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Editorial on the Research Topic

Neural Interface for Cognitive Human-Robot Interaction and Collaboration

Human-robot interaction (HRI) and collaboration is a major topic in human-coupled robotic
systems. With the development of neural technologies, the neural interface called cognitive
human-robot interaction has been implemented for achieving natural human-robot interaction
and collaboration. This special issue will be dedicated to cognitive human-robot interactions,
including brain-computer interface (BCI) with electroencephalographic (EEG), muscle signals
with electromyography (EMG), and so on. The special issue is focused on the fundamentals
and technologies of cognitive human-robot interaction with neural interfaces for human-coupled
robotic systems. Ten articles were accepted by this special issue, the contents of these articles are
briefly described as follows.

As the development of electroencephalographic techniques for commercial applications
continues, their transformative potential necessitates equally significant ethical inquiries. Lopez
et al. consult different databases, which presents conceptual and empirical discussions and findings
about various commercial and ethical aspects of electroencephalography. Subsequently, the content
is extracted from the articles and the main conclusions are presented. Finally, an external
assessment of the outcomes is conducted in consultation with an expert panel in some of the topic
areas such as biomedical engineering, biomechatronics, and neuroscience.

Sensorimotor rhythm (SMR)-based BCIs can help users perform motor control using motor
imagery. But the control paradigm of SMR BCI may not work well on a subpopulation of users.
Jiang et al. investigate the behavioral and electrophysiological differences between experienced
meditators and meditation naïve subjects in one-dimensional and two-dimensional cursor control
tasks. The evidence shows that meditators outperformed control subjects in both tasks. Further, the
meditators had a higher resting SMR predictor, more stable resting mu rhythm, and a larger control
signal contrast than controls during the task.

In dynamic manufacturing and warehousing environments, workers suffer from muscle fatigue
of the lower limbs caused by standing or squatting for a long period of time. Wang Z et al. design
and evaluate a semi-active lower-limb exoskeleton to reduce muscle fatigue. The exoskeleton can
switch three different modes depending on the EMGs of the gluteus maximus, and quadriceps.
Three sets of experiments are conducted to evaluate the effect of the exoskeleton, results show that
the exoskeleton not only effectively reduced muscle fatigue but also avoided interfering with the
free movement of the wearer.
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Exoskeleton rehabilitation robots can help paraplegics motor
functions. However, achieving stable states of the human-
exoskeleton system while conserving wearer strength remains
challenging. Wang C et al. propose a real-time stable control
gait switching method for the exoskeleton rehabilitation robot.
The method uses surface electromyography (sEMG)-based HRI
to realize the intention recognition, and realizes gaits planning
and stability analysis based on a human kinematics model
and zero moment point method. Results verified the feasibility
and efficiency of the proposed gait switching method for
enhancing stability and ergonomic effects of a lower limb
rehabilitation exoskeleton.

The features extracted from EEG usually change dramatically,
but emotion states change gradually. Most existing feature
extraction approaches do not consider these differences between
EEG and emotion. Chen et al. propose a novel feature
extraction method based on EEG microstates for emotion
recognition. This method extracts microstate characteristics as
novel temporospatial features, and the dual-threshold-based
atomize and agglomerate hierarchical clustering method is
used to determine the optimal number of microstate classes
automatically. Results indicated that microstate characteristics
can effectively improve the performance of emotion recognition
from EEG signals.

The root mean square (RMS) of the sEMG signal displays a
positive correlation with muscle force and muscle tension under
positive and passive conditions, respectively. Li et al. investigate
the changes in muscle force and tension after multilevel surgical
treatments, functional selective posterior rhizotomy, and tibial
anterior muscle transfer surgery, and evaluate their clinical effect
in children with spastic cerebral palsy (SCP) during walking.
Results indicate that the neuromuscular function of cerebral palsy
during walking can be evaluated by the muscle activation state
and the RMS of the sEMG signal, which shows that multilevel
surgical treatments are feasible and effective to treat SCP.

In the field of motor imagery (MI) classification, appropriate
filtering is vital for feature extracting of EEG signals and
consequently influences the accuracy of MI classification. Yan
et al. propose a novel two-stage refine filtering method, it
uses the gradients of any target concept flowing into the final
convolutional layer to highlight the important part of training
data for predicting the concept. Experiment results reveal that
the proposedmethod reaches state-of-the-art classification kappa
value levels and acquires at least 3% higher kappa values than
other methods.

The generalization goals of most skill expression models in
real scenarios are specified by humans or associated with other
perceptual data. Guan et al. propose a framework using the
Probabilistic Movement Primitives modeling to improve the
robot stiffness-adaptive skill primitive generalization. It uses
sEMG signal to estimate human arm endpoint stiffness, which

can then be transferred to the robot. The proposed framework
can be used to trigger robot action generalization via observing
human action, ideal for a human-robot collaboration scenario.

Improving human motor performance via physical guidance
by an assist robot device is a major field of interest for society
in many different contexts, such as rehabilitation and sports
training. Takai et al. propose a Bayesian estimation method
to predict whether the motor performance of a user can be
improved from the initial skill level of a user or not via
robot guidance. Results show that the proposed approach can
potentially help users to decide if they should try a robot-guided
training or not without conducting the time-consuming robot-
guided movement training.

The HRIs have been widely used in exoskeleton robots to
help predict the movement of the wearer, especially sEMG-based
HRIs. But the sEMG signals from paraplegic patients’ lower limbs
are weak, which means an HRI based on lower limb sEMG
signals cannot be applied to exoskeletons. Shi et al. propose an
HRI based on upper limb sEMG signals to predict the lower
limb movements of paraplegic patients. The interface constructs
a channel synergy-based network to extract the contribution
and synergy of different feature channels. Results show that the
method has a good movement prediction performance in both
within-subject and cross-subject situations.
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The deployment of electroencephalographic techniques for commercial applications

has undergone a rapid growth in recent decades. As they continue to expand in

the consumer markets as suitable techniques for monitoring the brain activity, their

transformative potential necessitates equally significant ethical inquiries. One of the main

questions, which arises then when evaluating these kinds of applications, is whether

they should be aligned or not with the main ethical concerns reported by scholars

and experts. Thus, the present work attempts to unify these disciplines of knowledge

by performing a comprehensive scan of the major electroencephalographic market

applications as well as their most relevant ethical concerns arising from the existing

literature. In this literature review, different databases were consulted, which presented

conceptual and empirical discussions and findings about commercial and ethical aspects

of electroencephalography. Subsequently, the content was extracted from the articles

and the main conclusions were presented. Finally, an external assessment of the

outcomes was conducted in consultation with an expert panel in some of the topic

areas such as biomedical engineering, biomechatronics, and neuroscience. The ultimate

purpose of this review is to provide a genuine insight into the cutting-edge practical

attempts at electroencephalography. By the same token, it seeks to highlight the overlap

between the market needs and the ethical standards that should govern the deployment

of electroencephalographic consumer-grade solutions, providing a practical approach

that overcomes the engineering myopia of certain ethical discussions.

Keywords: electroencephalography, brain-computer interface, commercial aspects, ethical aspects, EEG

INTRODUCTION

Electroencephalography (EEG) is one of the most widespread neuroimaging techniques. It is not
only a rapidly developing area of neuroscience research but also a technology which attracts a
considerable amount of attention and investment.

Some of the keys to the success of EEG are their towering advantages among other brain-imaging
techniques. Thus, EEG offers superior safety, portability, temporal resolution and cost-effectiveness
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than other non-invasive methods, such as functional magnetic
resonance imaging (fMRI), magnetoencephalography (MEG), or
positron emission tomography (PET) (Akcakaya et al., 2014).
These advantages have made EEG a widely accepted tool by
the scientific community and the private sector for neuroscience
research and applications.

EEG uses are extremely wide-ranging and have undergone
profound changes in recent years. Initially, EEG was adopted
to translate users’ intentions by classifying their voluntary brain
activity to actively monitor or control external devices. These
applications have been called active Brain-Computer Interfaces
(aBCI) and are ordinarily confined in the biomedical field for
replacing, restoring, enhancing, supplementing, or improving
natural central nervous system (CNS) output (Zander et al.,
2010; Burwell et al., 2017; Wolpaw et al., 2020). However, at a
later stage, EEG applications have evolved from their original
scientific purpose to passively decode cognitive and emotional
states of users’ spontaneous brain activity. These new systems
have extended the traditional notions of aBCI applications to
passive Brain-Computer Interfaces (pBCI) (Zander and Kothe,
2011; Blankertz et al., 2016; Arico et al., 2017; Aricò et al.,
2018). In turn, pBCI applications have enhanced the business
prospects of EEG because of their commercial value as tracking
tool solutions that can be exploited in consumer markets.

During this transition, the technological improvements and
implications of EEG have been profoundly considered by a
wide range of literature reviews (Jackson and Bolger, 2014;
Marzbani et al., 2016; Enriquez-Geppert et al., 2017). Yet the
vast majority of these studies have been conducted from an
engineering standpoint. Since the main proposed EEG use is
as an assistive technology, most of the studies have mainly
concentrated on neurofeedback improvements as it primarily
relates to biomedical applications of aBCIs. In contrast, little
research has been done into the intersection of the current
state-of-the-art in commercial applications of EEG and their
ethical concerns.

By taking into account the major market applications of EEG,
the current scoping review outlines the efforts which have been
made in heterogeneous business sectors, and provides illustrative
examples of existing EEG projects and business initiatives. On
this basis, the review also identifies the most commonly cited
ethical issues that have been acknowledged in the existing
literature, and elaborates upon the various postures which could
be adopted with regards to the present development of EEG.
Most importantly, the final goal of this review is to provide
better insights about the existing opportunities and challenges
for the transition into a BCI society, where the deployment
of EEG technologies is carried out with respect for social
ethical frameworks.

METHODS

A comprehensive literature review was performed by applying
the methodology proposed by Levac et al. (2010), Burwell
et al. (2017), as an update of Arksey and O’Malley’s original
method of literature review (Arksey and O’Malley, 2005). The

review framework includes the original stages enumerated by
the authors: (a) identifying the research question, (b) identifying
relevant studies, (c) study selection, (d) charting the data
and collating, summarizing, and reporting the results, and
(e) consultation.

Identifying the Research Question
The research goal is to analyze the current market applications
of EEG in order to confront them with the dominant literature
on ethics. The clarification of this gap could provide a
pragmatic approach of the present ethical debate and inform
recommendations for future research.

Identifying Relevant Studies
The primary searches focused on different bibliographic
databases such as (a) PubMed (b) IEEE XPLORE, (c) Elsevier, (d)
SpringerLink, (e) Google Scholar, (f) ResearchGate, and (g) other
sources (Figure 1). These databases were chosen due to their
range spectrum, specifically regarding the commercial and ethical
considerations of EEG. Several searches were conducted by using
the keywords related to the domains of commercial applications
and ethical issues of EEG in general.

The primary searches occurred during August 2018. The
keywords used for the primary searches were ((“brain-
computer interface” OR “BCI” OR “brain-machine interface”
OR “electroencephalography” OR “EEG” OR “passive brain-
computer interface” OR “pBCI” [Mesh]) AND (“ethics” OR
“ethical” OR “commercial” OR “business” OR “consumer” OR
“economic” [Mesh])).

Articles were included if they (1) were written in English,
German, Spanish or French (2) presented conceptual discussions
or empirical findings on ethics or commercial aspects of BCI,
and (3) were especially related to EEG technologies. After
applying these criteria, 57 articles remained from the primary
search (N = 57).

Selecting Studies for Inclusion
A list of different EEG applications as well as a list of topics
frequently discussed in the ethics literature were identified
from the primary search. Following the primary search, varying
keywords were generated. Then, secondary targeted searches
were performed to include articles that were framed in terms of
a specific topic within the domains of consumer-grade devices
and ethics. The secondary searches occurred between September
and December 2018. The keywords used for the secondary
targeted searches were ((“brain-computer interface” OR “BCI”
OR “brain-machine interface” OR “electroencephalography”
OR “EEG” OR “passive brain-computer interface” OR “pBCI”
[Mesh]) AND ((“medical” OR “diagnosis” OR “rehabilitation”
OR “assistance” [Mesh]) OR (“neuroergonomics” OR “smart”
OR “environment” [Mesh]) OR (“self-regulation” OR “wel-
lbeing” OR “meditation” OR “smart tracking devices” [Mesh])
OR (“games” OR “entertainment” OR “virtual reality” [Mesh])
OR (“neuromarketing” [Mesh]) OR (“education” OR “attention”
[Mesh]) OR (“security” OR “identification” OR “authentication”
[Mesh]) OR (“safety” OR “risk-benefit” [Mesh]) OR (“agency”
OR “autonomy” [Mesh]) OR (“identity” OR “personhood”
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FIGURE 1 | Search strategy.
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[Mesh]) OR (“enhancement” OR “augmentation” [Mesh]) OR
(“privacy” OR “data protection” [Mesh]))). After applying the
same inclusion and exclusion criteria as the primary searches, the
secondary searches yielded 187 articles. Once duplicate articles
from the primary and secondary searches were excluded, there
remained a total of 154 articles.

Following the primary and secondary searches, further
relevant sources (N = 42) were consulted in tertiary searches,
which included, among others, several articles highlighted in the
consultation phase. No duplicates were found with the previous
searches. The final sample remained N = 196 articles.

Charting the Data and Collating,
Summarizing, and Reporting the Results
From the primary and secondary searches (N = 154), the specific
commercial and ethical issues were identified and the content
was extracted. DZ reviewed the extracted content and provided
feedback on its organization. Thus, the main conclusions
within the commercial and ethical realms were presented in a
narrative fashion.

Consultation
An external assessment of the outcomes of this review was
conducted in consultation with three experts in some of the
topic areas such as biomedical engineering, biorobotics and
biomechatronics, and neuroscience. Feedback was considered to
revise the manuscript as well as to ponder valuable insights that
the scoping review alone would not have identified (Daudt et al.,
2013).

Finally, the organization of the paper remains as follows:
in the first section, the results of the review will be presented
and discussed from a commercial and ethical standpoint. In
the second section, the conclusions of the review will be
elaborated upon.

COMMERCIAL ASPECTS

Following the cross-sectional review, the collected sources
suggest that commercial applications of EEG are widely discussed
across the literature. The most frequently cited applications
include medical applications (N = 74), neuroergonomics and
smart environment (N = 41), self-regulation (N = 26), games
and entertainment (N = 25), neuromarketing (N = 21),
education (N = 20), and security and authentication (N = 20).
Thus, the most recent practical attempts at EEG applications are
presented in Figure 2. The same depicted order will be observed
in this section.

Medicine
The most prevalent applications of EEG technologies can be
found in the medical sector (N = 74). As identified in the
literature, they are predominantly used for prediction and
diagnosis of diverse clinical conditions as well as for treatment,
rehabilitation and assistance of patients with certain disabilities.

FIGURE 2 | Commercial EEG potential applications in different sectors.

Prediction and Diagnosis

One of the main uses of EEG is for risk prediction models,
which are becoming progressively more widespread for clinical
aid decision-making. These models are developed to estimate the
probability of having certain diseases, events or complications
given the individual’s demographics, test results, or disease
characteristics. In this sense, EEG data can be processed
for the prediction of several health problems such as sleep
disorders (Kupfer et al., 1978), seizure disorders (Mormann
et al., 2000; García Bellón and Soria Bretones, 2013; Sharmila
andMahalakshmi, 2017), attention deficit hyperactivity disorders
(Clarke et al., 2011; Gola et al., 2013), peripheral neuropathies,
and musculoskeletal diseases (Wei et al., 2010). In recent years,
different commercial initiatives have been developed in the
prediction of clinical conditions. One of the most ground-
breaking projects for seizure prediction has been advanced by
the Spanish company MJN Neuroserveis. They have developed a
discreet, portable earphone device (Figure 3) capable of alerting
the person and the caregiver when there is a greater risk of
seizure, thus preventing falls or injury (Rincón, 2017). The start-
up closed a 750,000 Euro investment round for its epilepsy
prediction device in 2017, financed by investors from IESE
Business School and ENISA network (Hinchliffe, 2018).

Moreover, EEG is also used as an initial diagnosis assessment
tool alternative to MRI and CT-SCAN due to its cost-
effectiveness. Here, EEG systems have proven valuable in the
diagnosis of disorders of consciousness (DOC) (Guger et al.,
2018; Stefan et al., 2018) as well as in the detection of tumors
and concussions (Selvam and Shenbagadevi, 2011; Sharanreddy
and Kulkarni, 2013; Abdulkader et al., 2015). For DOC diagnosis
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purposes, the Austrian company Guger Technologies (g.tec)
has developed the EEG-based system mindBEAGLE (Figure 4),
which provides quick and easy assessments of DOC and basic
communication with certain patients (Spataro et al., 2018).

Also, companies such as BrainScope take advantage of EEG
capabilities in order to pioneer the future of traumatic brain
injury (TBI) assessment (Figure 5) (Hanley et al., 2017). At
the time this review is being conducted, the company cannot
actually diagnose if a tumor is present or not, so it is temporarily
offering inexpensive solutions that provide preliminary insights
to determine the need or not to perform a PET/MRI scan.
Notwithstanding, it has been awarded more than $27 million

FIGURE 3 | MJN-SERAS earphone EEG device for seizure prediction.

Reprinted from International Epilepsy Day: Latest medical devices for epilepsy

patients, by NS Medical Devices (2018), https://www.nsmedicaldevices.com/

news/international-epilepsy-day-devices-epilepsy/attachment/mjn-seras-

epilepsia/. Copyright 2018, by MJN Neuroserveis.

from U.S. Department of Defense to develop its TBI and
concussion assessment technology (Pai, 2015).

In another area, EEG technologies can also be employed
to diagnose neurodegenerative disorders. A growing body
of evidence supports its application for early detection of
Alzheimer’s disease (Jaeseung, 2004; Lazar, 2018), Parkinson’s
disease (Solís-Vivanco et al., 2018) and for diagnosis of different
dementia subtypes (Houmani et al., 2018; Stylianou et al.,
2018). These studies propel the growing interest of EEG,
whose market is expected to grow worldwide as geriatric
population continues to increase (Nations U, 2017). Thus,
new entrepreneurial initiatives sustain its attractiveness as a
technology for investment. For instance, Synapto, an early stage
medical technology venture founded by former students of the
University of Maryland, uses portable EEG of OpenBCI to make
Alzheimer’s diagnosis more accessible and affordable (Figure 6).
Synapto solutions are funded and validated by NIH (National
Institutes of Health, 2017).

Treatment, Rehabilitation, and Assistance

Beyond its functions as a prediction and diagnosis tool, EEG has
spread as a biomarker for treatment of several clinical conditions.
In particular, EEG biofeedback can be used for the treatment of
patients suffering from addictions due to its direct correlation
with drug dependency (Prichep et al., 1996; Trudeau, 2005).
Furthermore, it can also be applied as a potential therapy to help
patients with Rett syndrome (Fabio et al., 2016) and for memory
deficits recovery via neurofeedback (Rozelle and Budzynski,
1995; Kober et al., 2015). Although EEG does not provide
complete relief in all cases, it can assist patients with managing
their symptoms, thus affording them a better life quality.

FIGURE 4 | mindBEAGLE system. Reprinted from mindBEAGLE Technical Specs and Features, by g.tec medical engineering GmbH (2018), https://www.

mindbeagle.at/Technical-Specs-and-Features. Copyright 2018, by g.tec medical engineering GmbH.
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FIGURE 5 | BrainScope TBI assessment system. Reprinted from Our

Solutions Brainscope, by Brainscope (2018), https://www.brainscope.com/

products. Copyright 2018, by Brainscope.

On the other side, despite the superior capabilities of invasive
methods, the viability of EEG for rehabilitation and restoration
of lost functions cannot be ignored. In the light of overwhelming
number of scientific evidence, EEG may be a feasible tool for
the treatment of in lock-in syndrome (LIS) patients and patients
with severe motor disabilities (Markand, 1976; Birbaumer and
Cohen, 2007; Sellers et al., 2010; Zickler et al., 2011). It may
be also a valuable bedside tool for neuro-motor rehabilitation
on post-stroke patients (Markand, 1976; Birbaumer and Cohen,
2007; Ang et al., 2010; Sellers et al., 2010; Zickler et al., 2011;
Comani et al., 2015). Here, EEG can be applied to regain
previous levels of mobility or, at least, it can allow patients to

FIGURE 6 | Synapto’s Alzheimer diagnosis system using OpenBCI’s

All-in-One Biosensing R&D Bundle. Reprinted from 3D-printed brain-sensing

headset is open source, by Smart2.0 (2015), https://www.smart2zero.com/

news/3d-printed-brain-sensing-headset-open-source. Copyright 2017, by

European Business Press SA.

FIGURE 7 | RecoveriX rehabilitation system. Reprinted from RecoveriX

system, by Madisson Medical and Welness Technology (2018), https://www.

madisson.cz/en/product/recoverix-system. Copyright 2018, by g.tec medical

engineering GmbH.

better manage their dysfunctionalities. As stroke rehabilitation
is a very active direction in this field, many products are being
deployed for commercial purposes such as recoveriX (Figure 7),
a g.tec solution which is currently being franchised in different
treatment centers around the world, or nBETTER, a system
created by the Singaporean company Neurostyle Pte Ltd. which
detects visualized movements of stroke-affected limbs using

Frontiers in Neuroscience | www.frontiersin.org 6 December 2020 | Volume 14 | Article 61113011

https://www.brainscope.com/products
https://www.brainscope.com/products
https://www.smart2zero.com/news/3d-printed-brain-sensing-headset-open-source
https://www.smart2zero.com/news/3d-printed-brain-sensing-headset-open-source
https://www.madisson.cz/en/product/recoverix-system
https://www.madisson.cz/en/product/recoverix-system
https://www.recoverix.at/
https://neuro-style.com/nbetter-stroke-rehabilitation-system/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fontanillo Lopez et al. Review of EEG

FIGURE 8 | IntendiX spelling system. Reprinted from Intendix, The Brain

Computer Interface Goes Commercial, by Singularity Hub (2010), https://

singularityhub.com/2010/03/07/intendix-the-brain-computer-interface-goes-

commercial-video/. Copyright 2010, by g.tec medical engineering GmbH.

EEG-based neuro-feedback to provide visually engaging and
mechanical feedback.

As for assistive purposes, EEG permits disabled people to
communicate their opinions and ideas via a variety of methods
such as spelling applications (Birbaumer and Cohen, 2007;
Akcakaya et al., 2014; Birbaumer et al., 2014; Rezeika et al.,
2018), semantic categorization (Stothart et al., 2017), or silent
speech communication (Brumberg et al., 2010; Mohanchandra
et al., 2015). This may facilitate advanced hands-free applications,
which may provide disabled people ease and comfort. In this
realm, the world’s first personal EEG-based spelling system was
introduced in 2010 by g.tec (Fazel-Rezai et al., 2012). Besides
writing a text, the user can also interact with the system
(IntendiX) to trigger an alarm, print out or copy texts into an
e-mail, or send commands to external devices (Figure 8).

Likewise, Neuracle -a spinoff startup of Tsinghua University-
developed a high-speed brain-controlled keyboards using
WearableSensing’s DSI24 headset (Figure 9), which has achieved
high spelling rates up to 60 characters (∼12 words) per minute
(Chen et al., 2015).

Other companies offering diverse EEG solutions for medical
applications are listed below (Table 1). The list ranks several
hardware companies according to their number of publications,
as found from Google Scholar. While it is not an exhaustive
list, it represents an overview of some of the most important
key players.

Neuroergonomics and Smart Environments
The use of EEG is also widely extended (N = 41) for the design
of safer and more efficient operational environments in relation
to neuroscience principles (Karwowski et al., 2003). This area of
research has been called neuroergonomics (Parasuraman, 2003)
and it is applicable to different contexts of usage.

One of the most attractive applications of neuroergonomics
are smart environments. As a consequence of the progress
in sensors and information technology, it has been identified

FIGURE 9 | Neuracle’s brain-controlled keyboard using DSI24 headset.

Reprinted from DSI 24 Dry Electrode EEG Headse, by Wearable Sensing

(2018), https://wearablesensing.com/products/dsi-24/. Copyright 2018, by

Wearable Sensing.

TABLE 1 | EEG key-players.

Company Number of publications Main product

NeuroScan 15.200 “Quick Caps” headsets up to 256

electrodes

BioSemi 8.800 “HeadCap” headset up to 256

channels

Brain products 6.690 “BrainCap” headsets up to 160

channels

g.tec 6.260 “g.Nautilus” headset 64 channels

EGI 5.000 “Geodesic EEG System 400” up to

256 sensors

that the feasibility of these environments is being gradually
consolidated (Kameas and Calemis, 2010; Kosmyna et al., 2016).
This new paradigm may enable human interaction with digital
environments that are sensitive, adaptive, and responsive. In this
line, several authors have reported that BCI assistive technologies
related to automation and control of ubiquitous devices may have
a promising impact on such intelligent settings (Pfurtscheller
et al., 2006; Navarro et al., 2011). The next generation of human-
compatible systems, powered by EEG-based BCI and ubiquitous
computing, may not only help despaired people to regain higher
standards of autonomy but may also drive the expansion of the
living conditions of people, thus ensuring great comfort along
with the intelligent usage of resources (Domingo, 2012; Lee et al.,
2013; Corralejo et al., 2014; Kosmyna et al., 2016). Although some
authors have reported the difficulty of building EEG systems for
smart environments given the current state-of-the-art (Aloise
et al., 2011; Su et al., 2011; Mehta and Parasuraman, 2013),
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significant initiatives can be found in this field. For instance,
BrainAble, an ongoing European Seventh Framework Program
(FP7) financed project, aims to develop a multimodal neuronal
interface with affective computing and virtual environments to
restore and improve functional independence of patients with
motor disabilities in their activities of daily living. The project
also attempts to connect a human-computer interface with
adapted social networks services in order to improve the life
quality of the patient (Carmichael and Carmichael, 2014).

Neuroergonomic principles can be also employed in
workplace environments. Here, neuroergonomics focuses
on designing and controlling physical tasks to ensure that
work demands are adapted to the physical, cognitive, and
affective capabilities and limitations of the operator (Venthur
et al., 2010; Garcia-Molina et al., 2013). Thus, EEG systems
can be potentially used for cognitive real-time monitoring of
workers mental workload in order to alert them to trigger
certain behaviors. In the automotive sector, several studies
have investigated the use of EEG during driving simulations
for assessing driving performance and inattentiveness, and
for detecting needs of emergency brakes before the braking
onset (Dong et al., 2011; Karthaus et al., 2018). By doing so,
authors have identified that distraction and fatigue are two main
sources for driver’s inattention, which in turn is considered as
a strong cause for most traffic accidents (Dong et al., 2011).
Those insights may be useful for technology transfer purposes,
which may eventually propel the emergence of new companies
as a result of the new advances in neuroergonomics. Deayea,
a Chinese Shanghai-based company, is reportedly using EEG
sensors in the caps of train drivers on the high-speed rail line
between Beijing and Shanghai to monitor their concentrations
levels and to identify thoughts of anger, anxiety, and sadness
(Figure 10) (Chan, 2018). In the aviation sector, initial steps have
also been taken toward assistive technologies for prevention of
accidents, particularly in air traffic control and aircraft piloting
(Fricke et al., 2014; Aricò et al., 2016; Vecchiato et al., 2016).
By expanding these technologies, a new generation of wearables
that enhance human performance or fully adapt user interfaces
to different environments may be achieved. These wearables
could be ultimately used as a tool to prevent the risk of error in
operational environments.

Along the same line, advances in neuroergonomics may not
only foster EEG solutions in workplace environments but also in
the vast consumer markets. As EEG enables the identification of
attention levels while doing a certain task, the future of driving
could be disrupted. For instance, Nissan is developing a way
to help drivers execute evasive maneuvers faster by using EEG
technology. The project, called Brain-to-Vehicle, attempts to
recognize the mental and emotional states of the driver in order
to help semi-autonomous cars begin evasive actions between 0.2
and 0.5 s faster. Although it is at the moment in the experimental
phase, it aims to develop practical applications within 5 to 10
years (O’Kane, 2018).

Self-Regulation
A growing body of evidence (N = 26) indicates that self-
regulation through tracking devices plays an important role

FIGURE 10 | Deayea’s driver headsets. Reprinted from Smart headset, by

Shanghai Diyi Technology Co., Ltd. (2018), http://www.deayea.cn/page98?

product_id=4. Copyright 2018, by Shanghai Diyi Technology Co., Ltd.

in the voluntary control of mental and physiological processes
(Lomas et al., 2015; Tang et al., 2015). In this manner, self-
regulation through EEG has been claimed to be beneficial
for wellbeing and emotional balance, especially in mindfulness
meditation (Lutz et al., 2006, 2008; Rodina et al., 2017). Thanks
to its efficacy as a brain activity tracking tool device, EEG
is experiencing a steady growth in these kinds of market
applications. Its most paradigmatic uses are being developed for
meditation, focus, and sleep purposes.

In the meditation sector, the Canadian company InteraXon
launched in 2014 the wearable headset Muse (Li et al., 2015),
which measures user’s brain activity and converts the EEG signal
into audio feedback that is fed to the user via headphones,
thus guiding the user during the whole meditation process
(Figure 11). Muse also tracks users’ progress and sets goals to
keep them motivated.

Further, for focus purposes, the company Melon, which was
crowdfunded in 2011 in Kickstarter, has developed an algorithm
which identifies the attention levels of the user in relation to
its activities and behaviors (Melon, 2016). By doing so, they
aim to develop a neural tracking tool solution to improve
user’s productivity (Figure 12).

In the sleep sector, smart sleeping masks have been developed
to improve the sleeping habits of consumers. Companies such as
Entertech and Neuroon use these masks to track neural activity
while napping (Figure 13). For instance, Entertech’s mask Lunna
recognizes rhythmic activities in the alpha range during the
drowsiness period at sleep onset and in the rapid eye movement
(REM) sleep stage in order to wake users up in the light sleep,
thus preventing post naps to cloud the user’s day (Lunna, 2018).

Games and Entertainment
Games and entertainment are industries which will benefit
extraordinarily from the deployment of portable and ergonomic
EEG. In the academic sphere, the literature shows that
most games and entertainment applications focus on multi-
dimensional control using motor imagery-based EEG systems
in virtual environments or in three-dimensional physical space
(N = 25). In virtual environment games, most research has
concentrated on classification performances and user experience
(Doud et al., 2011; Bonnet et al., 2013). Hence, Bonnet et al.
created a multi-user game called BrainArena in which two users
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FIGURE 11 | Muse’s headband. Reprinted from Muse: the brain sensing headband, by Amazon (2018), https://www.amazon.com/Muse-Brain-Sensing-Headband-

Black/dp/B00LOQR37C. Copyright 2018, by Muse.

FIGURE 12 | Melon’s headband. Reprinted from Gadgets to help you relax in the new year, by ZDNET (2016), https://www.zdnet.com/pictures/8-gadgets-to-help-

you-relax-in-the-new-year/5/. Copyright 2016, by Melon.

play football by means of EEG-based BCI (Bonnet et al., 2013).
In three-dimensional physical space, LaFleur et al. presented
a novel experiment of EEG-based BCI controlling a robotic
quadcopter, which reported high control from remote distances
with fast and accurate actuation (LaFleur and Nemec, 2013). In
the commercial sphere, American companies such as NeuroSky
and Emotiv are leading the industry of games and entertainment.
NeuroSky’s headset MindWave works with many gaming apps
in the NeuroSky store, an in-house digital distribution platform
which offers a wide variety of brain-controlled apps (Figure 14).
One of the most popular games in this platform is BrainCopter,
a game that allows users to command a virtual helicopter which
should evade oncoming enemies bymeans ofMindWave headset.

In physical space environments, Emotiv’s EPOC+ and Insight
headsets similarly enable users to control drones remotely
(Figure 15) (Wang et al., 2018).

Other efforts done in this area focus on making virtual reality
environments and video games more immersive by using EEG

as a control input (Lécuyer et al., 2008). In general, experiments
conducted in this realm combine the use of different wearables.
On the one hand, the user benefits from a virtual reality (VR)
video game experience via VR headsets such as Oculus Rift
(Doma, 2018). On the other hand, an EEG headset monitors the
player’s brain activities and digitizes it as a computer input for the
VR video game.

Considering the integrative potential of both technologies,
manufacturers are starting to incorporate eye-tracking and EEG
sensors in the VR headsets to allow brain-controlled portable
solutions. One of the most innovative products on the market
is the mobile-powered VR headset LooxidLink (Figure 16).
This wearable, designed by the Korean company Looxid Labs,
integrates gold-plated EEG sensor capabilities into the VR
components of traditional VR headsets, thus allowing the user to
take advantage of the commands in the API to apply EEG into the
VR environment. Looxid Labs won the Best of Innovation Award
at Consumer Electronic Show 2018 (Jo, 2018).
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FIGURE 13 | Lunna headset. Reprinted from Ivation Luuna Brainwave Brain Sensing Bluetooth Smart Sleep Mask, by Amazon (2018), https://www.amazon.com/

Ivation-Brainwave-Bluetooth-Connection-Technology/dp/B07RYNBTJW. Copyright 2018, by Entertech.

Neuromarketing and Advertisement
Neuromarketing is an emerging interdisciplinary field located at
the borderline between neuroscience psychology and marketing.
The term neuromarketing was initially introduced by Ale Smidts
in 2002 and is defined as “the study of the cerebral mechanism
to understand the consumer’s behavior in order to improve
the marketing strategies” (Boricean, 2009; Stasi et al., 2018).
Neuromarketing focuses on assessing consumers’ cognitive and
emotional responses to various marketing stimuli (Karmarkar,
2011). To achieve this purpose, neuromarketing studies can be
conducted by means of different non-invasive techniques such as
fMRI, MEG or PET.

The use of EEG has only recently been adopted in
confluence with implicit associations’ test and other biometric
techniques, such as eye-tracking, psychophysiological and
electrodermal reactivity, or heart and respiratory rate (Calvert
and Thensen, 2004; Kenning and Linzmajer, 2011; Morin, 2011).
By means of EEG, effectiveness indicators such as emotional
engagement, memory retention, awareness, and attention can be
measured (Vecchiato et al., 2011; Sebastian, 2014). For instance,
EEG evaluation has demonstrated remarkably results for TV
commercials, where attention levels have been successfully
measured, thus providing researchers with new methods for
advertisement evaluation (Vecchiato et al., 2009; Nomura and
Mitsukura, 2015; Wang et al., 2016). Several authors have
reported that the analysis of these indicators is fundamental
to discovering the factors that influence consumers’ purchase
decisions (McClure et al., 2004). Also, they may contribute to the
better understanding of consumers’ thoughts, emotions, feelings,
needs, and motivations, as related to the purchasing process
(Lindstrom and Underhill, 2010).

Although EEG is relatively a new consumer neuroscience
technique, its application has hastily grown over the past years

(N = 21) (Plassmann et al., 2012; Smidts et al., 2014). Some
of the most important milestones for EEG in the commercial
arena include Yahoo’s assessment of consumers’ reactions to
television commercials; Hyundai’s measurement of consumer
neurological responses when viewing a sports car prototype; and
Microsoft’s assessment of the degree of consumer engagement
when using an Xbox video game (Flores et al., 2014). According
to Plassmann et al., more than 300 companies are currently
working worldwide in the field of neuromarketing (Plassmann
et al., 2012). Among the vendors of these neuromarketing
services are three American-based neuromarketing companies:
NeuroFocus, a company absorbed by Nielsen Holdings, working
with Hyundai, Google and Walt Disney Co.; EmSense, which
counts Microsoft among its customers; and Sands Research,
which collaborates with Chevron (Flores et al., 2014).

Education
In the educational sector, EEG is mainly used to track student
performance to improve the learning experience (N = 20).

During the learning process, student’s attention and
motivation during instruction generally influence the
understanding of the contents (Saeed and Zyngier, 2012;
Ning-Han et al., 2013). However, traditional teaching methods
require teachers to visually detect students’ expressions in order
to infer whether they are thoughtfully learning or not. Of course,
this method poses a physical burden to the teachers and is not
always infallible.

By applying neural technologies to provide instant feedback
on the mental levels of students, the shortcomings of traditional
teaching methods may be remedied. Several studies have
corroborated this approach. For example, the feasibility of
collecting useful information about cognitive processing and
mental state using portable EEG monitoring devices has been
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already assessed by Mostow et al. (2013). Also, the development
of visual attentionmeasurement systems based on EEG are under
current development (Ko et al., 2017). These findings may set the
basis for developing EEG systems capable of estimating the level
of cognitive and visual attention during real classroom activities,
thus enhancing the learning effectiveness (Corentin and Pascal,
2013).

Teachers may vastly benefit from this technology, which may
alleviate their inaccuracy and reduce their burdens in measuring
attention levels of learners (Slavin, 2008; Xu and Zhong, 2018).

A representative example of this methodology is Harvard
Innovation Lab’s incubated BrainCo. BrainCo has developed
an EEG headband (FocusEDU) which aims at helping
students cultivate efficient and focused habits through
neurofeedback training (Figure 17).

By means of its accompanying app, which can be visualized
on a tablet or a computer, FocusEDU can also be applied in the
classroom to improve educators’ teaching methods by tracking
students’ levels of engagement and attention. In 2017, BrainCo
won the Most Innovative Award at the International Society for
Technology in Education (ISTE) Conference (Smith, 2017).

Security and Authentication
The use of EEG data as a biometric trait for security and
authentication purposes has experienced a tremendous growth
in cryptographic and biometric frameworks (N = 20). Although
many EEG-based authentication methods have been proposed,
they have been roughly divided into two categories depending
on the presence or absence of a stimulus. The former comprises
both eyes-open/eyes-closed, whereas the latter includes visual
evoked potentials, mental tasks, and emotional stimuli (Wu
et al., 2018). In general terms, the use of EEG in these fields
has been propelled due to the need for data security and
authentication in numerous applications such as e-commerce,
e-health, e-government, e-voting, or blockchain, among others
(Damaševičius et al., 2018). More precisely, in cryptographic
frameworks, security systems have shown to be vulnerable to
several drawbacks such as simple insecure password, shoulder
surfing, theft crime, and cancelable biometrics (Khalifa et al.,
2012). One of the main concerns about these vulnerabilities
is the absence of connections between verification strategies
and the identity of the person (Karthikeyan and Sabarigiri,
2011). Thus, unlike cryptographic based authentication methods,
cognitive biometrics can remedy these obstacles as they can
uniquely identify a person based upon independent physical
or behavioral characteristics (Svogor and Kisasondi, 2012;
Ramzan and Shidlovskiy, 2018). Another motivation behind
the exploration of bio-signals is that they cannot be casually
acquired by external agents and they are present in every living
being, which gives them advantages over other biometric-based
authentication methods such as iris, fingerprints, face, palm,
voice, and gait recognition (Revett et al., 2010). In addition,
several studies have reported that cognitive-based biometric
systems offer more resistance to spoofing attacks due to the
difficulty of synthesizing EEG signals, and they have also
tested covert warning messages when authorized users are in a
condition of external forcing (Su et al., 2012).

FIGURE 14 | MindWave headset. Reprinted from NeuroSky MindWave Mobile

BrainWave Starter Kit, by Amazon (2018), https://www.amazon.in/NeuroSky-

MindWave-Mobile-BrainWave-Starter/dp/B00B8BF4EM. Copyright 2015, by

NeuroSky.

As for the accuracy of these systems, research shows that the
gamma-band of visually evoked potential signals and the neural
network classifier could be used to identify individuals. Here,
Palaniappan (Palaniappan, 2004) identified 20 individuals with
an average accuracy of 99.06% and Hema et al. (2008) reached an
average accuracy of 94.4 to 97.5% on 6 subjects. EEG signals have
been also used in user context environments, such as simplified
driving simulators, where they have been processed to verify the
driver’s identity on demand (Nakanishi et al., 2011). Likewise,
several types of research have considered the authentication of
EEG signals generated from driving behavior as part of smart
driving systems. For example, EEG signals could be processed to
characterized alcoholic drivers. As indicated by Murata et al., the
deployment of these systems may help to prevent fatal incidents
(Murata et al., 2011).

In the commercial arena, analysts predict that the global EEG
biometrics market is to expand at a compound annual growth
rate of 12.37% during the period 2016–2020 (Damaševičius et al.,
2018). Meanwhile, efforts have been also made to create open-
source authentication communities such as NeurotechX, who is
currently developing an EEG biometric authentication system
called Brainlock based on N400 (Swaine-Simon, 2017).

ETHICAL ASPECTS

The review collected sources revealed that ethical issues are
also broadly discussed across the literature. It was found that
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FIGURE 15 | Emotiv EPOC+. Reprinted from Emotiv EPOC+, by EMOTIV (2018), https://www.emotiv.com/epoc/. Copyright 2018, by EMOTIV.

FIGURE 16 | LooxidLink headset. Reprinted from Looxid Labs, by Seamless (2018), https://shiropen.com/2017/09/19/28240/. Copyright 2018, by Seamless.

ethical aspects may be treated whether as the subject matter of
the paper or as a related subsection of an engineering study.
Furthermore, it was noted that most of the articles deal withmore
than one ethical issue in depth and mention several other ethical
aspects. The most frequently cited issues include safety and risk-
benefit balance (N = 33), agency (N = 28), identity (N = 24),
enhancement (N = 21), and privacy and data protection (N =

15) (Figure 18). Thus, the same depicted order will be observed
in this section.

Safety and Risk-Benefit Balance
Among all the concerns surveyed in the literature, the most
commonly cited problems involve the safety of EEG devices
and their related balance of risks and benefits (N = 33). These
dimensions of concern are in accordance with the intrinsic

hazards of any biomedical device. It was also determined that
safety and risk-benefit balance mainly refer to their medical and
non-medical consequences.

With regards to the medical hazards, authors assert that non-
invasive devices may pose serious risks of harm (Tamburrini and
Mattia, 2011). Their main concerns relate to the negative side
effects in brain plasticity when EEG devices are long term applied
in developing children and adults (Tamburrini andMattia, 2011).
They also fear the unknown reversibility of these side-effects if the
wearable is removed. However, no conclusive results have been
appointed in this area.

Non-medical safety issues are more extensively mentioned
and addressed in the literature. In this case, authors suggest
that intense training and cognitive concentration could lead
to potentially serious harms for EEG users, particularly in
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communication and control contexts, where cognitive planning
and attention can lead to frustration (Glannon, 2014). Also, the
need for regular and challenging training sessions may impose
physical, emotional, and financial burdens on the users and their
family (Fenton and Alpert, 2008). In addition, as users become
increasingly dependent on technology, device failure and errors
can similarly place users in dangerous situations (Hildt, 2011).
This could endanger the life of its users in specific contexts.
For example, an EEG wheelchair failing as its user is crossing
a street or an EEG driven car causing an accident could lead to
fatal consequences.

Another non-medical concern in this area relates to the
vulnerability of commercial applications of BCI. Here, it has
been demonstrated that deliberately-designed tiny perturbations
templates for target attacks can manipulate EEG-based BCI
speller to output anything the attacker wants with high success
rate (Zhang et al., 2020). If these attacks may be targeted in
other scenarios such as automatic driving, wheelchair control,
or exoskeleton control, where the feedback plays an important
role and the cost of one step mistake can have a big impact on
the user, the security of EEG commercial applications should be
reconsidered before deployment.

Since EEG is regarded as an inherently risky technology,
which may lead to negative social outcomes, further studies
should be conducted to clarify the acceptable expectations of
benefit and risk. Nonetheless, several scholars suggest that this
analysis may not yet be possible due to scientific uncertainty and
lack of validated knowledge (Haselager et al., 2009).

Agency
Agency is understood by ethicists as the ability of the individual
to choose its own actions. The agency problem is frequently
discussed by scholars from a two-fold perspective (N = 28). On
a positive note, assistive technologies could lead to an increased
agency via empowerment. On a negative note, the use of BCI
could lead to an impairment of self-determination.

As an empowerment tool, several authors concur that EEG
assistive technologies will allow patients greater independence
(Mercer and Trothen, 2014; Zehr, 2015). This may enable
patients to express their thoughts and behaviors, as well as
to interact more independently with their environments, thus
leading to higher standards of autonomy and human dignity.
The increased agency conception acquires a greater significance
in life-sustaining care contexts, where the informed consent
plays an important role in end-of-life decision making. In
this area, Glannon suggests that a weaker threshold version
of understanding in decision-making about care would be
justified for minimally conscious patients with a higher level of
awareness and cognitive function who can clearly express their
preferences about life-sustaining care through BCI-mediated
binary responses (Glannon, 2016). This posture should be
confronted with the general consensus in medical ethics about
a high level of understanding for life-sustaining treatment with
high probability of death (Drane, 1984; Appelbaum and Grisso,
1988; Jox, 2013; Peterson et al., 2013).

As an impairment tool, the actual threat to the social
acceptance of mind-reading technologies lies in their potential

capacity to “understand” consumer decision-making processes.
This debate has been extensively addressed by public policy and
academia, especially in the field of neuromarketing (Murphy
et al., 2008). The scientific community is openly divided between
researchers and practitioners who welcome this field (Garcia
and Saad, 2008; Perrachione and Perrachione, 2008) and its
detractors, including the general media (Blakeslee, 2004; Arussy,
2009). In most cases, the assumptions of these discussions
have an economic substrate. As neuroscience and behavioral
economics are proving to challenge “rational consumer” theories
and their rational spending patterns, new approaches to the
importance of marketing and advertising are emerging. In this
sense, the use of neuroscience to understand the subconscious
minds of consumers and, eventually, to alter their purchase
decisions is an ethical concern widely disseminated in the
literature (McDowell and Dick, 2013). Some authors believe that
by measuring consumer’s brain activity and developing effective
communication techniques, corporations will be able to discover
the “buy button” in consumers’ brains. Thereby, they will be able
to learn how to better trigger consumers’ attention, which may
ultimately lead to unprecedented levels of manipulation (Kelly,
1979; Wilson et al., 2008).

Identity
The concept of identity is overarching in the literature as most
scholars think that neurotechnologies could clearly disrupt the
physical and mental integrity of the individual (N = 24).

In essence, the main concerns about identity are raised
by invasive BCI. For instance, several studies have reported
personality or behavioral changes leading to impulsivity,
hypersexuality, mania, and gambling (Agid et al., 2006; Gisquet,
2008; Glannon, 2009). Alienation and estrangement have been
also recounted in various treatments, where patients have stated
that they “fe[lt] like a robot”, “an electric doll” or as if they
were under “remote control” (Schüpbach et al., 2006; Goering
et al., 2017). However, these changes do not occur in all cases
and its origin still remains unclear in the scientific community
(Johansson et al., 2014; Goering et al., 2017). As mentioned
above, although these statements derive from neurosurgical
interventions, the question remains open as to whether similar
results could be envisaged when EEG is applied for motor
recovery or permanent motor replacement. From what has
been identified, there is an absence of preliminary research and
pronouncements in this area.

Enhancement
EEG permits direct communication between brains and
computers. In the current state-of-the-art, EEG is clearly
in an early stage of development for prediction, diagnosis,
and restoration of functions, as previously mentioned in
section Commercial Aspects. Notwithstanding, as technology
advances, future qualitative leaps could allow superior functional
enhancement (N = 21) (Hildt, 2011). This progression
raises a number of questions about the nature of the
human being.

As soon as people begin to incorporate their body schemes
with enhancing neurotechnologies, which may allow them
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FIGURE 17 | FocusEDU system. Reprinted from BrainCo Focus1 Headband

And FocusEDU Software - Classroom Pack, by Tierney (2018), https://www.

tierney.com/products/brainco-focus1-headband-and-focusedu-software-

classroom-pack/. Copyright 2018, by Tierney Brothers, Inc.

to radically expand their endurance and their sensory and
mental capacities, authors like Hildt suggest that the notion of
human being could be disrupted (Hildt, 2011). In particular,
the extension of human limitations beyond the normal takes
the debate on an ethical realm in which BCI users could
become “cyborgs.” To this extent, Zehr believes that the
development of sophisticated technologies that greatly enhance
human intellect and physiology could transform the human
condition (Zehr, 2015). As a result, homo sapiens sapiens
could overcome its limitations and evolve into a homo sapiens
technologicus, who takes advantage of the technology to improve
its functioning (Zehr, 2015). This reassessment of the entire
human predicament, as traditionally conceived, has been called
“transhumanism” (Bostrom, 2005), and it is likely to change
social norms, raise concerns about equitable access, and generate
new forms of discrimination (Mercer and Trothen, 2014).
Dystopian settings such as a class society, in which humans
would coexist with enhanced humans, may come to fruition
and create social stratification (Vlek et al., 2012). Likewise,
nullifying equal access to resources as a consequence of unequal
access to technology can aggravate social competence and
unfairness among co-workers, thus generating new forms of
discrimination (Kein et al., 2015). Of course, not all authors
are convinced that these concerns are exclusive to BCIs
or even possible. However, they arise with new vitality by
virtue of advanced EEG-based BCI (McGee and Maguire,
2007).

Privacy and Data Protection
The potential widespread use of EEGwearables raises a final set of
issues that cluster around research ethics and the law (N = 15).
As new ways of connecting to the brain emerge, new potential
violations of user privacy might flare up. As enshrined in the
General Data Protection Regulation (GDPR), which entered into
force in 2018, brain data qualifies as sensitive data, thus triggering
higher protection standards than those for personal data. This
means that the grounds for processing sensitive data under the

FIGURE 18 | Ethical aspects of EEG.

GDPR have become stricter and should comply with higher
security standards. The legal basis of these restrictions is found
in the greater impact that the misuse of such information could
have on the life of the individual. As previously introduced in
section Commercial Aspects, EEG devices could reveal a variety
of information about the natural person, ranging from health and
mental diseases and disorders, to psychological traits and mental
states, creating potential problems such as discrimination based
on neural information (Vlek et al., 2012). Indeed, some scholars
suggest that because the EEG is capable of directly extracting
sensitive information from the brain, a subject may be “unaware
of the extent of information that is being obtained from his or
her brain” (Vlek et al., 2012). Therefore, authors such as Farisco
et al. note that in the biomedical sector, informed consent must
respect (1) the disclosure of all needed information, (2) the
capacity to understand it, and (3) the voluntariness to undergo
the treatment (Farisco et al., 2015). In addition, in EEG-based
commercial applications, companies and manufacturers must
obtain a valid consent of the consumer by providing specific,
informed and unambiguous information on the processing of his
sensitive data. Some of the data that must be provided according
to the GDPR are the identity of the controllers, the purpose
of the processing, and the processing activities which may be
carried out.

With regards to the processing activities to be carried
out, a second privacy-related concern is the management of
the extracted information. Here, scientists and the private
sector have different interests. On the one side, the purpose
of scientists is to uncover the objective truth and bring it
among the public. On the other side, companies reluctantly
give away their know-how as this is part of a highly
competitive environment driven by profit maximization goals
(Stanton et al., 2017). At this point, major ethical concerns
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arise when it comes to the sharing of this confidential data
(Flores et al., 2014). The legislation on privacy and data
protection guarantees that the information extracted will be
kept confidential in a database, and its results should only be
shared on scientific grounds and in an anonymous way to ensure
the privacy of the research subject (Slowther and Kleinman,
2009). Failure to maintain the privacy of this sensitive data
will be considered a violation of any ethical research practice
and should result in the appropriate legal sanctions. Under the
current European framework for privacy and data protection,
violators can be fined up to 4% of their global turnover, or e
20 million.

Although there have not yet been any major scandals in
the European Union regarding the processing and sharing of
brainwave datasets, it has been reported fraudulent sharing
of scientific research output in the United States. Consumer
groups have claimed that Emory University and Baylor School of
Medicine violated the Belmont Report’s principle of beneficence
-which entails an obligation to protect individual subjects against
risk of harm and the societal benefits that might be gained from
the research- by partnering with neuromarketing companies
(Fisher et al., 2010; Pop and Iorga, 2012; Ulman et al., 2015;
Stanton et al., 2017). This situation has led to the modification
of national legislations worldwide. For instance, France, which
faced protests against neuroscience research, banned the use of
brain-imaging methods for commercial purposes in 2011. The
government argued that the processing of consumer brain signals
might constitute an invasion of privacy and they should be
solely processed for medical or scientific purposes (Ulman et al.,
2015).

Taking all these facts into consideration, privacy and data
protection are deemed as extremely important aspects to be
considered for a peaceful transition into a BCI society.

DISCUSSIONS AND CONCLUSIONS

The present scoping review provides a holistic view of EEG-
based market applications, as well as identifies the most
relevant ethical questions arising from the existing literature.
Yet before discussing these issues, several limitations of this
study should be considered. Although the study was conducted
using different databases, most of the articles found were
solely based on biomedical applications of BCI. By the same
means, the ethical debate revolving around neural technologies
was thus primarily focused on a biomedical approach. We
consider that the limited number of articles that evaluated
EEG from other non-biomedical research domains hampers
the purpose of the present review. In order to draw more
precise conclusions about the subject-matter of this study, more
research should be conducted from a non-biomedical scope.
This may emphasize different ethical connotations and present
this technology through alternative methodological lenses. More
broadly, we also identified that most of the ethical considerations
were asserted in a general BCI context, specially by taking into
consideration invasive BCI. Despite the fact that invasive and
non-invasive methods might foreseeably share a large number

of identical ethical concerns, more scientific effort should be
made on specific non-invasive risks in order to legitimize the
discourse surrounding EEG applications. Another limitation
of this review is that most of the literature addresses the
ethical problems from an advanced technology-based perspective
instead of focusing on the present state-of-the-art. Since one the
main duties of ethicists is to anticipate the new scenarios and
living conditions implicit in the relentless progress of technology,
we are prone to think that this approach may enhance the
existing technological capabilities and provide a distorted view
of reality. For this reason, we consider that the ethical findings
obtained in this review might be treated with a small dose of
scientific skepticism. Furthermore, the present review addresses
only those issues that were recurrently cited across the coded
articles with brief reference of other seldom detected topics.
Commercial applications and ethical problems that were rarely
cited, though underrepresented in this review, may be just
as significant as the categories described above. Despite these
limitations, there are several features of the literature sample that
can be highlighted here.

Commercial Aspects
There is no doubt that the overlap of science and markets is
inevitable, and EEG has the potential to revolutionize these
spaces. As stated, the applications of EEG are wide and can
be employed in different sectors and industries. Hitherto, EEG
solutions have been mostly explored in the medical sector for
prediction and diagnosis of various health conditions, as well as
for treatment, rehabilitation and assistance (N = 74). They have
been used as a rehabilitation tool for motor recovery after spinal
cord injury, as spellers for individuals who have no other way
to communicate; and as a means to control the environment of
people who are locked-in or paralyzed. Other industries in which
EEG has been successfully implemented are neuroergonomics,
smart tracking devices, video games, neuromarketing, education,
and authentication systems, among others. However, before EEG
becomes widely accepted as a useful and reliable tool in the
commercial sphere, several shortcomings need to be corrected.

First, EEG may be technologically questioned, so it should
be treated with a degree of caution given the actual limitations
of the current state-of-the-art. Secondly, for EEG technologies
to be mass marketed, some breakthroughs must be found.
Thirdly, from a cost-benefit standpoint, EEG may not be the best
option to invest at the moment due to its minimal commercial
viability. Fourth, for EEG to become satisfactory end-products,
they should also focus on a user-friendly design.

Limitations of EEG
Although a considerable amount of experimental evidence
supports the notion that EEG techniques can provide relevant
insights into the dynamic processes of the brain, authors also
point out that their numerous benefits could be questioned
(Lopes Da Silva, 2013). Currently, neuroscience research is
limited not only by revealing what is occurring in the brain, but
also by explaining why it occurs, thus making reliability a difficult
aspect to improve. It should be noted that EEG is still a relatively
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new technology and further advances should be made before the
dynamics of the cognitive processes are completely unraveled.

As far as consumer EEG devices are concerned, they may
be additionally distrusted due to several restraints. For instance,
Leitão & Campos argue that the number of electrodes on
consumer wearables is limited compared to the clinical-grade
devices. Also, the electrodes are usually focused on a specific
area of the brain and their resolution is lower compared with
those of high-clinical density (Leitão and Campos, 2017). Swati
et al. discuss that any eye movement, muscular activity or
electronic devices in the vicinity of such commercial devices
introduce artifacts to the signal that can disrupt the measurement
of actual brain waves (Vaid et al., 2015). They also claim
that numerous possible features with minimal computation and
over-specification are still a key problem when considering
recognition performance of the signal (Vaid et al., 2015). Spapé
et al. recognize that the validity of classification algorithms for
commercial EEG applications cannot be confidently assessed due
to brand opacity and trade-secrets (Spapé et al., 2015). Finally,
Poldrack suggests that the inferential methods used to study
cognitive processes, which may be predictable to some extent,
could be unreliable with respect to reverse inference (Poldrack,
2006). This, alongside with the low signal-to-noise ratio (SNR)
of consumer consumer-grade devices, questions their validity as
reliable neuroscience solutions.

Since EEG should then be regarded with some degree of doubt
and the future of this technology is still uncertain, attention
and scientific rigor shall be applied when formulating proposals
about its future potentials. As several authors have already
pointed out, a greater debate should be generated on the real
effects of mind-reading technologies in order to prevent the
naïve misconceptions that the information media can instill
in the general public (Kenning, 2008; Weisberg et al., 2008;
Spapé et al., 2015). These false assumptions about the objectivity
and trustworthiness of consumer neuroscience solutions visibly
magnify their real capacities, which are still far from their
forecasts. Indeed, actual consumer-grade devices may well-satisfy
consumers, but from a scientific point of view their reliability and
effects still remain unclear.

Technological Breakthroughs
Even if the natural limitations of EEG could be remedied, there
still remains the need for technological disruptions to ensure the
reliability of the device. As part of this approach, a growing body
of evidence shows that EEG is clearly observing an asymptotic
trend in the accuracy for cognitive state or intent estimation that
converges to a significant error rate of 5–20% depending on the
targeted cognitive variable (Makeig et al., 2012). It is possible that
this trend may not be significantly curved by the sole action of
incremental improvements alone. Disruptive innovations should
take place in order to allow for the scaling up of both the
amount of integrated information and the amount of offline
and online computing (Kurzweil, 2001). For example, such
innovations may arrive in the form of better electrophysiological
sensor technologies, possibly via extremely high channel-count
and signal-to-noise-ratio non-invasive systems. The combination
of these systems with sufficient computational resources could

conceivably allow the modeling of brain activity at a range of
spatial-temporal scales, as well as considerably reduce measuring
errors, as postulated by Vaid et al. (2015). Additionally, to
reach this level of information density, safer and more efficient
procedures should be developed to enable closer-to-brain source
measurements (Liao et al., 2012; Hoodgar et al., 2013). Thus, for
EEG wearables to become as useful as computer mice and touch
screens, technological breakthroughs are required that exceed
the marginal improvements of current information processing
techniques. Recent entrepreneurial initiatives are attempting to
achieve these goals. In the field of communication and control,
Facebook’s purpose is to accelerate mobile device communication
using non-invasive techniques to reach brain typewriting speeds
of 100 words per minute (Strickland, 2017). However, at the
present time there is still no pronouncement on the success of
this type of initiatives.

Cost-Benefit Trade-Offs
Aside from the limitations and technological breakthroughs that
have been highlighted, another commercial issue that needs to be
examined is the economic viability of EEG solutions to become
satisfactory consumer-grade devices.

As previously mentioned, the present scoping review has
determined that medical applications of EEG represent its most
prominent uses. Indeed, EEG has been used as an assistive
technology in the biomedical realm by default. The fact that
EEG is mostly applied in the medical field and its solutions
are primarily targeted at particular users, such as people with
motor disabilities and LIS patients, has a high impact on its
business prospects. This user population barrier has already
been recognized by several authors, who believe that the high
specificity of EEG users limits the market niche to which
EEG solutions are directed (Nijboer, 2015). Having thus a
reduced number of users, the market entry barriers for EEG
investment are relatively high, and the expected reimbursement
for commercial commitment tends to be low, as suggested
by Nijboer (2015). This is the fundamental reason why BCI
development is at the moment primarily subsidized by the
European Commission (e 11 million in FP6 and e 34 million
in FP7), as its dimensions are not likely to attract the attention of
the industry (Nijboer, 2015).

Despite this fact, as EEG-based pBCI applications begin to be
deployed for purposes other than traditional aBCI applications,
i.e., they start to be used as smart tracking solutions in
diverse sectors such as those identified in the literature, their
attractiveness could be increased. Consequently, novel EEG
applications may expand their initial tailored group to wider user
populations, thus increasing investment in EEG.

User-Friendly Design and Experience
Finally, for EEG to become satisfactory end-products, they
should also focus on design for usability. As some authors have
stated, most of the current EEG prototypes are evaluated on the
basis of speed and accuracy, rather than on usability (Moghimi
et al., 2012), and they have argued that EEG engineers should
integrate ergonomic factors and human-computer interaction
principles into the design of their products (Bos et al., 2010;
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Pasqualotto et al., 2012). Here, one of the most critical concerns
for EEG wearables is the inconvenience to wear them in large-
scale samples for extended periods of time (Xu and Zhong, 2018).
If these problems could be solved in the near future, for example,
by building more adaptive and portable wearables, EEG would be
more widely used. In the same vein, the aesthetics of the device
may be as important to users in everyday life, if not more so, than
the technology itself. These can be key factors for the success of
EEG products and services.

Furthermore, consumer experience is also an issue that has
been extensively addressed. At an individual level, the use
of EEG in sectors such as self-regulation frequently becomes
either boring or frustrating over time (Nafus and Sherman,
2014). When, however, it is elevated to a collaborative level,
some authors postulate that better results are achieved (Lupton,
2013). Most likely, the future of EEG-based pBCI lies in
collaborative endeavors. Since human beings are inherently
social creatures, advanced EEG technologies could foster their
interactions. For example, consumers could be empowered and
motivated by bringing them into large-scale interactive projects
or programs in which users may communicate within the legal
constraints. In addition, the user experience may be greatly
improved by detecting users’ affective states to adapt individual
and collaborative features. In this sense, by mobilizing a new
generation of EEG headsets focused on user-friendly experience,
this technology could be brought on board pervasively (Swan,
2016).

Ethical Aspects
Overall, the results of this review show that EEG sparks concern
over many ethical problems and questions that should be
addressed, particularly in the literature of biomedical ethics.
It seems that further attention on the social impact of neural
technologies in the following fields should be paid.

Safety and Risk-Benefit Analysis
The most frequently cited problem in the literature concerns
safety in medical and non-medical settings (N = 33).

In the first case, it has been noted that there is lack of
literature handling this concrete ethical problem for non-invasive
applications such as EEG. Although there is a predominance
of discussion on the potential negative side effects in brain
plasticity of EEG wearables, the results are inconclusive and the
hazards have not yet been validated. Given that EEG technology
is currently being assessed without direct acknowledgment of the
above concern, ethicists deliberating on this topic may need to
wait until more robust conclusions about the real side effects of
long-term uses of EEG devices are presented. Nevertheless, as
these devices are easily accessible over the internet and can be
expected to be worn ubiquitously in the future, medical hazards
remain important issues for which some consideration must
be given.

In the second case, non-medical risks, such as frustration,
have been broadly mentioned in the literature as problems that
justify improvements in EEG wearables. These advances could
come in the form of psychologically adaptive EEG. Such devices
may interact with user mental states, leading to a reduction in

training frustration and in users’ physical and emotional burdens.
Several authors have proposed overt adaptive EEGs that would
be automatically deactivated when extremely low attention levels
are detected or reactivated when the user’s attention has returned
(Fairclough, 2009). It has also been suggested the development
covert adaptive devices which would autonomously modify their
classification algorithm to adapt to changes in the users’ mental
states (Fairclough, 2009). This would allow more sensible and
dynamic wearables as well as an increase of user experience.
Device failure and algorithmic vulnerability are also critical
issues highlighted by several authors. In these cases, we expect
improvements to arrive as soon as technological breakthroughs
appear, which allow EEG processing capabilities to be more
robust and precise as well as more cybersecure.

Since safety is thus a critical issue, more extensive high-
level discussions should be held on the relative risks and
benefits of EEG devices. These discussions should highlight the
importance of elaborating risk-benefit assessments by comparing
EEG solutions with alternative assistive technologies, as stated by
some authors (Tamburrini, 2014).

Agency
There are a remarkable number of articles in the literature dealing
with the ethical implications of agency through the use of neural
technologies (N = 28). Here, the main highlighted issues were
related to the increased/decreased agency, as mentioned above.

Regarding the positive effects of EEG, authors suggest that
the possibility of increased agency via EEG assistive applications
is one the most important benefits of this technology. Here,
the empowerment of functionally diverse individuals has been
extensively addressed, and there is agreement about the decrease
of social stigma that neural technologies may lead to. As neural
technologies start being included in patients and consumers
daily-life activities, they may enhance their lost agency capacity
as well as return them the necessary confidence to autonomously
interact with their environment. This can be of great relevance
in contexts where patients’ autonomous decision-making may
enable them to achieve higher standards of living and dignity,
especially in end-of-life situations. Regarding the negative effects,
it has been identified that the incorporation of EEG technologies
into the body-schemes of consumers could lead to several
downsides, such as new forms of manipulation which may limit
user’s agency.

Bearing in mind the trade-offs of EEG, the key issue that
remains to be identified is patient’s preferences. It is essential
to balance the interference and support of EEG systems in
the user’s daily activities. Thus, it could be possible that users
may be willing to sacrifice some level of exposure in favor of
having a greater capacity to do what they want to do or not.
Understanding what would count as a reasonable balance for
the user must be part of the design process, and it might seem
that a system that offers options to the user would be preferable
(Gilbert, 2015; Hoppe et al., 2015). This may have a profound
impact on the incorporation of EEG assistive tools into the
“body schemas” (Heersmink, 2013) and “structures of decision-
making and acting” of patients (Clausen, 2008), as well as on
the deployment of EEG in the consumer markets. In any case,
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the practical implications of the agency debate are of the utmost
importance, as they could challenge the social acceptance of
this technology.

Identity
In contrast to the agency issue, the identity problem has been less
extensively validated through the literature. Notwithstanding,
there are still a notable number of articles in the literature
dealing with the ethical implications of identity (N = 24).
These concerns are eminently raised in invasive contexts of
use. Here, more empirical research should be conducted in the
area of non-invasive devices in order to draw well-founded
conclusions. Beyond this preliminary debate, it should be further
examined whether these types of changes should be understood
as threats to identity per se or as simple alterations that
may be beneficial or detrimental to the individual (Schermer,
2009; Baylis, 2013). To this extent, some scholars have already
pointed out that the interpretation of the concept of identity as
something fixed or mutable over time constitutes the premise
of this debate (Goering et al., 2017). Therefore, a broader
debate about the concept of identity should be conducted,
as well as it should be evaluated ex ante whether or not
these changes in personal identity may be a real problem that
could have an impact on technological development and access
to EEG.

Enhancement
Enhancement through neural technologies poses several
concerns as identified in the literature (N = 21). We consider
that these propositions should be treated from a broad
perspective and, in any case, as long-term assumptions. Indeed,
research shows that the technology stage is still premature to
perceive the ethical implications of augmentation as present
real-life problems. What should be noted is that public
engagement, ethical deliberation, and legal frameworks shall be
developed in order to accomplish a peaceful transition toward
ubiquitous EEG. Since the ultimate goal of scientific research
is social welfare, the deployment of neural technologies should
obey the ethical and legal standards agreed upon by society.
Therefore, involving the public in the debate and discussion
on new emerging technologies is an essential requirement
for this transition. Particularly, actions should be undertaken
to inform, educate, and shape public policy regarding the
use of neural technologies. As Heidegger indicates, the key
to transitioning to a future of greater human-technology
integration in an empowering manner is to consider the
public opinion and tolerance, as well as to maintain “the
right relationship with technology” (Heidegger, 1997). This
relationship is an interaction in which technology enables but
does not enslave.

Privacy and Data Protection
Lastly, the findings of this review indicate that with the
deployment of EEG wearables as consumer-grade devices, large
amounts of sensitive data about the data subject will be collected

and processed (N = 15). Consequently, private and public
entities shall ensure transparency in relation to the processing
of these pieces of data, as well as the appropriate security
and confidentiality of the personal data relating to the data
subjects. In addition, institutions shall stay updated to avoid
any possible data breaches, and develop strong cyber hygiene
practices and secure products. For example, communications
between wearable sensors and processing or storage units shall
be based on encrypted protocols to ensure appropriate security
levels. Likewise, firewalls and domain name server-based security
solutions should be kept updated to prevent unauthorized access
and protect devices when they are exposed in everyday contexts.

On the other hand, any entity that keeps sensitive
information will have to engage with industry and government
standard’s bodies to establish and steward technology norms
as features. This would entail safe and secure processes,
including a consent procedure that clearly specifies who
will use the data, for what purposes and for how long.
Consumers and patients should be assured that information
and results concerning them will be kept confidential
in a database, and that results shall be shared only on
scientific grounds and anonymously to maintain their
privacy rights.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR’S NOTE

Certain legal implications of SECTION IV, D. Privacy and data
protection, were not part of the scoping review and are provided
for explanatory purposes only.

AUTHOR CONTRIBUTIONS

CFmade the literature review and wrote the paper. GL edited the
paper. DZ is the supervisor, who conceived this study and edited
the paper. All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by the National Natural Science
Foundation of China under Grant Nos. 61761166006
and 91848112.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2020.611130/full#supplementary-material

Frontiers in Neuroscience | www.frontiersin.org 18 December 2020 | Volume 14 | Article 61113023

https://www.frontiersin.org/articles/10.3389/fnins.2020.611130/full#supplementary-material
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fontanillo Lopez et al. Review of EEG

REFERENCES

Abdulkader, S. N., Atia, A., and Mostafa, M. S. M. (2015). Brain computer

interfacing: applications and challenges. Egypt. Inform. J. 16, 213–230.

doi: 10.1016/j.eij.2015.06.002

Agid, Y., Schnupbach, M., Gargiulo, M., Mallet, L., Houeto, J. L., Behar, C., et al.

(2006). Neurosurgery in Parkinson’s disease: the doctor is happy, the patient

less so? J. Neural Transmission 70, 409–14. doi: 10.1007/978-3-211-45295-0_61

Akcakaya, M., Peters, B., Moghadamfalahi, M., Mooney, A., Orhan, U., and

Oken, B. (2014). Noninvasive brain-computer interfaces for augmentative

and alternative communication. IEEE Rev. Biomed. Eng. 7, 31–49.

doi: 10.1109/RBME.2013.2295097

Aloise, F., Schettini, F., Aric,ò P., Salinari, S., Guger, C., Rinsma, J., et al.

(2011). Asynchronous P300-based brain-computer interface to control a virtual

environment: initial tests on end users. Clin. EEG Neurosci. 42, 219–24.

doi: 10.1177/155005941104200406

Ang, K., Guan, C. K., Sui Geok Chua, K., Ang, B., and Kuah, C. (2010).

“Clinical study of neurorehabilitation in stroke using EEG-based motor

imagery brain-computer interface with robotic feedback,” in 2010 Annual

International Conference of the IEEE Engineering in Medicine and Biology

(Buenos Aires), 5549–5552. doi: 10.1109/IEMBS.2010.5626782

Appelbaum, P. S., and Grisso, T. (1988). Assessing patients’ capacities

to consent to treatment. N. Engl. J. Med. 319, 1635–1638.

doi: 10.1056/NEJM198812223192504

Aricò, P., Borghini, G., Di Flumeri, G., Colosimo, A., Bonelli, S., Golfetti, A., et al.

(2016). Adaptive automation triggered by EEG-based mental workload index:

a passive brain-computer interface application in realistic air traffic control

environment. Front. Hum. Neurosci. 10:539. doi: 10.3389/fnhum.2016.00539

Arico, P., Borghini, G., Flumeri, G. D., Bonelli, S., Golfetti, A., Graziani,

I., et al. (2017). Human factors and neurophysiological metrics in air

traffic control: a critical review. IEEE Rev. Biomed. Eng. 10, 250–263.

doi: 10.1109/RBME.2017.2694142

Aricò, P., Borghini, G., Flumeri, G. D., Sciaraffa, N., and Babiloni, F. (2018). Passive

BCI beyond the lab: current trends and future directions. Inst. Phys. Eng. Med.

39:08TR02. doi: 10.1088/1361-6579/aad57e

Arksey, H., and O’Malley, L. (2005). Scoping studies: towards a

methodological framework. Int. J. Soc. Res. Methodol. 8, 19–32.

doi: 10.1080/1364557032000119616

Arussy, L. (2009). Neuromarketing is not marketing. CRMMag. 13:12.

Baylis, F. (2013). ‘I am who I am’: on the perceived threats to personal

identity from deep brain stimulation. Neuroethics 6, 513–526.

doi: 10.1007/s12152-011-9137-1

Birbaumer, N., and Cohen, L. (2007). Brain-computer interfaces: communication

and restoration of movement in paralysis. J. Physiol. 579, 621–36.

doi: 10.1113/jphysiol.2006.125633

Birbaumer, N., Gallegos-Ayala, G., Wildgruber, M., Silvoni, S., and Soekadar, S.

(2014). Direct brain control and communication in paralysis. Brain Topogr. 27,

4–11. doi: 10.1007/s10548-013-0282-1

Blakeslee, S. (2004). If you have a buy button in your brain, what pushes it? New

York Times.

Blankertz, B., Acqualagna, L., Dähne, S., Haufe, S., Schultze-Kraft,

M., Sturm, I., et al. (2016). The berlin brain-computer interface:

progress beyond communication and control. Front. Neurosci. 10:530.

doi: 10.3389/fnins.2016.00530

Bonnet, L., Lotte, F., and Lecuyer, A. (2013). Two brains one game: design and

evaluation of a multi-user bci video game based on motor imagery. IEEE Trans.

Computat. Intell. AI Games 5, 185–198. doi: 10.1109/TCIAIG.2012.2237173

Boricean, V. (2009). Brief History of Neuromarketing 14–15th. Bucharest: ICEA–

FAA. 119p.

Bos, D. P. O., Reuderink, B., van de Laar, B., Gürkök, H., Mühl, C., Poel, M.,

et al. (2010). “Human-computer interaction for BCI games: usability and user

experience,” in 2010 International Conference on Cyberworlds (CW), (IEEE:

Singapore). doi: 10.1109/CW.2010.22

Bostrom, N. (2005). A history of transhumanist thought. J. Evol. Technol. 14, 1–30.

doi: 10.5840/jpr_2005_26

Brumberg, J., Nieto-Castanon, A., Kennedy, P. R., and Guenther, F. (2010). Brain-

computer interfaces for speech communication. Speech Commun. 52, 367–79.

doi: 10.1016/j.specom.2010.01.001

Burwell, S., Sample, M., and Eric, R. (2017). Ethical aspects of brain

computer interfaces: a scoping review. BMC Med Ethics 18:60.

doi: 10.1186/s12910-017-0220-y

Calvert, G., and Thensen, T. (2004). Multisensory integration: methodological

approaches and emerging principles in the human brain. J. Psychol. 98,

191–205. doi: 10.1016/j.jphysparis.2004.03.018

Carmichael, C., and Carmichael, P. (2014). BNCI systems as a potential

assistive technology: ethical issues and participatory research in the BrainAble

project. Disabil. Rehabil. Assist. Technol. 9, 41–47. doi: 10.3109/17483107.2013.

867372

Chan, T. F. (2018). China is Monitoring Employees’ Brain Waves and Emotions.

New York, NY: Business Insider.

Chen, X., Wang, Y., Nakanishi, M., Gao, X., Jung, T. P., and Gao, S. (2015). High-

speed spelling with a noninvasive brain–computer interface. Proc. Natl. Acad.

Sci. U.S.A. 112, E6058–E6067. doi: 10.1073/pnas.1508080112

Clarke, A. R., Barry, R. J., Dupuy, F. E., Heckel, L. D., McCarthy, R., and

Selikowitz, M. (2011). Behavioural differences between EEG-defined subgroups

of children with attention-deficit/hyperactivity disorder. Clin. Neurophysiol.

122, 1333–1341. doi: 10.1016/j.clinph.2010.12.038

Clausen, J. (2008). Moving minds: ethical aspects of neural motor prostheses.

Biotechnol. J. 3, 1493–1501. doi: 10.1002/biot.200800244

Comani, S., Schinaia, L., Tamburro, G., Velluto, L., Sorbi, S., Conforto,

S., et al. (2015). “Assessing neuro-motor recovery in a stroke survivor

with high-resolution EEG, robotics and Virtual Reality,” in 2015 37th

Annual International Conference of the IEEE Engineering in Medicine

and Biology Society (EMBC) (Milan), 3925–3928. doi: 10.1109/EMBC.2015.

7319252

Corentin, G., and Pascal, H. (2013). Apports de l’électroencéphalographie

à la compréhension de la mémoire. Rev. Neuropsychol. 5, 243–254.

doi: 10.1684/nrp.2013.0280

Corralejo, R., Nicolas-Alonso, L., Alvarez, D., and Hornero, R. (2014). P300-

based braincomputer interface aimed at operating electronic devices at

home for severely disabled people. Med. Biol. Eng. Comput. 52, 861–872.

doi: 10.1007/s11517-014-1191-5
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Sensorimotor rhythm (SMR)-based brain–computer interfaces (BCIs) provide an
alternative pathway for users to perform motor control using motor imagery. Despite
the non-invasiveness, ease of use, and low cost, this kind of BCI has limitations due
to long training times and BCI inefficiency—that is, the SMR BCI control paradigm may
not work well on a subpopulation of users. Meditation is a mental training method to
improve mindfulness and awareness and is reported to have positive effects on one’s
mental state. Here, we investigated the behavioral and electrophysiological differences
between experienced meditators and meditation naïve subjects in one-dimensional
(1D) and two-dimensional (2D) cursor control tasks. We found numerical evidence
that meditators outperformed control subjects in both tasks (1D and 2D), and there
were fewer BCI inefficient subjects in the meditator group. Finally, we also explored the
neurophysiological difference between the two groups and showed that the meditators
had a higher resting SMR predictor, more stable resting mu rhythm, and a larger control
signal contrast than controls during the task.

Keywords: EEG, electroencephalogram, mindfulness, meditation, BCI, brain-computer interface

INTRODUCTION

Decades of research have sought to find alternative methods of communication between the human
brain and the outside world. With the ever-growing knowledge in the neuroscience field, scientists
have designed the brain–computer interface (BCI) to achieve this goal (Wolpaw et al., 2002; He
et al., 2020). A BCI attempts to recognize the user’s intent by decoding her/his neurophysiological
signals and then converts this intent into commands to control objects, such as a cursor on a
computer screen (Wolpaw et al., 1991; Trejo et al., 2006), a quadcopter (LaFleur et al., 2013), or
a robotic arm in space (Meng et al., 2016; Edelman et al., 2019).

One of the main goals for the BCI is to help people suffering from various kinds of
neuromuscular diseases, such as amyotrophic lateral sclerosis, stroke, and spinal cord injury
(Armour et al., 2016) to regain a certain degree of movement ability (Rebsamen et al., 2010; Ang
et al., 2015). Despite the limited ability to move, cognitive ability in this population remains partially
or fully intact. Therefore, it would be a significant improvement in the quality of life if these
individuals could use a BCI to complete daily life tasks.

Frontiers in Neuroscience | www.frontiersin.org 1 January 2021 | Volume 14 | Article 58497129

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.584971
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2020.584971
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.584971&domain=pdf&date_stamp=2021-01-21
https://www.frontiersin.org/articles/10.3389/fnins.2020.584971/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-584971 January 16, 2021 Time: 21:20 # 2

Jiang et al. Meditation Effect on BCI Learning

There are many types of BCI based on various recording
techniques and signals extracted. In this work, we focus
on the sensorimotor rhythm (SMR)-based BCI, which uses
electroencephalogram (EEG) to detect scalp electrical signals and
decode motor intention (Yuan and He, 2014; He et al., 2015).
The EEG-based SMR BCI has multiple merits, such as non-
invasiveness, ease of use, relatively low cost, and high temporal
resolution (He et al., 2020). This is particularly true when only
a few electrodes are used (Clerc et al., 2016). The SMR or mu
rhythm in EEG is generated by the synchronized electrical brain
activity over the motor cortex area and has a frequency range
of around 8–12 Hz (Pfurtscheller et al., 2006; Bernier et al.,
2007). In BCI applications, the frequency band centered at 12 Hz
(Royer et al., 2010; Doud et al., 2011; Cassady et al., 2014; Meng
et al., 2016, 2018; Stieger et al., 2020) was shown to be effective
in SMR control. Event-related desynchronization (ERD) occurs
when the amplitude of mu rhythm decreases in response to a
person moving or imagining moving her/his body (Pfurtscheller
and Aranibar, 1979). On the other hand, when a person stops
moving or imagining moving, the amplitude of mu rhythm
increases, which is called event-related synchronization (ERS).
SMR based BCI is a well-established BCI modality, and it has
been demonstrated that people can perform multidimensional
cursor control (McFarland et al., 2010; Meng et al., 2018),
drone control (Royer et al., 2010; Doud et al., 2011; LaFleur
et al., 2013), wheelchair control (Galán et al., 2008; Huang
et al., 2012), and robotic arm control (Meng et al., 2016;
Edelman et al., 2019) with SMR BCI.

Despite the progress of SMR-based BCI, challenges exist.
Two primary limitations of SMR-based BCI are the system’s
need for long training times and BCI inefficiency, where the
SMR BCI control paradigm may not work on around 20% of
the system’s users (Blankertz et al., 2010). The latter could be
further developed as a subject variability issue: there exists a
large variability of SMR BCI performance among the population.
Efforts have been made to investigate its cause and solution (Ahn
and Jun, 2015; Jeunet et al., 2016). For instance, Guillot et al.
(2008) found that good MI performers have an increased ability
to recruit MI-related brain network, and Sannelli et al. (2008)
found that BCI inefficient subjects usually have higher intrinsic
noise, i.e., the noise in the data which can overshadow the
class-related information; Ahn and Jun (2015) did a systematic
review of literature on SMR BCI inefficiency and found that
these subjects typically have less developed brain networks
for motor skills; Jeunet et al. (2016) further summarized the
factors influencing SMR BCI as a relationship to the technology,
attention, and spatial abilities.

Attention has been focused on developing better decoding
algorithms and recording techniques (Lotte and Guan, 2011) for
SMR BCI, i.e., from the “computer” perspective of BCI. However,
less attention has been drawn to enhancing people’s ability to
generate more decodable EEG signals, i.e., from the “brain” side.
For the latter, the high-level goal is to determine, given the same
BCI system, if there exists a subpopulation that is better able
to control it and if a certain kind of training or intervention
could be developed to equip neurotypical people with this BCI
control ability.

In the search for optimal mental training methods to
potentially improve SMR BCI control, meditation is of interest
due to its ability to alter brain plasticity and influence spatial–
temporal brain activity, which in turn, are important components
of SMR BCI control (Chan and Woollacott, 2007; Tang et al.,
2007; Moore and Malinowski, 2009; Debarnot et al., 2014).
As summarized in Debarnot et al. (2014), one of the most
important effects of meditation is enhanced attention control,
such as orienting attention (van den Hurk et al., 2010) and
conflict monitoring (Jha et al., 2007). In terms of the influence
of meditation on brain rhythms, Halsband et al. (2009) found
that in hypnotic and mindfulness meditation states, there exist
a modulation of alpha, gamma, and theta band brain rhythms,
including but not limited to the sensorimotor area, which
indicates the ability of meditation to alter motor-related spatial–
temporal brain activity. In Kerr et al. (2011a), mindfulness
training was found to enhance MEG alpha power modulation in
the primary somatosensory cortex (SI).

With growing evidence suggesting that meditation brings
enhanced attention and brain rhythm control, it is reasonable
to hypothesize that people with meditation experience would
develop a better ability to control SMR-based BCI. Indeed,
previous work has investigated the effect of meditation on SMR
BCI cursor control (Cassady et al., 2014; Tan et al., 2014,
2015; Kober et al., 2017; Stieger et al., 2020) or just generating
ERD/ERS without controlling a BCI system (Kerr et al., 2011a,b,
2013; Rimbert et al., 2019). Similar to what Tang et al. (2015)
summarized for the neuroscience aspect of meditation studies,
efforts to study the meditation effect on SMR BCI could be
divided into two categories, longitudinal studies and cross-
sectional studies:

1. Previous longitudinal studies separated meditation-naïve
subjects into a meditation group and a control group, with
the meditation group receiving meditation training and
the control group receive either active control tasks or no
specific task (Mahmoudi and Erfanian, 2006; Tan et al.,
2014, 2015; Botrel and Kübler, 2019; Stieger et al., 2020).
After that, BCI performance and/or neurophysiological
difference between the two groups was assessed. For
example, a series of studies by Tan et al. (2014, 2015)
and Ramli et al. (2019) described the effect of 4 weeks
mindfulness meditation on SMR BCI performance, that
mindfulness meditation improved BCI performance and
was correlated with activation in the frontal–parietal region
in functional magnetic resonance imaging during motor
imagery. In Mahmoudi and Erfanian (2006), the mental
practice of MI and concentration procedures improved
the offline classification of MI in multiple EEG electrodes,
such as C3 in the primary motor cortex area and F3 in
the frontal area. In Kerr et al. (2013), they discovered that
an 8 weeks mindfulness-based stress reduction training
served to optimize attentional modulation of 7–14 Hz
alpha rhythm in the primary sensory neocortex. Rimbert
et al. (2019) found that the hypnotic state changes the
sensorimotor beta rhythm during the ERD period, whereas
the ERS in the mu and beta band remains unchanged. In
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Stieger et al. (2020), an 8 weeks MBSR class improved SMR
BCI accuracy via modulation of the volitional resting-state
high alpha EEG rhythm.

2. In contrast, cross-sectional studies have investigated the
difference in BCI/neurofeedback learning between people
who already have meditation experience and meditation
naïve subjects (Cassady et al., 2014; Kober et al., 2017).
In Cassady et al. (2014), the meditation group was
shown to have better results compared with the control
group in terms of performance, learning speed, and
information transfer rate. However, most of the claims
in this study focused on the behavior difference. A more
in-depth analysis of the neurophysiological difference is
needed. Another question left unanswered is whether
meditators are also better at more complex tasks, such
as two-dimensional (2D) cursor control. A typical 2D
cursor control paradigm is achieved by having the subject
use left/right (LR) motor imagery to control LR cursor
movement, bilateral hand motor imagery to go up, and
rest to go down. Successful 2D cursor control requires
the subject to carefully balance the strength of LR motor
imagery and, therefore, is more challenging than 1D
control. Because meditators are trained to control their
attention, it is of interest to see if the BCI learning
difference between meditators and non-meditators in a
2D BCI task would be even larger compared with 1D
tasks and if there is any difference between the LR and
up/down (UD) within the 2D compared with the 1D
version of LR and UD tasks. In another study, Kober
et al. (2017) found that people who pray frequently had a
higher ability to control the SMR, but the recording was
limited to Cz electrode only, and the control dimension
was limited to 1D.

Despite the abundance of literature reporting positive effects
of meditation on SMR BCI control, there are also studies
whose results only partially support (Stieger et al., 2020) or
do not support such a hypothesis (Botrel and Kübler, 2019).
For example, Stieger et al. (2020) found that after an 8 weeks
mindfulness-based stress reduction training, subjects indeed had
significant performance improvements in the UD task (both
hands motor imagery to go up and rest to go down), but
for the LR control task (LR-hand motor imagery) the effect
was not significant. Botrel and Kübler (2019) found that week-
long visuomotor coordination and relaxation training did not
improve SMR-based BCI performance. One of the reasons for
this kind of disagreement may be a dose-effect, meaning that it
might take a longer meditation time to affect BCI learning in a
significant manner.

With these questions in mind, we recruited experienced
meditators and controls and investigated the difference in SMR
BCI learning between these two groups in both 1D and 2D
tasks. The aims for this cross-sectional study are as follows:
First, to verify the conclusions in the pilot study (Cassady et al.,
2014) that meditators had better learning in SMR BCI with
an independent investigation; second, to explore the behavior
difference between the two groups in a more complex 2D

task; and third, to investigate the neurophysiological difference
between these two groups.

MATERIALS AND METHODS

Participants
The experimental procedures involving human subjects
described in the current study were approved by the Institutional
Review Board (IRB) of Carnegie Mellon University with study
ID STUDY2017_00000430, and all participants provided written
informed consent. Subjects were recruited via flyers in the
surrounding area and an email sent out to local mindfulness
groups. We utilized a single-blind two-group experimental
design, with a meditation group and a control group. The
experimenters did not know the identity of the subject in
relation to their meditation experience throughout the whole
experiment. We achieved this blinding through the following:
(1) we asked two other researchers at our lab to refer potential
subjects (both meditators and controls) to an unblinded research
assistant (screener) and not to the blinded experimenters; (2)
these potential subjects were screened for inclusion/exclusion
by this screener whose only involvement in the study was to
conduct screening; (3) during the consent process and survey, the
experimenter asked the subject to cover any information related
to meditation experience when submitting the paperwork; thus,
the experimenter only knew information unrelated to meditation
(age, sex, name, etc.) about this subject after collecting these
documents. (4) During the experiment, the experimenter
remained unaware of the subjects’ meditation status and
avoided any conversation related to meditation with the subject
throughout the entire six sessions.

The meditation group consisted of 16 healthy subjects
(age = 38.5 ± 15.7 years) with a history of meditation practice,
as evaluated by a questionnaire regarding personal meditation
practice completed before experimentation. To be accepted into
the meditator group, individuals had to cite at least a year of
frequent and consistent practice, with most subjects having 2
or more years of consistent practice. Most of the meditators’
practices belong to the subgroup of Vipassana, Zen, Mindfulness,
and Buddhism. The control group consists of 19 healthy
individuals (age = 25.6 ± 9.4 years) with no prior meditation
experience. Both groups had no prior BCI experience. We
continually asked participants to describe their motor imagery
strategies. If these strategies diverged from the kinesthetic motor
imagery they were asked to perform, we reminded them to focus
on the sensations and intention behind the imagined motion of
their hands. We excluded one subject (identity: meditator) from
the analysis because she/he expressed resistance to performing
the required motor imagery and was not able to provide a
concrete strategy when asked. Subjects’ demographic information
is summarized in Supplementary Table 1.

Surveys to Measure Mindfulness
In the first session, we asked subjects to fill out two surveys
before the BCI experiment. Both surveys aim to measure one’s
level of mindfulness. The first survey is called the Freiburg
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Mindfulness Inventory (FMI) (Walach et al., 2006), which has
14 statements, such as “I am open to the experience of the
present moment.” The subject was asked to use a 1–4 scale to
indicate how often she/he has such experience. The FMI score
was calculated by summing up the answers to each question
with a proper recode of one question (Walach et al., 2006).
The second survey is called Day-to-Day Experiences (Brown and
Ryan, 2003), which has 15 questions, such as “I find it difficult
to stay focused on what’s happening in the present;” the subject
was asked to use a 1–6 scale to indicate how often she/he has such
experience. The Mindful Attention Awareness Scale (MAAS) was
calculated by averaging answers to each question in this Day-to-
Day Experiences survey. In both surveys, a higher score indicates
a higher level of mindfulness.

Data Acquisition and Brain–Computer
Interface Cursor Control Task
Subjects in both groups went through six sessions of BCI
training within 4–6 weeks, with at least 1 session per week. Each
experimental session lasted about 2 h, with a 9 min break in the
middle. EEG data were recorded throughout the session using
the Neuroscan SynAmps system with 64-channel EEG QuikCap

(Neuroscan Inc., Charlotte, NC). The sampling frequency was set
to 1,000 Hz, and the impedance was kept below 5 k� during
the preparation. The experimenter checked the impedance in
the break to make sure it remained below 5 k�. In addition, to
minimize the influence of artifact on the EEG data, we monitored
the behavior of the subject and the recorded waveform. We
restarted this run if we found the subject moved a lot or the
real-time EEG signal became noisy.

The experiment setup is shown in Figure 1. Each session
began with a 5 min warmup task, where the subject was
instructed to perform left- or right-hand motor imagery
by focusing on imagining the sensations and intention of
opening/closing the LR hand.

After that, the subject was asked to perform BCI cursor control
of three different tasks: LR, UD, and 2D, by moving the cursor
to the corresponding bar with motor imagery. This experiment
flow is detailed in Figures 1A,B. In the LR task, subjects were told
to imagine opening/closing the LR hand as they practiced in the
warm-up to move the cursor to the LR, to hit a bar that appears
randomly at the right or left side of the screen. The vertical
position of the cursor was fixed in the middle of the screen in the
LR task. After subjects performed three runs of LR BCI, with each
run consisting of 25 trials, a similar explanation was given for the

FIGURE 1 | Experimental setup. (A) Top: three experiment tasks and typical cursor trajectories in left/right (LR) control, up/down (UD) control, and 2D control.
Dashed lines were invisible to the subject. Bottom: example topology of mu rhythm band power in each motor imagery class. (B) Experiment flow of one session.
(C) Each trial consists of 2 s of intertrial interval, 2 s of target presentation, and 0–6 s of BCI feedback control.
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UD BCI task, except they were instructed to imagine both hands
simultaneously opening and closing to move the cursor up, and
to rest, in other words, try to clear their minds to move the cursor
down. The cursor’s horizontal position was fixed at the middle of
the screen in the UD task. After subjects performed three runs
of UD BCI, they moved onto the 2D task, in which the same
instructions were implemented to move the cursor up, down, left,
or right according to which bar appeared on the screen. In the
2D task, the cursor is free to move in any direction within the
screen boundary. After one block (three runs) each of LR, UD,
and 2D BCI, the subjects were given a 9 min break in which they
were instructed to read and rate comics by pressing a key on the
keyboard. This standard “break task” ensures that subjects use the
same approach to relax. After the break, they completed one more
block each of LR, UD, and 2D BCI. In total, at each session, a
subject completes six runs (25 trials each run, takes ∼3 min each
run) of LR, UD, and 2D tasks.

We used the standard cursor task in BCI2000 (Schalk et al.,
2004) to conduct the SMR BCI experiment mentioned earlier.
The technical details of the classifier are presented as follows:
The spectral amplitude of the small Laplacian filtered C3 and C4
electrodes were estimated using autoregressive (AR) methods in
a 3 Hz bin (Stieger et al., 2020) surrounding 12 Hz (Meng et al.,
2016, 2018). After that, for the horizontal motion, a control signal
was calculated by taking the AR amplitude difference between
two electrodes (C4 – C3), and for the vertical motion, it was
calculated by summing up the AR amplitude of two electrodes
(C4+ C3). This control signal was further subtracted by an offset
and multiplied with a gain value to make the normalized control
signal zero mean and unit variance. The pink cursor acted as the
feedback to the subject; the normalized control signal determined
its speed, and its position was updated every 40 ms. The gain and
offset values were reset when performing a new task (LR, UD,
and 2D) and after the break. As shown in Figure 1C, each trial
starts with a 2 s intertrial interval where the screen was black;
then, the yellow target bar appears randomly at one of the possible
locations for 2 s; after that, the subject was able to use MI to
control the cursor (bar still visible). The length of the feedback
control varied between 0 and 6 s and depended on if and when
the cursor hits the bar. There could be three possible outcomes
for each trial: the cursor hits the correct bar (hits, the cursor turns
yellow), the cursor hits the incorrect bar (misses, the cursor does
not change color), or the cursor does not contact any target within
6 s (timeout, the cursor does not change color).

Performance Metric
We quantify the performance using percent valid correct (PVC)
(Cassady et al., 2014; Meng et al., 2016; Edelman et al., 2019),
which is the ratio between the number of hit trials and number
of hit trials plus the number of missed trials. To reduce the
influence of large subject variability in SMR BCI, in the analysis,
we excluded outlier subjects: we compute the averaged percent
valid correct (PVC) across the six sessions for a subject as
the performance, for LR, UD, and 2D, respectively. After that,
for each task (LR, UD, and 2D), we identified any subjects
that are ± 2.5 median absolute deviations from the median
of the whole sample (Leys et al., 2013). Finally, we took the

union of subjects identified in the three tasks as the excluded
subjects. With this criterion, we identified one meditator and four
controls as outliers. Together with the subject excluded due to
not following the MI guideline (one meditator), the number of
subjects involved in the analysis is 14 meditators and 15 controls.
The information regarding the median performance and outlier
subjects’ performance is shown in Supplementary Table 2.

Offline Electroencephalogram Data
Analysis
We bandpass filtered the EEG data using a Hamming window as a
finite impulse response filter with the passband set between 1 and
100 Hz, then downsampled to 250 Hz. We identified and rejected
noisy channels with high impedance by visual inspection; then,
these channels were spherically interpolated. The EEG data were
re-referenced to a common average. We attempted to remove
potential eye blinking artifacts using independent component
analysis and a template matching procedure. In addition, we also
visually inspected trials with high data variance and excluded
these trials in the analysis, as these trials have a higher probability
of containing muscle artifact. After that, complex Morlet wavelet
convolution was used to extract the power of the mu frequency
band (3 Hz bin centered at 12 Hz).

The neurophysiological predictor or SMR predictor measures
the difference between mu band power and the 1/f noise floor
in a power-frequency plot for C3 and C4 (Blankertz et al.,
2010). Concretely, the EEG power spectrum at rest could be
fitted with the sum of a 1/f noise floor, n

(
f ;λ, kn

)
and two

Gaussian distributions, centered at mu rhythm and beta rhythm,
gα

(
f ;µα, σα

)
and gβ(f ;µβ, σβ). In this study, the power spectral

density is equal to the mean of C3 and C4 band power after
small Laplacian spatial filtering during the intertrial resting state,
combining LR conditions and UD conditions.

P̂SD
(
f ;λ, σ, k

)
= n

(
f ;λ, kn

)
+ gα

(
f ;µα, σα

)
+ gβ(f ;µβ, σβ)

n
(
f ;λ, kn

)
= kn1 +

kn2

f λ

gα

(
f ;µα, σα

)
= kαN(f ;µα, σα)

gβ(f ;µβ, σβ) = kβN(f ;µβ, σβ)

The SMR predictor (dB) is calculated individually for C3 and
C4 electrode mu rhythm band power after small Laplacian spatial
filtering.

Predictor = 10 · log10
PSD (mu)

n (mu)

In the case where the algorithm could not find a curve to fit, we
manually selected 5–10 representative data points to describe the
1/f noise floor function by following the trend of the PSD curve
and fitted these points using n

(
f ;λ, kn

)
. We discard a subject and

session pair if the PSD does not follow a 1/f decrease trend. The
percentage of data points discarded was 10.5%.

We designed a method to calculate the control signal during
task execution to be as close to the real condition as possible.
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Concretely, we first calculated the C3 and C4 electrode frequency
band power after small Laplacian spatial filtering, denoted PC3
and PC4. Then, the raw control signal was calculated using the
following equation:

CSraw,LR = PC4 − PC3

CSraw,UD = PC4 + PC3

Then, we applied a similar z-scored procedure to the raw
control signal as the BCI 2000 platform,

CSreal = G× (CSraw − offset)

where G and offset are set to make the CSreal zero mean and
unit variance. The difference between this offline z-score and the
online approach is that the latter is causal and adaptive, i.e., G and
offset is calculated via past 30 s of a window and change as time
goes on. As shown in Supplementary Figure 1, we found that
the control signal under this definition could better explain the
variability of performance than the ERD/ERS method, i.e., band
power during task execution divided by resting-state band power.

We quantify the contrast between two contexts in a task (e.g.,
left trials and right trials in LR task) using the Fisher score
(Perdikis et al., 2018).

FS =
|µ1 − µ2|√

s2
1 + s2

2

where µ1and µ2 are the means and s2
1 and s2

2 are the variance
of context 1 and context 2’s band power in one session. The
Fisher score is calculated independently for each channel, and
its topology was obtained using FieldTrip (Oostenveld et al.,
2010) toolbox; data in between-electrodes space are interpolated
in a linear fashion.

When evaluating the statistical difference between the two
groups, we noticed some outliers in subjects’ neurophysiological
metrics (SMR predictor and control signal contrast); therefore,
we identified and excluded these outliers from analysis with the
same method mentioned in section “Performance Metric.” We
did not find outliers when analyzing SMR predictor; we found
additional two meditators and one control outlier when analyzing
the resting-state EEG stability; we found an additional one
meditator and one control outlier when analyzing the LR control
signal; we found an additional one control outlier when analyzing
the UD control signal. The results obtained in Figure 5B are
obtained after excluding these additional outliers.

Statistical Analysis
We performed linear mixed-effects models per type of
performance and neurophysiological measures to investigate
the session, group, and interaction effect. lme4 package (1.1-25)
in R (4.0.3) was used to generate the linear mixed-effects
models, and p-values were computed using lmerTest package
(3.1-3), using Satterthwaite approximation for degrees of
freedom (Kuznetsova et al., 2017). Each BCI performance and
neurophysiological measure were modeled over time with a fixed

effect of session (six levels) and group (two levels, meditator
and control). Random effects include within-subject factors
of the session. Models were initially fit with the interaction of
group and time, and then, fixed effects were reduced stepwise
by excluding non-significant interaction terms/predictors and
compared using ANOVA ratio tests until this smaller model
explained the data significantly worse than the larger model
(significant Chi-squared test) (Kuznetsova et al., 2017). Other
statistical tests used in this work include rank-sum test, linear
regression, and Chi-squared tests; the details of these tests will be
explained wherever it appears in section “Results.”

RESULTS

Survey Results
In both surveys, we found meditators had higher scores than
control subjects. Concretely, the FMI score for meditators is
44.5± 4.5, whereas, for control subjects, it is 36.6± 6.7. The
difference is significant (Wilcoxon rank-sum test, Z = 3.15,
p < 0.01). The MAAS score for meditators is 4.42± 0.81,
whereas, for control subjects, it is 3.73± 0.67. The difference is
significant (Wilcoxon rank-sum test, Z = 2.53, p < 0.05). Bar
plots for the two groups’ scores are shown in Figure 2A. The
same observation also holds when including outlier subjects.
These results serve as additional support, apart from the self-
reported meditation experiences, that the meditators had higher
levels of mindfulness than the control group. In addition to
the group difference, we also calculated the correlation between
these survey results and performance. We used baseline PVC as
performance because this session is when the surveys were filled
out. The correlation between survey results and UD PVC turned
out to be significant. Specifically, for FMI, r(27) = 0.42, p < 0.05,
and for MAAS, r(27) = 0.41, p < 0.05.

Group Averaged Performance
We found that meditators achieved numerically better
performance (PVC) compared with control subjects, and
this difference was consistent throughout the six sessions. The
group averaged performance in the baseline, and the final
session is shown in Supplementary Table 3, and the averaged
performance for all sessions is shown in Figure 2.

We used a linear mixed-effects model (see section “Materials
and Methods”) to investigate the statistical difference between
the two groups in terms of group, session, and group–session
interaction effect. The session effect indicates if BCI learning
occurs for a specific task. We found a significant learning effect
in all three tasks [LR: t(144) = 2.98, p < 0.01; UD: t(28) = 2.22,
p < 0.05; 2D: t(28) = 2.84, p < 0.01]. The difference in
dimensionality is due to the difference in the final model when
performing the stepwise reduction (see section “Materials and
Methods”). However, the group effect did not show significance
[LR: F(1, 27) = 2.01, p = 0.16; UD: F(1, 27) = 2.71, p = 0.11; 2D:
F(1, 27) = 1.79, p = 0.19], indicating that there is only a numerical
superiority of meditators’ BCI performance. We also did not find
significance in the learning speed difference between the two
groups, indicated by the interaction effect [LR: F(1, 143) = 0.1,
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FIGURE 2 | Survey results and group averaged performance and learning. (A) Survey results of FMI and MAAS show that meditators have a higher level of
mindfulness than controls. Data are shown as mean ± SD. Med. is meditator, Ctrl. is control. (B) Line plot describes the group LR averaged PVC ± SEM for
mediators and controls. Violin plot describes session-averaged performance distribution, with blue horizontal line indicating mean and white dot indicating median.
(C) For UD task, (D) for 2D task, LR within the 2D task, and 2D within the 2D task. ∗ Indicates group difference with p < 0.05, and ∗∗ indicates p < 0.01, same for
subsequent plots.

p = 0.75; UD: F(1, 27) = 0.001, p = 0.97; 2D: F(1, 27) = 0.32,
p = 0.57].

Given that the 2D task is the combination of LR and UD, we
next separated the LR and UD tasks within the 2D. Interestingly,
we found that within the 2D task, meditators had a numerically
higher baseline of LR, but for the UD, these two groups were at
the same level. Further, the learning curve showed that meditators
had numerically better learning compared with controls in the
UD within 2D. Statistical analysis using linear mixed-effects
model shows that learning effect of UD within the 2D is
significant, whereas LR within the 2D is not [LR within 2D: F(1,
28) = 2.58, p = 0.11; UD within 2D: t(28) = 2.92, p < 0.01]. We
did not find the group effect to be significant [LR within 2D: F(1,
27) = 3.11, p = 0.08; UD within 2D: F(1, 27) = 0.45, p = 0.50],
as well as the interaction effect [LR within 2D: F(1, 27) = 0.21,
p = 0.64; UD within 2D: F(1, 27) = 0.28, p = 0.60].

Competency Curve
Although group averaged PVC is a good indicator of
performance, there are several drawbacks. First, it only provides
information on the overall trend of performance during BCI
learning; we still do not know how many subjects remain BCI
inefficient. Second, it does not provide information regarding
within-session learning.

To intuitively show how learning occurs in the two groups,
we plotted competency, the percentage of subjects whose PVC
passed the BCI inefficiency threshold as sessions go on. We set

the threshold as 70% for 1D control and 40% for 2D control
(Combrisson and Jerbi, 2015), but we obtain similar results
under varied thresholds. To cope with potential fluctuation of
performance, a subject passes the threshold if she/he meets one of
the following criteria: achieving an averaged PVC > threshold in
three consecutive runs or achieving an averaged PVC > threshold
in one single session (Cassady et al., 2014). The result is shown in
Figure 3.

There are two observations from this plot. First, after six
sessions of learning, the percentage of subjects passing the BCI
inefficiency threshold appears to be higher in meditators. The
percentage of non-BCI inefficient subjects is 78.5% (53.3%),
92.8% (73.3%), and 92.8% (66.7%) for meditators (controls), in
LR, UD, and 2D tasks, respectively. Therefore, in all three tasks,
meditators indeed had numerically less BCI inefficient subjects
after six sessions or 36 runs of learning, but Chi-squared tests did
not reveal a significant difference for the competency between
two groups [X2(1, N = 29) = 2.04, 1.93, 3.02, p = 0.15, 0.16
and 0.08 for LR, UD, and 2D]. Second, regarding the speed
of learning, the LR and the UD plot showed a steeper decline
during the initial six runs, i.e., the baseline session. This means
that the learning speed of meditators appears to be faster than
the control subjects. Besides, although previous studies showed
that BCI learning occurs on a session-by-session basis (Meng
et al., 2016), our results showed that learning could also occur
within a 2 h session. We also noticed that compared with 1D
tasks (LR and UD), both groups in the 2D task showed a similar
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FIGURE 3 | Competency curves for (A) LR, (B) UD and (C) 2D tasks. Competency describes the percentage of subjects passing the performance threshold (70%
for 1D and 40% for 2D). Each session has 6 runs for one task, accounting for 36 runs in total throughout the 6 training sessions.

learning curve in the first 20 runs, i.e., in the first three sessions.
After that, meditators showed a numerically better learning speed
compared with control subjects. This observation is consistent
with the previous group average performance in the sense that
in UD within the 2D task, meditators had numerically larger
improvement starting from the third session. In addition, it also
shows that 2D control is indeed more difficult than 1D control,
requiring more training time.

Group Averaged Topology During Task
Figure 4 shows the LR and UD task Fisher score topology
(Perdikis et al., 2018) for meditators and controls. From the
plot, a gradual increase of motor cortex area high alpha power
could be seen in both groups, indicating that both groups were
able to increase the contrast of two opposite conditions through
voluntary motor imagery as learning progresses. However, this
plot did not provide quantitative information regarding whether
meditators had a higher baseline of C3 and C4 high alpha power
or exhibited better learning. We also did not find electrode
clusters with a significant difference between the two groups with
cluster-based permutation tests (Stieger et al., 2020). To further
investigate the effect of meditation experience on these quantities,
we looked into the SMR predictor during the intertrial resting
state, mu power variability at rest, and control signal contrast
during task execution.

Neurophysiological Predictor
Blankertz et al. (2010) found that in the resting state power
spectral density plots of C3 and C4 electrodes, the difference
between mu rhythm peak and noise level baseline is a significant
predictor of the BCI performance. Here, we tried to investigate
the difference in SMR predictor between meditators and controls.
As shown in Figure 5A, we first fit a linear regression model
between the SMR predictor and PVC. We found that in the LR
task, the correlation coefficient between SMR predictor and PVC
is r(153) = 0.13, p = 0.11, and in the UD task, r(153) = 0.20
with p < 0.05. Our correlation coefficient was smaller than
that of Blankertz et al. (2010). The difference might be due to
the task design, subject variability, or it could be due to the
fact that Blankertz et al. (2010) recorded a 2 min resting state,

whereas, here, we used multiple short pretrial segments. We next
asked if the session, group, and interaction effects exist in the
SMR predictor. We found that the session effect is significant
[t(125) = 2.42, p < 0.05], but we did not find the group and
interaction effects to be statistically different between meditators
and controls [group effect: F(1, 27) = 3.29, p = 0.08; interaction:
F(1, 124) = 0.001, p = 0.96]. However, as shown in Figure 5B,
a numerical difference between the meditator group and the
control could be observed.

Variability of Resting
Electroencephalogram Mu Rhythm
Another perspective of investigating the resting state difference
between meditators and controls is the stability of the EEG
pattern, i.e., the mu rhythm in the SMR BCI setting. Sannelli
et al. (2008) pointed out that BCI inefficient subjects usually
have higher intrinsic noise. Specifically, this means that the
presentation of noise in EEG band power overshadows the useful
information. In our study, a relevant measurement of noise
could be the variability or stability of EEG mu rhythm, and we
hypothesize that this is related to the performance. Here, we
used the coefficient of variation (CV) (Brown, 1998) to measure
variability: the ratio of intertrial resting-state EEG mu power
standard deviation and its mean. The lower the value, the more
stable the EEG pattern is. We indeed found that the stability is
negatively correlated with the performance [LR: r(172) = −0.19,
p < 0.05, UD: r(172) =−0.18, p < 0.05], when excluded potential
outlier points, the relationship between LR PVC and stability
is still significant [LR: r(154) = −0.17, p < 0.05], whereas for
UD, it is not [UD: r(154) = −0.13, p = 0.11], indicating that
the correlation is weak, especially for UD task. This CV did not
show session, group, or interaction effect [session effect: F(1,
129) = 0.34, p = 0.55; group effect: F(1, 24) = 1.36, p = 0.25;
interaction: F(1, 128) = 0.63, p = 0.42]. These results are shown
in Figures 5C,D.

Control Signal Baseline and Learning
Given the behavior difference described in the previous section,
the next question to ask is whether meditators exhibit better
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FIGURE 4 | Fisher score topology for meditators and controls during (A) LR and (B) UD task as session goes on. Fisher score describes the mu rhythm contrast
between two opposite contexts in a task (e.g., left trials and right trials in LR task, or up trials and down trials in UD task).

overall performance and learning of 1control signal. Like the
online scenario (see section “Materials and Methods”), we
computed the control signal as the difference of z-scored C4
power and C3 power (for LR) or summation of z-scored C4
power and C3 power. The 1control signal is the difference
of control signal between two opposite trial types (LR and
UD). Figures 5E,F show the group averaged 1control signal
as sessions go on. We noticed a session effect in the UD
1control signal [t(27) = 2.05, p < 0.05] but not the LR 1control
signal [F(1,134) = 0.96, p = 0.32]. However, we did not notice
significance in group [LR: F(1,25) = 0.68, p = 0.41; UD: F(1,
26) = 1.26, p = 0.27] or interaction effect [LR: F(1,133) = 0.71,
p = 0.39; UD: F(1, 26) = 0.09, p = 0.75].

DISCUSSION

Reducing the training time and BCI inefficiency is critical
for the application of SMR-based BCI. Although prior studies
have tried to solve this problem from the “brain” side of
BCI by investigating the effect of meditation experience on
SMR BCI learning, the relationship between these two is still
not comprehensive. First, due to the large variability in the
type and duration of meditation, more studies are needed to
confirm the existence of such an effect. Second, it is still unclear
whether and to what extent meditators are better able to do
more complex tasks than 1D control. Third, a more thorough
investigation of the neurophysiological difference between these
two groups is needed.

Our results provide insights into the effect of long-term
meditation experiences on SMR-based BCI. Concretely, we found
that level of mindfulness is significantly correlated with the SMR
BCI performance in the UD task, and experienced meditators
had numerically higher overall BCI performance compared
with meditation naïve subjects. We also found that there were
numerically fewer BCI inefficient subjects remaining after six
sessions of learning. As for task complexity, we extended the
control paradigm to a more complex 2D cursor control task.

We found a similar trend when separating the LR and UD tasks
within the 2D control, that meditators had numerically higher LR
performance within the 2D task than controls. We also found that
although meditators and controls started at approximately the
same level of UD performance within the 2D task, numerically,
meditators exhibited better learning and resulted in higher
improvement than controls. Finally, neurophysiology analysis
revealed a numerical difference between the SMR predictor,
resting mu power stability, and UD control signal. Nevertheless,
the statistical significance mainly lies in the learning of the
task, i.e., subjects statistically improved their BCI performance
after learning; we did not find that meditators statistically
outperformed control subjects in terms of averaged performance
and learning speed. As for the task difficulty and learning, we
found that although the 1D version of LR and UD tasks both
have a significant learning effect, in 2D, only the UD part showed
significant learning. In terms of the 1control signal, we also
found a significant learning effect of UD rather than LR. This
observation is in agreement with Stieger et al. (2020) and suggests
that the neurophysiological processes involved in learning the
UD task (motor imagery vs. rest) could be easier to learn than
the LR task (left motor imagery vs. right motor imagery).

It should be noted that our experimental task is consistent
with prior work (Cassady et al., 2014) in terms of the platform
(BCI 2000) and 1D BCI task design. However, there are several
points that this prior work did not address: (1) Most of their
claims were focused on the behavioral difference, including
PVC and competency; the analysis on the neurophysiological
difference between the two groups was limited. We added
the electrophysiological topology, SMR predictor, mu stability,
and control signal analysis to this framework, which could
better explain the neurophysiological difference between the two
groups. (2) Cassady and colleagues’ work did not implement 2D
control tasks, which represents a more challenging task. Although
by design, the 2D task is the combination of LR and UD control,
in real-time BCI control, it is more challenging because subjects
need to carefully maintain the cursor position while moving the
cursor in the prompted direction. As meditators are better able
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FIGURE 5 | (A) Regression between SMR predictor and PVC for UD task. Red line is regression line. For LR the correlation is not significant (plot not shown). (B)
Group averaged SMR predictor for the meditator group and control group. Violin plot shows the session-averaged result. (C) Regression between resting-state
stability and PVC for LR task. For UD task the correlation is only significant before excluding outliers (plot not shown) (D) Group averaged stability for the meditator
group and control group. Violin plot shows the session-averaged result. (E,F) Group averaged 1 control signal for (E) LR and (F) UD. Violin plot shows the
session-averaged result.

to control their attention, they might perform even better than
controls compared with 1D tasks. Currently, we are not aware
of prior literature explicitly investigating the 2D cursor control

of long-term meditators and controls. Therefore, it is of interest
to see if meditators would also be better at the 2D task, how
much they outperform the controls, and if there is any difference

Frontiers in Neuroscience | www.frontiersin.org 10 January 2021 | Volume 14 | Article 58497138

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-584971 January 16, 2021 Time: 21:20 # 11

Jiang et al. Meditation Effect on BCI Learning

between the LR and UD within the 2D compared with the 1D
version of LR and UD tasks. (3) It is known that there exists
a large variability of SMR BCI performance in the population.
Apart from the literature that reports the positive influence of
meditation on SMR BCI control, we are also aware of literature
that only partially supports or does not support the hypothesis
that people with meditation experience would demonstrate better
SMR BCI control (Botrel and Kübler, 2019; Stieger et al., 2020).
Therefore, to make a claim more rigorous, it is important to show
the replicability of results.

Our study serves to confirm and extend this finding by
conducting experiments at a different location and time with
independent subjects and experimenters. Specifically, although
we generally found that meditators on average outperformed
control subjects by 5–10% PVC, we did not find a statistical
difference between the two groups in terms of overall
performance (as shown in the group effect) and learning speed
(as shown in the interaction effect), and the percentage of BCI
inefficient subjects in these two groups was not statistically
different (although the p-value was small). The difficulty of
getting statistical significance could be due to the following
two reasons: (1) Meditation experience is not the determining
factor for generating SMR, and the effect is weak. (2) The
variability among SMR BCI performance is large, thus requiring
a larger sample size. For example, in Stieger et al. (2020),
they implemented twice as large a sample size as us, but
this requires much larger efforts to acquire. Therefore, our
work updates the community about “how much” meditators
perform better than meditation naïve people at SMR BCI
and could serve as a reference for researchers who would
like to recruit experienced meditators to obtain a better
SMR BCI control.

Nevertheless, it is still of interest to discuss the potential
cause of this meditation effect, as it could provide insight into
what factors do influence BCI performance: The long-term
meditation effect on SMR BCI could be due to the plasticity
introduced by meditation experience. For example, one of the
main benefits of mindfulness meditation is enhanced attentional
control (MacLean et al., 2010). In the SMR BCI task, subjects are
instructed to focus on or pay attention to the motor intention,
which could be regarded as a specific type of attention control.
Therefore, the prolonged meditation practices might serve as
additional “training time” and cause the meditator group to have
enhanced BCI performance. Future work along this line should
investigate if neurotypical people are also able to improve SMR
BCI control, apart from UD tasks (Stieger et al., 2020), with more
extended meditation training.

An alternative explanation would be the preexisting difference
in brain structure, personality, etc., for people who choose to
meditate for years (Tang et al., 2015). In other words, the
subpopulation who choose to meditate for years may have
attributes that contribute to a successful SMR BCI control.
Nevertheless, the research focusing on SMR BCI control ability
for people with different characteristics is still limited, and future
work on investigating the impact of these multidimensional
and interrelated personal attributes might reveal more details of
SMR BCI control.

The presence of BCI proficient subjects is also of importance
to study. Multiple studies have shown that there exists a certain
portion of subjects who are able to control the SMR BCI with very
high accuracy the first time they use this technology (Edelman
et al., 2019; Stieger et al., 2020). In our study, we quantified
these subjects by the outlier exclusion criteria described in
section “Materials and Methods.” See Supplementary Table 2
for the details of these outliers’ performance. We found five
subjects quantified as outliers; all were BCI proficient subjects.
Interestingly, we found that there is only one meditator but
four controls among them. This phenomenon is interesting
because (1) it points out that meditation is not the determining
factor of BCI proficiency, as a large portion of outliers are
controls; (2) given that controls have numerically lower BCI
performance and more BCI proficient subjects, larger variability
might exist within the population with no meditation experience.
Although more data are needed to validate this observation,
it could be another perspective to investigate the effect of
meditation on SMR BCI.

EEG resting mu rhythm variability and SMR BCI. In this
study, we found that the resting EEG coefficient of variation
(CV) is related to SMR BCI performance and could serve as
an SMR BCI indicator, such as the SMR predictor (Blankertz
et al., 2010). However, going back to the central question of
finding a training paradigm to help prepare subjects for SMR
BCI control, such an indicator is not optimal due to the
lack of a clear training method, i.e., the training procedure
of reducing resting EEG variance is not well established. We
believe at least two potential research directions could be inspired
by our work given the numerically more stable resting-state
EEG signals of the meditator group: (1) Validation of the
effect of resting-state EEG signal on SMR BCI performance
by an independent investigator and BCI system; (2) A further
investigation of the relationship between meditation training and
resting-state EEG stability through a longitudinal perspective,
i.e., if people could gain more stable resting-state EEG signal
through meditation training. Research along this line could
answer both “what causes the SMR BCI performance variation”
and “how to improve SMR BCI,” which we believe is of high
practical value.

Potential influence of presentation of the three tasks. In our
study, the order of the three tasks is fixed for all subjects, i.e.,
LR followed by UD, followed by 2D. The fact that they are not
randomized could influence the performance because subjects are
usually more concentrated on the early phase of the experiment.
Nevertheless, we believe the current study design is still of benefit
to the question we are trying to address: if there exists a difference
in learning within a task between meditators and controls. It
would be fairer to compare the performance of a task given a
similar level of tiredness. On the other hand, the randomized
task design could be used to more rigorously investigate if the
learning between different tasks is different, but it should also be
noted that a larger sample size would be needed because of the
randomized design.

Another concern regarding studying these two distinct groups
is the effect of age and sex on our results. Although we tried
our best to find age-matched controls for the meditators, the
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meditators were on average 38.5 years old, and the controls were
on average 24.8 years with a 13.7 years difference. One might
argue that if meditators in our sample were more senior, this
might affect our conclusion. However, we did not find evidence
of significant correlations between age and performance, age and
1control signal, or age and SMR predictor (see Supplementary
Table 4). These results suggest that the influence of age on our
BCI system is not significant. As for sex, we have six females and
eight males in the meditator group and 11 females and four males
in the control group. Randolph (2012) found that females could
be better at BCI tasks, but in our BCI setting, we did not find
a significant difference in LR, UD, and 2D performance or SMR
predictor between male and female subjects (see Supplementary
Table 4). Nevertheless, this insignificance could also be due to the
insufficient sample size, and future work along this line should
either try to recruit a larger number of samples to validate the
effect of age and sex or try to recruit subjects with a more
balanced age and sex.

CONCLUSION

In this study, we have examined the behavior and
neurophysiological differences between experienced meditators
and control subjects. We found evidence supporting that long-
term meditation experiences could influence SMR BCI in terms
of averaged performance, SMR predictor, resting-state mu
stability, and control signal during task execution. This finding
has implications on enhancing the “brain” side of SMR BCI and
may help overcome the limitations of SMR BCI technology, such
as long training time and BCI inefficiency.
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Supplementary Figure 1 | Comparison of two methods to compute the 1control
signal during task execution. The traditional method to quantify how EEG band
power changes during task execution is event-related desynchronization.
Concretely, the control signal under the ERD definition would be band power
normalized by the resting state alpha activity. Here we argue that the control signal
using the z-score method would be a better metric by showing that it explains
more performance variability. (A) in LR, the correlation coefficient for regression
between 1control signal and PVC was 0.70 in the ERD method and 0.8 in the
z-scored method, p < 0.05, (B) for UD it was 0.67 and 0.82, p < 0.05.

Supplementary Figure 2 | Violin plot for performance and SMR. The violin plot
provides more detailed information regarding the mean, median and distribution of
the data. (A) for LR PVC, (B) for UD PVC, (C) for 2D PVC, (D) for SMR predictor,
(E,F) for LR and UD 1 control signal. The blue/red dots represent everyone’s
performance, the white dot indicates the median, the blue/red horizontal lines
represent the mean, and the violin-like envelop represents the distribution density.

REFERENCES
Ahn, M., and Jun, S. C. (2015). Performance variation in motor imagery brain–

computer interface: a brief review. J. Neurosci. Methods 243, 103–110. doi:
10.1016/j.jneumeth.2015.01.033

Ang, K. K., Chua, K. S. G., Phua, K. S., Wang, C., Chin, Z. Y., Kuah, C. W. K.,
et al. (2015). A randomized controlled trial of EEG-Based motor imagery brain-
computer interface robotic rehabilitation for stroke. Clin. EEG Neurosci. 46,
310–320. doi: 10.1177/1550059414522229

Armour, B. S., Courtney-Long, E. A., Fox, M. H., Fredine, H., and Cahill, A. (2016).
Prevalence and causes of paralysis—United States, 2013. Am. J. Public Health
106, 1855–1857. doi: 10.2105/AJPH.2016.303270

Bernier, R., Dawson, G., Webb, S., and Murias, M. (2007). EEG mu
rhythm and imitation impairments in individuals with autism
spectrum disorder. Brain Cogn. 64, 228–237. doi: 10.1016/j.bandc.2007.
03.004

Blankertz, B., Sannelli, C., Halder, S., Hammer, E. M., Kübler, A., Müller,
K.-R., et al. (2010). Neurophysiological predictor of SMR-based BCI
performance. NeuroImage 51, 1303–1309. doi: 10.1016/j.neuroimage.2010.
03.022

Botrel, L., and Kübler, A. (2019). Week-long visuomotor coordination and
relaxation trainings do not increase sensorimotor rhythms (SMR) based brain–
computer interface performance. Behav. Brain Res. 372:111993. doi: 10.1016/j.
bbr.2019.111993

Frontiers in Neuroscience | www.frontiersin.org 12 January 2021 | Volume 14 | Article 58497140

https://www.frontiersin.org/articles/10.3389/fnins.2020.584971/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2020.584971/full#supplementary-material
https://doi.org/10.1016/j.jneumeth.2015.01.033
https://doi.org/10.1016/j.jneumeth.2015.01.033
https://doi.org/10.1177/1550059414522229
https://doi.org/10.2105/AJPH.2016.303270
https://doi.org/10.1016/j.bandc.2007.03.004
https://doi.org/10.1016/j.bandc.2007.03.004
https://doi.org/10.1016/j.neuroimage.2010.03.022
https://doi.org/10.1016/j.neuroimage.2010.03.022
https://doi.org/10.1016/j.bbr.2019.111993
https://doi.org/10.1016/j.bbr.2019.111993
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-584971 January 16, 2021 Time: 21:20 # 13

Jiang et al. Meditation Effect on BCI Learning

Brown, C. E. (1998). “Coefficient of variation,” in Applied Multivariate Statistics in
Geohydrology and Related Sciences, ed. C. E. Brown (Berlin: Springer), 155–157.
doi: 10.1007/978-3-642-80328-4_13

Brown, K. W., and Ryan, R. M. (2003). The benefits of being present: mindfulness
and its role in psychological well-being. J. Pers. Soc. Psychol. 84, 822–848.
doi: 10.1037/0022-3514.84.4.822

Cassady, K., You, A., Doud, A., and He, B. (2014). The impact of mind-
body awareness training on the early learning of a brain-computer interface.
Technology 2, 254–260. doi: 10.1142/S233954781450023X

Chan, D., and Woollacott, M. (2007). Effects of level of meditation experience
on attentional focus: is the efficiency of executive or orientation networks
improved? J. Alternat. Complementary Med. 13, 651–658. doi: 10.1089/acm.
2007.7022

Clerc, M., Bougrain, L., and Lotte, F. (2016). Brain-Computer Interfaces 1.
Hoboken, NJ: Wiley-ISTE.

Combrisson, E., and Jerbi, K. (2015). Exceeding chance level by chance: the
caveat of theoretical chance levels in brain signal classification and statistical
assessment of decoding accuracy. J. Neurosci. Methods 250, 126–136. doi: 10.
1016/j.jneumeth.2015.01.010

Debarnot, U., Sperduti, M., Di Rienzo, F., and Guillot, A. (2014). Experts bodies,
experts minds: how physical and mental training shape the brain. Front. Hum.
Neurosci. 8:280. doi: 10.3389/fnhum.2014.00280

Doud, A. J., Lucas, J. P., Pisansky, M. T., and He, B. (2011). Continuous three-
dimensional control of a virtual helicopter using a motor imagery based brain-
computer interface. PLoS One 6:e26322. doi: 10.1371/journal.pone.0026322

Edelman, B. J., Meng, J., Suma, D., Zurn, C., Nagarajan, E., Baxter, B. S., et al.
(2019). Noninvasive neuroimaging enhances continuous neural tracking for
robotic device control. Sci. Robot. 4:aaw6844. doi: 10.1126/scirobotics.aaw6844

Galán, F., Nuttin, M., Lew, E., Ferrez, P. W., Vanacker, G., Philips, J., et al. (2008).
A brain-actuated wheelchair: asynchronous and non-invasive Brain–computer
interfaces for continuous control of robots. Clin. Neurophysiol. 119, 2159–2169.
doi: 10.1016/j.clinph.2008.06.001

Guillot, A., Collet, C., Nguyen, V. A., Malouin, F., Richards, C., and Doyon,
J. (2008). Functional neuroanatomical networks associated with expertise in
motor imagery. NeuroImage 41, 1471–1483. doi: 10.1016/j.neuroimage.2008.
03.042

Halsband, U., Mueller, S., Hinterberger, T., and Strickner, S. (2009). Plasticity
changes in the brain in hypnosis and meditation. Contemporary Hypnosis 26,
194–215. doi: 10.1002/ch.386

He, B., Baxter, B., Edelman, B. J., Cline, C. C., and Ye, W. W. (2015). Noninvasive
brain-computer interfaces based on sensorimotor rhythms. Proc. IEEE 103,
907–925. doi: 10.1109/JPROC.2015.2407272

He, B., Han, Y., Meng, J., and Gao, S. (2020). “Brain–Computer Interfaces,” in
Neural Engineering, 3rd Edn, ed. B. He (Berlin: Springer).

Huang, D., Qian, K., Fei, D.-Y., Jia, W., Chen, X., and Bai, O. (2012).
Electroencephalography (EEG)-Based Brain–Computer Interface
(BCI): a 2-D virtual wheelchair control based on event-related
desynchronization/synchronization and state control. IEEE Trans. Neural
Systems Rehabil. Eng. 20, 379–388. doi: 10.1109/TNSRE.2012.2190299

Jeunet, C., N’Kaoua, B., and Lotte, F. (2016). “Chapter 1 - Advances in user-
training for mental-imagery-based BCI control: psychological and cognitive
factors and their neural correlates,” in Progress in Brain Research Brain-
Computer Interfaces: Lab Experiments to Real-World Applications, ed. D. Coyle
(Amsterdam: Elsevier), 3–35. doi: 10.1016/bs.pbr.2016.04.002

Jha, A. P., Krompinger, J., and Baime, M. J. (2007). Mindfulness training modifies
subsystems of attention. Cogn. Affect. Behav. Neurosci. 7, 109–119. doi: 10.3758/
CABN.7.2.109

Kerr, C. E., Jones, S. R., Wan, Q., Pritchett, D. L., Wasserman, R. H., Wexler,
A., et al. (2011a). Effects of mindfulness meditation training on anticipatory
alpha modulation in primary somatosensory cortex. Brain Res. Bull. 85, 96–103.
doi: 10.1016/j.brainresbull.2011.03.026

Kerr, C. E., Josyula, K., and Littenberg, R. (2011b). Developing an observing
attitude: an analysis of meditation diaries in an MBSR clinical trial. Clin.
Psychol. Psychotherapy 18, 80–93. doi: 10.1002/cpp.700

Kerr, C. E., Sacchet, M. D., Lazar, S. W., Moore, C. I., and Jones, S. R. (2013).
Mindfulness starts with the body: somatosensory attention and top-down
modulation of cortical alpha rhythms in mindfulness meditation. Front. Hum.
Neurosci. 7:12. doi: 10.3389/fnhum.2013.00012

Kober, S. E., Witte, M., Ninaus, M., Koschutnig, K., Wiesen, D., Zaiser, G., et al.
(2017). Ability to gain control over one’s own brain activity and its relation to
spiritual practice: a multimodal imaging study. Front. Hum. Neurosci. 11:271.
doi: 10.3389/fnhum.2017.00271

Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B. (2017). lmerTest
package: tests in linear mixed effects models. J. Stat. Soft. 82, 1–26. doi: 10.
18637/jss.v082.i13

LaFleur, K., Cassady, K., Doud, A., Shades, K., Rogin, E., and He, B. (2013).
Quadcopter control in three-dimensional space using a noninvasive motor
imagery-based brain–computer interface. J. Neural Eng. 10:046003. doi: 10.
1088/1741-2560/10/4/046003

Leys, C., Ley, C., Klein, O., Bernard, P., and Licata, L. (2013). Detecting outliers: do
not use standard deviation around the mean, use absolute deviation around the
median. J. Exp. Soc. Psychol. 49, 764–766. doi: 10.1016/j.jesp.2013.03.013

Lotte, F., and Guan, C. (2011). Regularizing common spatial patterns to improve
BCI designs: unified theory and new algorithms. IEEE Trans. Biomed. Eng. 58,
355–362. doi: 10.1109/TBME.2010.2082539

MacLean, K. A., Ferrer, E., Aichele, S. R., Bridwell, D. A., Zanesco, A. P.,
Jacobs, T. L., et al. (2010). Intensive meditation training improves perceptual
discrimination and sustained attention. Psychol. Sci. 21, 829–839. doi: 10.1177/
0956797610371339

Mahmoudi, B., and Erfanian, A. (2006). Electro-encephalogram based
brain–computer interface: improved performance by mental practice
and concentration skills. Med. Bio Eng. Comput. 44, 959–969.
doi: 10.1007/s11517-006-0111-118

McFarland, D. J., Sarnacki, W. A., and Wolpaw, J. R. (2010).
Electroencephalographic (EEG) control of three-dimensional movement.
J. Neural Eng. 7:036007. doi: 10.1088/1741-2560/7/3/036007

Meng, J., Streitz, T., Gulachek, N., Suma, D., and He, B. (2018). Three-
Dimensional brain–computer interface control through simultaneous overt
spatial attentional and motor imagery tasks. IEEE Trans. Biomed. Eng. 65,
2417–2427. doi: 10.1109/TBME.2018.2872855

Meng, J., Zhang, S., Bekyo, A., Olsoe, J., Baxter, B., and He, B. (2016). Noninvasive
electroencephalogram based control of a robotic arm for reach and grasp tasks.
Sci. Rep. 6:38565. doi: 10.1038/srep38565

Moore, A., and Malinowski, P. (2009). Meditation, mindfulness and cognitive
flexibility. Consciousness Cogn. 18, 176–186. doi: 10.1016/j.concog.2008.12.008

Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J.-M. (2010). FieldTrip:
open source software for advanced analysis of meg, eeg, and invasive
electrophysiological data. Comput. Intell. Neurosci. 2011:e156869. doi: 10.1155/
2011/156869

Perdikis, S., Tonin, L., Saeedi, S., Schneider, C., Millán, J., and del, R.
(2018). The cybathlon BCI race: successful longitudinal mutual learning with
two tetraplegic users. PLoS Biol. 16:e2003787. doi: 10.1371/journal.pbio.200
3787

Pfurtscheller, G., and Aranibar, A. (1979). Evaluation of event-related
desynchronization (ERD) preceding and following voluntary self-
paced movement. Electroencephal. Clin. Neurophysiol. 46, 138–146.
doi: 10.1016/0013-4694(79)90063-90064

Pfurtscheller, G., Brunner, C., Schlögl, A., Lopes, and da Silva, F. H. (2006).
Mu rhythm (de)synchronization and EEG single-trial classification of different
motor imagery tasks. NeuroImage 31, 153–159. doi: 10.1016/j.neuroimage.2005.
12.003

Ramli, N., Su Sim, K., Tan, L. K., Tan, Y. Q., Tan, L. F., Goh, K. J., et al. (2019).
Effect of mindfulness meditation on brain-computer interface. Neurol. Asia 24,
343–353.

Randolph, A. B. (2012). “Not all created equal: individual-technology fit of brain-
computer interfaces,” in Proceedings of the 2012 45th Hawaii International
Conference on System Sciences (New York, NY: IEEE), 572–578. doi: 10.1109/
HICSS.2012.451

Rebsamen, B., Guan, C., Zhang, H., Wang, C., Teo, C., Ang, M. H., et al. (2010). A
brain controlled wheelchair to navigate in familiar environments. IEEE Trans.
Neural Systems Rehabil. Eng. 18, 590–598. doi: 10.1109/TNSRE.2010.2049862

Rimbert, S., Zaepffel, M., Riff, P., Adam, P., and Bougrain, L. (2019). Hypnotic
state modulates sensorimotor beta rhythms during real movement and motor
imagery. Front. Psychol. 10:2341. doi: 10.3389/fpsyg.2019.02341

Royer, A. S., Doud, A. J., Rose, M. L., and He, B. (2010). EEG control of a virtual
helicopter in 3-dimensional space using intelligent control strategies. IEEE

Frontiers in Neuroscience | www.frontiersin.org 13 January 2021 | Volume 14 | Article 58497141

https://doi.org/10.1007/978-3-642-80328-4_13
https://doi.org/10.1037/0022-3514.84.4.822
https://doi.org/10.1142/S233954781450023X
https://doi.org/10.1089/acm.2007.7022
https://doi.org/10.1089/acm.2007.7022
https://doi.org/10.1016/j.jneumeth.2015.01.010
https://doi.org/10.1016/j.jneumeth.2015.01.010
https://doi.org/10.3389/fnhum.2014.00280
https://doi.org/10.1371/journal.pone.0026322
https://doi.org/10.1126/scirobotics.aaw6844
https://doi.org/10.1016/j.clinph.2008.06.001
https://doi.org/10.1016/j.neuroimage.2008.03.042
https://doi.org/10.1016/j.neuroimage.2008.03.042
https://doi.org/10.1002/ch.386
https://doi.org/10.1109/JPROC.2015.2407272
https://doi.org/10.1109/TNSRE.2012.2190299
https://doi.org/10.1016/bs.pbr.2016.04.002
https://doi.org/10.3758/CABN.7.2.109
https://doi.org/10.3758/CABN.7.2.109
https://doi.org/10.1016/j.brainresbull.2011.03.026
https://doi.org/10.1002/cpp.700
https://doi.org/10.3389/fnhum.2013.00012
https://doi.org/10.3389/fnhum.2017.00271
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.1088/1741-2560/10/4/046003
https://doi.org/10.1088/1741-2560/10/4/046003
https://doi.org/10.1016/j.jesp.2013.03.013
https://doi.org/10.1109/TBME.2010.2082539
https://doi.org/10.1177/0956797610371339
https://doi.org/10.1177/0956797610371339
https://doi.org/10.1007/s11517-006-0111-118
https://doi.org/10.1088/1741-2560/7/3/036007
https://doi.org/10.1109/TBME.2018.2872855
https://doi.org/10.1038/srep38565
https://doi.org/10.1016/j.concog.2008.12.008
https://doi.org/10.1155/2011/156869
https://doi.org/10.1155/2011/156869
https://doi.org/10.1371/journal.pbio.2003787
https://doi.org/10.1371/journal.pbio.2003787
https://doi.org/10.1016/0013-4694(79)90063-90064
https://doi.org/10.1016/j.neuroimage.2005.12.003
https://doi.org/10.1016/j.neuroimage.2005.12.003
https://doi.org/10.1109/HICSS.2012.451
https://doi.org/10.1109/HICSS.2012.451
https://doi.org/10.1109/TNSRE.2010.2049862
https://doi.org/10.3389/fpsyg.2019.02341
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-584971 January 16, 2021 Time: 21:20 # 14

Jiang et al. Meditation Effect on BCI Learning

Trans. Neural Systems Rehabil. Eng. 18, 581–589. doi: 10.1109/TNSRE.2010.
2077654

Sannelli, C., Braun, M., Tangermann, M., and Müller, K.-R. (2008). “Estimating
noise and dimensionality in bci data sets: towards illiteracy comprehension,”
in Proceedings of the 4th International Brain-Computer Interface workshop and
training course (Graz: Verlag der Technischen Universität Graz).

Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N., and Wolpaw, J. R.
(2004). BCI2000: a general-purpose brain-computer interface (BCI) system.
IEEE Trans. Biomed. Eng. 51, 1034–1043. doi: 10.1109/TBME.2004.827072

Stieger, J. R., Engel, S., Jiang, H., Cline, C. C., Kreitzer, M. J., and He, B. (2020).
Mindfulness improves brain–computer interface performance by increasing
control over neural activity in the alpha band. Cereb. Cortex 31, 426–438.
doi: 10.1093/cercor/bhaa234

Tan, L. F., Dienes, Z., Jansari, A., and Goh, S.-Y. (2014). Effect of mindfulness
meditation on brain–computer interface performance. Consciousness Cogn. 23,
12–21. doi: 10.1016/j.concog.2013.10.010

Tan, Y.-Q., Tan, L.-F., Mok, S.-Y., and Goh, S.-Y. (2015). Effect of short term
meditation on braincomputer interface performance. J. Med. Bioeng. 4, 135–
138. doi: 10.12720/jomb.4.2.135-138

Tang, Y.-Y., Hölzel, B. K., and Posner, M. I. (2015). The neuroscience of
mindfulness meditation. Nat. Rev. Neurosci. 16, 213–225. doi: 10.1038/nrn3916

Tang, Y.-Y., Ma, Y., Wang, J., Fan, Y., Feng, S., Lu, Q., et al. (2007). Short-
term meditation training improves attention and self-regulation. PNAS 104,
17152–17156. doi: 10.1073/pnas.0707678104

Trejo, L. J., Rosipal, R., and Matthews, B. (2006). Brain-computer interfaces for 1-D
and 2-D cursor control: designs using volitional control of the EEG spectrum or
steady-state visual evoked potentials. IEEE Trans. Neural Systems Rehabil. Eng.
14, 225–229. doi: 10.1109/TNSRE.2006.875578

van den Hurk, P. A. M., Giommi, F., Gielen, S. C., Speckens, A. E. M., and
Barendregt, H. P. (2010). Greater efficiency in attentional processing related
to mindfulness meditation. Q. J. Exp. Psychol. 63, 1168–1180. doi: 10.1080/
17470210903249365

Walach, H., Buchheld, N., Buttenmüller, V., Kleinknecht, N., and Schmidt,
S. (2006). Measuring mindfulness—the Freiburg Mindfulness Inventory
(FMI). Personal. Individ. Diff. 40, 1543–1555. doi: 10.1016/j.paid.2005.
11.025

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., and Vaughan,
T. M. (2002). Brain–computer interfaces for communication and control. Clin.
Neurophysiol. 113, 767–791. doi: 10.1016/S1388-2457(02)00057-53

Wolpaw, J. R., McFarland, D. J., Neat, G. W., and Forneris, C. A. (1991). An
EEG-based brain-computer interface for cursor control. Electroencephal. Clin.
Neurophysiol. 78, 252–259. doi: 10.1016/0013-4694(91)90040-B

Yuan, H., and He, B. (2014). Brain–Computer interfaces using sensorimotor
rhythms: current state and future perspectives. IEEE Trans. Biomed. Eng. 61,
1425–1435. doi: 10.1109/TBME.2014.2312397

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Jiang, Lopez, Stieger, Greco and He. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 14 January 2021 | Volume 14 | Article 58497142

https://doi.org/10.1109/TNSRE.2010.2077654
https://doi.org/10.1109/TNSRE.2010.2077654
https://doi.org/10.1109/TBME.2004.827072
https://doi.org/10.1093/cercor/bhaa234
https://doi.org/10.1016/j.concog.2013.10.010
https://doi.org/10.12720/jomb.4.2.135-138
https://doi.org/10.1038/nrn3916
https://doi.org/10.1073/pnas.0707678104
https://doi.org/10.1109/TNSRE.2006.875578
https://doi.org/10.1080/17470210903249365
https://doi.org/10.1080/17470210903249365
https://doi.org/10.1016/j.paid.2005.11.025
https://doi.org/10.1016/j.paid.2005.11.025
https://doi.org/10.1016/S1388-2457(02)00057-53
https://doi.org/10.1016/0013-4694(91)90040-B
https://doi.org/10.1109/TBME.2014.2312397
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


ORIGINAL RESEARCH
published: 06 April 2021

doi: 10.3389/fnbot.2021.625479

Frontiers in Neurorobotics | www.frontiersin.org 1 April 2021 | Volume 15 | Article 625479

Edited by:

Hong Cheng,

University of Electronic Science and

Technology of China, China

Reviewed by:

Rui Huang,

University of Electronic Science and

Technology of China, China

Wenbin Chen,

Huazhong University of Science and

Technology, China

Haoyao Chen,

Harbin Institute of Technology,

Shenzhen, China

*Correspondence:

Chunjie Chen

cj.chen@siat.ac.cn

†These authors contributed equally to

this work

Received: 03 November 2020

Accepted: 01 March 2021

Published: 06 April 2021

Citation:

Wang Z, Wu X, Zhang Y, Chen C,

Liu S, Liu Y, Peng A and Ma Y (2021)

A Semi-active Exoskeleton Based on

EMGs Reduces Muscle Fatigue When

Squatting.

Front. Neurorobot. 15:625479.

doi: 10.3389/fnbot.2021.625479

A Semi-active Exoskeleton Based on
EMGs Reduces Muscle Fatigue When
Squatting

Zhuo Wang 1,2,3†, Xinyu Wu 1,2,4†, Yu Zhang 1,2,3, Chunjie Chen 1,2,4*, Shoubin Liu 3, Yida Liu 1,2,4,

Ansi Peng 1,2,4 and Yue Ma 1,2,4

1Chinese Academy of Sciences Key Laboratory of Human-Machine-Intelligence Synergic Systems, Shenzhen Institutes of

Advanced Technology, Chinese Academy of Sciences, Shenzhen, China, 2Guangdong Provincial Key Lab of Robotics and

Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China, 3 School

of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, China, 4 ShenZhen College of

Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China

In dynamic manufacturing and warehousing environments, the work scene made it

impossible for workers to sit, so workers suffer from muscle fatigue of the lower

limb caused by standing or squatting for a long period of time. In this paper, a

semi-active exoskeleton used to reduce the muscle fatigue of the lower limb was

designed and evaluated. (i) Background: The advantages and disadvantages of assistive

exoskeletons developed for industrial purposes were introduced. (ii) Simulation: The

process of squatting was simulated in the AnyBody.7.1 software, the result showed

that muscle activity of the gluteus maximus, rectus femoris, vastus medialis, vastus

lateralis, vastus intermedius, and erector spinae increased with increasing of knee

flexion angle. (iii) Design: The exoskeleton was designed with three working modes:

rigid-support mode, elastic-support mode and follow mode. Rigid-support mode was

suitable for scenes where the squatting posture is stable, while elastic-support mode was

beneficial for working environments where the height of squatting varied frequently.The

working environments were identified intelligently based on the EMGs of the gluteus

maximus, and quadriceps, and the motor was controlled to switch the working mode

between rigid-support mode and elastic-support mode. In follow mode, the exoskeleton

moves freely with users without interfering with activities such as walking, ascending

and descending stairs. (iv) Experiments: Three sets of experiments were conducted

to evaluate the effect of exoskeleton. Experiment one was conducted to measure

the surface electromyography signal (EMGs) in both condition of with and without

exoskeleton, the root mean square of EMGs amplitude of soleus, vastus lateralis, vastus

medialis, gastrocnemius, vastus intermedius, rectus femoris, gluteus maximus, and

erector spinae were reduced by 98.5, 97.89, 80.09, 77.27, 96.73, 94.17, 70.71, and

36.32%, respectively, with the assistance of the exoskeleton. The purpose of experiment

two was aimed to measure the plantar pressure with and without exoskeleton. With

exoskeleton, the percentage of weight through subject’s feet was reduced by 63.94,

64.52, and 65.61% respectively at 60◦, 90◦, and 120◦ of knee flexion angle, compared

to the condition of without exoskeleton. Experiment three was purposed to measure the

metabolic cost at a speed of 4 and 5 km/h with and without exoskeleton. Experiment

43

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2021.625479
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2021.625479&domain=pdf&date_stamp=2021-04-06
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cj.chen@siat.ac.cn
https://doi.org/10.3389/fnbot.2021.625479
https://www.frontiersin.org/articles/10.3389/fnbot.2021.625479/full


Wang et al. A Semi-active Exoskeleton

results showed that the average additional metabolic cost introduced by exoskeleton

was 2.525 and 2.85%. It indicated that the exoskeleton would not interfere with the

movement of the wearer Seriously in follow mode. (v) Conclusion: The exoskeleton

not only effectively reduced muscle fatigue, but also avoided interfering with the free

movement of the wearer.

Keywords: semi-active exoskeleton, industrial exoskeleton, lower-limb exoskeleton, human-robot collaboration,

EMG signal

1. INTRODUCTION

Despite the on-going trend in automation and mechanization
in the industry, many workers still suffer from work-related
musculoskeletal disorders due to unnatural body postures
(De Looze et al., 2016; Huang et al., 2019). For example, in
dynamic manufacturing and warehousing environments, the
work scene made it impossible for workers to seat, so workers
suffered frommuscle fatigue of the lower limb caused by standing
or squatting for a long period of time. Exoskeleton was suggested
as a potential method to reduce exposure to activities and avoid
postures that increase the risk of knee injury (Reid et al., 2010).
Meanwhile, exoskeleton was suitable for application in such a
dynamic scenario, which was not only providing support for the
wearer anywhere, but also would not affect the free movement of
the wearer.

An exoskeleton could be defined as a wearable, external
mechanical device that augmented the performance of an able-
bodied wearer, and helped disabled people to retrieve some
motion abilities (Dollar and Herr, 2008; Krut et al., 2010;
Huang et al., 2018). Exoskeletons could be divided into active
exoskeleton and (quasi) passive exoskeleton according to whether
there was a power supply. An active exoskeleton was driven
by one or more actuators (e.g., electrical motor, pneumatic
artificial muscle and hydraulic cylinder), so active exoskeleton
was able to provide larger assistance force (Bosch et al., 2016).
For example, the ReWalk Personal 6.0 System (Esquenazi et al.,
2012), which has been developed for spinal cord injured patients
(Rupal et al., 2017), was actuated by DC motors at the hip
and knee joints; Muscle Suit Power, which was able to provide
up to 35.7 kgf assistive force, was actuated by four McKibben
artificial muscles (Kobayashi, 2016); Ekso NR was actuated by
hydraulic actuators and was designed to help patients to relearn
to correctly stand and work after stroke (Bionics, 2015). However,
the efficiency and operation range were negatively affected due
to the introduction of the heavy actuators and external power
supplies (van Dijk and Van der Kooij, 2014). A (quasi) passive
exoskeleton was driven by any type of actuator, but rather applied
elastic materials, springs or dampers to store energy harvested by
human motion and to use this as required to support a posture
or a motion (De Looze et al., 2016). LegX (6.2 kg) (Pillai et al.,
2020) and the Chairless Chair (Spada et al., 2018) were passive
exoskeletons, which were used to reduce the effort of muscles
when the wearer was in a position (e.g., squatting and semi-
squatting) and they wished to maintain the position for a long
time. But the chairless chair required wearers to fix a position

by crouching down into the required position and pushing a
button. And it was easy to interfere with the movement of the
wearer because the joint axes of the Chairless Chair and wearer
did not coincide.

In this paper, a semi-active exoskeleton was developed. With
respect to already existing devices (Collo et al., 2016), special
emphasis was placed on its light weight as well as multi working
modes. The weight of the semi-active exoskeleton developed by
us was only 2.6 kg, which was only 42% of the weight of the
LegX and 74% of the weight of the Chairless Chair. Meanwhile,
it was easy to switch among three working modes: rigid-
support mod, elastic-support mode and follow mode. In rigid-
support mode, the weight of the wearer was supported by the
exoskeleton like a chair, instead of just relying on the legs when
the wearer was squatting and semi-squatting. Meanwhile, the
locking angle was adjusted easily by ratchet and pawl according
to the flexion angle (0◦ ∼ 135◦) of the knee joint. Elastic-
support mode was beneficial for working environments where
the height of squatting varied frequently, which provided assist
force depending on the deformation of the torsion spring. In
follow mode, the passive exoskeleton moved simultaneously with
the legs of the wearer.

The main structure of this paper was as follows: the process
and results of simulating squat were demonstrated in detail in
section 2. The design of the exoskeleton was described in section
3. The experiment and result were presented in section 4. The
exoskeleton was discussed in section 5.

2. SIMULATION

Generally speaking, the locomotion system of humans was
composed of skeletons, joints and muscles. The force generated
by muscle contraction drove the skeleton to rotate around
the joint (Nordin and Frankel, 2001; Neumann, 2013). Erector
spinae, quadriceps femoris, gluteus maximus, and triceps surae
are stretched when squatting, as shown in the Figure 1.
Among them, quadriceps femoris included rectus femoris, vastus
medialis, vastus medialis and vastus intermedius, triceps surae
consisted of gastrocnemius and soleus. The force generated by
stretched erector spinae compensated gravity to maintain a semi-
squatting posture.

AnyBody (AnyBody.7.1, AnyBody Technology A/S, Aalborg,
Denmark) was capable of analyzing the musculoskeletal system
of humans (Damsgaard et al., 2006). To analyze the muscle
activity of erector spinae, quadriceps femoris, gluteus maximus
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FIGURE 1 | The main muscles involved in squatting.

and triceps surae during squatting, the process of squatting
was simulated in the AnyBody software. The musculoskeletal
modeling and simulation of squatting were based on the
demo provided by AnyBody Technology (Wu et al., 2020).
The parameters in the musculoskeletal model were modified
according to the subjects’ body (De Roeck et al., 2020): The
time period of a squat cycle and frames per second for
simulation were set to 3 s and 30, respectively, minimum and
maximum knee flexion angle of a squat cycle were set as 10◦

and 135◦, squat distance between toe medial nodes shoulder
width ratio and squat angle foot rotation were set to 1.6 and
5◦ separately.

Changes in muscle activity of a squat cycle were shown in
Figure 2. As the knee flexion angle gradually increased from
10◦ to 135◦, the muscle activity of the gluteus maximus, rectus
femoris, vastus medialis, vastus lateralis, vastus intermedius,
and erector spinae first increased and then decreased, while
the muscle activity of gastrocnemius and soleus decreased. The
muscle activity of the gluteus maximus, rectus femoris, vastus
medialis, vastus lateralis, vastus intermedius and erector spinae
reached the maximum of 0.2598, 0.1904, 0.1264, 0.2, 0.091, and
0.2334, respectively, at the knee flexion angle of 115, 118, 54,
54, 96, and 52◦. The higher the muscle activity value, the more
intense the muscle contraction. So the function of the semi-active
exoskeleton was aimed to reduce the muscle activity involved
when squatting.

3. DESIGN OF THE EXOSKELETON

The assistive device presented in this work was used to provide
support when the wearer was in a semi-squatting position for a
long time and not interfere with movement when walking. So
the special design was placed on its light weight as well as multi
working modes.

3.1. System Overview
As depicted in Figure 3A, the semi-active exoskeleton wasmainly
composed of belt, thigh linkage, motor, knee joint, wrap, calf
linkage, and ankle joint. (i) the belt was adopted to fix the
exoskeleton on the waist of the wearer and at transferred the
weight of the body to the exoskeleton when squatting; (ii) thigh
linkage and calf linkage made of carbon were tied on the lower
limb by wraps and connected to a lockable knee joint; (iii) the
knee joint could be locked when squatting and free to rotate
within the range of 0◦ and 135◦ during walking; (iv) the ankle
joint had two degrees of freedom, so it was able to rotate
in sagittal plane and coronal plane. The total weight of our
exoskeleton is 2,067 g. The weight of each component was given
in Table 1.

The lockable knee joint was the main component, whose
structure was shown in Figure 3C. The locking plate was adopted
to adjust the angle of lockable knee joint according to the
squatting position of wearer. In follow mode, the angle of the
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FIGURE 2 | Changes in muscle activity of a squat cycle. The vertical and horizontal coordinates represent muscle activity and a squat cycle, respectively.

locking plate was adjusted to 0◦, and the exoskeleton moves
with the wearer without interfering with the daily activities
such as normal walking, ascending and descending stairs and
other daily activities. In the rigid-support mode, the angle of
the locking plate was adjusted to the same angle as the angle of
knee joint in any squatting position, the exoskeleton provided a
comfortable support for the wearer. The linear motor was used
to switch between rigid-support and elastic-support mode.When
the height of the wearer’s squatting posture changed frequently,
the standard deviation of the EMGs of the gluteus maximus
and quadriceps muscles increased more than 145 and 385 mv.
Before calculating the standard deviation of the EMGs, which
were filtered through 10 ∼ 500Hz band pass filter and 50Hz
notch filter (Neumann, 2013). When the standard deviation of
the EMGs of the gluteus maximus and quadriceps muscle was
greater than 145 and 385 mv, the linear motor was controlled to
expand to limit the rotation of one end of the torsion spring. The
exoskeleton worked in an elastic-support mode. Otherwise, the
linear motor was controlled to contract, the torsion spring was
not restricted. The exoskeleton worked in a rigid-support mode.
At different squatting heights, the torsion spring was rotated
at different angles, and assistance force was provided by the
exoskeleton, the control system diagramwas shown in Figure 3B.

3.2. Design
Theoretically speaking, it would be beneficial to improve
assistance effect and comfort if the degree of freedom (DOF) of
the exoskeleton was consistent with the DOF of the lower limbs
of the human body. In general, the human lower limb could be
taken as a structure with 7 DOFs. Three rotational DOFs at the
hip, one rotation DOF at the knee, and three rotation DOFs at the
ankle (Dollar and Herr, 2008). But the motion of squat mainly
involved the flexions and extensions of the hip, knee, and ankle
joints. In order to optimize the overall mechanical structure, knee
joint capable of flexion and extension and ankle joint capable of
flexion and extension, abduction and adduction were designed
in the exoskeleton. The range of motion (ROM) of knee joint
and ankle joint of the exoskeleton are set to match the ROM of
humans during squatting. They are given in detail in Table 2.
The ROM of exoskeleton was set between ROM at work and
maximumROMof human, which could protect the wearer’s joint
movement without interfering with the wearer’s movement. At
the same time, mechanical limit devices were designed at the end
of the ROM of the knee and ankle joints to ensure the safety of
the wearer.

According to the result of squatting simulation in the
AnyBody software, the muscle activity of quadriceps femoris and
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FIGURE 3 | (A) System overview and composition of the semi-active exoskeleton. (B) The control system diagram based on EMGs. (C) The structure of the lockable

knee joint.

TABLE 1 | The weight of each component of our exoskeleton.

Component Mass (g) Number

Belt 305 1

Thigh linkage 91 2

Motor 205 2

Knee joint 326 2

Wrap 46 4

Calf linkage 33 2

Ankle joint 134 2

Total weight 2,067 -

TABLE 2 | Range of motion of knee joint and ankle joint of exoskeleton.

Joint Motion ROM at

work(◦)

Maximum ROM

of human(◦)

ROM of

exoskeleton(◦)

Knee joint
Flexion 100 145 120

Extension 0 0 0

Ankle joint

Dorsiflexion 20 50 30

Plantarflexion 7 30 30

Abduction 10 30 15

Adduction 10 30 15

gluteus maximus increased. The belt and wrap made of nylon,
were fixed on the hip area and the quadriceps area of the thigh.
They functioned to the exoskeleton to the wearer’s lower limb and
transmitted the weight of the wearer to the supporting linkage of
the thigh.

The support linkages of thigh and calf, which were made of
carbon fiber, were connected together by a lockable knee joint.
They were the main frame of the exoskeleton. The structure
of the exoskeleton was designed for people with heights from
1.5 to 1.85 m. According to human dimensions, the adjustable
ranges of thigh length, calf length and ankle height were set at
380 ∼ 550 mm, 300 ∼ 450 mm, and 60 ∼ 80 mm, respectively.

The structure of the lockable knee joint was shown in
Figure 3C. The lockable knee joint was composed of outer
cover, bearing module, turning block, torsion spring, fixed
block, locking plate, motor, and inner cover. The outer cover
and inner cover were made of resin materials to protect the
internal structure of the lockable knee joint. The axis of support
of calf linkage, bearing module and turning block were fixed
together with screws to coincide, while the axis of torsion spring,
fixed block, locking plate, motor. and support of thigh linkage
coincide. The turning block and fixed block, which were made
of GCr15, were connected together with bearing components, so
the support of calf and support of thigh could rotate coincidently.
The motor was installed on the support of the thigh linkage
with screws.
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As depicted in Figure 4B. The locking plate was assembled
by inner cover, pinion, positioning part, ratchet, spring holder,
reset part, and outer cover. The inner cover and outer cover were
made of resin materials, the pinion, positioning part, ratchet, and
spring holder were made of Gcr15 and the reset part was made
of aluminum alloy. Gear teeth were machined on the reset part,
which was meshed with the pinion. Springs, torsional springs
and pawls were installed in the spring holder. The engagement
of the ratchet and the pawl ensure the positioning plate not only
rotates in one direction around spring the holder. The rotation
angle depended on the bosses of the inner ring of the ratchet and
turning block. Adjusting the engagement of pinion and gear teeth
on the reset part allows the ratchet to rotate in reverse.

The spring in the lockable knee joint was a customized
torsional spring. The torsional spring was made of 60Si2MnA
and it’s cross-section was rectangle, which was the long side in
the radial direction and the short side in the axial direction.
The stiffness of the torsional spring was 0.8 N.m/◦, which was
calculated by Equation (1).

CT =
Ea3b

12× 180D2n
(1)

where E represented the elastic modulus of 60Si2MnA with a
value of 206 GPa; a and b were the length and width of section of
spring steel wire, whose values were 8 and 3.6 mm, respectively;
D2 and n represented the mean diameter and number of coils,
whose values were 40 mm and 5.5, respectively. According to
the wearer’s weight and applicable scenarios, torsion springs with
different initial angles could be adjusted, so that the best elastic
support can be obtained. One end of the torsion spring was fixed
on the turning block. The torsion angle of the torsion spring was
0◦ when the knee joint was extended. However, the free end was
restricted by motor, the torsion spring was twisted during the
flexion of the knee joint. According to Equation (2), the energy
storage of the torsion spring could be calculated.

E
′

=

∫ θ

0
CTθ dθ (2)

where E
′

represented the energy storage of the torsion spring, θ
was the torsion angle of spring, the physical quantity represented
by CT was the same as that in Equation (1). The energy was
released to augment the muscle during knee extension.

The structure of the lockable ankle joint was depicted in
Figure 4A. The lockable joint was mainly composed of silicon
cover, cross-axle, ankle support, shoe-connecting part, and
support of calf. The ankle support and shoe-connecting part were
connected by cross-axle, allowing the shoe-connecting part to
rotate in two directions around ankle support. In addition, cross-
axles can slide slightly up and down along the chute on the shoe-
connecting part. When the wearer’s foot was off the ground, the
shoe-connecting part slides down relative to cross-axle, which
contributed to the dorsiflexion and plantarflexion, eversion and
inversion, as shown in Figure 5A. When the wearer’s feet were
on the ground, especially in a squatting position, the shoe-
connecting part slid upward relatively to cross-axle, and the shoe-
connecting part was restricted by the locking slot on the ankle
support, which restricted eversion and inversion movement, as
shown in Figure 5B. Since the ankle joint had no eversion and
inversion movement, the exoskeleton can provide stable support.

4. EXPERIMENTS

In order to evaluate the performance of the exoskeleton, three
different experiments were conducted. In the first experiment,
the EMGs of muscles related to squatting were measured in
both conditions of with and without exoskeleton, to validify
whether the exoskeleton can relieve muscle fatigue. The second
experiment was to test the effective support that the exoskeleton
can provide under different weights and squatting positions.
Experiment three was used to measure the additional metabolic
cost introduced by the exoskeleton to wearer in follow mode. All
experiments were performed in a laboratory at a stable indoor
temperature of 26oC. Before each experiment, subjects were
instructed to get familiar with exoskeleton and exoskeleton was
adjusted accordingly.

Four healthy subjects, with no leg diseases, volunteered to
participate in three experiments. The contents and impacts of

FIGURE 4 | The structure of ankle joint (A) and locking plate (B).
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experiments were informed in detail to them and their contents
were obtained. The human body’s characteristics dimensions of
subjects were detailed in Table 3.

Each experiment was divided into an experimental group and
a control group. The experimental group was required to wear
the exoskeleton, while the control group was not required to wear
the exoskeleton. In order to avoid the influence of human muscle
fatigue on the experiment, both the experimental group and
the control group were conducted for 2 days, respectively. The
experiment procedures of the control group and the experimental
group were the same.

4.1. EMGs Measurement
Surface myoelectric signal analysis has been proved effective for
assessing the electrical manifestations of localized muscle fatigue
(Pi et al., 2006). In order to accurately evaluate the effect of
exoskeleton in reducing muscle fatigue, the EMGs of the muscle
related to squatting with and without exoskeleton were measured
in this experiment.

First of all, the skin was shaved, scrubbed, and cleaned
with alcohol swab before the surface ENG sensors were applied
(Bosch et al., 2016). Secondly, eight surface EMG sensors
(SX230, Biometrics Limited, UK) were attached by EMG Sensor
Tapes (T350) to the skins of soleus, vastus lateralis, vastus
medialis, gastrocnemius, vastus intermedius, rectus femoris,
gluteus maximus, and erector spinae. And then surface EMG
Sensors were wrapped around the subject’s limb by gauze to
prevent it from falling and the reference electrode (R306), was
wrapped on the wrist joint by elastic bands. Next, the surface
EMG sensors and reference electrode were connected to an eight-
channel DataLOG (MWX8), which transmitted real-time data
to computers via Bluetooth Wireless link. Finally, subjects were
instructed to use an electric drill to install screws on the board
that simulating assembly works, whose process lasted for 2 min.
Drilling different holes in the horizontal direction of the board
to simulate the scene of squatting height stability (worked in a
rigid-support mode), while drilling different holes in the vertical
direction of the board to simulate the scene of squatting height

varied (worked in an elastic-support mode). According to the
simulation results in AnyBody software, the muscle activity was
higher when the knee flexion angle was 120◦, so the surface
EMGs were recorded at 500Hz when the knee flexion angle was
120± 10◦. The experiment setup was shown in Figure 6A.

Average rectified value (ARV), integrated electromyogram
(iEMG) and root mean square (RMS) of EMGs showed an
upward trend during muscles fatigue (Viitasalo and Komi, 1977;
Madeleine et al., 2002). Changes in these values were usually
related to muscle contraction, but RMS could better reflect
muscle fatigue under the same muscle contraction state (Jiang
et al., 2017). After EMGs were filtered through 10 ∼ 500Hz band
pass filter and 50 Hz notch filter (Neumann, 2013), RMS was
calculated according to Equation (3).

RMS =

√

√

√

√

1

N

N
∑

i=1

EMG2(i) (3)

where RMS represented the root mean square of EMGs, N
represented the number of EMGs collected within the sampling
time, EMG(i) represented the amplitude of the i-th EMGs.
The root mean square of EMGs amplitude of soleus, vastus
lateralis, vastus medialis, gastrocnemius, vastus intermedius,
rectus femoris, gluteus maximus, and erector spinae were

TABLE 3 | The human body’s characteristics dimensions of subjects.

Subject 1 2 3 4

Gender Woman Man Man Man

Stature (cm) 160 176 177 183

Weight (kg) 48 67.5 80 70

Thigh length (mm) 435 483 480 540

Calf length (mm) 340 400 418 440

Ankle height (mm) 52 81 80 83

Shoes size (cm) 23 26 26.5 26.5

FIGURE 5 | The working principle of ankle joint. (A) There were two degrees of freedom in ankle joint: plantarflexion/dorsiflexion, inversion/eversion. (B) Inversion and

eversion were restricted.
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FIGURE 6 | (A) EMGs of the muscle related to squatting with and without exoskeleton were measured in this experiment. (B) The metabolic cost with and without

exoskeleton was measured.

reduced by 98.5, 97.89, 80.09, 77.27, 96.73, 94.17, 70.71, and
36.32%, respectively with the assistance of the exoskeleton, which
was shown in Figure 7.We can conclude that the exoskeleton was
able to reduce muscle fatigue effectively.

4.2. Plantar Pressure Measurement
The working principle of the exoskeleton to reduce muscle
fatigue was that the weight of wearer was transmitted to the
ground by the exoskeleton and the lower limbs, rather than just
by the lower limbs of wearer. To measure the support force
provided by exoskeleton under different weights and squatting
positions, the foot pressure was measured in this experiment.

Before the starting experiment, experiment acquisition system
was designed, which was composed of two plantar pressure
sensors (ZNX-01, Suzhou Leanstar Electronic Technology
Co., ltd., China) and bluean acquisition circuit board, which
communicated with XCOM software (V2.2, download from
http://www.openedv.com/) through a serial port at speed of
460800 bps, as shown in Figure 8B. To analyze the relationship
between the weight and voltage of RFP pressure sensor, the
subjects were required to carry additional loads, whose weight
was increased from 0 to 5 kg with an increment of 0.5kg each
time. The subjects were instructed to stand 30 s at different loads.
As shown in Figure 8A, the splattering points were the average
value of voltage of RFP pressure sensor and weight, the blue line
was the fitted line as expressed by Equation (4).

G = −162.3U + 1649.7 (4)

where the G was the weight (the sum of weight of subject
and additional load) of the subject and U represented the
voltage value.

At first, the weight and voltage of RFP pressure sensor
were recorded when the subjects were instructed to flex the
knee without exoskeleton at 60◦, 90◦, and 120◦, respectively.
Each test lasted for 1 min and a 5-min rest was set. After the
exoskeleton was adjusted to fit the subject, the same experiment
was conducted again, as shown in Figure 8C. The exoskeleton
worked in a rigid-support mode.

To eliminate the influence of unstable squatting posture,
the data of the first 15 s and the last 15 s were removed,
and only the data in between were selected for analysis. After
the data was filtered by median filter, the plantar force of
both conditions were calculated according to Equation (4).
Taking into account the differences of subject, the plantar force
was normalized using the weight of the subject, as shown
in Figure 9. The reason why the percentage of body weight
through subject feet at 60◦, 90◦, and 120◦ of knee flexion angle
was less than 100% was that there was a difference in the
pressure distribution on the soles of the feet when standing
and squatting. In particular, parts of weight were transmitted
to ground through the areas of arches of the foot, on which no
RFP pressure sensor was installed. Comparing the percentage of
weight of both conditions, wearing an exoskeleton reduces the
weight through the subject’s feet by 63.94, 64.52, and 65.61%,
respectively at 60, 90, and 120◦ of knee flexion angle. Moreover,
the assistive force provided by the exoskeleton increased as
the angle of knee flexion increased, which can be attributed to
the increase in the effective contact area between the belt and
the subject.

Table 4 showed a comparison between our exoskeleton and
the Chairless Chair. The exoskeleton designed by us was only
2.1 kg, which was lighter than 3.5kg of the Chairless Chair.
Meanwhile, only 29.3% of weight was supported by the subject’s
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FIGURE 7 | The RMS of the EMGs of the knee joint at 120 degree flexion angle. p1, p2, p3, p4, p5, p6, p7, and p8 are the result of two-side t-tests, which are

0.0002, 0.0014, 0.0044, 0.0014, 0.0013, 0.0004, 0.1112, and 0.0131, respectively.

FIGURE 8 | Plantar pressure measurement. (A) The splatting was the raw data from experiment and the blue line is fitted line, (B) the plantar sensor and data

acquisition circuit board, (C) the foot pressure experiment was conducted.
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FIGURE 9 | Percentage of body weight through subject Feet at 60◦, 90◦, and 120◦ of knee flexion angle. p1, p2, and p3 are the result of two-side t-tests, which are

0.0018, 0.0036, and 0.0009, respectively.

TABLE 4 | Comparison with the chairless chair.

Exoskeleton Weight (kg) Percentage of body weight

through subject feet (%)

Chairless Chair 3.5 (Spada et al., 2018) 33

This work 2.1 29.3

feet after wearing the exoskeleton, which was effectively the
weight transmitted by the feet.

4.3. Metabolic Cost Measurement
In order to evaluate whether the exoskeleton interfered with
the subjects’ movement in the following mode, such as walking
between the workbenches of the assembly line. The wearable
metabolic system (K5, COSMED, Italy) was adopted to measure
the concentration and volume of the exhaled pulmonary gas,
which are mainly carbon dioxide and oxygen (Chen et al., 2020).
In experiment, the metabolic cost under the conditions of with
and without exoskeleton were measured when the subject was
walking at the speed of 4 and 5 km/h on a treadmill (SH-5918,
ShuHua Sports Co., Ltd., China).

Each experiment lasted for 20 min and was divided into three
stages, which as shown in Figure 6B. First, the subject was asked
to maintain a standing position for 5 min in order to measure the
standing cost; Then, the subject walked for 10 min to obtain the
walking metabolic cost; Finally, the subject was also instructed to
maintain a standing position for 5 min.

The method of calculating the net metabolic cost was
subtracting the standing metabolic cost from the walking
metabolic. Taking into the unstable metabolic cost at the
beginning and the transition from standing to walking, the data
from the 3rd to the 5th min, the 7th to the 13th min, and the
17th to the 20th min in each experiment are selected to calculated
based on Equation (5) (Garby and Astrup, 1987).

1H = c1VO2 + c2VCO2 (5)

where 1H was the energy rate (kJ/s), coefficients c1 and c2 were
16.04 and 4.94 kJ/L, respectively, the unit of VO2 and VCO2 was
L/s. The result of metabolic cost measurement when the subject
was walking at the speed of 4 and 5 km/h were shown in Table 5.
The average additional metabolic cost introduced by exoskeleton
was 2.525 and 2.85%. It means that the exoskeleton would not
interfere with the movement of the wearer in follow mode.

5. DISCUSSION

A semi-active exoskeleton was designed in this work, used to
reduce the muscle fatigue of the lower limb when squatting.

In order to analyze the muscle activity of each muscle in
the process of squatting, so that the designed exoskeleton can
effectively reduce muscle fatigue, the process of squatting was
simulated in the AnyBody software. As the knee flexion angle
gradually increased from 10◦ to 135◦, the muscle activity of the
gluteus maximus, rectus femoris, vastus medialis, vastus lateralis,
vastus intermedius, and erector spinae first increased and then
decreased, while the muscle activity of gastrocnemius and soleus
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TABLE 5 | The result of metabolic cost measurement when the subject was

walking at the speed of 4 and 5 km/h.

Subject
4 km/h 5 km/h

WOE

(W/kg)

WE

(W/kg)

AMC

(%)

WOE

(W/kg)

WE

(W/kg)

AMC

(%)

1 (female) 4.20 4.33 3.1 4.69 4.82 2.8

2 (male) 5.32 5.42 1.9 5.81 5.98 2.9

3 (male) 5.27 5.43 3.0 5.75 5.89 2.4

4 (male) 5.78 5.90 2.1% 5.82 6.01 3.3

Where WOE, WE, and AMC were the abbreviation of without exoskeleton, with

exoskeleton and additional metabolic cost, respectively.

decreased. Therefore, the exoskeleton was designed to provide
assistance force for the gluteus maximus, rectus femoris, vastus
medialis, vastus lateralis, vastus intermedius and erector spinae.

The exoskeleton was applicable for users from 150 to 185 cm,
which has the degree of freedom of flexion and extension of knee
joint, dorsiflexion, plantarflexion, eversion and inversion of ankle
joint. Because its parts were made of carbon fiber and aluminum
alloy, the total weight of the exoskeleton was only 2,067 g, which
was only 33.9% of Legx and 60% of the Chairless Chair. It was
easy to switch among three working modes: follow mode, rigid-
support mode and elastic-support mode. In the follow mode, the
angle of the locking plate was adjusted to 0◦, and the assist device
can follow the wearer’s movement without interfering with the
daily activities such as normal walking, upstairs and down-stairs
and other daily activities. In the rigid-support mode, the angle
of the locking plate was adjusted to the same angle as the angle
of the knee joint in any squatting position. The assistive device
provided comfortable support for the wearer. In the elastic-
support mode, the energy is harvested by a torsion spring during
knee-flexion and was released during knee-extension, which was
used to reduce the moment required for the knee joint during
knee-extension.

In order to evaluate the performance of the exoskeleton, three
different experiments were conducted, respectively. In the first
experiment, the EMGs of the muscles related to squatting with
and without exoskeleton was measured, the result showed that
the mean EMGs amplitude of soleus, vastus lateralis, vastus
medialis, gastrocnemius, vastus intermedius, rectus femoris,
gluteus maximus, and erector spinae were reduced by 98.5, 97.89,
80.09, 77.27, 96.73, 94.17, 70.71, and 36.32%, respectively, with
the assistance of the exoskeleton. The second experiment was
to test the effective support that the exoskeleton can provide
under different weights and squatting positions. Compared to
the percentage of weight through subject’s feet without and
with exoskeleton, it was reduced by 63.94, 64.52, and 65.61%,
respectively, at 60◦, 90◦, and 120◦ of knee flexion angle.
Experiment three was used to measure the additional metabolic
cost brought by the exoskeleton to wearer in follow mode. The
average additional metabolic cost introduced by exoskeleton was
2.525 and 2.85%. Each kilogram added to the foot increases
energy expenditure 7–10% (Knapik et al., 2004), whichmeans the

average additional metabolic cost introduced by exoskeleton was
less than that worn by safety shoes (the weight of the safety shoes
was greater than 1 kg). Therefore, it means that the exoskeleton
would not seriously interfere with the movement of the wearer in
follow mode.

The exoskeleton not only effectively reduced muscle fatigue,
but also did not interfere with the free movement of the wearer.
In the future, the intelligent switcher will be designed, which
will enable the exoskeleton to switch in three working modes
intelligently according to the intention of wearer.
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Herein, we propose a real-time stable control gait switching method for the exoskeleton

rehabilitation robot. Exoskeleton rehabilitation robots have been extensively developed

during the past decade and are able to offer valuable motor ability to paraplegics.

However, achieving stable states of the human-exoskeleton system while conserving

wearer strength remains challenging. The constant switching of gaits during walking may

affect the center of gravity, resulting in imbalance of human–exoskeleton system. In this

study, it was determined that forming an equilateral triangle with two crutch-supporting

points and a supporting leg has a positive impact on walking stability and ergonomic

interaction. First, the gaits planning and stability analysis based on human kinematics

model and zero moment point method for the lower limb exoskeleton are demonstrated.

Second, a neural interface based on surface electromyography (sEMG), which realizes

the intention recognition and muscle fatigue estimation, is constructed. Third, the stability

of human–exoskeleton system and ergonomic effects are tested through different gaits

with planned and unplanned gait switching strategy on the SIAT lower limb rehabilitation

exoskeleton. The intention recognition based on long short-term memory (LSTM) model

can achieve an accuracy of nearly 99%. The experimental results verified the feasibility

and efficiency of the proposed gait switching method for enhancing stability and

ergonomic effects of lower limb rehabilitation exoskeleton.

Keywords: rehabilitation exoskeleton robot, real-time motion stability, gait switch, surface electromyography,

motion intention recognition, muscle fatigue, ergonomic effects

1. INTRODUCTION

In recent years, powered lower limb exoskeleton robots have been proven to be particularly versatile
and effective in the medical and military fields. Lower-limb exoskeleton robots can be roughly
divided into two categories, including the auxiliary exoskeleton robot and the assisted exoskeleton
robot. The auxiliary exoskeleton robot is used to aid the sick and the elderly in their normal daily
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life functioning or medical rehabilitation. The assisted
exoskeleton robot is utilized for strength augmentation
in disaster rescues or auxiliary operations. The auxiliary
exoskeleton is our discussed object in this investigation, although
the mechanism design and manufacture, path planning, and
high-level intent control for lower limb exoskeleton robot has
been developed to a relatively sophisticated level. Unfortunately,
achieving a stable gait switching during walking for lower limb
exoskeleton robots is still a challenging research.

Research into exoskeleton robots has resulted in considerable
development of lower limb rehabilitation exoskeleton robots.
Auxiliary walking exoskeleton robots are mainly applied in the
field of medical rehabilitation for patients with inferior legs
and feet, such as the elderly and disabled. Some heterogeneous
structure exoskeleton robots (Li et al., 2015; Parietti et al., 2015;
Eguchi et al., 2018) are investigated in recent years. However,
it was found that those exoskeleton robots take advantage of
the heterogeneous structure with human lower limbs to gain
walking stability, which may have some support strength but
poor adaptability. As opposite of heterogeneous exoskeleton
robots, most paraplegic rehabilitation exoskeleton robots have
developed to be humanoid bipedal robots, and some of these
exoskeletons are equipped with crutches to maintain better
balance. Exoskeleton robots require the human interface to
provide walking stability so that it may function as a flexible
assistant. Such robots have been developed by commercial
companies including Rewalk (Talaty et al., 2013), Ekso Bionics
(Baunsgaard et al., 2018), Ailegs (Chen et al., 2018), and MaiBu
BEAR H1. Exoskeleton robots especially require the walking
stability as far as possible so as to provide flexible assistant. The
Hybrid Assistive Limb (HAL) (Shimizu et al., 2019), which takes
advantage of sEMG in control strategy, was designed by the
robotics company Cyberdyne (Yilmaz et al., 2018).

Moreover, plenty of research institutes and universities
are also actively developing humanoid exoskeletons. Sogang
University in Korea developed a exoskeleton namely SUBAR
(Chen et al., 2013; Hwang and Jeon, 2018), which could
estimate the muscular torque of its wearer. Singapore’s Nanyang
Technological University (Mertz, 2012) and Harvard University
(Abe et al., 2018) have also made solid progress in the
development of assisted exoskeletons. The Chinese University
of Science and Technology designed an exoskeleton robot
driven by a servo motor (Li et al., 2019) and developed a
fuzzy algorithm for lower extremity exoskeleton (Huang et al.,
2016a). The exoskeleton team of H. C. from University of
Electronic Science and Technology of China have developed
exoskeletons for paraplegia (Huang et al., 2018), hemiplegia
patients (Peng et al., 2020), and human-power augmentation
(Huang et al., 2016b, 2019). The exoskeleton group at the
Shenzhen Institutes of Advanced Technology of the Chinese
Academy of Sciences has developed the fourth generation of the
SIAT exoskeleton robot. With four degrees of freedom (DoFs),
this exoskeleton robot has successfully enabled persons with
disabilities to stand up and walk independently (Liu et al., 2017;
Wang et al., 2018a).

The human–exoskeleton interaction is drawing more and
more attention (Huang et al., 2016b,c; Lin et al., 2019). The

neural interface between the human and exoskeleton based on
the brain computer interface (BCI) (Yuan et al., 2018) and sEMG
has been a hot research topic. Brain–computer interfaces are
relatively unstable (Wang et al., 2018b). Decoding sEMG signal
is one of the important approaches for intention identification
(Chu et al., 2007). The human–exoskeleton system is operated
by the identified results of decoding sEMG signals, which can
prevent the disadvantages of the operation with physical buttons.
For instance, the pilot can focus on maintaining balance rather
than pressing control button to operate exoskeleton at the same
time, which may result in fatigue and instability. In addition, the
sEMG is an intuitive and noninvasive way to real-time monitor
the muscle states, which has proven to be an effective in muscle
fatigue detection (Lin et al., 2019).

While investigating the existing exoskeleton control methods,
we found very few studies that have examined the minimum
force requirements into the control scheme by the wearer.
We also found scarce consideration for the state of the
wearer while operating a lower limb exoskeleton. In detail,
the use of crutches can lead to walking instability, thereby
impacting exoskeleton assistance, while also impacting the
patients’ overall rehabilitation. In this study, the usage of
crutches and gait switching is investigated to gain the stability
of human-exoskeleton system. This study could be applied
to rehabilitation training in rehabilitation medical institutions,
which is customized for each patient. An overview of the
developed rehabilitation exoskeleton motion analysis system is
presented in Figure 1. As shown in Figure 1, the gait model based
on stability analysis and gait planning is first completed. Then
intention recognition based on sEMG with machine learning
is demonstrated. After that, the exoskeleton is driven with
the control model. Finally, the exoskeleton motion analysis
is demonstrated.

In this study, real-time gait conversion is achieved through
neural interface and proposed gait switching method based on
the SIAT exoskeleton rehabilitation robot. The gait switching
method trying to make two crutch-supporting points and a
supporting leg form an equilateral triangle base to increase
the stability of human-exoskeleton system and enhance its
ergonomic effects, including joints load bearing and less
muscle fatigue. The main contributions of this paper are
as follows:

(1) The analysis of gait planning is demonstrated based on
a human kinematics model and real-time motion stability
based on the zero-moment point (ZMP).

(2) A neural interface is constructed based on sEMG
to achieve motion intention recognition and muscle
fatigue estimation.

(3) The stability of human–exoskeleton system and ergonomic
effects of the proposed gait switching method are verified by
the organized experiments.

The remainder of this paper is organized as follows. Section
2 provides methodology used in this research. Section
3 presents system setup. Section 4 details experimental
works and results. Section 5 shows the conclusions and
future work.
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2. METHODOLOGY

2.1. Gait Analysis
2.1.1. Gait Planning
In this study, the SIAT exoskeleton robotmovement was achieved
by the cooperation of the hip, knee, and ankle joints. We regard
the lower limbs of the human body as a model of six connecting
rods, as illustrated in Figure 2.

Taking the hip joint as the coordinate axis origin in the
figure, the thigh, and calf are regarded as two straight rods in
the sagittal plane. One end of the thigh is connected to the
shank with the knee joint, and the foot is connected to the calf
through the ankle joint. According to the angle relationship and
adjacent coordinates, the Denavit–Hartenberg (DH) (Gillis et al.,
2018) relationship between the hip, knee, and ankle joints can be
determined, as indicated in Table 1. Through the DH relation,
we can obtain the relational coordinate matrix as follows: where

cosθ1 = b1, cosθ2 = b2, sinθ1 = c1, sinθ2 = c2, cosα1 = j1,
cosα2 = j2, sinα1 = k1, sinα2 = k2.

A1 =









b1 −c1j1 c1k1 a1b1
c1 b1j1 −b1k1 a1c1
0 k1 j1 d1
0 0 0 1









(1)

TABLE 1 | Denavit–Hartenberg relationship.

Link ai αi di θ i

1 L1 0 0 θh

2 L2 0 0 −θk

FIGURE 1 | Rehabilitation exoskeleton motion analysis system.

FIGURE 2 | Lower extremity kinematics model.
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A2 =









b2 −c2j2 c2k2 a2b2
c2 b2j2 −b2k2 a2c2
0 k2 j2 d2
0 0 0 1









(2)

T = A1 × A2 (3)

T =









b1b2 − c1c2j1 t01 t02 t03
b2c1 + b1c2j1 t11 t12 t13

c2k1 t21 t22 t23
0 0 0 1









(4)

where t01 = c1k1k2 − b1c2j2 − b2c1j1j2, t02 = b1c2k2 + c1j2k1 +
b2c1j1k2, t03 = a1b1 + a2b1b2 + c1d2k1 − a2c1c2j1, t11 =

b1b2j1j2 − b1k1k2 − c1c2j2, t12 = c1c2k2 − b1j2k1 − b1b2j1k2,
t13 = a1c1 + a2b2c1 − b1d2k1 + a2b1c2j1, t21 = j1k2 + b2j2k1,
t22 = j1j2 − b2k1k2, t23 = d1 + d2j1 + a2c2k1. The homogeneous
coordinate matrix T that demonstrates the relationship between
angle of hip and angle of ankle can be easily obtained through
the homogeneous coordinate matrix A1 and A2. Based on the
kinematics analysis of the exoskeleton robot, matrix relationships
are used to calculate the positions of the hip and knee motors
at each moment, which are converted into the motor rotation
angle values.

The Vicon dynamic capture demonstrated that the joint
exhibits a sinusoidal trajectory state when the human body
moves. The SIAT rehabilitation exoskeleton has six DoFs: four
actives and two passives. The hip and knee joints are initiative.

We initially treat these two joints as two points and draw
the trajectories of these points during the walking process to
determine the trajectory approximating the sine function (Chen
et al., 2019), as illustrated in Figure 3.

The sine function, y = Asin[(ωx + ϕ) + k], is used to
express the joint movement trajectory of the human body. The
hip joint is regarded as the coordinate 0 point, and the coordinate
relationship is established according to the hip joint position.
The length of the thigh is set to l1, the length of the calf is set
to l2, and the number of sampling points is denoted by i. The
sinusoidal relationship is used to obtain the hip joint abscissa
x0(i) and ordinate y0(i). In the same manner, the abscissa x3(i)
and ordinate y3(i) of the left foot position are obtained by means
of the sinusoidal relationship (Guo et al., 2019).

The left knee position is determined as follows:

(

x− x3(i)
)2

+
(

y− y3(i)
)2

= l22 (5)
(

x− x0(i)
)2

+
(

y− y0(i)
)2

= l21 (6)

The maximum values of x and y, namely x4(i) and y4(i),
respectively, are used. In this manner, the angle value of each
position can be reversed as follows:

Left hip:

Ahl(i) = arctan

(

x4(i)− x0(i)

y0(i)− y4(i)

)

(7)

FIGURE 3 | The motors gait trajectory.
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Left knee: takes 0 when the value is <0:

Akl(i) = arctan

(

x3(i)− x4(i)

y4(i)− y3(i)

)

(8)

Using the compilation algorithm, we determine the different
positions of the motor at each moment, and these are combined
into a complete motion cycle. The generatedmotor gait trajectory
is illustrated in Figure 3. A parenthesis indicates the planning
step size (in cm).

When compiling the control program, we set different step
sizes, paces, and changed the motion states. The crutch support
points were placed in different positions to form triangle support
points of different shapes. In our previous experiments, we used
the Tactilusr foot pressure insole to collect the pressure data and
obtain the motion trajectory (Guo et al., 2019). It was verified
that the stable triangle support point was more conducive to
mastering balance. The present study uses the Vicon Nexus
motion capture system in conjunction with the 3D force test
runner to verify the results.

The control logic between exoskeleton states and intention
recognition is illustrated in Figure 4. The three exoskeleton states
are as follows: the quiescent state is set to P0 (stop), the walking
state is set to P1 (walk), and step over an obstacle (21.5 ∗ 13.5
∗ 10.5 cm) state is set to P2 (stride across). The starting state is
P0 (stop).

In order to operate the exoskeleton robot, we set the control
instruction value of detected immobility to 0, the control
instruction value of detected walking to 1, and the control
instruction value of detected crossing obstacle to −1, which is
then reset to its initial state of P0 (stop). When the identified
results of sEMG signals is 1, the exoskeleton would run to the
state P1 (walk); when identified results of sEMG signals is 0, the
exoskeleton would run to the state P0 (stop); when the identified
results of sEMG signals is −1, the exoskeleton would run to the
state P2 (stride across). The exoskeleton would automatically run
to the state P0 (stop) after the P2 (stride across) state.

FIGURE 4 | Control logic between exoskeleton states and intention

recognition.

The motion intention is recognized through sEMG, which
will be demonstrated in section 2.2.1. Because of the continuity
and density of the collected sEMG, control instructions are
sent to the exoskeleton only when three consecutive identical
recognition results are detected. If three consecutive signals are
not detected, the exoskeleton remains static after completing the
current motion.

2.1.2. Stability Analysis
To help paraplegic wearing the exoskeleton to master balance,
a stable gait switch method based on the ZMP is proposed. For
these patients, the lack of strength and sense of lower extremities
means that they cannot rely on their legs to keep balance.
Double crutches need to be added to ensure balance; hence,
the exoskeleton exists in a quadruped state (Wu et al., 2018).
By positioning the crutches to form a triangle base of support,
additional stability is produced.

The walking process can be divided as follows: 40% of
situations are supported by one leg, 20% of situations are
supported by two legs, and the remaining 40% of situations are
supported by one leg, the other is semi-supported. In order to
evaluate the performance of the stable gait switch method, a
real-time gait was divided into eight parts.

The entire movement process will only produce plantar
pressure during the incomplete support stages. The main part of
the full leg support stage is the forward force balance (Moraes
et al., 2019). When the three supporting points form a triangle
and the barycenter falls within the triangle, the stable state
achieves at this time. The ZMP theory is used to calculate the
overall pressure center point position of human–exoskeleton
system during walking. The ground force is regarded as the
discrete force set fi ∈ S(i = 1, 2, ...,N) acting on pi, as indicated
in Figure 5.

The moments around the point p are expressed as:

τ =

N
∑

i=1

(

pi − p
)

× fi (9)

Because the equivalent moment of force for the ZMP is zero, the
foot does not rotate around the ground vertical axis (does not
cause slipping). At this time, the ZMP position is:

p =

∑N
i=1 pifiz

∑N
i=1 fiz

(10)

In the formula, when fiz is the case in which fi forms a triangular
support in the vertical direction of the z axis, the ZMP position is:

p =
pLfL + pRfR + pg fg

fL + fR + fg
(11)

In the above, pL, pR, and pg represent the ZMP position obtained
by the left foot, right foot, and crutch, respectively. By means of
calculation, the center of pressure (CoP) and ZMP are almost
coincident or coincident. We measure the shortest distance from
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FIGURE 5 | Zero moment point.

the CoP to triangle the support side. We list one of these here
as follows:

αCa = dC⊥P1P2 (12)

dC⊥P1P2 =

∣

∣

∣

−→
OC −

−−→
OP2 −

(

−−→
OP1 −

−−→
OP2

)

·

(

−→
OC −

−−→
OP2

)

Ee
∣

∣

∣
(13)

In order to ensure stability of human–exoskeleton system, we
analyzed the stability of different triangular support structures.

When the position of τ falls within the triangle formed by
the support points, the value of αCa is >0, and stability is
indicated. The barycenter will fall in the center of the triangle
only when the vertical distance between each point of the CoP
point and triangle is sufficiently small and all distances are equal,
indicating that the three supporting points are evenly stressed,
as shown in Figure 6A. When the three support points formed
a normal acute triangle, as indicated in Figure 6B, the vertical
distance between each point of the CoP point and the triangle is
unequal, indicating that the force of the three support points is
not uniform in this state. When the three support points form
a right triangle, as indicated in Figure 6C, the force of the three
support points is also uneven as the barycenter of the triangle
falls on the oblique side, which constitutes a critical stable state.
When the triangle formed by the three support points is an
obtuse triangle, as indicated in Figure 6D, the barycenter of the
triangle has fallen outside the triangle, constituting a tendency
to dump. The stability threshold for walking at each step must
be controlled within a safe range because an uneven force will

accelerate muscle fatigue and soreness, resulting in a decrease in
stability and affecting the rehabilitation effect.

2.2. sEMG Interface
A neural interface is constructed based on sEMG, which aims
to accomplish the intention recognition and muscle fatigue
estimation. Because of the lack of sEMG in lower limb for
paraplegics, the sEMG signals and angle signals from the upper
limbs are collected. The sEMG and angle signal of the subject
were simultaneously collected while the subject wearing the
SIAT exoskeleton was normally walking or triggering the gait
conversion. One of the planned motions was listed, with the right
elbow joint bent at not <90◦ as the triggering signal. This action
is used as trigger because that paraplegics can perform this action
fair easily in the standing posture. Moreover, considering that
sEMG will be used for further intention recognition, this action
will not conflict with other gait switching actions. The acquired
joint angle was used as an auxiliary confirmation angle value to
achieve more accurate intention recognition.

2.2.1. Motion Intention Recognition
To recognize the motion intention better, this research injected
the LSTM deep learning model. A deep motion pattern
identification model based on the LSTM structure is proposed
to study the inherent characteristics of joint and sEMG from a
time perspective (Miikkulainen et al., 2019). The LSTM model
contains input, forget, and output gates (Zeiler, 2012), as well
as one or more self-connected memory cells, which allows the
cells to reset data when the network needs to forget useless inputs
(Chang and Lin, 2011). The LSTM memory cells can store and
access information over long periods.

The most important component in the LSTM neural network

is the state unit s
(t)
i :

s
(t)
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(t)
i s
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The input of LSTM network is given as:

g
(t)
i = σ



b
g
i +

∑

j

U
g
i,jx

(t)
j +

∑

j

W
g
i,jh

(t−1)
j



 (15)

The forgetting layer output is given as:

f
(t)
i = σ



b
f
i +

∑

j

U
f
i,jx

(t)
j +

∑

j

W
f
i,jh

(t−1)
j



 (16)

The LSTM network cell output is given as:

h
(t)
i = tanh
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s
(t)
i

)
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The LSTM network output is given as:
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FIGURE 6 | Triangular force analysis. (A) The barycenter falls in the center of the triangle; (B) The barycenter falls in the non-center of the triangle; (C) The barycenter

falls in edge of the triangle; (D) The barycenter falls out of the triangle.

where b, U and W are the offset weights of the LSTM cells,
input weights, and forget gates, respectively. Moreover, x(t)is
the current input, while h(t) is the current hidden layer vector
containing the output of all LSTM cells.

The current memory is written as:

C′

t = tanh
(

Wc
i,jx

c
j + Uc

i,jh
(t−1)
j + bci

)

(19)

The current value for the states of the memory cells is given as:

Ct = f
(t)
i Ct−1 + g

(t)
i C′

t (20)

The memory block output is given as:

h
(t−1)
j = q

(t)
i tanh (Ct) (21)

Based on the LSTM neural network framework, the neural
network for motion intention recognition is constructed.
Multiple LSTM cells can be stacked for more expressive power,
as presented in Figure 7. In different states, the elbow joint angle

data and the sEMG signal of the selected muscles (the musculus
biceps brachii, brachioradialis, and finger extensor) are collected.
Based on the collected data, the movement intention is identified
through the LSTM neural network model, which is built using
TensorFlowr. The neural network model is trained and verified
by the obtained data. The exoskeleton system is controlled by
the optimal model through predicting the motion intention of
wearer. The LSTM neural network structure consists of one input
layer, two hidden layer, and one output layer. The input layer is
composed of three nodes corresponding three selected muscles.
The number of neuron nodes in hidden layer is 128, and the
hidden layer uses ReLU as the activation function. The dropout
probability of nodes is set to 0.5. Taking advantage of dropout
can make the LSTM network model more robust and avoid
the problem of over-fitting (Zeiler, 2012). In order to prevent
gradient drop, the adaptive moment estimation algorithm and
weighted average method are utilized in this research. The LSTM
model achieves optimization by using the following paraments:
train errors = 0.004583, train costs = 2.511049, valid errors =
0.001667, and valid costs = 0.198940. We explain the different
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FIGURE 7 | LSTM network block diagram.

LSTM neural networks that are used for accuracy comparisons
(Chu et al., 2007). The softmax layer is selected as the output
layer. The output layer is composed of three nodes, which
correspond with the three gait categories.

2.2.2. Muscle Fatigue Estimation
In this research, muscle fatigue is quantified based on sEMG
through the neural interface and the wavelet packet energy
entropy (WPEE) is utilized to quantify the muscle fatigue. WPEE
not only has the advantages of wavelet transform but also tests
the overall representation of the signal from the perspective of
the system. The complexity of the frequency component signal
and the dynamic characteristics of the signal are given. The
wavelet packet decomposition and composition are completed
with daubechies wavelet basis function (db1), which have good
smoothness and compactness (Nakashima and Kushida, 2019).

After wavelet packet decomposition, the reconstructed signal
energy of (i, j) is calculated as:

E
j
i =

M
∑

k=1

∣

∣

∣
dki,j

∣

∣

∣

2
(22)

where dki,j denotes the coefficient of the kth decomposition

node (i, j), and M presents the number of points in the
decomposed signal sequence. Then, the relative value of energy
in single frequency band, which presents the each band energy

distribution of signals in overall frequency range, can be acquired
by normalizing the energy:

P
j
i =

E
j
i

∑2i−1
j=0 E

j
i

(23)

where j ∈
[

0, 2i − 1
]

. The probability is also called relative
wavelet packet energy. Combining the energy distribution
of wavelet packet decomposition coefficient with information
entropy, the WPEE is defined as:

WPEE = −

2i−1
∑

j=0

P
j
i lnP

j
i (24)

WPEE can quantitatively measure the order and disorder
of sEMG frequency distribution. If the sEMG energy is
concentrated in one sub-band, the WPEE is 0, that is, the sEMG
is orderly; on the contrary, if the sEMG energy is randomly
dispersed in each sub-band, the sEMG is disorderly. Therefore,
if muscles are more fatigue, the frequency of sEMG is more
compressed to low frequency (Guan et al., 2017; Nakashima and
Kushida, 2019), contributing to a decrease in WPEE. The values
of WPEE are first normalized and then statistically stratified
to support visualization and comparison of the muscle fatigue
quantitative results.
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3. SYSTEM SETUP

The main equipment in this research includes SIAT Exoskeleton,
Biometrics sEMG acquisition system and Vicon Nexus motion
capture system, as illustrated in Figure 8.

3.1. SIAT Exoskeleton
The SIAT exoskeleton robot, which is driven with two geared
brushless motors for each leg, is designed for the disabled. This
robot was developed by the Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences. The SIAT lower-
limb rehabilitation exoskeleton robot is illustrated in Figure 8A.
The SIAT exoskeleton robot includes hip, and knee joints,
with a total of four DoFs. It can provide assistance to the
hip and knee joints in the sagittal plane. Furthermore, the
ankle joint is equipped with a spring mechanism to ensure a
maximum contact area between the sole and ground to maintain
stability. The encoders can obtain the angle of the hip and
knee joints and crutches are used to ensure overall balance of
the exoskeleton.

The SIAT exoskeleton consists of a mechanical frame,
drive system, control system, and sensing system. The total
weight is approximately 15 kg. The control unit is a Windows

microcomputer that is placed in a white backpack on the back.
The use of the microcomputer offers numerous advantages
including the ability to optimize software specifically for the
exoskeleton robot, while in use or copied to the microcomputer
for direct use (Yan et al., 2018).

3.2. Biometrics
The portable sEMG signal acquisition system (Biometrics
PS850) includes a signal acquisition device (DataLog) and
management software that is specifically designed for sEMG
measurements. The sEMG acquisition device includes eight
independent programmable analog channels and two digital
channels. The used sampling rate is set to 500 Hz in this research.
Using the DataLog data acquisition memory, the collected signal
records can be stored and analyzed. Three analogy channels
are used to collect sEMG and a wired twin-axis goniometer
is utilized to collect angle signal. The surface myoelectric
collectors were attached to three selected muscles (musculus
biceps brachii, brachioradialis, and finger extensor on the right
arm), and the angle sensor was attached to the elbow joint. The
sEMG acquisition system and selected muscles are illustrated in
Figure 8B.

FIGURE 8 | System setup: (A) SIAT Lower-limb Rehabilitation Exoskeleton Robot; (B) sEMG acquisition system and selected muscles; (C) VICON BONITA 10

environment, including Vicon camera, Vicon sole, and AMTI platform.
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3.3. Vicon Nexus
The full set of equipment (Vicon BONITA 10) from Vicon Nexus
is utilized formotion data acquisition and verification. The center
of gravity movement trajectory and movement pressure of the
exoskeleton robot during the walking process were detected by
the pressure-measuring device on the running platform. The
Vicon motion capture system captured the real-time motion of
the exoskeleton robot wearer, detected the motion posture, and
determined the wearer’s center of gravity movement trajectory.

Vicon is a 3D optical motion capture system developed
by Oxford Metrics Limited in the United Kingdom. VICON
BONITA 10 environment includes Vicon cameras, a Vicon sole,
and the AMTI platform, as shown in Figure 8C. Every part
of the 3D optical motion capture system are connected via a
network to provide real-time optical data, and it can be used
for real-time online or off-line motion capture and analysis.
The working principle is based on a reflective capture system,
which requires reflective balls (markers) on the wearer. When
the Vicon camera emits red light onto the reflective ball, the
reflective ball will reflect red light of the same long wavelength
to the camera. Therefore, the capture camera can determine the
two-dimensional coordinates of each reflective ball. Following
Vicon’s control software processing, the 3D coordinates and the
trajectory of each reflective ball can be obtained. In this study, we
used six cameras to capture the motion pose.

4. EXPERIMENTAL WORKS AND RESULTS

Three healthy male subjects participated in the experiments
of this work and voluntarily signed an informed consent
form, which was approved by the Medical Ethics Committee
of Shenzhen Institutes of Advanced Technology [(SIAT)-IRB-
170315-H0142].

4.1. Experimental Design
When people with disabilities in the lower limb suddenly stand
up with exoskeleton, it is difficult for them to master balance.
Moreover, paraplegic patients do not trust the exoskeleton robot
when they wear the exoskeleton for the first time. In this case, the
support point position of the crutches is particularly important.

During one movement cycle, the crutches are regarded as
support points. Therefore, the human–exoskeleton system forms
a quadruped state. During a gait cycle, the right crutch is first
moved while lifting the left leg. With the left crutch as the
support point, the right leg is lifted. Then, as the right crutch is
moved to become the support point, the left leg is lifted. Finally,
the crutches are retracted on the right-hand side to complete
a periodic gait. It is necessary to form a three-point steady
state during the movement and a four-point steady state in the
stopping phase. Under normal circumstances, it is difficult to
guarantee balance in the walking condition, and it is necessary
to form a stable triangular support point. As shown in Figure 9,
one complete period gait consists of a series of gait phases and
states. Two-crutch points and supporting feet are required to
form an equilateral triangle in the transition phase to maintain
the stability of the human–exoskeleton system.

In experiments, the subject was attached to the exoskeleton
through soft bandages. While the human exoskeleton was
walking, the weight was transmitted to the supporting legs and
crutches. Walking with different gaits was performed on the
Vicon 3D force-measuring platform. In total, 10 datasets were
collected for each gait group.

To control exoskeleton robot based on motion intention of
the subject in real time, the sEMG of selected muscles are
simultaneously collected. The gait of the exoskeleton robot is
then switched according to the identified results derived from the
optimized LSTMmodel. A real-time communication connection
between the intention recognition and the exoskeleton robot
is constructed. We use Visual Studio (VS) to establish the
exoskeleton Windows presentation foundation (WPF) control
interface, establish intention recognition based on the LSTM
model on MATLABr, build a real-time communication
connection between the sEMG signal acquisition system and
MATLABr tomake it run simultaneously, and use the IP address
and port to establish a real-time communication connection with
the exoskeleton WPF control interface.

Real-time training is conducted through machine learning
by collecting sEMG signals of stopping, walking, and stride
across states. The recognized signal is then transmitted to
the VS program through real-time communication interface.

FIGURE 9 | Supporting phase structure in walking condition.
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The real-time intention recognition flowchart is shown
in Figure 10.

The pressure data were monitored in real time through the
3D force measuring treadmill and the real-timemotion trajectory
of the subject was determined through the Vicon dynamic
capture system, as illustrated in Figure 3. Eight different gaits
in this experiment, and planned and unplanned walking were
performed in each gait. The equilateral triangle support structure

is considered as the planned gait and the rest of the triangle
support structure as the unplanned gait. The data were collected
and compared to verify that it is more stable in the planned
walking state.

In addition, muscle fatigue experiments are conducted to
demonstrate the advantage of our proposed gait switch method
further. Each subject wearing the exoskeleton robot walks for
12 min (2 sessions × 6 min) using planned and unplanned gait

FIGURE 10 | The flowchart of real-time intention recognition.
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switching method, respectively. The subject would have enough
rest between each walking test to reduce the fatigue impact from
prior test.

4.2. Results and Analysis
The CoP trajectories of different gaits based on the Vicon 3D
force-measurement treadmill are compared. The comparation of
each CoP trajectory is illustrated in Figure 11. It is found that
stability is better while walking with the planned path. Under the
planned gait switching method condition, the deviation between
the similar wave peaks and the wave valleys is smaller in the
different gait trajectories, the gait is smoother, and the center of
gravity movement trajectory is smaller.

Through the reverse derivation of the human load bearing
using the Vicon 3D force-measuring treadmill, the load bearing
sizes of the ankle, knee, hip, and waist can be obtained. The gait
with 28, 32, 36, 40, 44, and 48 cm steps size, and the gait of
step over obstacle (stride cross) are utilized to be tested. Each
subject walk with these gaits, and the average results deriving
from each group of gaits are indicated in Table 2. By comparing
the forces, we can observe that the planned gait results in greater
conservation of strength. This is further verified by the muscle
fatigue estimation results.

After the sEMG is collected, the power frequency interference
at 50 Hz had to be eliminated (Kim et al., 2019). Bandpass
filtering of 10–500 Hz was also required after the interference
was removed by infinite impulse response. We collected 214,000
sample points as training data for the collected samples, and each
motion covered 40 datasets with a length of 1,000. The feature
vectors were extracted from the sEMG data using the root mean

square (RMS):

RMS =

√

∑N
i=1 |x(i)|

2

N
=

√

∣

∣x21 + x22 + . . . + x2N
∣

∣

N
(25)

The extracting feature causes the features between different
signals to be more prominent and improve accuracy. The data
could be mapped nonlinearly to a high-dimensional space to
solve the linearity of the original space.

The objective function is expressed as:

max
αi>0

min
w,b

L(w, b,α) = p∗ (26)

where p∗ represents the optimal value.
The corresponding classification function is given as:

f (x) =

n
∑

i=1

αiyiK (xi, x) + b (27)

where K(x,z) represents the construction kernel function. The
extracted feature vector was affixed with the corresponding
motion pattern tags and placed in the neural network as datasets
for processing. Note that 80% of the data were used as the test
set, and the remaining 20% were used as the verification set. The
correct rate was verified via cross-validation of different folds.
The common machine learning method, including Supporting
Vector Machine (SVM), Multiple Layers Perception Neural
Networks (MLPNN), K-Nearest Neighbor (KNN), and Linear
Discriminant Analysis (LDA), are compared with the LSTM

FIGURE 11 | Comparation of CoP trajectory.
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TABLE 2 | Joints load bearing comparation between in planned and unplanned gait.

Parameter 28 cm 32 cm 36 cm 40 cm 44 cm 48 cm Stride cross

Ankle joint force (N/kg) (Planned) 5.549 5.463 5.221 4.506 5.092 5.571 5.628

Knee joint force (N/kg) (Planned) 4.076 4.288 3.397 3.049 3.665 3.798 4.828

Hip joint force (N/kg)(Planned) 5.094 5.312 4.410 4.056 4.646 4.810 5.836

Waist force (N/kg)(Planned) 6.675 5.757 5.210 4.565 5.674 5.934 6.603

Wrist force (N/kg)(Planned) 4.192 4.256 4.680 4.265 4.141 4.396 4.376

Ankle joint force (N/kg) (Unplanned) 7.755 7.205 6.265 7.152 6.327 6.335 6.882

Knee joint force (N/kg) (Unplanned) 6.286 5.054 4.623 4.318 4.901 5.446 6.885

Hip joint force (N/kg)(Unplanned) 7.267 6.123 5.645 5.336 6.243 6.472 7.171

Waist force (N/kg)(Unplanned) 7.673 7.467 7.322 6.801 6.850 6.723 7.702

Wrist force (N/kg)(Unplanned) 5.343 5.301 6.052 6.138 5.445 5.354 5.536

TABLE 3 | Intention recognition rate comparison.

Method 2-Fold (%) 4-Fold (%) 6-Fold (%) 8-Fold (%) 10-Fold (%) 12-Fold (%) 14-Fold (%)

LSTM 96.5 98.0 99.2 99.4 99.4 99.5 99.5

SVM 94.0 95.0 95.0 95.3 96 96.5 96.5

KNN 85.5 90.0 91.7 92.4 90.1 90.0 89.5

MLPNN 91.0 91.3 92.5 93 93.9 97.0 94

LDA 86.4 85.6 90.1 87.9 85.0 86.4 86.4

FIGURE 12 | The comparation of muscle fatigue estimation based on wavelet packet energy entropy (WPEE) value.

model. The comparison of intention recognition rate is indicated
in Table 3.

During the muscle fatigue experiments, the gaits in different
size are utilized to test. The subject wearing the exoskeleton robot
walks back and forth in an open area about 10 m long and 3 m
wide. The subject crosses an obstacle (21.5 × 13.5 × 10.5 cm)
two times and turns around at the end of the path. The subjects
are asked to move the body weight forward as much as possible to
imitate the paraplegic. The muscle fatigue estimation results and
analysis in gait with 36 cm are demonstrated as in Figure 12. The
normalized WPEE value is divided into four layers and statistics
are completed. The lower the WPEE value, the more severe the
muscle fatigue. It is obvious that the proportion of high value

WPEE in planned gait switching condition is more than that in
unplanned gait switching condition. Therefore, we may safely
claim that the muscle is more fatigue using the unplanned gait
switch method.

5. CONCLUSIONS

In this research, an adjustable real-time stable gait switching
strategy with a neural interface for the lower extremity
exoskeleton robot is proposed. The gaits planning and stability
analysis based on the human kinematics model for the SIAT
lower limb exoskeleton are first demonstrated. A neural interface

Frontiers in Neuroscience | www.frontiersin.org 13 April 2021 | Volume 15 | Article 64537467

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wang et al. A Real-Time Stability Control Method

based on sEMG that realizes the intention recognition and
muscle fatigue estimation is constructed. The stability of human–
exoskeleton system and muscle fatigue of the wearers with
the exoskeleton robot were tested through different gaits. The
intention recognition accuracy based on the LSTM model was
approximately 99%. The feasibility and efficiency of the proposed
gait switching method is verified using the experimental results.

Although the proposed real-time gait switching strategy has
shown advantages, several limitations of this study should be
noted. First, the real-time gait switching method was only trained
and tested using healthy subjects, and paraplegic patients may
generate different locomotion features. Second, the most steady-
state gait needs to be adjusted by online real-time gait feedback
compensation. Moreover, the sEMG function of paraplegic
patients may be incomplete and not easily obtainable. In future
work, real-time gait feedback compensation adjustment should
be considered to enable the exoskeleton robots to adapt to
different walking environments.
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Recently, emotion classification from electroencephalogram (EEG) data has attracted
much attention. As EEG is an unsteady and rapidly changing voltage signal, the
features extracted from EEG usually change dramatically, whereas emotion states
change gradually. Most existing feature extraction approaches do not consider these
differences between EEG and emotion. Microstate analysis could capture important
spatio-temporal properties of EEG signals. At the same time, it could reduce the
fast-changing EEG signals to a sequence of prototypical topographical maps. While
microstate analysis has been widely used to study brain function, few studies have used
this method to analyze how brain responds to emotional auditory stimuli. In this study,
the authors proposed a novel feature extraction method based on EEG microstates
for emotion recognition. Determining the optimal number of microstates automatically
is a challenge for applying microstate analysis to emotion. This research proposed
dual-threshold-based atomize and agglomerate hierarchical clustering (DTAAHC) to
determine the optimal number of microstate classes automatically. By using the
proposed method to model the temporal dynamics of auditory emotion process, we
extracted microstate characteristics as novel temporospatial features to improve the
performance of emotion recognition from EEG signals. We evaluated the proposed
method on two datasets. For public music-evoked EEG Dataset for Emotion Analysis
using Physiological signals, the microstate analysis identified 10 microstates which
together explained around 86% of the data in global field power peaks. The accuracy of
emotion recognition achieved 75.8% in valence and 77.1% in arousal using microstate
sequence characteristics as features. Compared to previous studies, the proposed
method outperformed the current feature sets. For the speech-evoked EEG dataset, the
microstate analysis identified nine microstates which together explained around 85% of
the data. The accuracy of emotion recognition achieved 74.2% in valence and 72.3% in
arousal using microstate sequence characteristics as features. The experimental results
indicated that microstate characteristics can effectively improve the performance of
emotion recognition from EEG signals.

Keywords: EEG, dual-threshold-based AAHC, microstate characteristics, auditory emotion process, emotion
recognition
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INTRODUCTION

To make a human–machine interaction more natural, emotion
recognition should play an important role. Interest in emotion
recognition from different modalities (e.g., face, speech, body
posture, and physiological responses) has risen in the past
decades. Physiological signals could measure the changes in
physiological responses to emotional stimulus. They have
advantages on eliminating social masking or factitious emotion
expressions to obtain a better understanding of underlying
emotions (Jang et al., 2015). Among the various types of
physiological signals, an electroencephalogram (EEG) shows
a direct measure of the electrical activity of the brain. It
has been used in cognitive neuroscience to investigate the
regulation and processing of emotion (Dennis and Solomon,
2010; Thiruchselvam et al., 2011). With the rapid development of
dry EEG electrode techniques, EEG-based emotion recognition
has received increasing applications in different fields such
as affective brain–computer interaction (Atkinson and
Campos, 2016; Chen et al., 2021), healthcare (Hossain and
Muhammad, 2019), emotional companionship, and e-learning
(Ali et al., 2016).

Early work on emotion recognition from EEG goes back as
far as 1997 (Musha et al., 1997). In the past several years, various
signal processing methods have been proposed to improve the
EEG-based emotion recognition. Previous studies (Jenke et al.,
2014; Alarcao and Fonseca, 2017) provided a comprehensive
overview of the existing works in emotion recognition based on
EEG signals. Feature extraction is a critically significant step in
EEG-based emotion recognition framework. Basically, features
from EEG can be distinguished in time domain, frequency
domain, and time–frequency domain. The time domain features
aim to identify and detect the temporal information in the brain
activity. Frantzidis et al. (2010) used amplitude and latency
of event-related potentials (ERPs) as features for EEG-based
emotion classification. However, it is difficult to detect ERPs
related to emotions since the onset is usually unknown. Other
features, such as Hjorth features (Mehmood and Lee, 2015),
fractal dimension (Sourina and Liu, 2011; Liu and Sourina, 2013),
and higher-order crossings (Petrantonakis and Hadjileontiadis,
2009) have been used to characterize EEG time series. The
frequency–domain feature aims to capture the relative amplitude
and phase information of specific oscillation frequency. The most
popular frequency–domain features are band power (Rozgić
et al., 2013) and high-order spectra (Hosseini et al., 2010). These
features could be extracted from different frequency bands, e.g.,
delta (1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz), beta (14–
30 Hz), and gamma (31–49 Hz). With this kind of method, it
is not possible to determine when a particular frequency occurs.
The time–frequency domain features bring up the temporal
information by considering the dynamical changes of spectrum.
The most commonly used time–frequency analyses for feature
extraction were short-time Fourier transform (Lin et al., 2010),
wavelet transform (Mohammadi et al., 2017), and Hilbert–Huang
transform (Zong and Chetouani, 2009).

However, some limitations still exist on traditional feature
sets. As EEG is an unsteady and rapidly changing voltage signal,

the feature extracted from EEG usually changes dramatically,
whereas emotion states change gradually (Wang et al., 2014).
This leads to bigger differences among EEG features, even
with the same emotion state in adjacent time. Most existing
feature extraction approaches do not consider these differences
between EEG and emotion. In this study, the authors proposed
a feature extraction method based on EEG microstates for
emotion recognition. Microstate analysis treats multichannel
EEG as a series of momentary quasi-stable scalp electric potential
topographies (Pascual-Marqui et al., 1995). These quasi-stable
potential topographies are referred to as microstates, so brain
electrical activity could be modeled as being composed of a time
sequence of non-overlapping microstates. Microstate sequences
could capture the important spatio-temporal properties of an
EEG signal. At the same time, it can reduce the fast-changing
EEG signals to a sequence of prototypical topographical maps.
Characterizing the dynamics of brain neuronal activity through
EEG microstate patterns could provide novel information for
improving EEG-based emotion recognition.

Microstate analysis has been used to study the resting state of
the human brain based on the topography of the EEG signals
(Van de Ville et al., 2010; Khanna et al., 2015; Michel and
Koenig, 2018). The greater part of the literature acknowledges
four standard microstate maps on healthy subjects at rest. In
addition, the characteristics of microstate sequences have been
proven to offer a potential biomarker for some diseases, such
as mood and anxiety disorders (Al Zoubi et al., 2019), autism
spectrum disorder (D’Croz-Baron et al., 2019), and schizophrenia
(Soni et al., 2018, 2019; da Cruz et al., 2020; Kim et al., 2021).
Baradits et al. (2020) created a specified feature set to represent
microstate characteristics. These features were used to classify
patients with schizophrenia and healthy controls.

While microstate analysis has been widely used to study brain
function, few studies have used this method to analyze how the
brain responds to emotional auditory stimuli. There are some
challenges when applying microstate analysis to emotion process.
Considering the complex emotion process, how to determine
the optimal number of microstates automatically is a subject
worthy of study. The modified K-means and K-medoids had
been used to determine the microstate classes in many studies
(Von Wegner et al., 2018). However, these methods need pre-
set K cluster centers, and the clusters are sensitive to the
initialization. Emotional response is a complex cognitive process
so that it is difficult to predict the number of microstate classes
subjectively. Atomize and agglomerate hierarchical clustering
(AAHC) algorithm is specifically proposed for the microstate
analysis of EEG (Murray et al., 2008). It is a hierarchical
clustering that can offer more optional clustering results. The
method initializes with a large number of clusters and then
reduces the number of clusters by one during each iteration
step. It stops when only one single final cluster is obtained,
but the best partition from numerous clustering results is
subjectively determined.

To overcome this limitation, this study proposes a dual
threshold-based atomize and agglomerate hierarchical clustering
(DTAAHC) which can determine the optimal number of
microstate classes automatically. For microstate analysis,
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microstates are expected to be distinct and could explain the
original EEG topographies as much as possible. Therefore, two
optimization criteria are used to estimate the quality of the
candidate microstates during iterations. Compared with AAHC,
in addition to global explained variance (GEV) contribution, the
proposed algorithm also considers the microstate topographic
similarity. Global map dissimilarity (GMD) is used to measure
the topographic differences of candidate microstates. In addition,
the iteration stops when the criterion GEV reaches the threshold.
Although we made a minor alteration to the AAHC algorithm,
the new method could identify the optimal microstate classes
automatically and reduce the computational cost. By using
the proposed method to model the temporal dynamics of the
auditory emotion process, we extract microstate characteristics
as novel temporospatial features for improving the performance
of emotion recognition from EEG signals. The schema of the
present study is shown in Figure 1.

MATERIALS AND METHODS

This section provides details of the experimental tasks and
datasets used in this study. In addition, we describe the proposed
DTAAHC and the temporal parameters of microstate sequences
for emotion recognition.

Datasets
Speech, music, and ambient sound events carry emotional
information in human communication. In the present study, we
focused on the emotional response induced by speech and music.
Two independent datasets were available for analysis.

Dataset 1: Speech-Evoked Emotion Cognitive
Experiment
Participants
Nineteen healthy participants (8 females and 11 males) with
normal hearing participated in the experiment. The mean
age of the 19 subjects was 22.4 (SD = 5.4; range, 18–
27) years. All subjects were self-reported right-handers. All
subjects had no personal history of neurological or psychiatric
illness. The subjects were undergraduate and graduate students
at Harbin Institute of Technology. The participants must
exhibit enough proficiency in English. The ethics committee
of Heilongjiang Provincial Hospital accepted the study. The
concept was explained to the subjects, and written informed
consent was obtained.

Stimuli selection
There are two unique models for signifying emotions: the
categorical model and the dimensional model. In the former,
emotions are recognized with the help of words denoting
emotions or class tags. In the dimensional model, the
representation is based on a set of quantitative measures
using multidimensional scaling. One of the classical and widely
used categorical models is six basic emotion classes, namely,
anger, disgust, fear, joy, sadness, and surprise (Ekman et al.,
1987). Various dimensional models have also been proposed
(Schlosberg, 1954; Russell and Mehrabian, 1977; Russell, 1980).
In this work, we use the valence–arousal scale of Russell (1980),

which is widely used in research on affect, to quantitatively
describe emotions. In this scale, each emotional state can be
placed on a two-dimensional plane with arousal and valence
as the horizontal and vertical axes, respectively. In the present
research, we first selected stimuli by categorical model. After
selection, we rated the valence–arousal scales for each stimulus
online using Self-Assessment Manikin (SAM).

Considering the six basic emotions, we collected 20 pairs of
audio clips for each emotion category. Each pair of clips was the
same slice of a film in two languages (original English version vs.
Chinese-dubbed version).

The stimuli used in the experiment were selected in three
steps. First, we selected the raw films by watching a range of
films for 1 month. The principles considered in the raw film
selection are listed below: (A) The films display relatively strong
emotions; (B) The films should have an original English version
and a Chinese-dubbed version; and (C) The Chinese-dubbed
version matches the original version to the greatest extent. We
finally selected 40 films as raw sources. Second, we need to select
emotional clips from the films. This step is carried out manually.
The selection requirements are as follows: (A) Each segment
should contain the speech of only one speaker; (B) Each segment
expresses a single desired target emotion; (C) Each segment lasts
for 5 s and contains at least a complete utterance; and (D) The
background sound should not be too obvious. We finally selected
158 pairs of clips. We extracted soundtracks from these film clips.
Third, all the audio clips were manually rechecked to guarantee
the quality of emotional expression by 10 subjects. Some clips
with ambiguous emotions were removed. We finally selected 20
pairs of clips for each emotion category which maximize the
strength of elicited emotions. The list of the film clips is shown
in Supplementary Table 1.

To obtain reliable emotional labels of these clips, we
utilized Amazon’s Mechanical Turk service to collect data
from native English-speaking and native Chinese (Mandarin)-
speaking subjects. We initially started with a target goal of 40
repetitions per clip. The subjects were allowed to classify as
many of the 240 possible audio clips as they wish. There was
no expectation for a single subject to complete all 240 audio
exemplars. In the event that a subject completes only a portion of
the 240 audio clips, we will continue to solicit additional subjects
until we have achieved the required number of responses.

We presented subjects with selected audio clips and asked
them to rate the emotional content of what they just heard and
how they arrived at that decision. Discrete affective label and
dimensional emotional annotation (arousal–valence) with 1–9
scales related to a single audio clip were obtained. Figure 2 shows
the mean locations of the stimuli on the arousal–valence plane.

Experimental protocol
Before the experiment, the subjects were given a set of
instructions to help them understand the experiment protocol.
When the instructions were clear, the participants were led
into the experiment room with sensors placed on their heads.
After that, an experimenter explained the meaning of the
different scales of SAM. The SAM is a non-verbal pictorial
assessment technique that directly measures the valence, arousal,
and dominance associated with the affective reaction of a person
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FIGURE 1 | The schema of the methodology. The main six steps are: (A) The auditory emotional experimental design. (B) The pre-processing for EEG signals. (C)
The proposed microstate analysis to identify the microstates. (D) Back-fitting to obtain the microstate sequences. (E) Microstate characteristics extraction as
features. (F) Multivariate pattern analysis for emotion recognition.

FIGURE 2 | The distribution of ratings on arousal–valence plane.

to a wide variety of stimuli. The arousal dimension ranges from a
relaxed, sleepy figure to an excited, wide-eyed figure. The valence
dimension ranges from a frowning, unhappy figure to a smiling,
happy figure. The dominance–submissiveness scale represents

FIGURE 3 | The process of speech-evoked emotion cognitive experiment.

the controlling and dominant vs. controlled or submissive one
feels: a prominent figure indicates maximum control in the
situation. The participants could perform three practice trials to
familiarize themselves with the experiment.

The subjects were instructed to keep their eyes open for
the entire duration of the experiment. The process of our
experiment is depicted in Figure 3. In this experiment, each
subject performed two sessions of around 25 min each. They can
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have a 5-min break after one session is finished. Each session
consisted of 40 trials.

Audio clips inducing different emotional states were presented
in random order. Each trial consists of the following steps:

(a) a 3-s baseline recorded, during which the subjects were
instructed to watch a fixation cross presented on a computer
monitor,

(b) a 5-s audio clip played, during which the subjects were
instructed to listen attentively and watch a central visual
fixation, and

(c) a 30-s self-assessment for arousal, valence, and dominance,
during which the subjects used a computer keyboard to rate
the SAM on a scale of 1–9.

The experiment was programmed using Psychophysics
Toolbox of Matlab. Table 1 summarizes the number of trials
for high/low valence and arousal and the average rating for the
four conditions.

EEG acquisition
The EEG signals were continuously recorded using a 64-channel
EEG system (64-channel Quik-Cap and Neuroscan Synamp2
Amplifier). The cap had 64 electrodes and two integrated bipolar
which led for vertical and horizontal electrooculography (EOG).
During recording, two EOGs and two mastoid electrodes (M1
and M2) were not placed. Each electrode impedance should be
less than 10 k�. The sampling rate was 1,000 Hz. The electrodes
were placed over the scalp according to the international 10–
20 system.

EEG pre-processing
The EEG signal pre-processing was performed to reduce
unwanted noise and artifacts that compromise the quality of
the signal. First, four signals from two EOGs and two mastoid
electrodes were removed. Sixty-two remaining signals were used
for the processing and analysis of the next step. Then, the EEG
signals were average-referenced, down-sampled to 500 Hz, and
filtered with 1–35 Hz to obtain the desired frequency range and
remove the electrical line noise. After that, the eye blinks and
muscular artifacts were excluded using independent component
analysis (ICA). For each group, each participant, and each trial,
EEG signal from 3-s baseline before the audio clip was removed
to correct stimulus-unrelated variations. The pre-processing was
performed using EEGLAB of Matlab.

Dataset 2: Music-Evoked Emotion Cognitive
Experiment
Music is a powerful method for emotional communication
and can evoke genuine basic emotions in the listener (Daly

TABLE 1 | Database summary.

Valence Arousal

Condition High Low High Low

Number of trials 790 583 815 558

Rating 5.9 ± 0.8 3.3 ± 0.5 6.4 ± 0.7 3.7 ± 0.3

et al., 2015). Physiological measurements can be used to
identify personal emotional responses to music. A popular public
database, Dataset for Emotion Analysis using Physiological
signals (DEAP), has been widely used to analyze affective states
(Koelstra et al., 2011). DEAP is a multimodal dataset, including
EEG, MEG, galvanic skin resistance, electrooculography, blood
volume pressure, skin temperature, and respiration pattern.
A total of 32 subjects participated in the data collection, and 40
carefully pre-selected 1-min-long music videos were used as the
stimulus to elicit emotions for each subject. Before each video
is displayed, a 5-s baseline is recorded. Each participant was
requested to finish a self-assessment for arousal, valence, and
dominance on a scale of 1–9 after watching.

In this research, we used 32-channel EEG original signals
for emotion recognition based on microstate analysis. The raw
EEG data can be downloaded from http://www.eecs.qmul.ac.uk/
mmv/datasets/deap/. During pre-processing, the EEG data was
average-referenced, down-sampled to 128 Hz, and filtered with
a 1–35-Hz cutoff, and eye artifacts were removed with ICA.
The 5-s baseline before the stimuli was used to correct the
data for stimulus-unrelated variations. There is a total of 1,280
trials for analysis.

The Proposed Dual-Threshold-Based
Microstate Analysis
The principles of microstate analysis are the quasi-stable periods
of topographies, which is demonstrated in previous studies.
More particularly, the changes of electric field configurations can
be described by a limited number of microstate classes, which
remain stable for around 80–120 ms before abruptly transitioning
to another configuration. EEG microstates might represent and
characterize the dynamic neuronal activity of conscious contents.

Global Field Power
Global field power (GFP) is calculated to find a series of dominant
template topographies. GFP constitutes a single, reference-
independent measure of response strength at a global level
(Lehmann and Skrandies, 1980). GFP is simply the standard
deviation of all electrodes at a given time. What GFP tells the
researcher is, on average across the electrode montage, how
strong is the potential being recorded. It is often used to measure
the global brain response to an event or to characterize the rapid
changes in brain activity.

For each subject, GFP was calculated for each sample time
according to Eq. 1, where N denotes the number of electrodes,
ui(t) is the measured voltage of a specific electrode at time t, and
u(t) is the average voltage of the N electrodes at the respective
sample time t.

GFP(t) =

√√√√∑N
i=1

(
ui(t)− u(t)

)2

N
(1)

The local maxima of the GFP curve represent high global
neuronal synchronization (Skrandies, 2007) and are considered
with the highest signal-to-noise ratio. The topographies around
these peaks remain stable and are submitted to the clustering
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algorithm. For each participant, the GFP of each trial is
calculated. After smoothing the GFP with a Gaussian-weighted
moving average of 50 time points, topographies at GFP peaks
were collected and fed into a DTAAHC clustering algorithm to
identify the microstates.

The Proposed Dual-Threshold-Based AAHC
AAHC is a bottom-up hierarchical clustering wherein the
number of clusters is initially large and progressively diminishes.
Classical agglomerative hierarchical clustering would eventually
disintegrate the short-duration period of stable topography.
These short-duration periods would be designated to other
clusters even if they contribute a high GEV (Murray et al.,
2008). In AAHC, clusters are given priority according to their
GEV contributions. In this way, short-duration periods are
conditionally maintained. Specifically, during each iteration,
AAHC frees the cluster with the lowest GEV and then re-assigns
these “free” maps to the surviving clusters by calculating spatial
correlation. The iterations stop when only one single final cluster
is obtained. An important next step is the choice of the number
of desired output clusters. Unfortunately, there is no definitive
solution. The more clusters one identifies, the higher the quality
of the clustering but the lower the data reduction. Five criteria to
decide on the amount of microstate clusters have been described
by Poulsen et al. (2018). GEV is used to measure the percentage
of data that can be explained by microstate classes. The cross-
validation criterion is related to the residual noise. Dispersion
(W) is a measure of the average distance between members of
the same cluster. However, it is not a suitable measure of fitting
for polarity-invariant methods such as modified K-means and
AAHC. Krzanowski–Lai criterion and normalized Krzanowski–
Lai criterion are based on dispersion (W).

Here we propose DTAAHC to determine the optimal number
of microstate classes automatically during clustering. Compared
with AAHC, in addition to GEV contribution, the proposed
algorithm also considers the microstate topographic similarity.
For microstate analysis, microstates are expected to be distinct
and could explain the original EEG topographies as much as
possible. Therefore, two optimization criteria are used to estimate
the quality of the topographical maps of microstate classes during
iterations. First, the cluster with the lowest GEV is freed and re-
assigned to the surviving clusters. Second, the clusters are merged
if the GMD between the candidate microstate classes is lower
than 0.1. In addition, the iteration stops when the criterion GEV
reaches the threshold. Although we made a minor alteration to
the AAHC algorithm, the new method could identify the optimal
microstate classes automatically and reduce the computational
cost. The detailed introduction of this method is discussed below.

GMD is used to measure the topographic differences of
microstate maps, independent of electric strength. It is defined
as follows:

GMD =

√√√√ 1
N

N∑
i=1

(
ui − u
GFPu

−
vi − v
GFPv

)
2

(2)

where ui and vi are the voltages of two specified microstates, and u
and v are the average voltages of the N electrodes. GMD ranges

from 0 to 2, where 0 indicates topographic homogeneity and 2
indicates topographic inversion.

GEV measures the percentage of data that can be explained by
microstate classes. It is frequently used to quantify how well the
microstate classes describe the whole data. The higher GEV, the
better. It is influenced by the dimensionality of the data. The total
GEV is the sum of the GEV values over all microstate classes:

GEV =
∑

l

GEV l (3)

The GEVl value for a specific microstate class with label l is:

GEVl =

∑
t GFP2

t · C
2
Vt,Ml
· δl,Lt∑

t GFP2
t

(4)

δl,Lt =

{
1 if l = Lt
0 if l 6= Lt

(5)

CVt,Ml =

∑
i VtiMli√∑

i V2
ti ·
√∑

i M2
li

(6)

The spatial correlation CVt,Ml between instantaneous EEG
topography Vt and the candidate microstate class Ml can be
calculated by Eq. 6, where Vti is the voltage of ith electrode of
instantaneous EEG at time t (local peak index), and Mli denotes
the topography of the microstate class l.

In this study, DTAAHC is performed on the EEG topographies
at local peaks of GFP. During initialization, each topography map
is considered as a unique cluster. Upon subsequent iterations,
the spatial correlation CVt,Ml between each instantaneous EEG
topography Vt and the candidate microstate class Ml will be
calculated by Eq. 6, merging the clusters which have maximum
spatial correlation. The groups of the centroid of maps are
defined as the candidate microstate class for that cluster. Then,
two optimization criteria are applied. The GEVl for a specific
microstate class with label l is calculated by Eq. 4. The cluster
with the lowest GEV is removed and re-assigned to the most
similar cluster during each iteration step. The GMDs between
the candidate microstate classes are calculated. The clusters are
merged if the GMD is lower than the threshold. The iterations
stop when the GEV is higher than the threshold. In the present
work, the threshold of GEV is set to 85% (Lehmann et al.,
2005; Michel and Koenig, 2018; D’Croz-Baron et al., 2019). The
threshold of GMD is set to 0.1 (Murray et al., 2008). Table 2 shows
the DTAAHC procedure.

Microstate Sequence Characteristics
After microstate classes are identified, the original individual
EEG data can be labeled as a microstate sequence, with fitting
back of these microstate classes to topographies at sample
point. Temporal parameters can be extracted as features for
further analysis and can also be compared between different
experimental conditions or between groups of subjects.

Backfitting
Microstate classes are assigned to EEG at each time frame (or
index of GFP peaks) considering the highest spatial correlation
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TABLE 2 | Pseudocode for dual-threshold-based atomize and agglomerate
hierarchical clustering (DTAAHC).

Algorithm: DTAAHC

Inputs: set of n topographies D {S1, S2, S3, , Sn};

the spatial correlation C;

ThGEV : threshold of global explained variance (GEV)

ThGMD: threshold of global map dissimilarity

Procedure:

1: for i = 1, 2, . . ., n do

2: Clusteri {Si}

3: end for

4: repeat

5: for i = 1, 2, . . ., n do

6: for j = 1, 2, . . ., n do

7: CClusteri , Clusterj = C(Clusteri, Clusterj)

8: end for

9: end for

10: merge two clusters Clusteri∗ and Clusterj∗ , which have maximum spatial
correlation max(CClusteri , Clusterj )

11: define the centroid (mathematical average) as the template map for that
cluster

12: calculate the GEVl between each template map and samples

13: the cluster with the min (GEVl ) is atomized, and each sample in this cluster
is independently re-assigned to the surviving cluster with the highest
spatial correlation

14: calculate the GMD for each pair of template map

15: merge clusters if the GMD is lower than ThGMD

16: until sum (GEVl ) > ThGEV

Outputs: Cluster {Cluster1, Cluster2, Cluster3, , Clusterk}

(see Eq. 5). The maximum spatial correlation determines the
microstate label Lt . In the fitting process, temporal smoothing
(Pascual-Marqui et al., 1995; Poulsen et al., 2018) is applied
to avoid interruptions in spontaneous EEG sequences with a
lot of unwanted noise—that is, class assignments are based
on topographical similarity with microstate classes and the
microstate labels of samples prior to and following the EEG
sample. Different temporal parameters and statistical analyses
will be performed after class assignments for every subject.

Temporal Parameters
EEG microstate sequences (EEG-MS) are symbolic time series
related to potential neurophysiological relevance. The temporal
dynamic characteristics of EEG-MS can be described by
the following parameters. These statistical parameters mainly
represent the activation strength, the spatial configuration, and
the temporal attributes of microstates:

(1) Duration (ms): This refers to the average length of
continuous sequences belonging to a given microstate class.

(2) Occurrence: This indicates the average frequency in which
a microstate class is present per second. It is computed by
taking the number of segments belonging to a microstate
class divided by the whole analysis duration (in seconds).

(3) Time coverage (%): This represents the proportion of a
specified microstate that is active during the whole analysis
time.

GEV (%): This parameter is the percentage of explained
variation of a given microstate class, described in Eq. 4.

Transition Probabilities
Transition probabilities can be derived to quantify the
probabilities of a certain class switched to other classes.
The transition probability between two states is given as
Tij = P(Xt+1 = Sj|Xt = Si). A Markov chain describes the
probability distribution of the system either remaining in that
state or transitioning to a different state for the next time point.
In this study, separate transition probabilities are computed and
compared for each of the four conditions (high vs. low valence
and high vs. low arousal).

Statistical Analysis
Statistical analyses were performed by using in-house scripts.
Each microstate parameter was compared on the valence and
arousal dimension separately. The trial is labeled as “high” group
if its dimension value is higher than 4.5 and “low” group
if its dimension value is lower than 4.5. To evaluate group
differences in the microstate parameters mentioned above, we
used Wilcoxon rank–sum statistic test for comparisons (Musaeus
et al., 2019; Chu et al., 2020). The Wilcoxon rank–sum test
is a nonparametric approach. It allows us to compare two
populations where the underlying distributions are not normal
but that do have similar shapes.

RESULTS

Microstate Class Spatial Topographies
Microstate Classes
For dataset 1, the group-level clustering revealed nine optimal
microstate classes for emotional speech-evoked EEG. These nine
microstate topography templates are illustrated in Figure 4A. The
topographies are labeled as #1–9. For dataset 2, the microstate
analysis identified 10 microstates for emotional music video-
evoked EEG (see Figure 4B).

Global Explained Variance
The performance of the microstate segmentation algorithm is
reported in terms of the GEV, which estimates the portion of
EEG point topography that can be explained by microstates. For
dataset 1, the nine EEG microstate classes together explained
around 85% of the data in global field power peaks. The GEV of
each microstate class ranged from 6.55 to 11.25% (see Figure 4C).
For dataset 2, ten microstates explained 86% of the variance of
all global field power peaks. Correspondingly, the GEV of each
microstate class fluctuates between 6.73 and 11.68%.

Global Map Dissimilarity
GMD is calculated as a measure of topographic differences of
microstate maps. For dataset 1, the GMD matrix across different
microstates is shown in Table 3. The GMD ranged from 0.10
to 0.25 (mean = 0.18, SD = 0.06). Table 4 presents the GMD
between different microstates of dataset 2. The average GMD is
0.25 (SD = 0.08). The range of the GMD is 0.10–0.34.
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FIGURE 4 | The topographical maps of the microstates across subjects. (A) Microstates from speech-evoked emotion cognitive experiment. (B) Microstates from
music-evoked datasets. (C) The global explained variance (GEV) of each microstate for two datasets.

TABLE 3 | The global map dissimilarity (GMD) between different microstates of dataset 1.

GMD

Microstates from dataset 1

#1 #2 #3 #4 #5 #6 #7 #8 #9

#1 0 0.11 0.23 0.25 0.12 0.23 0.15 0.23 0.10

M
ic

ro
st

at
es

fr
o

m
d

at
as

et
1

#2 0.11 0 0.23 0.23 0.14 0.21 0.17 0.21 0.11

#3 0.23 0.23 0 0.11 0.24 0.11 0.23 0.12 0.23

#4 0.25 0.23 0.11 0 0.25 0.11 0.22 0.10 0.24

#5 0.12 0.14 0.24 0.25 0 0.23 0.10 0.24 0.10

#6 0.23 0.21 0.11 0.11 0.22 0 0.23 0.10 0.23

#7 0.15 0.17 0.23 0.22 0.10 0.23 0 0.24 0.10

#8 0.23 0.21 0.12 0.10 0.24 0.10 0.24 0 0.23

#9 0.10 0.11 0.23 0.24 0.10 0.23 0.10 0.23 0

TABLE 4 | The GMD between different microstates of dataset 2 (Dataset for Emotion Analysis using Physiological signals, DEAP).

GMD

Microstates from DEAP

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

#1 0 0.25 0.29 0.30 0.18 0.24 0.28 0.14 0.31 0.33

M
ic

ro
st

at
es

fr
o

m
D

E
A

P #2 0.25 0 0.33 0.19 0.34 0.22 0.11 0.33 0.16 0.16

#3 0.29 0.33 0 0.30 0.14 0.32 0.28 0.20 0.23 0.28

#4 0.30 0.19 0.30 0 0.33 0.11 0.24 0.31 0.25 0.11

#5 0.18 0.34 0.14 0.33 0 0.30 0.32 0.10 0.30 0.34

#6 0.24 0.22 0.32 0.11 0.30 0 0.29 0.26 0.31 0.17

#7 0.28 0.11 0.28 0.24 0.32 0.29 0 0.33 0.11 0.19

#8 0.14 0.33 0.20 0.31 0.10 0.26 0.33 0 0.33 0.34

#9 0.31 0.16 0.23 0.25 0.30 0.31 0.11 0.33 0 0.194

#10 0.33 0.16 0.28 0.11 0.34 0.17 0.19 0.34 0.19 0
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Temporal Parameters
It is controversial whether the first-order Markov model can
capture the complex temporal dependencies for a longer time
series of minutes (von Wegner et al., 2017). The duration
of one trial in DEAP is 60 s. The duration is 5 s in the
emotional speech-evoked cognitive experiment. Therefore, the
microstate sequence characteristics are evaluated on the speech-
evoked EEG dataset. We compared the temporal parameters
of microstates in valence and arousal dimensions separately.
We divided the trials into two groups based on the valence or
arousal level. The trial is labeled as “high” group if its valence
(or arousal) value is higher than 4.5 and as “low” group if it
is lower than 4.5.

The comparison results are shown in Table 5. For the
valence dimension, the mean duration, occurrence, time
coverage, and GEV are investigated for the high valence
and the low valence groups. The Wilcoxon rank–sum
statistic test was used to identify statistically significant

differences between high/low conditions for each microstate
class in every temporal parameter. The significance level
is set to 5%. The significant group differences are marked
with an asterisk. The result revealed that the duration of
microstate #3 is significantly increased during the response
to a high valence stimulus (p = 0.02). No significant
differences in occurrence, time coverage, and GEV between
the groups are found.

For the arousal dimension, microstates #3 and #6 had a
striking increase in duration for high arousal (p = 0.05). On
the other hand, the occurrence, temporal coverage, and GEV of
microstate #7 slumped during the same period for high arousal.

Further tests examined the model of transition probabilities
for valence and arousal, respectively. Table 6 depicted the
statistically significant differences (p-value) of directions of
transitions between high- vs. low-level groups. For valence,
the statistical analysis unraveled the significant differences
between high and low groups in five transitions: from

TABLE 5 | Means for all microstate parameters of speech-evoked EEG signals.

Microstate classes

Temporal parameters #1 #2 #3 #4 #5 #6 #7 #8 #9

Mean duration, ms (SD)

Valence High 97.58 (17.4) 106.33 (21.0) 110.73 (22.5) 74.12 (15.6) 87.19 (19.3) 107.06 (23.9) 104.96 (20.8) 83.89 (16.8) 69.03 (28.1)

Low 98.98 (19.6) 107.26 (19.5) 102.80 (21.8) 73.85 (17.5) 82.46 (17.0) 105.71 (22.5) 103.66 (19.5) 80.56 (18.6) 67.27 (227.5)

P-value 0.53 0.22 0.02* 0.83 0.86 0.77 0.51 0.79 0.79

Arousal High 98.32 (19.0) 106.77 (20.1) 105.21 (22.8) 73.82 (16.8) 83.18 (17.5) 106.64 (23.3) 103.86 (19.7) 81.60 (18.4) 67.66 (27.8)

Low 102.72 (23.9) 110.36 (17.2) 98.90 (18.9) 75.19 (22.8) 89.18 (24.3) 98.55 (20.1) 105.45 (18.3) 78.48 (13.1) 68.32 (30.5)

P-value 0.11 0.09 0.05* 0.64 0.52 0.05* 0.49 0.79 0.73

Frequency of occurrence, counts/s (SD)

Valence High 1.20 (0.6) 1.51 (0.6) 1.30 (0.6) 0.46 (0.3) 0.67 (0.4) 1.30 (0.6) 1.44 (0.5) 0.78 (0.5) 0.47 (0.2)

Low 1.23 (0.6) 1.55 (0.5) 1.35 (0.7) 0.45 (0.3) 0.68 (0.4) 1.31 (0.6) 1.45 (0.5) 0.74 (0.5) 0.51 (0.2)

P-value 0.52 0.50 0.49 0.93 0.86 0.56 0.84 0.64 0.27

Arousal High 1.22 (0.6) 1.54 (0.6) 1.34 (0.7) 0.45 (0.3) 0.68 (0.4) 1.31 (0.6) 1.43 (0.5) 0.75 (0.5) 0.51 (0.2)

Low 1.31 (0.6) 1.57 (0.5) 1.25 (0.6) 0.43 (0.3) 0.65 (0.3) 1.31 (0.8) 1.62 (0.6) 0.71 (0.4) 0.44 (0.2)

P-value 0.20 0.62 0.39 0.55 0.72 0.76 0.04* 0.70 0.74

Ratio of time coverage, % (SD)

Valence High 12.11 (6.4) 16.57 (8.0) 15.84 (9.3) 4.13 (2.7) 6.48 (3.5) 14.29 (6.9) 15.53 (6.6) 7.26 (4.8) 7.74 (1.6)

Low 12.79 (6.6) 17.02 (7.0) 15.22 (9.3) 4.02 (2.5) 6.37 (3.8) 14.59 (8.2) 15.16 (6.1) 7.12 (4.7) 7.67 (1.8)

P-value 0.45 0.37 0.78 0.97 0.92 0.65 0.82 0.64 0.58

Arousal High 12.52 (6.5) 16.85 (7.3) 15.51 (9.4) 4.06 (2.5) 6.36 (3.7) 14.61 (8.0) 15.10 (6.2) 7.21 (4.8) 7.73 (1.8)

Low 14.02 (6.8) 17.64 (5.4) 13.59 (7.4) 3.88 (2.6) 6.88 (3.9) 13.27 (7.8) 17.13 (6.6) 6.49 (3.7) 7.07 (1.7)

P-value 0.09 0.32 0.20 0.71 0.87 0.25 0.05* 0.58 0.68

Global explained variance, % (SD)

Valence High 6.35 (4.3) 6.38 (3.8) 9.22 (6.8) 3.65 (2.9) 3.82 (2.3) 6.01 (4.3) 4.87 (2.7) 4.84 (3.9) 3.06 (0.6)

Low 6.53 (4.5) 6.79 (4.0) 9.08 (7.2) 3.27 (2.2) 3.64 (2.2) 6.16 (4.0) 4.82 (2.5) 4.58 (3.5) 2.90 (0.5)

P-value 0.78 0.21 0.91 0.67 0.93 0.69 0.93 0.68 0.47

Arousal High 6.42 (4.4) 6.62 (4.0) 9.21 (7.1) 3.38 (2.4) 3.65 (2.3) 6.20 (4.1) 4.76 (2.5) 4.71 (3.7) 2.97 (0.5)

Low 7.37 (4.0) 7.59 (2.5) 7.97 (6.4) 3.19 (2.7) 4.13 (1.6) 5.16 (3.6) 5.65 (2.5) 3.78 (2.8) 2.67 (0.5)

P-value 0.12 0.08 0.39 0.71 0.72 0.32 0.03* 0.54 0.92

The asterisk indicates significant difference (p ≤ 0.05).
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TABLE 6 | The differences (p-value) of transition probabilities between high and low valence or arousal.

→ Dimensions

Valence – 0.99 0.09 0.47 0.003 0.97 0.47 0.87 0.78

Arousal – 0.54 0.56 0.48 0.77 0.42 0.65 0.61 0.94
Valence 0.29 – 0.48 0.49 0.10 0.80 0.29 0.75 0.88

Arousal 0.76 – 0.98 0.86 0.20 0.98 0.12 0.64 0.86
Valence 0.66 0.83 – 0.79 0.66 0.12 0.20 0.93 0.57

Arousal 0.91 0.43 – 0.18 0.26 0.94 0.45 0.61 0.19
Valence 0.72 0.41 0.75 – 0.31 0.28 0.66 0.48 0.08

Arousal 0.44 0.53 0.91 – 0.46 0.12 0.41 0.74 0.38
Valence 0.10 0.70 0.72 0.76 – 0.07 0.67 0.98 0.83

Arousal 0.29 0.08 0.21 0.64 – 0.51 0.13 0.37 0.26

Valence 0.29 0.19 0.43 0.12 0.20 – 0.23 0.24 0.24

Arousal 0.42 0.48 0.23 0.09 0.40 – 0.37 0.36 0.76

Valence 0.99 0.34 0.06 0.28 0.32 0.89 – 0.32 0.48

Arousal 0.12 0.87 0.68 0.43 0.92 0.52 – 0.43 0.70
Valence 0.04 0.72 0.06 0.51 0.68 0.22 0.96 – 0.26

Arousal 0.21 0.46 0.04 0.77 0.60 0.98 0.0002 – 0.71
Valence 0.74 0.84 0.65 0.93 0.97 0.98 0.91 0.92 –

Arousal 0.67 0.65 0.12 0.01 0.08 0.23 0.78 0.21 –

FIGURE 5 | Connections with the statistically significant difference between groups. The blue arrows represent p < 0.05. The red arrows represent p < 0.10 for (A)
high vs. low valence groups and for (B) high vs. low arousal groups.

microstate #1 to #3, #7 to #3, and #8 to #3 (p < 0.10)
and from microstate #1 to #5 and #8 to #1 (p < 0.05).
For arousal, six transitions have significant differences: from
microstate #9 to #5, #5 to #2, and #6 to #4 (p < 0.10)
and from #9 to #4, #8 to #3, and #8 to #7 (p < 0.05).
Figure 5 highlights the directions of transitions that show
significant differences.

Emotion Recognition Results
In order to verify the effectiveness of our feature sets, we
firstly captured the EEG data from the public DEAP dataset to
validate our framework. Then, the proposed feature extraction
was applied to the speech-evoked EEG dataset.

A fivefold cross-validation method is adopted to evaluate the
performance: the dataset is split into fivefolds. In each iteration,
onefold is used to test the model, and the rests serve as the
training set. The process is repeated until each fold has been used
as the training set.

For the two-class classification problem, the accuracies are
measured using

Accuracy =
TP + TN

TP + TN + FN + FP
(7)

where TP, TN, FP, and FN denote true positive, true negative, false
positive, and false negative, respectively.

Performance on DEAP Dataset
The dataset is separated into high–low classes by valence or
arousal dimension. Each class is determined by the positivity of
arousal and valence ratings. Valence and arousal levels higher
than 4.5 are high and vice versa.

Considering temporal dependencies more complex than the
first Markov models, von Wegner et al. (2017) suggested that
the geometric distribution of microstate durations for short EEG
time series was up to a duration of 16 s. In DEAP, the duration
of EEG signals is 60 s. Therefore, we segment each signal using
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TABLE 7 | The classification accuracies of different feature sets on dataset 2
(Dataset for Emotion Analysis using Physiological signals, DEAP).

References Feature set Classifier Accuracy

Valence
(%)

Arousal
(%)

Mert and Akan (2018)

MEMD, PSD,
Entropy, Hjorth, IMF
energy, energy
ratios

k-NN
ANN

67.0
72.7

51.0
75.0

Zhuang et al. (2017) EMD, TSD, PD, NE SVM 69.1 71.9

Daimi and Saha (2014) DT-CWPT SVM 65.3 66.9

This study

Temporal
parameters

SVM 72.5 72.1

Transition
probabilities

SVM 74.4 73.9

Temporal
parameters +
transition
probabilities

SVM 75.8 77.1

DT-CWPT, dual-tree complex wavelet packet transform time–frequency features;
PSD, power spectral density; EMD, empirical mode decomposition.

a moving window with a length of 5 s to evaluate short-time
identifiability.

We perform three experiments on the microstate-related
feature sets. We first use four temporal parameters (duration,
occurrence, time coverage, and GEV) as features to obtain
accuracies for the valence and arousal dimensions and later
use transition probabilities as features to obtain the accuracies.
Finally, we combine temporal parameters and transition
probabilities as a feature set to measure performance. The
extracted features are fed into the support vector machine (SVM)
for classification. SVM is widely used for emotion recognition,
which has promising properties in many fields. We also carry out
comparisons of other features that exist in the works of literature.

The accuracy results of high/low valence and arousal are
given in Table 7. The four temporal parameters with SVM
yield accuracy rates of 72.5 and 72.1% for high/low valence and
high/low arousal, while the transition probabilities have scores
of 74.4 and 73.9%, respectively. The highest scores of 75.8%
for valence and 77.1% for arousal are obtained by combining
temporal parameters and transition probabilities. Our methods
are compared to other states-of-the-art which use the DEAP
dataset. According to the comparison table, our study has higher
accuracy rates than the previous studies. The results demonstrate
that the parameters derived from microstate sequences are
promising features for characterizing the dynamics of neural
activity and recognizing emotion from EEG signals.

Performance on Speech-Evoked EEG Signals
In this section, the performances of microstate
characteristic features are evaluated on the emotional
speech-evoked EEG dataset.

Three different classifiers are applied to three feature sets—
that is, SVM, random forest, and artificial neural network (ANN).

TABLE 8 | The classification accuracies of different feature sets on
speech-evoked EEG signals.

Dataset Feature set Classifier Accuracy

Valence (%) Arousal (%)

This study

Temporal
Support vector
machine (SVM)

71.8 68.8

parameters Random forest (RF) 72.0 67.9

Artificial neural network
(ANN)

72.3 69.5

SVM 69.9 70.5

Transition
probabilities

RF 68.5 68.3

ANN 70.4 69.8

Temporal
parameters +
transition
probabilities

SVM 74.2 71.9

RF 73.1 70.7

ANN 73.9 72.3

From Table 8, there is no significant difference among the three
classifiers. The performance of the features extracted in this
research is not affected by the type of classifiers. The highest
accuracy is obtained by combining temporal parameters and
transition probabilities as the feature set for valence and arousal.
In valence recognition, the highest accuracy is 74.2% with the
SVM classifier. For arousal, it is 72.3% with ANN.

DISCUSSION

In this study, we applied the microstate analysis to the emotional
auditory response. Our proposed method DTAAHC revealed that
nine template maps best described the entire dataset, explaining
∼85% of the global variance for speech-evoked EEG. For music-
evoked EEG, 10 template maps explain ∼86% of the data.
In previous visual research, Gianotti et al. (2008) studied the
temporal dynamics of the neural activity that responded to
emotional words and picture stimulus using ERP microstate
analysis. In the emotional word experiment, 11 sequential
microstates were identified. Among the 11 microstates, four
of them were valence-sensitive and two of them were arousal-
sensitive. In the emotional picture experiment, the microstate
analysis identified 15 sequential microstates. Five of the fifteen
and two of the fifteen microstates were valence-sensitive
and arousal-sensitive, respectively. Although four prototypical
microstate classes were useful to compare or complement results
across different studies, several studies also suggested that the
number of microstate classes was explicitly driven by the data.
Muthukrishnan et al. (2016) performed the microstate analysis
in a visuospatial working memory task. The optimal number of
clusters was determined by the cross-validation criterion without
prior assumptions. D’Croz-Baron et al. (2019) investigated that
six template microstate maps can best describe the dataset across
the autism spectrum disorder and neurotypical controls. In
research of schizophrenia (Soni et al., 2018, 2019), four to six
microstate maps were clustered, which related to the conditions
of the experiments. Michel and Koenig (2018) discussed a meta-
criterion for the optimal number of clusters. They suggested
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that the most appropriate choice was a pragmatic compromise
between the needs for specificity and generalizability.

The four prototypical microstates exhibited highly similar
topographies across studies and were consistently labeled as class
A, B, C, and D. Microstate A exhibits a left–right orientation,
map B exhibits a right–left orientation, map C exhibits an
anterior–posterior orientation, and map D exhibits a fronto-
central maximum (Michel and Koenig, 2018). In terms of the
orientation of the electrical axis, we relate some microstates
of our study to four prototypical microstates. Here we mark
maxima as “+” and minima as “-.”In our emotional speech-
evoked cognitive experiment, three microstates (#3, #4, and #8)
are characterized by fronto-central orientation of the maxima
which are similar to map D (Santarnecchi et al., 2017; da Cruz
et al., 2020). Some studies suggest that microstate D is associated
with attention network activity (Britz et al., 2010; Milz et al.,
2016). For the music-evoked EEG dataset, microstates #5 and #8
exhibit fronto-central maximum.

In the speech-evoked emotion experiment, microstates #1,
#2, and #5 have an anterior(-)-posterior(+) orientation which is
consistent with map C(Santarnecchi et al., 2017; Seitzman et al.,
2017; Al Zoubi et al., 2019). Microstate #6 has an anterior(+)-
posterior(−) orientation which is consistent with map C in some
studies (Hernandez et al., 2016; Pipinis et al., 2017; da Cruz et al.,
2020). In the music-evoked cognitive experiment, microstates #2
and #10 have an anterior(−)-posterior(+) orientation which is
somewhat alike to map C.

In the speech-evoked emotion experiment, microstate #7
shows a left anterior (−)–right posterior (+) location of
the extrema. It is similar to map B (Khanna et al., 2014;
Santarnecchi et al., 2017). In the music-evoked cognitive
experiment, microstate #3 has a left anterior(+)–right posterior(-
) orientation which is alike to map B in some studies (Milz et al.,
2017; Pipinis et al., 2017; da Cruz et al., 2020).

In the music-evoked cognitive experiment, microstate #1
has a left posterior(−)–right anterior(+) orientation which is
consistent with map A in the studies (Tomescu et al., 2015;
Pipinis et al., 2017; da Cruz et al., 2020).

We also identify some microstates which have significant
differences with prototypical microstates. In the speech-evoked
emotion experiment, microstate #9 has a local extremum
in posterior (+). In the music-evoked emotion experiment,
microstates #4 and #6 exhibit local maxima in posterior.
Microstates #7 and #9 show local minima at the axis center.

For future research, the relationship between microstates
and brain functions can be explored using source localization.
Some computational approaches, e.g., distributed linear inverse
solution (LAURA) (de Peralta Menendez et al., 2004), can
help understand the brain source activation in terms of
intracranial generators.

We further delved into the temporal characteristics of
microstates for emotional speech perception. The Wilcoxon
rank–sum test was used to analyze the statistical differences
of the microstate parameters between different groups. For the
valence dimension, the results indicated that the mean duration
of microstate #3 (active prefrontal cortex) in the high group
was longer than that in the low group. For arousal dimension,

three microstates had significant differences between high and
low group. Specifically, the mean duration of microstates #3
and #6 (active frontal lobe) in the high group was longer than
those in the low group. The occurrence, coverage, and GEV of
microstate #7 (active temporal lobe) had significant differences
between the high and low groups. In previous research, Gianotti
et al. (2008) found that five of the 15 microstates were different
for pleasant vs. unpleasant pictures, and two of the 15 microstates
were different for high- vs. low-arousing pictures. However, it was
difficult to compare this work with our study directly since visual
and auditory information activated different cortices.

CONCLUSION

The main purpose of this study is to extract novel features based
on EEG microstates for emotion recognition. Determining the
optimal number of microstates automatically is a challenge
for applying microstate analysis to emotion. To overcome the
limitation, this research proposed DTAAHC. The proposed
method identified 10 microstates on a public music-evoked EEG
dataset (DEAP) and nine microstates on our recorded emotional
speech-evoked EEG dataset. Subsequently, the microstate
sequence characteristics were compared in the aspect of high/low
valence or arousal conditions. Finally, these characteristics were
fed into the classifier for emotion recognition. All the findings in
this work suggested that the microstate sequence characteristics
can effectively improve the performance of emotion recognition
from EEG signals. We hope this work will stimulate future
research to propose novel algorithms to reduce the limitation of
microstate analysis and uncover more interesting mechanisms
of the affective process, e.g., linking the source localization of
microstates to brain functions can help understand the functional
significance of these states.
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The root mean square (RMS) of the surface electromyography (sEMG) signal can respond

to neuromuscular function, which displays a positive correlation with muscle force and

muscle tension under positive and passive conditions, respectively. The purpose of this

study was to investigate the changes in muscle force and tension after multilevel surgical

treatments, functional selective posterior rhizotomy (FSPR) and tibial anterior muscle

transfer surgery, and evaluate their clinical effect in children with spastic cerebral palsy

(SCP) during walking. Children with diplegia (n = 13) and hemiplegia (n = 3) with ages

from 4 to 18 years participated in this study. They were requested to walk barefoot at a

self-selected speed on a 15-m-long lane. The patient’s joints’ range of motion (ROM) and

sEMG signal of six major muscles were assessed before and after themultilevel surgeries.

The gait cycle was divided into seven phases, and muscle activation state can be divided

into positive and passive conditions during gait cycle. For each phase, the RMS of the

sEMG signal amplitude was calculated and also normalized by a linear envelope (10-ms

running RMS window). The muscle tension of the gastrocnemius decreased significantly

during the loading response, initial swing, and terminal swing (p < 0.05), which helped

the knee joint to get the maximum extension when the heel is on the ground and made

the heel land smoothly. The muscle force of the gastrocnemius increased significantly (p

< 0.05) during the mid-stance, terminal stance, and pre-swing, which could generate

the driving force for the human body to move forward. The muscle tension of the biceps

femoris and semitendinosus decreased significantly (p< 0.05) during the terminal stance,

pre-swing, and initial swing. The decreasedmuscle tension could relieve the burden of the

knee flexion when the knee joint was passively flexed. At the terminal swing, the muscle

force of the tibial anterior increased significantly (p< 0.05), which could improve the ankle

dorsiflexion ability and prevent foot drop and push forward. Thus, the neuromuscular

function of cerebral palsy during walking can be evaluated by the muscle activation state

and the RMS of the sEMG signal, which showed that multilevel surgical treatments are

feasible and effective to treat SCP.

Keywords: sEMG signal, muscle activity, cerebral palsy, gait analysis, multilevel surgery
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INTRODUCTION

Cerebral palsy (CP) refers to a group of persistent motor
and postural developmental disorder syndrome that leads to
restricted mobility, which is caused by non-progressive brain
damage to the developing fetus or infant (Bell et al., 2002). Spastic
cerebral palsy (SCP) is the most common type of CP, accounting
for ∼60–70% of all children with CP. SCP represents a series
of neurofunctional disorders, involving joint stiffness, decreased
physical activity, tendon hyperreflexia, strong flexor reflex, and
strong resistance when muscle is passively stretched (Gage and
Novacheck, 2001). Many studies have shown that the gait cycle
of patients with SCP presented an abnormal pattern (Winters
et al., 1987; Perry and Davids, 1992; Crenna, 1998). Information
on different gait patterns could improve early treatment in
children with bilateral CP before abnormal gait patterns are fully
established (Domagalska–Szopa and Szopa, 2019). Abnormal gait
not only affects the patient’s joints but also modifies muscle
activity and activation patterns (Patikas et al., 2005).

Significant progress has been made in the treatments for CP,
especially SCP. To date, the clinical methods for treating SCP
mainly include functional training, surgical treatment, physical
therapy, acupuncture and massage, and drug therapy (Chin
et al., 2020). Comparing these methods, surgical treatment is
a very efficient method for patients with severe movement
disorders (Buddhdev et al., 2017). The key purpose of surgery
is to adjust muscle tension and balance muscle force. In order
to adjust the muscle tension of the patient, neurosurgery is
mainly performed on the patient such as selective posterior
rhizotomy (SPR), which uses an electrophysiological equipment
to monitor the electromyogram of multiple muscles of the
limbs during the operation and choose continuous recording
of somatosensory evoked potentials as an objective basis for
the proportion of surgical resection (Turner, 2009). Thus, the
muscle tension of the patients can be adjusted fully (Graham
et al., 2016; Qijia et al., 2019). In recent years, functional selective
posterior rhizotomy (FSPR) has been developed on the basis of
SPR. The treatment technologies have risen from the anatomical
level to the functional level, and it can regulate muscle tension
more effectively. Orthopedic surgery is generally used to balance
muscle force. Kapti (2014) utilized the posterior tibial muscle
transfer method to treat foot drop, and Fox et al. (2009) solved
knee stiffness by rectus femoris transfer surgery. Some studies
showed that tibial anterior muscle transfer can treat clubfoot
(El-Fadl and Mahmoud, 2013; El Batti et al., 2016; Agarwal
et al., 2020a). In general, surgeons perform compound surgeries
on patients for some specific malfunctions to adjust muscle
tension and balance muscle force. With the increasing number
of treatment options, the evaluation of surgical effect has become
a very important work.

The surface electromyography (sEMG) signal has been proven

to be a reliable reflection of the muscles in the gait of patients

with CP (Granata et al., 2005; Patikas et al., 2005; Nardo et al.,
2019; Parent et al., 2019). sEMG signal is important in clinical

evaluation and rehabilitation medicine with specific focus on

neurorehabilitation (Campanini et al., 2020; Cappellini et al.,
2020). In recent years, there have been more and more researches

focused on the change of sEMG signals for patients with CP
after surgical treatments. Some studies have demonstrated that
surgery can affect sEMG signals of patients with CP (Patikas
et al., 2007). It was proven that the semitendinosus activation
timing was delayed and the burst duration of the vastus lateralis
was decreased after surgery (Buurke et al., 2004). Lauer et al.
(2007) have also proven time–frequency changes of the sEMG
signal after hamstring lengthening in children with CP. Wang
et al. (2011) reported that EMG signals have changed significantly
after selective femoral neurotomy, which deduced that surgery
could reduce the muscle tension of the quadriceps muscle. These
studies suggested that muscle tension could be reflected by the
root mean square (RMS) of sEMG signal. At the same time,
studies have shown that the RMS of the sEMG signal is a
reliable parameter (Farina et al., 2004) and displayed a positive
correlation with muscle force and muscle tension under positive
and passive conditions (Onishi et al., 2000). In a complete
gait cycle, the activation states of sEMG signals in different
subphases are varied (Perc, 2005). However, there are few studies
on the muscle force and muscle tension of patients with CP
during walking.

In this study, we analyzed the treatment of patients
undergoing both FSPR and tibial anterior muscle transfer
surgeries. The overall aim of this article was to evaluate the
neuromuscular function of CP during walking by the muscle
activation state and the RMS of the sEMG signal. By analyzing the
changes of the RMS in each subphase, the outcome showed that
the patient’s muscle force increased andmuscle tension decreased
after multilevel surgeries. It implies that the neuromuscular
function has been improved greatly.

METHODS

Subjects
Sixteen patients with CP who underwent orthopedic surgery
from July 2019 to May 2020 were enrolled in this study. These
subjects consisted of 13 cases of diplegia and three cases of
hemiplegia in 10 male patients and six female patients, aged 4–17
years (mean age, 9.8 ± 5.0 years). The clinical data of examined
patients are shown in Table 1. The muscle tension of the knee
and ankle joints on the sagittal plane was tested separately by
the Modified Ashworth Scale (MAS). The higher the grade, the
higher the abnormal muscle tension in children with CP, and
grade 0 represents normal muscle tension. In the clinic, doctors
use theManual Muscle Testing (MMT) to detect the muscle force
level of patients. Level 5 is the highest level and represents normal
muscle force. As the level decreases, the muscle force decreases.
The main manifestations of patients were crouching gait and
jumping gait. These two symptoms are specifically manifested as
abnormal knee flexion, limited ankle dorsiflexion, and foot varus
during walking. No subject had received any treatment (surgery,
orthopedics, or Botox injection) before the test, and all were able
to walk independently without assistance.

Procedure and Instruments
All patients were carried out to collect kinetic parameters
and sEMG signals during a gait cycle. The Motion Analysis
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TABLE 1 | Demographic and clinical data of the patients.

Modified Ashworth Scale (MAS) Manual Muscle Testing (MMT)

ID Involved side Age (years) KE KF AD AP Qua Ham Tib Gas

1 Right 6–18 3 2 3 2 3 3 2 2

2 Right 3–6 2 2 3 2 3 3 3 3

3 Right 6–18 2 2 3 2 3 3 2 2

4 Both 6–18 3 2 3 2 3 3 2 2

5 Both 6–18 2 2 3 2 3 3 3 3

6 Both 6–18 2 2 3 2 4 4 4 4

7 Both 6–18 2 2 3 2 4 3 3 3

8 Both 3–6 1 1 3 1 4 3 3 3

9 Both 3–6 2 2 3 2 4 4 3 3

10 Both 3–6 2 2 3 2 4 3 3 3

11 Both 6–18 2 2 3 2 3 3 2 2

12 Both 3–6 2 2 3 2 4 3 3 3

13 Both 6–18 2 2 1 2 4 3 3 3

14 Both 6–18 1 1 3 1 4 3 4 4

15 Both 3–6 2 2 3 2 4 3 3 3

16 Both 6–18 2 2 3 2 4 4 4 4

KE, knee extension; KF, knee flexion; AD, ankle dorsiflexion; AP, ankle plantar flexion; Qua, quadriceps femoris; Ham, hamstring; Tib, tibialis anterior; Gas, gastrocnemius.

(NORAXON Inc., Scottsdale, AZ, USA) including Myomotion
and Myomuscle module was used to synchronously collect
dynamic joint angle and sEMG signals, respectively. The sample
frequency of the Myomuscle module is 1,500Hz. All sensors
are wireless, which are simple and light to wear and reduce the
impact on the original gait of patients. The electrode pads have
been applied over the respective muscles with an interelectrode
distance of 2 cm. The direction of these two test electrodes was
parallel to the direction of the long axis of the test muscle fiber,
and then the corresponding sensors were fixed (Figure 1). After
all subjects have put on the equipment, they first perform short
exercises to adapt to their own walking rhythm. When the test
started officially, the subjects were asked to walk barefoot at a
self-selected speed on a 15-m-long lane.

Kinematic parameters were recorded in the sagittal, coronal,
and transverse planes for the hip, knee, and ankle to
document the preoperative and postoperative status of the
patients. For reasons of simplicity, the presentations of the
kinematic parameters were focused on the hip and knee joint
on the sagittal plane and the ankle joint on the sagittal
plane and the coronal plane. The sEMG signals of some
muscles were simultaneously recorded. Six muscles were selected
as representatives for the knee and ankle. The measured
muscles included thigh muscles: rectus femoris, biceps femoris,
semitendinosus; and calf muscles: tibialis anterior, lateral
gastrocnemius, and medial gastrocnemius.

Signal Analysis
For each of the following subphases of a gait cycle: loading
response, mid-stance, terminal stance, pre-swing, initial swing,
mid-swing, and terminal swing, the averaging of all strides for
each side, the sEMG signal, and joint angles were calculated
separately. In order to reduce the measurement error, six gait

cycles for each dependent variable and condition were calculated.
The definition of these subphases was made according to the
foot strike and foot off of both feet (Perry and Davids, 1992).
The kinematics data of the knee and ankle joints were analyzed
mainly in order to analyze the surgical effects of the crouching
gait and clubfoot. The crouching gait of the knee joint and the
clubfoot were reflected mainly in the knee angle of the sagittal
plane and the ankle angle of the sagittal plane and coronal
plane, respectively.

The raw sEMG signal data were band-pass filtered using a
Butterworth filter between 10 and 500Hz to remove non-EMG
artifacts. We also applied a 50-Hz notch filter to remove the
power line interference (Daly et al., 2019). The sEMG signal
amplitude is affected by several other factors; to adjust for this
variability and allow comparison between participants, the sEMG
signal is usually normalized to a standard value, usually the
peak value of the sEMG signal obtained during the maximum
voluntary isometric contraction (MVIC). But for the children
with CP, it may be difficult to perform MVIC because it is a
challenge to automatically generate the MVIC. In this case, it
is considered a feasible and appropriate method to normalize
the sEMG signal obtained in a specific task (such as walking) to
the peak value. For each percentage of all sEMG signal channels
and gait periods, the RMS of the sEMG signal was calculated
with a 10-ms running window. For each sEMG signal channel,
the highest RMS value (peak RMS) was obtained and used for
normalization (Gagnat et al., 2020). The procedure of sEMG
signal data processing is shown in Figure 2.

Normal sEMG signal patterns for the major muscles in the

lower extremities were plotted as a function of the gait cycle (Perc,

2005), which are shown in Figure 3. In this study, the patient’s
gait cycle was divided into seven subphases, and the state of
the muscle was defined according to Figure 3. As shown by the
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FIGURE 1 | The sensors setup of surface electromyography (sEMG) signal and kinetic parameters collection.

FIGURE 2 | Processing procedure of the surface electromyography (sEMG)

signal data analysis.

red horizontal bars, the muscles contract and produce muscle
force to maintain a normal gait. Muscles are thought to contract
because they are activated by nervous system stimulation. So

the red horizontal bars in Figure 3 indicate that the selected
muscles are active during the gait cycle. In other parts during
a gait cycle, the stretched muscles are passive and produce
muscle tension. The RMS is used to describe the average change
characteristics of sEMG signals over a period of time and refers
to the RMS value of all amplitudes in this period of time. The
RMS of the sEMG signals can respond to the neuromuscular
function, which displays a positive correlation with muscle
force and muscle tension under positive and passive conditions,
respectively (Wang et al., 2011). As shown by the red horizontal
bars, the RMS of the sEMG signal is proportional to muscle force.
In other parts, the RMS of the sEMG signal is proportional to
muscle tension.

Statistical Analysis
The joint angle and the RMS of the sEMG signals were analyzed
in this study, and paired t-test was used to analyze the data before
and after the surgeries. All data are expressed as mean value and
standard deviation of themean (SD). The level of significance was
set at p < 0.05, and the 95% confidence intervals (95% CIs) were
calculated. The statistical analysis was performed using the SPSS
Version 24 software (TheApache Software Foundation, IL, USA).

RESULTS

Kinematics
The ranges of motion (ROMs) on the sagittal plane before and
after the multilevel surgeries were displayed and compared in
Table 2. The results indicated that the ankle ROM increased
significantly after the multilevel surgeries. The ankle joint angle
was more plantar flexed during the whole gait cycle.

The kinematic parameters showed an overall improvement
after surgery for the joint angles of the knee and ankle, as
shown in Figure 4. Compared with those of pre-surgery, the
knee flexion angle decreased significantly during the loading
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FIGURE 3 | Normal electromyography (EMG) patterns for six of the major muscles in the lower extremities plotted as a function of the gait cycle. An EMG illustration

showing the timing (red horizontal bars) and relative intensity (light brown shading) of muscle activation during walking.

TABLE 2 | The range of motion (ROM) on the sagittal plane before and after the

multilevel surgeries.

ROM Pre-operation (Deg.) Post-operation (Deg.)

Hip 45.33 ± 4.5 50.79 ± 7.0

Knee 48.32 ± 8.8 47.66 ± 12.3

Ankle* 23.32 ± 4.2 29.21 ± 6.8

*Significant difference between the pre-surgery and post-surgery.

response (p < 0.05). The average knee flexion angle decreased
from 20.1◦ to 18.3◦ in the whole gait cycle, and the overall knee
flexion angle decreased. In the sagittal plane, the angle of ankle
dorsiflexion increased significantly during the swing phase (p <

0.05). In terms of the ankle, the maximum dorsiflexion angle
changed from 4.9◦ to 8.2◦, and the maximum plantar flexion
angle decreased from 16.5◦ to 8.3◦ in the whole gait cycle. On the
coronal plane, the joint changed from the original valgus to varus
during the loading response. The valgus angle became larger at
the terminal stance, and the varus angle decreased significantly
during the mid-swing phase.

Electromyogram
The sEMG-RMS values of the main thigh muscles before and
after the surgery are presented in Figure 5A. The RMS of the
rectus femoris muscle decreased significantly at the initial swing
phase (p = 0.005). The RMS of the biceps femoris muscle
decreased significantly during the terminal stance (p = 0.011),
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FIGURE 4 | Kinematic curves of ankle and knee pre- and post-operation.

Dashed lines show the standard deviation. Asterisks indicate the significant

difference between the pre-surgery and post-surgery.

pre-swing (p = 0.01), and the initial swing phase (p < 0.001).
We also observed a statistically significant decrease during the
terminal swing (p = 0.02). The difference between several
subphases was that the biceps femoris should be active during
the terminal swing. The RMS of the semitendinosus muscle
decreased significantly during the terminal stance (p= 0.016) and
pre-swing (p= 0.002).

The sEMG-RMS values of the tibialis anterior, lateral
gastrocnemius, and medial gastrocnemius muscles in the gait
cycle before and after the surgeries are compared and illustrated
in Figure 5B. Results revealed that the RMS of the tibial anterior
muscle was significantly higher after the surgery than before
during terminal swing (p = 0.003). In addition, the RMS of the
lateral gastrocnemius muscle was significantly higher pre-surgery
during mid-stance (p = 0.001) and terminal stance (p = 0.034);
in contrast, it became significantly lower compared to before
surgery during the initial swing (p = 0.028) and terminal swing
(p< 0.001). Themedial gastrocnemiusmuscle showed significant

improvement compared to that of pre-surgery during mid-stance
(p = 0.005) and pre-swing (p = 0.019); nevertheless, the RMS
significantly decreased during the loading response (p = 0.009)
and terminal swing (p= 0.021).

Based on Figure 3, the sEMG-RMS changes of muscle
activities were transferred to the adjustments of muscle tension
and force before and after the surgery during the gait cycle,
displayed on Table 3. For the thigh muscles, the changes in the
flexors were greater than the extensors. For the calf muscles,
the changes in the plantar flexors were greater than those
in the dorsiflexors. These showed that the changes in the
muscles of the posterior side of the lower limbs are greater
than those of the anterior side. It can be seen that muscle
tension decreased, and some muscle forces increased after the
surgery for most muscles. The muscle tension of the biceps
femoris and semitendinosus muscles was reduced at the terminal
stance, pre–swing, and initial swing. The medial gastrocnemius
muscle tension during the loading response and terminal swing
was significantly reduced. The lateral gastrocnemius muscle
tension during the initial and terminal swing was significantly
reduced. But the eccentric contraction muscle force of the
gastrocnemius muscles increased in the stance phase. At the
terminal swing, the force of the tibial anterior muscle improved.
On the contrary, the muscle force of the rectus femoris and
biceps femoris was reduced during the initial swing and terminal
swing, respectively.

DISCUSSION

The realization of every movement depends on the nervous
system to regulate the coordinated activities of related muscle
groups so as to complete a normal gait when walking (Lieber,
2002). Patients with neurological diseases also have obstacles in
their muscle co-contraction function (Banks et al., 2017; Zhixian
et al., 2018). Patikas et al. (2007) proved that the sEMG signal
changed after multilevel surgeries during walking, but they did
not explain the changes in neuromuscular function. The RMS
of the sEMG signal in the passive state proved that the muscle
tension decreased after selective femoral neurotomy, but we
could not know the change of neuromuscular function during
walking (Wang et al., 2011). Taking into consideration normal
sEMG signal patterns for the major muscle, the muscles can
be divided into passive and active movements (Perc, 2005).
By studying the change of the RMS of the sEMG signal, we
found that muscle force increased and muscle tension decreased.
This study proves that sEMG signals can be used to evaluate
neuromuscular function during walking.

The changes of muscle force and tension after multilevel
surgeries had a good effect in children with CP. During the
loading response, the gastrocnemius muscle tension at initial
contact may result in a stretch reflex response. The tensed
gastrocnemius muscle does not allow the knee to fully extend
during the initial contact (Hullin et al., 1996). The gastrocnemius
muscle tension during the loading response was significantly
reduced from Table 3, which helped the knee joint to get the
maximum extension when the heel is on the ground. In the
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FIGURE 5 | (A) Root mean square (RMS) values for the rectus femoris, biceps femoris, and semitendinosus surface electromyography (sEMG) signal pre- and

post-surgery. Vertical lines represent 1 SD of the mean, and asterisks indicate the significant difference between the pre-surgery and post-surgery. (B) RMS values for

the subjects of the tibialis anterior, lateral gastrocnemius, and medial gastrocnemius sEMG signal pre- and post-surgery. Vertical lines represent 1 SD of the mean, and

asterisks indicate the significant difference between pre-surgery and post-surgery.
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TABLE 3 | The change of muscle function before and after the multilevel surgeries.

Muscles Loading response Mid-stance Terminal stance Pre-swing Initial swing Mid-swing Terminal swing

Rectus femoris / / / / MFD / /

Biceps femoris / / MTD MTD MTD / MFD

Semitendinosus / / MTD MTD / / /

Tibialis anterior / / / / / / MFI

Lateral gastrocnemius / MFI MFI / MTD / MTD

Medial gastrocnemius MTD MFI / MFI / / MTD

MFI, muscle force increase; MFD, muscle force decrease; MTD, muscle tension decrease.

stance phase, the eccentric contraction muscle force of the
gastrocnemius muscles increased, which could control the calf
leaning forward, and generated the driving force for the human
body to move forward. Coupled with the increase in ankle
dorsiflexion, it helped to increase the power of the plantar
flexors, which was very important for the body to move forward
(Winter, 1983). The muscle tension of the biceps femoris and
semitendinosus muscles is reduced. At this time, the knee
joint was passively flexed and the lowered knee flexor muscle
tension can relieve the burden of the patient’s knee flexion
on the knee joint (Nardo et al., 2017). In the swing phase,
the muscle tension of the gastrocnemius muscles was reduced,
which was conducive to the ankle joint from plantar flexion to
dorsiflexion, so the patient’s ankle dorsiflexion was improved.
The reduced gastrocnemius muscle tension could also make the
leg swing from fast to slow to make the heel land smoothly.
At the terminal swing, the increase of tibial anterior muscle
force could improve the ankle dorsiflexion ability, prevent foot
drop, and push forward (Agarwal et al., 2020a). Unfortunately,
the muscle force of the rectus femoris and biceps femoris was
reduced during the initial swing and terminal swing, respectively.
Biceps femoris muscle force can help to coordinate with the
coordinated contraction of the rectus femoris to slow down the
forward swinging calf and prepare for the heel landing, but the
eccentric contraction muscle force decreased, which was not
conducive to the recovery of normal gait posture for children
with CP.

Children with CP mainly manifested as crouching gait and
clubfoot. The crouching gait is specifically manifested that
the knee flexion angle is too large, and the patient cannot
walk upright. Long-term crouching posture could lead to knee
cartilage degradation and joint pain (O’Sullivan et al., 2020).
The outcomes of this study demonstrated that the knee flexion
deformity of the patient had improved after surgery. Clubfoot is
clinically manifested as restricted ankle dorsiflexion ability and
foot varus. Flaccidity of foot and foot varus could cause the sole
of the foot not to effectively touch the ground, and the body
center is unable to move forward effectively, which resulted in
walking dysfunction (Agarwal et al., 2020b). Through surgery,
the patient’s ankle dorsiflexion had been greatly improved. On the
coronal plane, the condition of the foot varus was also relieved.
It was worth mentioning that during the loading response,

the foot changed from varus to valgus, which was exactly in
line with the law of normal gait. The normal subtalar joint
movement of the human body during the stance phase is: a
slight supination in the early and middle stages, then pronation
rapidly, and supination again in the middle and late stages
(Neumann, 2010).

CONCLUSION

This article presented the assessments of multilevel surgical
treatment effects in children with SCP by investigating the
changes in sEMG signal patterns pre- and post-surgeries. By
extracting the RMS of the sEMG signal and muscle activation
state, the change of the RMS is transformed into the change
of muscle force and muscle tension. After multilevel surgeries,
for calf muscles, the muscle force increased and muscle
tension decreased. Both the muscle force and muscle tension
of thigh muscle decreased. This reduced muscle force could
be compensated for by rehabilitation training. In conclusion,
this is consistent with the operation principle that FSPR can
reduce the muscle tension of the lower limb muscles, and the
tibial anterior muscle transfer surgery is thought to balance
the muscle force of the calf muscles. Therefore, the findings of
the present study support that the RMS of the sEMG signal
can describe neuromuscular function of the patients during
walking, and the multilevel surgeries are feasible and effective to
treat SCP.

In this study, we employed the muscle activation state during
the walking cycle to establish the relationship between the RMS
of the sEMG signal and muscle force and tension. Because the
muscle activation states of CP are different from those of normal
people, our subsequent work will focus on the muscle activation
state of children with CP during walking. By dividing the muscle
activation state of children with CP, the expected findings of
future studies would be more meaningful and quantitative to the
surgical treatments for CP.
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Cerebral stroke is a common disease across the world, and it is a promising method
to recognize the intention of stroke patients with the help of brain–computer interface
(BCI). In the field of motor imagery (MI) classification, appropriate filtering is vital for
feature extracting of electroencephalogram (EEG) signals and consequently influences
the accuracy of MI classification. In this case, a novel two-stage refine filtering method
was proposed, inspired by Gradient-weighted Class Activation Mapping (Grad-CAM),
which uses the gradients of any target concept flowing into the final convolutional
layer to highlight the important part of training data for predicting the concept. In
the first stage, MI classification was carried out and then the frequency band to be
filtered was calculated according to the Grad-CAM of the MI classification results. In the
second stage, EEG was filtered and classified for a higher classification accuracy. To
evaluate the filtering effect, this method was applied to the multi-branch neural network
proposed in our previous work. Experiment results revealed that the proposed method
reached state-of-the-art classification kappa value levels and acquired at least 3% higher
kappa values than other methods This study also proposed some promising application
scenarios with this filtering method.

Keywords: electroencephalogram, motor imagery, 3D representation, multi-branch structure, two-stage refine
filtering

INTRODUCTION

Cerebral stroke (Albers and Olivot, 2007; Menon and Demchuk, 2011) is one of the most common
diseases, and disorder in functions related to language and motor makes it hard for stroke
patients to live a normal life. It is possible to recognize the intention of stroke patients with the
development of brain–computer interface (BCI), which is based on the phenomenon of event-
related synchronization (ERS) or event-related desynchronization (ERD) (Neuper et al., 2006;
Wilson et al., 2019) in electroencephalogram (EEG) (Tanaka et al., 2005). In this case, the task of
motor imagery (MI) classification (Qin et al., 2004; Herman et al., 2008; Taran and Bajaj, 2019; Kato
et al., 2020) is carried out and a lot of achievements had been achieved. However, it is still a great
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FIGURE 1 | The whole architecture of the two stage refine filtering method. The convolutional neural network of the first stage was the same as the one of the
second stage.

FIGURE 2 | Visualizations of Grad-CAM for EEG signals. The bright regions mean EEG in this region contributes to correct classification results. The dark regions
mean EEG in this region contributes a negative weight to correct classification results.

challenge to classify the EEG signals accurately. To enhance
the accuracy of MI classification and consequently improve the
performance of BCI (Schalk et al., 2004; Ge et al., 2019), a large
amount of the methods had been proposed by researchers. All
the MI classification methods can be generally divided into two
categories: Common Spatial Pattern (CSP) (Kang et al., 2009;
Lu et al., 2010)-based methods, such as Filter Bank Common
Spatial Pattern (FBCSP) (Ang et al., 2012) and Common Spatio-
Spectral Pattern (CSSP) (Lemm et al., 2005); and Deep learning
based methods (Suwicha et al., 2014; Schirrmeister et al., 2017),
such as C2CM (Sakhavi et al., 2018), Compact convolutional
neural network (Lawhern et al., 2016), and shallow ConvNet
(Schirrmeister et al., 2017).

No matter with which method to carry out MI classification,
however, appropriate filtering, which suppresses high-amplitude
noise and channel saturation, is also needed (Benigno et al.,
2021). In FBCSP (Ang et al., 2012), nine band-pass filters covering
the range of 4–40 Hz were used and a spatial filtering using
the CSP method followed by each band-pass filter. Various

configurations proved to be as effective because these frequency
ranges yielded a stable frequency response. Based on FBCSP,
C2CM (Sakhavi et al., 2018) is a successful example that combines
conventional method and deep learning. This method convolutes
time features and spatial features separately, which achieved
good performance but increased more parameters. Similarly,
in shallow ConvNet (Schirrmeister et al., 2017), FBCSP was
also adopted for data processing. A bandpass filtering and the
CSP spatial filter are used in the network’s first two layers.
The classification results are then computed with the following
convolution layers and pooling layers. It is more reasonable
than FBCSP because the shallow ConvNet embedded all the
computation process in one network and the parameters can be
optimized together to acquire a better result. These methods have
acquired a high accuracy of MI classification but no further study
for the influence of filtering was carried out.

There are also several special filtering methods. In Schrödinger
filtering (Benigno et al., 2021), gradient artifact spikes were
removed and EEG signals were preserved and templates or
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FIGURE 3 | Frequency selecting process. The Fourier transformer results of a data segment, a useless part of the segment and a useful part of the segment was
presented. The frequency of peak point was the selected useful frequency or useless frequency.

references of the artifact or signal were used in this algorithm.
Meanwhile, evoked activity was not affected in the filtering
process, which proved the robustness of this method. However,

this method was based on the semi-classical signal analysis
(SCSA), which is young and needs to be studied actively to
acquire better performance. Bayesian filtering (Miran et al., 2018)
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was a different filtering method that decoded real-time auditory
attention from EEG and alleviated the need for large training
datasets compared with other existing methods. This method is
complicated in application to some extent. In clustering-based
feature (Yu et al., 2020), the underlying structure of EEG data
was explored and the data feature was optimized with a cluster-
based multi-task learning algorithm that enhances the accuracy
of classification. For the purpose of boosting the classification
accuracy, a multi-scale optimization (MSO) of spatial patterns
(Zhang et al., 2019; Jiao et al., 2020) was proposed, which
optimizes filter bands via multi-view learning within CSP. This
method also acquired good results in MI-related EEG datasets
with the filtering method.

All the methods mentioned above tried to filter the EEG
signals before MI classification, and these methods usually
divided the filtering process into several steps, which seems to
be complicated. In this study, a novel two-stage refine filtering
method was proposed, inspired by the discussion of Gradient-
weighted Class Activation Mapping (Grad-CAM) (Selvaraju
et al., 2020) in our previous work (Xinqiao et al., 2019; Zhou
et al., 2019), which proposed a 3D representation of EEG and
constructed a multi-branch convolutional neural network for
MI classification. Gradient-weighted Class Activation Mapping
makes a good visual explanation by highlighting the important
regions of predicted images according to the last convolutional
layer of the network. In this case, we considered whether it
is possible to improve the performance of our network by
preserving the useful frequency (which means these frequencies
contribute a lot to correct classification results) and suppress
useless frequency (which means these frequencies contribute
nothing to correct results).

The two-stage refine filtering method can be divided into
two stages: In the first stage, raw EEG data were trained in the
network and the frequency bands to be filtered were selected
according to the Grad-CAM results of the last convolutional
layers. In the second stage, the EEG data were filtered with
the selected frequencies and put into the network again. This
method was applied to the dataset of BCI competition IV-2a
(Ang et al., 2012). The MI classification results of two stages were
recorded and the result of the second stage was better than that of
the first stage.

The remainder of this article is organized as follows.
Methods gives a description of the MI classification strategy.
The experiment and results are presented in Experiment and
Results. The discussion is shown in Discussion. Conclusion
concludes the article.

MATERIALS AND METHODS

In this section, detailed configurations of the filtering method
including the two-stage filtering process and the frequency
selecting principles in this process are illustrated.

Two-Stage Refine Filtering Process
The whole process of this method is shown in Figure 1. The
classification system was divided into two stages. In the first stage,

the EEG data without filtering were fed into a convolutional
neural network to complete the first training and the weights
were saved. The Grad-CAM results were acquired according
to the feature maps and the MI classification results. Then, it
can be figured out whether training data contribute a positive
or negative weight to correct classification results. In the data
processing process, the frequencies to be filtered were determined
according to the Grad-CAM results and detailed frequency
selecting principles are illustrated in the next section. In the
second stage, the raw data were filtered with the frequencies
selected according to the results of first stage. The filtered data
were used as input in the second training process.

Frequency Selecting Principles
After the first training process with the backbone network,
the Grad-CAM, which is shown in Figure 2, is carried out to
judge which part of a cropped data segment is beneficial to the
correct results. The Grad-CAM was determined according to the
classification results of the first stage and Figure 2 shows that the
signals with a bright color contribute to correct results and the
signals with a dark color contribute nothing to correct results.
The signals with a bright color were called useful data, which
contribute a positive weight to correct classification results, and
the dark one was called useless data, which contribute negative
weights to correct results. Then, the data were transformed with
Fourier transformation to extract frequency information. The
frequency of useful data that contribute to correct results is
named good frequency, and the frequency of useless data that
contribute nothing to correct results is named bad frequency.
It is obvious that different data samples have different random
“useful” or “useless” time intervals and there are many intervals
in each segment to be calculated. Considering the huge amount
of training data, a tenth of the data were sampled for Grad-CAM.

FIGURE 4 | Left circle represents the selected bad frequencies. Right circle
represents the selected good frequencies. Red part of the left circle
represents the selected frequencies to be filtered.
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FIGURE 5 | The backbone network. “SRF,” “MRF,” and “LRF” means three different branch networks with different receptive field. The input was copped as “copy
input.” “Conv1,” “Conv2,” and “Conv3” mean three convolutional process. “SRF MI classification,” “MRF MI classification,” and “LRF MI classification” represents
three classification results of three branches. The MI classification was computed according to three results.

Details of the Selecting Process
As is introduced before, the EEG signals are assessed with Grad-
CAM and then the bad and good frequencies of the signals
are recorded, respectively, which is illustrated in Figure 3.
A useless part of the data segment was Fourier transformed
and the frequency with highest amplitude was recorded as the
useless frequency considering that the frequency with the highest
amplitude may be most representative. The useful part was
processed the same as the useless part. The bad frequency data
cannot just be filtered because many frequencies belong to both
good and bad frequency due to the huge amount of EEG and the
inaccuracy of the data acquisition process. The low frequencies
will always be chosen due to the 1/f characteristic of the power
spectrum, and in this case, many low frequencies repeated in both
good and bad frequencies. To get a better performance of the

network by filtering bad frequency, the bad frequency needs to
be selected further according to its amount.

In this study, the selected frequencies were collected and the
frequencies that belong to bad frequencies but do not belong
to good frequencies are selected as the filtering frequency that
is illustrated in Figure 4. The bad and good frequencies are
sorted, respectively, in descending order according to their
amount. To avoid filtering out useful signals, a small amount
of the bad frequencies ranking ahead were selected and a
large amount of the good frequencies ranking ahead were
selected. Having tried several configurations, in this study,
the top 20 bad frequencies are selected and the top 100
good frequencies are selected. Among the 20 bad frequencies,
frequencies that do not belong to good frequencies are selected
as the filtering frequency.
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EXPERIMENT AND RESULTS

Experiment Setup
The methods proposed above are evaluated on BCI competition
IV dataset 2a (Ang et al., 2012). The EEG dataset was recorded
with 22 Ag/AgCl electrodes that are distributed according to
the international 10–20 system. The data acquisition experiment
prompts nine subjects to perform four different tasks named
imagery movement of left hand, right hand, both feet, and
tongue. For each subject, two sessions on different days were
recorded and each session consists of 288 trials. Each trial
belongs to one of the four classes and each trial consists of
a fixation process of 2 s, a cue time of 1.25 s, and a MI
time of 4 s; a short break followed after the MI process.
A band-pass filter between 0.5 and 100 Hz was applied
to the signals, and a notch filter of 50 Hz was taken to
suppress line noise.

In this study, the 1.25-s period of EEG data after the visual
cue was taken as experiment data. The EEG was then represented
with the 3D representation method mentioned above and the
label corresponding to the cropped EEG was presented with a
one-hot-vector format.

To evaluate the experiment results, the 10-fold cross-
validation method was used. All training data and testing data
of BCI IV dataset 2a are combined and then divided into
10 subsets randomly. In each run, nine subsets were used to
train and the other one was used as validation data. The final
results were obtained by averaging 10 validation results. After the
date was filtered, the filtered data were also evaluated with the
above method. The p-values presented in the experiment were
calculated from a two-tailed paired t-test.

Backbone Network
To evaluate the filtering method, a MI classification structure
is needed. In this study, a multi-branch convolutional neural
network proposed in our former work (Xinqiao et al., 2019)
was adopted. As is shown in Figure 5, our backbone network
was made up of three CNNs with different receptive fields
and the branches are, respectively, named small receptive field
network (SRF), medium receptive field network (MRF), and large
receptive field network (LRF). The input of the network was a
concatenation of 22 electrode signals that contain both temporal
and spatial information.

Three branches were fed, respectively, with 3D EEG proposed
in our previous work and small convolutional filters are adopted
in the light of VGG’s architecture. Forward and back propagation
is carried in different branches simultaneously and a soft-max
(Liu and Liu, 2017) activation is set in the end of each branch.
The final classification result is acquired by summing the branch
networks’ respective results and putting the summing result into
an additional soft-max activation.

Modification of Previous Network
In our previous study, it was discussed that different branches
focus on different temporal information. For the purpose of
recording each Grad-CAM result of all electrodes’ signals in
each branch and filtering them in each branch, the input needs

to be copied into three copies. In this circumstance, the first
shared convolution layer of the previous network was replaced
with three single convolution layers. To reduce the computation
cost enhanced by this modification, the number of the dense
layer’s nodes was reduced. The convolution layer’s parameters are
presented in Table 1.

Two-Stage Refine Training Evaluation
MI Classification Experiments
The 10-fold validation results of the multi-branch network in
the first stage and the second stage are presented in Table 2.
In this table, MB-I represents the first classification stage
and MB-II represents the second classification stage. MB-I
and MB-II are two stages of one system whose former stage
was fed with raw training data and the latter stage was fed
with filtered training data. The results of the two stages were
compared to determine whether the method can improve the
classification results.

Comparing the results of nine subjects between MB-I and
MB-II, it is obvious that all subjects with MB-II perform better

TABLE 1 | Three convolution layers’ parameters of three branches.

Conv layer SRF MRF MRF

Conv1 Size: 3 × 3 × 5 Size: 3 × 3 × 5 Size: 3 × 3 × 5

Strides: 2, 2, 4 Strides: 2, 2, 4 Strides: 2, 2, 4

Filters: 16 Filters: 16 Filters: 16

Conv2 Size: 2 × 2 × 1 Size: 2 × 2 × 3 Size: 2 × 2 × 5

Strides: 2, 2, 1 Strides: 2, 2, 2 Strides: 2, 2, 4

Filters: 32 Filters: 32 Filters: 32

Conv3 Size: 2 × 2 × 1 Size: 2 × 2 × 3 Size: 2 × 2 × 5

Strides: 2, 2, 1 Strides: 2, 2, 2 Strides: 2, 2, 4

Filters: 64 Filters: 64 Filters: 64

“Size” means the height, width, and depth of the 3D convolution window. “Strides”
means the strides of the convolution window along each dimension. “Filters” means
the number of output filters in each convolution layer.

TABLE 2 | Comparison of 10-fold cross-validation results training with raw data
and filtered data.

Subject MB-I MB-II

1 74.8125 75.3158

2 58.923 60.429

3 78.297 79.221

4 69.901 70.601

5 67.083 67.989

6 67.699 68.461

7 74.142 75.382

8 76.705 77.047

9 82.859 83.461

Mean 72.269 73.101

Standard deviation 7.156 6.937

p-value 1.3E-04 –

p-value means the significant difference of the cross-validation results carried by
the same network training with raw data and filtered data.

Frontiers in Neuroscience | www.frontiersin.org 6 September 2021 | Volume 15 | Article 65754099

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-657540 August 26, 2021 Time: 12:13 # 7

Yan et al. Two Stage Refine Filtering Method

than with MB-I on testing accuracy and the mean value of MB-
II is nearly 1% higher than MB-I with p-value < 0.01. The
standard deviation value of MB-I is 0.2% higher than MB-II,
which means the filtered data are more stable than raw data in
classification tasks.

Learning Process Visualization
To explore the difference of learning process between raw data
and filtered data, the data were trained for 30 epochs and the
testing losses (the Negative log-likelihood cost) and accuracies
of all subjects are monitored and recorded in Figure 6. The
testing data were random one-fold data of each subject. MB-
I represents the first classification stage and MB-II represents
the second classification stage. The green line represents the loss
in training process and the orange line represents the accuracy
in training process. The left axis of each subplot represents
the loss value of each subject and the right axis represents
the accuracy value.

It is obvious that the accuracy of MB-II is higher than MB-
I except for most subjects. For subject 4, the performances of
the network evaluated with filtered data are outstanding with
an accuracy of 4% higher than with raw data. Actually, the
results of subject 4 ranges widely in the 10-fold validation

process, which means that the MB-II did not always perform
much better in 10-fold validation results; however, the mean
accuracy of MB-II was higher than MB-I as is illustrated in
Table 2.

For subject 1, subject 6, and subject 8, the MB-II acquired a
lower testing accuracy and a higher testing loss than MB-I in early
epochs. However, in the end of the training process, the MB-II
performed better than MB-I, which means the filtering method is
useful for enhancing classification accuracy.

For subject 2 and subject 3, the accuracy of MB-I and MB-
II is nearly the same but the network evaluated with filtered
data acquired lower testing loss, which may benefit from filtering
several bad frequencies.

Comparison With the State-of-the-Art
Three state-of-the-art MI classification methods and our formal
classification method are compared with the method proposed in
this study. We firstly give a brief description of other methods
having been introduced in the Introduction section and then
analyze the kappa value (Lai et al., 2016; Wang et al., 2019)
of different methods, which is defined to evaluate classification
accuracy. Results of all methods are recorded in Table 3.
“MB-M” represents the modified multi-branch network used in

FIGURE 6 | Test loss and accuracy of nine subjects in thirty epochs.
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TABLE 3 | Comparison of the kappa value with the state-of-the-art methods.

Subject MB-M MB FBCSP Shallow ConvNet C2CM

1 0.698 0.699 0.68 0.820 0.833

2 0.523 0.459 0.42 0.432 0.537

3 0.787 0.788 0.75 0.835 0.87

4 0.629 0.594 0.48 0.621 0.556

5 0.669 0.647 0.40 0.490 0.5

6 0.622 0.538 0.27 0.380 0.273

7 0.642 0.653 0.77 0.898 0.861

8 0.746 0.702 0.76 0.758 0.778

9 0.825 0.713 0.61 0.657 0.727

Mean 0.682 0.644 0.571 0.655 0.659

Standard deviation 0.093 0.100 0.184 0.188 0.204

this study and “MB” represents the multi-branch network in
our previous study.

Filter Bank Common Spatial Pattern: FBCSP was proposed
in Ang et al. (2012) and is capable of autonomously selecting
the proper subject-specific frequency range for bandpass filtering.
The method performed best on the BCI Competition IV 2a
dataset in competition.

Shallow ConvNet (Schirrmeister et al., 2017): Inspired by
FBCSP, the network adopts bandpass and CSP spatial filters in
the first two layers so as to optimize all parameters jointly.

C2CM (Sakhavi et al., 2018): C2CM adopts the strategy of
breaking up 2D convolutions into two 1D convolutions and
filtering data with FBCSP. This method makes the network more
flexible for separating the information of time and space but
increases the computation parameters for an additional layer.

As is shown in Table 3, the kappa value of MB-M is higher
than MB for most subjects. For subject 6 and subject 9, the
kappa value of MB-M is nearly 1% higher than MB, which
reveals the advantage of the two-stage refine training method.
The MB-M also outperforms other state-of-the-art methods with
a higher mean value and a lower standard deviation value. For
subject 9, the kappa value of MB-M was much higher than other
methods, which means several vital bad frequencies were filtered
in the second stage.

DISCUSSION

The proposed two-stage refine filtering method, which is
inspired by Grad-CAM, was novel and proved to improve
the performance of the multi-branch network proposed in
our previous study. In the field of MI classification, correct
filtering suppresses the influence of noise and makes the feature
extracting process easier. Consequently, the MI classification
results are improved. According to the experiment results,
it can be inferred that the filtered training data are more
stable than the raw training data and the method is robust in
different subjects.

It is special for this method to improve the performance of a
network according to its mechanism. In other words, the method
improves the classification results according to the characteristics

of training data with little artificial intervention. In this case,
the filtering method could be commonly used in the majority
of deep learning-related tasks. To further evaluate the method,
the filtering method can be applied to different EEG-related
networks proposed by others. Moreover, the method should not
only be effective on MI classification since the filtering range is
selected according to the performance of the network. Similarly,
applying the method to other fields such as voice processing is an
advisable attempt.

It is also worth mentioning that this method is actually
an iterable process, which means we can filter the data after
the last training process according to the Grad-CAM of the
last classification results. However, multiple iterations may lead
to overfitting in the training process and thus influence the
correct MI classification. In this case, an appropriate amount of
frequencies to be filtered is needed and higher accuracy of MI
classification may be acquired in this way.

CONCLUSION

In this study, a two-stage refine filtering method was proposed
for MI classification inspired by Grad-CAM. The method was
applied to the multi-branch network and proved to improve the
performance of the network. This method is considered as a
universal method and promising in many other fields.
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Learning from Demonstration in robotics has proved its efficiency in robot skill learning.

The generalization goals of most skill expression models in real scenarios are specified

by humans or associated with other perceptual data. Our proposed framework using

the Probabilistic Movement Primitives (ProMPs) modeling to resolve the shortcomings of

the previous research works; the coupling between stiffness and motion is inherently

established in a single model. Such a framework can request a small amount of

incomplete observation data to infer the entire skill primitive. It can be used as an

intuitive generalization command sending tool to achieve collaboration between humans

and robots with human-like stiffness modulation strategies on either side. Experiments

(human–robot hand-over, object matching, pick-and-place) were conducted to prove

the effectiveness of the work. Myo armband and Leap motion camera are used as

surface electromyography (sEMG) signal and motion capture sensors respective in the

experiments. Also, the experiments show that the proposed framework strengthened

the ability to distinguish actions with similar movements under observation noise by

introducing the sEMG signal into the ProMP model. The usage of the mixture model

brings possibilities in achieving automation of multiple collaborative tasks.

Keywords: learning fromdemonstration, human-robot collaboration, Imitation learning, surface electromyography

signal, human-like stiffness adaptation, action recognition, robot skill generalization, decision-making

1. INTRODUCTION

According to current trends, robots are more applicable in factories, medical, social service,
and other domains and will become more extensive. More and more industries consider or
have established complete autonomous robot systems or human–robot collaboration platforms to
replace human labor entirely with machines or assist people in their work. This benefited from the
development of robotics, communication, and artificial intelligence technologies, which indicates
that robots will considerably liberate part of the labor in high-repetition, high-fatigue works. It
provides services autonomously in more complex work scenarios and may require collaborating
with multiple agents, such as the assembly of 3C products, robot-assisted surgery, and physical
and social assistance. Typically, collaborative scenes that involve multiple agents tend to have
relatively complex environmental conditions and great diversity of tasks (Villani et al., 2018). Only
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by improving the accuracy of robot decision making and
proffering it good adaptability and safety can it meet the ever-
increasing demand in the future. Robot Imitation Learning [i.e.,
Learning from Demonstration (LfD)] dramatically improved
robot pre-programming efficiency (Argall et al., 2009). People
are transferring knowledge to the robot by endowing robots the
ability to imitate via human demonstrations. This is a more
intuitive and convenient way of teaching/programming. Because
LfD modularizes skills, it simplifies the re-programming process
when switching between work content and scenes. It does not
require people with expertise in robots and computing to design
task-dedicated programs.

In the previous literature, the demonstration-based robot
skill learning framework usually comprises the following
three processes: (1) human skill demonstrations; (2) skill
mathematical expression and modeling; (3) skill reproduction
and generalization. While demonstrating, the demonstrator
selects the appropriate demonstration interface. Under typical
circumstances, the interfaces are divided into three principal
categories: kinesthetic teaching, teleoperation, and passive
observation. Different interfaces have their advantages and
limitations (Billard et al., 2016). The experiments conducted
in this article employ the teleoperation method. Demonstrator
using this method usually only pays attention to the movement
of the robot end-effector and ignores the preceding joints.
Nevertheless, because the movement of the demonstrator is less
physically restricted, which makes it more flexible. This article
presents a novel framework that improves the skill generalization
efficiency and accuracy, and we exploit the benefits from
bioelectrical signals like electromyography to better infer human
intents and transfer human stiffness regulation strategy to the
robot, which highly relates to processes 2 and 3mentioned above.

Stiffness is critical in robot dynamics that studies the
relationship between force and motion. Hogan first proposed
the theory of impedance control in 1985 (Hogan, 1985). It has
been used until now. Impedance control and admittance control
are now the most important controller types that realize the
simultaneous control of the robot end-effector (or joint) position
and contact force. It makes the robot’s flexible operation possible
and ensures the safety of human co-workers to the greatest extent.
In addition to safety factors, the stiffness control also relates to
the robot’s success rate in performing tasks, especially when it
is in direct physical contact with people, objects, or the external
environment, and the force is as important as the position target
(Migliore et al., 2005). Figure 1 shows an interesting example
problem that will arise in human–robot collaboration. Suppose
we use the existing LfD framework to teach the robot a bunch
of modularized and synthesized primitives. How will the robot
select the appropriate skills from the skill library based on
the current environment and the human co-worker’s behavioral
intentions and then generalize it to the correct goal? For example,
after the robot acquires the ability to distribute books, can it
accurately determine which stack of books to place the book on
and plan a stable motion trajectory and a human-like stiffness
regulation strategy? Most of the previous works divide human–
robot collaboration problems into two independent parts: human
action recognition and robot motion generation. This article

proposes a framework based on the Probabilistic Movement
Primitives (ProMPs) (Paraschos et al., 2013), which adopt a
unified motion-stiffness skill expression that combines human
action recognition and motion generation “organically.”

It is challenging that the robot cognition development meets
our expectations, which can handle scenarios with a complexity
level that a human found straightforward. A collaboration-
enabled robot system will understand human behavior intent
and then respond accordingly, where the human intention is
partially embedded in the motion information itself. To not affect
human movement, passive observation methods are commonly
used to capture human movement information, such as a
marker-based tracking system (Moeslund et al., 2006). However,
phenomena such as occlusion, corrupted body tracking data due
to the extremely unstructured environment, or computing power
insufficiency may cause temporary observation loss or instability
problems (Rabbi and Ullah, 2013). When two different motions
quantified under the same sensor resolution scale are similar, the
skill primitive similarity level increases. Moreover, the inevitable
observation noise further aggravates the uncertainty of robots
in identifying human action intents. These facts may eventually
cause robots to generate unreliable reactions, which significantly
reduces work efficiency; if such skill transfer technology is
applied to robot-assisted surgery, it may even cause catastrophic
danger. Hence, we aim to promote the collaboration capability
in complex scenarios by seeking compliant physical interaction
solutions with better decision making to further improve the
existing LfD frameworks.

Using (surface) electromyography (i.e., sEMG) signals to
predict human intentions and control robots is not a novel
idea (Li et al., 2017; Chen et al., 2020a). Extracting the sEMG
signal during natural human actions as an additional feature
for skill expression, especially when interacting with robots
or the environment, helps improve the resolution of human
intention prediction results. We will use appropriate methods
to extract useful information from a relatively high noise level
and exploit it. Gomi and Osu (1998) examined the limb joint
stiffness coefficients between shoulder and elbow; it shows that
the stiffness is linear to the joint torque of the preceding
joint. Burdet et al. (2000) developed a method to visualize
the impedance change with respect to motion by introducing
small positional displacement to human and measure the
restoring elastic force. Yang et al. (2011) studied the human
stiffness adaptation strategy using a well-designed experiment
and revealed the possibility of transferring human stiffness
adaptation skills to robots. Yang et al. (2018) later propose to
use the stiffness trajectory estimated by sEMG signal to model
dynamical movement primitives (DMPs). It successfully transfers
the human-like stiffness regulation strategy from humans to a
Baxter robot, and the framework was validated by designing
cucumber-cutting and button-pushing experiments. Yu et al.
(2019) then design a human–robot collaborative sawing system
based on the sEMG-stiffness mapping to increase the efficiency
and produce a smoother wood cutting section area.

In the previous work (Yang et al., 2018), the stiffness
trajectory’s generalization target was defined manually, which
is empirical and biased. The reason behind this limitation is
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FIGURE 1 | An illustrative figure of the proposed framework. People demonstrate motion and stiffness adaptation skills for both human and robot and encode the

collaborative skill using a high-dimensional Probabilistic Movement Primitives (ProMPs) model. The robot will be able to generates appropriate motion and stiffness by

observing incomplete data from human.

that the DMPs skill modeling technique does not reflect the
coupling between motion and stiffness. Users have to manually
tune the parameters for each separated DMPs or modify the
DMPs expression by adding additional coupling terms, making
DMPs representation not compact anymore. Very recently,
Zeng et al. (2020) propose to use hidden semi-Markov models
(HSMMs) and Gaussian mixture regression (GMR) to offer the
capability of capturing the correlation between position, speed,
and stiffness. This article proposes an entirely different approach,
which is easier to understand and implement, and also suitable
for human–robot collaboration. Our proposed framework has
the following advantages and contributions:

• Compared to Yang et al. (2018), our framework naturally
extracts the coupling between position and stiffness, which is
not artificially defined with bias.

• It triggers accurately generalized robot action by observing
(incomplete) human data, which is more intuitive and natural,
and considers human-in-the-loop.
• We exploit sEMG-stiffness mapping for collaboration tasks

so that variable stiffness regulation is achieved. The action
generalization becomes more robust to the observation noise
from the motion tracking system.
• Using a mixture model to learn multiple non-linear correlated

skill primitives, which not only increases the diversity of the
skill library but also reduces the human effort in the skill
demonstration phase since similar actions are automatically
sorted out.

The remaining sections of this article are structured as follows.
In section 2, we introduce the basic foreknowledge about
ProMP and the other methods like sEMG-stiffness mapping,
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ProMP modulation, and mixture model, which help to build
the proposed framework. Section 3 introduce the setup of three
experiments to verify the performance. And the results and
discussions can be found in section 4. We list the future works
in section 5 and make a final conclusion in section 6.

2. MATERIALS AND METHODS

There are plenty of ways to express skills. Modeling a skill
means synthesizing the pattern of variation for each degree
of freedom of various modalities involved at the trajectory
level and representing them in a more compact and utilizable
way. When using different mathematical tools to promote skills
modeling, each expressionmodel naturally incorporates the tool’s
capabilities. Thus, the corresponding tool limitations would also
apply, which provide each skill modeling technique its own
usage, functionalities, and possibilities. Generally, methods of
skill modeling usually fall into one of two categories, dynamical
system based or probabilistic approach based.

DMPs as the most well-known dynamical system-based
modeling approach first officially proposed in 2003 (Schaal et al.,
2003), and the procedure was then modified and improved by
numerous researchers (Ijspeert et al., 2013; Wang et al., 2016;
Ugur and Girgin, 2020). DMPs earn benefits from the robust
and converge-definite characteristics of the second-order spring-
damper system, and the flexibility of modification by using
additional forcing terms in the dynamical equation as the system’s
variable virtual external force to encode a motion trajectory. The
patterns of the trajectories are commonly encoded using Locally
weighted regression (LWR) (Atkeson et al., 1997), which is a
technique that well trade off the training time and non-lineararity
feature comparing to other conventional regression techniques.

Unlike DMPs, which is suitable for single demonstration
modeling (i.e., one-shot learning) and learning control directly,
another broad category probabilistic approach is to build a
statistical model of the training information obtained through
multiple demonstrations (or single demonstration). Typically,
the utilization of probability theory allows the system to be more
flexible in generalization, hence producesmore interesting results
that facilitate task planning in a higher abstraction level. Gaussian
mixture model (GMM) (Hersch et al., 2008) turns both temporal
information and other higher dimensional spatial information
into a multi-variant Gaussian distribution containing multiple
models. GMR (Khansari-Zadeh and Billard, 2011) practices the
basic probability distribution operations in probability theory.
The conditional probability of the Gaussian distribution and
the superposition of the distribution are performed in turn to
reproduce or generalize the skill from a trained GMM.

The uniqueness of DMP is not using LWR to learn weights for
a bunch of radial basis functions but is the stability induced by the
second-order dynamical equation. The learning speed of LWR
becomes slower when the data becomes more and larger in size.
Hence, to retain the advantages of using dynamical equations
and speed-up, GMM–GMR can replace LWR (Calinon et al.,
2012). Instead, it learns the joint distribution of the forcing
term and time (i.e., the phase variable, s) of each degree of

freedom, and expresses it in a GMM. Compared with GMM,
the time series expressed by the Markov chain. The Markov
chain encapsulates GMM or single multivariant-Gaussian in
each state node and considers the transition probability between
each state node. The hidden Markov model (HMM) and
HSMM attach hidden variables and observation probabilities
to the Markov chain (Zeestraten et al., 2016). The duration of
each state of HMM is implicitly encoded in the self-transition
probability, while HSMM uses a duration probability to explicitly
represent. Nevertheless, these kinds of implementations based on
the Expectation–Maximization (EM) algorithm (Chernova and
Veloso, 2007) may encounter local optima problems, especially
when the data dimension is very high, or when the demonstration
data are non-linearly correlated. But that would not be a severe
problem since skill training can always be done offline.

Gaussian process regression (GPR) (Forte et al., 2012) is a
very generic, powerful yet brute-force probabilistic modeling
method, which utilizes mean plus noises to represent a high-
dimensional function. Although this method captures the
coupling relationship between each degree of freedom by a very
large covariance Grammatrix and generalizes the skill base on the
conditional probability of the given observation value, it is prone
to the temporal/spatial variability during demonstrations. Hence,
it requires more demonstrations to obtain a smooth trajectory.
ProMPs was formally proposed by Paraschos et al. (2013) in
2013. It is a model that combines the ideas of DMPs–LWR and
the probabilistic approaches. It interprets the high-dimensional
trajectory using weighted basis functions and computes the
Gaussian process regression model in the weight space. This idea
of using probabilistic methods in a more abstracted space of the
trajectory makes the production of generalized trajectories more
flexible, and the expression structure is more compact.

Most of the existing human–robot skill transfer frameworks
still relying on humans to choose appropriate skill primitive
among the learned primitive library, and pre-defined a
generalization target. Calinon et al. (2007) propose to couple
the robot with the environment (e.g., using robot–object relative
position) directly and train the skill model, thereby avoiding the
problem of manual selection of generalization targets. Mülling
et al. (2013) put forward the concept of query for generalization
and propose a Mixture of Motor Primitive (MoMP). For tasks
like robot table tennis or other difficult tasks, a robot may need
to switch between/combine different motion styles to complete.
MoMP establishes a gating network, which adapts the styles
according to queries and performs superposition among each
style to generalize tasks and adapt to new scenarios. Many
researchers treat action recognition and skill generalization
as two separated sequential procedures and use two different
models; however, our work that is inspired by “query” treats two
procedures as a whole and realizes generalization using ProMPs
and other techniques introduced in later sections.

2.1. Probabilistic Movement Primitives
ProMPs encode the pattern of a high dimensional trajectory. The
value of each degree of freedom (DoF) on the trajectory at time
t is defined as pt . For a trajectory with a temporal length of T
(i.e., the trajectory was sampled at number T of points), the whole
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trajectory is then the data points assembly p1 :T = {pt}t=1 :T .
The ProMP model is a probability density function that indicates
the value and changing rate distribution along the single high-
dimensional trajectory. The trajectory value and the changing
rate at time t were defined in the following generic form:

ζ t =

[

pt
ṗt

]

= 8tω + ǫζ t , (1)

where 8t =
[

ψ t ψ̇ t

]T
, which is the Gaussian basis value

matrix at time t. It concatenates the value and changing rate
of all basis function at time t. ω is the weighting matrix,
indicating the weight of each basis function. 8t and ω are of
the dimensionality of R2×K and R

K×1, respectively, where K
is the number of basis functions pre-determined by the user.
ǫζ t ∼ N (0,6ζ t ) represents the Gaussian noise at time t that
embraces all the possibilities of executing this trajectory in the
form of a covariance,6ζ t ∈ R

2×2. This paper assuming the most
common basis type—Gaussian basis—was used to model non-
periodic skills as shown in Figure 2; other basis like Fourier basis
and Bezier curve basis are also applicable.

p(ζ 1 :T |ω) =
∏

t

N (ζ t;8tω,6ζ t ) (2)

Equation (2) describes the probability of a trajectory p1 :T
conditioned on certain weighting matrix ω, which is the product
of p(ζ t|ω) from time 1 to T. Similar to DMPs that utilizes a
temporal scaling factor and a phase variable to control the skill
execution rate and represent skill completion status (Ijspeert
et al., 2013), the vanilla ProMP model also uses an arbitrary
monotonically increasing function s(t) as a phase variable,
which interprets movement completion status and decouples
movement from time (Paraschos et al., 2018). The focus of this
article is not on the changes in skill execution speed or temporal
modulation, hence a linear time-phase mapping [i.e., s(t) = t/T]
was adopted. To simplify it, we use (·)t to represent a variable at
phase s(t).

The term “Probability” in the ProMP model originated from
the fact that it relies on statistics of multiple demonstrations
to improve other movement primitives like DMPs that do
not model the correlation between values, rates, and time. It
condenses useful information from the raw data and shrinks
the data structure to output a more compact form as a
single skill primitive representation. The full training set of N

demonstrations is defined as ζ 1 :N1 :T =
[

ζ
1
1 :T . . . ζN1 :T

]T
, where

ζ
(n)
1 :T indicates the whole trajectory of the n-th demonstration.

Hence, we are expected to learn a series of weights ω1 :N
=

[

ω
1 . . . ωN

]T
for all demonstrations, where ω(n) would be the

weights learned using the nth demonstration.
The essence of the original ProMP is to create a distribution

over all the possible weights, so that ω ∼ N (ω;µ,6), where
µ = E(ω1 :N) ∈ R

K×1 and 6 = Cov(ω1 :N) ∈ R
K×K . The

probability of seeing the whole trajectory is computed by

p(ζ 1 :T;µ
1 :T
ζ

,61 :T
ζ

) =

∫

N (ζ 1 :T |81 :Tω,6ζ )N (ω;µ,6)dω

= N (ζ 1 :T;81 :Tµ,81 :T68
T
1 :T

+ 6ζ ),
(3)

where µ1 :T
ζ

∈ R
T×2 and 6

1 :T
ζ

∈ R
T×T are the mean

and covariance over the whole trajectory, representing in the
trajectory space. 81 :T ∈ R

(T×2)×K is the concatenation of
basis function values for all the basis and at all the time
points. The reason that a number 2 exist is that it contains
both trajectories of position and velocity. In summary, the
ProMP model encodes the trajectory into the weighting space
and the trajectories can be reconstructed based on (3). The
learning of the weights is actually a least-square problem, which
could be solved using Moore-Penrose inverse that projects the
trajectory from the original space to a weighting space (Calinon,
2020). Figure 3 clearly demonstrates the rational of ProMP skill
modeling approach.

2.2. Extraction of the Stiffness Adaptation
Strategy Using sEMG
Here, we try to explain the necessity of sEMG signals to
take part in our proposed framework from two perspectives.
Then the signal handling processes are introduced in this
section. First, the sEMG signal is used to estimate the human
arm endpoint stiffness. As our previous work demonstrates,
transferring human-like stiffness adaptation strategies from
human to the robot end-effector or each joint will considerably
prompt the success rate of tasks requiring both force control
and position control (Huang et al., 2018; Chen et al., 2020b).
Second, sEMG, as the additional signal being used to produce
human side stiffness indication, increases the Shannon capacity
of the “communication channel” between two different agents,
assuming the proposed framework has good data encoding and
decoding techniques (i.e., skill modeling as encoding and action
recognition as decoding). To put it simply, the positive effect
of the increased number of features for skill encoding is that
the robot can recognize and produce more types of actions.
The sEMG signal pre-processing would be straightforward,
aiming to get a fitly smooth sEMG envelope for each channel.
The signal is detrended to prevent any unwanted effects like
sensor drift. Then, the global mean is subtracted to remove
any possible offset. After then, a certain low-pass filter could be
applied based on the choice of users. Filters can be chosen from
linear/root-mean-square (RMS) moving average, Butterworth
filter, and any other filters with a low-pass profile. To clarify,
the choice of filtering techniques with their parameter settings
will certainly influence the results. The users will have to choose
their own filter types depending on the choice of sEMG signal
collecting device. All of the sEMG envelope results generated
in this paper were based on a low-pass Butterworth filter
with a cut-off frequency at 5 Hz. Algorithm 1 demonstrates
the procedure of finding the envelope a for a single channel.
Figure 4 demonstrates the typical results of a weight raising
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FIGURE 2 | The Gaussian basis functions used in Probabilistic Movement Primitive (ProMP) model.

FIGURE 3 | The rationale of Probabilistic Movement Primitive (ProMP) skill modeling approach. The multiple demonstrations are encoded into a number of weights.

Then the Gaussian process regression is applied in the weight space, which further encoded the skill. The distribution of the trajectories can be recovered using

Equation (3). The grayscale in the chessboard-like representation of the ProMP parameters indicates the normalized value for each basis. The white block means a

high value, whereas the black block means low.

motion. The left and right images show the results of raw
sEMG signals and computed envelopes while raising a weight
to the posterior and anterior of body, respectively. It was easy
to visualize that the muscles worked with co-activation, and
the antagonistic muscles act in a opposite way to produce
opposite functionalities.

Because of the effect of muscle synergies, a number of muscles
can contribute to the end-point stiffness of each arm (Ison and
Artemiadis, 2014). If a number of I muscles are considered, the
calculation of the muscle activation indicator e is given by

e(t) =
1

W

I
∑

i=1

t+W−1
2

∑

t−W−1
2

a(i)(t), (4)

where W is the window length defined by users and a(i)(t) is
the envelope value of the ith channel at time t. As indicated

in Yang et al. (2017), the stiffness model can be simplified
by using an antagonistic pair (i.e., biceps and triceps). In this
paper, four sEMG channels that cover the Biceps (i.e., brachii
short head and long head) and the triceps (i.e., triceps lateralis
and longus) were used to estimated the stiffness. Equation
(5) defines the system mechanical impedance model (e.g.,
of a human arm/robot manipulator) that interacts with the
external environment.

F ext = 3(ẍ− ẍd)+ D(ẋ− ẋd)+ Kcart(x− xd), (5)

where F ext is the external force; 3, D and Kcart are the inertia,
damping, and stiffness matrices in the task space; x and xd
are the real position and desired position in the task space,
respectively. This equation implies that the interaction force
can be controlled by adapting the stiffness matrix online. The
Cartesian space stiffness is then estimated by a transformation
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FIGURE 4 | Typical example of surface electromyography (sEMG) envelope computing used in this paper based on Butterworth filter with a cut-off frequency of 5 Hz.

Four sEMG channels are taken into account that cover the antagonist muscle pair biceps and triceps. The green signals are the raw sEMG signal, and the red line are

the computed envelopes. Sampling interval is 10 ms.

from the joint space (Ajoudani et al., 2015), as shown in (6) and
(7).

Kcart(e, qa) = ((Ja(qa))
+)T[K joint(e, qa)− G(qa)](Ja(qa))

+ (6)

K joint(e, qa) = c K joint (7)

c = 1+
λ1[1− exp(−λ2e)]

1+ exp(−λ2e)
(8)

K joint is the stiffness in the joint space; qa is the human arm
joint angles, and Ja(qa)

+ is the pseudo-inverse of Jacobian matrix
of the human arm; The human arm Jacobian is calculated
based on the arm configuration estimated based on the IMU
of the Myo armband. G(qa) is a term that covers the effect of
the external load and gravity on stiffness in the task space. The
external load effect has been ignored since we could have no

prior knowledge about the external interaction; however, the
gravitational effect can be estimated for each arm configuration
based on the estimated arm Jacobian. c is the muscle co-
contraction index. λ1 and λ2 are the constants identified by the
user that affect the shape of the results, and K joint is the joint
stiffness matrix under the minimum muscle activation. Since
this paper does not focus on designing of impedance controller,
so it is worth simplifying the framework to easily verify our
algorithms. Here, we only consider the linear force components
and ignore the rotation and torques. The identification of λ1,
λ2, and K joint should follow a rigorous procedures, which are
different between different peoples and sEMG sensor setups (e.g.,
different sensors and different measuring positions on the arm).
The readers could refer to the work of Ajoudani et al. (2015)
and Clauser et al. (1969) for details and more information about
G, human arm Jacobian Ja and the arm joint configuration. In
this work, getting a reasonable variation profile of stiffness is
already sufficient to conduct the experiments. Getting a very
accurate absolute stiffness only from sEMG in real-time can be
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Algorithm 1: sEMG Enveloping

Require: EMGraw; Sampling frequency fs; Cut-off frequency fco;
Filter order O; Window length Tw; Number of points within
window Nw

Procedure :

EMGdetrend ← detrend(EMGraw)
EMGrectified ← EMGdetrend −mean(EMGdetrend)
if Linear Moving Average then

a(t) = 1
Nw

∑t+ Tw
2

t− Tw
2

(|EMGrectified(t)|)

else if RMS Moving Average then

a(t) =

√

1
Nw

∑t+ Tw
2

t− Tw
2

(EMGrectified(t))2

else if Butterworth Filter then
a = Butterworth(fs, fco,O, |EMGrectified|)

end if

return a
End Procedure

extremely difficult, for readers who are interested in estimating
stiffness more accurately can refer to Fang et al. (2017) and
other resources.

2.3. Coupling Between Motion and
Stiffness in Human–Robot Collaboration
ProMP has numerous fruitful properties that capable of
manipulating the model to extend the possibilities. The
most important properties that we adopt in the proposed
human–robot collaboration framework design are coupling and
modulation. Coupling is a property that allows to encode the
correlation between each DoFs of a high-dimensional trajectory,
which is formalized as

p(ζ t,1 :D|ω1 :D) = N (ζ t,1 :D;8t,1 :Dω1 :D,6ζ t ,1 :D) =

N













ζ t,1
...
ζ t,D






;







8t,1 . . . 0
...

. . .
...

0 . . . 8t,D













ω
T
1
...

ω
T
D






,6ζ t ,1 :D







(9)

where D is the total number of DoFs. ζ t,(d), 8t,(d), and ωd are
the trajectory values and trajectory value changing rates, basis
value matrix, and weight matrix of the dth DoF at time t. To find
the distribution for the whole trajectory over all the time from
1 to T, (9) is substituted into (2) and (3) to integrate out ω1 :D,
which yields µ1 :T

ζ ,1 :D and 61 :T
ζ ,1 :D (i.e., mean and covariance of

the D-dimensional trajectory from time 1 to T). The off-diagonal
blocks of 61 :T

ζ ,1 :D clearly show the coupling between each DoF.
From the above, multiple features can be encoded into a single
skill primitives, hence multiple agents can be coupled together
(e.g., human and robot). Our proposed framework encodes the
Cartesian positions (3 DoFs) and estimated endpoint stiffness (3
DoFs, see section 2.2) for human arm and robot manipulator
simultaneously. Recall that Kcart = diag([Kcart,x,Kcart,y,Kcart,z])
is the Cartesian space stiffness matrix, where the diagonal terms
are the stiffness constants on each axis. Therefore, six dimensions
are encoded into the ProMP model for each agent (we ignored

the terms in the stiffness matrix that relate to the torque and
rotation, hence the full framework should involve nine DoFs for
each agent). For encoding human–robot coupling, the data types
are defined as

ζ t,1 :D ←
[

[ζ t,A]
T [ζ t,R]

T
]T

, (10)

ω1 :D ←
[

ωA ωR

]T
, (11)

8t,1 :D ←

[

8t,A 0

0 8t,R

]

, (12)

where the lower scripts (·)A and (·)R are used to indicate the DoFs
for the human arm and the robot, respectively.

Modulation is the another property we used for skill
generalization and adaptation (Maeda et al., 2017). Thanks
to the fact that ProMP was build in a stochastic way, all
the probability theories could still be applied. To implement
the modulation, conditioning techniques are used. Suppose an
observation [ζ̃ t,a, 6̃ζ t ,1 :D] of the human arm is performed at

time t, where 6̃ζ t ,1 :D denotes the measurement noise. Then,

the conditional distribution p(ω1 :D|[ζ̃ t,a, 6̃ζ t ,1 :D]) will update
the model by “slicing” on p(ω1 :D). The observation can be
performed at a single time or multiple times, and can be
performed for either a single DoF or any subset of all the DoFs.
For each time that the observation happens, the conditional
distribution of the weight will be updated recursively according to

8
obs
t,1 :D ← Ot8t,1 :D (13)

µ̂1 :D = µ1 :D +
61 :D(8

obs
t,1 :D)

T(ζ̃ t,a − (8obs
t,1 :D)µ1 :D)

6̃ζ t ,1 :D + (8obs
t,1 :D)61 :D(8

obs
t,1 :D)

T
(14)

6̂1 :D = 61 :D −
61 :D(8

obs
t,1 :D)

T(8obs
t,1 :D)61 :D

6̃ζ t ,1 :D + (8obs
t,1 :D)61 :D(8

obs
t,1 :D)

T
, (15)

where µ̂1 :D and 6̂1 :D are the updated weight space mean and
covariance of the modulated model, and Ot is an observation
matrix that comprises identity matrices I ∈ R

2×2 and zero
matrices 0 ∈ R

2×2, indicating which DoF(s) is(are) observed
at time t (when only observing the position, the value one at
the second diagonal entry of I is replaced with zero). Ot is then
officially defined as

Ot ←
[

[I or 0]1 . . . [I or 0]D
]T

(16)

Using the updated weight space mean and covariance in (14)
and (15), the task space mean µ1 :T

ζ ,1 :D and covariance 61 :T
ζ ,1 :D are

then reconstructed using (9), (2), and (3). Consequently, all the
human/robot DoFs can be inferred/modulated by conditioning
on observation; hence, a natural robot action generalization
process is achieved. Figure 5 shows a two DoFs example that
clearly shows how model being modulated when considering the
coupling between two DoFs.
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FIGURE 5 | A two degree of freedoms (DoFs) example showing how the model being modulated while maintaining the coupling between DoFs. The shade indicates

the 2-σ confidence of the value. The green and red shades are representing the prior and modulated inference, respectively. The red curve and black curve are the

mean of the inference and the demonstrated ground truth, respectively. Five points of the DoF 1 were observed, and the algorithm updates (modulates) both DoF 1

and DoF 2 iteratively.

2.4. Learning and Inference of Multiple Skill
Primitives
The above sections consider only learning a single skill (assuming
that the demonstrations for that skill are linearly correlated).
In a real human–robot collaboration scenario, we need to
consider making the robot possess many general skills and infer
human intentions by observing a small amount of information
and selecting the appropriate primitive in the skill library for
generalization. The modeling of a single ProMP actually assumes
that the weights of the Gaussian basis functions in a unified skill
conform to a single modal multi-variant Gaussian distribution.
As shown in Figure 6, we have obtained a set of pick-and-
place demonstration data. In that figure, red represents the reach
action, blue represents the pick action, and the green represents
the place action. We use t-distributed stochastic neighbor
embedding (t-SNE) (Van der Maaten and Hinton, 2008) to
visualize all the sets of learned weights. It is clearly shown that the
three behaviors are filed into three categories. This encourages us
to model non-linear correlated skills using a GMM.

Assuming that the robot is expected to learn Q types of
collaborative skills, our learning objective is a GMM distribution

with Q local modals p(ω1 :D;π
(q),µ

(q)
1 :D,6

(q)
1 :D), where q ∈ [1,Q].

π
(q) is the prior of the modal choice q. µ

(q)
1 :D and 6

(q)
1 :D are the

mean and covariance of weights of the q-th local Gaussianmodal.
Hence, the GMM of weights is defined as

p(ω1 :D) =
∑

q

p(q)p(ω1 :D|q) =
∑

q

π
(q)p(ω1 :D|µ

(q)
1 :D,6

(q)
1 :D)

(17)
There are two approaches to learn the GMM parameters. The
learning under human supervision would be straightforward.
While in the demonstration process, human knows exactly about
the category of the skill. Hence, for each demonstration, the
label q is given. Hence, the rest of the work would be just
training each local Gaussian modal individually, and the prior
π
(q) can be calculated based on the number of demonstrations in

each category q. To reduce human effort, unsupervised learning

methods like the EM algorithm can also be implemented.
However, each set of weights of a ProMP is a very high-
dimensional vector, typically more than a hundred dimensions;
clustering algorithms can still result in local optima. Therefore,
a validation procedure would be vital. Moreover, it is worth
reminding that the log probability is always adopted to reduce
the chance of encountering underflow issues since computing
likelihood that involves very high-dimensional vectors often
leads to an extremely small number. Using results of a K-mean
algorithm as initialization of the EM algorithmwould also reduce
the chance of getting an error result.

After the GMM of weights is obtained, Bayes inference can be
applied to recognize human action and get the best choice of label
q = qest based on the observation [ζ̃ t,a, 6̃ζ t ,1 :D], where qest is the
estimated action label.

qest = argmax
q

p(q|ζ̃ t,a) = argmax
q

p(ζ̃ t,a|q)p(q) (18)

p(ζ̃ t,a|q) =

∫

p(ζ̃ t,a|8
obs
t,1 :Dω, 6̃ζ t ,1 :D)p(ω|µ

(q)
1 :D,6

(q)
1 :D)dω

= N (ζ̃ t,a;8
obs
t,1 :Dµ

(q)
1 :D,8

obs
t,1 :D6

(q)
1 :D(8

obs
t,1 :D)

T
+ 6̃ζ t ,1 :D),

(19)
The inference of qest considers a series of observations at
arbitrary times. Typically, more the observations used, the more
confident about the inference results. Finally, the model was
modulated using all the observations and the parameters of the

local Gaussian modal µ
(qest)
1 :D and 6

(qest)
1 :D based on Equations (14)

and (15).

3. EXPERIMENTS

We design a series of experiments to verify the practicability of
the proposed framework. The hardware used in the experiments
includesMyo Armband, Leapmotion, and PC.Myo armband is a
wireless sEMG signal monitoring device, which has a maximum
sampling rate fs of 200 Hz. Myo has eight sEMG channels that
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FIGURE 6 | Demonstrations for a pick-and-place task and its weights data visualization using t-distributed stochastic neighbor embedding (t-SNE): reach (red), pick

(blue), and place (green).

FIGURE 7 | Proposed motion with stiffness adaptation skill transfer and generalization framework.

designed to be fixed on the human arm. Leap motion is a hand
and finger tracking device, which utilizes monochromatic IR
cameras and infrared LEDs to operate. As shown in Figure 8,
in the experiment, the armband was worn on the right upper
arm to measure the sEMG data of the antagonistic muscles (i.e.,
biceps and triceps) of the human demonstrator and estimate the
stiffness of the arm endpoint according to the method introduced
in section 2.2. Hence, in the Equation (4), I = 4. We adopted

a Butterworth filter for sEMG signal processing since the cut-
off frequency can be controlled, where O = 3 and fco = 5Hz.
Leap motion was placed on a flat surface, and the hand was
required to move in the cone shape workspace above the Leap
motion camera.

The rationale and basic workflow of the proposed framework
is shown in Figure 7 intuitively. In order to transfer the human-
like stiffness adaptation skills, the human arm endpoint stiffness

Frontiers in Neuroscience | www.frontiersin.org 10 September 2021 | Volume 15 | Article 694914112

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Guan et al. Stiffness-Adaptive Skill Generalization Using sEMG

FIGURE 8 | Schematic plot of the hand-over task and the demonstrations. A virtual teleoperation is conducted for the robot side demonstrations in simulation.

adaptation trajectories estimated using sEMG signal are added
as additional features to the skill model. In order to make the
robot autonomously finds the generalization target of the desired
stiffness based on different generalized motions, we model the
stiffness feature through ProMP innovatively. Humans can then
naturally impart the coupling between stiffness and motion
to robots during demonstrations. Further, to achieve better
collaboration between humans and robots, we suggest combining
our previous research outcomes on stiffness adaptation skill with
the benefits of ProMP in modulation. We model the human
skills and robot skills simultaneously to establish coupling so
that robots can generalize appropriate actions and collaborate
with humans even when they have incomplete observations of
human signals.

3.1. Hand-Over Experiment
To verify that our framework can naturally encode the coupling
of stiffness and motion, a hand-over experiment scenario (see

Figure 8) was designed. In the experiment, people pulls one end
of the elastic band and quickly, stably and naturally move along
the given red trajectories on the x-y plane in 2 s, the captured
handmotion and estimated stiffness are recorded to learnmotion
primitives for the human side. The other end of the elastic band
is fixed on a pile. During the movement, the demonstrator’s arm
experiences three stages: no external tension, external tension
occurs, and increasing external tension. To maintain a high
trajectory tracking accuracy in the presence of external forces
within 2 s, the demonstrator will perform with an adaptive
stiffness strategy.

To demonstrate the robot skills, a virtual teleoperation
scene in Matlab simulation was built, which use the same
demonstration interface to control the robot end-effector to
move along each desired blue trajectory in a simulation within 2
s. The simulated robot was controlled using a simple Cartesian
positional PID controller and inverse kinematics solver with
the captured human hand position as the desired position.
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FIGURE 9 | Illustration of the object matching experiment.
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FIGURE 10 | The inferred trajectories vs. the ground truth of the hand-over task [red (human arm)/blue (robot)].

While teleoperating the blue trajectories, the red trajectories
are also replayed. For each demo case, the demonstrator
is asked to perform 10 demonstrations, hence N = 30
in total. All the recorded data are then used to train a
12-dimensional ProMP model, where 3 DoFs for human
arm position, 3 DoFs for the human arm translational
stiffness, and the same DoFs apply to the robot. The
number of weights in this experiment is set to be K=30.
Using the conditioning method introduced in section 2.3,
the demonstrator then shows 6 new motions to verify the
framework’s generalization ability and accuracy. Ideally, by only
observing the last time point of the arm position trajectory, it can
still infer an appropriate stiffness trajectory and an appropriate
robot motion.

3.2. Object Matching Experiment
As shown in Figure 9, we design an object matching task
to test our framework. We test our framework that has the

ability to distinguish between human intents by adding stiffness
information to the model when motions are similar. Using
too large or small stiffness to pick up heavy object would
result in motion fluctuations or pick-up failures, respectively.
Hence, in this task, the demonstrator is first asked to
demonstrate the pick-up skill with stiffness adaptation strategies
for encoding robot side skill primitive. For each robot side
trajectory, demonstrator also demonstrate the human side pick-
up motion. Each object will have 10 demonstrations. The red,
blue, and green lines at human side in Figure 9 illustrate the
human motions. For each object, the motion trajectory will
only be differed at the grasping positions since we grasp at
different levels. Although the human side motions are similar,
the stiffness trajectories can be significantly differed. Finally,
the demonstrator pickups different objects at human side as
observation to trigger modulated robot actions and see if that
system performs as expected (e.g., generate motion and stiffness
trajectories correctly).
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FIGURE 11 | The inferred stiffness along y-axis vs. the ground truth of the hand-over task [red (inferred)/magenta (recorded ground truth)].

3.3. Pick-and-Place Experiment
We use the recorded pick-and-place demonstrations, as shown

in Figure 6, to verify the framework’s ability to recognize human

action; hence, we choose correct action label to generalize the

ProMP according to observations. Three actions are considered

as primitives, which are reach, pick, and place, respectively. We

were assuming the object is initially located at a random position
inside a circular area. Therefore, all the demonstrations of reach

start at a similar position but end in different places, while the
pick demonstrations start at different positions but end in a

similar position. The place demonstrations should always travel

along a similar trajectory. Each primitive has 50 demonstrations,
thus 150 in total. All the parameter settings are the same as
before, and all 150 demonstration are then used as test data

to verify the framework performance in action recognition. For
each demonstration, 10 equally spaced data point were chosen as

the observations.

4. RESULTS AND DISCUSSION

4.1. Hand-Over Experiment
The top-right area in Figure 8 shows all the demonstrated
trajectories for both motion and estimated stiffness Kcart,y along
the y-axis. As shown in Figures 10, 11, the reproduced action
with index 1, 3, and 5 corresponds to the demo case 1, 2,
and 3 in Figure 8, respectively. The rest three reproduced
actions with index 2, 4, and 6 are the novel cases to test the
generalization accuracy. Three trajectory inference results are
shown in Figure 8. The upper-left one shows the result that only
observing human arm x-y positions at time 2 s. The upper-right
one shows the result that observes human arm x-y positions and
estimated stiffness at time 2 s. The lower-left one shows the result
that observes human arm x-y positions and estimated stiffness at
time 1.4, 1.6, 1.8, and 2 s. Comparing with the recorded ground
truth at the lower-right, we can see that all cases can generalize
reasonably well trajectories and complete the hand-over task. It
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FIGURE 12 | Pick-up task Demonstrations of motion and stiffness along the Z-axis (red: water filter/blue: book/green: bottle).

can be seen that the ground truth trajectories are not ideally
smooth in shape even though we call it the “Ground Truth.” That
is because single demonstration always having large bias, using a
larger number of demonstrations to synthesize the data will make
the trajectory smooth and reliable. And that is further proved
by comparing two upper results with the lower results. When
robot inferring actions by conditioning on biased information,
the model “believes” more about “bias,” while the upper two
cases “believe” more about the synthesized skill trajectories mean,
which makes them looks more reliable.

In Figure 11, the upper-left graph shows the results of inferred
stiffness along the y-axis when only observing the x-y position of
the arm at time 2 s. It proves that our proposed ProMP-based
framework can encode coupling between motion and stiffness.
The larger travel-distance along the y-axis, the larger stiffness
along the y-axis is required, which is the tendency we expect.
The upper-right graph shows that the stiffness trajectories were
updated by observing stiffness at 2 s. The lower-left graph shows

the same problems of “believing in bias”; however, that can
also be utilized to generate different action stylish when there
are various distinct styles among demonstrations. Overall, the
framework works more ideally when (1) human DoFs are fully
observable; (2) model trained by a sufficiently large number
of demonstrations; (3) inferring robot actions by observing
(conditioning) at a single time point (to reduce bias).

4.2. Object Matching Experiment
The human demonstrations are all shown in Figure 12. The
upper-left shows that although the 3 kind of motions are
distinguishable by human’s inspection, it may also be vague to
tell when noise exists. The lower two graphs are the demonstrated
stiffness along Z-axis since that is the most interested axis when
picking up objects. It can be seen that the bottle requires the least
amount of stiffness to raise while the water filter requires the
largest stiffness. From the graph, we see that a human use a very
good stiffness control strategy.When grasping object, because the
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FIGURE 13 | A comparison between the inference results of with and without using sEMG signal when conditioned on a motion observation with a reasonable

amount of noise (red trajectory: inference of mean trajectory/black trajectory: human demonstrated ground truth/green area: 2-σ region of covariance of the

pre-trained ProMP/red area: 2-σ region of covariance of the modulated ProMP/blue point: noisy observation).

exacted weight of that object is not known, humans create an over
shoot of stiffness to ensure that the task space motion is not off-
track. After that, the arm will swiftly reduce the stiffness to an
appropriate value so that the energy consumption is minimized.

Figure 13 clearly demonstrates the effectiveness of out
proposed framework in distinguishing human action and
generate accurate robot motion with correct amount of stiffness
activation when the actions are similar and observation noise
exists. The blue points is the observation; in this experiment, we
adopt a random generated noise of a very reasonable amount;
such amount of noise may also be the bias of human motion
in each run-time (i.e., people do not always have a 100%
correct motion). We clearly see that our framework works very
well under the help of sEMG signal (see the middle column).
This is compared to the results with no help of sEMG, where

the inference process provides a absolutely incorrect human
stiffness and robot motion and the robot stiffness inference is
not what we expect (low stiffness activation when raising the
object, this may leads to a distortion of motion trajectory during
execution in the real application). Hence, we could say that
the proposed framework can be used as an effective command
sending interface to trigger appropriate robot actions in a very
intuitive and convenient manner, which greatly reduce the effort
of reprogramming.

4.3. Pick-and-Place Experiment
The top side of Figure 14 shows the learned prior of reach
(red), pick (blue), and place (green) individually. Obviously, the
ProMPmodel learned by non-linearly correlated demonstrations
(i.e., gray shade in Figure 14) cannot be used to generalize
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FIGURE 14 | (Top) The learned mixture of ProMP model for pick-and-place tasks: reach (red), pick (blue), place (green). (Bottom) The learned ProMP model that

treat non-linearly correlated actions as a single skill type.

FIGURE 15 | An example of reaching action recognition by 10 observation data. (Top) The proposed framework can recover the correct ProMP model from a mixture

model. (Bottom) Reach action is identified and generalized based on observations. Right: Log likelihood of reach (red) is far higher than the other two actions,

although overlapping of the prior make cause certain ambiguity.

or recognize motions. All 150 tested demonstrations result in
a 100% success rate. An inference of a test demonstration
is considered to be succeeded if the action label is correctly
inferred. An example of recognition and generalization of a
reach action is shown in Figure 15. Once the action label is
correctly labeled, the sum of the squared difference between

the ground truth and inferred trajectory can be very low, as
can be seen in Figure 15. As more and more observations
coming, the log-likelihood of reach action keeps increasing
with very high confidence. The overlapping of the prior
(mostly occurs in the middle) does increase the likelihood of
the other two actions; however, our algorithm considers the
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whole observation sequence from the beginning to the current
time. Hence, the would be no significant ambiguity caused
by overlapping.

Reducing the number of observations or increase the
number of Gaussian models (i.e., skills) stored in the
Gaussian mixture ProMP will introduce more inference
ambiguity. However, since the proposed framework
considers using stiffness profile as additional features, the
inference accuracy may still keeping at a satisfying level.
In our framework, the action recognition functionality is
associated with the ProMP model itself since it require the

prior knowledge stored in the ProMP (i.e., µ
(q)
1 :D, 6

(q)
1 :D).

Then, the prior knowledge is modulated based on the
recognized action label and all the observed information,
which makes the robot be able to adapt actions to accommodate
different situations.

5. FUTURE WORK

The action recognition functionality allows identifying the most
similar actions in the learned skill library. This implies that we
could find skill substitution for any coming novel action without
learning and storing them into the skill library. The idea of
blending in ProMP could transform one type of action to another,
which means the learned skills could still be disassembled and
then regrouped as a substitute for novel action. To investigate
the possibility of fully automated robot operations, we can
combine the ProMP-based framework proposed in this article
with concepts such as skill execution sequence, environmental
awareness, and affordance. Time series such as HMM can be used
to model and train the robot’s task-level planning ability. This
article largely focuses on the theoretical study. When considering
real robot control, we will encounter many foreseeable and
new challenges, such as motor acceleration not reaching the
desired speed, difficulties in implementing human–robot real-
time collaboration, etc.

6. CONCLUSION

This paper demonstrates an adaptive stiffness human–robot skill
transfer framework based on ProMP for collaborative tasks,
which is very easy to understand and is effective. We discuss
the importance of stiffness property in real applications and
propose to use sEMG signal to estimate human arm endpoint
stiffness, which can then be transferred to the robot. Moreover,
the use of sEMG increases the generalization accuracy and
decision-making success rate. We also illustrate why the ProMP
model has benefits in building such a skill model. To prove our
idea, we design experiments using the Myo armband and Leap
motion, which gives results that positively support our work.
We find the coupling between the adaptive stiffness strategy
and motion can be encoded and transferred from humans to
robots in a very intuitive manner comparing to other works.
The proposed framework can be used as an intuitive interface to
trigger robot action generalization via observing human action,
ideal for a human–robot collaboration scenario. In the future, we
will exploit the other properties of ProMP and other techniques,
like skill combining and blending, mixture models to improve
the flexibility of our framework further, and verify it using
real robots.

AUTHOR CONTRIBUTIONS

YG conceptualized the framework, developed the software,
designed and conducted the experiments, and wrote the paper.
NW and CY supervised, reviewed, and approved the work.
All authors contributed to the article and approved the
submitted version.

FUNDING

This work was partially supported by Engineering and Physical
Sciences Research Council (EPSRC) under Grant EP/S001913.

REFERENCES

Ajoudani, A., Fang, C., Tsagarakis, N. G., and Bicchi, A. (2015). “A reduced-

complexity description of arm endpoint stiffness with applications

to teleimpedance control,” in 2015 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS) (Hamburg), 1017–1023.

doi: 10.1109/IROS.2015.7353495

Argall, B. D., Chernova, S., Veloso, M., and Browning, B. (2009). A survey

of robot learning from demonstration. Robot. Auton. Syst. 57, 469–483.

doi: 10.1016/j.robot.2008.10.024

Atkeson, C. G., Moore, A. W., and Schaal, S. (1997). “Locally weighted learning for

control,” in Lazy Learning, eds D. W. Aha (Dordrecht: Springer), 75–113.

Billard, A. G., Calinon, S., and Dillmann, R. (2016). “Learning from humans,” in

Springer Handbook of Robotics, eds B. Siciliano andO. Khatib (Cham: Springer),

1995–2014.

Burdet, E., Osu, R., Franklin, D., Yoshioka, T., Milner, T., and Kawato, M. (2000).

Amethod for measuring endpoint stiffness during multi-joint armmovements.

J. Biomech. 33, 1705–1709. doi: 10.1016/S0021-9290(00)00142-1

Calinon, S. (2020). “Mixture models for the analysis, edition, and synthesis of

continuous time series,” in Mixture Models and Applications, eds N. Bouguila

and W. Fan (Cham: Springer), 39–57.

Calinon, S., Guenter, F., and Billard, A. (2007). On learning, representing, and

generalizing a task in a humanoid robot. IEEE Trans. Syst. Man Cybernet. Part

B 37, 286–298. doi: 10.1109/TSMCB.2006.886952

Calinon, S., Li, Z., Alizadeh, T., Tsagarakis, N. G., and Caldwell, D. G.

(2012). “Statistical dynamical systems for skills acquisition in humanoids,”

in 2012 12th IEEE-RAS International Conference on Humanoid Robots

(Humanoids 2012) (Osaka), 323–329. doi: 10.1109/HUMANOIDS.2012.66

51539

Chen, X., Jiang, Y., and Yang, C. (2020a). “Stiffness estimation and intention

detection for human-robot collaboration,” in 2020 15th IEEE Conference on

Industrial Electronics and Applications (ICIEA) (Kristiansand), 1802–1807.

doi: 10.1109/ICIEA48937.2020.9248186

Chen, X., Wang, N., Cheng, H., and Yang, C. (2020b). Neural learning enhanced

variable admittance control for human-robot collaboration. IEEE Access 8,

25727–25737. doi: 10.1109/ACCESS.2020.2969085

Frontiers in Neuroscience | www.frontiersin.org 18 September 2021 | Volume 15 | Article 694914120

https://doi.org/10.1109/IROS.2015.7353495
https://doi.org/10.1016/j.robot.2008.10.024
https://doi.org/10.1016/S0021-9290(00)00142-1
https://doi.org/10.1109/TSMCB.2006.886952
https://doi.org/10.1109/HUMANOIDS.2012.6651539
https://doi.org/10.1109/ICIEA48937.2020.9248186
https://doi.org/10.1109/ACCESS.2020.2969085
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Guan et al. Stiffness-Adaptive Skill Generalization Using sEMG

Chernova, S., and Veloso, M. (2007). “Confidence-based policy learning from

demonstration using Gaussian mixture models,” in Proceedings of the 6th

International Joint Conference on Autonomous Agents and Multiagent Systems

(Honolulu, HI), 1–8. doi: 10.1145/1329125.1329407

Clauser, C. E., McConville, J. T., and Young, J. W. (1969). Weight, Volume, and

Center of Mass of Segments of the Human Body. Technical report, Antioch

College, Yellow Springs, OH. doi: 10.21236/AD0710622

Fang, C., Ajoudani, A., Bicchi, A., and Tsagarakis, N. G. (2017). Onlinemodel based

estimation of complete joint stiffness of human arm. IEEE Robot. Autom. Lett.

3, 84–91. doi: 10.1109/LRA.2017.2731524

Forte, D., Gams, A., Morimoto, J., and Ude, A. (2012). On-line motion synthesis

and adaptation using a trajectory database. Robot. Auton. Syst. 60, 1327–1339.

doi: 10.1016/j.robot.2012.05.004

Gomi, H., and Osu, R. (1998). Task-dependent viscoelasticity of human multijoint

arm and its spatial characteristics for interaction with environments. J.

Neurosci. 18, 8965–8978. doi: 10.1523/JNEUROSCI.18-21-08965.1998

Hersch, M., Guenter, F., Calinon, S., and Billard, A. (2008). Dynamical system

modulation for robot learning via kinesthetic demonstrations. IEEE Trans.

Robot. 24, 1463–1467. doi: 10.1109/TRO.2008.2006703

Hogan, N. (1985). “Impedance control: an approach to manipulation: Part

I-theory,” in IEEE 1984 American Control Conference (San Diego, CA).

doi: 10.23919/ACC.1984.4788393

Huang, R., Cheng, H., Guo, H., Lin, X., and Zhang, J. (2018). Hierarchical

learning control with physical human-exoskeleton interaction. Inform. Sci. 432,

584–595. doi: 10.1016/j.ins.2017.09.068

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., and Schaal, S. (2013).

Dynamical movement primitives: learning attractor models for motor

behaviors. Neural Comput. 25, 328–373. doi: 10.1162/NECO_a_00393

Ison, M., and Artemiadis, P. (2014). The role of muscle synergies in myoelectric

control: trends and challenges for simultaneousmultifunction control. J. Neural

Eng. 11:051001. doi: 10.1088/1741-2560/11/5/051001

Khansari-Zadeh, S.M., and Billard, A. (2011). Learning stable nonlinear dynamical

systems with gaussian mixture models. IEEE Trans. Robot. 27, 943–957.

doi: 10.1109/TRO.2011.2159412

Li, Z., Cheng, H., Guo, H., and Sun, X. (2017). Compliant training control of ankle

joint by exoskeleton with human emg-torque interface. Assembly Autom. 37,

349–355. doi: 10.1108/AA-12-2016-161

Maeda, G. J., Neumann, G., Ewerton, M., Lioutikov, R., Kroemer, O., and

Peters, J. (2017). Probabilistic movement primitives for coordination of

multiple human-robot collaborative tasks. Auton. Robots 41, 593–612.

doi: 10.1007/s10514-016-9556-2

Migliore, S. A., Brown, E. A., and DeWeerth, S. P. (2005).

“Biologically inspired joint stiffness control,” in Proceedings

of the 2005 IEEE International Conference on Robotics and

Automation (Barcelona), 4508–4513. doi: 10.1109/ROBOT.2005.15

70814

Moeslund, T. B., Hilton, A., and Krüger, V. (2006). A survey of advances in vision-

based human motion capture and analysis. Comput. Vis. Image Understand.

104, 90–126. doi: 10.1016/j.cviu.2006.08.002

Mülling, K., Kober, J., Kroemer, O., and Peters, J. (2013). Learning to select and

generalize striking movements in robot table tennis. Int. J. Robot. Res. 32,

263–279. doi: 10.1177/0278364912472380

Paraschos, A., Daniel, C., Peters, J., and Neumann, G. (2013). “Probabilistic

movement primitives,” in 27th Annual Conference on Neural Information

Processing Systems 2013 (Lake Tahoe, NV).

Paraschos, A., Daniel, C., Peters, J., and Neumann, G. (2018). Using

probabilistic movement primitives in robotics. Auton. Robots 42, 529–551.

doi: 10.1007/s10514-017-9648-7

Rabbi, I., and Ullah, S. (2013). A survey on augmented reality challenges and

tracking. Acta Graph. 24, 29–46. doi: 10.9790/0661-0222329

Schaal, S., Peters, J., Nakanishi, J., and Ijspeert, A. (2003). “Control, planning,

learning, and imitation with dynamic movement primitives,” in Workshop on

Bilateral Paradigms onHumans andHumanoids: IEEE International Conference

on Intelligent Robots and Systems (IROS 2003) (Las Vegas, NV), 1–21.

Ugur, E., and Girgin, H. (2020). Compliant parametric dynamic movement

primitives. Robotica 38, 457–474. doi: 10.1017/S026357471900078X

van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE. J. Mach.

Learn. Res. 9, 2579–2605. Available online at: https://www.bibsonomy.org/

bibtex/28b9aebb404ad4a4c6a436ea413550b30/lopusz_kdd

Villani, V., Pini, F., Leali, F., and Secchi, C. (2018). Survey on human-robot

collaboration in industrial settings: safety, intuitive interfaces and applications.

Mechatronics 55, 248–266. doi: 10.1016/j.mechatronics.2018.02.009

Wang, R., Wu, Y., Chan, W. L., and Tee, K. P. (2016). “Dynamic movement

primitives plus: for enhanced reproduction quality and efficient trajectory

modification using truncated kernels and local biases,” in 2016 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS) (Daejeon),

3765–3771. doi: 10.1109/IROS.2016.7759554

Yang, C., Ganesh, G., Haddadin, S., Parusel, S., Albu-Schaeffer, A., and Burdet, E.

(2011). Human-like adaptation of force and impedance in stable and unstable

interactions. IEEE Trans. Robot. 27, 918–930. doi: 10.1109/TRO.2011.2158251

Yang, C., Zeng, C., Fang, C., He, W., and Li, Z. (2018). A DMPS-

based framework for robot learning and generalization of humanlike

variable impedance skills. IEEE/ASME Trans. Mechatron. 23, 1193–1203.

doi: 10.1109/TMECH.2018.2817589

Yang, C., Zeng, C., Liang, P., Li, Z., Li, R., and Su, C.-Y. (2017). Interface

design of a physical human-robot interaction system for human impedance

adaptive skill transfer. IEEE Trans. Autom. Sci. Eng. 15, 329–340.

doi: 10.1109/TASE.2017.2743000

Yu, X., He, W., Li, Y., Xue, C., Li, J., Zou, J., et al. (2019). Bayesian estimation of

human impedance and motion intention for human-robot collaboration. IEEE

Trans. Cybern. 51, 1822–1834. doi: 10.1109/TCYB.2019.2940276

Zeestraten, M. J., Calinon, S., and Caldwell, D. G. (2016). “Variable duration

movement encoding with minimal intervention control,” in 2016 IEEE

International Conference on Robotics and Automation (ICRA) (Stockholm),

497–503. doi: 10.1109/ICRA.2016.7487171

Zeng, C., Yang, C., Cheng, H., Li, Y., and Dai, S.-L. (2020). Simultaneously

encoding movement and sEMG-based stiffness for robotic skill learning. IEEE

Trans. Indus. Inform. 17, 1244–1252. doi: 10.1109/TII.2020.2984482

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Guan, Wang and Yang. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 19 September 2021 | Volume 15 | Article 694914121

https://doi.org/10.1145/1329125.1329407
https://doi.org/10.21236/AD0710622
https://doi.org/10.1109/LRA.2017.2731524
https://doi.org/10.1016/j.robot.2012.05.004
https://doi.org/10.1523/JNEUROSCI.18-21-08965.1998
https://doi.org/10.1109/TRO.2008.2006703
https://doi.org/10.23919/ACC.1984.4788393
https://doi.org/10.1016/j.ins.2017.09.068
https://doi.org/10.1162/NECO_a_00393
https://doi.org/10.1088/1741-2560/11/5/051001
https://doi.org/10.1109/TRO.2011.2159412
https://doi.org/10.1108/AA-12-2016-161
https://doi.org/10.1007/s10514-016-9556-2
https://doi.org/10.1109/ROBOT.2005.1570814
https://doi.org/10.1016/j.cviu.2006.08.002
https://doi.org/10.1177/0278364912472380
https://doi.org/10.1007/s10514-017-9648-7
https://doi.org/10.9790/0661-0222329
https://doi.org/10.1017/S026357471900078X
https://www.bibsonomy.org/bibtex/28b9aebb404ad4a4c6a436ea413550b30/lopusz_kdd
https://www.bibsonomy.org/bibtex/28b9aebb404ad4a4c6a436ea413550b30/lopusz_kdd
https://doi.org/10.1016/j.mechatronics.2018.02.009
https://doi.org/10.1109/IROS.2016.7759554
https://doi.org/10.1109/TRO.2011.2158251
https://doi.org/10.1109/TMECH.2018.2817589
https://doi.org/10.1109/TASE.2017.2743000
https://doi.org/10.1109/TCYB.2019.2940276
https://doi.org/10.1109/ICRA.2016.7487171
https://doi.org/10.1109/TII.2020.2984482
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-704402 October 19, 2021 Time: 11:36 # 1

ORIGINAL RESEARCH
published: 21 October 2021

doi: 10.3389/fnins.2021.704402

Edited by:
Mitsuhiro Hayashibe,

Tohoku University, Japan

Reviewed by:
Atsushi Takagi,

NTT Communication Science
Laboratories, Japan

Guillermo Peris Fajarnes,
Universitat Politècnica de València,

Spain

*Correspondence:
Asuka Takai

atakai@atr.jp
Jun Morimoto

xmorimo@atr.jp

Specialty section:
This article was submitted to

Neural Technology,
a section of the journal

Frontiers in Neuroscience

Received: 02 May 2021
Accepted: 23 September 2021

Published: 21 October 2021

Citation:
Takai A, Lisi G, Noda T,

Teramae T, Imamizu H and
Morimoto J (2021) Bayesian

Estimation of Potential Performance
Improvement Elicited by
Robot-Guided Training.

Front. Neurosci. 15:704402.
doi: 10.3389/fnins.2021.704402

Bayesian Estimation of Potential
Performance Improvement Elicited
by Robot-Guided Training
Asuka Takai1,2* , Giuseppe Lisi1, Tomoyuki Noda1, Tatsuya Teramae1, Hiroshi Imamizu3,4

and Jun Morimoto1,5*

1 Department of Brain Robot Interface, Computational Neuroscience Laboratories, Advanced Telecommunications Research
Institute International (ATR), Kyoto, Japan, 2 Mechanical and Physical Engineering Course, Graduate School of Engineering,
Osaka City University, Osaka, Japan, 3 Department of Psychology, The University of Tokyo, Tokyo, Japan, 4 Department
of Cognitive Neuroscience, Brain Information Communication Research Laboratory Group, ATR, Kyoto, Japan, 5 Graduate
School of Informatics, Kyoto University, Kyoto, Japan

Improving human motor performance via physical guidance by an assist robot device is
a major field of interest of the society in many different contexts, such as rehabilitation
and sports training. In this study, we propose a Bayesian estimation method to predict
whether motor performance of a user can be improved or not by the robot guidance
from the user’s initial skill level. We designed a robot-guided motor training procedure
in which subjects were asked to generate a desired circular hand movement. We
then evaluated the tracking error between the desired and actual subject’s hand
movement. Results showed that we were able to predict whether a novel user can
reduce the tracking error after the robot-guided training from the user’s initial movement
performance by checking whether the initial error was larger than a certain threshold,
where the threshold was derived by using the proposed Bayesian estimation method.
Our proposed approach can potentially help users to decide if they should try a
robot-guided training or not without conducting the time-consuming robot-guided
movement training.

Keywords: haptic guidance, skill level, motor training, robotic teaching, human-robot interaction

INTRODUCTION

Collaboration between robots and humans can expand human capabilities and has been
investigated on the applicability in fields ranging from rehabilitation to collaborative
manufacturing. Many different approaches have been developed to train human movements with
robots by providing motor instructions and feedback. For this kind of application, it is essential
to predict whether an individual responds to a specific robotic training (Sigrist et al., 2013)
before actual training to avoid wasted time and effort, but such estimation methods have not
been established.

Furthermore, the efficacy of robotic instruction through haptic sense has not been sufficiently
investigated while the haptic interface that provides motor instructions to human users has been
long-term explored (Mussa-Ivaldi et al., 1985; Sigrist et al., 2013). The effect of somatosensory
feedback has been compared to that of visual guidance. For example, Feygin et al. examined
haptic guidance in short-term training to learn novel three-dimensional (3D) circular trajectories.
They found that haptic training alone was less effective than lone visual training for positional
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reproduction performance (Feygin et al., 2002). Liu et al.
also studied the short-term performance of tracking
novel 3D circular trajectories. They found that haptic
input in addition to visual demonstration did not
improve the tracing error compared to the visual-alone
condition (Liu et al., 2006). Wong et al. examined skill
learning in 3-day consecutive haptic interface training of
drawing two-dimensional (2D) trajectories. They rather
found that additional haptic demonstration showed
greater improvements than visual-alone conditions
(Wong et al., 2012).

On the other hand, previous studies suggested that
haptic instructions seem to be beneficial to initially less-
skilled participants (Sigrist et al., 2013). Marchal-Crespo
et al. (2010) found that initially less-skilled participants
significantly improved their steering skills after training
using the haptic guided driving task. However, the previous
studies did not provide a systematic approach either to
verifying the grouping depending on individual initial skill
level or selecting a specific boundary to estimate potential
motor improvement. They rather found a linear correlation
between the initial skill level and its change after robotic
haptic interaction (Marchal-Crespo et al., 2010, 2017; Duarte
and Reinkensmeyer, 2015). Although only Duarte and
Reinkensmeyer used information criteria and identified the
relevance of initial skills to the change, they have not tried to
define the boundary value.

Identifying the boundary promises positive training
effects for target users of each task or the type of robotic
training. This study proposes an identification method
to evaluate the dependence of the training effect on the
initial skill level by modeling the skill level change between
before and after receiving the haptic guidance training.
We verify the grouping’s validity based on model fitness
and propose a systematic method to set a theoretically
sound boundary value.

MATERIALS AND METHODS

Bayesian Modeling of the Skill Level
Change
To provide the boundary for estimating whether motor
performance of a user can be improved or not, we first verify the
skill level change model differs between individuals depending
on their initial skill level. For this, we referred to Sigrist’s
summary. Sigrist et al. (2013) suggested that position haptic
guidance may be useful for novices or less skilled. This can be
interpreted as the skill level change model that allows to vary
both the intercept and slope by the initial participant’s skill. We
prepared four different hypothetical models, as shown in Table 1.
To model changes in skill level for an evaluation metric, we
employed the Bayesian statistical modeling based on Markov
Chain Monte Carlo (MCMC) with a No-U-turn sampler and
variational inference (Salvatier et al., 2016). Specifically, the linear
models in Table 1 have both the intercept (α) and slope (β),
which were allowed to vary between models. The analysis used

the following basic formula:

ŷij =αij[k] + βij[k]xk + εk (1)

where i is the number of the model, j is the index of each
participant, k is the index of each trial, ŷ is the variable of interest,
and x is the session variable (that is, 0: first, 1: second session).
The formula for a participant (j) is illustrated in Figure 1A.

Model 1 (in Table 1) has the participant independent intercept
and slope, which means the change in metric is independent of
the participants and their initial skill level. If this is the case, all
participants can attain the benefit of robotic instruction. This
means all participants have the same skill level change model and
highly likely the lowest model fitness among the four. Model 2
has a participant-dependent slope, which means the change in
skill varies among participants but cannot be predicted by their
initial skill level. Model 3 has the participant-dependent intercept,
which means that the robotic instruction can equally affect their
skill change regardless of their initial skill level. Although Model
3 is ideal as an instruction, it is highly unlikely to have a high
fitness to the haptic instruction. Model 4 has varying intercepts
and slopes. Thus, the skill level change can be predicted by their
initial skill level. If the metric’s fitness to Model 4 is greater than
the others, it signifies that the haptic instruction is beneficial to
initially less skilled participants. This supports the initial skill-
based grouping statistically. Spontaneously, it also suggests that
the initial performance can result in motor improvements after
receiving instructions from the existing dataset.

TABLE 1 | Models of the skill level change.

Model number (i) Formula Description

1. Pooled ŷ1j = α1+β1xi • Independent to initial skill
• Effective equally to everybody

2. Varying slope ŷ2j = α2+β2jxi • Independent to initial skill
• Effective differently for individual

3. Varying intercept ŷ3j = α3j+β3xi • Dependent on the initial skill
• Effective equally to everybody

4. Varying intercept
and slope

ŷ4j = α4j+β4jxi • Dependent on the initial skill
• Effective differently for individual

FIGURE 1 | (A) Linear modeling of the skill level change of the participant (j).
The skill level metric (ŷ) here in this study is the error between the target
movement and performed movement. The intercept (α) is the initial skill level
(x0). The slope (β) represents the change in skill level. (B) The linear
relationship between the intercept and slope. Each dot represents a linear
model of each participant. The linear relationship allows to set the boundary
(γ) to divide participants into two groups systematically; those whose skill level
improves (β < 0) or those who decline (β > 0).
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Linear Relationship Between the
Intercept and Slope to Define the
Boundary
If the skill level change model differs between individuals, we can
derive the boundary using the relationship between the initial
metric (that is, the intercept) and the change in the metric (that
is, the slope). Hence, we included the following linear equation in
model 4:

αj = θβj + γ (2)

The formula is illustrated in Figure 1B. A non-zero θ would
highlight a significant relationship between α and β, while a non-
zero γ would signify that for some participants, performance
improved (β < 0), while for other participants, performance
declined (β > 0). Thus, γ is the boundary of the initial skill
level. γ was estimated simultaneously while estimating α and β

by MCMC, so posthoc analysis was not needed.
The complete probabilistic model is defined as follows:

Y ∼ N
(
µi, σ

2) µi ∼ αij + βij · X σ ∼ |C(5)| (3)

αij ∼

N
(
0, 10−5 ) i = 1, 2

N
(
µαi, σ

2
α

)
i = 3, 4

µαi ∼

N
(
0, 10−5 ) i = 3

θ · βij + γ i = 4
σα ∼ |C(5)|

(4)

σθ ∼ F σγ ∼ F (5)

βij ∼

N
(
0, 10−5 ) i = 1, 3

N
(
µβ, σ

2
β

)
i = 2, 4

µβ ∼ N
(
0, 10−5 ) σβ ∼ |C(5)|

(6)
where all the quantities defined in the previous paragraph
still hold, Y represents the outcomes (skill level metric), X
represents the predictors (that is, 0: first, 1: second session), N
is the Gaussian distribution, |C(5)| is a Half-Cauchy distribution
with parameter 5, and F is an uninformative (flat) prior.
All the parameters of the prior distributions were based on
the default settings of the probabilistic modeling software
(Salvatier et al., 2016).

Sample Dataset: Experiment With a
Haptic Interface
The above model was applied to the experimental data of
participants who interacted with a robot-assisted motor training
system from our laboratory, which guided the participant’s hand
to show the procedure to process an actual motor task of interest.

Participants
Participants included 20 healthy right-handed adults (17
men, 3 women; age range: 21–34 years; mean ± standard
deviation [SD] = 24.017 ± 2.596). The handedness was
determined by a verbal inquiry based on the Edinburgh
inventory. All participants provided written informed consent
before participation. The ATR Review Board Ethics Committee
approved the study protocol.

Task and Apparatus
The target task involved drawing a true circle of 10 cm radius
on a horizontal plane using one’s left hand. We selected our
task referencing existing studies with healthy subjects introduced
in section “Introduction,” especially Wong et al. (2012). Feygin
et al. (2002) identified an interference between the visual and
haptic modals, so we decided not to provide visual feedback
to our participants during haptic feedback. The subject’s hand
is hidden under a white table, on top of which additional
information can be visualized using a projector. Participants
were asked to complete the drawing within approximately 2 s.
They started drawing the circle from the 12 o’clock position and
moved in a counter-clockwise direction. All the task details were
consistent with those in our previous experiment (Takai et al.,
2018). A robotic manipulandum located under a white table
guided the target movement (Figure 2A). The table prevented
the participant from viewing their hand as it moved. The robot
was programmed to provide negligible resistance to movement
while the participants were drawing. For safety, the robot stopped
moving when the force applied at the end effector exceeded the
prescribed range or when the handle left a specified safe area.

Haptic Feedback
The manipulandum moved the participant’s left hand along
the targeted movement trajectory. Participants received
proprioceptive afferent information during the entire movement.
The robot handle moved at a constant velocity outside the
acceleration/deceleration (A/D) period, set to 0.2 s after it starts
and before it finishes the movement. The target circle was visible
during movement guidance. As with our previous study (Takai
et al., 2018), the participants could not see their hand’s current
position or the robot’s end-effector at any moment. During the
robotic guidance, the participants were instructed not to move
their arms with or against the robot’s movement. However, the
participants were not completely passive to the guidance, as
they maintained the posture of their arms to avoid coming in
contact with the table.

Score Feedback
We evaluated the drawn circles by the participants and fed back
the score to the participants soon after each trial. The equations
used to calculate the score are as follows:

ERR (t) =
√
(xhand (t)− xtarget(t))2 + (yhand (t)− ytarget(t))2 (7)

Score (t) = 100
Emax. − ERR(t)

Emax.
(8)

Trial Score =
1

te − ts

te∑
t=ts

Score(t) (9)

where ERR (t) is the error between the hand and target position
at time t, xhand (t) and yhand (t) are the coordinates of the hand
position at time t, and xtarget (t), ytarget (t) are the coordinates of
the target position at time t, ts is the starting time, and te is the
ending time. Emax. is the maximum allowed error and is set to be
the same as the target circle radius.
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FIGURE 2 | (A) Motor task and apparatus. Participants were asked to draw a true circle (dashed line) using their left hand within 2 s. A manipulandum located under
the table provided haptic guidance. The participants could hold a handle on the manipulandum, and it moved to guide their hand in the desired direction. The red
line shows a representative example of a handwritten trajectory. Both the target circle and drawn figures were hidden from the participants during motor execution,
such that the participants never saw the actual hand position. (B) Procedure. The participants completed 15 trials in which they drew a circle with score feedback at
the end of each trial. Next, the participants completed 15 trials in which they first received haptic guidance from the robot, that is, allowed the robot to move their
hand in the desired trajectory, and then executed the drawing movement by themselves without being assisted by the robot. Finally, they received their score at the
end of each trial. (C) Target movement and executed movements by a participant at both sessions in the x–y plane and its time trajectory in the x and y directions.
Early trials are plotted as blue traces, and subsequent trials are denoted by “warmer” colors.
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Experimental Design
At the beginning of the experiment, participants were
familiarized with the task by observing a human instructor
performing the task. Participants have been told the diameter
of the target circle is 10 cm. Although we did not explicitly
show ideal velocity profiles to a subject, we asked the subject
to generate the hand movement with a constant speed and also
informed that the task duration was 2 s.

Subsequently, they underwent the experimental procedure as
shown in Figure 2B. During the first session, the participants
were instructed to reproduce the target movements in terms
of both position and velocity as accurately as possible without
any assistance from the manipulandum. The participants’ active
movements were measured for 15 trials (Figure 2B, top). Before
starting a trial, the target circle is projected on the table for
approximately 3 s. Subsequently, the circle is removed, and no
visual information about the circle size, speed, or the current
hand position is provided. We evaluated the circles drawn by
the participants in each trial. The average error between the
target and the performed movement was normalized such that
the values ranged from 0 to 100 (as shown in Eq. (8)). After
each trial, the score was projected on the table for approximately
3 s using a projector. Subjects are asked to improve their score.
While the target circle and the current hand position are also
visualized with the score, the performed trajectory was not shown
to the participants.

In the second session, participants received haptic guidance
from the manipulandum. Subjects are instructed to memorize
the position and velocity of the guided motion as accurately
as possible in preparation for the following motor execution.
Figure 2B bottom shows that each trial consisted of one haptic
guided presentation by the robot and one participant’s motor
execution. There were 5 s intervals before and after the haptic
guidance. The score was shown to the participant at the end of
each trial, similar to the first session. This session continued until
the participants completed 15 trials (Figure 2B, bottom).

Both session trials in which the movement exceeded the
specified safe area were not evaluated. However, they were
counted to reach a predetermined number of 15 trials. The
average number of trials for evaluation was 14.8 (SD 0.44) in the
first session and 14.1 (SD 1.47) in the second session.

Skill Level of Each Trial
Skill level was evaluated as the positional distance from the target
circle as well as the difference between the performed velocity
and the actual target velocity. Previous studies (Feygin et al.,
2002; Liu et al., 2006; Lüttgen and Heuer, 2012; Wong et al.,
2012) suggested that tracking performances of different physical
variables such as position and velocity in a trajectory learning
task could be sensitive to different types of modalities such as
vision and haptics, respectively. These studies identified that the
shape accuracy improved more in visual training, while haptic
training was better for training the temporal aspects. Since our
robot-guided training provides haptic feedback to a user, tracking
performances of velocity profiles would be improved more
than that of position trajectories. Thus, we separately evaluated

position and velocity tracking performances to investigate the
effectiveness of the robot-guided haptic feedback. For each trial,
the position and velocity errors were evaluated for 1.46 s, starting
at the moment when the participants’ hand left the start zone,
within a circle with a diameter of 3 cm centered at 12 o’clock
position. The position and velocity errors defined in Eqs (10,
11) were only used for analysis. Note that executed movements
only by participants among all trials in the second session were
evaluated.

Ep =
1

te − ts

te∑
t=ts

|rh (t)− r| (10)

Ev =
1

te − ts

te∑
t=ts

||vh(t)− v(t)|| (11)

where Ep is the positional error from the target, ts is the starting
time, te is the ending time, rh(t) is the current hand radius with
respect to the workspace center at time t, and r = 10 cm is the
constant target radius. Ev is the velocity error from the target
velocity ||v|| = 37.62 cm/s. vh(t) is the current hand velocity with
respect to the workspace center at time t.

RESULTS

Evaluation of Models’ Fitness to the
Sample Dataset
The experimental result of a representative participant is shown
in Figure 2C. The participant drew the circle smaller than the
target in the first session, but the size increased after receiving
the haptic guidance in the second session. The participants
(n = 20) mean errors as a function of the trial numbers
decreases within each session, except the position error in the
first session (Supplementary Figure 1). After the first session, still
4.3 mm error remained as the lowest position error. Therefore,
the lowest position-error participant could further improve
the tracking performance. In other words, the remained error
indicated that the obtained results were not due to a ceiling
effect on the performance. Meanwhile, there were marginally
positive relationships between the mean of 15 trials among
each participant’s position and velocity errors in both sessions
(Supplementary Figure 2).

The position and velocity errors are shown in Figure 3.
Looking into the change in skill level for each participant (gray
lines in Figure 3), the slope ranges from strong positive to
strong negative. The lack of significant improvement in positional
accuracy could have been due to the use of average data for all
participants instead of classifying participants into groups. We
fitted the models in Table 1 to the metric to determine whether
such grouping is reasonable. The results are shown in Table 2 for
velocity and Table 3 for position.

The models’ fitnesses were evaluated using the widely
applicable information criterion (WAIC; Watanabe, 2010). The
smaller the WAIC, the better the fit. By the leave-one-subject-
out (LOSO) analysis, both criteria were tested 20 times, and
the mean and SD are as shown in Tables 2, 3. Model 4 with
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FIGURE 3 | The skill level change between sessions. The average of all participants metric is shown in black, and that of each participant is superimposed in gray.
The metric is (A) the norm of error velocity and (B) the absolute error in position. The target peripheral speed is 0.376 m/s, and the radius of the target circle is
10 cm. The paired two-sample tests are Student’s t for the velocity and Wilcoxon signed-rank test for the position.

TABLE 2 | Models’ fitness of norm of error velocity.

Models WAIC (Mean ± SD)

1. Pooled −1,129 ± 16

2. Varying slope −1,175 ± 17

3. Varying intercept −1,217 ± 18

4. Varying intercept and slope −1,311 ± 12

TABLE 3 | Models’ fitness of absolute positional error.

Models WAIC (Mean ± SD)

1. Pooled −3,733 ± 22

2. Varying slope −3,774 ± 22

3. Varying intercept −3,856 ± 17

4. Varying intercept and slope −4,035 ± 16

varying intercepts and slopes had the best fit for both velocity
and position metrics. Therefore, it was fair to divide participants
based on their initial skill level.

Deriving the Boundary
Subsequently, we inspected the linear model between the
intercept (α) and slope (β) to derive the boundary (γ). The LOSO
analysis was conducted, and the sample result excluding subject
1 is as shown in Figures 4, 5 (Figure 4 for the position and
Figure 5 for the velocity). After fitting the linear model, the
distributions of θ and γ do not include zero. Thus, a significant
relationship between α and β was identified, and it signified that
for some participants, performance improved (β < 0), while for
other participants, performance declined (β > 0). As shown in
Figure 4B, the slope (β) of subjects who have an initial error
above the boundary γ are negative; however, those with an initial
error below are positive. Based on the confusion matrix, the
accuracy of classification was 0.9 for the position and 0.7 for
the velocity models. The F measure was 0.91 for the position
model and 0.82 for the velocity model. The excluded subject’s

performance in the second session was predicted by the initial
skill level. As shown in Figure 6, the subjects are well classified
into two groups based on the boundary.

Group-Based Haptic Guidance Effect
The 20 participants were allocated into three groups based on
position and velocity boundary. The numbers of participants
in each group are shown in Table 4. Figure 7 shows the skill
level change between sessions of all the three groups. The
participants in the red group were initially low-skilled in terms
of both position and velocity, while the participants in the
green group were initially high-skilled. The blue group was
initially low-skilled in terms of velocity but was highly skilled
in terms of position. The initially low-skilled participants in
terms of position but highly skilled in terms of velocity were not
found in the dataset.

Without grouping, the efficacy of haptic guidance was
not significant, especially in positional accuracy, as shown
in Figure 3B. However, by grouping, the red group showed
significant improvements in both metrics (the velocity and
position). On the contrary, the green group shows a minor
deterioration in terms of position, while a minor improvement
in terms of velocity was also observed. These results suggest
that the initially low-skilled participants significantly improved
their skill level. Regarding the blue group, the initially low-skilled
aspect (velocity) improved; however, the initially high-skilled
aspect (position) did not improve, while both did not significantly
change. Those of who increased the velocity error also increased
the positional error (2 out of 3 subjects).

DISCUSSION

Due to the increasing demand to improve motor performance via
human-robot collaboration, numerous different approaches have
emerged; however, not all of them guarantee motor performance
improvements (Williams and Carnahan, 2014). It would be useful
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FIGURE 4 | (A) Posterior predictive plot of model 4 using 19 participants’ absolute position errors (leaving subject 1). Each gray shaded area represents multiple
samples from the posterior [the intercepts (α) and the slopes (β)] of each subject, and each blue circle shows the average of each area. Red shaded area represents
regression lines for all samples, and red line shows their average. The boundary (γ, the intercept of the red line) is 0.019 m with the credible interval (94%) from 0.017
to 0.021 m. (B) Visualization of classifying results. Subject 1, showing in red marker, is tested. Rest of 19 participants are showing in gray markers. Blue line shows
the boundary derived from model 4 in (A). Blue shaded area shows the 94% credible interval. Mean absolute position error of Subject 1 in the first session was
above the boundary. Thus, subject 1 is classified into a group that is expected to improve the performance in the second session. Actual mean absolute position
error in the second session is less than that of the first session.

FIGURE 5 | (A) Posterior predictive plot of model 4 using 19 participants’ norm of error velocity (leaving subject 1). Each gray shaded area represents multiple
samples from the posterior [the intercepts (α) and the slopes (β)] of each subject, and each blue circle shows the average of each area. Red shaded area represents
regression lines for all samples, and red line shows their average. The boundary (γ, the intercept of the red line) is 0.175 m/s with the credible interval (94%) from
0.147 to 0.204 m/s. (B) Visualization of classifying results. Subject 1, showing in red marker, is tested. Rest of 19 participants are showing in gray markers. Blue line
shows the boundary derived from model 4 in (A). Blue shaded area shows the 94% credible interval. Mean norm of error velocity of Subject 1 in the first session was
above the boundary. Thus, subject 1 is classified into a group that is expected to improve the performance in the second session. Actual mean norm of error velocity
in the second session is less than that of the first session.

and efficient if the chance of success for a user could be estimated
prior to training. Our study proposes a versatile method that can
statistically elaborate on the relationship between performance
improvements and the person’s initial skill level.

Identifying Target People Through the
Statistical Grouping Method
In this study, we have proposed a Bayesian estimation method for
examining different linear models that explain the relationship
between the initial skill level and its change. By comparing

these models, the most appropriate model to explain this
relationship can be identified. This provides a non-heuristic but
hypothesis-based approach to analyze the benefit of interest.
Moreover, hypothetical models, that is, the relationship between
motor performance and the initial skill level, can be explicitly
implemented and even compared to identify which model the
data with maximum likelihood.

Four different models have been examined in this study
(Table 1). These are fully against (Model 1), partially against
(Models 2 and 3), or in agreement with Sigrist’s summary (Model
4). If the metric’s fitness to Model 4 is greater than the others,
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FIGURE 6 | (A) The classified subject for improving velocity error based on LOSO method. Subjects were above the boundary in the first session, so they are
predicted to improve their performance in the second session. Most of them scored fewer errors in the second session. (B) Subject predicted as to improve
positional error. (C) Subject predicted as to deteriorate velocity error. (D) Subject predicted as to deteriorate positional error.

TABLE 4 | Classification in groups.

Below position threshold Above position threshold

Above velocity threshold Number of subjects = 7 (Color in Figure 7: Blue) Number of subjects = 10 (Color in Figure 7: Red)

Below velocity threshold Number of subjects = 0 Number of subjects = 3 (Color in Figure 7: Green)

it can signify that the skill level change model differs between
individuals. Hence, the performance improvement is a function
of the initial skill level and statistically supports the initial skill-
based grouping. We used WAIC for model evaluation, which
aims to select a model that makes good predictions, rather than
the likelihood ratio test, which aims for the safe rejection of the
null hypothesis and cannot show that the alternative hypothesis
is good (Posada and Buckley, 2004). As a result, WAIC is the
lowest in Model 4 with varying intercepts and slopes than the
other models for both velocity and position metrics. Therefore,
it statistically supports dividing participants based on their initial
skill level. The skill level metric (ŷ) used in this study is the error
between the target and performed movement. Thus, the method
is neither parameter- nor task-dependent and is expected to work
in a wide range of applications.

Grouping of participants either qualitatively or quantitatively
has been explored in previous studies. For example, to define
participants’ experiences, authors generally used classification
terms, such as Novice and Expert (Beilock et al., 2002). While
in another study, the motor skill level is sometimes referred to as
participants’ symptoms, for example in autism, where the patients
have motor difficulties to some extent, or typically developed
(Staples and Reid, 2010). In other studies, participants who scored
on a motor test under a specified threshold (Marchal-Crespo
et al., 2010) or the median among the participants (Etnier and
Landers, 1998) are grouped as less-skilled. Participants are also
sometimes grouped based on quantiles (Malina et al., 2007).
Grouping into an equal number of participants (Yamamoto et al.,
2019) has also been introduced insofar. However, the reason
why grouping is reasonable is not well explained. Metric-based
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FIGURE 7 | The skill level change between sessions with participants grouping based on the derived boundaries. (A) Red group velocity. (B) Red group position.
(C,D) Blue group and (E,F) Green group. The paired two-sample tests are Wilcoxon signed-rank test in (A) and Student’s t-test in (B).

approaches have also been introduced (Hook et al., 2004; Gruber
et al., 2006; Dose et al., 2007). These studies identified unique
and best metrics among many options to identify handwriting.
They developed feature-based classification algorithms. However,
the method to verify clustering relies on subjective labeling.
Aharonson and Krebs (2012) used the no-labeling method but
still had to run an exhaustive search. Thus, heuristic-based
approaches could not be avoided in previous studies. Limitations
regarding our approach are discussed in section “Challenges and
Prospects on Model Interpretation Regarding Potential Motor
Improvements.”

Defining the Skill Level Boundary
Through Linear Modeling of Its Change
We included a linear relationship between the coefficients of the
linear model (Figure 1B) to derive the boundary. By inferring the
parameters using the Bayesian inference, non-zero coefficients
provided evidence of a linear relationship. This shows an effective
boundary to identify those that can benefit from haptic guidance.
The parameters are inferred in consideration of the uncertainty
under the limited data assuming the existence of a certain
true value for each parameter because the Bayesian approach
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takes into account the uncertainties of parameter values while
providing exact inference. In contrast, most maximum likelihood
(or least squares) estimation fixes the parameter values though
there is considerable uncertainty (Punt and Hilborn, 2001).
The boundary that is suitable for practical use needs to be
estimated from a small number of data samples -as is the case
in exploratory experiments with human subjects (Sabatini and
Mannini, 2016; Kim et al., 2017)- and to be robust for new data,
and it is better not to vary with each re-estimation. Bayesian
estimates obtained from MCMC procedures are appropriate in
small samples (Dunson, 2001; Gray et al., 2015). Since Bayesian
models accommodate unobserved variables (in our case, gamma)
with associated uncertainty (Dunson, 2001), we can confidently
build a threshold.

The linear relationship between the intercept (α) and the
slope (β) fits the skill-level metric change of absolute error in
position as well as the norm of error velocity. As a result, the
boundary (γ) is derived with sufficiently low WAIC. Non-zero θ

clearly shows that for some participants’ performance improved,
while for others, performance declined. The difference in metric
change trends between the first and second session is also visible
between the participants who are above and below the boundary
(Figures 4B, 5B). Such Bayesian estimation using a complex
model cannot be done with simple linear regression (Dunson,
2001; Punt and Hilborn, 2001). Although the metrics relationship
may fit more with a non-linear model or may need more data
(Figures 4A, 5A), these results prove the concept of model-
based interpretation of the motor training effects and potential.
In future studies, an extended (for example, mixed effect, order
effect) model-based inference could be applied.

In the scenario of using the estimated parameters in this
study, an examiner of the haptic guided training can classify
subjects with confidence because the boundary is provided with
the credible interval as the most likely value from the computed
posterior distribution. When a subject’s initial skill is at the
vicinity of the boundary, the posterior probability distribution
(the certainty of the boundary) can support the examiner’s
judgment. The estimated boundary value fixed with considerable
uncertainty (Punt and Hilborn, 2001) has little merit in the above
interpretation. Hespanhol et al. (2019) demonstrated that the
credible interval is more natural and easy-to-interpret than the
frequentist intervals. Even in a small sample size, the percent of
the credible interval that contained the true population mean is
higher than that of the confidence interval (Gray et al., 2015).

Previous studies have already identified the linear correlation
of initial skill level to its change following robotic haptic
interaction (Marchal-Crespo et al., 2010, 2017; Duarte
and Reinkensmeyer, 2015). Although only Duarte and
Reinkensmeyer (Duarte and Reinkensmeyer, 2015) performed
information criteria and identified the relevance of initial skills
to changes other than fixed effects, the statistical test does not
answer the use of the identified effect in real-world applications.
Looking at rehabilitation studies, many studies have been
made regression models for predicting trial-by-trial change
in impairment (Casadio and Sanguineti, 2012) or long-term
effect, including daily-life usage-dependent changes implicitly
(Reinkensmeyer et al., 2016). Although the potential benefit

of making a prognosis based on the clinical scores and the
brain images, these studies do not predict whether a patient
responds to a specific intervention or a robotic treatment.
Meanwhile, Schweighofer and colleagues not only statistically
identified potential predictor of changes in clinical score after
arm rehabilitation but also derived a functional threshold for who
can benefit (Schweighofer et al., 2009). They successfully proved
their concept, but the accuracy was not as high as in this study.
This highlights the importance of verification using different
hypothetical models rather than examining a single model.

A linear relationship between initial skill level and changes
after robotic haptic interaction may be found in various tasks,
ranging from driving a car (Marchal-Crespo et al., 2010), golf
patting (Duarte and Reinkensmeyer, 2015), leg rehabilitation
(Marchal-Crespo et al., 2017), and tasks related to upper arm
motor functionality, as are, in this study. Therefore, the linear
modeling method may be applicable and useful in other motor
tasks and training approaches.

Efficacy of Haptic Guidance in Motor
Training
In previous studies, haptic training methods were evaluated based
on the means of all participants’ metrics (Feygin et al., 2002;
Liu et al., 2006; Lüttgen and Heuer, 2012; Wong et al., 2012).
Without grouping, as shown in Figure 3, the norm of error
velocity decreased (improved) after haptic guidance training.
However, the absolute error in position shows no change on
average. Therefore, the training effect suggested from our dataset
without grouping is questionable as is in line with previous
studies. For example, haptic training improved the timing aspect
(Feygin et al., 2002; Lüttgen and Heuer, 2012) with short-term
training but not for positional error (Wong et al., 2012). These
consistencies prove that the dataset is not peculiar or an artificial
one prepared to explain the proposed method.

This study verified the fairness in dividing participants based
on the initial skill level using a derived boundary. By grouping,
initially low-skilled participants significantly improved their
average skill level regarding both position and timing aspects.
The training’s effectiveness and identified target participants
are consistent with a previous study that used the heuristics
grouping method (Marchal-Crespo et al., 2010). Haptic guidance
is a major approach in robotic rehabilitation to facilitate motor
functional recovery (Marchal-Crespo and Reinkensmeyer, 2009;
Sigrist et al., 2013). This may be an appropriate approach for
patients who have lost motor skills.

For high-skilled participants, their performance did not
change much. This is consistent with previous studies; for
example, “Benefit of guidance-based training was not detected for
the more skilled young/old participants” (Marchal-Crespo et al.,
2010). Some previous studies explained this by referring to the
challenge point theory (Guadagnoli and Lee, 2004). The theory
states that task difficulty should be appropriately adjusted to
meet the participant’s skill level to maximize the training effect.
However, this study explains this differently using the derived
boundary and explains that performance deterioration may result
from difficulty in recognizing the difference between a goal and
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their movements. High-skilled participants make a very small
error from the goal movement but need to identify the error
only through somatosensory information. The error is in the
same range of the correctly identifiable difference between the
reference and test, as reported by Wilson et al. (2010). Since
information is successfully processed only when uncertainty
is reduced (Fitts, 1954), unreliable haptic guidance for them
may not result in motor improvements. Meanwhile, high-skilled
participants may improve their performance using score feedback
that is specific to the feature to be enhanced or using alternative
haptic interaction approaches, for example, error amplification
(Milot et al., 2010; Duarte and Reinkensmeyer, 2015; Marchal-
Crespo et al., 2017).

The motor performance of the participants in the blue
group was partially improved by the haptic guidance. This
is consistent with previous experiments that showed learning
of timing (Marchal-Crespo et al., 2010), rather than spatial.
Participants might be trapped with the speed-accuracy trade-
off as the difference in speed to be a difference in the
difficulty level of the task (Shmuelof et al., 2012). In other
words, the positional accuracy deteriorated because of improved
speed accuracy. In this study, the participants can obtain
better scores if they attempt to reduce position error at
the cost of velocity error or vice versa because the score
accounts for both positional and velocity performance. One
possible solution might be to feedback velocity and position
score separately.

Challenges and Prospects on Model
Interpretation Regarding Potential Motor
Improvements
In this study, we have applied the modeling method to sample
data of 20 participants and interpreted the outcome to divide
participants into discrete groups. Grouping analysis provided a
detailed interpretation of the efficacy of haptic guidance for each
participant at the specific initial skill level, as discussed in section
“Efficacy of Haptic Guidance in Motor Training.” For other tasks,
all subjects may improve skill level similarly (that is, no boundary
exists). This would make the fit of Model 4 worse or equal to
the others. Besides, this method may help to find other kinds of
structures in larger data. When the fit of Model 4 is better than
the others, there are two possible phenomena: the participant-
dependent training effect and the regression toward the mean.
Both can be expressed by Model 4; however, they are separable,
as the former has a large mean slope in the absolute and the latter
has a small one. Nonetheless, this approach would be valuable for
exploring the data.

To fit the Bayesian linear model, it requires datasets
a priori, similar to other data-driven methods. Also, the
boundary is highly dependent and influenced by the task. These
limitations are common to the studies presented previously;
for example, Gruber et al. (2012) made a handedness classifier.
Nevertheless, it is beneficial for trainees as they can perceive
the possible outcome before continuing the ineffective and time-
consuming training. There is, for example, a possible solution
to alternate robot approaches to fit the individuals at any

level to guarantee the motor improvements (Brown et al., 2016),
but our solution is to help identify responders who can
benefit from existing approaches. The interpretation can also
be useful in assigning suitable next motor skill training
protocols, not only for neuro-rehabilitation (Aharonson and
Krebs, 2012) but also for skill development manufacturing (Ma,
2014), for establishing personalized and comprehensive motor
training programs.

CONCLUSION

In this study, we proposed a Bayesian estimation method for
examining models that describe the changes in the skill level of
haptic guidance training and deriving a boundary for dividing
participants into initial skill-level groups. Results showed that
we were able to predict whether a novel user can improve
the performance by checking that the user’s initial skill level
was larger than the boundary. We have also demonstrated
that the general idea/heuristic suggested by previous studies
can be systematically evaluated. Such methods may be essential
to select an effective approach for individuals among other
different approaches.
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The human–robot interface (HRI) based on biological signals can realize the natural

interaction between human and robot. It has been widely used in exoskeleton

robots recently to help predict the wearer’s movement. Surface electromyography

(sEMG)-based HRI has mature applications on the exoskeleton. However, the sEMG

signals of paraplegic patients’ lower limbs are weak, which means that most HRI based

on lower limb sEMG signals cannot be applied to the exoskeleton. Few studies have

explored the possibility of using upper limb sEMG signals to predict lower limbmovement.

In addition, most HRIs do not consider the contribution and synergy of sEMG signal

channels. This paper proposes a human–exoskeleton interface based on upper limb

sEMG signals to predict lower limb movements of paraplegic patients. The interface

constructs an channel synergy-based network (MCSNet) to extract the contribution and

synergy of different feature channels. An sEMG data acquisition experiment is designed

to verify the effectiveness of MCSNet. The experimental results show that our method

has a good movement prediction performance in both within-subject and cross-subject

situations, reaching an accuracy of 94.51 and 80.75%, respectively. Furthermore, feature

visualization and model ablation analysis show that the features extracted by MCSNet

are physiologically interpretable.

Keywords: human-robot interface, lower limb movement prediction, channel synergy-based network,

exoskeleton, paraplegic patients, surface electromyography

1. INTRODUCTION

The development of artificial intelligence technology and wearable sensors has promoted the rise
of human–robot interaction. As the core of human–robot interaction, an human–robot interface
(HRI) enables direct communication with a robot via physical or biological signals, which has
received widespread attention in the past decade (Simao et al., 2019; Fang et al., 2020). Exoskeleton
is a typical application scenario of HRI, and some HRI based on physical signals, such as inertial
measurement units or pressure signals, have been used in the walking-assistant exoskeleton to
realize the movement prediction of patients with hemiplegia/paraplegia (Beil et al., 2018; Ding
et al., 2020; Zhu et al., 2020a). In recent years, with the decoding of biological signals, HRI based
on biological signals (such as electroencephalogram and electromyography) have been designed,
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opening up the possibility of realizing more natural and efficient
movement predictions between human and exoskeleton (Suplino
et al., 2019; Ortiz et al., 2020; Zhuang et al., 2021). For paraplegic
patients, the loss of lower limb motor and sensory function
makes the exoskeleton difficult to predict the patients’ movement,
and the previous work has not yet proposed a high-efficiency
HRI specifically for paraplegic patients. Therefore, it is urgent
to propose an HRI with high movement prediction accuracy for
paraplegic patients.

Brain–computer interface (BCI) is an HRI based on
electroencephalogram (EEG). It can directly obtain patients’
motion intention from the EEG signal and without actual
limb movement, so the BCI has been used to predict the
movement of paraplegic patients (Tariq et al., 2018; Wang
et al., 2018; Gu et al., 2020). The BCI consists of three
main processing stages (Lotte et al., 2018): data collection and
processing stage, where EEG data is recorded and preprocessed;
feature extraction stage, where meaningful information is
extracted from the EEG data; and classification stage, where
a motion intention is interpreted from the data. The EEG
signal’s signal-to-noise ratio is low. It is susceptible to
interference from the environment and the patient’s own
limb movement and mood, and the signal between different
people is quite different (Rashid et al., 2020). The movement
prediction accuracy of BCI is usually unstable, which is
unacceptable for the exoskeleton movement assistance tasks of
paraplegic patients.

Compared with the EEG signal, the sEMG signal has a higher
signal-to-noise ratio and is less interfered with by external factors.
Therefore, the sEMG-based human–robot interface (MHRI) has
been earlier and more widely used in the walking-assistant
exoskeleton (Kawamoto et al., 2003; Wang et al., 2021). The
previous MHRI mostly used the sEMG signal of the lower limb
muscles to predict movements. However, the sEMG signal of
the lower limbs of paraplegic patients is weak or even no signal.
So recent studies have attempted to use the sEMG signal of
the upper body muscles to predict the lower limb movement
(Villa-Parra et al., 2018). Similarly, MHRI also includes three
stages of data collection and processing, feature extraction, and
classification. Each stage relies on manual specifications. Many
outstanding studies have shown that feature extraction is crucial
for MHRI movement prediction, and it determines the upper
limit of the prediction accuracy (Phinyomark et al., 2012; Samuel
et al., 2018). Feature extraction often requires significant subject-
matter expertise and a priori knowledge about the expected
sEMG signal (Xiong et al., 2021). It is tough and time consuming
to obtain an optimal feature set manually for different subjects.

Deep learning has largely alleviated the need for manual
feature extraction, achieving state-of-the-art performance in
fields such as computer vision and natural language processing
(Hinton et al., 2012). In fact, deep convolutional neural networks
(CNNs) can automatically extract appropriate features from the
data. It has succeeded in many challenging image classification
tasks (Huang et al., 2017; Jeyaraj and Nadar, 2019), surpassing
methods that rely on handcrafted features (Hinton et al., 2012;
Huang et al., 2017). Although most research still relies on
handcrafted features, many recent works have explored the

application of deep learning in MHRI (Allard et al., 2016; Cote-
Allard et al., 2019; Jabbari et al., 2020). This kind of MHRI
mostly combines long short-term memory networks (LSTM)
and CNNs simply, ignoring the difference in contribution and
synergy of sEMG feature channels of different subjects under
the same movement. Moreover, most researchers do not pay
much attention to whether the features extracted by CNNs have
physiological significance.

In this paper, a channel synergy-based MHRI is proposed for
lower limb movement prediction in paraplegic patients. It uses
the sEMG signals of 12 upper limb muscles to predict the lower
limb movements. The proposed movement prediction model
uses LSTM, depthwise and separable convolutions to extract
the spatiotemporal features of multi-channel sEMG signals,
and introduces an attention module to extract the synergy of
different sEMG feature channels. An sEMG data acquisition
experiment is designed to verify the proposed channel synergy-
based network (MCSNet). The experimental results verify that
MCSNet’s prediction accuracy is better than the traditional
machine learning-based MHRI and two mainstream deep
learning-based MHRI in both within-subject and cross-subject
situations. Furthermore, we visualize the features extracted
through MCSNet model and perform model ablation analysis.
The analysis results show that the features proposed by MCSNet
are physiologically interpretable.

In summary, the main contributions of this paper are shown
as follows:

• A channel synergy-based MHRI is proposed for lower limb
movement prediction of paraplegics. It uses the sEMG signals
of upper limb to predict lower limb movements, and extracts
the contribution, spatiotemporal, and synergy features among
different sEMG channels, which improves the accuracy of
lower limb movement prediction.

• This paper visualizes the features proposed by the MCSNet
model and performs the model ablation analysis, and the
results show that the features proposed by MCSNet are
physiologically interpretable.

2. RELATED WORKS

Human–robot interfaces used to predict the movement of
patients with damaged limb are mainly divided into BCI
and MHRI.

2.1. BCI-Based Movement Prediction
Related Work
The research of neuroengineering promotes the development of
BCI, and it is mainly used in the field of medical rehabilitation to
realize the perception of user intent. An entire BCI includes three
main processing stages of data collection and processing, feature
extraction, and classification (Lotte et al., 2018). Traditional
BCI mainly extracts some manual normative time-domain,
frequency-domain, and spatial domain features (Lee et al., 2019),
and then uses machine learning methods to construct the
mapping between features and different movements (Kaper et al.,
2004; Wang et al., 2017). Wang et al. proposed a BCI based
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on support vector machine (SVM). It uses the common space
pattern (CSP) model to extract the spatial features of the subject’s
motor imagery (MI) EEG signals, and uses the SVM model to
realize the classification of lower limb movements (Wang et al.,
2017).

Recent research has explored the application of deep learning
in BCI (Tayeb et al., 2019; Tortora et al., 2020). Tayeb et al.
used a CNN architecture to predict the movement of the raw
MI EEG signals, achieving an accuracy of 84% (Tayeb et al.,
2019). Tortora et al. proposed a gait pattern prediction method
based on an LSTM architecture. This method uses the LSTM
model to automatically extract and classify the timing features
of the EEG signal (Tortora et al., 2020), which can achieve an
accuracy of 92.8%. Considering the low signal-to-noise ratio of
EEG signals, some research have tried to combine EEG with
other signals to improve the movement prediction accuracy. Zhu
et al. used the combination of EEG and electrooculogram (EOG)
signals to realize the grasping and moving tasks of the robotic
arm (Zhu et al., 2020b), with an average accuracy of 92.09%.
BCI is unacceptable for the exoskeleton movement assistance
tasks of paraplegic patients, because EEG signal is susceptible to
interference from the environment and the patient’s own limb
movement and mood (Rashid et al., 2020).

2.2. MHRI-Based Movement Prediction
Related Work
As the biological signal most relevant to exercise, sEMG has
been applied to human–robot interaction for a long time, and
the research on MHRI is particularly rich. According to the
granularity of movement prediction, traditional MHRI can be
divided into two categories, one is MHRI based on motion
curve prediction, and the other is MHRI based on motion
mode(movement) prediction. The former uses machine learning
methods or Hill’s musculoskeletal model to build a mapping
between handcrafted features and joint angles/torques, which can
achieve finer-grained movement prediction. Literature (Suplino
et al., 2020) proposed an elbow joint angle estimation model
based on a non-linear autoregressive with exogenous inputs
neural network. This model can accurately predict the elbow
joint’s torque and angle during flexion and extension movement,
with a mean square error within 7◦. This kind of MHRI can
only be predicted in one movement. The model involves many
parameters and requires high quality of the sEMG signal, which is
not suitable for the movement prediction of paraplegic patients.

The MHRI in the back is similar to BCI, which also includes
three processing stages. Its main principle is using machine
learning methods to map handcrafted features and movements
(Afzal et al., 2017; Li et al., 2017; Cai et al., 2019; Kyeong et al.,
2019; Tao et al., 2019). Cai et al. proposed an SVM-based upper
limb movement prediction method (Cai et al., 2019), which
uses the sEMG signal of the uninhibited upper limb muscle of
the hemiplegic patient to predict the movement of the patient’s
shoulder and elbow joints, with an accuracy of 93.56%. Tao
et al. proposed a multi-channel lower limb movement prediction
method based on back propagation neural network, which can
achieve an prediction accuracy of 93.6% in six lower limb

movements such as the flexion movement of hip joint (Tao et al.,
2019).

Deep learning can automatically extract the best feature
set from sEMG signals. Many researchers have explored
the application of deep learning in MHRI-based movement
prediction methods (Allard et al., 2016; Cote-Allard et al., 2019;
Jabbari et al., 2020). Allard et al. proposed a multi-layer CNN
gesture prediction model based on sEMG for robot guidance
tasks (Allard et al., 2016). The model automatically extracts
the frequency domain features of different gesture movements
through the CNN architecture, and the average accuracy of
gesture prediction for 18 subjects is 93.14%. Considering
the effectiveness of the LSTM architecture for timing feature
extraction, Jabbari et al. proposed an ankle joint movement
prediction model based on the CNN–LSTM architecture. The
CNN and LSTM architectures were used to extract the spatial
and temporal features of the sEMG signals, respectively, under
different ankle joint movements (Jabbari et al., 2020), and the
prediction accuracy of five ankle joint movements is 97.55%.
Most deep learning-based MHRIs combine LSTM and CNNs
simply to extract the timing or time-frequency features of the
sEMG signal, but ignore the contribution and synergy differences
of the sEMG feature channels of different subjects under the
same movement. These are important features for different limb
movements (d’Avella et al., 2003).

2.3. Application of HRI on Exoskeleton
As a tightly human–machine coupled system, the exoskeleton is
a typical application scenario of HRI. The application of HRI on
exoskeleton can be divided into movement prediction (Kyeong
et al., 2019; Read et al., 2020) and state monitoring (Bae et al.,
2019). Movement prediction is to help the exoskeleton recognize
the wearer’s motion intention and realize natural human–
exoskeleton interaction. AnHRI based on the wearer’s upper limb
inertial measurement unit signal and crutches pressure signal
was applied to the Ekso exoskeleton (Read et al., 2020). It helps
the exoskeleton realize the prediction of standing and walking
movements. Kyeong et al. proposed a hybrid HRI based on the
wearer’s lower limb sEMG signals and the sole pressure signals
(Kyeong et al., 2019), achieving the prediction of the gait cycle.
HRI based on state monitoring is to help observe the changes in
the wearer’s physiological state when using the exoskeleton. Bae
et al. designed anMHRI for their wrist-rehabilitation exoskeleton
robot (Bae et al., 2019). It can monitor whether the wearer has
spasticity during the exoskeleton assistance task.

Our work is mainly based on the lower limb movement
prediction of the walking-assistant exoskeleton for paraplegia
patients. It is most closely related to the MHRI based on deep
learning, which uses CNN and LSTM architecture to extract
the sEMG signal features of different lower limb movements.
In contrast to deep learning-based MHRI, this paper propose a
channel synergy-based MHRI, which extracts the contribution
and synergy of the sEMG feature channel. Its performance is
better than traditional machine learning-based MHRI and two
mainstream deep learning-based MHRI.
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3. METHODS

This section presents the methodology details of the proposed
movement prediction model. Section 3.1 describes the overall
architecture of the MCSNet model. In section 3.2, we introduce
seven traditional MHRIs and two mainstream deep learning-
based MHRIs, which are used to compare to the MCSNet model.

3.1. Description of the MCSNet Model
Figure 1 visualizes the proposed MCSNet model. The entire
model architecture consists of three parts. The first part is
data input, input the processed sEMG data; the second part
is feature extraction, which mainly contains four blocks, each
block establishes the connection between the feature channels
of the sEMG signal in different dimensions; the third part is
movement classification/prediction, which classifies the extracted
features. This sectionmainly describes the feature extraction part,
because it is the core of the entire model. For sEMG trials, it was
collected at a 1,500 Hz sampling rate, having C channels and T
time samples.

• sEMG is a kind of non-stationary time series data. For
movement prediction, extracting more timing features is the
basic requirement to improve accuracy. In block 1, for each
input sEMG sample segment (size C× 300, multiple shown in
Figure 1), we performed a channel-by-channel LSTM step to
extract the timing features of different signal channels. Since
the deepening of the LSTM layers will cause over-fitting, we
found this phenomenon is more serious for sEMG data during
the experiment, so we choose to use a single-layer LSTM as the
timing feature extraction block. In this process, we define the
kth sEMG channel signal as

FksEMG, (k = 1, ...,C) (1)

which k indicates the serial number of the channel. In order
to better describe the relationship between the LSTM block
and the sEMG feature channel, a more fine-grained channel-
by-channel representation is used. The operation with LSTM
block is defined as follows:

Fktemp = Nk
lstm(F

k
sEMG), (2)

In Equation (2), each of the sEMG signal channels is used to
generate its timing feature independently, the timing feature
from all the channels will be contacted into Ftemp, which size is
C∗L, L represents the length of input signal’s sample. Since the

input feature channel FksEMG, (k = 1, ...,C/2) and F
k+C/2
sEMG , (k =

1, ...,C/2) in our data acquisition process is opposite the left
and right symmetrical relationships on the muscle blocks in
the acquisition, the muscles of the symmetry position have
similar behavior patterns when the subjects are under various
movements, so we use the LSTM units with shared weights
used in the corresponding channel.

• In block 2, we perform two convolutional steps in sequence.
First, we fit F1 2D convolution filters with a size of (1,
65) and output F1 feature maps containing different timing
information. We then use a depthwise convolution of size

(C, 1) (Chollet, 2017) to extract spatial features for every
channel. This operation provides a direct way to learn
spatial filters for different timing information, which can
effectively extract different timing and spatial features. The
depth parameter D represents the number of spatial filters to
be learned for each time series feature map (D = 1 is shown
in Figure 1 for illustration purposes). In this block, Ftemp is
transformed with the first convolution layer as follows:

Fconv = Nconv(Ftemp), (3)

Fd−conv = Nd−conv(Fconv), (4)

In Equations (3) and (4), the size of Fconv and Fd−conv is
F1 ∗ C ∗ L and (D ∗ F1) ∗ 1 ∗ L, respectively.

• In block 3, we use a separable convolution, a depthwise
convolution of size (1, 15) followed by F2 pointwise
convolutions of size (1, 1). The separable convolutions
first learn the kernel of each spatiotemporal feature map
individually, then optimally merge the outputs afterward,
which can explicitly decouple the relationship within and
across feature maps. This operation separates the learning
of spatiotemporal features from the combination of optimal
features, which is very effective for sEMG signals. Because
sEMG signals have different synergy between channels when
performing different movements (muscle synergy effect,
d’Avella et al., 2003), this is similar to a synergy feature, which
the separable convolutions can extract. Because the padding is
used in the first stage of separable convolution, and the pixel-
wised convolution will not change the size of the feature, the
output Fsep−conv has the same size as Fd−conv.

• For block 4, we introduced a channel attention module.
This operation learns the weights of different synergy
features, which can effectively associate movements with the
most relevant synergy features and improve the movement
prediction accuracy. Moreover, there are differences in the
feature contributions of sEMG channels in different subjects
under the same movement (muscle compensatory behavior,
d’Avella et al., 2006), which will amplify the differences in
the synergy feature of different subjects under the same
movement. The channel attention module can learn different
weights for different subjects to deal with the differences in
synergy features, thereby improving the robustness of the
entire movement prediction model. The operation of this
block can be described as:

Wchannel(Fsep−conv) = σ (MLP(AvgPool(Fsep−conv))

+MLP(MaxPool(Fsep−conv))), (5)

F = Wchannel(Fsep−conv)⊗ Fsep−conv, (6)

We input the generated attention-based spatiotemporal features
into the movement classification/prediction part. As shown in
Figure 1, the extracted features first perform a Flatten layer
step, and then pass directly to a softmax classification with
N units, where N is the number of classes in the data. The
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FIGURE 1 | Overall architecture of the MCSNet model. Lines denote the convolutional kernel connectivity between inputs and outputs (called feature maps). The

network starts with a channel-by-channel long short-term memory networks (LSTM) (second column) to learn the timing feature, then uses a two-layer convolution

(third column) to learn different spatiotemporal features. The separable convolution (fourth column) is a combination of a depthwise convolution followed by a pointwise

convolution, which can explicitly decouple the relationship within and across feature maps and learns the synergy feature of surface electromyography (sEMG).

entire model architecture uses the cross-entropy loss function
to optimize the parameters, and input 10 sEMG samples with
time-sequence everytime.

3.2. Comparison With Other MHRI
Movement Prediction Approaches
3.2.1. Comparison With Traditional MHRI Movement

Prediction Approaches
We compared the performance ofMCSNet with seven traditional
MHRI based on handcrafted features and machine learning
models in lower limb movement prediction. In the selection of
features, referring to the research conclusions of time domain
and frequency domain features in the literature (Phinyomark
et al., 2012) and four commonly used feature sets (Englehart
and Hudgins, 2003) (Phinyomark et al., 2013), we finally select
the feature of Mean Absolute Value (MAV), WaveLength (WL),
Zero Crossings (ZC), 6-order AutoRegressive coefficient (6-
AR), and average Power Spectral Density (PSD). Furthermore,
we choose Linear Discriminant Analysis (LDA), Decision Tree
(DT), Naive Bayes (BES), Linear Kernel-based Support Vector
Machine (LSVM), Radial Basis Function-based Support Vector
Machine (RBFSVM), K Nearest Neighbor (KNN), and Artificial
Neural Network (ANN) as the classification/prediction model.
We use MATLAB’s Classification Learner Toolbox and Neural
Net Pattern Recognition Toolbox to implement these models.
The hyperparameter settings of each model are shown in Table 1.

3.2.2. Comparison With Deep Learning-Based MHRI

Movement Prediction Approaches
In deep learning, we compared the performance of MCSNet
with two-layers CNN (TCNN) and CNN-LSTM models. The
TCNN architecture consists of two convolutional layers and

TABLE 1 | Parameter list of traditional MHRI movement prediction approaches.

Method Hyperparameter and model detail setting

LDA Covariance structure: full rank (for within-subject), diagonal

(for cross-subject)

DT Maximum fission number: 100

BES Kernel: Radial Basis Function,

LSVM Kernel: linear, C = 1, Multiple classification method: OVO

RBFSVM Kernel: RBF, C = 1.9, Multiple classification method: OVO

KNN Number of neighboring points: 1, Metric function:

mahalanobis distance function

ANN Number of hidden unit: 28

a softmax layer which is for classification. The CNN-LSTM
architecture includes two LSTM layers, three convolutional
layers, and a softmax layer. We implemented these models in
PyTorch. For specific details of the model, see https://github.
com/mufengjun260/MCSNet.

In general, the most significant difference between MCSNet
and traditional MHRI movement prediction approaches is the
feature extraction method, and the most significant difference
from other deep learning-basedmovement predictionmethods is
the network architecture. By comparing with other methods, we
can prove the effectiveness of the feature extraction architecture
we designed.

4. EXPERIMENTS AND RESULTS

In this part, an sEMG signal acquisition experiment based on
upper limb muscles is designed to verify the effectiveness of
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the method proposed in this paper. Section 4.1 describes the
process of the acquisition experiment and the process of data
preprocessing. Section 4.2 gives the implementation details of
model training. In section 4.3, we show the MCSNet movement
prediction model results and compare MCSNet with other
movement prediction models in the case of within-subject and
cross-subject. Section 4.4 explains the results of MCSNet model
ablation analysis and feature visualization.

4.1. sEMG Data Acquisition Experiment
A total of 8 healthy subjects were invited to participate in the
experiment. Each subject completed four lower limb movements
of standing, sitting, walking, and going up stairs while wearing
the AIDER exoskeleton. During this period, the sEMG signals of
the subjects’ upper limbs were collected.

1. Participants: The eight subjects (7 males, one female) had
an average age of 26 years, a height between 165 and 185
cm, and a weight between 59 and 82 kg. All subjects can
independently use the AIDER exoskeleton to complete the
lower limb movements involved in the experiment, and are
in good physical condition with no injuries to the arm. Before
the experiment, each subject had been explained the contents
of the experiment and signed an informed consent form. This
experiment was approved by the Research Ethics Committee
of the University of Electronic Science and Technology
of China.

2. Procedures: Before the experiment, record the relevant
physical parameters of the subject, inform the experimental
procedure to the subject, and let the subject use crutches to
freely practice the four lower limbs movements of standing,
sitting, walking, and going upstairs while wearing the AIDER
exoskeleton for 30 min. Then paste sEMG acquisition
electrodes on the 12 muscles of the subject’s left and right
upper limbs, including the deltoid anterior, biceps, and
superior trapezius muscles (as shown in Figure 2). Before
pasting, wipe the corresponding muscles with alcohol cotton
and remove the surface hair with a hair removal knife.
The subject puts on the AIDER exoskeleton (Wang et al.,
2019), supports the crutches with both hands, stands in
the designated position, and completes the sitting, standing,
and going upstairs movements 10 times after hearing the
instructions, and then completes walking movement 20 times
(a complete gait cycle is one time). Each movement is
completed within 8 s, all subjects are required to perform
the specified movements without using their legs as much as
possible to ensure that the collected upper limb sEMG signals
are close to the paraplegic patients. After the movement
starts, the subject maintains the lower limb movement
preparation posture for 2 s (see Figure 3) and then controls the
AIDER exoskeleton to complete the corresponding lower limb
movement. Throughout the experiment, the camera is turned
on to record, and myoMUSCLE (an sEMG acquisition device,
Scottsdale, American) is used to collect the sEMG signals of
the upper limbs.

3. Data Processing: myoMUSCLE (1,500 Hz) collects the upper
limb sEMG signal data of each lower limb movement of

the subject throughout the whole process. After obtaining
the sEMG data, a 50 Hz notch filter is used to remove the
power frequency interference of the current, and a 10–450 Hz
bandpass filter is used to retain the effective information of the
sEMG signal. Since our application is lower limb movement
prediction, we only intercept the sEMG data during the
movement preparation period (the period when keeping the
preparation posture still). In addition, to achieve continuous
movement prediction of lower limb, this paper uses 200 ms
(including 300-time series data) as a time window to segment
the sEMG signal, and the movement step of the time window
is 100-time series data.

4.2. Implementation Details
After preprocessing the sEMG data, for the traditional MHRI
movement prediction model, use the relevant formula to
calculate the features mentioned in section 3.2.1, and then
input the features into the Classification Learner Toolbox and
Neural Net Pattern Recognition Toolbox to train the prediction
model. For the problem of imbalance in the number of samples
between movements, we apply a movement class-weight to the
loss function. The class-weight we apply is the inverse of the
proportion in the training data, with themajoritymovement class
set to 1.

MCSNet and the deep learning-based MHRI movement
prediction models are implemented using the PyTorch library
(Paszke et al., 2017). In MCSNet, both LSTM’s output and hidden
unit are of dimension 300, and the network’s hyperparameters
(D, F1, L) is set to (2, 12, 300). The model with TCNN uses the
same dimension as the MCSNet’s CNN layers, and the CNN-
LSTM model enlarged the deepness of MCSNet’s LSTM block, it
uses a two-layer LSTM network architecture. Exponential linear
units (ELU) (Clevert et al., 2015) are used to introduce the non-
linearity of each convolutional layer. To train ours and other
deep learning-based models, we use the Adam optimizer to
optimize themodel’s parameters, with default setting described in
(Kingma and Ba, 2014) to minimize the categorical cross-entropy
loss function. We run 1,000 training iterations (epochs) and
perform validation stopping, saving the model weights, which
produce the lowest validation set loss. All models are trained
on NVIDIA RTX2080Ti, with CUDA10.1 and cuDNN V7.6.
Our code implementation can be found in https://github.com/
mufengjun260/MCSNet.

4.3. Experiments Result
We compared the performance of the proposed MCSNet model
with other MHRIs in movement classification/prediction in both
the within-subject and cross-subject situations.

4.3.1. Within-Subject Classification
For within-subject, we divide the data of the same subject
according to a ratio of 7:3 and then use 70% of the data to
train the model for that subject. Four-fold cross-validation
is used to avoid the phenomenon of model overfitting.
Simultaneously, repeated-measures analysis of variance
(ANOVA) is used to test the results statistically (using the
number of subjects and the classification model as factors,
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FIGURE 2 | Introduction of the muscle used in the surface electromyography (sEMG) data acquisition experiment and the AssisIve DEvice for paRaplegic patient

(AIDER) exoskeleton. (A) The upper limb muscle used in sEMG data acquisition experiment. (B) The AIDER exoskeleton is designed for walking assistance of

paraplegic patients, and it can help the paraplegic patient complete some ADL movements such as sitting, standing, walking, and going upstairs movement. 1: The

subject; 2: the embedded computer and IMU; 3: the crutches; 4: DC servo motors; 5: intelligent shoes with plantar pressure sensors inside.

FIGURE 3 | Schematic diagram of surface electromyography (sEMG) data acquisition experiment. The upper part is the preparation posture of the four lower limb

movements. We fixed the sEMG acquisition electrode with an elastic bandage to prevent the acquisition electrode from falling off during the experiment. The lower

part is the schematic diagram of the experimental acquisition process.

and the model classification/prediction result (accuracy) as the
response variable).

We compare the performance of both traditional machine
learning-based MHRI movement prediction models (LDA, DT,
BES, LSVM, RBFSVM, KNN, andANN) and deep learning-based

MHRI movement prediction models (TCNN and CNN-LSTM)
with MCSNet. Within-subject results across all models are
shown in Figure 4. It can be observed that, across the average
lower limb movement prediction accuracy of 7 subjects,
MCSNet outperforms traditional machine learning-based and
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FIGURE 4 | Within-subject movement prediction performance, four-fold cross-validation is used to avoid the phenomenon of model overfitting, averaged over all folds

and all subjects. Error bars denote two standard errors of the mean.

TABLE 2 | Within-subject movement prediction performance (test set ACC).

Traditional machine learning-based MHRI Deep learning-based MHRI

Subject LDA DT BES LSVM RBFSVM KNN ANN TCNN CNN-LSTM MCSNet (ours)

1 0.9200 0.7520 0.8496 0.9451 0.9504 0.8387 0.9315 0.8377 0.9570 0.9928

2 0.8731 0.8097 0.7718 0.9026 0.9159 0.8000 0.9008 0.5849 0.9034 0.9295

3 0.7105 0.8724 0.7852 0.8146 0.8503 0.6018 0.7590 0.7722 0.9089 0.9772

4 0.7888 0.6630 0.6818 0.8594 0.8526 0.7294 0.8428 0.7543 0.9075 0.9513

5 0.7430 0.7962 0.4937 0.8675 0.8911 0.7091 0.8828 0.8525 0.9434 0.9212

6 0.8872 0.8188 0.6747 0.8936 0.8927 0.8358 0.8923 0.8373 0.8844 0.8437

7 0.9600 0.8467 0.7263 0.9602 0.9687 0.8261 0.9523 0.7576 0.9960 1.0000

Average ACC 0.8404 0.7941 0.7119 0.8918 0.9031 0.7630 0.8802 0.7709 0.9287 0.9451

Bold means the highest prediction accuracy rate of the subject corresponding to the row.

deep learning-based MHRI models. But there is no significant
statistical difference (P > 0.05). Among the traditional MHRI
movement prediction models, the RBFSVM model has the
highest average accuracy of 7 subjects, reaching 90.31%. It
is consistent with the conclusions obtained in previous work
(Ceseracciu et al., 2010). Table 2 shows the prediction accuracy
of each subject under different MHRI movement prediction
models. It can be found that the same movement prediction
model has a large difference in the accuracy for different subjects
(especially the traditional MHRI movement prediction model).
In contrast, MCSNet has a high accuracy rate of lower limb
movement prediction for all subjects, and the accuracy rate is
evenly distributed. It means that MCSNet can effectively extract
each subject’s lower limb movement feature, thereby achieving
good movement prediction.

4.3.2. Cross-Subject Classification
In the case of cross-subject, we randomly selected the data of
three subjects to train the model and selected the data of two
subjects as the validation set. The whole process is repeated ten
times, producing ten different folds.

Cross-subject prediction results across all models are shown
in Figure 5. It can be seen that the traditional and deep
learning-based MHRI movement prediction models have poor
performance in the cross-subject situation, with an average
accuracy rate of about 70%. However, the MCSNet model
proposed in this paper can still achieve an accuracy of
80.25% in lower limb movement prediction, which has a
significant statistical difference (P < 0.05). This result
shows that the MCSNet model proposed in this paper
can extract the deep common features of different subjects
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FIGURE 5 | Cross-subject movement prediction performance, averaged over all folds. Error bars denote two standard errors of the mean.

FIGURE 6 | The average output of all surface electromyography (sEMG) signal samples about the sitting movement for subject 7, and non-negative matrix

factorization method id used to find the synergy channels.

under the same lower limb movement. The model has
good robustness.

4.4. MCSNet Feature Explainability
The development of methods for enabling feature explain-ability
from deep neural networks has gradually become the focus of
attention over the past few years, and has been proposed as an
essential component of a robust model validation procedure,
to ensure that the classification performance is being driven by
relevant features as opposed to noise in the data (Ancona et al.,

2017; Montavon et al., 2018). This paper uses data information
flow tracking to understand the features proposed by theMCSNet
model. Figure 6 shows the average output of all sEMG signal
samples about the sitting movement for subject 7. Using the
non-negative matrix factorization method, we can intuitively see
that the sEMG channel 1, 9, 10, 11 are the main contribution
channels for subject 7 to complete the sitting movement (i.e., the
muscles corresponding to the channel 1, 9, 10, and 11 assume
the main synergistic effect in the sitting movement) (d’Avella
et al., 2003). Muscle synergy is an important physiological

Frontiers in Neuroscience | www.frontiersin.org 9 November 2021 | Volume 15 | Article 704603143

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Shi et al. MCSNet: Channel Synergy-Based Human-Exoskeleton Interface

FIGURE 7 | We visualized the synergy characteristics flow of surface electromyography (sEMG) in the sitting movement of subject 7 in the within-subject situation.

The figure shows the flow of synergy characteristics in different feature channels of the MCSNet model (orange lines and rectangles). The blue rectangles represent the

feature channels of the depthwise and separablewise network layers. The circle represents the weight channel of the attention layer, and the green circle means the

channel with a large weight. We found that the channel with a large attention layer weight is basically the same as the channel of the synergy characteristics flow

direction. It can be considered that MCSNet can extract the synergy characteristics of the muscle.

characteristic for humans to complete different movements. In
order to explore whether the MCSNet network can reflect muscle
synergy, we extracted the feature output and channel weights of
each layer of MCSNet, and realized the information flow tracking
of sEMG data through non-negative matrix factorization and
weight screening.

We performed non-negative matrix decomposition on the
output of LSTM and the first convolutional layer, as shown
in Figure 7. It can be observed that the main contribution
channels of the features extracted by the LSTM and the first
convolutional layer are still the channel 1, 9, 10, and 11, which
means that the timing features currently extracted by MCSNet
mainly come from the sEMG channel 1, 9, 10, and 11, and the
synergy characteristics of these four channels are also included.

The depthwise convolutional layer’s function is to combine
different timing feature channels, and then extract different
spatiotemporal features. We analyzed the channel weights of the
depthwise convolutional layer and focused on the spatiotemporal
feature channels, which have a large weight for channel 1, 9, 10,
and 11. Because these spatiotemporal feature channels are the
main flow direction of the synergy characteristics. The results
showed that the synergy characteristics are mainly contained
in the spatiotemporal feature channels 11, 13, 15, 16, 22, and
24. In the same way, we analyzed the channel weights of the
separable convolutional layer and compared the channels, which
the synergy characteristics mainly flow, with the important
channels learned by the attention mechanism. The results show
that the channels selected by the two are basically the same
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TABLE 3 | The result of model ablation analysis.

Layer removed Test set ACC

Depthwise layer 0.7258

Sparablewise layer 0.7241

Attention layer 0.7187

None 0.8075

(as shown in Figure 7). It means that the features extracted by
MCSNet can reflect the synergy of muscles.

In addition, we performed a model ablation analysis on
MCSNet under the cross-subject situation, removing depthwise,
sparablewise, and attention network structure layers in turn
and observing the changes in the prediction performance
of the MCSNet model. According to the results in Table 3,
removing any network structure layer will significantly reduce
the prediction performance of the MCSNet model, which shows
that each layer of the MCSNet model plays an essential role in the
final prediction results.

5. CONCLUSIONS

In this paper, a channel synergy-based human–exoskeleton
interface is proposed for lower limb movement prediction in
paraplegic patients. It uses the sEMG signals of 12 upper limb
muscles as input signals, which can avoid the problem of
weak sEMG signals in the lower limbs of paraplegic patients.
The interface constructs an channel synergy-based network
(MCSNet), it uses LSTM, depthwise, and separable convolutions
to extract the spatiotemporal features of multi-channel sEMG
signals, and introduces an attentionmodule to extract the synergy
of different sEMG feature channels. An sEMG acquisition
experiment is designed to verify the effectiveness of the MCSNet
model. The results show that MCSNet has a good movement
prediction performance in both within-subject and cross-subject
situations. Furthermore, feature visualization and the model
ablation analysis of MCSNet is performed, the result show
that the features extracted by MCSNet are physiologically
interpretable. In the future, we consider applying the proposed

human–exoskeleton interface to an actual exoskeleton platform.
In addition, we will focus on multi-modal movement prediction
based on sEMG and EEG.
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