beaver Cove, TFNO: Tofino, UCLU: Ucluelet, VICP: Victoria Peak). Site
locations are shown in Figure 1. The parametric data from these sites can be obtained fromOcean Networks Canada Society (2021). Rawwaveform data from the
subsea instruments can be obtained from Ocean Networks Canada, (2009).
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It should be noted that the system currently is not designed to
report for events outside of the grid boundaries or for magnitudes
smaller than M4. Even though smaller events might get detected
with the sensors distributed within the ONC network and an
event association could have been declared, these results will not
be considered validated.

Figure 9A shows the distribution of magnitude errors over
time (magnitude errors are represented by color and circle size).
Magnitudes prior to April 2019 were mostly over-estimated with

the EEW system, whereas more recent event notifications tend to
slightly underestimate the earthquake magnitude. The black
dotted line in Figure 9A indicates the current magnitude
threshold for which ONC intents to send out reliable
notifications. Further improvement to the station network and
synthetic system testing will hopefully improve the magnitude
calculations. Events detected with the EEW system that were
identified in the NRCan catalog were given priority over the
events identified in the USGS catalog. Figure 9B shows errors in

FIGURE 9 | (A) Time series of magnitude errors of the final EEW system event notification in relation to the same events detected and cataloged by NRCan or USGS
(priority was given to NRCan cataloged events). The magnitude error is represented by the colour and the size of the circles. The black dotted line highlights our goal of
generating reliable notifications for relevant events of ≥M4. (B) Time-series of epicentral distance errors for the same events and represented by the same symbols as in (A).
(C)Map viewof the events shown in (A) and (B). We only show events recorded by the EEW systembetweenOctober-2018 andOctober-2020withmagnitudes ≥M3.
The EEW system generated epicentres (colored circles) and the reference epicenter locations retrieved from NRCan or USGS (black dots) are connected by lines.
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final epicentre location compared to catalog epicentres from
NRCan and USGS for the same events as shown in the panel
above. Smaller errors in magnitude (smaller circles) tend to
correlate with more accurate epicenter locations. Figure 9C
shows the spatial distribution using the same events and
symbols as above. Black lines connect the EEW epicentres
(shown as colored circles) to the epicentre locations from the
NRCan and USGS catalogs (shown as black points with priority
given to events catalogued by NRCan).

The spatial distribution of location errors aligns with the findings
of our test results described in Algorithm Testing. The epicentre
locations of events especially to the north-west and south-east of the
network are not well constrained. This is well demonstrated by a
series of events that took place on the southern section of the Queen
Charlotte Fault Zone. The locations that our EEW system estimates
for these events are systematically too close to the network, resulting
in underestimated magnitudes. All earthquakes that occurred close
to the shoreline or underneath Vancouver Island were successfully
detected with significantly smaller epicentre differences and closer
magnitude estimates. The NRCan and USGS catalogs contain no
events ≥ M3.5 with epicenters on Vancouver Island or the CSZ
offshore Vancouver Island that were missed by our EEW system
during the studied time range.

Over the next couple of years, the EEW system will undergo a
more thorough system testing which will incorporate simulated
events that represent megathrust rupture earthquakes using the
approach detailed in Melgar et al., 2016. Additionally,
improvements to the EEW network are underway, mostly to
reduce overall system latency. On average, there is a 2.5 s latency
that comprises the computation time on the fitlet computers at the
various sites and the data transfer from each site to the two servers in
operation within the system. The ∼400 km distance between these
servers is intentional in case of catastrophic damage occurring in one
of the cities. The latency of the processed PPP streams arriving at the
server locations is slightly larger, hence their data incorporation into
the magnitude computation increases the latency of the magnitude
parameters on average to 5 s after a P-wave detection occurred at any
individual station. However, if the PPP streams are not utilized in the
magnitude computation, only the seismic derived Berkeley
parameters are applied and the latency decreases.

Latency issues pose integral challenges to achieve high efficiency
and accuracy of a system; however, there are approaches used to
overcome latency. Firstly, added network densification increases the
number of stations that can contribute to detection. Station failures
affect latency, and so by adding more stations, system-wide internal
redundancy can be improved. Additionally, volatile weather
conditions cannot be ignored. Weather varies greatly across
Vancouver Island, where most of the land-based stations are
located. The winter months are especially harsh, adding difficulty
and challenges to maintaining instrument uptime. Consequently,
station outages and data latencies can be mitigated by densifying the
station network and increasing local station reliability with resilient
power supply systems and multiple data paths.

Lastly, it is beneficial to identify site-specific characteristics that
impact the instrument response to a seismic signal. As seismic waves
travel through the subsurface, changes in ground velocity greatly
affect the ground shaking observed by accelerometers, or the travel

time for a P-wave to reach a station. Applying constant parameters
across the entire system could skew the calculated magnitudes or
epicentres if a station does not account for amplification factors that
affect the recording. We intend to test the detection algorithms with
simulated earthquake events overlain by measured noise floor values
for urban sites to identify limits in our detection approach.

To increase its coverage, the modular EEW system architecture
has allowed us to incorporate detection parameters from
neighbouring networks. Through the Pacific Northwest Seismic
Network (PNSN), additional P-wave and S-wave detection times
and seismic Berkeley parameters are streamed to the ONC server and
contribute to earthquake event associations, and conversely the
parameters extracted from our sensors are made available to
PNSN. Validation of these station contributions to limit erroneous
detections is currently underway.

CONCLUSION

The EEW system developed by ONC in collaboration with
NRCan has been successfully operating in test mode since
September 2018. It’s ability to incorporate offshore seismic
stations thanks to ONC’s NEPTUNE cabled observatory, to
correlate geospatial GNSS data with collocated acceleration
data, and to calculate real-time onsite earthquake detection
parameters makes this EEW system one of the more advanced
systems in the world. The addition of underwater seismic stations
contributes to a potential decrease in warning time for offshore
events when compared to purely land-based seismic networks as
shown for the Sovanco earthquake event detection. The combination
of seismic and geodetic data is leading-edge technology that was
experimentally validated using a controlled test setup (section 2.5.2)
and the first successful M6 earthquake detections on October 22,
2018. Lastly, on-site computations of P-wave detections and
displacement values greatly reduce the overall bandwidth usage
for an EEW system and allow for efficient and immediate
implementation of the Kalman filter to combine accelerometer
and GNSS-based ground displacement data. Algorithm testing has
shown the station distribution within the area of interest is adequate
for detecting earthquake events that occur ∼120 km offshore and
underneathVancouver Island. In addition, tests have shown that four
stations are sufficient for reliably calculating an earthquake epicentre
when using the LLS and DGS algorithms. The EEW system still
needs to be further tested and improved to enhance its reliability and
detection accuracy. Upgrades to the systems infrastructure (e.g.
improved power supplies and communication links) will increase
the system reliability. Performing site-specific characterizations will
improve the overall accuracy and further densifying the EEW
network would increase the number of contributing sites available
for an event detection. This could reduce the detection time, as well as
add more redundancy to the overall network.

OUTLOOK

Currently ONC, and its partners at Natural Resources Canada, are
performing the commissioning of the system. At this time, reviews on

Frontiers in Earth Science | www.frontiersin.org August 2021 | Volume 9 | Article 68408411

Schlesinger et al. Earthquake Early Warning British Columbia

141

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


the current status of the system are on-going and concernsmentioned
in the Discussion and Conclusions sections are being addressed. To
increase the coverage of the EEW system, work on incorporating
detection parameters from neighbouring networks such as the Pacific
Northwest Seismic Network (PNSN) is under way with the objective
of providing additional information for events close to the southern
border of the detection grid.

DATA AVAILABILITY STATEMENT

Real-time and historical earthquake parameter data from the
accelerometer and PPP streams in the context of this project can
be obtained by visiting http://data.oceannetworks.ca/
PlottingUtilitydata.oceannetworks.ca. Parameter data from
instruments that contributed to the Sovanco earthquake event
detection can be obtained from Ocean Networks Canada Society
(2021). The raw acceleration waveform data from instruments
that contributed to the Sovanco event shown in this article can be
obtained from IRIS (Ocean Networks Canada, 2009). The raw
acceleration waveform data from shared NRCan sites can be
obtained from Natural Resources Canada (NRCAN Canada,
1975). Both the ONC and IRIS data archives are World Data
System (https://www.worlddatasystem.org/) certified science data
repositories. The TauP calculation toolkit can be accessed from
IRIS (http://services.iris.edu/irisws/traveltime/docs/1/builder/).
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FinDerS(+): Real-Time Earthquake Slip
Profiles and Magnitudes Estimated
from Backprojected Displacement
with Consideration of Fault Source
Maturity Gradient
Maren Böse1*, Allie A. Hutchison1,2, Isabelle Manighetti 2, Jiawei Li 3, Frédérick Massin1 and
John Francis Clinton1

1Eidgenössische Technische Hochschule (ETH), Swiss Seismological Service (SED), Zurich, Switzerland, 2Université Côte d’Azur,
Observatoire de la Côte d’Azur, IRD, CNRS, Géoazur, Sophia Antipolis, Nice, France, 3Southern University of Science and
Technology (SUSTech), Institute of Risk Analysis, Prediction and Management (Risks-X), Shenzhen, China

The Finite-Fault Rupture Detector (FinDer) algorithm computes rapid line-source rupture
models from high-frequency seismic acceleration amplitudes (PGA). In this paper, we
propose two extensions to FinDer, called FinDerS and FinDerS+, which have the
advantage of taking into account a geological property of the source fault, its structural
maturity, as well as its relation to the earthquake slip distribution. These two new algorithms
calculate real-time earthquake slip profiles by backprojecting seismic and/or geodetic
displacement amplitudes onto the FinDer line-source. This backprojection is based on a
general empirical equation established in previous work that relates dynamic peak ground
displacement (PGD) at the stations to on-fault coseismic slip. While FinDerS projects PGD
onto the current FinDer line-source, FinDerS+ allows the rupture to grow beyond the
current model extent to predict future rupture evolution. For an informed interpolation and
smoothing of the estimated slip values, FinDerS and FinDerS+ both employ a generic
empirical function that has been shown to relate the along-strike gradient of structural
maturity of the ruptured fault, the earthquake slip distribution, and the rupture length.
Therefore, while FinDer derives magnitudes from a relatively uncertain and general
empirical rupture length-magnitude relations, FinDerS and FinDerS+ provide alternate
and better informed magnitude estimates using the mean slip of the profiles derived from
the integration of fault source maturity. The two new algorithms can incorporate both
seismic strong-motion and geodetic displacement data. In order to recover PGD from
strong-motion instruments, we double-integrate and high-pass filter (> 0.075 Hz) the
seismic acceleration records. Together, the three algorithms exploit the full spectrum of
ground-motions, including high frequencies to derive a source fault model (FinDer) and low
frequencies to determine the static offsets along this model (FinDerS and FinDerS+). We
test the three algorithms for the 2019 MW 7.1 Ridgecrest (California), 2016 MW 7.0
Kumamoto (Japan), and 2008 MW 7.9 Wenchuan (China) earthquakes. Conclusively, low-
frequency PGD data and integration of the fault maturity gradient do not speed-up
calculations for these events, but provide additional information on slip distribution and
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final rupture length, as well as alternative estimates of magnitudes that can be useful to
check for consistency across the algorithm suite. The FinDer algorithms systematically
outperform previously established real-time PGD-based magnitude estimates in terms of
speed and accuracy. The resulting slip distributions can be useful for improved ground-
motion prediction given the observed relationship between seismic radiation and fault
maturity.

Keywords: earthquake early warning, seismology, earthquake, natural Hazard, earthquake magnitude, fault
properties, fault maturity, rupture determinism

1 INTRODUCTION

Earthquake early warning (EEW) uses real-time data from an
ongoing earthquake to provide seconds of warning to people and
users prior to the arrival of strong ground motions (e.g. Allen
et al., 2009; Clinton et al., 2016; Allen and Melgar, 2019). Using
the earliest radiated energy, EEW systems attempt to rapidly
characterize the final size of an earthquake and to predict seismic
ground motions in potentially affected areas. The timing of EEW
depends on multiple factors, including the speed of the
earthquake fault source location and size characterization, the
distance from the earthquake’s source to the alert recipient, as
well as delays for data transmission and processing. Different
approaches exist to constrain the location and size of the ongoing
earthquake, including for instance the Earthquake Point-Source
Integrated Code (EPIC; Chung et al. (2019), Virtual Seismologist
[VS; Cua et al. (2009)], PRobabilistic and Evolutionary early
warning SysTem [PRESTo; Satriano et al. (2011)], Propagation of
Local Undamped Motion [PLUM; Kodera et al. (2018)], and
Finite-Fault Rupture Detector [FinDer; Böse et al. (2018)]
algorithms. In addition to these regional, network-based EEW
approaches, a number of faster, though less accurate, single-
station onsite algorithms have been proposed (e.g.Wu et al., 2006;
Böse et al., 2012a). Regional EEW algorithms differ in how they
utilize the energy radiated from a growing earthquake to derive
information about the source fault. EPIC, for instance, uses
trilateration and a grid search to determine the earthquake
location, while the magnitude is estimated from empirical
scaling relations (Chung et al., 2019). FinDer generates line-
source models (i.e., location, strike, and length of the fault source)
from the spatial distribution of high-frequency ground motions
(Böse et al., 2012b). PLUM, by contrast, does not determine the
earthquake fault source properties, but simply extrapolates
observed motions to larger distances (Kodera et al., 2018).

Large earthquakes provide the best opportunity to implement
EEW: they are associated with long fault ruptures of tens to
hundreds of kilometers in length. Since earthquake ruptures
typically propagate at fairly low speed (about 2.8 km/s),
warning times to affected areas can thus exceed several tens of
seconds, allowing efficient EEW. In small and moderate-sized
(M < 6.0) earthquakes, by contrast, the rupture length is short,
such that the strongest shaking typically occurs in small areas
around the epicenter only; to be effective, warnings would need to
be issued within a few seconds or less, which is challenging and in
many cases impossible. In large earthquakes, however, EEW

requires rapid determination of finite-source fault dimensions
(in particular of rupture length) in order to predict ground
motions and warning areas as those mainly depend on the
distance to the fault rupture (Böse et al., 2012b). This is even
more challenging, as it is unclear how large the rupture will
eventually grow. For example, Meier et al. (2017) showed that the
source time functions - the rates at which energy is released from
the earthquake fault source - of subduction-zone earthquakes do
not deviate until they are halfway over; this implies that the
earthquake’s final size is not implicit until the event is 50% over.
Alternatively, other studies suggest that information is contained
within the first seconds to tens of seconds following the
earthquake origin time, suggesting some determinism in the
rupture behavior (e.g., Colombelli et al. (2014); Goldberg et al.
(2018); Denolle (2019); Melgar and Hayes (2019); Hutchison
et al. (2020)).

A recent study by Hutchison et al. (2020) showed that the final
rupture length of an earthquake can be predicted from 20%, and
its magnitude from 15% of the way through the rupture length, if
the earthquake slip is known accurately and some intrinsic long-
term properties of the source fault, namely its structural maturity,
were considered. Structural maturity relates to the longevity of
fault slip over geological time; the longer the slip history, the more
mature the fault is overall (Manighetti et al., 2007). Additionally, a
fault extends laterally (i.e., propagates) as it grows over the long-
term (commonly, millions of years), generating a gradient in
structural maturity along its length: the more mature part of the
fault is where it originally initiated, while the fault becomes
increasingly more immature towards its propagating tip(s)
(Manighetti et al., 2001). Interestingly, as a fault or fault
section becomes more mature, some of its geometrical
(i.e., segment connections) and mechanical (damage
compliance and possibly friction) properties evolve, and these
changes impact an earthquake’s behavior (Wesnousky, 1988;
Manighetti et al., 2007; Perrin et al., 2016a). In particular,
coseismic earthquake slip is greatest on the most mature
section of the ruptured fault, generating an asymmetry in the
earthquake slip-length distribution (Manighetti et al., 2005;
Perrin et al., 2016a). Hutchison et al. (2020) formalized this
generic relation between the along-strike fault maturity gradient
and the earthquake slip asymmetry, and demonstrated that this
empirical equation can be used to anticipate the final earthquake
rupture length from several slip values measured in the first stages
of the rupture growth, provided these slip values are accurately
determined.
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However, the study of Hutchison et al. (2020) was done on
final static earthquake slip profiles, that is, the time required to
reach and to calculate final displacements is neglected.
Furthermore, the slip profiles are accurate as they were measured
in the field or remote data right after the earthquakes. Here, we
explore the application of the algorithm in a retrospective study by
simulating the real-time streams of seismic and geodetic data in a
regional network recording a growing earthquake. In order for this to
operate, it is necessary that we can generate an earthquake slip profile
in real-time. This requires two pieces of information: 1) a finite-
source model that characterizes the spatial dimensions (i.e., location,
length) and orientation (i.e., strike) of the fault source and that
updates in real-time based on the growing available data, and 2) a
real-time estimated slip distribution along this source model. For the
first element, we utilize in this study the line-sourcemodels computed
from the Finite-Fault Rupture Detector (FinDer) algorithm (Böse
et al., 2012b, 2015, 2018). For the second element, we utilize an
empirically-based algorithm (Aagaard et al., 2004; Yamada, 2007)
that backprojects dynamic peak ground displacement (PGD)
amplitudes from individual stations onto this source model to
determine slip (FinDerS, FinDerS+).

We test the FinDer algorithms here on three
earthquakes for which available data are dense enough: the
2019 MW 7.1 Ridgecrest, California, the 2016 MW 7.0

Kumamoto, Japan, and the 2008 MW 7.9 Wenchuan, China,
earthquakes.

2 METHODS

The three FinDer algorithms presented in this paper exploit the
full spectrum of seismic ground-motions (Figure 1): FinDer
(Böse et al., 2012b; Böse et al., 2015; Böse et al., 2018) derives
a line-source model from high-frequency amplitudes; FinDerS
and FinDerS+ determine the static offsets along this model
from low-frequency displacement. FinDerS and FinDerS+
both estimate slip profiles along the source fault by
backprojecting dynamic displacement (PGD) amplitudes
onto the FinDer source model. However, while FinDerS
projects PGD onto the current line-source, FinDerS+ allows
the rupture to grow beyond the current model to predict future
rupture evolution. For an informed interpolation and
smoothing of the estimated slip values, FinDerS and
FinDerS+ both employ the generic empirical relationship
developed by Hutchison et al. (2020) that relates the along-
strike gradient of long-term structural maturity of the
ruptured fault to the coseismic slip distribution along the
rupture. With both PGA and PGD changing over time,

FIGURE 1 | Schematic illustration of FinDer algorithms, including the original FinDer main algorithm that computes line-source models from seismic acceleration
data, and the new FinDerS and FinDerS+ algorithms (from top to bottom). FinDerS determines slip profiles by backprojecting peak ground displacement (PGD)
amplitudes onto the FinDer line-source. FinDerS+ does the same, but allows the line-source to grow beyond the current FinDer model. This enables FinDerS+ to predict
future rupture growth, while FinDer and FinDerS both characterize the (close to) current rupture state. PGD amplitudes are derived from integrated and high-pass
(> 0.075 Hz) filtered seismic strong-motion and/or geodetic displacement records. We use a generic empirical equation derived in Hutchison et al. (2020) for an informed
interpolation and smoothing of slip values. The two new algorithms provide alternate magnitude estimates that are based on seismic slip, while FinDer magnitudes are
computed from the length of the line-source estimate. Together, the three algorithms exploit the full spectrum of ground-motions, including high frequencies to derive a
source model (FinDer) and low frequencies to determine the static offsets along this source (FinDerS and FinDerS+).
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estimates from FinDer, FinDerS, and FinDerS+ are
continuously updated. Each of these processes is described
in more detail in the following.

2.1 FinDer: Current Rupture Line-Source
Model and Magnitude, MFD
The Finite-Fault Rupture Detector (FinDer) algorithm (Böse et al.
(2012b), Böse et al. (2015), Böse et al. (2018)) provides rapid
earthquake line-source models, that describe the position, length
(LFD) and strike of a fault rupture. These parameters are
computed from the spatial distribution of high-frequency PGA
amplitudes recorded across a dense seismic network. Using
template matching, FinDer compares these motions with
theoretical spatial PGA templates, which are calculated from
an empirical ground-motion model (here: Cua and Heaton
(2009)) derived from worldwide earthquake data with different
magnitudes, rupture lengths, and source mechanisms. The best
template and resulting FinDer line-source model is found from a
combined grid-search and divide-and-conquer approach (Böse
et al., 2018). The FinDer magnitude, MFD, is estimated from a
selected empirical rupture length-magnitude relation [typically
Wells and Coppersmith (1994)]. Comparing different
relationships (Wells and Coppersmith, 1994; Blaser et al.,
2010; Leonard, 2014) suggest that the resulting magnitude
estimates have an uncertainty of about +/−0.3 magnitude units.

2.2 FinDerS: Slip Profile and Magnitude,
MFDS
FinDerS (“S” stands for slip) determines 1D slip profiles from the
backprojection of PGD amplitudes onto the FinDer line-source. The
backprojection is done by employing a general empirical equation
developed by Yamada (2007) and Aagaard et al. (2004) from
worldwide earthquake data and simulations. This equation relates
the seismic slip (or static offset), D, to the dynamic PGD amplitudes
measured at closest distance, R, of the surface projected rupture

D � PGD
�����������
1 + 0.125R1.55

√
0.7

(1)

where D and PGD are in cm and R in km. According to Eq. 1 the
dynamic PGD is approximately 2/3 of the static slip along the
ruptured fault. As originally proposed by Böse et al. (2013), we
apply Eq. 1 here to dynamically backproject PGD observations
(i.e. backproject the time-dependent data) onto the FinDer line-
source, which will also evolve and grow over time. Here, the
FinDerS slip profile has, at each time step, the length of the
FinDer line-source model. We only backproject PGD from
stations within a certain distance to the fault (here: R <
30 km, R < 60 km, and R < 90 km, respectively).

Then, to interpolate and smooth the estimated backprojected
slip values, FinDerS employs the empirical relationship developed
in Hutchison et al. (2020) that relates the along-strike gradient of
long-term structural maturity of the ruptured fault to the
coseismic slip distribution along the rupture. This equation
solves for D at any given point along the rupture, l, up to
length L using a least squares fitting technique:

D(l) � 3Dpeaklq

L2q
(L2q − l2q)3/4 (2)

where Dpeak and q represent amplitude and skewedness of the
slip profile, respectively. These are interdependent variables
that change with each other. See Hutchison et al. (2020) for
details.

Finally, as described in Hutchison et al. (2020), we estimate the
(moment) magnitude from the profile average slip value, Dmean,
and the rupture length, L, at each time step:

M ≈
2
3
log10(2LDmean p 10

7) + 1 (3)

Since FinDerS is based upon the FinDer line-source, L
corresponds in Eqs. 2, 3 to LFD. The resulting magnitude is
named M � MFDS. Since both the FinDer line-source and PGD
evolve over time, Eqs. 1–3) are dynamically recomputed.

2.3 FinDerS+: Predicted Final Rupture
Length, Slip Profile and Magnitude, MFDS+
As opposed to FinDerS, which fits the slip profile to the current
FinDer line-source, FinDerS+ does not restrict the final
rupture length and allows the FinDer-determined fault
rupture to continue growing towards both directions up to
a maximum reasonable rupture length, which we here set to
500 km (Manighetti et al., 2007). The slip values are
determined as in FinDerS, by backprojection of PGD
amplitudes. Then, as for FinDerS, FinDerS+ interpolates the
slip values by using Eq. 2, where L � LFDS+ (same in Eq. 3).
Again, FinDerS+ estimates are updated over time. From the
slip profiles derived at each step, FinDerS+ predicts the final
rupture length, the final slip distribution, and the final
magnitude, M � MFDS+.

2.4 PGD-Based Magnitude, MPGD
Throughout this paper, we will compare the magnitude results of
the three FinDer algorithms to estimates obtained from more
simple, previously established PGD-magnitude scaling
relationships of the form

MPGD � (log(PGD) − A)/(B + Clog(R)) (4)

where R is the distance in km between the earthquake hypocenter
and the station at which the PGD is observed. We are testing here
three sets of coefficients published by various authors: 1) A �
−5.919, B � 1.009, C � −0.145 (Ruhl et al., 2019); 2) A � −4.434,
B � 1.047, C � −0.138 (Melgar et al., 2015), and 3) A � −6.687, B �
1.5, C � −0.214 (Crowell et al., 2016), respectively. PGD, here

defined as PGD � max
������������������
E(t)2 + N(t)2 + Z(t)2

√
(with E, N, and Z

the East, North and vertical displacement components), is in cm
for Melgar et al. (2015) and Crowell et al. (2016) and in m for
Ruhl et al. (2019). The regression for the three coefficients A, B,
and C was done with different global GNSS datasets of
continental and subduction-zone earthquakes (Ruhl et al.,
2019). We name the three resulting PGD-based magnitudes
MMelgar

PGD , MCrowell
PGD , and MRuhl

PGD , respectively.
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2.5 Magnitude from Seismic Moment-Rate
Function, Mmr
Finally, we will compare all magnitude estimates to the moment-
rate function-derived magnitude, Mmr. To determine Mmr at time
t relative to the rupture nucleation time, we use the moment
magnitude definition of Hanks and Kanamori (1979),
Mmr(t) � 2

3 (log10(m0(t)) − 9.1), where the seismic moment at
time t is m0(t) � ∫t

0
_M0(t)dt and _M0 is the moment-rate

function, which we here take from the US Geological Survey
(USGS) finite-fault database.

3 DATA AND PREPROCESSING

3.1 Earthquakes
We will demonstrate our suite of FinDer algorithms for three
continental earthquakes: the 2019 MW 7.1 Ridgecrest earthquake
with a right-lateral slip, the 2016 MW 7.0 Kumamoto earthquake
with a dominant right-lateral and additional normal slip, and
finally the 2008 MW 7.9 Wenchuan earthquake that had a right
lateral and reverse slip (Table 1). We select these earthquakes
mainly because of their availability of seismic (and in the cases of
Ridgecrest and Kumamoto of geodetic) data, and their large
rupture sizes (MW 7.0+). As will be shown later, the slip
distributions of the three earthquakes show the generic
asymmetry encapsulated in the empirical equation from
Hutchison et al. (2020) (Eq. 2), even though the surface slip
data for the Kumamoto earthquake are few. This means that the
gradient of maturity along the three ruptured faults can be

derived from the empirical Eq. 2. Furthermore, the
performance of the FinDer algorithm, although for older code
versions, has been demonstrated and documented for these three
events in previous studies (Böse et al., 2018; Chung et al., 2020; Li
et al., 2020). Finally, the empirical equation from Hutchison et al.
(2020) has been previously applied to the static slip distribution of
the Wenchuan earthquake. It demonstrated a very good
performance on the magnitude prediction (from the rupture
start), and modest results on the length prediction (from
∼ 50% throughout the rupture), due to large displacements
over the first 100 km of the rupture.

The July 5, 2019 MW 7.1 Ridgecrest earthquake ruptured a
major NW-trending right-lateral fault in the eastern California
shear zone, along with many secondary subparallel faults, and
others of sub-perpendicular orientation (Milliner and Donnellan,
2020). The earthquake produced strong shaking with up to
Modified Mercalli Intensity (MMI) IX in the epicentral area,
and was felt in large parts of southern California and Nevada
(e.g. Barnhart et al., 2019). The earthquake mainly produced a
NW-SE surface rupture of ∼ 50 km (Hudnut et al., 2020;
Milliner and Donnellan, 2020) and a maximum coseismic
slip of ∼ 4.5 m at surface, located in the northernmost part
of the fault, close to the epicenter (Wang and Bürgmann,
2020). Most slip occurred at shallow depths of less than
10 km (Barnhart et al., 2019). The slip-length profile
revealed to be asymmetric, with greatest slip to the north
(Milliner and Donnellan, 2020). While the overall maturity
of the fault ruptured in the Ridgecrest earthquake has not been
described in prior works, neighboring, similar faults in the

TABLE 1 | Source parameters and final FinDer line-source parameters for the MW 7.1 Ridgecrest (California), MW 7.0 Kumamoto (Japan), and MW 7.9 Wenchuan (China)
earthquakes.

Name Origin
time
[UTC]

Latitude
[degrees]

Longitude
[degrees]

Depth
[km]

MW Approx.
rupture
length

and duration
[km] [s]

Source
mechanism

Final
FinDer

linesource
parameters

• Time from origin [s]
• Length [km]

• Strike [degrees]
• lat1/lon1
• lat2/lon2

Ridgecrest 2019-07-06 03:19:53 35.770 −117.599 8 7.1 50 20 Strike-slip • 26
• 53
• 145
• 35.92/−117.73
• 35.53/−117.40

Kumamoto* 2016-04-15 16:25:06 32.791 130.754 10 7.0 40 (65) 15 Strike-slip and normal • 36
• 85
• 30
• 32.61/130.81
• 33.27/131.26

Yufuin* 2016–04–15 16:25:39 33.266 131.340 5 5.7–6.5 Normal and strike-slip
Wenchuan 2008–05–12 06:28:01 31.002 103.322 19 7.9 300 100 Thrust and strike-slip • 124

• 290
• 50
• 31.24/103.33
• 32.92/105.69

*Secondary (triggered) event.

Frontiers in Earth Science | www.frontiersin.org August 2021 | Volume 9 | Article 6858795

Böse et al. FinDerS(+)

149

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


eastern California shear zone have been shown to be immature
(Perrin et al., 2016a). Furthermore, according to (Perrin et al.,
2016b), the structure of the Ridgecrest fault zone, with a dense
network of diverging splays at its southern tip, suggests that
the fault is more mature to the north, in keeping with the
asymmetry of the Ridgecrest earthquake slip profile.

The MW 7.0 Kumamoto earthquake of April 16, 2016,
ruptured at least ∼ 40 km (at surface) of the NE-trending
Futugawa fault, including its southern Hinagu splay
(Shirahama et al., 2016; Scott et al., 2018; Milliner et al.,
2020). The rupture length at depth is likely longer, up to
∼ 65 km (Uchide et al., 2016). The earthquake
accommodated mainly right-lateral slip, yet with an
additional small normal component (Shirahama et al.,
2016). A maximum dextral slip of about 3.2 m was
measured at the ground surface (Shirahama et al., 2016;
Milliner et al., 2020), while the rupture also produced
∼ 1.5 m of vertical slip (Milliner et al., 2020). The total
largest slip at surface might thus be about 3.5 m. The
largest slip occurred in the northeastern part of the
ruptured fault (Shirahama et al., 2016; Milliner et al.,
2020), reaching about 6–7 m at 4–5 km depth (Uchide
et al., 2016; Milliner et al., 2020). The strong directivity of
the Kumamoto event is thought to have dynamically
triggered a second event close to Yufuin, approximately
80 km to the NE relative to the mainshock epicenter
(Uchide et al., 2016; Yoshida, 2016). This event might
have ruptured about 20 km of fault length, north of its
epicenter, in the same overall fault zone as the mainshock
(Uchide et al., 2016). Because of the difficulty to isolate its
waveforms from those of the mainshock, the magnitude of
this secondary event has various estimates: M5.7 (Japanese
Meteorological Agency, JMA), M6.0 (Yoshida, 2016), and
M6.5 (Uchide et al., 2016). Like the Kumamoto mainshock,
the Yufuin event has a dominant right-lateral slip, and is
thought to have occurred ∼ 30 s after the onset of the
Kumamoto event (Uchide et al., 2016; Yoshida, 2016). We
include the location of this event in our analysis (Table 1),
since the wave trains for the two events are nearly
indistinguishable and affect our results. The overall
structural maturity of the Futugawa fault is unknown, but
its architecture with fan-splays at its western tip suggests that
it might be more mature to the northeast (Perrin et al.,
2016b), in keeping with the earthquake slip asymmetry.

TheMW 7.9Wenchuan earthquake onMay 12, 2008 produced
seismic intensities of up to XI on theMMI scale (Chen and Booth,
2011). The event primarily ruptured the NE-trending Beichuan
fault with a dextral and reverse slip, along with the adjacent
Pengguan reverse fault, both within the Longmenshen fault zone.
The total rupture length was about 280 km, while the earthquake
produced 12–13 m of slip at the ground surface. The largest slip
occurred in the southwest, close to the epicenter (Shen et al., 2009;
Perrin et al., 2016a). The earthquake slip profile is markedly
asymmetric with slip tapering from the SW to the NE (Shen et al.
(2009); Perrin et al. (2016a)). The fault has been described as of
intermediate maturity, with a gradient of maturity decreasing
towards NE (Perrin et al., 2016a).

3.2 Data Preprocessing
For the Ridgecrest earthquake, we use strong-motion data from the
Southern California Seismic Network (SCSN), as well as
preprocessed 1-Hz displacement time series from 10 GNSS
stations from the Geodetic Facility for the Advancement of
Geoscience (GAGE) Network of the Americas (NOTA) that
were obtained through UNAVCO (Mattioli et al., 2020). For
the Kumamoto earthquake, we use strong-motion records from
both KiK-net and K-NET stations, as well as preprocessed
GEONET Global Positioning System time series downloaded
from Ruhl et al. (2019). For the Wenchuan earthquake, we use
strong-motion records obtained through the China Strong Motion
Networks Center (CSMNC) at the Institute of Engineering
Mechanics, China Earthquake Administration. These records
start 20 s before the P-wave arrival. As described in Li et al.
(2020) we reconstruct absolute times from the event location
and origin time (Table 1) and align in each record the
theoretical and observed P-wave arrivals assuming vp � 6.1 km/
s. Figure 2 shows the distributions of seismic and geodetic sensors
used in this study along with the final FinDer line-source models
(Table 1) for the Ridgecrest, Kumamoto, and Wenchuan
earthquakes at 26 s, 36 s, and 124 s from origin times, respectively.

While the FinDer line-source models are recovered directly
from the high-frequency strong-motion data (Böse et al., 2018),
the slip values are computed from the backprojected dynamic
displacement amplitudes using Eq. 1. Following Yamada (2007;
page 45), we determine the maximum peak ground displacement
at each seismic/geodetic station as PGD � max(PGDZ ,������������
PGD2

E + PGD2
N

√
), where PGDZ , PGDN , and PGDE are the

peak ground displacement amplitudes along the vertical, north
and east components, respectively.

Recovering displacement from strong-motion recordings is
generally challenging and will be discussed further in later
sections. We are doing the following: first, we cut all strong-
motion waveforms so that they begin at the origin time, t0.
Then we calculate and remove the background median noise of
each waveform by determining the median amplitude between the
start time of the waveform and the arrival of the P-wave and
subtracting this median value from the entire waveform. At this
stage, we also detrend the data, removing the change in themean as
it changes over time. We do not apply a taper, which would
artificially decrease the amplitudes at the edges of the time window.
Next, we double-integrate the waveforms to obtain displacements
and apply a 4th order high-pass causal butterworth filter with a
cutoff-frequency of 0.075 Hz (Yamada, 2007). This filter is made to
reduce long period noise artifacts that are typically induced when
integrating accelerograms due to the lack of sensitivity of an
accelerometer to longer periods. High-pass filtered PGDs are
typically smaller than true PGDs (Yamada, 2007). We only use
PGD data from seismic stations at perpendicular fault rupture
distances of up to a certain distance (here 30 km, 60 km, and 90 km
relative to the FinDer line-source). We remove stations that
backproject off the line-source. This means the list of stations
used is updated with every new solution, as the line-source
geometry is constantly changing over time.

The GNSS data for Ridgecrest and Kumamoto is already
preprocessed with a precise-point-positioning (PPP) algorithm
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FIGURE 2 |Maps showing earthquake epicenters (stars), seismic strong-motion and geodetic GNSS stations (triangles and squares, respectively), and FinDer line-
source models (black lines) for the a) MW 7.1 Ridgecrest, California, b) MW 7.0 Kumamoto (and Yufuin), Japan, and c) MW 7.9 Wenchuan, China, earthquakes. The line-
sourcemodels were calculated from seismic waveform playback and correspond to the final FinDer solutions at 26, 36, and 124 s, respectively (Table 1). Color of station
markers shows their respective distance range relative to the FinDer line-source.
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FIGURE 3 | Peak ground displacement (PGD) amplitudes recovered from high-pass filtered seismic and geodetic recordings of the Ridgecrest, Kumamoto, and
Wenchuan earthquakes, sorted as a function of the closest distance to the final FinDer line-source. Values are listed in Supplementary Table 1 (Supplementary
Material). Seismic (triangles) and geodetic (squares) PGD values generally agree well. In the new FinDerS and FinDerS+ algorithmswe backproject the time-varying PGD
amplitudes onto the evolving FinDer line-source to estimate seismic slip profiles at any given time through the rupture.
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and in displacement (Ruhl et al., 2019; Mattioli et al., 2020), so we
do not apply any filters. We simply detrend the data and, like the
seismic data, we remove the pre-event median of the data by
calculating the median amplitude between the start time of the
waveform and the arrival of the P-wave, assuming vp � 6.1 km/s,
and subtracting this value from the entire waveform. We use all
geodetic stations within 100 km from the FinDer line-source
regardless of the seismic threshold we are testing (30 km,
60 km, 90 km). We remove again stations that backproject
onto the tips of the FinDer line-source.

The resulting displacement waveforms are shown in the
Supplementary Material of this paper (Supplementary Figures
2A–4). The extracted final PGD amplitudes from the
preprocessed seismic and geodetic waveforms are summarized
in Supplementary Table 1 (Supplementary Material) and
plotted in Figure 3. As expected the amplitudes decay as a
function of distance from the (final) FinDer line-source with
values of about 1 m close to the rupture and of a few cm at about
100 km distance. PGD amplitudes extracted from seismic and
GNSS recordings generally agree well.

4 RESULTS

4.1 Static Application: Final Rupture
Lengths and Slips
Figure 4 shows the backprojection results of final dynamic PGD
amplitudes onto the final FinDer line-source models (Table 1)

compared to measured surface slip profiles available in the
literature. Even though Eq. 1 has been calibrated with the slip
at depth, for a steep-dipping fault (as examined here) the results
should provide a first-order approximation of surface slip. As
shown in (Manighetti et al., 2005), the general (oblique-
triangular) pattern of the slip profiles, which we take
advantage of in Eq. 2, persists at depth.

For Ridgecrest (Figure 4A), we compare backprojected values
with surface slip values derived from subpixel correlation of high-
resolution optical imagery from two different satellites (Milliner
and Donnellan, 2020). The backprojected seismic and geodetic
slip values follow the overall distribution of surface slip along
strike, though, the maximum slip value identified by Milliner and
Donnellan (2020) of ∼ 400 cm, is not matched neither by the
backprojected geodetic nor seismic data, where the maximum slip
value is ∼ 270 cm. Consistent with the inference of Milliner and
Donnellan (2020), the closest stations which best constrain the
slip suggest that largest displacements occurred in the northern
part of the rupture.

For Kumamoto (Figure 4B), the rupture trace observed at the
ground surface was only ∼ 40 km long (Shirahama et al., 2016;
Scott et al., 2018; Milliner et al., 2020), while the rupture at depth
was likely longer, ∼ 65 km (Uchide et al., 2016). The final FinDer
line-source is estimated as ∼ 84 km long, that is 20 km longer
than the likely rupture length. This is because the model
integrates both the mainshock and the subsequent triggered
Yufuin event towards the NE, and also because it slightly
overshoots the rupture towards the SW relative to the

FIGURE 4 | Fault slip, D, estimated from the backprojection of final PGD amplitudes onto the final FinDer line-source (Figure 2) for the a) Ridgecrest, b) Kumamoto,
and c) Wenchuan earthquakes. Gray dots show surface slip profiles published by various authors as given in the legends. For Ridgecrest and Kumamoto, the published
values show lateral slip, while for Wenchuan, they show net slip. Note that the backprojected slip values and epicenters are relative to the respective FinDer line-source
model, oriented as indicated on the plots.
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epicenter, possibly because of FinDer’s simplified line-source
approximation. We can thus only compare backprojected slip
values with the first ∼ 40 km of the FinDer line-source. Here, we
compare our values with horizontal surface slip values measured
at the surface by Shirahama et al. (2016). Like for the Ridgecrest
earthquake, the slip values compare quite well, particularly for
stations closer than 60 km to the rupture. Overall, as observed in
the field, they suggest a slip increase towards the NE over the
considered 40 km length.

For Wenchuan (Figure 4C) backprojected slip values also
compare quite well with the surface slip profile measured in the
field. Like in the other events, however, the maximum
backprojected slip values (∼ 8 m) never reach the surface slip
values reported in the literature (∼ 12 m). At the beginning of the
slip profile, that is near the hypocenter, the backprojected slip
values are notably lower than the measured surface slip. This may
in part be due to limited station coverage, as there are only two
stations within the first 50 km of the rupture. However, overall,
the largest slip is well located to the SW of the rupture, as
observed in the field.

In all three earthquakes, we note that the backprojected slip
tends to under-estimate the actual surface slip. In general, there is
no clear distance range of stations (here: 30 km, 60 km and 90 km
from the line-source model) that works best for the
backprojection, but stations less than 60 km from the line-
source provide slip values in closer agreement with those in
the literature. Therefore, in the subsequent analyses we will select
the 60 km station cutoff for further demonstration of our
approach. Results for the other two cutoffs are shown in the
Supplementary Material (Supplementary Figures 5, 6).

4.2 Dynamic Application: Evolving Ruptures
and Slips
For the dynamic application of the three FinDer algorithms
(Figure 1) we run playbacks for the three earthquakes using
the preprocessed seismic and geodetic waveform records
(see Section 3.2) to emulate the evolution of possible output
of FinDer, FinDerS, and FinDerS+ over time using the
respectively available information (even if final peak values
have not yet been reached). Table 2 summarizes the results
(here with parameters being updated every 5 s even though a
higher resolution is possible), while Figures 5–7 illustrate the
results at some selected time steps. Figure 8 compares the
evolution of estimated magnitudes for the various approaches.

For simplicity we neglect data latencies, which typically are on
the order of 1–2 s for a fast seismic network (e.g. Behr et al., 2015).

Details on the FinDer results for the three earthquakes are
given in Böse et al. (2018), Chung et al. (2020), and Li et al. (2020).
Due to the FinDer trigger settings applied in this study, which
requires the P-wave to have reached at least 4 neighbouring
stations, FinDer triggers in this retrospective study 8 s after t0 for
Ridgecrest, 4 s for Kumamoto, and 13 s for Wenchuan. FinDerS
and FinDerS+ require PGD data from at least three stations (and
the FinDer line-source model), and results from these two
algorithms are typically given a bit later (Table 2).

4.2.1 Playback Results for MW 7.1 Ridgecrest
For the MW 7.1 Ridgecrest earthquake (Figure 5 and Table 2)
FinDer triggers 8 s after t0 (Chung et al., 2020) and gives a rupture
length of 29 km at 15 s, and of 45 km at 20 s. The final rupture
length and magnitude at 30 s are estimated as LFD ∼ 53 km and
MFD 6.9, respectively. These values are in excellent agreement in
terms of both length and orientation with the 54 km-long rupture
determined through high-resolution optical imagery (Milliner
and Donnellan, 2020). The performance of FinDerS closely
follows that of FinDer, but provides an independent and more
informed estimate of the magnitude as the latter is derived from
the average slip resulting from backprojection and interpolation
with the maturity gradient-based empirical relation (Eq. 2). We
note, however, that the backprojected slip is significantly under-
estimated. Furthermore, the slip profile fit of FinDerS is
somewhat symmetric (Figure 5), likely due to the rupture
length being fixed to the FinDer line-source determination. As
a matter of fact, FinDerS+ best reproduces the asymmetry of the
slip profile and produces higher performance in terms of
magnitude. However, FinDerS+ over-estimates the rupture
length, probably as a result of the under-estimated slip.

4.2.2 Playback Results for MW 7.0 Kumamoto
For the MW 7.0 Kumamoto earthquake (Figure 6 and Table 2)
FinDer triggers 4 s after t0 (Böse et al., 2018).We show in Figure 6
only the results until 25 s, because just after 30 s the dynamically
triggered M ∼ 6 Yufuin earthquake at ∼ 80 km distance starts
and may contaminate the results from FinDer, FinDerS, and
FinDerS+. However, in Table 2 we show results of all the
algorithms until they stabilize at ∼ 40 s.

FinDerS+ performs very similarly to FinDerS, which indicates
a well-formed slip profile resulting from a good station coverage,
which does not leave much room for fitting a longer rupture in
FinDerS+. Notably, despite the over-estimated rupture length, the
maximum slip values are fairly consistent with observed surface
slip values (Shirahama et al., 2016), particularly in the earliest
time windows.

4.2.3 Playback Results for MW 7.9 Wenchuan
FinDer triggers 13 s after t0 for the MW 7.9 Wenchuan
earthquake (Li et al., 2020). FinDer performs quite well
(Figure 7 and Table 2), nearly predicting the magnitude (MFD

7.8) correctly 50% of the way through the event duration
(Figure 7C). The final magnitude prediction (MFD 8.0) is only
slightly larger than the true magnitude.

The backprojected slip values are significantly under-
estimated, by a factor of 3–6. With such poor slip estimates,
we cannot expect that FinDerS and FinDerS+ perfom well.
FinDerS, using the FinDer rupture length, performs less well
than FinDer for magnitude, never arriving at the cataloged final
value, MW 7.9. FinDerS+, however, performs somewhat better in
terms of magnitude, at least in the middle time steps, with MFDS+

7.7 at 45 s, compared to MFDS 7.3 (Figure 7B). This, however,
results from an over-prediction of the final rupture length, where
at 45–85 s, the predicted final rupture length for FinDerS+ is
500 km (our theoretically allowed maximum value), showing that
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TABLE 2 | Results from FinDer (rupture length, LFD, and magnitude, MFD), FinDerS (mean slip, Dmean, and magnitude, MFDS, both from fitted slip profile) and FinDerS+ (predicted final rupture length, LFDS+, predicted final
mean slip, mean, and predicted final magnitude, MFDS+) for the a) Ridgecrest, b) Kumamoto, and c) Wenchuan earthquake as a function of time from origin for a 60 km station distance cutoff. Magnitudes Mmr and MPGD

are estimated from the USGS moment rate function and empirical PGD-distance relationships (Melgar et al., 2015; Crowell et al., 2016; Ruhl et al., 2019), respectively. Table shows updates in increments of 5 s.

Time from origin [s]

Moment
Rate

FinDer
(current line-source)

FinDerS (current
slip profile)

FinDerS+
(predicted slip

profile)

PGD scaling (MPGD)

Mmr LFD [km] MFD Dmean

[m]
MFDS LFDS+

[km]
Dmean

[m]
MFDS+ MPGD

Crowell MPGD
Crowell

GNSS MPGD
Melgar MPGD

Melgar
GNSS MPGD

Ruhl MPGD
Ruhl

GNSS

a) Ridgecrest earthquake

5 6.1 (first solution at 8s) (first solution at 8s) — — — — — 5.4 — 5.4 — 5.0 —

10 6.8 7 5.6 — — — — — 6.0 6.2 5.9 6.1 5.7 5.8
15 6.9 29 6.5 0.5 6.6 30 0.4 6.6 6.5 6.7 6.5 6.7 6.3 6.5
20 7.0 45 6.8 0.7 6.8 75 0.6 6.9 6.6 6.8 6.6 6.8 6.4 6.6
25 7.0 45 6.8 0.8 6.9 91 0.6 7.0 6.7 6.8 6.6 6.8 6.4 6.6
30 7.0 53 6.9 0.8 6.9 239 0.5 7.3 6.8 6.9 6.7 6.9 6.4 6.7

b) Kumamoto earthquake

Mmr LFD [km] MFD Dmean [m] MFDS LFDS+ [km] Dmean [m] MFDS+ MPGD
Crowell MPGD

Crowell
GNSS MPGD

Melgar MPGD
Melgar

GNSS MPGD
Ruhl MPGD

Ruhl
GNSS

5 6.6 5 5.4 0.1 5.4 — — — 5.4 4.9 5.4 4.5 5.0 4.2
10 6.9 39 6.7 0.1 6.2 40 0.1 6.3 6.0 6.0 5.9 5.8 5.7 5.5
15 7.0 62 7.0 0.3 6.7 63 0.3 6.7 6.5 6.6 6.5 6.6 6.3 6.4
20 7.0 72 7.1 0.5 6.9 81 0.5 6.9 6.6 6.8 6.6 6.7 6.4 6.5
25 7.1 84 7.2 0.6 7.0 87 0.6 7.0 6.7 6.8 6.6 6.8 6.4 6.5
30 7.1 84 7.2 0.7 7.0 94 0.7 7.1 6.8 6.9 6.7 6.8 6.4 6.6
35 7.1 84 7.2 0.8 7.1 92 0.7 7.1 6.8 6.9 6.7 6.8 6.5 6.6
40 7.1 84 7.2 0.8 7.1 101 0.7 7.1 6.8 6.9 6.7 6.8 6.5 6.6

(c) Wenchuan earthquake

Mmr LFD [km] MFD Dmean [m] MFDS LFDS+ [km] Dmean [m] MFDS+ MPGD
Crowell MPGD

Melgar MPGD
Ruhl

5 6.8 (first solution at 13s) (first solution at 13s) — — — — — 5.9 5.9 5.6
10 6.9 (first solution at 13s) (first solution at 13s) — — — — — 6.1 6.2 5.9
15 7.1 39 6.7 — — — — — 6.3 6.4 6.1
20 7.3 62 7.0 0.4 7.0 90 0.3 6.8 6.7 6.6 6.3
25 7.5 99 7.3 0.5 6.9 100 0.4 6.9 6.8 6.7 6.4
30 7.6 134 7.5 0.7 7.2 145 0.7 7.2 6.9 6.7 6.5
35 7.7 134 7.5 0.8 7.2 150 0.8 7.2 6.9 6.8 6.6
40 7.7 157 7.6 1.0 7.3 195 1.0 7.4 7.0 6.8 6.6
45 7.7 157 7.6 1.1 7.3 500 1.0 7.7 7.0 6.9 6.7
50 7.7 183 7.7 1.3 7.4 500 1.0 7.7 7.2 7.0 6.8
55 7.8 183 7.7 1.3 7.4 500 1.1 7.7 7.2 7.1 6.9
60 7.8 183 7.7 1.4 7.4 500 1.0 7.7 7.2 7.1 6.9
65 7.8 213 7.8 1.4 7.5 500 1.2 7.7 7.2 7.1 6.9
70 7.8 213 7.8 1.4 7.5 500 1.1 7.7 7.2 7.1 6.9
75 7.8 213 7.8 1.4 7.5 500 1.1 7.7 7.2 7.1 6.9
80 7.9 213 7.8 1.4 7.5 500 1.2 7.7 7.2 7.1 6.9
85 7.9 213 7.8 1.5 7.5 500 1.3 7.7 7.2 7.1 6.9
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the fitting does not converge. The fitting resumes converging in
the later stages, predicting the final rupture length fairly well.

4.2.4 Magnitudes
Figure 8 and Table 2 compare the magnitude estimates from the
FinDer algorithms with magnitudes derived from the USGS
moment rate function, Mmr, as well as from simple PGD-
magnitude scaling relationships (Eq. 4). While these PGD-
magnitude relations (Melgar et al., 2015; Crowell et al., 2016;
Ruhl et al., 2019) were regressed originally from GNSS
displacement data, we are applying them here to both
seismic+GNSS and GNSS-only amplitudes. We compute MPGD

for each of the three earthquakes by taking the median magnitude
estimate taken over all stations at which the seismic waves should
have arrived at a given time assuming a moveout velocity of
3 km/s.

For the MW 7.1 Ridgecrest earthquake (Figure 8A and
Table 2), MPGD for both GNSS data and the combined
seismic and GNSS datasets are the same for each of the three
empirical scaling relationships, so we discuss them together. On
the whole, MPGD under-estimates the magnitude of the
Ridgecrest earthquake, and is similar to what is predicted by
the FinDer family of algorithms. At the earliest time step when
each FinDer algorithm is giving magnitudes, 15 s after t0, the
FinDer algorithms give magnitudes between MFD 6.5 and MFDS+

6.6, whereas the PGD-based magnitudes range betweenMPGD 6.3
(seismic+GNSS) and MPGD 6.7 (GNSS-only). The final estimate
for magnitudes based on PGD ranges from MPGD 6.4
(seismic+GNSS) to MPGD 6.9 (GNSS-only), whereas the
FinDer algorithms give magnitudes between MFD 6.9 to MFDS+

7.3. The range of FinDer algorithms give magnitudes closer to the
moment rates, Mmr, cataloged by the USGS (Table 2).

PGD-based magnitude estimates for the MW 7.0 Kumamoto
earthquake (Figure 8B and Table 2) continuously under-
estimate the true magnitude. For the first calculation of
magnitude at 5 s, using Eq. 4, the values range from MPGD 4.2
(GNSS-only) to MPGD 5.4 (seismic+GNSS). For the same time
step, the FinDer family of algorithms give MFD 5.4. At 10 s, the
PGD based magnitudes range from MPGD 5.5 (GNSS-only) to
MPGD 6.0 (seismic+GNSS), and FinDer magnitudes range from
MFDS 6.2 toMFD 6.7. At 20 s, halfway through the time period, we
calculate MPGD 6.4 (seismic+GNSS) to MPGD 6.8 (GNSS-ony),
however, the FinDer algorithms give larger values that are closer
to the cataloged magnitude of MW 7.0, MFDS 6.9 to MFD 7.1.
Finally, at 40 s, the PGD based magnitudes give a range of MPGD

6.5 (seismic+GNSS) to MPGD 6.9 (GNSS-only), and the FinDer
algorithms give a range of MFDS 7.1 to MFD 7.2. It is notable that
at first the combined geodetic and seismic PGD-based magnitude
estimates are higher, and thus closer to the cataloged values.
However, in the final time step, the geodetic (only) dataset gives
higher PGD-based magnitudes.

For the MW 7.9 Wenchuan earthquake (Figure 8C and
Table 2), we have only seismic records, so our PGD-based
magnitude estimates are solely based on seismic data.
Throughout the duration of the event, there is a relatively
large discrepancy between MPGD and the true magnitude; the
FinDer algorithms arrive at magnitude estimates much closer toT
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FIGURE 5 | Playback results for the MW 7.1 Ridgecrest earthquake (L ∼ 50 km, ∼ 20 s rupture duration) at a) 15 s, b) 20 s, c) 25 s, and d) 30 s from event origin.
Plots on the left show FinDer line-source (black line) and PGDmeasurements at seismic (triangles) and geodetic (squares) sensors. Plots in the middle show interpolated
slip profiles from FinDerS. Plots on the right show predicted slip profiles from FinDerS+. Epicenters are relative to the respective FinDer line-source model, oriented as
indicated on the plots. See Table 2 for details.
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that of the event. To begin with, at 20 s, once more than three
stations can be used to calculate the entire FinDer suite of
algorithms, the PGD based magnitude estimates range from

MPGD 6.3 to MPGD 6.7. Meanwhile, the FinDer algorithms
give a range of MFDS+ 6.8 to MFD 7.0. At 60 s, the FinDer
suite of algorithms gives a range of MFDS 7.4 to MFD 7.7,

FIGURE 6 | Playback results for the MW 7.0 Kumamoto earthquake (L ∼ 40 km, ∼ 15 s rupture duration) at a) 10 s, b) 15 s, c) 20 s, and d) 25 s from event origin.
Follows Figure 5. See Table 2 for details.
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while the PGD based magnitudes give a range between MPGD 6.9
and MPGD 7.2. The final spread of magnitude estimates at 120 s
from PGD based estimates is MPGD 7.0 to MPGD 7.3, while the
FinDer family of algorithms gives magnitude estimates much
closer to the cataloged final magnitude MW 7.9, MFDS(+) 7.6 to
MFD 8.0.

Generally, in terms of magnitude, the FinDer suite of
algorithms performs quite well with respect to Mmr. FinDer
continues to perform consistently for all three events,
matching the Mmr values for all three events, though for
Kumamoto and Ridgecrest, FinDerS and FinDerS+ perform
similarly well. The FinDerS+ magnitude estimates are

slightly better aside from the Wenchuan earthquake, where
FinDer has the best results. This is mainly due to FinDerS+
under-estimating the Wenchuan slip significantly. The
algorithms consistently outperform the PGD-based
magnitude estimates.

5 DISCUSSION

Ideally, FinDerS+ is expected to provide the best performance
because, on the one hand, it builds on the FinDer results which
determine the fault location and strike, and on the other hand, it
takes into account an important property of the source fault, its
structural maturity gradient, in the form of the empirical equation
Eq. 2. The latter allows integration of the location and strike of the
fault delivered by FinDer with the slip estimates independently
obtained from PGD amplitudes, and derives the best-fitting slip-
length profile at every stage of the growing rupture. FinDerS
provides a more basic approach as, at each stage of the rupture
growth, it adopts the rupture length delivered by FinDer.

5.1 Performance for MW 7.1 Ridgecrest
Since March 2018, the U.S. West Coast ShakeAlert system (Given
et al., 2018) is comprised of two independent algorithms - FinDer
and the EPIC point-source algorithm (Chung et al., 2019). Both
algorithms detected the 2019 MW 7.1 Ridgecrest shortly after its
nucleation and sent an alert within 6.9 s from t0, even though they
both under-estimated the magnitude of the mainshock by 0.8
units (Chung et al., 2020). In the case of FinDer this magnitude
under-estimation was caused mostly by strongly increasing data
latencies (> 20–30 s) of seismic data telemetered from the
stations to the main data center in Pasadena due to inefficient
data compression and limited bandwidth (Stubailo et al., 2021).
After the Ridgecrest earthquake, the FinDer code was updated to
better handle latent data, as well to allow for a faster magnitude
convergence (Böse et al., in prep.). We are presenting results from
this new FinDer code here.

In our playback, FinDer determines the final rupture length of
the MW 7.1 Ridgecrest earthquake within 25–30 s after t0 as
53 km, with a close prediction of 45 km at 15–20 s (Table 2).
FinDerS+, however, mildly over-estimates the final rupture
length at 20–25 s (Figures 5B,C; Table 2), and grossly over-
estimates the final rupture length at a value of 239 km at 30 s,
when FinDer (and thus also FinDerS) has an accurate grip on the
final rupture length. This length over-estimation with FinDerS+
is due to its inability to recover the earthquake slip asymmetry
at 30 s.

While, for the most part, the slip profiles predicted through
FinDerS and especially FinDerS+ match the overall pattern of the
observed slip profile (Milliner and Donnellan, 2020), the
backprojected slip values are under-estimated, with a
maximum slip that is about half as large as measured at
surface shortly after the earthquake (thus, these measures are
not expected to include significant post-seismic slip, Barnhart
et al., 2019; Wang and Bürgmann, 2020) (Figures 4A, 5A–D).
This under-estimation may be a product of our approach using a
very simple equation to estimate slip (Eq. 1), combined with

FIGURE 7 | Playback results for the MW 7.9 Wenchuan earthquake
(L ∼ 300 km, ∼ 100 s rupture duration) at a) 30 s, b) 40 s, c) 65 s, d) 90 s and
e) 110 s from event origin. Follows Figure 5. See Table 2 for details.
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using filtered PGD data, which is known to artificially reduce
PGD amplitudes (Yamada, 2007). We come back to this point
further below. The under-estimated slip values are likely the
source of low magnitude predictions in FinDerS, and of the
difficulty of FinDerS+ to recover the asymmetry of the final
slip profile and hence, its actual (shorter) final length.

The main output of the FinDer algorithm is a line-source
model, not a magnitude estimate (Böse et al., 2018). As amatter of

fact, while the FinDer rupture length estimate of 53 km is
excellent, the final FinDer magnitude MFD 6.9 under-estimates
the cataloged magnitude by 0.2 units. This is mainly due to the
use of a simple empirical rupture length-magnitude relation
(Wells and Coppersmith, 1994) in FinDer; although valuable,
this relation has significant uncertainties. Using the slip
information in addition to rupture length is expected to
compensate for limitations in the empirical error-prone

FIGURE 8 | Comparison of magnitudes from FinDer, FinDerS, FinDerS+, and PGD-based magnitude estimates as function of time from event origin for a) MW 7.1
Ridgecrest, b) MW 7.0 Kumamoto, and c) MW 7.9 Wenchuan. Triangles mark estimates derived from seismic and geodetic data, squares mark estimates from geodetic
data only. Mmr is determined from the seismic moment rate and shown for reference. See Table 2 for details.
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relation used in FinDer. In the Ridgecrest earthquake, FinDerS,
however, also never arrives at the cataloged magnitude, MW 7.1
(Figures 5A–D). FinDerS+, while over-predicting the final
rupture length, does provide a better magnitude prediction.
This, however, comes at the cost of a largely over-estimated
rupture length, in turn likely related to slip under-estimation.
This raises a fundamental question about trade-offs in
algorithms, where accuracy in one area (magnitude) may
mean a sacrifice in other metrics (final rupture length). In the
future, it may be useful to combine the family of FinDer
algorithms to find a magnitude and a length prediction that
considers all three values.

5.2 Performance for MW 7.0 Kumamoto
The Japanese EEW system operated by Japan Meteorological
Agency (JMA) issued a first alert 8 s after t0 of the MW 7.0
Kumamoto earthquake with an initial magnitude estimate of
MJMA 5.9. About 5 s later, the magnitude was updated to MJMA

6.9 (Kodera et al., 2016). In comparison, 5 s after t0 (neglecting
data latencies, which typically are on the order of 1–2 s), FinDer
gives MFD 5.4. Then, 5 s later, FinDer updates its estimate to MFD

6.7, and to MFD 7.0 after 15 s from t0.
For the Kumamoto earthquake, the family of FinDer algorithms

predicts the final rupture length at surface from 10 s after t0
(Table 2), and the final rupture length at depth at 15 s.
Subsequently, FinDer, as well as FinDerS and FinDerS+ (due to
their reliance on FinDer for the rupture length), over-estimate and
over-predict the rupture length of the Kumamoto earthquake by
∼ 20 km. However, the final rupture length of the event
determined by FinDer(S) is 84 km, which is approximately the
distance from the hypocenter to the triggered event at Yufuin. Since
this secondary event did not occur until > 30 s after t0 of the
original Kumamoto earthquake, the results do not reflect the
combined energy from both events until after ∼ 35 s. While we
do not have an explanation, we suggest it is possible that this
finding (which was already observed in (Böse et al., 2018)) is not
simply fortuitous; the mainshock originally had enough energy to
rupture, in one way or another (i.e., in one or two earthquakes), the
total fault length of 84 km. This is supported by the anomalously
strong ground motions towards NE direction, which might have
been a product of strong directivity, the simultaneous slipping of
two oblique faults with strong pulse like ruptures, and high slip
rates (Kobayashi et al., 2017; Somei et al., 2019). These motions
may have been strong enough to break the fault entirely, although
in two parts somewhat delayed (dynamic triggering of the Yufuin
event Uchide et al., 2016; Yoshida, 2016).

Looking at slip distributions up to ∼ 40 km along strike (the
final rupture length at the ground surface), the maximum slip
values calculated through backprojection at 25 s are consistent
with the largest surface slip measures. However, overall, the
backprojected slips are about half that measured at surface
(Shirahama et al., 2016) (Figure 4B), while the asymmetry of
the slip profile is recovered at 20 s only.

5.3 Performance for MW 7.9 Wenchuan
At the time of the MW 7.9 Wenchuan earthquake, which is by far
the largest event in this study and hence has the longest rupture

duration, China had no operational EEW system. Thus, we
cannot compare the performance of the FinDer suite of
algorithms to another early warning system. However, in a
previous study using the FinDer algorithm and the same
dataset, Li et al. (2020) reported a slightly slower magnitude
convergence for the Wenchuan earthquake, which can be
attributed to their use of an older version of the FinDer code.

The FinDer algorithms all anticipate from the very start
(25–30 s after t0) that the rupture will be long, at least
100–150 km, and the magnitude large, at least 7.2 (Table 2).
FinDer and FinDerS then predict an increasing length, up to the
accurate estimate of the final rupture length by 95–100 s after t0
(Table 2). While FinDerS+ over-predicts the length between
about 45 and 85 s, it predicts it well from 90 s on, even
though its final estimate is slightly greater than the actual
rupture length. As for the Ridgecrest and the Kumamoto
earthquakes, the backprojected slip values are under-estimated,
in this case significantly with the maximum slip about three times
lower than the largest displacements measured at surface, and the
mean backprojected slip about 5–6 times smaller than what was
observed. The actual asymmetry of the slip profile is not well
recovered either, even though FinDerS+ anticipates a westward
asymmetry from 45 s.

In terms of magnitude, FinDer predicts a MFD 7.8 by 60–65 s
after t0, which is approximately 50% of the rupture duration. At
100 s, FinDer reaches a final magnitude of MFD 8.0, which is a
reasonable estimate. Compared to Ridgecrest and Kumamoto,
seismic recordings of theWenchuan earthquake are sparse, which
partially explains the longer duration needed for source
characterization, along with the generally expected longer
duration of such a large earthquake (Table 1).

5.4 Seismic/Geodetic Displacement Versus
Fault Slip
Long-period PGD amplitudes provide information about fault
slip and magnitudes (e.g. Melgar et al., 2015; Crowell et al., 2016;
Ruhl et al., 2019). As demonstrated in this study, both GNSS and
seismic data can produce PGD datasets that can help to quickly
constrain the metrics of an ongoing earthquake. Although more
reliable at long periods and in particular at the static offset, GNSS
data is generally more noisy compared to strong-motion data.
The GNSS noise level is typically 1–2 cm and data is thus useful
only for moderate and large earthquakes at local to regional
distances (Ruhl et al., 2019).

It is well known that recovering seismic displacement from
double-integrated strong-motion data can present issues in the
presence of strong nonphysical drifts and saturation of the sensor
(Bock et al., 2011). These drifts typically emerge from small
baseline offsets in the acceleration data that are accentuated
when double-integrated to displacement (Emore et al., 2007).
Since this issue mainly affects long-period motions (and we are
mainly interested in dynamic rather than static displacement),
we apply in this study a high-pass filter with a cutoff-frequency
at 0.075 Hz. A drawback of this approach, however, is that PGD
amplitudes are reduced (Yamada, 2007), which will be reflected
in smaller slip values resulting from the backprojection of PGD
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using Eq. 1. Nonetheless, first-order differences between seismic
and geodetic dynamic PGD amplitudes are small (Figure 3) and
the utility of the filtered amplitudes is clearly demonstrated in
this paper.

Contrary to the results of the same algorithm using accurate
static slip profiles, where final rupture lengths and magnitudes
could be determinedwithin 10–20% of the way through the signal’s
duration (Hutchison et al., 2020), the results from the dynamic
application of FinDerS+ in this paper suggest that the true
convergence might actually take longer. Instead, as shown by
the examples of the earthquakes presented here, FinDerS and
FinDerS+ rarely reach the cataloged magnitude until 40–50% of
the rupture duration. ForWenchuan, the actual magnitude is never
reached, though both algorithms do converge at a reasonable
solution (within 0.2–0.5 magnitude units) about 30% of the way
through the event. This slower ability to predict the final length and
magnitude of the earthquake arises from two issues: first, it takes
some time until final slip values in an earthquake are reached.
Second, the (final) slip tends to be significantly under-estimated in
our backprojection algorithm. This difficulty to reproduce the slip
values accurately leads in some cases to over-predict the rupture
length (see Figures 5D, 7C). While this over-prediction might not
be too much an issue in large earthquakes as those analyzed here, it
would become more critical for smaller magnitude earthquakes.
The approach developed here is thus best suited for earthquakes
with MW greater than 7. However, more systematic studies (and
adjustments of the algorithms) are required to determine the best
range of applicability.

The systematic under-estimation of slip from the
backprojected PGD amplitudes largely relates to the function
Eq. 1 we are applying. This function, taken from Yamada (2007),
was derived from near-source ground motion simulations by
Aagaard et al. (2004), made to relate dynamic ground
displacements at some distance from the fault rupture to on-
rupture slip. These simulations were done using reference rupture
source models, having variable dips and slip modes, but similar
length of 100 km and similar largest slips of about 6 m. Would
these ruptures be real, available earthquake slip-length scaling
relations (Manighetti et al., 2007) would suggest that these
reference earthquakes occurred on fairly mature faults. In
contrast, the three earthquakes we analyzed here ruptured
fairly immature faults, as described in Section 3.1. Their slip-
to-length ratios actually confirm this inference (compare their
slip-length values to Figure 5A in (Manighetti et al., 2007)).
Earthquakes on immature faults have been shown to produce
larger displacements and stronger ground accelerations than
earthquakes on more mature faults (Radiguet et al., 2009). As
the function from Aagaard et al. (2004) does not take these source
differences into account, it likely smooths them out, in effect
under-estimating the slips produced by earthquakes on fairly
immature faults, as those analyzed here.

To address the problem of slip under-estimation in the future,
we might consider an updated backprojection function that takes
the overall maturity of the ruptured fault into account, provided
that the latter can be known in real-time (Böse andHeaton, 2010).
Alternatively, if the ruptured fault is not identified or if its overall
maturity is unknown, in future we might be able to derive from

analysis of the increasing number of well instrumented
earthquakes, a “generic” coefficient of correction that would
compensate for the systematic slip under-estimation for
immature faults. As a first estimate, for the three earthquakes
analyzed here, a factor of two is suggested. By using
simultaneously the “raw” and the corrected slip data, the
FinDer algorithms might be able to bracket more efficiently,
i.e., faster, the actual final rupture length and magnitude.

5.5 FinDer-Versus PGD-Based Magnitudes
For the three earthquakes studied here, the FinDer family of
algorithms systematically outperforms the simple PGD-based
magnitude estimates, both using exclusively GNSS data or
combined GNSS and seismic datasets. While the PGD-
hypocentral distance scaling relationship is simple, the fact
that the coefficients in Eq. 4 change repeatedly based on the
introduction of new earthquakes (Melgar et al., 2015; Crowell
et al., 2016; Ruhl et al., 2019), and that station selectivity can have
a significant impact on the accuracy of the magnitude estimate
(e.g. Dahmen et al., 2020), make this scaling relationship
imprecise. Furthermore, these PGD-based magnitude relations
ignore the earthquake fault source dimensions and properties,
while those have been shown to impact both the ground
accelerations (Radiguet et al., 2009) and displacements
(Manighetti et al., 2007). The FinDer group of algorithms
consistently does a better job of calculating magnitude
accurately, without the introduction of complex station
selection parameters or subsequently extending empirical
datasets. FinDerS and FinDerS+, which take some of the
earthquake fault source properties into account, are generally
more efficient at predicting the final magnitudes (Figures 8A,B).

Our PGD-based magnitudes for the Kumamoto earthquake
(Figure 8) differ from the results of a previous GNSS data-based
study (Dahmen et al., 2020), in which magnitude predictions are
much closer to the cataloged magnitude. For example, Dahmen
et al. (2020) estimate MPGD 6.3 14 s after the event detection,
MPGD 6.8 after 20 s, and finally MPGD 7.0 after 100 s. However,
there are a couple of differences compared to our study. First, at
least five stations that were included in the Dahmen et al. (2020)
study, were not included in the GNSS dataset available through
Ruhl et al. (2019) that we used here. Second, Dahmen et al. (2020)
utilized a noise-based threshold criteria to select stations. Because
of this, Dahmen et al. (2020) used only 27 of the 39 available
GNSS stations that we used (Ruhl et al., 2019). Without applying
this selection criteria, the PGD-based magnitude estimate of
Dahmen et al. (2020) 14 s after the event detection is MPGD

6.7, which is similar to our estimates. It is notable that - despite
not applying station selection criteria - the FinDer algorithm suite
magnitude estimates are consistent with the PGD-based
magnitude estimates from Dahmen et al. (2020) and the true
magnitude evolution reflected inMmr (Table 2). The same applies
for the MW 7.1 Ridgecrest earthquake, where the MPGD values of
Hodgkinson et al. (2020) differ slightly from our results.

5.6 Implications and Benefits for EEW
The main output of the FinDer algorithm is a line-source
model, which is determined from the spatial distribution of
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high-frequency PGA amplitudes. FinDer magnitudes, MFD,
are a secondary product only, that are estimated from the
application of general empirical rupture length-magnitudes
relationships. These relations are known to have significant
uncertainties. Our two new algorithms, FinDerS and
FinDerS+, can help to improve magnitude estimates by
incorporating the additional information on the earthquake
slip-fault maturity relation and on long-period motions, which
are closely related to the static fault offset and seismic moment
(Hanks and Kanamori, 1979).

Furthermore, the new addition of a fault slip profile estimated by
FinDerS and FinDerS+ can improve the spatial prediction of the
ground motions, the ultimate goal of EEW. Slip distributions with
large and smooth slip patches affect mainly long-period ground
motions along the fault rupture and thus matter most for high-rise
buildings at close distance as well as tsunami generation (e.g. Scholz,
2019). Furthermore, by associating the greatest coseismic slip with
the most mature parts of the rupture, we can extrapolate the
locations of the strongest radiation of high-frequency ground
motions. It has indeed been shown that the amplitude of the
ground motions is partly controlled by the structural maturity of
the source fault, with immature faults or fault sections producing
the largest ground motions (Radiguet et al., 2009), furthermore,
likely, of highest frequencies. This implies that the output of
FinDerS and FinDerS+ does not help only with magnitude
estimates (at least for redundancy checks), but potentially
improves the seismic ground-motion predictions for EEW.

As proposed by Hutchison et al. (2020), we could even go
further by deriving and using two extreme slip-length-maturity
empirical functions (Eq. 1 in Hutchison et al. (2020)), one
describing the slip behavior of earthquakes on mature faults,
and one that of earthquakes on immature faults (see Manighetti
et al., 2007). By using simultaneously these two extreme
equations, the FinDer algorithms would better bracket the
actual range of lengths and magnitudes and hence probably
converge faster towards the actual final length and magnitude
of the earthquake.

6 CONCLUSION

We recover earthquake line-source models from high-frequency
seismic acceleration data using FinDer (Böse et al., 2012b, 2015,
2018) and give 1D slip profile estimates from the backprojection
of long-period displacement amplitudes onto these models using
two new algorithms, FinDerS and FinDerS+. While FinDerS
backprojects displacement onto the current FinDer line-source,
FinDerS+ allows for additional rupture growth along this model.
Both FinDerS and FinDerS+ make use of a general relationship
that we established in an earlier study (Hutchison et al., 2020) that
relates the along-strike gradient of long-term structural maturity
of the ruptured fault to the coseismic slip distribution along the
rupture. As such, FinDerS and FinDerS+ incorporate a part of the
earthquake physics described through this empirical relation,
which we use to produce an informed interpolation and
smoothing of the backprojected slip values. The two new
algorithms provide independent magnitude estimates from

FinDer based on slip which could be useful to speed-up
magnitude convergence and for redundancy checks with
FinDer estimated magnitudes.

FinDerS+ can over-predict the rupture length in two cases: 1)
when the slip data are not well determined, as is the case here, in
particular showing sparse measures with abrupt fluctuations as in
Ridgecrest; 2) when the ongoing slip is gradually increasing away
from the hypocenter [see Hutchison et al. (2020)]. This is because
the empirical relation between earthquake slip, rupture length,
and gradient in fault structural maturity relies on the envelope
shape of the along-fault slip distribution and the generic
asymmetry of the earthquake slip profiles [see Manighetti
et al. (2005)]. Therefore, in the cases where slip fluctuations
are too large, or the major slip drop occurs at the end of the
rupture growth, the model is unable to recover the envelope shape
of the slip distribution. To overcome the problem of slip
fluctuations (in the presence of multiple large asperities),
dense and accurate slip data are needed. To overcome the
problem of the few earthquake cases where slip gradually
increasing away from the hypocenter (those cases are fairly
rare), in future work, we may incorporate the overall maturity
of the source faults: the earthquake slip-length curves have indeed
an amplitude that decreases with the overall maturity of the
ruptured fault (Manighetti et al., 2007). These amplitude relations
will provide slip maximums and force tighter constraints on
upper slip bounds of the evolving slip curves, especially for these
very asymmetric earthquake profiles. Even though our approach
over-predicts the final length of the Ridgecrest and Wenchuan
earthquakes at specific stages of their growth, it does predict their
magnitude well, from fairly early stages of the rupture growth. In
playback, these early large magnitudes indicate that these
earthquakes will end up being large, even during the initial
stages of the rupture.

For the earthquakes shown here (Kumamoto, Ridgecrest,
Wenchuan) the magnitudes computed by the FinDer
algorithms converge faster and reach values closer to the
cataloged magnitudes than compared to those computed
directly from PGD. FinDerS and FinDerS+ benefit from real-
time GNSS data streams, but could also use seismic data only.
This study has been a preliminary work to understand the basic
utility of two new FinDer-based algorithms, but further tests are
needed to better constrain the capabilities and limitations of these
new EEW algorithms. Further work is also needed to improve
our capacity to estimate ongoing slip in real-time. The accuracy
of slip estimation is critical to make FinDerS and FinDerS+
efficient. Furthermore, larger sets of earthquakes need to be
analyzed, including subduction earthquakes for which
information about slip is especially critical in a tsunami
context, and rupture length of vital importance to warn the
populations along the coastline.
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Between Necessity and Legal
Responsibility: The Development of
EEWS in Italy and its International
Framework
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Earthquake Early Warning Systems (EEWSs) represent a technical-scientific challenge
aimed at improving the chance of the population exposed to the earthquake shaking of
surviving or being less affected. The ability of an EEWS to affect the risk and, in particular,
vulnerability and exposure, may determine serious legal responsibilities for people involved
in the system, as scientists and experts. The main question concerns, in fact, the
relationship between EEWSs and the predictability and avoidability of earthquake
effects-i.e., the ground shaking affecting citizens and infrastructures - and the
possibility for people to adopt self-protective behavior and/or for industrial
infrastructures to be secured. In Italy, natural disasters, such as the 2009 L’Aquila
earthquake, teach us that the relationship between science and law is really difficult.
So, before EEW’s become operational in Italy, it is necessary to: 1) examine the legislative
and technical solutions adopted by some of the international legal systems in countries
where this service is offered to citizens; 2) reconstruct the international and European
regulatory framework that promotes the introduction of EW systems as life-saving tools for
the protection of the right to life and understand whether and how these regulatory texts
can impose an obligation on the Italian legal system to develop EEWS; 3) understand what
responsibilities could be ascribed to the scientists and technicians responsible for
managing EEWS in Italy, analyzing the different impact of vulnerability and exposure on
the predictability and avoidability of the harmful event; 4) reflect on the lessons that our legal
system will have to learn from other Countries when implementing EEW systems. In order
to find appropriate solutions, it is essential to reflect on the opportunity to provide shared
and well-structured protocols and creating detailed disclaimers clearly defining the limits of
the service. A central role must be recognized to education, because people should not
only expect to receive a correct alarm but must be able to understand the uncertainties
involved in rapid estimates, be prepared to face the risk, and react in the right way.
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INTRODUCTION

Italy is one of the Countries characterized by the highest seismic
hazard and risk worldwide.

Besides seismic hazard due to active geological process, the
main reason for the high seismic risk lies in the vulnerability of
buildings (Wang, 2011; Gómez-Novell et al., 2020; Sun et al.,
2020).

Most damaging and deadly earthquakes in Italy are not huge
(magnitude 5.8–6.5), with areas of destruction limited to a few
tens of kilometers from the epicenter. This is probably the main
reason why EEWS in Italy have not been developed and become
operational yet. However, the Italian historical catalogue includes
some larger events (M∼7) that produced widespread damage and
destruction. The most recent among these is the 1980 (M6.9)
earthquake that hit Campania and Basilicata, producing strong
damage in a broad area of southern Italy, including the
metropolitan area of Naples, about 80 km from the epicenter.

For this reason, the EEW system PRESTo was developed like a
rare and praiseworthy exception. PRESTo is “currently operative
in the Campania-Lucania Apennine region to rapidly detect and
characterize the small to moderate earthquakes occurring in the
area. PRESTo (PRobabilistic and Evolutionary early warning
SysTem) is a software platform for EEW that integrates
algorithms for real-time earthquake location, magnitude
estimation and damage assessment into a highly configurable
and easily portable package” (Colombelli et al., 2012; Colombelli
et al., 2014; Zollo et al., 2014a; Zollo et al., 2014b; Picozzi et al.,
2015; Emolo et al., 2016; Colombelli et al., 2020).

Similar systems are under test in a few other regions of Italy
and will probably increase in the near future (Zollo et al., 2014a).

However, such a major scientific challenge has to contend with
a legislative and judicial system that is unprepared to accept and
understand properly the exact expectations related to scientific
progress (Foddai, 2017). The problem of the relationship between
science and law origins from a profound cultural change that now
characterizes our risk society: scientists and technicians are
responsible for every “event of nature” and, above all, for its
consequences (Luhmann, 1996; Beck, 2000; Perini, 2002).

The paradox is truly disturbing. On the one hand, we witness
sophisticated possibility of dealing with natural and man-made
risks, and, at the same time, science is offering us ever more
precise, timely and accurate explanations of the phenomena
occurring around us.

But on the other hand, the evolution of mankind, through the
scientific development, creates a dangerous illusion: scientists are
supposed to be able to dominate all the natural events. The power
of uncertainty is completely renegaded and the impossibility to
manage the consequences of natural disasters is called
“negligence” (Pulitano,̀ 2006).

In the post - modern era uncertainty can no longer exists.
Most people blindly believe that nature can be man-made and

controlled. So, when we face the harmful consequences of a
natural phenomenon, we are only able to ask: “who’s fault?”
(Savona, 2010).

The undeniable anthropization of risks, related to the
technical-scientific progress, takes on a peculiar aspect in the

field of natural disasters. In that context, the overlapping of the
concepts of risk and threat determines the tendency to identify
the culprit in whom took the decision leading to the adverse event
(Perini, 2010; Gargani, 2011; Perini, 2012; Gargani, 2016;
Gargani, 2017; Gargani, 2019; Giunta, 2019).

Considering man responsible for every event “of nature”
causes an indiscriminate expansion of the legal duty to
prevent the harmful event. But this duty is based on a double
fallacious assumption. First, the existence of a real capacity to take
responsibility of protecting a legal asset (which, together with
legal obligation, founds the duty of care). Secondly, the existence
of valid precautionary rules, suitable to prevent a foreseeable and
avoidable event. The violation of the duty of care and the
incompliance with the precautionary rules determine the basis
of the criminal culpable reproach (Mantovani, 2020).

In recent years, Italian criminal law made us familiar with
extremely severe rulings, which can only be mentioned here.

The leading case must be found in the words of the Italian
Supreme Court, which in 2010 ruled on the disaster that had
struck the town of Sarno. The Court annulled the acquittal of the
mayor, who was accused of the manslaughter of the citizens who
had been swept away by the mudslide.

The Court stated that “if the fundamental characteristics of a
natural phenomenon are not known - in particular its causes, the
possibility of its development, its possible effects - the caution
whichmust be exercised in dealing with it, in order to eliminate or
reduce its consequences, must be the greatest, precisely because
the most destructive effects cannot be excluded by an ex ante
assessment based on reliable scientific knowledge” (see: Cass. Pen.
Sez. IV, May 30, 2010, n. 16761, in DeJure).

From here on, everything thus becomes predictable and
avoidable, including phenomena that have never happened
before.

This principle reverberates in the judgment of the so - called
Grandi Rischi trial, following the earthquake in L’Aquila (Notaro,
2013; Notaro, 2014; Simoncini, 2014; Amato and Galadini, 2015;
Cerase, 2015; Fornasari and Insolera, 2015) and again, recently, in
the rule of the Supreme Court which convicted two mayors for
the death of two students who were swept away by a falling rock.
In confirming the liability for manslaughter, the Court stated that
“. . . the assessment of foreseeability, having predictive
characteristics, while inevitably inspired from what has
happened in the past, must necessarily be carried out by
imagining that in the future a given natural phenomenon may
manifest itself with characteristics of greater gravity, unless the
characteristics of what happened in the past are sufficient to
exclude the risk of more serious events” (see: Cass. Pen. Sez. IV,
March 29, 2018, n. 14550, in DeJure).

This process of criminalizing natural risk management
relegates the culpable reproach to a mere instrument of social
composition. Courts, facing the harms outcoming from natural
events, impose mild penalties, often suspended but able to
guarantee compensation for victims.

Not only that, but the obstinate search for the culprit among
those charged with Civil Protection duties deprives the
population of the responsibility for observing self-protective
behavior which, as the social sciences teach us, is a
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fundamental element in preventing the harmful consequences of
risk (Becker et al., 2020a; Becker et al., 2020b).

Such a drift is unacceptable and must be countered through
an investigation on national and international legal instruments
that offer concrete tools to ensure scientists and technicians a bit
more tranquility in developing essential scientific and
technological challenges such as the introduction of EEWS in
Italy and Europe.

DIFFERENCES BETWEEN EEWS AND
TSUNAMI EARLY WARNING SYSTEMS IN
TERMS OF EVENT PREDICTABILITY AND
AVOIDABILITY

The importance of the EEWS challenge can be better understood
if we reflect, albeit briefly, on the differential and identity aspects
of another fundamental sector of EW development in Italy and
Europe, such as tsunamis EWS (TEWS) (Amato et al., 2021; Basili
et al., 2021). We refer here to the TEWS coordinated by
UNESCO-IOC worldwide, in which the target are tsunamis
induced by large marine or coastal earthquakes (Amato, 2020).

When reflecting on the nature of this risk, its peculiarities
become clear: unlike seismic risk, tsunami risk is characterized by
an exquisitely predictive nature. Scientists manage technical-
scientific data, resulting from a complex elaboration, which are
potential precursors of the possible occurrence of a natural event
that could threaten lives and infrastructures.

While EEWS predict an expected shaking, that could
potentially cause damage, TEWS directly predict and try to
avoid or minimize the occurrence of potential harms related
to a tsunami on the coast.

Therefore, as we will try to explain later, the different object of
predictability also implies a different asset of responsibilities.

Another essential topic involves the regulatory framework in
which the TEWS operate. Italy is, in fact, part of the UNESCO-
IOC ICG/NEAM that regulates and coordinates the Tsunami
Warning Centers in the Mediterranean Sea and the North East
Atlantic, offering them a copious, though not always well-
ordered, production of guidelines to which the TWS of each
Country must comply with (see: http://www.unesco.org/new/en/
natural-sciences/ioc-oceans/sections-andprogrammes/tsunami/)
(March 23, 2021).

The regulatory and institutional framework offers a valuable
paradigm of comparison for the service performance which is
useful for protecting operators from possible objections
regarding the erroneous nature of some choices they might
make. These rules are, in fact, the result of a cohesive
international scientific community and they have, for this
reason, an intrinsic validity.

This institutional and regulatory paradigm is absent for
EEWS. So, scientists and civil protection operators develop
and implement these systems without an internationally
shared frame of reference (especially clear and shared
guidelines) (Montagni, 2007). Consequently, they are more
exposed to a possible criminal reproach for the possible
harmful effects of the choices made.

THE FOCUS OF THE STUDY

For this reason, before EEW systems start their operational
training in Italy, it will be important to: 1) first of all, look at
the legislative and technical solutions adopted by some of the
international legal systems that have been offering this service to
citizens for a long time; 2) to reconstruct the international and
European regulatory framework that promotes the introduction
of EW systems as life-saving instruments for the protection of the
right to life, and to understand whether and how these regulatory
texts can impose an obligation for Italian legal system to develop
EEWS; 3) to understand what responsibilities could be ascribed to
scientists and technicians responsible for developing and
managing EEWS in Italy; 4) to reflect on the lessons that our
legal system will have to learn from other countries when
implementing EEW systems.

AN INTERESTED LOOK AT THE
TECHNICAL AND LEGISLATIVE
EXPERIENCES OF OTHER COUNTRIES

As we have seen, the problems related to the implementation of
TEWS are on the one hand, diminished and on the other hand,
strongly stressed in EEWS.

The application of EEWS in Italy is conditioned by the
morphological characteristics of the peninsula. Unlike the
great earthquakes which take place in other Countries, such as
Japan or Mexico, where response times could reach few tens of
seconds, in Italy these response times are significantly reduced.
This certainly affects the range of self-protective instruments that
can be implemented. However, this peculiarity will certainly not
discourage potential recourse to criminal justice which, among
other things, will not even encounter the limits that might come
from a behavioral paradigm positivized in precautionary rules.

Therefore, the need that operational steps of EEWS in Italy
must be preceded by an appropriate regulatory framework,
induce to examine the legislation of some of the Countries
that have been offering an EEW service for many years, such
as Mexico, Japan and the United States, with particular reference
to the Californian experience.

Here it is possible to observe only some of the most
interesting regulatory aspects. The research was carried out
on the basis of the most significant scientific literature
available, with constant reference to the evolution of legislation
on the specific topics.

Mexico
Moving from Mexico, we can underline that the most important
EEWS, which has been in operation for more than two decades, is
the Mexican Seismic Alert System- SASMEX. The public warning
system, operational since 1993, issues an alert when two or more
seismic stations detect events with a magnitude higher than 5.5
(Suarez, 2018; Santos-Reyes, 2019).

As highlighted, “warnings are broadcast through TV channels,
radio stations, and loudspeakers, together with a dedicated radio
channel, SASPER, used to alert authorities, universities, schools,
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emergency responders, and civil protection” (Beltramone and
Carrilho Gomes, 2021). The SASMEX system has recently been
complemented and regulated by the “TECHNICAL STANDARD -
2019 SEISMIC ALERT RECEIPTING EQUIPMENT 2019”
published in the Official Gazette of Mexico City in August
2019 (see: https://www.consejeria.cdmx.gob.mx/gaceta-oficial)
(Accessed February 23, 2021).

This Technical Standard contributes to the achievement of the
goal of the Mexican National Civil Protection System, which is to
safeguard life and protect society in the event of a disaster caused
by natural agents, “...through actions that reduce or eliminate the
loss of human life, the damage to a productive facility, the
destruction of material assets, the damage to nature and the
interruption of functions essential to society. The technical
standards also aim to restore the population and its
environment to the living conditions they had before the
disaster”.

Risk management and related responsibilities can be included
in the framework of LEY GENERAL DE PROTECCIÓN CIVIL,
Nueva Ley published in the Diario Oficial de la Federación el 6 de
junio de 2012. Last amendment was published in DOF 19-01-
2018 and in the REGLAMENTO de la Ley General de Protección
Civil, DOF: May 13, 2014. (see: https://www.gob.mx/indesol/
documentos/ley-general-de-proteccion-civil-60762) (Accessed
February 23, 2021).

Japan
Even more interesting is the Japanese experience (Dando, 1960;
Cleary, 2006; White Paper Disaster Management in Japan, 2019).

EEWS were initially developed in 1992 for slowing and
stopping high-speed trains (called Shinkansen) prior to strong
shaking. The success of that experiment, in addition to the
devastating effects of the 1995 Kobe earthquake, convinced
Government and scientists to build a national earthquake early
warning system. On October 1, 2007, JMA launched the
Earthquake Early Warning service (Kamigaichi et al., 2009;
Mattsui, 2019; Johnson et al., 2020).

Japanese EEWS is an alert system based on seismic wave data
recorded by seismometer stations. Today, earthquake early
warnings are transmitted via J-ALERT and EAM (Emergency
Alert Mail).

The procedure is very interesting: “J-ALERT disseminates
urgent warnings (for tsunamis, earthquakes, and ballistic
missile attacks) via municipal disaster prevention radio
receivers, broadcast media, and mobile phones. The mobile
phone notifications are delivered via EAM, which sends
disaster and evacuation information to mobile phones in
warning areas. EEWS and J-ALERT are operated by Japan’s
national government; EAM is provided as a free service by
mobile phone carriers and was developed with their
assistance” (see: https://reliefweb.int/sites/reliefweb.int/files/
resources/Information-and-Communication-Technology-for-
Disaster-Risk-Management-in-Japan.pdf) (Access December 12,
2020).

The legislative framework is also very interesting and can be
examinated only partially. We can move from the Disaster
Countermeasures Basic Act, 1961 (Act No. 223 of 1961) which

establishes, at art. 52. that “1) The kind, nature, pattern or method
of signal employed in the issuance and transmission of an alarm,
warning, recommendations or orders for evacuation, shall be
determined by the Office of the Prime Minister except where
specified by Act. 2) No person shall be permitted to employ a
signal provided under the preceding paragraph or similar signals
for other than legitimate purposes” (see: https://www.adrc.asia/
documents/law/DisasterCountermeasuresBasicAct.pdf).

The government’s expertise on this regulation is confirmed by
a valuable document available in English and Japanese, issued by
the Cabinet Office, Government of Japan, in 2014, entitled
Disaster Management in Japan, which provides an overview of
the technical and legislative developments following each
earthquake in Japan (see: http://www.bousai.go.jp/en/
documentation/reports/index.html).

California
A more specific analysis should have been devoted to California
systems and regulatory framework (Goltz, 2002; Allen and
Kanamori, 2003; Farber and Chen, 2006; Wu et al., 2007;
Wurman et al., 2007; Wahlstrom, 2009; Farber, 2011; Fick,
2017; Melgar and Hayes, 2019; Allen et al., 2020).

In this context we can only highlight that on October 17, 2019,
the U.S.G.S. and the State of California kicked off the first public
statewide test of the EEWS, which is powered by EEW alerts
provided by the USGS, Shake Alert, 2021 (USGS, 2017; 2018. See:
www.usgs.gov) (Accessed April 23, 2020).

Alerts are provided by two independent methods, the first
through the federal Wireless Emergency Alert (WEA) system and
the second through the University of California Berkeley’s
MyShake smartphone application.

ShakeAlerts are sent through WEA to those who could
potentially suffer damage from quakes of magnitude 5 or
higher (Allen and Melgar, 2019. See: https://www.usgs.gov/
natural-hazards/earthquake-hazards/shakealert) (Accessed
February 16, 2021).

Recently, a smartphone APP, called QuakeAlertUSA, was
introduced in order to allow Californian users to countdown
before the quakes arrive and to set the APP even for weak
tremors.

The Californian authorities have also started issuing SMS
alerts through Amber Alert-style Wireless Emergency System.
(see: https://www.latimes.com/california/story/2020-02-12/
californias-new-early-warning-earthquake-app-features-a-shaking-
countdown).

The development and implementation of EEWS systems is
part of the federal and state legislative framework, one of the main
references to which is the California Emergency Service Act (see:
https://www.caloes.ca.gov/LegalAffairsSite/Documents/Cal%20OES
%20Yellow%20Book.pdf) which, in chapter § 8587.8.
(Comprehensive statewide earthquake early warning system;
features; compliance review; funding) states that all scientific
partners “and other stakeholders, shall develop a comprehensive
statewide earthquake early warning system in California
through a public-private partnership, which shall include, but
not be limited to, the following features (...) Establishment of
warning notification distribution paths to the public;
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Integration of earthquake early warning education with general
earthquake preparedness efforts (...)”.

In the federal legislation EEWS are regulated by Robert T.
Stafford Disaster Relief and Emergency Assistance Act (see:
https://www.fema.gov/sites/default/files/2020-03/stafford-act_
2019.pdf) which, in Sec. 404. Hazard Mitigation, Use Of
Assistance For Earthquake Hazards states that “Recipients of
hazard mitigation assistance, provided under this section and
section 203, may use the assistance to conduct activities 1) to help
reduce the risk of future damage, hardship, loss, or suffering in
any area affected by earthquake hazards, including improvements
to regional seismic networks in support of building a capability
for earthquake early warning; 2) improvements to geodetic
networks in support of building a capability for earthquake
early warning; and 3) improvements to seismometers, Global
Positioning System receivers, and associated infrastructure in
support of building a capability for earthquake early
warning”.

Recently, the FEMA Fact sheet Disaster Recovery Reform Act
and Earthquake Early Warning Systems (see: https://www.fema.
gov/sites/default/files/2020-09/fema_drra-earthquake-early-warning-
systems_fact-sheet_September-2020.pdf) issued in September 2020,
remembers that “Specifically, DRRA Section 1233 revised the
Stafford Act by adding a new Section 404(g) to allow recipients of
hazard mitigation assistance to leverage such funding to support
building capability for earthquake early warning (EEW) systems”.

The awareness of this regulatory framework shows how it is
therefore necessary, at this point, to go into the deep of
international and European sources of EEWS and understand
how they could operate in the Italian legal system in terms of
duties and responsibilities (Zschau et al., 2008; Clinton et al.,
2016).

THE ROLE OF INTERNATIONAL AND
EUROPEAN LEGAL SOURCES ON THE
POSSIBLE CONFIGURABILITY OF A DUTY
TO PROTECT THE POPULATION
THROUGH THE IMPLEMENTATION OF
EEW SYSTEMS

The absence of both EEW systems and the related national
framework, aimed to regulate the introduction and
development of these systems, do not prevent us from
answering to some important questions arising from the fact
that Italian law could be deeply influenced by European and
International law.

The latter can, in fact, play a fundamental role in identifying
obligations and responsibilities, especially since, as we shall later
explain in more detail, many international “treaties” consider
EEWS necessary for protecting human rights. More generally, the
adoption of instruments aimed at offering safety solutions protect
the rights to health of populations. Among these, an absolutely
prominent role is reserved to EWs. Hence, we need to answer to a
number of central questions concerning: 1) Whether there are
and which ones of these international agreements highlight the

need to transpose, at the national level, the EEWS as a
fundamental tool for reducing the harmful impact of
earthquakes; 2) Whether, in accordance with the duty to
protect human rights, there are obligations for States to
transpose these systems in legal frameworks; 3) Even in the
absence of any official transposition of EEWS in national alert
system, does the rank of these international sources, provide a
legal duty, for engineers and scientists, to develop such systems
and can the failure to implement this system results in legal
consequences if an earthquake causes damage to property or
casualties?

International Agreements Prescribing the
Adoption of Early Warning Systems to
Protect the Population
Our investigation will focus now on the importance that the
developing of EWs (and, consequently, EEWS) have reached in
the international institutional debate (Table 1). The first and
most important stage in this process is the Hyogo Framework for
Action (see: https://www.unisdr.org/2005/wcdr/intergover/
official-doc/L-docs/Hyogo-framework-for-action-english.pdf)
(Accessed March 1, 2021). This document represents one of the
first and fundamental moments of the international awareness
concerning the need to offer people effective protection from the
consequences of natural disasters. The goal appears even more
effective because of the direct involvement of individual
governments. In the context of the Hyogo Framework for
Action, EWS even emerges as the second priority for action:
“2. identify, assess and monitor disaster risk and improve early
warning”.

Although it is not possible here to report on all the concrete
development of the Hyogo second priority, it is nevertheless
worth emphasizing how it has fostered shared policies, aimed at
saving population from the effects of natural disasters.

In the same year, (2005), the Secretary General, Kofi Annan,
requested the UN to draw up a report (Global Survey of Early
Warning Systems), which provides a global assessment of the
capacities, the existing gaps and the opportunities related to EWS.
The Report aims to establish a “worldwide early warning system
for natural hazards building on existing national and regional
capacity” (see: https://www.undrr.org/publication/global-survey-
early-warning-systems).

But the central role of EW systems has found its most
compelling expression in the Sendai Framework for Disaster
Risk Reduction 2015-2030, which recognize a decisive role to
multi hazard early warning systems (see: https://www.undrr.org/
publication/sendai-framework-disaster-risk-reduction-2015-2030)
(Accessed March 1, 2021).

Sendai Framework includes seven goals and the seventh is:
“Substantially increase public availability of and access to multi-
hazard early warning systems, information and risk assessments
by 2030”.

So, in Sendai Framework, EWS and, consequently EEWS,
appear to be a central tool to ensure a strong protection for the
largest number of Countries involved and they will play a
decisive role in the current and future challenge of disaster
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risk reduction. In a global and international frame, they help in
developing “policies and practices for disaster risk management
(that) must be based on an understanding of risks in all their
dimensions of vulnerability, capacity, and exposure of people
and goods”. Even more, EEWS implement the active and self-
protective role played by individual stakeholders and
community.

Great interest also shows the language used in Sendai
Framework. The words chosen show a strong will to create,
for the adherent Countries, specific duties of care. In defining
the “guiding principles”, it is clear that “every State has the
primary responsibility to prevent and reduce the risk of
disasters, including through international, supranational,
interregional, cross-border and bilateral cooperation”. The
target is “to protect people and their property, health,
livelihoods and productive, cultural and environmental
resources, while promoting and protecting all human rights,
including the right to development”.

Consistent with a fundamental bottom up risk management
strategy is the need to “empower local authorities and
communities to reduce disaster risk appropriately, including
through resources, incentives and decision-making
responsibilities”.

The purpose to ensure greater development of these goals
necessarily involves the role of UNESCO, especially through
UNESCO’S INTERNATIONAL PLATFORM ON
EARTHQUAKE EARLY WARNING SYSTEMS (IP-EEWS)
(see: https://en.unesco.org/news/launch-unesco-s-international-
platform-earthquake-early-warning-systems) (Accessed March
1, 2021).

UNESCO stressed the importance of EEWS not only for
human safety but also for the environment, so, “in December
2015, launched the International Platform on Earthquake Early
Warning Systems”. The project involves Italy through the
participation of the University of Naples Federico II.

While the international framework appears to be aware of the
importance of EEWS, the same cannot be said for the European
Union policies, which have only partially acknowledged the need
to implement the protection expressed by the Sendai Framework
for Disaster Risk Reduction.

Two documents must be analyzed. First of all, we have the
COMMISSION STAFF WORKING DOCUMENT Action Plan
on the Sendai Framework for Disaster Risk Reduction 2015-2030-
A disaster risk-informed approach for all EU policies (see: https://
ec.europa.eu/transparency/regdoc/rep/10102/2016/EN/10102-2016-
205-EN-F1-1.PDF) (Accessed March 2, 2021).

The European Commission, considering the central role
played by the EU in determining the Sendai Framework,
affirms that it “is the basis for a disaster risk-informed
approach to policy-making, offering a coherent agenda across
different EU policies to strengthen resilience to risks and shocks
and supporting the EU priorities of investment, competitiveness,
research and innovation”.

The Document, in setting out Action Plan Implementation
Priorities notes that “while several policy initiatives are already
contributing to implement the Sendai Framework in a
fragmented way, a more systematic risk-informed approach

for all EU policies in order to reach the Sendai objectives does
not exist”.

So, the Action Plan wants to ensure the application of
Sendai Priority 1: Understanding disaster risk, the
development of global multi-risk in which EWS are
essential for assuring a correct Assessment of risks and the
Sendai Priority 3: Investing in disaster risk reduction for
resilience, in which EWS take a leading role among the Key
policies and practices.

Even more, European Commission wants to guarantee the
greatest role recognized to multi hazard EWSs in Sendai Priority
4: Enhancing disaster preparedness for effective response and to
“Build Back Better” in recovery, rehabilitation and
reconstruction.

In reinforcing the determinations of the “Commission Staff
Working Document: Action Plan on the Sendai Framework for
Disaster Risk Reduction 2015-2030”, the European Committee of
the Regions (see: https://eur-lex.europa.eu/legal-content/EN/
TXT/PDF/?uri�CELEX:52016AR5035&from�IT) (Accessed
March 3, 2021), expressed, in 2017, an Official Opinion.

In Considerando 21, the European Committee of the Regions
noted the importance of “promoting the use of IT
communication technologies, ICT and automatic early
warning networks, based on early detection, instant
communication and proactive intervention protocols”. While
in Considerando 25 underlined “support for early warning
systems, measures to improve redundant technologies used for
communicating between civil protection systems and public
warnings as well as a “build back better” approach following
disasters”.

This brief and certainly not exhaustive picture of the
international and European regulatory framework that
prescribe the use of EW for risk reduction purposes and for
protecting the life and safety of the population and
infrastructures, leads us to ask the second of the questions set
out above. It is necessary to understand, on the one hand, whether
these targets impose a legal duty, for Italy, to protect citizens
through the introduction and development of EEW systems. On
the other hand, we must establish whether this discipline can
affect the legal asset and especially the responsibilities of scientists
and engineers/technicians charged of civil protection functions
(during an earthquake) (Dovere, 2017; Gargani, 2011; Gargani,
2016; Gargani, 2019).

TABLE 1 | International documents concerning EEWS.

• Hyogo Framework for Action, 2005
• Global Survey of Early Warning Systems, UNDRR, 2005
• Sendai Framework for Disaster Risk Reduction 2015-2030
• Unesco’s International Platform on Earthquake Early Warning Systems
(Ip-Eews), 2015

• Commission Staff Working Document - Action Plan on the Sendai Framework
for Disaster Risk Reduction 2015-2030-A disaster risk-informed approach for
all EU policies, European Commission, 2015

•Opinion of the European Committee of the Regions— Action Plan on the Sendai
Framework for Disaster Risk Reduction 2015-2030 — A disaster risk-informed
approach for all EU policies
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Are There any Obligations for Countries to
Transpose in Their Civil Protection Systems
the EEWS in Accordance With Their Duty to
Protect Human Rights?
The answer to this question implies consciousness of two crucial
aspects.

On the first side, the development of EEWS represents, as we
have seen also in the light of the documents examined so far, a
functional measure to safeguard human rights and in particular to
protect life and safety of the individuals and the community
facing natural disasters.

Academics stated that “While the Convention on the Rights
of People with Disabilities is the only human rights Treaty
which explicit references to disasters, the applicability of
human rights law to disasters is receiving greater attention
from both the scholarly community and intergovernmental
bodies at the regional and international levels” (Ferris, 2014;
Crawford, 2019).

There are some different ways in which international human
rights law is being used to strengthen efforts at prevention,
response and recovery from disasters.

The most important are “The use of legal remedies as a way of
holding governments accountable when they fail to prevent or
reduce the risk of disasters” and “The use of primarily “soft”
international law as reflected in the Guiding Principles on
Internal Displacement, as a way of upholding the rights of
those displaced by disasters” (Ferris, 2014; Conforti, 2019).

The main question concern if prevention could be a
governmental responsibility. In order to answer we must note
that the International Human Rights Conventions include the
right to life and the related obligation of the State to protect life.

In these cases, “States have a responsibility to reduce the risks
of disasters and to protect those at imminent risk of disasters
through timely warnings and evacuations and when they fail to
do so, they face domestic and international criticism and potential
legal action” (Ferris, 2014).

The protection of life, to which the adoption of EEWS is
expected to be instrumental, is a key element of one of the
international conventions with the greatest potential for
application. We are referring to the European Convention on
Human Rights. The Article 2 establishes the right to life as a “core
right” (Manes and Caianiello, 2020).

The doctrine reminds us that the absolute importance of life
has allowed a progressively broader interpretation of Article 2, the
operability of which has been recognized even when life has only
been exposed to danger or the person involved in risk has
ultimately been saved (Paliero and Viganò, 2013; Manes and
Caianiello, 2020).

The breadth of this duty implies that national authorities not
only must avoid to intentionally kill someone but also and above,
are responsible for a positive obligation to protect life and safety
of their citizens.

These positive obligations convey a State’s duties to provide
“measures to prevent a violation of the rights . . . whether it arises
from the exercise of public power or from the action of a private
individuals” (Manes, 2010; Manes and Caianiello, 2020).

In this regard, the principle of effectiveness requires to
recognize “that a violation of the Convention committed by a
private individual may be indirectly attributed to the State if this
one has made it possible or probable”. So, “in order not to incur in
a violation, the State itself must provide the legislative,
administrative and judicial framework capable of guaranteeing
rights also in relations between individuals” (Zorzi Giustiniani,
2018; Manes and Caianiello, 2020).

The guarantee of the positive duty of protection and, in
particular, of the protection of life imposed on Governments
also means “protecting the life and safety of individuals who have
entrusted themselves to the public apparatus, as in the case of
schools, hospitals or nursing. This responsibility of States also
occurs in the hypothesis of inadequate functioning of the health
system or in cases where - in the face of emergency circumstances
- assistance has been denied by the public administration” (Manes
and Caianiello, 2020). This duty implies that Governments must
activate instruments for ascertaining and compensating victims
for damage. In Lopez de Sousa Fernandes v. Portugal, December
19, 2017, the European Court of Human Rights (ECHR), Grand
Chamber, found that Portugal had not properly fulfilled its
procedural duties. It failed to provide adequate means to find
the truth about the unfortunate event discussed in Court.

At this point, answering the question posed above appears to
be urgent. Can a State be held responsible for not having adopted
appropriate systems to deal with the harmful consequences of an
expected natural risk?

The answer to this question is provided by two judgments of
the European Court of Human Rights which, however, do not
concern seismic risk.

The first is the famous judgment Budayeva and Others v.
Russia (European Court of Human Rights, Budayeva and others
v. Russia, Applications nos. 15339/02, 21166/02, 20058/02,
11673/02 and 15343/02, judgment of March 20, 2008. (See:
http://hudoc.echr.coe.int/sites/eng-press/pages/search.aspx?i�003-
2294127-2474035) (Accessed December 3, 2020).

The case concerned a series of mudslides that struck the town
of Tyrnauz in southern Russia in 2000, causing numerous
victims.

The Strasbourg Court set out for the first time the criteria that
must be analyzed in order to assess whether the conduct of the
state authorities complied or not with the positive obligations to
protect human rights arising from the European Convention on
Human Rights. First, the Court assessed whether the risk of the
event occurred was foreseeable by the authorities of the State
(“foreseeability of the risk”). The analysis was carried out on the
basis of a number of factual indices, such as the origin of the
threat, the imminence of the risk and the recurrence of the
disaster over time. The analysis showed that not only was the
town of Tyrnauz notoriously prone to landslides, but the Russian
Government had also been warned of the imminence of a possible
event that would occur. From these assumptions, the Court
concluded that the Russian Government could have reasonably
foreseen the occurrence of the adverse event. After having
established the foreseeability of the risk and the extent of the
resulting event, the Court assessed whether the Russian
authorities had done everything they could to protect the
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rights of the people under their jurisdiction (the so-called “best
efforts requirement”). The Court established that Russia
government neither allocated resources to prevent the harms
not even repaired the damage caused by previous events.

Even more relevant is the part in which the Court ruled that
the Russian authorities had failed to adequately inform citizens
about the risk and to promptly evacuate them from the affected
area. All these circumstances led the Court to recognize the
existence of a violation of the right to life under Article 2 of
the Convention, because Russia failed to implement essential
measures to protect people under its jurisdiction.

Not dissimilar conclusions were reached, 4 years later, in
Kolyadenko and Others v. Russia (European Court of Human
Rights, Öneryildiz v. Turkey, Application 48939/99, judgment of
November 30, 2004. (See: http://hudoc.echr.coe.int/sites/fra/
pages/search.aspx?i�003-1204313-1251361) (Accessed
December 1, 2020), which concerned the flooding of the city
of Vladivostok due to the exceptional discharge of water from the
Pionerskoye reservoir adjacent to the city, caused by heavy
rainfall into the Pionerskoye river.

The Court affirmed that the Russian authorities could and
should have made an early assessment of the risk and taken the
necessary measures to save the victims. Great interest must be
posed in the confirmation of the Court’s statutes in Budayeva and
Others v. Russia. In both cases, the Court ruled that the duty for
States to protect human rights does exist not only in the
imminence of a catastrophe, but also in advance, since the
moment when it is even abstractly foreseeable, by the
authorities, that certain events could occur in the future. The
authorities would have a duty to conduct risk assessment.

In this case too, the Court recognized a violation of the right to
life (Article 2 of the Convention): Russia failed to secure the area
by cleaning the Pionerskoye River and this was causally related to
the disaster.

These judicial cases are very interesting for many reasons. The
first, of course, relates to the possibility of arguing that Article 2 of
the European Convention on Human Rights is a suitable
instrument to establish the responsibility of the State for the
harmful consequences arising from the failure to adopt risk
management tools such as, among others, a proper warning of
the population.

Moreover, the rules of Budayeva and Others v. Russia seems to
open the way also for a preventive protection of the legal assets
involved. In other words, the judgment tells us that the right to life
must be safeguarded by Government not only because of the
positive obligations of protection established by the European
Convention on Human Rights but also, more in general, because
the occurrence of certain disasters and their impact on the
fundamental rights cannot always be unforeseeable by the
authorities. So, a Government particularly exposed to certain
types of disasters must plan in advance the essential measures to
adapt to those consequences.

In this case, the possibility of appealing the Court before the
event occurred is possible, however, by invoking the violation of
Article 8 of the Convention. As jurisprudence on environmental
disasters shows, private and family life would be profoundly
affected if the event occurred and, in this case, the

Government authority is responsible if it did not the necessary
to avoid harms and causalities.

These encouraging prospects, however, cannot blur the
difficulties of a fully applying EEWS in Italy. The first
concerns, as is well known, the geological conformation of
Italy, which in some cases would not allow potential victims
the time to assume effectively protective behavior. But even if
these precautionary measures were potentially feasible, maybe
they could be effective, as we will see, only when applied to
surgery operating rooms, trains and industrial processes. Only in
these cases, when EEWS can stop the activity, they could have a
real saving effectiveness. If the EEWS are used, even not directly,
to save people from the collapse of structures, the paradigm
changes. In this case, in fact, it would be more consistent to
establish a Government’s responsibility for not having made
compulsory, for citizens, the structural adaptation of buildings
to anti-seismic standards, rather than for failing to introduce
warning instruments that, in certain areas, could not really save
anyone.

Even if it is not yet Mandatory to Adopt
EEWS, Does the Legal and Scientific Rank
of International Documents Imposes to
Technicians and Scientists the
Development of These Life-Saving
Systems? And Could the Failure to Comply
With This Requirement Result in Legal
Consequences if an Earthquake Causes
Damage to Property or Persons?
It is clear from the picture outlined so far that it is difficult to
enforce Governments in transposition and implementation of
EEWS as essential tool for protecting and safeguarding the lives of
their citizens. The complexity of these systems and the timing of
their realization, among others, impose then a reflection on the
possibility that the legal instruments, developed in the
international scenario, find direct or indirect application in the
Italian legal system. The investigation will focus on the possible
influence of this legal framework in determining possible criminal
liability linked to the harmful consequences produced by
earthquakes on the life and on the public and private safety of
citizens.

In order to answer this question, we must first try to establish
the status and rank of the legal texts examined and, consequently,
the scope of their application.

It is immediately necessary to clarify how these considerations
are a small part of the broader debate on the influence of
European Union law on the boundary of legality and the
related duties that arise for a national system like the Italian
one (Donini, 2011).

As pointed out by Doctrine (Bernardi, 2011; Bernardi, 2015), a
process of transformation of legality is now taking place in Italy
andmore generally in the EU zone. This process, on the one hand,
moves from the centrality acknowledged to the European Union
law, whose primacy imposes direct effects on the national judicial
system. On the other hand, it starts from the increasing role of
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technology which affects the duty to criminalize a specific kind of
behaviors (Bernardi, 2011). In fact, the Author pointed out that
“in fields such as medical or entrepreneurial liability, it is not
uncommon for the Government to abdicate its function of
formulating rules, in particular precautionary rules (e.g., rules
of safe conduct that impose a particular behavior in order to
prevent the occurrence of harmful events) (Giunta 1999;
Mantovani 2020). It benefits real epistemic communities
considered scientifically more suitable for risk assessment and
results in formulation and identification of scientific laws, and
their accreditation protocols and organizational models (...)”
(Palazzo, 2016).

Thus, the primacy of effectiveness over the authoritativeness of
the rule and the penetrating role of the European Union’s
criminal jurisdiction, albeit indirectly (Article 83 TFEU),
deploys the paradigm of legality (Giunta, 2020) and opens the
door to European Union regulation which can integrate the
criminal reproach, also and above all, in the field of
negligence, traditionally based on precautionary rules, which
are naturally osmotic to technical heteronymous rules.

The absence of European regulations and directives that can
exert their indirect criminal cogency in our legal system, rises
another fundamental question. Should the sources regulating
EEWS systems be transposed into Italian civil protection
system and how they might affect the structure of negligent
criminal liability that can be recognized as consequences of an
earthquake event?

The dual European and international nature of the regulations
examined means that the answer should not be limited to the
influence of European rules alone but should be broadened by
giving it a general perspective.

This hermeneutical operation supposes establishing, at least,
whether the Sendai Framework of Action, the Commission Staff
Working Document: Action Plan on the Sendai Framework for
Disaster Risk Reduction 2015-2030 and the Opinion expressed in
2017 by the European Committee of the Regions, cited above, due
to their characteristics, have or not the status of soft law.

As correctly underlined, “Soft law refers to instruments such as
declarations, recommendations, codes of conduct, action plans,
expert opinions, and handbooks. Soft law is produced by state
actors, international organizations, civil society organizations,
multinationals, trade associations, and legal experts” (Bergtora
Sandvik, 2018). No doubts that “Soft law can harden over time
through state action, for example, as treaties or as customary law.
In the context of the continued proliferation of lawmaking
procedures and sites, soft law is many things to many actors:
political and legal actors see soft law as a pragmatic instrument for
governance; the business sector relies on soft law to facilitate
private enterprise; and civil society uses soft law as a vehicle for
social change” (Bergtora Sandvik, 2018).

However, soft law rules have no direct binding force. They
“influence and restrict the will and freedom of their
addressees”, but “do not establish a real obligation or
provide a specific sanction. If one does not consider the
sanction to be a necessary attribute of the rule, he can either
recognize these rules as sources of law, or (...) atypical sources”
(Chiarelli, 2019).

The overcoming of the Kelsenian paradigm, due to a more
technocratic reality, susceptible to continuous change, leaves
room for a non-hierarchical system, where “horizontal logics
(...) or at least communicative and dialogical logics prevail, aimed
at promoting forms of negotiation, compromise (...)” (Bernardi,
2013).

This framework shows that both the Sendai Framework for
Disaster Risk Reduction and the Commission Staff Working
Document: Action Plan on the Sendai Framework for Disaster
Risk Reduction 2015-2030, as well as the Official Opinion of the
European Committee of the Regions, can be included in the genus
of soft law regulations. (see: https://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri�CELEX:52016AR5035&from�IT).

This affirmation is not denied even if compared with the
further indicators provided by Academics that consider soft law
those sources created by Organizations, not necessarily direct
expression of state or territorial Authorities (especially the Sendai
Framework), whose rules are formulated with general
programmatic content. These rules are mandatory for the
group from which they were created, or which adheres to
them (we must think about the voluntary progressive adhesion
to the Sendai Framework or to the recommendations stated by
the European Commission), and they are also often effective at
international level (Bernardi, 2011).

The force of these rules, independent, as we said, of a criminal
punishment for non-compliance, depends on the membership of
the national Government to the international Organization that
produces them.

Thus, “not applying a rule laid down by an international
organization in which one has freely decided to participate entails
consequences in terms of international relations” (Persio, 2015).
Academics underline that “soft law is suitable to replace the
traditional international hard law because, although it is not
submitted to the fundamental principle of pacta sunt servanda,
typical of treaty law, they express the principle inadimplenti non
est adimplendum and therefore can be considered ius cogens. The
juridical nature of the rule of soft law, therefore, must be found in
its effectiveness, that is, in the capacity of the rule to be shared and
applied by its addressees” (Persio, 2015).

But the idea of rank and force of soft law is not always
universally shared. However, it is undeniable that soft law is
now widely applied in many areas of law.

Despite this, as correctly pointed out, the main role that can be
recognized to European and international soft law sources, is
certainly the impact they have on the judicial interpretation of
law, assured by judges.

It has been stressed that “interpretation in conformity with EU
law is linked to certain fundamental principles which regulate the
relationship between national and EU law, such as, first and
foremost, (...) the primacy of the European over the Italian law
and the principle of loyal cooperation between both legal
frameworks (Art. 4.3. TEU)” (Bernardi, 2011).

This conformity must be applied “to all internal rules,
regardless when they were enacted and despite their
hierarchical ranking, and must be applied to all rules,
including criminal law”. Such a wide-ranging conformity
obligation affects “all EU law: to immediately applicable law
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and not immediately applicable law, to primary and secondary
law (...) to hard and even soft law. In short, it imposes itself on the
entire system of the Treaties (Bernardi, 2011).

Of course, not all European legislative or non-legislative acts
can be sources of soft law, but the openings of the European Court
of Justice appear very significant indeed. The judges, analyzing
the nature of recommendations, state that such acts, although not
binding, “cannot therefore be considered as devoid of any legal
effect. Indeed, national Courts must consider recommendations
when they decide on criminal cases, in particular when they
interpret national rules adopted in order to ensure their
implementation or aim to increase the compulsory of UE
rules” [Judgment December 13, 1989, case 322/88 (Grimaldi),
par. 18. More recently, judgment of September 11, 2003, case C-
207/01 (Altair Chimica)].

As pointed out, “in particular case it is mandatory, for national
court, to take into account soft law in interpreting national law
(including criminal law). This is the case, for example, of
recommendations and opinions issued by the EU Council and
Commission pursuant to Article 288 of the Treaty on the
Functioning of the European Union (formerly Article 249 of
the EC Treaty)” (Bernardi, 2013).

Both the Commission Staff Working Document: Action Plan
on the Sendai Framework for Disaster Risk Reduction 2015-2030,
and the Official Opinion issued by the European Committee of
the Regions, contain programs and rules, expressed by UE
Authorities and aimed to implement international goals that
must be achieved also in the EU zone.

If we consider, as we consider, these documents as soft law,
their prescription must influence and affect the Italian
criminal law.

The same must be said for the Sendai Framework of Disaster
Risk Reduction.

As underlined “If we accept a concept of interpretation in such
a broad sense as to embrace the whole application of criminal
rules or, if preferred, the so-called “law in action”, it becomes even
more evident that soft law can often have a significant influence
on the decision of the criminal judge. For example, they may
contribute to determine the standards of diligence that exclude
negligence, since - according to the dominant thesis - the concept
of “discipline” (art. 43 c.p.) must include the rules issued by
private authorities. Moreover, it can be underlined that also the
possible deference of the minority thesis, according to which soft
law must be excluded from the concept of “discipline”, does not
imply at all its irrelevance in the evaluation of criminal
negligence. It simply shifts its relevance from the area of
specific negligence to the general one, because the standard of
diligence, expressed by soft law, could help in evaluating a
negligence and/or imprudence criminally relevant” (Bernardi,
2015).

This influence of soft law in Italian criminal law requires one
more (linked) aspect to be clarified. Even if we do agree on the
idea of the influence of soft law in the evaluation of criminal
negligence, we must consider the specific nature of the rules
expressed by Sendai Framework and the European Commission,
above all. Their generic and programmatic character prevent
them from integrating the evaluation of negligence because these

rules cannot express the regulatory framework that the scientist
or technician should have observed in the specific case. At most,
their generic and programmatic nature could represent a
hermeneutical standard in order to evaluate in bonam partem
the criminal liability in case of harms and losses. Let’s try to
explain why.

The failure to comply with the international or UE rules that
prescribes the introduction of EEWS in our legislation not only
tells that there is still no suitable instrument for warning the
population about seismic risk, but also that such instruments are
not easy to develop. The improvement of these systems depends
on politicians or civil protection top executives, who have
decision-making powers to fund technical instruments, such as
seismic networks, designed to reduce or neutralize the risks
arising from earthquakes. Scientists, researchers or technicians
do not have the power, the scientific and economic capacity to
take similar decisions. So, not only they must not be accused of
causing the death of citizens because of the failure to develop and
disseminate early warning systems, but also their criminal
responsibility can be absolutely denied when it is clear that the
only safety measure which could have prevented people to die
would have been an EEWS.

Finally, we think that a brief comment on Directive (Eu), 2018/
1972 of the European Parliament and of the Council of December 11,
2018 (https://eur-lex.europa.eu/legal-content/EN/TXT/?uri�uriserv
%3AOJ.L_.2018.321.01.0036.01.ENG) (Accessed December 3,
2021) establishing the European Electronic Communications Code
could be useful. The Directive (Considerando 5) “establishes a
regulatory framework to ensure the freedom to provide electronic
communications networks and services” and, in particular, dictates
“measures relating to public policy, public security and public health,
consistent with Article 52(1) of the Charter of Fundamental Rights of
the European Union”.

Recalling that communication plays a central role in
emergency management, Considerando 293 notes that
“divergent national regulations have been developed regarding
the transmission of public alerts by electronic communications
services in the event of imminent or developing major
emergencies and disasters”. It is therefore necessary to
approximate the necessary provisions and systems, the
adoption of which remains discretional for States.

Furthermore, Considerando 294 states that “Where the
effective reach of all end-users concerned, regardless of their
place or Member State of residence, is ensured and respects the
highest level of data security, Member States should be able to
make provision for the transmission of public alerts by means of
publicly available electronic communications services other than
number-based mobile interpersonal communications services
and broadcasting services used for broadcasting, or by means
of mobile applications transmitted using Internet access services”.

In other words, the Directive imposes uniform
communication standards for the Member States especially
when these instruments have civil protection functions but,
despite the duty to introduce the single European emergency
number (112), the Directive leaves the Member States free to
implement the alert and alarm services they deem most
appropriate for the protection of their citizens.
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So, in order to guarantee an effective protection of their
citizens, it would be desirable that the European institutions
will soon coordinate the mandatory nature of these quality
standards with equally compulsory indication of the type of
warning system that can comply with the Commission Staff
Working Document, prescription and targets.

The merging of procedural and modal requirements would
give rise to a discipline, hopefully mandatory for Member States
which could be obliged to adopt early warning systems also in the
seismic field, thus conforming to international protection
standards.

RISK DECLINATIONS AND THE
FUTURISTIC CRIMINAL LIABILITY FOR
IMPLEMENTING EEWS

The problems in defining the effectiveness of international and
UE rules, which consider the adoption of EEWS a safe measure
for the population and infrastructures, do not prevent us from an
evaluation about the characteristics that criminal liability could
assume once these systems will become operative in Italy.

The considerations that we will articulate here will start from
the structure of criminal liability in Italy and will try to highlight
the most important profiles of culpable responsibility.

It is not difficult to hypothesize that, in the event of a damage
arising from an erroneous transmission of the early warning
message, scientists and civil protection officers could be indicted
for manslaughter, negligent injury or disaster (Castronovo, 2002;
Piergallini, 2005; Accinni, 2006; Giunta 2012; Marinucci, 2012).

Such an inauspicious forecast, as we have seen, arises from the
indiscriminate and confused role of risk in criminal reproach and
is confirmed by some Italian judicial cases (Militello, 1988;
Civello, 2013; Gargani, 2017; Iagnemma, 2021). These ones
especially show how difficult could be, for a judge,
understanding that risk is not a unitary concept (Alemanno,
2017; see Cass. pen. Sez. Un., April 24, 2014, n. 38343, DeJure).
Risk, and in particular natural risk, has rather different
declinations whose examination is important also for a more
correct allocation of responsibility.

A criminal responsibility (for negligence) arises when
someone (e.g., scientist or civil protection officers) foresees or
can foresee the risk and its concrete development (event) and is
able to avoid such consequences through the adoption of safety
procedures and behaviors, related to precautionary rules.

Therefore, in order to understand concretely, each time, which
event could be avoided and how it could be prevented, it is
necessary to take note that natural risk is not a unique concept but
represents the product of three different elements: hazard,
vulnerability and exposure.

Even if jurispridence is slowly approaching the awareness of
the multiformity of the risk (Blaiotta 2007, 2010) and in some
judicial cases the analysis of the different elements enters
through the contribution of experts and technical consultants
(Manna, 2009), nevertheless there is still a basic preconceived
approach that does not allow the judge to correctly identify the
area of competence, powers and therefore responsibility of each

person who causally affect the production of the event
(Micheletti, 2015).

The problem must be addressed in the light of the two key
concepts that characterize culpable reproach: predictability and
avoidability of the event (Giunta, 1993; Massaro, 2009; Brusco,
2010a; Brusco, 2010b; Verrico, 2011; Manna, 2013).

In order to understand criminal liability, we must first ask
what aspect of the risk is predictable, or rather, what consequence
of it can be predicted and avoided (or limited).

In the context of the criminal offences under our interest
(harms, manslaughter, injury, disaster), it should be noted that it
is not the risk itself that is relevant, but the possibility of
foreseeing and avoiding the event that is harmful or dangerous
to life, public safety or the infrastructures integrity.

Or, rather, the possibility of foreseeing and avoiding the
harmful or dangerous consequences of an event that
represents the materialization of a specific risk that also
determines a precise competence of people involved.

What is important for criminal law is whether a concrete
event, related to the individual risk declination (hazard,
vulnerability and exposure), can be foreseen and avoided and
in what concrete field of application this occurs.

In this regard, we have EEWSs developed to protect people
against the effects of building collapse and infrastructure, as well
as EEWSs designed to interrupt the movement of a train or the
functionality of a surgery operating room, or even the work
process on a building site or production in an industry.

In these two different cases, responsibility could change, even
if, it should be clear, all EEWS share the same scientific
background. The content of an EW message (which is based
on estimates of location, magnitude and intensity and finally
shaking at a specific site) has, in fact, the same level of uncertainty
in all its applications.

Vulnerability and Exposure in Relation to the
Foreseeability of the Event
First of all, this distinction is relevant in order to highlight the
specific object of predictability which, in our case, determines a
specific declination of criminal responsibility. Let’s try to explain
the reason.

EEWS are a precautionary tool: they allow us to know in
advance the time of arrival and the expected level of shaking at
each point, once the earthquake has occurred. And this is possible
thanks to a rapid calculation of its characteristics, even if, as we
will see in paragraph 6.4, the strong component of uncertainty
that characterizes these data cannot be ignored.

This expected shaking is the naturalistic event which is not
easily and univocally related to, or better, it does not always
coincide with the event of final damage, punished by the
criminal law.

The arrival of the shaking is, in fact, an intermediate event that
may turn out differently from the final event of death, injury or
disaster.

Sometimes, the causal chain registers a hiatus between the
shaking and the final event that the criminal punishment wishes
to prevent through the precautionary rule.
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This is usually the case when EEWSs messages are conveyed as
a tool to predict and avert (the risk declination of) vulnerability.
In this case, the life and physical integrity of the message
recipients are affected by the vulnerability of the structures
that surround them. The chance to be safe depends as much
on the stability of the structure as on the effectiveness of the
population’s self-protection behavior. In fact, in these cases,
citizens are expected to adopt safety measures which can
protect them from harms.

But we must underline that EEWS do not protect public safety
with a direct impact on the vulnerability of buildings (Minson
et al., 2018; Minson et al., 2019; Wald, 2020). In other words, they
cannot foresee the vulnerability of the building. The scientific
literature still underlines that is impossible to translate accurately
and in real time the shaking of a building into a calculation of the
damage it will suffer. The vulnerability of each building could be
known exclusively referring to the single structure and to the
related shaking effects. Only this parameter would make it
possible to say that, through the EEWS, we can also predict
the damaging effects on the people in the buildings who might be
harmed by their collapse.

But this aspect, as mentioned, is still under development
(Gasparini et al., 2007; Iervolino et al., 2007).

The predictability of the harmful event takes on a different
aspect when the anticipation of the shaking, transmitted by
EEWS, coincides directly with the automatic suspension of a
service designed for safeguarding the life and health of citizens or
the integrity of structures. In this case, the foreseeability of the
risk is mainly (though not exclusively) determined by the specific
element of risk, such as the exposure of the population to the
harmful consequences of the shaking.

In this case, EEWS makes it possible to anticipate the effects
that are intrinsically and specifically realized when the shaking
occurs.

Here, the intermediate event (shaking) and the final event
(death or injury) coincide in time and, consequently, also in terms
of foreseeability.

An example can be the train slowing down, procedure that
occurs automatically, saving passenger’s lives.

Vulnerability and Exposure in Relation to the
Avoidability of the Event
The dichotomy between vulnerability and exposure effects becomes
even more evident when focus is placed on the avoidance of the
event. The EEWS are precautionary instruments designed to avoid
death, injury or other dangerous events by predicting and
subsequently assessing the time of arrival and the level of shaking.

Not all EEWS are intended to avoid a harmful event in the
same way.

This depends on the concrete object of the risk and on how it
behaves. Again, when the EEWS is intended to prevent death and
injury that would occur because of the vulnerability of a building,
the content of the caution will have a peculiar face.

In particular, EEWSs will be designed to warn the population as
soon as possible so that they can adopt self-protective behaviors that,
in any case, depend on their willingness and preparation. When, on

the other hand, the EEWS acts on the risk factor that concerns the
population’s exposure, the system fully and directly prevents the
consequences that could directly result from the shaking.

This different phenomenology gives rise to a different
precautionary standard of the rule.

In the first case, when the EEWS is intended to avert the
consequences of the vulnerability of a building following shaking,
it must be considered as a unilateral information message,
addressed to the population. This message may not always
have a precautionary nature. It enables the recipients to adopt
specific behavior, which must, however, be contained in the
message or, more often, are (un)known to a population
previously prepared to manage the risk.

On the other hand, when the EEWS is intended to reduce or
avoid the exposure of individuals to risk, it will constitute a
precautionary rule that will automatically act on the structures
and systems designed to receive it. In this case, the recipients of the
precautionary rule are not the potential final victims of the shaking,
but the persons responsible for the safety of the structures involved.

It is true that these rules could also be addressed even to
users, but they may have small impact to the final event because
they act at a later stage of it (e.g., train users, even if frightened,
must not open the doors. But EEWS must have already stopped
the train).

Criminal Responsibilities
Consequently, the framework of responsibilities changes
significantly.

When the EEWS affects a risk related to the vulnerability of
the structure, the responsible for its correct assessment and
distribution could be the scientists who improve the scientific
programs, the engineers/technicians who have developed them
and/or the public or private office which disseminate the warning
messages. In the event of a catastrophe linked to an erroneous
EEW or lack of it, these subjects cannot (always) be held
responsible for the events that may occur. And this for several
reasons. First of all because, as we have seen, the communication
rule has not always a genuine precautionary value. The cautionary
information, if not correlated by a set of information indicating
the ways to prevent the harmful event (rectius, self-protective
information), will not be able to activate a culpable reproach in
terms of criminal negligence. An empty information, lacking real
safety indications, is not a real precautionary rule and does not
determine any liability in the event of its eventual (incorrect) use
(Grotto, 2015; Giunta, 2016).

The circumstance seems to be validated by a further
consideration. The mitigating or impeding effect of the event
is closely linked to the implementation of safe behavior adopted
by the potential victims (Cerase, 2017). If this does not happen,
the responsibility of the adverse event must be attributed to those
who did not protect themselves and/or to the authorities which
did not adequately educate the population.

Again, an apparently complementary but profoundly related
responsibility lies those were required to build in accordance with
the legal rules. If one person dies because of a building collapse due
to a construction deficiency, consequent responsibility must be
ascribed exclusively (or at most concurrently) to the builder or to
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the administrative authorities who had granted the building
permission.

For these reasons, EEWS and the linked responsibilities can
also represent a means for persuading people to adopt mitigating
risk policies in each territory.

A different picture must be drawn when the EEWS affects (at
least primarily) the exposure of victims to specific risk such as
those linked to transport systems, certain types of work or risky
processes e.g., the ones taking place in operating rooms or in the
chemical industry. In these cases, the rules to be adopted have a
specific and detailed content and are therefore genuinely
precautionary. The responsible for processing and transmitting
scientific data are fully responsible for the consequences of their
mistakes (unless there are aspects that invalidate the reproach,
such as the existence of force majeure).

This happens, even more, when the harmful event occurs
because of the negligence (in adopting precautionary measures)
of people with a duty of care such as, for example, employers,
managers of hospitals etc.

The Importance of Limits
This articulation of responsibilities is however conditioned by
two further determining factors. The first relates to the
concrete possibility of releasing an EEW with a real
mitigating or preventing effect on the adverse event. In the
epicentral areas, there is always a “blind zone” where the
spatial and temporal conditions could prevent the
possibility to convey a useful message.

The second is the coefficient of scientific uncertainty that
characterizes the development of EEWS (Kuyuk et al., 2015).

This uncertainty, physiologic in this phase of EEWS development,
is the consequence of a very rich debate that constitutes one of the
greatest values of the entire scientific and technical challenge.

However, as is well known, it is difficult for the law, and especially
for criminal law, to understand not only the mechanisms underlying
science but, above all, the uncertainty which is its essence.

It is true that this mechanism and the related uncertainty
should be explained during the trial by technical consultants
and experts. Furthermore, it is true that, in criminal law,
there is a rule of judgement whereby, when the public
prosecutor is unable to prove guilt, the judge must acquit
the defendant because the threshold of ’beyond all
reasonable doubt’s has not been crossed. But,
unfortunately, it is even more true that, very often, the
dynamics underlying science and its challenges are not
well understood, and defendants are condemned almost
on the basis of an objective liability, i.e., exclusively on

the basis of the duty of care, without correctly assessing
the culpability (Stella, 2002).

As well known, considering only the duty of care relevance violates,
above all, the principle of personal responsibility (Donini, 2018).

CONCLUSION AND FUTURE DIRECTIONS

In spite of this effort to systematize the application of criminal
reproach, it is easy to predict that the operation of the EEWS will
require a very close dialogue between scientists and jurisprudence.

This dialogue can certainly be facilitated by the proper
adoption of certain regulatory framework and solutions
suggested by international experiences. We refer, in particular,
to four fundamental aspects (Table 2): 1) the need to provide
shared and well-structured protocols describing the service
offered in its various forms; 2) the presence of detailed
disclaimers clearly defining the limits of the service and
identifying, with equal clarity, the responsible for each
segment of the service; 3) the enhancement of the role that
must be acknowledged to the population as the main owner of
the adoption of self-protective measures; 4) a general
reconsideration of the mandatory duties burdening on
building owner who should be required to respect the
parameters of anti-seismic construction.

About the first aspect, it can be said that the predetermination of
a set of procedural rules, will ensure not only better functioning of
the service but also greater tranquility for scientists and technicians.

As we have seen, the criminal reproach for negligence is based
on the violation of a precautionary rule aimed at correctly
predicting and preventing the harmful event, as far as possible.

The presence of a written rule fulfils a dual function: it is a
guide for the technician and the scientist in the implementation of
procedures and, equally, a paradigm for the judge who can decide,
on the basis of the same set of rules, whether or not the defendant
is responsible for the event. The defendant and the judge operate
on the same set of rules and this makes it possible to limit the
distorting practice that sees the creation of precautionary rules
ex post, according to the well-known (wrong) principle of
post hoc ergo propter hoc (Giunta, 2016).

An equally important role must be given to creation of an
appropriate disclaimers accompanying the EEW service,
especially when it is used through APPs.

The main role (even not exclusive and sufficient) that
disclaimers probably have to play is to make the user aware of
technical limitations of the operation of the service offered and to
acquire their awareness and consent.

In this regard, there is much discussion on the real effect on
limiting liability, especially criminal liability, that a disclaimer can
guarantee. Even if, in the writer’s opinion, its nature appears to be
very close to the informed consent experimented in health
services (such as the acceptance of the known negative
consequences that fall within the area of permitted risk, linked
to the use of the service), we must nevertheless be very frank.

The disclaimer cannot relieve the operators and developers
from responsibility for errors or malfunctions which are
attributable to their fault and which cause damage (incorrect

TABLE 2 | Solution suggested.

• The need to provide shared and well-structured protocols describing the
service offered in its various forms

• The presence of detailed disclaimers clearly defining the limits of the service and
identifying, with equal clarity, the responsible for each segment of the service

• The enhancement of the role that must be acknowledged to the population as
the main owner of the adoption of self-protective measures

• A general reconsideration of the mandatory duties burdening on building owner
who should be required to respect the parameters of anti-seismic construction
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initial scientific data, poor maintenance, lack of supervision of the
detection equipment).

These cannot be included, just as a medical error would not be
included, in the area of permitted risk, negotiable with stakeholders.
The protection of private and public life belongs to a public rank
and it is not available to the parties’ freedom of negotiation.

Rather, as is well known, the goal on which we must put all our
efforts is not only training the population to deal with seismic risk
but also rethinking the duties relating to the compliance of
buildings with anti-seismic parameters.

About thefirst aspect, itmust bemandatory organizing awidespread
training and information campaign on seismic risk aimed at making
citizens aware of what has to be done in the event of a quake (e.g., drop,
cover and hold on) (Becker et al., 2020a; Arcieri, 2020; Catino, 2020).
And fully aware citizens are allowed or even supposed to demand safe
structures in which living and working.

No reason, not even of public finance, can further justify the
political inertia in introducing a legal duty to adapt buildings to
the anti-seismic parameters.

Italy should take inspiration from the provisions of other
Countries such as California, Mexico, Japan and Turkey.
Turkish government, in fact, after the 1999 Izmit earthquake,
launched a building and urban renewal plan with Law 6306 of
2012. This is still the largest building and urban planning project in
the world and envisages the anti-seismic adaptation or
reconstruction of almost 6.5 million vulnerable buildings. The
total investment for Turkey is of almost 410 billion euro over
15 years (see https://www.ingv.it/it/stampa-e-urp/stampa/news/
2129-all-ingv-un-seminario-sui-disastri-naturali-e-sul-piano-di-
edilizia-antisismica-della-turchia).

The undoubted complexity of the project should not exempt
our legislator from abandoning a project like this which could
overcome the Italian ancient habit to entrusting the solution of
problems to a benevolent and unavoidable fate.

When the next earthquake comes and there will be casualties,
nobody could deny, at least, a social and human responsibility
both of the Italian society and its political class, which have not

been able respectively to demand and to impose the dutiful
respect of basic safety rules.
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Application of the Modified PLUM
Method to a Dense Seismic Intensity
Network of a Local Government in
Japan: A Case Study on Tottori
Prefecture
Takao Kagawa*

Faculty of Engineering, Tottori University, Tottori, Japan

An application of the PLUM (Propagation of Local Undamped Motion) method to real-time
seismic intensity distribution from a dense seismic intensity network maintained by a local
government in Japan is demonstrated. The JMA (Japan Meteorological Agency) has
employed the PLUM method from March 2018 as a supplement to the traditional EEW
(Earthquake EarlyWarning) which requires hypocenter determination. A dense observation
network is desirable for upgrading accuracy and immediateness of EEW including the
PLUM method. Seismic intensity meters in Tottori Prefecture, Japan, are suitable for the
purpose because they have been improved to broadcast packets with peak ground
acceleration and JMA seismic intensity at every 1 s. Also, 34 seismic intensity meters are
installed in the target area while only six observation sites are used for the EEW by the JMA.
The packet data are received at Tottori University, and the modified PLUM method
considers wave propagation with damping from not only the observation points but
also all evaluating grid points at a 1 km mesh. Additionally, P-wave amplitudes in
preliminary tremors are also introduced to estimate seismic intensities from an
empirical relationship. Applying the methodology to past earthquake data, more
detailed and rapid evaluations of seismic intensity distribution are achieved. We expect
the system will be utilized for earthquake disaster mitigation measures of local
governments.

Keywords: real-time monitoring, seismic intensity network, PLUM method, attenuation, Tottori Prefecture

INTRODUCTION

Real-time shake map estimation using seismic intensity meters maintained by local governments in Japan
has been enhanced. To improving the accuracy and rapidness of the EEW (Earthquake Early Warning), a
dense observation network is desirable. Seismic intensity meters installed in all Japanese municipalities are
themost suitable equipment for this purpose, since the station installation interval is less than 5 km in some
areas. The seismic intensity meters in Tottori Prefecture have been upgraded to broadcast UDP (User
Datagram Protocol) packets with peak ground acceleration and JMA (Japan Meteorological Agency)
seismic intensity every second. At present, the system maintained by the prefecture is the only one that
broadcasts such a packet. Figure 1 shows the location of Tottori Prefecture in Japan and the layout of the 34
seismic intensity meters maintained by the prefecture. The data are received at Tottori University, Japan,
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and the PLUM (Propagation of Local Undamped Motion) method
(Hoshiba, 2013) is applied to the data for estimating JMA seismic
intensity distribution at 1 km grid points. However, in case of the 2016
Central Tottori Prefecture Earthquake, Japan, with MJMA 6.6, the
seismic intensities around the observation sites were overestimated to
use as a reference for initial response to the disaster, since the seismic
intensities are assumed to propagate without attenuation with
emphasis on issuing earlier warning at the expense of accuracy.

In this study, three additional methodologies are introduced into
the system to obtain more realistic seismic intensity distribution.

One is the introduction of attenuation in seismic intensity
propagation from observed sites, and the other is the assumption
of every 1 km grid point for seismic intensity estimation as a
secondary source point (Kagawa, 2019). The third is the usage of
vertical P-wave amplitudes for seismic intensity estimation (Ueda
et al., 2009). Using the methodologies, seismic intensity distributions
with improved accuracy and rapidness are demonstrated. Although
there are some issues such as underestimation due to the bias of the
observation point arrangement, it is possible to provide generally
good seismic intensity distribution in real time.

FIGURE 1 | Location map of Tottori Prefecture in Japan and epicenters of earthquakes handled in this study and the distribution map of 34 seismic intensity meters
maintained by Tottori Prefecture.

FIGURE 2 | Final seismic intensity distribution of the 2016 Central Tottori Prefecture Earthquake by the PLUM method with maximum values preserved.
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IMPROVEMENT OF SEISMIC INTENSITY
METERS MAINTAINED BY TOTTORI
PREFECTURE
We have improved the local seismic intensity meters in Tottori
Prefecture so that they could send 1 s packets of peak ground
acceleration and JMA seismic intensity. Since seismographs
operated by local governments are used for disaster prevention
purposes such as breaking news of seismic intensities immediately
after an earthquake, improvements should not bother their
operations. For this reason, we decided to transmit only real-
time seismic intensity calculated on site and the maximum
horizontal and vertical accelerations on the UDP. The seismic
intensity is evaluated from 2 s data that start 1 s earlier. Data from

34 sites (Figure 1) are received at Tottori University via the Tottori
Prefecture Information Highway, main line 10 Gbps and access
point 1 Gbps, and when the vertical acceleration exceeds 1 cm/s2,
and output files with timestamp and site number are generated.
There are far more seismographs available in Tottori Prefecture
than the six points of JMA observation points for EEW purpose, so
it is expected that the accuracy and rapidness will be improved.

In this study, the dataset due to the 2016 Central Tottori Prefecture
Earthquake is used as a sample data. The epicenter location is
indicated in Figure 1. All local seismic intensity meters have
operated without problems while delivering 1 s packets mentioned
above, have saved waveform records, and have stably transmitted
many aftershock data. However, the system to receive the packets and
to visualize the results was not completed at the time of the event, so
1 s packets used in this study were reproduced from the observed
waveforms.

ESTIMATION OF REAL-TIME SEISMIC
INTENSITIES

Application of the PLUM Method
First, we tried to apply the PLUM (Propagation of Local Undamped
Motion) method (Hoshiba, 2013), which is employed in EEW
operation by the JMA. Seismic intensity estimation by the PLUM
method is shown in the following equation:

I(r, t) ≈ maxi(Foi + I(ri, t − |r − ri|
V0

)) ,where|r − ri|≤V0T .

Here, I (r, t) is the estimated seismic intensity at time t and point r,
ri is the location of the ith seismic intensity meter, and Foi is the site

FIGURE 3 | Seismic intensity distribution of the 2016 Central Tottori
Prefecture Earthquake interpolated by the JMA considering the site
amplification factor (modified from the Japan Meteorological Agency, 2016b).

FIGURE 4 | Demonstration of seismic intensity propagation from a single observation site without site amplification: (A) PLUM method; (B) proposed method.
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amplification estimated from AVS30 at the point (Midorikawa
et al., 1994). Amplification at each estimating point in a 1 km
grid is given from a dataset that was used for the earthquake
damage estimation project of Tottori Prefecture (Tottori
Prefecture, 2018), but the data are based on the national
AVS30 distribution database provided by the J-SHIS map by
the NIED (National Research Institute for Earth Science and
Disaster Resilience, 2019). Assuming V0 as the S-wave velocity
and T as the lead time for estimation, i.e., howmuch the future is
predicted from the present time, the maximum seismic intensity
that can be propagated from the observation site within the
distance range of V0T is estimated considering time delay and
site amplification. In this study, V0 � 4.0 km/s is used as a
standard upper crustal S-wave velocity in the area, and lead time
T � 4 s is assumed to cover the delay due to data transmission
and data analyses. As a result, the maximum applicable distance
for seismic intensity propagation is 16 km that corresponds to
an averaged spacing of seismic intensity meters.

Figure 2 shows a final seismic intensity distribution of the
2016 Central Tottori Prefecture Earthquake (MJMA 6.6) with
maximum values preserved. The maximum JMA seismic
intensity observed was six lower, and the damage was spot
limited. Figure 3 shows the seismic intensity distribution
interpolated by the JMA considering the site amplification
factor at each estimating point. The points with JMA seismic
intensity six lower are limited, and seismic intensity four
does not cover almost the whole prefecture area. The
distribution by the PLUM method is overestimated;
however it is unavoidable since it treats wave propagation
as undamped.

The PLUM method employs undamped propagation since it
prioritizes quickness to broadcast EEW at the expense of some
accuracy of seismic intensity distribution. Our purpose is to
monitor the seismic intensity distribution more accurately and
utilize it for the disaster mitigation response immediately after the
earthquake, which is a little different from the concept of the
PLUM method.

Introduction of Damping and Secondary
Source Points
Attenuation (damping) is introduced into wave propagation to
estimate more accurate seismic intensity distribution. In addition,
all estimation points are considered as secondary sources that generate
attenuating waves with the maximum value at the observation point.
The following equation explains the methodology:

I(r, t) ≈ maxk(Fok + I(rk, t − |r − rk|
V0

)
− α|r − rk|) ,where|r − rk|≤V0T .

Here, rk is the location of the kth estimating point in 1 km
grids and Fok is the site amplification there. In the previous
equation of the PLUMmethod, the maximum seismic intensity is
selected from observation points ri that satisfy the distance
condition within V0T. On the contrary, the proposed method
searches the maximum value from all 1 km grid points rk around
the target point r. If the kth grid point is the same as an
observation point, estimation is updated with observed data
like data assimilation of several-hour weather forecasting. The
third term of the equation including a parameter α indicates
attenuation. The damping parameter α is adjusted as 0.1 through
trial and error. It means that JMA seismic intensity decreases 1.0
with distance 10 km. The result might be almost the same as the
ground-motion–based EEW (i.e., Hoshiba and Aoki, 2015), but
the methodology is simpler and values at the observation sites are
assimilated every 1 s.

Figure 4 shows demonstrations of seismic intensity
propagation from a single observation site without considering
site amplification. The left column indicates the result by the
PLUM method. At 14:07:28, three different observed values are
propagated without attenuation, and it draws three circles with
radius of 4, 8, and 12 km and is saturated with a seismic intensity
of six lower as the maximum observed seismic intensity at the site

FIGURE 5 | Same as Figure 2 but after introducing attenuation and secondary source points.
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in the bottom panel with a radius of 16 km (V0T). The timestamp in
the bottom panel indicates 40 s, but it was saturated at 14:07:33 in
reality. The right column shows the result by the proposed method.
The seismic intensity distribution at 14:07:28 is slightly attenuated,
and it propagates with attenuation farther than that of the PLUM
method. It is because every grid point works as a secondary source
point. Different color scales comparing the previous figures are used
here to see the distribution of small seismic intensity.

Figure 5 shows an application to the 2016 Central Tottori
Prefecture Earthquake. The final distribution of JMA seismic
intensity agrees well with the interpolated distribution by the
JMA in Figure 3. The intensity six lower appears as spot limited
in the coastal area, and the border of intensity four is almost the
same as the JMA interpolation. However, intensity five lower is
smaller than the JMA interpolation, especially in the southern
and western part from the source area. It is because there are few
observation points maintained by Tottori Prefecture (Figure 1).
The seismic intensity meters are installed mainly at town halls in
populated areas. They are not installed in mountain regions

around prefecture borders. Moreover, JMA and NIED
seismographs are used as substitutes for urban areas with large
population to complement the seismic intensity distribution in
Tottori Prefecture, but they are not included in the 34 sites used
for this study.

In order to quantitatively evaluate the results of the PLUM
method and the proposed method, we compared the estimated
results at observation points other than the 34 points used in this
study. They are six JMA, nine K-NET, and six KiK-net sites
maintained by the NIED. The left and right panels in Figure 6
show the results of the PLUMmethod and the proposed method,
respectively. The horizontal axis indicates the observed JMA
seismic intensities, and the vertical axis shows the estimated
values. In the panels, approximate linear lines of intercept zero
are shown with their inclination and correlation coefficients. It is
clear that the PLUM method is overestimated but the proposed
method is almost valid.

Figure 7 shows the examples of trial and error to obtain proper
attenuation parameter α � 0.1. Comparing the results with the

FIGURE 7 | Comparison of results with varying attenuation parameter α from the case of α � 0.1 in Figure 5.

FIGURE 6 | Comparison between the observed and estimated JMA seismic intensities at the sites that are maintained by other organizations: (A) PLUM method;
(B) proposed method.
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case in Figure 5, it is found that smaller attenuation case (α �
0.05) results in slight overestimation, and larger attenuation (α �
0.2) shows underestimation. The operational parameter α � 0.1
was determined through these checks, although it has not been
sufficiently quantitatively examined.

Introduction of P-Wave Amplitude
For the next approach, P-wave amplitudes are introduced for seismic
intensity estimation. The 1 s packets from seismic intensity meters
include maximum accelerations of horizontal and vertical

components. In case that vertical acceleration is larger than the
horizontal one, empirical estimation of JMA seismic intensity from
P-wave amplitude (Ueda et al., 2009) is calculated, and the value is
employed if it is larger than real-time seismic intensity observed at
the time. The relationship is shown in Figure 8 and the following
equation (Ueda et al., 2009). They used 1,570 data at 124 sites due to
55 events including the main and aftershocks of the Mid Niigata
Prefecture Earthquake in 2004 (MJMA 6.8) and the Iwate-Miyagi
Nairiku Earthquake in 2008 (MJMA 7.2). The following equation is
derived from least-squares approximation:

IJMA � 2.18 log(PGAP) + 0.77

where IJMA is the JMA seismic intensity and PGAP is the peak
ground acceleration of the vertical P wave. Both show a good
correlation, but the number of data are not enough in large
amplitude range. In this study, the maximum seismic intensity
estimated from P-wave amplitude is set for 4.5 as shown in
Figure 8.

The methodology mentioned above is applied for the 2016
Central Tottori Prefecture Earthquake. Figure 9 shows the result
under the same condition as in Figures 2, 5. The results are
almost same in their final seismic intensity distributions. The
most expecting advantage for using P-wave amplitude is its
rapidness of estimation. Figure 10 shows the comparison of
snapshots between estimation with the P wave in the right
column and without the P wave in the left column. Time 14:
07:28 of the upper line panels is the timing when the first forecast-
type EEW by the JMA (Japan Meteorological Agency, 2016a) was
broadcasted, and warning-type EEW on the third forecast was
broadcasted for general public at time 14:07:36 of the lower line
panels. Both columns show the possibility that we can grasp
realistic seismic intensity distribution as the same or faster than
current EEW in case we use the data from a denser network.

Estimation with the P wave shows faster propagation of large
seismic intensity area than that without the P wave. However, the
final estimated distribution with P wave amplitude is almost the

FIGURE 9 | Same as Figure 5 but after introducing estimation from P-wave amplitude.

FIGURE 8 | Relationship between peak ground accelerations of the
vertical P wave and observed seismic intensities (modified from Ueda et al.,
2009).
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same as that without the P wave, as compared between Figures 5,
9. The right bottom panel of Figure 10 corresponds to Figure 9.
Note that the color scale is changed from the previous figures to
grasp the situation of small seismic intensity. The scale is applied
for the following figures.

DISCUSSION

Applications for other earthquakes are shown in this section,
since the proposed methodology was found to be effective but

only for a single near-field earthquake. The location of the
additionally handled earthquakes is shown in Figure 1.

Figure 11 shows the estimated snapshot of JMA seismic
intensity distribution due to the 2018 Western Shimane
Prefecture Earthquake (MJMA 6.1) on April 9 01:32. The
shortest epicentral distance was about 50 km from the western
prefecture border. Estimation with the P wave shows faster
propagation of large seismic intensity area the same as the
2016 Central Tottori Prefecture case in Figure 10. Figure 12
shows the seismic intensity distribution interpolated by the JMA,

FIGURE 10 | Snapshots of real-time estimated seismic intensity distributions of the 2016 Central Tottori Prefecture Earthquake: estimation with the P wave (A) and
without the P wave (B).

FIGURE 11 | Same as Figure 10 but for the 2018 Western Shimane Prefecture Earthquake.
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FIGURE 13 | Same as Figure 10 but for the 2018 Northern Osaka Prefecture Earthquake.

FIGURE 12 | Seismic intensity distribution of the 2018 Western Shimane Prefecture Earthquake interpolated by the JMA considering the site amplification factor
(modified from the Japan Meteorological Agency, 2018).

FIGURE 14 | Final seismic intensity distribution of the 2021 Off Fukushima Prefecture Earthquake estimation with the P wave (A) and without the P wave (B).
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but the color scale is slightly different from that of the previous
figures. The largest JMA seismic intensity observed in the western
part of the prefecture was 4 as estimated. Although a little
overestimation is seen in large intensity area at southwest of
the prefecture, the seismic intensity distribution is generally
practical. A little underestimation is also noticed along the
Yumigahama Peninsula indicated in Figure 12. The reason is
considered to be the lack of observation points in the area, see
Figure 1.

Figure 13 is the result of the 2018 Northern Osaka
Prefecture Earthquake (MJMA 6.1) on June 18 07:58. The
shortest epicentral distance at the southeast prefecture
border was about 150 km, and the largest JMA seismic
intensity observed in the eastern part of the prefecture was
3, but 4 is estimated at the coastal area in eastern part in both
cases. It is caused by large amplification around the site where
intensity 3 was observed. The effects of P-wave amplitudes are
noticed in limited areas along the coast in central part. It is
because high-frequency amplitude in P-wave acceleration is not
large for slightly long-distance earthquake. Unfortunately, the
area is out of the range of seismic intensity distribution map
published by the JMA because the target of the map is the range
of JMA seismic intensity four or higher.

Finally, a case of long-distance earthquake is shown in Figure 14,
but only for the final distributions. The source is the 2021 Off
Fukushima Prefecture Earthquake (MJMA7.3) on February 13 23:
07. The epicentral distance is about 750 km east, and the maximum
observed JMA seismic intensity was 1. They were observed at a soft
ground area in the eastern, central, and western part of the prefecture,
as estimated in Figure 14. Estimation from P-wave amplitude does
not work on this case, and the two panels are the same. It is also
because of small acceleration due to the long-distance earthquake. The
area is also out of the range of the seismic intensity distribution map
by the JMA.

Four different types of earthquakes are treated in this study. The
first is a near-field event that caused a disaster in Tottori Prefecture,
the second is a disaster earthquake occurred in the neighboring
prefecture, the third is a slightly long-distance event in the range
of 150 km, and the fourth is a long-distance large earthquake with an
epicentral distance of 750 km. Althrough they are limited cases, the
proposedmethod seems toworkwell through the examinations so far.

It is being planned to install the methodology in a web-based
display system, and its results will be provided for municipal crisis
management for immediate response to earthquake disaster. We
would like to make improvements any time as a problem arises.

CONCLUSION

Real-time seismic intensity estimation is established using seismic
intensity meters maintained by local governments in Japan. The 34
seismic intensity meters of Tottori Prefecture were improved to
broadcast 1 s packets with real-time peak ground acceleration and
JMA seismic intensity. The modified PLUMmethod introduces wave
attenuation from all estimation points in a 1 km grid as secondary
sources. Vertical P-wave amplitude is also considered for intensity
estimation. Themethodologies were applied for four different types of
earthquakes with epicentral distance 0–750 km and JMA magnitude
range 6.1–7.3. The resultswere practical enough to estimate almost the
same intensity distribution provided by the JMAafter the earthquakes.
Also, the estimations are expected to be faster than those of EEW by
the JMA since denser seismograph network is employed for the
proposed system. We hope that such real-time seismic intensity
estimations would be widely constructed using next-generation
seismic intensity meters.
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Feasibility Study of an Earthquake
Early Warning System in Eastern
Central Italy
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Vulcanologia, Osservatorio Nazionale Terremoti, Roma, Italy

An earthquake early warning system (EEWS) is amonitoring infrastructure that allows alerting
strategic points (targets) before the arrival of strong shakingwaves during an earthquake. In a
region like Central Italy, struck by recent and historical destructive earthquakes, the
assessment of implementation of an EEWS is a significant challenge due to the
proximity of seismic sources to many potential targets, such as historical towns,
industrial plants, and hospitals. In order to understand the feasibility of an EEWS in such
an area, we developed an original method of event declaration simulation (EDS), a tool for
assessing the effectiveness of an EEWS for existing seismic networks, improving them with
new stations, and designing new networks for EEW applications. Values of the time first alert
(TFA), blind zone radius (BZ), and lead time (LT) have been estimatedwith respect to selected
targets for different network configurations in the study region. Starting from virtual sources
homogeneously arranged on regular mesh grids, the alert response was evaluated for actual
and improved seismic networks operating in the area, taking into account the effects of the
transmission and acquisition systems. In the procedure, the arrival times of the Pwave picks,
the association binder, the transmission latencies, and the computation times were used to
simulate the configuration of PRESTo EEWS, simulating both real-time and playback
elaborations of real earthquakes. The NLLOC software was used to estimate P and S
arrival times, with a local velocity model also implemented in the PRESTo EEWS. Our results
show that, although Italy’s main seismic sources are located close to urban areas, the lead
times calculated with the EDS procedure, applied to actual and to improved seismic
networks, encourage the implementation of EEWS in the study area. Considering actual
delays due to data transmission and computation time, lead times of 5–10 s were obtained
simulating real historical events striking some important targets of the region. We conclude
that EEWSs are useful tools that can contribute to protecting people from the harmful effects
of earthquakes in Italy.

Keywords: earthquakes, early warning, seismic networks, seismic risk reduction, simulation

1 INTRODUCTION

In the past twenty years, EEWSs have been implemented in different regions of the world and are
considered a useful tool to reduce seismic risk (Satriano et al., 2011b). EEWSs were developed with
different approaches, methodologies, and combining new experiences. At present, many countries
have operational or prototype EEWSs. Allen et al. (2009b) described the status of EEW in the world
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and the principal operating systems at that time. Other examples
include EEWS in Japan (Odaka et al., 2003), Taiwan (Wu and
Teng, 2002; Hsiao et al., 2009), Mexico (Suarez et al., 2009),
Turkey (Erdik et al., 2003; Alcik et al., 2009), and Romania (Böse
et al., 2007). The principal active systems are based on the
software ElarmS (Allen and Kanamori, 2003; Allen et al.,
2009a) and ShakeAlert (Kohler et al., 2020) in California, on
Virtual Seismologist in California and Switzerland (Cua et al.,
2009), in Europe (Clinton et al., 2016), and in particular PRESTo
in Italy (Iannaccone et al., 2010; Satriano et al., 2011a).

Major developments have led to two main types of systems: a
regional alert system and an on-site system (Satriano et al., 2011b;
Zollo et al., 2014). The regional system, based on the use of a
regional network that records seismic events, aims to detect,
locate, and determine the magnitude of an event starting from the
analysis of a few seconds of the first arrivals of the P waves
recorded at the stations (Picozzi, 2012). The on-site system
consists of a single sensor or more sensors near or inside the
target structure to be alerted. In this system the P-wave recordings
to the sensor are used to predict the peak ground motion at the
site (Colombelli et al., 2015). This approach could be considered
useful for sites located within the BZ of a regional EEW system,
allowing for a useful warning before the arrival of strong shaking
waves. Caruso et al. (2017) proposed a P-wave-based EEW
approach called on-site alert level (SAVE). Many studies
combined the two EEW approaches (Zollo et al., 2010;
Colombelli et al., 2012a); these systems combine local
parameters and predicted ground motions at a regional scale
to provide reliable and rapid estimates of the seismic source and
the expected damage zone (Colombelli et al., 2015).

The approaches for regional EEW can be classified as the
“point-source” (simply the source as a concentrated volume) or
“finite fault” (a more sophisticated and realistic characterization
of the source, considering the entire fault area). Most studies have
used the “point-source” demonstrating the reliability of this
approach for the magnitude estimation of small to moderate
events. However, it has been shown that this approach is not
always accurate for strong earthquakes (magnitude> 6.5–7), due
to the saturation of the P-wave parameters. Several authors (for
example, Colombelli et al., 2012b) estimated the magnitude over
time windows longer than the recorded P-wave and/or the S-wave
signal to obtain more accurate final values. These magnitude
calculations are reliable at the cost of requiring more data and
time (Velazquez et al., 2020). In our study, the selected
earthquakes have a moderate magnitude (≤ 6.5) and were
considered as point sources.

Potentially, an EEWS can produce and transmit alert
messages to different end-users to allow them to adopt
several types of safety measures in a few seconds. The main
benefits of an EEWS include public warning, first responder
mobilization, and safety of health care and utility
infrastructures, transit systems, and workplaces (Allen and
Melgar, 2019). Whereas in most cases evacuation of buildings
is unrealistic, due to the short time available to act; a portion of
the affected population can receive the alert and take safety
measures in certain types of structures and infrastructures
(Iervolino et al., 2008).

Receiving an alert message increases personal situational
awareness and yields a more rapid response, especially in well-
trained people who can take precautionary and protective actions
like “Drop-Cover-Hold on”, suspending delicate medical
procedures, or slowing down a train ride. In shaking areas, a
time of 10 s allows people to protect themselves and prepare for
evacuation (Fujinawa and Noda, 2013). A time interval of 5–7 s
could be enough to trigger automatic mitigation actions (Cauzzi
et al., 2016) at power plants, energy sector grids, and utilities
infrastructures to prevent explosions, combustions, loss of water,
flooding, fatal collisions, and elevator interruptions. Social studies
have demonstrated that receiving alert messages even a few
seconds before the shaking occurs help people to prepare and
react in the proper way (Dunn et al., 2016; Becker et al., 2020a).

The elongated shape of the Italian peninsula, combined with
the small damage area for moderate, but often destructing
Apenninic earthquakes (M6-7), determine small distances
between sources and potential EEW targets. For this reason, in
many cases the time to start safety actions may be too short.
Therefore, an evaluation of the feasibility of an EEW
implementation is needed in this area. A first theoretical
evaluation was performed by Olivieri et al. (2008) with RSN
(National Seismic Network, IV, INGV Seismological Data Center,
2006) and by Picozzi et al. (2015) using the RAN seismic network
(Italian strong motion network) managed by the National Civil
Protection (Gorini et al., 2010), whose stations are mostly not
connected in real-time.

Our study area extends for about 200 × 200 km in eastern
central Italy and is characterized by the following two main
seismic zones: 1) a NNW-SSE seismic zone elongated in the
Appennines, where several moderate to strong earthquakes have
occurred in the past and 2) a coastline-offshore seismic zone
(Figure 1a), with less frequent and on average weaker seismicity.
Figure 1b shows the target points chosen in the study compared
to the individual and composite seismogenic sources from the
DISS catalog (DISS Working Group, 2018). An individual
seismogenic source (ISS) is a simplified, three-dimensional
representation of a rectangular fault plane, whereas a
composite seismogenic source (CSS) is a simplified, three-
dimensional representation of a crustal fault containing an
unspecified number of seismogenic sources that cannot be
singled out. The area analyzed in our study is affected by
different fault systems. We select as targets the cities with at
least 40,000 inhabitants or with a significant cultural value. The
selected cities are Ancona, Pesaro, Macerata, Ascoli Piceno,
Fermo, Fabriano, Urbino, San Benedetto del Tronto,
Civitanova Marche, Senigallia, Jesi, Perugia, Foligno, and Terni
(Table 1).

In the study area, an EEWS based on PRESTo software has
been operating since 2015. The system was based on permanent
seismic networks managed by the INGV (National Institute of
Geophysics and Vulcanology) composed by different sensors:
velocimeters (short period and broad-band), high performance
accelerometers, and MEMS. The seismic network in this area
includes the RSN, a more dense local network (namely, the Alto
Tiberina Near Fault Observatory—Taboo (Chiaraluce et al.,
2014)), and some seismic stations installed for regional
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monitoring (Cattaneo et al., 2017). A first evaluation of the
performance of the EEWS was made analyzing the seismic
sequence of 2016–2017 (Festa et al., 2018). The system has
been continuously operating over the years, without changing
configuration, with some temporary interruptions.

In this work, the feasibility of a regional EEWS was evaluated
by developing a procedure of event declaration simulation (EDS)
for estimating the time useful to activate safety actions. The EDS
procedure can be used for different applications: 1) to assess the
feasibility of an EEWS in a specific area with an operating seismic
network; 2) to plan the integration of new stations into an existing
network; 3) to design a new network for an EEWS; and finally, 4)
to assess the feasibility of an EEWS varying network density and
trigger parameters. Regarding 3) and 4), the EDS can create

virtual networks for the areas of interest and allow to plan
investments and installations in advance.

The study was mainly based on the calculation of the time first
alert (TFA)—the instant in which the event is declared starting
from the coincidence of P phases at the stations, the blind zone
radius (BZ)—the area in which no safety action can be carried
out, and the lead time (LT)—the useful time to initiate safety
actions on the targets. In the paper, we first propose a description
of the method, of the parameters setting to obtain realistic
simulations, and of the EDS validation with PRESTo EEWS.
Then, an EDS application in eastern central Italy is showed,
discussing the results of the TFA, BZ, and LTmapping in terms of
feasibility and limits of the EEW implementation.

2 EVENT DECLARATION SIMULATION
METHOD

The developed EDS is composed by a chain of subroutines
including NonLinLoc modules (nonlinear location, or NLLoc;
Lomax et al., 2009) in the preparatory phase and homemade
python scripts in the core of the simulation that emulates some
parameters similar to the PRESTo software. The NLLOC package
is a well-known and widely used nonlinear inversion code,
consisting of a set of programs and where it is possible to
integrate an existing velocity model, travel-time calculation
and probabilistic solution, for visualization of 3D volume data
and location results (http://alomax.free.fr/nlloc/).

The procedure of event declaration simulation needs the
following inputs: arrival times of the P phases to the seismic
stations, arrival time of the S phases to the targets, a binding
configuration and latencies of the real-time data transmission

FIGURE 1 | Seismicity, seismic network, different fault zones, and selected targets of the study area. a) PSN20: Permanent Seismic Network in the year 2020. Blue
triangles: velocimetric sensors. Purple triangles: FBA high performance accelerometer sensors. Pink triangles: MEMS accelerometer. Black squares: 1219–2019 EQ,
moderate to strong earthquakes (M ≥ 5.5) extracted from CPTI15 database (Rovida et al., 2021). Grey circles: earthquakes recorded by the seismic network from 2010
to 2020 in the magnitude range 2.5 ≤ M ≤ 5.4. b) Pentagon: Targets. ISS: individual seismogenic source. CSS: composite seismogenic source (see text for
explanation, DISS Working Group (2018)).

TABLE 1 | Target: city code. Place: extended name of cities.

Target Place

MU_AP Ascoli Piceno
MU_TR Terni
MU_FX Foligno
MU_SB San Benedetto del Tronto
MU_FM Fermo
MU_MC Macerata
MU_FB Fabriano
MU_CM Civitanova Marche
MU_PG Perugia
MU_JE Jesi
INGV_AN Ancona INGV headquarters
MU_AN Ancona
MU_SN Senigallia
MU_UB Urbino
MU_PS Pesaro
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vectors (Figure 2). To obtain the arrival time of P and S phases, a
velocity model, a seismic network, a seismic source, and target
locations are required.

Figure 2 shows the most important steps of the simulation
procedure, exemplifying the main blocks of the procedure from
the inputs to the three outputs: TFA, BZ, and LT.

Starting from a velocity model and using the NLLoc Vel2Grid
module, it is possible to create a defined grid of velocities,
covering the volume of the study area. Then, the NLLoc
Grid2Time module calculates the travel times from node
points of the 3D velocity grid to the location of the seismic
stations. The so obtained travel times are the same in use in the
PRESTo system to locate the real seismic events.

The procedure estimates the arrival times of the P phases to
the seismic stations and arrival times of the S phases to the targets,
taking advantage of the NLLoc Time2EQ module, given the
locations of seismic stations, seismic source and targets.

In the core of the simulation, the expected TFA, BZ, and LT
are calculated starting from P and S arrival times, binder
configuration (coincidences), and data latencies (Figure 2).

The simulated parameters conceptually emulate some
parameters of the PRESTo software.

“PICK time” is defined as the time of the P phase trigger at
each seismic station, the sum of the estimated P phase arrival,
the accumulation of 1 s of P waveform for the phase picker and
the latency of the data packet. “LINK time” signs the moment
when a certain number of PICKs are included in a relative
small space and time interval and the binder declares an
association. The simulation considers a “computation time”
useful to locate the supposed event and the accumulation of 2 s
of P waveform to compute the magnitude. The “computation
time” and the time to compute the magnitude are inferred
from real-time application of the PRESTo system implemented
in the study area, collecting the log outputs relative to RTLOC

and RTMAG modules (Zollo et al., 2010; Satriano et al.,
2011b).

The integration of simulated parameters allows to calculate the
“QUAKE time” (TFA) as the needed time to declare the event,
summed to the “LINK time”. The BZ is estimated multiplying the
TFA times the average of the S velocity in the travelled volume.
Finally, the useful time (LT) to initiate actions to secure the
targets is obtained from the difference between the arrival time of
S phase at the targets and the TFA.

3 EVENT DECLARATION SIMULATION
CONFIGURATION

The aim of this work is to assess the feasibility of an EEWS in
eastern central Italy where a dense seismic network operates, and
the main characteristics of the seismicity are well-known
(Figure 1a, b). The study area is inhabited by about 2.5
million people, distributed in some main cities with
population ranging from tens of thousands up to one hundred
thousand inhabitants, and in several small historical villages
where few hundred people live. Moreover, in most of the
target towns and villages, both along the coasts and in the
inner Umbria and Marche regions, residents increase
dramatically during the summer and other vacation periods.

One of the starting points of the analysis is the velocity model
of the volume crossed by seismic waves. A grid of 300 km ×
300 km, 67 km thick, starting from 3 km above sea level was
created, that could include all the seismicity of the region. A step
of 1 km divides nodes of the grid and the central origin
geographic point is 43.25 N – 13.00 E. To make the
simulation more reliable, we chose a modified version of a
1D velocity model calculated for the region from an
instrumental earthquakes catalog (De Luca et al., 2009),

FIGURE 2 | Flow chart of the EDSmethod. Left (blue): P and S travel time calculation with NonLinLoc software modules (Lomax et al., 2009).Middle (green): P and
S arrival time relative at seismic stations and targets respectively. Right (red): input parameters and elements of the EDS core. Bottom: terms of the validation.
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preserving the Vp/Vs ratio equal to 1.85 and inserting a gradient
between velocity layers (Supplementary Table 1).

The configuration of the INGV seismic network has been
evolving over the years. From 2015, when PRESTo software was
installed for real-time monitoring and EEW testing, the number
of stations has been increasing. Moreover, during the seismic
sequence of the year 2016 (Chiaraluce et al., 2017) an emergency
temporary seismic network was installed to densify the
permanent network (Moretti et al., 2016; SISMIKO, 2020).
Therefore, we set four seismic network configurations for EDS:

- PSN15: Permanent Seismic Network of the year 2015
- TSN16: Temporary Seismic Network of the 2016 seismic
emergency (added to PSN15)

- PSN20: Permanent Seismic Network of the year 2020 (including
PSN15)

- ASN20: Accelerometric Seismic Network of the year 2020.

The PSN15 is the same network configuration implemented in
the real time PRESTo instance and contributed to validate EDS, to
estimate data latencies and test performance of the PRESTo
system in Festa et al. (2018). TSN16 was used to test the
response of the network with a significant increase of the
density of the PSN15 up to a station inter-distance of about
5 km in the epicentral area of the 2016–2017 seismic sequence.
PSN20 contributed to augment dataset of the EDS validation
comparing results with a playback instance of the PRESTo
software. The ASN20 helped to estimate the network response
if we consider only accelerometric components, corresponding to
a reduction of the network density, balanced by the certainty of
unclipped records. A list of the seismic stations belonging to each
network is inserted in Supplementary Table 2.

The EDS is also able to manage arbitrary virtual networks,
composed by scattered or equally spaced grid of stations to design
network response in uncovered areas.

Also for the sources, we can input a single seismic source or a
set of sources, scattered or equally spaced. The location of a single
source, for example, is useful to reproduce the response of the
seismic network in terms of TFA for an historical or a recent
significant event. Furthermore, for the same event, the EDS
returns LT relative to the main cities of the region. Extending
the principle to a grid of equally spaced sources, the EDS can map
the three output parameters (TFA, BZ, and LT) over the whole
region. This approach allows classifying areas characterized by
small or large TFA and BZ relative to the events’ epicenters. In
this work, for a first mapping of TFA and BZ, we choose a grid of

sources 5 km spaced at depth of 10 km. The LT was estimated for
all the selected cities (Table 1).

The number of triggered stations and the time interval for
association are the main parameters for the set of the binder, the
module that allows to declare an event. In the EDS, the binder
configuration emulates the “Binder” of PRESTo software
parameters (PRESTo, 2013). We adopt the setup used in the
real-time PRESTo instance for choosing the values of binder
parameters in the EDS (Table 2). The number of at least six
stations in coincidence (STA_CO) inside a time window of 3 s
(SEC_CO) is a good compromise between the heterogeneous
density of the seismic network and the requirement of a rapid
response of the system considered the distances of targets from
the sources. The SEC_AS parameter is set to 10 s, a value that
avoids the effect of the shift of a good location during grid search
in the playback PRESTo instance with respect to the results of the
real-time instance with SEC_AS � 15 s. The AVEL_MIN,
AVEL_MAX, VEL_SPA, VEL_DIST parameters design a cone
inside which the coincidence picks must fall.

A key factor to take into account for an EEWS is the data
latency due to the communication protocol (Satriano et al.,
2011a). The latency affects the alert times of the EEWS which
can only be activated when a good part of the data is available in
nearly true real-time. The seismic data of the stations in eastern
central Italy are transmitted by different types of transmission
vectors: TCP/IP, WiFi, GPRS/UMTS, and Satellite (SAT-LIBRA
and KA-SAT). At the time of the analysis, LTE routers were not
available. Starting from the PRESTo log files, the real latency data
for 86 seismic stations for the period 2015–2019 were collected.
The long time window of the analysis allowed in some cases to
assess the improved performance of the stations after the change
of the transmission protocol. An average value of the latency for
each type of transmission vectors was calculated by the geometric
mean to exclude outliers, that is, values significantly out of the

TABLE 2 | Configuration Parameters of the EDS binder.

Parameter Value Description

STA_CO (#) 6 Minimum number of triggered stations in the coincidence
SEC_CO (s) 3 Duration of the coincidence time window
SEC_AS (s) 10 Duration of the association window
AVEL_MIN (km/s) 3.85 Minimum apparent velocities of the coincidence picks
AVEL_MAX (km/s) 20 Maximum apparent velocities of the coincidence picks
VEL_SPA (km) 30 Distance to the first pick without apparent velocity checks
VEL_DIST (km) 120 Distance to the first pick beyond which picks are not associated

TABLE 3 | Transmission vector, mean and standard deviation of data latency, and
number of stations used for each type.

Transmission vector Latency (s) Number of. Stations

TCP/IP internet from remote stations 1.86 ± 0.15 4
TCP/IP internet from other data centers 2.25 ± 0.73 15
GSM router 2.75 ± 0.32 5
UMTS router 2.83 ± 0.96 19
WiFi backbone 2.07 ± 0.33 34
LIBRA SATELLITE system 5.90 ± 0.12 2
Ka-sat SATELLITE system 2.64 ± 0.12 7
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trend, referred to a malfunction of the station. The results of the
latency classification are listed in Table 3 with the average values
calculated and the number of stations used. Considering the main
transmission vectors used in the network of this study, it is
possible to make some considerations. As expected, the
stations with a satellite time division multiple access carrier
system (i.e., SAT-LIBRA) are those with the greatest latency
and are not good for EEW application in small areas, but in
our case few stations are equipped with this type of satellite
transmission. Instead, another satellite system (i.e., KA-SAT)
returns an average of 2.64 s, an acceptable value for EEW
applications. The TCP/IP, WiFi, and GSM/UMTS latencies
range between 1.86 and 2.83 s. The best value is for direct
connection TCP/IP from remote stations. TCP/IP connections
from other acquisition centers connected with a mixed copper-
fiber line return a slight worsening. The transmission by WiFi
backbone gives back a latency of 2.07 s, confirming suitable use
for EEW systems. The WiFi system is not a public system, but a
system dedicated to civil protection services, available thanks to
the Regione Marche authority through an agreement with INGV.
Each system used for data transmission (TCP/IP, WiFi, and
GSM/UMTS, Satellite) could suffer temporary blackout of the
communication lines. In case of a strong earthquake the
redundancy of the transmission lines used in the network
should reduce the risk of data blackout.

Besides transmission times, another important parameter for an
efficient EEWS is the computing time, defined as the difference
between the association time of the stations and the computed TFA.

During this time, in the real-time system, the location and
magnitude are estimated and the event is declared. The EDS does
not simulate the earthquake location process and the magnitude
estimate. So, the computing times inserted in our simulation are
extracted from a statistics of the real-time PRESTo instance. The

time difference between “QUAKE time” and “LINK time” was
calculated and compared on a dataset of 91 events (Supplementary
Table 3) detected in real-time by the PRESTo system and re-
simulated by EDS. The events, belonging to the INGV bulletin,
were selected fromAugust 2016 toMay 2020, withmagnitude 3.0 ≤
Mw ≤ 6.0. These events were detected by the system in real-time
for the same period in the study area. The calculation times, taken
from the system files in real-time, were distributed according to a
lognormal curve (Figure 3). The calculated values are mode equal
to 0.29 s, median equal to 0.42 s, and average 0.51 s. Following
these results, a value of 0.30 s was chosen as the average
computation time for the simulation.

4 EVENT DECLARATION SIMULATION
VALIDATION

The simulation procedure was validated comparing the first time
of the alerts (TFA) of the EDS with first “QUAKE time” of the
PRESTo instances. In the comparison with real time outputs of
the PRESTo system, the values of mean latencies belonging to
different transmission vectors are inserted in the EDS.
Differently, for the comparison with PRESTo playback
outputs, a zero latency was set in EDS. These two approaches
help to increase the reliability of the validation, excluding that
results are affected by a bad estimate of the latencies.

Figure 4 shows a detail of the processing of Mw 5.4 October
26, 2016 event and the comparison of arrival times relative to P
phases of the triggered stations, the TFA and the arrival of S
phases useful to calculate the LT at the target INGV_AN in the
city of Ancona (epicentral distance 88 km). The black marks
represent an operator review of the P phases at the triggered
stations and the S phase at the target station (cT0). The black

FIGURE 3 | Statistic of the computation time values.
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point represents the origin time of the located event, taken into
account for the EDS test. The red marks are relative to PRESTo
instances (cT1, cT3), while the blue marks are relative to EDS
(cT2, cT4, cT5).

The arrival times of operator reviewed P phases are lesser than
the PRESTo and EDS real time tests where the data latencies are
present. The reviewed arrival time is more similar for the tests in
playback where zero latency is setting up but a 1 s of P waveform
analysis remains.

The comparison of the TFA between PRESTo and EDS is very
good for the two approaches, that is, real-time (cT1 vs cT2) and
playback (cT3 vs cT4). The effect of the data latencies in the real
time case imply a delay of about 3 s of the TFA with respect to the
last P phase arrival time of the human reviewed case. This result is
coherent with the values of the mean latencies calculated for the
different transmission protocol ranging between 2 and 3 s inserted
in the test, and 1 s needed to process the P waveform. The playback
version of the test return a little early TFA respect to the last
reviewed P phase, both for PRESTo and EDS, but the difference is
small, 0.7 and 0.4 s respectively. Finally, the EDS allows to estimate
a theoretical TFA adding emergency temporary seismic stations,
active in epicentral area at the time of the earthquake, and stations
data latencies (cT5). The effect on TFA is about 1 s of the advance
respect the PRESTo real-time case (cT1), simply for the early
achievement of the station coincidence determined by an
augmented network density in the epicentral area. The values of
S phase arrival times of PRESTo and EDS are coherent thanks to
the same modeling of velocity volume used for travel time
computation. From the good simulation of the TFA and S
phase arrival at the target by EDS, a good estimate of the LT follows.

For a general validation of the TFA estimated with EDS, we
selected 20 seismic events with 3.0 ≤Mw ≤ 6.5, all elaborated also
by PRESTo playback instance and 16 events by real-time instance.
The selected events are scattered over the study area and over
time, with the aim to insert in these tests different and
unfavorable states of the network in terms of station inter-
distances. The events belong to a time window from August

24, 2016, to January 28, 2020, with the hypocentral depth between
6.8 and 33.3 km (Supplementary Table 4). The time window
includes some major events of the 2016 Central Italy sequence,
located in the southern sector of the region, while the other events
were chosen in order to perform tests in the northern part of the
region.

Table 4 summarizes the results of EDS estimates of TFA
compared with real-time and playback PRESTo instances
obtained by setting up the PSN15 configuration network.
Moreover, the playback configuration (zero latency) was used
to return a TFA mean difference, adding PSN16 emergency
temporary station data relative to 2016–2017 events and the
PSN20 network configuration for more recent events.

The TFA validation results return mean values lower than
1.0 s. The negative sign indicates an early TFA of the EDS,
ascribable to non-simulation of the recursive recalculation of
the location and magnitude that occurs in some real cases
(PRESTo system) with the arrival of new data. The results of
PSN15 real-time and playback cases (validation test 1 and 2) are
similar, confirming a reliable simulation for both data latencies
and station triggering, respectively. The last case (validation test
3) takes advantage of using 2016 temporary stations and latest
installed stations, therefore the network density augmented in a
part of analysis. The third test shows a better result, reducing the
mean and the uncertainty of TFA difference.

The success of the EDS validation tests allows to perform
simulations useful to quantify the EEW response of the actual
seismic networks operating in eastern central Italy and to
estimate the LT for the main cities in the region.

5 EVENT DECLARATION SIMULATION
APPLICATIONS, RESULTS AND
DISCUSSION
The EDS was developed to evaluate the EEW response of INGV
seismic network in eastern central Italy in terms of TFA, BZ, and

FIGURE 4 | Comparison of arrival times relative to Mw 5.4 October 26, 2016 earthquake. Circles: Origin Time. Diamonds: P phase arrival times of the triggered
stations. Squares: TFA. Triangles: S phase arrival times at INGV_AN target in city of Ancona (88 km epicentral distance). cT0: arrival times of human event revision. cT1:
PRESTo real time instance with PSN15. cT2: EDS with real latency and with PSN15. cT3: PRESTo playback instance with PSN15 and TSN16. cT4: EDS with zero
latency and PSN15 + TSN16. cT5: EDS with real latency with PSN15 + TSN16.
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TABLE 4 | Results of the TFA comparison relative to real time and in playback PRESTo instances.

Validation test Network configuration PRESTo instance TFA diff (EDS-PRESTo)

1 PSN15 Real time −0.80 ± 1.15 s
2 PSN15 Playback −0.95 ± 1.43 s
3 PSN20 + TSN16 Playback −0.42 ± 0.72 s

TABLE 5 | Results of tests with single source and different network configurations.

Single source test Network configuration Time first alert (s) Blind
zone radius (km)

SST1 PSN15 8.7 26.5
SST2 PSN15 + TSN16 6.3 18.3
SST3 ASN20 9.8 31.4
SST4 VIRT5KM 6.9 20.5

FIGURE 5 | EDS of the EEW response relative to a single source. Yellow star: location of the Mw 6.0 August 24, 2016 earthquake. Gray circle: Blind Zone.
Pentagon: Targets. Legend: color map of the LT (s) linked to the targets. (A) SST1 test. Red triangles: PSN15 network. (B) SST2 test. Red triangles: PSN15 network;
green triangles: TSN16. (C) SST3 test. Purple triangles: ASN20. (D) SST4 test. Blue triangles: 5 km inter-distance virtual network.
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LD, but it is useful also to reproduce and design the feasibility of
the system in different or not yet monitored areas.

The first possible application allowed by EDS is the response of
a seismic network relative to one single seismic event with the aim
of assessing LT for a set of targets.

Considering the hypocentral location of the Mw 6.0 August 24,
2016, event, we have simulated the response of four network
configurations (Table 5), assessing the LT for the main cities of
the study area (Figure 5). During the analysis, the calculation of the
BZ is performed bymultiplying the TFA by the average Vs estimated
at the last station useful for coincidence. The TFA value is calculated
as the arrival time of the P wave at the last station, added to the
latency value and the estimated computing time of the system. Vs is
calculated as the product of mean Vp at the last station for
coincidence by the ratio Vs/Vp (De Luca et al., 2009, reported in
Supplementary Table 1). In the first test (SST1), we used the PSN15
seismic network, the existing network at the time of the event. The
second test (SST2) was performed inserting all stations of the TSN16,
simulating the presence of the whole emergency network. This
temporary seismic network was installed after the earthquake of
August 24, 2016. The third test (SST3) represents the unfavorable
case of a network consisting of only the current accelerometric
INGV stations (ASN20). The last test (SST4) is an example of the
design of a virtual arbitrary seismic network with the station inter-
distance of 5 km. The calculated mean latency was associated to the
PSN15 stations used for the latency statistics, a 2.75 s GSM/UMTS
mean latency was associated to the TSN16 stations, and the mean
latency was associated at new stations not present in PSN15,
depending on their transmission vector. The virtual network with
the inter-distance of 5 km was designed like a GSM/UMTS network
and a mean latency of 2.75 s was applied to all virtual stations.

The network response in terms of TFA varies in dependence of
the seismic station distribution and of network density around
the epicentral area (Figure 5). The addition of TSN16 to PSN15
around the seismic event causes a reduction of TFA from 8.7 to
6.3 s (gain of 2.4 s) and a reduction of the blind zone (BZ) radius
from 26.5 to 18.3 km (Table 5). In the third case, the sparse

distribution of the accelerometric stations around the epicentral
area causes a worsening of the network response with respect to
the other two tests and TFA and BZ jump to 9.8 s and 31.4 km
respectively. In the SST3 test, the MU_AP target has not safely
time for activate protection actions, being on the BZ border, and
MU_SB, MU_FX, and MU_TR targets have less than 10 s of LT
(Figure 5C and Table 6). The sample SST4 returns similar values
of the SST2 test (Table 5 and Table 6), strengthening the idea that
the EDS can represent a tool for design an improvement of the
EEWS starting from an existent seismic network or a new EEWS
imaging an entirely new network in uncovered areas.

The EDS is also a tool to map the TFA, BZ, and LT over the
territory. Indeed, it is possible to configure the procedure
including a set of sources, every combined with a TFA and a
BZ value. Moreover, it is possible to obtain LT linked to each
epicentral location referred to a single target.

The example to explain the use of EDS to mapping EEW
parameters is showed in Figure 6, where the PSN20 is applied. In
the left column, a set of locations referred to the main historical
seismic events of Mw ≥ 5.5 from 1269 to 2017 AD that hit the
region is presented (Figure 6A), extracted from CPTI15 catalog
(Rovida et al., 2021). In the right column, a grid of sources with
inter-distance of 5 km, depth of 10 km and covering the whole
region is depicted (Figure 6B). The example of historical events
answers the question of which TFA and BZ would occur with the
actual seismic network if seismic events repeat in the same
locations. Each historical epicentral location is mapped in
terms of TFA and BZ (Figures 6C, E). Smaller TFA (red
points) are mapped where the network is denser in inland
areas at the center of the network. For southern inland events
and coastal events (yellow dots), the EEWS provides less
protection which is significantly reduced for northern events
(green dots) where TFA greater than 10 s results in BZ with a
radius greater than 30 km.

The same principle can be extended to the whole territory,
mapping TFA (Figure 6D), and BZ (Figure 6F) with the grid of
sources. The map of the TFA depicts the edges of the areas within
which, if a seismic event occurs, the EEWS responds with a TFA
threshold. In particular, for the eastern part of central Italy, with
the actual INGV network, an EEWS could produce TFA less than
7.5 s for a large inland area that includes part of the most active
seismic zones. Around the Adriatic coast, the seismic network is
less dense and an earthquake that occurs off-shore is out of the
network. Therefore, the coastal and off-shore TFAs are shorter
than those in the inland zones. Besides, the elongated distribution
of the seismic stations next to the coast could cause bad locations
and estimate of the magnitude by the EEWS, worsening even
more the protection provided by the alarm. Also, the northern
part of the region is lacking stations and the resulting TFA are
similar to the off-shore values. For the largest part of the region, a
BZ ranging between 20 and 30 km from the epicenter would not
be protected by a warning. The BZ radius increases up to over
30–40 km for the off-shore locations and the EEW system could
not produce a TFA for coastal cities. To overcome this problem,
offshore seismometers would be extremely useful.

The EDS allows exporting results of the TFA values to map LT
referred to a single target. The LT map helps to link places of

TABLE 6 | Results of LT for selected targets. Target: city code. Place: extended
name of cities. LT: Values of LT in seconds referred to the test in Table 4.

Target LT (s)

SST1 SST2 SST3 SST4

MU_AP 2.2 4.6 1.2 4.0
MU_TR 7.4 9.8 6.4 9.2
MU_FX 7.9 10.3 6.8 9.7
MU_SB 10.1 12.5 9.0 11.8
MU_FM 11.6 14.0 10.5 13.4
MU_MC 12.9 15.3 11.9 14.7
MU_FB 14.8 17.2 13.7 16.5
MU_CM 15.7 18.1 14.6 17.4
MU_PG 17.0 19.4 16.0 18.8
MU_JE 19.5 21.9 18.5 21.3
INGV_AN 22.7 25.1 21.6 24.5
MU_AN 23.3 25.7 22.2 25.0
MU_SN 25.6 28.0 24.6 27.4
MU_UB 29.0 31.4 27.9 30.7
MU_PS 32.6 35.0 31.5 34.4
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hypothetical epicenters and the time available for safety actions at
the target. For example, the map in Figure 7 shows the LT
available for the city of Fabriano (in particular for the location of
the city Hall, MU_FB target). The color map shows the values of

LT in equally spaced sources, located at 10 km depth. The black
dots limit the epicenters for which the city of Fabriano falls in the
BZ. Indeed, in this zone the LT is negative (≤0 s). The area
marked with red dots corresponds to a 0 s < LT ≤ 5 s where an

FIGURE 6 | TFA and BZ mapping. (A): historical events from CPTI15 v3.0 Mw ≥ 5.5 from1269 to 2017 AD, depth 10 km before 1997. (B): virtual grid of sources
distant of 5 km and depth of 10 km. (C): mapping of TFA with historical events. (D): mapping of TFA with virtual grid. (E): mapping of BZ with historical events. (F):
mapping of BZ with virtual grid.
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alarm could be provided but security actions are unlikely. In the
orange area (5 s < LT ≤ 10 s) triggering automatic actions would
be possible (Cauzzi et al., 2016). Besides the orange area (LT >
10 s), trained people can take precautionary and protective
actions (Fujinawa and Noda, 2013) and the probability of a
successful alert increases significantly (Becker et al., 2020b).

This argument makes sense in particular for those earthquakes
that could damage the target. Therefore, the destructive
earthquakes for the city of Fabriano, extracted from CPTI15
catalog (Rovida et al., 2021), overlap the LT map in Figure 7.
Clearly, most of the events fall in black and red areas, since the
MU_FB target is placed close to the inland active seismic zone
(Figure 1) and the EEWS would be almost useless. However,
some historical events that caused damages with a macroseismic
intensity from five to six to 7, fall in the orange area where
automatic actions are possible. For the southernmost event (Mw
6.5 on October 30, 2016), an EEWS could have provided an alert
10 s before the arrival of the first S seismic waves to the city of
Fabriano, a good LT to take several safety actions.

6 CONCLUSION

The feasibility of an EEWS derives from the design of a seismic
network with respect to the seismic sources located within or
around it. EEWSs are today an effective contribution to the

problem of seismic risk mitigation, but few countries have
operational systems (Satriano et al., 2011b). Implementation of
EEWSs in Italy is a challenge. Italy is an elongated peninsula, with
its central part crossed by a mountain chain that is seismically
active and runs very close to urbanized areas. Therefore, the
simulations of seismic networks contribute in the field of
territorial safety by identifying the time in which some types
of protection actions could be activated.

In this work, we have developed a simulation procedure
(EDS), useful to estimate the feasibility of an EEWS and
showed some applications in eastern central Italy, where
INGV manages a dense seismic network. A validation process
was performed by comparing results of simulations with real-
time and playback instances of the EEW PRESTo system
implemented in the same region (Festa et al., 2018).

EDS is a tool to simulate different seismic network responses
reproducing the physical contest of a specific historical or recent
earthquake; moreover, EDS is a tool to map EEW parameters
(TFA, BZ, and LT) to classify the whole territory in terms of areas
where it is possible to activate safety actions. With EDS, it is
possible to model real seismic networks inserting actual or
theoretical data latencies due to different transmission vectors
and to design new seismic networks in uncovered areas.

As expected, the results of the EDS application in eastern
central Italy highlights short, but still useful, alert times for
innermost land and coastal areas overlooking the active

FIGURE 7 | LT mapping for city of Fabriano and historical destructive earthquake. Blue pentagon: place of city of Fabriano (MU_FB target). Colored circles: values
of LT in seconds. Squares: CPTI15 v3.0 historical earthquakes and macroseismic intensity (DBMI15 v3.0, Locati et al., 2021) estimated for the city of Fabriano.
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seismic zones. However, we have shown that most of the
currently used transmission vectors have latencies between 2
and 3 s, an acceptable value for seismic early warnings. The
quantitative estimate of TFA, BZ, and LT supplies useful
information to project an improvement of the EEWS with the
aim to reduce as much as possible the TFA. Modern approaches
include the use of low-cost sensors for a greater diffusion of the
seismic monitoring throughout the territory, and the
development of networks oriented toward smart cities using
fast protocols and connectivity (Ladina et al., 2016; Pierleoni
et al., 2018; D’Alessandro et al., 2019). In the area of the 2016
Central Italy sequence, we have estimated a gain of about 2.5 s of
LT, adding the 2016 emergency temporary stations (station inter-
distance about 5 km) over the permanent network, with a data
latency similar to GPRS connections. The result was repeated
setting a virtual network in a station grid with a constant inter-
distance of 5 km and a mean data latency of 2.6 s to demonstrate
the ability to project an EEWS in uncovered areas and to obtain
realistic times of the first alert.

Although the Italian territory is mostly characterized by
seismic sources next to urbanized areas, the lead times
calculated with EDS procedure encourage the opportunity of
implementing an EEWS for several interesting targets. Simulating
historical events, a LT between 5 and 10 s was reproduced for
some of these targets. We conclude that automatic safety actions,
situational awareness and a more rapid response by well-trained
people are a realistic goal in eastern central Italy.

We are aware that the study presented here has some
limitations, first of all the system performance is evaluated
analyzing mainly the rapidity of an EWS, whereas no
evaluation assessment is made on the reliability of the
earthquake impact prediction. This implies that the evaluation
of the shaking could be inaccurate or even lead to false or missed
alerts. However, the goal of our analysis was to determine whether
an EWS could be a viable solution to reduce seismic exposure in
certain regions of Italy, and in which conditions (network
geometry, transmission times, etc.). Our results are
encouraging provided that some technological issues are
considered and that people’s awareness of seismic risk is
increased. Further studies will be dedicated to a more
thorough assessment of EWS.

The development of a widespread monitoring infrastructure
near the main seismic sources, the massive training of citizens,

and the collaboration with civil protection authorities could
improve the scenarios simulated in this work, making an
EEWS really effective in protecting people from the harmful
effects of earthquakes in Italy.
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Four Years of Earthquake Early
Warning in Southern Iberia: 2016–2019
Marta Carranza1, Maurizio Mattesini 2,3, Elisa Buforn2,3*, Aldo Zollo4 and Irene Torrego2

1Instituto Geográfico Nacional, Madrid, Spain, 2Departamento de Física de la Tierra y Astrofísica, Universidad Complutense de
Madrid, Madrid, Spain, 3Instituto de Geociencias (UCM-CSIC), Facultad de Ciencias Físicas, Madrid, Spain, 4Dipartimento di
Fisica Ettore Pancini, Universitá Federico II, Naples, Italy

The performance of an earthquake early warning system (EEWS) for southern Iberia during
the period of 2016–2019 is analyzed. The software PRESTo (PRobabilistic and
Evolutionary early warning SysTem; the University of Naples Federico II, Italy) operating
at the Universidad Complutense de Madrid has detected 728 events (2 < Mw < 6.3), with
680 earthquakes occurring in southern Iberia. Differences between the EEWS origin time
and epicenter and those of the Instituto Geográfico Nacional (IGN) catalog are less than 2 s
and 20 km, respectively, for 70% of the detected earthquakes. The main differences
correspond to the EEWS magnitude that is underestimated for earthquakes that occurred
at the west of the Gibraltar Strait (Mw differences larger than 0.3 for 70%). To solve this
problem, several relationships have been tested, and a modification to those that currently
use PRESTo is proposed. Other improvements, such as to densify the network or to use
3D Earth models, are proposed to decrease the time needed to issue the alert and avoid
the false alerts (19 events over a total of 728 events). The EEWS has estimated the depth
for 680 events and compared to those from the IGN (491 events). The performance of
PRESTo during the 2020–2021 Granada swarm is analyzed. The hypocentral locations for
the three largest earthquakes are close to those from the IGN (differences from 1 to 7 km
for the epicenter and 0 s for the time origin), although there are some differences in their
magnitude estimations that varies from 0.2 to 0.5. The PRESTo first times are 17, 25, and
41 s after the origin time. This study shows that the actual PRESTo EEWS configured for
the southern Iberia may generate effective warnings despite the low seismicity rate in this
region. To decrease the warning time, the geometry and density of the seismic network
must be improved together with the use of 3D Earth models and on-site system
approaches.

Keywords: EEWS, southern Iberia, magnitude, Granada 2020–21 swarm, PRESTo

INTRODUCTION

Many large earthquakes have occurred in southern Iberia, located at the plate boundary between
Eurasia and Africa, some of which caused severe damage and generated devastating tsunamis [Lisbon
1755, Imax � X; Saint Vincent Cape (SVC), 1969 Mw � 7.8; Boumerdes 2003, Mw � 6.8; Figure 1].
The 20th century has not been very seismically active, with a deficit of large earthquakes (Buforn
et al., 2015). During the period 2000–2020, three moderate earthquakes (5.0 < Mw < 6.5) have
occurred in this region, resulting in serious damage: the 2004 Al Hoceima, Morocco (Mw � 6.4, Ait
Brahim et al., 2004), and the 2011 Lorca, Spain (Mw � 5.1, Morales et al., 2014), or social alarm, such
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as the one observed in the 2016 Alboran Sea (Mw � 6.4, Buforn
et al., 2017; Stich et al., 2020). To mitigate the damage generated
by earthquakes in the region, the Universidad Complutense de
Madrid (UCM) has led two projects to study the feasibility of an
earthquake early warning system (EEWS) in the region, namely,
the ALERTES (2011–2013) and the ALERTES-RIM (2014–2016)
projects, with the participation of the Real Instituto y
Observatorio de la Armada, San Fernando (ROA), and the
Institut Geologic de Catalunya (IGC, actually ICGC) (Buforn
et al., 2016; Carranza et al., 2017).

The aim of an EEWS is to provide warnings within a few
seconds after the occurrence of an earthquake prior to the arrival
of the strong shaking, S-wave, at a target site. An EEWS uses data
from a seismic network, together with the implementation of an
algorithm capable of performing a real-time analysis of
seismograms through telemetry, to determine the location,
origin time, and magnitude. From the first few seconds of
signal receipt, generally 3 s, the system ideally generates a
warning before the arrival of the S wave motion at a target
location (Wu and Kanamori, 2005; Zollo et al., 2010).

The elapsed time between the warning and the S-wave arrival,
known as the lead time, is the time available to take actions
designed to reduce the damage. However, there is a region known
as the blind zone in which the S-wave arrives before the warning
is issued (Satriano et al., 2011). The EEWS estimates the

earthquake magnitude from several alert parameters obtained
from the first seconds of the P-wave. The basic hypothesis is that
these parameters provide enough information about the size of
the earthquake (Wu and Kanamori, 2005; Zollo et al., 2006).
Typically, EEWSs have two different configurations: a regional
configuration, where the seismic network is located between the
epicenter and the targets to trigger a warning, or an on-site
configuration, in which the stations are located at the target site of
the warning. These two configurations can be integrated into the
same EEWS, which is especially useful in regions with more than
one seismogenic zone, such as southern Iberia (Zollo et al., 2010).

Since 2011, the ALERTES and ALERTES-RIM projects have
allowed us to study the feasibility of establishing an EEWS in the
Ibero–Maghrebian region (IMR) that encloses southern Iberia
and northern Morocco and Algeria. Carranza et al. (2013)
obtained the relationships for the IMR that correlate the alert
parameters Pd and τc with the magnitude and the peak ground
velocity, respectively. Pazos et al. (2015) tested the performance of
three different software platforms (Earthworm, SeisComP3, and
PRESTo) during the simulation of four representative
earthquakes that occurred in SW Iberia. In October 2015, an
EEWS based on PRESTo software (Probabilistic and
Evolutionary early warning SysTem, Satriano et al., 2011;
Zollo et al., 2016) was installed at the Universidad
Complutense of Madrid (Spain). Carranza et al. (2017) have

FIGURE 1 | Seismicity of the Ibero–Maghrebian Region for the period of 2000–2019 (M ≥ 3.0) taken from the IGN catalog (https://www.ign.es/web/ign/portal/sis-
catalogo-terremotos). Red circles correspond to shallow earthquakes (h < 40 km), green to intermediate depths (40 < h < 150 km), and blue to deep events
(h > 150 km). Stars show the epicenters of large or recent earthquakes. SG � Strait of Gibraltar, SVC � Saint Vincent Cape, GC � Gulf of Cadiz, AS � Alboran Sea, and
GR � Granada.
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analyzed the first five months (October 2015–February 2016) of
the system’s real-time performance, discussing the hypocentral
location and the magnitude obtained by the EEWS in comparison
with the values provided by the Instituto Geográfico Nacional
(IGN). These authors have included a detailed study of lead times
provided by PRESTo for the 2016 Alboran Sea earthquakes and
the 2016 southwest SVC (Mw 4.5) earthquakes.

In this article, we discuss the performance of PRESTo in the
IMR for the period of 2016–2020. An important point of this
study is to check the performance of an EEWS in a region of
moderate magnitude earthquakes where large shocks are
separated by long time intervals and where for the studied
period, 2016–2019, only one shock has Mw � 6.4. To improve
the PRESTo results, we tested different relationships to obtain the
magnitude and possible modifications to the EEWS. In this study,
we also discuss the PRESTo performance during the recent
seismic sequence in Granada, where a swarm of earthquakes
(more than 1900 small events, M < 3.0 and 31 earthquakes with
3.0 > M > 4.5) occurred from December 2020 to mid-
February 2021.

THE EEWS AT THE IBERO–MAGHREBIAN
REGION

The EEWS was configured for a part of the IMR boundary box
32.7°N to 40.75°N and 11.47°W to 4.3°E (Figure 1) using a 2-km ×
2-km grid. The PRESTo platform (Satriano et al., 2011; www.
prestoews.org) developed by the RISSC Lab (the Experimental
and Computational Seismology Laboratory of the Physics
Department at the University of Naples Federico II, Naples,

Italy) was installed on a Linux machine at the Universidad
Complutense of Madrid (Dept. Física de la Tierra y
Astrofísica). This software uses a regional approach where the
seismic stations are deployed around the source region and the
targets to protect, and its configuration has been adapted to the
characteristics of IMR (for further details, see Carranza, 2016;
Carranza et al., 2013, Carranza et al., 2017). The SeisComP3
software package and the SeedLink communication protocol are
used to continuously receive the real-time signal of the stations,
39 velocity broadband seismic stations installed in the IMR: 26
from the Instituto Geográfico Nacional (IGN, https://doi.org/10.
7914/SN/ES), 13 from the Western Mediterranean network
(WM, https://doi.org/10.14470/JZ581150), and 2 from the
Instituto Português do Mar e da Atmosfera (IPMA, https://
doi.org/10.7914/SN/PM) network (Figure 2).

The regional velocity grid model used for determining the
hypocentral locations was generated from the NonLinLoc
software package (Lomax et al., 2009). It is derived from the
1D velocity model used by the IGN catalog (Carreño et al., 2003).
Our EEWS declares an event when a minimum of five stations are
triggered. The maximum standby time, defined as the time which
the EEWS is waiting for a fifth station detecting the earthquake
since the first detection, is set to 45 s. All the arrivals detected
within 3 min, after the first pick, are associated with the same
event. Once the earthquake’s hypocenter is located, PRESTo
measures the de Pd parameter in the first 2 and 4 s of the P
wave (previously integrated and filtered with a two-pole high-
pass Butterworth filter with a corner frequency of 0.075 Hz). The
magnitude is estimated from the empirical relationship proposed
by Carranza et al. (2017) for the IMR and normalized to a
reference distance of 10 km

FIGURE 2 | PRESTo receiving stations. Black squares � IGN, red � WM, blue � IPMA stations. SVC � Saint Vincent Cape; GC � Gulf of Cadiz; SG � Strait of
Gibraltar; and AS � Alboran Sea.
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Mw � logPd + 8.35 + 1.70 log(R/10)
1.02

. (1)

Here, Pd (peak ground displacement) is in cm and R is the
hypocentral distance in km. The parameters calculated by
PRESTo are updated as more stations detect the earthquake,
up to 40 s after the first assessment. An alert is given for
magnitudes larger than 5, and then an email is sent to some
selected users. We have fixed this Mw threshold because
earthquakes with such a magnitude have produced economic
losses and human victims (the 2011 Lorca Mw � 5.1 earthquake).

We have also studied the time needed to issue the first warning
after the origin time. The alert time can be affected by delays in
the data transmission between the seismic stations and the
reception center. This time delay (Δt) is estimated as the
difference between the theoretical fastest alert and the
observed alert time. The theoretical fastest alert is obtained as
the time at the fifth station detecting the earthquake plus a 3-s
window for measuring Pd.

Data and Results
The PRESTo software installed at UCM began its operations on
October 9, 2015, and 768 earthquakes were detected until

December 31, 2019. In that study, we analyzed the results
from January 1, 2016, to December 31, 2019. Figure 3A shows
the cumulative number of events detected by the EEWS versus
time. Nearly half were detected in 2016 due to an increase in the
seismicity of the region caused by the Alboran Sea seismic
sequence (main shock January 25, Mw � 6.4). Since 2017, the
seismicity has decreased, and the number of detected events is
similar to that before 2016.

For the period 2016–2019, PRESTo detected 728 events, of
which 680 (93.4%) corresponded to earthquakes located inside
the IMR (Figure 3B and 2.0 < Mw < 6.3). We carried out a
comparison of our results with the hypocentral locations and
magnitudes obtained by the IGN. Previously, we homogenized
the magnitudes estimated by the IGN toMw using different scales
(Carranza et al., 2013; Cabañas et al., 2015).

In Figure 3C, the distribution of epicenters located by
PRESTo is represented by red circles, while white circles are
the epicenters located by the IGN and not detected by the
EEWS. We observe that the most undetected earthquakes
occurred in northern Algeria, where the EEWS is not
configured due to the lack of seismic stations (Figure 2),
northern Morocco, where only few stations are available, or
in the SVC-GC region that is characterized by offshore

FIGURE 3 | (A)Cumulative number of earthquakes detected by PRESTo fromOctober 2015 to December 2019. (B) Epicenters detected by PRESTO from 2016 to
2019. (C)Comparison between the epicenters detected by PRESTo and IGN (in red) and only by IGN (white). (D) PRESTo false detections (black squares), explosions in
mines (stars), or lost earthquakes (triangles). Acronyms same as those in Panel 1.
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epicenters. For the detected earthquakes, the EEWS has
obtained similar magnitudes and epicenters of the IGN
(differences on a median are less than 0.3 and 12 km,
respectively). When moving to the western side of the
Gibraltar Strait, the number of earthquakes detected by the
system is lower than the number of IGN locations, and in
general, the PRESTo hypocenters are deeper. In northern
Algeria, the number of earthquakes detected by EEWS is less
(27%) than that of the IGN; however, we must remember that
PRESTo has not been configured for Algeria.

The EEWS also detected seven events that correspond to mine
explosions, and nineteen were false detections corresponding to
teleseismic events with an Mw larger than 5.0. Six of these false
detections are earthquakes that occurred outside the network and
were located by PRESTo at the border region with an azimuth
(that varies from 6° to 10°) roughly corresponding to the real
azimuth. Seven false detections were large teleseismic earthquakes
(6.0 <Mw < 7.1) that occurred at intermediate depths (50 km < h
< 300 km) or very deep depths (h � 500 km), such as those in
Argentina or the Flores Sea. The percentage of false detections is

FIGURE 4 | Comparison between IGN and PRESTo final estimations: (A) difference on origin time, (B) epicenter, (C) on depth, (D) on Mw, (E) PRESTo first time
estimation, and (F) the operational latency. Red bars correspond to earthquakes located in the western Strait of Gibraltar, and blue bars correspond to earthquakes
located in the eastern Strait of Gibraltar (SG).
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rather low, 2.6% (19 events over a total of 728), and the Mw

estimated by PRESTo for the 19 false detections varies from 2.5 to
4.7, which is lower than the magnitude’s threshold used to
generate an alert (M � 5). Twenty-two earthquakes occurred
in other zones of the Iberian Peninsula or in the Atlantic Ocean
(Figure 3D). This means that 6.6% of the detected events
correspond to false detections.

In Figure 4, we show the comparison of the PRESTo results
and IGN locations plotting the difference between the IGN- and
PRESTo-estimated parameters. We plotted the results for the
region east of the Gibraltar Strait (EGS) earthquakes (536 events)
in blue and those to the west of the Gibraltar Strait (WGE)
earthquakes (144 events) in red.

The final PRESTo origin time estimation has a difference less
than or equal to 2 s for 69% of the events, which increases up to
88% for differences lower than 5 s (Figure 4A). No significant
difference was identified between theWGS and EGS earthquakes.
For the WGS events, only one had a time difference larger than
20 s (33 s). For the EGS region, 17 earthquakes (less than 3%) had
time differences larger than 20 s. Of them, 7 occurred in Algeria
(3.8 <Mw < 4.6), 4 were part of a swarm that occurred in Jaen at
the northern border of the EEWS region (Mw > 3.5), and PRESTo
wrongly located earthquakes in the Balearic Islands. Finally, and
six earthquakes occurred in Murcia or Alicante (eastern border of
the EEWS region).

The difference in the modulus of the epicentral location
(Figure 4B) is lower than 20 km for 70% of the EEWS-
detected earthquakes, and there is no difference for WSG and
ESG earthquakes. Five earthquakes have differences ranging from
600 to 880 km, which corresponds to earthquakes incorrectly
located in the Balearic Islands and with time differences larger
than 20 s. These differences in the location and, consequently, the
magnitude may be due to the area coverage by the grid, which is
relatively large.

The comparison of focal depth could only be carried out for
491 over a total of 680 earthquakes due to the lack of this
parameter in the IGN estimations (Figure 4C). For some
events with a focus offshore in the WGS region, the IGN
either estimates the depth or it needs to use a fixed depth
value. As a general tendency, PRESTo has obtained deeper
foci than the IGN. While 75% of the EGS earthquakes have
depth differences less than 20 km, this percentage suddenly
decreases to 44% for the WGS events.

Differences in Mw estimated by PRESTo and IGN are shown
in Figure 4D. There is a different behavior between WGS
earthquakes, most of which have positive values and negative
EGS values. For 55.0% of the EGS earthquakes, the Mw difference
is less than or equal to 0.3, and the distribution has a larger
dispersion moving toward negative values. For the WSG events,
70% have an Mw difference larger than 0.3, and the distribution is
displaced to positive values and centered on 0.5 s. If we assume
that the IGN magnitudes are correct (which is not necessarily
true), then Figure 4D implies that PRESTo underestimates the
magnitude of the WGS events.

The PRESTo first time (PET) and operational latency time are
given in Figures 4E,F, respectively. Due to a problem with the
system clock, only data from January 2016 to July 2018 are

available. The PET for the EGS region varies from 20 to 50 s
for most events, while for theWGS region, the PETs are somehow
larger (from 30 to 100 s), with an average value of approximately
66 s. The operational latency is less than 10 s for most EGS events
and slightly larger for the WGS region.

Performance of PRESTo for Period
2016–2019
From January 2016 to December 2019, PRESTo detected 680
earthquakes that occurred in the EEWS-defined region. The
number of events with magnitudes 4 < Mw < 5 detected by our
EEWS is 59 versus the 95 shocks given by the IGN (https://www.
ign.es/web/ign/portal/sis-catalogo-terremotos). The 36
earthquakes lost by PRESTo correspond to the 2016 Alboran
aftershocks (8 events, Carranza et al., 2017), Algerian
earthquakes (18 events), or Alboran intermediate depth
events (3 shocks, h > 40 km), and 7 are earthquakes not
detected by PRESTo. The 680 events detected by our EEWS
have small differences with IGN determinations of the origin
time, that is, less than 0.2 s for approximately 50% of
earthquakes, and epicentral location, that is, less than 20 km
for approximately 70% of events. The EEWS estimated the focal
depth for the 680 earthquakes, while the IGN only estimated this
parameter for 491 shocks, providing a clear indication of the
good performance of PRESTo. Depth differences between the
IGN and our EEWS are sometimes greater than 20 km.
However, for offshore earthquakes, in particular, those for
the Gulf of Cádiz and Saint Vincent Cape regions, depth is
the worst estimated parameter by the IGN. For the 2007/02/12
SW Saint Vincent Cape earthquake (Mw � 5.9), the IGN
estimated h � 65 km, while detailed studies for this
earthquake estimated depths ranging from 30 to 40 km (Stich
et al., 2007; Custodio et al., 2012; Pro et al., 2013). Additionally,
for Mw � 5 (23–01–2016), PRESTo has estimated h � 76 km, and
the IGN h � 55 ± 44 km (Carranza et al., 2017). Therefore, for
EGS earthquakes, we can conclude that focal depth estimations
are more accurate. For the Alboran 2016 (Mw � 6.4) earthquake,
PRESTo estimated h � 18 versus 12 km from the IGN and 7 km
from slip inversion (Buforn et al., 2017). A refined depth is
important, for example, the Lorca earthquake produces a large
damage because of its shallow depth (h � 7 km), but in southern
Iberia (Durcal, southern of Granada city) deep earthquakes (h ≈
650 km) also occur with moderate-to-large magnitude such as
the 1954 (Mw � 7.8) and 2010 (Mw � 6.2) Granada earthquakes.
The deep earthquakes do not produce damage, and
consequently, the EEWS should not generate an alert for them.

The largest differences between PRESTo and IGN
estimations are retained in the values of Mw, and this is the
basic parameter needed to give an alert. First, we can consider
that the final magnitude estimated by PRESTo is more reliable
than the first estimation (using only five stations) because
generally, it has been obtained using more stations. If we
assume that the IGN magnitudes are correct, we conclude
that for WGS events, PRESTo underestimates Mw

(Figure 4D), which is the zone where the largest earthquakes
have occurred (Figure 1).
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APPLICATION TO THE 2020–2021
GRANADA SEISMIC SWARM

In December of 2020, a seismic crisis began in Granada (Figure 1)
as a swarm of earthquakes, which was still active as this paper was
being written. It is worth noting that in this zone, on December
25th, 1884, the last great damaging earthquake occurred in Spain
(Imax � IX−X, Udías and Muñoz, 1979, Figure 5). We present the
performance of PRESTo for this swarm. The swarm began on
December 1, 2020, and lasted until February 19, 2021, during

which more than 1900 earthquakes occurred, five with Mw > 4.0
and two with Imax � V−VI (EMS−98). The earthquakes produced
serious damage in the area located west of the city of Granada
(https://www.ign.es/resources/sismologia/noticias/InformeIGN_
SantaFe.pdf).

During the swarm, PRESTo detected 12 earthquakes, three of
which corresponded to the largest shocks that occurred on
January 26th at 21 h 36 m (GR01), 21 h 44 m (GR02), and
21 h 54 m (GR03). Two other large shocks (January 23rd and
January 28th, both Mw � 4.4) occurred when the EEWS was not

FIGURE 5 | The Granada 2020–21 swarm. Black circles show the first PRESTo estimation, white circles show the final estimation, and white stars represent the
IGN-derived epicenters and the 1884 epicenter (Imax � IX-X).

TABLE 1 | Origin time, hypocentral location, and magnitude obtained by IGN and PRESTo (first alert and end time) for the Granada 2021 swarm.

Date Parameters IGN PRESTo first alert PRESTo end time

2021/01/26 t0 (hh:mm:ss) 21:36:33 21:36:31 21:36:33
Latitude (°) 37.21 36.90 37.15
Longitude (°) −3.73 −3.41 3.70
Depth (km) -− 49 14
Mw 4.1 4.1 3.7

2021/01/26 t0 (hh:mm:ss) 21:44:18 21:44:03 21:44:18
Latitude (°) 37.20 36.73 37.17
Longitude (°) −3.73 −1.94 −3.77
Depth (km) − 4 1
Mw 4.2 4.5 3.7

2021/01/26 t0 (hh:mm:ss) 21:54:55 21:54:56 21:54:55
Latitude (°) 37.19 37.20 37.12
Longitude (°) 3.74 3.70 3.79
Depth (km) − 1 4
Mw 4.4 4.4 4.2

IGN, Instituto Geográfico Nacional; PRESTo, PRobabilistic and Evolutionary early warning SysTem.
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operating due to electric power supply problems. In Table 1, we
present the origin time (t0), hypocenter, and magnitude (Mw)
estimated by PRESTo (first alert time and the end of the process,
40 s later) and the IGN estimations for GR01, GR02, and GR03
(Figures 5, 6). The t0 estimated at the PRESTo first detection is
lower than that given by the IGN for GR01 and GR02 and equal
for GR03. However, at the end of the process, the time origin
is equal.

Theminor difference on the epicentral location corresponds to
the largest event GR03. One observes that the first epicentral
location (black circle, Figure 5) is similar in latitude to that of the
IGN, with the difference being approximately 1 km in latitude
and 4 km in longitude. The final PRESTo epicentral location
(white circle Figures 5, 6) barely varies from the initial value
(Table 1), with a difference in latitude with respect to the IGN
location (white star Figures 5, 6) increasing to 6 km and a similar
enhancement along the longitudinal direction (5 km). For GR01,
the first epicentral location of the epicenter is located SE of the
IGN location, with a difference of 31 km in latitude that decreases
to 4 km for the final PRESTo estimation and a difference in
longitude of 32 km for the first estimation that is reduced to 3 km
for the final PRESTo estimation.

The GR02 event has the worst results. The first PRESTo
estimation locates the epicenter offshore at 200 km in the SSE
direction to the IGN epicenter, with a 47-km difference in latitude
and a 183-km difference in longitude (Figure 6). The final
estimation reduces this difference to 1 km in latitude and 4 km
in longitude (Figure 6). The low number of stations in the east
direction (Figure 2A) may explain why a larger error is found in
the longitude (Carranza et al., 2017).

Depth has been estimated by PRESTo (14 km for GR01 and
1 km for GR02 and Gr03 at the final estimation), while the IGN

does not provide this parameter. PRESTo estimated Mw 4.1, 4.5,
and 4.4 for GR01, GR02, and GR03, respectively, at the first alert
and Mw 3.7, 3.7, and 4.2 at the end of the process (40 s later),
implying an error of 0.3–0.4 with respect to the IGN Mw

estimations. The first PRESTo estimation of 17, 25, and 41 s
was given for GR01, GR02, and GR03, respectively, after the
origin time and experienced a 3-s theoretical delay in the data
transmission. This warning time could have been shorter if some
new stations installed in the Granada region were included in
the EEWS.

DISCUSSION

The comparison between the EEWS results and those of the IGN
catalog shows that the major differences are on magnitude, with a
different behavior for WGS and ESG earthquakes. An important

FIGURE 6 | PRESTo final epicenters (white circles) and IGN (white stars).

FIGURE 7 | Differences between the IGN and EEWS magnitude
estimations for earthquakes that occurred in the western Strait of Gibraltar (A)
and the eastern Strait of Gibraltar (B).
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point is that the IGN catalog uses three different magnitude
scales. For earthquakes with offshore epicenter, such as the SVC-
GC region (Figure 1), the scale is mb, while for those that
occurred in southern Spain or the Alboran Sea is mbLg and for
larger earthquakes is Mw (https://www.ign.es/web/resources/
docs/IGNCnig/SIS-Tipo-Magnitud.pdf). Thus, we have
homogenized the magnitudes estimated by the IGN to Mw by
using the relationship proposed by Carranza et al. (2013) and
Cabañas et al. (2015). The converted values are still found within
an error of ±0.3 Mw, which is the median value for the difference
between IGN and EEWS magnitudes (Carranza et al., 2017).

Carranza (2016) proposed two different relationships to
estimate the Mw for WGS and EGS earthquakes in base of the
observed differences (Figure 4D). Using these two equations in
PRESTo instead of Eq. (1) for earthquakes in WGS and EGS
during the period of 2016–2019, the results not only do improve
but actually give higher differences. The same happens with
another relationship for the whole IMR normalized to a
reference distance of 200 km proposed by Carranza (2016),
which does not give better results.

Finally, we consider the coefficient accuracy (Carranza et al.,
2013), which is given as follows:

log(P200
d ) � −8.3(± 0.6) + 1.00(± 0.13)Mw. (2)

This correlation equation was computed with the mean value of
the binned data (ΔMw � 0.3 bins) and weighted by the standard
deviation of each mean value. From this expression, we observe
that the independent term has the larger error (0.6), so we have
checked different values for this term on Eq. 1. The best results
have been obtained for the following relationship:

Mw � log10Pd + 8.30 + 1.70 log10( R
10)

1.02
. (3)

In Figures 7A,B, we plotted the Mw difference between the IGN
magnitudes and PRESTo magnitudes using Eq. 1 (blue bars) or
Eq. 3 (red bars). For theWGS region, the Mw differences decrease
from −0.3 to 0.6 vs. −0.6 to 0.8 and are more centered. For the
EGS region, we observe a similar behavior; the difference
decreases from −0.9 to 0.9 vs. −0.3 to 0.7. From Figures 7A,B,
we observe that a simple static correction of 0.2 to the PRESTo-
derived magnitude would provide an excellent fit of the IGN
magnitude. Besides, the EEWS gives Mw estimations on a real
time, while the IGN catalog is continuously revised. In fact, there
are differences between the first IGN earthquake estimation and
those of the catalog, where more stations were added with respect
to the first estimation. For the largest and damaging earthquakes
occurred in the period 2000–2020 [2004 Alhoceima, Morocco,
Mw � 6.4; 2011 Lorca, Spain Mw � 5.1; 2016 Alboran Sea (Mw �
6.4) the EEWS results (simulation and real time) are very close to
those from the IGN catalog (Mw � 6.6, 4.9 and 6.5, respectively)
(Carranza et al., 2017)].

For the Granada 2020–2021 swarm, we observe a similar
behavior for the EEWS estimated Mw values, with a difference
of 0.3–0.4 with respect to those from the IGN.

A possible explanation for the differences in magnitude
between the WGS and EGS regions is the low magnitude of

the data (Mw < 5.0). In the studied period, only one earthquake
(2016 Alboran shock Mw � 6.4) had a magnitude larger than 6.0,
11 had Mw > 5.0, but three of them occurred in Algeria, where
the EEWS was not configured. Another issue is the poor
azimuthal coverage of the stations used; most of them are
located on the Iberian Peninsula (29 stations), with three on
the Balearic Islands and only 7 in northern Africa (Figure 2),
while many of the earthquakes have offshore focuses (Figure 1).
This deficient azimuthal coverage may explain the large
differences in the origin time, or epicenter, between the IGN
and PRESTo estimations. This earthquake mislocation, in
particular, due to an average 20–25 km depth differences
(Figure 4C) can reasonably explain the magnitude
discrepancy (ΔM) between PRESTo and IGN estimates. From
Eq. 3

ΔM � ( 1.7
1.02

)log R
R − 25

. (4)

Depending on R, (ΔM) can vary by 0.5 if R � 50 km to 0.2 if R
� 100 km. For large earthquakes, several authors have shown
that extended time windows are needed to obtain a proper
Mw estimation (Colombelli, et al., 2014; Colombelli
and Zollo, 2015; Carranza, 2016). We think that to
extend the time window, we can improve the Pd

estimation and Mw.
The three Granada largest swarm earthquakes were felt over a

wide area, with maximum EMS-98 intensities of IV-V for GR01
and GR02 and V-VI for GR03. In Table 2, we list the lead times
for the seven largest towns closest to the epicenter (11 < R <
127 km) for both the first detection and end times. Granada and
Jaen (Figure 6) are located inside the blind zone for the first
detection due to their proximity to the epicenter (11 and 63 km,
respectively). However, for Malaga (87 km), there is a 2-s lead
time, which increases to 11 s for La Carolina, Córdoba (119 km),
and Almeria (121 km) or 13 s for Marbella. However, these seven
towns are inside of the no-warning zone waiting until the end of
the process.

The 2020–2021 Granada swarm shows that the EEWS has
worked despite the low-moderate magnitude of the targeted
earthquakes. Our EEWS is a regional system designed for
large earthquakes and not probed for a situation similar to the
Granada swarm. Nonetheless, we believe we can improve the
efficiency of the Granada swarm.

TABLE 2 | Lead times at the seven cities closest to the epicenter for the largest
Granada 2021 earthquakes.

City Distance (km) First alert lead time
(s)

End-time
lead time (s)

Granada 11 −13 −54
Jaen 63 −2 −51
Málaga 82 2 −47
La Carolina 119 11 −38
Córdoba 119 11 −38
Almería 121 11 −38
Marbella 127 13 −36
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For our regional EEWS, Carranza (2016) has estimated the
potential damage zone (PDZ, alert zone), which is the area where
the EEWS predicts a peak ground shaking level that could
produce damage. In terms of intensity, this damage level
corresponds to I�VII, strong perceiving shaking moderate
damage that the USGS shake-maps associate with PGA �
21.5% g and PGV � 20 cm/s. Carranza (2016) has used two
different relationships to estimate the PDZ for magnitudes 5 to
8 (Table 3): 1) the one of Wald et al. (1999) that was proposed
for the United States and 2) the one of Faenza and Michelini
(2010) introduced for Italy. For the 2011 Lorca earthquake (Mw

� 5.1), the observed maximum intensity was VII (EMS-98) for a
zone of 7 km around the epicenter, which is in agreement to the
values shown in Table 3. For the 2016 Alboran earthquake (Mw

� 6.4), with focus offshore, the observed maximum intensity
was in Melilla (I�VI) located at 84 km from the epicenter. From
Table 3, we conclude that for this Mw � 6.4, the radius of PDZ
must be 12 km for the study by Wald et al. (1999) and 33 km for
the study by Faenza and Michelini (2010). These values are in
agreement to the observed intensity (VI) at 84 km.
Unfortunately, we do not have other earthquakes with
intensity equal to or larger than VII. However, we can safely
conclude that in our regional EEWS, both the magnitude and
the location of earthquakes used to map in real time the PDZ
through an a priori GMPE are in agreement to the observed
intensities.

The warning time is a critical value in an EEWS. The PRESTo
end time of the detected earthquakes varies between 20 and
50 s for earthquakes in the EGS region and between 30 and
100 s in the WGS region. This difference is mainly due to the
location of the epicenter with respect to the seismic network.
To improve the EEWS results, we must increase the number
of stations used. In the last years, the WM, IGN, and IPMA
have installed new stations. We plan to add some of these
stations to the EEWS, including, for instance, the TARIF
station (WM) installed at the SG. Another solution is the use
of a more detailed Earth model, including 3D models. The
largest earthquakes in this region occur at SW of Saint
Vincent Cape, such as the Lisbon 1755 (Imax � X) or the
1969 (Mw � 7.8) earthquakes (Figure 1), both with the marine
focus and tsunami. It is a tectonically very complex region
where the transition from oceanic to a continental crust
starts. The use of 1D Earth models limits the accuracy on
the hypocentral location and time origin. The present version
of PRESTo estimates the hypocenter and the origin time by
using a nonlinear algorithm (NonLinLoc software, Lomax

2009) and a 1D Earth model. However, the algorithm has
already implemented the possibility to use a 3D Earth model.
Recent studies for the hypocentral location in this region
show that the use of 3D Earth models improves the estimation
of focal parameters (Cabieces et al., 2020). It is understood
that if we manage to improve the origin time and hypocenter,
both the R parameter (Eq. 3) and the Mw will be also
enhanced.

The use of an on-site method is another possible choice to
improve the EEWS. A regional EEWS needs a minimum number
of stations to declare an event (5 stations in our configuration),
and the signal is transmitted from the stations to a “control”
center where it is analyzed. As our network is sparse and disperse,
and the largest and damaging earthquakes are located offshore (at
200 km from the coast), we expect that an on-site EEWS would
reduce the time needed to issue a warning at a site as only one
station is needed, and, furthermore, the latency time will
decrease to 0.

Finally, the use of OBS telemetry would further help to reduce
the lead time. This would be an optimal solution, but
unfortunately not feasible at the moment due to the high cost
of the equipment, maintenance, and data transmission.

CONCLUSION

The analysis of our EEWS performance between the periods of
2016 and 2019 shows that PRESTo detected 55 Mw > 4.0
earthquakes of 95 that occurred in southern Iberia, confirming
the preliminary results shown by Carranza et al. (2017). The lost
earthquakes are aftershocks of the Mw � 6.4 Alhoceima 2016,
and earthquakes occurred in Algeria, where the EEWS is not
configured or where the system was not operating. The origin
time and the epicentral location are generally adequately
determined, with low differences with respect to the IGN
determinations (less than 0.2 s and 18 km, respectively, of the
median values). The difference between the PRESTo estimated
magnitudes and the IGN catalog lowers with the use of the
modified relationship proposed in this study. Notably, we found
a lower number of lost earthquakes or false detections.

One possible solution to the problems found could be
deploying new stations in northern Africa. For the offshore
foci west of Saint Vincent Cape, the use of a permanent real-
time OBS would be an optimal solution.

The use of a more detailed 3D Earth model developed for the
region could also improve the epicentral locations, depths, and
origin times determined by the EEWS.

It is also necessary to improve the relationships for magnitude
estimation. For this, we have modified and tested different
relationships used on the EEWS, but more data and larger
earthquakes are still needed to enhance the results.

The Granada 2020–21 swarm has demonstrated that an EEWS
is useful and can provide alerts, even for moderate magnitude
earthquakes. However, for this type of seismicity, it would be
more efficient to use an on-site EEWS to reduce the number of
lost aftershocks and the time needed to issue a warning. This
could be achieved by using a shorter time window.

TABLE 3 | Radius of potential damage zone (PDZ) for different magnitudes
(Carranza, 2016).

Magnitude Mw RPDZ (km)
(Wald et al., 1999)

RPDZ (km) (Faenza
and Michelini, 2010)

8.0 79 ± 5 227 ± 8
7.0 21 ± 4 60 ± 5
6.0 6 ± 2 15 ± 3
5.0 2 ± 1 7 ± 2
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Status of Earthquake Early Warning in
Switzerland
Frédérick Massin*, John Clinton and Maren Böse

Swiss Seismological Service, ETH Zürich, Zürich, Switzerland

The Swiss Seismological Service (SED) at ETH has been developing methods and open-
source software for Earthquake Early Warning (EEW) for more than a decade and has been
using SeisComP for earthquake monitoring since 2012. The SED has built a
comprehensive set of SeisComP modules that can provide EEW solutions in a quick
and transparent manner by any seismic service operating SeisComP. To date,
implementations of the Virtual Seismologist (VS) and Finite-Fault Rupture Detector
(FinDer) EEW algorithms are available. VS provides rapid EEW magnitudes building on
existing SeisComP detection and location modules for point-source origins. FinDer
matches growing patterns of observed high-frequency seismic acceleration amplitudes
with modeled templates to identify rupture extent, and hence can infer on-going finite-fault
rupture in real-time. Together these methods can provide EEW for all event dimensions
from moderate to great, if a high quality, EEW-ready, seismic network is available. In this
paper, we benchmark the performance of this SeisComP-based EEW system using recent
seismicity in Switzerland. Both algorithms are observed to be similarly fast and can often
produce first EEW alerts within 4–6 s of origin time. In real time performance, the median
delay for the first VS alert is 8.7 s after origin time (56 earthquakes since 2014, fromM2.7 to
M4.6), and 7 s for FinDer (10 earthquakes since 2017, from M2.7 to M4.3). The median
value for the travel time of the P waves from event origin to the fourth station accounts for
3.5 s of delay; with an additional 1.4 s for real-time data sample delays. We demonstrate
that operating two independent algorithms provides redundancy and tolerance to failures
of a single algorithm. This is documented with the case of a moderate M3.9 event that
occured seconds after a quarry blast, where picks from both events produced a 4 s delay
in the pick-based VS, while FinDer performed as expected. Operating on the Swiss
Seismic Network, that is being continuously optimised for EEW, the SED-ETHZ SeisComP
EEW system is achieving performance that is comparable to operational EEW systems
around the world.

Keywords: Switzerland, Swiss Seismic Network, earthquake early warning, Virtual Seismologist, FinDer, finite-fault

INTRODUCTION

Earthquake Early Warning (EEW) aims to detect seismic events and quantify their impact as soon as
possible after they occur, ideally allowing seconds of warning time in advance of the arrival of strong
ground motion in affected areas. If appropriate protective actions are promptly taken, the impact of
an earthquake can be reduced. EEW systems are used to deliver public warnings in Japan (Doi, 2011),
Mexico (Cuéllar et al., 2014), South Korea (Sheen et al., 2017), Taiwan (Hsiao et al., 2009), and along
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the west coast of the United States of America (Given et al., 2018).
EEW systems and underlying algorithms are tested worldwide
(e.g., Allen and Melgar, 2019), including Europe (Clinton et al.,
2016) and Switzerland (Behr et al., 2015).

In Switzerland EEW has been in a demonstration phase for
more than a decade. Over this period, the operational EEW
algorithms have evolved, the background software has
changed, and the network has been both densified and
upgraded with a focus on low latency data flow. Together,
these changes have significantly improved the existing EEW
system in terms of speed and reliability. Speed has been
chiefly addressed by network changes. Reliability has been
improved by incorporating a second EEW algorithm that is
independent of phase picking.

There are both scientific and technical challenges that need to
be addressed when building an EEW system. Using the same
single software framework that integrates EEW algorithms as well
as other basic seismic monitoring services saves time and
resources that would be required to develop and maintain
independent systems, and improves the reliability of both
EEW and standard network processes. In 2012, the Swiss
Seismological Service (SED) at ETH Zurich migrated to the
SeisComP framework (Hanka et al., 2010) for seismic data
acquisition and management, and automatic and manual
earthquake monitoring (Diehl et al., 2013). In the ensuing
years, two complimentary EEW algorithms were added to
SeisComP, first the Virtual Seismologist (VS, Cua, 2005; Cua
and Heaton, 2007) was included in 2013 (Behr et al., 2016),
followed by the Finite-Fault Rupture Detector (FinDer) algorithm
(Böse et al., 2012; Böse et al., 2015; Böse et al., 2018a) in 2017. The
development and testing of both algorithms, using datasets that
include large events, are summarised in the Method section.
Currently, these two algorithms are integrated in SeisComP
via four modules developed by the SED and Gempa GmbH.
We name our technical framework implemented in SeisComP the
ETHZ-SED SeisComP EEW system (ESE). ESE is currently
limited to the production of source parameters, and further
work is required to translate these into alerting parameters.

In this paper, we summarise the EEW architecture in place in
Switzerland and report on the performance of ESE during the
2020 earthquake sequence that included the MLhc4.3 Elm
mainshock. We also review the real-time performance over the
last decade, and demonstrate how the current ESE configuration
would perform in real-time simulations (playbacks) of the major
earthquakes recorded in Switzerland since 2009. Our study
documents steadily decreasing EEW delays since 2009, with
relatively small location and magnitude errors, as well as
consistent performance during the vigorous Elm sequence. We
show how an EEW system that includes multiple independent
algorithms can perform in a robust manner, even during
complicated seismicity patterns.

THE ETHZ-SED SEISCOMP EEW SYSTEM

ESE consists of two EEW algorithms embedded in SeisComP: 1)
The Virtual Seismologist (VS) which provides fast network-based

magnitude estimates for moderate-sized point-source
earthquakes using conventional triggering and phases
association techniques; and 2) the Finite-Fault Rupture
Detector (FinDer), which matches the evolving patterns of
high-frequency seismic ground motions to track ongoing
rupture extent without requiring phase picks.

Virtual Seismologist
The Virtual Seismologist was developed as a Bayesian approach
for estimating the earthquake magnitude, location, and peak
ground motion distribution using P-wave arrival detection and
ground motion amplitudes, predefined prior information (e.g.,
network topology, station health status, regional hazard maps,
earthquake forecasts, Gutenberg-Richter magnitude-frequency
relationship), and envelope attenuation relationships (Cua,
2005; Cua and Heaton, 2007; Cua et al., 2009). In operational
systems, so far only the magnitude component has been used,
with origins (nucleation time, hypocenter, and related quality
metrics) derived from independent location algorithms. The first
real-time VS prototype system was developed at SED-ETH
Zurich in 2006–2012 using the location from Earthworm
origins (Johnson et al., 1995) for input to the VS magnitude
estimation. The current approach in SeisComP adopts this same
strategy–a SeisComP VS magnitude module, scvsmag, provides
rapid magnitude estimates based on independently determined
rapid point-source pick-based origins, from SeisComP modules,
such as scautoloc (Behr et al., 2015) or scanloc (Gempa GmbH,
2016; Grigoli et al., 2018). Hence, VS can be easily tested using
existing SeisComP setups.

The Earthworm implementation of VS was one of the three
EEW algorithms included in the original CISN ShakeAlert EEW
system (Behr et al., 2015), and it was continuously real-time
tested in California (from 2008 to 2016) and Switzerland
(2010–2016). VS was integrated into SeisComP by SED-ETH
Zurich and gempa GmbH in 2012–2013, with funding from the
EU projects NERA (Network of European Research
Infrastructures for Earthquake Risk Assessment and
Mitigation) and REAKT (Strategies and Tools for Real-Time
EArthquake RisK ReducTion). Both (Earthworm and SeisComP-
based) VS implementations are based on a point-source
hypothesis and focus on the processing of available pick and
envelope data, without including prior information.

The VS magnitude estimation relationships consist of 1) a
relationship between observed ground motion ratios (between
vertical acceleration and vertical displacement) and magnitude,
and 2) envelope attenuation relationships describing how various
channels of envelope amplitudes vary as a function of magnitude
and distance. These relationships were derived from a Southern
California dataset with events in the 2.5 to 7.6 magnitude range
and the Next Generation Attenuation (NGA) strong motion
dataset (Cua, 2005). These relationships, as well as VS
performance during large magnitude earthquakes, have been
shown to work reasonably well in Northern California and
Switzerland with a standard magnitude error of ±0.5
magnitude units (Behr et al., 2012; Behr et al., 2016). The VS
magnitude evaluation procedure is used as defined in Cua (2005)
and Cua and Heaton (2007), without taking into account
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station-specific amplification corrections. The only change in the
SeisComP implementation (since Behr et al., 2016) is the
reduction in the length of the earliest ground motion envelope
window from 3 to 1 s. Although SeisComP can produce origins
for earthquakes at any depth, the VS magnitude estimation
relationships are calibrated with earthquakes of an average
depth of 3 km. For this reason, it is expected that VS
magnitudes may systematically underestimate magnitudes for
deep earthquakes.

Since EEW alerts from VS use traditional locators for early
origins, all sensor types can be used in the location process–even
from high gain broadband or short period sensors that
subsequently clip. The VS magnitude module only uses on-
scale data, and will use high-gain data as long as it does not
saturate (saturation is identified as having been reached by a
configurable ratio or 223 counts, sufficient in Switzerland as all
data is recorded from high dynamic range sensors on 24 bit
digitisers).

Finite Fault Rupture Detector
While VS is a classical point-source algorithm, the second
algorithm integrated into ESE, the Finite-Fault Rupture
Detector (FinDer), determines line-source models, which are
characterized by a length, strike and centroid position that
describe the fault rupture (Böse et al., 2012; Böse et al., 2015;
Böse et al., 2018a). These models can be determined for all
earthquakes with M > 2.5, but they are most important in
large events (M > 6) when the point-source approximation
becomes invalid. This is because EEW usually predicts seismic
ground-motions outside of the epicentral area and these motions
are strongly controlled by the rupture-to-site distance rather than
hypocentral distance that a point-source algorithm could provide.

In contrast to VS and many other point-source EEW
algorithms, FinDer does not rely on phase picks, but interprets
the spatially distributed peak ground motions. FinDer is a
template matching approach which compares temporally and
spatially evolving high-frequency seismic ground-motions to
theoretical template maps. These templates are pre-calculated
for different magnitudes and line-source models from empirical
ground-motion models using a grid of 5 km × 5 km resolution.
This means that all FinDer determined source locations (which
are centroids rather than hypocenters) basically have an
uncertainty of 2.5 km. The FinDer magnitude, Mfd, is
estimated empirically from the length of the FinDer line-source.

FinDer has undergone extensive real-time and offline tests in
California (Böse et al., 2018a), Central America (Porras et al.,
2021, subm.), Chile (Carrasco and Böse, 2017), Italy (Böse et al.,
2018b), Japan (Meier et al., 2020), and China (Li et al., 2020; Li
et al., 2021 subm.) for small to large earthquakes using seismic
data, and for large global earthquakes using felt-reports (Böse
et al., 2021b). FinDer is one of two seismic algorithms adopted by
the US West Coast ShakeAlert warning system (Given et al.,
2018). The FinDer core code has been jointly developed by
Caltech, USGS and SED-ETHZ.

For the Swiss installation, we use two FinDer template sets that
account for different attenuation characteristics of PGA
amplitudes in the Swiss foreland and alpine regions (Cauzzi

et al., 2014). To trigger, FinDer requires PGA >2.0 cm/s/s at
three neighboring stations. FinDer uses a cascade of increasing
PGA thresholds in its binary template matching (2.0/4.6/10.5/
23.2/48.6/90.7/148.8 cm/s2). See Böse et al. (2018a) for details.
The goal of this setting is to detect earthquakes with magnitude
over 3.5, but as demonstrated in this manuscript, FinDer may
detect events as small as M2.7, if they show abnormally strong
high-frequency radiation and station geometry is favourable. The
FinDer template sets and thresholds are the only configuration
adjustments for operating FinDer in Switzerland. FinDer uses
data from both strong motion and high gain broadband sensors
(but, unlike VS, not from short period sensors), with high gain
sensors initially preferred when sensors are co-located. Once the
ground motion is observed to exceed the dynamic range of a high
gain sensor, if there is no co-located strong motion sensor, the
corresponding station is removed from processing.

Integration in SeisComP3
The SeisComP software (Hanka et al., 2010) is an open-source
real-time platform for seismic monitoring widely adopted by the
seismological community. It was originally developed for
tsunami early warning. All of its components (acquisition
and processing) are implemented in a real-time manner,
involving delays only where methodologically required (e.g.,
STA/LTA is delayed by the duration of STA; Allen, 1982; or VS
station magnitudes require 1s duration post-pick; Behr et al.,
2015). The same software can be used for acquisition, data
management, automatic and manual processing, from separate
clients, while connected and informed from a central network
management instance, thus allowing minimal maintenance.
SeisComP includes all the components required for the
implementation of new approaches: an extensive data model,
an efficient messaging system, multiple input and output
interfaces, an API for C++ and python.

Figure 1 summarises the overall architecture of how EEW,
and in particular the VS and FinDer algorithms, are embedded
with SeisComP. A generic pre-processing module, sceewenv, (that
can alternatively be used directly as a library within the individual
EEW modules) listens to incoming seismic data and provides
real-time EEW parameters to the client EEW algorithms. For the
VS module, scvsmag, these are 1 s ground motion displacement
and acceleration envelopes. For the FinDer module, scfinder,
these are 1 s ground motion acceleration envelopes. This
module can also produce other EEW parameters that could be
used in different EEW algorithms that may be added to SeisComP
in future, such as ground motion displacement from high rate
GNSS displacement time series for use in EEWmethods based on
real-time GNSS data, such as FinDerS or FinDerS+ (Böse et al.,
2021a). The EEW modules provide locations and magnitudes,
with uncertainties and other algorithm-specific output, to
sceewlog, which collates solutions from the different
algorithms, and disseminates low-latency messages to be used
by end-user client applications, such as the open source client
software EEW Display (Cauzzi et al., 2016) as well as providing
summary reports to EEW operators e.g., via email. The method-
agnostic processing and logging modules sceewenv and sceewlog
have been released in 2021, replacing the original VS-specific
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scenvelope and scvsmaglog modules, as described in Behr et al.
(2016), in order to support the integration of FinDer.

VS relies on the SeisComP picking and location modules.
SeisComP can be tuned in order to allow event detection with
four stations only. This can be done via the primary SeisComP
location module (scautoloc) with conservative adjustments
preventing origins to be located in regions without picks at
closest stations, or using the scanloc location module (Grigoli
et al., 2018; Scanloc Documentation, 2021). The VS module
listens for these origins and creates fast magnitudes using the
acceleration and displacement envelope amplitudes continuously
made available by the sceewenv module. A first magnitude is
available once 1 s of envelope data at a single station becomes
available. VS magnitudes are updated every second for up to a
maximum of 30 s. The original VS station magnitude
relationships are generated using the entire waveforms of the
training dataset, including surface waves. New stations that
are included from picked stations when updated origins
become preferred (new origins become available at least every
10 s, as long as new picks continue to be associated). Since mid-
2017 in the online (real-time) system, scautoloc has been
configured to provide first origins using four instead of six
stations; since late 2018 a second location algorithm, scanloc,
was added that is also capable of providing first origins from four
station picks. We also use an automatic secondary picking that is
triggered by the initial STA/LTA picks, using the method of Baer
and Kradolfer (1987) that provides more precise picks, although
with added latency.

FinDer has been implemented as a library (since FinDer
version 2; Böse et al., 2018a) which is integrated within a
SeisComP wrapper module (scfinder). This module also
integrates the same envelope library as used in sceewenv.
FinDer only uses envelopes from broadband high-gain
seismographs and accelerographs, using the same logic as VS

in case of velocimeter clipping. The scfinder module provides an
amplitude-based, independent evaluation of the centroid
location, length, azimuth, and magnitude of a finite-fault
rupture assuming a line-source. We have started using FinDer
in for online (real-time) testing in Switzerland in mid-2017.

In addition to being operated in real-time online, the ESE
system can be operated in playback mode, replaying events as
though they were occurring “in real-time.” The playback ESE
system presented in this paper has the same configuration as the
current real-time system. This allows us to demonstrate the
capabilities of the current ESE configuration for past
earthquakes. In this paper, we use the playback system with
the 100 largest earthquakes with magnitudes over 2.7 within
Switzerland since 2009. We describe the outcome for the eight
largest earthquakes with magnitudes from 3.9 to 4.6 in the result
section, and present complete results for all 100 events in the
Supplementary Material.

SEISMIC MONITORING AND SEISMICITY
IN SWITZERLAND

Swiss Seismic Network
The current Swiss Seismic Network consists of over 200
permanent stations (CH network code; Swiss Seismological
Service (SED) at ETH Zurich, 1983). The goal of this network
is to monitor seismicity of the territory, support science and
assess the seismic risk. In recent years, efforts have been made
towards making this network ready for EEW. The majority of the
stations (currently 171) include modern broadband EpiSensor
strong motion accelerometers. All stations operate modern ultra-
low latency digitisers–mainly Nanometrics Centaur, though there
are significant numbers of Nanometrics Taurus and Kinemetrics
Q330. A major densification of the strong motion network has

FIGURE 1 | Schematic workflow of the SED-ETHZ SeisComP EEW system (ESE). The main SeisComP framework includes automatic picking and location
modules (scautopick and scautoloc) which can be tuned for event detection with P-wave arrival detection at four stations. The VS algorithm is implemented in the
scvsmagmodule. FinDer is a stand-alone library that is integrated in the scfinderwrapper module. SeisComP event detections are fed into VS together with acceleration
and displacement envelope amplitudes (provided by the sceewenvmodule), while FinDer only relies on envelopes for detecting intermediate events with co-seismic
ground motion detection at three stations. Both can provide EEW to target users via the sceewlogmodule using multiple real-time dissemination interfaces. It allows the
EEWD open-source client software to display end-user EEW information (Cauzzi et al., 2016).
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occurred in the framework of the SSMNet renewal project that
started in 2009, and is nearing completion, with the addition of
100 new strong motion stations. In the last 7 years, the first
generation broadband seismic network and many legacy short
period stations, installed around the turn of the century, have
been upgraded, with all existing sites being refurbished with
replacement of digitisers and addition of strong motion
sensors. Additionally, about 10 new stations with both
broadband and strong motion sensors have been installed. The
growth in stations and sensor types in the CH network, since
2000, is shown in Figure 2.

This modern network is augmented by a 1) varying number of
temporary stations targeting scientific and engineering risk
studies, monitoring aftershock sequences, and industrial
activity, in particular geothermal projects–the majority of these
also stream in real time with low latency similar to the national
network, currently this numbers ∼70 stations; as well as 2) about
50 stations from neighbouring agencies that are important to
ensure high quality earthquake analysis–these stations have
varying latency.

The Swiss Seismic Network uses the Seedlink protocol for all
real time communications. Although this is not optimum for
EEW since it has a fixed 512-byte packet size, the high sampling
rates adopted at all Swiss stations (200 sps for stations that
include high gain sensors; 250 sps for strong motion only
stations) means the packet reception interval ranges between 1
and 2 s (Supplementary Figure SA1a). The data packet reception
delay is under 0.5 s on average (Supplementary Figure SA1a).
Together, this means the data sample delay–estimated as
(transmission delay added to half of the packet reception
interval) averages at 1.46 s with a standard deviation of
+1.17 s/−0.30 s. Figure 3A presents the data sample delays for

each of the 272 low-latency stations operated by the SED in
April 2020.

Figures 3B,C present a map of the current network, showing
the real-time stations monitored and operated by the SED,
omitting stations operated by foreign agencies. All stations
indicated in green include a strong motion sensor–either
stand-alone or together with another high gain sensor. If
there is no strong motion sensor, the colour indicates
whether the available sensor is broadband or short period. In
Figure 3B, the background colour indicates the distance to the
fourth closest seismic station at any given point–this shows the
network density, tailored for the VS algorithm, which requires
four station picks to trigger a first location. The majority of the
country lies within 20 km of the fourth station, and in many
places where seismicity is high, as seen in Figure 4, for example
in the Basel region or in the Canton of Valais in the SW, this
distance is reduced to under 10 km. In Figures 3A,C map of
theoretical EEW delay is shown, assuming shallow 5 km
earthquake sources. For this figure, the travel times
computed with the iasp91 velocity model from all sources to
each station are combined with the observed latencies for the
individual station (Figure 3A). Event processing and magnitude
determination add very small additional delays (Behr et al.,
2015), though any additional latency arising from sending alerts
to the public is not included. A significant part of the country is
expected to provide the first alert within 5 s of origin time, and
the entire country lies within 10 s.

Seismic Activity in Switzerland
Switzerland is a country with moderate seismic hazard. On
average, between 1,000 and 1,400 earthquakes are identified
every year, of which 24 are equal to or above M2.5 (Diehl

FIGURE 2 | Evolution of seismic instrumentation in the Swiss National Network (network code CH) since 2000. Only modern high quality, real-time instruments are
shown (neglecting analog low gain short period and strong motion instruments). SM: strong motion accelerograph. BB: broadband seismograph. SP: short period
seismograph. The numbers of stations deployed today in each category are indicated in the legend.
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FIGURE 3 | Summary of Swiss seismic network performance for EEW. (A) shows data sample delay percentiles for each seismic sensor operated by SED. The
majority of stations have very fast, reliable delays of either 1.1 or 1.3 s, depending on sampling rate. Stations operating older dataloggers exhibit larger delays with higher
range. Data sample delays are defined as the sum of the packet reception delay from end-time to reception, and half of the inter-packet reception interval. (B) Station
map with channel type distribution and map of the distance to the fourth closest station. (C) Station map with channel type distribution and P-wave delays for
triggering four stations (for iasp91 velocity model, hypocenters at 5 km depth, and seismic data sample delays in (A). The corresponding image considering only the
closest station is provided in the Supplementary Figure SA2. The map shows all permanent and temporary stations operated by the SED across the Switzerland
region in April 2021. Stations operated by foreign networks are not included. SM: strong motion accelerograph. BB: broadband seismograph. SP: short period
seismograph. Indicated are the major cities, as well as the village of Elm close to the sequence discussed in this paper.
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et al., 2021) and about 25 are felt by the population. There is a
roughly 1% probability for a damaging earthquake with
magnitude M6+ to occur in or near Switzerland each year
(Wiemer et al., 2016).

The seismicity between 2009 to today (which covers the testing
period of EEW in Switzerland) is presented in Figure 4.
Highlighted in this map are all earthquakes with a local
magnitude over 3.9 in Switzerland within the time window,
that are also listed in Table 1. The largest earthquake occurred
in 2017 in Central Switzerland, near the village of Urnerboden,

with MLh4.6. A particular focus of this paper relates to events
associated with the joint second largest earthquake to occur in the
time window, the MLh4.3 earthquake near Elm that occurred
in 2020.

All catalogue events described in this paper are provided
with their local magnitude. The local magnitude scale has
evolved over time at the SED in an effort to use all available
data from the also evolving seismic network, although efforts
have been made to remain calibrated to the original
implementation of Kradolfer and Mayer-Rosa (1988), which

FIGURE 4 | Seismicity from the SED-ETHZ earthquake catalogue within and around Switzerland between January 2009 to April 2021. Circles: all earthquakes with
magnitude over 1. The significant events listed in Table 1 are indicated with stars: E1: MLh4.6 Linthal 2017; E2: MLh4.3 Elm 2020; E3: MLh4.3 Chateau-d’Oex 2017; E4:
ML4.2 Zug 2012; E5: MLh4.1 Leukerbad 2016; E6: ML4.1 Buchs 2009; E7: MLh4.1 Sargans 2013; E8: MLhc3.9 Elm 2020.

TABLE 1 | Source parameters of the eight earthquakes to occur within Switzerland with magnitude 3.9 ≤ ML ≤ 4.6 since 2009.

Magnitude Place name Origin time Origin location Depth

E1 MLh 4.6 Urnerboden 2017-03-06T20:12:07.40 46.907°N, 8.925°E 4.2
E2 MLh 4.3 Elm 2020-10-25T19:35:43.38 46.905°N, 9.125°E 1.4
E3 MLh 4.3 Château-d’Oex 2017-07-01T08:10:34.07 46.491°N, 7.097°E 4.3
E4 ML 4.2 Zug 2012-02-11T22:45:26.80 47.149°N, 8.553°E 32.4
E5 MLh 4.1 Leukerbad 2016-10-24T14:44:11.58 46.338°N, 7.580°E 8.2
E6 ML 4.1 Buchs 2009-01-04T15:30:30.10 47.173°N, 9.361°E 4.5
E7 MLh 4.1 Sargans 2013-12-12T00:59:18.86 47.058°N, 9.491°E 5.9
E8* MLhc 3.9 Elm 2020-11-10T12:53:23.11 46.903°N, 9.115°E 1.7

* The MLhc3.9 Elm 2020 earthquake is an aftershock. All times are in UTC. Depths are in km below sea level. Coordinates are given in WGS84.
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was based on a very limited amount of observations from a
sparse network, with few near-field records and all stations
located on hard rock sites. All local magnitudes prior to
October 2012 are labelled ML, even though the original
implementation was modified in 2000 to be computed using
horizontal components, now possible due to the newly installed
three component seismometers. In 2012, as part of a migration
to SeisComP, all local magnitudes were labelled as MLh,
although the attenuation relation was not changed. In
November 2020, the SED migrated to MLhc as the preferred
magnitude scale. This scale is extended to take into account site
amplification factors (allowing usage of the increasing number
of stations deployed in soft sediments, in particular the new
strong motion sites located in urban areas) as well as a new
calibration for stations at close epicentral distances (Racine
et al., 2020). For EEW magnitudes, we adopt the convention
MVS (VS) and Mfd (FinDer). The FinDer magnitude is sensitive
to high-frequency motions and thus related to the energy
magnitude (Böse et al., 2018a; Li et al., 2020).

REAL-TIME EEW PERFORMANCE DURING
THE 2020 ELM SEQUENCE

The MLh 4.3 Elm earthquake on October 25, 2020 and its
aftershock sequence occurred in the upper Sernftal in the
Glarus Alps, a region with a moderate station density.
Fortunately the network in this region had very recently been
densified–a few months earlier, a foreshock on 26 May MLh 3.1,
triggered the exercise of the ETHZ-SED aftershock pool,
presently consisting of six streaming, autonomous stations
with short period and strong motion sensors. Two stations
(8D.ELM0 and 8D.ELM1) were installed within a few
kilometers of the sequence. Hence, by the time of the
mainshock, the region was well monitored with low latency
strong motion instruments, with four stations within 10 km
(Figure 3). Winter was drawing in, and the aftershock stations
in the Sernftal, a deep alpine valley that receives little sunlight and
can expect heavy snowfall, were at risk of losing power. Hence, a
third aftershock station (8D.ELM3), on mains power, was
immediately deployed even closer to the on-going cluster. The
sequence was vigorous, with on the order of 300 events detected
in the 2 months following the mainshock, extending over a
roughly EW trend, with events being particularly shallow
between 0 and 3 km. On November 10, 2020, the largest
aftershock (MLhc 3.9) of the series so far occured.

Both the mainshock and the largest aftershock triggered both
EEW algorithms. Strong motions observed by the aftershock
stations for both events are remarkable. Despite the moderate
event size, a peak ground acceleration (PGA) of 405 cm/s2 and
peak ground velocity (PGV) of 6.1 cm/s was observed at
8D.ELM0 (at 2.4 km epicentral distance) during the
mainshock–this is the strongest ground motion in terms of
both PGA and PGV ever recorded at a free-field station in
Switzerland. In the aftershock, extreme motions were also
observed at the closest station (PGA 103 cm/s2 and PGV
1.3 cm/s at 8D.ELM3 at 1.6 km epicentral distance). The main

MLhc3.9 aftershock was preceded by a small MLhc 1.0 quarry blast
that occurred near Brugg, Canton Valais (Figure 5), 21 s before
and at a distance 130 km, that had important effects on the ESE
system.

Figure 6 summarises the network density, out to 35 km, and
observed ground motions for the mainshock (top) and the
aftershock (bottom). For each station, the temporal evolution
of PGA is shown until the time when final PGA is reached.
Expected P- and S-wave arrival times are also indicated. For the
mainshock, there are four stations within 10 km, and the sixth
closest station is at 16 km distance. The P-wave arrived at the
fourth and sixth station after 2.5 and 3.5 s, respectively. For
the aftershock, now also recorded at 8D.ELM0, the time to the
fourth station is only marginally reduced, while the time to the
sixth station is reduced by 1.5 s. As expected, in both events,
the PGA at all stations is reached during, or shortly after, the
S-wave arrival.

During the mainshock, at the closest station 8D.ELM0, the
PGA of 405 cm/s2 (equivalent to intensity VI, Faenza and
Michelini, 2010), is reached shortly after the S-wave arrival,
only 1.5 s after origin time and before the P-wave arrives at
the fourth station. The first EEW alert from VS was produced
4.1 s after the origin time, roughly at the same time when the PGA
(46 cm/s2, intensity IV) was reached at the fourth station. The
first FinDer solution was available 0.8 s later.

The MLhc3.9 aftershock was detected by FinDer with a similar
delay as the mainshock (4.7 s after origin time), while the first VS
alert was issued 8 s after origin time, almost 4 s later than
observed in the mainshock. This delay was produced by
erroneous mixing of picks from the closest stations to this
event and those from the small quarry blast. As shown in
Figure 5, the theoretical P-wave arrivals from this event
almost coincide with the nucleation time at Elm, thus
triggering association of the arrival times at stations close-by
Elm to an incorrect origin location for the blast. In the next
section we describe how we resolved this issue afterwards.

In order to model ground motions, the Swiss Seismic Network
adopts Swiss-specific GMPE based on stochastic simulations
(Cauzzi et al., 2015) and GMICE (Faenza and Michelini, 2010)
that provide earthquake intensity in the EMS-98 scale, as adopted
in SED shakemaps (Cauzzi et al., 2015) that are available for each
event on the SED website (http://seismo.ethz.ch, last accessed
August 2021). In this study the accurate prediction of ground
motion is not a primary goal, rather we wish to compare the
predicted peak motions and corresponding felt intensities for the
evolving EEW solutions alongside the final catalogue parameters.
Hence, for simplicity, we use the empirical intensity prediction
equation from Allen et al. (2012) that provides intensity in
Modified Mercalli Intensity, and use a simple iasp91 velocity
model to estimate the distance of S-wave fronts at a given time.
The maps in Figure 7 show the estimated earthquake locations,
predicted MMI intensity and available warning (or lead) times
between the first alert (assuming alerts are available as soon as the
first EEW solution is available, and there is no delay due to
downstream alert dissemination to users) and the arrival of the
peak ground motion (assumed to coincide with the S-wave
arrival) for the two events. The 5 km resolution adopted by
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FinDer (see FinDer section) appears coarse compared to the
expected rupture dimension of such a small earthquake, but is
acceptable considering location uncertainties. While the main
strength of FinDer is in the finite-source characterization of large
earthquakes (M > 5.5), the algorithm can often provide
reasonable estimates of fault rupture strike in smaller events if
their spatial PGA distributions show effects of rupture directivity
(Böse et al., 2018a). This, however, is not the case in the Elm
events and the FinDer estimated strike does not match the strike
predicted by the focal mechanism (Figure 7) and aftershock
distribution.

The late alert zone (where the S-wave arrives before the alert)
extends to 11 and 13 km from the mainshock and aftershock,

respectively. For the MLh 4.3 Elm earthquake an EEW message
provided without additional latency could have preceded the felt
ground shaking within 11–15 km around the epicenter, where
intensity exceeded III.

Figure 8 illustrates the temporal evolution of VS and FinDer
results during the MLh4.3 Elm mainshock (top, A–D), and the
MLhc 3.9 aftershock (bottom, E–H). In general, the performance
of the two algorithms is similar during both events, though the VS
solution for the aftershock was delayed due to the earlier
described picking problem.

VS origins are derived from automatic picks, with a minimum
of four and increasing in number as energy appears at later
stations received at the processing hub. In contrast, in order to

FIGURE 5 | Seismograms recorded during the MLhc3.9 Elm aftershock. The map inset shows the seismic stations (triangles) as well as the locations of the
aftershock (E8, blue); the MLhc1.0 quarry blast that preceded the event (green), and the automatic blast location that included Elm aftershock phases (red). The
seismograms are ordered and labelled by distance to the quarry blast. Vertical lines and stars mark origin times in the seismograms and event locations on the map,
respectively. P-wave arrivals aremarked by triangles on the seismograms. The final origins of the blast and E8 are associated withmanually picked arrival times. The
automatic blast location is based on automatic P-wave picks, and erroneously incorporates stations close to E8.
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FIGURE 6 | Available seismic data for the MLh 4.3 Elm earthquake (top) and MLhc 3.9 aftershock (bottom) as a function of time and distance from origin. Each line
shows the temporal evolution of horizontal peak ground acceleration (PGA) at a given station until its peak value is reached (labels left-sided on PGA time, with highest
PGA plotted on top). Intensity equivalents are derived from Faenza and Michelini (2010). Vertical lines indicate the first magnitude estimates from VS (MVS) and FinDer
(Mfd). Dotted and dashed curves show the theoretical P- and S-wave arrivals computed with the iasp91 velocity model.
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FIGURE 7 |Geographical comparison of VS (green), FinDer (orange) and catalogue (black) earthquake parameters estimates for the MLh 4.3 Elm earthquake (top)
and MLhc 3.9 aftershock (bottom). Origin locations are represented with stars or lines for rupture models from FinDer, the brightest symbols representing the earliest
estimates (see first delay in legend). Intensity iso-lines from the catalogue origin (solid black) can be compared to the earliest EEW estimates (dashed lines), following a
generic intensity prediction equation (Allen et al., 2012). The late alert area (grey circle) and available warning (lead) time from the EEW (thin black lines, modeled as
the time difference between the S-wave arrivals, as predicted from the iasp91 velocity model, and the first EEW solution) are indicated. The polar plot in the upper right
corner shows the evolution of the FinDer fault-line model azimuths (orange, labelled with delay after origin), and the catalogue focal mechanism (grey).
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FIGURE 8 | Temporal evolution of VS (green) and FinDer (orange) earthquake parameter estimates for the MLh 4.3 Elm earthquake (top) and MLhc 3.9 aftershock
(bottom). Parameters from catalogue solution are indicated in blue. (A,E): number of stations contributing to locations for each algorithm; blue line shows the cumulative
number of stations where P-wave has reached. (B,F): EEW centroid hypocentral location errors (lines, uncertainty indicated by shaded area). (C,G): Magnitudes (lines,
uncertainty indicated by shaded area). (D,H): Maximum predicted intensity (see Supplemental Material, section Maximum predicted intensity) at the reference
S-wave front edge considering final centroid location, using the reference final source parameters (blue line) and EEW parameters (green and orange lines) and related
uncertainties (shaded areas).
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constrain the location, FinDer uses all stations streaming,
including those that did not yet record the event. The FinDer
station counts in Figures 8A,E show stations with PGA over
2 cm/s2, so these numbers are not directly comparable to the pick
counts for VS. Nevertheless, it is apparent that FinDer integrates
new stations at a faster rate than VS, since in the current
configuration, VS origins are only updated every 10 s and not
on significant change in station number.

VS and FinDer origins/centroid locations are similar and
relatively stable over time (Figures 8B,F). The magnitude
estimates provided by the two algorithms show more
significant fluctuation over time (Figures 8C,G). For VS, the
magnitude is updated every 1 s, and at least 1 s of data after the
P-wave pick is required at each station. Since initial magnitudes
use very short waveform durations from a few stations, initially
fluctuations can be expected. There also is a significant
difference in the magnitude evolutions of FinDer and VS as
they integrate new stations. FinDer magnitudes, which are
updated irregularly in response to the changing ground-
motion field, tend to stabilize over time, while VS
magnitudes can jump as updated origins include additional
stations for magnitude determination.

Figures 8D,H show the maximum intensity at any point on
the evolving S-wave front edge (see Supplementary Material for
explanation). The uncertainties in location and magnitude are
taken into account in the uncertainty in the intensity prediction.
For both the mainshock and aftershock, the maximum
predicted intensity evaluated for VS and FinDer do not
deviate from the reference prediction by more than their
uncertainties, demonstrating the stability of both algorithms
in this example.

The ESE system operated throughout the Elm sequence, with
VS providing results for all earthquakes with magnitude over 1.2
and FinDer only providing results for five earthquakes with
magnitudes above 2.0. Since FinDer requires a threshold in
amplitude to be exceeded at three or more sensors across the
network, it only produces solutions for the largest events in this
sequence. VS builds on traditional STA/LTA picks, so it is
sensitive to much smaller events.

Figure 9 shows the delays of the first MVS and Mfd for the
entire Elm sequence following the mainshock for magnitudes
above ML2. Also indicated is the delay to the fourth observed
P-wave arrival time after origin time (neglecting data delay),
providing an estimate of the best possible EEW delay considering
the actual network geometry. Apparent is the effect of the
installation of the last aftershock station in the days after the
25 October mainshock. In general, we observe delays of 1.5–2 s
for travel times, and first EEW estimates, the majority from VS,
became available within 4–6 s.

Figure 10 provides an overview for the errors in hypocentral
location, timing and magnitude for all EEW estimates (with 83
earthquakes for VS, and five earthquakes for FinDer). The
median location error of the first EEW estimates is about
5 km. Larger location errors are produced with the earliest VS
origins from a handful of smaller earthquakes. These poor origins
were produced by unrelated or false picks across the network, and
subsequent origins quickly migrate to close to the catalogue
solution when integrating additional data. Magnitude errors
are centered at about +0.1 unit of magnitude, with stronger
over-estimation when associated with origins with large
location errors. The median magnitude error in FinDer is
about zero, though there is a heavy tail with magnitude

FIGURE 9 | Temporal (A) and geographical (B) overview of the VS (green, 83 earthquakes), and FinDer (orange, five earthquakes) performances for the first
3 weeks of the Elm earthquake sequence, showing events with magnitude over 1.2. (A) Delays for each event: the first VS and first FinDer origin times are indicted by the
green and orange ellipses, respectively. For comparison, the delay to the P-wave arrival at the fourth active station, indicating the lower boundary for EEW (neglecting
data delay), is shown in blue. The heights of the ellipses for VS and FinDer represent the first EEW magnitude estimates, and their widths represent the final
magnitude (following magnitude scale in B). While first VS magnitudes for some of the smaller events tend to be overestimated, they converge towards correct solutions
during subsequent updates. (B) The final locations are color-codedwith delays of the first EEW (VS or FinDer) solution. Further details on errors are provided in Figure 10.
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overestimates of 0.5–1.6 over the 60th percentile–which is an
outlier from a single event.

REAL-TIME AND PLAYBACK EEW
PERFORMANCE DURING SIGNIFICANT
EVENTS
The ESE supports real-time re-processing of all historic events
associated with archived waveforms using the latest system and
algorithm configurations (note that the system and algorithms
underwent a number of changes during the testing period). These
playbacks allow us to evaluate EEW performance for historical
earthquakes, neglecting packet delay (with a 0.4 s median,
Supplementary Figure SA1a), while still being subject to the
original packet reception interval (with a median of 1.6 s,
Supplementary Figure SA1b).

We run ESE playbacks for the 100 largest earthquakes with
magnitudes over 2.7 within Switzerland (and Liechtenstein) since
2009. We also collect the corresponding EEW solutions provided

in real-time for the same events beginning from late-2014 for VS
and mid-2017 for FinDer. The VS primary location method has
been configured to use four stations instead of six since mid-2017.
The full overview of the playback results is provided in the
Supplementary Figure SA3 and Supplementary Table SA1.
Here we focus on the performance for the eight largest
playback earthquakes over magnitude 3.9, as presented in
Table 1.

Figure 11 provides an overview of ESE real-time and
playback performance for these eight events. Earthquakes
E6, E4 and E7 (Ml4.1 Buchs 2009, Ml4.2 Zug 2012, and
MLh4.1 Sargans 2013) occurred before 2015, without
available real-time results. Although they have observed
arrival time delays of 2–7 s (after reference origin time)
to the fourth closest station, EEW times are slow. This
is because a significant number of key near field strong
motion stations were recorded on offline, low resolution
(12 or 16 bit) accelerometers (that have subsequently been
replaced)–thus in playback there are relatively long
packet reception intervals, since we use a constant 512-byte

FIGURE 10 | Cumulated distributions of errors (δ) from VS (green, 83 earthquakes) and FinDer (orange, five earthquakes) from online operation during the Elm
earthquake sequence for events with magnitude above 1.2. Errors are inferred as the difference between the attributes of the final and the EEW (VS or FinDer) solutions.
(A) Errors in hypocentral location. (B) Errors in earthquake origin time. (C) Errors in magnitude.
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packet size. As a consequence for playbacks, first VS estimates
are produced in 7–9 s while FinDer requires 9–12 s, a situation
that would not be repeated today. This is confirmed in
Supplementary Figure SA3, where the delay times to the
fourth closest stations are observed to reduce over time, and
are now generally stable and match that in the theoretical
delays seen in Figure 3.

Earthquakes E5, E1, E3 (MLh4.1 Leukerbad 2016, MLh4.6
Linthal 2017, and MLh4.3 Chateau-d’Oex 2017) occurred
before FinDer was included in ESE, and before the VS
configuration was adjusted to provide a location with four
stations. Thus, despite travel time delays of 3–4 s, online VS
results came in 8–11 s, with incorrect first location for E5 and E1.
These issues are corrected in playback, with VS in 6–7 s and
similar FinDer performance.

Earthquakes E2 and E8 (MLh4.3 Elm 2020, and MLhc3.9
Elm 2020) both occurred when FinDer was online and VS
configured for location with four stations. Their playback
results are similar to those obtained online with the exception
of improved VS performance for the MLhc3.9 Elm 2020
aftershock. This improvement was achieved by adjusting one
parameter in the scanloc location method (Scanloc
Documentation, 2021, Grigoli et al., 2018) avoiding
aggregation of late triggers separated by an unrealistically large
time difference to be related to the same event, considering that
many stations are available in between but not triggered.

In general, the performance of the top 100 events in both real-
time and playback matches these largest earthquakes, as seen in
Supplementary Figure SA3. Since 2013, with the dense network
and well configured algorithms, the large majority of events

FIGURE 11 | Temporal (A,C) and geographical (B,D) overview of the VS (green), and FinDer (orange) performance for the eight largest earthquakes over magnitude
3.9 in Switzerland since 2009. The plotting conventions are the same as for Figure 9. (A,B) Online (real-time) results, provided by the real-time ESE system. The online
ESE database includes VS results since late-2014, and FinDer results since mid-2017. The VS primary location method has been configured for using four stations since
mid-2017. (C,D) Playback results, obtained with the ESE playback system. The EEW methods in the playback system are configured in a similar way to the post-
2019 online system with the exception of one parameter in one of the VS location methods, adjusted for not aggregating triggers more than 7 s apart. Further details on
errors are provided in Figure 12.
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would have been first characterised within 10 s, and many far
faster.

A detailed error analysis of all EEW solutions for these eight
largest earthquakes is shown in Figure 12. FinDer systematically
has higher errors in location than VS, because it is using a coarser
location grid and determining a centroid rather than hypocenter
location (see FinDer section). Playback results are observed to be
on average slightly worse for both algorithms, though this is
explained since additional, older events, with a relatively sparse
data coverage, are included in playback. For these largest events,
in real-time both algorithms tend to underestimate magnitudes
by 0.2 on average. In playback, VS performs worse with a 0.4
average underestimation. Since playback using the latest
configuration allows solutions using fewer stations, playbacks
result in faster earliest solutions but with slightly increased errors
(faster solutions in playback are also facilitated by neglecting the
packet reception delay). Nevertheless, in playback, both FinDer
and VS provide rapid, blunder-free and complimentary EEW
performance. Both algorithms perform well even for intermediate
magnitude earthquakes in Switzerland. Supplementary Figure
SA4 presents the error analysis for all 100 largest events. A more

reduced average magnitude underestimation by VS of about 0.15
magnitude units is apparent.

DISCUSSION

The Swiss Seismological Service (SED) operates a prototype EEW
system for Switzerland, called ESE (SED-ETHZ SeisComP EEW
system). The key recent change of ESE is the integration of the
FinDer algorithm in mid-2017 alongside the existing VS
algorithm. Having two independent algorithms adds
robustness to the system as demonstrated here for the MLhc3.9
Elm earthquake. A small quarry blast that occurred in another
part of Switzerland in the seconds before this event caused
significant delays in the pick-based VS algorithm, while
FinDer, based on the emerging spatial patterns of strong
motion, was unaffected and provided timely alerts.

The EEW performance presented in this study is made
possible by sustained efforts to develop and maintain an
EEW-ready seismic monitoring infrastructure. The Swiss
Seismic Network was not primarily developed for EEW.

FIGURE 12 | Cumulated distributions of errors (δ) from VS (green) and FinDer (orange) for the eight largest earthquakes over magnitude 3.9 in Switzerland and
Lichtenstein since 2009.We use the same plotting conventions as in Figure 10, adding playback results (Pb, dashed lines) to the online (real-time) results (On, solid lines).

Frontiers in Earth Science | www.frontiersin.org September 2021 | Volume 9 | Article 70765416

Massin et al. Earthquake Early Warning in Switzerland

233

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


However, since 2009, every opportunity to upgrade and extend
the permanent network has been taken with EEW in mind. In
particular, the number of strong motion stations has grown very
rapidly (Figure 2) to the stage where today over 175 permanent
stations are equipped with strong motion sensors (Figure 3B).
Further, the majority of stations have dataloggers that support
low latency streaming (Figure 3A). Finally, uptime for the
majority of stations averages over 99% each year. With this
observational capability, Switzerland provides an excellent
opportunity for developing, testing and demonstrating EEW.
Further, these high-quality waveform data are available in real-
time and in open archives. Although seismicity in Switzerland is
moderate, a number of events with magnitude over four have
recently been recorded available to demonstrate performance.

These measures ensure event detection for significant seismic
events is now routinely observed in under 10 s across the country
(last 5 years in Supplementary Figure SA3a) resulting in a
maximum late-warning area of 32 km radius (S-wave distance
for 10 s in Supplementary Figure SA5c). Further, for large
portions of the country, in particular regions with significant
recent and historic seismicity (Figure 3C), alerts are available in
the order of 5 s (late-warning area of 14 km radius,
Supplementary Figure SA5). Our study does not address
missed and false alerts because event playback does not allow
us to look into false positive rates, and configuration changes do
not allow us to go further back in time before 2018. Since 2018,
1.5% of the MVS exceeding 2.5 did not correspond to true seismic
events. The rate of false positives from FinDer has been variable
over time, but during the last 6 months no MVS or Mfd solution
exceeded 2.5 without a true seismic event.

ESE performance in Switzerland compares well with the US
ShakeAlert system, the state-of-the art EEW system currently
operating across the US West Coast. ShakeAlert and ESE in
Switzerland are both operating on dense networks that have
been optimised for low latency. Like ESE, ShakeAlert combines
FinDer with a point source algorithm, EPIC (Kohler et al., 2020).
The FinDer delays in both systems are similar, while VS in
Switzerland is about 1 s slower than EPIC in ShakeAlert. The
fastest alerts in ShakeAlert (both EPIC and FinDer) are about 3 s,
20% of alerts are faster than 5.5 s, the median alert delay after event
nucleation throughout the USWest Coast is 7.2 s, with 80% of first
alerts faster than 10.5 s, and 90% of first alerts are faster than 13.5 s,
varying with epicentral station density (and magnitude for
marginal events; J. Andrews, written communication, May 2021).

We demonstrated in this paper, the current EEW performance
of ESE in Switzerland using the observed seismicity occurring over
the last 10 years, with a maximummagnitude of ML 4.6. Of course
events of this type are not the target for the EEW system–damage is
not observed and shaking intensities are moderate and restricted to
narrow regions around the epicenter. Nevertheless, the delays and
the precision in location and magnitude presented here can be
expected to be repeated during more significant events since VS
and FinDer have been extensively tested as described in themethod
section. ESE also operates effectively in regions with larger events
M6+ seismicity, the ESE framework is being continuously tested in
Nicaragua, El Salvador, and Costa Rica (Massin et al., 2018, 2020,
Porras et al., 2021). In addition, the performance of FinDer is

continuously monitored and improved in the US West Coast
ShakeAlert warning system (Given et al., 2018), which uses
another, Earthworm-based wrapper but the same FinDer
algorithm code.

This study also documents the impact of recent improvements
in the configuration of VS as compared to Behr et al. (2015). In
addition to the network densification, key VS configuration
changes include the SeisComP location module migration
from the six station configuration of scautoloc to the four
station configuration of both scautoloc and scanloc; and
implementation of 1 s magnitude windows instead of the
original 3 s. In Behr et al. (2015), the observed real-time VS
delays fell between 12 and 14 s for the 16th and 84th percentile for
earthquakes within Switzerland, while we report real-time VS
delays since 2014 from 6.5 to 12.5 s, respectively (with a 8.7 s
median or a 27 km late alert zone radius, Supplementary Figure
SA5). The median first magnitude delay in playback is about 7.3 s
for VS and 5.8 s for FinDer, corresponding to the propagation of
S-waves over 22 and 17 km, respectively (varying by about 4 km
depending on the depth). Comparing VS and FinDer on the
intersecting subsets of nine earthquakes since 2017 that have
results for both algorithms shows real-time median delays of 8.5
and 7 s for VS and FinDer, both improving by about 1s in
playback (Supplementary Figure SA6).

In ESE in Switzerland, the first VS magnitude is generally
available 4–5 s after the P-wave arrives at the fourth station; for
FinDer the performance is less predictable in the magnitude
range considered here (FinDer requires PGA >2 cm/s/s at three
neighboring stations). Playbacks with the current configuration
are faster than real-time performance, though earliest playback
solutions tend to have larger errors. FinDer can overestimate
magnitudes of small earthquakes (Supplementary Figure SA4),
but does not for earthquakes over M3.9 (Figure 12). VS, by
contrast, allows continuous (configuration and metadata) quality
control with background seismicity and computation stress
testing with intense sequences of non-damaging events, but
shows increased magnitude under-estimation errors on the
largest earthquakes (by 0.7 and 0.4 units in median for
playbacks and online, Figure 12) compared to smaller
earthquakes (by 0.2 and 0.3 units in median for playbacks and
online, Supplementary Figure SA4).

In general, comparing playback and online results in the
current configuration of the ESE underlines the trade-off
between detection speed and location errors. Although each
processing stage of the ESE provides quality metrics, an
independent and unified real-time quality evaluation
procedure of EEW magnitudes is still missing for detecting
potential errors in EEW. VS uses quality parameters of the
origin location and magnitude to produce likelihood estimates
of correct event detection (Behr et al., 2016). The VS likelihood is
an example of an empirical approach for identifying incorrect
event parameters, while FinDer uses cross-correlation coefficients
and misfit values. With the introduction of FinDer as a major
component of ESE, it is critical to develop a tool for quantitative
decision-making in the EEW context. Minson et al. (2017), for
example, demonstrate how an optimal EEW solution can be
identified amongmultiple options, using available groundmotion
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observations. We intend to implement a similar methodology in
ESE in future.

The current ESE configuration can still be improved. We
demonstrate how an adjustment of the ESE configuration can
improve EEW in presence of a simultaneous quarry blast during
the MLhc3.9 Elm 2020 aftershock using the playback functionality
of the ESE (developed by Behr et al., 2015; Behr et al., 2016).
Future improvement towards a better VS location method
configuration might tend toward more location updates. The
current ESE configuration for VS limits the location update
interval to 10 s, ignoring stations that become available for
origin and subsequent magnitude evaluation. This arbitrary
limitation aiming at controlling usage of computing resources
will hopefully become unnecessary in the short term.

CONCLUSION

We document the latest status of ESE, the SED-ETHZ SeisComP
EEW system, that includes the VS and FinDer algorithms. In
general, both algorithms are observed to be similarly fast. The
pick-based VS method provides fast locations and magnitudes for
any event that triggers the national network. Since 2014, the median
delay for the first VS alert is 8.7 s after origin time. FinDer relies on
recognition of peak amplitudes exceeding a certain threshold (here
2 cm/s2), so is only activated for larger events (M> 3.5), but events as
small as M2.7 have been detected. Since 2017, the median delay for
the first FinDer alert is 7 s. Playbacks of the largest 100 events, with
M ≥ 2.7, over the last 10 years using the current configuration
indicate median delays of 7.3 and 5.8 s for VS and FinDer,
respectively–though FinDer only provides a solution for 37 of
these events. The median value for the travel time of the P waves
from event origin to the fourth station accounts for 3.5 s of delay;
with an additional 1.4 s for data sample delays in real-time testing.

Operating two independent algorithms provides redundancy
and increase the tolerance to failures of a single algorithm. In this
manuscript, we demonstrate this for the MLhc3.9 Elm earthquake,
for which an independent quarry blast in the seconds before delays
the pick-based VS by 4 s, while FinDer is not affected by the small
amplitudes of quarry blast signals and performs as expected.

The Swiss Seismic Network continues to be optimised for
EEW–today over 175 permanent stations include strong motion
stations, and the majority of stations have been upgraded to
include low-latency streaming. Station uptime is high. With the
EEW methodologies integrated in SeisComP, and the quality of
the monitoring infrastructure, the ESE system in Switzerland is
achieving a performance in terms of speed that is similar to the
US ShakeAlert EEW system.
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Applicability of Accurate Ground
Motion Estimation Using Initial P Wave
for Earthquake Early Warning
Zijun Wang1,2 and Boming Zhao1,2*

1Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing, China, 2School
of Civil Engineering, Beijing Jiaotong University, Beijing, China

The earthquake early warning (EEW) system is capable of mitigating seismic hazards and
reducing deaths, injuries, and economic losses. Although EEW approaches have already
been developed worldwide, improving the accuracy and applicability is still controversial.
Aiming at the ground motion estimation using the initial P wave, we investigated eight
representative characteristic parameters, i.e., the peak measurements and integral
quantities, using the database of the 2008 Wenchuan earthquake, where the
aftershocks with the criteria that 4.0 ≤ Ms ≤ 6.5 and epicentral distance less than
150 km are analyzed. We established the relationships between the eight characteristic
parameters and four ground motion parameters, respectively, based on which the
estimation accuracy and reliability and the extent to which the increasingly expanding
time windows could affect the estimates are analyzed accordingly. We found that the
integral quantities could also be a robust estimator for peak ground acceleration (PGA),
peak ground velocity (PGV), and spectral intensity (SI), while the peak measurement is
more useful in estimating peak ground displacement (PGD). In addition, for estimating the
ground motion of events with magnitudes less than 6.5, a 2-s window could effectively
improve the estimation accuracy by approximately 11.5–18.5% compared with using a 1-s
window, as the window increases to 3 s, the accuracy would further improve while the
growth rate will be reduced to around 3.0–8.0%.

Keywords: earthquake early warning, ground motion estimation, Wenchuan earthquake, initial P wave,
characteristic parameters

INTRODUCTION

The earthquake early warning (EEW) system is capable of mitigating seismic hazards and reducing
deaths, injuries, and economic losses (Allen and Melgar, 2019; Zollo et al., 2016; Hoshiba, 2014). By
regional and on-site algorithms, alerts could be sent ahead of the earthquake events induced ground
shaking at target locations so that appropriate measures can be taken immediately against seismic
hazards (Cremen and Galasso, 2020; Satriano et al., 2011), e.g., slowing the high-speed trains to
reduce accidents and shutting down gas valves to prevent fires in a short term. The EEW systems are
generally regarded as positive measures by relevant stakeholders that many earthquake-prone
countries and regions are operating or testing their own systems.

The regional approach leverages the information from the seismic network deployed next to the
epicenter to evaluate the relevant source parameters (event location and magnitude) and predict the
regional seismic intensities using the traditional ground motion prediction equation (GMPE)
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(Satriano et al., 2011). While on the other hand, the on-site system
often consists of a limited set of seismic stations located at particular
target sites of interest, which typically provide rapid groundmotion
estimates, using only information on the characteristics of P waves
recorded at one seismic station, where an early warning is often
most needed (Kanamori, 2005). A number of algorithms account
for the uncertainties of ground motion estimation by considering a
confidence interval on the estimate with width equivalent to two
standard deviations of the empirical relationship used to derive
ground shaking (Wu and Kanamori, 2005; Wu and Kanamori,
2008; Zollo et al., 2010; Zollo et al., 2016).

WesternChina is an earthquake-prone areawith high intensity and
frequency, which poses a great threat to the city and transportation
system (Xu et al., 2009). For instance, most of the high-speed railways
in China have no choice but to be constructed in the areas ofmoderate
to high level of seismic fortification intensity, being prone to derail or
overturn in case of dynamic actions and causing catastrophic hazards,
even in small seismic events. Effective detection of these events is a
necessary condition for disaster prevention and mitigation. However,
since China is of a vast territory, it is not possible to set up dense strong

ground motion station networks on a large scale at present, and for
infrastructures such as high-speed railwaywhich is linearly distributed,
it is required to investigate the approach that can be used for single
station, which is also expected to improve the reliability of an on-site
system, where no information or constraint on the earthquake source
is available in real-time.

In this paper, aiming at the ground motion estimation using
the initial P wave and among the possible parameters measurable
in real-time, i.e., the peak measurements and the integral
quantities, we investigated eight representative parameters
using the database of the 2008 Wenchuan earthquake (China
Strong Motion Networks Centre, 2020). The estimation accuracy
and reliability in the established relationships toward four
different ground motion parameters are analyzed, respectively.
To further investigate that to what an extent the initial signal
window length could affect the estimates, we compared the
variation tendency of standard deviation and determination
coefficient between the leading parameters and the corresponding
groundmotion parameters of different time window.We found that
the integral quantities could also be a robust estimator for PGA, PGV

TABLE 1 | Seismic events studied in this paper.

No. Origin time (UT) Latitude Longitude Focal depth
(km)

Ms Number of
records

1 2008.08.05 17:49:16 32.72 105.61 13 6.5 5
2 2008.05.25 16:21:47 32.55 105.48 14 6.4 6
3 2008.05.12 14:43:15 31.27 103.82 14 6.3 7
4 2008.05.12 19:11:01 31.26 103.67 14 6.3 15
5 2008.08.01 16:32:42 32.02 104.85 14 6.2 4
6 2008.05.13 15:07:08 30.95 103.42 14 6.1 12
7 2008.05.18 1:08:24 32.2 105.08 13 6.1 8
8 2008.07.24 15:09:28 32.76 105.61 10 6 3
9 2008.05.12 14:54:17 31.26 103.59 13 5.8 4
10 2008.05.12 15:34:42 31.29 103.77 13 5.8 7
11 2008.05.27 16:37:51 32.78 105.7 15 5.7 3
12 2008.07.24 3:54:43 32.72 105.63 10 5.7 2
13 2008.05.12 15:01:34 31.45 104.49 13 5.5 6
14 2008.05.12 16:10:57 31.14 103.6 10 5.5 3
15 2008.05.12 16:21:40 31.53 104.28 11 5.5 11
16 2008.05.13 7:46:18 31.34 103.58 13 5.4 13
17 2008.05.12 17:42:24 31.48 104.13 14 5.3 10
18 2008.05.27 16:03:22 32.76 105.65 15 5.3 5
19 2008.05.12 16:35:05 31.29 103.65 14 5.2 3
20 2008.05.12 17:06:59 31.16 103.69 10 5.2 4
21 2008.05.12 17:31:15 31.16 103.56 10 5.2 6
22 2008.05.12 16:26:12 31.4 104.12 12 5.1 7
23 2008.05.12 16:47:23 32.16 105.12 9 5.1 3
24 2008.05.12 22:46:06 32.72 105.64 10 5.1 8
25 2008.05.12 17:23:35 32.19 104.92 20 5 3
26 2008.05.12 18:23:39 30.97 103.48 9 5 8
27 2008.05.12 19:33:20 32.55 105.35 16 5 5
28 2008.05.13 1:29:06 31.21 103.68 24 4.9 12
29 2008.05.12 16:50:39 32.24 105.19 21 4.8 3
30 2008.05.13 2:26:17 31.47 104.1 11 4.8 4
31 2008.05.12 19:52:25 32.71 105.36 20 4.7 3
32 2008.05.12 20:29:58 31.4 104.07 11 4.6 4
33 2008.05.13 0:28:53 31.26 103.76 16 4.5 4
34 2008.05.13 13:36:29 32.47 105.23 11 4.4 3
35 2008.05.12 20:15:40 31.87 104.57 9 4.3 10
36 2008.05.12 20:11:59 31.32 104.24 15 4.2 7
37 2008.05.13 7:43:51 31.37 104.34 14 4 3
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and SI, while the peak measurement is more useful in estimating
PGD. In addition, we show that for estimating the groundmotion of
events with magnitudes less than 6.5, a 1 s of P wave is not enough,
while a 2-s window could effectively improve the estimation
accuracy, as the window increases to 3 s, the accuracy would
further improve while the growth rate is not that much.

DATA AND PRE-PROCESSING

The 2008 Ms 8.0 Wenchuan earthquake provided an
opportunity to collect sound qualified data in a large scale

that China Strong Motion Net Centre (CSMNC) recorded
383 aftershocks until September 30, 2008 (China Strong
Motion Networks Centre, 2020). More than 600 cases with
magnitudes above Ms 4.0 were acquired, among them 56
aftershocks were larger than Ms 5.0 and 8 aftershocks, larger
than Ms 6.0. These events were over a rupture length of about
300 km with focal depths ranging from 2 to 20 km. Since the
near-fault records of the destructive earthquakes are most
important for the EEW system purposes (Nakamura et al.,
2011; Satriano et al., 2011), we then selected 37 aftershocks
with the criteria that Ms greater than 4.0 and epicentral distance
less than 150 km. However, some traces were not recorded from
the very beginning that the first P wave arrivals were lost, which
were not satisfied with the aim of our study and these cases were
discarded.

These records were obtained by the strong motion
seismographs with a dynamic range of ±2 g mainly installed at
free-field sites and the sampling rate was 200 Hz. We used the
proposed three-step detection method to pick the P wave in real-
time (Wang and Zhao, 2017) and double checked the arrival time
bymanual inspection for each waveform. In addition, each record
has been checked that the signal noise ratio (SNR) above three is
finally adopted (Küperkoch et al., 2010). With the detected P
wave, the corresponding early-measured attributes could be
calculated based on their formulas or physical meanings. The
seismic events studied in this paper are listed in Table 1 while the
distributions of these events along the ruptures with the stations
are shown in Figure 1.

FIGURE 1 | Map of stations (triangles) and the main-shock (star) together with the aftershocks (circles) used in this study. A sketch indicating the surface
rupture area.

TABLE 2 | Regression coefficients of the characteristic parameters and PGA.

(s) PGA Pa Pv Pd IA2 IV2 ID2 CAV si

1 A 0.730 0.771 0.557 0.372 0.384 0.238 0.748 0.743
B 0.561 1.844 2.187 0.907 2.162 2.126 0.982 1.572
stv 0.244 0.245 0.355 0.245 0.260 0.382 0.245 0.274
R2 0.723 0.719 0.410 0.719 0.683 0.317 0.720 0.684

2 A 0.786 0.791 0.564 0.413 0.397 0.250 0.831 0.760
B 0.463 1.811 2.154 0.745 2.073 2.094 0.712 1.467
stv 0.205 0.231 0.347 0.200 0.244 0.371 0.203 0.248
R2 0.803 0.751 0.436 0.813 0.722 0.357 0.808 0.703

3 A 0.814 0.786 0.535 0.429 0.400 0.246 0.867 0.776
B 0.417 1.774 2.056 0.653 2.008 2.009 0.542 1.410
stv 0.195 0.227 0.354 0.184 0.238 0.369 0.186 0.245
R2 0.823 0.760 0.414 0.843 0.735 0.362 0.841 0.731

Note: R2 is the coefficient of determination.
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After the baseline error correction for the acceleration records,
the signals were integrated to velocity records, and velocity
records to displacement records, since they were required in
the characteristic parameter calculations. Then, we applied a
causal two-pole Butterworth filter with a cut-off frequency of
0.075 Hz on the vertical component to remove the undesired
long-period trends after numerical integration (Boore et al.,
2002). Zollo et al. (2010) have shown that this cut-off

frequency preserves a scaling of the EEW parameters with
magnitude in a broad range.

EEW Parameters Versus Ground Motion
Parameters
The strengths of critical ground motions can be defined by the
shock wave, where its effects are practically represented by the peak

TABLE 3 | Regression coefficients of the characteristic parameters and PGV.

(s) PGV Pa Pv Pd IA2 IV2 ID2 CAV si

1 A 0.613 0.770 0.721 0.310 0.398 0.325 0.626 0.740
B −0.947 0.289 1.029 −0.656 −0.655 1.043 −0.594 0.009
stv 0.349 0.278 0.289 0.352 0.272 0.322 0.350 0.320
R2 0.472 0.665 0.639 0.464 0.680 0.552 0.468 0.556

2 A 0.690 0.818 0.727 0.362 0.426 0.336 0.730 0.814
B −1.044 0.289 0.977 −0.796 0.609 0.968 −0.825 −0.051
stv 0.313 0.244 0.275 0.312 0.230 0.305 0.312 0.272
R2 0.574 0.743 0.672 0.579 0.771 0.598 0.577 0.682

3 A 0.728 0.822 0.736 0.385 0.434 0.331 0.779 0.864
B −1.091 0.263 0.887 −0.881 0.552 0.859 −0.980 −0.078
stv 0.300 0.229 0.262 0.292 0.213 0.300 0.292 0.248
R2 0.609 0.772 0.702 0.631 0.803 0.610 0.630 0.742

TABLE 4 | Regression coefficients of the characteristic parameters and PGD.

(s) PGD Pa Pv Pd IA2 IV2 ID2 CAV si

1 A 0.439 0.712 0.928 0.211 0.376 0.445 0.431 0.542
B −1.749 −0.658 0.653 −1.543 −0.291 0.812 −1.499 −1.049
stv 0.588 0.520 0.397 0.593 0.511 0.405 0.592 0.575
R2 0.139 0.326 0.607 0.123 0.349 0.592 0.127 0.176

2 A 0.578 0.831 0.976 0.300 0.446 0.472 0.604 0.713
B −1.859 −0.567 0.680 −1.652 −0.202 0.772 −1.676 −0.997
stv 0.556 0.474 0.350 0.556 0.454 0.360 0.557 0.526
R2 0.231 0.441 0.696 0.229 0.486 0.678 0.227 0.311

3 A 0.640 0.842 0.980 0.344 0.465 0.473 0.695 0.797
B −1.916 −0.586 0.541 −1.733 −0.229 0.655 −1.822 −1.001
stv −0.541 0.464 0.338 0.535 0.434 0.339 0.535 0.494
R2 0.271 0.465 0.715 0.288 0.530 0.715 0.288 0.392

TABLE 5 | Regression coefficients of the characteristic parameters and SI.

(s) SI Pa Pv Pd IA2 IV2 ID2 CAV si

1 A 0.582 0.755 0.736 0.293 0.393 0.334 0.593 0.676
B −0.400 0.804 1.600 −0.124 1.173 1.623 −0.065 0.487
stv 0.369 0.295 0.284 0.372 0.285 0.317 0.371 0.352
R2 0.418 0.629 0.655 0.408 0.653 0.571 0.413 0.470

2 A 0.662 0.806 0.746 0.347 0.423 0.346 0.700 0.754
B −0.495 0.810 1.555 −0.258 1.133 1.551 −0.286 0.443
stv 0.335 0.260 0.267 0.334 0.243 0.297 0.335 0.298
R2 0.520 0.711 0.696 0.524 0.747 0.623 0.522 0.606

3 A 0.701 0.812 0.755 0.372 0.431 0.339 0.753 0.842
B −0.542 0.786 1.462 −0.340 1.080 1.430 −0.436 0.445
stv 0.322 0.247 0.253 0.314 0.226 0.295 0.315 0.257
R2 0.557 0.741 0.727 0.579 0.782 0.629 0.578 0.712
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ground acceleration (PGA), peak ground velocity (PGV), and peak
ground displacement (PGD). In addition, the spectral intensity (SI)
is defined as follows by Housner who regarded it as a seismic index
reflecting the earthquake destructive power (Housner, 1952):

SIζ � ∫2.5

0.1
Sv(T , ζ)dT , (1)

where Sv is the relative velocity response spectrum of a single-
degree-of-freedom system, T is the period, and ζ is the damping
ratio which was set as 0.05 herein.

Therefore, for the EEW purposes, we used the PGA, PGV,
PGD, and SI as parameters to assess the strengths of the ground
motions during earthquake damage.

Normally a certain time window following the initial P wave
arrival time ti is used to determine the early-measured
parameters, and among the possible parameters measurable in

real-time, they could be categorized according to the signal type
on which they are measured or their physical interpretation. The
peak measurements, for example, the use of the peak
displacement (Pd), peak velocity (Pv), or peak acceleration
(Pa), of the first few seconds of the P wave have been shown
to scale with ground motion (Colombelli et al., 2015; Bose et al.,
2009). On the other hand, the integral quantities, for instance, the
cumulative absolute velocity (CAV), are used in Istanbul EEW
system (Erdik et al., 2003) as a rapid detector for strong ground
shaking, which is computed from the integral of the acceleration
a(t) as CAV � ∫tmax

ti
|a(t)|dt. The integral of the squared velocity

(IV2), defined as IV2 � ∫t

ti
v(t)2dt, is related to the early-radiated

energy (Festa et al., 2008). Wang and Zhao proposed to use the
squared displacement integral (ID2), specified as
IV2 � ∫ti+τo

ti
u2dt, to reflect the information of different periods

from advancing rupture on fault plane (Wang and Zhao, 2018).
However, there are several unresolved issues, for example, the

FIGURE 2 | (A–C) show Pa, IA2, and CAV calculated from the first 1 s (dark circles), 2 s (blue squares), and 3 s (red triangles) of P wave data, respectively. The PGA
regression relationships determined by this study are shown as solid lines, and the standard deviations are shown as dashed lines.

Frontiers in Earth Science | www.frontiersin.org September 2021 | Volume 9 | Article 7182165

Wang and Zhao Ground Motion Estimation in EEW

242

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


estimation accuracy and reliability, in the empirical relationships
toward different ground motion parameters and to what an
extent that the length of the signal window could affect the
estimates.

Therefore, on the basis of the initial P wave arrival time ti, the
early-measurable parameters were investigated and a linear
regression model between the ground motion and the
characteristic parameters is assumed as follows:

log(PGM) � A × log(PEEW) + B ± stv (2)

where the PGM stands for the ground motion parameters,
i.e., PGA, PGV, PGD, and SI, PEEW stands for the EEW
characteristic parameters, i.e., Pa, Pv, Pd, IA2, IV2, ID2,
CAV, and si, A and B are constants that are to be
determined from the regression analysis, and stv is the
standard deviation.

RESULTS

Since better estimates might be obtained by expanding the
observation time window to update the characteristic
parameters, the time windows of 1 s to 3 s are investigated,
respectively. Under the current analytical form, the resulting
best-fitting regression coefficients for the four ground motion
parameters and the corresponding characteristic parameters are
listed in Tables 2, 5.

With the calculated standard deviation stv and the coefficient
of determination R2, the leading characteristic parameters for
better estimating the ground motion parameters are selected. As
for PGA, among the investigated parameters, Pa, IA2, and CAV
could be good estimators that the corresponding stv reduce to
0.195, 0.184, and 0.186 while the R2 rise to 0.823, 0.843, and 0.841
of a 3-s window, respectively. With regard to PGV, the

FIGURE 3 | (A–D) showPv, Pd, IV2, and si calculated from the first 1 s (dark circles), 2 s (blue squares), and 3 s (red triangles) of P wave data, respectively. The PGV
regression relationships determined by this study are shown as solid lines, and the standard deviations are shown as dashed lines.
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characteristic parameters Pv, Pd, IV2, and si could give a better
estimation that the stv are equal to 0.229, 0.262, 0.213, and 0.248
while the R2 equal 0.772, 0.702, 0.803, and 0.742 of a 3-s window,
respectively. In addition, the characteristic parameters correlate
with displacement, i.e., Pd and ID2 are suitable for estimating
PGD that the stv of the two correlations are 0.338 and 0.339 while
both give a R2 of 0.715 considering a 3-s window, respectively. In
regard to SI, the characteristic parameters Pv, Pd, and IV2 could
get good results that the stv are 0.247, 0.253, and 0.226 while the
R2 reach to 0.741, 0.727, and 0.782 of a 3-s window. Generally, the
selected characteristic parameters used for estimating PGA
demonstrate a highest correlation within the analyzed data,
and the situations of PGV and SI are relatively on the same
level, better than that of PGD.

With the corresponding leading parameters for estimating the
four ground motion parameters, Figures 2, 5 illustrate the linear
regressions curves aiming PGA, PGV, PGD, and SI, respectively.
In each figure, the characteristic parameters calculated from the
first 1 s, 2 s, and 3 s are shown with circles, squares, and triangles,
respectively, where the solid line refers to the regression
relationship while the dashed lines stand for the standard
deviations. The regression curves show that the investigated
characteristic parameters correlate well with the ground
motion parameters, and the uncertainties of the ground
motion determination for the events reduce along with the
increases of the time windows, since most of the seismic
accumulated energy could be released in a short time.

To further investigate that to what an extent the length of the
initial signal window could affect the estimations, we compared
the variation tendency of standard deviation and determination
coefficient between the leading parameters and the corresponding
ground motion parameters of different time window, which are
shown in Figure 6. From the variation slope of each investigated
parameter, both stv and R2 could reflect the correlations with the
increasing of the time window. For most cases, there is a

significant stv reduction and R2 increase while a gentle change
for 1–2 s and 2–3 s, respectively. Specifically, we calculated the
increase rates Δ of the standard deviation stv between each time
window interval for each investigated correlations, which are
listed in Table 6, 9. For PGA, the reduction rates of stv among the
three characteristic parameters are all above 15% over 1 to 2 s,
where the IA2 has the highest rate of 18.37%, while those of the
2–3 s are reduced to 4.88–8.37%. With regard to PGV, the
performance of Pv, IV2, and si demonstrated a similar trend
as parameters for PGA, while which of Pd is slight small, giving a
decrease rate of 4.84% for 1–2 s and 4.73% for 2–3 s, respectively.
As for PGD and SI, except for Pd who performed similar as the
case for PGV, the decrease rates of stv of other characteristic
parameters are around 11.11–14.74% over 1–2 s and 3.43–7.0%
over 2–3 s.

DISCUSSION AND CONCLUSION

In this paper, the proposed method is envisaged to be based on a
single station and is expected to improve the reliability of an on-
site system, where no information or constraint on the
earthquake source is available in real-time. Aiming at the
ground motion estimation using the initial P wave, we have
investigated the continuous measurement of eight attributes for
the fast prediction of the expected shaking at the same site, where
the estimation accuracy and reliability toward different ground
motion parameters and to what an extent that the length of the
signal window could affect the estimates are proposed. Although
the single station method is conceived, the methodology
proposed here could be easily integrated in a network-based
EEW platform.

The EEW characteristic parameters, i.e., Pa, Pv, Pd, IA2,
IV2, ID2, CAV, and si values, for the selected aftershocks (4.0 ≤
Ms ≤ 6.5) of the 2008 Wenchuan earthquake were calculated,

FIGURE 4 | (A–B) show Pd and ID2 calculated from the first 1 s (dark circles), 2 s (blue squares), and 3 s (red triangles) of P wave data, respectively. The PGD
regression relationships determined by this study are shown as solid lines, and the standard deviations are shown as dashed lines.
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and regression relationships between each of these parameters and
ground motion parameters, i.e., PGA, PGV, PGD, and SI, were
established, respectively. Our results show that for PGA, the
characteristic parameters Pa, IA2, and CAV could be good
estimators and for PGV, the Pv, Pd, IV2, and si could give a
better estimation. The Pd and ID2 are suitable for estimating PGD
while in regard to SI, the Pv, Pd, and IV2 could get good results.
Therefore, for different ground motion parameters, using an
appropriate parameter is necessary while it also could be
suggested to combine two of the possible parameters together in
the real EEW operations. In addition, the predicted peak ground
shaking can be used to determine the expected intensity, through a
regression relationship.

The integral quantities, i.e., IV2, ID2, and CAV, are directly
correlated with the radiated energy E in the initial stages of
seismic ruptures, which are often used to correlate the final
earthquake size (Allen et al., 2009; Colombelli and Zollo,

2016). However, in this study, it is found these parameters
could also link ground motion parameters. In addition, we
also found that the frequency parameter si could correlate
ground motion parameters (e.g., PGA and PGV that reflect
the ground shaking intensity) well. Since the observation
stations were mainly set on soil conditions, it is inferred that
this frequency parameter can reflect information of site effects.

Since time is the key parameter of the early warning system,
the longer the available time before the disaster phenomenon
reaches the target, the more effective and comprehensive the
countermeasures can be taken. In contrast of regional EEW
systems, which yield more accurate estimates of the source
parameters, the on-site EEW systems could provide faster
warning times for near-source targets at the price of a lower
accuracy on the estimation of earthquake parameters. There is
always a trade-off between the early warning time and the
reliability of earthquake information. From our results, a 2-s

FIGURE 5 | (A–C) show Pv, Pd, and IV2 calculated from the first 1 s (dark circles), 2 s (blue squares), and 3 s (red triangles) of P wave data, respectively. The SI
regression relationships determined by this study are shown as solid lines, and the standard deviations are shown as dashed lines.
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window could effectively improve the estimation accuracy by
approximately 11.5–18.5% compared with using a 1-s window, as
the window increases to 3 s, the accuracy would further improve
while the growth rate will be reduced to around 3.0–8.0%. That is
to say, for appropriate correlations between the characteristic
parameters and ground motion parameters, a 2 s initial P wave
might be enough for the first alert; meanwhile, the updating
procedures should be considered certainly in real operations.

The 2008 Ms 8.0 Wenchuan earthquake occurred along the
Longmenshan faults (Li et al., 2008), consisting of mountain-
front fault, central fault, and mountain-back fault, which are

situated in the transitional area from the Tibetan Plateau to the
South China Plate. This complicated geological and topographic
environment caused complex focal mechanisms, propagation
processes, and site effects, resulting in the ground motions to
have the nature of complexity. Because aftershocks distribute on
different secondary faults, their focal mechanisms present
complex local tectonic stress field and even vary with time.
Generally, for the southern segment, the thrust component is
stronger than strike-slip component, while the northern segment
corresponds to a section of mostly strike-slip mechanism; the
middle segment may be related to the transition between the
southern and northern segments (Zheng et al., 2010; Yi et al.,
2012), since the used data cover the general magnitude gradients
that are of concern for EEW systems, and multiple stations
recorded the wave forms for each event within the specified
range, providing important benefits for EEW studies. In addition,
the earthquake rupture and the propagation process should be

FIGURE 6 | Comparison of the standard deviation and coefficient of
determination between the leading parameters for estimating (A) PGA, (B)
PGV, (C) PGD, and (D) SI, respectively.

TABLE 6 | Comparison of the standard deviation stv between the leading 3
parameters for estimating PGA.

PGA Pa IA2 CAV

stv Δ (%) stv Δ (%) stv Δ (%)

1 0.244 15.98 0.245 18.37 0.245 17.14
2 0.205 4.88 0.200 8.00 0.203 8.37
3 0.195 0.184 0.186

TABLE 7 | Comparison of the standard deviation stv between the leading 4
parameters for estimating PGV.

PGV Pv Pd IV2 si

stv Δ (%) stv Δ (%) stv Δ (%) stv Δ (%)

1 0.278 12.23 0.289 4.84 0.272 15.44 0.320 15.00
2 0.244 6.15 0.275 4.73 0.230 7.39 0.272 8.82
3 0.229 0.262 0.213 0.248

TABLE 8 | Comparison of the standard deviation stv between the leading 2
parameters for estimating PGD.

PGD Pd ID2

stv Δ (%) stv Δ (%)

1 0.397 11.84 0.405 11.11
2 0.350 3.43 0.360 5.83
3 0.338 0.339

TABLE 9 | Comparison of the standard deviation stv between the leading 3
parameters for estimating SI.

SI Pv Pd IV2

stv Δ (%) stv Δ (%) stv Δ (%)

1 0.295 11.86 0.284 5.99 0.285 14.74
2 0.260 5.00 0.267 5.24 0.243 7.00
3 0.247 0.253 0.226
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investigated and studied to develop a better theoretical research of
the phase nature.

The paper tested different attributes for the fast prediction of the
expected shaking in real-time, while practical operations require
consideration of other aspects. For example, the observation
stations should be built with the ability to provide early
warnings that the detection instruments are capable of
improving the signal quality, especially for the vertical
component. In addition, appropriate investigations of the
observation locations with detailed surrounding seismic
environments are also necessary. When calibrating the proposed
method for a specific area, the possible impact of site effect, which
may produce local, systematic amplification/attenuation of the
perceived shaking, is required to have a detailed analysis.
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Real-Time Prediction of Impending
Ground Shaking: Review of
Wavefield-Based (Ground-
Motion-Based)Method for Earthquake
Early Warning
Mitsuyuki Hoshiba*

Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan

Earthquake early warning (EEW) systems aim to provide advance warning of impending
ground shaking, and the technique used for real-time prediction of shaking is a crucial
element of EEW systems. Many EEW systems are designed to predict the strength of
seismic ground motions (peak ground acceleration, peak ground velocity, or seismic
intensity) based on rapidly estimated source parameters (the source-based method),
such as hypocentral location, origin time, magnitude, and extent of fault rupture.
Recently, however, the wavefield-based (or ground-motion-based) method has been
developed to predict future ground motions based directly on the current wavefield,
i.e., ground motions monitored in real-time at neighboring sites, skipping the process of
estimation of the source parameters. The wavefield-based method works well even for
large earthquakes with long duration and huge rupture extents, highly energetic
earthquakes that deviate from standard empirical relations, and multiple
simultaneous earthquakes, for which the conventional source-based method
sometimes performs inadequately. The wavefield-based method also enables
prediction of the ongoing seismic waveform itself using the physics of wave
propagation, thus providing information on the duration, in addition to the strength of
strong ground motion for various frequency bands. In this paper, I review recent
developments of the wavefield-based method, from simple applications using
relatively sparse observation networks to sophisticated data assimilation techniques
exploiting dense networks.

Keywords: earthquake early warning, real-time prediction, seismic groundmotion, wavefield, data assimilation, site
amplification

INTRODUCTION

Earthquake early warning (EEW) aims to prevent/mitigate earthquake disasters by providing people
with enough time to take appropriate safety measures in advance of impending strong ground
motion. EEW systems have been researched and developed in Japan, Mexico, Taiwan, the
United States, European countries, China, Turkey, south Korea, and many other regions (e.g.,
Hoshiba et al., 2008; Cuellar et al., 2014; Chen et al., 2015; Cochran et al., 2018). The prediction of
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strong ground motions is an important element of EEW, and
many methods have been proposed; the basic algorithms are
classified into three prediction concepts:

1): Predicting seismic wave propagation;
2): Predicting the amplitude of S-waves from those of

preceding P-wave; and
3): Predicting an entire rupture based on the initial rupture.

EEW algorithms are constructed based on one or combination
of these concepts. For example, the operational EEW system of
the Japan Methodological Agency (JMA) combines Concepts 1)
and 2) but does not adopt Concept 3) (Hoshiba, 2014).

Concept 1) is based on the fact that modern communication
speeds (∼105 km/s) are much faster than seismic wave velocity
(∼100–101 km/s); information about seismic waves detected near
a hypocenter can be relayed to distant locations much faster than
the seismic waves propagate. This concept assumes that
observation sites are closer to the hypocenter than the
prediction (target) site; the seismic observation network thus
plays an important role.

Concept 2) is based on the fact that amplitudes of early P-wave
arrivals are usually smaller than those of late arriving S-waves.
The S-wave/P-wave amplitude ratio has been estimated
theoretically or empirically, and many authors take a value of
∼5. Because communication is not necessarily required, this
concept can be used for even a single isolated site. However,
this concept cannot be used in cases when the earthquake rupture
duration is longer than S-P time (the time between P and S wave
arrives), because P waves from later large ruptures may be
contaminated by S waves from earlier small ruptures. This
situation usually occurs at sites near the hypocenter (that is,
short S-P time) of large (that is, long rupture duration)
earthquakes. Discrimination of P waves in S wave train is
required.

Concept 3) is based on the hypothesis that initial parts of small
and large earthquake ruptures differ. Some authors have claimed
that the final moment magnitude (Mw) can be estimated from the
first several seconds of P-wave portion even for large events of
long rupture duration (typical durations are ∼10 and 30 s for
Mw7 and 8 earthquakes, respectively), and that it may be possible
to rapidly estimate the final Mw while the rupture is still ongoing
(e.g., Olson and Allen, 2005; Zollo et al., 2006; Noda and
Ellsworth, 2016; Melgar and Hayes, 2019). However, many
authors have challenged this deterministic view of ruptures
claiming that they are nondeterministic and statistically
common rupture growth (e.g., Rydelek and Horiuchi, 2006;
Meier et al., 2016; Okuda and Ide, 2018; Trugman et al.,
2019). The debate over the deterministic nature of earthquake
rupture has continued for more than 2 decades in research on
EEW and the physics of earthquake rupture dynamics. Although
some EEW algorithms are based on this concept, but many others
are not.

In this review paper, I focus on Concept (1). When the
characteristics of wave propagation are expressed simply and
the source location and strength are estimated quickly, it is
possible to easily predict waves strength at a given location. T
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Many authors have thus proposed methods to rapidly
estimate origin time, hypocentral location, and earthquake
magnitude for EEW purposes (the point-source algorithm).
Moreover, the rapid estimation of source extent has also been
investigated (the finite fault algorithm) (Yamada, 2014; Böse
et al., 2018). In these “source-based methods,” the strength of
ground motion (e.g., peak ground acceleration, PGA; peak
ground velocity, PGV; and/or seismic intensity) is usually
evaluated based on Mw and distance (e.g., hypocentral
distance, epicentral distance, or fault distance) using a
ground motion prediction equation (GMPE). Nonetheless,
the source-based methods have vulnerabilities, including
underpredicting ground motion for extended ruptures in
point-source algorithms, and incorrectly identifying
multiple simultaneous earthquakes. Even when the
hypocenter and magnitude are estimated precisely, the
precision of predicted ground-motion strengths are
controlled by the uncertainty in the GMPE. Recent
theoretical works have suggested that the source-based
methods are inherently limited in terms of the timeliness
and accuracy of its prediction (Minson et al., 2018, 2019;
Hoshiba, 2020).

As an alternative to source-based methods, another
algorithm that has been intensively investigated over recent
decade does not necessarily require source parameters to
predict the strength of ground motion. Instead, future
ground motions are predicted directly from observed
ground motion, skipping the process of source estimation.
The “wavefield-based method” or “ground-motion-based
method” (hereinafter “wavefield-based method” for
simplicity) first estimates the current wavefield, then
predicts future wavefield based on the physics of wave
propagation. Because source parameters are not estimated,
this method avoids the vulnerabilities of the source-based
method (rupture extent, and simultaneous multiple
earthquakes).

This paper reviews recent developments, the current situation,
and future prospects of the wavefield-based method by
comparison with the source-based method.

THEORETICAL BACKGROUND

Prediction of seismic wave propagation is a key element of
Concept (1). Because seismic wave is controlled by the physics
of wave propagation, future wavefield can be predicted by wave
propagation theory. In this section, I explain the theoretical
background based on three independent approaches
(summarized in Table 1): the finite difference method, the
boundary integral equation method, and radiative transfer
theory (RTT). In the following subsections, scalar wave
expression is used for simplicity although seismic waves are
vector waves.

Finite Difference Method
Wave propagation is expressed by the wave equation:

1

c(x)2 €u(x, t) � ∇2u(x, t), (1)

whereu (x, t) is thewave amplitude at location x and at time t, c is phase
velocity, ∇2 is the Laplacian, and ü is the second order differential of u
with respect to t (i.e., z2u/zt2). This equation implies that the time-
evolution of a wave’s amplitude, ü, is determined by its spatial
distribution (∇2u). Therefore, future wavefields can be predicted
from the spatial distribution of a known wavefield when the
velocity structure, c(x), is known (Figure 1). Eq. 1 is approximated as

u(x, t + Δt) ≈ 2u(x, t) − u(x, t − Δt) + Δt2 · c(x)2 · ∇2u(x, t ).
(2)

The wavefield one time step Δt in the future, u (x, t+Δt), can be
estimated from the current wavefield, u (x, t), and that one
time step prior, u (x, t-Δt). Then, u (x, t+2Δt) is computed
from u (x, t+Δt) and u (x, t) as,

u(x, t + 2Δt) ≈ 2u(x, t + Δt) − u(x, t) + Δt2 · c(x)2
· ∇2u(x, t + Δt) . (3)

Thus, the wavefield at any future time can be obtained by
repeating this procedure as needed. Note that this assumes that
no new waves are radiated in the future, i.e., that no new
earthquakes occur over the prediction period.

In this approach, precise monitoring of the spatial distribution of u
(x, t) and u (x, t-Δt) is important for precise predictions. Once the
detailed distribution of u (x, t) and u (x, t-Δt) are obtained, source
parameters (radiation location and the strength of radiated waves,
i.e., hypocenter location and magnitude) are not needed to predict the
future wavefield. For precise estimation of the current wavefield, data
assimilation is a powerful tool, whichwill be explained in a later section.

Furumura et al. (2019) and Oba et al. (2020) applied the finite
difference approach to predict long-period ground motions
(>3–10 s). Because they used a three-dimensional (3-D)
velocity structure, they were able to predict not only the
waveforms of direct P- and S-waves, but also those of
reflected, refracted and surface (Rayleigh and Love) waves. At
present, however, the finite difference method is not useful for
computing short-period ground motions (<1 s) because the very
fine mesh size required exceeds modern computing capabilities
and the very precise velocity structure required to simulate wave
propagation is not easily obtained by current survey techniques.

Boundary Integral Equation Method
Whereas the finite differential method represents wave
propagation using differential form of the wave equation (Eq.
(1)), boundary integral equation takes its integral form;

u(xp, t) � ∫
∞

−∞
dτ ∫⎛⎝u(x1 , τ)

zG(xp, t − τ; x1 , 0)
zn

− G(xp, t − τ; x1 , 0) zu(x1 , τ)
zn

⎞⎠ dS,

(4)

in 3-D space, where S is the surface enclosing the target site, xp, x1 is a
location on S, z/zn is the derivative with respect to the normal vector
to S at x1, and G is the Green’s function. S can be taken arbitrarily
(Figure 2A). Here, the integrations are performed with respect to x1
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on S (i.e., the 2D integral), and with respect to the convolution
integral τ.Eq. 4 is validwhen there are no radiations (i.e., no sources)
inside S. Eq. 4 is known as the Kirchhoff-Fresnel integral in wave
propagation theory. Huygens’ principle is its preliminary qualitative

description, in which points on wavefront are virtual sources of
secondary waves aligned along the wavefront.

As an example, let us take S1 as a sphere of radius of l and
centered on xp in a homogenous velocity structure, c0, such

FIGURE 1 | The process for predicting future wavefield using the finite differencemethod. From the current wavefield, u (x, t-Δt) and u (x, t), the future wavefield, u (x,
t+Δt), is predicted, and then, from u (x, t) and u (x, t+Δt), u (x, t+2Δt) is forecast. Repeating this process makes it possible to obtain the wavefields at any time in the future.

FIGURE 2 | Schematic illustration of the boundary integral equation method (After Hoshiba, 2013a). The surface S can be taken arbitrarily around the target site xp,
and x1 is a location on S, and n is the normal vector to S at x1. Here θ is the angle of incoming ray paths from the surface normal. (B) Surface S1 is taken around xp as a
sphere of radius l. When an incident plane wave is assumed, travel distance of path A is larger than B by l-l cos θ. (C) An example of deploying pairs of monitoring sites to
predict ground motion at target site xp. The seismometer pairs are located at radius l on the ground surface and underground. Each seismometer in each pair is
spaced by Δl. (D) An example of plane wave propagation. The surface S is divided into SA and SB. SA is an infinite plane normal to the z axis, and SB is a half space of
infinite radius. Incident plane wave normal to SA is assumed.
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that |xp-x1| � l (Figure 2B). Because G (xp, t; x1, 0) � 0 when
t < l/c0, and taking travel-time into consideration, G (xp, t + l/
c0-τ ; x1, 0) � 0 when t + l/c0-τ < l/c0, i.e., when τ> t, so that

u(xp, t + l/c0) � ∫
t

−∞
dτ ∫⎛⎝u(x1, τ)

zG(xp, t + l/c0 − τ; x1, 0)
zn

−G(xp, t + l/c0 − τ; x1, 0) zu(x1, τ)
zn

⎞⎠dS1. (5)

This means that the waveform at the target site at time l/c0 in the
future is predicted based on u (x1, τ) between the past (time -∞) and
present (time t).

Green’s function in a homogeneous 3-D structure is expressed as,

G(xp, t − τ, x1, 0) � 1

4π
∣∣∣∣xp − x1

∣∣∣∣ δ(t − τ − ∣∣∣∣xp − x1
∣∣∣∣/c0)

� 1
4πl

δ(t − τ − l/c0). (6)

When the wavelength ismuch smaller than the spatial fluctuation
of the absolute amplitudes of u (xp, t) and G (xp, t-τ ; x1, 0), the high
frequency approximation is valid, and Eq. 5 is approximated as

u(xp, t + l/c0) ≈ ∫ 1
4πc0l

(cos θ + 1) _u(x1, t) dS1, (7)

where θ (�θ(x1, t)) is the angle of incoming ray paths from the surface
normal (Shearer 1999; Hoshiba 2013a). The waveform at time t + l/c0
is the weighted sum of the time differential of waveforms at x1 and t.
This means that when _u(x1, t) and θ(x1, t) are obtained on surface S1,
we can predict the wave motion at xp with a lead time of l/c0. Here,
source information (hypocentral location and magnitude) is not
required. For near future predictions small values of l (i.e., small
S1) are used, and for predictions ofmore distant future larger values of
l (larger S1) are accordingly required. When the angle of waves
approaching xp is 0°, cos θ � 1 and cos θ +1 � 2, indicating their
large contribution to constitute waveforms at xp. When the angle of
waves travelling away from xp is 180°, cos θ � -1 and cos θ +1 � 0,
indicating no contribution. Thus, waves approaching xp are important
for predicting waveforms at xp, and those traveling away from xp are
negligible. At θ � 90° (as for large-angle refractions), cos θ +1� 1; such
waves are weighted half as strongly as those of θ � 0°. However, taking
wavelength into consideration, the contribution is more concentrated
around θ � 0. Based on Fresnel theory, the area that mainly affects the
wave motion at xp is approximately given by the relation of “(half
wavelength) ≥(Path A)-(Path B)” in Figure 2B,

λ /2≥ l − l cos θ ≈ l · θ2/2. (8)

where an incident plane wave is assumed. This area is large for low-
frequency waves, and small for high-frequency waves. For example, in
a homogeneous velocity structure (c0 � 3 km/s) and with l � 30 km, θ
≤0.32 rad (18°) for a 1Hz wave, and θ ≤0.14 rad (8°) for a 5Hz wave.
Because contributions from outside this area are small, large angle
refractions do not affect high-frequency waves, and the ray theory
approach is valid.

Nagashima et al. (2008) and Kuyuk and Motosaka (2009)
proposed a front-detection method. They tried to predict ground

motion using waveforms of halfway applying empirical transfer
function, which corresponds to empirically estimated Green’s
function. Iervolino et al. (2007) and Iervolino (2014) proposed to
deploy some observation sites on a circle whose center location is
the target site, which is similar to Eqs 5, 7; this idea is essentially
the basis of the boundary integral equation method. Hoshiba
(2013a) explicitly introduced the boundary integral equation
method for predicting future ground motion. Although it is
relatively easier to take high-frequency waves in the boundary
integral equation method than in the finite difference method,
information on the time-dependent propagation direction (θ) is
required. An array technique is useful to estimate θ. When pairs
of seismometers are deployed as shown in Figure 2C and Eq. 5 is
approximated as

(xp, t + l/c0) ≈
∫
t

−∞
dτ ∫⎛⎝u(x1, τ)

G(xp, t + l
c0
− τ; x1 + n1Δl, 0) − G(xp, t + l

c0
− τ; x1, 0)

Δl

−G(xp, t + l

c0
− τ; x1, 0) u(x1 + n1Δl, τ) − u(x1, τ)

Δl
⎞⎠ dS1 (9)

where n1 is the inward-facing normal vector to S1 at x1, and Δl is
the distance between the seismometers in each pair. Each pair
simply takes the place of an array.

At this point I wish to return to Eq. 4 to review a relation between
the boundary integral equationmethod and the source-basedmethod.
A point source at x0 instantaneously radiating at t� t0 of amplitudeA0

is expressed by the sourceA0δ(x - x 0) δ(t - t 0).Waveforms at x1 on the
surface S are given as A0G (x1, t; x0, t 0). When the source has volume
V0 and an arbitrary duration, and the source function is expressed asA
(x0, t0), the waveforms at x1 are described as:

u(x1, t) � ∫∞

−∞
dt0 ∫G(x1, t; x0, t0)A(x0 , t0) dV0. (10)

In the source-based method, A (x0, t0) is first estimated from
waveforms u (x1, t) observed at multiple x1 locations, and then
the waveform at xp is predicted as:

u(xp, t) � ∫∞

−∞
dt0 ∫G(xp, t; x0, t0)A(x0 , t0) dV0 . (11)

In the boundary integral equation method, the surface S is
taken such that all x1 are located on S, but the source volume V0 is
outside S. Note that surface S can be of arbitrary shape. Using Eqs.
4, 10,

u(xp, t) � ∫
∞

−∞
dτ ∫⎡⎢⎢⎢⎢⎢⎣⎛⎜⎜⎝ ∫

∞

−∞
dt0 ∫G(x1 , τ; x0 , t0)A(x0 , t0) dV0

⎞⎟⎟⎠
zG(xp, t − τ; x1 , 0)

zn
− G(xp, t − τ; x1 , 0) z

zn
⎛⎜⎜⎝ ∫

∞

−∞
dt0 ∫G(x1 , τ; x0 , t0)A(x0 , t0) dV0

⎞⎟⎟⎠⎤⎥⎥⎥⎥⎥⎦dS,

� ∫
∞

−∞
dt0 ∫

∞

−∞
dτ ∫⎡⎢⎢⎣∫⎛⎝G(x1 , τ; x0 , t0)

zG(xp, t − τ; x1 , 0)
zn

−G(xp, t − τ; x1 , 0) zG(x1 , τ; x0 , t0)
zn

⎞⎠dS⎤⎥⎥⎦A(x0 , t0) dV0 ,

� ∫
∞

−∞
dt0 ∫G(xp, t; x0 , t0)A(x0 , t0) dV0. (12)
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where

∫
∞

−∞
dτ ∫⎛⎝G(x1, τ; x0, t0)

zG(xp, t − τ; x1, 0)
zn

−G(xp, t − τ; x1, 0) zG(x1, τ; x0, t0)
zn

⎞⎠dS � G(xp, t; x0, t0)
(13)

is used, because G (x1, t; x0, t 0) satisfies Eq. 4, Eq. 12 means that
the boundary integral equation method bypasses the process of
estimating source function, A (x0, t0), to predict the waveform at
xp by using observations at many x1 locations. In the source-based
method, the hypocentral distance is required to evaluate
geometrical spreading attenuation (for example, the inverse of
hypocentral distance for body waves). However, wave
propagation physics suggests that geometrical spreading
attenuation is determined by the local curvature of the
wavefront: large curvatures give strong attenuation, small
curvatures weak attenuation, and no curvature (e.g., plane
wave) no attenuation. When the wavefield is estimated
precisely and the curvature of wavefront is obtained, it is not
necessary to estimate hypocentral distance to evaluate
geometrical spreading attenuation.

Radiative Transfer Theory (RTT)
When the ray theory approach is valid, radiative transfer
theory (RTT) is a powerful tool for representing high
frequency wave propagation; scattering, attenuation and
reflection are easily treated, although it is not easy to
include refraction. In RTT, the propagation of energy is
calculated instead of propagation of the wave itself. Many
authors obtain the time history of energy, F (x, t), from the
running average of the squared amplitude of the band-pass
filtered waveform, u (x, t), at location x and time t (e.g.,
Hoshiba, 1995; Sato et al., 2012; Ogiso et al., 2018). RTT
has been widely used to represent the envelope shape of
high-frequency (≳1 Hz) seismic waveforms (Sato et al., 2012).

Hoshiba and Aoki (2015) applied RTT to EEW, but they
considered in 2-D space. Here, I explain RTT in 3-D space.
Following Hoshiba and Aoki (2015), when isotropic scattering is
assumed, RTT is expressed as:

_f(x, t: q) + c(x) q ∇f(x, t: q) � −(gs(x) + hs(x)) · c(x)
· f(x, t: q) + c(x)

4π
∫gs(x)f(x, t: q′)dq′,

(14)

where f is the energy density at location x and time t
traveling in direction q (here q is the unit vector), c(x) is
the velocity of seismic wave at x, and gs(x) and hs(x) are the
strength of scattering and intrinsic absorption at x,
respectively (Sato et al., 2012). Here it is assumed that
scattering does not cause wave conversion (i.e., P→S or
S→P). The time history of energy, F (x, t), is the sum of f
(x, t: q) in all directions:

F(x, t) � ∫f(x, t: q)dq . (15)

Here, for simplicity, I assume that both the velocity and
attenuation structures are homogeneous; thus, velocity,
scattering strength, and intrinsic absorption are independent
of x: c(x) � c0, gs(x) � g0 and hs(x) � h0. Then Eq. 14 is
expressed as,

_f(x, t: q) + c0q∇f(x, t: q) � −(g0 + h0)c0f(x, t: q)
+ c0
4π
∫g0f(x, t: q′)dq′. (16)

The left-hand side of Eq. 16 represents advection, the first
term on the right-hand side means attenuation, and the second
term represents scattering from direction q′ to q. Because the first
term on the left-hand side is the differential of f with respect to
time, Eq. 16 means that it is possible to predict future f provided
that the current spatial and directional distributions of f are
known. Eq. 16 is approximated as:

f(x, t + Δt: q) ≈ f(x, t: q) + Δt {− c0q∇f(x, t: q)
− (g0 + h0)v0f(x, t: q) + c0

4π
∫g0f(x, t: q′)dq′ }. (17)

Repeating this process makes it possible to predict f at any
future time. Note that information about the earthquake
hypocenter and magnitude is not required for this
prediction.

To efficiently calculate RTT simulation, a particle method
based on the Monte-Carlo technique has been widely used in
recent decades (e.g., Gusev and Abubakirov, 1987; Hoshiba, 1991,
1995, 1997; Yoshimoto, 2000). In this method, the propagation of
wave energy is simulated by the movement of a very large number
of particles. Instead of the Eulerian representation expressed in
Eq. 16, I use the Lagrangian representation,

Df(x, t: q)
Dt

� −(g0 + h0)c0f(x, t: q) + c0
4π
∫g0f(x, t: q′)dq′

� −g0c0f(x, t: q) + c0
4π
∫g0f(x, t: q′)dq′

− h0c0f(x, t: q).
(18)

First, let us consider the case of h0 � 0, which means no
attenuation due to absorption. The first term on the right-hand
side means that the energy propagating in direction q is
attenuated by scattering in proportion to f. The energy
density, f, decreases exponentially as travel distance increases.
The second term is the contribution of energy changing direction
from q′ to q. As shown in Figure 3, this physical process is
simulated by many particles through a probabilistic process
(Hoshiba and Aoki, 2015). The probability that energy travels
without scattering during the time interval Δt is exp (-g0c0Δt),
which is approximated as 1-g0c0Δt when g0c0Δt <<1. The
probability that scattering occurs during this time interval is
given by 1- exp (-g0c0Δt) ≈ g0c0Δt. When scattering occurs, the
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probability density of scattering from q′ toward q is 1/(4π)
because scattering is assumed to be isotropic. These processes
are simulated by using a very large number of particles.

Let the number of particles beM, and let Xn,m be the location of
the mth particle at time, n. When traveling in direction qm, the
particle is expected to move by v0Δt qm over the time interval Δt, if
scattering does not occur. In contrast, if scattering occurs, the particle
changes direction. Let R1, R2 and R3 be independent uniform
random variables between 0 and 1. When R1 ≥ g0v0Δt (i.e., no
scattering), the particle moves to Xn,m � Xn-1,m + c0Δt qm in the next
time step. When R1 < g0c0Δt (i.e., with scattering), the particle’s new
direction is determined as qN �(2π R2, cos

−1 (1–2R3)) and the
particle is located atXn,m � Xn-1,m + c0Δt qN after Δt. At the next time
step, qm= qN is used as the propagation direction.

The third term on the right-hand side of Eq. 18 represents
attenuation due to absorption. When the mth particle has energy
q n-1,m at time n-1, the energy is attenuated as:

qn,m � qn−1,m · exp(−h0c0Δt) ≈ qn−1,m(1 − h0c0Δt) (19)

with increasing n, where h0v0Δt <<1 is assumed. The energy of
the particle is attenuated as the elapsed time increases
regardless of scattering. In this paper, because h0 is
assumed to be homogeneous (i.e., independent of x),
amount of attenuation of each particle is assumed to be the
same for all m.

Hoshiba and Aoki (2015) and Ogiso et al. (2018) applied RTT
to real-time predictions of the strength of seismic ground motion
for EEW. They called the method “Numerical Shake Prediction,”
because of its analogy to numerical weather prediction in
meteorology, in which physical processes are simulated from a
precise estimate of the present conditions. Because they focused
on predicting seismic intensity, which is mainly determined by

relatively high frequency component of waveforms, ray theory is a
good approximation and RTT is applicable. They succeeded in
predicting the time trace of future seismic intensities. Whereas
the finite difference method is a good approach for predicting
low-frequency waveforms but not high frequency waveforms,
RTT is valid for high-frequency but does not necessarily hold for
low-frequency because RTT is based on ray theory.

Propagation of Local Undamped Motion
(PLUM) Method
For real-world application of the boundary integral equation
method, a precise estimation of the wavefield distribution is
required. Because quite dense observation networks are not yet
available at present except few cases, it is not easy to directly
apply the boundary integral equation method. Some
approximations have been introduced, and the propagation
of local undamped motion (PLUM) method is one of them
(Kodera et al., 2018).

For plane wave propagation, let us assume the surface
enclosing xp to be an infinite plane, SA, and half sphere of
infinite radius, SB, as shown in Figure 2D. Because SB is
located infinitely far from xp, contribution from SB is
negligible. Plane waves propagating in the +z direction are
expressed as u (x, t) � u (x, y, z, t) � up (t-z/c0). Then, as
z/zn � z/zz, zu/zn � zu/zz. The contribution from SA is

u(xp, t) � ∫
∞

−∞
dτ ∫∫

∞

−∞

⎛⎝up(τ − z1
c0
) zG(xp, t − τ; x1, y1, z � z1, 0)

zz

−G(xp, t − τ; x1, y1, z1, 0) zu(τ − z1/c0)
zz

⎞⎠ dx1dy1

� up(t −
∣∣∣∣zp−z1∣∣∣∣
c0

− z1
c0
) � u(x1, t −

∣∣∣∣zp−z1∣∣∣∣
c0

). (20)

Here

∫∫
∞

−∞
G(0, 0, zp, t − τ; x1, y1, z1, 0)dx1dy1

� c0
2
H(t − τ −

∣∣∣∣zp − z1
∣∣∣∣

c0
) (21)

is used, where G is given by Eq. 6 and H is the step function. This
is the Green’s function in 1-D space. Eq. 20 means that plane
wave propagates without attenuation:∣∣∣∣u(xp, t)∣∣∣∣max t

� | u(x1, t) |max t , (22)

where |·| maxt indicates the maximum amplitude, such as PGA for
accelerograms or PGV for velocity waveforms. Because plane
waves form when a hypocenter is located infinitely far away, some
attenuation is expected for hypocenters at finite distances,∣∣∣∣u(xp, t)∣∣∣∣max t

≤ | u(x1, t) |max t , (23)

for waves arriving at xp later than x1, where PGA (or PGV) is
expected to occur at xp later than x1. Plane waves correspond to

FIGURE 3 | Schematic illustration of radiative transfer theory, simulated
using a very large number of particles. When the propagation direction, qm, is
known, the future locations of the mth particle (Xn+1,m, Xn+2,m, . . . ) are easily
predicted from its current location Xn,m, that is Xn+1,m � Xn,m + c0Δt qm

and Xn+2,m � Xn,m + 2c0Δt qm, if scattering does not occur. If scattering
occurs, the propagation direction is newly given by the probability density as
shown for Xn+1,3.
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the prediction for the most severe scenario. When several stations
are available for monitoring the wavefield around the target site,
the simple relation,∣∣∣∣u(xp, t)∣∣∣∣max t

≤Maxi| u(xi, t) |max t , (24)

may be valid, where i is the index of the monitoring site. Strictly
speaking, this relation does not hold well for multiple
simultaneous sources (i.e., multiple waves propagating towards
xp); nonetheless, it is an indicator of the possible strength of
ground motions. Eq. 24 is the basis of the PLUM method, in
which Maxi |u (xi, t < tc)| max t is the predicted strength of ground
motions accounting for the site amplification (see later section for
site amplification correction) and tc is the current time. Because it
assumes plane wave propagation and thus the most severe
scenario, PLUM tends to overpredict ground motions.
However, because the prediction is based on actual
observations of ground motions, PLUM acts to reduce
underpredictions and missed alarms.

Because PLUM assumes plane waves propagation, the distance
between the monitoring and target sites must be much smaller
than the hypocentral distance. The use of sites far from xp as
monitoring sites gives a long lead time, but is prone to
overprediction. For this reason, long lead time predictions are
not given by the PLUM method. In contrast, when monitoring
sites around xp are sparse, few sites are available for use in the
PLUM method. Kodera et al. (2016) applied PLUM to the 2016
Kumamoto, Japan, earthquakes sequence (Mw6.2 and 7.1) and its
foreshocks and aftershocks, and Kodera et al. (2018) tested PLUM
using data from the 2011 Tohoku earthquake (Mw9.0) and its
aftershocks, in which they used sites within 30 km of the target
site, xp, as monitoring sites, taking the stations interval within the
observation network into account. Minson et al. (2020) reported a
real-time application of PLUM to the 2019 Ridgecrest, California,
earthquakes (Mw6.4 and 7.1). Cochran et al. (2019) and Kilb et al.
(2021) applied PLUM to earthquakes in southern California and
the west coast of USA, respectively. Meier et al. (2020) compared
the performance of PLUM, point source algorithm and finite fault
algorithm. Otake et al. (2020) investigated an approach similar to
PLUM, but using machine-learning instead of the physics of wave
propagation.

The PLUM method was implemented into the JMA’s
operational EEW system in 2018, in addition to the point-
source algorithms. Since then, PLUM has prevented
underprediction caused by uncertainties in the GMPE, and
sometimes issued earlier warnings than the point-source
algorithm. Kodera et al. (2020) summarized its performance.
For example, during the 2018 Eastern Iburi, Hokkaido, Japan,
earthquake (Mw6.6, focal depth: 37 km), PLUM issued a public
warning 13.35 s after the origin time, 3.1 s earlier than the point-
source algorithms. For this earthquake, the GMPE significantly
underpredicted PGA and PGV at near-source sites (Dhakal et al.,
2019), meaning that the point-source algorithm underpredicted
ground motions even when source parameters (hypocentral
location and magnitude) were precisely estimated. In contrast,
PLUMpredicted them appropriately, reflecting the strong ground
motion observed at neighboring sites.

DATA ASSIMILATION

The first step in obtaining a precise prediction using the
wavefield-based method is to estimate the current wavefield.
Data assimilation is a powerful technique for estimating
current conditions that is widely used in numerical weather
prediction, oceanography and rocket control (Kalnay, 2003;
Awaji et al., 2009). Figure 4 illustrates the data assimilation
procedure: the spatial distribution of the wavefield is estimated
from not only actual observations but also the simulation of wave
propagation based on wave propagation physics, leading to a
precise estimation of the current wavefield. Therefore, data
assimilation incorporates actual observations into the
simulation of wave propagation. In this section, I will explain
data assimilation technique, following Hoshiba and Aoki (2015).

Let un indicate the wavefield in the model space at time tn �
nΔt, in which un � [u (x, nΔt), u (x (n-1)Δt) ] in the finite
difference method, or un � [f (x, nΔt: q) ] in RTT. When the 3-D
space is discretized as 0 to LxΔx, 0 to LyΔy and 0 to LzΔz, the
number of elements of un is I � 2·LxLy·Lz in the finite difference
method, and when the azimuth is discretized as 0 to LqΔq, the
number is I � LxLy·LzLq in RTT. When un-1 is given, we can
predict un by simulating the propagation of the wave; this
prediction one time-step-ahead is expressed as un � P (un-1),
where P is the operation of Eq. 2 or Eq. 17. To discriminate
between un before and after being combined with the actual
observations, the wavefields before and after are denoted ubn and
uan. P is applied to the wavefield after the combination at one time
step before, i.e., tn-1; thus, the one step-ahead prediction is
expressed as:

ub
n � P(u a

n−1). (25)

Let vn � (vn1, vn2, vn3, . . . vnj, . . . vnJ)
T be the actual observation

in observational space at time tn, in which vnj means the observed
data at the jth element. Let the total number of observation
elements be J. Usually I (the number of grids in model space) is
much larger than J (number of observation elements). Data
assimilation is expresses as

ua
n � ub

n + W(vn −Hub
n) (26)

Here H is the J×Imatrix called the observation matrix and it
means the interpolation of grid points onto the location of the
observation point, and then (vn - Hu b

n) is the difference
between the one-step-ahead prediction and the actual
observation at time tn. W is the I×J matrix called weight
matrix, and W (vn - Hu b

n) indicates the correction of the
one-step-ahead prediction in the simulation of wave
propagation. From un

a, un+1
b is obtained from Eq. 25.

Iterative application of Eqs 25, 26 produces time-evolutional
estimation of wavefield. The process of the left side in Figure 4
indicates repeated application of one-step-ahead prediction,
that is, the simulation of wave propagation. In the data
assimilation technique, actual observations are included in
the simulation to correct the wavefield at each time step;
that is, actual data are assimilated in the simulation process.
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The parameter setting of W is important in data assimilation,
and several techniques have been proposed. The simplest is the
optimal interpolation method, in which W is constant
irrespective of time n, though in the Kalman filter method it
changes with increasing n. In the optimal interpolation method,
Matrix W is expressed in relation to the errors in the one-step-
ahead prediction (background error, σb), and in the observations
(observational error, σo). When the correlation distance of the
background error and the ratio σo/σb are assumed, matrix W is
obtained (for detail, see Awaji et al., 2009; Kalnay, 2003; Hoshiba
and Aoki, 2015).

When the correlation distance is large, the W (vn - Hu b
n)

correction is applied to a wide area around each observation
point, and when the distance is small, the correction is
restricted to a small area around each observation point.
The density of observation network, therefore, may influence
the parameter setting of the correlation distance: large
distance for sparse network and small distance for dense
network. For sparse network, observation of each site needs
to represent wavefield of wide area around the site, but small

area for dense network. In general, dense network can
reconstruct the complicated wavefield in data assimilation
better than sparse network. When too large correlation
distance is used, seismic wave propagates artificially faster
than actual velocity in the process ofW (vn -Hu b

n) correction,
which reduces the accuracy of arrival time of strong shaking.
The correlation distance at each observation point can be
varied according to the network distribution: for example,
small correlation distances where station interval is small
around the site, and large correlation distances where station
interval is large.

When the observational errors are assumed to be much larger
than the background errors, σo/σb >>1,W≈0 and then un

a ≈ un
b.

Iterative application of Eqs 25, 26, therefore, results in just the
simulation of wave propagation, because the observation have no
effect. In contrast, σo/σb ≈ 0 corresponds to the case where the
contours of the actual observations are drawn independently at
each time step, because the one-step-ahead prediction has little
effect in Eq. 26. The ratio, σo/σb, at each observation point also
can be varied according to quality condition. For example, large

FIGURE 4 | The flow of the data assimilation process. One-step-ahead prediction, ub
n � P (ua

n-1), is combined with actual observations, vn, to correct the estimation
of the current wavefield (after Hoshiba and Aoki, 2015). By repeating this process, the current wavefield, ua

n, is estimated by using not only the current observation (vn),
but also all past observations (vn-1, vn-2, vn-3, . . . ).
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σo/σb for noisy stations in urban areas and small σo/σb for quiet
stations in mountain areas.

Although the wavefield is observable at the ground surface
when stations are densely deployed at the surface (i.e., 2-D space),
the underground wavefield at depths of more than a few
kilometers cannot be observed because many borehole
observations deeper than a few kilometers are not realistic.
Because actual seismic wavefields are expressed in 3-D space,
assumptions are required to apply data assimilation to estimate
the 3-D wavefield. Handling the difference between the 2- and 3-
D spaces is an important subject for future advancement of the
data assimilation technique.

PREDICTION

Once the present wavefield, un
a, has been estimated precisely by

the data assimilation technique, the future wavefield, uP, is
predicted from the current wavefield, u a

n,

uP
n+1 � P(ua

n) (27)

and uPn+2 is forecast from uPn+1, that is u
P
n+2� P (u P

n+1)� P2 (u a
n).

Repeating this process

uP
n+k � P(uP

n+k−1) � P2(uP
n+k−2) � . . . � Pk−1(uP

n+1) � Pk(ua
n).
(28)

Future wavefield at any time can be predicted from the current
wavefield.

REAL-TIME CORRECTION OF THE SITE
AMPLIFICATION FACTOR

Site amplification is an important factor to determine
seismic-wave amplitude in addition to source and
propagation factors, and it depends on frequency. In
application of the wavefield-based method, the frequency-
dependent site amplification should be removed from the
observed amplitude when simulating wave propagation
described in the previous section, and then include it to
evaluate waveforms at target sites, especially those
characterized by large amplification factors. Many
previous studies have investigated frequency-dependent
site amplification in the frequency domain by assuming a
model,

Okl(f) � Sk(f)Tkl(f)Al(f), (29)

where Okl(f), Sk(f), Tkl(f), and Al(f) represent the observed
seismic wave spectrum from event k at site l, the source
spectrum characterizing event k, the propagation factor
between event k and site l, and the site amplification
factor at site l, respectively, and f is the frequency of the
seismic waves. When borehole is available at the site, fine
vertical structures of velocity and attenuation can be
obtained, and Al(f) is estimated theoretically. However,

borehole observation at all sites is not realistic at present.
Instead of the theoretical approach, many empirical
approaches have been proposed to obtain the relative site
amplification factors, {A2(f)/A1(f)}: spectral ratio (e.g.,
Ikeura and Kato, 2011); spectrum inversion of source,
propagation, and site factors (e.g., Iwata and Irikura,
1988; Kato et al., 1992); coda normalization method (e.g.,
Phillips and Aki, 1986), and others. These approaches
usually neglect phase characteristics, focusing on
amplitude characteristics, |A2(f)/A1(f)|. For example, in
the spectral ratio method, when sites 1 and 2 are adjacent,
compared to the hypocentral distance, |Tk2(f)| ≈|Tk1(f)| is
assumed, then

∣∣∣∣∣∣∣∣
Ok2(f)
Ok1(f)

∣∣∣∣∣∣∣∣ �
∣∣∣∣∣∣∣∣
Sk(f)
Sk(f)

∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣
Tk2(f)
Tk1(f)

∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣
A2(f)
A1(f)

∣∣∣∣∣∣∣∣ ≈
∣∣∣∣∣∣∣∣
A2(f)
A1(f)

∣∣∣∣∣∣∣∣· (30)

The relative site amplification factor, |A2( f )/A1( f )|, can be
estimated from spectral ratio of observed waveforms, |Ok2( f )/
Ok1( f )|. When the site amplification factor at site 1 relative
to site 1’ (different location from site 1) is known, that is |
A1( f)/A1’( f )|, it is easy to estimate the amplification factor at
site 2 relative to site 1′ from |A2( f )/A1’( f )| � |A1(f)/A1’( f )|·|
A2( f )/A1( f )|. By repeating the process, it is possible to
estimate relative site amplification factor even when the
two sites are not adjacent. Here, |A2( f )/A1( f )| (and |
A2( f )/A1’( f )|) is used to correct the difference of site-
amplification condition.

In EEW, it is preferable to correct the frequency-
dependent site amplification factor in real time. As |
A2( f )/A1( f )| is expressed in the frequency domain, it may
be possible to apply a fast Fourie transform (FFT) with a
short time interval (i.e., every 1 s or less) to ongoing
waveforms at site 1, multiply them by |A2( f )/A1( f )|, and
then perform an inverse FFT to predict ongoing waveforms
at site 2 (Figure 5). Instead of methods in the frequency
domain, a method in the time domain was proposed
(Hoshiba, 2013b; Pilz and Parolai, 2016), in which a
causal recursive filter, which allows correction of site
amplification factors in real time, is used. The time
domain filter alleviates computational workload of the
system, comparing with that of the frequency domain
analysis, and makes it easy to estimate continuously site-
corrected waveforms regardless of whether earthquakes are
occurring or not. Trigger is not required in the continuous
operation, which minimizes the fluctuation of the workload.

Hoshiba (2013b) proposed to model the frequency dependent
site amplification using the form:

F(s) � G0∏N

n�1(ω2n

ω1n
) · s + ω1n

s + ω2n
·∏M

m�1 (ω2m

ω1m
)

2

· s
2 + 2h1mω1ms + ω1m

2

s2 + 2h2mω2ms + ω2m
2
, (31)

where N and M are the numbers of the first- and second-
order filters, respectively, and s � i (2πf). Here ω1n, ω2n, ω1m,
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and ω2m are the angular frequencies and h1m and h2m are the
damping factors that characterize the frequency dependence,
respectively. Note that s2+2hωm s +ωm

2 represents a damping
oscillation. Parameter ω1n, ω2n, ω1m, ω2m, h1m and h2m are
positive numbers, and are estimated to satisfy |A2(f)/
A1(f)|≈|F(s)|.

The filter is modeled as Eq. 31, where F(s) is represented by
combination of first and second orders of s,

F1n(s) � (ω2n

ω1n
) · s + ω1n

s + ω2n
,

F2m(s) � (ω2m

ω1m
)

2

· s
2 + 2h1ω1ms + ω1m

2

s2 + 2h2ω2ms + ω2m
2

(32)

By a mapping procedure called the bilinear transform,

s � 2
ΔT · 1 − z−1

1 + z−1
, (33)

and pre-warping for ω1n, ω2n, ω1m, and ω2m of the digital filtering
technique,

ω→ 2
ΔT tan(ωΔT

2
), (34)

the transfer function, F(z), is obtained (Scherbaum, 1996) in
a form of infinite impulse response (IIR) filter, where ΔT is
the sampling interval of the digital waveforms and z �
exp (sΔT):

F1n(z) � g0 · a0 + a1z−1

1 + b1z−1
, F2m(z) � g0 · a0 + a1z−1 + a2z−2

1 + b1z−1 + b2z−2
. (35)

The recursive filters are given by yk � g0 (a0xk + a1xk-1)-
b1yk-1 for F1n(z), and by yk � g0 (a0xk + a1xk-1+a2xk-2) -
(b1yk-1+ b2yk-2) for F2m(z), where xk and yk are the input and

output of the time series of the digitized waveform,
respectively.

Applying Eqs 33, 34, g0, a0, a1, and b1 for F 1n(z) are,

g0 �
tan (ω2nΔT

2
)

tan (ω1nΔT
2
) ·

1

1 + tan (ω2ΔT
2
), a0 � 1 + tan (ω1nΔT

2
),

a1 � tan (ω1nΔT
2
) − 1, b1 �

tan (ω2nΔT
2
) − 1

1 + tan (ω2nΔT
2
)

(36)

and, g0, a0, a1, a2, b1, and b2 for F2m(z) are,

g0 �
⎧⎨⎩
tan(ω2mΔT

2
)

tan(ω1mΔT
2
)
⎫⎬⎭

2

· 1

1 + 2h2 tan(ω2mΔT
2
) + tan2(ω2mΔT

2
),

a0 � 1 + 2 h1 tan(ω1mΔT
2
) + tan2(ω1mΔT

2
),

a1 � 2 tan 2(ω1mΔT
2
) − 2,

a2 � 1 − 2h1 tan(ω1mΔT
2
) + tan2(ω1mΔT

2
),

b1 �
2 tan2(ω2mΔT

2
) − 2

1 + 2 h2 tan(ω2mΔT
2
) + tan2(ω2mΔT

2
),

b2 �
1 − 2h2 tan(ω2mΔT

2
) + tan2(ω2mΔT

2
)

1 + 2h2 tan(ω2mΔT
2
) + tan2(ω2mΔT

2
). (37)

FIGURE 5 | Comparison of the causal filter method with the FFT (and inverse FFT) method. In the FFT method, the frequency-dependent site amplification factor is
corrected in the frequency domain. In the causal filter method, it is done in the time domain.
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The causal filter, F(z), makes it possible to correct the relative
site amplification factor in real time in the time domain. Ogiso
et al. (2016) evaluated the relative site amplification factors of
more than 2,200 stations in Japan and obtained their IIR filters,
and Xie et al. (2019) also applied this technique. Pilz and Parolai
(2016) extended this method to include phase characteristics.

In many researches of site amplification factors to estimate |A2(f)/
A1(f)|, hard rock site is chosen for site 1 as a reference site. However,
site 1 is not necessarily hard rock site here, because the purpose of the
site factor correction is to make virtually the site conditions common
to isolate seismic wave propagation. For the boundary equation
method, for example, x1 and xp corresponds to site 1 and site 2,
respectively. Many locations are assumed for site 1 (x1), but site 2 (xp)
is single location. By applying F(z) to waveforms obtained at site 1, the
waveforms are virtually converted to those having the site
amplification of site 2. The integrals in Eqs 5, 7, 9 are carried out
for waveforms of the common site amplification. In finite difference
method and RTT, future wavefields are predicted by using the site-
factor corrected waveforms. For prediction of amplitude at each
location, it is necessary to convert inversely the waveforms to those
having the site amplification factor at the individual location. For the
inverse process, that is application of |A1(f)/A2(f)|, F

−1(s) can be used.
Because denominator and numerator are the same order of s (Eq. 31),
and h1m and h2m are positive numbers, both forward, F(s), and inverse,
F−1(s), filters are stable, where all poles and all zeros are distributed in
the left half space in the s-plane (Scherbaum, 1996).

For the PLUM method (Eq. 24), the IIR filter Fpi(z) can be
applied, which represents site amplification at the target site p

relative to site i. Applying Fpi(z) to u (xi, t) to obtain the corrected
waveforms, uc (xi, t), and then∣∣∣∣∣u(xp, t)∣∣∣∣∣max t

≤Maxi|uc(xi, t)|max t, (38)

can be used instead of Eq. 24. For the boundary integral equation
method,

u(xp, t) � ∫∞

−∞
dτ ∫⎛⎝uc(x1, τ)

zG(xp, t − τ; x1, 0)
zn

−G(xp, t − τ; x1, 0) zuc(x1, τ)
zn

⎞⎠ dS, (39)

can be applied instead of Eq. 4.

EXAMPLE OF APPLICATION

Here, I provide an example of a real-time prediction by the
wavefield-based approach.

Figure 6 shows the case of a Mw6.4 earthquake, the largest
aftershock of the Mw6.7 Chuetsu, Niigata, Japan, earthquake
(October 23, 2004) using radiative transfer theory. Small dots
in the panels indicate the locations of observation points
(many stations for site 1 in Eq. 30). Site amplification factors
are corrected relative to that of the target site, Ohtemachi,
Tokyo; i.e., Tokyo is the site 2. The distribution of
observation of strong ground motions was complicated,

FIGURE 6 | An example application of the wavefield based method using a Mw6.4 earthquake (the largest aftershock of the Mw6.7 Chuetsu, Niigata, Japan
earthquake; October 23, 2004). Data from K-NET and KiK-net of the National Research Institute for Earth Science and Disaster Prevention (NIED) were used. The
locations of observation points are shown by small dots. The actual eventual distribution of ground motion was complicated (A) relatively strong ground motion was
observed at Kanto, and weak one at Tokai. This complicated distribution is not reproduced by the source-based method, as shown in (B,C) using M7.0 and M6.0,
respectively. In the wavefield-based method, the predicted eventual distribution from the observation at t � 11s (D) is similar to the prediction using a M7.0 event (B). At
t � 50s, strong ground motions were observed to be propagating toward Tokyo (E), and the updated prediction indicates the arrival of the strong ground motions at
Tokyo at t � 60s (F) The predicted eventual distribution from t � 50s (G) reproduces well the actual distribution (A).
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differing from the concentric circles predicted by the source-
based method. For example, relatively strong shaking was
observed in Kanto, but weak shaking was observed in Tokai.
Especially strong shaking was observed towards Tokyo. At t �
11s, strong ground motions were observed around the focal
region, and the prediction from the observation indicates
that the strong ground motion propagates like an expanding
circle, with a final distribution similar to that predicted for a
M7.0 event. At t � 50s, strong ground motions were observed
toward Tokyo, and the prediction shows that the strong
ground motion arrives at Tokyo 10 s later. The final
eventual distribution is predicted to be the almost the
same as the actual observation.

Prediction of distant future is normally less precise than
that of near future. As shown in Figure 6, predicted wavefield
at 70 s from 11 s does not forecast well the actual wavefield, but
that from 50 s predicts it better. For improvement of distant-
future prediction, introduction of velocity and attenuation
structures is a key. Ogiso et al. (2018) introduced
heterogeneous structures in the calculation of the radiative
transfer theory. They estimated gs(x) and hs(x) at first, and
then used Eq. 14 instead of Eq. 16 in the prediction.
Estimation of detail velocity and attenuation structures
contributes to the precise prediction, especially that of
distant future.

Hoshiba and Aoki (2015) applied the technique to data of
the 2011 Tohoku earthquake (Mw9.0) and the 2004 Chuetsu,
Niigata, earthquake (mainshock, Mw6.7), and Ogiso et al.
(2018) did it to data of the 2016 Kumamoto earthquake
(Mw7.1) incorporating the heterogeneous attenuation
structure. Wang et al. (2017a, b) also used the technique for
real-time prediction of ground shaking. Furumura et al. (2019)
and Oba et al. (2020) used the finite difference approach to
predict long period ground motions (>3–10 s) for the 2007 Off
Niigata earthquake (Mw6.6) and the 2004 Off Kii Peninsula
earthquake (Mw7.4), respectively.

SUMMARY

One of important key elements of EEW is the real-time
prediction of ground motion, as well as the rapid
transmission of monitored data and the wide
dissemination of warnings. Because seismic motion is a
wave propagation phenomenon, the physics of wave
propagation, which have been well studied in many
research fields, is the basis of real-time prediction of
ground motion. In history of EEW research, in the
source-based method many authors have focused on
rapidly estimating source parameters (e.g., source
location, magnitude, source extent), from which peak
ground motions (PGA, PGV or seismic intensity) are
estimated using a GMPE. Although GMPEs usually
indicates empirical relations between the peak ground
motion and the source parameters, they do not express
the physics of wave propagation in detail; notably, the
causality of the occurrence of peak ground motions is not
included in it. In the near fault region, PGA and PGV occur
before rupture completion, that is, before estimation of
eventual magnitude, which essentially leads to late EEWs
(Hoshiba, 2020). GMPEs are mainly aimed at explaining the
peak ground motion of anticipated future earthquakes (or of
past events at locations where seismometers were not
deployed). Thus, GMPEs are not necessarily constructed
for the purpose of real-time prediction, such as EEW.
Instead of borrowing GMPEs, new technique based on the
physics of wave propagation for the purpose of the real-time
prediction of ground motion is a key to more precise and
timely warning. The wavefield-based method described in
this review follows this strategy.

To conclude, I compare the wavefield-based (ground-
motion-based) method with the conventional method based
on source parameters (Figure 7) (Hoshiba and Aoki, 2015). In
the source-based method, using monitored data from past to

FIGURE 7 | Comparison of the wavefield-based (ground-motion-based) method and the source-based method. This figure and comparison of the two methods
are presented in detail in the Summary. In the source-basedmethod, we look back to the “oldest past situation” to represent it by five parameters, and then expand again
to reconstruct the spatial distribution from the oldest past situation. In the wavefield-based method, all data up to the present are used to estimate “present situation,”
and then we predict future spatial distribution from the present situation.
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present we look back to the “oldest past situation”. Not only is
the future situation predicted, the past situation is post-dicted
from the “oldest past situation”. The time needed for
estimation of the source parameters can be regarded as
blind time with respect to EEW. In contrast, all data up to
the present are used in the wavefield-based method to estimate
the “present situation” of wave propagation. Post-diction is
not performed in the process.

In the source-based method, information about the very
complicated space-time distribution of ground motion is first
compressed in order to represent it with a limited number of
parameters (such as latitude, longitude, focal depth, origin time,
and M), and then it is expanded again to predict ground
motion. It is difficult to completely reconstruct the spatial
distribution of ground motion even for the present situation:
inevitably there are discrepancies between the predicted
present situation and the actual present observation. As a
result, even if estimation of the source parameters is precise,
the prediction of ground motion is not necessarily precise. In
contrast, in the wavefield-based method the actual present
observation is reflected as much as possible in the estimate of
the present situation. Discrepancies are minimized between
the estimated present situation and the actual present
observation before proceeding to the prediction.
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Preliminary Results of an Earthquake
Early Warning System in Costa Rica
Juan Porras1*, Frédérick Massin2, Mario Arroyo-Solórzano3, Ivonne Arroyo3,
Lepolt Linkimer3, Maren Böse2 and John Clinton2

1Department of Earth Sciences, University of Pisa, Pisa, Italy, 2Swiss Seismological Service, Swiss Federal Institute of Technology,
Zürich, Switzerland, 3Red Sismológica Nacional y Escuela Centroamericana de Geología, Universidad de Costa Rica, San Jose,
Costa Rica

We analyze the performance of a prototype earthquake early warning system deployed at
the National Seismological Network of Costa Rica in collaboration with the Swiss
Seismological Service by presenting the real-time performance during six earthquakes
(Mw 5.1-6.4) that took place during 2018 and 2019. We observe that, despite only limited
efforts to optimize the existing network of 158 stations, for EEW purposes, the network
density allows fast determination of source parameters using both the Virtual Seismologist
and the Finite Fault Rupture Detector algorithms. Shallow earthquakes on or near-shore
are routinely identified within 11–20 s of their occurrence. The warning times for the capital
city of San Jose are of 43 s for epicenters located at 220 km, like for the Mw 6.4 Armuelles
earthquake. On the other hand, during the time analyzed, the EEW system did not provide
positive warning times for earthquakes at distances less than 40 km from San Jose. Even
though large (Mw > 7) distant historical earthquakes have not caused heavy damage in San
Jose, there is potential for developing an EEW system for Costa Rica, especially for the
purposes of rapid earthquake notifications, disaster response management, and seismic
risk mitigation.

Keywords: Virtual Seismologist, Finite Fault Rupture Detector, seismic network, open-source software, seismic risk
mitigation

INTRODUCTION

Costa Rica is located at the boundary of three major tectonic plates and one microplate (Figure 1).
There is a subduction zone in the Pacific side of the country, where the Cocos plate is subducting
underneath the Caribbean plate and the Panama microplate at rates from 83 mm/yr in the Northern
Pacific of the country to 89 mm/yr in Southeast Costa Rica (DeMets et al., 1994). Large (up to Mw
7.7) seismogenic zone earthquakes have occurred historically along this plate boundary.
Intermediate-depth earthquakes (depths 40–200 km) also occur beneath most of Costa Rica (e.g.,
Lücke and Arroyo, 2015). In addition, shallow earthquakes are common along the central Costa Rica
Deformed Belt (CCRDB) and the North Panama Deformed Belt (NPDB), which define the limit
between the Caribbean plate and the Panama microplate (Montero, 2001), and along the Panama
Fracture Zone (PFZ) which separates the Cocos and Nazca plates. This complex tectonic setting
generates high-seismicity rates. Since 1821, the nation has faced 68 damaging earthquakes, with an
average rate of one every three years (Montero, 1989; Peraldo and Montero, 1994; Linkimer and
Alvarado, 2014).

The National Seismological Network of Costa Rica (RSN) is a research program at the University
of Costa Rica (UCR) which includes a seismic network designed to monitor seismic and volcanic
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activity within the country (Linkimer et al., 2018). Recently, the
RSN has focused on rapid dissemination of seismic information
and within minutes after an earthquake, data are available in a
website, social networks, a smartphone application, and intensity
maps (e.g., Porras, 2017).

The aim of an earthquake early warning (EEW) system is to
detect and quantify the effect of earthquakes as soon as
possible after they have begun and, if necessary, to warn
people that they are about to experience strong and
potentially destructive shaking (Allen et al., 2009).
Conventional EEW systems characterize the location and
magnitude of an earthquake based on the rapid detection of
the fastest seismic waves, the P-waves, that travel at ∼6 km/s.
With the knowledge of the source, an alert can be disseminated
to end users through TV, cell phone applications, radio
systems, or dedicated alerting devices. In addition to
alerting the public, these alerts can be used to perform
automated emergency responses, such as the shutdown of
critical systems, slowing and stopping of trains to prevent
derailment, shutting off gas or water mains, and stopping
elevators to the nearest floor and opening its door, to just
name a few applications.

EEW systems have been developed in many countries. They
are operational in Mexico (Cuéllar et al., 2018), Taiwan (Hsiao
et al., 2009), and Japan (Hoshiba and Ozaki, 2014; Kodera et al.,
2016), which are regions located in subduction tectonic
environments with different potential of generating destructive
interplate earthquakes, and California (Given et al., 2018). Test
systems continue to run, in particular in Europe (Clinton et al.,
2016), for example, in Switzerland (Massin et al., 2021), Italy
(Zollo et al., 2014), Romania (Böse et al., 2007), and Turkey
(Wenzel et al., 2014).

The effectiveness of EEW systems depends on many factors
that include the density of the seismic network, the quality and
design of the acquisition, and telemetry infrastructure as well as
the data processing resources (Behr et al., 2015). There are other
aspects related to the earthquake characteristics which must also
be considered, such as the epicentral location, tectonic
environment, depth, and fault kinematics.

Over the last decades, SED-ETH has developed EEW
methodologies such as the Virtual Seismologist (VS) (Cua and
Heaton, 2007), a traditional pick-based point source algorithm,
and the Finite Fault Rupture Detector (FinDer) (Böse et al., 2012),
an approach that uses the spatial extent of peak ground motions

FIGURE 1 | Tectonic framework of Costa Rica and felt earthquakes during 2018 and 2019, as reported to RSN. The origin of the earthquakes is differentiated by
color: red interplate subduction, orange Panama Fracture Zone, yellow shallow crustal earthquakes, and blue intraslab subduction earthquakes. The region contained
within the dotted lines represents the central Costa Rica Deformed Belt (CCRDB). The dashed line represents the simplified northeast boundary of the Central American
Forearc Block along the Volcanic Arc Faults (VAF). The numbered stars represent the earthquakes shown in Table 1. The largest events, 1 and 5, are examined in
detail. Volcanos in the region are indicated by red triangles.
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to infer the strike and length of the finite fault. As described in
Massin et al. (2021), both these algorithms have been
implemented as a set of modules that operate within the
SeisComP3 system (Hanka et al., 2010). We call these modules
ESE (the ETHZ-SED SeisComP EEW system). Utilizing two very
different EEW approaches provide redundant and independent
EEW results. VS is more suited for small and intermediate-
magnitude earthquakes that are well-approximated by a point-
source, while FinDer has been developed to resolve high
magnitude earthquakes when source finiteness becomes
significant. Their different methodologies provide different
advantages and independent solutions to the same EEW system.

Since ESE is embedded within SeisComP, EEW can readily be
tested in any SeisComP environment (Massin et al., 2021).
SeisComP is widely used across Central America (Massin
et al., 2018). In 2016, the Swiss Seismological Service (SED-
ETH) and the Nicaraguan Institute of Territorial Studies
(INETER) started a joint project named “Earthquake Early
Warning in Nicaragua and Central America” (EWARNICA),
funded by the Swiss Development Agency to assess the
feasibility of EEW in the region, starting with Nicaragua.

In the first phase of the project (2016–2018), a prototype EEW
system was implemented at INETER. In a second phase
(2018–2021), this system was extended to El Salvador and
Costa Rica, and the RSN was able to participate during
2018–2019. Currently, the RSN is not an active partner in this
project because the lack of personnel does not allow it to cope
with more projects in addition to the pre-existing ones in
the UCR.

In this work, we report on the performance of ESE at the RSN.
We use the solutions of two earthquakes in Costa Rica and
Panama (Mw 6.1 and Mw 6.4) for which the EEW system has
performed optimally. In addition, we present results from four
smaller earthquakes (Mw 5.1-5.4) from different parts of the
country that allows us to further analyze factors such as the
earthquake magnitude and the station density. The main
motivation to show these results is to document the potential
for the development of an EEW system in Costa Rica.

DATA AND METHODOLOGY

Data
The data used in this study primarily comes from the RSN
Seismic Network, whose code is TC in the FDSN, the
International Federation of Digital Seismograph Network (Red
Sismológica Nacional de Costa Rica, 2017). The RSN is composed
of 37 broadband (BB) and 121 short period (SP) sensors from
which 69 have strong motion (SM) sensors incorporated. These
SM sensors are early generation Sixaolas, version 3, with low
resolution microelectromechanical system (MEMS)
accelerometers. This is problematic for small and moderate
earthquakes (Mw < 6), which are poorly resolved even in the
near field. This density and quality of strong motion sensors
would need to be addressed if an EEW system is to be developed
for this network. The median data delay of the TC network is
3.75 s (April 2020), defined as the delay between the signal being

recorded at the sensor/datalogger in the field and the arrival of the
corresponding digitized waveform at the processing hub (Behr
et al., 2015). Though this delay is long, it is not unexpected as the
TC network is setup for earthquake and volcano monitoring, but
not for EEW systems.

In addition to their own seismic stations, the RSN incorporates
real-time data from other seismic networks in Nicaragua (Code
NU), Panama (PA), and from the OVSICORI-UNA in Costa Rica
(OV), shared directly or via the Incorporated Research
Institutions for Seismology (IRIS) (Figure 2). These stations
have significantly longer delays. Earthquake locations in the
RSN are performed both automatically and manually by using
the open-source software SeisComP3 (Hanka et al., 2010) and
SeisAn (Havskov et al., 2020), respectively.

Six significant earthquakes that occurred during 2018 and
2019 were selected to analyze the performance of the EEW system
(Table 1 and Figure 1). The first earthquake, which we call the
Golfito earthquake, happened on August 17th, 2018, 23:22:24
UTC, with a magnitude of Mw 6.2 and a depth of 21 km. This
event happened in the South Pacific of Costa Rica and is
associated to the subduction of the Cocos plate beneath the
Caribbean plate. The solution of the focal mechanism reported
by the RSN shows a thrust fault with strike: 291°, dip: 52°, and
rake: 90°. This earthquake generated intensities of up to VI in the
epicentral area and of IV in San Jose at a distance of 180 km
(Arroyo and Linkimer, 2021).

The second event, referred to as Armuelles earthquake, took
place near the locality of Armuelles in Panama, few kilometers
away from the border with Costa Rica. It is associated to a strike-
slip fault (strike: 304°, dip: 76°, and rake: 4°) within the subducting
Cocos plate. This earthquake occurred on June 26th, 2019, at 05:
23:48 UTC, with a magnitude of Mw 6.4 and a depth of 29 km.
Intensities of VI-VII were reported in the localities of Golfito and
Paso Canoas in Costa Rica and Armuelles and David in Panama,
while in San Jose, the Central Pacific, and the South Caribbean of
Costa Rica, it was felt with intensities of IV-V (Red Sismológica
Nacional de Costa Rica, 2019). This event nucleated 50 km SE of
the Golfito event.

The other four events analyzed are intermediate-magnitude
earthquakes (Mw 5.1-5.4) located in different regions of Costa
Rica (Table 1 and Figure 1). One of them occurred on November
17th, 2018 (Mw 5.1), in the central part of the country, where the
network density is high, with a depth of 8 km and is associated to
a shallow crustal fault. The next earthquake took place on January
31st, 2019 (Mw 5.4), offshore the central Pacific of Costa Rica at a
depth of 15 km and associated to the subduction process. A
subsequent event took place on April 1st, 2019 (Mw 5.2),
originated by a crustal fault in the southern Caribbean of
Costa Rica at a depth of 10 km. The last earthquake nucleated
on August 6th, 2019 (Mw 5.4), in the Wadati–Benioff zone
beneath central Costa Rica, at 105 km depth.

Methodology
The deployment process of the EEW system at the RSN started
with the setup of a Dell Workstation with 6 cores in the RSN
laboratory; it was modified with a 500 GB solid state drive disk
and 12 GB random access memory to work as a dedicated EEW
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server. Ubuntu server 16.04 LTS was chosen as the operating
system and SeisComP3 was installed and configured to read real-
time waveforms from the RSN main acquisition server via the
Seedlink protocol.

For each earthquake analyzed, the waveforms were processed
by using the VS and FinDer algorithms compiled within the
SeisComP software in the EEW server. The VS method is a pick-
based point-source approach for EEW. The location is
determined using the standard SeisComP module scautoloc,
requiring 6 triggered stations. The VS magnitude as
implemented at the time required a minimum of 3 s of data
following the P-wave arrival. This algorithm combines

relationships between the final magnitude and the ratios
between ground motion acceleration and displacement and
specific ground motion prediction equations (GMPEs) for P-
and S-waves (Cua and Heaton, 2007). Once a first solution is
available, VS solutions are updated every second, each one
consisting of values of magnitude, latitude, longitude, depth,
and creation time.

The FinDer EEW algorithm (Böse et al., 2012; Böse et al.,
2018) uses template matching to automatically provide estimates
of the fault rupture extent in real-time (assuming a line-source)
by estimating the current centroid position, length, and strike.
Unlike VS, FinDer is not based on picks. Its approach compares

FIGURE 2 | Seismic stations used in this study. BB are broadband sensors, SP are short-period geophones, and SP-SM are short period and strong motion
sensors. The stations are differentiated by FDSN (International Federation of Digital Seismograph Network) web services: TC, Red Sismológica Nacional de Costa Rica
(light grey); NU, Nicaraguan Seismic Network (light blue); OV, Observatorio Vulcanológico y Sismológico de Costa Rica (light red); and PA, ChiriNet, Panama (orange).
The blacklisted stations are represented in black color.

TABLE 1 | Seismic source parameters reported by the RSN for the six earthquakes used in this study. N�number, OT � origin time, Mw � moment magnitude, Lon �
longitude, Lat � latitude, D. (km) � epicentral distance to San Jose, and T. (s) � time for S-wave to arrive at San Jose.

N Date OT (UTC) Mw Depth
(km)

Lon Lat D.
(km)

T.
(s)

1 August 17th, 2018 23:22:24 6.1 21.0 −83.209 08.574 180 36
2 November 17th, 2018 14:12:53 5.1 7.9 −83.895 10.181 35 −1
3 January 31st, 2019 13:09:51 5.4 14.8 −83.863 08.868 120 12
4 April 1st, 2019 13:44:49 5.2 10.5 −82.655 09.486 160 21
5 June 26th, 2019 05:23:48 6.4 29.0 −82.833 08.336 220 43
6 August 6th, 2019 21:14:10 5.4 104.8 −84.283 10.370 50 4
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the observed spatial extent of ground motion with a set of pre-
calculated fixed depth templates using a combined grid-search
and divide-and-conquer approach. FinDer keeps track of the
evolving dimensions of a rupture in progress until peak shaking is
reached. In case of a major earthquake, where the finite fault is
significant, the estimates of source geometries as provided by
FinDer make predicted shaking intensities more accurate for
EEW (Böse et al., 2018).

In contrast to VS, the FinDer solutions presented in this
study are updated irregularly, only when a new solution differs
from the previous one. It is important to highlight that VS uses
any sensor type for detection, and for magnitude, it can use all
on-scale data, whereas FinDer can only use unsaturated BB or
SM data (current configuration within ESE is to identify a
waveform as saturated once it reaches with a raw amplitude
(in counts) above 80% of 223; this assumes all digitizers are 24
bit). This is problematic at the RSN as the SM sensors are noisy
and the majority of the streamed real-time data come from SP
sensors, not used by FinDer. FinDer is also more sensitive to
gross errors in sensor metadata gains, timing errors, and late
arriving data.

In our study, the warning times available for each earthquake
assume the strong shaking arrives with the first arriving S-waves.

The S-wave velocity is based on the P-wave velocity model for
Costa Rica from Quintero and Kissling (2001) and a Vp/Vs ratio
of 1.75, as used by the RSN. In this study, all warnings were
calculated for the capital city San Jose as target, which is also the
most populated region of Costa Rica (Figure 2).

The key parameters used to evaluate EEW solutions here are
the location error—the difference in km between the final RSN
hypocenter and each EEW hypocenter; the magnitude error—the
difference between the final RSN magnitude and each EEW
magnitude; and the time difference between the origin time of
each earthquake which is based on the final RSN location and the
creation time for each EEW solution.

The results presented in this paper span the one year testing
period of 2018–2019. Following the larger earthquakes, the
performance was reviewed, and the algorithms were tuned
using event playback, which favored an improvement of the
EEW system over time. During this step, we optimized the
configuration of the P-wave arrival detection parameters and
the hypocenter location grid, and we created and managed a
blacklist of problematic stations (e.g., those with high latency
or excessively noisy stations). Blacklists are maintained
independently for each algorithm, as they are susceptible to
different issues. Crucially, EEW algorithms are very

TABLE 2 | Solutions of the Virtual Seismologist (VS) and Finite Fault Rupture Detector (FinDer) for the Golfito and Armuelles earthquakes. Sol � solution, M �magnitude value
(VS or FinDer), Lat � latitude, Lon � longitude, CT � creation time, Tdiff (s) � time difference in seconds between CT and OT, #st � number of stations used in the VS
solution, L.E. (km) � location error, and M.E. � absolute value of magnitude error. The best solutions are chosen when the smallest location differences are obtained
compared to the RSN solution.

A) Golfito earthquake (August 17th, 2018); RSN: Mw 6.1; depth = 21 km. 180 km to San Jose

— Sol M Lat Lon Depth
(km)

CT (UTC) Tdiff
(s)

#st L.E.
(km)

M.E.

First 5.8 8.609 −83.202 22.7 23:22:
36.76

12.8 6 4 0.3

VS Best 5.8 8.609 −83.202 22.7 23:22:
36.76

12.8 6 4 0.3

Last 5.8 8.663 −83.192 3.2 23:23:
06.92

42.9 85 20 0.3

First 5.5 9.132 −83.454 20.0 23:22:
44.12

20.1 — 68 0.6

FinDer Best 6.4 8.276 −83.180 20.0 23:23:
16.70

52.7 — 33 0.3

Last 6.6 8.186 −83.408 20.0 23:24:
45.06

141.1 — 48 0.5

B) Armuelles earthquake (June 26th, 2019); RSN: Mw 6.4; depth = 29 km. 220 km to San Jose

First 6.1 8.318 −82.948 12.0 05:24:
03.01

15.0 4 21 0.3

VS Best 6.2 8.195 −82.859 19.9 05:24:
07.01

19.0 7 18 0.2

Last 6.5 8.306 −82.946 7.2 05:24:
32.06

44.1 41 25 0.1

First 5.8 8.373 −82.955 20.0 05:24:
06.00

18.0 — 17 0.6

FinDer Best 5.8 8.373 −82.955 20.0 05:24:
06.00

18.0 — 17 0.6

Last 6.8 8.688 −83.322 20.0 05:24:
56.86

68.9 — 67 0.4
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susceptible to individual timing and metadata errors, in
particular in terms of gain. We performed a detailed
revision of the seismic network metadata and improved the
telemetry configuration and delay by decreasing the number of
retransmission nodes.

RESULTS

Tables 2 and 3 summarize the real-time performance of VS and
FinDer with the first, last, and best solution, which was chosen as
the solution with the smallest difference in location error when

TABLE 3 | Solutions of VS and FinDer for the other four earthquakes in different regions of Costa Rica. Sol � solution, M �magnitude, Lat � latitude, Lon � longitude, CT �
creation time, Tdiff (s) � time difference in seconds between CT and OT, #st � number of stations used in the VS solution, L.E. (km) � location error, and M.E. � absolute
value of magnitude error. The best solutions are chosen when the smallest location differences are obtained compared to the RSN solution.

A) November 17th, 2018; Mw 5.1; central Costa Rica; depth: 7.9 km. 35 km to San Jose

— Sol M Lat Lon Depth
(km)

CT (UTC) Tdiff
(s)

# st L.E.
(km)

M.E.

First 4.8 9.767 −83.950 1.0 14:13:
04.21

11.2 7 47 0.3

VS Best 4.8 10.158 −83.893 6.6 14:13:
27.41

34.4 85 3 0.3

Last 4.8 10.165 −83.901 5.2 14:13:
34.43

41.4 95 3 0.3

B) January 31st, 2019; Mw 5.4; Central Pacific of Costa Rica; depth: 14.8 km. 120 km to San Jose

First 4.6 8.938 −83.809 16.5 13:10:
12.60

21.6 11 10 0.8

VS Best 5.0 8.873 −83.841 10.0 13:10:
23.72

32.7 67 5 0.4

Last 5.3 8.904 −83.835 1.1 13:10:
42.78

51.8 94 15 0.1

First 4.2 8.997 −83.408 20.0 13:10:
12.43

21.4 — 52 1.2

FinDer Best 4.5 8.997 −83.454 20.0 13:10:
14.52

23.5 — 47 0.9

Last 6.2 8.952 −83.362 20.0 13:12:
07.39

136.4 — 56 0.8

C) April 1st, 2019; Mw 5.2; South Caribbean of Costa Rica; depth: 10.5 km. 160 km to San Jose1

First 4.6 9.257 −82.911 10.0 13:45:
12.41

23.4 7 38 0.6

VS Best 4.9 9.430 −82.679 10.0 13:45:
22.49

33.5 43 7 0.3

Last 5.3 9.419 −82.657 10.0 13:45:
39.54

50.5 78 8 0.1

First 4.7 9.049 −82.793 10.0 13:45:
09.97

21.0 — 51 0.5

FinDer Best 5.6 9.094 −82.793 10.0 13:45:
17.41

28.4 — 46 0.4

Last 5.9 9.319 −83.068 10.0 13:45:
29.29

40.3 — 49 0.7

D) August 6th, 2019; Mw 5.4; central Costa Rica; depth: 104.8 km. 50 km to San Jose

First 4.7 10.403 −84.300 233.4 21:14:
30.57

20.6 17 129 0.7

VS Best 4.7 10.299 −84.270 101.0 21:14:
35.67

25.7 57 9 0.7

Last 5.1 10.303 −84.280 84.8 21:14:
57.85

47.9 129 22 0.3

First 4.7 9.905 −84.241 85.0 21:14:
47.11

37.1 — 56 0.7

FinDer Best 4.7 9.905 −84.241 85.0 21:14:
47.11

37.1 — 56 0.7

Last 5.1 9.770 −84.241 85.0 21:15:
47.75

97.8 — 70 0.3
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FIGURE 3 | Map of the 2018 Golfito earthquake (Mw 6.1). Solutions provided by VS and FinDer are shown as green and orange stars, respectively. The RSN
location is represented as a black star (Arroyo and Linkimer, 2021). Triangles represent the seismic stations and are color coded (see inset) based on the sensor type, as
short period (SP), broad band (BB), and strongmotion (SM). SP stations are used by VS, but not by FinDer. The blind zone is the concentric shadow area around the RSN
location and represents the late alert zone. The thin black circles represent the warning time at different distances from the epicenter.

FIGURE 4 | Time evolution of the (A) number of stations contributing to the location, (B) the location error (km), and (C) EEW magnitude for the 2018 Golfito
earthquake (Mw 6.1).
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compared to the reference revised network solution (RSN). The
complete list of the VS and FinDer solution updates for each
earthquake is available in the supplementary material. In this
analysis, we do not discuss the line-source component of the
FinDer solutions (which actually is the most important output of
FinDer); we treat FinDer as point-source algorithm reporting the
FinDer centroid solution and the equivalent magnitude results.

Golfito Earthquake
The Mw 6.2 Golfito earthquake occurred on August 17, 2018. VS
provided 31 and FinDer 20 updates in real time. The first VS and
FinDer solutions were determined 12.8 and 20.1 s after the origin
time (OT), with location errors of 4 and 68 km, respectively
(Table 2). The blind zone of this earthquake covered a radius of
∼40 km from the epicenter (Figure 3); all VS solutions were
located within 20 km of the RSN epicenter, while the FinDer
solutions had location errors between 33 and 70 km (Figures
4A,B). Considering that San Jose is 181 km from the hypocenter
and a S-wave velocity of 3.7 km/s, the EEW system issued a
warning time of 36 s before the S-wave arrived in San Jose, where
an intensity of IV was experienced.

Though both algorithms correctly and immediately
recognized the event to be significant, their initial magnitudes
were underestimated, with errors up to 0.5 units for both VS and
FinDer (Figure 4C). They approached the Mw 6.2 reference
magnitude with the incorporation of more stations. The best VS
and FinDer solutions were obtained 12.8 and 52.7 s after the OT,
with location errors of 4 and 33 km, respectively (Table 2).

This event occurred shortly after the collaboration began, and
since alerts were sounded at RSN using the open-source software
Earthquake Early Warning Display (EEWD) (Cauzzi et al., 2016),
many seconds before the ground motions were felt, it was very
encouraging and provided a first real-time experience of the
performance of the EEW system. It was the first big event
after the deployment of the EEW system, and, despite no
significant effort to optimize the network for EEW, the system
performed very well with a first solution 12 s after the OT and
location error of 4 km.

During the Golfito earthquake, all available stations were used
by the EEW system, and, without being optimized, the main
limitations on the algorithms were that the FinDer location error
was always above 30 km, which is expected as this earthquake is
located at the edge of the network. Furthermore, the two closest
stations (TC.EDAD. and TC.EDS2) had huge delays during the
Golfito earthquake, and a number of close-by stations (FITO,
JIME, NELY, and PANO) had been blacklisted for FinDer,
because of previous issues. Despite that, the FinDer magnitude
was stable, and the line-source strike was estimated as 330o, which
is close to the RSN moment tensor solution (286o) (Arroyo and
Linkimer, 2021). In contrast, the VS location errors remained
always below 20 km; however, the VS magnitude dropped
significantly after 30 s when P-wave energy from the many
stations in the central valley near San Jose began to be
incorporated.

After this event, we identified several issues to improve. The
PA stations in Figure 2 were not incorporated into the RSN
network, thus leaving a big gap towards Panama. Changes in the

configuration of the EEW system needed to be made including
the blacklisting of stations with recurrent false trigger, adjustment
of the STA/LTA detection and AIC re-picker filters,
incorporation of the UCR velocity model, and optimization of
the location grid used by SeisComP.

Armuelles Earthquake
Nearly one year later, the largest event during the testing period,
the Armuelles earthquake, occurred 50 km to the SE of the Golfito
earthquake. At that time, the PA stations were already
incorporated into the RSN network (though with higher
latency) and the algorithms had been optimized as described
before. At this stage, the blacklist includes 82 stations.

VS provided 30 and FinDer 14 solutions during this event.
At that time, VS had been modified to produce a solution with
only four stations instead of six, resulting in the first two
solutions provided 15.0 and 16.0 s after the OT with location
errors of 21 km, while the last VS solution was estimated with
41 readings 44.1 s after the OT. On the other hand, the first
and last FinDer solutions were provided 18 and 68.9 s after the
OT (Table 2). The blind zone of this event covers a radius of
50 km from the epicenter and considering its hypocenter at
222 km from San Jose (Figure 5) and an S-wave velocity of
3.9 km/s resulted in 43 s of warning time for the Armuelles
earthquake.

The VS location errors ranged between 18 and 84 km with 7
and 5 stations, respectively, while for FinDer, the errors were
between 17 and 67 km, respectively (Figures 6A,B). At 17.0 s
after the OT, a false pick increased dramatically the VS location
error by placing the solution 83 km south of the RSN location;
however, two seconds later, the error decreased to 18 km after
incorporating twomore stations into the VS solution. The FinDer
locations for the Armuelles earthquake were more stable than
those provided by VS, with errors of less than 30 km during the
first 31 s along an alignment marked by the solution updates,
which might give insights into the evolution of the earthquake
rupture during the updating process.

The magnitude variation for both algorithms is much more
stable than the magnitude performance of the Golfito earthquake
(Figure 6C), with errors of less than one unit. The fact that the
earliest solution was available 15 s after the OT, that is, 3 s later
than the first solution of the Golfito earthquake, can be explained
by the increased depth of the event (7 km deeper) and the location
further south and across the border, further away from the denser
parts of the network. The additional stations in Panama, despite
their higher latency and only available to VS, contributed
positively to obtain stable magnitude and location results. At
the time of the Armuelles earthquake, we had a more robust EEW
system.

Intermediate-Magnitude Earthquakes
In addition to the two significant earthquakes described before,
the EEW solutions for four intermediate-magnitude (Mw 5.1-5.4)
seismic events in different regions of Costa Rica are reported to
observe the effect of the seismic network density and the
geographical variation of earthquakes in the EEW performance
(Figure 7).
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The event of November 17th, 2018 (Mw 5.1), in the central
part of the country where the network density is high occurs
within 35 km of San Jose and was the closest event to the capital

from the earthquakes analyzed. The first VS solution was
available just 11.2 s after the OT with seven stations and a
location error of 47 km due to single false pick, which was

FIGURE 5 | Map of the 2019 Armuelles earthquake (Mw 6.4). Solutions provided by VS and FinDer are shown as green and orange stars, respectively. The RSN
location is represented as a black star. Triangles represent the seismic stations and are color coded (see inset) based on the sensor type, as short period (SP), broad
band (BB), and strongmotion (SM). SP stations are used by VS, but not by FinDer. The blind zone is the concentric shadow area around the RSN location and represents
the late alert zone. The thin black circles represent the warning time at different distances from the epicenter.

FIGURE 6 | Time evolution of the (A) number of stations contributing to the location, (B) the location error (km), and the (C) EEWmagnitude for the 2019 Armuelles
earthquake (Mw 6.4).
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corrected after two seconds, leading to a more reasonable error of
12 km that is dominated by an error in depth. The best solution
was obtained with a location error of 3 km, 85 stations, and 34.4 s
after the OT (Table 3). The magnitude estimation was very stable,
varying between 4.7 and 4.8. FinDer was not running at that time.
Regardless of its fast first solution 11 s after the OT, the alert
arrived one second after the S-wave arrival in San Jose due to its
vicinity to the target.

The first solution for the earthquake on January 31st, 2019, in
the Central Pacific of Costa Rica (Mw 5.4) came from FinDer
21.4 s after the OT with a location error of 52 km. This event was
outside of the network coverage, and we obtained a warning time
of 12 s for San Jose. The high location error was corrected to
10 km with the first VS solution 0.2 s later with 11 stations. The
VS location error decreased up to 5 km 32.7 s after the OT with 67
stations (Table 3).

For the event that took place on April 1st, 2019, in the South
Caribbean of Costa Rica with Mw 5.2, the first solution came
also from FinDer 21.0 s after the OT with a location error of
51 km and a magnitude of 4.7. The first VS solution was
available two seconds later, with seven stations and a
location error of 38 km. A first alert provided a warning of
21 s for San Jose. The VS location error decreased to 15 km 30 s
after the OT with 23 stations and the best VS solution was
obtained 33.5 s after the OT with 43 stations and a location error
of 7 km (Table 3). Recalling that FinDer uses only data from BB
and SM sensors to match ground motion templates, its
performance for the middle-magnitude events in the Central

Pacific and South Caribbean of Costa Rica was affected by the
few (<4) BB triggered stations and the blacklisted low resolution
MEMS SM sensors.

Another earthquake analyzed occurred on August 6th, 2019
(Mw 5.4), in theWadati–Benioff zone beneath central Costa Rica,
at 105 km depth. The significant depth of this event resulted in a
first VS solution obtained 20.6 s after the OT, with a location error
of 129 km by using 17 stations, which decreased rapidly to an
error of 31 km just two seconds later with 37 stations and to 9 km
after 3 s with 57 stations. The high density of stations in central
Costa Rica contributed to rapidly improve the VS source
parameters. On the contrary, FinDer was limited by the few
BB and SM sensors EEW capable, obtaining the first solution
37.1 s after the OT with location error of 56 km (Table 3). Even
though the epicenter was located in a high station density region,
we obtained only 4 s of warning due to the significant depth of
this event.

DISCUSSION

The RSN seismic network, composed mainly of SP sensors with
low resolution SM MEMS and with a high median data delay of
3.75 s, is not designed for EEW systems since RSN is oriented
towards earthquake and volcano monitoring using pick-based
algorithms. With this in mind, the EEW system was deployed at
RSN to assess its potential in Costa Rica with the existing
infrastructure.

FIGURE 7 | Solutions for four events selected in different regions of Costa Rica (Table 3). The stars represent the RSN locations, and the circles represent the VS
solutions. The colors correspond to the date of the earthquake, as shown in the inset.
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Evaluating the EEW performance over time with different
events becomes difficult, as the number of stations monitored by
the seismic network, their EEW performance, and the
configuration of the EEW system were not constant over the
test period. Also, the performance of VS and FinDer are
compared in terms of point-source characteristics, even
though FinDer is also capable of tracking the current rupture
size (which is actually the main output of FinDer).

The first EEW solutions for the Golfito (12.8 s) and Armuelles
(15 s) earthquakes are similarly fast considering differences in

event depth, but subsequent EEW updates for the Armuelles
earthquake are more stable. This is attributed to the optimization
of the EEW system, for which the main changes included the
incorporation of 25 SP stations from the PA network after the
Golfito earthquake (which help improving the VS estimates), the
blacklisting of 82 stations which are not EEW operational (due to
low resolution data, poor timing, or high latency) and other
changes in configuration, such as the STA/LTA detector, re-
picker filters, and the customization of the location grid. It is
noted that once the network has been optimized, FinDer
approaches and at times exceeds the speeds of the VS alerts.

The aforementioned customization of the EEW system
provided a much more robust FinDer performance during the
Armuelles earthquake, with a much lower FinDer location error
than the one for the Golfito earthquake and a low magnitude
fluctuation for both algorithms. These results show that the EEW
system at RSN already operated satisfactorily without any
customization for VS, and with relatively minor efforts, we
were able to improve the FinDer speed and stability. A
number of critical issues to FinDer, such as the handling of
latent data and faster magnitude convergence, have been
addressed in the latest FinDer release in 2021.

The results of the intermediate-magnitude earthquakes
indicate that VS performs better than FinDer in the RSN
network since it is composed mainly of SP sensors and the VS
system can use these for location and also for magnitude, when
on-scale. The VS magnitudes are generally robust even using few
stations. Thus, VS has an advantage especially in the regions of
higher station density including different sensor types, such as
central Costa Rica.

Limitations related to the seismic network have been
revealed. These include the high median data delay of 3.75 s
that would need to be reduced for EEW. Other station issues
observed are GPS timing problems and low resolution of the
strong motion MEMS sensors (Figure 8A); these problems led
to a large proportion of the network, 82 stations, being
blacklisted, significantly reducing the number of operational
EEW stations at RSN. A final challenge observed was the lack
of network resilience during strong motions. At numerous
near-field stations, the signal was lost shortly after the P-wave
arrival, most likely due to failure of communication or mains
power (Figure 8B). Redundancy here should be considered.
The efforts for network optimization outlined here have to be
taken if EEW is to become a product at RSN (Massin et al.,
2020).

As with all EEW systems, we can expect alerts to arrive only
after the onset of strong shaking for earthquakes close to the
target. With the examples presented here, where alerts have been
provided within 11 s of event initiation, we can expect late alerts
for all shallow crustal events within 40 km of the capital.
Unfortunately, if the present network delivers EEW, this
would mean late alerts for repeats of some historically
destructive events near San Jose, such as the Cartago
earthquake (M 6.4) in 1910 (Montero and Miyamura, 1981)
and the Cinchona earthquake (Mw 6.1) in 2009 (Linkimer and
Alvarado, 2014), which were originated by local faults with
epicenters at 20 and 30 km of the city, respectively.

FIGURE 8 | Closest four vertical SM recordings of the (A) November
17th, 2018 (Mw 5.1), and (B) Golfito (Mw 6.1) earthquakes. The vertical red
lines indicate the origin times. Left vertical axis is in counts and the
corresponding acceleration value is indicated in the right vertical axis.
The epicentral distance of each station is indicated in the labels after the
station name. (A) The low resolution of the strong motion MEMS sensors and
(B) the lost signals shortly after the P-wave arrival during the Golfito
earthquake, most likely due to failure of communication or mains power.
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The alert time is modest (<5 s) for seismic events close to San
Jose originated in the subduction zone, such as the 1990 Cobano
(Mw 7.0) and 1999 Quepos (Mw 6.9) earthquakes, and at
intermediate depth in the subducting slab, like the 1992
Naranjo earthquake (Mw 6.5). Nevertheless, warnings could be
sent for the public in coordination with local authorities. Like in
other nations, automated procedures for heavily-exposed
industrial partners can also be considered, including actions
mentioned before. It is also worth noting that even if alerts
are late, EEW can provide earthquake parameters and shaking
information concurrent with the arrival of ground motions,
which can be effectively used to inform geoscientists, civil
authorities, and the wider public before the onset of cascading
failures of communications and power infrastructures that
may occur.

In summary, it is clear that even with the performance presented
here, the EEW can be useful for providing rapid earthquake
notification for San Jose. During the testing period, a small
crustal earthquake (May 9th, 2019, Mw 3.3) near San Jose was
detected by VS after only 5.8 s. As the event was small and only very
locally felt, it was not detailed in this study. If results like this could
be replicated by using an improved seismic network, the epicentral
region that receives late alerts may be reduced significantly.

CONCLUSIONS

With the existing RSN network, which has not been optimized for
EEW systems, and using the SED-developed ESE EEW system for
selected earthquake of 2018–2019, we observe warning times for
San Jose of 36–43 s for distant (180–220 km) earthquakes.
Epicenters at less than 40 km do not allow positive warning
times for the metropolitan area of San Jose. FinDer has
performed well for the M > 6 earthquakes; however, it is
limited for the intermediate-magnitude (Mw 5.1–5.4) events
since the majority of stations in the RSN network include SP
sensors not used by FinDer. Additionally, VS, trigger-based and
capable of using any seismic sensor, has proved to be successful for
the six earthquakes studied here.

We have identified limitations in the EEW system related to
noisy or high-latency stations which reduced the number of
operational EEW stations. Despite that, the current RSN
network has the potential to provide alerts for large (M > 6)
earthquakes occurring at distances larger than 40 km by using
FinDer and VS. This could be further improved by increasing the
density of operational EEW stations in the country and reducing
data delays. We also demonstrated the feasibility of rapid
earthquake notification from the current RSN network in all
studied cases, potentially providing alerts for disaster response
management and seismic risk mitigation.
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Design, Implementation and Testing of
a Network-Based Earthquake Early
Warning System in Greece
M. Bracale1, S. Colombelli 1*, L. Elia1, V. Karakostas2 and A. Zollo1

1Department of Physics, University of Naples Federico II, Naples, Italy, 2Department of Geophysics, Aristotle University of
Thessaloniki, Thessaloniki, Greece

In this study we implemented and tested the Earthquake Early Warning system PRESTo
(PRobabilistic and Evolutionary early warning System, Satriano et al., 2011) on the Greek
Ionian islands of Lefkada, Zakynthos and Kefalonia. PRESTo is a free and open source
platform for regional Earthquake Early Warning developed at the University of Naples
Federico II, which is currently under experimentation in Southern Italy, in the area covered
by the Irpinia Seismic Network. The three Ionian islands selected for this study are located
on the North-Western part of the Hellenic trench. Here the seismicity rate and the seismic
hazard, coupled with the vulnerability of existing critical infrastructures, make this region
among the highest seismic risk areas in Europe, where the application of Earthquake Early
Warning systems may become a useful strategy to mitigate the potential damage caused
by earthquakes. Here we studied the feasibility of implementing an Earthquake Early
Warning system on an existing seismic network, which was not specifically made for
earthquake early warning purposes, and evaluated the performance of the system, using a
data set of real-earthquake recordings. We first describe the technical details of the
implementation of PRESTo in the area of interest, including the preliminary parameter
configuration and the empirical scaling relationship calibration. Then we evaluated the
performance of the system through the off-line analysis of a database of real earthquake
records belonging to the most recent M > 4.0 earthquakes occurred in the area. We
evaluated the performance in terms of source parameter estimation (location, magnitude),
accuracy of ground shaking prediction and lead-time analysis. Finally, we show the
preliminary results of the real-time application of PRESTo, performed during the period
01–31 July 2019.

Keywords: earthquake early warning (EEW), ionian islands, real-time seismology, seismic risk, real-time source
parameters

INTRODUCTION

Every year devastating earthquakes cause enormous damage in terms of lives and serious threats for
human activities in the active seismic regions of the world. During the last 20 years the development
of Earthquake Early Warning Systems (EEWS) has allowed to reduce the potential damage directly
related to the strong shaking caused by earthquakes or indirectly produced by fires, explosions,
tsunamis and other phenomena triggered by the seismic event. Recent examples of successful
applications of EEWS are the two earthquakes that occurred in Mexico in September 2017 (Suárez
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et al., 2018). During the Mw 8.2, September, 7 Tehuantepec
earthquake, theMexican alert system SASMEX gave almost 2 min
of warning to Mexico city, prior to the arrival of the strong-
motion seismic waves. The second example is theMw 7.1Morelos
earthquake occurred on September 19, 2017, for which the short
epicentral distance to Mexico City allowed for a few seconds of
warning prior to the arrival of the S waves. In both cases, the
warning was used to start public measures for reducing human
losses in the city, including prompt evacuation of schools and
buildings. Another relevant example of successful application of
EEW alerts is the case of the Mw 9.0 Tohoku-oki (Japan)
earthquake. At the time of that earthquake and tsunami,
several million people near the epicenter received the EEW
about 15–20 s before the most severe shaking occurred, and
many more people in surrounding districts had greater lead
time before less severe shaking started. About 90% of these
people were able to take advance actions to save their own
lives and those of family members or to take other actions
according to prior planning (Fujinawa and Noda, 2013).

An EEWS is a complex, monitoring infrastructure able to
quickly detect an ongoing earthquake, estimate its potential
damage and provide an alert message to the target sites, before
the arrival of the destructive waves. This is possible thanks to the
different velocity of propagation between the P-waves and the
S-waves and to the different velocity of propagation between
seismic waves (travelling at the speed of ∼3.5–6.5 km/s in the
upper crust) and electromagnetic signals (i.e., the alarm signal,
travelling at the speed of light). In case of a potentially damaging
earthquake, a notification is sent to the target site where the time
available from the moment of the alert release to the arrival of the
strongest shaking can be used to activate emergency procedures
and automatic mechanisms to mitigate the collateral damage,
such as to stop elevators, machinery, high speed trains or to stop
gas supplies to building (Allen et al., 2009).

Most of the existing EEWSs are based on regional (network-
based) or on-site (single-station) configurations, depending on the
geometry of the network and of its relative position with respect to
the source area (Satriano et al., 2011). The regional configuration
consists of a network of stations deployed in the source area, while
target sites to be protected are situated far away from it. In this
configuration, the near-source, early P-wave signals collected at the
stations are used to detect the occurrence of the earthquake,
determine its location and magnitude and estimate its shaking
potential to nearby and distant sites through the use of empirical
attenuation relationships. The alert notification can reach the site
to protect within a variable time from the earthquake origin, which
typically range from a few seconds (at very short distances from the
source), to several tens of seconds (at hundreds kilometers from the
source).

Occasionally, the near-source S-wave signals are also used
jointly to the P-waves, to better constrain the real-timemagnitude
estimate (Lancieri and Zollo, 2008), although accurate, automatic,
estimation of the first S-wave arrival is a difficult task, due to the
high noise contamination related to the presence of large
amplitude P-wave coda.

On-site or stand-alone early warning systems are individual or
small-aperture array of sensors deployed in proximity of the

target site to protect. In this case, the initial P-wave signals are
analysed and used as proxies of the late arriving, strongest
shaking waves at the same site, with no or poor available
information on the earthquake source parameters (such as
location and magnitude) (Wu et al., 2005; Caruso et al., 2017).
Finally, hybrid approaches are based on the joint use of both
regional and on-site configurations, as proposed by Zollo et al.
(2021) and Colombelli et al. (2012).

During the last decade the implementation of EEWS is
increasing all over the world. Operative systems are currently
running in, Japan (Hoshiba, 2014), Mexico (Cuéllar et al., 2014),
California (Kohler et al., 2017), Taiwan (Wu et al., 2014) and
Romania (Böse et al., 2007), while EEWS development and
testing are ongoing in several other active seismic regions of
the world, such as Turkey, Switzerland, North Korea, China,
Ibero-Maghrebian region (Allen et al., 2009; Clinton et al., 2016).
In Italy, currently, the system PRESTo (Satriano et al., 2011) is
running in Southern Italy, having the Irpinia Seismic Network
(ISNet) as core seismic monitoring infrastructure.

Greece is the most active seismic region of Europe, with more
than 60% of the European earthquakes occurring in this region
(Papazachos and Papazachou 2003). The geodynamic processes
that produce high seismic activity are related to the convergence
of the Eurasian and the Eastern Mediterranean lithospheric
plates, forming the long Hellenic trench, the dextral strike slip
motion along the North Anatolian fault and North Aegean
Trough and the fast movement of the Aegean to the south-
southwest (Meier et al., 2004; Papadimitriou et al., 2016).

The Ionian islands are located north of the northwest
termination of the Hellenic Trench. In this area (Figure 1) the
NNE-SSW trending Kefalonia Transform Zone (KTFZ) is
prevailing. Here the seismicity rate is the highest in Greece
being characterized by a huge number of small magnitude
earthquakes, frequently occurring moderate and strong
earthquakes with magnitude up to about 7.0. Over the last
decade, on average, an earthquake with magnitude between 4
and 4.9 occurs every 10 days, events in the rangeM 5–M5.9 occur
once every 4–5 months and M > 6 events every 6 years
(Karakostas et al., 2010; Karakostas and Papadimitriou, 2010,
2015; Papadimitriou et al., 2013, 2017, Gospondinov et al., 2015,
Kostoglou et al., 2020; Karakostas et al., 2020, among others).

Within the framework of past European projects (SAFER
(https://cordis.europa.eu/project/id/36935), REAKT (https://
cordis.europa.eu/project/id/282862), 2006–2014), several
feasibility studies were carried on in order to build the
infrastructure for an EEWS in Greece. Test-site applications
(touristic harbours and hospitals) in the city of Patras were
chosen to provide the opportunity to implement and test
scientific products and results achieved in the project (Cauzzi
et al., 2016). Specifically, Sokos et al. (2016) discuss the limits
and potential of a network-based EEW system for the city of Patras
(Greece), which is the third largest city in Greece and represents an
ideal candidate for earthquake early warning due to its high seismic
hazard and to the presence of critical structures such as the Rion-
Antirion bridge. Within the project, the Virtual Seismologist (VS,
Cua 2005; Cua and Heaton 2007; Cua et al., 2009) EEW software
was installed at the Seismological Laboratory of the University of
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Patras (UPAT). Given the available station density and network
telemetry, the performance of the system was evaluated through
synthetic tests and simulations, assuming a fully operational
seismic network and the absence of delays in data transmission/
processing. The analysis showed that the average time needed for
the first magnitude estimate from VS was rather large (tens of
seconds) and not satisfactory for routine operational use of EEW,
indicating that the seismic networks in Greece need enhancements
for regional EEW, either by adding stations or by upgrading the
hardware to reduce delays.

Following the route traced by Sokos et al., (2016), here we
studied the feasibility of implementing an EEWS on the existing
nationwide seismic network, which was not specifically designed
for earthquake early warning purposes, and evaluated the
performance of the system, using a data set of real earthquake
recordings. In the present study we implemented and tested the
regional EEWS PRESTo (PRobabilistic and Evolutionary early

warning SysTem), developed by RISSC-Lab research group at the
University of Naples Federico II, on three Greek Ionian islands of
Zakynthos, Lefkada and Kefalonia, which are located on the
North-Western part of the Hellenic trench. Here the high
seismicity rate and the seismic hazard could make the
implementation of an EEWS relevant to reduce the potential
damage caused by earthquakes. At the same time, the geography
of the area and the station geographical distribution make the
implementation of an EEWS really challenging.

MATERIALS AND METHODS

Dataset Description
The area of interest of this study is embedded in a rectangle of
350 km x 200 km (Figure 1). Within this area, we used the 3-
component, velocimetric stations of the Hellenic Unified Seismic

FIGURE 1 | Event and Station distribution. The map shows the epicentral position of the events (colored stars), the stations used in this work (triangles), and the
three considered targets (squares). The size of the stars is proportional to the earthquake magnitude, while the depth is shown through the color scale. The three events
selected for the scenario analysis are indicated with an orange circle. Grey stars show all the events with magnitude M > 3.5 occurred since 2000 and the colored lines
show the major faults of the area. Orange arrows show the approximate direction of relative plate motion. Blue line represents the dextral Kefalonia Transform Faut
Zone. The green line to the north represents the collision between the Apulia microplate and the Greek mainland, while the green line to the south depicts the subduction
of the eastern Mediterranean oceanic plate beneath the Aegean.
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Network (HUSN) maintained by the National Observatory of
Athens, the Aristotle University of Thessaloniki, the National and
Kapodostrian University of Athens and the University of Patras
(HUSN, doi:10.7914/SN/HL). The network started being
deployed in 1964 and was updated gradually in the following
years, resulting in a heterogenous deployment, in terms of sensor
typology and geographical distribution. The seismological
network has almost its present geometry since 2014, by the
installation of nine seismological stations with online
connection maintained by the Department of Geophysics of
the Aristotle University of Thessaloniki in cooperation with
the union of the municipalities of the Ionian islands (PED-IN).

Among the available stations, we selected 23 stations for which
it was possible to have real time data, including stations located
on the islands (16) and on the mainland (7). With this selection,
the geographical distribution of the network becomes heavily
heterogeneous, with an inter-station distance varying from few
kilometres for stations located on the same island to tens of
kilometres considering also the other stations. Moreover, for
offshore events in the South-West area, the network
configuration makes the number and azimuthal coverage of
recording data rather poor.

The collected earthquake dataset is composed by 31 (in
Supplementary Table S1) earthquakes (Figure 1), occurred
between 2010 and 2019, with local magnitude (ML) ranging
from 4.0–6.6. The complete list of selected events is reported
in Supplementary Table S1 of Supplementary Material. Among
the largest events the database includes the 2018, ML 6.6
Zakynthos earthquake, the 2015 ML 6.0 Lefkada earthquake
and the 2014 ML 5.8, Kefalonia earthquake. Most of the
events have shallow depths (5–15 km), with the deepest
earthquakes located in the South West area, along the
subduction fault area of the Hellenic Trench. We used a total
number of 254 records, and the histogram distribution of these
records as a function of distance is available in Supplementary
Figure S1 of the Supplementary Material.

Review of PRESTo Methodology
PRESTo (Satriano et al., 2011) is a free and open-source software
platform for Earthquake Early Warning which integrates
algorithms for real-time data collection, event detection, rapid
earthquake location, magnitude estimation and damage
assessment. It uses a regional, network-based approach,
processing the real-time ground motion recorded by the
stations of a seismic network and providing a prediction of
the ground motion at the target. In PRESTo, the Filter-Picker
algorithm (Lomax et al., 2012) first identifies the arrival time of
the P-wave at each station, based on the real-time evaluation of a
specific characteristic function, accounting for both the signal
amplitude and its frequency content, in a short and long signal
time window. An earthquake is declared when the triggering
condition is satisfied by a small (<4) number of stations satisfying
spatial and temporal coincidence criteria. As soon as an
earthquake is detected, the real-time location is obtained
through the RTLoc algorithm (Satriano et al., 2008), which
can provide probabilistic estimates of hypocenter coordinates
and origin time based on the use of both triggered and non-

triggered stations, and on the recorded P-wave arrival times at
pairs of stations. The event magnitude is estimated with a
Bayesian, probabilistic approach (RTMag, Lancieri and Zollo,
2008) from the analysis of the early peak displacement amplitude
in short time windows (2–4 s), on both P and S-waves, and
through the use of an empirical scaling relationship relating the
early peak ground displacement amplitude to the final event
magnitude and hypocentral distance, at any recording station.

At any time t, after the first event detection the conditional
probability density function (PDF) of magnitude given the
observed data vector is expressed, through the Bayes’ theorem,
as the product between the conditional PDF of data, given the
magnitude, and a priori PDF based on the prior information
available before the time t. In the proposed methodology the a
priori distribution is derived by the Gutenberg-Richter
occurrence law (see Lancieri and Zollo, 2008 for details of the
methodology). Both location and magnitude estimation
algorithms (RTMag and RTLoc), provide as output a
Probability Density Function (PDF), at each time step after
the event origin. Then, the predicted outcome (magnitude or
hypocentral location) corresponds to the maximum of PDF.

Once location and magnitude of the ongoing event are known,
the peak ground motion is predicted through a regional ground
motion prediction equation (GMPE), specifically calibrated for
the considered area.

Configuration of PRESTo for the Selected
Area
For the current experimentation, we installed PRESTo on a
dedicated machine at the seismological station of Thessaloniki,
that was configured to receive and process in real-time data from
the HUSN stations. As previously mentioned, the software
PRESTo is based on a sequence of algorithms for real-time
data collection, event detection and location, magnitude
estimation and shaking prediction. Each of these algorithms is
based on several configuration parameters that require a proper
calibration to be adapted to a given network and seismic area. A
robust analysis of a massive earthquake catalogue, covering large
magnitude and distance ranges, would be needed to correctly
calibrate the parameters. Due to the unavailability of such a
massive catalogue for the considered area, for the purpose of the
present work, we mostly verified whether the default
configuration parameters of PRESTo could be adapted to the
Greek seismicity. In a few cases, we introduced correction
coefficients or performed a trial-and-error analysis to find
more suitable parameter. The specific calibration of each
module is discussed below.

The phase picking and earthquake detection algorithm (Filter
Picker, Lomax et al., 2012) requires the calibration of several
parameters, (including, among others, the length of short and
long-time windows for average signal computation, the
minimum number of triggering stations for the event
declaration, the amplitude threshold for event declaration).
The proper calibration of each parameter requires a dedicated
analysis of a massive number of recorded waveforms and this
goes well beyond the purpose of the present work (see Vassallo
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et al., 2012. Here, we used 7 records (of 12 min length, acquired by
different stations and including noise and seismic events) which
are representative for the recorded signals in different conditions
(i.e., different background noise level and seismic events). Starting
from the default Filter Picker configuration parameters, we
slightly changed the configuration parameters around their
standard values and evaluated the response of the algorithm.
We choose the optimal parameters as those that maximise the
correct detection of seismic events and minimize both missed and
false event declaration. Specifically, we choose 0.5 and 5 s as a
short and long-time window respectively, for the characteristic
function evaluation and set to 9 the threshold value of this
characteristic function for the event declaration. Finally, an
event is declared when the triggering condition is satisfied by
multiple stations within a pre-determined space-time window,
depending on the network geometry, density and distribution.
Given the characteristics of the Greek network, we required 3
stations to be triggered within 90 km and 16 s.

As for the location algorithm, here we used the RTLoc method
(Satriano et al., 2008) as it is, and adapted it to the area by
including the velocity model of Papadimitriou et al. (2017), that
was specifically made for the Lefkada and Kefalonia area. On
average, for depths between 0 and 40 km, the P-to-S velocity ratio,
is 1.83 ± 0.01.

The empirical scaling relationship used for the magnitude
computation has the form (Zollo et al., 2006):

log(Pd) � A + BM + Clog(R) (1)

log(Pd10) � log(Pd) − Clog(R/10) � A′ + B′M (2)

where Pd is the initial Peak Displacement (Lancieri and Zollo,
2008), M is the earthquake magnitude, R is the true hypocentral
distance (with respect to the real hypocentral location, as
provided by NOA reference catalogue available at http://www.
gein.noa.gr/en/seismicity/earthquake-catalogs) and A, B, C, A’, B’
are empirical coefficients to be calibrated from data for a 2 s and a

4 s P-wave time window, separately. As for the distance, for the
calibration phase and the computation of empirical scaling
relationships, we forced the earthquake location to the true
value by temporarily deactivating in PRESTo the location
module, which was then reactivated during the remaining
performance analysis. The initial peak displacement (Pd) is
defined as the absolute maximum amplitude on displacement
waveforms, measured in a short time window (2 s, 4 s) after the
P-wave arrival. The peak displacement is measured on integrated
velocimetric waveforms, band-pass filtered in the range 0.
075–3 Hz, to remove the noise and low frequency drift
introduces by the integration operation. Examples of
displacement waveforms with the portion of P-wave signals
used are shown in Figure 2. In Eq. 2, Pd10 is the Pd value
once it has been corrected by the geometrical spreading effect.
The coefficients have been specifically calibrated for each time
window, using the available data in this study through a standard
regression analysis and are reported in Table 1 for 2P and 4P time
windows, respectively, while the beta value of the Gutenberg
Richter for the prior distribution to be used in RTMag algorithm
was set b � 0.9 (Papadopoulos, 2014). As for the use of two
equations, since it may occur that the P-wave peak amplitude

FIGURE 2 | Data. Example of displacement waveforms used for the analysis. The figure shows the waveforms recorded during the 2019-01-15 event (ID XXVIII).
From top to bottom, the waveforms are sorted by source-to-receiver (hypocentral) distance. The P-wave arrival time is shown with a vertical grey solid line,
corresponding to the beginning of the first, dark gey box, while the 2P and 4P time windows are shown with the dark and light grey bars.

TABLE 1 | Coefficients for magnitude scaling relationship. The table shows the
coefficients of the scaling relationship defined by Eq. 1 and Eq. 2 for 2P and
4P time windows. The standard deviation of each coefficient is also provided (but
not used for predictions).

Coefficient 2s time window 4s time window

Value Stand. Dev Value Stand. Dev

A −6.01 0.33 −6.4 0.3
B 1.01 0.06 1.13 0.05
C −1.90 0.11 −1.89 0.10
A′ −8.8 0.05 −8.0 0.5
B′ 1.15 0.12 1.07 0.10
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increases with time within the P-wave time window especially for
M > 6 events (Colombelli et al., 2012), the use of a larger time
window with specifically calibrated coefficients is more
appropriate. Figure 3 shows the scaling between Pd and
Magnitude for the two selected time windows, while
Supplementary Figure S2 in Supplementary Material shows
the distribution of residuals after the calibration. The residuals
are normally distributed on zero (mean value 0.05), with a
standard deviation of 0.26.

Due to the sparse station distribution of the used Greek
network we decided to exclude the use of S-waves for EEW
given the low level of accuracy in bracketing with automatic
algorithms the S-phase on seismic records. Indeed, as proved in
previous works (Satriano et al., 2011), the use of the S-waves for a
regional EEWS is critical, since it grounds on the reliable
estimation of the S-arrival time, which in turn depends on a
precise earthquake location obtained in real-time from the
P-wave readings.

The Ground Motion Prediction Equation (GMPE) is used to
predict the median Peak Ground Motion value (PGA or PGV)
once the earthquake location and magnitude are known. Due to
the unavailability of a massive catalogue for the considered area,
we evaluated the prediction error for both PGA and PGV, using
the standard GMPE calibrated by Akkar and Bommer (2007) for
the European large earthquake dataset and already implemented
in PRESTo. With respect to the original GMPE, we discarded site
and fault coefficients. The functional form of the ground motion
prediction equation used in this work to predict either PGA and
PGV (denoted as PGX in the equation) is given by (Akkar and
Bommer, 2007):

log(PGX) � b1 + b2M + b3M
2

+ (b4 + b5M)log( �������
R2
JB + b26

√ ) (3)

Where M is the earthquake magnitude, R2
JB here is assumed to be

the hypocentral distance and coefficients b1 to b6 are reported in
Table 2.

For both quantities (PGA and PGV), while no apparent
trend with distance is observed, we found that the mean value
of residuals (computed as observed minus predicted value) is
not centred at zero, suggesting the possibility of introducing a
constant correction coefficient to account for the observed
bias. Figures 4A,B shows the logarithm of observed PGA and
PGV values, as a function of distance with respect to the
theoretical scaling laws of Akkar and Bommer (2007) for three
magnitude classes. The comparison shows that, after
correcting the theoretical laws with a constant coefficient,
the observed data are in good agreement with the
theoretical laws. Figures 4C,D shows the distribution of
prediction errors (for PGA and PGV) as a function of
distance, with different colors for the same magnitude
classes, once the constant bias has been corrected, while the
coefficients of Akkar and Bommer (2007) scaling relationships
and the constant correction coefficient (included in the b1
value) are reported in Table 2.

FIGURE 3 | Calibration laws for magnitude prediction. The figure shows the logarithm of measured Pd as a function the event magnitude for 2P(A) and 4P(B) time
windows. The figure shows the observed data (grey dots), the average Pd value for each magnitude (dark diamonds). The linear regression obtained using the average
values is shown through a solid black line, while dashed lines represent the standard error bounds (one standard deviation), as obtained from the fitting procedure. In
both panels, the observed Pd is referred to a distance of 10 km, as obtained by Eq. 2.

TABLE 2 | Coefficients for ground shaking prediction relationship. The table
shows the coefficients of the ground motion prediction equation of Akkar and
Bommer (2007) for PGV and PGA (from b2 to b6), while the additional correction
coefficients is included in parameter b1.

Parameter PGV PGA

b1 −1.451 1.411
b2 1.063 0.767
b3 0.079 −0.074
b4 −2.948 −3.162
b5 0.306 0.321
b6 5.547 7.682
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RESULTS

The performance analysis is crucial to understand whether and
how the available network is suitable for earthquake early
warning applications and how the existing network can be
improved to optimize the performance. We first choose a sub-
set of 3 earthquakes, among those available in the dataset, to
perform a specific scenario-analysis, which are the M4.7 2013-5-
23 earthquake, the M5.4 2018-10-30 earthquake and the M6.0
2015-11-17 earthquake. Then we evaluate the overall
performance of the system in terms of first-alert times and in
terms of accuracy of the estimates of source parameters (location
and magnitude) on the whole dataset. Since the performance of
an EEWS is strongly dependent on the network geometry,
number and coverage of stations, we selected events with
magnitude greater than 4 that were occurred in two different
areas of the country and have been recorded by a sufficient

number of stations. The selected earthquakes are indicated in
Figure 1 with circles.

Scenario Analysis
For the 3 selected events, we looked at the detailed time evolution
of earthquake source parameters (epicentral coordinates, depth
and magnitude), prediction error on PGA and number of
available data, starting from the first available estimate and
stopping when the latest station has recorded the P-wave
signal. Figure 5 show the time evolution of real-time estimates
for the M4.7 2013-5-23 earthquake (Panels A, D, G, J, M), the
M5.4 2018-10-30 earthquake (Panels B, E, H, K, N) and the M6.0
2015-11-17 earthquake (Panels C, F, I, L, O).

Overall, after a few seconds from the first estimate, for the
three events the estimates of location and magnitude converge to
the real value, as it can be seen from the timelines of Figure 5. As
for the earthquake location, we separately analysed the time

FIGURE 4 | Calibration of GMPE and prediction error. (A) and (B) show the logarithm of observed PGA and PGV as a function of the hypocentral distance in
logarithmic scale, where units are cm/s2 for PGA and cm/s for PGV. Circles represent the observed data while the theoretical scaling laws obtained by correction of Akkar
and Bommer (2007) are shown with dashed lines (corresponding to the central magnitude value of each interval (C) and (D) show the prediction error on PGV (A) and
PGA (B) for all the records available in the dataset. The average value has been corrected using the Akkar and Bommer (2007) GMPE. Solid lines show the
corrected curves, including the coefficients, while dashed lines are those uncorrected. In all panels, the events have been grouped in three ranges of magnitudes, shown
with different colors.

Frontiers in Earth Science | www.frontiersin.org September 2021 | Volume 9 | Article 6671607

Bracale et al. PRESTo EEWS in Greece

283

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


evolution of epicentral and depth estimates, with the relative
uncertainties. For the three events, as soon as a consistent (>6)
number of stations is used, the estimates of both epicentral
position and source depth converge to the real value, with a
relative uncertainty (error bound) of about ±10 km for the
epicentral position and ±2 km for the depth. Differently from
what is expected, the uncertainties on the source depth turn out to
be overall smaller than those on the epicentral position. This is
likely due to the fact that most the events in the dataset have
similar, shallow depths and the initial, a-priori solution for the
source depth (set to 15 km) is very close to the real value in most
of the cases. Thus, the real-time location estimates soon converge
and stabilize to the true solutions. As for the magnitude, the real-

time estimates show nearly stable residuals, distributed around
zero shortly after the very first estimates, with a final average
uncertainty of about 0.25 units, except for the M 5.4 event
(Figure 5H), for which we found a systematic underestimation
of magnitude of about 0.3 units (despite of a good location
estimate). This could be probably due to the poor number of
stations and azimuthal coverage, or to source effects (such as
finite fault, fault orientation, directivity) which are not considered
in the prediction model of Eq. 1, or propagation/site effects that
produce lower observed amplitudes. Finally, for the three events,
the prediction error on PGA (panels J, K, L), (computed as the
difference in logarithm between observed and predicted PGA
value) is not centred on zero (due to errors in location and

FIGURE 5 | Scenario analyses for the three selected earthquakes. The figure shows the time evolution of the estimated source parameters, for the three scenario
earthquakes: magnitude M4.7 (A, D, G, J, M), magnitude M5.4 (B, E, H, K, N), magnitude M6.0 (C, F, I, L, O). From top to bottom the figure shows the residuals on:
epicentral coordinate estimation, depth estimation, local magnitude, peak ground shaking prediction and number of triggering stations as a function of time. The time axis
is given with respect to the origin time (O. T.) of the event. For each quantity, the average value and the standard error bars (standard deviation) are represented with
filled diamonds and black line, respectively. As for the location, we first computed the location error from the probability density function defined in Satriano et al., 2008.
We then estimated the distance between the pick of the pdf (which is the observed value) and its boundary, defined by cutting the pdf at 68%. This error is finally
propagated in the magnitude scaling law and in the GMPE. Vertical dashed lines in (M–O) indicate the use of 1, 3 and 6 stations, respectively.
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magnitude) although it is nearly stable with time around
±0.3–0.4, and is consistent with the typical standard deviation
on PGA prediction (Akkar and Bommer, 2007; Bindi et al., 2011).

Overall Performance Analysis
The time of the first alert (alert time) is the shortest time needed
for the system to provide a warning and it depends on the number
of triggered stations required for the event declaration and on the
spatial distribution of these stations. We evaluated the detection
time when the triggering condition is satisfied by 1 and 3 stations,
respectively, as the difference between the event declaration time
and the earthquake origin time. When a single or 3 stations are
required, the detection times range between 3 and 24 s and follow
a non-gaussian, unimodal distribution, having a median value of
1.9 and 9.8 s, respectively. The detailed results for the detection
times are reported in Supplementary Table S2 of the
Supplementary Material, in terms of minimum, maximum and
median value for the selected events.

We also analysed the performance of the EW system for the
whole dataset, by looking at the time evolution of residuals for
magnitude and location estimates (Figure 6) and for PGA
prediction error. As expected, both for the location and
magnitude, the residuals generally decrease with time, as more
stations contribute to the estimates. Specifically, for the
earthquake location (Figures 6A,B), we observed that depth
residuals are rather small since the initial estimates and
converge to an average value about 7 km. Epicentral location
residuals are larger (as also observed in the scenario analysis) and
slowly decrease, reaching a nearly constant average value of about
20 km, after 17 s from the first P-wave trigger. We believe that the
large final average value is likely due to the presence of a few (5)
events in the data-set, located outside the network, in the South-
West area, for which location residuals are very large ( >50 km),
because of the high level of noise contaminating data, the low
number of triggering stations, and the poor azimuthal coverage.
As for the magnitude estimates, the average residuals
(represented by the red line in Figure 6C) are nearly stable
around zero since the very first estimates and range between ± 0.5
points. For a few events, the residuals are rather large (±1) at the
beginning but converge to zero, with a certain delay from the first
P-wave trigger, depending on the availability and quality of
recorded waveforms. As for the prediction error on PGA, we
found that this is nearly stable around zero, with a maximum
variation within the ±1 interval.

Lead-Time Analysis
The “lead-time” is one relevant parameter for an earthquake early
warning system, and it corresponds to the time available at the
target for taking emergency measures to mitigate the earthquake
impact in real-time. We computed the lead-time for the three
main towns of the islands which are Lefkada (Lefkada Island),
Zakynthos (Zakynthos Island) and Argostoli (Kefalonia Island),
denoted ad “LEF”, “ZAK” and “ARG”, respectively in Figure 1.
The lead-time is computed as the difference between the
theoretical S-waves arrival time at the target and the first-alert
at the network (i.e., the alert time provided by PRESTo). Because
of the sparse network density and coverage in the South-West
area, we excluded 5 events located in this area for the
computation of the lead-times. Figures 7A–C shows the lead-
time as a function of distance, for the three selected targets. For
the considered network and set of events, negative lead-times (e.g.
S waves arrive before the first-alert issuing) are found at distances
smaller than 20–25 km, as it is shown with vertical lines. At larger
distances, lead times are of the order of 10 s for 70–75 km, and are
about 20 s for distances larger than 100–120 km.

In order to account for the very sparse network distribution,
we also estimated the lead-time by simulating a single-station, on-
site EWS. Specifically, for this simulation, we assume each single
station of the network to behave as an on-site EW system, i.e., as if
each station would coincide with a target site. As for the regional
system, instead, for the lead-time computation, we considered
2 seconds of computational time after the time of the first
triggered station. In Figures 7A–C we compared the lead-
times between the regional and on-site configurations. The
figure shows that, at short distances, the lead-times are larger

FIGURE 6 | Time evolution of location and magnitude residuals for all the
events. The figure shows the evolution of location, and magnitude residuals
and the prediction error on PGA for all the considered events. For each line,
the black point identifies the time of the first triggered station. From top to
bottom, the figure shows epicentral residuals (A), depth residuals (B) and
magnitude residuals (C), prediction error on PGA (D). The thin, red line is the
average value of residuals as a function of time.
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for the on-site than for the regional approaches, while at larger
distances, the regional configuration provides larger lead-times,
as expected (Satriano et al., 2011). In the figure, red lines
correspond to the regional configuration, with three stations
needed for the event declaration, while the blue lines define
the lead-time for the on-site configuration. Both for regional
and on-site configurations, the fit has been obtained through a
linear regression analysis, considering the lead time for each event
as a function of the relative target to source distance. It is worth to
mention that the lead-times estimated in our work are also
affected by the sparse station distribution, which is reflected
into large P-wave arrival times at the network, as it can be
seen from the histogram of Figure 8 showing the P-wave
travel times at the three selected targets, while Supplementary
Table S3 of the Supplementary Material shows the fit parameters
of lead-time as a function of distance.

Finally, a useful scheme to assess the performance of PRESTo
EWS for earthquakes in Ionian islands is provided in the form of a
map in Figures 7D–F for the three selected targets, assuming that
the target is at the centre of the map. In the maps, the grey area
shows the blind zone, where no warning time is available. Red,
yellow and green circles represent the areas with 0–5 s, 5–10 s and
10–20 s of warning time, respectively.

DISCUSSION

The aim of this study was to design, implement, validate and test
the regional EEWS PRESTo on the three Ionian Islands of
Lefkada, Kefalonia and Zakynthos, which are in an extremely
high seismic hazard region of Europe. Here we focus on PRESTo
EW software and did not explore the application of other
algorithms for EEW such as Virtual Seismologist (Cua and
Heaton, 2007), E-larms (Allen, 2007), PLUM (Kodera et al.,
2018). The comparison of performances of different
algorithms is beyond the purpose of the present study. We
applied the Early Warning System PRESTo through the off-
line analysis of 31 earthquakes with local magnitude greater
then 4, occurred between 2011 and 2019. We studied the
performance of the alert system in terms of rapidity of the
first alert release, accuracy of source parameter estimates
(magnitude, location) and ground motion prediction and in
terms of available lead-time.

When considering only the events occurring close to the
islands and inland, the application showed that, on average,
about 20 s after the earthquake origin time the event is fully
described, with an accuracy of 20 km on the epicentral position,
7 km on the depth, and 0.1 on the local magnitude. In terms of

FIGURE 7 | Lead Times. Panels (A), (B), (C) show the distribution of lead-time as a function of distance for the three targets. In red the lead time for a regional EEWS
with detection for trigger of three stations, in blue the lead time for an on-site single station EEWS. The vertical lines represent the blind zone radius relative to the target
where the two EEWSs are applied. The analysis has been repeated for the three targets (A) Lefkada, (B) Zakynthos, (C) Argostoli. Panels (D–F) show the lead-time map
for each target (D), Lefkada, (E), Zakynthos, (F), Argostoli), for all the available events. The map shows the epicentral positions that would provide a given lead-time
to the considered target. Specifically, the red circle represents the epicentral locations that would provide less than 5 s to the target. The yellow circle represents the
epicentral locations that would provide 5–10 s to the target and green circle those that would give 10–20 s of lead time. The grey area represents the blind zone, where
no alert can be provided to the target.
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lead-time, the system shows highly variable timing, depending on
the earthquake location, and varying in the range from a few to
tens of seconds. The blind zone radius depends on the source-to-
receiver distance and for this reason, it changes from target to
target. The average value between the three targets is 36 km. This
value appears to be rather large and many of the strongest events
could occur within the blind zone. However, both lead-times and
blind zones here are computed through the theoretical arrival of
the S-wave, while in most of the cases, the peak value of ground
shaking occurs at a later time (either on the S-wave or on surface
waves), thus providing additional warning time.

The GMPE shown in Figure 4 can be used to evaluate the
significance of the expected ground shaking at different distances.
For example, for analyzed events with magnitude in the range M4
– M6, recorded at distances between 20 and 50 km, we expect a
PGV in the range between 0.3–3 cm/s, which corresponds to a
perceived shaking from weak to moderate, and an expected
damage from none to light, assuming the PGV-IMM
conversion table (Worden et al., 2012). These levels of shaking
apparently do not justify the implementation of an EarlyWarning
system in this area. However, we point out that from the historical
catalogue of Greek earthquakes, large events with magnitude
greater that 6.5, producing strong-to-severe shaking at the same
distance range, may occur, and these are the shocks the Early
Warning system is addressed to. Moreover, the experience of
large populated areas (such as Italy), shows that even moderate
events (shallow, M around 4 events) can be perceived by the
population and produce panic and social consequences, which
civil protection and authorities need to account and manage,
making the effectiveness of Early Warning Systems very relevant
even for small magnitude events.We also evaluated the lead-time
by including the events in the South-West area (see

Supplementary Table S3 of the Supplementary Material).
When the South-Western events are excluded, the slope of the
lead-time regression line vs distance increases for all the targets,
confirming that the performance of the regional approach
improves. Similarly, the radius of the blind zone reduces when
excluding stations in the South-Western area, as shown by
Supplementary Table S3.

Our analysis shows that when the event occurs close to the
target islands or in the South-West region, the on-site approach
offers better performances in terms of lead-times. The regional
approach becomes more performing when the target is located in
a different island than the one where the earthquake occurs.

EEWS using a regional approach, are generally made with dense
distribution of sensors surrounding the fault area. In the case of
Greece, the density, coverage and number of stations on the three
islands is rather large, while a non-uniform station distribution (in
terms of number and distance) is available inland. Most of the
seismicity occurs between the islands and the sea, several
kilometres away from the coast, or in the South West area,
where the station coverage is rather poor. For most of the
events, the network configuration makes the azimuthal coverage
rather poor, with consequent large errors on the estimation of
location, magnitude and, consequently, on the ground motion
prediction. Additional observables could be included to better
constrain the hypocentre position in real-time. Among them,
for example, the joint use of time, amplitude ratio and back-
azimuth estimates, as proposed by Zollo et al., (2021), could
represent a valid strategy to avoid wrong location estimates for
off-network events.

In view of a future implementation of an integrated onsite and
regional EEWS in this region of Greece, two main critical issues should
be considered and solved. The first one is the seismic network density
and areal coverage. This would obviously require the installation of new
stations, mainly at the sea bottom, which represents a difficult and
expensive operation. The problem may be partially solved by using a
hybrid EEW approach, in which each seismic station can operate as a
stand-alone, onsite EEW system andwithin the regional configurations.
In this view, a single station (or small arrays of stations) deployed at the
islands, could be used for the P-wave based early earthquake detection,
while the network of stations could confirm or possibly cancel the alert
issued by the single sensor. This would increase the available lead-time
for earthquakes occurring at the sea, keeping at the same time the
accuracy and reliability of source parameter estimates, provided by the
network-based approach.

The second main issue is the performance of data communication
and transmission system, which was not originally designed for
running EEW applications. The current Greek network has a
station-server transmission time of about 5–7 s on average, but it
may reach extreme values up to 10–15 s. The solution to this problem
demands a new technological improvement, requiring the
development and installation of more advanced communication
systems and digital, dedicated data transmission lines, which
should be designed in all its components to have fixed and
certified deadline for data release of less than one second, which is
now quite a standard for modern communication technologies.

From July 2nd –July 10th, 2019, the software PRESTo has been
operative, to start the evaluation of a potential real-time application.

FIGURE 8 | Histograms of P-wave travel times. The figure shows the
histogram of P-wave arrival times observed at the network.

Frontiers in Earth Science | www.frontiersin.org September 2021 | Volume 9 | Article 66716011

Bracale et al. PRESTo EEWS in Greece

287

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Although a reliable estimation of real-time performances would
require several months of experimentation with the occurrence of
moderate-to-strong events in different areas of the country, here we
can rapidly comment the preliminary results of this test, to discuss
the most critical issues that were observed.

During the period, PRESTo detected a total of 35 small events, with
magnitude larger than 1, and 6 of them having magnitude larger than
3. Two main issues raised during the real-time operation mode. The
first problem is related to a few external events (for example occurring
on the island of Creta) that were located as internal. In these cases,
indeed, the location algorithm often tends to look for and force the
solution within the area covered by network. Ad-hoc solutions in
terms of space and time coincidence criteria or apparent wave velocity
could be included to avoid the detection of such external events.
Alternatively, constraints on the location probability distributions
could be adopted to distinguish the case of an external event from
that of an internal earthquake.

The second problem is related to the missed detection, i.e., the
occurrence of multiple events that are detected as if they were a
single earthquake. This issue reflects a peculiarity of the seismicity of
this area, for which differentmagnitude earthquakes often occur in a
really short time window (5–10 s). The detection algorithm is not
able to recognize the individual earthquakes and the results is that a
wrong event is detected, by considering waves from both events.
This is the case of one of the detected events, that was preceded few
seconds before by another earthquake, belonging to the same faults
system. In this case, the system was not able to detect both events
separately, resulting in a wrong detection. The occurrence of
multiple events is a critical issue of all network-based EEWS and
more adapted strategies should be considered, as for instance, those
proposed by Liu and Yamada (2014) and Wu et al. (2015) who
applied a Bayesian, EEW probabilistic scheme to identify multiple
concurrent earthquakes through the scan of a posterior probability
density function which jointly uses wave time and displacement
amplitude information from triggered and not-triggered stations.

The last critical issue to consider is the maintenance of the
network, that must be continuously operative in real-time, with
no interruption of data recording and communications.

In conclusion, the results achieved in this study represents a
first attempt and provide preliminary guidelines to build an
integrated regional/onsite earthquake early warning system for
Greece and could be useful for further nationwide applications in
the region, to optimize the software and for studying its strengths
and weaknesses.
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Developments of the Nationwide
Earthquake Early Warning System in
Japan After the
2011 Mw9.0 Tohoku-Oki Earthquake
Yuki Kodera1*, Naoki Hayashimoto2, Koji Tamaribuchi 1, Keishi Noguchi2, Ken Moriwaki2,
Ryo Takahashi 2, Masahiko Morimoto2, Kuninori Okamoto2 and Mitsuyuki Hoshiba1

1Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan, 2Seismology and Volcanology Department,
Japan Meteorological Agency, Tokyo, Japan

In Japan, the nationwide earthquake early warning (EEW) system has been being operated by
the Japan Meteorological Agency (JMA) since 2007, disseminating information on imminent
strong ground motion to the general public and advanced technical users. In the beginning of
the operation, the system ran basedmainly on standard source-based algorithmswith a point-
source location estimate and ground motion prediction equation. The point-source algorithms
successfully provided groundmotion predictions with high accuracy during the initial operation;
however, the 2011Mw9.0 Tohoku-Oki earthquake and the subsequent intense aftershock and
triggered earthquake activities underscored the weaknesses of the source-based approach. In
this paper, we summarizemajor systemdevelopments after the Tohoku-Oki event to overcome
the limits of the standard point-source algorithms and to enhance the EEWperformance further.
In addition, we evaluate how the system performance was influenced by the updates. One of
significant improvements in the JMA EEW system was the implementation of two new ground
motion prediction methods: the integrated particle filter (IPF) and propagation of local
undamped motion (PLUM) algorithms. IPF is a robust point-source algorithm based on the
Bayesian inference, and PLUM is a wavefield-based algorithm that predicts ground motions
directly from observed shakings. Another notable update was the incorporation of new
observation facilities including S-net, a large-scale ocean bottom seismometer network
deployed along the Japan and Kuril trenches. The prediction accuracy and warning
issuance performance analysis for the updated JMA EEW system showed that IPF
improved the source-based ground motion prediction accuracy and reduced the risk of
issuing overpredicted warnings. PLUM made the system less likely to underpredict strong
ground motions and improved the warning issuance timeliness. The detection time analysis for
the S-net incorporation suggested that S-net enabled the system to issue the first EEW report
earlier than before the S-net incorporation for earthquakes around the Japan andKuril trenches.
Those findings indicate that the JMA EEW system has made substantial progress both on
software and hardware aspects over the 10 years after the Tohoku-Oki earthquake.

Keywords: earthquake early warning, ground motion prediction, real-time analysis, hypocenter determination,
ocean bottom seismometer, 2011 Tohoku-Oki earthquake
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INTRODUCTION

It has been 10 years since the 2011 off the Pacific coast of Tohoku
earthquake (Tohoku-Oki earthquake), aMw9.0 megathrust event
in the Japan Trench, occurred on March 11, 2011. The resulting
strong ground shaking and large tsunami caused severe damage
in a large part of eastern Japan. The Tohoku-Oki earthquake and
subsequent intense seismic activity also had shed light on
technical limitations of the Japanese nationwide earthquake
early warning (EEW) system, which afterwards led to further
developments of the system.

To mitigate earthquake damage, EEW systems have been
developed and/or operated in many earthquake-prone regions
around the world such as Japan (e.g., Nakamura, 1988; Hoshiba
et al., 2008), Mexico (Espinosa-Aranda et al., 2009), the west coast
of the United States (Böse et al., 2013; Kilb et al., 2021), Taiwan
(Chen et al., 2015), Europe (Clinton et al., 2016), China (Zhang
et al., 2016), Korea (Sheen et al., 2017), and Israel (Nof and
Kurzon, 2021). In Japan, the Japan Meteorological Agency (JMA)
has been operating the nationwide EEW system since 2007 to
disseminate information on imminent strong ground motion to
the general public and advanced technical users (Hoshiba et al.,
2008).

In the beginning of the operation, the system ran based mainly
on standard source-based algorithms that used a point-source
model (PSM) estimate and ground motion prediction equation
(GMPE) (Kamigaichi, 2004). The PSM algorithms successfully
provided ground motion predictions with high accuracy during
the initial operation (Doi, 2011; JMA, 2014). However, the
prediction performance was poor for the Tohoku-Oki event
and subsequent intense earthquake sequences in 2011
(Hoshiba et al., 2011; Kodera et al., 2018). For the mainshock,
the system successfully issued a public warning for the Tohoku
region (the nearest region from the epicenter) before the S-wave
hit; on the other hand, the system underpredicted ground
motions for the Kanto region, ∼300 km to the southwest of
the epicenter, due to the fault finiteness (i.e., the PSM
algorithms were unable to capture the spatial extent of the
fault rupture). Just after the mainshock, the system missed
several large aftershocks; the P-wave picking algorithm did not
work because the P-wave onsets overlapped with large coda waves
of the mainshock or previous aftershocks. In addition, the system
overpredicted ground motions for multiple simultaneous
earthquakes, failing to associate P-wave travel times and
mislocating the hypocenters.

Over the past 10 years, JMA has taken various measures to
overcome those technical limitations and to enhance the system
performance further. One of significant updates of the JMA EEW
system was the implementation of two novel approaches: the
integrated particle filter (IPF) and propagation of local undamped
motion (PLUM) algorithms (Tamaribuchi et al., 2014; Kodera
et al., 2018). Another notable development was the incorporation
of new observation facilities. In this article, we report the system
improvements on prediction algorithms and seismic networks
from 2011 to 2020 and investigate how those updates influenced
the system performance using actual EEW reports issued from
April 2016 to December 2020.

The Initial Japan Meteorological Agency
Earthquake Early Warning System
JMA launched EEW service for the general public in October
2007 (Hoshiba et al., 2008). The initial EEW system was operated
by incorporating two different seismic networks (Kamigaichi
et al., 2009; Doi, 2011), versatile seismometers of JMA
(Harada, 2007; ∼220 accelerometers) and Hi-net of the
National Research Institute for Earth Science and Disaster
Resilience (NIED; Okada et al., 2004; Aoi et al., 2020;
∼800 high-sensitivity velocity meters) (Figure 1A). Versatile
means that the seismometers can calculate and transmit
various observation quantities related to EEW such as P-wave
arrival, displacement amplitude, and epicentral distance given by
the B-Δ algorithm (Odaka et al., 2003; Tsukada et al., 2004;
Harada, 2007). The system provided ground motion predictions
based on the PSM estimation. Source parameter estimates were
given by several algorithms running in parallel. The B-Δ,
territory, and grid-search algorithms (Kamigaichi, 2004) were
employed as the main source estimation methods. Real-time data
from the JMA versatile seismometers were fed into these
algorithms. The not-yet-arrived-data (NYAD) algorithm
(Horiuchi et al., 2005), which provided source parameters
from the Hi-net stations, was also implemented as an
independent subsystem. In addition, the system was receiving
source estimates from an external subsystem based on a classical
hypocenter determination approach using automatic P- and
S-wave picks at the JMA and Hi-net stations (we refer to this
algorithm as Hypoon). The system received hypocenter estimates
from NYAD and Hypoon only if the location errors were smaller
than rejection thresholds. Source estimates given by different
algorithms were combined into a single event in the event
identification process if the source parameters were similar to
each other. After that, ground motion predictions were calculated
from the estimated source parameters and GMPE. The GMPE
employed in the JMA EEW system was one proposed by Si and
Midorikawa (1999), which determines a peak ground velocity
(PGV) from a point-source location, magnitude, and hypocentral
distance. The PGV was converted into a JMA seismic intensity
(JMA, 1996) with the empirical equation proposed by Matsuoka
and Midorikawa (1994). Finally, the system issued EEW reports
including predicted JMA intensities and estimated source
parameters.

In the JMA EEW system, JMA seismic intensity is used as the
ground motion metric. The JMA intensity is represented in two
different ways: the 10-degree discrete representation IJMA (i.e., IJMA

� 0, 1, 2, 3, 4, five lower (5L), five upper (5U), 6L, 6U, 7) and the
continuous representation Iinst (e.g., Iinst � 2.5, 4.8). Iinst can be
converted into IJMA by rounding off Iinst to the nearest IJMA value
(e.g., 2.5≤ Iinst < 3.5 corresponds to IJMA � 3, and 4.5≤ Iinst < 5.0 is
equivalent to IJMA � 5L). The JMA EEW system issues a public
warning if the maximum predicted intensity is 5L or more on IJMA

(4.5 or more on Iinst; Hoshiba et al., 2008). IJMA � 5L corresponds
to the intensity threshold at or above which severe earthquake
damage is likely to occur.

JMA evaluated the system prediction accuracy by calculating a
prediction score, defined as the ratio of sub-prefectural areas
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whose intensity prediction error is within one unit on IJMA

among all areas with predicted or observed IJMA ≥ 4 (Doi,
2011). From October 2007 to March 2010, the system
successfully provided accurate ground motion predictions, and
the prediction score was as high as ∼80%. However, the
prediction score decreased to 28% in Japanese fiscal year 2010
(from April 2010 to March 2011) due to the occurrence of the
Tohoku-Oki earthquake (JMA, 2014).

The Japan Meteorological Agency
Earthquake Early Warning System After the
2011 Tohoku-Oki Earthquake
Over the 10 years after the Tohoku-Oki earthquake, JMA has
upgraded the EEW system by introducing new ground motion
prediction algorithms and seismic observation facilities
(Figure 1B).

New Ground Motion Prediction Algorithms
The Integrated Particle Filter Algorithm
IPF (Tamaribuchi et al., 2014) is a PSM algorithm that has been
employed in the JMA EEW system since December 14, 2016
(JMA, 2016) to reduce the risk of overprediction due to the
misassociation of P-wave picks for multiple simultaneous
earthquakes. IPF estimates source parameters based on the
Bayesian inference (Liu and Yamada, 2014; Wu et al., 2015);
hypocenter locations are determined using not only P-wave

travel times but also various observed quantities such as
velocity amplitude, untriggered station distribution, and
epicentral distance estimated from B-Δ. For the association
of P-wave picking data, IPF also takes into account velocity
amplitudes in addition to travel time differences, to
discriminate the occurrence of multiple simultaneous
earthquakes from a single large event. Retrospective
simulations with the intense earthquake sequences caused by
the 2011 Tohoku-Oki and 2016 Kumamoto earthquakes
showed that IPF could reduce the substantial number of
overpredicted warnings compared to the PSM algorithms in
the initial JMA EEW system (Tamaribuchi et al., 2014; Kodera
et al., 2016).

In the updated EEW system, IPF is implemented as the main
PSM algorithm, replacing the B-Δ, territory, and grid-search
algorithms. The NYAD and Hypoon algorithms are still
working in the updated system; JMA has decided to leave the
two algorithms because the two algorithms use denser seismic
networks than IPF (the difference comes from whether Hi-net is
incorporated or not) and therefore could sometimes provide
source parameter estimates timelier than IPF.

IPF is being operated with JMA versatile seismometers.
Additionally, IPF uses three seismic networks maintained by
NIED: DONET, S-net, and a part of KiK-net (Kaneda et al.,
2015; Kawaguchi et al., 2015; Kanazawa et al., 2016; Uehira et al.,
2016; Mochizuki et al., 2016; Okada et al., 2004; Aoi et al., 2020;
Figures 1B, 2A,B; as of December 2020).

FIGURE 1 | Data flow diagrams with seismic networks and ground motion prediction algorithms of the JMA EEW system (A) before and (B) after the Tohoku-Oki
earthquake.
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The Propagation of Local Undamped Motion
Algorithm
PLUM (Kodera et al., 2018) is a wavefield-based algorithm (Hoshiba,
2013; Hoshiba and Aoki, 2015) that has been implemented since
March 22, 2018 (JMA, 2018) to provide accurate groundmotions for
large earthquakes with nonnegligible finite faults and for intense
earthquake sequences for which PSM algorithms could fail to
estimate correct source parameters. PLUM provides ground
motion predictions without assuming specific source models;
instead, PLUM predicts future ground motions directly from
ground shakings observed near the target sites, assuming
unattenuated plane wave incident. In the JMA EEW system, a
predicted intensity at target site k is given by
I(k)pred � max{Ir(1)obs − F(1)

0 , /, Ir(N)
obs − F(N)

0 } + F(k)
0 , where

Ir(i)obs (i � 1, /, N) are observed real-time seismic intensities
(Kunugi et al., 2013) at seismometers located within 30 km from

target site k. F(i)
0 and F(k)

0 are scalar site amplification factors at

individual sites (Iwakiri et al., 2011) converted into equivalent seismic
intensity differences. Kodera et al. (2018) showed that the JMA EEW
system could predict ground motions without underprediction for
the Tohoku-Oki mainshock if PLUMwas implemented. In addition,
other offline simulations indicated that PLUM reduced the number
of missed earthquakes for intense earthquake sequences during the
2011 Tohoku-Oki and 2016 Kumamoto events (Kodera et al., 2016;
2018). In the first year after the PLUM implementation, the JMA
EEW system issued warnings with a better detection rate, especially
for earthquakes whose observed ground motions were near the
warning threshold (Kodera et al., 2020).

As of December 2020, PLUM is being operated with two JMA
seismic networks, versatile seismometers and intensitymeters (Figure 2C).

The Hybrid Algorithm
In the updated EEW system, two different ground motion
predictions are given by the PSM and PLUM algorithms. The

FIGURE 2 | Locations of (A) JMA stations used in IPF, (B) NIED stations used in IPF, (C) JMA stations used in PLUM, and (D) Hi-net stations used in NYAD.
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two ground motion predictions are combined in the ground-
motion-based event identification process to obtain the final
ground motion prediction result (Figure 1B). The event
identification process assumes that the two ground motion
predictions are from the same event if there are one or more
overlapped sub-prefectural areas with predicted intensities of 3 or
more. The final ground motion predictions are given by taking
the maximum of predicted intensities for each area. We refer to
this procedure as the hybrid algorithm (Kodera et al., 2018).

New Seismic Observation Facilities
After the Tohoku-Oki earthquake, in addition to the introduction
of the new ground motion prediction algorithms, JMA has
incorporated new inland and offshore seismic observation
facilities for more robust and timelier EEW issuances (Figure 2).

Inland Networks
The initial JMA EEW system was being operated with ∼220 JMA
versatile seismometers and ∼800 Hi-net stations (Figure 1A). On
March 31, 2015, JMA installed 50 new versatile seismometers
mainly on the Pacific side to enhance the detection capability
(JMA, 2015; Figure 1B). Deep borehole seismometers of KiK-net
(15 stations in the southern Kanto region) were also added for the
main PSM algorithms to obtain additional lead times for
earthquakes in the Kanto region (JMA, 2015; Figures 1B, 2B).
On March 22, 2018, the start date for the PLUM operation, the
system incorporated JMA intensity meters (seismometers that
can transmit seismic intensities only) to perform the PLUM
algorithm with a denser seismic network (Kodera et al., 2018).
As of December 2020, real-time seismic intensities from ∼660
JMA intensity meters are fed into PLUM (Figures 1B, 2C). The
Hi-net high-sensitivity velocity meters (Figure 2D) are used only
for the NYAD and Hypoon algorithms.

Offshore Networks
To enhance the detection capability for offshore earthquakes,
JMA also incorporated two ocean-bottom seismometer (OBS)
networks maintained by NIED (Figures 1B, 2B). One of the OBS
networks is DONET (Kaneda et al., 2015; Kawaguchi et al., 2015;
Aoi et al., 2020), which consists of 22 OBSs across the Kumano-
Nada (DONET1) and 29 OBSs off the Kii channel (DONET2).
JMA incorporated the DONET stations partially on March 31,
2015 (JMA, 2015) and fully on June 27, 2019 (JMA, 2019b;
Figure 1B). The other network is S-net (Kanazawa et al., 2016;
Mochizuki et al., 2016; Uehira et al., 2016; Aoi et al., 2020), 150
OBSs deployed along the Japan and Kuril trenches. 125 and 25
OBSs of S-net were introduced in the system on June 27, 2019
(JMA, 2019b) and on March 24, 2020 (JMA, 2020a), respectively
(Figure 1B).

For robust magnitude estimates with OBSs, a new magnitude
estimation algorithm specialized for OBSs was developed and
introduced (Hayashimoto et al., 2019; Hayashimoto et al., 2021;
submitted to Quarterly Journal of Seismology). For inland
seismometers, the JMA EEW system calculates magnitudes
from the vector sum of three-component displacements.
However, for OBSs, three-component displacements could
overestimate magnitudes because of horizontal site

amplification caused by thick sedimentary layers
(Hayashimoto and Hoshiba, 2013; Nakamura et al., 2014) and
acceleration offset signal contamination by device orientation
changes when strong motions hit (Hayashimoto et al., 2016;
Nakamura and Hayashimoto, 2019; Takagi et al., 2019).
Hayashimoto et al. (2019) found that those overestimation
effects could be mitigated by using vertical-component instead
of three-component displacements. JMA therefore implemented
a new magnitude estimation equation based solely on vertical-
component displacements for OBSs. In addition, to eliminate
possible amplitude anomalies at OBSs near hypocenters, the new
magnitude estimation algorithm requires three or more OBSs to
calculate magnitudes (i.e., magnitude estimates are unavailable
until the system has received displacement amplitudes from three
or more OBSs; Hayashimoto et al., 2021, submitted).

Performance Evaluation for the Updated
Japan Meteorological Agency Earthquake
Early Warning System
To evaluate the performance of the updated JMA EEW system, we
assessed how the IPF and PLUM implementation influenced the
prediction accuracy and warning issuance performance. Also, we
analyzed how the S-net incorporation contributed to the detection
timeliness for earthquakes around the Japan and Kuril trenches. A
part of the prediction accuracy and warning issuance performance
analysis in this study is the same as what Kodera et al. (2020)
conducted but with an extended analysis period.

Prediction Accuracy Changes With the
Integrated Particle Filter and Propagation of
Local Undamped Motion Implementation
We investigated how the prediction accuracy of the JMA EEW
system changed with the IPF and PLUM implementation, using
the maximum and final ground motion prediction results. We
focused on the maximum ground motion predictions for the
accuracy evaluation because the system issues warnings once
predicted ground motions exceed the warning threshold. The
final ground motion predictions were also used because their
prediction errors would indicate the upper limit of prediction
accuracy for target algorithms. For PLUM, the final ground
motion predictions are the same as the maximum ground
motion predictions. In this analysis, the prediction accuracy
was evaluated for three different periods: 1) April 1, 2016 to
December 14, 2016, 2) December 14, 2016 toMarch 22, 2018, and
3) March 22, 2018 to December 31, 2020. December 14, 2016 and
March 22, 2018 are the start dates for the IPF and PLUM
operation, respectively. To evaluate the system performance
before the IPF and PLUM implementation, we took the
analysis period from April 1, 2016. We focused only on recent
EEW reports for the evaluation of the previous PSM algorithms to
exclude the possible performance change due to different
software versions. The analysis period was relatively short
compared to the entire operation period of the previous PSM
algorithms but was enough long to capture the algorithms’
characteristics because during the period the system processed
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many earthquakes including the 2016 Kumamoto earthquake
sequence.

For each period, we calculated the prediction score. For the
score calculation, predicted intensities were compared to
observed intensities on an area-by-area basis (i.e., each
intensity was obtained by taking the maximum of predicted or
observed intensities in a sub-prefectural area; for the definition of
the sub-prefectural areas, see Figure 1C in Kodera et al. (2020)).
The prediction score was defined as the ratio of areas in which the
difference between predicted and observed IJMA was equal to or
less than one IJMA unit among areas with predicted or observed
IJMA ≥ 4 (Doi, 2011). A predicted/observed Iinst was set to 0.0 if
there was no available predicted/observed intensity for a target
area. Intensities predicted by the PSM algorithms were obtained
from hypocenter estimates using two or more stations. Intensities
predicted by PLUM were what satisfied the EEW issuance
condition of PLUM (i.e., predicted Iinst ≥ 2.5; Kodera et al.,

2020). The prediction accuracy analysis in this study was done
with earthquakes for which the JMA EEW system issued EEW
reports.

During the first period, which is before the IPF and PLUM
operation, the prediction score was 69.7% with the maximum
ground motion predictions (Figure 3A) and 86.1% with the final
predictions (Figure 4A). The prediction score with the maximum
predictions was low mainly due to overprediction for events of
the 2016 Kumamoto earthquake sequence (Kodera et al., 2016).
The system still had difficulty in distinguishing multiple
simultaneous events from a large earthquake because IPF had
not been implemented yet. The system overpredicted ground
motions for several concurrent aftershocks, mislocating the
hypocenters. The prediction score with the final predictions
was higher than that with the maximum predictions, although
the prediction accuracy was still affected by the overprediction for
the Kumamoto earthquake sequence. The underprediction case

FIGURE 3 | Comparisons of observed and predicted intensities using the maximum ground motion prediction results for the three periods: (A) April 1, 2016 to
December 14, 2016 (the start date for the IPF operation), (B) December 14, 2016 to March 22, 2018 (the start date for the PLUM operation), and (C)March 22, 2018 to
December 31, 2020. Intensities were plotted on an area-by-area basis; that is, each intensity was obtained by taking the maximum among those at all sites in a sub-
prefectural area. Circles and bars in magenta indicate the mean and standard deviation of predicted intensities for each observed IJMA (data points with a predicted
intensity equal to 0 were eliminated for the calculation). Green zone is one in which prediction errors were within one IJMA unit (we assumed that those errors were
acceptable). Orange and blue zones are ones in which ground motions were overpredicted and underpredicted with intensity errors of two or more units, respectively.
Data points with predicted and observed IJMA ≤ 3 (i.e., Iinst < 3.5) are in the gray zone. The prediction score (PS) was calculated, defined as the ratio of areas whose
intensity prediction error was within one IJMA unit among areas with an observed or predicted intensity of four or more (data points in the gray zone were eliminated for the
calculation). For (C), comparison plots for the PLUM and hybrid algorithms are shown in addition to that for PSM because the period was after the PLUM operation.
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with predicted IJMA � 2 and observed IJMA � 6L in Figure 4Awas
due to duplicated event declarations; the system declared two
events, one of which had a poor source location estimate because
the location was determined only with seismometers far from the
actual epicenter.

For the second period, just after the IPF implementation, the
prediction score was 83.6% with the maximum ground motion
predictions and 92.5% with the final predictions, higher than
those during the first period (Figures 3B, 4B). IPF did not
provide mislocated hypocenters for multiple simultaneous
events, and therefore the prediction accuracy was improved
compared to that before the IPF implementation. However,
there was still an overprediction case in which ground
motions were overpredicted with errors of ≥ 2 IJMA units. The
overprediction was caused by M4.5 and M4.0 earthquakes in
January 2018 that occurred simultaneously, ∼400 km away from
each other (JMA, 2019a). The magnitude of the M4.5 earthquake
was overestimated because the system calculated the magnitude
with displacement amplitudes of the M4.0 earthquake. Although
the IPF and NYAD algorithms provided correct hypocenter
location estimates for the two events, the subsequent event
identification process associated the two earthquakes
incorrectly. In 2019, JMA updated the event identification and

magnitude calculation criteria to address the overprediction issue
(JMA, 2019a). Without ground motion predictions for the M4.5
and M4.0 earthquakes, the prediction score would have been
89.8% with the maximum predictions and 97.4% with the final
predictions (Supplementary Figures S1B, S2B).

During the third period, after the PLUM implementation, the
prediction score of PSM was 81.5 and 88.5% with the maximum
and final ground motion predictions, respectively (Figures 3C,
4C). As during the second period, IPF provided accurate source
parameter estimates without hypocenter mislocation for multiple
simultaneous earthquakes. However, an overprediction issue
occurred again on July 30, 2020 (JMA, 2020b). For a M6.0
earthquake that occurred near the Torishima island (the
epicenter was ∼500 km southward of the Japan mainland), the
system issued an overpredicted warning, estimating a M7.3
earthquake whose location was ∼440 km northward of the
actual epicenter. The overprediction was significant because no
felt ground shaking was observed although EEW users received
the warning. The Hypoon algorithm provided a mislocated
hypocenter estimate, and the system used the source estimate
because the location estimation errors (calculated by Hypoon)
were lower than the rejection criteria. The magnitude was
calculated with a displacement amplitude observed at a

FIGURE 4 | The same figure as Figure 3 but using the final ground motion prediction results.
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seismometer in the Hahajima island, ∼800 km southward of the
estimated source location. After the overprediction issue, as a
tentative measure, JMAmodified the magnitude calculation logic,
imposing the condition that seismometers used for themagnitude
estimation must be located within 700 km from the estimated
epicenter. Without the M6.0 near-Torishima event, the
prediction score of the PSM algorithms would have been 85.5
and 94.3% with the maximum and final ground motion
predictions, respectively (Supplementary Figures S1C, S2C).
For the maximum ground motion predictions, there were
several overprediction cases in which IJMA � 4 was predicted
but IJMA ≤ 2 was observed. Those overpredictions occurred
mainly because of magnitude overestimation in an early stage
with a small number of seismometers and unstable hypocenter
location estimates using seismometers at the network boundary.

During the second and third periods, the PSM algorithms
tended to underpredict ground motions especially for strong
shakings of IJMA ≥ 5L in the final EEW reports, with
prediction errors of one to three IJMA units (Figures 4B,C).
Most of those strong shakings were caused by large inland
earthquakes and were observed near the epicenters. The PSM
algorithms underpredicted the strong ground motions because of
GMPE errors and/or minor magnitude underestimation,
although accurate source locations were estimated. The
underprediction case with predicted IJMA � 2 and observed
IJMA � 5L during the third period was due to a hypocenter
estimate with a large location error caused by duplicated event
declarations (two events were declared for this earthquake, and
the PSM algorithms provided an accurate source location
estimate in the other declared event; therefore, EEW users also
received more accurate EEW reports for this earthquake).

During the third period, the PLUM prediction score was
84.6% (Figures 3C, 4C; the maximum and final ground
motion predictions are the same for PLUM). The prediction
score for PLUM was influenced by prediction errors for inland
earthquakes. The assumption of unattenuated wave incidence did
not hold for sites near epicenters of shallow inland earthquakes;
PLUM therefore overpredicted ground motions for several inland
events. In addition, PLUM missed ground motions for three
inland earthquakes with observed IJMA ≥ 5L. This was because
the strong motions were so localized that seismometers used for
PLUM did not observe IJMA ≥ 3, the EEW issuance threshold of
PLUM. On the other hand, PLUM did not cause significant
overpredictions, compared to PSM; the maximum overprediction
error of PLUM was 3 on the IJMA units (i.e., predicted IJMA � 5U
but observed IJMA � 3; the intensity difference between 5L and 5U
is counted as one IJMA unit although the interval is 0.5 Iinst) while
that of PSM was 6 (predicted IJMA � 5U but observed IJMA � 0)
with the final ground motion predictions during the third period
(Figure 4C). In addition, PLUM predicted strong shakings
caused by large inland earthquakes with smaller
underprediction errors than PSM.

The prediction score for the hybrid algorithm was 81.0 and
87.3% with the maximum and final predictions, respectively
(Figures 3C, 4C). Without the M6.0 near-Torishima
earthquake, the score would be 84.7 and 92.2% (Supplementary
Figures S1C, S2C). The prediction score for the hybrid algorithm

was similar to but slightly smaller than that for PSM, influenced by
PLUM ground motion predictions. This indicates that the hybrid
algorithm inherited the characteristics of both PSM and PLUM.

Warning Issuance Performance Changes
With the Integrated Particle Filter and
Propagation of Local Undamped Motion
Implementation
We also evaluated how the warning issuance performance was
changed by the IPF and PLUM implementation. We investigated
which earthquakes with IJMA ≥ 1 (Iinst ≥ 0.5; felt earthquakes)
were warned/missed by the JMA EEW system, taking the same
analysis period as in Prediction Accuracy Changes With the
Integrated Particle Filter and Propagation of Local Undamped
Motion Implementation. In addition, the warning timeliness was
assessed by calculating warning issuance time differences between
PSM and PLUM. From April 2016 to December 2020, there was
no overprediction case in which the system issued a warning for
an earthquake with observed IJMA � 0, except for the M6.0 near-
Torishima earthquake in July 2020.

During the first period, the JMA EEW system issued warnings
for large earthquakes with a high detection rate (Figure 5A).
Especially, warnings were issued for all earthquakes with
observed IJMA ≥ 5U, except for two inland earthquakes of the
2016 Kumamoto earthquake sequence. However, the system
issued overpredicted warnings for M2–3-class (i.e., 2.0 ≤ M <
4.0) earthquakes of the Kumamoto earthquake sequence with
observed IJMA ≤ 3, providing mislocated hypocenter estimates.

During the second period, the system issued warnings with a
similar detection rate to that during the first period for
earthquakes with observed IJMA ≥ 5L (Figure 5B). An
overpredicted warning was issued for the simultaneous
occurrence of the M4.5 and M4.0 earthquakes in January
2018, which was not due to hypocenter mislocation but due to
incorrect event association in the event identification process (in
Figure 5B; only the M4.5 earthquake is plotted). IPF did not
cause overpredicted warnings for earthquakes with observed
IJMA ≤ 3.

During the third period, PSM and PLUM detected warning
events with a low missing rate for observed IJMA ≥ 5U
(Figure 5C). For earthquakes with 4.5 ≤ Iinst < 5.0
(earthquakes near the warning threshold), PLUM had a higher
detection rate than PSM. This was because PLUM was less likely
to underpredict strong motions for inland earthquakes than PSM
(see Prediction Accuracy Changes With the Integrated Particle
Filter and Propagation of Local Undamped Motion
Implementation). There were two earthquakes with observed
IJMA � 3 for which the system issued overpredicted warnings,
owing to source parameter estimates by IPF. Those were due to
magnitude overestimation in an early stage and unstable
hypocenter location estimates at the seismometer network
boundary. Although the system also issued overpredicted
warnings after the IPF implementation, the overpredicted
earthquakes with observed IJMA ≤ 3 had larger magnitudes
(M5–6-class; 5.0 ≤ M < 7.0) than those during the first
period (M2–3-class).
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To assess the warning timeliness, we evaluated warning
issuance time differences between PSM and PLUM, using the
13 earthquakes warned by both of PSM and PLUM during the
third period (Figure 5D). For five out of the 13 earthquakes, the
warning issuance times of PLUM were earlier than those of PSM.
The median time difference was ∼3.4 s. The warning timeliness
was improved for those events because PLUM was less likely to
underpredict strong ground motions than PSM, and PLUM used
the denser JMA seismic network than IPF.

Detection Capability Changes With the
S-Net Incorporation
Focusing on the S-net incorporation, we investigated how the new
observation facilities changed the detection capability of the JMA
EEW system. The timeliness of the first EEW report was
evaluated for earthquakes around the Japan and Kuril
trenches, where S-net has been deployed. Here, we use the
term “detection time” as the time when the system issued the
first EEW report.

The target area for the detection time analysis is shown in
Figure 6A. For earthquakes inside the area, we calculated the
cumulative distribution functions (CDFs) of detection times
before and after June 27, 2019, the start date for the S-net

incorporation (Figure 6B). The CDF after the S-net
incorporation took smaller values for all detection times than
the CDF before the incorporation, indicating that S-net
successfully improved the detection timeliness for earthquakes
around the Japan and Kuril trenches. Especially, after the S-net
incorporation, the system issued the first EEW report within
21.78 and 30.14 s from the origin time for 50 and 75% of
earthquakes inside the area, respectively, which were 3.90 and
8.83 s earlier than before the incorporation.

In addition, we also calculated the CDFs for earthquakes
outside the target area (Figure 6C). The CDF values did not
change drastically before and after the S-net introduction. The
detection time difference was less than ∼2.0 s, implying that the
detection time variability due to temporal seismicity change was
within ∼2.0 s. The detection time reduction for earthquakes
inside the area was larger than ∼2.0 s; therefore, the timeliness
improvement by S-net was significant.

DISCUSSION

IPF has been implemented to overcome the overprediction issue
caused by the mislocation of multiple simultaneous earthquakes.
Before the IPF operation, the prediction score for the PSM

FIGURE 5 | (A–C) Earthquakes with a warning issued by the PSM, PLUM, and hybrid algorithms (blue circle) and earthquakes without a warning issued (red cross).
In this analysis, earthquakes with IJMA ≥ 1 (Iinst ≥ 0.5; felt earthquakes) were used. The analysis periods were the same as in Figure 3. Each earthquake was plotted with
the peak observed intensity and catalog magnitude. For multiple simultaneous earthquakes, only one of the earthquakes was plotted. The horizontal gray line along Iinst �
4.5 indicates the warning threshold. (D) Warning issuance time differences between the PSM and PLUM algorithms with earthquakes for which both of the PSM
and PLUM algorithms satisfied the warning condition during the third period (upper panel) and the histogram of the warning issuance time differences (lower panel).
Circles in blue (red) correspond to earthquakes for which PLUM (PSM) satisfied the warning condition earlier than PSM (PLUM).
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algorithms was 69.7% with the maximum ground motion
predictions; after the IPF implementation, the prediction score
increased to more than 80% (83.6% from December 14, 2016 to
March 22, 2018 and 81.6% fromMarch 22, 2018 to December 31,
2020). After the IPF operation, the PSM algorithms caused
significant ground motion overpredictions for the M4.5 and
M4.0 earthquakes in January 2018 and for the M6.0 near-
Torishima earthquake in July 2020, which were not due to IPF
but due to the event identification process and the Hypoon
algorithm. Without the two overprediction cases, the
prediction score would have been 89.8% from December 14,
2016 to March 22, 2018 and 85.5% from March 22, 2018 to
December 31, 2020. Those results indicate that IPF provided
source parameter estimates with a higher accuracy than the
previous PSM algorithms. The warning performance analysis
showed that, before the IPF implementation, the system issued
overpredicted warnings for M2–3-class earthquakes because of
mislocated source estimates provided by the previous PSM
algorithms. On the other hand, IPF did not cause
overpredicted warnings for earthquakes with observed IJMA ≤
3, except for two M5–6-class events. There were several
earthquakes with observed IJMA � 4 for which IPF satisfied
the warning condition; however, their magnitudes were M4-
class or more. These imply that IPF reduced the risk of
issuing overpredicted warnings with small (M2–3-class)
earthquakes.

The prediction score for PSM using the final EEW reports was
∼90% after the IPF operation; however, even with the final
ground motion predictions, the PSM algorithms were likely to
underpredict strong shakings caused by large inland earthquakes,
because of GMPE errors and/or minor magnitude
underestimation. Especially, the underprediction due to GMPE
errors underscored the prediction accuracy limitation of the
source-based approach; that is, correct hypocenter location

and magnitude estimates do not always provide accurate
ground motions because of GMPE errors (Hoshiba et al., 2010).

After the IPF operation, significant ground motion
overpredictions occurred for the M4.5 and M4.0 earthquakes
in January 2018 and for the M6.0 near-Torishima earthquake in
July 2020. The first case was due to incorrect event association in
the event identification process. The other case was because of a
mislocated hypocenter estimate from the Hypoon algorithm.
Those overprediction cases indicate that there are still
technical challenges that need to be addressed to attain more
robust source-based ground motion predictions. A possible
solution for the technical issues is to skip the event
identification process by integrating the different PSM
algorithms into a single algorithm. The integration may be
possible by feeding all available seismic data into IPF,
although the current IPF algorithm does not incorporate Hi-
net high-sensitivity velocity meters. Several previous studies
suggested that the Hi-net velocity sensors could be used for a
PSM algorithm in combination with accelerometers if the
instrumental response was corrected (Yamada et al., 2014;
Noguchi et al., 2020; Yamada et al., 2021).

PLUM has been introduced to provide robust ground motion
predictions for complex earthquake scenarios such as a large
earthquake with a finite fault and an intense earthquake sequence.
The prediction score for PLUM was 84.6%, which was affected by
prediction errors for shallow inland earthquakes. On the other
hand, PLUM predicted strong ground motions caused by large
inland earthquakes with smaller underprediction errors than
PSM. The warning performance analysis showed that, for
earthquakes near the warning threshold (i.e., the peak
observed intensity was 4.5 ≤ Iinst < 5.0), PLUM detected the
strong motions and satisfied the warning condition with a lower
missing rate than PSM. In addition, there were five events for
which the warning issuance time of PLUMwas earlier than that of

FIGURE 6 | (A) The target area for the detection time analysis for S-net (shaded area) and the locations of S-net stations. (B) the CDFs of detection times for
earthquakes inside the target area before and after June 27, 2019, the start date for the S-net incorporation (that is, from April 1, 2016 to June 27, 2019 and from June
27, 2019 to December 31, 2020; blue broken and red solid lines, respectively). The detection time means the time when the JMA EEW system issued the first EEW
report. The detection times for CDF values of 0.50 and 0.75 are shown. OT, origin time. (C) The same figure as (B) but for earthquakes outside the target area.
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PSM. Those results indicate that PLUM attains the robustness
and timeliness of the ground motion prediction for strong
shakings, at the expense of the prediction accuracy for shallow
inland events (robustness here means that the capability of
predicting ground motions without missing or
underprediction). The PLUM’s characteristics discussed here
were already mentioned in Kodera et al. (2020) but were
validated with a longer analysis period in this study. Reducing
prediction errors for inland earthquakes is one of technical issues
for PLUM. A more complicated wave propagation model may be
required to improve the PLUM prediction performance for
inland earthquakes. Another technical challenge for PLUM is
that lead times given by PLUM are limited because ground
motions are predicted based on direct observations at nearby
seismometers. Introducing P-wave information and/or an
attenuating wave propagation model may lengthen available
lead times (Kodera, 2018; 2019).

Owing to the PLUM implementation, the JMA EEW system
attained robust and timely ground motion predictions for
earthquakes with high observed intensities. At the same time,
the system had a higher possibility of overprediction for shallow
inland earthquakes than before. Although the PLUM
implementation caused an adverse effect on the system
prediction accuracy, the prediction accuracy analysis for the
hybrid algorithm indicates that the adverse impact was not
very large. The prediction score for the hybrid algorithm was
81.0% with the maximum ground motion predictions and 87.3%
with the final predictions. Those percentages were lower than
those for PSM; however, the differences were limited to within
∼1%, implying that the prediction errors due to PLUM were
acceptable.

Two large-scale OBS networks, DONET and S-net, have been
incorporated into the JMA EEW system to improve the detection
capability for offshore earthquakes. The detection capability
analysis for S-net showed that S-net shortened detection times
for earthquakes around the Japan and Kuril trenches
substantially. This indicates that the current JMA EEW system
would issue public warnings with longer lead times than the
system in 2011 if large earthquakes occur again around the Japan
trench. In the western region of the Nankai trough, along which a
M9-class megathrust earthquake is anticipated, NIED is planning
to construct a new large-scale OBS network, N-net (Aoi et al.,
2020). The N-net observation data will be transmitted to the JMA
EEW system in real time. N-net would improve the detection
timeliness for earthquakes around the network as well as S-net.

CONCLUSION

The 2011Mw9.0 Tohoku-Oki earthquake and subsequent intense
earthquake sequence underscored technical limitations of the
source-based algorithms employed in the initial JMA EEW
system. To overcome the technical issues and to enhance the
system performance further, JMA has implemented the IPF and
PLUM algorithms and incorporated new observation facilities
including S-net.

To evaluate the prediction accuracy changes with the IPF and
PLUM implementation, we calculated a prediction score, defined
as the ratio of sub-prefectural areas for which ground motions are
predicted within intensity errors of one IJMA unit among all areas
with predicted or observed IJMA ≥ 4. Before the IPF
implementation, the prediction score based on the maximum
prediction results was as low as 69.7% because of mislocated
hypocenter estimates provided by the previous PSM algorithms
for multiple simultaneous earthquakes. IPF increased the
prediction score to more than 80%, providing accurate source
parameter estimates based on the Bayesian inference. In addition,
IPF reduced the number of overpredicted warnings for
earthquakes with a small magnitude (M2–3-class) and low
peak intensity (IJMA ≤ 3).

The PLUM implementation made the system less likely to
underpredict strong ground motions caused by large inland
earthquakes, which was due to PLUM’s ground motion
prediction approach using direct observation of ongoing
ground shakings. PLUM also enabled the system to issue
warnings with a low missing rate for earthquakes whose
observed intensities were just above the warning threshold.
The warning timeliness was improved by PLUM for five out
of the 13 earthquakes warned by both of PSM and PLUM. The
median of the improved warning times was ∼3.4 s.

The detection time analysis for S-net showed that the
incorporation of S-net shortened 50th and 75th percentile
detection times (times required to issue the first EEW report)
by 3.90 and 8.83 s, respectively, for offshore earthquakes around
the Japan and Kuril trenches.

Those findings indicate that, over the 10 years after the
Tohoku-Oki earthquake, the JMA EEW system has made
substantial progress both on software and hardware
aspects. At the same time, there is still room for further
improvements of the system on the ground motion
prediction algorithms and observation facilities. The
JMA EEW system in the next 10 years will achieve more
accurate, timely, and robust EEW issuance for possible
future large earthquakes.
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Applicability of On-Site P-Wave
Earthquake Early Warning to Seismic
Data Observed During the 2011 Off the
Pacific Coast of Tohoku Earthquake,
Japan
Seiji Tsuno*

Seismic Data Analysis Laboratory, Center for Railway Earthquake Engineering Research, Railway Technical Research Institute,
Tokyo, Japan

In this study, the on-site P-wave earthquake early warning (EEW) based on the site-specific
spectral ratio of S-wave to P-wave to efficiently incorporate the site characteristics, which
can potentially issue the earthquake warning by the time of Ts-p, was developed. The
spectral ratio of S-wave to P-wave that are related to the source effects, the path effects,
and the site effects are significantly affected by the site effects contrast to the source
effects and the path effects in practical. At first, the on-site P-wave EEW method which
multiplies a site-specific spectral ratio of S-wave to P-wave prepared in advance by
P-wave observed in the real-time at seismic stations is applied to seismic data for
moderate-sized earthquakes with a magnitude (Mj) of 5.0–6.0, occurred in the eastern
Japan, observed at both the sedimentary basin site and the rock site. As a result, this
method predicted well the observed S-wave in the single indicator of SI within the
logarithmic standard deviation of 0.25 as well as in the frequency of more than 0.5 Hz.
It is, also, confirmed that the site-specific spectral ratio of S-wave to P-wave at a seismic
station was stably retrieved from 20 data samples at least. To investigate the applicability of
this method to earthquake ground motions induced by a large-scaled earthquake, finally,
this method is applied to seismic data during the 2011 off the Pacific coast of Tohoku
earthquake, Japan (Mw 9.0). The prediction of S-wave using a time-window of 10 s after
P-wave arrived, could not reproduce the observation with the underestimation; however,
the prediction of S-wave using a time-window of more than 20 s containing P-wave
propagated from an area generating strong motions in the fault, could reproduce the
observation. Even in the case of the large-scaled earthquake, the on-site P-wave EEW
method based on the site-specific spectral ratio of S-wave to P-wave at a seismic station
availably works by using the gradually increasing time-windows after P-wave arrived in the
single indicator of SI as well as in the frequency content, avoiding the mixture of S-wave
into a part of P-wave.

Keywords: on-site EEW, P-wave, site-specific ratio, prediction of S-wave, real-time, the 2011 off the Pacific coast of
Tohoku earthquake, Tohoku region
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INTRODUCTION

Earthquake Early Warning (EEW) systems are installed to
many fields in the world based on their own concepts to
provide warning prior to the strength of ground shaking (e.g.,
Allen et al., 2009). The on-site EEW methods, which estimate
the strength of ground shaking at the same location by
generally using a begging part immediately after the arrival
of P-wave, have been developed (e.g., Nakamura, 1988; Allen
and Kanamori, 2003; Odaka et al., 2003; Wu and Kanamori,
2005; Wu et al., 2007). On-site EEW methods, which can be
operated by a single station and/or a seismic network, are
based on the empirical relationships between an amplitude of
P-wave and a strength of ground shaking (Wu and Kanamori,
2005), or based on the estimation of an earthquake magnitude
(Nakamura, 1988; Allen and Kanamori, 2003; Wu et al., 2007)
and an epicentral distance (Odaka et al., 2003) to rapidly
predict the strength of ground shaking. Recently, the real-time
ground motion prediction using the observed data at front
stations in the direction of incoming seismic waves have been
developed (e.g., Hoshiba, 2013; Hoshiba and Aoki, 2015; Yang
and Motosaka, 2015). However, especially for the on-site EEW
method operated by a single station, data recorded in the real-
time by a dense seismic network is quite useful, and it is
desirable that site characteristics are efficiently incorporated
to the method to reflect the difference of the strength of
ground shaking in the sites.

In the field of railway, Japan, on-site EEW using P-wave
(Nakamura, 1988; Odaka et al., 2003) has been developed to
stop the train quickly during the occurrence of earthquakes. At
the same time, the own dense seismic network has been installed
with the interval distance of 5–40 km and about 100 km along
railway lines and coast lines respectively, especially in the eastern
Japan (Nakamura, 1988; Nakamura, 1996;Miyakoshi et al., 2019).
Recently, after the 2011 off the Pacific coast of Tohoku
earthquake (Mw 9.0) occurred at the plate boundary of the
Pacific plate subducting beneath Tohoku-Japan, seismic
stations were installed with the interval distance of 50 km
inland in the eastern Japan (Yamamoto and Tomori, 2013).

Miyakoshi and Tsuno (2015) illustrated the relationships
between P-wave at the basement and S-wave at the ground
surface with the empirical estimations for the physical
parameters, using seismic data of KiK-net observed in the
Kanto basin, Japan. Tsuno and Miyakoshi (2019) developed
the relationships between P-wave at the ground surface and
S-wave at the ground surface by interpreting the
deconvolution of the transfer function of the P-wave and
the convolution of the transfer function of the S-wave with the
seismic data observed in the Kanto Region. In this study, the
availability of an on-site P-wave EEW based on the site-specific
spectral ratio of S-wave to P-wave at a seismic station, which
directly predicts S-wave from P-wave (e.g. Miyakoshi and Tsuno,
2015; Tsuno andMiyakoshi, 2019; Zhao and Zhao, 2019) without
any estimation of an earthquake magnitude and an epicentral
distance was quantitatively examined by applying to seismic data
in the Tohoku Region for moderate-sized earthquakes with a
magnitude (Mj) of 5.0–6.0, occurred in the eastern Japan. Finally,

the applicability of this method to seismic data for the large-
scaled earthquake of the 2011 off the Pacific coast of Tohoku
earthquake (Mw 9.0), Japan was investigated.

DATA

Seismic data recorded at KS and SS stations respectively
installed in the rock site and in the sedimentary basin site
in the Tohoku Region, Japan by JR East, were used. As for
geophysical information around the seismic stations, AVS30
(Aaverage Velocity of S-wave up to a depth of 30 m) at KS
station located in Ayukawa, Miyagi Pref. is about 470 m/s and
that at SS station located in Shin-Nagamachi, Miyagi Pref. is
about 290 m/s, as shown by J-SHIS (Japan Seismic Hazard
Information Station). Seismic data of moderate-sized
earthquakes with a magnitude (Mj) of 5.0–6.0, occurred in
the eastern Japan for a period from November/2007 to August/
2018 and the mainshock of the 2011 off the Pacific coast of
Tohoku earthquake (Mw 9.0) were analyzed in this study. As
for moderate earthquakes, 58 and 95 earthquakes with high
signal-to-noise ratio at KS and SS stations respectively were
selected. Location of epicenters and seismic stations used in
this study are shown in Figure 1. Information of PGAs, PGVs,
and the peak frequency in the seismic data of the moderate-
sized earthquakes with a magnitude (Mj) of 5.0–6.0 at KS and
SS stations are shown with those of the 2011 off the Pacific
coast of Tohoku earthquake (Mw 9.0) in Figure 2. As an
example, waveforms of acceleration for 3 components during
an earthquake (Mj 5.9) occurred on 11th/April 2011 are shown
in Figure 3.

ON-SITE P-WAVE EARTHQUAKE EARLY
WARNING

Method
Assuming an earthquake ground motion observed in a far field
induced by a double couple point source, the earthquake ground
motions of P-wave and S-wave at the basement in the frequency
domain are expressed, as follows (e.g. Iwata and Irikura, 1986; Aki
and Richard, 2002).

OP
b(ω) �

RP
θϕ

4πρV 3
P

1
r
Ω(ω) · exp( − ω

2QP

r

V′P
) (1)

Ob
S(ω) � RS

θϕ

4πρV 3
S

1
r
Ω(ω) · exp( − ω

2QS

r

V′S
) (2)

Here, ω is an angular frequency, ρ and V is a density and a
velocity of body waves in and around an earthquake source
region, r is distance from an earthquake source, Rθϕ is a
radiation coefficient, Ω (ω) is an earthquake source spectrum
and Q is an internal attenuation in the crust. V′ is the average
velocity of body waves in the crust. The subscripts of P and S
represent P-wave and S-wave, respectively. The subscript of b,
also, represents the basement.
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In the logarithmic ratio of Eqs. 1, 2, the relationships between
the S-wave at the basement and the P-wave at the basement is
expressed by the following equations.

logOS
b(ω) � logOP

b(ω) + a1(ω) (3)

a1(ω) � log
V 3

P

V 3
S

+ log
RS
θϕ

RP
θϕ

+ log e
rω
2 (− 1

QSV′S
+ 1

QPV′P
)

(4)

a1(ω) includes the influence of the source effect and the path
effect, which are VP/VS around an earthquake source region, the

ratio of the S-wave radiation coefficient to that of the P-wave, and
the internal attenuation of the P-wave and S-wave propagating in
the crust.

The relationships between the P-wave at the basement and
P-wave at the ground surface, and between the S-wave at the
basement and S-wave at the ground surface are expressed using
the transfer functions GP(ω) and GS(ω) based on the P-wave and
S-wave subsurface structures from the basement to the ground
surface, as follows.

OP
s (ω) � OP

b(ω) · GP(ω) (5)

FIGURE 1 | Location of epicenters for moderate-sized earthquakes and seismic stations used in this study. Open circles show the location of epicenters for the
moderate-sized earthquakes with a magnitude (Mj) of 5.0–6.0 for a period from November/2007 to August/2018 and, closed triangles show the location of seismic
stations. A closed circle shows location of epicenter for an earthquake (Mj 5.9) occurred on 11th/April 2011. The earthquake source fault plane of the 2011 off the Pacific
coast of Tohoku earthquake (Mw 9.0) occurred on 11th/March 2011 by Suzuki et al. (2011) and the hypocenter by JMA is also shownwith a broken rectangle and a
diagonal cross, respectively. Closed rectangles show location of epicenters for the strong motion generation areas (SMGAs ofM7-class events) estimated by Asano and
Iwata (2012).
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OS
s(ω) � OS

b(ω) · GS(ω) (6)

The subscript of s represents the ground surface.
In the logarithm of Eqs. 5, 6, a2(ω) and a3(ω) which includes

the influence of the site effect related to the P-wave and the
S-wave subsurface structures respectively, are expressed by the
following equations.

logOP
s (ω) � logOP

b(ω) + a2(ω) (7)

logOS
s(ω) � logOS

b(ω) + a3(ω) (8)

a2(ω) � logGP(ω) (9)

a3(ω) � logGS(ω) (10)

Finally, the relationships between the P-wave at the surface
and the S-wave at the surface from Eqs. 3, 7, 8 is expressed by the
following equations.

logOS
s(ω) � logOP

s (ω) + b(ω) (11)

b(ω) � a1(ω) − a2(ω) + a3(ω) (12)

b(ω) includes the influence of the source effect, the path effect,
and the site effect (Tsuno and Miyakoshi, 2019). In practically,
b(ω) is estimated from a spectral ratio of S-wave to P-wave using
seismic data observed at the ground surface at a seismic station.
Miyakoshi and Tsuno (2015) investigated the relationships
between P-wave at the basement and S-wave at the ground
surface, by the theoretical technique, the empirical formulas,
and observation data. As a result, Miyakoshi and Tsuno
(2015) concluded that the spectral ratio of S-wave at the
ground surface to P-wave at the basement was significantly
affected by the site effects contrast to the source effects and
the path effects.

The method of on-site P-wave EEW directly predicts S-wave
by multiplying a site-specific spectral ratio of S-wave to P-wave
prepared in advance by P-wave observed in the real-time at a
seismic station, as expressed by the Eq. 11 in the frequency
domain with a logarithm (Tsuno and Miyakoshi, 2019; Zhao and
Zhao, 2019). Therefore, this method using P-wave can
significantly reduce the time of Ts-p to issue the warning than

FIGURE 2 | Information of PGAs, PGVs, and the peak frequency in the seismic data used in this study. N in the figures indicates the number of earthquakes used.
Crosses and a circle in the figure of PGAs and PGVs at KS and SS stations show data of themoderate-sized earthquakes with amagnitude (Mj) of 5.0–6.0 and data of the
2011 off the Pacific coast of Tohoku earthquake (Mw 9.0), respectively. Histograms of the dominant frequency (Hz) for data of themoderate-sized earthquakes observed
at KS and SS stations are shown with that of the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0) by a circle in the figure. (A) KS station (B) SS station.
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the previous method mainly using S-wave. Specifically, S-wave
was predicted in the frequency domain, by using P-wave as shown
in Figure 3 with an underline for UD component.

Site-specific Ratio of S-Wave to P-Wave
Observed
A site-specific spectral ratio of S-wave to P-wave for Fourier
spectrum and pseudo-velocity response spectrum (a damping

coefficient of 20%), and a site-specific ratio of S-wave to P-wave
for SI (Spectral Intensity; Housner, 1965) using seismic data of
moderate-sized earthquakes at KS and SS stations as shown in
Figure 1 were estimated. SI is calculated by averaging velocity
response with a damping coefficient of 20% from a period of
0.1–2.5 s. At first, onsets of P-wave and S-wave for all the data
were visually read as shown in Figure 3. Fourier spectrum and
pseudo-velocity response spectrum of S-wave in horizontal
components and P-wave in a vertical component without a

FIGURE 3 |Waveforms of acceleration for 3 components during an earthquake (Mj 5.9) occurred on 11th/April 2011 observed at KS and SS stations. Broken lines
show an onset of P-wave for UD component and onsets of S-wave for NS and EW components. Under lines show a time-window of 10.24 s for each component, to
estimate a spectral ratio of S-wave to P-wave. (A) KS station (B) SS station.

FIGURE 4 | Estimated site-specific spectral ratios of S-wave to P-wave for a time-window of 10.24 s at KS and SS stations. N in the figures indicates the number of
earthquakes used. (A) KS station (B) SS station.
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smoothing process were calculated using time-windows of 10.24 s
after the onsets. The time of Ts-p in the seismic data used was
sufficiently secured to avoid mixing S-wave into a part of P-wave,
which means the time of Ts-p is longer than 10.24 s in this study.
Spectral ratios of S-wave to P-wave were calculated by dividing
the Fourier spectrum and pseudo-velocity response spectrum of
S-wave which is the arithmetic mean for the NS component and
the EW component, by those of P-wave for the UD component.
Finally, the spectral ratios of S-wave to P-wave and SI ratio of
S-wave to P-wave were averaged by those for all the seismic data
at each seismic station.

Estimated site-specific spectral ratios, response spectral
ratios, and SI ratios of S-wave to P-wave for a time-

window of 10.24 s at KS and SS stations are shown in
Figures 4–6 with a plus and a minus of one standard
deviation, respectively. The spectral ratio of S-wave to
P-wave at the ground surface was significantly affected by
the subsurface velocity structure and therefore, the spectral
ratio of S-wave to P-wave at SS station in the sedimentary
basin site had a large amplification in a wide frequency range
of 0.3–10 Hz. On the other hand, the spectral ratio of S-wave
to P-wave at KS station in the rock site had a large
amplification in a frequency range of 3–10 Hz, especially it
had the peak at the high frequency of around 10 Hz. The
negative value for the spectral ratio of S-wave to P-wave in
the frequency indicates that site amplification of P-wave is
larger than that of S-wave as shown in the Eq. 12. Site-
specific response spectral ratios have a more smoothed
tendency than site-specific spectral ratios in the
frequency/period domain without the negative value. Site-
specific SI ratios of S-wave to P-wave are 6 and 4.5 at KS and
SS stations, respectively.

A stability of site-specific spectral ratio of S-wave to P-wave,
using seismic data with the different number of datasets was
examined. RMS (Root Mean Square) between the spectral
ratio of S-wave to P-wave using seismic data to the full
datasets, for KS and SS stations is shown in Figure 7. The
number of full datasets is 58 and 95 for KS and SS stations,
respectively. In general, as the number of datasets increases,
the spectral ratio becomes stable. In this study, RMS becomes
stable enough by 40 and 20 data samples for KS and SS
stations, respectively.

Prediction of S-Wave From P-Wave in the
Real-Time
S-wave was predicted by multiplying the site-specific spectral
ratio of S-wave to P-wave prepared in advance by P-wave
observed in the real-time at each seismic station, using the
Eq. 11. As an example, Fourier spectra of S-wave for the
earthquake of Mj 5.9, occurred on 11th/April 2011 at KS and
SS stations whose accelerations are shown in Figure 3, predicted

FIGURE 5 | Estimated site-specific response spectral ratios of S-wave to P-wave for a time-window of 10.24 s at KS and SS stations. N in the figures indicates the
number of earthquakes used. (A) KS station (B) SS station.

FIGURE 6 | Estimated site-specific SI ratios of S-wave to P-wave for a
time-window of 10.24 s at KS and SS stations.
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by this method were shown in Figure 8. Predicted Fourier
spectrum of S-wave was in good agreement to the observed with
the dominant frequency of about 10 Hz for the earthquake at KS
station. On the other hand, predicted Fourier spectrum of
S-wave was in good agreement to the observed with the
dominant frequency of 1–2 Hz for the earthquake at SS
station. The on-site P-wave EEW method could well explain
Fourier spectrum of the S-wave in the frequency of more than
0.5 Hz at both KS and SS stations in which the site conditions
are different. However, this method could not well explain
Fourier spectrum of the S-wave in the frequency of less than
0.5 Hz. Miyakoshi and Tsuno (2015) pointed out that the
spectral ratio of S-wave to P-wave at the basement is
relatively affected by both the source effects and the path
effects in the low frequency and in the high frequency,
respectively. Even at the ground surface, therefore, the
difference between the observation and the prediction in
the low frequency are caused by the influence of the

radiation coefficient in a1(ω) of the Eq. 4. Pseudo-velocity
response spectra (a damping coefficient of 20%) of S-wave for
the earthquake of Mj 5.9, occurred on 11th/April 2011 at KS
and SS stations whose accelerations are shown in Figure 3,
predicted by this method were shown in Figure 9, with the
average ± the standard deviation. The predicted response
spectra of S-wave were in good agreement to those observed
in periods of 0.1–10 s at both KS and SS stations, indicating
the observations mostly within the average ± one standard
deviation of the predictions. Predicted SIs of S-wave for all
the earthquakes at KS and SS stations against those observed
are shown in Figure 10. The predictions of SI of S-waves were
in good agreements with the observations within the
logarithmic standard deviation of 0.25.

It was indicated that the on-site P-wave EEW method, based
on the site-specific spectral ratio of S-wave to P-wave can predict
the observed S-wave in the single indicator of SI as well as in the
frequency/period content for the moderate-sized earthquakes.

APPLICATION OF THE ON-SITE P-WAVE
EEW METHOD TO THE 2011 OFF THE
PACIFIC COAST OF TOHOKU
EARTHQUAKE

The applicability of the on-site P-wave EEW method to seismic
data observed at KS and SS stations, during the 2011 off the
Pacific coast of Tohoku earthquake (Mw 9.0), Japan was
investigated. Waveforms of acceleration for 3 components
during the 2011 off the Pacific coast of Tohoku earthquake
(Mw 9.0) occurred on 11th/March 2011 observed at KS and
SS stations are shown Figure 11.

In the real-time, S-waves were predicted by multiplying the
site-specific spectral ratio of S-wave to P-wave prepared in
advance (See Figure 4) by the different time-windows of 10,
20, and 25 s after P-wave arrived. Predicted Fourier spectra of

FIGURE 7 | RMS between the spectral ratio of S-wave to P-wave using
seismic data to the full datasets, for KS and SS stations. The number of full
datasets is 58 and 95 for KS and SS stations, respectively.

FIGURE 8 | Predicted Fourier spectra of S-wave for the earthquake ofMj 5.9 on 11th/April 2011 at KS and SS stations whose accelerations are shown in Figure 3.
Observed Fourier spectra of P-wave for the earthquake are also shown. (A) KS station (B) SS station.
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S-wave for time-windows of 10, 20, and 25 s at KS and SS stations
were shown in Figures 12, 13, respectively. As a result, the S-wave
predicted for the 2011 off the Pacific coast of Tohoku earthquake,
using the time-window of 10 s in P-wave after P-wave arrived,
could not reproduce the S-wave observed with the
underestimation at both KS and SS stations. On the other
hand, the S-wave predicted using the time-windows of 20 and
25 s in P-wave could reproduce the S-wave observed at both KS
and SS stations. It was point out that an area generating strong
motions in the earthquake source fault differed from an area
which the fault rupture started in the large-scaled earthquake
event. To directly predict S-wave from P-wave observed in the
real-time, therefore, a time-window containing P-wave induced
by an area generating strong motions in the fault is necessary to

be analyzed. As for strong motion generation areas (SMGAs) for
the 2011 off the Pacific coast of Tohoku earthquake as shown in
Figure 1, (Asano and Iwata, 2012) reported that two strong
motion generation areas (SMGA1 and SMGA2) are identified in
the Miyagi-oki region west of the hypocenter and another two
strong motion generation areas (SMGA3 and SMGA4) are in the
Fukushima-oki region southwest of the hypocenter. Also, they
indicated that the strong ground motions in the frequency range
0.1–10 Hz along the Pacific coast are mainly controlled by these
SMGAs of M7-class events existing in the deeper portion of the
source fault plane. In their results, the strong ground motions
observed inMiyagi Pref. where the KS and SS stations are located,
are significantly affected by SMGA1 (Length: 36 km, width:
36 km, rise time: 6.9 s, and rupture velocity: 4 km/s) and

FIGURE 9 | Predicted pseudo-velocity response spectra (a damping coefficient of 20%) of S-wave for the earthquake ofMj 5.9 on 11th/April 2011 at KS and SS
stations whose accelerations are shown in Figure 3, with the average ± the standard deviation. Observed pseudo-velocity response spectra of P-wave for the
earthquake are also shown. (A) KS station (B) SS station.

FIGURE 10 | Predicted SIs of S-wave for all the earthquakes at KS and SS stations against those observed. N and σ in the figures indicate the number of
earthquakes and one logarithmic standard deviation, respectively. (A) KS station (B) SS station.
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SMGA2 (Length: 36 km, width: 36 km, rise time: 6.9 s, and
rupture velocity: 4 km/s). Specially, the first and the second
wave packets of strong ground motions observed at the KS
and SS stations as shown in Figure 11 are generated by
SMGA1 and SMGA2, respectively (Asano and Iwata, 2012).
To accurately predict the amplitude of S-wave by P-wave
observed in the real-time during the 2011 off the Pacific coast

of Tohoku earthquake, it is necessary that strong ground motions
generated by SMGA1 is contained in the observed P-wave. In this
study, the time-window of 20 s in a UD component after P-wave
arrived at KS and SS stations includes strong ground motions
generated by SMGA1 at least. Therefore, the S-wave predicted
using the time-windows of 20 and 25 s in P-wave could reproduce
the S-wave observed at both KS and SS stations.

FIGURE 11 | Waveforms of acceleration for 3 components during the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0) occurred on 11th/March 2011
observed at KS and SS stations. Broken lines show onsets of P-wave for UD component and S-wave for NS and EW components. Under lines show time-windows of
10, 20, and 25 s for each component. The first and secondwave packet are generated by different the strongmotion generation areas (SMGAs) estimated by Asano and
Iwata (2012). (A) KS station (B) SS station.

FIGURE 12 | Predicted Fourier spectra of S-wave for time-windows of 10, 20, and 25 s during the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0) at KS
station. (A) Time-window of 10 s (B) Time-window of 20 s (C) Time-window of 25 s.
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On the other hand, the discrepancy between the S-wave
observed and the S-wave predicted even using the appropriate
time-windows in P-wave at KS and SS stations is larger in the low
frequency than in the high frequency caused by the source effects,
as shown in Figures 12B, 13C. It might be caused by that the
prediction of S-wave for this large-scaled earthquake (Mw 9.0)
which significantly affected the ground motions in the low
frequency, was performed by the site-specific spectral ratio of
S-wave to P-wave using seismic data of moderate-sized
earthquakes with a magnitude (Mj) of 5.0–6.0.

DISCUSSION

In the real-time, SI of S-wave by multiplying the site-specific
spectral ratio of SI prepared in advance (See Figure 6) by SI of
P-wave observed were predicted. The predicted SI of S-wave and
the observed SI of S-wave with the time interval of one second
until the time that S-wave arrived at each KS and SS stations
during the 2011 off the Pacific coast of Tohoku earthquake is
shown in Figure 14. The predicted SI of S-wave is gradually
increasing until S-wave for the first wave packet arrives at each KS
and SS stations. The values of the predicted SI immediately before
S-wave for the first wave packet arrives reproduce well the
maximum values of S-wave observed at both KS and SS
stations. On the other hand, the lead time from the last
prediction to the arrival of S-wave is not sufficient at KS
station, because SMGA1 generating the strong ground motions
for the first wave packet which is in the Miyagi-oki region west of
the hypocenter, is close to KS station. At SS station which is
located to more inland than KS station, however, the lead time of
10 s could be earned by this on-site P-wave EEW method.

Even in the case of the large-scaled earthquake, the on-site
P-wave EEW method availably works by using the gradually
increasing time-windows after P-wave arrived in the single
indicator of SI as well as in the frequency content. Note that
in principle, this method can be applied to P-wave observed in the

real-time until S-wave arrives. In case of mixing S-wave into a
part of P-wave, the prediction overestimated the observation, as
the predicted Fourier spectra of S-wave for the time-windows of
25 s after P-wave arrived at KS station shown in Figure 12C.

CONCLUSIONS

In this study, at first, the on-site P-wave EEW method which
multiplies a site-specific spectral ratio of S-wave to P-wave
prepared in advance by P-wave observed in the real-time at
seismic stations is applied to seismic data for moderate-sized

FIGURE 13 | Predicted Fourier spectra of S-wave for time-windows of 10, 20, and 25 s during the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0) at SS
station. (A) Time-window of 10 s (B) Time-window of 20 s (C) Time-window of 25 s.

FIGURE 14 | Predicted SI of S-wave and observed SI of S-wave with the
time interval of one second during the 2011 off the Pacific coast of Tohoku
earthquake (Mw 9.0) at KS and SS stations. Predicted SI of S-wave by using
P-wave in the real-time, is shown until the time that S-wave arrived at
each KS and SS station.
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earthquakes with a magnitude (Mj) of 5.0–6.0, occurred in the
eastern Japan, observed at both the sedimentary basin site and the
rock site. As a result, this method predicted well the observed
S-wave in the single indicator of SI within the logarithmic
standard deviation of 0.25 as well as in the frequency of more
than 0.5 Hz. It is, also, confirmed that the site-specific spectral
ratio of S-wave to P-wave at a seismic station was stably retrieved
from 20 data samples at least. To investigate the applicability of
this method to earthquake ground motions induced by a large-
scaled earthquake, finally, this method is applied to seismic data
during the 2011 off the Pacific coast of Tohoku earthquake, Japan
(Mw 9.0). The prediction of S-wave using a time-window of 10 s
after P-wave arrived, could not reproduce the observation with
the underestimation; however, the prediction of S-wave using a
time-window of more than 20 s containing P-wave propagated
from an area generating strong motions in the fault, could
reproduce the observation. Even in the case of the large-scaled
earthquake, the on-site P-wave EEW method based on the site-
specific spectral ratio of S-wave to P-wave at a seismic station
availably works by using the gradually increasing time-windows
after P-wave arrived in the single indicator of SI as well as in the
frequency content, avoiding the mixture of S-wave into a part of
P-wave.

Practically, this on-site P-wave EEW will be installed with the
regional EEW (Odaka et al., 2003) in the field of railway, Japan, to
further improve the safety from earthquakes. The threshold levels
for the single indicators to issue earthquake early warning is
empirically set on around less than 10 cm/s in SI and/or less than
100 cm/s2 in PGA and therefore, the nonlinearity of the soft soil at
the surface layers is not necessary to be considered from a
practical point of view. As the future work, however, the
influence of nonlinearity of the soft soil at the surface layers

should be investigated to accurately predict earthquake ground
motions in the case of strong ground motions. Also, the effects of
2-D and 3-D irregularity of the sedimentary basin should be
investigated as well as the nonlinearity of the soft soil at the
surface layers.
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