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RNF183, a member of the E3 ubiquitin ligase, has been shown to involve in
carcinogenesis and proposed as one of the biomarkers in Uterine Corpus Endometrial
Carcinoma (UCEC). However, no research focused on the role of RNF183 in UCEC. We
analyzed the expression and immune infiltration of RNF183 in UCEC. TIMER, UALCAN,
and GEPIA were used to analyze the gene expression of RNF183. We emplored Kaplan-
Meier Plotter to examine the overall survival and progression-free survival of RNF183,
and applied GeneMANIA to identify RNF183-related functional networks. LinkedOmics
was helpful to identify the differential gene expression of RNF183, and to further analyze
gene ontology and the genome pathways in the Kyoto Protocol. Finally, we used
TIMER to investigate the immune infiltration of RNF183 in UCEC. Otherwise, we partly
verified the results of bioinformatics analysis that RNF183 controlled ERα expression
in ERα-positive Ishikawa cells dependent on its RING finger domain. We also found
that ERα increased the stability of RNF183 through the post-translational mechanism.
Together, patients with a high level of RNF183 harbor favorable overall and progression-
free survival. High expression of RNF183 was associated with a low stage, endometrioid,
and TP53 Non-Mutant status in endometrial cancer. The RNF183 expression was
greater at higher expression and the tumor stage was greater at the lower level. On
the side of immunization, high level of RNF183 in UCEC is negatively related to tumor
purity, infiltrating levels of CD4 + T cells, neutrophils, and dendritic cells. Besides,
the expression of RNF183 in UCEC is significantly correlated with the expression of
several immune cell markers, including B cell, M1 macrophage marker, M2 Macrophage,
Dendritic cell, Th1 markers, Th2 markers, Treg markers, and T cell exhaustion markers,
indicating its role in regulating tumor immunity. These results suggested that RNF183
may be considered as a novel prognostic factor in endometrial cancer and an early
diagnostic indicator for patients with UCEC.

Keywords: estrogen receptor alpha, immune infiltration, prognosis, uterine corpus endometrial carcinoma,
RNF183
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INTRODUCTION

Uterine Corpus Endometrial Carcinoma (UCEC) is the fourth
most common gynecological malignancy in developed countries
(Kandoth et al., 2013), and the incidence has been raised rapidly
in China, increasing 63,400 new cases a year (Chen et al.,
2016). According to biological and histopathological variables,
endometrial cancer is classified into two types. Type II tumors are
usually poorly differentiated, non-endometrioid, and more likely
to metastasis, relapse even after aggressive clinical intervention.
By contrast, type I endometrial cancer is often endometrioid
and well-differentiated, presumably owing to greater exposure
to a long history of unopposed estrogen or other risk factors
inducing hyperestrogenism such as obesity. Endometrial cancer
is one of the few human malignant tumors for which mortality
is increasing (Berg et al., 2017), which underlines the urgency
to develop more effective methods for the early diagnosis and
treatment of this disease.

The RNF183 (RING finger 183) is served as an E3 ubiquitin
ligase (E3s) belonged to the RING finger protein family. RING
finger domain has been characterized by the sequence of
CX2CX(9–39)CX(1–3)HX(2–3)C/HX2CX(4–48) primarily
responsible for substrate specific identification in ubiquitylation
(Joazeiro and Weissman, 2000; Lipkowitz and Weissman,
2011). RING finger ubiquitin ligases are involved in the
process of essential cellular functions, such as maintaining the
integrity of genomic, cell cycle, cell signal, and DNA repair. For
example, the FANC core complex containing RING finger-like
PHD domain. Its mutation induces Fanconi anemia which
increases the risk of cancer (Moldovan and D’Andrea, 2009).
Besides, MDM2 targets tumor suppressor p53 for degradation
(Oliner et al., 1992; Wade et al., 2010). Inactivated RING
finger E3s BRCA1 destroys the DNA repair pathway in breast
and ovarian cancer (Hashizume et al., 2001; Ruffner et al.,
2001). Properly, RING finger E3s are involved both in the
promotion and the suppression of cancers. Distinct RING
finger E3s are particular therapeutic targets. Small molecular
inhibitors suppress the MDM2–p53 interaction in preclinical
studies. Accumulation functional and controlled pathway
data from RING finger E3s are helpful for developing new
targeted therapy.

RNF183, RNF182, RNF186, and RNF152, are further
identified as the RNF183 family, which share the similar
structure RING finger domain (C3HC4) at their N-terminus
and transmembrane domains at their C-terminus with high
homology (Kaneko et al., 2016; Okamoto et al., 2020a). As
common features, members of RNF183 family have exhibited a
broad range of functions in diverse biological and pathological
processes such as prolonged endoplasmic reticulum stress,
apoptosis, ischemia-reperfusion injury, oxygen, and glucose
metabolism, immune and inflammatory response (Liu et al.,
2008; Nectoux et al., 2010; Wang et al., 2018; Wu et al., 2018; Cao
et al., 2019; Maeoka et al., 2019a). It was proposed that RNF183
could be as one of the potential biomarkers for endometrial
cancer through gene expression screening (Colas et al., 2011).
However, the RNF183 involvement of molecular mechanisms
underlining the disease remains unclear.

Here we find that RNF183 is upregulated in endometrial
cancer and mostly higher in endometrioid, low-grade, TP53-
Non-Mutant samples. It is also negatively related to tumor purity,
infiltrating levels of CD4+ T cells, neutrophils, and dendritic
cells. Besides, the RNF183 in UCEC is significantly correlated
with the expression of several immune cell markers, including
B cell, M1 macrophage marker, M2 Macrophage, Dendritic cell,
Th1 markers, Th2 markers, Treg markers, and T cell exhaustion
markers. For mechanism, RNF183 shows a significant correlation
with ERα. We prove that RNF183 regulates ERα and ERα

target genes under the existence of the RING finger domain.
Furthermore, ERα promotes the stability of RNF183.

MATERIALS AND METHODS

UALCAN Database
UALCAN1 (Chandrashekar et al., 2017) is a cancer data online
analysis, mainly based on the TCGA level 3 RNA—seq and
clinical data of 31 types of cancer in 74 samples of normal and
tumor by the relative expression of genes. The database can be
spectrum identification of target gene expression, DNA promoter
region methylation analysis, survival analysis and correlation
analysis. It also can check other related information in the
database through the link. For example, gene modification and
miRNA prediction were examined.

GEPIA Database
Gene Expression Profiling Interactive Analysis (GEPIA)
database2 is used to analyze the RNA sequencing expression data
of 8,587 healthy and 9,736 tumor tissue samples from TCGA and
GTEx projects (Tang et al., 2017) including single-gene analysis,
cancer type analysis, and polygene analysis. By inputting the
target gene on this website, the differential expression, survival
analysis, correlation analysis and PCA of the target gene can
be obtained. We generated the expression of the RNF183
gene through GEPIA.

Kaplan-Meier Plotter Database
Kaplan-Meier survival curve analysis is used to evaluate the
correlation between the expression of 54,000 genes in 10,000
cancer samples and the survival rates of 21 different cancers.
The samples include 371 livers, 1,440 stomachs, 2,190 ovaries,
3,452 lungs, 6,234 breast cancer and 543 UCEC samples.
Use the Kaplan-Meier diagram3 to analyze the relationship
between gene expression and survival rates of endometrial cancer
through hazard ratio (HR), and Logarithmically sort the P value
(Lánczky et al., 2016).

GeneMANIA Database
GeneMANIA4 is mainly used to construct a protein-protein
interaction (PPI) network, generate hypotheses about gene

1http://ualcan.path.uab.edu
2http://gepia.cancer-pku.cn/index.html
3http://kmplot.com/analysis/
4http://www.genemania.org
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function, and determine the priority of genes by analyzing
the gene list (Warde-Farley et al., 2010). Entering the target
gene in the site to generate protein—protein interaction
network, each small circles represent different proteins in
the network, the size of the circle represents the strength of
the interaction, different colors of the attachment has the
validation of different means of interaction, the validation
includes a variety of bioinformatics methods: physical
interaction, gene co-expression, gene co-localization, gene
enrichment analysis, and website prediction. Besides, the
annotation information of the protein can also be queried in
the target network.

LinkedOmics Database
The LinkedOmics database5 is mainly used for comprehensive
data analysis related to TCGA cancer 32 sets (Vasaikar
et al., 2018). It also includes mass spectro-based proteomic
data generated by the Clinical Proteomics Oncology Analysis
Association (CPTAC) for TCGA breast, colorectal, and ovarian
tumors. The LinkFinder module of LinkedOmics was used to
study the differentially expressed genes related to RNF183 in
the TCGA UCEC cohort (n = 176). The results provided by
the database are shown in the form of a volcano map, heat
map or scatter plot by Pearson correlation coefficient analysis.
Besides, biological processes, cellular components, molecular
functions, and enrichment, and analysis of KEGG pathways
were performed through genomic enrichment analysis (GSEA).
The grade standard is FDR < 0.05, and 500 simulations
have been performed.

TIMER Database
The TIMER database runs more than 10,000 samples from
the Cancer Genome Atlas (TCGA) to systematically analyze
the tumor infiltrating immune cells (TIIC) of 32 kinds of
cancers6 (Li et al., 2017). TIMER determines the abundance
of tumors by statistical analysis of gene expression profile, 106
infiltrated immune cells (TIIC) were analyzed (Li et al., 2016).
The gene module is mainly used to explore the correlation
between gene expression and immunoglobulin content. The
survival module is applied to seek the relationship between
clinical outcomes and immune infiltration or gene expression
richness. Correlation between the mutated gene and the content
of immune infiltration fluid from the mutation module. SCNA
model is adopted to explore the correlation between somatic
CNA and immune infiltration richness. The Diff Exp module
is selected to examine the differential gene expression between
tumor and normal tissues. The correlation module is used to
research the correlation between genes. The Go Estimatio module
can run private samples of users with the TIMER algorithm. We
analyzed the relationship between RNF183 gene expression level
and infiltrating immune cells by Spearman analysis (including B
cells, CD4 + T cells, CD8 + T cells, neutrophils, dendritic cells,
and macrophages).

5http://www.linkedomics.org/login.php
6https://cistrome.shinyapps.io/timer/

Plasmids and Antibodies
Anti-RNF183 antibody (1:1,000, NBP1-74192, Novus Biologicals,
Colorado, United States), anti-ERα antibody (1:1,000,
ab267512, Abcam, Cambridge, United Kingdom), anti-GAPDH
antibody (1:3,000, 10494-1-AP, Proteintech Group, Chicago,
United States), HRP-conjugated Affinipure Goat Anti-Mouse
IgG (H + L) (1:10,000, SA00001-1 Proteintech Group, Chicago),
HRP-conjugated Affinipure Goat Anti-Rabbit IgG (H + L)
(1:10,000, SA00001-2 Proteintech Group) were used for western
blot. RNF183 (pcDNA4-myc/his-RNF183) and RNF183 without
amino acids 1–60 were illustrated previously (Geng et al., 2017).
The ERE-TK-Luc and the pRL-TK plasmids were constructed by
the Genewiz Company (Suzhou, China).

Cell Culture
Ishikawa cells were cultured in RPMI-1640 (Gibco, Carlsbad,
CA, United States) with 10% fetal bovine serum (FBS) (Gibco)
plus 100 U/ml penicillin G, and 100µg/ml streptomycin (Gibco)
in a humidified atmosphere of 5% CO2 at 37◦C. Ishikawa cells
were treated with 100µg/mL cycloheximide after transfected with
siNC or siERα for 48 h. Ishikawa cells were transfected with siNC
or siRNF183 followed by administrating 100 nM MG132 6 h.

siRNA Transfection
The package of si-h-RNF183 and si-h-ESR1 were designed
by RIBOBIO company (siRNA for RNF183 ID: SIGS0015614-
1, siRNA for ESR1 ID: SIGS0005356-1, Beijing, China). 50%
fusion Cells were transfected with 75 nM siRNAs using 5 µL
Lipofectamine 2000 (Invitrogen, Grand Island, NY) in per six
well-cell plates. The samples were collected after transfected 48 h.

Quantitative PCR
RNAs were extracted using Trizol (Invitrogen). The cDNA was
reversed from 1 µg RNA using M-MLV reverse transcriptase
(Promega, Madison, WI, United States). qPCR was examined
using SYBR Green (BIO-RAD, Hercules, CA, United States) for
40 cycles (95◦C for 15 s, 60◦C for 30 s). The primer sequence of
mRNA for qPCR are available in Supplementary Table S1 and
synthesized by Sangon Biotech (Shanghai, China).

Luciferase Reporter Assay
Luciferase activity was assessed by the Dual-Luciferase Reporter
Assay (Promega). Briefly, Ishikawa cells were transfected
with siRNF183 or siNC or with pcDNA4-myc/his-RNF183 or
RNF183Mt or pcDNA4-myc/his vector along with ERE reporter
plasmids. Cells were treated with E2 (10 nM) after 24 h post-
transfection. After another 24 h, samples were collected for
Luciferase activity measure.

Western Blotting
Cells were lysed with RIPA lysis buffer (G-Clone) containing
protease inhibitor (G-Clone). The concentration of protein
was examined by BCA Protein Assay Kit (KeyGen BioTECH,
Jiangsu, China). Collected lysates were resolved in 12% SDS-
polyacrylamide gel and the protein was detected with the
indicated antibodies.
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Statistical Analysis
Data were revealed as mean ± standard deviation (SD).
The survival curve was generated by Kaplan-Meier plots
relation analysis. The expression of related genes were
evaluated using Pearson correlations. Other data were assessed
using Student’s t-test. P < 0.05 was considered statistically
significant.

RESULTS

Clinical Relevance of RNF183 Expression
in Endometrial Cancer
From the TIMER database of the Diff Exp module across
all the cancer genome atlas (TCGA) tumors, our studying
showed that a high proportion of RNF183 exists in the majority
of human cancer tissues (Figure 1A). Among all the cancer
types, RNF183 is remarkably upregulated in endometrial cancer
compared with normal endometrium. To investigate the role of
RNF183 in endometrial cancer, we utilized UALCAN website
to assess RNA-seq in 546 primary endometrial tumors and
35 normal endometrial tissues. RNF183 was shown to be
elevated in cancerous tissues compared to normal endometrium
(Figure 1B), which was accordant with statistics documented in
GEPIA (Figure 1C).

Next, we were encouraged to apply the Kaplan-Meier Plotter
online tool to explore the clinical importance of RNF183 in
extensive RNA-seq data classifying patients based on the “best
cut-off” value. RNF183 high expression was associated with
favorable overall survival (OS, Figure 1D) and progression-free
survival (PFS, Figure 1E) in 542 patients.

The conclusion above made us search RNF183 expression
in different subtypes and tumor grades of endometrial cancer,
which results in diversification of the disease and specific
clinical outcomes. The results from UALCAN showed that
RNF183 expression was significantly increased at stage 1
in comparison with other high-grade stages (Figure 2A).
Additionally, we found that RNF183 level was considerably
higher in endometrioid adenocarcinomas compared to non-
endometrioid adenocarcinomas (Figure 2B). Meanwhile,
TP53-Non-Mutant patients harbored high RNF183 expression
compared to TP53-mutated patients (Figure 2C).

RNF183 Co-expression Networks in
UCEC
For gaining insight into RNF183 biological meaning in
UCEC, We used the function module of LinkedOmics to
examine RNF183 co-expression mode in the UCEC cohort.
As shown in Figure 3C, 8,777 genes (dark red dots) were
demonstrated significant positive correlations with RNF183,
whereas 11,121 genes (dark green dots) were shown significant
negative associations (false discovery rate, FDR < 0.01). The
top 50 significant genes positively and negatively correlated
with RNF183 were shown in the heat map (Figures 3A,B).
The statistical scatter plots for individual genes are shown
in Figure 3D. Besides, we discussed the protein-protein

interaction (PPI) network and the function of RNF183 through
GeneMANIA (Figure 4).

Enrichment Analysis of RNF183
Functional Networks in UCEC
GO term analysis by gene set enrichment analysis (GSEA)
showed that genes differentially expressed in correlation with
RNF183 were located mainly in the membrane and nucleus,
where they participate in biological regulation, metabolic
process, and response to the stimulus. They act as protein
binding, ion binding, and nucleic acid binding (Figure 5A).
KEGG pathway analysis showed enrichment in the drug
metabolism, Huntington disease, fatty acid degradation,
peroxisome, IL-17 signaling pathway, and PPAR signaling
pathway (Figure 5B).

RNF183 Correlates With Tumor Purity
and Immune Infiltration Level in UCEC
We investigated whether RNF183 expression was correlated with
immune infiltration levels in UCEC from TIMER database. The
results show that RNF183 expression has negatively correlations
with tumor purity (r = −0.063, p = 2.85E–01), infiltrating levels
of CD4 + T cells (r = −0.064, p = 2.74E–01), neutrophils
(r = −0.126, p = 3.17E–02), and dendritic cells (r = −0.042,
p = 4.78E–01) (Figure 6A). In addition, RNF183 CNV has
significant correlations with infiltrating levels of CD8 + T cells,
macrophages, and dendritic cells (Figure 6B).

Correlation Analysis Between mRNA
Levels of RNF183 and Markers of
Different Subsets of Immune Cells
We further evaluated the relationship between the RNF183 level
and immune infiltrating cells through the TIMER database based
on the expression level of immune marker genes in UCEC tissues.
The immune cells analyzed include CD8+ T cells, CD4+ T cells,
B cells, monocytes, tumor-associated macrophages (TAM), M1
and M2 macrophages, neutrophils, and natural killer (NK) cells,
dendritic cells, and besides, different subgroups of T cells, namely
T helper 1 (Th1), Th2, Th17, regulatory T (Tregs), and T cell
exhaustion. Because tumor purity will affect the level of immune
infiltration of clinical samples, the purity of the relevant analysis
was adjusted (Table 1).

Specifically, RNF183 expression showed significant
correlation with the expression of markers of specific immune
cells such as B cell, CD79A (r = −0.121; P = 3.84e–02), M1
macrophage marker, iNOS (r = −0.256; P = 9.01e–06), M2
Macrophage, CD163 (r = −0.182; P = 1.77e–03), VSIG4
(r = −0.122; P = 3.71e–02), MS4A4A (r = −0.146; P = 1.21e–
02), Dendritic cell, HLA-DRA (r = −0.182; P = 3.30e–02),
BDCA-1 (r = −0.249; P = 1.60e–05), BDCA-4 (r = −0.172;
P= 3.15e–03). The expression of RNF183 correlated significantly
with the expression of the marker genes of different subsets of
T cells in UCEC, namely, Th1 markers, STAT1 (r = −0.252;
P = 1.25e–05), IFN-γ (r = −0.138; P = 1.80e–02), Th2 markers,
GATA3 (r = −0.217; P = 1.77e–04), STAT6 (r = −0.197;
P = 6.96e–04), Treg markers, TGFβ (r =−0.251; P = 1.37e–05),
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FIGURE 1 | Expression of RNF183 in human endometrial cancer. (A) The differential expressions of RNF183 between normal and tumor tissues exist in the majority
of human cancers (TIMER). (B,C) RNF183 was elevated in endometrial cancer tissues compared to normal endometrium (UALCAN and GEPIA). Increased
expression of RNF183 is associated with favorable prognosis of overall survival (D) and progression-free survival (E) in TCGA patients stratified at “best cut-off”
(Kaplan-Meier Plotter Database). *P<0.05, ***P<0.001.

T cell exhaustion markers, PD-1 (r = −0.217; P = 1.34e–02),
LAG3 (r = −0.223; P = 5.83e–02), GZMB (r = −0.172;
P = 3.31e–03). RNF183 expression did not show any significant
correlation with the expression of marker genes for CD8+ T

cells, T cell (general), Monocyte, TAM, Neutrophils, Natural
killer cell and Th17 cells. These results demonstrated RNF183
expression were associated with infiltration of immune cells in
UCEC (Table 1).

Frontiers in Genetics | www.frontiersin.org 5 November 2020 | Volume 11 | Article 5957339

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-595733 November 23, 2020 Time: 17:9 # 6

Geng et.al. RNF183 in Endometrial Cancer

FIGURE 2 | The expression of RNF183 in particular subtypes of endometrial cancer (UALCAN). (A) RNF183 mRNA level in normal individuals or endometrial tumor
stage 1,2,3, or 4. (B) RNF183 mRNA expression in normal individuals or histological subtypes (Endometrioid, Serous, or Mixed serous and endometrioid).
(C) RNF183 mRNA level in normal individuals, in TP53-Mutant or TP53-Non-Mutant tumors.

FIGURE 3 | Genes differentially expressed in correlation with RNF183 in UCEC (LinkedOmics). (A–B) Heat maps showing genes positively and negatively correlated
with RNF183 in UCEC (TOP 50). (C) A Pearson test was used to assess correlations between RNF183 and genes differentially expressed in UCEC. Red indicates
positively correlated genes and green indicates negatively correlated genes. (D) The scatter plot shows the Pearson correlation of RNF183 expression with ESR1.

RNF183 Modulates ERα Expression of
ERα Positive Endometrial Cancer Cell
Bioinformatics analysis via LinkedOmics, We found RNF183
was markedly positively correlated with ESR1 (Figure 3D). To

verify this finding, we used the ERα-positive Ishikawa cell line
as a model. Upon silencing of RNF183 using two different
individual small interfering RNA, we detected a noticeable
reduction in ESR1 mRNA levels (Figure 7B), and the knockdown
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FIGURE 4 | Protein-protein interaction network of RNF183 networks (GeneMANIA). Protein-protein interaction (PPI) network and functional analysis revealed the
enrichment of the target gene set of RNF183. The different colors at the edges of the network represent the applied enrichment methods: physical interactions,
co-expression, predicted, co-localization, pathways, genetic interactions, and shared protein domains. The different colors of the network nodes represent the
biological functions of the enriched gene set.

efficiency was shown in Figure 7A. Under stimulating E2
(17β-estradiol) or vehicle (absolute ethanol) conditions, ERα

protein levels were also diminished following RNF183 silencing
(Figure 7C). To determine the mechanism through which
RNF183 regulates ERα, we assayed ERα luciferase reporter
activity following RNF183 depletion or RNF183 overexpression.

Figure 7D shows that the RNF183 knockdown suppressed the
activity of the ERα reporter gene. While overexpression of
RNF183 resulted in the raised activity of the ERα reporter gene
no matter existence or absence of E2 stimulation (Figure 7E).
As ubiquitin ligase has been reported to engage in the process
of transcription upon the structure of the zinc finger domain

Frontiers in Genetics | www.frontiersin.org 7 November 2020 | Volume 11 | Article 59573311

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-595733 November 23, 2020 Time: 17:9 # 8

Geng et.al. RNF183 in Endometrial Cancer

FIGURE 5 | Enriched GO annotations and KEGG pathways of RNF183 correlated genes in UCEC (LinkedOmics). (A) Biological process, Cellular Component and
Molecular function analysis. (B) KEGG pathway analysis. Dark blue and orange indicate FDR ≤ 0.05, light blue and orange indicate FDR > 0.05 in (B). FDR, false
discovery rate.

FIGURE 6 | Correlations of RNF183 expression with immune infiltration level in UCEC (TIMER). (A) RNF183 expression is negatively related to tumor purity, infiltrating
levels of CD4 + T cells, neutrophils, and dendritic cells and has positively correlations with infiltrating levels of macrophages in UCEC. (B) RNF183 CNV affects the
infiltrating levels of CD8 + T cells, macrophages, and dendritic cells in UCEC. *P < 0.05, ***P < 0.001.
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TABLE 1 | Correlation analysis between RNF183 and relate genes and markers of
immune cells in TIMER.

Description Gene markers UCEC

None Purity

Cor P Cor P

CD8 + T cell CD8A −0.052 2.22e–01 −0.119 4.16e–02

CD8B −0.027 5.22e–01 −0.031 6.02e–01

T cell (general) CD3D −0.046 2.82e–01 0 9.98e–01

CD3E −0.037 3.86e–01 −0.027 6.49e–01

CD2 −0.015 7.22e–01 −0.018 7.64e–01

B cell CD19 −0.026 5.52 e–01 −0.051 3.81e–01

CD79A −0.023 5.88e–01 −0.121 *

Monocyte CD86 −0.094 * −0.087 1.36e–01

CD115 −0.025 5.57e–01 −0.011 8.54e–01

TAM CCL2 −0.013 7.85e–01 0.048 4.09e–01

CD68 −0.07 1.01e–01 −0.066 2.60e–01

M1 Macrophage iNOS −0.26 7.61e–01 −0.256 ***

IRF5 −0.074 8.38e–02 −0.107 6.65e–02

COX2 −0.12 ** 0.085 1.46e–01

M2 Macrophage CD163 −0.183 *** −0.182 **

VSIG4 −0.114 ** −0.122 *

MS4A4A −0.131 ** −0.146 *

Neutrophils CD66b 0.07 1e–01 0.023 6.92e–01

CD11b 0.089 * 0.092 1.16e–01

CCR7 0.014 7.44e–01 −0.047 4.18e–01

Natural killer cell KIR2DL1 0.028 5.16e–01 0.005 9.34e–01

KIR2DL3 0.028 5.17e–01 −0.029 6.27e–01

KIR2DL4 0.039 3.67e–01 −0.032 5.82e–01

KIR3DL1 0.045 2.94e–01 0.016 7.81e–01

KIR3DL2 −0.74 8.43e–02 −0.027 6.41e–01

KIR3DL3 −0.004 9.23e–01 −0.034 5.62e–01

KIR2DL4 0.039 3.67e–01 −0.032 5.82e–01

Dendritic cell HLA-DPB1 0.083 5.27e–02 0.055 3.44e–01

HLA-DQB1 0.134 ** 0.099 9.00e–02

HLA-DRA 0.144 *** 0.125 *

HLA-DPA1 0.051 2.33e–01 0.018 7.60e–01

BDCA-1 0.275 *** 0.249 ***

BDCA-4 0.219 *** 0.172 **

CD11c 0.094 * 0.098 9.52e–02

Th1 T-bet 0.025 5.53e–01 −0.048 4.16e–01

STAT4 0.067 1.18e–01 −0.037 5.29e–01

STAT1 −0.256 *** −0.252 ***

IFN-γ −0.104 * −0.138 **

TNF-α 0.044 3.06e–01 0.004 9.50e–01

Th2 GATA3 −0.113 ** −0.217 ***

STAT6 0.25 *** 0.197 ***

STAT5A 0.014 7.47e–01 −0.009 8.73e–01

IL13 −0.021 6.18e–01 0.007 9.90e–01

IL21 −0.007 8.69e–01 −0.058 3.23e–01

Th17 STAT3 0.202 *** −0.156 7.43e–03

IL17A 0.005 9.15e–01 0 9.96e–01

Treg FOXP3 0.008 8.6e–01 −0.083 1.57e–01

CCR8 0.067 1.18e–01 −0.001 9.93e–01

(Continued)

TABLE 1 | Continued

Description Gene markers UCEC

None Purity

Cor P Cor P

STAT5B 0.035 4.17e–01 −0.076 1.97e–01

TGFβ −0.172 *** −0.251 ***

T cell exhaustion PD-1 −0.12 ** −0.144 **

CTLA4 0.038 3.72e–01 −0.002 9.78e–01

LAG3 −0.222 *** −0.296 ***

TIM-3 −0.078 6.81e–02 −0.097 9.62e–02

GZMB −0.151 *** −0.172 **

TAM, tumor-associated macrophage; Th, T helper cell; Treg, regulatory T cell; Cor,
P value of Spearman’s correlation; None, correlation without adjustment. Purity,
correlation adjusted by purity. *P < 0.05, **P < 0.01, ***P < 0.001.

(Molloy et al., 2018), we generated a curtailed form of RNF183
(RNF183Mt) without E3 ubiquitin ligase activity by deleting
zinc finger domain (amino acids 1–60). This truncation mostly
canceled the function of RNF183 in stimulating the activity of
the ERα luciferase report gene (Figure 7E). RNF183 depletion
also reduced the expression of endogenous ERα target genes
dependent on E2 stimulation such as TFF1, PGR, FOXA1, and
XBP1 (Figure 7F). Furthermore, TFF1, PGR, FOXA1, and XBP1
showed markedly positive correlation with RNF183 from TIMER
database (Figure 7G).

ERα Mediates RNF183 Stability in ERα

Positive Endometrial Cancer Cell
Given that ERα has been shown to participate in the feedback
loop with some enzymes and transcription factors (Eeckhoute
et al., 2007; Molloy et al., 2018), the impact of ERα on the
expression of RNF183 was analyzed in the Ishikawa cell line.
We noticed that ERα knockdown had little effect on the mRNA
level of RNF183 (Figure 8A). However, there was a marked
decline in the RNF183 protein level (Figure 8B). Next, in the
presence of proteasome inhibitor MG132, RNF183 was in a stable
state, even being with siERα (Figure 8C). Furthermore, ERα

inhibition expedited the reduction of RNF183 protein expression
in the presence of protein synthesis inhibitor cycloheximide
(Figure 8D). In sum, these data indicate that ERα raises RNF183
protein stability in the ERα-positive endometrial cancer cells.

DISCUSSION

RNF183 has been reported to occur in diverse diseases such
as colorectal cancer (CRC), kidney disease, inflammatory
bowel disease and various biological processes. RNF183
stimulated inflammatory bowel disease progression (Yu et al.,
2016). RNF183 was also identified as an oncogene promoting
proliferation, metastasis, and a resistance gene for trametinib in
CRC cells via activating the NF-κB signal (Geng et al., 2017). In
the renal medullary collecting duct, specific RNF183 controlled
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FIGURE 7 | RNF183 controls ERα expression in endometrial cancer. (A) Ishikawa cells transfected with siRNF183 or siNC and RNF183 knockdown efficiency were
examined by RT-PCR. (B) ESR1 mRNA level decreased in the Ishikawa cell line after transfection with siRNF183. (C) The protein level of ERα was downregulated
based on RNF183 deletion. (D) RNF183 deletion decreased ERα-dependent expression of the ERE-luciferase activity. (E) The ERE-Luciferase activity was evaluated
in Ishikawa cells with overexpression of pcDNA4-myc/his-RNF183 or pcDNA4-myc/his vector or truncated RNF183 without E3 ubiquitin ligase activity (13–60 amino
acids). (F) Diminished E2 induced reduction of ERα target genes following inhibition of RNF183 with siRNA. (G) RNF183 positively associated with TFF1, PGR,
FOXA1 and XBP1 from the TIMER database. Experiments were repeated in triplicates. Mean ± S.D. (n = 3). **P<0.01, ***P<0.001.
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FIGURE 8 | ERα regulates RNF183 expression and increases its stability. The expression of endogenous RNF183 mRNA (A) and protein levels (B) in Ishikawa cells
after transfecting with siERα or siNC. (C) Downregulated RNF183 protein level reduced by siERα was recovered based on MG132 treatment. (D) Depletion ERα

weakens RNF183 stability. RNF183 protein level examined at indicated time after transfected with siERα 48h followed 100µg/mL cycloheximide treatment.
Experiments were repeated in triplicates. Mean ± S.D. (n = 3). *P<0.05.

cell adaption to hypertonic stress by regulating Na, K-ATPase
level (Maeoka et al., 2019b; Okamoto et al., 2020b). Under
physiological condition, RNF183 localizing on the endoplasmic
reticulum, interacted and ubiquitin-mediated degradation of Bcl-
xL, suggesting a crucial role of RNF183 in executing programmed
cell death (Wu et al., 2018). The results of our study showed
that significantly amplification of RNF183 was considered as a
prognostic marker in endometrial cancer. Analysis implied that

among endometrial cancer, High RNF183 expression seems to
associate with low stage, endometrioid and TP53-Non-Mutant
status, which are usually with a good prognosis. Also, the
RNF183 expression was greater at higher expression and the
tumor stage was greater at the lower level, implying the early role
of RNF183 in the development of endometrial cancer.

Based on the marker levels of different immune cell types in
UCEC, RNF183 mRNA level is correlated with the number of
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tumor infiltrating immune cells, which indicates that RNF183
plays a vital role in regulating tumor immunity. We observed
that the expression level of RNF183 mRNA was negatively
correlated with CD4 + T cells, neutrophils, and dendritic
cells. We also observed the correlation between the levels of
RNF183 mRNA and the expression of the B cell (CD79A), M1
macrophage marker (iNOS), M2 Macrophage (CD163, VSIG4,
and MS4A4A), Dendritic cell (HLA-DRA, BDCA- 1, and BDCA-
4). The expression of RNF183 is also related to the markers in
different subgroups of T helper (Th) cells, including Th1 (STAT-
1, and IFN-γ), Th2 (GATA3 and STAT6), Treg (TGF-β), T cell
exhaustion markers (PD-1, LAG3, and GZMB). Above indicate
the role of RNF183 in regulating tumor invasion of T helper cells.

Moreover, the depleted T cell markers PD-1, LAG3 and
GZMB, which are critical inhibitory immune checkpoint
proteins, are negatively correlated with the expression of RNF183.
The expression of PD-1 (Kucukgoz Gulec et al., 2019) is
considered a sign of poor prognosis of endometrial cancer and
it has been widely studied as a target of immunotherapy. LAG3
(Friedman et al., 2020) can be used as a target for immunotherapy
in endometrial cancer and in conjunction with other immune
checkpoints, such as PD-1. Besides, Granzyme B + cells (Pakish
et al., 2017) have increased expression in high microsatellite
instability (MSI-H) endometrial cancer, providing a therapeutic
target for immunotherapy. We speculate that RNF183, which
is highly expressed in the tumor microenvironment, leads
to a better prognosis of UCEC by regulating the expression
of inhibitory immune checkpoint proteins PD-1, LAG3 and
GZMB on exhausted T cells. However, this assumption needs
further verification.

Through heatmap about the top 50 genes positively correlated
with RNF183, we found ESR1 was one of the most notable
positive genes with RNF183. Most endometrial cancers are
estrogen-related endometrioid adenocarcinomas. Beyond 90%
endometrioid carcinoma express moderate to high levels of the
ERα (gene symbol ESR1) (Lebeau et al., 2008; Smith et al.,
2018). A consensus that patients with tumor positive ERα

expression have a favorable prognosis of endometrial cancer
(Creasman et al., 1980; Iversen et al., 1988; Jongen et al.,
2009; Supplementary Figure S1). To confirm the regulatory
relationships between RNF183 and ERα, We used ERα-positive
cell line Ishikawa as a model to examine. We clarify a character
for RNF183 in promoting ERα expression at the transcript and
protein level in endometrial cancer. ERα is a substrate for E3
ubiquitin ligase (Byun and Jung, 2008; Zhang et al., 2015). We
proved that RNF183 controls ERα activity determined by the
RING finger domain. The transcriptional activation of estrogen
bound ERα is tissue-specific (Kushner et al., 2000; Castro-
Rivera and Safe, 2003). PGR (Progesterone receptor), FOXA1
(Forkhead box protein A1), XBP1 (X-box binding protein 1),
and TFF1 (Trefoil factor 1) were reported to involve in the
estrogen signal in endometrial cancer (Baxter et al., 2019).
Clinical samples favor RNF183 positively correlated with TFF1,
FOXA1, XBP1, and PGR.

Noticeable studies showed that ERα often participates in
the positive regulation with the related gene, such as autocrine
loop of the CXCR4/SDF-1 and ERα/ERβ signaling pathways

(Sauvé et al., 2009), S6K1-ERα and ER-α36/EGFR positive feed-
forward loop (Zhang et al., 2011; Maruani et al., 2012). We found
that although the essential role of ERα is a transcription factor,
knockdown ERα does not affect the mRNA level of RNF183, but
a decreased in protein level. ERα could mediate ubiquitination
and protein degradation had been reported (Lai et al., 2019). Our
further results demonstrated that RNF183 protein level recovery
followed proteasome inhibitor MG132 treated signifying ERα

impeded RNF183 reduction by the inhibition of the proteasome,
and ERα depletion stimulated RNF183 degradation.

CONCLUSION

Our results indicate that RNF183 is a potential independent
prognostic biomarker of UCEC, which can also be used to
assess the level of immune cell infiltration in tumor tissues.
Furthermore, ERα plays a vital role in the histology and
progression of endometrial cancer. We found that RNF183
seems to be a new marker associated with ERα in ERα-positive
endometrial cancer. Furthermore, the crosstalk between RNF183
and ERα may be the reason for the abnormally high expression of
RNF183 in endometrial cancer.
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As one of the most malicious cancers, pancreatic cancer is difficult to treat due
to the lack of effective early diagnosis. Therefore, it is urgent to find reliable
diagnostic and predictive markers for the early detection of pancreatic cancer. In
recent years, the detection of circulating cell-free DNA (cfDNA) methylation in plasma
has attracted global attention for non-invasive and early cancer diagnosis. Here, we
carried out a genome-wide cfDNA methylation profiling study of pancreatic ductal
adenocarcinoma (PDAC) patients by methylated DNA immunoprecipitation coupled
with high-throughput sequencing (MeDIP-seq). Compared with healthy individuals, 775
differentially methylated regions (DMRs) located in promoter regions were identified in
PDAC patients with 761 hypermethylated and 14 hypomethylated regions; meanwhile,
761 DMRs in CpG islands (CGIs) were identified in PDAC patients with 734
hypermethylated and 27 hypomethylated regions (p-value < 0.0001). Then, 143
hypermethylated DMRs were further selected which were located in promoter regions
and completely overlapped with CGIs. After performing the least absolute shrinkage
and selection operator (LASSO) method, a total of eight markers were found to
fairly distinguish PDAC patients from healthy individuals, including TRIM73, FAM150A,
EPB41L3, SIX3, MIR663, MAPT, LOC100128977, and LOC100130148. In conclusion,
this work identified a set of eight differentially methylated markers that may be potentially
applied in non-invasive diagnosis of pancreatic cancer.

Keywords: pancreatic ductal adenocarcinoma, cfDNA, MeDIP-seq, methylation, biomarkers

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is one of the most highly aggressive diseases in the
world. Due to the hard challenge of detecting the disease at an early stage, poor prognosis often
occurs. The morbidity of PDAC is approximately close to that of mortality. Nearly 80% of PDAC
patients have no early symptoms before the advanced stage (Kaur et al., 2012) with a 5-year survival
rate as low as 9% (Siegel et al., 2019). Accordingly, PDAC is the fourth leading cause of cancer-
related death worldwide and is predicted to rise to second place by 2030 (Rahib et al., 2014).
Currently, ultrasonography, computed tomography, positron emission tomography, magnetic
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resonance imaging, and endoscopic ultrasonography are the
most commonly used diagnostic methods for PDAC (Kamisawa
et al., 2016; Chu et al., 2017). However, operator experience,
patient obesity and intestinal gas, and other factors affect the
accuracy of diagnosis (Kamisawa et al., 2016). In addition, due
to the location of the pancreas, it is not easy to make an early
diagnosis compared to other digestive tract tumors (Lowenfels
and Maisonneuve, 2004). Therefore, it would be very valuable to
identify both sensitive and specific non-invasive biomarkers for
the early diagnosis of PDAC.

Epigenetic regulation, especially DNA methylation, plays
an important role in the regulation of gene expression and
the development of cancers. Genome-wide hypomethylation is
common in cancer cells, leading to genomic instability. Some
tumor suppressor genes with promoter hypermethylation are
observed to cause gene silencing (Hanahan and Weinberg, 2000;
Esteller, 2007). Hypermethylation of CpG islands (CGIs) in the
promoters of tumor suppressor genes is a major and early event
during tumorigenesis (Hanahan and Weinberg, 2000; Park et al.,
2011; Udensi and Tchounwou, 2016; Liu et al., 2019). Aberrant
methylation of promoter CGI regions in some genes has been
proven to be associated with tumorigenesis and tumor growth
(Cai et al., 2011; Pistore et al., 2017). Therefore, it is vital to
detect the hypermethylation of promoter CpG islands for early
diagnosis. This may contribute to the early detection of cancer
and improve the therapeutic effect.

In recent years, circulating cell-free DNA (cfDNA), known
as liquid biopsy, has attracted much more attention from the
medical community due to its clinical advantages. As small
double-stranded DNA fragments, cfDNA is released by necrotic
or apoptotic cells and is circulated in the peripheral blood (Jahr
et al., 2001; Stroun et al., 2001). During tumorigenesis, the
increase of cell necrosis and apoptosis leads to the accumulation
of cfDNA, which can be detected at a relatively early stage.
Furthermore, cfDNA not only contains the same mutations as
tumor cells, but also has the same methylation pattern, making
it possible and convenient for early cancer diagnosis, even
for those hidden organs such as the pancreas and bile ducts
(Schwarzenbach et al., 2011).

Methylated DNA immunoprecipitation coupled with high-
throughput sequencing (MeDIP-seq) is a sensitive technology for
the detection of DNA methylation, which can even detect an
initial DNA amount as low as 1 ng (Taiwo et al., 2012; Zhao et al.,
2014). Genome-wide detection of cfDNA methylation profiling
using the MeDIP-seq method has been developed recently for
screening potential biomarkers of cancers in early stages. Based
on cfDNA methylation patterns by MeDIP-seq analysis, (Shen
et al., 2018) identified different potential biomarkers in pancreatic
ductal adenocarcinoma, colorectal cancer, breast cancer, lung
cancer, renal cancer, bladder cancer, and acute myeloid leukemia
for early-stage detection. Xu et al. (2019) also identified a set
of potential biomarkers that could be served in lung cancer
clinical diagnosis by screening cfDNA methylation profiling
using MeDIP-seq.

Therefore, in this study, we aimed to investigate the potential
cfDNA methylation biomarkers in the diagnosis of PDAC. By
MeDIP-seq analysis, we compared the differentially methylated

regions (DMRs) of PDAC cfDNA with that of normal control,
and identified 143 hypermethylated DMRs which were located in
promoter regions and completely overlapped with CGIs in PDAC
patients. After cross-validation with publicly available DNA
methylation data, including 339 pancreatic adenocarcinoma
(PAAD) patients and 357 normal controls, we successfully
identified eight probes from six differentially methylated genes,
containing TRIM73, FAM150A, EPB41L3, SIX3, MIR663, MAPT,
LOC100128977, and LOC100130148, which could be used as
potential biomarkers for early detection for PDAC patients.

MATERIALS AND METHODS

Sample Collection
A total of six samples including four PDAC patients and two
healthy controls were used for this study. Four serum samples
from PDAC patients were supplied by ChangHai Hospital.
All of them signed informed consent forms. Specimens were
collected and analyzed with the approval of the ethics committees
of ChangHai Hospital and School of Medicine, Northwest
University, respectively.

cfDNA Extraction
First, 5 ml peripheral blood was collected using EDTA
anticoagulant tubes before surgery and drug treatment. The
plasma was purified by centrifuge for 15 min at 1500 × g within
6 h of collection. cfDNA was extracted from 800 µl aliquots of
plasma using a QIAamp Circulating Nucleic Acid Kit (Qiagen,
55114) according to manufacturer’s protocol and quantified with
Bioanalyzer 2100 (Agilent Technologies).

MeDIP-seq Library Construction and
Sequencing
The cfDNA MeDIP-seq library was prepared as we described
previously (Xu et al., 2019). In short, approximately 20 ng
cfDNA was ligated with Illumina barcode adapters using a
KAPA Hyper Prep Kit (KAPA, KK8502). The constructed
cfDNA libraries were denatured at 95◦C for 10 min. The
methylated cfDNA was separated from the cfDNA libraries
by immunoprecipitation using the 5-Methylcytosine (5mC)
Monoclonal Antibody (Epigentek, A-1014). MeDIP DNA was
further amplified using a Q5 High-Fidelity DNA Polymerase
(NEB, M0491). After quality assessment using Bioanalyzer 2100
(Agilent Technologies), amplified libraries were subjected to deep
sequencing by the Illumina HiSeq 2000 platform.

Data Processing and Analysis
MeDIP-seq raw data were processed using the Trimmomatic
software (version 0.38) to filter out low-quality reads and
Illumina adapters. The clean reads were mapped to the
human reference genome GRCh37/hg19 (UCSC) using the
Bowtie software (version 2.3.3.1) (Langmead et al., 2009). The
differentially methylated regions (DMRs) between pancreatic
cancer patients and healthy controls were calculated with the
R package MEDIPS (version 1.36.0) (Lienhard et al., 2014), the
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coupling factor for CpG density was generated based on the
normalization of the patient MeDIP-seq data. The function of
region of interest (ROI) analysis in the MEDIPS package was
specifically used to investigate the DNA methylation levels in
UCSC CpG islands, CpG shore (∼2 Kb from islands), and
CpG shelf regions (∼4 Kb from islands)1. Mapping results
were visualized using Integrative Genomics Viewer (IGV)
(Thorvaldsdottir et al., 2013). Pathway analysis was carried with
the Ingenuity Pathway Analysis (IPA) software (Qiagen).

Illumina Infinium HumanMethylation 450K BeadChip Array
(HM450K) data from The Cancer Genome Atlas (TCGA) project
and Gene Expression Omnibus (GEO) were used to validate
our MeDIP-seq results. A total of 696 HM450K sample sets
including 339 PAAD patients and 357 normal controls were
assembled from the TCGA2 and GEO (GSE49149 and GSE40279)
databases. The information about the patient age and gender
of 696 HM450K sample sets are supplied in Supplementary
Table 1. The bioinformatics pipeline and R codes are available
as supplementary code in zenodo3. The variable selection was
performed using the LASSO method (Xu et al., 2017). We
subsampled 75% of the dataset for model building. After 500
iterations, we selected the probes that appeared more than 450
times as covariates, and obtained a total of eight probes. We fitted
a logistic regression model with these candidate markers and
measured the classification performance of the binary classifier
using an area under the ROC curve (AUC).

The Paired Student’s t-test was performed using the processed
beta (β) values (proportion of the methylated signal over
the total signal) to compare the DNA methylation levels
in the probe regions between 339 PAAD sample and 357
normal samples, the p-value for each maker was corrected
by multiple testing with the Benjamini-Hochberg procedure
(Benjamini and Yekutieli, 2001).

Multivariate Cox regression analysis was performed to
construct the prognostic model based on the AIC value. Kaplan-
Meier curves were generated and used to perform survival
analysis using GEPIA4.

RESULTS

Analysis of Global cfDNA Methylation
Profiling in Pancreatic Cancer by
MeDIP-seq
Four plasma samples of PDAC patients and two of healthy
controls were collected, the clinical information of patients is
shown in Table 1. The four PDAC samples were in the IB or
IIB stage which had entered into the early or middle stage of
pancreatic cancer (Table 1) (van Roessel et al., 2018). After being
subjected to quality testing, the size of the cfDNA fragments was
mainly distributed in the range of 150–200 bp with a main peak
of 172 bp, which met the previous criteria where cfDNA showed a

1http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/cpgIslandExt.txt.gz
2https://portal.gdc.cancer.gov/projects/TCGA-PAAD
3https://doi.org/10.5281/zenodo.4066412
4http://gepia.cancer-pku.cn/index.html

TABLE 1 | Clinical information of PDAC patients.

Sample Gender Age Stage Histology

P1 Male 59 pT3N1Mx Ductal adenocarcinoma

P2 Male 79 pT3N1Mx Ductal adenocarcinoma

P3 Female 67 pT2N0Mx Ductal adenocarcinoma

P4 Female 56 pT2N0Mx Ductal adenocarcinoma

specific size of∼167 bp (Lo et al., 2010; Thierry et al., 2010). After
immunoprecipitation and amplification, the size distribution
profiles of all cfDNA libraries showed a range from 172 to 292 bp
with a main peak of ∼292 bp including ∼120 bp sequencing
adapters (Supplementary Figure 1). The cfDNA MeDIP libraries
were sequenced with Illumina HiSeq 2000 (a flow chart of the
steps in the analysis is presented in Figure 1). A total of 41
million raw sequenced reads were obtained from PDAC patients,
72.7% of which was mapped to the reference genome (Human
hg19), and 32 million reads from healthy controls of which 54.8%
was mapped. After quality filtering, there were approximately 24
million unique reads of patients and 17 million unique reads of
healthy controls (Table 2).

In order to analyze the whole-genome methylation patterns
between PDAC patients and healthy controls, we performed
the principal component analysis (PCA) to investigate the
genome-wide methylation profiles in the two groups. The
methylation patterns in PDAC patients exhibited a significant
difference from the healthy control groups (Figure 2A). The
unsupervised clustering analysis result further showed that there
was a dramatic change in methylation patterns between PDAC
patients and healthy controls (Figure 2B). This indicates that
there are epigenetic differences between PDAC patients and
healthy people.

Differentially Methylated Regions of
Promoters in Pancreatic Cancer Patients
A total of 5,205 differentially methylated regions (DMRs)
were identified through MeDIP-seq analysis in PDAC patients
(p < 0.05), which included 5,117 hypermethylated regions
(98.3%) and 88 hypomethylated regions (1.7%) as shown in
Supplementary Table 2. The clustering analysis also exhibited
a significant alteration between PDAC patients and controls
(Figure 3A). Previous studies have revealed that aberrant
methylation patterns in the promoter region of tumor suppressor
genes may cause transcriptional silencing which could be a
driving force for cancer development (Herman and Baylin,
2003). We focused on promoter regions and recognized 775
different DMRs (p < 0.0001), including 761 hypermethylated
regions (98.2%) from 532 genes and 14 hypomethylated
regions (1.8%) from 14 genes (Figure 3B and Supplementary
Table 3). These data suggest that most of the promoter regions
are hypermethylated in pancreatic cancer samples, which is
consistent with previous findings that specific hypermethylation
occurring at specific promoter sites likely leads to cancer (Park
et al., 2011; Liu et al., 2019; Zhang et al., 2020).
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FIGURE 1 | The flow chart of screening cfDNA methylation biomarkers in pancreatic cancer.

Differentially Methylated Regions (DMRs)
of CpG Regions in Pancreatic Cancer
Patients
According to the division of the CG content, some areas in the
genome can be determined as CpG islands (CG content > 50%)
(Gardiner-Garden and Frommer, 1987), CpG shores (up to
2 kb from CpG islands) (Irizarry et al., 2009), and CpG shelfs
(≥2 kb from CpG islands) (Nones et al., 2014). It is reported
that 72% of promoters are unmethylated GC-rich (Saxonov
et al., 2006). Here we found that the general methylation
levels of CpG regions in pancreatic cancer patients were higher
than those in normal controls, which showed the median
methylation levels in CGI, CpG shore, and CpG shelf to be
0.39, 0.57, and 0.5475, respectively, compared with 0.265, 0.45,
and 0.41, respectively in controls (Figure 4A). Hypermethylation
of CGI sites in promoter regions is considered as a risk
marker for cancer development and progression (Costello et al.,

TABLE 2 | Statistics summary of MeDIP-seq data.

Sample Number of
total reads

Number of
mapped reads

Mapped
read rate

Number of
unique reads

Unique
read rate

P1 41,251,616 30,099,978 73.0% 25,187,519 83.7%

P2 37,618,679 27,811,589 73.9% 22,962,727 82.6%

P3 54,836,822 40,245,896 73.4% 33,248,824 82.6%

P4 31,699,187 22,318,731 70.41% 17,448,398 78.18%

C1 12,247,801 6,219,267 50.78% 5,547,597 89.20%

C2 53,490,488 31,510,659 58.91% 29,241,359 92.80%

C, healthy control; P, PDAC patient.

2000; Esteller et al., 2001; Widschwendter and Jones, 2002),
therefore, only DMR in CGIs were in focus and used for
further analysis.

A total of 761 DMRs was identified in CGIs of the
whole genome in PDAC patients (p value < 0.0001).
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FIGURE 2 | The methylation patterns of pancreatic cancer patients and healthy controls after MeDIP-seq datasets analysis. (A) Principal component analysis (PCA)
of the methylation profiles between patients and controls. (B) The unsupervised cluster analysis of the genome-wide methylation profiles in patients and controls.

FIGURE 3 | Differentially methylated regions (DMRs) in pancreatic cancer patients and healthy controls. (A) Heat map of total 5,205 DMRs located in the whole
genome of PDAC patients compared to healthy controls, including 5,117 hypermethylated and 88 hypomethylated regions. (B) Heat map of total 775 DMRs located
in the promoter regions of patients compared to healthy controls, including 761 hypermethylated and 14 hypomethylated regions.
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FIGURE 4 | Differentially methylated regions (DMRs) of the CpG regions in pancreatic cancer patients and healthy controls. (A) Violin plots of DMRs located in CpG
islands, CpG shores, and CpG shelfs of PDAC patients compared to controls. (B) Whole genomic and chromosomal location of DMRs in CGIs. (C) The different
features of CGI distribution according to hypermethylated and hypomethylated regions.

Among them, there were 734 (96.5%) hypermethylation
regions from 507 genes and 27 (3.5%) hypomethylation
regions from 26 genes (Supplementary Table 4). The visual
DMR signals of hypermethylation and hypomethylation
in CGIs mapped to the whole genome are shown in
Figure 4B. The distribution features of hypermethylated
and hypomethylated regions in CGIs were further classified
as shown in Figure 4C. A predominant hypermethylation
of DMRs in CGIs was observed, except in the 3′UTR
region (Figure 4C).

Identification of Differentially Methylated
Genes Located in Promoter CGIs in
Pancreatic Cancer Patients
It is reported that the hypermethylation of promoter CGIs
is supposed to be an indicator of the risk of progression or
development of cancers which is associated with the silencing
of tumor suppressor genes (Feinberg, 2005; Park et al., 2011).
We further screened those DMRs which were located in CGIs
promoters. A total of 143 hypermethylated DMRs located in
promoter regions that completely overlapped with CGIs were
identified as candidate DMRs (Figure 5A). The 143 candidate
DMRs were derived from 70 genes. To further understand the
biological associations of the 70 genes, ingenuity pathway analysis
(IPA) was performed and showed that cancer was included in the
top diseases (Figure 5B).

Cross-Validation of Potential Candidate
Genes With Publicly Available DNA
Methylation Data
The 143 candidate DMRs were further annotated to 131 probes
on an Illumina HM450K BeadChip Array (Supplementary
Table 5) and were analyzed by the Least Absolute Shrinkage
and Selection Operator (LASSO) method to select the most
discriminating markers. The 75% HM450K datasets were
randomly selected each time for loop modeling. Eventually, eight
probes were identified as a final selection of markers which
were required to appear over 450 times out of a total of 500
repetitions in the model (Table 3). To evaluate the diagnostic
value of the eight markers, we built a risk prediction model
in training and validation dataset using the logistic regression
method. The HM450K datasets were then divided into a training
cohort of 488 individuals (238 PAAD patients and 250 normal
controls) and a validation cohort of 208 individuals (101 PAAD
patients and 107 normal controls). The final prediction model
achieved a sensitivity of 97.1% and a specificity of 98.0% on the
training cohort, the sensitivity and specificity of the validating
cohort was 93.2 and 95.2%, respectively (Figure 6A). This model
could distinguish PAAD patients from the normal controls
both in the training dataset (the area under the ROC curve,
AUC = 0.975) and the validation dataset (AUC = 0.943). The
prediction performance of the model in two datasets is shown
in Figure 6B. To further characterize the methylation status
of the eight markers in PAAD patients and normal controls,
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FIGURE 5 | Selection and definition of differentially methylated genes in both the CGIs and promoter regions. (A) Hypermethylated DMRs in the overlap of promoter
regions and CGIs. (B) Top disease and bio functions by IPA analysis for genes derived from hypermethylated DMRs located in both the promoter regions and CGIs.

unsupervised hierarchical clustering was performed in 696 cases
of the HM450K datasets (Figure 6C). The result demonstrated
that these eight markers were able to distinguish PAAD patients
from normal controls with high sensitivity and specificity.

Analysis of Relative Methylation Levels
of the Eight Markers Between PAAD
Patients and Normal Controls
To further address whether the eight markers we identified
can distinguish pancreatic cancer patients from the healthy
individuals, we next assessed the methylation levels of the eight
markers in 696 cases including 339 PAAD patients and 357
normal controls. For all eight markers, there was a significantly

difference in the overall methylation levels between the PAAD
patients and normal controls (BH-adjusted p < 0.0001)
(Figure 7). It suggested that the eight markers: MAPT, SIX3,
MIR663, EPB41L3, FAM150A, TRIM73, LOC100128977, and
LOC100130148 may serve as potential biomarkers for the early
diagnosis of pancreatic cancer.

DISCUSSION

Here, we performed a genome-wide epigenetic profiling
assessment in pancreatic cancer patients for screening potential
biomarkers using MeDIP-seq technology in cfDNA. Our
analysis exhibited global changes in cfDNA methylation
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patterns in pancreatic cancer patients. In our study, we found
761 hypermethylated DMRs in promoter regions and 734
hypermethylated DMRs in CGIs derived from pancreatic cancer

TABLE 3 | Characteristics of the eight methylation markers and their coefficients in
PAAD diagnosis prediction.

Markers Ref Gene Coefficients SE z value p-value

cg00394725 TRIM73 −3.1937 0.6835 −4.673 <0.05

cg09442654 FAM150A 0.3357 0.4777 0.703 <0.05

cg26170805 EPB41L3 1.8672 0.781 2.391 <0.05

cg19186145 SIX3 1.877 0.871 2.155 <0.05

cg11220245 MIR663 0.4137 0.4914 0.842 <0.05

cg11909912 MAPT 0.9288 0.5346 1.737 <0.05

cg10780632 LOC100128977 8.7616 3.4814 2.517 <0.05

cg19670923 LOC100130148 0.7289 0.8566 0.851 <0.05

SE: standard errors of coefficients; z value: Wald z-statistic value.

patients, furthermore, a total of 143 candidate DMRs were
identified, located in both the promoter regions and CGIs.
For subsequent analysis, tissue-derived data from TCGA and
GEO was used due to the lack of cfDNA metalation data
in public datasets. Finally, the diagnostic prediction model
of the eight probes was established, including MAPT, SIX3,
MIR663, EPB41L3, FAM150A, TRIM73, LOC100128977, and
LOC100130148. Among these, MAPT, LOC100128977, and
LOC100130148 are the three differentially methylated CpG sites
that hit only one gene locus. The diagnostic prediction model
could effectively distinguish between PAAD patients and normal
controls according to both the training cohort (AUC = 0.975)
and validation cohort (AUC = 0.943). These results represented
promising novel methylation markers for the early diagnosis of
pancreatic cancer.

To determine the prognostic value of the eight markers in
pancreatic cancer patients, Kaplan–Meier survival analysis was
performed (Supplementary Figure 2). Pancreatic cancer patients

FIGURE 6 | Identification of novel pancreatic cancer diagnostic markers from cfDNA methylation analysis. (A) Confusion tables of binary results of the diagnostic
prediction model in the training and validation datasets. (B) ROC of the diagnostic prediction model with methylation markers in the training and validation datasets.
(C) Unsupervised hierarchical clustering of the eight methylation markers selected for use in the diagnostic prediction model.
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FIGURE 7 | The comparison of the methylation level of the eight selected markers between pancreatic cancer patients and healthy controls.

with a high expression of MAPT, EPB41L3, LOC100128977,
and LOC100130148 had an evidently higher overall survival
as compared with those with a low expression of MAPT
(p = 0.0034), EPB41L3 (p = 0.0088), LOC100128977 (p = 0.0077),
and LOC100130148 (p = 0.0017). However, the multivariate Cox
regression analysis indicated that TRIM73, FAM150A, EPB41L3,
SIX3, MAPT, LOC100128977, and LOC100130148 might not
be independent factors for the prognosis of pancreatic cancer
patients (Supplementary Table 6). This may indicate that gene
expression is not only regulated by methylation, but also under
a complex regulatory system. Therefore, these eight markers may
be effective biomarkers for the diagnosis of pancreatic cancer, but
they can not be used as prognostic indicators.

In recent years, there have been a few studies into the
genome-wide detection of cfDNA methylation profiling using
the MeDIP-seq method to screen potential tumor biomarkers.
Shen et al. (2018) collected seven kinds of cancer samples
for MeDIP-seq data analysis and took transcription factors
into consideration while processing the biomarker analysis.
Xu et al. (2019) identified hypermethylated DMRs in the
promoter region for finding early diagnosis markers of lung
cancer. In this study, we aimed to identify biomarkers in
cfDNA which were located both in promoter regions and
CGIs. CGIs are closely related to tumor epigenome, especially
in promoter regions. Lay et al. (2015) demonstrated that
compared to non-CGI promoters, methylation in CGI promoters
had a greater impact on nucleosome phasing and histone
modifications which have an influence on directing the
functional organization of cancer epigenome. Tumorigenesis
often coincides with CGI hypermethylation, leading to the
inactivation of tumor suppressor genes (Namba et al., 2019). In
a study of the genome-wide search for identifying potentially

methylated changes during the progression of colorectal
neoplasia, (Gu et al., 2019) found that hypermethylation
occurred mainly in the overlap regions of CGIs and promoters,
while hypomethylation tended to be far away from functional
regions. Studies in hepatocellular carcinoma and ovarian
cancer also revealed that the methylation status of some
genes in the promoter and CGI regions can be used as
prognosis markers for cancer patients (Dai et al., 2013;
Lee et al., 2016).

Allele-specific methylation (ASM) has been well documented
in imprinted loci. The parental allele 5mC asymmetry would
create allele-specific imprinted differentially methylated regions
(iDMRs). Moreover, it has been recently reported that some
ASM loci undergo cancer-associated epigenetic changes in
hematopoietic cancer. de Sa Machado Araujo et al. (2018)
reported that the maternally inherited 5mCpG imprints for one
gametic (PARD6GAS1) and one somatic (GCSAML) iDMRs
are dysregulated in hematopoietic cancers. Among the eight
methylated probes that could potentially serve as diagnosis
markers in this study, we found four markers that were allele-
specific methylated, including EPB41L3, SIX3, MIR663, and
MAPT, suggesting that ASM also occurs in solid malignancies.
Unlike whole-genome bisulfite sequencing (WGBS), which
could detect the methylation state of nearly each CpG site,
MeDIP technology uses an anti-methylcytosine antibody at
a resolution of 100–300 bp. Therefore, MeDIP could not
distinguish DNA methylation at a single base resolution (Yong
et al., 2016). So ASM could not be included in the current
study. Pancreatic cancer is a highly lethal disease, the lack
of early detection and optional treatment is the main reason.
Therefore, as a non-invasive micro diagnostic technology, cfDNA
combined with MeDIP-seq is expected to be an effective
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method for early clinical diagnosis. In our analysis, MAPT,
SIX3, MIR663, EPB41L3, FAM150A, TRIM73, LOC100128977,
and LOC100130148 exhibited statistically significant differences
between pancreatic cancer patients and the healthy controls
(Figure 7). MAPT is a potential predictive biomarker of
the efficacy of SG410, a benzoylphenylurea sulfur analog for
pancreatic cancer treatment (Jimeno et al., 2007). Tumor
suppressor SIX3 is reported to inhibit cell proliferation,
migration, and invasion in glioblastoma and breast cancer
(Zhang et al., 2017; Zheng et al., 2018; Yu et al., 2020). MIR663
could act as a tumor suppressor in gastric cancer (Pan et al.,
2010) and glioblastoma (Shi et al., 2014). FAM150A is a potential
prognostic marker of clear cell renal cell carcinomas (Tian et al.,
2014). Taken together, these markers, which we identified in the
plasma of pancreatic cancer, may have potential clinical values.

CONCLUSION

In summary, by analyzing genome-wide cfDNA methylation
profiling using the MeDIP-seq method, we established a set
of eight potential biomarkers which might be applied in non-
invasive diagnosis of early-stage pancreatic cancer.
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Background: Intratumoral oxidative stress (OS) has been associated with the
progression of various tumors. However, OS has not been considered a candidate
therapeutic target for pancreatic cancer (PC) owing to the lack of validated biomarkers.

Methods: We compared gene expression profiles of PC samples and the transcriptome
data of normal pancreas tissues from The Cancer Genome Atlas (TCGA) and Genome
Tissue Expression (GTEx) databases to identify differentially expressed OS genes in PC.
PC patients’ gene profile from the Gene Expression Omnibus (GEO) database was used
as a validation cohort.

Results: A total of 148 differentially expressed OS-related genes in PC were used
to construct a protein-protein interaction network. Univariate Cox regression analysis,
least absolute shrinkage, selection operator analysis revealed seven hub prognosis-
associated OS genes that served to construct a prognostic risk model. Based on
integrated bioinformatics analyses, our prognostic model, whose diagnostic accuracy
was validated in both cohorts, reliably predicted the overall survival of patients with
PC and cancer progression. Further analysis revealed significant associations between
seven hub gene expression levels and patient outcomes, which were validated at the
protein level using the Human Protein Atlas database. A nomogram based on the
expression of these seven hub genes exhibited prognostic value in PC.

Conclusion: Our study provides novel insights into PC pathogenesis and provides
new genetic markers for prognosis prediction and clinical treatment personalization
for PC patients.

Keywords: pancreatic cancer, oxidative stress, prognosis, integrated bioinformatics analysis, risk model

INTRODUCTION

Pancreatic cancer (PC) is one of the most common tumors worldwide and is a severe threat to
human health (Kamisawa et al., 2016). The 5-year overall survival rate of patients with PC is
estimated at only 2–9% (Ilic and Ilic, 2016), and by 2030, PC is expected to become the second
leading cause of cancer-associated death after lung cancer, ranking above breast and colorectal
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cancers (Rahib et al., 2014). The poor outcomes of patients with
PC are mainly associated with early metastasis, rapid progression,
and a lack of sensitive screening tools for early diagnosis
(Singhi et al., 2019). To date, surgical resection of cancer tissues
remains the most common choice for PC treatment, which
effectively increases patients’ 5-year overall survival rate to 20–
30%; however, less than 20% of PC patients are eligible for
surgical treatment because of advanced-stage diagnoses, at which
point cancer has already metastasized (Kamisawa et al., 2016).

In recent years, new developments in targeted molecular
therapy, immunotherapy, and neoadjuvant therapy have
demonstrated certain beneficial effects for PC; however, several
side effects and questionable curative benefits for individual
treatment must be addressed (Wu et al., 2019). Therefore, many
studies have focused on constructing more effective prediction
models that could better clarify the factors contributing to
the prognosis and progression of PC, aiming to provide more
evidence for individual treatment strategies. Despite these
efforts, few screening biomarkers and tools have shown sufficient
significance for widespread clinical application in PC. Thus, it
is necessary to uncover additional biomarkers and construct
novel tools with validated diagnostic value predicting individual
diagnosis and prognosis in PC cases.

Oxidative stress (OS) is a pathological phenomenon in which
an imbalances between oxidants and antioxidants production
that results in the production of high levels of reactive oxygen
species (ROS), which represent a potentially critical factor driving
tumorigenesis and cancer progression (Brown and Wilson, 2004;
Zhou et al., 2017; Kangari et al., 2018). ROS include several
reactive non-radical and free radical species, such as singlet
oxygen, hydrogen peroxide, and superoxide anion (Lü et al.,
2010), which are dramatically elevated in patients with PC
(Martinez-Useros et al., 2017). Previous studies have shown that
as the scavenging potential is reduced, excessive ROS could
damage the DNA causing genotoxicity (Zhou et al., 2013; Wang
et al., 2017), eventually inducing genomic mutations that may
initiate tumorigenesis (Oates and Gilkeson, 2006; Smith et al.,
2010). In PC, ROS are linked to different factors, such as high
alcohol intake, cigarette smoking, obesity, and inflammatory
conditions (Nöthlings et al., 2005). ROS accumulation can
significantly suppress apoptosis in PC cells and contributes to
PC tumorigenesis and progression (Vaquero et al., 2004; Yu
and Kim, 2014; Martinez-Useros et al., 2017). Accordingly, some
compounds targeting OS, such as vitamins (Monti et al., 2012;
Patacsil et al., 2012), curcumin (Dhillon et al., 2008; Bimonte
et al., 2016), and coenzyme Q10 (Hertz and Lister, 2009) have
been proposed as novel chemotherapeutic treatments for PC.
Together, the studies discussed above indicate that OS is closely
associated with PC progression. Nevertheless, the value of OS-
related genes in PC prognosis prediction remains largely unclear,
and the underlying mechanisms require further validation.

With the recent development of genomic technologies,
bioinformatics analysis has been widely employed for identifying
the interaction between gene signatures and tumors (Haqq
et al., 2005; Qiu et al., 2015); however, a few studies have
focused on identifying gene expression signatures to construct
predictive models for patients with PC. Moreover, no systematic

study has aimed to discover specific OS-related hub genes
that correlate with cancer prognosis or progression. In the
present study, we aimed to identify candidate OS genes
that are significantly differentially expressed between PC and
normal pancreatic tissues based on publicly available data
obtained from The Cancer Genome Atlas (TCGA) and Genome
Tissue Expression (GTEx) databases. Subsequently, protein-
protein interaction (PPI) network construction, univariate Cox
regression analysis, least absolute shrinkage and selection
operator (LASSO) analyses were performed to identify hub
genes among differentially expressed OS-related genes (DEOGs)
that were significantly related to PC prognosis. Furthermore,
we constructed a prognostic risk model based on hub gene
expression and systematically explored each gene function
and clinical significance in patients with PC. To the best of
our knowledge, this is the first OS-associated risk model for
prognostic prediction, which might provide novel insight into PC
pathogenesis to tailor personalized treatment and improve the
outcome for PC patients.

MATERIALS AND METHODS

Raw Data Acquisition
RNA-sequencing data of 178 PC samples and four normal tissues
with corresponding clinical information were acquired from
TCGA1 (Liu et al., 2019). In addition, the transcriptome data of
167 whole normal pancreatic tissue samples were retrieved from
the Genome Tissue Expression (GTEx) database2 (Gentles et al.,
2015; The GTEx Consortium, 2015). Gene expression profiles
and clinical information of patients with PC from the Gene
Expression Omnibus (GEO) GSE28735 (including 45 matching
pairs of pancreatic tumor and adjacent non-tumor tissues) and
GSE62452 (including 69 pancreatic tumor and 61 adjacent
non-tumor tissues) cohorts3 were downloaded and merged as
validation group (Huang et al., 2020). Detailed characteristics of
the datasets are listed in Supplementary Table 1. The averages
expression values of the probe sets were calculated for the same
gene with multiple probe sets (Li et al., 2014). OS genes detected
in over 80% of samples were identified, and the minimum non-
zero value replaced zero-values in the corresponding gene in the
expression matrix (Yan et al., 2019).

To screen out OS-associated genes, 1399 protein domains of
OS, with a relevance score ≥ 7 (approximately top 10% OS-
related genes), were acquired from the GeneCards database4 and
subsequently applied for further exploration.

Differential Gene Expression Analysis
To avoid inaccurate differential expression analysis caused by
the small sample size of normal tissues, DEOGs between PC
and normal pancreas tissues were identified from the TCGA and
GTEx database. Original gene expression data were measured

1https://portal.gdc.cancer.gov
2https://gtexportal.org/home/datasets
3https://www.ncbi.nlm.nih.gov/geo/
4https://www.genecards.org
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as fragments per kilobase of transcript per million mapped
reads (FPKM) and log2-transformed. Furthermore, the RNA
expression profiles were normalized with the R package “sva”
to remove batch effects, as previously reported (Xiao et al.,
2020; Zhang et al., 2020b). Then, the “limma” package in R was
applied, and genes with an average count value lower than 1
were all excluded from further analyses. OS-related genes with
a false discovery rate (FDR) < 0.05 and | log2 fold change
(FC)| ≥ 2, which was calculated utilizing gene expression levels,
were regarded as DEOGs in accordance with previously reported
methods (Li et al., 2020) and visualized as a volcano plot and
heatmap using the “ggplot2” and “pheatmap” packages in R
(Wickham, 2009).

Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes
(KEGG) Pathway Enrichment Analyses
Gene ontology and KEGG enrichment analyses of the identified
DEOGs were performed to systematically understand the
biological functions of the selected OS genes (Pathan et al.,
2017). All analyses were performed using the Database for
Annotation, Visualization, and Integrated Discovery (DAVID)
6.8 tool (Huang et al., 2009). Genes associated with GO terms and
KEGG pathways with P and FDR values < 0.05 were considered
to indicate significant enrichment.

Construction of the PPI Network and
Screening of Key Modules
The STRING platform5 (Szklarczyk et al., 2019) was used to
obtain PPI information for the DEOGs, and then explore
the functional interactions between proteins (Szklarczyk et al.,
2015). Subsequently, the interaction data were submitted to
the Cytoscape 3.7.0 software to construct a PPI network. The
Molecular Complex Detection (MCODE) plug-in was used to
select the virtual modules and hub genes in the PPI network,
with an MCODE score and node count > 5 and P < 0.05
(Bader and Hogue, 2003).

Prognostic Model Construction and
Efficacy Evaluation
To identify the prognosis-associated OS genes, hub genes
identified in the PPI network were subjected to univariate
Cox regression analysis using the “survival” package in R to
identify genes that are highly crucial for patients’ survival (Zhang
et al., 2020a), with a cut-off criterion of P < 0.05. After that,
genes identified to be significantly associated with the overall
survival of PC patients through the univariate Cox regression
analysis were integrated for analysis using LASSO, a widely
used machine-learning algorithm, which can preserve valuable
variables and avoid overfitting (Jiang et al., 2018), to complete
the shrinkage of prognostic OS genes and categorizes patients
into high- or low-risk subgroups. In the regression analysis,
the normalized gene expression profile of candidate prognosis-
associated DEOGs was set as the independent variable, whereas

5http://www.string-db.org/

the response variables were the status and overall survival of PC
patients. The optimal penalty parameter (λ) was identified via the
minimum criteria (i.e., the value of λ was accompanied with the
lowest partial likelihood deviance), and 1000 iterations and ten-
fold cross-validation was also applied to reduce the coefficient
instability. The risk score for each sample was calculated using
the following formula:

riskscore =
n∑

i=1

(Exp∗i βi)

where Expi represents the relative expression value of the ith OS
gene, and β represents the regression coefficient. Genes screened
through the LASSO analysis were selected as hub OS genes.

Based on the median risk score, PC patients in the TCGA
cohort were stratified into low- and high-risk subgroups. The
Kaplan-Meier method and log-rank test using the Kaplan-
Meier “survival” package in R were further used to compare
survival between two risk subgroups in PC samples (Klein
and Moeschberger, 1997). The R packages “survivalROC” and
“timeROC” were also applied to validate the predictive accuracy
of the gene signature (Heagerty and Zheng, 2005). Univariate and
multivariate Cox regression analyses were conducted to evaluate
the relationship between clinical characteristics and risk scores.
Besides, the same formula and regression coefficients described
above were applied to the GSE28735 and GSE62452 validation
cohorts to confirm the predictive applicability of our OS-related
hub gene prognostic PC signature. Patients in the validation set
were also stratified into low- and high-risk groups by the same
median risk score calculated from the TCGA database.

Hub Gene Evaluation
To validate the differential expression of the hub OS genes at
the protein level, data from the Human Protein Atlas (HPA)
online database6 were used to compare the protein levels between
normal pancreas and PC tumor tissues (Thul et al., 2017). The
expression profile of these OS genes in PC was also verified in
TCGA and validation cohorts. Furthermore, the Kaplan-Meier
method was applied to estimate each gene’s prognostic value in
the TCGA-PC cohort. Finally, a nomogram incorporated with
calibration plots was constructed based on the expression of hub
prognosis-associated OS genes to be used as a predictive tool for
the clinical outcome of patients with PC using the “rms” package
in R (Gu et al., 2020).

RESULTS

Identification of DEOGs
Bioinformatics analysis of publicly available datasets was
performed according to the workflow shown in Figure 1. A total
of 1399 OS genes were obtained from the GeneCards database,
and their differential expression between PC samples and normal
tissues was explored. Of these, 148 genes were screened out as
DEOGs in PC (FDR < 0.05 and | log2 FC| ≥ 2), including

6http://www.proteinatlas.org/
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FIGURE 1 | Flowchart describing the schematic overview of the study design.

66 upregulated and 82 downregulated genes. The distribution of
these genes is shown in Figures 2A–C.

Functional Enrichment Analysis of
DEOGs
Gene ontology analysis showed that, with respect to the
upregulated DEOGs, the most enriched biological processes
included the response to lipopolysaccharide, leukocyte migration,
and extracellular structure organization (Figure 3A), whereas
relative to the downregulated DEGs, intrinsic apoptotic
signaling pathway, cellular oxidant detoxification, and cellular
detoxification were most enriched terms (Figure 3B). In terms
of cellular components, the upregulated genes were linked
to enriched terms such as collagen-containing extracellular
matrix, COPII-coated endoplasmic reticulum to Golgi transport
vesicle, and focal adhesion (Figure 3A), whereas downregulated
genes were associated with cytoplasmic vesicle lumen, vesicle
lumen, and secretory granule lumen (Figure 3B). With regard
to the molecular function GO terms, upregulated OS genes
were linked to enriched terms including cytokine activity,

receptor-ligand activity, and chemokine activity (Figure 3A),
whereas the downregulated OS genes were associated with
glutathione transferase activity, antioxidant activity, and
transferase activity (Figure 3B). KEGG pathway analysis
showed that the upregulated genes were enriched in viral
myocarditis, proteoglycans in cancer, and fluid shear stress
and atherosclerosis (Figure 4A), whereas the downregulated
genes were mainly enriched in non-alcoholic fatty liver disease,
platinum drug resistance, and drug metabolism-cytochrome
P450 pathways (Figure 4B).

Construction of the PPI Network for
DEOGs and Screening of Key Modules
To further understand the inter-relationship among the DEOGs,
we constructed a PPI network with 131 nodes and 934 edges
(Figure 5A); in this network, the most significant module
was identified to have 25 nodes and 235 edges (Figure 5B).
Functional enrichment analysis indicated that the genes in
the key module were mainly enriched in leukocyte migration,
positive chemotaxis, and cell chemotaxis, whereas KEGG
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FIGURE 2 | Identification of differently expressed OS genes. (A) Volcano plot of DEOGs between TCGA-PC and GTEx-pancreas cohorts. (B) Heatmap of DEOGs.
(C) Histogram of DEOGs.

analysis indicated that these genes were significantly enriched
in pathways associated with bladder cancer, proteoglycans
in cancer, and AGE-RAGE signaling pathway in diabetic
complications (Table 1).

Screening of Prognosis-Related OS
Genes and Construction of a Genetic
Risk Score Model for Patients With PC
To further identify prognosis-associated OS genes, the 131
DEOGs identified from the PPI network were further analyzed
using univariate Cox regression analysis, revealing 25 OS genes
demonstrating significant (P < 0.05) associations with patient
overall survival (Figure 6A). Thereafter, a LASSO algorithm was

employed for specific OS gene range shrinkage (Figures 6B,C),
and seven hub OS genes (PLAU, CXCL10, CXCL9, MET, IL1RN,
PAH, and PKD1) were ultimately selected to compute the risk
score. All PC patients in the TCGA (Figure 6D) or validation
(Figure 6E) cohorts were separated into low- and high-risk
subgroups according to the median risk score. The coefficients
of the seven hub genes are shown in Table 2.

Associations Between Prognostic Risk
Score and Clinical Characteristics of PC
Patients
Univariate and multivariate Cox regression analyses
(Figures 7A,B) showed that our identified risk score was
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FIGURE 3 | Gene ontology enrichment analysis of DEOGs. (A) Top 10 classes of GO enrichment terms about up-regulated DEOGs in biological process (BP),
cellular component (CC), and molecular function (MF). (B) Top 10 classes of GO enrichment terms about down-regulated DEOGs in BP, CC, and MF.

FIGURE 4 | Kyoto encyclopedia of genes and genomes enrichment analysis of DEOGs. (A) Top 30 classes of KEGG enrichment terms about up-regulated DEOGs.
(B) Top 30 classes of KEGG enrichment terms about down-regulated DEOGs.

significantly connected with PC patient prognosis and emerged
as an independent prognostic feature. Expectedly, the predictive
value analysis of our risk score model in the TCGA cohort

showed that it was significantly associated with the overall
survival of patients with PC (P < 0.05), and the AUC (area under
the receiver operating characteristic curve) reached 0.798 and
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FIGURE 5 | Protein–protein interaction network and modules screening. (A) PPI network of DEOGs. (B) Critical module from PPI network. Green circles represent
down-regulated genes, and red circles represent up-regulated genes.

TABLE 1 | Kyoto encyclopedia of genes and genomes pathway and GO enrichment analysis of OS genes in key module.

Terms P-value FDR

GO enrichment

Biological processes Leukocyte migration 7.68E-10 3.68E-10

Positive chemotaxis 1.67E-09 7.98E-10

Cell chemotaxis 1.67E-09 7.98E-10

Positive regulation of leukocyte migration 1.67E-09 7.98E-10

Positive regulation of chemotaxis 2.05E-09 9.83E-10

Cellular component Cytoplasmic vesicle lumen 5.43E-09 2.82E-09

Vesicle lumen 5.43E-09 2.82E-09

Platelet alpha granule lumen 5.43E-09 2.82E-09

Platelet alpha granule 2.67E-08 1.38E-08

Secretory granule lumen 6.08E-08 3.16E-08

Molecular function Receptor ligand activity 6.77E-08 3.08E-08

Heparin binding 7.72E-06 3.51E-06

Chemoattractant activity 1.08E-05 4.89E-06

CXCR chemokine receptor binding 1.32E-05 6.01E-06

Cytokine activity 1.32E-05 6.01E-06

KEGG pathway Bladder cancer 1.73E-07 1.04E-07

Proteoglycans in cancer 2.05E-07 1.24E-07

AGE-RAGE signaling pathway in diabetic complications 1.36E-05 8.24E-06

Rheumatoid arthritis 1.90E-04 1.15E-04

Viral protein interaction with cytokine and cytokine receptor 2.17E-04 1.31E-04

0.898 for 3- and 5-year survival, respectively (Figures 7C,D). Of
note, the same prognostic capacity of seven genes’ prognostic
signature was also validated in the GEO validation cohort.
The survival analysis results also indicated that the overall
survival of patients with PC was significantly decreased, as
evidenced by an increased risk score in the validation cohort
(P = 0.029; Figure 7E). In addition, time-dependent receiver

operating characteristic (ROC) curve analysis of overall survival
in patients with PC indicated that our prediction model had
moderate predictive accuracy with an AUC value of 0.819
and 0.872 for 3- and 5-year survival, respectively, in the GEO
cohorts (Figure 7F), which demonstrated that our prognostic
model had reliable specificity and sensitivity for patients with
PC. Moreover, while compared with other clinicopathological
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FIGURE 6 | Construction of prognostic model in the TCGA and validation cohorts. (A) Univariate Cox regression analysis for identifying prognosis-related OS genes
in TCGA cohort. (B,C) LASSO analysis for determining the number of factors and constructing the prognosis prediction model. (D) Risk score distribution, survival
status, and expression heat map of TCGA cohort. (E) Risk score distribution, survival status, and expression heat map of validation cohort.

TABLE 2 | Seven prognosis-associated OS genes with PC in the TCGA dataset were identified by LASSO analysis.

OS name Univariate Cox regression analysis LASSO coefficient Value of log lambda

HR Lower 95% CI Upper 95% CI P-value

PLAU 1.5283 1.2431 1.8790 0.0001 0.0077 −2.6226

CXCL10 1.2917 1.1164 1.4947 0.0006 0.0879 −1.7799

CXCL9 1.2196 1.0701 1.3900 0.0029 0.0477 −2.1978

MET 2.1067 1.6230 2.7345 2.1552 0.5167 −1.1219

IL1RN 1.5113 1.2278 1.8602 0.0001 0.0620 −2.1525

PAH 0.5952 0.4225 0.8386 0.0030 −0.0620 −2.3475

PKD1 0.4222 0.2762 0.6454 0.0001 −0.1978 −1.6825

characteristics in the validation cohort, our ROC curve analysis
indicated that our risk model outcompeted other diagnostic
features in terms of reliably and accurately predicting 3-

and 5-year survival (Figure 7H). Of course, this improved
predictive value was also calculated in the TCGA cohort at 3 and
5 years (Figure 7G).
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FIGURE 7 | Efficacy evaluation of constructed prognostic model. Univariate and multivariate Cox regression analysis of the clinicopathological features in TCGA (A)
and validation (B) cohorts. (C) Survival curve of TCGA cohort. (D) TimeROC curves for forecasting overall survival in TCGA cohort. (E) Survival curve of validation
cohort. (F) TimeROC curves for forecasting overall survival in validation cohort. ClinicalROC curves for forecasting overall survival in TCGA (G) and validation (H)
cohort.

Pancreatic cancer at a higher T stage (Figure 8G), American
Joint Committee on Cancer (AJCC) stage (Figure 8H), or
tumor grade (Figure 8I) had a significantly increased risk score
(P < 0.05), indicating that our risk model reliably predicted PC
progression. Interestingly, tumors of grade 4 had the lowest risk
score, which may be due to the minimal number of grade 4 PC
tissues in the analyzed sample. Cancers histologically diagnosed
as pancreatic ductal adenocarcinoma (PDAC) were significantly
associated with higher risk scores than other PC subtypes in the
TCGA cohort (P < 0.05; Figure 8J). In the validation cohort,
patients with a higher tumor grade also had a higher risk score
(P < 0.05; Figure 8K).

To further clarify the modulation mechanism of the risk
score in predicting the overall survival of patients with PC, we
also determined the relationship between the clinicopathological
features and overall survival. The results indicated significantly
poorer outcomes for PC samples of the PDAC subtype or
PC samples with higher T stage, N stage, AJCC stage, and
tumor grade (Figures 8A–F), suggesting that our risk model is
strongly associated with the overall survival of PC patients by
accurately predicting cancer progression and subtypes. Heatmaps
constructed using the TCGA and validation cohorts for the

expression levels of the seven hub OS-related genes in the two
risk subgroups (Figures 8L,M) and showed significant differences
in tumor grade between groups, in both cohorts (P < 0.05).
These results indicated that our prognostic model has remarkable
potential for predicting PC outcomes and clinical features.

Prognostic Value of Hub OS-Related
Genes
As shown in Figures 9A,B, among the seven hub genes, the
expression levels of PLAU, CXCL10, CXCL9, MET, and IL1RN
were significantly elevated, whereas the expression levels of PAH
and PKD1 were significantly decreased in PC samples compared
with those in the normal pancreas samples. Similar results
were obtained by analyzing these hub OS-related genes’ protein
expression levels using the immunohistochemistry results from
the HPA database (Figures 9C–G). Kaplan-Meier analysis further
showed that the overall survival of patients with PC was inversely
associated with the gene expression levels of PLAU, CXCL10,
CXCL9, MET, and IL1RN (P < 0.05; Figures 10A–E); however,
the expression levels of PAH and PKD1 had positive associations
with the prognosis of patients with PC (P < 0.05; Figures 10F,G).
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FIGURE 8 | Evaluation the relationship between the risk score and clinicopathological parameters in patients with PC. (A–E) Survival curve of clinicopathological
characters in TCGA cohort. (F) Survival curve of clinicopathological characters in validation cohort. (G–J) Correlation analysis between the risk score and
clinicopathological characters in TCGA cohort. (K) Correlation analysis between the risk score and clinicopathological characters in validation cohort. The heatmap
shows the distribution of clinicopathological features and OS genes expression in two risk subgroups from the TCGA (L) and validation (M) cohorts.

A similar prognostic trend was also discovered in the validation
cohort (Supplementary Figure 1), whereas only genes PLAU and
MET genes were significantly associated with the prognosis of
patients with PC (P < 0.05), which might be due to the small
number of PC samples and the unequal composition of patients
with PC (in the validation cohort, no PC patient had an overall
survival of more than 3 years). Therefore, further experiments
are warranted to validate the specific role of these seven hub
OS-related genes in the prognosis of patients with PC.

Nomogram Construction
Finally, to enable the identified hub genes to be applied for
predicting the overall survival of patients with PC in a practical
setting, the nomogram plots based on the expression levels of the
seven hub genes were constructed to predict the clinical outcome
of patients with PC in the TCGA-PC (Figure 11A) and validation
cohorts (Figure 11C). The calibration plots demonstrated that
our nomograms showed good agreement between the predicted
and observed outcomes (Figures 11B,D).

DISCUSSION

Pancreatic cancer is one of the most common malignancies and
a major cause of cancer-related deaths worldwide (Kamisawa

et al., 2016). Although many novel diagnostic techniques and
molecular biomarkers have been recently discovered, they have
not sufficiently improved the early diagnosis and prognosis of
patients with PC (Yan et al., 2019). Therefore, it is imperative to
identify more PC prognosis-associated biomarkers and elucidate
the precise mechanism underlying cancer progression. In the
present study, we aimed to identify reliable molecular biomarkers
for the prognostic assessment of PC and provide a basis
for treatment decisions. To this end, we focused on OS as
a confirmed mechanism of cancer progression and applied
differential expression analysis to identify candidate DEOGs
between PC and healthy pancreatic samples. A total of 148
DEOGs were selected for further exploration. In addition,
the KEGG pathway enrichment analysis indicated that our
identified DEOGs were not only significantly associated with the
prognosis of pancreatic cancer, but also played a critical role in
numerous other tumors, including bladder cancer, hepatocellular
carcinoma, prostate cancer, melanoma, and colorectal cancer,
prompting us to further explore the potential role of OS genes
in other tumors.

The PPI network, univariate Cox regression, and LASSO
analysis of the DEOGs identified a total of seven genes (PLAU,
CXCL10, CXCL9, MET, IL1RN, PAH, and PKD1) as hub
prognosis-associated genes for further exploration. The mRNA
and protein expression profiles of these seven genes using
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FIGURE 9 | The expression of prognosis-related OS genes in patients with PC. The violin plot reveals the transcription expression of OS genes in TCGA (A) and
validation (B) cohorts. HPA database verifies the protein expression of PLAU (C), MET (D), IL1RN (E), PAH (F), and PKD1 (G) in PC.

the expression data from TCGA-PC and GEO (GSE28735 and
GSE62452) cohorts and the HPA database revealed that PLAU,
CXCL10, CXCL9, MET, and IL1RN were overexpressed, whereas
PAH and PKD1 were downregulated in PC tissues. Kaplan-Meier
analysis further revealed that these overexpressed hub genes were
negatively associated with the overall survival of patients with PC,
whereas PAH and PKD1 expression levels positively correlated
with patient outcomes. These results might correspond with the
modulation effects of these genes in PC metastasis and growth, as
previously reported.

PLAU is reportedly significantly overexpressed in PC samples
and associated with pancreatic cell invasive ability (Bournet
et al., 2012; Liu et al., 2016). Several bioinformatics analyses
also indicated that PLAU has prognostic value in PC (Lu

et al., 2018; Chen et al., 2019). ELR-negative CXC chemokines,
CXCL9 and CXCL10 were shown to induce lymphocytic
migration and attenuate angiogenesis, leading to longer overall
survival in patients with advanced PDAC (Qian et al., 2019).
However, some studies also indicated that these chemokines
might play tumorigenic roles by promoting tumor metastasis
and proliferation (Mir et al., 2015; Wightman et al., 2015);
thus, the specific roles of CXCL9 and CXCL10 in PC remain
unclear. MET was originally identified as an oncogene that
displayed 7-fold increased expression levels in PC samples, and
its overexpression directly correlated with tumor grade and an
aggressive PC phenotype (Modica et al., 2018). Protein kinase
D1 (PKD1) is one of three members of the PKD family of
serine/threonine kinases, which can be activated by intracellular
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FIGURE 10 | Validation the prognostic value of the prognosis-related OS genes of PLAU (A), CXCL10 (B), CXCL9 (C), MET (D), IL1RN (E), PAH (F), and PKD1 (G)
in TCGA-PC cohort by Kaplan-Meier analysis.

FIGURE 11 | Construction of nomogram based on the expression of 7 hub OS genes. The nomogram (A) and calibration plots (B) of hub OS genes in TCGA
cohort. The nomogram (C) and calibration plots (D) of hub OS genes in validation cohort.
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OS (Waldron and Rozengurt, 2000), and its activation has proven
to contribute to the initiation of PC (Döppler and Storz, 2017).
Although some of our identified hub genes were previously
reported to be significantly associated with PC progression, no
study has systematically analyzed the specific prognostic role
of OS genes in PC. In the current study, we demonstrated
that the differential expression of seven hub OS-related genes
is significantly associated with patients’ overall survival and
involved in PC development. Nevertheless, to validate these
OS-related genes as potential prognostic biomarkers for PC,
more experimental evidences from prospective clinical and pre-
clinical studies are needed. Future studies must verify whether PC
patients could benefit from the modulation of these genes and the
exact relationship between these genes and PC cells.

Moreover, to identify whether these specific OS genes could
be used as prognostic factors, we constructed a novel prognostic
prediction model based on the expression of the seven hub
genes. To our knowledge, this is the first OS-associated risk
model for prognostic prediction. Univariate and multivariate
Cox regression analyses revealed that our risk model had
reliable prognostic value for PC and could be used as an
independent prognostic factor in PC. Survival and ROC analyses
confirmed the advantage of the biological implications of our
OS hub genes-related risk model for predicting PC prognosis.
They showed improved predictive accuracy compared with
conventional clinicopathological features, such as age, sex, AJCC
stage, tumor grade, tumor site and tumor subtype. In addition,
considering the critical role of OS in various stages of cancer
progression and carcinogenesis (Reuter et al., 2010; Hecht
et al., 2016), we further assessed the connections between
risk score and PC clinical factors and discovered that the
constructed risk model was significantly associated with T stage,
AJCC stage, grade, and subtype of cancer samples, which was
consistent with the prognostic effects of clinical features in
overall survival. The AJCC staging system is one of the most
widely used clinicopathological parameters for PC prognosis
prediction (Kamarajah et al., 2017). However, the AJCC staging
model is still not suitable for elucidating comprehensive PC
behaviors and does not have sufficient diagnostic accuracy for
PC (Yan et al., 2019). A similar conclusion was made in this
study. Compared with the AJCC stage, our risk model not only
showed a stronger relationship with PC prognosis but also could
effectively predicted other PC features, including tumor grade
and subtypes. These results indicate that our risk model has great
advantages in the prognosis prediction of patients with PC. Our
nomogram analysis confirmed the credibility of the identified
OS genes in predicting the overall survival of patients with PC.
Taken together, our results demonstrate the prognostic value
of an OS-related gene-based risk model for patients with PC
and suggest a novel method for evaluation the survival rate of
PC patients.

Nonetheless, this study has some limitations. First, this study
was designed as a retrospective analysis; thus, more prospective

research should be performed to verify our results. Second,
our results lack in vitro or in vivo exploration to confirm
the reliability of the mechanism analysis. Therefore, several
experiments are needed to prove the mechanistic connections
between the identified hub genes and PC progression.

CONCLUSION

In conclusion, through a series of bioinformatics analyses, we
identified seven hub OS-related genes that are significantly
associated with the overall survival of patients with PC.
We also successfully established a prognostic model with
powerful predictive effects and developed an effective nomogram
composed of the gene signature in PC patients. Thus, our study
foretells that these OS genes will greatly contribute to explain the
pathogenesis and progression mechanism of PC and may serve as
potential therapeutic targets to treat PC patients.
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Glioblastoma multiforme (GBM) is the most aggressive primary tumor of the central
nervous system. As biomedicine advances, the researcher has found the development
of GBM is closely related to immunity. In this study, we evaluated the GBM
tumor immunoreactivity and defined the Immune-High (IH) and Immune-Low (IL)
immunophenotypes using transcriptome data from 144 tumors profiled by The Cancer
Genome Atlas (TCGA) project based on the single-sample gene set enrichment
analysis (ssGSEA) of five immune expression signatures (IFN-γ response, macrophages,
lymphocyte infiltration, TGF-β response, and wound healing). Next, we identified six
immunophenotype-related long non-coding RNA biomarkers (im-lncRNAs, USP30-
AS1, HCP5, PSMB8-AS1, AL133264.2, LINC01684, and LINC01506) by employing a
machine learning computational framework combining minimum redundancy maximum
relevance algorithm (mRMR) and random forest model. Moreover, the expression level
of identified im-lncRNAs was converted into an im-lncScore using the normalized
principal component analysis. The im-lncScore showed a promising performance
for distinguishing the GBM immunophenotypes with an area under the curve
(AUC) of 0.928. Furthermore, the im-lncRNAs were also closely associated with
the levels of tumor immune cell infiltration in GBM. In summary, the im-lncRNA
signature had important clinical implications for tumor immunophenotyping and guiding
immunotherapy in glioblastoma patients in future.

Keywords: long non-coding RNA, biomarker, immunophenotype, machine learning, glioblastoma multiforme

INTRODUCTION

Glioblastoma multiforme (GBM) is the most aggressive type of primary brain tumor in adults, with
a median survival of 14.6 months (Kaffes et al., 2019). The emergence of tumor immunotherapy
has revolutionized GBM treatment and its success is highly dependent on the development and
activation of immune cells in the host microenvironment (Pardoll, 2012; Daud et al., 2016). In
the GBM microenvironment, the non-neoplastic cells are mainly from the innate immune system,
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which can interact with neoplastic tumor cells and play an
important role in tumor growth and progression (Engler et al.,
2012; Feng et al., 2015; Hu et al., 2015). Therefore, evaluation
of GBM tumor immunoreactivity is critical in determining
personalized treatment.

Long non-coding RNAs (lncRNAs) are defined as non-coding
RNAs of more than 200 nt in length (Zhai et al., 2018). The
discovery of lncRNAs has revealed a new dimension to the
pathological processes of many diseases, including the occurrence
and development of cancer (Martens-Uzunova et al., 2014; Zhou
et al., 2014). Moreover, recent studies showed that lncRNAs play
an important role in tumor immune escape (Pei et al., 2018;
Wang et al., 2019; Jin et al., 2020). For example, UCA1 is able
to promote proliferation, migration, immune escape, and inhibit
apoptosis in gastric cancer (Wang et al., 2019); SNHG1 can
regulate the differentiation of Treg cells and affect the immune
escape of breast cancer (Pei et al., 2018). Besides, immune-
associated lncRNAs can also serve as improving prognosis and
immunotherapy response biomarkers (Zhou et al., 2018; Sun
et al., 2020). Therefore, identification of lncRNA biomarkers
for tumor immunoreactivity may provide new insights into the
treatment of GBM patients.

In this study, we systemically characterized the GBM
tumor immune microenvironment in the TCGA GBM
cohort. Moreover, we defined the GBM Immune-High
(IH) and Immune-Low (IL) subtype based on five immune
expression signatures including macrophages, lymphocyte
infiltration, TGF-β response, IFN-γ response, wound healing.
Furthermore, we identified six immunophenotype-related
lncRNA signatures (im-lncRNAs, including USP30-AS1, HCP5,
PSMB8-AS1, AL133264.2, LINC01684, and LINC01506) using
the minimum redundancy maximum relevance (mRMR)
feature selection method and the random forest model. The
im-lncRNAs showed good performance in distinguishing tumor
immunophenotypes and were closely associated with the levels
of tumor immune cell infiltration. These results suggested the
im-lncRNAs had the promising potential for clinical diagnosis of
GBM immunophenotypes.

MATERIALS AND METHODS

Data Acquisition and Pre-processing
All glioblastoma multiforme tissue samples were obtained from
the surgical resection tissue of GBM patients (n = 10), non-tumor
brain tissue was used as the negative control group (n = 5).
The tissue samples were stored in liquid nitrogen. All patients
have signed informed consent, and the study was supervised and
approved by the Ethics Committee of The First Affiliated Hospital
of Harbin Medical University.

The Cancer Genome Atlas (TCGA) level 3 gene/lncRNA
expression data, and clinical data of GBM (n = 149, 144
cancer samples, 5 normal samples) were obtained from the
Genomic Data Commons (GDC, available at https://www.cancer.
gov/tcga). Two independent datasets GSE79671 (Urup et al.,
2017) and GSE121810 (Cloughesy et al., 2019) were used for the
validation of im-lncRNAs. For the gene/lncRNA expression data,

we removed the genes/lncRNAs that were not expressed over 70%
of the samples. The remaining 18,094 genes and 18,567 lncRNAs
were used for subsequent analysis.

Total RNA Extraction and Quantitative
Real-Time PCR
According to the manufacturer’s instructions, total RNA
was extracted from the GBM tissues and non-tumor brain
tissues using TRIzol Reagent (Invitrogen, Carlsbad, CA,
United States). The concentration of the total RNA was detected
by spectrophotometer (Thermo ScientificTM NanoDrop 2000c).
Total RNA (1000 ng) was reverse transcribed into cDNA
using qPCR RT Kit (TOYOBO, Japan). The relative level of
lncRNAs to the housekeeping gene GAPDH was determined by
qRT-PCR using FastStart Universal SYBR Green Master (ROX)
(Roche, Germany). All primers used in this study is showed
in Supplementary Table 1. Analysis between the two groups
was performed by an unpaired t-test, P < 0.05 was considered
statistically significant.

Identification of Tumor Immune
Subtypes of GBM
Based on five immune expression signatures reorganized by
Vesteinn et al. (Lek et al., 2016) including IFN-γ response
(Wolf et al., 2014), macrophages/monocytes (Beck et al., 2009),
overall lymphocyte infiltration (dominated by T and B cells)
(Calabro et al., 2009), TGF-β response (Teschendorff et al.,
2010), wound healing (Chang et al., 2004), we evaluated the
enrichment scores (ESs) of GBM samples using the single-sample
gene set enrichment analysis (ssGSEA) (Barbie et al., 2009). The
ssGSEA was based on the R package “GSVA.” Furthermore, we
used the ESs of immune expression signatures to perform a
consensus clustering on 149 cancer samples using the R package
“ConsensusClusterPlus” (Monti et al., 2003).

Evaluation of Tumor Purity,
Tumor-Infiltrating Immune Cells, and
Cytolytic Activity
The tumor purity of corresponding TCGA samples was evaluated
using the ESTIMATE score calculated by the R package
“ESTIMATE” (Yoshihara et al., 2013). The higher ESTIMATE
score, the lower tumor purity. The tumor immune cell infiltration
levels were estimated based on the gene expression profile by
Tumor Immune Estimation Resource (TIMER) (Li et al., 2017).
Here, six tumor-infiltrating immune cells (B cells, CD4 T cells,
CD8 T cells, macrophages, neutrophils, and myeloid dendritic
cells) were considered. Cytolytic activity (CYT) was calculated
as the geometric mean of the GZMA gene and PRF1 gene (as
expressed in FPKM) (Rooney et al., 2015).

Differential Expression Analysis of
lncRNAs
We first calculated the log2(fold change) (log2(FC)) of each
lncRNA between the IL and normal samples, and between the IH
and normal samples, respectively. Then we scaled the expression
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level (log2FPKM) of each lncRNA and into a Z-score. Next, we
compared lncRNA expression differences between the IL and
normal samples, and between the IH and normal samples, using
the Student’s t-test, respectively. The P-values were corrected
using the Benjamini-Hochberg adjustment. The lncRNAs with
FDR < 0.01 and | log2FC| > 2 were considered as the
differentially expressed lncRNAs.

Identification of im-lncRNAs
We first divided the GBM cancer samples into three parts (two
“training” sets and one “test” set) to apply three-fold cross-
validation. Next, we screened the lncRNA features with minimal
redundancy using the mRMR feature selection method in the
training set (Hanchuan et al., 2005). Further, we trained a random
forest model based on the top 5% mRMR lncRNA features. The
performance of the random forest model was assessed through
prediction making in the test set and the computation of the
balanced error rate (BER). For a more robust estimation of the
BER, three-fold cross-validation was applied 1,000 times and for
each run, randomized data were used as the negative control.
The signature size, for which no more improvement of the BER
was observed (6 features signature size), was selected as the
final size. This process generated 3 × 1000 output signatures.
The distance (D) between these signatures was defined as
(Jeschke et al., 2017):

D = 1−
∑6

i=1 cor (F1i, F2i)
6

(1)

where cor represents the Spearman’s correlation coefficient
(Rho); F1i to the ith feature from signature 1 and F2i to the ith

feature from signature 2 after sorting the features to maximize
the sum of the Rho based on the changes in the Gini index. For
each signature, the sum of its pairwise distance to all other output
signatures was computed, and the signature with the smallest sum
was assumed to be the most representative and chosen as the final
lncRNA signature (im-lncRNA).

Construction of im-lncScore
To conveniently evaluate the GBM tumor immunophenotypes,
we constructed the im-lncScore. Firstly, we applied principal
component analysis (PCA) on the Z-scores of im-lncRNAs.
Then the first component was used as the final im-lncScore for
the cancer samples.

Analysis of Association Between
im-lncRNAs and Tumor Immune Cell
Infiltration
Firstly, we calculated the median infiltration levels of each
immune cell; if the sample infiltration level was higher than
the median level, the sample was defined as a high immune
infiltration sample; if the sample infiltration level was lower than
the median level, the sample was defined as a low immune
infiltration sample. Then, the univariate logistic regression was
performed to assess the association between each im-lncRNA
and the infiltration levels of each immune cell. The OR, 95%
confidence level of the OR, and P-values were calculated for
each immune cell. The logistic regression was based on the
R package “epiDisplay.”

FIGURE 1 | The tumor immune microenvironment of GBM. (A) Heatmaps showing the ssGSEA of immune expression signatures (first five lines), the levels of
tumor-infiltrating immune cells (sixth to twelfth lines), and tumor purity (last three lines) in GBM patients. (B) The expression levels of effectors of immunity
log2(FPKM+1). (C) The CYT of GBM patients. (D) Enrichment analysis of GBM subtypes and GBM immunophenotypes. (E) The KM survival curve showing the
impact of immune subtypes on the survival of ME GBM patients. **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Identification of Co-expressed Genes
With im-lncRNAs
Based on the expression profiles of im-lncRNAs and genes, we
calculated the Spearman’s correlation coefficient (Rho) between
im-lncRNAs and genes. The raw P-values (Pr) were adjusted
by multiple hypotheses using a permutation method. For each
gene, the expression value (FPKM) was held consistent, and 1,000
random im-lncRNAs were used to perform the same Spearman’s
correlation test, generating a set of 1,000 permutation P-values
(Pp). Finally, an empirical P-value (Pe) was corrected using the
following formula (which introduces a pseudo-count of 1). The
gene with the Rho>0.6 and Pe <0.01 were treated as the co-
expressed genes of im-lncRNAs.

Pe =
num

(
Pp ≤ Pr

)
+ 1

1001
(2)

Functional Enrichment Analysis
To annotated the biological functions of im-lncRNAs, we
performed functional enrichment analysis on the co-expressed
genes of im-lncRNAs using Metascape (Zhou et al., 2019). For
each co-expressed gene list, pathway and process enrichment

analysis have been carried out with the following ontology
sources: KEGG Pathway, GO Biological Processes, Reactome
Gene Sets, Canonical Pathways, and Hallmark Gene Sets.

RESULTS

Characterizing the Immune
Microenvironment of GBM
We analyzed 149 GBM RNA-seq expression profiles from TCGA.
To evaluate the tumor immune activity, we used a previously
described technique employing ssGSEA (Barbie et al., 2009)
based on the five immune expression signatures reorganized
by Vesteinn et al. (Lek et al., 2016) including IFN-γ response
(Wolf et al., 2014), lymphocyte infiltration (Calabro et al., 2009),
macrophages/monocytes (Beck et al., 2009), TGF-β response
(Teschendorff et al., 2010), wound healing (Chang et al.,
2004). The result showed that there were higher ESs of all
immune expression signatures in cancer than in normal samples
(Figure 1A, IFN-γ P = 1.01e-03, leukocyte infiltration P = 1.83e-
04, macrophages P = 5.80e-08, TGF-β P = 1.55e-05, and wound
healing P = 3.33e-08). Moreover, based on the ESs of immune

FIGURE 2 | Identification of im-lncRNAs in GBM. (A) Volcano plots showing the differentially expressed lncRNAs between IH/IL and normal samples, respectively.
The y-axis shows the -log10(FDR). The x-axis shows the log2(FC) (B) The classification of differentially expressed lncRNAs. (C) The pipeline of identifying
im-lncRNAs. (D) The evaluation of model BER performance. (E) Heatmap showing the im-lncRNAs expression in IH and IL samples, respectively. (F) The
up-regulated six lncRNAs expression in glioblastoma multiforme tissues was confirmed by qRT-PCR (*P < 0.05).
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expression signatures, we subclassified the cancer samples using
the consensus clustering method. The analysis resulted in 2
robust clusters: C1 and C2. Notably, the ESs of IFN-γ, leukocyte
infiltration, macrophages in C1 were significantly higher than
in C2 (Figure 1A, IFN-γ P = 1.46e-29, leukocyte infiltration
P = 3.43e-18, and macrophages P = 2.60e-16). And, there was
no significant difference in the ESs of TGF-β (P = 3.46e-01)
and wound healing (P = 1.09e-01) between the two clusters.
Furthermore, we evaluated the levels of tumor purity and tumor-
infiltrating immune cells between the two clusters. There were
lower tumor purity (P = 4.75e-16) and higher percent of tumor-
infiltrating immune cells (B cell P = 1.48e-05, T cell CD4
P = 8.26e-4, Neutrophil P = 3.58e-06, and macrophage P = 7.14e-
10) in C1 than C2 (Figure 1A). Therefore, we annotated the C1
sample was the Immune-High (IH) subtype, and the C2 sample
was the Immune-Low (IL) subtype.

To further verify the levels of immune activation in different
immune subtypes, we examined the expression levels of common

effectors of immunity, such as granzyme A (GZMA), granzyme
B (GZMB), and perforin (PRF1) (Figure 1B; Mandal et al., 2016)
and the immune cytolytic activity (CYT, an indicator of tumor
local immunity, Figure 1C; Rooney et al., 2015). Remarkably,
these effectors of immunity and CYT were much higher in the
IH subtype compared with the IL subtype.

Glioblastoma multiforme can be subclassified into distinct
molecular subtypes based on their expression profiles: classical
(CL), mesenchymal (ME), neural (NE), and proneural (PN)
(Verhaak et al., 2010; Ceccarelli et al., 2016). Here, we also
enriched the tumor immune subtypes into the GBM molecular
subtypes using Fisher’s exact test. The previous study indicated
ME GBM was the most immunogenic among the four subclasses
while the PN subtype was the least immunogenic (Doucette et al.,
2013). Our result also showed that ME GBM was significantly
enriched in the IH subtype, while CL and PN GBM tumors were
significantly enriched in the IL subtype (Figure 1D). Besides,
by analyzing the survival of ME GBM patients between IL and

FIGURE 3 | im-lncRNAs enable evaluate GBM immunophenotypes. (A) ROC curves for prediction of GBM tumor immunophenotypes based on the im-lncScore
(orange) or immune expression signatures (other colors) in the TCGA GBM cohort. (B) Density plot showing the distribution of im-lncScore in IH and IL samples.
(C) Heatmap showing the im-lncScore (the first line), ESs of immune expression signatures (second to sixth lines), and infiltration levels of tumor immune cells (last six
lines) in GSE121810 cohort.
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IH subtypes, we found the survival of ME with IH patients was
significantly better than ME with IL patients (Figure 1E).

Identification of
Immunophenotype-Related lncRNA
Biomarkers in GBM
lncRNA, an emerging biomarker, plays an important role in
tumor immune regulation (Li et al., 2020). However, few studies
focus on the ability of lncRNA in tumor immunophenotyping.
To identify the immunophenotype-related lncRNA biomarkers
(im-lncRNAs), we first characterized the differentially expressed
lncRNAs between the IH/IL and normal samples, respectively
(FDR < 0.01 and | log2FC| > 2, see section “Materials
and Methods,” Figure 2A). We identified 261 “Constitutive”
lncRNAs differentially expressed in both immune subtypes (142
upregulated and 119 downregulated), 145 “IH-specific” lncRNAs
only differentially expressed in IH subtype (72 upregulated and 73
downregulated), and 70 “IL-specific” lncRNAs only differentially

expressed in IL subtype (55 upregulated and 7 downregulated,
Figure 2B).

Next, we applied a machine learning method in differentially
expressed lncRNAs to identify the im-lncRNAs (Figure 2C).
Firstly, under three-fold cross-validation (dividing 144 cancer
samples into three parts, two “training” sets [96 samples],
and one “test” set [48 samples]), the mRMR feature selection
method was used to establish a small signature with minimal
redundancy and selected the top 5% lncRNA features to
train the random forest models. Next, in the test set, the
balanced-error rate (BER) was calculated to evaluate the model
performance. For a more robust estimation of the BER, three-
fold cross-validation was applied 1,000 times. In each run,
randomized data were used as the negative control. The
signature size, for which no more improvement of the BER
was observed (6 features signature size), was selected as the
final size (Figure 2D). This pipeline generated 3 × 1000
output signatures and the signature with the minimum distance
summed was assumed to be the most representative (see

FIGURE 4 | The association between im-lncRNAs and tumor immune cell infiltration. (A–F) The im-lncRNAs were correlated with immune cell infiltration. The dots
represent the odds ratio (OR) of the Wald test and the error bars show the 95% confidence intervals of the OR. (A,B) cells; (B) CD4 T cells; (C) CD8 T cells; (D)
neutrophils; (E) macrophages; and (F) myeloid dendritic cells.
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section “Materials and Methods”). Based on the approach,
we identified 6 im-lncRNAs (USP30-AS1, HCP5, PSMB8-
AS1, AL133264.2, LINC01684, LINC01506). Notably, USP30-
AS1, HCP5, PSMB8-AS1, and LINC01506 were “IH-specific”
lncRNAs, and AL133264.2, LINC01684 were “Constitutive”
lncRNAs. The expression levels of all im-lncRNAs were
significantly higher in IH than IL samples (USP30-AS1 P = 1.12e-
18, HCP5 P = 8.07e-15, PSMB8-AS1 P = 1.15e-15, AL133264.2
P = 4.07e-10, LINC01684 P = 1.50e-11, and LINC01506
P = 3.00e-10, Figure 2E). Besides, all of 6 im-lncRNAs were
also upregulated in GBM cancer than normal samples, which
had been validated by RT-qPCR in five non-tumor brain tissues
and ten GBM tissues (Figure 2F). To ensure that the recognized
im-lncRNAs were robust, we also employed the same way on
an independent dataset [GSE79671 (Urup et al., 2017)]. The
results showed that six im-lncRNAs closely associated with
the GBM immunophenotypes and four of the six (USP30-
AS1, HCP5, AL133264.2, and LINC01506) were consistent
with the im-lncRNAs identified in the TCGA GBM cohort
(Supplementary Figures 1A–C).

Evaluation of GBM Tumor
Immunophenotyping Efficacy of
im-lncRNAs
To further evaluate the relationship between im-lncRNAs and
GBM immunophenotyping, we transformed the individual
expression values of the im-lncRNAs into a score (im-
lncScore) by applying a principal component analysis (PCA).
We assessed the potential of the im-lncScore to predict GBM
immunophenotypes in 144 cancer samples. Compared with the
immune expression signatures, the im-lncScore also showed a
promising performance. An AUC of 0.928 (95% CI, 0.87–0.97)

suggested a predictive value for the im-lncScore (Figure 3A).
Moreover, the optimal cutoff point determined by the ROC
curve analysis was 0.0 (95% CI, 0.83–0.90). We also found
that the im-lncScores of IH samples were usually greater than
the optimal cutoff, while the opposite was observed for the IL
samples (Figure 3B).

Besides, we also validated the immunophenotyping ability of
im-lncScore in an independent dataset [GSE121810 (Cloughesy
et al., 2019)]. The dataset included 29 GBM samples. We first
calculated the im-lncScore to subclassify the GBM samples into
IH/IL subtype. 13 IH and 16 IL samples were identified in the
dataset (Figure 3C). Next, we also evaluated the ESs of five
immune expression signatures and infiltration levels of tumor
immune cells. As described above, there were higher ESs of IFN-
γ, leukocyte infiltration and macrophages signatures, and higher
levels of tumor-infiltrating immune cells in IH than IL samples
(Figure 2C). These results suggested that the im-lncScore does
not require a complex algorithm to effectively subclassify the
GBM tumor immunophenotypes, which also further indicated
the important role of im-lncRNAs in GBM tumor immunity.

Im-lncRNAs Are Associated With the
Tumor Immune Cell Infiltration
To evaluate whether the im-lncRNAs associated with the levels
of tumor immune cell infiltration, we first subclassified the
cancer samples into high and low immune infiltration groups by
comparing the sample immune infiltration levels to the median
immune infiltration level of each immune cell. And then, the
univariate logistic regression was performed based on the six im-
lncRNAs expression value and im-lncScore. We found that the
im-lncRNAs significantly correlated with the infiltration level of
multiple immune cells (Figures 4A–F). Notably, the im-lncScore

FIGURE 5 | Inferring the biological functions of im-lncRNAs. (A) The co-expressed im-lncRNAs-genes network. (B) Network of enriched terms represented as pie
charts, where pies are color-coded based on the im-lncRNAs.
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also showed the significantly correlation with multiple immune
cell infiltration levels (except for T cell CD8). Besides, HCP5
and PSMB8-AS1 have been demonstrated could be the tumor-
infiltrating immune-related lncRNA signature of non-small cell
lung cancer and closely associated with outcome and immune cell
infiltrates (Sun et al., 2020). These results suggested that the im-
lncRNAs played crucial roles in the tumor immune infiltration.

The Functional Enrichment Analysis of
im-lncRNAs
To further explore the biological functions of im-lncRNAs, we
identified the co-expressed genes with the im-lncRNAs using
the Spearman’s correlation test. The P-values were adjusted
by multiple hypotheses. A total of 459 co-expressed im-
lncRNA-gene pairs were identified (Figure 5A). Furthermore, we
performed functional enrichment analysis on the co-expressed
genes using the Metascape (Zhou et al., 2019). The result
showed that the functions of co-expressed genes of each
im-lncRNAs were all significantly enriched in the immune-
related terms, such as hallmark interferon-gamma response
(M5913), myeloid leukocyte activation (GO:0002274), tumor
necrosis factor superfamily cytokine production (GO:0071706),
ER-Phagosome pathway (R-HSA-1236974), etc. (Figure 5B).
Moreover, we also found the im-lncRNAs were closely correlated
with the GBM-related immune pathways (Li et al., 2020). For
instance, the HCP5 and PSMB8-AS1 were related to the Antigen
Processing and Presentation, Antimicrobials, and Natural Killer
Cell Cytotoxicity; AL133264.2 was related to Interleukins; the
LINC01684 and USP30-AS1 were related to Antimicrobials.
These results further validated the important role of im-lncRNAs
in the GBM immune regulation.

DISCUSSION

Accumulating evidence suggests that lncRNA serves as a
specific molecular marker for tumor immunoreactivity (Wang
et al., 2019; Sun et al., 2020). In this study, we analyze the
role of lncRNAs in IH and IL tumor immunophenotypes.
Moreover, we identify im-lncRNAs based on the machine
learning method. Furthermore, we construct an im-lncScore
using the expression value of im-lncRNAs. The im-lncScore
shows a good performance for distinguishing the GBM tumor
immunophenotypes (AUC = 0.928, 95%CI: 0.885–0.970). The
im-lncScore does not need a complex algorithm to effectively
reflect the patient tumor immunoreactivity. Furthermore, these
im-lncRNAs are also closely associated with the levels of tumor
immune cell infiltration. This evidence indicates that the im-
lncRNAs have the potential to be an important indicator for

future clinical diagnosis of GBM immunophenotypes. However,
these results are still at the level of the initial calculation, so to
ensure accuracy the biology experiments are required to further
validate the role of im-lncRNAs. Besides, due to the limited scale,
we only use the TCGA data to train our models. Therefore, as the
scale of data increases, we will continue to validate the efficiency
of im-lncRNAs in GBM.

In summary, im-lncRNAs play an important role
in tumor immunophenotyping. Identification of GBM
immunophenotypes will provide us a novel insight to improve
the therapeutic strategy of GBM. Therefore, the im-lncRNAs
has the promising potential for clinical diagnosis of GBM
immunophenotypes in the future.
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Patients with estrogen receptor-negative breast cancer generally have a worse prognosis

than estrogen receptor-positive patients. Nevertheless, a significant proportion of the

estrogen receptor-negative cases have favorable outcomes. Identifying patients with

a good prognosis, however, remains difficult, as recent studies are quite limited.

The identification of molecular biomarkers is needed to better stratify patients. The

significantly mutated genes may be potentially used as biomarkers to identify the subtype

and to predict outcomes. To identify the biomarkers of receptor-negative breast cancer

among the significantly mutated genes, we developed a workflow to screen significantly

mutated genes associated with the estrogen receptor in breast cancer by a gene

coexpression module. The similarity matrix was calculated with distance correlation to

obtain gene modules through a weighted gene coexpression network analysis. The

modules highly associated with the estrogen receptor, called important modules, were

enriched for breast cancer-related pathways or disease. To screen significantly mutated

genes, a new gene list was obtained through the overlap of the important module genes

and the significantly mutated genes. The genes on this list can be used as biomarkers

to predict survival of estrogen receptor-negative breast cancer patients. Furthermore,

we selected six hub significantly mutated genes in the gene list which were also able

to separate these patients. Our method provides a new and alternative method for

integrating somatic gene mutations and expression data for patient stratification of

estrogen receptor-negative breast cancers.

Keywords: breast cancer patient stratification, estrogen receptor-negative, distance correlation, significantly

mutated gene, gene coexpression network

1. INTRODUCTION

Breast cancer is a heterogeneous disease with many subtypes which exhibits significant differences
in response to therapy and patient outcomes (Jonasson et al., 2019). Breast cancer has been known
to be an endocrine-related cancer (Wu et al., 2020), and the majority of breast cancer subtypes
are hormone-associated (DeSantis et al., 2017; Xu et al., 2019). The expression of the estrogen
receptor (ER), progesterone receptor (PR), and human epithelial growth factor receptor 2 (HER2)
as predictive and/or prognostic markers has been well established in multiple studies (Francis
et al., 2019). Endocrine therapies that target the ER have long been the cornerstone of therapy
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approaches for the majority of breast cancer patients. However,
20–30% of breast tumors do not express ER and are not
responsive to existing endocrine therapies (Ni et al., 2011). The
prognosis of estrogen receptor-negative (ER−) breast cancer
is worse than estrogen receptor-positive (ER+) breast cancer
in most situations, but ER− breast cancer patients do not
always have a poor clinical outcome. Due to the lack of reliable
biomarkers, it is impossible to identify ER− tumors with a
good prognosis (Teschendorff et al., 2007; Zhang et al., 2016).
Several studies have revealed that different chromosomal and
gene expression patterns are present in patients with different
estrogen receptor statuses (Zhang et al., 2009; Fohlin et al., 2020).
Thus, an accurate grouping of ER− breast cancer into clinically
relevant subtypes is of particular importance for therapeutic
decision making.

Cancer is often driven by the accumulation of genetic
alterations. Until now, the somatic mutation landscapes and
signatures of more than a dozen major cancer types have
been reported. However, pinpointing the driver mutations and
cancer genes frommillions of available cancer somatic mutations
remains a significant challenge (Cheng et al., 2016). In The
Cancer Genome Atlas (TCGA) database, a phenomenon can be
observed that the position and nature of somatic mutations can
often be translated to changes of protein structures or functions
of the genes. The affected gene is designated as a significantly
mutated gene (SMG). SMGs are the result of splice-site change,
nonsense, nonstop, or frame-shift mutations (Zhang et al., 2016).
The prevalence of SMGs in almost all cancer types has allowed
for postulation that they may be act potentially as biomarkers
for subtyping and testing for use in cancer patient outcome
predictions, or a starting point of clarifying the tumorigenesis
process (Cancer Genome Atlas Network, 2012).

Network approaches have provided the means to bridge
the gap between individual genes and systems oncology
(Ghazalpour et al., 2006). Weighted gene coexpression network
analysis (WGCNA) is a systems biology method used to
analyze gene expression profiling data which is widely used
in bioinformatics (Zhang and Horvath, 2005). WGCNA can
help researchers analyze the relationships between genes and
pathogenic mechanisms. Instead of linking thousands of genes to
the disease, this method focuses on the relationship between gene
modules and disease traits (Huang et al., 2020). Many studies
that constructed the coexpression networks in breast cancer used
WGCNA. Coexpression networks were used to screen hub genes
from the co-expression module using the relationship between
genes and traits, together with the core position of genes in
the module (Tang et al., 2019; Jia et al., 2020). A coexpression
network analysis can also identify the prognostic lncRNAs (Liu
et al., 2019; Li et al., 2020). However, these studies did not
consider the information of genetic mutations in breast cancer.

SMGs are not always concentrated in specific genomic loci,
which suggests that instead of common genes, mutations may
affect some pathways or gene interaction networks (Zhang et al.,
2016). So, in this work, we propose a method to screen SMGs
using gene coexpression networks to identify the SMGs that
highly relate to ER_Status. We show the development of a
workflow for screening SMGs associated with clinical data of

the estrogen receptor in breast cancer by a gene coexpression
module. The new gene list was designated as important-SMGs.
The identified genes, which were used to stratify patients
with different subtypes of cancers, were suggested to represent
biomarkers. Our method provides a new alternative method
for cancer patient stratification by integrating transcriptomic,
variants, and clinic data.

2. METHODS

In this work, we propose a method for screening SMGs by a
gene coexpression module associated with clinical data of breast
cancer and the estrogen receptor; the workflow is summarized
in Figure 1. We calculated the similarity coexpression matrix
by distance correlation for WGCNA to construct a gene
coexpression network and to obtain the gene modules. Distance
correlation has a perfect theoretical system and works for
both linear and nonlinear dependence between any two vectors
(Székely et al., 2007). WGCNA is a method used to identify
clusters (modules) of highly correlated genes (Zhang and
Horvath, 2005). We identified some important modules that
were significantly associated with the measured clinical estrogen
receptor data. SMGs were then selected from the TCGA tumor
somatic mutation data and the important-SMGs were obtained
through the overlap between the important module genes and
the SMGs. Furthermore, we respectively chose the hub SMGs
in the important modules and acquired six genes which can be
used as the biomarkers for stratification and prediction of patient
survival of ER− breast cancer.

2.1. Datasets
The TCGA datasets used in this study can be found in the
Data Portal for TCGA-Breast Cancer (Weinstein et al., 2013),
For the construction of the gene coexpression and the SMGs
selection, we used the TCGA dataset. The gene expression profile
was measured experimentally using the Illumina HiSeq 2000
RNA Sequencing platform with log2(x + 1) transformed RSEM
normalized count (Cancer Genome Atlas Network, 2012). The
samples were screened based on RNA-seq data and clinical data,
after which we selected genes with a variable coefficient of more
than 0.2 and a mean >1. Ultimately, we obtained 5,076 genes.

The Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) dataset from the cBioportal
website (Cerami et al., 2012) contains cDNA microarray
performed on the Illumina HT-12 platform (Curtis et al.,
2012; Pereira et al., 2016). The details of data normalization
can be found in Margolin et al. (2013). For validation,
both datasets containing gene expression data and matching
survival time (months) were used for survival analysis.
Samples in the METABRIC were screened based on the
clinical data (contain ER_Status, Days, Vital_Status). The
sample numbers used in the two datasets are shown in
Table 1.

2.2. Distance Correlation
In 2007, distance correlation was proposed by Szekely, Rizzo,
and Bakirov in the paper titled Measuring and Testing
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FIGURE 1 | Workflow of identifying new biomarkers using transcriptomic and variants data.

TABLE 1 | Sample numbers in two datsets.

Dataset Total SMGs ER+ ER− Deceased/Living (ER− )

TCGA 637 383 499 133 23/110 ≈ 0.209

METABRIC 1,888 – 1,435 424 240/184 ≈ 1.304

There are more samples in METABRIC and longer clinical follow-up time.

Dependence by Correlation of Distances published in the
Annals of Statistics (Székely et al., 2007). In this work, the
similarity coexpression matrix was calculated with distance
correlation for WGCNA to perform a gene coexpression
network analysis. Unlike the Pearson correlation, distance
correlation works for both linear and nonlinear dependence
between two gene expression profiles. However, distance
correlation is still a relatively expensive computation.
The time complexity of distance correlation was O(n2).
Distance correlation was calculated using the energy

package in R (see the references in the manual for more
package details).

2.3. WGCNA
WGCNA (Zhang and Horvath, 2005) can be used to identify
clusters (modules) of highly correlated genes. This method
summarizes such clusters using the module eigengene or an
intramodular hub gene. Alternatively, it relates modules to
one another and to external sample traits and calculating
module membership measures using the eigengene network
methodology (Langfelder and Horvath, 2008; Luo et al., 2018).
The functions of WGCNA are plentiful, and only some of
them were used in this study. We mainly used the process
of module division of WGCNA. First, the correlation for all
genes was calculated using correlation methods, and a similarity
coexpression matrix was obtained. The similarity coexpression
matrix was transformed to an adjacency matrix using the soft-
thresholding power which was chosen based on the criteria of
approximating the scale-free topology (SFT) of the network.
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FIGURE 2 | Kaplan-Meier survival curves of ER− and ER+. The ER− breast cancer patient have a poor prognosis in the short term and a relatively good prognosis in

the longer term.

Next, a topological overlap matrix was computed from the
adjacency matrix. Finally, a tree (dendrogram) was produced
from the dissimilarity topological overlap matrix by hierarchical
clustering. The clusters (modules) were obtained using dynamic
tree cutting. For functions of WGCNA, we refer to the
corresponding tutorials package. The WGCNA package is now
available from the Comprehensive R Archive Network(CRAN).

2.4. Enrichment Analysis
Enrichr (Chen et al., 2013; Kuleshov et al., 2016) was
used to analyze the Kyoto Encyclopedia of Genes and
Genomes (KEGG) (Kanehisa et al., 2019) pathways
and the phenome-wide association studies (PheWAS)
(Denny et al., 2010) of diseases identified in the
important modules. Enrichr is open source and freely
available online.

2.5. SMGs and Important SMGs
The SMGs were obtained by screening the somatic
mutations derived from the TCGA breast cancer
patients. The SMGs are genes with frame-shift indels,
splice-site changes, nonstop mutations, or nonsense
mutations (Zhang et al., 2016). Mismatch, silent, RNA,
and in-frame indel mutations did not belong to the
SMGs. Among the samples we selected, the mutation
types of 1920 SMGs and 383 samples are listed in
Supplementary Table 1.

To obtain ER-related SMG, we acquired some SMGs
contained in the important modules by taking the intersection
of genes in important modules and SMGs, and we named them
important SMGs.

2.6. Gene Significance and Module
Membership
To find genes associated with clinical ER_Status, we defined a
measure of gene significance (GS) between the i-th gene profile
xi and the ER_Status as

GSi = cor(xi, ER_Status), (1)

where cor(·, ·) denotes the correlation coefficients. ER_Status can
be mapped to a binary indicator variable where 1 is positive and
0 is negative. The higher the absolute value of GSi of the gene, the
more closely relevant it is to ER.

To measure the relationship between the i-th gene and
the module to which it belongs, we introduced the module
membership (MM) (Langfelder and Horvath, 2008; Wei et al.,
2020) which was defined by calculating the correlation coefficient
between the gene expression profile and the module eigengene.

2.7. Survival Analysis
Some subtypes of breast cancer have a poor prognosis in the short
term and a relatively good prognosis in the longer term. This
particular characteristic of ER− breast cancer can be observed
from Figure 2. Due to this characteristic, the two survival curves
may cross. Thismade the log-rank test P-value large, although the
two curves were obviously separate. The two-stage hypothesis test
was developed for handling the crossing hazard rates problem.
We evaluated the P-values of both the log-rank and the two-stage
hypothesis tests.

For validation, the TCGA breast cancer dataset (containing
133 ER− patients) and the METABRIC dataset (containing
424 ER− patients) were used. The breast cancer characteristic
led to the crossing of the two survival curves, so the two-
stage hypothesis test was developed for handling the crossing
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FIGURE 3 | Identification of modules associated with the ER_Status of breast cancer. (A) The scale-free fit index for various soft-thresholding power. Scale-free

topology (SFT) was achieved when the recommended soft-thresholding power was 3. (B) The mean connectivity for various soft-thresholding powers. (C) The cluster

dendrogram of module eigengenes. (D) The cluster dendrogram of all genes with corresponding color assignments. Nine colors present nine modules. (E)

Module-ER_Status relationship heatmap. The values above the brackets represent the correlation coefficients between modules and ER_Status. The values in

brackets are the P-values for the association test. The red and yellow modules were significantly related to the ER_Status and selected as the important modules.

hazard rates problem (Qiu and Sheng, 2008). To predicate the
significance of the difference in the survival time between the two
patient groups, we performed the Log-rank and two-stage tests.

3. RESULTS

3.1. Gene Co-expression Module
Associated With Estrogen Receptor
The similarity coexpression matrix was calculated with distance
correlation. When we chose 3 as the recommended soft-
thresholding power, the SFT was achieved. The scale-free fit
index is shown in Figure 3A, and the mean connectivity for
various soft-thresholding powers is shown in Figure 3B. The
modules were obtained by hierarchical clustering based on the
minimum module size of 30. The modules were then merged
if the similarity between module eigengenes were >0.75. The
cluster trees (dendrograms) of the module eigengenes are shown
in Figure 3C and the cluster dendrograms of the genes that
were assigned module colors after the merge is shown in the
Figure 3D. Finally, nine coexpression modules were constructed.

To find modules related to clinical ER_Status, the correlation
between modules eigengenes and ER_Status was calculated and

shown in Figure 3E. The modules eigengenes were associated
with ER_Status when p < 0.01. There were four modules
positively associated with ER_Status, and three modules that
were negatively associated. The yellow and red modules, where
the absolute value of the correlation coefficient was >0.6,
had the highest correlations with ER_Status. This means that
these modules have great biological significance related to
the ER_Status, so these two modules were selected as the
important modules.

3.2. Enrichment Analysis of the Important
Modules
We analyzed the KEGG and PheWAS enrichments for the two
important modules to associate each module with biological
pathways and diseases (see Table 2). Enrichment results of all
modules are available in Supplementary Table 2.

Several KEGG enriched terms related to cardiac diseases
were enriched in the yellow module. Approximately 59% of
cancer patients in the dataset used in this study received
radiation therapy. What is more, hormonal therapy plays an
important role in breast cancer treatments (Jones and Buzdar,
2004). Some reports showed that one of the side effects of
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TABLE 2 | KEGG and PheWAS enrichment analysis by Enrichr of the important modules identified by WGCNA.

Module No. KEGG P-value PheWeb P-value

Yellow 677 Dilated cardiomyopathy (DCM) 3.67E-03 Cancer of stomach 2.18E-03

Adrenergic signaling in cardiomyocytes 3.86E-03 Pelvic peritoneal adhesions,- 5.20E-03

female (postoperative) (postinfection)

Cardiac muscle contraction 4.83E-03 Cholecystitis without cholelithiasis 5.85E-03

Glutamatergic synapse 5.35E-03 Cancer of eye 8.57E-03

Hypertrophic cardiomyopathy (HCM) 8.07E-03 Elevated cancer antigen 125 [CA 125] 8.57E-03

Red 1819 Metabolism of xenobiotics- 2.80E-04 Genital prolapse 6.45E-04

by cytochrome P450

Chemical carcinogenesis 3.42E-04 Breast cancer 2.55E-03

Neuroactive ligand-receptor interaction 1.31E-03 Osteoarthrosis, localized, primary 2.73E-03

Caffeine metabolism 6.53E-03 Heart failure with preserved 2.88E-03

EF [Diastolic heart failure]

Protein digestion and absorption 6.83E-03 Other venous embolism and thrombosis 4.09E-03

All the important modules were highly enriched with PheWAS in breast cancer, cancer or female-related diseases.

breast cancer treatments (radiation therapy, hormonal therapy)
is cardiotoxicity (Bird and Swain, 2008; Demissei et al., 2020).
This may be the cause of the enrichment of the cardiac disease
pathway in the yellow module. The yellow modules were highly
enriched in cancer (For instance, cancer of stomach, cancer
of eye, and elevated cancer antigen) or female-related diseases
with PheWAS. With the KEGG pathway enrichment analysis,
the red modules were enriched in the metabolism and chemical
carcinogenesis pathways. This is consistent with the conclusion
that the ER is a modulator in metabolic disorders (Mauvais-Jarvis
et al., 2013). With PheWAS diseases enrichment analysis, the
top two significant terms were breast cancer and female-related
diseases. The results of the enrichment analysis confirmed the
biological significance of the important modules related to breast
cancer or other cancers.

3.3. Survival Analysis by Important-SMGs
and RNA-Seq Data
The new gene list, designated as the important-SMGs, was
obtained through overlapping the important module genes
and the SMGs. The list contains 227 SMGs and is shown in
Supplementary Table 3.

In Zhang et al. (2016), the ER− samples were also separated
into two groups. The authors developed an approach for
stratifying cancer patients into groups with different clinical
outcomes. They focused on this specific Group 1 with a
significantly higher proportion of ER-negative patients. Thirteen
SMGs among the 201 SMGs in Group 1 are identical to
the important-SMGs obtained by our approach. The TCGA
breast cancer dataset (containing 133 ER− patients) and the
METABRIC dataset (containing 424 ER− patients) were used in
this test. The important-SMGs in this work were compared with
the Group 1-specific genes in Zhang et al. (2016). For survival
analysis, the ER− samples were separated into two groups based
on the K-means algorithm with K = 2, using the two gene lists
and the RNA-seq data. The results are shown in Figure 4.

From the two-stage P-value, the two gene lists in our test on
the TCGA ER− data were able to separate the patients into two

groups with a significant survival time difference. The survival
curves in Figures 4A,Bwere clearly separated, but the two curves
obtained by the important-SMGs in Figure 4Bwere further apart
than that obtained by the gene list of Group 1 in Zhang et al.
(2016) in Figure 4A. Therefore, on the TCGA ER− data, the
important-SMGs were able to separate the patients into twomore
significant groups.

The test on METABRIC data shown in Figure 4D suggested
that the important-SMGs were able to separate the patients into
two groups with a significant survival time difference (the P-value
of the two tests are 0.00853). However, the gene list of Group
1 in Zhang et al. (2016) shown in Figure 4C could effectively
separate the ER− patients with the bigger P-value (the P-values
of the two tests larger than 0.01). The survival curves of the two
groups obtained by the important-SMGs were also further apart.
Therefore, on the METABRIC data, the important-SMGs were
able to separate the patients into two more significant groups.

3.4. Survival Analysis by Six Hub SMGs and
RNA-Seq Data
As discussed in the previous section, the 227 important-SMGs
were able to more significantly separate the ER− patients
into two groups. As biomarkers, it is best to keep the
number of genes as small as possible. Gene co-expression
modules were composed of highly correlated genes, we just
have to choose a few representative genes from 227 SMGs.
The most representative genes are the hub genes within
important modules.

We chose the GS > 0.2 and MM > 0.8 in the two
important modules and obtain 29 hub genes. The six genes
(FOXA1, GABRP, BCL11A, DNALI1, STAC, and ESR1) obtained
by overlapping the 29 hub genes and the SMGs were called the
hub-SMGs. The ER− samples were separated into two groups
based on the K-means algorithm with K = 2, using the
hub-SMGs and the RNA-seq data. The results in the TCGA
and the METABRIC datasets of survival analysis are shown in
Figure 5. From the value of the two-stage P-value, the hub-
SMGs can significantly separate the ER− breast cancer patients
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FIGURE 4 | Kaplan-Meier survival curves. The 227 important-SMGs were able to separate the patients into two groups more significantly. The P-values were smaller

in METABRIC dataset. (A) Group 1 in TCGA, (B) important-SMGs in TCGA, (C) group 1 METABRIC, (D) important-SMGs in METABRIC.

into two groups. Patients in different groups have different
survival times. From Figure 5B, the P-value in the METABRIC
dataset is 0.00554 which is smaller than the P-value of the
Important-SMGs 0.00853 (see Figure 4D). This suggests that a
few genes can represent the important-SMGs and separate the
ER− patients.

4. CONCLUSION

With rapid developments in massively parallel sequencing
and computing capacity, a rich resource of data in different
modalities for cancer specimens have been generated in
public databases at an amazing speed. Therefore, integrating
and mining the tremendous volume of data has become an
important subject in the field of bioinformatics. In our study,

we show the development of a new workflow to integrate
somatic mutations, gene expression, and clinical data. We
constructed a gene co-expression network and obtained nine
coexpression modules. The yellow and red modules were
selected as the important modules, because these two modules
have the most significant correlation with ER. We obtained
the important-SMGs list through the overlap between the
important module genes and the SMGs. In the TCGA and
METABRIC datasets, we verified that the important-SMGs
were able to separate the ER− patients more significantly than
other methods.

Furthermore, we selected the six hub SMGs as potential
biomarkers which are also able to separate these patients.
The genes ESR1, DNALI1, and FOXA1 belong to the yellow
module, the genes GABRP, STAC, and BCL11A belong to the

Frontiers in Genetics | www.frontiersin.org 7 February 2021 | Volume 12 | Article 61008761

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Hou et al. Stratification of ER− Breast Cancer

FIGURE 5 | Kaplan-Meier survival curves using the six hub SMGs. A few hub SMGs can represent the 227 important-SMGs and were able to separate the patients

into two groups more significantly. (A) Six hub SMGs in TCGA. (B) Six hub SMGs in METABRIC.

red module. These six genes have been reported to be related
to cancer or breast cancer in the literature. In particular, two
genes in the yellow module are directly related to estrogen
receptors. ESR1 (estrogen receptor 1, also known as ER) is a
gene that encodes the estrogen receptor protein (Holst et al.,
2007). FOXA1 is a key determinant of estrogen receptor
function and endocrine response (Hurtado et al., 2011). The
conclusion of the relevant literature verified the correctness of
our algorithm flow.

Our work provided a novel workflow for identifying new
biomarkers using transcriptomic and variants data. In future
research, we will use the same workflow for other complex
diseases to further test its effectiveness and to find a new gene
list to stratify patients.
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Breast cancer (BC) is a common malignant tumor in females around the world.
While multimodality therapies exist, the mortality rate remains high. The hypoxic
condition was one of the potent determinants in BC progression. The molecular
mechanisms underpinning hypoxia and their association with BC can contribute to
a better understanding of tailored therapies. In this study, two hypoxic induced BC
transcriptomic cohorts (GSE27813 and GSE47533) were assessed from the GEO
database. The P4HA1 gene was identified as a putative candidate and significantly
regulated in hypoxic BC cells compared to normal BC cells at different time intervals
(6 h, 9 h, 16 h, 32 h, and 48 h). In patients with Luminal (p < 1E-12), triple-
negative subclasses (p = 1.35059E-10), Stage 1 (p = 8.8817E-16), lymph node N1
(p = 1.62436E-12), and in the 40–80 age group (p = 1.62447E-12), the expression of
P4HA1 was closely associated with the clinical subtypes of BC. Furthermore, at the
10q22.1 chromosomal band, the P4HA1 gene displayed a high copy number elevation
and was associated with a poor clinical regimen with overall survival, relapse-free
survival, and distant metastases-free survival in BC patients. In addition, using BioGRID,
the protein–protein interaction (PPI) network was built and the cellular metabolic
processes, and hedgehog pathways are functionally enriched with GO and KEGG terms.
This tentative result provides insight into the molecular function of the P4HA1 gene,
which is likely to promote hypoxic-mediated carcinogenesis, which may favor early
detection of BC and therapeutic stratification.

Keywords: breast cancer, hypoxia, prognosis, omics, computational biology

INTRODUCTION

The second leading cause of tumor-related death worldwide is breast cancer (BC) (WCRF, 2018).
Poly-etiology and the constituent nature of BC threaten early diagnosis and treatment strategies
(Feng et al., 2018). BC is divided into five prevailing subtypes based on molecular profiling
techniques: luminal A/B, basal-like, HER2(+), and normal breast-like. Molecular heterogeneity
in BC inter-/intra-tumor also increases tumor growth and becomes more complex in therapy
(Koren and Bentires-Alj, 2015; Haynes et al., 2017)A common trait of cancer cells is that they
quickly proliferate, consuming significant amounts of oxygen that hampers the low-level oxygen
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state called hypoxia. The hypoxia-inducible factor 1 (HIF-1)
regulator pathway gets activated once the cancer cell enters
hypoxic conditions (1–5% O2), contributing to the promotion
of angiogenesis and metastatic tumor characteristics in BC
(Murugesan and Premkumar, 2018; Al Tameemi et al., 2019;
Dillekas et al., 2019). In invasive-BC tumors, about 50–60%
with hypoxic regions and suggests a critical determinant of
metastasis (Greer et al., 2012). Almost 90% of BC deaths are
reported due to delayed late diagnosis (Dillekas et al., 2019).
Clinical studies show that hypoxia is one of the primary drivers
of epithelial-mesenchymal transformation (EMT) and metastatic
cascade transition (Dillekas et al., 2019). In addition, HIF-1 was
implicated in hematogenous breast metastases to lung cancer
and was associated with low patient survival and resistance to
chemotherapy in breast (Campbell et al., 2019), gastric (Cheng
et al., 2012), and colorectal (Baba et al., 2010) cancer.

The accumulating knowledge in microarray databases
(Oncomine, GEO, Array Express, and so on) using genome-
wide technologies has played an essential role in exploring
the cancer-related molecular pathogenesis portfolio (Siegel
et al., 2018; Ha et al., 2019; Shou et al., 2020; Yang et al.,
2020). In future contexts, the ability to dissect and incorporate
cancer omics data opens the door to a new approach to the
biomarker strategy for diagnosis and treatment. In the same
way, TCGA provides a multi-cancer cohort of RNA-Seq
transcriptomics, which has led to a significant increase in
understanding the biology of malignancy. Its accessibility has
led to a splendid opportunity to extend molecular tumors’
fundamental mechanisms (Manzoni et al., 2018).

Prolyl collagen 4-hydroxylase (P4H) is a tetrameric α2β2
α-ketoglutarate (α-KG) –dioxygenase that is responsible for
collagen folding and stabilization. Collagens, which are the
most abundant proteins in humans, provide extracellular matrix
(ECM) assembly scaffolding (rigidity and cell adhesion) (Koski
et al., 2017) and are also associated with stabilizing tumor
proliferation (Provenzano et al., 2006). Three P4HA isoforms
in mammalian cells (P4HA1-3) were identified. Of the three
isoforms, P4HA1 is the foremost isoform that contributes to
the foremost peptide bond and protein scaffolding activity.
P4HA2 is also involved in the collagen synthesis and folding
of collagen chains. The P4HA1 is majorly expressed in the
testis and placenta, P4HA2 in adipose tissue, and P4HA3 in
the heart and placenta. Reports suggest P4HA1 and P4HA2 to
be associated with cancer proliferation and hypoxic regulation
(Weinschenk et al., 2002; Cioffi et al., 2003; Kukkola et al.,
2003; Willam et al., 2006; Gorres and Raines, 2010). In addition,
P4HA1 enhances EMT and stemness of malignant cells through
the HIF-1 pathway (Kappler et al., 2017; D’Aniello et al., 2019).
P4HA1 has recently been found to overexpress in gliomas
and HNSCC; its expression associated with tumor microvessel
density (Li et al., 2019). Recent studies have shown that
increased production of collagen is linked to BC progression,
adhesion, and invasion (Xiong et al., 2018; Wishart et al., 2020).

However, the potential effects of P4HA1 and their precise
contribution to BC are not entirely explored. This research
extensively examined the expression of P4HA1 in breast cancer
cells and its therapeutic relevance in tumor-affected samples
using integrative functional multi-omic approaches. In addition,

the regulatory genes of P4HA1 and their molecular, pathological,
and signaling predictive role in BC consented. In a diagnostic and
treatment regimen to control BC malignancy, P4HA1 could be an
effective target.

MATERIALS AND METHODS

Microarray Data
The GSE27813 and GSE47533 transcriptomic profiles of breast
cancer cells subjected to hypoxia conditions (1% O2) were
downloaded from the Gene Expression Omnibus (GEO)
database1 of the National Center for Biotechnology Information
(NCBI) and explored in the current study. The studies were
carried out on two different platforms GPL10558-Illumina
Human HT-12 V4.0 bead chip expression and GPL6884-Illumina
Human WG-6 v3.0 bead chip expression. The normalized data
were downloaded, and probes were annotated with authentic
gene symbols from each platform using the required Illumina
annotation files. Integrative analysis of these BC mRNA
transcriptomes with/without hypoxic exposure profiles was used
to identify the potential genes at various time intervals. The full
integrated analysis chart had shown in Figure 1.

The Cancer Genome Atlas (TCGA) Data
Validation
TCGA is a web-based platform that visualizes, integrates, and
analyses malignancy genomics and associated clinical results.
UALCAN2 can be an intuitive, user-friendly, open-source web
portal for an in-depth study of TCGA data (Chandrashekar
et al., 2017). UALCAN uses RNA-Seq level 3 of TCGA
and clinical data on 31 cancer types. The expression of the
candidate gene in normal tissues was subsequently weighed
against the corresponding BC tissues. Moreover, overall survival
(OS)/recurrence-free survival (RFS) was assessed using Kaplan–
Meier survival curves, and the hazard ratio (HR) was determined
with 95% confidence intervals, and log-rank p-value was
ascertained. Furthermore, assessment of mRNA expression of
P4HA1 among different subtypes of breast tumors was achieved
to explore the pathological characteristics of genes in tumor
initiation or progression.

Oncomine Database Analysis
The expression level of P4HA1 was derived from the oncomine
database3 in various BC transcriptomic profiles. The oncomine
interface (Compendia biosciences, Ann Arbor, MI, United States)
is an online archive of previously published, open-access
microarray data widely distributed and freely accessible to cancer
repositories (Rhodes et al., 2004). The differential expression
of mRNA in cancer tissue relative to normal was achieved
using the parameters of the p-value threshold of 0.01 and fold-
change (FC) > 2.

1https://www.ncbi.nlm.nih.gov/gds/
2http://ualcan.path.uab.edu/index.html
3https://www.oncomine.org/resource/login.html
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FIGURE 1 | A flow chart of integrated functional analysis.

Copy Number Alteration Analysis
Using Progenetix (Progenetix, Stanford, CA, United States)4,
DNA copy number variations (CNVs), such as deletions and
amplification in BC transcriptomic cohorts, were examined
(Baudis and Cleary, 2001). It is an online repossession of
cancer molecular-cytogenetic data that captures the robust, best-
grained understanding of the absolute copy number aberration.
The chromosomal variation features of the P4HA1 gene were
analyzed in the TCGA-BC data to produce frequency gain/loss.

Clinical Regimen Prognosis
Kaplan–Meier Plotter5 is a data source that integrates gene
expression and clinical data on about 21 cancer types, including
breast cancer (n = 6234) (Gyorffy and Schafer, 2009). KM
Plotter was used to study the prognosis value for P4HA1 in
BC. We centered our assessment on the overall patient survival
(OS), distance metastasis-free survival (DMFS), and relapse-
free survival (RFS). The log-rank p-value and hazard ratio
with 95% confidence intervals additionally ascertained. The Cox
proportional hazard regression model with microarray cohort
GSE22133 was examined to verify the patient’s overall survival
between the expression of the P4HA1 gene and the BC’s clinical

4http:/www.progenetix.net
5http://kmplot.com/analysis/

characteristics. The median P4HA1 value is the threshold used to
evaluate the prognostic score of each parameter.

Protein–Protein Network
Protein–protein interaction networks provide information on
the molecular framework of cellular processes and integral
mobile activity. In the present research, a PPI network of P4HA1
regulatory genes built using an online database, the Biological
General Repository for Interaction Datasets (BioGRID) v3.5.1756,
a database of already established networks; incorporates
1,728,498 protein and genetic interactions (Oughtred et al.,
2019). In the BioGRID database, we have imported the lists
of co-expressed P4HA1 genes. To create and visualize the PPI
network for the P4HA1 protein, Cytoscape v3.5.1 was employed.
The PPI network’s primary nodes were then grouped according
to the enrichment of the KEGG Pathway. Hub nodes with a
higher degree would be in phase to delineate their significant role
in the BC progression.

Pathway Enrichment Analysis
We conducted pathway enrichment (GO and KEGG) using
g:Profiler7 to explore the function of P4HA1 gene sets with

6http://thebiogrid.org/
7http:/biit.cs.ut.ee/gprofiler/
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biochemical, cellular, and molecular aspects (Raudvere et al.,
2019). g:Profiler searches for a collection of the pathway, network,
regulatory motif, and phenotype gene sets using a detailed set
of accurate and concise annotation methods. The method also
consolidates the exact Fisher test with an input gene list and
p-value enrichment for each pathway. Using a threshold of 0.05,
the g:Profiler computes the p-values from GO and KEGG route
enrichment analysis.

Statistical Analysis
The transcriptomic cohort analysis was performed using the R
programming environment (version 3.2.5) with the criteria of
p-value < 0.05. Survival analysis was conducted jointly with
Kaplan–Meier plots and COX Proportional hazard model. The
Kaplan–Meier curves were used to assess the overall survival,
relapse-free survival, and distance metastasis-free survival
associated with the P4HA1 gene expression. The univariate and
multivariate Cox proportional model was carried to analyze
the association of P4HA1 with the clinicopathologic variants
of breast cancer and estimate the hazard ratio and 95% CIs.
Logistic regression analysis was carried out in GSE22133 data
to explore the association of P4HA1 gene expression with the
clinicopathologic variants of breast cancer: ER, PR, and Grade.
It estimates the breast cancer risk by examining the odds ratios
(ORs) and 95% confident intervals (CIs), and p-value. The two-
tailed p-values below 0.05 were considered statistically significant.

RESULTS

P4HA1 Expression in BC Under Hypoxic
Condition
A detailed description of the transcriptomic data used in
this study was given in Table 1. An integrative analysis of
these cohorts identified a high-expression P4HA1 gene with a
p-threshold criterion of <0.05 and FC > 2 in the two datasets.
Moreover, P4HA1 was remarkably increased during the different
time (6 h, 9 h, 16 h, 32 h, and 48 h) of the hypoxic state. The Violin
Plot revealed the difference between with and without hypoxic
exposure in breast cancer cells in the mRNA expression of P4HA1
(Figures 2A,B).

Transcriptional Expression of P4HA1 in
the Clinical Regimen of BC
A differential transcriptional level of P4HA1 between BC and
paired normal breast tissue was evaluated by the UALCAN
database to determine the mRNA expression of P4HA1 in BC
patients. As illustrated in Figure 2, the transcriptional level of
P4HA1 was substantially up-regulated in BC tissues (Figure 2C,

p ≤ 1E-12) compared to normal tissues. Subsequently, P4HA1
differential transcriptional levels were compared for the
molecular and histological subtypes, tumor grades, and other
BC patient factors. Box plots were made to visualize the
association between the expression levels of the clinicopathologic
condition of BC. As shown in Figure 2, the level of P4HA1 was
significantly associated with the intrinsic subclasses of the BC.
Patients with Luminal (p ≤ 1E-12) and triple-negative subclasses
(p = 1.35059E-10) tend to express a higher P4HA1, than HER2-
positive (p = 1.9099E-05). The highest mRNA expressions of
P4HA1 were found sequentially in the various stages of the BC,
Stage 1 (p = 8.8817E-16) <Stage 3 (p = 1.670441E-12) <Stage
2 (p = 1.62447E-12) <Stage 4 (p = 1.31617E-03) (Figure 2D),
and the highest mRNA expressions of P4HA1 were similarly
found in-between the age group of 40–80 (p = 1.62447E-12)
and marginally lower in age <80 (p = 3.9105E-08) than the
>40 (p = 6.3915E-04) age group (Figure 2F). Interestingly,
P4HA1 expression was analyzed with the metastatic lymph
node classification and elevated level of expression in N1
(p = 1.62436E-12) than N0 (p ≤ 1E-12) <N2 (p = 6.06390E-09)
<N3 (p = 2.31799E-07) (Figure 2G). Together, the results
showed a positive association between P4HA1 transcriptional
levels and typical subclasses in BC patients.

Oncomine analysis of malignant breast tissue relative to
normal tissue analysis showed altered expression of P4HA1 in
different transcriptomic profiles (Figure 3). In the Curtis data
set, the P4HA1 mRNA rate was significantly higher in the breast
tumor (FC = −1.570, p = 4.72E-5). Furthermore, in invasive
breast carcinoma, there was a substantial rise in mRNA levels
of P4HA1 (FC = 1.219, p = 5.25E-6). Moreover, P4HA1 was
up-regulated in the Gluck (FC = 1.641, p = 0.015) and Zhao
(FC = 1.598, p = 0.048) datasets.

P4HA1 Genomic Alteration in BC
With genome-wide copy number profiles in the Progenetix
database, we investigated the prevalent genomic amplification
of the P4HA1 chromosomal region in BC. We focused on the
use of the TCGA-BC cohort and obtained a recurring functional
copy number gain for chromosome 10q22.1 (location P4HA1)
(Figure 3E). Since this is the typical copy number peaks in
cancers, it can aid BC’s development and metastatic niche.

Prognostic Significance of P4HA1 in BC
To evaluate the clinical significance of P4HA1 with BC, we
analyzed the patient’s survival index through the Kaplan–Meier
plotter and UALCAN (Figure 4). The regulation of P4HA1
significantly contributes to the worst prognostic in BC patients.
OS was significantly shorter in patients with elevated P4HA1
(HR = 1.35; 95% CI: 1.09–1.67; p < 0.0059) (Figures 4A, 5B)
compared to low P4HA1 expression. Moreover, the higher

TABLE 1 | Characteristics of transcriptomic data from Gene Expression Omnibus.

GEO ID Platform Acc. Platform Cell line Time period of hypoxia (1% O2) Year

GSE27813 GPL10558 Illumina Human HT-12 v4.0 Expression BeadChip MCF-7 6 h, 9 h 2011

GSE47533 GPL6884 Illumina HumanWG-6 v3.0 Expression BeadChip MCF-7 16 h, 32 h, 48 h 2014
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FIGURE 2 | Box plot representation of P4HA1 gene expression compared with a normal and different time period of hypoxic exposure in BC cells: cut-off
p-value < 0.05. (A) GSE27813 and (B) GSE47533. (C–H) Box plot showing relative expression of P4HA1 in clinicopathologic of Breast Cancer, (C) Normal and
Primary Tumor samples, (D) Normal and patients in Stages 1, 2, 3, and 4, (E) Normal and Subclass, (F) Normal and Age group, (G) Normal and Nodal subclass, and
(H) Normal and Gender.
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FIGURE 3 | Levels of P4HA1 mRNA expression in BC compared to normal cells. Figures generated based on Oncomine analysis with criteria fold-change and
p-values. (A) Zhao Breast, (B) Curtis Breast, (C) Gluck Breast, and (D) Curtis Breast Dataset. (E) The distribution of Copy number variation of schematic physical
map of Chromosome 10 (human genome 19 assembly (GRCh37) for TCGA Breast carcinoma generated from Progenetix tool. Heat map representation of P4HA1
between the normal and breast cancer patients – TCGA data. The color ratio red to green represents the change from high to low.
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FIGURE 4 | Prognostic Index of Breast cancer as determined by Kaplan–Meier estimates (A) Overall Survival (UALCAN), (B) Overall Survival (Kaplan–Meier Plotter),
(C) Relapse-free survival (Kaplan–Meier Plotter), (D) Distant free metastasis survival (Kaplan–Meier Plotter), (E) Overall Survival-P4HA1 Expression (GSE22133),
(F) Overall Survival-Estrogen Receptor (GSE22133), (G) Overall Survival-Progesterone Receptor (GSE22133), (H) Overall Survival-Basal (GSE22133), (I) Overall
Survival-ERBB2 (GSE22133), (J) Overall Survival-Luminal A (GSE22133), (K) Overall Survival-Luminal B (GSE22133), and (L) Overall Survival-Normal-like
(GSE22133).

expression of P4HA1 indicated poor RFS (HR = 1.41; 95% CI:
1.26–1.57; p < 6.2E-10) (Figure 4C) and DMFS (HR = 1.31;
95% CI: 1.08–1.59; p < 0.0065) (Figure 4D). These findings
show that P4HA1 is critically associated with a poorer clinical
regimen in BC patients.

A univariate and multivariate regression analysis of Cox
hazard regression using GSE22133 data was explored to verify the
prognostic index of P4HA1. The association risk was estimated
with the clinicopathologic covariates, including estrogen receptor
(ER), progesterone receptor (PR), histological subtypes, and
grades. Table 2 shows how the P4HA1 gene is associated with
clinical factors. Univariate Cox regression analysis indicated a
significant association with hormonal receptor ER (p = 0.0042,
HR = 0.62, 95% CI = 0.46-0.86), PR (p = 0.0043, HR = 0.63,
95% CI = 0.46-0.86), and Grade (p = 0.051, HR = 1.21, 95%
CI = 0.99-1.48) in GSE22133 data. In addition, multivariate
Cox analysis found no strong association between histological
subtypes and hormone receptors. Each clinical factor’s survival
plot was depicted in Figures 4E–L. These results indicate that the

P4HA1 expression strongly attributes to the hormonal receptor,
ER, and PR.

Table 3 shows the logistic regression analysis of the association
between the P4HA1 expression and clinicopathologic variants of
breast cancer (ER, PR, and Grade). The expression of P4HA1 was
significantly associated with the ER status group of breast cancer
(OR = 0.38; 95% CI: 0.79–0.80, P = 0.011) but less significantly
associated with the PR status group cancer (OR = 1.47; 95%
CI: 0.71–3.03, P = 0.29). We assessed the association of P4HA1
expression with breast cancer grade through combing grade 1 and
grade 2 vs. grade 3 and results revealed no significance associated
with grades (OR = 1.40; 95% CI: 0.76–2.57, P = 0.27). In
addition, this analysis also revealed a strong association of P4HA1
gene expression with the ER of breast cancer.

Biological Interaction of P4HA1
Gene Ontology (GO) analysis was carried out against using
P4HA1 and its associated genes generated from the BioGRID
source. We applied a hypergeometric test for each enriched
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FIGURE 5 | Heat map depicts the associations of P4HA1 signature with GO term and KEGG generated by g:Profiler. (A) GO-Biological Process, (B) GO-Cellular
Component, (C) GO-Molecular Function, and (D) KEGG pathway.

GO term, with a threshold lower than 0.05 in the g:Profiler
tool: (Figure 5). Under the GO hierarchy, the ontology of
highly enriched biological processes was “Cellular Process”
(GO:0009987), “Cellular Metabolic Process” (GO:0044237). In
cellular ontology, the enriched terms were “intracellular part”
(GO:0044424) and, similarly, with the ontological molecular
function “Binding” (GO:0005488), were highly enriched
(Table 4). Apart from the significant enrichment of the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway terms
were the “mRNA surveillance pathway,” “Hedgehog signaling
pathway,” and “AMPK signaling pathway.” The full enrichment
analysis output is listed in Supplementary Table 1 (GO) and
Supplementary Table 2 (KEGG). Most critically, many of these
genes are associated with cellular metabolic shift and oncogenic
signaling pathways, a process intimately linked with invasion
and proliferation.

Protein Interaction Network of P4HA1
We constructed a P4HA1 mRNA interaction network generated
from the BioGRID database. The final PPI network generated
by Cytoscape consisted of 59 nodes and 382 interactions
(Supplementary Table 3). Each signaling pathway’s proteins were
colored based on the KEGG enrichment (Figure 6).

DISCUSSION

Breast cancer heterogeneity is still one of the most frequent
causes of cancer mortality (Lin L. F. et al., 2019). Despite
multimodal care for patients, the hypoxic condition is a critical
factor that affects the treatment strategy and the clinical
regimen (Tong et al., 2018). The knowledge in genotypical
and their profound mechanisms will also advance the effective
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TABLE 2 | Univariate and multivariate analysis of clinicopathological factors associated with the prognostic significance of P4HA1 expression in breast cancer.

Clinical factors GSE22133

Univariate Multivariate

p-value HR CI (95%) p-value HR CI (95%)

P4HA1 expression 0.0097 1.51 1.10–2.07 0.1693 1.34 0.88–2.04

ER status
Positive vs. Negative

0.0042 0.62 0.45–0.86 0.8055 0.92 0.51–1.66

PR status
Positive vs. Negative

0.0043 0.63 0.46–0.86 0.5944 0.86 0.49–1.48

Grade
1 and 2 vs. 3

0.0531 1.21 0.99–1.48 0.3255 1.12 0.88–1.43

Histological subtypes
Basal
ERBB2
Luminal A
Luminal B
Normal-Like

0.2847
0.4776
0.7437
0.4840
0.0880

1.53
1.39
0.88
1.26
3.41

0.70–3.34
0.56–3.45
0.43–1.79
0.65–2.44

0.83–14.00

NA

ER, Estrogen Receptor; PR, Progesterone Receptor; CI, Confidence Interval.

therapeutic stratification of BC. Microarray and next-generation
(NGS) sequencing methods have recently been used for early
detection and personalized treatment (Wang et al., 2009;
Marzancola et al., 2016). Such diverse data offers an outstanding
opportunity to discuss more concerns relevant to tumor
heterogeneity. A compendium of an integrative functional
approach was systematically proposed to explore the P4HA1 gene
fundamentally associated with hypoxia-induced BC. To delineate
the processes involved in carcinogenesis, the reliability of this
analysis was validated in terms of expression, clinical subtypes,
copy number variation, and altered pathways in the clinical
TCGA-BC cohort. Therefore this analysis merged transcriptional
activities with molecular signaling pathways to underpin the
proliferation of hypoxic-mediated BC.

Our findings revealed that P4HA1 gene expression is reliably
expressed in breast cancer vs. normal cells. It was consistently
noted in BC subclasses, that in patients with Luminal, triple-
negative, and lymph node (N1), P4HA1 was overexpressed but
comparatively lower in the positive HER2 group and P4HA1
was prominent in Stage I compared to the other BC stages.
Overexpression of P4HA1 has previously been seen in TNBC-
BC (Xiong et al., 2018), head and neck squamous cell carcinomas
(HNSCC) (Li et al., 2019), prostate (Wolf et al., 2004), melanoma
(Atkinson et al., 2019), and gastric cancer (Cheng et al., 2012).
Importantly, our study showed that overexpression of P4HA1

TABLE 3 | Logistic regression analysis of associations between P4HA1
expression and the clinicopathologic variants of breast cancer.

Variable Size P-value Odds
ratio

95% CI

ER Pos (173) vs. Neg (173) 346 0.0118 0.3811 0.1799 to 0.8076

PR Pos (172) vs. Neg (171) 343 0.2964 1.4718 0.7126 to 3.0399

Grade 1 and 2 (116) vs. 3 (116) 232 0.2730 1.4035 0.7656 to 2.5731

ER, Estrogen Receptor; PR, Progesterone Receptor; CI, Confidence Interval.

could be associated with tumor progression, invasion and thus
act as a diagnostic biomarker of BC.

A distinctive molecular mechanism explains the strong
association between CNV and differential expression of P4HA1.
We observed that the P4HA1-10q22.1 copy number showed
a high-level positive amplification in the patient data for

TABLE 4 | Functional enrichment pathway analysis: Top enriched terms of gene
ontology-biological process, cellular component, molecular function, and KEGG
pathways.

Source Term Id Term name p-value

Gene ontology-biological process

GO:BP GO:0009987 cellular process 4.89E-24

GO:BP GO:0044237 cellular metabolic process 1.11E-22

GO:BP GO:0008150 biological_process 6.04E-22

GO:BP GO:0008152 metabolic process 2.09E-21

GO:BP GO:0044260 cellular macromolecule
metabolic process

3.95E-21

Gene ontology-cellular component

GO:CC GO:0044424 intracellular part 5.56E-25

GO:CC GO:0005622 intracellular 6.41E-25

GO:CC GO:0044464 cell part 5.49E-24

GO:CC GO:0005623 cell 6.64E-24

GO:CC GO:0043229 intracellular organelle 6.86E-24

Gene ontology-molecular function

GO:MF GO:0005488 binding 1.31E-19

GO:MF GO:0005515 protein binding 2.30E-19

GO:MF GO:0003674 molecular_function 3.91E-17

GO:MF GO:1901363 heterocyclic compound binding 1.00E-07

GO:MF GO:0140110 transcription regulator activity 1.08E-07

KEGG

KEGG KEGG:03015 mRNA surveillance pathway 0.002436223

KEGG KEGG:04340 Hedgehog signaling pathway 0.002867797

KEGG KEGG:04152 AMPK signaling pathway 0.002946176

KEGG KEGG:04120 Ubiquitin mediated proteolysis 0.003652434
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FIGURE 6 | Protein-protein interaction network of P4HA1. Highly interacted protein network generated from the BioGRID source. Different colors of the network
edge indicate functional enrichment with the KEGG database.

TCGA-BC, suggesting its effect on the high mRNA transcription
level. Moreover, the association in the elevated amplicon 10q22
was reported to have a remarkable role in tumorigenesis and weak
prognostic significance in patients with prostate cancer (Wolf
et al., 2004), gastric cancer (Cheng et al., 2012), glioma (Hu
et al., 2017), melanoma (Atkinson et al., 2019), oral squamous
cell carcinoma (Kappler et al., 2017), and HNSCC (Li et al.,
2019). In line with previous studies, higher P4HA1 expression
was also directly related to BC patients’ poor survival and could
be accomplished as a prognostic predictor.

Functional enrichment analysis of gene ontology revealed
that genes were mostly involved in different cellular metabolic
processes. Most frequently, by increased glycolytic flux and
suppressed oxidative phosphorylation (Warburg effect), tumor
cells adapt their resources to cope with high energy demands.
Thus, the hypoxic state acquires energy via the hypoxic
receptive elements (HRE) through the metabolic shift and tumor
microenvironment (Dillekas et al., 2019). Under physiological
oxygen concentrations, Prolyl hydroxylase (PHD1-3) enzymes
strengthen the stability of HIF1 and HREs. Previous studies
have shown that PHD enzymes involved in HRE’s regulatory
network in gastric cancer and PHD inhibition contribute to
reduced tumor development under hypoxic conditions (Cheng
et al., 2012). Interestingly, the presence of PHDs is closely

related to tumor angiogenesis and metastasis during hypoxic
cell proliferation.

We observed that the F gene and the RBM8A gene were closely
associated with an mRNA surveillance pathway in the KEGG
pathway enrichment. The Cleavage polyadenylation specificity
factor (CPSF) is a multi-subunit that actively participates through
the cleavage and polyadenylation of mRNA activation in the
eukaryotic pre-messenger (m)RNA 3′-end process (Casanal et al.,
2017). Importantly, these CPSF factors lead to the growth of
human cancer, such as breast (Erson-Bensan and Can, 2016),
ovarian cancer (Zhang et al., 2017), and even the inhibition of
CPSF3 actuates apoptosis in prostate cancer cells (Van Etten et al.,
2017). Interestingly, CPCF3 and CPCF4 were a major component
of the OS and RFS based CPSF complex in non-small lung cancer
(Ning et al., 2019).

RNA binding motif protein 8A (RBM8A), also known as Y14,
is an essential factor in exon junction complex (EJC), translation,
chromatin remodeling, damage checkpoints, regulation of
apoptosis (Gerstberger et al., 2014), and deregulation contribute
to cancer pathologies and cardiovascular diseases (Wurth and
Gebauer, 2015). RBM8A up-regulation is critically involved in
modulating apoptosis, and tumor proliferation and metastasis
(Lu et al., 2017). Cell growth was blocked in RBM8A knockout
cells, and the G2/M step of the cell cycle was arrested in
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lung adenocarcinoma cells (Ishigaki et al., 2013). In addition,
for individuals with hepatocellular carcinoma, elevated RBM8A
expression was associated with poor prognosis and progression-
free survival. RBM8A tends to be active in the EMT transition, an
important occurrence in the metastatic niche (Lin Y. et al., 2019).

Hedgehog signaling (Hh) plays a vital role in embryonic
cellular differentiation, and its alteration has oncogenic functions
in initiating and progression (Sari et al., 2018; Chang and Lai,
2019). One of the downstream regulators of the Hh route was the
Cullin gene. Cullin 3 proteins are active in cell cycle regulation
and redox homeostasis, protein trafficking, and stress responses
(Chen and Chen, 2016). Interestingly, CUL3 up-regulation is
associated with an acquired carcinogenic state and oxidative
stress in BC (Loignon et al., 2009). Recent evidence indicates that
Cullin-dependent ubiquitin ligases play a crucial role in breast
carcinogenesis and squamous cell carcinoma of the esophagus
(Hu et al., 2018).

Glioma-associated oncogene transcription factors (GLI) is a
Zinc finger protein and downstream regulator of the Hh pathway
(Pietrobono et al., 2019). In early embryonic development, GLI
members play a major role in the central nervous system;
however, it is also involved in carcinogenesis and metastatic
cascade niche (Niewiadomski et al., 2019). Since amplified GLI
was first observed in glioblastoma, it has now been commonly
detected in the breast (Song et al., 2016), lung (Panneerselvam
et al., 2019), pancreatic (Kowolik et al., 2019), colorectal (Park
et al., 2019), leukemia (Jetten, 2019), and renal cell carcinoma
(Kotulak-Chrzaszcz et al., 2019). It was also stated that high-
expression GLI prevails tumor suppression mediated by p53 (Abe
et al., 2008). Silencing GLI decreases cancer cell proliferation and
invasive potency (Mishra et al., 2019). These results indicate a
mechanism of Hh signaling to stimulate malignant stemming and
facilitate the growth of tumors.

CONCLUSION

This study used robust multiple transcriptomic cohorts with
an integrated omic analysis and found that P4HA1 may be

a potential oncogenic biomarker in BC. Moreover, this gene
showed a copy number gain, reliably more explicit in high-
grade metastatic breast tumors with poor clinical patient
results. Besides, we speculate the implication of the hedgehog
signaling pathway and metabolic reprogramming during high cell
proliferation in hypoxic breast tumors. Our studies have provided
useful insights into the P4HA1; it can be a novel biomarker for the
diagnosis and progression of BC therapy.

DATA AVAILABILITY STATEMENT

This study was carried out on publicly available data on Gene
Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) with
accession numbers: GSE27813, GSE47533, and GSE22133.

AUTHOR CONTRIBUTIONS

MM and KP conceived and designed the study. MM performed
the integrated analysis, acquired the data, and drafted the
manuscript. KP assisted with reviewing and editing the
manuscript. Both authors approved the final manuscript for
publication.

ACKNOWLEDGMENTS

MM gratefully acknowledges the Indian Council of Medical
Research, New Delhi, for sanctioning Senior Research Fellowship
(ICMR SRF: 5/3/8/26/ITR-F/2018-ITR).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2021.632626/full#supplementary-material

REFERENCES
Abe, Y., Oda-Sato, E., Tobiume, K., Kawauchi, K., Taya, Y., Okamoto, K., et al.

(2008). Hedgehog signaling overrides p53-mediated tumor suppression by
activating mdm2. Proc. Natl. Acad. Sci. U.S.A. 105, 4838–4843. doi: 10.1073/
pnas.0712216105

Al Tameemi, W., Dale, T. P., Al-Jumaily, R. M. K., and Forsyth, N. R. (2019).
Hypoxia-modified cancer cell metabolism. Front. Cell Dev. Biol. 7:4. doi: 10.
3389/fcell.2019.00004

Atkinson, A., Renziehausen, A., Wang, H. X., Lo Nigro, C., Lattanzio, L.,
Merlano, M., et al. (2019). Collagen prolyl hydroxylases are bifunctional growth
regulators in melanoma. J. Invest. Dermatol. 139, 1118–1126. doi: 10.1016/j.jid.
2018.10.038

Baba, Y., Nosho, K., Shima, K., Irahara, N., Chan, A. T., Meyerhardt, J. A., et al.
(2010). HIF1A overexpression is associated with poor prognosis in a cohort of
731 colorectal cancers. Am. J. Pathol. 176, 2292–2301. doi: 10.2353/ajpath.2010.
090972

Baudis, M., and Cleary, M. L. (2001). Progenetix.net: an online repository for
molecular cytogenetic aberration data. Bioinformatics 17, 1228–1229. doi: 10.
1093/bioinformatics/17.12.1228

Campbell, E. J., Dachs, G. U., Morrin, H. R., Davey, V. C., Robinson, B. A., and
Vissers, M. C. M. (2019). Activation of the hypoxia pathway in breast cancer
tissue and patient survival are inversely associated with tumor ascorbate levels.
BMC Cancer 19:307. doi: 10.1186/s12885-019-5503-x

Casanal, A., Kumar, A., Hill, C. H., Easter, A. D., Emsley, P., Degliesposti, G., et al.
(2017). Architecture of eukaryotic mRNA 3’-end processing machinery. Science
358, 1056–1059. doi: 10.1126/science.aao6535

Chandrashekar, D. S., Bashel, B., Balasubramanya, S. A. H., Creighton, C. J., Ponce-
Rodriguez, I., Chakravarthi, B., et al. (2017). UALCAN: a portal for facilitating
tumor subgroup gene expression and survival analyses. Neoplasia 19, 649–658.
doi: 10.1016/j.neo.2017.05.002

Chang, W. H., and Lai, A. G. (2019). Aberrations in notch-hedgehog signalling
reveal cancer stem cells harbouring conserved oncogenic properties associated
with hypoxia and immunoevasion. Br. J. Cancer 121, 666–678. doi: 10.1038/
s41416-019-0572-9

Chen, H. Y., and Chen, R. H. (2016). Cullin 3 ubiquitin ligases in cancer biology:
functions and therapeutic implications. Front. Oncol. 6:113. doi: 10.3389/fonc.
2016.00113

Cheng, L., Wang, P., Yang, S., Yang, Y. Q., Zhang, Q., Zhang, W., et al.
(2012). Identification of genes with a correlation between copy number and

Frontiers in Genetics | www.frontiersin.org 11 February 2021 | Volume 12 | Article 63262674

https://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/articles/10.3389/fgene.2021.632626/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.632626/full#supplementary-material
https://doi.org/10.1073/pnas.0712216105
https://doi.org/10.1073/pnas.0712216105
https://doi.org/10.3389/fcell.2019.00004
https://doi.org/10.3389/fcell.2019.00004
https://doi.org/10.1016/j.jid.2018.10.038
https://doi.org/10.1016/j.jid.2018.10.038
https://doi.org/10.2353/ajpath.2010.090972
https://doi.org/10.2353/ajpath.2010.090972
https://doi.org/10.1093/bioinformatics/17.12.1228
https://doi.org/10.1093/bioinformatics/17.12.1228
https://doi.org/10.1186/s12885-019-5503-x
https://doi.org/10.1126/science.aao6535
https://doi.org/10.1016/j.neo.2017.05.002
https://doi.org/10.1038/s41416-019-0572-9
https://doi.org/10.1038/s41416-019-0572-9
https://doi.org/10.3389/fonc.2016.00113
https://doi.org/10.3389/fonc.2016.00113
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-632626 February 16, 2021 Time: 19:17 # 12

Murugesan and Premkumar Multi-Omics Analysis in Breast Cancer

expression in gastric cancer. BMC Med. Genomics 5:14. doi: 10.1186/1755-
8794-5-14

Cioffi, C. L., Liu, X. Q., Kosinski, P. A., Garay, M., and Bowen, B. R. (2003).
Differential regulation of HIF-1 alpha prolyl-4-hydroxylase genes by hypoxia
in human cardiovascular cells. Biochem. Biophys. Res. Commun. 303, 947–953.
doi: 10.1016/s0006-291x(03)00453-4

D’Aniello, C., Cermola, F., Palamidessi, A., Wanderlingh, L. G., Gagliardi, M.,
Migliaccio, A., et al. (2019). Collagen prolyl hydroxylation-dependent metabolic
perturbation governs epigenetic remodeling and mesenchymal transition in
pluripotent and cancer cells. Cancer Res. 79, 3235–3250. doi: 10.1158/0008-
5472.Can-18-2070

Dillekas, H., Rogers, M. S., and Straume, O. (2019). Are 90% of deaths from cancer
caused by metastases? Cancer Med. 8, 5574–5576. doi: 10.1002/cam4.2474

Erson-Bensan, A. E., and Can, T. (2016). Alternative polyadenylation: another foe
in cancer. Mol. Cancer Res. 14, 507–517. doi: 10.1158/1541-7786.Mcr-15-0489

Feng, Y., Spezia, M., Huang, S., Yuan, C., Zeng, Z., Zhang, L., et al. (2018). Breast
cancer development and progression: risk factors, cancer stem cells, signaling
pathways, genomics, and molecular pathogenesis. Genes Dis. 5, 77–106. doi:
10.1016/j.gendis.2018.05.001

Gerstberger, S., Hafner, M., and Tuschl, T. (2014). A census of human RNA-binding
proteins. Nat. Rev. Genet. 15, 829–845. doi: 10.1038/nrg3813

Gorres, K. L., and Raines, R. T. (2010). Prolyl 4-hydroxylase. Crit. Rev. Biochem.
Mol. Biol. 45, 106–124. doi: 10.3109/10409231003627991

Greer, S. N., Metcalf, J. L., Wang, Y., and Ohh, M. (2012). The updated biology
of hypoxia-inducible factor. EMBO J. 31, 2448–2460. doi: 10.1038/emboj.
2012.125

Gyorffy, B., and Schafer, R. (2009). Meta-analysis of gene expression profiles related
to relapse-free survival in 1,079 breast cancer patients. Breast Cancer Res. Treat.
118, 433–441. doi: 10.1007/s10549-008-0242-8

Ha, M., Moon, H., Choi, D., Kang, W., Kim, J. H., Lee, K. J., et al. (2019). Prognostic
role of TMED3 in clear cell renal cell carcinoma: a retrospective multi-cohort
analysis. Front. Genet. 10:355. doi: 10.3389/fgene.2019.00355

Haynes, B., Sarma, A., Nangia-Makker, P., and Shekhar, M. P. (2017). Breast cancer
complexity: implications of intratumoral heterogeneity in clinical management.
Cancer Metastasis Rev. 36, 547–555. doi: 10.1007/s10555-017-9684-y

Hu, J. L., Hu, X. L., Lu, C. X., Chen, X. J., Fu, L., Han, Q., et al. (2018). Variants in the
3 ’-untranslated region of CUL3 is associated with risk of esophageal squamous
cell carcinoma. J. Cancer 9, 3647–3650. doi: 10.7150/jca.27052

Hu, W. M., Zhang, J., Sun, S. X., Xi, S. Y., Chen, Z. J., Jiang, X. B., et al. (2017).
Identification of P4HA1 as a prognostic biomarker for high-grade gliomas.
Pathol. Res. Pract. 213, 1365–1369. doi: 10.1016/j.prp.2017.09.017

Ishigaki, Y., Nakamura, Y., Tatsuno, T., Hashimoto, M., Shimasaki, T., Iwabuchi,
K., et al. (2013). Depletion of RNA-binding protein RBM8A (Y14) causes cell
cycle deficiency and apoptosis in human cells. Exp. Biol. Med. 238, 889–897.
doi: 10.1177/1535370213494646

Jetten, A. M. (2019). Emerging roles of GLI-similar kruppel-like zinc finger
transcription factors in leukemia and other cancers. Trends Cancer 5, 547–557.
doi: 10.1016/j.trecan.2019.07.005

Kappler, M., Kotrba, J., Kaune, T., Bache, M., Rot, S., Bethmann, D., et al. (2017).
P4HA1: a single-gene surrogate of hypoxia signatures in oral squamous cell
carcinoma patients. Strahlenther. Onkol. 193:S84.

Koren, S., and Bentires-Alj, M. (2015). Breast tumor heterogeneity: source of
fitness, hurdle for therapy. Mol. Cell 60, 537–546. doi: 10.1016/j.molcel.2015.
10.031

Koski, M. K., Anantharajan, J., Kursula, P., Dhavala, P., Murthy, A. V., Bergmann,
U., et al. (2017). Assembly of the elongated collagen prolyl 4-hydroxylase
alpha(2)beta(2) heterotetramer around a central alpha(2) dimer. Biochem. J.
474, 751–769. doi: 10.1042/Bcj20161000

Kotulak-Chrzaszcz, A., Klacz, J., Matuszewski, M., Kmiec, Z., and Wierzbicki, P. M.
(2019). Expression of the sonic hedgehog pathway components in clear cell
renal cell carcinoma. Oncol. Lett. 18, 5801–5810. doi: 10.3892/ol.2019.10919

Kowolik, C. M., Lin, M., Xie, J., Overman, L. E., and Horne, D. A. (2019).
Attenuation of hedgehog/GLI signaling by NT1721 extends survival in
pancreatic cancer. J. Exp. Clin. Cancer Res. 38:431. doi: 10.1186/s13046-019-
1445-z

Kukkola, L., Hieta, R., Kivirikko, K. I., and Myllyharju, J. (2003). Identification and
characterization of a third human, rat, and mouse collagen prolyl 4-hydroxylase
isoenzyme. J. Biol. Chem. 278, 47685–47693. doi: 10.1074/jbc.M306806200

Li, Q., Shen, Z. S., Wu, Z. H., Shen, Y., Deng, H. X., Zhou, C. C., et al. (2019). High
P4HA1 expression is an independent prognostic factor for poor overall survival
and recurrent-free survival in head and neck squamous cell carcinoma. J. Clin.
Lab. Anal. 34:e23107. doi: 10.1002/jcla.23107

Lin, L. F., Yan, L., Liu, Y. L., Yuan, F., Li, H., and Ni, J. (2019). Incidence and death
in 29 cancer groups in 2017 and trend analysis from 1990 to 2017 from the
global burden of disease study. J. Hematol. Oncol. 12:96. doi: 10.1186/s13045-
019-0783-9

Lin, Y., Liang, R., Qiu, Y. F., Lv, Y. F., Zhang, J. Y., Qin, G., et al. (2019). Expression
and gene regulation network of RBM8A in hepatocellular carcinoma based on
data mining. Aging 11, 423–447. doi: 10.18632/aging.101749

Loignon, M., Miao, W. M., Hu, L. G., Bier, A., Bismar, T. A., Scrivens, P. J., et al.
(2009). Cul3 overexpression depletes Nrf2 in breast cancer and is associated
with sensitivity to carcinogens, to oxidative stress, and to chemotherapy. Mo.l
Cancer Ther. 8, 2432–2440. doi: 10.1158/1535-7163.Mct-08-1186

Lu, C. C., Lee, C. C., Tseng, C. T., and Tarn, W. Y. (2017). Y14 governs p53
expression and modulates DNA damage sensitivity. Sci. Rep. 7:45558. doi: 10.
1038/srep45558

Manzoni, C., Kia, D. A., Vandrovcova, J., Hardy, J., Wood, N. W., Lewis, P. A.,
et al. (2018). Genome, transcriptome and proteome: the rise of omics data
and their integration in biomedical sciences. Brief. Bioinform. 19, 286–302.
doi: 10.1093/bib/bbw114

Marzancola, M. G., Sedighi, A., and Li, P. C. H. (2016). DNA microarray-based
diagnostics. Methods Mol. Biol. 1368, 161–178. doi: 10.1007/978-1-4939-3136-
1_12

Mishra, S., Bernal, C., Silvano, M., Anand, S., and Ruiz, I. A. A. (2019). The
protein secretion modulator TMED9 drives CNIH4/TGFalpha/GLI signaling
opposing TMED3-WNT-TCF to promote colon cancer metastases. Oncogene
38, 5817–5837. doi: 10.1038/s41388-019-0845-z

Murugesan, M., and Premkumar, K. (2018). Hypoxia stimulates microenvironment
in human embryonic stem cell through inflammatory signalling: an integrative
analysis. Biochem. Bioph. Res. Commun. 498, 437–444. doi: 10.1016/j.bbrc.2018.
02.194

Niewiadomski, P., Niedziolka, S. M., Markiewicz, L., Uspienski, T., Baran, B., and
Chojnowska, K. (2019). Gli proteins: regulation in development and cancer.
Cells 8:147. doi: 10.3390/cells8020147

Ning, Y., Liu, W. X., Guan, X. Y., Xie, X. B., and Zhang, Y. J. (2019). CPSF3 is a
promising prognostic biomarker and predicts recurrence of non-small cell lung
cancer. Oncol. Lett. 18, 2835–2844. doi: 10.3892/ol.2019.10659

Oughtred, R., Stark, C., Breitkreutz, B. J., Rust, J., Boucher, L., Chang, C., et al.
(2019). The BioGRID interaction database: 2019 update. Nucleic Acids Res. 47,
D529–D541. doi: 10.1093/nar/gky1079

Panneerselvam, J., Srivastava, A., Mehta, M., Chen, A., Zhao, Y. D., Munshi,
A., et al. (2019). IL-24 inhibits lung cancer growth by suppressing GLI1 and
inducing DNA damage. Cancers (Basel) 11:1879. doi: 10.3390/cancers1112
1879

Park, S. H., Jeong, S., Kim, B. R., Jeong, Y. A., Kim, J. L., Na, Y. J., et al.
(2019). Activating CCT2 triggers Gli-1 activation during hypoxic condition in
colorectal cancer. Oncogene 39, 136–150. doi: 10.1038/s41388-019-0972-6

Pietrobono, S., Gagliardi, S., and Stecca, B. (2019). Non-canonical hedgehog
signaling pathway in cancer: activation of GLI transcription factors beyond
smoothened. Front. Genet. 10:556. doi: 10.3389/fgene.2019.00556

Provenzano, P. P., Eliceiri, K. W., Campbell, J. M., Inman, D. R., White, J. G.,
and Keely, P. J. (2006). Collagen reorganization at the tumor-stromal interface
facilitates local invasion. BMCMed. 4:38. doi: 10.1186/1741-7015-4-38

Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., et al. (2019).
g:profiler: a web server for functional enrichment analysis and conversions of
gene lists (2019 update). Nucleic Acids Res. 47, W191–W198. doi: 10.1093/nar/
gkz369

Rhodes, D. R., Yu, J. J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., et al.
(2004). ONCOMINE: a cancer microarray database and integrated data-mining
platform. Neoplasia 6, 1–6. doi: 10.1016/S1476-5586(04)80047-2

Sari, I. N., Phi, L. T. H., Jun, N. Y., Wijaya, Y. T., Lee, S., and Kwon, H. Y. (2018).
Hedgehog signaling in cancer: a prospective therapeutic target for eradicating
cancer stem cells. Cells 7:208. doi: 10.3390/cells7110208

Shou, Y., Yang, L., Yang, Y., Zhu, X., Li, F., and Xu, J. (2020). Identification of
signatures of prognosis prediction for melanoma using a hypoxia score. Front.
Genet. 11:570530. doi: 10.3389/fgene.2020.570530

Frontiers in Genetics | www.frontiersin.org 12 February 2021 | Volume 12 | Article 63262675

https://doi.org/10.1186/1755-8794-5-14
https://doi.org/10.1186/1755-8794-5-14
https://doi.org/10.1016/s0006-291x(03)00453-4
https://doi.org/10.1158/0008-5472.Can-18-2070
https://doi.org/10.1158/0008-5472.Can-18-2070
https://doi.org/10.1002/cam4.2474
https://doi.org/10.1158/1541-7786.Mcr-15-0489
https://doi.org/10.1016/j.gendis.2018.05.001
https://doi.org/10.1016/j.gendis.2018.05.001
https://doi.org/10.1038/nrg3813
https://doi.org/10.3109/10409231003627991
https://doi.org/10.1038/emboj.2012.125
https://doi.org/10.1038/emboj.2012.125
https://doi.org/10.1007/s10549-008-0242-8
https://doi.org/10.3389/fgene.2019.00355
https://doi.org/10.1007/s10555-017-9684-y
https://doi.org/10.7150/jca.27052
https://doi.org/10.1016/j.prp.2017.09.017
https://doi.org/10.1177/1535370213494646
https://doi.org/10.1016/j.trecan.2019.07.005
https://doi.org/10.1016/j.molcel.2015.10.031
https://doi.org/10.1016/j.molcel.2015.10.031
https://doi.org/10.1042/Bcj20161000
https://doi.org/10.3892/ol.2019.10919
https://doi.org/10.1186/s13046-019-1445-z
https://doi.org/10.1186/s13046-019-1445-z
https://doi.org/10.1074/jbc.M306806200
https://doi.org/10.1002/jcla.23107
https://doi.org/10.1186/s13045-019-0783-9
https://doi.org/10.1186/s13045-019-0783-9
https://doi.org/10.18632/aging.101749
https://doi.org/10.1158/1535-7163.Mct-08-1186
https://doi.org/10.1038/srep45558
https://doi.org/10.1038/srep45558
https://doi.org/10.1093/bib/bbw114
https://doi.org/10.1007/978-1-4939-3136-1_12
https://doi.org/10.1007/978-1-4939-3136-1_12
https://doi.org/10.1038/s41388-019-0845-z
https://doi.org/10.1016/j.bbrc.2018.02.194
https://doi.org/10.1016/j.bbrc.2018.02.194
https://doi.org/10.3390/cells8020147
https://doi.org/10.3892/ol.2019.10659
https://doi.org/10.1093/nar/gky1079
https://doi.org/10.3390/cancers11121879
https://doi.org/10.3390/cancers11121879
https://doi.org/10.1038/s41388-019-0972-6
https://doi.org/10.3389/fgene.2019.00556
https://doi.org/10.1186/1741-7015-4-38
https://doi.org/10.1093/nar/gkz369
https://doi.org/10.1093/nar/gkz369
https://doi.org/10.1016/S1476-5586(04)80047-2
https://doi.org/10.3390/cells7110208
https://doi.org/10.3389/fgene.2020.570530
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-632626 February 16, 2021 Time: 19:17 # 13

Murugesan and Premkumar Multi-Omics Analysis in Breast Cancer

Siegel, M. B., He, X. P., Hoadley, K. A., Hoyle, A., Pearce, J. B., Garrett, A. L., et al.
(2018). Integrated RNA and DNA sequencing reveals early drivers of metastatic
breast cancer. J. Clin. Invest. 128, 1371–1383. doi: 10.1172/Jci96153

Song, L., Wang, W., Liu, D., Zhao, Y., He, J., Wang, X., et al. (2016). Targeting
of sonic hedgehog-Gli signaling: a potential therapeutic target for patients with
breast cancer. Oncol. Lett. 12, 1027–1033. doi: 10.3892/ol.2016.4722

Tong, C. W. S., Wu, M. X., Cho, W. C. S., and To, K. K. W. (2018). Recent advances
in the treatment of breast cancer. Front. Oncol. 8:227.

Van Etten, J. L., Nyquist, M., Li, Y. M., Yang, R. D., Ho, Y., Johnson, R., et al.
(2017). Targeting a single alternative polyadenylation site coordinately blocks
expression of androgen receptor mRNA splice variants in prostate cancer.
Cancer Res. 77, 5228–5235. doi: 10.1158/0008-5472.Can-17-0320

Wang, Z., Gerstein, M., and Snyder, M. R. N. A. - (2009). RNA-seq: a revolutionary
tool for transcriptomics. Nat. Rev. Genet. 10, 57–63. doi: 10.1038/nrg2484

Weinschenk, T., Gouttefangeas, C., Schirle, M., Obermayr, F., Walter, S., Schoor,
O., et al. (2002). Integrated functional genomics approach for the design of
patient-individual antitumor vaccines. Cancer Res. 62, 5818–5827.

Willam, C., Maxwell, P. H., Nichols, L., Lygate, C., Tian, Y. M., Bernhardt, W., et al.
(2006). HIF prolyl hydroxylases in the rat; organ distribution and changes in
expression following hypoxia and coronary artery ligation. J. Mol. Cell Cardiol.
41, 68–77. doi: 10.1016/j.yjmcc.2006.04.009

Wishart, A. L., Conner, S. J., Guarin, J. R., Fatherree, J. P., Peng, Y., McGinn, R. A.,
et al. (2020). Decellularized extracellular matrix scaffolds identify full-length
collagen VI as a driver of breast cancer cell invasion in obesity and metastasis.
Sci. Adv. 6:eabc3175. doi: 10.1126/sciadv.abc3175

Wolf, M., Mousses, S., Hautaniemi, S., Karhu, R., Huusko, P., Allinen, M., et al.
(2004). High-resolution analysis of gene copy number alterations in human

prostate cancer using CGH on cDNA microarrays: impact of copy number on
gene expression. Neoplasia 6, 240–247. doi: 10.1593/neo.03439

Wurth, L., and Gebauer, F. (2015). RNA-binding proteins, multifaceted
translational regulators in cancer. Biochim. Biophys. Acta 1849, 881–886. doi:
10.1016/j.bbagrm.2014.10.001

Xiong, G., Stewart, R. L., Chen, J., Gao, T., Scott, T. L., Samayoa, L. M., et al.
(2018). Collagen prolyl 4-hydroxylase 1 is essential for HIF-1 alpha stabilization
and TNBC chemoresistance. Nat. Commun. 9:4456. doi: 10.1038/s41467-018-
06893-9

Yang, H., Wang, Y., Zhang, Z., and Li, H. (2020). Identification of KIF18B as a hub
candidate gene in the metastasis of clear cell renal cell carcinoma by weighted
gene co-expression network analysis. Front. Genet. 11:905. doi: 10.3389/fgene.
2020.00905

Zhang, B. G., Liu, Y., Liu, D. H., and Yang, L. (2017). Targeting cleavage and
polyadenylation specific factor 1 via shRNA inhibits cell proliferation in human
ovarian cancer. J. Biosci. 42, 417–425. doi: 10.1007/s12038-017-9701-x

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Murugesan and Premkumar. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 13 February 2021 | Volume 12 | Article 63262676

https://doi.org/10.1172/Jci96153
https://doi.org/10.3892/ol.2016.4722
https://doi.org/10.1158/0008-5472.Can-17-0320
https://doi.org/10.1038/nrg2484
https://doi.org/10.1016/j.yjmcc.2006.04.009
https://doi.org/10.1126/sciadv.abc3175
https://doi.org/10.1593/neo.03439
https://doi.org/10.1016/j.bbagrm.2014.10.001
https://doi.org/10.1016/j.bbagrm.2014.10.001
https://doi.org/10.1038/s41467-018-06893-9
https://doi.org/10.1038/s41467-018-06893-9
https://doi.org/10.3389/fgene.2020.00905
https://doi.org/10.3389/fgene.2020.00905
https://doi.org/10.1007/s12038-017-9701-x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-669928 May 17, 2021 Time: 19:50 # 1

ORIGINAL RESEARCH
published: 21 May 2021

doi: 10.3389/fgene.2021.669928

Edited by:
Shaoli Das,

National Institutes of Health (NIH),
United States

Reviewed by:
Vishal Midya,

Icahn School of Medicine at Mount
Sinai, United States

Michael Poidinger,
Murdoch Childrens Research

Institute, Australia

*Correspondence:
Yilin Pang

ylpang2010@126.com
SongDao Ye

yesd955022@163.com

†These authors have contributed
equally to this work and share first

authorship

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal

Frontiers in Genetics

Received: 19 February 2021
Accepted: 30 April 2021
Published: 21 May 2021

Citation:
Chen Y, Xie H, Xie T, Yang X,

Pang Y and Ye S (2021) Elevated
Expression of PDZD11 Is Associated

With Poor Prognosis and Immune
Infiltrates in Hepatocellular

Carcinoma. Front. Genet. 12:669928.
doi: 10.3389/fgene.2021.669928

Elevated Expression of PDZD11 Is
Associated With Poor Prognosis and
Immune Infiltrates in Hepatocellular
Carcinoma
Yao Chen1†, Haifeng Xie2†, Ting Xie3, Xunjun Yang3,4, Yilin Pang3* and SongDao Ye4*

1 Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China, 2 Hangzhou
Traditional Chinese Medicine (TCM) Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China, 3 Zhejiang
Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School
of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China, 4 Department of Laboratory
Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China

Epithelial cells are held together by tight and adherent junctions, which are destroyed
by the activation of epithelial-to-mesenchymal transition (EMT). The PLEKHA7-PDZD11
complex has been reported to be important for epithelial cell adhesion and connecting
tissues. However, there is no research regarding the expression and role of PDZD11 in
liver hepatocellular carcinoma (LIHC) progression. Here, we analyzed PDZD11 mRNA
expression and its clinical results in LIHC patient RNA sequencing data based on
different open databases. Furthermore, we examined differences in PDZD11 expression
in LIHC tissues and cell lines using western blotting and real-time qPCR. These results
are the first to report that the mRNA and protein levels of PDZD11 are significantly
overexpressed in LIHC. Moreover, high expression of PDZD11 was correlated with
poor overall survival in patients with LIHC. Gene regulatory network analysis suggested
that PDZD11 is mainly involved in copper ion homeostasis, proteasome, and oxidative
phosphorylation pathways. Interestingly, we found that PDZD11 levels were positively
correlated with the abundance of immune infiltrates. In particular, higher infiltration levels
of CD4+ T cells and macrophage subsets significantly affected LIHC patient prognosis.
Taken together, these results demonstrate that PDZD11 could be a potential diagnostic
and prognostic biomarker in LIHC.

Keywords: PDZD11, hepatocellular carcinoma, prognostic biomarker, immune infiltrates, functional network
analysis

INTRODUCTION

Liver hepatocellular carcinoma (LIHC) accounts for the most common form of primary liver
cancers (Villanueva, 2019), with an increasing incidence, particularly in East Asia (Bray et al.,
2018; Siegel et al., 2019). LIHC is currently the third leading cause of cancer-related death
worldwide (Jiang et al., 2019). LIHC likely occurs in patients with underlying liver diseases
since infection with the hepatitis B or C virus (HBV or HCV) and long-term intoxication
with alcohol or aflatoxin are the leading risk factors for developing LIHC (Jemal et al.,
2017; Villanueva, 2019). Due to the high rate of recurrence and metastasis, the 5-year
overall rate of survival for LIHC is only 18%, making liver cancer the second-leading cause

Frontiers in Genetics | www.frontiersin.org 1 May 2021 | Volume 12 | Article 66992877

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.669928
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.669928
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.669928&domain=pdf&date_stamp=2021-05-21
https://www.frontiersin.org/articles/10.3389/fgene.2021.669928/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-669928 May 17, 2021 Time: 19:50 # 2

Chen et al. PDZD11 Maybe LIHC Potential Biomarker

of cancer deaths, after pancreatic cancer (Jemal et al., 2017).
Although operative treatment may be effective in the early
stage of LIHC, the 5-year survival rate after developing
to later stage is only 50–70% [European Association for
the Study of the Liver (EASL), 2018]. Therefore, it is
important to further screen LIHC oncogenes to help identifying
novel biomarkers, therapeutic targets and immune-related
biomarkers, and ultimately contribute to better diagnosis and
prognosis of LIHC.

The human PDZD11 gene is located at chromosome Xq13.1
and is 3.92 kb long with 6 exons. The PDZD11 protein (140 aa)
is a ubiquitously expressed small protein and mainly composed
of a single PDZ domain (Stephenson et al., 2005). Previous
studies have shown that diseases associated with PDZD11 include
Purulent Acute Otitis Media and Middle Ear Disease (GeneCards
database). PDZD11 was previously known as PISP, based on its
interaction with the plasma membrane calcium ATPase (PMCA)
b-splice variants, which may play a role in their sorting to or
from the plasma membrane (Goellner et al., 2003). PDZD11
is also known as AIPP1, because it interacts with Menkes
copper ATPase (ATP7A), which involves in maintaining copper
homeostasis (Stephenson et al., 2005). Nabokina et al. (2011)
demonstrated that PDZD11 interacted with human sodium-
dependent multivitamin transporter (hSMVT) in intestinal
epithelial cells and that this interaction affected biotin uptake
process. Shah et al. (2016) reported that the interaction of
the N-terminal region of PDZD11 with the WW1 domain of
pleckstrin homology domain-containing A7 (PLEKHA7) was
essential to stabilize junctional nectins at adherens junctions
(AJ), and promote efficient junction assembly. Recent work
has also shown that cooperative binding of the tandem WW
domains (e.g., WW1 and WW2) of PLEKHA7 to PDZD11
promoted the binding of the C-terminus of Tspan33 to
PLEKHA7. Furthermore, the complex formation of PLEKHA7,
PDZD11, ADAM10 and its molecular chaperone Tspan33
through promoting the junctional clustering of the α-toxin
receptor ADAM10 makes cells more sensitive to the cytotoxic
effects of Staphylococcus aureus α-toxin (Vasileva et al., 2017;
Rouaud et al., 2020).

Epithelial-to-mesenchymal transition (EMT) is a reversible
cellular procedure that can transiently dedifferentiate epithelial
cells into a mesenchymal phenotype (Dongre and Weinberg,
2019). Epithelial cells build strong connections with their
neighbors and an apical-to-basal polarity via the sequential
arrangement of adherens junctions, desmosomes, and tight
junctions (Thiery et al., 2009). Conversely, EMT confers
cells with invasive and metastatic potential, induces stem cell
properties, inhibits apoptosis and senescence, and contributes
to immunosuppression (Thiery et al., 2009). Therefore, EMT
plays a crucial role in embryogenesis, wound-healing, organ
fibrosis, tumor invasion and metastasis (Yan et al., 2018). In
particular, about 90% of cancer-associated mortality is attributed
to metastasis (Chaffer and Weinberg, 2011). Previous studies
have shown that the combination of metastasis-related gene
signatures and serum alpha-fetoprotein can be used as a good
predictor of LIHC prognosis regardless of etiology and race
(Yan et al., 2018).

The tumor microenvironment is composed of infiltrating
inflammatory cells, stromal cells, and inflammatory
mediators (Yan et al., 2018). Undoubtedly, the inflammatory
microenvironment associated with hepatitis virus infection is
an important factor influencing the invasion and metastasis of
LIHC (Yan et al., 2018). Lara-Pezzi et al. (2001) also reported
that hepatitis B virus HBx protein was able to induce adherens
junction disruption in a src-dependent manner, which might
contribute to the development of LIHC.

In this study, we first performed a bioinformatics analysis
using different open databases to acquire detailed information
about potential functions and prognostic value of PDZD11
in LIHC, and to explore whether the abnormal expression of
PDZD11 is closely related to immune infiltrates of LIHC. Further,
we verified the expression of PDZD11 in LIHC tissues, various
human liver cancer cell lines and matched normal hepatocytes.
The findings of this study may help us to understand the role of
PDZD11 in the development of LIHC.

MATERIALS AND METHODS

Patients and LIHC Tissue Specimens
Seven pairs of matched LIHC tumor tissues and adjacent normal
tissues of each pair of patients were immediately quenched
in liquid nitrogen after surgical removal in the First Affiliated
Hospital of Wenzhou Medical University. All the patients were
clinically and pathologically confirmed as liver cancer. Informed
consent was approved by the board of directors and the
ethics committee of the First Affiliated Hospital of Wenzhou
Medical University. Written informed consent was obtained
from all subjects.

Cell Culture
HCCLM3, MHCC97H, HepG2, and L02 cells were cultured in
high-glucose DMEM (GIBCO, Waltham, MA, United States)
containing 10% FBS (fetal bovine serum) (GIBCO, United States)
and antibiotics (100 U/ml penicillin and 100 µg/ml
streptomycin) (GIBCO, United States), and incubated in an
incubator containing 5% CO2 at 37◦C.

Western Blot Analysis
Proteins in clinical tissues and whole-cells were extracted with
1%Triton X-100 lysis buffer supplemented with protease and
phosphatase inhibitors (Sigma-Aldrich). Protein concentrations
of the extracts were determined by the BCA assay kit (Thermo
Fisher Scientific, Waltham, MA, United States). 40 µg of total
protein in each sample was separated by a 12% SDS-PAGE gels
and transferred onto PVDF membrane (Bio-Rad, Hercules, CA)
with a wet transfer system (Bio-Rad, United States). Block the
blot in blocking buffer (5% skim milk in TBST) on a shaker
at room temperature for 1 h, and then incubated with primary
antibodies specific for PDZD11 (ab121210) (Abcam, Cambridge,
MA) (1:2,000) and β-actin (Beyotime Biotechnology Co., Ltd.,
Shanghai, China) (1:5,000) overnight at 4◦C. The membrane
was washed in TBST for 3 × 15 min and then incubated with
horseradish peroxidase (HRP)-conjugated anti-rabbit (1:5,000)
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and anti-mouse (1:20,000) immunoglobulin G on a shaker at
room temperature for 1.5 h. Immunoreactive proteins were
visualized using ECL reagent according to the manufacturer‘s
protocol (Thermo Fisher Scientific, Rockford, IL). The optical
density was quantified by executing ImageJ software.

Quantitative RT-PCR
LIHC cell lines and hepatocytes L-02 were seeded in 10 cm
culture dish at a density of 2 × 106 cells per culture dish.
After 36 h of incubation at 37◦C, cells were harvested and
washed once with ice-cold PBS. The mRNA expression levels of
genes were tested by SYBR green-based real-time quantitative
PCR. Total RNA was extracted from all the cells using TRIzol
reagent (Thermo Fisher Scientific, Waltham, MA, United States)
according to the manufacturer‘s instructions. Total RNA (1 µg)
was reverse-transcribed into cDNA (+ gDNA wiper) HiScript
II Q Select RT SuperMix (Vazyme Biotech Co., Ltd., Nanjing,
China) according to the manufacturer‘s instructions. The RT
reaction was subsequently used as a template for real-time
PCR. The reactions were performed on a CFX ConnectTM

Real-Time PCR Detection System (Bio-Rad, Hercules, CA)
using ChamQ Universal SYBR qPCR Master Mix (Vazyme
Biotech Co., Ltd., Nanjing, China). Primer sequences were
as follows: PDZD11 5′CGGTGGTTTTCTTGCCTGCC3′
(forward), 5′-TCAGTGTGATGGTTCGGGGC-3′ (reverse) and
β-actin 5′-AGCACAGAGCCTCGCCTTTG-3′ (forward),
5′-AAGCCGGCCTTGCACATG-3′ (reverse). The PCR
amplification procedures were as follows: pre-denaturation
at 95◦C for 3 min, followed by 40 cycles of (95◦C for 10 s,
60◦C for 30 s). Record the threshold cycle number (Ct) for
each reaction. The Ct values of target genes were normalized
to that of β-actin. Each sample was analyzed in triplicate and
repeated 3 times.

GEPIA2 Database
The expression of PDZD11 mRNA in LIHC was analyzed
using the GEPIA2 database1, which was developed by Peking
University, China, and is based on The Cancer Genome
Atlas (TCGA) and Genotype-Tissue Expression (GTEx)
databases, including RNA sequencing and expression data
from 33 malignant tumors, 8,587 normal tissues, and 9,736
tumor samples (Tang et al., 2017).

Oncomine Analysis
The Oncomine v.4.5 database2 is a comprehensive and user-
friendly online cancer microarray database for DNA and
RNA sequence analysis (Rhodes et al., 2007). In our study,
mRNA expression levels and DNA copy number of PDZD11
in normal controls and cancer specimens were obtained
from the Oncomine database. The retrieval conditions were
as follows: analysis type/cancer vs. normal analysis, cancer
type/liver cancer, dataset filters/data type/mRNA or DNA, and
sample filters/sample type/clinical specification. The significance
threshold was designed using the following specific parameters:

1http://gepia2.cancer-pku.cn/#index
2https://www.oncomine.org/resource/login.html

p-value of 1E-4, -fold change of 2, and gene rank in the top 10%.
Student’s t-test was used to analyze differences in the expression
of PDZD11 between normal controls and cancer specimens.

DriverDBV3 Database
DriverDBV33 uses a variety of -omics techniques to identify
cancer driver genes and to present them with different molecular
features, including somatic mutations, RNA expression, miRNA
expression, DNA methylation, copy number variation, and
clinical data, in addition to annotation of bases (Liu S.H. et al.,
2020). The Gene Summary of PDZD11 in various cancer tissues
and mRNA expression of PDZD11 in LIHC was analyzed using
the DriverDBV3 database. Survival with a log-rank p < 0.05, was
considered statistically significant.

UALCAN Database Analysis
The UALCAN database4 is a website for online analysis based on
level 3 RNA-seq and clinical data of 31 cancer types from TCGA
datasets (Chandrashekar et al., 2017). We used this database
to analyze the differential expression and promoter methylation
profile of PDZD11 in primary LIHC tissues and their association
with clinicopathological parameters. Student’s t-test was used
to generate p-values; after Bonferroni correction for multiple
measures, p was still < 0.05, which was statistically significant.

cBioPortal Analysis
The cBioPortal5 is an open-access web resource that provides
visualization and analysis of multidimensional cancer
genomics data (Gao et al., 2013). In this study, genetic
alterations to PDZD11 in LIHC patients (TCGA, Firehose
Legacy, 360 patients/samples) were investigated using the
cBioPortal database.

Protein-Protein Interaction (PPI) Network
Analysis
PPI network analysis of PDZD11 was conducted using the
STRING6 (von Mering et al., 2003) and GeneMANIA7 (Warde-
Farley et al., 2010) online databases. We also used GeneMANIA
to construct gene networks and predict the biological functions
of gene sets in which Gene Set Enrichment Analysis (GSEA) was
identified as being enriched in LIHC.

LinkedOmics Database Analysis
The LinkedOmics database8 (Vasaikar et al., 2018) is an online
open-access powerful bioinformatics platform, which includes
multi-omics information and clinical data involving 11,158
patients and 32 cancer types in the TCGA project. LinkedOmics
was used to study genes differentially expressed in correlation
with PDZD11 in LIHC. Pearson’s correlation coefficient was
applied to statistical analysis of the results produced by

3http://driverdb.tms.cmu.edu.tw/
4http://ualcan.path.uab.edu/
5https://www.cbioportal.org/
6https://string-db.org/
7http://genemania.org/
8http://www.linkedomics.org/login.php
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LinkedOmics. Then, genes positively and negatively correlated
with PDZD11 in LIHC were selected based on the criteria of
coefficient > 0.3 and < −0.3. Finally, we enriched these gene
sets by Gene Ontology (GO) analysis and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis using
the DAVID database9 (Huang da et al., 2009), and the results
were visualized using an online platform10. Moreover, GSEA was
utilized to perform various enrichment analyses, including for
kinase targets, miRNA targets, and transcription factor targets.
Ranking was based on the criteria of false discovery rate (FDR)
<0.05, and 500 simulations were performed.

TIMER Analysis
Tumor Immune Estimation Resource (TIMER)11 is a
comprehensive website for the systematic analysis of tumor-
infiltrating immune cells (Li et al., 2017). TIMER2.012 is the
latest version of TIMER. We first analyzed the expression of
PDZD11 in various tumors using the TIMER database, and
the results were analyzed statistically using Wilcoxon rank sum
test. Then, correlations between the expression of PDZD11 and
the abundance of the six immune cell types (B cells, CD8+ T
cells, CD4+ T cells, macrophages, neutrophils, and dendritic
cells) in LIHC were analyzed using Spearman tests (tumor
purity adjusted). Finally, the survival module was used to draw
Kaplan-Meier plots for immune infiltrates and PDZD11 to
determine survival differences. Statistical significance was set at
p < 0.05.

Statistical Analysis
GraphPad Prism (v.5.0) for Windows was used for statistical
analysis, and p < 0.05 was considered statistically significant.
The log-rank test was used in Kaplan-Meier survival analysis.
Student’s t-test and Wilcoxon rank sum test were employed in
two-group comparisons. Moreover, we conducted Bonferroni’s
correction for multiple measurements to ensure the credibility
of multiple group comparisons. After Bonferroni correction,
p was still less than 0.05, which represents a statistically
significant difference.

RESULTS

Elevated Expression of PDZD11 in LIHC
To determine the differential expression of PDZD11 in diverse
cancer types, PDZD11 mRNA expression was analyzed using the
TIMER database. It was shown that the mRNA level of PDZD11
was significantly upregulated in bladder, breast, gallbladder,
esophagus, kidney, liver, lung, gastric, thyroid, and uterine
corpus endometrial carcinoma (Figure 1A). Further analysis
showed that PDZD11 was overexpressed in LIHC patients in
the GEPIA2 database (Figure 1B). In the ONCOMINE database,
PDZD11 was also identified with significantly higher levels in

9https://david.ncifcrf.gov/home.jsp
10http://www.bioinformatics.com.cn/
11https://cistrome.shinyapps.io/timer/
12http://timer.cistrome.org/

LIHC in multiple datasets. In the Chen Liver dataset, PDZD11
overexpression was found in LIHC tissues compared with normal
tissues with a -fold change of 1.812 (p = 3.44E-22), while
Wurmbach observed a 1.651-fold increase in PDZD11 mRNA
expression in LIHC samples (p = 8.16E-5) (Figures 1C,D). In
addition, we analyzed PDZD11 expression using the DriverDBV3
database. We found that the results were largely consistent
with those in the ONCOMINE database. However, there was
no statistically significant difference in the mRNA expression
of PDZD11 observed in recurrent solid tumors compared to
adjacent normal liver tissues (Figure 1E). Consistently, protein
analysis involving eight patients (including eight tumor tissue
and eight matched adjacent normal tissues) diagnosed with liver
cancer confirmed that PDZD11 abundance was elevated in LIHC
tissues (Figure 1F). Additionally, we found increased levels of
PDZD11 in LIHC cell lines at both the mRNA and protein levels
(Figures 1G,H) compared to that found in normal human L-
02 hepatocytes. However, the protein expression of PDZD11 in
HepG2 cells was significantly lower than that in L-02 cells.

Relationship Between PDZD11 mRNA
Levels and Clinicopathological
Parameters in LIHC Patients
Next, relationships between PDZD11 mRNA expression and
clinicopathological parameters of LIHC patients were analyzed
using the UALCAN database. The results showed that PDZD11
was upregulated in primary LIHC tissues compared to adjacent
normal tissues (Figure 2A, p < 0.001). As shown in Figures 2B–
I, according to subgroup analysis based on race, gender, age,
weight, and lymph node metastasis status, the mRNA expression
of PDZD11 in LIHC patients was evidently higher than that
in healthy individuals. In particular, the expression of PDZD11
mRNA was clearly correlated with more advanced and less-
differentiated tumors in LIHC patients, who tended to express
higher PDZD11 mRNA levels. The highest mRNA expression
of PDZD11 was found in stage 3 and/or tumor grade 3 cases
(Figures 2B,G). The reason why mRNA expression of PDZD11
in stage 3 and/or tumor grade 3 seemed to be higher than that
in stage 4 and tumor grade 4 may be due to the small number of
samples. In addition, PDZD11 mRNA expression was positively
correlated with TP53 mutation status, and was also significantly
elevated in LIHC patients with TP53 mutations (Figure 2I).

Frequency and Types of PDZD11
Alterations in LIHC
Genetic alterations to PDZD11 in LIHC were evaluated using
the cBioPortal database. As shown in Figure 3A, among the
360 LIHC patients sequenced, 27 showed genetic alterations,
with a mutation rate of 8%. Moreover, we observed that mRNA
upregulation was the only aberrant type of genetic alteration
involving PDZD11 in LIHC.

Decreased PDZD11 Promoter
Methylation Levels in LIHC
To analyze why expression of PDZD11 mRNA was significantly
higher in LIHC tissues than in adjacent normal liver tissues, we
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FIGURE 1 | PDZD11 expression levels in LIHC. (A) Transcription levels of PDZD11 in different types of cancers (TIMER database). (B) PDZD11 mRNA expression
levels in LIHC tissues and adjacent normal liver tissues from GEPIA 2 database. (C,D) Box plots show PDZD11 mRNA expression in liver (left plot) and hepatocellular
carcinoma tissue (right plot) of the Chen Liver (C) and Wurmbach Liver (D) datasets. The fold-change of PDZD11 expression in LIHC was determined using the
Oncomine database. The threshold was designed using the following specific parameters: p = 1E-4, fold change = 2, and gene rank 10%. (E) mRNA expression of
PDZD11 in primary solid tumors, recurrent solid tumors, and adjacent normal liver tissues (DriverDBV3 database). (F) A representative western blot showing PDZD11
protein is expressed in LIHC tissues (T) and matched normal liver tissues (N) (n = 8). (G,H) Real-time qPCR and Western blotting analysis of PDZD11 mRNA (G) and
protein expression (H) in human hepatocytes and LIHC cell lines. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 2 | Analysis of subgroup expression of PDZD11 in LIHC (UALCAN database). (A) PDZD11 mRNA expression in LIHC tissue and adjacent normal liver
tissue. (B–I) Box plot shows the PDZD11 mRNA expression of LIHC patients in the subgroups of different cancer stages (B), race (C), gender (D), age (E), weight
(F), tumor grade (G), nodal metastasis status (H), and TP53 mutation status (I). The data are shown as mean ± SE. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. The
asterisk indicates a significant difference between the two sets of data.

used the UALCAN database to evaluate the extent of PDZD11
promoter methylation in LIHC samples and investigated the
association between promoter DNA methylation and PDZD11
expression levels. The results indicated that PDZD11 promoter
methylation levels were lower in LIHC cases than in normal
control samples (Figure 3B). To explore the factors that
affect levels of PDZD11 promoter methylation, we further
analyzed promoter DNA methylation of PDZD11 in different
subgroups according to different clinicopathological parameters.
The subgroup analysis results showed that promoter methylation
of PDZD11 was possibly affected by individual cancer stages, race,
gender, age, weight, tumor grade, nodal metastasis status, and
TP53 mutation status in LIHC (Figures 3C–J).

Prognostic Value of PDZD11 mRNA
Expression in LIHC Patients
To explore whether high expression levels of PDZD11 are
associated with cancer-promoting or tumor suppressor genes, we
evaluated the prognostic value of PDZD11 mRNA expression in
patients with LIHC using the DriverDBV3 database. As shown

in Figures 4A,B, PDZD11 overexpression was associated with
unfavorable 5-year survival [hazard ratio (HR) = 1.69, log-rank
p = 0.0036] and overall survival (OS, HR = 1.53, log-rank
p = 0.0153) in LIHC patients.

Biological Interaction Network of
PDZD11
Using the STRING and GeneMANIA databases, a functional
protein interaction network of PDZD11 was constructed
to enrich for possible PDZD11-mediated signaling pathways
(Figures 4C,D). ATP7A, a transmembrane protein that functions
in copper transport across cell membranes, was the only gene
that intersected two protein-protein interaction (PPI) networks
(Schmidt et al., 2018). Furthermore, STRING was used to
perform GO and KEGG analyses to determine the functional
enrichment of these 29 interactors. The results indicated that
biological processes included copper ion homeostasis and copper
ion transmembrane transport; Cellular components analysis
found that these proteins are localized mainly in endosomes and
early endosomes. Molecular function analysis indicated that these
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FIGURE 3 | Genetic alternations and promoter methylation levels of PDZD11 in LIHC. (A) Oncoprint in cBioPortal showed the distribution and proportion of samples
with alternations in PDZD11. (B) The promoter methylation levels of PDZD11 in LIHC. (C–J) Box plots show promoter methylation level of PDZD11 in normal vs.
LIHC tissues and different individual cancer stages (C), race (D), gender (E), age (F), weight (G), tumor grade (H), nodal metastasis status (I), and TP53 mutation
status (J) (UALCAN database). Data are shown as mean ± SE. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

proteins are primarily involved in copper-dependent protein
binding, copper ion transmembrane transporter activity, copper
ion binding, copper chaperone activity and phosphatidylinositol-
3,5-bisphosphate binding (data not shown).

Enrichment Analysis of PDZD11
Functional Networks in LIHC
Predicted Functions and Pathways of Co-expressed
Genes Correlate With PDZD11 in LIHC
LinkedOmics was used to analyze TCGA mRNA sequencing
data from 371 LIHC patients. Pearson’s test was used to
analyze the co-expression of genes correlated with PDZD11 levels
in LIHC. As shown in the volcano plot (Figure 5A), 2,960
genes (dark red dots) showed significant positive correlation

with PDZD11, whereas 3,234 genes (dark green dots) showed
opposite correlations (false discovery rate (FDR) < 0.01). The
top 50 significant genes were positively and negatively associated
with PDZD11, as shown in the heat map (Figures 5B,C). As
shown in Figures 5D–F, the mRNA expression of PDZD11
showed the strongest positive association with expression of
FAM50A (Pearson correlation = 0.62, p = 7.71e-41), NDUFA1
(Pearson correlation = 0.60, p = 9.78e-38), and LAGE3 (Pearson
correlation = 0.60, p = 1.04e-37), which reflect changes in
the spliceosome complex (Lee et al., 2020), mitochondrial
respiratory chain complex I (Fernandez-Moreira et al., 2007),
and the KEOPS/EKC complex (tRNA modification complex)
(Wan et al., 2017).

Furthermore, based on the results of the Pearson test
(Figures 5A–C), we selected positively and negatively correlated
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FIGURE 4 | Visual summary of the prognostic value and biological interaction network of PDZD11 in LIHC. (A,B) Kaplan-Meier plot of the relationship of PDZD11
gene expression and survival in LIHC patients (DriverDBV3 database). The LIHC patient samples are stratified into 2 groups using the mean expression value as the
cut-off point: 149 samples with highly expressed PDZD11 mRNA (red) and 216 samples with lowly expressed PDZD11 mRNA (green). Y-axis is survival probability.
The left figure is the 5-year survival, and the right figure shows overall survival (OS). The X-axis is the months of survival period. Log-Rank P-value and Hazard Ration
(HR) are provided on the top of plots. (C) Protein-protein interaction (PPI) network of PDZD11 (Top 10) (STRING database). (D) PPI network (Top 20) of PDZD11 from
GeneMANIA database.

genes with coefficients > 0.3 and < −0.3. Finally, 617 genes
positively correlated with PDZD11 and 411 genes negatively
correlated with PDZD11 were selected (FDR < 0.001). Moreover,
these genes were used for GO and KEGG enrichment analyses
using the DAVID database. The cutoff criterion was set at
FDR < 0.01. As shown in Figures 6A–D, cellular component
analysis indicated that these proteins were mainly located in
the nucleoplasm, proteasome complex, and mitochondrial
inner membrane. Biological processes were primarily
enriched in NIK/NF-κB signaling, regulation of cellular
amino acid metabolic processes, and anaphase-promoting
complex-dependent catabolic processes. Molecular function
analysis revealed that these proteins were mostly involved in
protein binding, poly(A) RNA binding, and threonine-type

endopeptidase activity. KEGG pathway results showed that
the co-expressed genes for the most part participated in
proteasomes, oxidative phosphorylation (OXPHOS) (Figure 6E),
and Alzheimer’s disease.

PDZD11 Networks of Kinase, MicroRNA
or Transcription Factor Targets in LIHC
To further explore the gene regulatory network of PDZD11
in LIHC, we also analyzed the important kinase, miRNA, and
transcription factor target networks that were connected to
PDZD11 in LIHC via gene set enrichment analysis (GSEA). The
results showed that the most frequent kinase targets, miRNA
targets, and transcription factor targets were kinase CDK5, three
miR-200 family members (miR-200b, miR-200c, and miR-429),
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FIGURE 5 | Differentially expressed genes that correlated with PDZD11 in LIHC (LinkedOmics database). (A) A Pearson test was used to determine the correlations
between PDZD11 and differently expressed genes in LIHC. (B,C) Heat maps are showing genes (Top 50) positively or negatively correlated with PDZD11 in LIHC.
Red indicates positively correlated genes and blue indicates negatively correlated genes. (D–F) The scatter plots mean that PDZD11 expression is positively
correlated with the expression of FAM50A (D), NDUFA1 (E), and LAGE3 (F).

and V$SOX9_B1, respectively (Table 1 and Supplementary
Tables 5–7). Furthermore, PPI networks were constructed by
STRING, and biological enrichment was performed using the
DAVID database, indicating that all three gene sets were mainly
involved in the KEGG pathway of prostate cancer, MAPK
signaling pathway, and transcriptional dysregulation in cancer
(Supplementary Figures 1–3).

Association of PDZD11 Expression and
Immune Infiltration in LIHC
LIHC is one of the most common malignant tumors (Okajima
et al., 2017). Because PDZD11 overexpression is associated
with poor prognosis in LIHC patients (Figure 4), we explored
whether the expression of PDZD11 was correlated with levels
of immune infiltration in LIHC from the TIMER database
and/or TIMER2.0 database. As shown in Figure 7, there
was a positive correlation between PDZD11 expression and
infiltration by B cells, CD8+ T cells, CD4+ T cells, macrophages,
neutrophils, and dendritic cells. Furthermore, under the premise
of high expression of PDZD11 mRNA in LIHC, we found
that higher infiltration levels of two immune cells (T cell
CD4 + memory resting-CIBERSORT, and Macrophage-EPIC)
were associated with better survival outcomes in LIHC patients
(Figures 7B,C). In contrast, higher infiltrating levels of the
macrophage M2 subset was a risk factor for disease prognosis in
LIHC patients (Figure 7D).

DISCUSSION

EMT-induced changes in epithelial cell plasticity are evidenced
by the loss of epithelial markers, such as the adherence junction
component E-cadherin and cytokeratins of the intermediate
filament system (K8, K18, K19). Conversely, the expression of
mesenchymal proteins such as N-cadherin, α-SMA, FSP-1, and
the EMT transcription factors Snail (SNA1), Slug (SNA2), Twist,
and ZEB are increased (Giannelli et al., 2016). Konopka et al.
(2007) have also reported that junctional adhesion molecule-
A (JAM-A) is critical for the formation of pseudocanaliculi
and regulates E-cadherin expression through feedback signaling
pathways in hepatic cells. However, the present study lacked a
well-defined consensus on EMT-MET (mesenchymal-epithelial
transition) biomarkers, which hinders definitive conclusions
on how EMT affects clinical outcomes in LIHC patients
(Giannelli et al., 2016). Therefore, there is an urgent need
to identify biomarkers or therapeutic targets related to EMT
for early diagnosis and for predicting the progression and
recurrence of LIHC.

Current research reports that the interaction of PDZD11 with
PLEKHA7 is significantly associated with tight and adherens
junctions (Guerrera et al., 2016; Vasileva et al., 2017). However,
to the best of our knowledge, no study has investigated the
role of PDZD11 in liver cancer. In this study, we provide the
first evidence that PDZD11 mRNA expression is significantly
upregulated in LIHC and is associated with poor prognosis
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FIGURE 6 | Enrichment analysis of PDZD11 co-expression genes in LIHC. (A–D) The significantly enriched GO annotations and KEGG pathways of PDZD11
co-expression genes in LIHC are analyzed using DAVID. Based on the Pearson test (Figures 5A–C), we selected the positively and negatively correlated genes with
coefficient > 0.3 and < –0.3 (LinkedOmics and bioinformatics databases). (E) KEGG pathway annotations of the oxidative phosphorylation pathway. Red marked
nodes are associated with the Leading Edge Genes. FDR < 0.05 was considered statistically significant.
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TABLE 1 | Kinase, miRNA and transcription factor-target networks of PDZD11 in LIHC (LinkedOmics).

Enriched category Geneset Leading edge number FDR P-value

Kinase target Kinase_CDK5 26 0.0066696 0

Kinase_NLK 5 0.010671 0

Kinase_MAPK7 14 0.034682 0

Kinase_DYRK1A 7 0.045353 0.0040650

miRNA target GTGTTGA,MIR-505 46 0 0

CAGTATT,MIR-200B,MIR-200C,MIR-429 155 0 0

ACTGAAA,MIR-30A-3P,MIR-30E-3P 81 0 0

AAAGGGA,MIR-204,MIR-211 101 0 0

TACTTGA,MIR-26A,MIR-26B 131 0 0

Transcription factor target GGAANCGGAANY_UNKNOWN 35 0 0

V$FREAC4_01 49 0 0

V$HOX13_01 15 0 0

V$SOX9_B1 80 0 0

V$STAT5A_02 50 0 0

FDR, false discovery rate from Benjamini and Hochberg from gene set enrichment analysis (GSEA). V$, the annotation found in Molecular Signatures Database (MSigDB)
for transcription factors (TF).

FIGURE 7 | Associations between mRNA expression of PDZD11 and immune infiltration in LIHC (TIMER2.0 database). (A) Association of PDZD11 expression with
abundance of immune infiltrates (B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells). (B–D) The effect of PDZD11 expression in
correlation with infiltration levels of immune cells on the prognosis of LIHC.

(Figures 1A–E, 4A,B). In particular, we demonstrated that
PDZD11 is aberrantly expressed in human liver cancer tissues
and cell lines (Figures 1F–H). Moreover, subgroup analysis
showed that the mRNA expression of PDZD11 was also
upregulated in different subgroups of LIHC (Figure 2). In
particular, the mRNA expression of PDZD11 increased as tumors
progressed (Figures 2B,G). Additionally, we found that the
expression of PDZD11 may be negatively regulated by wild-
type p53 at the transcriptional level (Figure 2I). Similarly,
previous studies have shown that E-cadherin, the most reliable
and closely investigated marker in a large number of LIHC
patients, was directly correlated with poorer prognosis and
shorter survival (Yamada et al., 2014). Consequently, these
results suggest that PDZD11 and the EMT marker E-cadherin
could serve as potential diagnostic and prognostic biomarkers
in LIHC patients.

mRNA upregulation is the most aberrant type of genetic
alteration involving PDZD11 in LIHC (Figure 3A). We further
analyzed PDZD11 promoter DNA methylation levels and found
that the higher expression of PDZD11 in LIHC may be negatively
correlated with the extent of promoter methylation (Figure 3B).
Subgroup analysis showed that PDZD11 promoter methylation
level was also downregulated in different subgroups of LIHC
(Figures 3C–J). Cano et al. (2000) reported that the expression
of the EMT marker E-cadherin is negatively regulated by
the transcription factor Snail. These results suggest that the
mechanism of high expression of PDZD11 mRNA in LIHC could
be different from the classical Snail/E-cadherin axis.

Further analysis of the gene regulatory network of PDZD11
in LIHC suggested that the functions of these genes were
primarily related to copper ion homeostasis, proteasome, and
OXPHOS pathway. As shown in Figures 4C,D, ATP7A is the
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only gene that intersects the two PPI networks. A previous
study demonstrated that ATP7A is a transmembrane protein
that functions in copper transport across cell membranes
(Schmidt et al., 2018). Bortezomib is a first-in-class proteasome
inhibitor that has been repeatedly demonstrated to exert anti-
proliferative, anti-metastatic, and pro-apoptotic effects in LIHC
(Yang et al., 2016; Huang et al., 2019). This study showed
that the protein expression level of PDZD11 was irreconcilable
with its mRNA transcription level. However, this proteasome-
mediated PDZD11 protein degradation pathway requires further
research. A recent study has also reported that induced
E-cadherin expression and subsequent induction of NF-κB
signaling increases OXPHOS, glycolysis, and cell proliferation
in human gastric adenocarcinomacells (Park et al., 2017).
Therefore, further research is needed to determine how abnormal
expression of PDZD11 affects OXPHOS in LIHC and its role in
LIHC metastasis.

We also sought important networks of target kinases,
miRNAs, and transcription factors of the differentially expressed
PDZD11 in LIHC. We found that PDZD11 in LIHC was linked
to a network of kinases, including CDK5, NLK, and MAPK7.
Previous studies have reported that levels of these kinases are
significantly higher in human LIHC tissue than in normal liver
tissue. Moreover, the downregulated expression of these kinases
significantly inhibits the development and growth of LIHC
in vitro and in vivo (Jung et al., 2010; Ehrlich et al., 2015; Lu
et al., 2016). The probable miRNAs involved in the regulation
of PDZD11 expression in LIHC included miR-505, three miR-
200 family members (miR-200b, miR-200c, and miR-429), and
two miR-30 family members (miR-30a-3p and miR-30e-3p). Lu
et al. (2016) found that miR-505 regulates proliferation, invasion,
and EMT in MHCC97 hepatoma cells by targeting high-mobility
group box 1 (HMGB1). Ding et al. (2012) showed that the
combination of a DNA methyltransferase (DNMT) inhibitor
and upregulation of miR-200b could block lung metastasis of
mesenchymal-phenotype hepatocellular carcinoma. Wang et al.
(2014) indicated that miR-30a-3p inhibits tumor proliferation,
invasion, and migration, and is downregulated in LIHC. Our data
indicated that V$FREAC4_01, V$HOX13_01, and V$SOX9_B1
may be key transcription factors in the regulation of PDZD11.
Liu et al. (2016) demonstrated that Sox9 regulates self-renewal
and tumorigenicity by promoting symmetrical cell division of
cancer stem cells in LIHC. Taken together, abnormal expression
of PDZD11 may modulate tumor cell proliferation, invasion,
metastasis, and the development of LIHC by regulating these
targets. Further studies are required to verify this hypothesis.

The emergence and development of LIHC are accompanied
by a persistent inflammatory reaction. Inflammatory cells in the
tumor microenvironment of LIHC mainly include macrophages,
infiltrating lymphocytes, neutrophils, mast cells, dendritic cells,
and eosinophils (Kim and Bae, 2016; Yan et al., 2018). In
particular, Liu W.R. et al. (2020) reported that among these
tumor-related regulatory T cells (Tregs), macrophages, and
neutrophils are strongly correlated with OS and relapse-free
survival (RFS) in LIHC patients. Here, we found that PDZD11
expression in LIHC was positively correlated with infiltrating
levels of six immune cell types (i.e., B cells, CD4+ T cells,

CD8 + T cells, macrophages, neutrophils, and dendritic cells).
Moreover, under the premise of high expression of PDZD11
mRNA in LIHC, the higher infiltration levels of the CD4+
memory resting T cell subset were favorable factors for prognosis
in LIHC patients. In contrast, the higher infiltration levels of
the macrophage M2 subset had an unfavorable prognosis in
LIHC (Figure 7). Previous studies have shown that CD4+ T
cells and tumor-associated macrophages (TAMs) play a central
role in pro-tumor immunity; their interactions with tumor cells
can directly promote tumor growth, progression, invasion, and
metastasis. Conversely, CD8+ T cells are responsible for anti-
tumor responses, and increased CD8+ T cell infiltration usually
indicates a better prognosis in LIHC (Yan et al., 2018; Ansari
et al., 2020; Li et al., 2020). In summary, these data indicate that
PDZD11 is not only a prognostic biomarker, but may also reflect
the immune status of LIHC patients.

In summary, these findings highlight the critical role of
PDZD11 in the development and progression of LIHC. However,
immunohistochemistry and functional analysis are needed in
future studies to verify the relationship between PDZD11 and
EMT in LIHC at the clinical and cellular levels. In particular,
compared with normal human hepatocytes, the overexpression
level of PDZD11 mRNA was significantly higher than its protein
level. In addition, the protein expression level of PDZD11 in
HepG2 cells was significantly reduced. Therefore, overexpression
of PDZD11 in LIHC could not be ruled out, which is a self-
protective feedback regulation mechanism that inhibits tumor
metastasis. Further studies are needed to determine whether the
aberrant expression of PDZD11 is detrimental or beneficial to
patients with LIHC, and further studies are needed to explore
how the aberrant expression of PDZD11 regulates the onset and
progression of LIHC via EMT and OXPHOS pathways.
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Background: Protein-coding gene LIM Domain Kinase 1 (LIMK1) is upregulated in
various tumors and reported to promote tumor invasion and metastasis. However,
the prognostic values of LIMK1 and correlation with immune infiltrates in lung
adenocarcinoma are still not understood. Therefore, we evaluated the prognostic role
of LIMK1 and its correlation with immune infiltrates in lung adenocarcinoma.

Methods: Transcriptional expression profiles of LIMK1 between lung adenocarcinoma
tissues and normal tissues were downloaded from the Cancer Genome Atlas (TCGA).
The LIMK1 protein expression was assessed by the Clinical Proteomic Tumor Analysis
Consortium (CPTAC) and the Human Protein Atlas. Receiver operating characteristic
(ROC) curve was used to differentiate lung adenocarcinoma from adjacent normal
tissues. Kaplan-Meier method was conducted to assess the effect of LIMK1 on
survival. Protein-protein interaction (PPI) networks were constructed by the STRING.
Functional enrichment analyses were performed using the “ClusterProfiler” package.
The relationship between LIMK1 mRNA expression and immune infiltrates was
determined by tumor immune estimation resource (TIMER) and tumor-immune system
interaction database (TISIDB).

Results: The expression of LIMK1 in lung adenocarcinoma tissues was significantly
upregulated than those in adjacent normal tissues. Increased LIMK1 mRNA expression
was associated with lymph node metastases and high TNM stage. The ROC curve
analysis showed that with a cutoff level of 4.908, the accuracy, sensitivity, and specificity
for LIMK1 differentiate lung adenocarcinoma from adjacent controls were 69.5, 93.2,
and 71.9%, respectively. Kaplan-Meier survival analysis showed lung adenocarcinoma
patients with high- LIMK1 had a worse prognosis than those with low- LIMK1 (43.1 vs.
55.1 months, P = 0.028). Correlation analysis indicated LIMK1 mRNA expression was
correlated with tumor purity and immune infiltrates.

Conclusion: Upregulated LIMK1 is significantly correlated with poor survival and
immune infiltrates in lung adenocarcinoma. Our study suggests that LIMK1 can be
used as a biomarker of poor prognosis and potential immune therapy target in
lung adenocarcinoma.

Keywords: lung adenocarcinoma, LIMK1, LIM domain kinase1, biomarker, prognosis, immune infiltrates
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INTRODUCTION

Lung cancer is one of the most common malignant tumors
around the world and the leading cause for cancer-related death
(Jemal et al., 2011). The incidence of lung cancer has steadily
increased over recent years. Lung cancer remains refractory and
the 5-year survival rate continues to be the lowest among the
major cancers. It is speculated that numerous people will be
diagnosed with lung cancer in the future, which bring a heavy
economic burden to our society (Torre et al., 2016; Albaba et al.,
2017). In the subtypes of lung cancer, lung adenocarcinoma
accounts for about 50% (Brustugun et al., 2018). Despite many
therapeutic endeavors has been made in lung adenocarcinoma,
such as targeted therapy and immunotherapy, the survival rate
remains bleak and staggers at about 20% 5 years after treatment
(Hirsch et al., 2017). Thus, it is imperative to search novel
biomarkers for advancing the prognosis of lung adenocarcinoma.

LIM Domain Kinase 1 (LIMK1) is a protein known as a
member of the LIM kinase protein family. LIMK1 is consisted of
gene spans 39,499 base pairs with 16 exons and encoded by a gene
located on human chromosome 7q11.23 (Scott and Olson, 2007).
Through phosphorylation and inactivation to its downstream
effector of cofilin, LIMK1 has been shown to be important in
regulating the polymerization of actin (Liu et al., 2019). When
LIMK1 is phosphorylated, cofilin loses the ability to bind to actin,
leading to the accumulation of actin polymers dysregulation of
actin-mediated cytoskeletal changes (Nishimura et al., 2006).
The phosphorylation of LIMK1 has been implicated with many
cellular functions including angiogenesis, proliferation, cell cycle,
and metastasis progression (Foletta et al., 2004; Nishimura
et al., 2006). Previous studies have confirmed that ectopic
expression of LIMK1 was associated with the progression of
several tumor types, such as colorectal cancer, gastric cancer,
prostate cancer, and breast cancer (Davila et al., 2003; McConnell
et al., 2011; You et al., 2015; Liao et al., 2017). A paper from
Huang et al. (2020) indicated that the upregulation of LIMK1
is correlated with lymph node metastasis and poor biochemical-
free survival in prostate cancer. In pancreatic cancer, Vlecken
and Bagowski (2009) reported that knockdown of LIMK1 can
lead to an inhibition of invasion and metastatic behavior, as well
as suppression of pancreatic cancer cell-induced angiogenesis.
Moreover, some recent findings suggested that downregulation
of LIMK1 can inhibit lung cancer cell migration (Chen et al.,
2013; Wan et al., 2014; Zhang et al., 2020). Thus, LIMK1 has great
potential to be a biomarker of poor prognosis and therapeutic
target for lung cancer.

The prognostic values and correlation with immune infiltrates
of LIMK1 in lung adenocarcinoma are still not fully understood.
Given the overexpression of LIMK1 in lung cancer and the
downregulation of LIMK1 can inhibit lung cancer cell migration,
we hypothesized that the level of LIMK1 is associated with
survival in lung adenocarcinoma. To test this hypothesis, we
evaluated the prognostic role of LIMK1 in lung adenocarcinoma
based on data from The Cancer Genome Atlas (TCGA). In
this study, we found that LIMK1 is upregulated in lung
adenocarcinoma. Significantly, the upregulation of LIMK1 is
correlated with poor clinical characteristics and risk factors.

We further evaluated the diagnostic and prognostic values,
the correlation with immune infiltrates of LIMK1 for lung
adenocarcinoma. Our study links the overexpression of LIMK1
and poor survival in lung adenocarcinoma.

MATERIALS AND METHODS

TCGA Datasets
Transcriptional expression data of LIMK1 and corresponding
clinical information were downloaded from TCGA official
website1 (Tomczak et al., 2015). The 18 enrolled cancer types
contained at least 5 samples in the normal group. Finally, the
RNA-Seq gene expression data with workflow type of FPKM was
transformed into TPM format and log2 conversion for further
study. Since all the data were downloaded from TCGA, this study
did not need approval from the Ethics Committee.

RNA-Sequencing Data of LIMK1 in Lung
Adenocarcinoma
The RNA-Seq expression data of LIMK1 in lung adenocarcinoma
was also downloaded from TCGA. Therefore, 535 lung
adenocarcinoma and 59 adjacent normal tissue data were
retained. The samples selected contained LIMK1 gene expression
data and associated clinical information, including age, gender,
smoker condition, T stage, N stage, M stage, and tumor location.
The mRNA expression data were characterized by mean± SD.

Clinical Proteomic Tumor Analysis
Consortium (CPTAC) and UALCAN
With the application of proteomic technologies, CPTAC2

analyzes tumor biospecimens using mass spectrometry,
quantifying and identifying the constituent proteins and
characterizing proteome of each tumor sample (Edwards et al.,
2015). UALCAN3 is a user-friendly online web resource for
analyzing publicly available cancer data (Chandrashekar et al.,
2017). In this study, we performed UALCAN to present a
throughout analysis of LIMK1 protein expression from CPTAC.

The Human Protein Atlas (HPA)
HPA4 contains normal tissues and tumor tissues information
regarding the expression profiles of human genes on protein level
(Uhlen et al., 2015, 2017). In this study, we conducted HPA to
compare the protein expression of LIMK1 between normal lung
tissue and lung adenocarcinoma tissue.

Protein-Protein Interaction (PPI)
Networks and Functional Enrichment
Analysis
STRING is an online database for the retrieval of interacting
genes (version 11.05; Szklarczyk et al., 2011). In this study,

1https://portal.gdc.cancer.gov/
2https://proteomics.cancer.gov/programs/cptac
3http://ualcan.path.uab.edu/
4https://proteinatlas.org/
5http://string-db.org
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we conducted STRING to search co-expression genes and
construct PPI networks with an interaction score >0.4. Gene
ontology (GO) enrichment and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analyses of co-expression
genes were performed by the “ClusterProfiler” package and
visualized by the “ggplot2” package (Wickham, 2016; Yu et al.,
2012).

Tumor Immune Estimation Resource
(TIMER) Database
TIMER is a comprehensive online resource for systematic
analysis of immune infiltrates across various cancer types6 (Li
et al., 2017). In this study, we performed TIMER to determine the
relationship between LIMK1 expression in lung adenocarcinoma
and six immune infiltrates (B cells, CD4+ T cells, CD8+ T cells,
neutrophils, macrophages, and dendritic cells).

Tumor-Immune System Interaction
Database (TISIDB)
TISIDB7 is an online web integrated repository portal for tumor-
immune system interaction (Ru et al., 2019). In this study, we
performed TISIDB to determine the expression of LIMK1 and
tumor-infiltrating lymphocytes (TILs) across human cancers.
Based on the gene expression profile, the relative abundance
of TILs was inferred by using gene set variation analysis.
The correlations between LIMK1 and TILs were measured by
Spearman’s test.

PrognoScan Database
PrognoScan database8 is a powerful online platform to evaluate
the correlation between gene expression and survival across
various types of cancers (Mizuno et al., 2009). In this
study, we performed PrognoScan database to analyze the
correlation between LIMK1 expression and overall survival in
lung adenocarcinoma with two different datasets (jacob-00182-
CANDF, jacob-00182-MSK).

Statistical Analyses
All statistical analyses were performed with R (V 3.6.3)9

and R package ggplot2 was used to visualize expression
differences. Paired t-test and Mann-Whitney U-test were used to
determine the differences between lung adenocarcinoma tissues
and adjacent normal tissues. ROC curve was performed to
detect the cutoff value of LIMK1 using the pROC package
(Robin et al., 2011). Kaplan-Meier and log-rank tests were
conducted with the survminer package10 to assess the effect of
LIMK1 on survival.

6https://cistrome.shinyapps.io/timer/
7http://cis.hku.hk/TISIDB/
8http://dna00.bio.kyutech.ac.jp/PrognoScan/index.html
9https://www.r-project.org/
10https://CRAN.R-project.org/package=survminer

RESULTS

Expression Pattern of LIMK1 in
Pan-Cancer Perspective
To evaluate the mRNA expression pattern of LIMK1 across
different cancer types, we excluded from the analysis the datasets
from 15 cancer types that contained less than five samples in the
normal group. The final working set refers to 18 cancer types.
As shown in Figure 1, compared with normal tissues, LIMK1
was significantly upregulated in 16 of all 18 cancer types. This
data indicated the mRNA expression of LIMK1 was abnormally
expressed across different cancer types.

Upregulated mRNA and Protein
Expression of LIMK1 in Patients With
Lung Adenocarcinoma
To determine the mRNA and protein expression of LIMK1
in lung adenocarcinoma, the LIMK1 expression data from
TCGA and HPA were analyzed. The baseline characteristics
of lung adenocarcinoma patients from TCGA were listed in
Supplementary Table 1. As shown in Figure 2A, paired data
analysis showed that the mRNA expression levels of LIMK1 in
lung adenocarcinoma tissues (n = 57) were significantly higher
than those in adjacent normal tissues (n = 57) (Figure 2A,
5.584 ± 0.747 vs. 4.320 ± 0.442, P < 0.001). Unpaired
data analyses also showed that the mRNA expression levels
of LIMK1 in lung adenocarcinoma tissues (n = 535) were
significantly higher than those in adjacent normal tissues (n = 59)
(Figure 2B, 5.314 ± 0.847 vs. 4.324 ± 0.437, Mann-Whitney
U-test, P < 0.001). To present a throughout analysis of LIMK1
protein expression, we performed analysis on CPTAC with
UALCAN. The result showed that the protein expression of
LIMK1 in lung adenocarcinoma was significantly higher than
those in normal tissues (Figure 2C). As shown in Figure 2D,
immunohistochemical staining from HPA also revealed LIMK1
protein was upregulated in lung adenocarcinoma tissue. These
results indicated that both mRNA and protein expression of
LIMK1 are upregulated in lung adenocarcinoma tissues.

Relationships Between LIMK1 mRNA
Levels and Clinical Pathological
Characteristics of Lung Adenocarcinoma
Patients
To evaluate the association between the mRNA expression
of LIMK1 and clinical pathological characteristics of lung
adenocarcinoma samples, we performed Mann-Whitney U-test
and logistic regression analysis. As shown in Table 1 and
Figures 3A–I, higher expression levels of LIMK1 were observed
in male patients (P = 0.004), patients with lymph node metastases
(P = 0.022), and patients with high TNM stage (P = 0.048).
However, no statistically significant correlation were found
between the expression levels of LIMK1 and other clinical
pathological characteristics, such as age (P = 0.113), smoker
(P = 0.270), T stage (P = 0.129), M stage (P = 0.921), and
anatomic subdivision (right vs. left, P = 0.959; peripheral vs.
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FIGURE 1 | Expression pattern of LIMK1 in Pan-cancer perspective. The mRNA expression of LIMK1 was upregulated in 16 of 18 cancer types compared with
normal tissues. (***P < 0.001). ns, no significance; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CHOL, cholangiocarcinoma; COAD, colon
adenocarcinoma; ESCA, esophageal carcinoma; GBM, glioblastoma mutiforme; HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe;
KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung
squamous cell carcinoma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; STAD, stomach adenocarcinoma; THCA, thyroid carcinoma; UCEC,
uterine corpus endometrial carcinoma.

FIGURE 2 | The mRNA and protein expression of LIMK1 in lung adenocarcinoma. (A) The mRNA expression levels of LIMK1 in 57 lung adenocarcinoma and
matched-adjacent normal samples. (B) The mRNA expression levels of LIMK1 in 535 lung adenocarcinoma samples and 59 normal samples. (C) The protein
expression levels of LIMK1 based on CPTAC. (D) The protein levels of LIMK1 based on Human Protein Atlas. Normal tissue, https://www.proteinatlas.org/
ENSG00000106683-LIMK1/tissue/lung#img; Tumor tissue, https://www.proteinatlas.org/ENSG00000106683-LIMK1/pathology/lung+cancer#img (***P < 0.001).

central, P = 0.562). Taken together, these results suggested that
LIMK1 is correlated with lymph node metastases and high TNM

stage, further suggesting LIMK1 may act as a biomarker of poor
prognosis for lung adenocarcinoma.
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TABLE 1 | Clinical characteristics of the lung adenocarcinoma patients (TCGA).

Characteristics Total Low
expression

High
expression

P-value

N (%) N (%) N (%)

T stage 0.199

T1 175 (32.9%) 97 (18.2%) 78 (14.7%)

T2 289 (54.3%) 140 (26.3%) 149 (28%)

T3 49 (9.2%) 21 (3.9%) 28 (5.3%)

T4 19 (3.6%) 7 (1.3%) 12 (2.3%)

N stage 0.006**

N0 348 (67.0%) 188 (36.2%) 160 (30.8%)

N1 95 (18.3%) 39 (7.5%) 56 (10.8%)

N2 74 (14.3%) 28 (5.4%) 46 (8.9%)

N3 2 (0.4%) 0 (0%) 2 (0.4%)

M stage 1.000

M0 361 (93.5%) 184 (47.7%) 177 (45.9%)

M1 25 (6.5%) 13 (3.4%) 12 (3.1%)

Pathologic
stage

0.002**

Stage I 294 (55.8%) 165 (31.3%) 129 (24.5%)

Stage II 123 (23.3%) 50 (9.5%) 73 (13.9%)

Stage III 84 (16.0%) 31 (5.9%) 53 (10.1%)

Stage IV 26 (4.9%) 14 (2.7%) 12 (2.3%)

Gender 0.005**

Female 286 (53.5) 126 (23.6%) 160 (29.9%)

Male 249 (46.5) 141 (26.4%) 108 (20.2%)

Age 0.134

< = 65 255(49.4) 118 (22.9%) 137 (26.6%)

>65 261(50.6) 139 (26.9%) 122 (23.6%)

Smoker 0.327

No 75(14.4) 33 (6.3%) 42 (8.1%)

Yes 446(85.6) 227 (43.6%) 219 (42%)

Anatomic
neoplasm
subdivision

1.000

Left 205(39.4) 102 (19.6%) 103 (19.8%)

Right 315 (60.6) 156 (30%) 159 (30.6%)

Anatomic
neoplasm
subdivision 2

0.671

Central lung 62 (32.8) 27 (14.3%) 35 (18.5%)

Peripheral lung 127 (67.2) 61 (32.3%) 66 (34.9%)

**P < 0.01.

Differential RNA-Seq Levels of LIMK1 as
a Prospective Biomarker to Distinguish
Lung Adenocarcinoma Samples From
Normal Samples
To investigate the value for LIMK1 to distinguish lung
adenocarcinoma samples from normal smples, we performed
a ROC curve analysis. As showed in Figure 4A, the ROC
curve analysis showed LIMK1 had an AUC value of 0.851
(95% CI: 0.813–0.888). At a cutoff of 4.908, LIMK1 had a
sensitivity, specificity, and accuracy of 69.5, 93.2, and 71.9%,
respectively. The positive predictive value was 98.9% and the

negative predictive value was 25.2%. These findings indicated
that LIMK1 could be a promising biomarker to differentiate lung
adenocarcinoma tissues from normal tissues.

High mRNA Expression of LIMK1 Is
Associated With Short OS
To explore the relationship between LIMK1 mRNA expression
and OS in lung adenocarcinoma patients, Kaplan-Meier curves
and PrognoScan database were performed. As shown in
Figure 4B, the OS of lung adenocarcinoma patients with high-
level of LIMK1 was significantly shorter than those with low-
level of LIMK1 (43.1 vs. 55.1 months, P = 0.028). PrognoScan
result with two different datasets (Supplementary Figure 1) also
indicated that high expression of LIMK1 was correlated with poor
overall survival in lung adenocarcinoma. These data indicated
that high mRNA expression of LIMK1 is a biomarker of poor
prognosis in lung adenocarcinoma.

PPI Networks and Functional
Annotations
To construct PPI networks and functional annotations, we
conducted STRING database, GO, and KEGG analyses.
Figure 5A showed a network of LIMK1 and its 10 co-
expression genes. As shown in Figure 5B, changes in the
biological process of LIMK1 were associated with actin filament
organization, regulation of actin filament-based process,
and actin cytoskeleton organization. Functional annotations
indicated that these genes were involved in purine ribonucleoside
binding, GTP Binding, and GTPase activity. The correlation
analyses between the expression of LIMK1 and co-expressed
genes in lung adenocarcinoma from TCGA were shown in
Figures 5C–I.

Correlation Analysis Between LIMK1
Expression and Immune Cell Infiltration
in Lung Adenocarcinoma
We analyzed the correlation between LIMK1 expression and
the six types of tumor infiltrating immune cells in the TIMER
database. As shown in Figure 6A, LIMK1 expression had
correlations with tumor purity (r = −0.189, P = 2.37e-05),
CD4+ T cell (r = 0.285, P = 1.65e-10), macrophage (r = 0.143,
P = 1.64e-03), neutrophil (r = 0.263, P = 4.53e-09), dendritic
cell (r = 0.363, P = 1.20e-16). We also evaluated the correlation
between LIMK1 expression and 28 types of TILs in the TISIDB
database. Figure 6B shown the relations between expression of
LIMK1 and 28 types of TILs across human cancers. As shown
in Figure 6C, the expression of LIMK1 was correlated with
abundance of CD8+ T cells (r = 0.401, P = 2.2e-16), CD4+ T
cells (r = 0.317, P = 1.92e-16), monocyte cells (r = 0.289,
P = 2.71e-11), treg cells (r = 0.289, P = 4.41e-11), CD56dim
cells (r = 0.275, P = 2.31e-10), and myeloid derived suppressor
cells (MDSC, r = 0.275, P = 2.41e-10). These data indicated
that LIMK1 may play a specific role in immune infiltration in
lung adenocarcinoma.

Frontiers in Genetics | www.frontiersin.org 5 June 2021 | Volume 12 | Article 67158595

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-671585 May 28, 2021 Time: 17:15 # 6

Lu et al. LIMK1 in Lung Adenocarcinoma

FIGURE 3 | Relationships between LIMK1 mRNA levels and clinical pathological characteristics. LIMK1 mRNA expression was significantly correlated with lymph
node metastases (B), high TNM stage (D) and gender was male (F). However, no statistically significant correlation were found between the expression levels of
LIMK1 and T stage (A), M stage (C), age (E), anatomic neoplasm subdivision (G,H) and smoke condition (I) (ns, no significance, *P < 0.05, **P < 0.01,
***P < 0.001).

FIGURE 4 | ROC and Kaplan-Meier curves for LIMK1. (A) ROC curve showed that LIMK1 had an AUC value of 0.851 to discriminate lung adenocarcinoma tissues
from healthy controls. With a cutoff of 4.908, the sensitivity, specificity and accuracy were 93.2, 71.9, and 69.5%, respectively. (B) Kaplan-Meier survival curves
indicated that lung adenocarcinoma patients with high LIMK1 mRNA expression had a shorter OS than those with low-level of LIMK1 (43.1 vs. 55.1 months,
P = 0.028).
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FIGURE 5 | PPI networks and functional enrichment analyses. (A) A network of LIMK1 and its co-expression genes. (B) Functional enrichment analyses of 11
involved genes. LIMK1 was associated with actin filament organization, regulation of actin filament-based process, and actin cytoskeleton organization. These genes
were involved in purine ribonucleoside binding, GTP Binding, and GTPase Activity. (C–I) The correlation analyses between the expression of LIMK1 and
co-expressed genes in lung adenocarcinoma.CFL1, cofilin-1; RHOA, transforming protein RhoA; CFL2, cofilin-2; CDC42, cell division control protein 42 homolog;
RHOC, Rho-related GTP-binding protein RhoC; PAK1, serine/threonine-protein kinase PAK 1; ROCK1, Rho-associated protein kinase 1; RAC1, Ras-related C3
botulinum toxin substrate 1; RHOB, Rho-related GTP-binding protein RhoB; HSP90AA1, heat shock protein HSP 90-alpha.

DISCUSSION

In this study, we found that the mRNA expression of
LIMK1 is upregulated in lung adenocarcinoma tissues. The
upregulated mRNA expression of LIMK1 is positively correlated
with lymph node metastases and high TNM stage. ROC
curve analysis indicated that LIMK1 could be a promising
diagnostic biomarker to differentiate lung adenocarcinoma from
normal tissues. In light of Kaplan-Meier curves and univariate
analysis, we confirmed that high mRNA expression of LIMK1
is associated with short OS and LIMK1 can be used as a
potential biomarker of poor prognosis for lung adenocarcinoma.
Moreover, LIMK1 may play a specific role in immune infiltration
in lung adenocarcinoma.

LIMK1 is one of the members of the LIM kinase family and
has been reported to play a significant role in promoting cell
invasion and metastasis (Scott and Olson, 2007). Many studies
about the oncogenic role of LIMK1 in several human cancers
have been emerged in recent years, including gastric cancer,
pancreatic cancer, as well as lung cancer (McConnell et al., 2011;
Chen et al., 2013). Furthermore, it is reported that LIMK1 is
upregulated in various cancers and associates with an unfavorable
prognosis (Huang et al., 2020). However, the expression of
LIMK1 and its prognostic value has not been fully investigated
in lung adenocarcinoma. Here, in this study, based on pan-
cancer analysis, our results are consistent with those reports that
LIMK1 mRNA is abnormally expressed in various cancers. We
also confirmed that LIMK1 is significantly upregulated in lung
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FIGURE 6 | Correlations of LIMK1 expression with immune infiltration level. (A) LIMK1 expression is negatively related to tumor purity and has correlations with
dendritic cell, CD4+ T cell, neutrophil, and macrophage in lung adenocarcinoma. (B) Relations between the expression of LIMK1 and 28 types of TILs across human
cancers. (C) LIMK1 was correlated with abundance of CD8+ T cells, CD4+ T cells, monocyte cells, Treg cells, CD56dim cells, and MDSC cells.

adenocarcinoma. High mRNA expression of LIMK1 is positively
associated with lymph node metastases and high TNM stage, our
finding agrees with the previous report by Chen et al. (2013).
These findings suggest that LIMK1 might act as a potential
biomarker of poor prognosis to identify lung adenocarcinoma
with poor clinical outcome.

Currently, the function of LIMK1 in tumors had not been
fully reported. Previous trials suggest that LIMK1 may be
a target of dasatinib which can inhibit LIMK1 to suppress
lung cancer cell proliferation and growth (Zhang et al., 2020).
Other studies have shown LIMK1 acts as a direct target of

miRNA-27-3p and miRNA-128-3p (Chen et al., 2017; Zhao
et al., 2019), both miRNA-27-3p and miRNA-128-3p can
suppress cancer cell proliferation, migration, and invasion. The
underlying mechanism analysis showed that the LIMK1-cofilin
signaling pathway plays an important role in tumor progression
(Nishimura et al., 2006). All these results suggest that LIMK1
could be regarded as a promising biomarker or emerging target
for cancer therapy. Given the condition that mRNA expression
of LIMK1 is significantly higher in lung adenocarcinoma than in
normal lung tissues, we speculate LIMK1 can act as a biomarker
to differentiate lung adenocarcinoma from normal controls. In
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order to validate the clinical value of LIMK1 in the diagnosis of
lung adenocarcinoma, we conducted ROC curve analysis. Our
results showed that LIMK1 had a significantly high AUC value in
the detection of lung adenocarcinoma, with 69.5% in sensitivity,
93.2% in specificity, and 71.9% in accuracy. On the basis of
our finding, we conclude that LIMK1 might act as a potential
diagnostic biomarker to differentiate lung adenocarcinoma from
normal controls.

Recent studies have characterized LIMK1 as an important
biomarker for poor prognosis and associated upregulated mRNA
expression of LIMK1 with poor overall survival in many cancers.
In prostate cancer, it is reported that elevated LIMK1 is
positively associated with higher Gleason Scores and incidence
of metastasis, as well as poor clinical outcome and reduced
survival (Davila et al., 2007; Mardilovich et al., 2015; Huang
et al., 2020). In ovarian cancer, Zhang et al. (2012) demonstrated
that overexpression of LIMK1 is significant correlated with
severity and poor differentiation level of ovarian cancer. A paper
from Zhang et al. (2011) suggested that upregulation of LIMK1
can promote the invasion and metastasis in drug-resistant
osteosarcoma and in turn LIMK1 can act as a potential novel
therapeutic target. In glioblastoma, Chen et al. (2020) reported
that LIMK1 is increased and the overexpression of LIMK1 is
associated with high grade and poor prognosis. In contrast,
suppression of LIMK1 can prolong survival time. However, the
prognostic value of LIMK1 has not been investigated in lung
adenocarcinoma. Given the upregulation of LIMK1 is positively
correlated with lymph node metastases and high TNM stage,
we speculated LIMK1 is involved in the development of lung
adenocarcinoma. Moreover, since lymph node metastases and
high TNM stage are correlated with poor survival, we speculated
that the upregulation of LIMK1 is a biomarker of poor prognosis.
Furthermore, in light of Kaplan-Meier curves and log-rank test,
lung adenocarcinoma patients with high mRNA expression of
LIMK1 are associated with a decreased survival rate than those
with low LIMK1 levels. On the basis of our data, we concluded
that LIMK1 can be used as a biomarker of poor prognosis for
determining prognosis in lung adenocarcinoma.

LIMK1 is a crucial component of Rac1/PAK1/LIMK1/cofilin
signaling pathway, which is involved in several cancers. For
example, in cervical cancer, miR-509-3p can regulate this
pathway to enhance the apoptosis and chemo-sensitivity of
cervical cancer cells (Xu et al., 2012). In gastric cancer, the
inhibition of Rho GDP dissociation inhibitor 2 can suppress
tumor cell migration and invasion via signaling pathway (Zeng
et al., 2020). In this study, co-expression analyses indicated that
the expression of LIMK1 is significantly correlated to that of Rac1,
PAK1, and CLF1. On the basis of our finding, we speculate that
the upregulation of LIMK1 expression would affect the entire
pathway. However, this should be tested in other experiments.

Many studies about the possible role of LIMK1 in human
TILs have emerged in recent years. Xu et al. (2012) reported
that LIMK1 may be involved in spontaneous actin polarization
in transformed CD4 T cells. However, the correlation analysis
between LIMK1 expression and immune cell infiltration in lung
adenocarcinoma has not been investigated. In this study, we
found that several tumor infiltrating immune cells (CD4+ T

cell, macrophage, neutrophil, dendritic cell) were correlated with
the expression of LIMK1 in lung adenocarcinoma by using
TIMER. We also found that positive correlation were indicated
between LIMK1 expression and CD8+ T cells, CD4+ T cells,
monocyte cells, treg cells, CD56dim cells, and myeloid derived
suppressor cells. These findings suggest that there is a potential
correlation between LIMK1 and immune infiltration in lung
adenocarcinoma. However, further research should be designed
to confirm this correlation.

There are several limitations in this study. First, the expression
and prognostic implication of LIMK1 were conducted with
online public databases, further study with clinical samples is
required to validate these results. Second, to further examine
the detailed mechanism of the impact of LIMK1 on immune
infiltration in lung adenocarcinoma, in vivo/vitro experiments
should be designed.

In conclusion, in this study, we showed for the first
time that mRNA expression of LIMK1 is upregulated in
lung adenocarcinoma and positively correlated with lymph
node metastases and high TNM stage. Our research suggests
that LIMK1 could be regarded as a potential biomarker
of poor prognosis to identify lung adenocarcinoma patients
with poor clinical outcomes and may play a specific role in
immune infiltration.
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Tomczak, K., Czerwińska, P., and Wiznerowicz, M. (2015). The Cancer Genome
Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. 19,
A68–A77. doi: 10.5114/wo.2014.47136

Torre, L. A., Siegel, R. L., and Jemal, A. (2016). Lung Cancer Statistics. Adv. Exp.
Med Biol. 893, 1–19. doi: 10.1007/978-3-319-24223-1_1

Uhlen, M., Fagerberg, L., Hallstrom, B. M., Lindskog, C., Oksvold, P., Mardinoglu,
A., et al. (2015). Proteomics. Science 347:1260419. doi: 10.1126/science.
1260419

Uhlen, M., Zhang, C., Lee, S., Sjostedt, E., Fagerberg, L., Bidkhori, G., et al. (2017).
A pathology atlas of the human cancer transcriptome. Science 357:eaan2507.
doi: 10.1126/science.aan2507

Vlecken, D. H., and Bagowski, C. P. (2009). LIMK1 and LIMK2 are important for
metastatic behavior and tumor cell-induced angiogenesis of pancreatic cancer
cells. Zebrafish 6, 433–439. doi: 10.1089/zeb.2009.0602

Wan, L., Zhang, L., Fan, K., and Wang, J. (2014). MiR-27b targets LIMK1 to
inhibit growth and invasion of NSCLC cells. Mol. Cell. Biochem. 390, 85–91.
doi: 10.1007/s11010-013-1959-1

Wickham, H. (2016). ggplot2 Elegant Graphics for Data Analysis.
Germany: Springer International Publishing. doi: 10.1007/978-3-319-
24277-4

Xu, X., Guo, J., Vorster, P., and Wu, Y. (2012). Involvement of LIM kinase 1 in
actin polarization in human CD4 T cells. Commun. Integr. Biol. 5, 381–383.
doi: 10.4161/cib.20165

You, T., Gao, W., Wei, J., Jin, X., Zhao, Z., Wang, C., et al. (2015).
Overexpression of LIMK1 promotes tumor growth and metastasis in
gastric cancer. Biomed. Pharmacother. 69, 96–101. doi: 10.1016/j.biopha.2014.
11.011

Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). clusterProfiler: an R package
for comparing biological themes among gene clusters. Omics 16, 284–287.
doi: 10.1089/omi.2011.0118

Zeng, Y., Ren, M., Li, Y., Liu, Y., Chen, C., Su, J., et al. (2020). Knockdown
of RhoGDI2 represses human gastric cancer cell proliferation, invasion and
drug resistance via the Rac1/Pak1/LIMK1 pathway. Cancer Lett. 492, 136–146.
doi: 10.1016/j.canlet.2020.07.013

Zhang, H., Wang, Y., Xing, F., Wang, J., Wang, Y., Wang, H., et al.
(2011). Overexpression of LIMK1 promotes migration ability of
multidrug-resistant osteosarcoma cells. Oncol. Res. 19, 501–509.
doi: 10.3727/096504012x13286534482511

Zhang, M., Tian, J., Wang, R., Song, M., Zhao, R., Chen, H., et al. (2020). Dasatinib
Inhibits Lung Cancer Cell Growth and Patient Derived Tumor Growth in Mice

Frontiers in Genetics | www.frontiersin.org 10 June 2021 | Volume 12 | Article 671585100

https://doi.org/10.1007/s40273-017-0563-8
https://doi.org/10.1007/s40273-017-0563-8
https://doi.org/10.1016/j.lungcan.2018.06.003
https://doi.org/10.1016/j.neo.2017.05.002
https://doi.org/10.1158/0008-5472.CAN-19-1237
https://doi.org/10.1158/0008-5472.CAN-19-1237
https://doi.org/10.3727/096504013x13657689382699
https://doi.org/10.3727/096504013x13657689382699
https://doi.org/10.1074/jbc.M306196200
https://doi.org/10.1074/jbc.M306196200
https://doi.org/10.1186/1476-4598-6-40
https://doi.org/10.1186/1476-4598-6-40
https://doi.org/10.1021/pr501254j
https://doi.org/10.1016/j.yexcr.2003.11.024
https://doi.org/10.1016/j.yexcr.2003.11.024
https://doi.org/10.1016/s0140-6736(16)30958-8
https://doi.org/10.1111/jcmm.15138
https://doi.org/10.1111/jcmm.15138
https://doi.org/10.3322/caac.20107
https://doi.org/10.3322/caac.20107
https://doi.org/10.1158/0008-5472.can-17-0307
https://doi.org/10.1158/0008-5472.can-17-0307
https://doi.org/10.1038/bjc.2017.193
https://doi.org/10.1038/bjc.2017.193
https://doi.org/10.1177/1933719119828076
https://doi.org/10.1177/1933719119828076
https://doi.org/10.1158/1535-7163.MCT-14-0447
https://doi.org/10.1158/1535-7163.MCT-14-0447
https://doi.org/10.1186/1476-4598-10-75
https://doi.org/10.1186/1755-8794-2-18
https://doi.org/10.1007/s00418-006-0198-x
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1093/bioinformatics/btz210
https://doi.org/10.1093/bioinformatics/btz210
https://doi.org/10.1007/s00109-007-0165-6
https://doi.org/10.1007/s00109-007-0165-6
https://doi.org/10.1093/nar/gkq973
https://doi.org/10.5114/wo.2014.47136
https://doi.org/10.1007/978-3-319-24223-1_1
https://doi.org/10.1126/science.1260419
https://doi.org/10.1126/science.1260419
https://doi.org/10.1126/science.aan2507
https://doi.org/10.1089/zeb.2009.0602
https://doi.org/10.1007/s11010-013-1959-1
https://doi.org/10.1007/978-3-319-24277-4
https://doi.org/10.1007/978-3-319-24277-4
https://doi.org/10.4161/cib.20165
https://doi.org/10.1016/j.biopha.2014.11.011
https://doi.org/10.1016/j.biopha.2014.11.011
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1016/j.canlet.2020.07.013
https://doi.org/10.3727/096504012x13286534482511
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-671585 May 28, 2021 Time: 17:15 # 11

Lu et al. LIMK1 in Lung Adenocarcinoma

by Targeting LIMK1. Front. Cell. Dev. Biol. 8:556532. doi: 10.3389/fcell.2020.
556532

Zhang, W., Gan, N., and Zhou, J. (2012). Immunohistochemical
Investigation of the Correlation between LIM Kinase 1 Expression
and Development and Progression of Human Ovarian Carcinoma.
J. Int. Med. Res. 40, 1067–1073. doi: 10.1177/14732300120400
0325

Zhao, J., Li, D., and Fang, L. (2019). MiR-128-3p suppresses breast cancer cellular
progression via targeting LIMK1. Biomed. Pharmacother. 115:108947. doi: 10.
1016/j.biopha.2019.108947

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Lu, Zhou, Zhang and Zhang. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 11 June 2021 | Volume 12 | Article 671585101

https://doi.org/10.3389/fcell.2020.556532
https://doi.org/10.3389/fcell.2020.556532
https://doi.org/10.1177/147323001204000325
https://doi.org/10.1177/147323001204000325
https://doi.org/10.1016/j.biopha.2019.108947
https://doi.org/10.1016/j.biopha.2019.108947
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-670749 May 31, 2021 Time: 16:45 # 1

ORIGINAL RESEARCH
published: 03 June 2021

doi: 10.3389/fgene.2021.670749

Edited by:
Rosalba Giugno,

University of Verona, Italy

Reviewed by:
Biju Issac,

Leidos Biomedical Research, Inc.,
United States

Rodrigo Gularte Mérida,
Memorial Sloan Kettering Cancer

Center, United States

*Correspondence:
Therese Sørlie

therese.sorlie@medisin.uio.no
Tero Aittokallio

t.a.aittokallio@medisin.uio.no

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal

Frontiers in Genetics

Received: 22 February 2021
Accepted: 26 April 2021

Published: 03 June 2021

Citation:
Xu H, Lien T, Bergholtz H,

Fleischer T, Djerroudi L,
Vincent-Salomon A, Sørlie T and

Aittokallio T (2021) Multi-Omics
Marker Analysis Enables Early

Prediction of Breast Tumor
Progression.

Front. Genet. 12:670749.
doi: 10.3389/fgene.2021.670749

Multi-Omics Marker Analysis
Enables Early Prediction of Breast
Tumor Progression
Haifeng Xu1,2, Tonje Lien1, Helga Bergholtz1, Thomas Fleischer1, Lounes Djerroudi3,
Anne Vincent-Salomon3, Therese Sørlie1* and Tero Aittokallio1,2,4*

1 Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway, 2 Oslo Centre
for Biostatistics and Epidemiology (OCBE), University of Oslo, Oslo, Norway, 3 Institut Curie, Ensemble Hospitalier, Pôle
de Médecine Diagnostique et Théranostique, Département de Pathologie, Paris, France, 4 Institute for Molecular Medicine
Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland

Ductal carcinoma in situ (DCIS) is a preinvasive form of breast cancer with a highly
variable potential of becoming invasive and affecting mortality of the patients. Due to the
lack of accurate markers of disease progression, many women with detected DCIS are
currently overtreated. To distinguish those DCIS cases who are likely to require therapy
from those who should be left untreated, there is a need for robust and predictive
biomarkers extracted from molecular or genetic profiles. We developed a supervised
machine learning approach that implements multi-omics feature selection and model
regularization for the identification of biomarker combinations that could be used to
distinguish low-risk DCIS lesions from those with a higher likelihood of progression. To
investigate the genetic heterogeneity of disease progression, we applied this approach
to 40 pure DCIS and 259 invasive breast cancer (IBC) samples profiled with genome-
wide transcriptomics, DNA methylation, and DNA copy number variation. Feature
selection using the multi-omics Lasso-regularized algorithm identified both known genes
involved in breast cancer development, as well as novel markers for early detection.
Even though the gene expression-based model features led to the highest classification
accuracy alone, methylation data provided a complementary source of features and
improved especially the sensitivity of correctly classifying DCIS cases. We also identified
a number of repeatedly misclassified DCIS cases when using either the expression or
methylation markers. A small panel of 10 gene markers was able to distinguish DCIS and
IBC cases with high accuracy in nested cross-validation (AU-ROC = 0.99). The marker
panel was not specific to any of the established breast cancer subtypes, suggesting that
the 10-gene signature may provide a subtype-agnostic and cost-effective approach for
breast cancer detection and patient stratification. We further confirmed high accuracy of
the 10-gene signature in an external validation cohort (AU-ROC = 0.95), profiled using
distinct transcriptomic assay, hence demonstrating robustness of the risk signature.

Keywords: risk signature, breast cancer, disease progression, early detection, machine learning
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INTRODUCTION

Ductal carcinoma in situ (DCIS) is a non-invasive precursor
to invasive breast cancer (IBC) with low risk of progression
(Cowell et al., 2013). Recent advances in breast cancer screening
have resulted in an increasing number of women with detected
DCIS lesions (Virnig et al., 2010; Seely and Alhassan, 2018; van
Seijen et al., 2019), many of which actually will never progress
to invasive disease (Page et al., 1982, 1995; Nielsen et al., 1984;
Collins et al., 2005; Sanders et al., 2005). To distinguish the
DCIS lesions with invasive potential from those that may be
left untreated, there is need for robust biomarkers (or risk
signatures) for accurate classification between high-risk and low-
risk DCIS cases. However, DCIS lesions exhibit heterogeneous
clinical, histopathological, and molecular characteristics that
may vary considerably between the lesions and as a function
of time (Vincent-Salomon et al., 2008). Furthermore, the
underlying mechanisms of progression from DCIS to IBC are
still poorly understood. The diagnostic classification has therefore
considerable uncertainty, and the DCIS lesions may vary from
indolent lesions to tumors on the verge of becoming invasive
(Gorringe and Fox, 2017). Due to this uncertainty, treatment for
DCIS is often extensive, resulting in substantial overtreatment
(Esserman et al., 2014; Groen et al., 2017).

Even though histological grade and growth pattern provide
some information on disease risk, there is a need for more
precise risk prediction methods (Wang et al., 2011; Wallis et al.,
2012; Onega et al., 2017). It has been shown that the “intrinsic”
breast cancer subtypes (luminal A, luminal B, HER2-enriched,
and basal-like) have prognostic significance, and a supervised
risk predictor was developed based on the intrinsic subtypes
and clinical information (Parker et al., 2009). We have also
previously performed comparative analyses across the breast
cancer subtypes and identified molecular differences between
DCIS and IBC for subtype-specific disease progression (Bergholtz
et al., 2020). In these subtype-stratified analyses, prominent
molecular differences were identified especially for the basal-like
DCIS, which was found to be less proliferative and showed a
higher degree of differentiation than the basal-like IBC. However,
for clinical use of the risk signatures, there is a need for cost-
effective and subtype-agnostic biomarker panels that are widely
applicable among diagnosed women regardless of their breast
cancer subtype or other risk classifications that would require
extensive clinical, histopathological, or molecular information.

In this study, we developed a supervised machine learning
approach that implements multi-omics feature selection for the
identification of biomarker combinations to distinguish DCIS
and IBC cases. As a secondary objective, we identified a robust
marker panel to identify those DCIS cases that may have
a higher risk of progression (i.e., DCIS cases susceptible to
invasion). To investigate the molecular, genetic, and epigenetic
heterogeneity of disease progression, we applied the regularized
approach to 40 DCIS and 259 IBC samples, profiled with
genome-wide transcriptomics, DNA methylation, and DNA copy
number variation. For economic clinical implementation, we
further investigated the effect of the number of model features
on the classification accuracy with each omics measurements.

In doing so, we identified a minimal risk signature of 10
highly predictive and subtype-agnostic transcriptomic markers,
originating from a single omics platform (microarrays), which
could be developed as a decision support tool in clinical
practice. We further validated our minimal risk signature in an
independent validation cohort (with RNA-seq data) and studied
how the signature predicted also lesions between DCIS and IBC
classes, as well as relapsing DCIS cases.

MATERIALS AND METHODS

Training Material
As a model training data, we used multi-omics molecular and
genomic profiles combined from three patient cohorts, Oslo2,
Uppsala, and Milan (Muggerud et al., 2010; Fleischer et al.,
2014; Lesurf et al., 2016; Aure et al., 2017; Bergholtz et al.,
2020). Each patient cohort contains three levels of omics data
from gene expression microarrays, DNA methylation, and DNA
copy number. Gene expression was measured with Agilent
Sureprint G3 Human Gene Expression 8 × 60 K microarrays
(G4851A) (Agilent Technologies, Santa Clare, United States),
with Low Input Quick Amp Labeling protocol. The DNA
methylation was profiled using the Illumina Infinium Human
Methylation 450K microarray (Illumina, CA, United States),
following the manufacturer’s instructions, and preprocessed with
subset quantile normalization (Touleimat and Tost, 2012). The
DNA copy number changes were profiled using Affymetrix
SNP 6.0 arrays (Affymetrix, Santa Clara, United States) at
Aros Applied Biotechnology (Aarhus, Denmark), following the
manufacturer’s instructions. In total, there were 370 patients
included in these three cohorts. We included only patients with
all three omics data levels, resulting in 299 patients as our
training material, including 40 DCIS cases and 259 IBC cases
(Supplementary Figure 1 and Supplementary Data 1).

The gene expression and DNA copy number changes were
mapped to protein-coding genes to make it easier to interpret
the results and integrate across the omics data. To investigate
the effect of DNA methylation data processing on predictive
modeling, we considered two versions of the DNA methylation
data. The first option was to use directly the original CpG level
methylation data as model features, and therefore we performed
feature preselection using only CpGs thought to be involved in
important biological variation between breast cancer samples
(N = 44,263 CpGs) (Fleischer et al., 2017). These CpGs were
thought to be involved in one of four breast cancer biological
properties, namely, regulation of estrogen signaling, regulation
of non-estrogen-related proliferation, fibroblast infiltration, or
immune infiltration. The CpGs were located both inside and
outside CpG islands and were enriched in both enhancers and
promoters. The second option used gene-level processing, where
we calculated a methylation score to represent each protein-
coding gene using a principal component analysis (PCA), taking
into account the variation of all CpGs mapped to a gene, similarly
as before (Bergholtz et al., 2020). The second option leads to
gene-level features, whereas in the first option, each gene can be
associated with hundreds of CpGs.
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Validation Material
The validation data set was collected at Institute Curie, France
(referred to as Curie Cohort), where the gene expression was
profiled using RNA sequencing with the Illumina HiSeq2500
sequencer. The read counts were normalized with the rlog
and cpm options in edgeR (v3.1.2) and DESeq2 (v1.4.5)
R-packages, respectively (Robinson et al., 2009; Love et al.,
2017). Pseudocount data were calculated as log10(RNAseq
count + 1), and it was centered for each gene around the
mean of the pseudocounts. The validation cohort included 18
pure DCIS cases and 20 IBC cases, as well as 16 micro-invasive
(MI) DCIS cases, which are DCIS lesions with invasive foci
of maximum 1 mm.

Classification Models
Our main objective was to identify the most discriminating
molecular and genetic differences between DCIS and IBC,
regardless of their intrinsic subtype and the nuclear grade. We
initially constructed Lasso, Support Vector Machine (SVM),
and Random Forest (RF) models based on each type of
omics data (gene expression, DNA methylation, and DNA copy
number). We used the R-package “glmnet” to build Lasso
models, R-package “e1071” to build SVM models, and R-package
“randomForest” to build RF models (Liaw and Wiener, 2002;
Friedman et al., 2010; Meyer et al., 2019). To assess the
classification accuracy, we used 10-fold cross validation (CV),
where the training dataset was divided into 10-fold, testing
on each fold at a time, while the remaining ninefold were
used for the model estimation (sub-training set). Stratified
CV was used to make sure each CV fold had the same
proportion of breast cancer subtypes. To test the generalizability
of the Lasso models, and to avoid selection bias, we used
nested cross-validation, where another 10-fold CV was applied
within each sub-training set to determine the optimal model
regularization parameters, e.g., the lambda and beta values
of the Lasso model. The other model parameters were set
to their default values. When training the SVM models, we
used Recursive Feature Elimination (RFE) implemented in the
R-package “caret” to select the model features (Kuhn, 2008).
The size parameter of RFE was set to a vector (2, 5, 10, and
20), the parameter “number” of the rfeControl function was
set to 5, and the kernel parameter was set to svmRadial to use
the radial kernel. We used 10-fold CV for the SVM models,
and in each fold, RFE was run to select the model features
using nested CV.

Evaluation Metrics
To evaluate the predictive accuracy, we used Area Under
the ROC Curve (AU-ROC) and Area under the Precision-
Recall Curve (AU-PRC) (Supplementary Figure 2). Moreover,
classification cutoff-specific evaluation metrics, such as sensitivity
and specificity, were also recorded to evaluate the trade-off
between correctly classifying either DCIS or IBC cases. For
avoiding overtreatment, it is especially important to correctly
predict true DCIS cases, and therefore we labeled DCIS as positive
and IBC as negative cases. Accordingly, sensitivity TP/(TP+ FN)

refers to the rate of how many DCIS cases are correctly classified,
while specificity TN/(TN + FP) refers to the percentage of
correctly classified IBC cases. Balanced accuracy is defined as the
average of sensitivity and specificity. Precision–Recall analysis
provides an alternative evaluation metric for the unbalanced
classification problem. The AU-ROC and the AU-PRC were
plotted and calculated with the R-packages “PRROC” (Grau
et al., 2015) and “pROC” (Robin et al., 2011), respectively.
As a continuous evaluation metric, we used Mean Squared
Error (MSE), where MSE values close to zero indicate more
accurate models.

Multi-Omics Classifiers
To test whether integrating the three types of omics data
improved the prediction accuracies, we combined gene
expression data, DNA methylation, and DNA copy number data
together in a single Lasso model. The CpG-level and gene-level
methylation data were combined separately with the other data
types to investigate their respective predictive contribution. To
unify the scales between the different data types, we applied
z-score scaling over each feature (gene or CpG) and then
combined the z-scored features into a single model.

Limiting Model Complexity
To test the effect of limiting the maximum allowed number
of model features on the prediction accuracy, we adjusted
the parameter “dfmax” of the glmnet function, which
limits the maximum number of variables in the Lasso-
regularized model (Friedman et al., 2010). We varied the
dfmax parameter from 2 to 51 with each separate omics
data and their combination using nested CV to explore the
most predictive feature subsets and to construct a maximally
sparse, cost-effective, and transparent models for economic
clinical implementation.

Robust Gene Selection
We considered the common features identified by the two
classification models, SVM and Lasso, as robust biological
signatures. To further improve the reliability of these signatures,
and to avoid reporting unstable features, we considered only
those features that were returned more than five times during
the 10-fold CV (i.e., >50% of the folds), where each feature
can be selected up to 10 times. This analysis was limited to the
gene expression data only (without using z-scoring), since gene
expression data was found generally most predictive.

Model Validation
In the validation phase, we trained a new Lasso model using
the subset of 10 most robust genes on the entire training set
and tested its predictive power on the validation set (the Curie
Cohort). Only RNA-seq transcriptomics data were available in
the validation set. We used z-score scaling over each gene
separately in the training and validation sets to normalize their
scales between the microarray and RNA sequencing data. The
model outcome was the predicted class probability in DCIS vs.
IBC classification for each validation case separately.
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Existing Risk Scores
We compared the 10-gene signature against three existing risk
scores. The first was ROR, risk of recurrence after surgical
treatment for IBC, calculated based on expression of the PAM50
genes (Parker et al., 2009). Firstly, the correlation to the four
breast cancer subtypes (Basal-like, Her2-enriched, Luminal A,
and Luminal B) was calculated, and the ROR score was then
defined as a weighted sum of the four correlations. We also
calculated an invasiveness score based on a previously proposed
64-gene signature (Anastassiou et al., 2011). We summarized
the 64-signature using z-score to obtain an invasiveness score
for each sample and then used the mean value of each case
as the final invasive score. As the third comparison score, we
used the Oncotype DX R© DCIS Score that has been suggested
to quantify the risk of developing an ipsilateral breast event
(i.e., local recurrence of DCIS or invasive carcinoma) (Solin
et al., 2013). The original DCIS score was calculated using qPCR
expression values from 12 genes. However, since our training
cohort included normalized microarray expression data, we did
not perform the first step of the DCIS Score calculation, i.e.,
normalizing seven signature genes relative to the expression of
five housekeeping genes. The ROR, invasiveness, and DX R© DCIS
scores were included in the simple linear model using function
“glm” from basic R, where only the score was used when building
these models using 10-fold CV.

Identification of Misclassified DCIS
Cases
Some DCIS cases may never progress to IBC and will remain
intraductal, while other DCIS lesions may have future invasive
potential but were discovered while still intraductal. We
hypothesized that even though some lesions are discovered while
still intraductal, they may carry molecular or genomic changes
that distinguish them from the low-risk DCIS cases that will
never progress. To address the secondary questions of whether
we can divide DCIS samples into two groups, low- and high-risk
DCIS, and how accurately we can find those higher-risk DCIS
cases that might carry the potential for future invasion, we built
additional machine learning models based on gene expression
and DNA methylation data, and the cases incorrectly classified
by more than one model-data combinations were considered for
further scrutiny. Next, we used so-called pseudo labeling, where
the repeatedly misclassified DCIS cases were relabeled as IBC,
then retrained a Lasso model with 10-fold nested CV and checked
whether or not its classification accuracy increased, compared to
the original Lasso model with the original class labeling.

RESULTS

Predictive Model Development in
Multi-Omics Data
We started by testing various prediction algorithms, including
Lasso, SVM, and RF, to classify the patient samples of the training
cohort into two groups, DCIS and IBC. These algorithms were
evaluated in terms of their classification accuracy and robustness

in the heterogeneous omics data (gene expression, DNA copy
number, and DNA methylation). In the initial runs, the classifiers
were allowed to freely make use of an unlimited number of the
omics features (genes and CpGs), and nested CV was then used
to evaluate the predictive power of the models and the selected
feature panels. In this section, we show the results of the Lasso
model that performed generally the best, while the results of RF
and SVM models are provided in Supplementary Tables 2, 3,
respectively, showing similar performance trends with slightly
decreased accuracies.

Notably, gene expression features provided the best overall
accuracy among the single omics datasets when using summary
metrics AU-ROC and AU-PRC (Figure 1). Interestingly, the
CpG-level methylation data provided almost as high AU-ROC
levels, but the Lasso model selected more than three times
the CpG features compared to expression features, and the
CpG model had much a lower AU-PRC value (Figure 1).
DNA copy number variation profiles showed the poorest
performance among the three omics datasets, even though
the Lasso model selected the largest number of copy number
features, suggesting that copy number changes do not contain
a sufficient predictive signal for the classification between DCIS
and IBC cases. All the omics profiles resulted in close to perfect
specificity (Figure 1).

The combined use of the three omics features in a single
Lasso model using z-score scaling resulted in similar AU-
ROC and AU-PRC values when using the gene expression
features alone (Figure 1). However, the sensitivity of correctly
classified DCIS cases increased when using all the omics data
together. In clinical practice, sensitivity is more important for
avoiding overtreatment. Omics data integration also led to higher
levels of balanced accuracy, while the specificity of correctly
classifying IBC cases remained perfect, similar to that when
using the gene expression data only. The two versions of the
DNA methylation data provided a similar contribution to the
multi-omics Lasso model; however, the gene-level methylation
features led to slightly increased performance, especially in
terms of MSE, whereas CpG-level data required less features
(Supplementary Table 1).

The Effect of Limiting the Number of
Features
We next studied the effect of limiting the number of features
of the Lasso model on its predictive accuracy, with the aim
to investigate what are the minimal panels of biomarkers that
could cost-effectively distinguish DCIS cases from IBC. A feature
number limit from 2 to 50 was imposed on each data type
separately and in combination, and for each limit, 10-fold nested
CV was applied to investigate the classification accuracy of the
Lasso models with limited number of features. Notably, already
two gene features provided an almost perfect AU-ROC of 0.95
when using the expression data only (Figure 2), indicating
that sparse models enable accurate classification. However, the
variability of the AU-ROC decreased when using the feature limit
higher than 12 (Supplementary Figure 4), suggesting that the
additional gene features make the classifier more stable.
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FIGURE 1 | The predictive contribution of omics profiles and their combinations to DCIS vs. IBC classification. The bars show the average accuracy over 10 CV
folds, and the error bars indicate the standard error of the mean (SEM). These data correspond to those shown in Supplementary Table 1. ROC and PRCs of CV
folds using various omics data combinations are shown in Supplementary Figure 3.

When considering AU-ROC, the CpG methylation model
performed initially worse, when compared to the gene-level
methylation model, but after 30 CpGs its classification accuracy
increased (Figure 2). The variability of the classification accuracy
was also lower with the CpG-level model compared to the
gene-level methylation model. These results suggest that when
the variance of individual CpGs is large, the model cannot
make reliable classification using only a small number of CpG
features. Since the gene-level methylation signature consists of
many CpGs collapsed to single genes, its variance tends to
be smaller due to measurement noise being canceled out in
the collapsing process. When considering AU-PRC, the gene-
level methylation model remained slightly better than the CpG
model across all the feature numbers (Supplementary Figure 4),
and it also led to increased sensitivity of the multi-omics

model, comparable to that of the gene expression only model
(Supplementary Figure 5).

Since the features were selected in 10-fold nested CV at
each feature number limit, the model may identify in total
more features than the limit, since the different CV folds may
select different features. Figure 2 lists as examples features
that were selected in all the 10 CV folds, suggesting they are
robust to training data subsampling and therefore likely to
present robust classifying features. Such robust features could
not be identified from the copy number data. DNA methylation
profiles identified genes that are distinct from those identified
using the gene expression data, both when using the gene-level
or CpG-level methylation data (and the corresponding genes).
However, a total of four genes (MMP11, RUFY3, UNCX, and
MAMDC2) were selected using both versions of the integrated
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FIGURE 2 | Predictive accuracy of the omics profiles and their combinations when the maximum number of features was limited. The points are average AU-ROC
values over the 10 CV rounds in nested CV. Example feature sets from omics data are shown at limits x = 2, 10, and 30. The gene lists contain the features that were
selected by Lasso in all the 10-fold at that limit. Expression data and integrated data share most genes in common. Black color indicates genes that were selected
by both gene expression and integrated data, the pink color those genes that were selected by integrated data only. Note that the top genes of the two types of
integrated data are the same. No copy number features were selected in all the 10 CV folds (no robust CNV features). See Supplementary Figure 4 for the version
of ROC and PRCs with SEMs included.

data; these are exactly the same genes Lasso model identified
when using the gene expression data only and the feature limit
of 2, further suggesting that transcriptomics alone leads to sparse
and accurate signatures.

Identification of Repeatedly
Misclassified DCIS Cases
We next investigated whether the multi-omics data and the
classification models could identify those DCIS-labeled samples
with a potentially higher likelihood for progressing to an invasive
state. Even if these DCIS samples have been originally labeled
as DCIS in the diagnostic classification, they may still possess
molecular changes that promote invasion later in time. In this
analysis, we used Lasso and RF models, together with gene
expression and CpG methylation profiles, due to their overall
good performance. We considered for further investigation
those DCIS cases in the training cohort that were repeatedly
misclassified by these model–data combinations more than once
(Table 1). Misclassification by one model–data combination may
represent merely technical noise.

Out of the 40 DCIS cases, there were 19 lesions that were
always correctly classified, and 11 DCIS cases were misclassified
once, whereas eight and 2 DCIS cases were misclassified two
or three times, respectively. We next applied so-called pseudo-
labeling, where the repeatedly misclassified DCIS cases were
relabeled as IBC, and then trained a new Lasso model with
nested CV. Notably, such pseudo-labeling slightly increased
the AU-PRC levels in the training cohort, while the AU-ROC
levels remained similar to those with the original class labels
(Supplementary Table 4). The multi-omics patterns provide
evidence that these DCIS cases have molecular signatures more
similar to the IBC cases and may have an increased likelihood to
progress to an invasive disease stage.

The Most Robust Genes for
Classification
Since gene expression was found to be generally the most
predictive among the single omics data, we next identified the set
of common genes selected by both the Lasso and SVM models
using the gene expression features alone. We further required that
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TABLE 1 | Misclassified training samples when using various classification
models and omics data.

Lasso expression Lasso methylation (cpg) RF expression

DCIS033
DCIS038
DCIS026
DCIS051
DCIS052
DCIS053
IBC301

DCIS029
DCIS031
DCIS032
DCIS024
DCIS026
DCIS053
DCIS056
DCIS035
DCIS022
DCIS017

DCIS026
DCIS053
DCIS051
DCIS056
DCIS033
DCIS031
DCIS052
DCIS022
DCIS032
DCIS017
DCIS001
DCIS037
DCIS008
DCIS004
DCIS030
DCIS034
DCIS013

Color coding indicates the number of times any of the 40 DCIS cases were
misclassified as IBC in the training data; green, once; brown, twice; red, three
times. CpG methylation data with the RF model was not used in these analyses
since it misclassified a total of 34 DCIS cases, which was considered too many.
We considered for further investigation only those DCIS cases in the training cohort
that were repeatedly misclassified by these model–data combinations more than
once.

a gene needs to be selected in more than 50% of the CV folds (i.e.,
more than five out of 10-folds), with the aim to guarantee robust
and stable feature selection. In total, we found 10 such common
and robust genes identified as robust risk signature. Notably, each
of the 10 genes had a similar direction of differential expression
between the DCIS and IBC classes across the established breast
cancer subtypes (Figure 3), suggesting that they provide subtype-
agnostic markers for breast cancer risk prediction.

Interestingly, there were marked differences in the expression
levels of the 10 genes across the DCIS cases misclassified as
IBC (Figure 4). For instance, RUFY3, UNCX, PRSS33, and
COL10A1 showed an increasing trend of absolute expression
changes between the DCIS cases as a function of the number
of times the DCIS samples were misclassified by the models.
This further demonstrates the molecular information captured
in the expression profiles. Furthermore, based on the expression
levels of the 10-gene signature, most of the sure DCIS cases
that were always correctly classified were clustered together,
whereas the repeatedly misclassified DCIS cases were scattered
around in the unsupervised hierarchical clustering dendrogram
(Supplementary Figure 6).

We next compared the classification accuracy of the 10-
gene Lasso model against three existing risk signatures relevant
for breast cancer progression: ROR (risk of recurrence), the
invasiveness score (64-gene signature) and seven-gene DX R© DCIS
score (see Methods). Our results showed that none of these
risk scores was able to accurately distinguish between DCIS and
IBC cases in our training cohort (Figure 5). In particular, using
the default Lasso cutoff of 0.5, both the ROR and invasiveness
score always classified all the DCIS lesions as IBC, whereas
the DX R© DCIS Score classified all the IBC cases as DCIS
(Supplementary Table 5). There were three common genes

between the 64-gene invasiveness signature and our 10-gene
signature (COL1A1, COL10A1, and MMP11), hence explaining
its higher classification accuracy compared to ROR.

Validation Set Results
The final step was to validate the 10-gene signature on an external
data set, the Curie Cohort, with the aim to investigate whether the
DCIS classification model generalizes also beyond the training
cohort to an independent validation dataset. The Lasso model
of 10 genes estimated in the full training dataset was shown
to provide highly accurate classification between the DCIS and
IBC cases also in the validation dataset (Figure 6). Notably,
both the AU-ROC and AU-PRC values dropped only slightly
from the training to the validation cohort, further demonstrating
the reliability and robustness of the classification model based
on the 10-gene signature. However, we note that the default
classification cutoff of 0.5 was not optimal in the validation data,
but instead smaller thresholds led to better classification accuracy
(Supplementary Figure 7). This is likely due to the differences
between the microarray gene expression data (training cohort)
and RNA-sequencing data (validation cohort). Although we
performed z-scoring to unify the scales, it cannot correct for
all the distributional differences between microarray and RNA-
sequencing data.

We further tested how the model predicts the microinvasive
(MI) DCIS cases in the validation cohort to explore whether the
10-gene signature could also distinguish the MI cases from pure
DCIS and IBC cases. Interestingly, the classification probabilities
of the MI DCIS cases were in between the pure DCIS and IBC
classes but remained significantly closer to the pure DCIS cases
(Figure 7, left). However, there was a relatively large variability
in the distribution of the predicted probabilities also within the
classes, showing individual variability in the risk scoring based
on the 10-gene signature. This suggests that there are molecular-
level changes in these genes between the classes of pure DCIS,
DCIS-MI, and IBC lesions. Interestingly, there appeared to be
three outlier cases in the DCIS-MI class with the classification
probability comparable to that of the IBC cases. The six genes
that were related to the microenvironment (COL10A1, COL1A1,
MFAP2, PRSS33, PRSS53 and MMP11) showed higher prediction
probability in the recurrent DCIS cases, compared to DCIS
without recurrence, and these became close to those of the IBC
cases (Figure 7, right).

To further investigate the features of the sparse Lasso model,
we plotted the expression distributions of the 10 genes on both
the training and validation cohorts (Figure 8). After z-scoring,
most of the genes showed similar distributions, except for UNCX
and PRSS33. In particular, for UNCX, there were only two
distinct expression values in the test RNA-seq data, and 53
out of 55 cases (96%) corresponded to zero expression in the
original expression data before z-scoring. There were also marked
differences in the expression levels of the 10 genes across the
three disease classes of the validation cohort (Supplementary
Figure 9), mostly differentiating IBC cases from DCIS and DCIS-
MI, even though the differences were not as clear as in the
training cohort (Figure 3). However, regardless of these technical
and biological differences between the training and validation
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FIGURE 3 | Expression levels of the select 10 genes across the established breast cancer subtypes. Basal, basal-like; HER2, HER2-enriched; LumA, luminal A;
LumB, luminal B; Normal, normal-like.

FIGURE 4 | Expression values of the 10 genes across the DCIS cases repeatedly misclassified as IBC. The bars show absolute deviance from the median expression
level of the correctly classified DCIS class for each gene. The median level of the correctly classified DCIS class was subtracted from the other classes to better show
differential expression levels. Supplementary Figure 10 shows the expression differences before subtracting the median level of the correctly classified DCIS class.

cohorts, the 10-gene signature provided accurate classification
performance in both of the datasets, further demonstrating its
robust behavior. Taken together, these results indicate that the 10-
gene signature can reliably identify those DCIS cases that are less
likely to progress to invasive disease.

DISCUSSION

In our multi-omics classification analysis between DCIS and IBC,
we found that the gene expression-based model features led to
the highest classification accuracy alone; however, methylation
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FIGURE 5 | Classification accuracy of the 10-gene signature against existing scores. (A) ROC, (B) PRC. Each signature was calculated based on the training patient
cohort. The ROR score is based on the PAM50 genes (Parker et al., 2009), invasiveness score is based on 64 invasiveness related genes (Anastassiou et al., 2011),
and DX R© DCIS score based on seven genes (Solin et al., 2013). The expression values of the 64 genes were converted to z-score over each gene, and the average
z-score was used as the invasiveness score for each sample. The original DX R© DCIS score was based on qPCR data, but here it was applied to microarray gene
expression data. The curves show the mean sensitivity and specificity over 10 CV folds in the training cohort. See Supplementary Table 5 for the SD of the
AU-ROC and AU-PRC values.

FIGURE 6 | Validation and training cohort accuracies of the 10-gene signature. (A) ROC, (B) PRC. The Lasso model was first estimated based on the full training
dataset using the 10 genes as features, and then the estimated model was applied to the validation cohort. The training cohort model accuracy is overoptimistic as
no cross validation was used and the training and test data are the same; see Figure 5 for cross-validated training cohort model accuracy. For comparison, we
randomly selected 10 genes 100 times, estimated 100 Lasso models in the training cohort, and then tested these random gene classifiers on the validation cohort.
The 10 random gene curve shows the average performance of the random classifiers, and the error bars show the standard error of the mean (SEM). In panel (B),
the dashed horizontal line corresponds to a theoretical random classifier with AU-PRC = 0.473.

data provided a complementary source of predictive signal, and
it improved especially the sensitivity of correctly classifying
DCIS cases, which is important for clinical application of risk
signatures. No better prediction results could be obtained with
any of the two-data combinations, and the gene expression data
was always required for the best prediction results, indicating its

high predictive contribution. Due to the challenges of acquiring
fresh frozen DCIS tissue, the number of DCIS cases was
much smaller in the training cohort, compared to the IBC
cases. We used several computational approaches to take into
account such unbalanced classification setting: (i) we used several
evaluation metrics to provide multiple views into the predictive
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FIGURE 7 | Predicted class probabilities of the validation cohort samples. (A) The probabilities were calculated based on the 10-gene Lasso model estimated on the
full training data. The validation cohort included 18 pure DCIS cases, 20 IBC cases, and 16 micro-invasive (MI) DCIS cases. Note: y-axis is log-scaled for better
visualization. The non-logged version is shown in Supplementary Figure 8. (B) The probabilities were calculated based on the six microenvironment related genes.
The validation cohort included 14 DCIS cases without recurrence, four DCIS recurrence cases, and 20 IBC cases. The y-axes are z-scaled for better comparability of
the prediction probabilities. The horizontal lines in the boxplots indicate median values, the whiskers the interquartile range (IQR) of the cases in each class, and the
error bars show cases withing 1.5xIQR, while the remaining cases are considered outliers.

performance of the models, including precision–recall analysis,
which is often considered more suitable for the unbalanced
classification problem; (ii) we included only those omics features
in the signature that were robustly identified using multiple
algorithms and across several CV rounds; (iii) we carried out
the pseudo-labeling approach to investigate whether relabeling
of some of the recurrently mis-classified cases could increase
the predictive performance of the model and reveal potentially
high-risk DCIS cases; and finally (iv) we validated the predictive
power of the signature in an external validation cohort with more
balanced classes.

Previous studies have found only moderate genomic and
epigenomic differences between DCIS and IBC (Ma et al., 2003;
Hannemann et al., 2006; Fleischer et al., 2014; Abba et al.,
2015; Pang et al., 2017). In this study, we identified 10 genes
using both the Lasso and SVM models that were selected in
>50% of the CV rounds, indicating their robust behavior for
classification between DCIS and IBC cases. We also found that
these genes were differentially expressed between DCIS and IBC
across all the breast cancer subtypes (Figure 3). One should
interpret such gene lists with caution, however, as there may
be other gene combinations with similar predictive power due
to the correlated nature of the gene expression profiles among
genes in the same pathways or biological processes. Nevertheless,
the genes were selected by two independent methods, which

increases the robustness of their biological signal. The 10-gene
signature was also validated in independent test data (Curie
cohort), where the transcriptional profiling was done with RNA-
seq. The high classification accuracy observed for the 10 genes,
originally identified using gene expression microarrays, further
demonstrates the robustness of the signature, although there
remained some variability that is beyond z-score normalization
(Figure 8). We also note that the 10-gene signature was not able
to predict recurrence in the validation cohort, as expected, since
the genes were selected specifically for distinguishing between
DCIS and IBC classes, not the progression of DCIS cases.

The comparison between our 10-gene signature and
traditional breast cancer risk scores further demonstrated the
added value of our 10-gene markers especially for the accurate
DCIS classification (high sensitivity). We note that ROR is
mostly affected by proliferation, and it is highly associated
with breast cancer subtypes (Parker et al., 2009). Our results
therefore indicate that proliferation may not be very important
when distinguishing between DCIS and IBC cases. However, the
invasiveness score has previously been found highly associated
with cancer cell motility and invasiveness of several cancer
types, including non-epithelial cancers such as neuroblastoma
(Anastassiou et al., 2011). This should make it a competitive
biological marker to classify DCIS and IBC. Our results
showed that the invasiveness score achieved a relatively high
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FIGURE 8 | Distribution of expression levels of 10 selected genes over all the individuals in the training and validation cohorts. The scales between the microarray
(training cohort) and RNA-seq (validation cohort) data were harmonized using z-score normalization over each gene separately in the training and validation datasets.
Note: the y-axis density ranges differ between the panels.

classification accuracy (AU-ROC 0.842), but not as high as our
10-gene signature (AU-ROC 0.992). The 64 genes included in
the invasiveness signature had three genes in common with our
10-gene signature (COL1A1, COL10A1, and MMP11). Since
we demonstrated that already two genes can give a relatively
high AUC (Figure 2), and MMP11 is one of the selected genes
when the feature limit was two, the higher performance of the
invasiveness signature was as expected. However, the extended
set of 10 genes provided increased performance especially for
classification sensitivity. Furthermore, measuring 10 genes is
more practical than measuring 64 genes using, for instance,
qPCR-based clinical assays.

Many of the genes included in the model have previously
been identified as differentially expressed between DCIS and IBC
(Lesurf et al., 2016), but there are also some novel genes. Out
of the 10 genes, six are related to the tumor microenvironment
(COL10A1, COL1A1, MFAP2, PRSS33, PRSS53, and MMP11),
and these genes showed predictive power for recurrent DCIS
(Figure 7), although its added value for clinical practice remains
to be investigated on a larger series. COL10A1, COL1A1, and
MFAP2 are constituents of the extracellular matrix remodeling,
which is an important process in breast tumor invasion and
tumor cell dissemination (McSherry et al., 2007). Overexpression
of the genes encoding these proteins is associated with poor breast

cancer survival, and MFAP2 has been shown to promote cell
proliferation, migration, invasion, and epithelial to mesenchymal
transition (Wang et al., 2018; Liu et al., 2018; Zhang et al., 2020).
MMP11 is a proteinase that is involved in extracellular matrix
degradation directly by degrading collagen IV and indirectly
by inhibiting the alpha1-proteinase inhibitor (Pan et al., 2003;
Motrescu et al., 2008. MMP11 has been characterized extensively
for its role in breast cancer and has been shown to be a predictive
factor for tumor invasiveness, hence serving as positive control
here (Ahmad et al., 1998; Zhang et al., 2016). In contrast, the
roles of the serine proteases PRSS33 and PRSS53 have been less
investigated in cancer progression, but there are indications that
PRSS33 may play a role in tumor cell invasion (Jeong et al., 2016).

The remaining four genes in our gene list are not directly
associated with the microenvironment. For instance, RUFY3 is
involved in F-actin-enriched protrusions from the cell surface
and it has been shown to be involved in gastric cancer
cell migration and invasion (Wang et al., 2015). This gene,
however, shows paradoxical expression in our training data
with higher expression in DCIS than in invasive samples
(Figure 3). In the validation cohort, however, the expression
levels of RUFY3 were as expected in the DCIS and IBC
classes (Supplementary Figure 9), especially when focusing
the recurrent DCIS cases (Supplementary Figure 11). UNCX
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was another gene with distinct expression distribution between
training and validation data. It is a homeobox transcription
factor that has been associated with acute myeloid leukemia
(Daniele et al., 2017). MAMDC2 is a known tumor suppressor
involved in glycosaminoglycan binding (Lee et al., 2020), whereas
NPIPB6 has not previously been associated with cancers to the
best of our knowledge. We note that the 64 genes included
in the invasiveness signature are mainly related to epithelial–
mesenchymal transition (EMT) (Anastassiou et al., 2011). The
improved performance of the 10-gene signature indicates that
the molecular changes from DCIS to IBC not only are related
to the EMT process but also involve other biological processes
captured by the 10-gene signature. To further study the biological
processes, larger DCIS cohorts will need to be collected beyond
those in the current training cohort (Sweden, Italy, and Norway).

Since our analyses were performed across the molecular
intrinsic subtypes of breast cancer, the identified genes can
detect DCIS cases, regardless of their subtype. The genes
therefore represent general invasion processes, while the subtype-
specific tumor progression processes may be obscured. A major
proportion of breast cancer samples are Luminal A, and this is
also the case in the training cohort. We have previously shown
that Luminal A DCIS and IBC are highly similar at a molecular
level, while basal-like DCIS differ substantially from basal-like
IBC (Bergholtz et al., 2020). Stratification by subtype prior to
creating the models could yield different results and identify
genes and biological processes relevant within each subtype,
but this approach would, in our high-dimensional analysis, be
limited due to rather low sample size of the current cohorts.
We believe that a subtype-agnostic model should become more
practical for a clinical application of the signature, avoiding the
need for subtype classification of each DCIS case. Additional
genes would need to be included, such as those in the PAM50
signature, if one wants to construct risk signatures separately for
the established subtypes. Furthermore, many studies have found
stromal difference between DCIS and IBC (Dabiri et al., 2013;
Toss et al., 2020), and it would be interesting to investigate how
these 10 genes are expressed in stromal component vs. other
components using spatial gene expression profiling.

Our results of the classification analyses using the two
options to represent DNA methylation (preselected enhancer and
promoter CpGs related to breast cancer biology or PCA-derived
gene-level methylation) suggests that few individual CpGs cannot
capture enough variation for accurate prediction and that a
certain number of CpGs (>30 features) are needed to represent a
meaningful information identifying DCIS from IBC. Moreover,
we observed that CpG-level methylation features show higher
sensitivity than gene-level methylation features using the Lasso
model. This result highlights the importance of both enhancer
and promoter methylation for gene regulation in breast cancer.
On the other hand, the gene-level methylation represents many
CpGs for each gene and thus it captures more variation, but some
important CpGs may be masked by the PCA summarization
approach. Furthermore, classification made using only a few
individual CpGs may be vulnerable to measurement noise, and
this can be overcome by increasing the number of CpGs in
the classifier. Using all the 450,000 CpGs led to a poor class

prediction performance, likely due to model overfitting (data
not shown). Since the optimal processing of DNA methylation
data is still poorly understood, we hope these results will
provide guidance for the community on how to use methylation
features in predictive modeling, either alone or combined with
other omics features.

We initially tested several classification algorithms, Lasso,
SVM, and RF, which all supported the importance of multi-omics
profiles for increased DCIS detection sensitivity (Supplementary
Tables 1–3). The lasso-regularized model generally showed
the best performance and was therefore selected to showcase
the classification results, for instance, when limiting the
maximum number of features in sparse predictive modeling
(Figure 2). Compared to genome-wide measurements, such
minimal predictive signatures may lead to more practical
prediction models for clinical decision tools in the form of cost-
effective signatures for economic implementation. As observed
before, nested CV was found important to avoid selection bias
and reporting of overoptimistic results about the predictive
power of classifier (Ambroise and McLachlan, 2002; Varma and
Simon, 2006). As a future research direction, we plan to make
use of pathway information for mapping the predictive genes that
may potentially lead to even more robust and accurate models
using pathway-level biomarkers (Ben-Hamo et al., 2020; Madani
Tonekaboni et al., 2020). While the present work focused solely
on protein-coding genes, since this enabled better interpretation
of the model results and easier integration among the three
data types, recent work has shown the influence of non-coding
gene expression on cancer progression (Bhan et al., 2017; Chi
et al., 2019; Zhang et al., 2021). As a future development, it
would be interesting to use also non-coding DNA or RNA
as additional source of features in the classification between
DCIS and IBC cases.

In conclusion, our results support the use of the 10-gene
signature to reliably identify those DCIS cases that are less
likely to progress to invasive disease and may therefore have
potential for reducing the current overtreatment in breast cancer.
Longitudinal follow-up data of the DCIS cases will be needed for
prognostic validation of the signature in terms of its accuracy
at identifying high-risk vs. low-risk DCIS cases, and to explore
how many of the initially DCIS diagnosed cases will eventually
progress to an invasive disease or become invasive recurrent.
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Mengmeng Pan1,2†, Pingping Yang1†, Fangce Wang1†, Xiu Luo1, Bing Li1, Yi Ding1,
Huina Lu1, Yan Dong1, Wenjun Zhang1* , Bing Xiu1* and Aibin Liang1*
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Background: With the improvement of clinical treatment outcomes in diffuse large
B cell lymphoma (DLBCL), the high rate of relapse in DLBCL patients is still an
established barrier, as the therapeutic strategy selection based on potential targets
remains unsatisfactory. Therefore, there is an urgent need in further exploration of
prognostic biomarkers so as to improve the prognosis of DLBCL.

Methods: The univariable and multivariable Cox regression models were employed to
screen out gene signatures for DLBCL overall survival (OS) prediction. The differential
expression analysis was used to identify representative genes in high-risk and low-
risk groups, respectively, where student t test and fold change were implemented. The
functional difference between the high-risk and low-risk groups was identified by the
gene set enrichment analysis.

Results: We conducted a systematic data analysis to screen the candidate genes
significantly associated with OS of DLBCL in three NCBI Gene Expression Omnibus
(GEO) datasets. To construct a prognostic model, five genes (CEBPA, CYP27A1, LST1,
MREG, and TARP) were then screened and tested using the multivariable Cox model
and the stepwise regression method. Kaplan–Meier curve confirmed the good predictive
performance of this five-gene Cox model. Thereafter, the prognostic model and the
expression levels of the five genes were validated by means of an independent dataset.
High expression levels of these five genes were significantly associated with favorable
prognosis in DLBCL, both in training and validation datasets. Additionally, further
analysis revealed the independent value and superiority of this prognostic model in risk
prediction. Functional enrichment analysis revealed some vital pathways responsible for
unfavorable outcome and potential therapeutic targets in DLBCL.

Conclusion: We developed a five-gene Cox model for the clinical outcome prediction of
DLBCL patients. Meanwhile, potential drug selection using this model can help clinicians
to improve the clinical practice for the benefit of patients.

Keywords: diffuse large B cell lymphoma, overall survival, prognosis, biomarkers, risk score
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INTRODUCTION

Diffuse large B cell lymphoma (DLBCL) is the most common type
of aggressive non-Hodgkin lymphoma with an annual incidence
of 1–5/10,000 (Li et al., 2018; Marangon et al., 2019). DLBCL is
an aggressive and potentially curable hematological malignancy,
which makes an early diagnosis and effective treatments
essential for patients. R-CHOP (rituximab, cyclophosphamide,
doxorubicin, vincristine, and prednisone) is currently the
standard first line treatment of DLBCL (Coiffier et al., 2002).
Despite the high rate of complete response (76%), approximately
40% of patients will relapse, and the molecular mechanism
underlying recurrence remains largely unknown (Coiffier et al.,
2010). DLBCL displays tremendous clinical, genetic and
molecular heterogeneity. The International Prognostic Index
(IPI) has been used to predict the prognosis of patients with
DLBCL for nearly 30 years, yet there still exists a minority
of patients whose clinical process were not in accord with
the IPI stratification (International Non-Hodgkin’s Lymphoma
Prognostic Factors Project, 1993). Gene expression profiling has
helped identify two major subtypes, known as germinal center
B-cell-like (GCB) and activated B-cell-like (ABC), and patients
with ABC DLBCL exhibit a generally worse prognosis (Lenz
et al., 2008a). However, the high prices and strict requirements
regarding tissue limit the routine use of this method. Therefore,
efforts have been made to find novel biomarkers with prognostic
values in order to improve therapeutic strategy selection based on
potential targets (Cabanillas and Shah, 2017).

Currently, various markers are defined through
immunophenotyping, such as CD5, CD30, BCL2, MYC, and
TP53 (Pierce and Mehta, 2017; Zhao et al., 2019). CD5 promotes
downstream B-cell receptor signaling, is associated with ABC
subtype and more aggressive clinical traits. Patients with CD30+
DLBCL, which leads to the downregulation of NF-κB and B-cell
receptor signaling, tend to exhibit a better prognosis (Bhatt et al.,
2016; Thakral et al., 2017). Meanwhile, in patients with the GCB
subtype, BCL2 and MYC rearrangements would lead to worse
prognosis (Visco et al., 2013). TP53 mutation also adversely
affects patients’ prognosis (Xu-Monette et al., 2012). Based on
the new integrated genetic map, Chapuy et al. (2018) identified
distinct subsets, including a previously unrecognized group of
low-risk ABC-DLBCLs, two GCB-DLBCLs subsets with different
prognoses and an ABC/GCB-independent group. In addition,
Schmitz et al. (2018) uncovered some previously unknown
subtypes of DLBCL by differences in gene-expression signatures
and responses to immunochemotherapy. The subset of high-risk
patients requires revolutionized therapeutics, and personalized
therapy based on patient’s histological and molecular-genetic
characteristics will bring greater benefits to patients. Therefore,
further exploration of prognostic indicators is still needed to
distinguish DLBCL patients of varied prognosis.

Abbreviations: DLBCL, diffuse large B cell lymphoma; IPI, International
Prognostic Index; GCB, germinal center B-cell-like; ABC, activated B-cell-
like; GEO, Gene Expression Omnibus; LDH, serum lactate dehydrogenase;
ECOG, Eastern Cooperative Oncology Group; CHOP, combine with intensive
chemotherapy; circRNA, circular RNAs; HCC, hepatocellular carcinoma; ncRNA,

MATERIALS AND METHODS

Data Collection
The gene expression data and corresponding clinical information
were collected from NCBI Gene Expression Omnibus (GEO)
database with accession numbers of GSE32918 (Barrans et al.,
2012) (n = 172), GSE4475 (Hummel et al., 2006) (n = 166),
GSE69051 (Sha et al., 2015) (n = 149), TCGA (Schmitz et al.,
2018) (n = 43), GSE31312 (Visco et al., 2012) (n = 470),
GSE34171 (Monti et al., 2012) (n = 68), GSE11318 (Lenz
et al., 2008b) (n = 203), and GSE10846 (Lenz et al., 2008a)
(n = 414). It should be noted that Burkitt lymphoma samples
in GSE69051 and GSE4475 have been excluded in this study.
Among these datasets, GSE32918, GSE4475, and GSE69051
were used for feature selection and model training, while the
remaining datasets including TCGA, GSE31312, GSE34171,
GSE11318, and GSE10846 were used as independent validation
datasets. The expression values were normalized by the data
submitters, and discretized by median values, which were used
for downstream analysis.

Cox Proportional Hazard Model
The univariable Cox proportional hazard model was used
to screen prognostic genes in the first three datasets. To
integrate the three datasets and remove batch effect, we
converted the continuous expression values of the shared
genes into two discrete expression levels, i.e., high and low
expression, using the median expression as the threshold value.
The principal component analysis based on the discretized
expression levels revealed that no clear batch effect was observed
between the three datasets (Kruskal–Wallis test for the top two
principal components, P-value > 0.05, Supplementary Figure 1),
suggesting that there was no significant transcriptional difference
between the three datasets. The comparison of the clinical
factors indicated that there were significant differences in age
and proportion of deceased cases among the three datasets
(Supplementary Table 1). Those three discretized datasets of the
shared prognostic signatures were then merged and used as the
training set for the multivariable Cox model, and the stepwise
regression method was used to determine the best model based
on the Akaike Information Criterion (AIC). The risk scores for
the samples of training and validation sets were estimated using
the multivariable Cox model based on the expression levels of
those five genes. The high- and low-risk groups were stratified
based on the median of the risk scores in the training set. The
independent value of this risk stratification was also assessed by
multivariable Cox model.

Differential Gene Expression Analysis
The differential gene expression analysis was conducted to
identify the genes that were upregulated or downregulated
between specific risk groups. The Wilcoxon rank-sum test
and fold change methods were employed, and the thresholds

non-coding RNAs; PVTT, portal vein tumor thrombosis; GSEA, gene set
enrichment analysis.
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FIGURE 1 | Screening a five-gene Cox model in the public DLBCL datasets from Gene Expression Omnibus (GEO). (A) Venn diagram summarizing the overlap
between the prognostic genes identified by univariable Cox regression analysis in three public DLBCL datasets with accession numbers of GSE32918 (n = 172),
GSE4475 (n = 166) and GSE69051 (n = 172). (B) The forest plots represent the association of the five gene signatures with overall survival in the three public DLBCL
datasets.

TABLE 1 | The statistics for the gene signatures in the multivariable Cox model.

Gene coef exp (coef) se(coef) Z Pr(> | z|)

CEBPA −0.384 0.681 0.180 −2.138 3.25E-02

CYP27A1 −0.390 0.677 0.187 −2.086 3.69E-02

LST1 −0.468 0.626 0.178 −2.631 8.50E-03

MREG −0.420 0.657 0.170 −2.471 1.35E-02

TARP −0.292 0.746 0.156 −1.873 6.11E-02

of adjusted p-value and log2-fold change were determined
at 0.05 and 0.5.

The Pathway Enrichment Analysis
The upregulated genes in each risk group were further
investigated using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis, respectively.
Hypergeometric test was applied to test the statistical significance
of those identified pathways. The threshold for adjusted P-value
was determined at 0.05.

The Drug-Target Identification
The therapeutic targets were selected from the upregulated genes
in each risk group. The drugs and upregulated genes were
mapped by the R package maftools with drugInteractions.

RESULTS

Systematic Identification of Prognostic
Gene Signatures for Overall Survival
Prediction
To identify the prognostic gene signatures, we collected
three public DLBCL datasets with accession numbers of
GSE32918 (n = 172), GSE4475 (n = 166), and GSE69051
(n = 149) from GEO database as depicted in the flow
chart in Supplementary Figure 1. Subsequently, univariable
Cox regression analysis was conducted, and a total of 763,
685, and 589 genes were identified to be associated with
overall survival (OS) based on the gene expression profiles
of these three datasets (Figure 1A, log-rank test, P < 0.01),
respectively. Particularly, CEBPA, CSF2RA, CYP27A1, LST1,
MREG, SCPEP1, and TARP were found to be significantly
associated with OS in all the three datasets at the stringent
threshold (Figure 1A). Furthermore, the three datasets were
merged into one training set (n = 487), and a multivariable
Cox regression model was then built from gene expression
profiles of the merged dataset. A stepwise method was used
to select a subset of those gene signatures to construct a
multivariable Cox regression model that could achieve the
highest performance. Specifically, five genes including CEBPA,
CYP27A1, LST1, MREG, and TARP were retained in the
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FIGURE 2 | The performance of the five gene signatures in predicting the patients’ risk. K-M curves for the prognostic model in the training datasets (A) and the five
validation datasets (B–F). The red and blue lines represent the high- and low-risk groups, respectively. The numbers within risk tables on the bottom represent the
number of survivors at that time point.

multivariable Cox model (Table 1), which was termed as the five-
gene Cox model, and all of them were associated with favorable
prognoses (Figure 1B).

Performance Validation in an
Independent Dataset
To evaluate the performance of the multivariable model in risk
prediction, we first calculated the risk scores of the DLBCL
samples in the training set, and stratified these samples into
high- and low-risk groups by the median of risk scores.
The high-risk group exhibited worse prognosis than the low-
risk group (Figure 2A, P < 0.0001). Moreover, we also
collected five independent gene expression datasets with long-
term follow-up (TCGA, GSE31312, GSE34171, GSE11318, and
GSE10846), predicted the risk scores and stratified the samples

of those datasets into high- and low-risk groups. Consistently,
these two groups also had significant difference in prognosis
(Figures 2B–F, P < 0.05). Furthermore, the five gene signatures
were found to be upregulated in low-risk group than high-
risk group in both the training (Figure 3A) and validation sets
(Figures 3B–F). These results indicated that these five gene
signatures were robust and consistently associated with OS in
both training and validation datasets.

The Five-Gene Cox Model Is Superior to
Other Gene Expression-Based Cox
Models
To demonstrate the superiority of this five-gene Cox model
based on the five gene signatures, we compared its performance
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FIGURE 3 | The expression patterns of five prognostic gene signatures in the training and five validation sets. The expression patterns of the five prognostic genes in
training (A) and validation (B–F) sets. The risk scores were estimated by the linear predictors of the Cox model. The samples were ordered by the risk scores.

with three sets of gene signatures (Rosenwald et al., 2002;
Wright et al., 2003; Lossos, 2008) on the five validation
datasets. Utilizing the trained models that were constructed
from different gene signatures, the samples in the validation
sets could also be stratified into high- and low-risk groups.
The gene signatures proposed by Rosenwald et al. (2002)
had the worst performance on almost all validation datasets
(Figure 4). However, survival difference between samples
stratified by our proposed five gene signatures was the
most statistically significant across all the validation datasets
(Figure 4), especially in the TCGA and GSE34171 cohorts
with smaller sample size (Figures 4A,B), suggesting that the
Cox model based on our five gene signatures was superior
to other models.

The Five-Gene-Based Risk Stratification
Is a Prognostic Factor Independent of
Clinical Factors
To further investigate the robustness of the five-gene Cox
model, we tested whether the five-gene-based risk stratification

was an independent predictor in the validation set. Since
the IPI scoring system was a well-recognized factor for
prognostic risk prediction and widely applied in clinical practice
(Martelli et al., 2013), the samples were first divided into
two groups of high (≥3) or low (<3) IPI scores, considering
age, serum lactate dehydrogenase (LDH), Eastern Cooperative
Oncology Group (ECOG) Performance Status, Ann Arbor
stage, and extranodal infiltration sites (International Non-
Hodgkin’s Lymphoma Prognostic Factors Project, 1993). As
shown in Figure 5A, no significant difference was observed
between the risk scores of the two groups, which were
estimated using the five-gene Cox model (high vs. low IPI).
Moreover, the differences were also not observed across
the four stages. In contrast, the samples with high IPI
had significantly higher risk scores when estimated with
the three sets of gene signatures as mentioned above, than
those with low IPI (Supplementary Figure 2). These results
suggested that the risk scores were not only irrelevant to
IPI scoring system and tumor stage, but also had a higher
independent predictive values than those derived from previous
gene signatures.
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FIGURE 4 | The Cox model based on the five gene signatures was superior to other models. The performance of the four prognostic models in the validation
datasets of TCGA (n = 43), GSE34171 (n = 68), GSE10846 (n = 414), GSE31312 (n = 470), and GSE11318 (n = 203) are displayed in panels (A–E). The log2-hazard
ratios and 95% confidence intervals were denoted by the red boxes and lines.

Notably, the samples could be classified into four groups
by combining the IPI scoring system and the five-gene-based
risk stratification, and the four groups exhibited significantly
prognostic difference (Figure 5B, P < 0.0001). It should be noted
that the differences of OS were not observed between the two
groups with the worse prognosis, but the samples with IPI ≥ 3
in high-risk group still had shorter OS than samples with IPI ≥ 3
in the low-risk group based on the KM curve.

Moreover, we also tested whether the risk stratification was
independent of the DLBCL subtypes. Consistently, the three
subtypes, including ABC, GCB and unclassified subtypes, could
be further stratified into high- and low-risk groups. Except
unclassified subtype, the ABC and GBC subtypes still maintained
the statistical difference in OS between the high-risk and low-
risk groups (Figures 5C,D, FDR < 0.05, and Figure 5E,
FDR > 0.05). To test whether the chemotherapy treatment affects
the performance of the gene signatures, we compared the two
risk groups of patients treated with R-CHOP-like or CHOP-like

regimens. Consistently, high-risk patients, who were treated with
R-CHOP-like or CHOP-like regimens, still had shorter OS than
the corresponding low-risk patients (Figures 5F,G), suggesting
that the gene signatures were independent of the chemotherapy
treatment. In addition, we also fitted the IPI scoring system,
stage, subtype and risk stratification into a multivariable Cox
model, and found that the risk stratification was still statistically
significant with these prognostic factors as cofactors (Table 2).
These results further demonstrated that the five-gene-based risk
stratification was an independent prognostic factor for DLBCL
risk prediction.

The Molecular Characteristics and
Potential Drugs for the Two Risk Groups
To reveal the molecular characteristics of the two risk groups, we
compared the gene expression profiles of high-risk with those
of low-risk group using the five validation datasets. A total
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FIGURE 5 | The risk stratification based on the five prognostic genes is independent of clinical factors. (A) The risk scores in different IPI groups (left panel) and
clinical stages (right panel). The boxes show the median and the interquartile range (IQR) of the risk scores grouped by the IPI scoring system and clinical stage in the
validation dataset. There are no significant differences between those groups (P > 0.05). (B) Kaplan–Meier survival curves show the overall survival of samples
grouped by combining the IPI scoring system and the five-gene-based risk stratification. ***P < 0.0001. The differences of overall survival between the high-risk and
low-risk groups in specific subtype or with specific chemotherapy regiment [(C) ABC subtype; (D) GCB subtype; (E) unclassified subtype, (F) DLBCL treated with
CHOP-Like regiment, (G) DLBCL treated with R-CHOP-Like regiment].

of 1,158 genes, jointly differentially expressed between high-
and low-risk groups of the five validation datasets, were then
selected by Wilcoxon rank-sum test and fold change (Adjusted

P-value < 0.05 and log2-fold change > 0.5). Moreover, the
overrepresentation enrichment analysis (ORA) was employed
to identify the pathways potentially involved in the DLBCL
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TABLE 2 | The statistics for the risk stratification and prognostically clinical factors in the multivariable Cox model.

Variables Log2 hazard ratio Hazard ratio Standard error Z score P-value

Subtype

ABC

GCB −0.94 0.39 0.20 −4.66 3.18E-06

Unclassified −0.79 0.45 0.27 −2.94 3.26E-03

Stage

1

2 0.99 2.70 0.41 2.41 1.62E-02

3 0.64 1.89 0.44 1.45 1.47E-01

4 0.99 2.69 0.42 2.34 1.94E-02

Risk stratification

High-risk

Low-risk −0.59 0.55 0.18 −3.34 8.46E-04

IPI

<3

≥3 1.02 2.77 0.21 4.83 1.40E-06

Treatment

R-CHOP

R-CHOP-like −0.72 0.48 0.19 −3.74 1.82E-04

progression (Figure 6A). Specifically, cell cycle-related pathway
and those associated with genomic stability maintenance, such
as mismatch repair, were highly upregulated in high-risk
group (Adjusted P-value < 0.05). In contrast, immune-related
pathways such as rheumatoid arthritis, antigen processing and
presentation, hematopoietic cell lineage, and Th1 and Th2 cell
differentiation were upregulated in low-risk group (Adjusted
P-value < 0.05). Moreover, we also conducted correlation
analysis between our signature genes and the DEGs in the five
validation datasets. As high expression of the five signature
genes indicates better prognosis, consistently, they are positively
or conversely correlated with most of the upregulated genes
in high-risk or low groups, respectively, indicating that those
DEGs might also be associated with prognosis to a certain
extent (Figure 6B).

For the low-risk group, some immune checkpoint proteins
and inhibitors were identified, such as PDCD1 (PD-1),
CD274 (PD-L1), CTLA4, and their corresponding drugs
(Figure 6C), suggesting that the low-risk samples might
benefit from inhibiting the immune checkpoint pathway.
Besides, the cell cycle kinase, CDK1, was upregulated in
high-risk group, and BARASERTIB and DINACICLIB
might be the potential drugs for treating DLBCL classified
as high-risk (Figure 6D). As we have known, CD20 (also
termed MS4A1) is expressed on the surface of normal B
lymphocytes and is detected in almost all DLBCL cases.
At present, RITUXIMAB, a chimeric monoclonal antibody
directed against the CD20, combined with intensive
chemotherapy (CHOP) is the standard therapy for DLBCL
(Figure 6D). These results indicated the stratification
may contribute to the selection of targeted drugs for
the DLBCL patients.

DISCUSSION

Diffuse large B cell lymphoma is a remarkably heterogeneous
disease, both histologically and genetically. Despite significant
advances in subtype classification of DLBCL, accurate prediction
of prognosis remains a challenge. With the development of high
throughput sequencing technology, some potential prognostic
genomic markers for DLBCL patients have been identified
(Rosenwald et al., 2002; Wright et al., 2003; Lossos, 2008).
However, the number of prognostic markers is still limited. There
is an urgent need to screen out more biomarkers to improve the
accuracy of prognostic prediction.

In the present study, we identified potential gene candidates
through the univariable Cox regression analysis to examine
associations between gene expression and patient prognosis
of three DLBCL cohorts in GEO. To further narrow down
the list of candidate gene signatures, multivariate Cox analysis
was carried out on the merged datasets. A stepwise approach
was used to select a subset of gene candidates to achieve
the highest performance, and a risk model was established
for predicting DLBCL prognosis based on the expression
levels of five genes including CEBPA, CYP27A1, LST1, MREG,
and TARP. We evaluated the model performance using an
independent gene expression dataset and compared it with
previously reported models. Our five-gene based risk model
showed improved robustness, accuracy, and efficiency compared
to those models and was demonstrated to be an independent
prognostic factor for OS in patients with DLBCL. Subsequently,
we compared the gene expression profiles of high-risk with those
of low-risk group and performed ORA to identify pathways
potentially involved in the DLBCL progression. Thus, we
believe that our five-gene-based risk scoring model can be
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FIGURE 6 | The molecular characteristics and potential drugs for the two risk groups. (A) The top-ten GO terms enriched by the upregulated genes in high-risk and
low-risk groups. The dots size and color represent the ratio of gene counts and statistical significance, respectively. (B) The probability density function of the
Spearman’s correlation between the five prognostic genes and the differentially expressed genes (DEGs). The colors represent the validation datasets. (C) The
upregulated immune checkpoint proteins and the corresponding drugs in the low-risk group. (D) The upregulated cell cycle kinase and their potential drugs in
high-risk group.

used for refining DLBCL subtypes and potentially improving
patient therapy.

According to the multivariable Cox model, high expression
of the five genes was all associated with a favorable survival
outcome. CEBPA is a transcription factor playing roles in
regulating proliferation and differentiation of many cell types
(Gery et al., 2005). Within the hematopoietic system, inactivation
mutation of CEBPA blocks the granulocytic differentiation in
acute myeloid leukemia (AML) (Wang et al., 1999). In addition,

it has been reported that CEBPA-regulated PER2 activation is
a potential tumor suppressor pathway in diffuse large B-cell
lymphoma (DLBCL) (Thoennissen et al., 2012). CYP27A1, a
cytochrome P450 oxidase family member, is closely related
to the proliferation of multiple tumor cells, such as prostate,
breast and colon cancer (Ji et al., 2016; Alfaqih et al., 2017;
Kimbung et al., 2017). LST1 is encoded within the TNF region
of the human MHC which regulates lymphocyte proliferation
(Rollinger-Holzinger et al., 2000). MREG is reported to suppress
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thyroid cancer cell invasion and proliferation through PI3K/Akt-
mTOR signaling pathway (Meng et al., 2017). The biological roles
of these genes in DLBCL need to be further investigated.

The ORA of DEGs suggests that the abnormal cell cycle
progression and increased genomic instability contribute to the
rapid progression of DLBCL. Inhibitors of cell cycle kinase,
such as BARASERTIB and DINACICLIB, may be effective in
high-risk patients. On the contrary, genes related to immune-
related pathways, such as antigen processing and presentation,
Th1 and Th2 cell differentiation, were enriched in low-risk
group, suggesting that activated host immune response may
indicate favorable prognosis and response to therapy. These
findings provide novel clues into the explanation of the
mechanisms of DLBCL.

The prognostic model we proposed is helpful for further risk
stratification at the genetic level on the basis of the present
traditional subtyping, but this study still has some limitations.
Some potential prognostic factors may be excluded in the model
such as the racial factors and the roles that the five genes play in
DLBCL requires further experimental validation. To sum up, our
research indicates that the five-gene prognostic model is a reliable
tool for predicting the OS of DLBCL patients and providing some
hints on drug selection, which can assist clinicians in selecting
personalized treatment, although specific drug selection requires
further molecular biology research and clinical trials.
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Background: N6-methyladenosine (m6A) RNA modification is vital for cancers because
methylation can alter gene expression and even affect some functional modification.
Our study aimed to analyze m6A RNA methylation regulators and m6A-related genes to
understand the prognosis of early lung adenocarcinoma.

Methods: The relevant datasets were utilized to analyze 21 m6A RNA methylation
regulators and 5,486 m6A-related genes in m6Avar. Univariate Cox regression analysis,
random survival forest analysis, Kaplan–Meier analysis, Chi-square analysis, and
multivariate cox analysis were carried out on the datasets, and a risk prognostic model
based on three feature genes was constructed.

Results: Respectively, we treated GSE31210 (n = 226) as the training set, GSE50081
(n = 128) and TCGA data (n = 400) as the test set. By performing univariable
cox regression analysis and random survival forest algorithm in the training group,
218 genes were significant and three prognosis-related genes (ZCRB1, ADH1C, and
YTHDC2) were screened out, which could divide LUAD patients into low and high-
risk group (P < 0.0001). The predictive efficacy of the model was confirmed in the
test group GSE50081 (P = 0.0018) and the TCGA datasets (P = 0.014). Multivariable
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cox manifested that the three-gene signature was an independent risk factor in LUAD.
Furthermore, genes in the signature were also externally validated using the online
database. Moreover, YTHDC2 was the important gene in the risk score model and
played a vital role in readers of m6A methylation.

Conclusion: The findings of this study suggested that associated with m6A RNA
methylation regulators and m6A-related genes, the three-gene signature was a reliable
prognostic indicator for LUAD patients, indicating a clinical application prospect to serve
as a potential therapeutic target.

Keywords: lung adenocarcinoma, m6A, prognostic signature, m6A-related genes, RNA methylation regulators

INTRODUCTION

Lung adenocarcinoma (LUAD) is a type of non-small cell cancer.
In the 2018 Global Cancer Report, lung cancer ranked top 1
with the highest incidence and mortality among all cancers
(Bray et al., 2018).

N6-methyladenosine (m6A) RNA methylation is the most
abundant epigenetic modification in eukaryotic mRNA. M6A
methylation regulators of each modified RNA require a writer
to place, an eraser to erase, and a reader to read. Based
on these proteins, m6A affected RNA splicing (He et al.,
2019), translation, and RNA stability (Wang et al., 2014; He
et al., 2019). Evidence is now mounting that m6A methylation
underlies the progression of tumors and affects specific biological
processes through non-coding RNA modification (Xiao et al.,
2019). Moreover, the over-expression of YTHDF1 in the
reader might affect the prognosis of ovarian cancer patients
(Liu et al., 2020). In the writer family, high expression
of METTL3 promoted the proliferation of bladder cancer
(Cheng et al., 2019) and led to a poor prognosis (Han
et al., 2019). Over-expression knockdown of ALKBH5 could
effectively reduce cell proliferation in pancreatic cancer in
erasers family (Tang et al., 2020). Meanwhile, m6A has many
functions in cancer (He et al., 2019; Ma et al., 2019; Ma
and Ji, 2020), such as reduced m6A has a relationship with
phenotypes of gastric cancer (Zhang et al., 2019), KIAA1429
is associated with prognosis of liver cancer (Lan et al.,
2019), and FTO could facilitate the development of breast
cancer (Niu et al., 2019). However, to our knowledge, there
are few studies related to m6A methylation in early LUAD,
and this may be a novel treatment strategy for patients
with early LUAD.

In this study, GEO and TCGA data were used to explore the
influence of m6A methylation genes and their regulated genes
on the prognosis of early lung adenocarcinoma. The signature
was conducted for identifying new therapeutic biomarkers and
treatment strategy development.

Abbreviations: m6A, N6-methyladenosine; LUAD, lung adenocarcinoma; ROC,
receiver operating characteristic; GEO, Gene Expression Omnibus; TCGA, The
Cancer Genome Atlas; m1A, N1-methyladenosine; RSFVH, random survival forest
algorithm; lncRNAs, long chain non-coding RNA; OS, overall survival; GO, gene
ontology; HR, hazard ratio; CI, confidence interval; KM, Kaplan–Meier.

MATERIALS AND METHODS

Expression Data
Data was downloaded from Gene Expression Omnibus (GEO)
and The Cancer Genome Atlas (TCGA) public databases.
GSE31210 (n = 226) was used as the training set, GSE50081
(n = 128) as the validation set 1, and TCGA (n = 400)
data as the validation set 2. Three independent datasets were
used for model construction and model verification. Each
independent dataset included the clinical characteristics: survival
status, survival time, age, sex, and clinical TNM stage. In
GEO data, TNM clinical stage was divided into stages I
and II, which were shown in Table 1. Besides, the GPL570
chip platform was re-annotated by the probe to get the final
expression profile of the GEO data (Fan et al., 2018). Only
mRNA probes were selected, and 8,597 mRNA expression
profiles were obtained.

Selection of m6A RNA Methylation
Regulatory Factors and m6A-Related
Genes
We collected 21 m6A methylated genes through literature
investigation (Supplementary Table 1) (Zhang et al., 2020). We
found that among these 21 genes, 14 genes were expressed in

TABLE 1 | Clinical information of the Gene Expression Omnibus (GEO) and The
Cancer Genome Atlas (TCGA) datasets.

Characteristic GSE31210 GSE50081 TCGA

Age (years)

>61 104 104 251

≤61 122 24 149

Sex

Female 121 63 217

Male 105 65 183

Vital status

Alive 191 76 278

Dead 35 52 122

Pathological stage

Stage I 168 92 280

Stage II 58 36 120
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FIGURE 1 | Random survival forest analysis. (A,B) random survival forests variable hunting analysis reveals the error rate for the data as a function of trees and uses
the associated score to filter N6-methyladenosine (m6A) RNA methylation regulators and m6A-related genes. (C) Receiver operating characteristic (ROC) for
selected prognostic signature from all 255 signatures.

FIGURE 2 | Evaluation of the risk predictive model in the training set and test set. (A–C) The distribution of m6A RNA methylation regulators and m6A-related gene
expression level, patients’ survival status, and risk score between high- and low-risk group.

the training set (GSE31210). In LUAD, a total of 5,486 m6A-
regulated genes were downloaded from the m6Avar database1

(Zheng et al., 2018). Among the 5,507 genes, 2,615 genes were
expressed in GSE31210.

1http://m6avar.renlab.org/

Discovery of the m6A RNA Methylation Regulators and m6A-
Related Genes and Establishment of the m6A Methylation Risk
Score Model.

We obtained prognostic-related gene sets through survival
analysis [univariate cox and Kaplan–Meier (KM)] and receiver
operating characteristic (ROC) curve. In the training set
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GSE31210, we used the random survival forest (RSF) (Ishwaran
et al., 2008) to establish a prognostic model related to patient
overall survival (OS). Methods of analyzing survival data were
often parametric, nonlinear effects of variables, and modeled by
expanding matrix for specialized functions. Identifying multiple
variable interactions was also problematic. These difficulties
could be effectively solved using RSF (Ishwaran et al., 2008). Its
basic formula is:

RSF =
N∑
i=1

Expi× Coefi

The meanings of the parameters in this formula are: RS is the risk
score, N is the number of genes, Exp is the expression amount of
genes in the data, and Coef is the coefficient of cox analysis for the
genes resulting from the random survival forest. We used gene

combinations to select the largest AUC to construct a prognostic
model. Based on the median of the risk scores, the data were
divided into two groups: the high-risk group and the low-risk
group. The KM curve was used to compare the difference between
the high and low-risk groups. In the three datasets, using the
median score divided two groups.

Estimation of Outcome Signature for
Patients’ Prognosis and Its Relationship
With Clinical Characteristics
To assess the characteristics of the patients’ prognosis and its
relationship with clinical features, we used chi-square analysis
to judge the correlation between the model and clinical data.
KM survival curve and log-rank test were used to describe
the relationship between the model and OS. Furthermore,

TABLE 2 | Prognosis of the three genes in the signature.

ENSEMBL ID Symbol ID Gene name Coef P-value Prognostic indicator

ENSG00000047188 YTHDC2 YTH domain containing 2 −2.02 0.00 low

ENSG00000139168 ZCRB1 zinc finger CCHC-type and RNA binding motif containing 1 1.73 0.00 high

ENSG00000248144 ADH1C alcohol dehydrogenase 1C (class I), gamma polypeptide −1.96 0.00 low

FIGURE 3 | m6A RNA methylation regulators and m6A-related genes signature predict overall survival of patients of LUAD. (A–C) Kaplan–Meier survival curves
classify patients into high- and low-risk groups by the m6A RNA methylation regulators and m6A-related genes signature in the training dataset (GSE31210), and
test dataset (GSE50081 and TCGA). P values were calculated by log-rank test. (D–F) m6A RNA methylation regulators and m6A-related genes signatures were used
for predicting survival in 1, 3, and 5 years by TimeROC analysis.
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multivariate Cox regression analysis was used to study whether
the clinical data (age, gender, and pathological stage) were related
to OS in the training set and validation set. We used univariate
Cox analysis to judge whether the clinical information had
prognostic value.

External Validation of the Genes in the
Gene Signature
Furthermore, four online tools were used to verify the gene
expression levels (Oncomine database2; TIMER database3,
and GEPIA database, Gene Expression Profiling Interactive
Analysis4) and protein levels [The Human Protein Atlas (HPA)
database5] in the model. Meanwhile, online public databases (The
cBioPortal for Cancer Genomics6) were used to analyze and
understand the gene influence on early treatment of LUAD.

Function Notes and Protein–Protein
Interaction
The R package “clusterProfiler” was used to annotate the function
and select the statistically significant pathways. The relationship
between proteins was analyzed by using the online website
STRING7 (Szklarczyk et al., 2019). Cytoscape was used to
visualize the network. Then the main networks were chosen by
a degree of the gene in the net analysis.

Statistical Analysis
In three independent datasets, all KM and cox analyses were
performed using the R package “survival”. Cox analysis was
used to select prognostic genes and test models. “ROC” and
“TimeROC” were available to verify the feasibility of the
model. Functional annotations were made using the R package
“Clusterprofiler.” All of our analyses (besides online website
analysis) were performed in the R language. R packages were used
as follows: “pROC,” “TimeROC,” “survival,” “clusterProfiler’,” and
“randomForestSRC.” The P values of the above analyses were
all <0.05 as statistically significant.

RESULTS

Patient Population
All 226, 128, and 400 patients diagnosed with LUAD were
collected from the GEO (GSE31210 and GSE50081) and TCGA
database, respectively. A total of 2,615 m6A-related genes out of
the genes expressed were identified in the GSE31210 dataset. In
Table 1, the median age of the enrolled samples was 61 years.
The ratio of male vs. female was 1.15:1, with 191 live cases and 35
death cases. The longest survival was 10 years. Each sample data
was only distributed in stages I–II of LUAD. The study workflow
is demonstrated in Supplementary Figure 1.

2https://www.oncomine.org/resource/main.html
3https://cistrome.shinyapps.io/timer/
4http://gepia.cancer-pku.cn/index.html
5http://www.proteinatlas.org
6https://www.cbioportal.org/
7https://string-db.org/

TABLE 3 | Clinical information and signature Chi-square table.

Variables Status low high P

GSE31210 dataset (n = 226)

Age 0.89

≤61 62 60

>61 51 53

Gender 0.18

Female 66 55

Male 47 58

Pathological stage 0.00

I 97 71

II 16 42

GSE50081 dataset (n = 128)

Age 0.82

≤61 11 13

>61 53 51

Gender 1.00

Female 31 32

Male 33 32

Pathological stage 0.03

I 52 40

II 12 24

TCGA dataset (n = 400)

Age 0.00

≤61 60 89

>61 140 111

Gender 0.69

Female 111 106

Male 89 94

Pathological stage 0.10

I 148 132

II 52 68

Construction of the Risk Score Model,
the m6A RNA Methylation Regulators,
and m6A-Related Genes Risk Score
After we used univariate cox analysis and ROC curve, 218
prognostic-related genes were selected, and the screening
criteria were P < 0.01 and AUC > 0.6 in Supplementary
Table 2. Furthermore, gene screening was performed by the
importance scores of the random survival forest analysis. We
permuted and combined the eight genes selected from the
random survival forest, obtaining 28 – 1 = 255 prediction
models (Figures 1A,B). The 255 models were evaluated by
AUC, and the optimal predictive ability was found in the
combination of three genes, ZCRB1, ADH1C, and YTHDC2.
As a prediction model, the AUC of the three-gene model
was 0.762 (Figure 1C). The risk score of the model was
RSF = (1.725151 × ZCRB1) + (−1.964326 × ADH1C) +
(−2.015378 × YTHDC2). Each gene name represented its
expression level in a certain sample.

We used the RSF formula to calculate the risk score of each
sample and plotted the heat map of the three genes (Figures 2A–
C), finding that in the high-risk group, ADH1C and YTHDC2
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basically had low expression, while ZCRB1 obviously had high
expression. This was particularly evident in the training group
(GSE31210) (Figure 2A).

The results made it clear that ADH1C had high expression in
the low-risk group as a protection factor by cox analysis (Table 2).

The Validation of Performance in
Predicting Overall Survival
In the training set, the median risk score divided all patients
into two groups: high-risk group (n = 113) and low-risk group
(n = 113) (Figure 3A). The KM survival curve and log rank test
showed that our model had an excellent predictive power. In
the validation set, the median risk score was also used to divide
the patients into two groups in GSE50081 (n = 128), and there
were 64 patients in the high-risk group and 64 patients in the
low-risk group (Figure 3B). The KM survival curve showed that
there was a significant difference between the high-risk group and
low-risk group (Log rank P = 0.0018). Grouped by median risk
score in TCGA (n = 400), there were 200 patients in the high-
risk group and 200 samples in the low-risk group, with log rank
P = 0.014 (Figure 3C).

In the training group (GSE31210), the 5-years survival rate
was 53.10% in the low-risk group and 38.05% in the high-
risk group (Figure 3A). Additionally, the overall survival rate
was 45.58%, indicating that the risk score could differentiate
the data correctly. Survival was significantly improved in
the two independent validation data (GSE50081 and TCGA).
Moreover, in GSE50081, the low-risk group was 56.25% and
the high-risk group was 29.69% (Figure 3B). The overall
survival rate was 42.97% and the grouping label was also
evident. Meanwhile, in TCGA, we selected a sample data
of TNM stage (I+II) (a total of 400 cases) (Figure 3C).

Five-years survival rate was calculated in the high- and low-
risk groups, and the rates were 14.5 and 8%, respectively.
The overall 5-years survival rate was 11.25% in both low-
and high-risk groups, and the survival rate in the low-risk
group had markedly improved. Using time ROC in 5-years
survival circumstances, we found that the label had an excellent
prediction effect (Figures 3D–F). In GSE31210 and GSE50081,
the AUC was 0.773 and 0.656, respectively, and the AUC was
0.647 in the TCGA.

The Relationship Between the Signature
and Clinical Characteristics
The association was demonstrated between the model and clinical
information through the chi-square test in Table 3. There was
a significant relationship between the pathological stage and
the model (P < 0.05) in the GEO independent dataset rather
than the TCGA dataset. Besides, there were 401 females in 754
cases, accounting for 53.18% of the total. A multivariate Cox test
was utilized to determine if the signature had an independent
prognostic value as a factor. The results in Table 4 showed that
the signature was a risk factor, and it was statistically significant
(high- vs. low-risk, GSE31210, HR = 16.24, 95% CI 3.85–68.58,
P < 0.001, n = 226; GSE50081, HR = 2.23, 95% CI 1.24–4.02,
P = 0.008, n = 128; TCGA, HR = 1.50, 95% CI 1.03–2.18,
P = 0.036, n = 400). Univariate Cox also indicated that the
signature was a risk factor.

Functional Annotation and
Protein–Protein Interaction
A 218 gene set, obtained from survival analysis and AUC
analysis, was used for functional annotation and PPI network
analysis. Among the 218 genes, including m6A RNA methylation

TABLE 4 | Univariable and multivariable Cox regression analysis of the signature and clinical information with lung adenocarcinoma (LUAD) survival.

Univariable cox Multivariable cox

Variables HR 95% CI of HR P HR 95% CI of HR P

right left right left

GSE31210 (n = 226)

Age >61 vs. ≤61 1.43 0.73 2.78 0.29 1.49 0.76 2.92 0.24

Sex Male vs. female 1.52 0.78 2.96 0.22 1.03 0.51 2.08 0.92

Pathological stage II vs. I 4.23 2.17 8.24 0.00 2.73 1.35 5.50 0.00

Signature High risk vs. low risk 20.48 4.91 85.43 0.00 16.24 3.85 68.58 0.00

GSE50081 (n = 128)

Age >61 vs. ≤61 2.09 0.89 4.89 0.09 2.04 0.86 4.80 0.10

Sex Male vs. female 1.35 0.78 2.34 0.29 1.51 0.86 2.64 0.15

Pathological stage II vs I, 2.53 1.45 4.44 0.00 2.09 1.17 3.73 0.01

Signature High risk vs. low risk 2.40 1.36 4.23 0.00 2.23 1.24 4.02 0.01

TCGA (n = 400)

Age >61 vs. ≤61 1.20 0.83 1.75 0.33 1.34 0.91 1.96 0.14

Sex Male vs. female 1.03 0.72 1.47 0.87 1.03 0.72 1.48 0.88

Pathological stage II vs. I 2.49 1.73 3.57 0.00 2.40 1.66 3.45 0.00

Signature High risk vs. low risk 1.57 1.09 2.26 0.01 1.50 1.03 2.18 0.04

CI, confidence interval; HR, hazard ratio.
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FIGURE 4 | Functional annotation and protein–protein interaction for the genes with significant prognosis. (A,B) Function prediction (BP, biological process; CC,
cellular component). (C) Protein–protein interaction.

regulatory factors, ElAVL1, METTL14, and YTHDC2 were
significantly associated with OS in LUAD. Top 10 biological
processes (BPs) and cellular components (CCs) were selected by
functional annotation of 218 genes, among which several results

of BPs were related to division (nuclear division, organelle fission)
and regulation (regulation of mRNA metabolic process and
regulation of chromosome organization). The primary outcome
of CCs was linked to the chromosome (Figures 4A,B).
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FIGURE 5 | Expression and genetic alterations of the three predictive genes. (A) The expression profiles of the three genes in the Oncomine database. (B) The
representative protein expression of the three genes in LUAD and normal lung tissue in the Human Protein Atlas database. Data of ZCRB1 were not found in the
database. (C) Genetic alterations of the three genes in LUAD in the cBioportal for Cancer Genomics.

PPI network was constructed by STRING, generated and
visualized in Cytoscape. The combined score of the PPI criteria
was >0.9. The PPI network had 88 relationships, and some genes
were removed that were not part of the network (Figure 4C).
Many key genes were observed in the network, such as PLK1,
CCNB1, MAD2L1, RHOA, and ACTR2.

External Validation Using Online
Database About Genes in the Signature
The results of external validation data were consistent with
our results. In LUAD, two genes YTHDC2 and ADH1C
were lowly expressed in the three sets of independent
data (Figure 5A), which was almost the same in both
the TIMER database (Figure 6) and the GEPIA database
(Supplementary Figure 2). Interestingly, the aberrant expression
of the three genes were frequently observed in various cancers
and showed some tissue-dependent patterns. For example,
ZCRB1 was overexpressed in lymphoma, and ADH1C in
cervical cancer and esophageal cancer, and YTHDC2 in breast
cancer, gastric cancer, head and neck cancer, myeloma, and
sarcoma (Figure 5A).

Survival analyses for each gene in the signature (ZCRB1,
ADH1C, and YTHDC2) were performed in the cohorts of
GSE31210, GSE50081, and TCGA datasets (Figure 7). ZCRB1
low-expression patient group displayed more OS than ZCRB1

high-expression patient group in GSE31210. While, ADH1C and
YTHDC2 high-expression patient group displayed more OS than
low-expression patient group not only in GSE31210 but also in
GSE50081 and TCGA dataset.

We then reviewed the proteomic data and found YTHDC2
protein was reported significantly underexpressed in non-small
cell lung cancer (Sun et al., 2020). The representative protein
expression of ADH1C and YTHDC2 was explored in the human
protein profiles and is shown in Figure 5B. Nevertheless, ZCRB1
was not found in the HPA website. YTHDC2 possessed the
most frequent genetic alterations (3%) among the three genes.
Meanwhile, amplification mutation, missense mutation, and
deep deletion were the most common alterations among the
three genes (Figure 5C). In summary, we further verified the
abnormal expression of these three genes in LUAD, and genetic
changes may help explain the aberrant expression of these genes
to a certain extent.

DISCUSSION

At the post-transcriptional level, more than 160 kinds of
chemical modifications were discovered in various RNAs
(Roundtree et al., 2017; Boccaletto et al., 2018). Among these
modifications, more and more evidence showed that m6A
modification had an essential effect on some underlying
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FIGURE 6 | The expression of the three predictive genes in cancers via Tumor IMmune Estimation Resource (TIMER, https://cistrome.shinyapps.io/timer/).
(A) YTHDC2 expression level in tumor tissues vs normal tissues. (B) ZCRB1 expression level in tumor tissues vs normal tissues. (C) ADH1C expression level in tumor
tissues vs normal tissues. ACC, adrenocortical carcinoma; BLCA, bladder carcinoma; BRCA, breast carcinoma; CESC, cervical squamous cell carcinoma and
endocervical adenocarcinoma; CHOL, cholangio carcinoma; COAD, colon adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; ESCA,
esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell
carcinoma; KIRP, kidney renal papillary cell carcinoma; LAML, acute myeloid leukemia; LGG, brain lower grade glioma; LIHC, liver hepatocellular carcinoma; LUAD,
lung adenocarcinoma; LUAC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma;
PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous
melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumors; THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus endometrial
carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma.

Frontiers in Genetics | www.frontiersin.org 9 June 2021 | Volume 12 | Article 656114135

https://cistrome.shinyapps.io/timer/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-656114 June 5, 2021 Time: 17:28 # 10

Guo et al. Lung Adenocarcinoma, m6A, Prognostic Signature

FIGURE 7 | Compare the low and high expression of the three predictive genes in overall survival in (A) GSE31210 dataset, (B) GSE50081 dataset, and (C) TCGA
dataset.

diseases and prognosis of tumors. Therefore, the identification
of m6A RNA methylation regulators and m6A-related genes
in fatal LUAD may offer valuable therapeutic targets to
us and clinicians. Doctors usually diagnosed LUAD as
advanced, and there was a high death rate with it. Many
studies illuminated that the m6A process was linked to lung
cancer, which made m6A RNA methylation regulators and

m6A-related genes potential biomarkers for clinical practice.
According to our research, the classification of m6A-related
genes in LUAD patients was in association with prognosis.
We identified a signature that consisted of one m6A RNA
methylation regulator (YTHDC2) and two m6A-related genes
(ZCRB1 and ADH1C) using different statistical and machine
learning methods.
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Up to now, little is known about the role of YTHDC2
in tumorigenesis. Even less so in LUAD, two studies were
found on the role of YTHDC2 in LUAD in recent studies.
In a mouse model, low YTHDC2 expression was associated
with poor prognosis in LUAD patients, and YTHDC2 improves
the prognosis of LUAD patients by inhibiting the independent
antioxidant function of SLC7A11 (Ma et al., 2021). In non-small
cell lung cancer, a research analyzed a series of publicly available
online databases and found that low YTHDC2 expression was
associated with lymph node metastasis and poor prognosis
(Sun et al., 2020).

ZCRB1 is a zinc finger CCHC-type and RNA binding motif
containing 1. A previous study found that it was U12-type
splicing playing a pivotal role by RefSeq analysis. However, the
function of ZCRB1 was rarely reported in cancer, only in two
studies. For example, ZCRB1’s high expression can improve
viral replication and transcription (Tan et al., 2012). Through
genome-wide analysis of lung adenocarcinoma and healthy
subjects, it was found that ZCRB1 may encode viral receptors.
COVID-19 has infected plenty of people around the world,
and ZCRB1 high expression may impact patients’ prognosis
(Cotroneo et al., 2021).

ADH1C is alcohol dehydrogenase 1C (class I). Many reports
showed that drinking had an effect on some diseases. High
expression of ADH1C was found to protect patients of non-
small cell lung cancer (Wang et al., 2018). Using machine
learning algorithms, the researchers found that ADH1C could be
a prognostic marker (Shen et al., 2019).

For the reversible effect of m6A on mRNA expression, we
believe that m6A-related genes may have different functional
patterns and networks when participating in malignant tumors.
Thus, m6A-related genes may have different expression patterns
in LUAD. In previous research, little was known about
the interaction of m6A-related genes. Moreover, m6A RNA
methylation regulators (WTAP, RBM15, KIAA1429, YTHDF1,
and YTHDF2) were linked with TP53 and highly expressed in
TP53 mutant LUAD (Zhuang et al., 2020). However, it is worth
nothing that whether the TP53 mutant affects the expression
of ZCRB1, ADH1C, and YTHDC2 is still unclear, and more
evidence is needed to clarify their mechanism.

CONCLUSION

In conclusion, our study systematically analyzed the expression,
prognostic value, protein–protein interaction, and potential
function of m6A RNA methylation regulators and m6A-
related genes. We found that the expression of m6A RNA
methylation regulators and m6A-related genes was closely related
to the clinicopathologial characteristics of LUAD. A three-gene

signature was identified that might effectively identify new
therapeutic targets or strategies for LUAD. In summary, our study
provided important clues for further studies on the role of RNA
m6A methylation regulators and m6A-related genes in LUAD.
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Motivation: Long non-coding RNAs (lncRNAs) play important roles in cancer
development. Prediction of lncRNA–cancer association is necessary for efficiently
discovering biomarkers and designing treatment for cancers. Currently, several methods
have been developed to predict lncRNA–cancer associations. However, most of them
do not consider the relationships between lncRNA with other molecules and with cancer
prognosis, which has limited the accuracy of the prediction.

Method: Here, we constructed relationship matrices between 1,679 lncRNAs, 2,759
miRNAs, and 16,410 genes and cancer prognosis on three types of cancers (breast,
lung, and colorectal cancers) to predict lncRNA–cancer associations. The matrices were
iteratively reconstructed by matrix factorization to optimize low-rank size. This method
is called detecting lncRNA cancer association (DRACA).

Results: Application of this method in the prediction of lncRNAs–breast cancer,
lncRNA–lung cancer, and lncRNA–colorectal cancer associations achieved an area
under curve (AUC) of 0.810, 0.796, and 0.795, respectively, by 10-fold cross-validations.
The performances of DRACA in predicting associations between lncRNAs with three
kinds of cancers were at least 6.6, 7.2, and 6.9% better than other methods,
respectively. To our knowledge, this is the first method employing cancer prognosis
in the prediction of lncRNA–cancer associations. When removing the relationships
between cancer prognosis and genes, the AUCs were decreased 7.2, 0.6, and
5% for breast, lung, and colorectal cancers, respectively. Moreover, the predicted
lncRNAs were found with greater numbers of somatic mutations than the lncRNAs
not predicted as cancer-associated for three types of cancers. DRACA predicted many
novel lncRNAs, whose expressions were found to be related to survival rates of patients.
The method is available at https://github.com/Yanh35/DRACA.
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INTRODUCTION

The human genome consists of protein-encoding mRNA and
non-coding RNAs (ncRNAs), but only a small portion of the
human genome corresponds to the protein-coding genes (PCGs;
Atkinson et al., 2012; Ezkurdia et al., 2014). Among ncRNA,
long non-coding RNAs (lncRNAs) are transcription length over
200 nucleotides (Wilusz et al., 2009; Evans et al., 2016) that
play important roles in a variety of biological processes and
pathological conditions of cancers. The abnormal transcriptions
of lncRNA may cause changes in the expression of target genes
related to cancer pathways (Prensner and Chinnaiyan, 2011; de
Lena et al., 2017). For example, lncRNA PTENP1 is a pseudogene
of the tumor suppressor PTEN, which inhibits the induction of
autophagy in liver cancers (Chen et al., 2015). Another lncRNA
GAS5 has been shown to regulate cancer proliferation in many
human cancer systems (Mazar et al., 2017). In recent years,
a portion of lncRNAs has gradually been used as biomarkers
of cancers. For example, in human hepatocellular carcinoma
cells (HCCs), the lncRNA, uc002mbe.2, is expressed at lower
levels than normal cells, but its expression can be increased
300-fold after treatment with histone deacetylase inhibitor
Trichostatin A (TSA, Yang et al., 2013). The lncRNA SChLAP1
is a tissue biomarker that can be used to identify prostate
cancer patients at high risk of fatal progression, according to a
study of prostate cancer patients in the United States (Mehra
et al., 2016). Unfortunately, efficiently identifying lncRNAs–
cancers associations is a challenge due to the complexity of
relationships between them.

Detecting associations of lncRNAs and common cancers is
important for early diagnosis and improving overall survival
rate. Currently, breast, lung, and colorectal cancers are the most
frequently diagnosed cancers. Although the overall survival rate
of breast cancer has improved significantly, it is still an important
cause of global death (Kalimutho et al., 2019). Therefore, it
is necessary to identify lncRNAs associated with cancers for
improving the early diagnosis. In recent years, a growing number
of evidences demonstrate that lung cancer is one of the main
causes of cancer death in men and women all around the
world (Jemal et al., 2011). Simultaneously, colorectal cancer is
the third most common cancer worldwide, with 1.36 million
people diagnosed in 2012 (Ferlay et al., 2015). Thus, the
occurrence of these three types of cancers is a serious threat
to human health. Predicting potential lncRNAs associated with
these cancers can provide useful information for prevention,
diagnosis, and treatment.

Many lncRNAs play important roles through interacting with
miRNAs. miRNA is a class of single-stranded RNAs with about 22
long chains of nucleotides, which act as either oncogene or tumor
suppressor (Bartel, 2004). Accumulating evidences demonstrated
that lncRNA–miRNA crosstalk has emerged as core roles in the
pathogenesis and development of human cancer (Xue et al.,
2017). Thus, constructing lncRNA–miRNA relationship may help
to identify lncRNA–cancer associations.

By using interactions between lncRNA with other molecules,
many methods have been developed to predict potential lncRNA–
cancer associations (Chen et al., 2017). Liu et al. (2015)
proposed a method that utilized the expression profiles of

lncRNAs and PCGs in cancers to construct lncRNA–PCG
bipartite network, which was then used to identify cancer-
associated lncRNAs via random walks. It has previously used
human phenotypic ontologies to annotate disease to improve
the predictive power of lncRNA associated with disease (Le and
Dao, 2018). Recently, based on the relationships of lncRNA or
miRNA with other molecules, matrix factorization methods were
used to predict lncRNA–disease associations (Fu et al., 2018) and
miRNA–disease associations (Xuan et al., 2019). LION model
applied the characteristics of lncRNAs, genes, and diseases to
predict the relationships between lncRNAs and diseases through
network diffusion (Sumathipala et al., 2019). At the same time,
there are also related study based on heterogeneous clustering
methods to predict the unknown relationships between lncRNAs
and diseases based on the relationship network constructed
by diseases, lncRNAs, microRNAs, and genes (Barracchia
et al., 2018). LP-HCLUS uses multi-type hierarchical clustering
methods to predict potentially lncRNA–disease relationships
(Barracchia et al., 2020). However, all these methods only
discriminate disease-associated lncRNAs without relating the
lncRNAs with specific cancer types.

Moreover, all these methods overlooked the relationships
between lncRNAs and cancer prognosis. The presence of
lncRNAs in cancers can be an important factor clinically
determining the prognosis of patients. Recently, an approach
has been proposed to estimate the relationship between genes
and the cancer prognosis by analyzing multi-omics data and
clinical information from The Cancer Genome Atlas (TCGA)
database (Wang et al., 2018). More recently, a method was
presented to determine the gene and patient prognosis for
13 types of cancers (Chai et al., 2019), which reminds us
to use the relationships between genes and the prognosis
of three types of cancers in the prediction of lncRNA–
cancer association.

In this study, we constructed a method, called detecting
lncRNA cancer association (DRACA), to predict associations
between lncRNAs and three common cancers. This method
integrated the relationships between lncRNAs, cancer prognosis,
miRNAs, genes, and cancers into a matrix and utilized
matrix factorization to fuse multiple effective biological features
in the prediction. This is the first method using cancer
prognosis to detect lncRNA–cancer associations, which was
indicated as a critical feature in the prediction. Further analyses
indicated that the predicted cancer-associated lncRNAs contain
significantly more somatic mutations than the average. In
addition, several novel cancer-associated lncRNAs predicted
by this study were significantly correlated with the survival
rates of cancer patients and were expressed to be significantly
different in cancer tissues and paracarcinomatous tissues.
Thus, the predicted lncRNAs are biologically meaningful in
the cancer process.

METHODS

Matrix Factorization
The matrices were constructed by the relationships
between N (N = 5) kinds of features. The main
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framework of the model is to optimize the equation:

min
G ≥0O (G, S, W) =

∑
Rij∈R

Wij||Rij − GiSijGT
j ||

2
F + α||vec(W)||2F

(1)

s.t. W ≥ 0,
∑

vec (W) = 1

where α is used to control the complexity of vec(w) (set as
1 × 105 in the study), Rij is a collection of relations across
data sources that include RLM , RLG, RLC, RGP, RMG, RMC,
and RGC (Table 1), i and j are the ith and jth features from
two different data sources, respectively, Rij is reconstructed as
GiSijGT

j by singular vector decomposing (SVD), W is calculated
by Equation 2, i and j are two kinds of features, and || · ||2F is
the Frobenius norm.

The low-rank size of reconstructed matrix in Equation
1 was optimized according to the prediction of lncRNA–
cancer relationships in the training set by giving appropriate
weights (Wij). Wij was calculated by Equation 2, where
γ is the Lagrangian multipliers. Here, the performance of
the prediction was evaluated by Area Under Curve (AUC).
To avoid overfitting, 10-fold cross-validation was employed.

wij =

{
γ−Hij

2α
, if γ−Hij > 0 and Rij ∈ R

0, if γ−Hij ≤ 0 and Rij /∈ R
(2)

(Hij = ||Rij − GiSijGT
j ||

2
F )

Dataset Construction
The dataset includes five kinds of features and their relationships,
which are lncRNAs, miRNAs, genes, cancers, and cancer
prognosis. The relationships between these features were
collected from public databases. The lncRNA–miRNA
relationships (RLM) were downloaded from starBase v2.0
(Li et al., 2014); the lncRNA–gene interactions (RLG)
were from lncReg (Zhou et al., 2015); the lncRNA–
cancer associations (RLG) were from lncRNADisease (Bao
et al., 2018); the miRNA–gene relationships (RMG) were
from miRTarbase (Chou et al., 2018); the miRNA–cancer
relationships (RMC) were from MNDR v2.0 (Cui et al., 2018);
the gene–cancer (RGC) relationships were from DisGeNet
(Pinero et al., 2017).

TABLE 1 | The matrix size and the number of associations in the dataset.

Relationships Matrices Size Associations

lncRNA–miRNA RLM 1,679 × 2,759 10,120

lncRNA–gene RLG 1,679 × 16,410 511

lncRNA–cancer RLC 1,679 × 3 542

miRNA–gene RMG 2,759 × 16,410 380,639

miRNA–cancer RMC 2,759 × 3 3,343

Gene–cancer RGC 16,410 × 3 9,015

Gene–prognosis RGP 16,410 × 3 1,169

FIGURE 1 | The network of five features. The five features include lncRNAs,
miRNAs, genes, cancers, and cancer prognosis. The line represents the
relationship matrices.

Additionally, we calculated the gene–prognosis relationships
(RGP) by integrating multi-omics data from TCGA as
described in a previous study (Chai et al., 2019). Briefly, we
downloaded multi-omics data including RNA expression
data, DNA methylation data, and copy number variation data
of 614 breast cancer patients, 733 lung cancer patients, and
255 colorectal cancer patients from TCGA dataset1; then,
we employed Autoencoder to rebuild composite features
that were subsequently used by Cox proportional hazard
model to estimate the prognosis risk of patients. Finally,
XGboost was used to classify the prognosis of patients
into high and low risks by scoring relationships between
genes and the prognosis. The scores of genes were ranged
from 0 to 1. The genes with scores higher than 0.5 were
defined as highly correlated. The relationships between the
genes and the prognosis of three kinds of cancers were
included in the matrix factorization model. In summary,
this study constructed a dataset including 1,679 lncRNAs,
2,759 miRNAs, 16,410 genes, and 16,410 genes–prognosis
relationships and three kinds of cancers (breast, lung,
and colorectal).

The relationships between these data are provided
in Table 1. By using these relationships, we constructed
lncRNA–cancer network as shown in Figure 1. The lncRNA–
cancer relationships in lncRNADisease were used as golden
standards to determine the lncRNA–cancer associations.
As shown in Table 1, 542 lncRNA–cancer associations in
the database were considered as the positive dataset, and
4,495 lncRNA–cancer with no relationships were included
as the negative dataset. Briefly, 185, 179, and 178 lncRNAs
associated with breast cancer, lung cancer, or colorectal
cancer were collected as the positive dataset, whereas
1,494, 1,500, and 1,501 lncRNAs not associated with breast
cancer, lung cancer, or colorectal cancer were collected as the
negative dataset.

1https://www.cancer.gov/tcga
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Statistical Measurements in Evaluating
the Methods
The 10-fold cross-validation was used to evaluate the
performance of DRACA. We randomly divided positive and
negative genes into 10-fold and used nine-fold as training and
one-fold for testing. This process was repeated for 10 times. The
prediction AUC was calculated for the testing fold. The average
AUC was used as 10-fold cross-validation result of the model.
In this study, we used AUC, maximum Matthews correlation
coefficient (MCC), accuracy (ACC), precision, sensitivity, and
specificity to evaluate the performance of DRACA. Calculations
of these measurements were shown in Equations 3–7.

MCC =
TP × TN − FP × FN

√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(3)

ACC =
TP + TN

TP + TN + FP + FN
(4)

precision =
TP

TP + FP
(5)

sensitivity =
TP

TP + FN
(6)

specificity =
TN

FP + TN
(7)

RESULTS

The Influences of the Low-Rank Size (k)
The low-rank size (k) of decomposed matrix in Equation 1
was optimized according to the performance of prediction. The
performance was evaluated by AUC. In this study, k1 was the
low-rank size of R[lncRNA] that was the relationship between
lncRNA with other features and was kept as 1,679; k4 and k5 were
the low-rank sizes of R[cancer] and R[cancer prognosis] that were the
relationships between cancers with other features and were kept
as 3. k2 and k3 were the low-rank sizes of R[miRNA] and R[gene]
that were relationships between miRNA and gene with other
molecules and cancers, respectively. k2 and k3 were optimized.

The k2 was optimized from 10 to 2,759 by a step of 100 and
keeping k3 as 50 to reduce the computational cost. As a result,
when k2 = 1,610, the highest AUC of 0.787 was achieved. Then,
k3 was trained by keeping k2 = 1,610. The best AUC of 0.789 was
provided when k3 = 1,810. Then, we examined the performance

of the model in predicting the lncRNA associations with breast
cancer, lung cancer, and colorectal cancer, respectively. AUC
values of 0.806, 0.801, and 0.778 were achieved, respectively, for
three types of cancers.

We expected that the model gave a better performance when
it was trained for a specific cancer. Here, this model was trained
for prediction of associations between lncRNA and breast cancer,
lncRNA and lung cancer, and lncRNA and colorectal cancer,
respectively. In the training procedure, k2 and k3 were optimized,
and 10-fold cross-validation was applied to avoid over training.
For breast cancer, when k2 = 2,210 and k3 = 2,510, the highest
AUC of 0.810 was obtained, which was slightly higher than the
AUC of 0.806 obtained by the model trained for predicting all
associations between the cancers and lncRNA. For lung cancer,
when k2 = 1,110 and k3 = 3,110, the AUC was 0.796 that was a
marginal decrease compared with 0.801 obtained by the model
trained for prediction of all associations between the cancers and
lncRNA. For colorectal cancer, k2 = 1,610 and k3 = 710 provided
the highest AUC of 0.795 that was higher than the AUC of 0.778
reached by predicting all associations between the cancers and
lncRNA. The results are shown in Table 2. We further used
this method in liver hepatocellular carcinoma. Result indicated
that the 10-fold cross-validation AUC achieved 0.749 and MCC
achieved 0.313 (Table 2).

Measuring the Contribution of the
Features
To measure the contribution of each feature in the prediction,
we individually removed the relationships between features
and examined their influence on AUC areas. For prediction
of breast cancer-associated lncRNAs, when the relationship
between genes and cancer prognosis (RGP) was removed, the
AUC of DRACA was reduced from 0.810 to 0.738 (7.20%).
In removing the relationship RGP in the prediction of lung
cancer, the AUC was reduced from 0.796 to 0.790 (0.60%).
In the prediction of lncRNA–colorectal cancer association, the
removal of RGP dramatically reduced the AUC values from
0.795 to 0.745 (5.00%). We also examined the contributions
of the relationships, RLM , RLG, and RMG, in the prediction
of the associations of lncRNA with three types of cancers,
respectively. The results are shown in Table 3. As shown in
Table 3, the lncRNA–miRNA (RLM) was the most important
feature in the prediction. Meanwhile, we found that removing the
gene–cancer relationships or miRNA–cancer relationships can
also reduce the prediction.

TABLE 2 | The performance of DRACA in the prediction of associations between lncRNA and three types of cancers.

Cancer AUC (AUCa) MCC ACC Precision Sensitivity Specificity

Breast cancer 0.810 (0.806) 0.336 0.658 0.232 0.910 0.625

Lung cancer 0.796 (0.801) 0.404 0.764 0.294 0.858 0.764

Colorectal cancer 0.795 (0.778) 0.371 0.714 0.254 0.888 0.694

Liver hepatocellular carcinoma 0.749 0.313 0.676 0.236 0.841 0.656

aThe AUC values of the DRACA model that was trained to predict the association between lncRNA and three cancers.
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TABLE 3 | The AUCs and MCCs for DRACA predictions after removing the associations between features.

Breast cancer Lung cancer Colorectal cancer

AUC MCC AUC MCC AUC MCC

All 0.81 0.336 0.796 0.404 0.795 0.371

-RLM 0.57 0.048 0.585 0.056 0.549 −0.010

-RLG 0.749 0.333 0.756 0.356 0.731 0.312

-RMG 0.668 0.258 0.685 0.313 0.569 0.154

-RGP 0.738 0.347 0.79 0.387 0.745 0.303

-RMC 0.715 0.338 0.734 0.339 0.722 0.294

-RGC 0.5 0 0.5 0 0.5 0

FIGURE 2 | The influences of cancer types in detecting lncRNA cancer association (DRACA) prediction. The black lines represent the ROC curves of DRACA without
removing any features in predicting associations between lncRNA and cancers. The red and green lines denote the ROC curves of DRACA removing cancer
information. (A) The ROC curves to show the influences of removing lung cancer information (yellow curve) or removing colorectal cancer information (green curve) in
predicting breast cancer associated lncRNAs; (B) The ROC curves to show the influences of removing breast cancer (red curve) or removing colorectal cancer
information (green curve) in predicting lung cancer associated lncRNAs; (C) The ROC curves to show the influences of removing breast cancer information (red
curve) or lung cancer (yellow curve) in predicting colorectal cancer associated lncRNAs.

When all the miRNA-related features (lncRNA–miRNA,
miRNA–gene, and miRNA–cancer features) were removed
from the prediction or all the gene-related features (gene–
cancer, gene–prognosis, gene–cancer, and miRNA–gene features)
were removed from the prediction, the AUC values of
DRACA are close to random. More details are included in
Supplementary Table 1.

The Impact of Other Cancers on the
Prediction
This study constructed DRACA by including the information
of three types of cancers that may have influences on the
prediction. These influences were tested through excluding
cancer information individually. As shown in Figure 2, in the
prediction of lncRNA–breast cancer associations, removing the
lung cancer and removing the colorectal cancer individually
resulted in the AUCs of 0.791 and 0.753, respectively, which
are lower than the AUC value 0.810 obtained by using all the
features. Figure 2 also describes the impacts of breast cancer
and colorectal cancer in the prediction of lung cancer-associated
lncRNA and the impacts of breast cancer and lung cancer in
the prediction of colorectal cancer-associated lncRNAs. When
removing breast cancer or colorectal cancer information in
predicting lung cancer-associated lncRNAs, the AUC values were
decreased from 0.796 to 0.753 or from 0.796 to 0.765, respectively.

The contributions of breast cancer and lung cancer in the
prediction of lncRNAs associated with colorectal cancer were
indicated by the reduced AUCs from 0.795 to 0.777 and to 0.754,
respectively. Thus, colorectal cancer contributed more in the
predictions of lncRNA–breast cancer and lncRNA–lung cancer
associations than two other cancers. Moreover, removing lung
cancer had reduced more AUC values in predicting lncRNA–
colorectal cancer associations than in removing breast cancer.

Comparison With Other Methods
Detecting lncRNA cancer association was compared with the
Naïve Bayesian classifier to predict potential lncRNA–disease
associations (NBCLDA; Yu et al., 2018) in terms of MCC
on the same dataset by 10-fold cross-validation. NBCLDA
is a method constructing a global tripartite network that
combines lncRNA–cancer, miRNA–cancer, and miRNA–lncRNA
associations, including gene–miRNA interactions, gene–lncRNA
associations, and gene–disease interactions, to predict potential
lncRNA–disease associations. Table 4 uncovers that DRACA
always performed better in MCCs (0.336, 0.404, and 0.371) than
NBCLDA (0.265, 0.256, and 0.245).

We also compared the predictions of DRACA with the method
developed by integratinglncRNA—disease network, lncRNA
functional similarity network, and the disease semantic similarity
network (BPLLDA, Xiao et al., 2018). This method inferred the
lncRNA–disease association according to the paths connecting
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TABLE 4 | Comparing DRACA with three methods on MCC values.

Breast cancer Lung cancer Colorectal cancer

DRACA 0.336 0.404 0.371

NBCLDA 0.265 0.256 0.245

BPLLDA 0.330 0.248 0.393

MFLDA 0.161 0.141 0.057

them and their lengths in the network. BPLLDA was developed
based on a database including 156 lncRNAs and their associated
diseases. Among these lncRNAs, 56 were included in the DRACA
database, which were used to compare these two methods.
The comparison was performed by 10-fold cross-validation and
measured by MCC. As shown by Table 4, DRACA performed
significantly better than BPLLDA in the prediction of lncRNA–
breast cancer associations, lncRNA–lung cancer associations, and
lncRNA–colorectal cancer associations.

Furthermore, we compared DRACA with the method
developed to predict the lncRNA-disease associations based on
matrix factorization approaches MFLDA (Fu et al., 2018). It is
different from DRACA in two respects. First, it is a method
without considering the relationship between lncRNA and cancer
prognosis. Second, it has been constructed by 214 lncRNAs that
is much less than the number of lncRNAs in DRACA. Out of
214 lncRNAs, 98 were from the DRACA database, which were
used for the comparison. The results indicated that DRACA
was superior to MFLDA in predicting the relationships between
lncRNAs and three types of cancers.

In summary, DRACA was compared with three recently
developed methods in predicting lncRNA–cancer associations.
The results indicated that DRACA performed always better than
NBCLDA, BPLLDA, and MFLDA in the prediction of three types
of cancers. Moreover, DRACA has been constructed by 1,679
lncRNAs that are 7 and 11 times more than lncRNAs in BPLLDA
and MFLDA, respectively. Thus, DRACA can potentially discover
more novel lncRNA–cancer associations.

Testing the Predicted lncRNA–Cancer
Associations
Detecting lncRNA cancer association gives each lncRNA a score
to indicate its relationship with certain cancer. The higher the
score, the higher the probability that the lncRNA and the cancer
are related. In order to select candidate lncRNAs, we used the
maximum MCC to obtain the score threshold. The MCC was
calculated by Equation 3. The best MCCs of 0.336, 0.404, and
0.371 were achieved for breast cancer, lung cancer, and colorectal
cancer, respectively. When DRACA achieved the best MCC, we
also calculated other statistical measurements including accuracy
(ACC), precision, sensitivity, and specificity, as shown in Table 2.

By using the thresholds given by the best MCCs for the three
types of cancers (0.785, 0.965, and 0.815), 636, 521, and 616
lncRNAs were predicted as related to breast cancer, lung cancer,
and colorectal cancer, respectively. From them, we checked the
top 20 candidate lncRNAs (a total of 60 lncRNAs for three types of
cancers) that were not collected in the lncRNADisease database.
We searched these lncRNAs in PubMed to obtain the literatures
regarding their relationships with cancers. For breast cancer, lung

FIGURE 3 | Five genes that were predicted as cancer-associated by DRACA were found expressed significantly different between carcinoma tissues and
paracarcinomatous tissues. (A) Lnc-LAMC2-1:1 was found expressed significantly different in breast cancer tissues and paracarcinomatous tissues; (B) DGKK
expressed significantly different in lung cancer tissues and paracarcinomatous tissues; (C–E) EPB41L4A-AS2, MANCR, and lnc-HOXC4-3:1 expressed significantly
different in colorectal cancer tissues and paracarcinomatous tissues.
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FIGURE 4 | The survival curves of two groups of patients who highly and lowly expressed ucoo2kmd.1, MIR155HG, lnc-HOXC4-3:1, and EFNA3, respectively. The
patients were divided into two groups using the surv_cutpoint function of the survminer R package according to the gene expression levels, which were represented
as “High-expression” and “Low-expression,” respectively. The red lines denote the relationship between survival time and overall survival for the patients in the
“High-expression” group, and the blue lines represent the relationship between the survival time and the overall survival for the patients in the “Low-expression”
group. (A) The survival curves of two groups of the breast cancer patients who highly and lowly expressed ucoo2kmd.1 gene, respectively; (B) The survival curves of
two groups of the lung cancer patients who highly and lowly expressed MIR155HG gene, respectively; (C) The survival curves of two groups of the colorectal cancer
patients who highly and lowly expressed lnc-HOXC4-3:1 gene, respectively. (D) The survival curves of two groups of the colorectal cancer patients who highly and
lowly expressed EFNA3 gene, respectively.

cancer, and colorectal cancer, respectively, 10, 10, and 13 out 20
lncRNAs were reported as related with cancers. More details are
included in Supplementary Tables 2–4.

For these predicted new lncRNAs, we examined if they
were expressed to be significantly different in carcinoma
tissues and paracarcinomatous tissues. Out of 60 predicted
top cancer-associated lncRNAs, 20 were included in TCGA
database, which included seven predicted as associated with
breast cancer, five predicted as associated with lung cancer,
and eight predicted as associated with colorectal cancer.
From TCGA database, we downloaded gene expression data
for 106 breast cancer patients, 52 lung cancer patients, and
38 colorectal patients. By comparing the gene expression
data of these 20 lncRNAs in the carcinoma tissues and the
paracarcinomatous tissues using edgeR R package (FDR < 0.05,
| logFC| > 1), five lncRNAs were found to be expressed
significantly different, which included one lncRNA for
breast cancer, one lncRNA for lung cancer, and three
lncRNAs for colorectal cancer (Figure 3). The statistical
evaluations on the differences of gene expression are shown in
Supplementary Table 5.

We also analyzed the relationships between 20 lncRNAs and
the patient survival rates. From TCGA database, we downloaded
survival information for 611 breast cancer patients, 439 lung
cancer patients, and 251 colorectal cancer patients. Patients were
divided into the high-expression group and low-expression group
by using the surv_cutpoint function of the survminer R package
according to the gene expression. Then, we compared the overall
survival rates of two groups. The results were shown in Kaplan–
Meier plots (Figure 4). The differences of the survival rates
were tested by the log-rank (Mantel–Cox) test. Here, the overall
survival rates were the numbers of cases living for a certain
period divided by the total numbers of patients in this group
at the beginning. Genes were defined as significantly related
with patient survival rates if the Mantel–Cox test P-value is
lower than 0. Out of 20 genes, 5 were found to be significantly
related with the patient survival rates. Briefly, patients in the
low-expression and high-expression groups of ucoo2kmd.1 were
found to be significantly different in survival rates according
to Mantel–Cox test (P-value = 0.032) as shown in Figure 4A.
Similarly, the expression of MIR155HG (Figure 4B) was found
to be significantly (P-value = 0.019) associated with the overall
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FIGURE 5 | The mutation rates in the lncRNAs predicted as cancer-associated by DRACA are higher than in the lncRNAs not predicted as cancer-associated.
“*” denotes t-test P-value < 5.0–2E; “**” represents t-test P-value < 1.0–2E.

survival of lung cancer. At the same time, the expressions of lnc-
HOXC4-3:1 (Figure 4C), EFNA3 (Figure 4D), and LINC00520
(Supplementary Figure 6) were identified to be significantly
related with the overall survival of colorectal cancer patients
with P-values of 0.002, 0.008, and 0.021, respectively. Among
these genes, lnc-HOXC4-3:1 and EFNA3 were also found to
be expressed significantly different in carcinoma tissues and
paracarcinomatous tissues as shown in Figure 3C.

The Numbers of Somatic Mutations in
lncRNAs Predicted as
Cancer-Associated by Detecting lncRNA
Cancer Association
A greater number of mutations in lncRNAs raise their probability
for causing cancers (Beroukhim et al., 2010; Huarte, 2015).
Hence, we explored whether the predictions of the DRACA
model are correlated with the number of mutations in lncRNAs.
We collected somatic mutation data from the international
cancer genome consortium (ICGC) database, which contained
somatic mutations of 651 lncRNAs for breast cancer, 568
lncRNAs for lung cancer, and 526 lncRNAs for colorectal
cancer. Then, we examined the difference between the number

of mutations in the lncRNAs that were predicted as cancer-
associated and in the lncRNAs that were not predicated as
cancer-associated by DRACA. The lncRNAs were defined as
cancer-associated if their scores were higher than the threshold
giving the best MCC. For three types of cancers, the numbers of
mutations in the lncRNAs that are predicted as cancer-associated
are higher than those in the lncRNAs that are not predicted
as cancer-associated. The lncRNAs predicted as breast cancer-,
lung cancer-, and colorectal cancer-associated were indicated
with more somatic mutations than the lncRNAs not predicted as
cancer related with P-values, 3.5e-1, 3.5e-3, and 7.4e-2 (Figure 5).
Thus, the lncRNAs predicted as cancer-associated tend to occur
with more somatic mutations.

CONCLUSION

In this study, we presented a method, DRACA, that is an
approach using miRNAs, genes, lncRNAs, and cancer prognosis
to construct matrices in the prediction of lncRNA–cancer
associations. DRACA utilizes matrix factorization technology to
decompose different heterogeneous data matrices into low-rank
matrices by tri-factorization and optimizing weight for matrices.
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Using 10-fold cross-validation, we searched the appropriate sizes
of low-rank matrices and verified the validity of the features.
In a 10-fold cross-validation experiment, the method obtains
AUCs of 0.810, 0.796, and 0.795 in predicting lncRNA-related
breast cancer, lung cancer, and colorectal cancer. DRACA was
compared with three methods, NBCLDA, BPLLDA, and MFLDA,
and was indicated with significantly better performances. To
illustrate the biological meaning of the prediction, we compared
the predicted score with the number of somatic mutations
in each lncRNA. We found that the lncRNAs predicted
as cancer-associated have more somatic mutations than the
lncRNAs not predicted as cancer-associated. Thus, integrating
the relationships among lncRNAs, miRNAs, genes, and cancer
prognosis with matrix factorization technology can accurately
predict potential lncRNA–cancer associations. Moreover, among
20 novel lncRNAs predicted as cancer-associated by DRACA,
nine were indicated to be expressed significantly different
between the carcinoma tissues and the paracarcinomatous
tissues, and five were significantly correlated with the survival
rates of patients.

DISCUSSION

lncRNAs had been viewed as “junk” in the genome. Recently,
lncRNAs have attracted much attention due to the discovery
that they are key regulators of cancer transformation and
progression. Thus, discovering novel lncRNA–cancer association
has possibilities to lead to early diagnosis and new treatment of
cancers. Despite the rapid increase in the catalog of roles reported
for lncRNAs, one of the greatest challenges is in the identification
of cancer risk lncRNAs efficiently.

In this study, we presented an approach, DRACA, to predict
lncRNAs associated with three specific cancers. DRACA is
different from previously developed methods in several aspects.
DRACA includes the feature of cancer prognosis, which greatly
improves prediction ability but was missed by other methods. We
used AUC to train the model and calculated the best MCC for

each model. AUC and MCC are commonly used for evaluating
the reliability of the model (Chicco and Jurman, 2020). However,
MCC is easy to be fluctuated because MCC value is dependent on
the prediction of score of each gene.
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Gastric cancer (GC) is a serious malignant tumor with high mortality and poor prognosis.
The prognosis and survival are much worse for advanced gastric cancer (AGC).
Recently, immunotherapy has been widely promoted for AGC patients, and studies have
shown that tumor mutation burden (TMB) is closely related to immunotherapy response.
Here, RNA-seq data, matched clinical information, and MAF files were downloaded from
the cancer genome atlas (TCGA)-STAD project in the TCGA database. The collation and
visual analysis of mutation data were implemented by the “maftools” package in R. We
calculated the TMB values for AGC patients and divided the patients into high- and low-
TMB groups according to the median value of TMB. Then, the correlation between high
or low TMB and clinicopathological parameters was calculated. Next, we examined the
differences in gene expression patterns between the two groups by using the “limma” R
package and identified the immune-related genes among the DEGs. Through univariate
Cox regression analysis, 15 genes related to prognosis were obtained. Furthermore, the
two hub genes (APOD and SLC22A17) were used to construct a risk model to evaluate
the prognosis of AGC patients. ROC and survival curves and GEO data were used
as a validation set to verify the reliability of this risk model. In addition, the correlation
between TMB and tumor-infiltrating immune cells was examined. In conclusion, our
results suggest that AGC patients with high TMB have a better prognosis. By testing the
patient’s TMB, we could better guide immunotherapy and understand patient response
to immunotherapy.

Keywords: advanced gastric cancer, tumor mutation burden, immune infiltration, prognosis, bioinformatics
analysis
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INTRODUCTION

Gastric cancer (GC) is a common malignant tumor worldwide,
with the fifth and third highest morbidity and mortality,
respectively, of all cancers (Chen, 2016). This disease seriously
threatens human health. The 5-year survival rate of advanced
gastric cancer (AGC) is less than 25% (Ajani et al., 2017). In recent
years, with the improvement of diagnosis and treatments, there
has been a steady decline in the incidence and mortality rates of
this cancer. However, despite the decline in incidence in most
countries, clinicians are still expected to see more cases of GC
in the future due to the aging population. On the other hand,
because the onset of gastric cancer is insidious, it is frequently at
an advanced stage at diagnosis, and resulting in a high mortality
rate (Cascinu, 2020). At present, the best treatment for patients
with GC is surgery, but aging patients cannot tolerate surgery,
and in some cases the tumor is discovered too late for surgery
to be effective. Therefore, palliative care is particularly important
for these patients. In addition to radiotherapy and chemotherapy,
immunotherapy has made great progress in recent years, and
bringing hope to patients with AGC.

Traditionally, patients with advanced inoperable gastric
cancer are treated with sequential chemotherapy, mainly
platinum and fluoropyrimidine combination drugs (Song et al.,
2017). However, the median survival is still less than 1 year.
Recently, immune checkpoint inhibitors (ICIs), such as anti-
programmed cell death-1 (PD-1) or programmed cell death
ligand-1 (PD-L1) monoclonal antibodies, have improved the
overall survival (OS) of various types of cancers, including AGC
(Kim and Oh, 2018). To date, two anti-PD-1 inhibitors have been
approved for AGC in Japan: nivolumab as third- or later-line
treatment for AGC and pembrolizumab for previously treated
patients with microsatellite instability-high tumors (Kawazoe
et al., 2020). However, some gastric cancers may not be sensitive
to immune checkpoint inhibitor monotherapies, so patients with
gastric cancer may require combination therapy to improve the
response to anti-PD-1 therapy. Therefore, methods to predict and
improve patient response to immunotherapy or novel treatment
methods are highly desired for AGC (Cascinu, 2020). A recent
study suggested that predicting the response to immunotherapy
on the basis of the tumor mutation burden (TMB) load may be a
new opportunity (Morrison et al., 2018).

Tumor mutation burden is defined as the total number of
somatic gene coding errors, base insertions, substitutions, or
deletion errors detected per million bases (Yarchoan et al., 2017).
Mutations in driver genes can lead to cancers. However, if a
large number of somatic cell mutations occur, new antigens will
be produced to activate CD8+ cytotoxic T cells, and triggering
T-cell-mediated antitumor activity (Bi et al., 2020). Therefore,
as the TMB increases, more new antigens are produced, and
the tumors are more easily recognized by immune cells in the
tumor microenvironment. TMB was used as a biomarker for
anti-PD-1 treatment in colorectal cancer, and a higher TMB was
associated with a better response to immunotherapy (Le et al.,
2015). Recently, Tian et al. (2020) constructed a novel TMB
estimation model that can be used as a prognostic biomarker for
patients with non-small cell lung cancer. TMB can predict not

only the response to immunotherapy but also patient survival.
However, there are few studies on the relationship between TMB
and immune infiltration in AGC.

In this study, we calculated the TMB of 338 AGC patients
with complete clinical information, revealing the mutation
characteristics of AGC patients. Then, we studied the correlation
between the clinicopathological parameters and the normalized
TMB value. Two TMB-related gene signatures were used to
construct a risk model that could predict the survival of AGC
patients. Moreover, we explored the relationship between TMB
and the tumor microenvironment and provided new targets for
immunotherapy for GC.

MATERIALS AND METHODS

Data Acquisition and Processing
The transcriptome data were obtained using the Illumina (San
Diego, CA, United States) HiSeq 2000 RNA sequencing platform,
and the genetic mutation data were downloaded from the
cancer genome atlas (TCGA) database1. The transcriptome
profiles are HTseq-Count files. The mutation data are in
Annotated Somatic Mutation format, and the workflow type is
“VarScan2 Annotation.” Clinical data for the corresponding GC
patients were also retrieved from the STAD project in TCGA
database, which included age, tumor stage, sex, and survival
information. The patient’s clinical information was provided in
Supplementary Table 1. We excluded patients with incomplete
clinical information and a survival time of less than 30 days
and then selected patients with AGC for analysis based on the
clinical information. The “maftools” package in R software was
used to visually analyze the mutation annotation format (MAF)
file (Mayakonda et al., 2018). Gene chip data of gastric cancer was
downloaded from the NCBI (National Center for Biotechnology
Information) GEO database as the data for the validation set.
The chip number is GSE84437, submitted by Yong-Min Huh and
others. The study included transcriptome results and complete
clinical information of 433 gastric cancers. In addition, the list of
immune-related genes was obtained from the resources section of
the ImmPort database2.

Calculation of the Tumor Mutation
Burden
Tumor mutation burden was defined as the number of somatic
coding insertion/deletion mutations and non-synonymous base
replacements per megabase of the genome, and it was estimated
by estimating the number of somatic mutations and dividing the
total length of the exons. First, we used Perl scripts to extract
tumor mutation data from AGC patient sequences and then used
R software to calculate the TMB value according to the following
formula for each patient:

TMB = Sn× 1000000/n

1https://portal.gdc.cancer.gov/
2https://www.immport.org/
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where, Sn represents the absolute number of somatic mutations
and n represents the number of exon bases with coverage
depth ≥ 100× (Jiang et al., 2019). The calculated TMB value of
the patient is provided in Supplementary Table 2.

Prognostic Analysis of TMB Value
After calculating the TMB value for each patient, the TMB value
was combined with the patient clinical information, including
survival status and survival time. Then, all patients were assigned
to either the high- or low-TMB group, with the median value of
TMB as the cutoff. Kaplan-Meier (K-M) survival analysis and log-
rank tests were performed to evaluate the difference in the OS
rate between the above two groups. Additionally, we explored the
relationship between TMB and clinical features, including sex,
age, tumor grade, and TNM stage. The patients were divided into
two groups according to clinical characteristics, and the Wilcoxon
rank-sum test was used for statistical analysis.

Identification of TMB-Related
Differentially Expressed Genes and
Functional Enrichment Analysis
The gene expression data from AGC patients were standardized
by the “limma” R package, and then the DEGs between the
high- and low-TMB groups were identified using the Wilcoxon
test. | Log2−fold change (FC)| > 1.0 and false discovery rate
(FDR) < 0.05 were used as cutoffs to identify qualified DEGs for
subsequent analyses, and volcano maps and heat maps were used
for visual analysis using the “pheatmap” R package. In addition,
we carried out gene ontology (GO) and kyoto encyclopedia
of genes and genomes (KEGG) pathway functional enrichment
analyses by using the “clusterProfiler” R package and visualized
the enrichment results (Yu et al., 2012).

Construction and Verification of Risk
Score Model
We took the intersection of the previously obtained immune-
related gene list with the TMB-related differential genes and
obtained the immune genes that were differentially expressed in
the low- and high-TMB groups. Since these genes are related to
immunity and TMB in AGC, they were used for further analysis.
First, univariate Cox regression analysis was used to identify
candidate genes associated with survival. Next, the “glmnet”
package in R software was used to further filter the risk model
with least absolute shrinkage and selection operator (LASSO)
Cox regression analysis. Finally, multiple Cox regression analysis
was used to further screen the optimal prognostic genes for
the construction of risk models, and a time-dependent receiver
operating characteristic (ROC) curve was used to assess the
accuracy of the constructed model (Guo et al., 2020). The
expression of genes and the regression coefficients obtained in the
regression model were used to calculate the patients’ risk scores.
The calculation formula is as follows. Risk score (patients) =
6 Coefficient (gene i) ∗ expression value (gene i). Where, n,
i, coefficient, and expression value represent the number of
selected genes, gene number, regression coefficient value, and
gene expression value, respectively.

Meanwhile, the log-rank test was used to analyze the
survival data between the low- and high-TMB groups. In
addition, GSE84437 data were downloaded from the GEO
database as a validation set, and the risk model was used to
analyze the prognosis of gastric cancer patients. The clinical
information of patients in the GSE84437 database was provided
in Supplementary Table 3. A nomogram was constructed by gene
expression based on this model to predict the different annual
survival rates of patients for TCGA and GEO data.

Evaluation of Immune Cell Infiltration
CIBERSORT is a deconvolution algorithm that combines the
labeled genomes of different immune cell subpopulations to
calculate the proportions of 22 immune cells in tissues. The 22
types of immune cells include various myeloid cells, NK cells, 3
types of B cells, and 7 types of T cells (Bi et al., 2020). In this
study, we analyzed tumor immune cell infiltration in the tumor
microenvironment of AGC patients in the low- and high-TMB
groups. Samples with a CIBERSORT output p-value < 0.05 were
screened for further analysis.

Furthermore, the tumor immune estimation resource
(TIMER) web server was used to precalculate the abundance
of six tumor-infiltrating immune subsets (Kang et al., 2020).
The modules in TIMER were used to explore the association of
immune infiltration with gene expression and survival outcomes
in the current study3.

Evaluation of the Value of Genes in the
Model in a Pan-Cancer Panel
The cancer genome atlas pancancer data (ACC, BLCA, RCA,
CESC, CCA, COAD, DLBC, GBM, HNSC, KIRC, KICH, KIRP,
LGG, LAML, LIHC, LUSC, LUAD, MESO, OV, PAAD, PRAD,
PCPG, READ, SKCM, SARC, TGCT, THYM, THCA, UCS,
UCEC, and UVM), including RNA-Seq, stemness scores based
on mRNA (RNAss) and DNA methylation (DNAss) and matched
clinical information, were downloaded from the Xena browser4.
We calculated the expression of APOD and SLC22A17 in the 33
cancers in the pancancer dataset, and through univariate Cox
regression analysis, the risk values of these two genes for these
33 cancers were calculated. The Pearson correlation test method
was used to calculate the correlation between gene expression
and stromal scores, RNAss, and DNAss of 33 different cancer
types based on the ESTIMATE algorithm. The drug responses to
262 FDA-approved drugs or drugs in clinical trials were included
in the correlation analysis. The data were downloaded from the
NCI-60 database, which contains data on 60 different cancer cell
lines from 9 different tumors5 (Zhang X. et al., 2020).

Statistical Analyses
All data were processed with Perl (5.30.1) and R (version 3.6.2)
software. Survival analyses were performed using the K-M
method and the log-rank test. Pearson’s correlation test was used
for the correlation analysis between two groups. The Wilcoxon

3https://cistrome.shinyapps.io/timer/
4https://xenabrowser.net/datapages/
5http://bioinformatics.mdanderson.org/estimate/
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rank-sum test was used for differential analyses of subgroups.
All statistical tests were two-sided, and P < 0.05 was considered
statistically significant.

RESULTS

Somatic Mutation Analysis in Advanced
Gastric Cancer
To identify somatic mutations in AGC patients in the TCGA
database, we used the “maftools” package in R software to visually
analyze the mutation data. Complete somatic mutation data
were available for 251 AGC patients, of which 222 (88.45%)
had somatic mutations. The 30 genes with the highest mutation
rates in patients with AGC are displayed in the waterfall plot
(Figure 1A) and include well-known cancer-related genes such
as TTN (49%), TP53 (44%), and MUC16 (28%). Among them,
missense mutations were the most common variant classification,
single-nucleotide polymorphisms (SNPs) were the most common
variant type, and C > T mutations accounted for the vast
majority of single nucleotide variations (SNVs) (Supplementary
Figures 1A–C). The maximum number of mutations in one
sample was 5137 (Supplementary Figure 1D), and the median
number of mutations was 90 (Supplementary Figure 1E).
In addition, we showed the number of each variant in the
different samples through box plots (Supplementary Figure 1F).
And the correlation calculations for top 20 mutated genes are
shown in Figure 1B. Moreover, we classified these mutant
genes and identified their enrichment in different pathways
(Supplementary Figure 1G) and mutations in all samples of
AGC (Supplementary Figure 1H). The most mutated pathways
were RTK-RAS (77/85, 90.59%), WNT (66/68, 97.06%), and
NOTCH (57/71, 80.28%). In addition, 55.78% of the patients had
mutations in the RTK-RAS pathway (140/251), 43.82% (110/251)

had mutations in the WNT pathway, and 42.63% (107/251) had
mutations in the NOTCH pathway. These are the key signaling
pathways in cancer progression. The mutant genes in RTK-RAS,
WNT, and NOTCH pathway in patients with AGC are shown in
the waterfall chart, respectively (Supplementary Figures 1I–K).

Correlation Between TMB and
Clinicopathological Characteristics of
AGC Patients
To explore the prognostic function of TMB, we calculated and
visualized the TMB value of gastric cancer samples in the TCGA
database (Figure 2A). Then, we divided patients into low-TMB
and high-TMB groups according to the median value of TMB.
The TMB values for each patient were shown in Supplementary
Table 2. The survival rate of the two groups was plotted by
using K-M curves. Interestingly, we found that the survival rate
of patients in the high TMB group was superior to that of
patients in the low TMB group (Figure 2B). To further investigate
the correlation between TMB and the clinical characteristics of
gastric cancer patients. We downloaded the clinical information
and detected the relationship between TMB and clinical features.
The results showed that TMB is positively correlated with patient
age. In addition, TMB was negatively correlated with sex and
N stage. It means female patients with age < 65 have less TMB
value than the other people. In addition, patients with no lymph
node metastasis might have less TMB. There were no correlations
between TMB and T stage, M stage, stage, or tumor grade
(Figures 2C–I).

Variation in the Genes Related to TMB
and Functional Analysis
One of the ways in which TMB functions is to affect gene
expression. To obtain the DEGs related to TMB, we divided

FIGURE 1 | Analyses of somatic mutation profiles in advanced gastric cancer. (A) Waterfall plot of detailed mutation information of top 30 genes in each sample,
with various color annotations to distinguish different mutation types. (B) Correlation between the top 20 mutated genes.
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FIGURE 2 | Correlation between tumor mutation burden (TMB) and clinicopathological characteristics of AGC patients. (A) TMB value in advanced gastric cancer
samples. (B) Survival analysis between high-TMB and low-TMB patients. (C–I) Correlation between TMB and (C) age, (D) gender, (E) T, (F) M, (G) N, (H) Stage, and
(I) grade of patients.

patients into a high TMB group and a low TMB group according
to the median TMB value. Then, the “limma” package in R
software was used to identify genes that were differentially
expressed between the two groups. We found 847 DEGs,
including 796 upregulated genes and 51 downregulated genes, in
the high TMB group compared with the low TMB group. The top
40 most DEGs were visualized by using a heat map (Figure 3A).
A volcano map was plotted to exhibit the DEGs (Figure 3B).
For GO analysis, we revealed that DEGs were mainly enriched in
muscle system process, collagen-containing extracellular matrix
and receptor ligand activity processes (Figure 3C). In addition,
we conducted KEGG analysis based on DEGs. We found

that DEGs mainly belonged to the neuroactive ligand-receptor
interaction, cAMP signaling pathway, calcium signaling pathway,
and vascular smooth muscle contraction and cell adhesion
molecules categories (Figure 3D).

Construction and Validation of
Prognostic Model
To determine the relationship between TMB and immune
infiltration in patients with AGC, we obtained immune-related
DEGs by intersecting the 847 DEGs related to TMB with
1881 immune-related genes. A total of 107 immune-related
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FIGURE 3 | Variation in the genes related to TMB and functional analysis. (A) The differentially expressed genes (DEGs) related to TMB. (B) Volcano ma2p of DEGs.
(C) Go and (D) KEGG analysis of DEGs related to TMB. The abscissa represents the number and proportion of genes, respectively.

DEGs were identified for further analysis (Figure 4A). Then,
we identified 15 genes as candidate prognosis-related genes
by using univariate analysis (Figure 4B). The hazard ratio of
prognostic genes was shown in Table 1. LASSO regression was
subsequently performed on 15 candidate prognosis-related genes,
and two genes were retained for constructing the prognostic
model (Figures 4C,D). TCGA and GEO data were downloaded
to verify the accuracy of the model. We first validated the
accuracy of the model in the TCGA dataset. After ranking
the patients according to the calculated risk score, patients
were divided into a low-risk group and a high-risk group
according to the median risk score. Low-risk group patients had
better outcomes in terms of survival probability (Figure 4E).
A ROC curve was plotted to validate the accuracy of the
prognostic model (Figure 4F). Then, patients were ranked
based on risk score (Figure 4G). The risk score for each
patient was provided in Supplementary Table 4. We found that
patients had longer survival times in the low-risk group, and
more patients died in the high-risk group (Figure 4H). The
expression of the two genes in each group was visualized by a
heat map, and gene expression increased in parallel with the
risk score (Figure 4I). Then, the GSE84437 data in the GEO
database was used as the validation set, and we got similar

results (Supplementary Figures 2A–E). This confirmed the
reliability of our model.

APOD and SLC22A17 Are Related to
Patient Survival, TMB, and Patient
Clinical Characteristics
We obtained two key genes, APOD and SLC22A17, from the
prognostic model. To determine whether APOD and SLC22A17
affect the survival probability of patients, we performed K-M
survival analysis to explore the survival rates of the two
groups. It can be observed that higher expression of ADPO
and SLC22A17 correlated with worse prognosis (Figures 5A,B).
In addition, we found that patients in both the APOD low
group and SLC22A17 low group had the better prognosis.
Conversely, if the two genes both are highly expressed at the
same time, the patient prognosis is even worse (Figure 5C).
The expression of SLC22A17 and APOD in TMB-high and
TMB-low group was shown in Supplementary Figure 4. These
results indicated that APOD and SLC22A17 can be applied
simultaneously for predicting patient prognosis. We further
detected the relationship among the expression level of the two
genes, TMB and clinical characteristics. The results showed that
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FIGURE 4 | Construction and validation of prognostic model. (A) Venn analysis of immune-related differentially expressed genes. (B) 15 candidate prognosis-related
genes were obtained using univariate analysis. (C,D) Two prognosis-related genes were obtained by using LASSO regression and used for the construction of
prognostic model. (E,F) High-risk group correlated with poor survival outcome, with p = 0.014. (E) Survival analysis of high-risk and low-risk groups. (F) ROC curves
of 1, 2-, and 5-year survival prediction, with AUC = 0.707, 0.715, and 0.883, respectively. (G,H) The distribution of risk score and gene expression levels among
patients in the cancer genome atlas (TCGA) data. (I) The expression of two prognostic genes between high-risk and low-risk patients in TCGA training set.

the expression of the two genes was lower in the high-TMB group
(Figure 5D). The relationship between SLC22A17 and APOD
gene expression and each clinical feature such as age, gender,
grade, stage, and TNM-stage were shown in Supplementary
Figure 3. We only found that the expression of SLC22A17
is related to the patient’s age. In addition, a nomogram was
further constructed according to the gene expression levels of
APOD and SLC22A17 in the TCGA datasets. The patients’
1-, 2-, and 3-year survival could be predicted by using a
nomogram (Figure 5E). At the same time, the calibration curves
of the model also confirmed that the predicted 1-year survival

rate was relatively consistent with the actual 1-year survival
rate (Figure 5F).

Relation of TMB and Prognostic Model
Genes With Immune Cell Infiltration
Patients with higher TMB scores have been reported to manifest
better response to immunotherapy. However, whether TMB is
associated with immune infiltration remains unclear. In order
explore the underlying association, we detected the proportions
of 22 types of infiltrating immune cells in gastric cancer samples
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TABLE 1 | Univariate COX regression analysis of TMB related prognostic genes in
advanced gastric cancer.

Gene symbol HR (95%CI) p-Value

S100A1 1.0301 (1.0012–1.0597) 0.0404

SLC22A17 1.0627 (1.0184–1.1089) 0.0051

APOD 1.0022 (1.0009–1.0035) 0.0006

CCL14 1.4825 (1.1003–1.9974) 0.0096

FAM19A4 1.1536 (1.0536–1.2631) 0.0019

GDF6 2.1123 (1.4587–3.0587) 7.52e-05

INHA 1.0304 (1.0096–1.0516) 0.0039

NRG2 1.4612 (1.0064–2.1214) 0.00160

SCGB3A1 1.0012 (1.0003–1.0022) 0.0088

GHR 1.1847 (1.0390–1.3509) 0.0113

GLP2R 1.3403 (1.0274–1.7486) 0.0307

NPR3 1.0725 (1.0083–1.1408) 0.0261

FGF10 1.0897 (1.0080–1.1779) 0.0306

AMHR2 1.1091 (1.0381–1.1849) 0.0021

ESRRG 1.2509 (1.0767–1.4532) 0.0034

HR, hazard ratio; CI, confidence interval.

by using the CIBERSORT algorithm. The results are shown in a
bar plot map (Figure 6A). Then, we compared the distributions
of the 22 types of infiltrating immune cells in the high-
TMB and low-TMB groups. The results were visualized in a
heat map (Figure 6B). We found that naive B cells, resting
memory CD4 T cells, regulatory T cells (Tregs), activated NK
cells, monocytes, resting dendritic cells and resting mast cells
had higher levels of infiltration in the low-TMB group. In
contrast, activated memory T cells, follicular helper T cells,
resting NK cells, M0 macrophages, M1 macrophages, activated
mast cells, and neutrophils were more abundant in the high-
TMB group (Figure 6C). Next, we detected the correlations
among 22 types of infiltrating immune cells and visualized
them in a matrix based on the Pearson correlation coefficient
(Figure 6D).

Furthermore, we calculated the correlation between the
infiltration of each of the 22 types of immune cells and the
expression of APOD and SLC22A17 (Figure 7A). Based on
the correlation matrix, we found that APOD (R = −0.28,
p = 9.4E-06) and SLC22A17 (R = −0.22, p = 0.00072)
were negatively associated with T cell CD4 memory activation
(Figures 7B,C). The TIMER, containing the abundance of
six tumor-infiltrating immune subsets, was further utilized to
detect the correlation between copy number variation and
the infiltration level of immune cells. We found that the
infiltration level was broadly decreased in patients with APOD
and SLC22A17 copy number variation compared with the
diploid/normal group (Figures 7D,E). To determine whether
the infiltration levels of these six immune cells affect patient
survival rate, we performed survival analysis to explore
the association of immune infiltration with gene expression
and survival outcomes. We observed that patients with low
levels of macrophage infiltration had better survival outcomes
(Figure 7F).

Evaluation of the Value of TMB-Related
Prognostic Model Genes Across Cancers
APOD and SLC22A17 are dysregulated and can be used for
prognosis in gastric cancer patients. However, whether these
two genes exert functions in other cancers is not known.
To detect the value of the two genes in other cancers, we
downloaded TCGA pancancer data. Then, we analyzed the
expression levels of APOD and SLC22A17 in 33 types of cancers.
We observed that APOD was dysregulated in 17 types of cancers
and that SLC22A17 was dysregulated in 16 types of cancers, with
significant p-values (Figures 8A,B). Univariate Cox regression
analysis was subsequently used to identify the prognostic value in
the 33 cancers (Figure 8C). The ESTIMATE algorithm was used
to detect the correlation between gene expression and stromal
scores, RNAss, and DNAss in 33 different cancer types. Not
surprisingly, we found that APOD and SLC22A17 have a wide
range of stromal scores in association with 33 different cancer
types. In addition, in terms of the correlation between the two
genes and cancer stemness, APOD and SLC22A17 had various
degrees of association with the RNAss and DNAss in 33 types of
cancers (Figure 8D). Interestingly, we observed that the APOD
and SLC22A17 genes were negatively correlated with RNAss and
DNAss in almost all of the cancer types. In contrast, SLC22A17
and APOD were positively associated with RNAss in patients with
ACC, GBM, LGG, PCPG, and DLBC. In addition, SLC22A17
is strongly positively associated with DNAss in GBM, HNSC,
THYM, USC, and UVM patients. APOD was strongly positively
related to DNAss in CHOL, DLBC, KIRC, READ, SKCM, THCA,
THYM, UCEC, and UVM patients.

Pearson correlation was subsequently performed to detect
the correlation coefficient between the two genes and RNAss,
DNAss, StromalScore, ImmuneScore, and ESTIMATEScore in
patients with STAD. The SLC22A17 and APOD genes were
negatively associated with RNAss and DNAss, which is consistent
with the results of univariate Cox regression analysis. However,
SLC22A17 and APOD had positive relationships with the
StromalScore, ImmuneScore and ESTIMATEScore (Figure 8E).
For the correlation between SLC22A17, APOD, and tumor
drug resistance, we next determined the effect of SLC22A17
and APOD on drug sensitivity. Drugs approved by the FDA
or drugs in clinical trials were selected for the correlation
analysis. Interestingly, APOD exerts a greater role in drug
sensitivity analysis. We found that APOD is positively related to
sensitivity to vemurafenib, PD-98059, dabrafenib, hypothemycin,
selumetinib, bafetinib, denileukin diftitox (Ontak), cobimetinib,
and okadaic acid. By contrast, APOD is negatively associated
with sensitivity to pyrazoloacridine, pralatrexate, batracylin,
docetaxel, and floxuridine. However, SLC22A17 only had a
negative relationship with the sensitivity to palbociclib and
sunitinib (Figure 8F).

DISCUSSION

Gastric cancer is a malignant tumor with a high recurrence rate
and ranks as the third leading cause of cancer-related death
worldwide (Al-Mahrouqi et al., 2011). In recent years, enormous
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FIGURE 5 | Two genes in prognostic model were associated with patients’ survival and clinical characteristics. (A,B) Survival analysis of (A) SLC22A17 and
(B) APOD genes in patients with AGC. (C) Survival analysis of AGC patients with different expressions group of SLC22A17 and APOD. (D) The expression of
SLC22A17 and APOD are associated with patients’ TMB and clinical characteristics. (E) The patients’ 1-, 2-, and 3-year survival were predicted by using a
nomogram. (F) Calibration curves for the survival probability at 1 year.

progress has been made in the diagnosis and treatment of gastric
cancer. However, the mortality of GC, and especially of AGC,
remains high. Therefore, it is of great significance to explore the
molecular subtypes of AGC and find effective targeted therapy
strategies for specific subtypes.

Gene mutation is closely associated with the initiation and
development of cancer (Ikediobi et al., 2006). For example, it

has been reported that mutation in BRCA2 is closely related to
patient survival, chemotherapy response, and genome instability
(Yang et al., 2011). APC mutations are common in colorectal
cancers (Nishisho et al., 1991). In addition, mutation of APC
is related to the stage of colorectal cancer (Robles et al.,
2016). Mutations in cancer-related genes also affect treatment
strategies (Hu H. et al., 2018). TMB is a vital biological indicator
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FIGURE 6 | Patients with various degree of TMB have different features of immune cell infiltration. (A) Proportion of immune infiltrating cells in gastric cancer
samples. (B) Heat map and (C) bar graph of immune infiltrating cells between high-TMB and low-TMB patients. (D) Correlation analysis of 22 kinds of immune cells.

reflecting the degree of tumor mutation. TMB varies widely
among cancer patients. Alexandrov LB reported that TMB could
affect the immunotherapy effect of cancer (Alexandrov et al.,
2013). Recently, TMB was identified as an immunotherapy

biomarker (Chan et al., 2019). With regard to how TMB affects
immunotherapy outcomes, Chen DS reported that there are more
proteins produced by high-TMB patients, and these proteins can
be recognized by the immune system. Immune cells are more
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FIGURE 7 | Relation of TMB and prognostic model genes with immune cell infiltration. (A) Correlation between prognostic related immune infiltrating cells and
prognostic model constructed by SLC22A17 and APOD. (B,C) T cells CD4 memory activated was negative associated with the expression of (B) SLC22A17 and
(C) APOD. (D,E) Immune infiltration level among gastric cancer patients with diverse degree of copy number variation. (F) Survival probability of patients with low
and high immune infiltration level of six immune cells. *p < 0.05, **p < 0.01, and ***p < 0.001.

easily able to identify and eliminate those tumor cells with high
TMB (Chen and Mellman, 2017; Chan et al., 2019). Further
research on the association of TMB and immunity will be helpful
to identify the critical biomarkers and pathways of AGC.

To explore the association of TMB with AGC, we analyzed
somatic mutations in AGC patient samples. A total of 222
(88.45%) patients were identified to have somatic mutations. We
ranked the top 30 most common mutations in these patients.
The TTN, TP53, and MUC16 genes had the highest mutation
frequencies. TTN mutation has been reported to be correlated
with prognosis in lung cancer and gastric cancer (Cheng et al.,
2019; Yang et al., 2020). MUC16 has also been reported to
be associated with prognosis and immunotherapy efficiency in
gastric cancer (Yang et al., 2020). TP53 mutation is common
and affects treatment strategies in various cancers (Jiao et al.,
2018; Kaur et al., 2018; Barbosa et al., 2019; Ahn et al., 2020).
The mutant genes are enriched in key pathways involved in
cancer progression. The WNT, NOTCH, and RTK-RAS signaling
pathways are often dysregulated and can be employed as
therapeutic targets in diverse cancers (Nusse and Clevers, 2017;
Imperial et al., 2019; Krishna et al., 2019). According to the
degree of TMB, we divided patients into a high-TMB group and

a low-TMB group. Patients in the high-TMB group had better
survival outcomes, which is consistent with the results in other
cancers (Devarakonda et al., 2018). Patients aged over 65 have
higher TMB. We attributed this to the weak ability of patients
aged over 65 to eliminate mutations. The DEGs related to TMB
were identified according to the degree of TMB. The results
showed that these genes were mainly enriched in neuroactive
ligand-receptor interactions, the cAMP signaling pathway and
the calcium signaling pathway.

Differentially expressed genes related to TMB were intersected
with 1881 immune-related genes. Then, we constructed a
prognostic model with two prognostic genes, SLC22A17 and
APOD. Based on the prognostic model, TCGA and GEO datasets
were used to test the efficiency of the model. As expected,
patients in the two low-risk cohorts had better survival outcomes.
These results indicated that the prognostic model of differentially
expressed TMB-related genes combined with immune-related
genes functions well in gastric cancer. In addition, a nomogram
was employed to predict the survival rate in gastric cancer. Then,
we determined the prognostic function of SLC22A17 and APOD.
The relationship between the expression levels of the two genes
and patient clinical characteristics was visualized using a heat
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FIGURE 8 | SLC22A17 and APOD are dysregulated in multi-types cancer cells and related to cancer stemness and drug resistance. (A,B) Expression of
(A) SLC22A17 and (B) APOD in multi-types cancer cells. (C) The prognostic value of SLC22A17 and APOD in the 33 cancers was identified by using univariate cox
regression analysis. (D,E) SLC22A17 and APOD are associated with cancer stemness in various cancer types, including gastric cancer. (F) The correlation between
SLC22A17, APOD, and tumor drug resistance. The abscissa and ordinate represent drug sensitivity score and gene expression, respectively. *p < 0.05, **p < 0.01,
and ***p < 0.001.

map. These two genes can be considered prognostic biomarkers
in gastric cancer. APOD was reported to be the prognostic factor
of gastric. Patients with high expression of APOD might have a
shorter OS time. Two authors have also reported that SLC22A17
could be a prognosis biomarker of gastric cancer. Specifically,
SLC22A17 was identified as a prognosis gene which may affect
immune cell infiltration and iron metabolism in gastric (Hu C.

et al., 2018; Wang et al., 2020; Wei et al., 2020). Although these
two genes have been reported to be involved in gastric cancer,
the specific mechanism of their regulation of gastric cancer is
still unclear, which needs further research. In addition, whether
these two genes possess prognosis function across different types
of cancers remains unclear. Hence, we detected the expression
of SLC22A17 and APOD in 33 types of cancers and determined
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the association of the two genes with cancer stemness-related
indicators (Zhang X. et al., 2020). SLC22A17 and APOD were
found to be dysregulated in diverse cancers. In almost all cancers,
SLC22A17 and APOD have positive relationships with the
StromalScore, ImmuneScore and ESTIMATEScore. In contrast,
the SLC22A17 and APOD genes were negatively associated with
RNAss and DNAss in most cancers. Regarding drug resistance,
we observed that APOD exerted a greater role in drug sensitivity.
APOD has a strong positive relationship with resistance to many
drugs. All these results indicated that these two genes have the
same expression pattern and exhibit a similar correlation with
StromalScore, RNAss, and DNAss in nearly all cancers. However,
the predictive performance of these genes for other specific
cancers requires more research.

Tumor mutation burden affects the degree of immune
infiltration and efficacy of immune therapy in several cancers
(Wu et al., 2019; Kang et al., 2020; Zhang L. et al., 2020). To
explore the underlying association in gastric cancer, we analyzed
the distribution of 22 infiltrating immune cells in tumor samples.
The results showed that the proportions of infiltrating immune
cells varied between the high-TMB group and the low-TMB
group. Some kinds of infiltrating immune cells increased in
tumor samples with high TMB. However, numerous infiltrating
immune cells were decreased in tumor samples with low TMB.
More research is needed to determine whether the infiltration of
each type of immune cell is caused by TMB. To further clarify
the association of TMB and immune infiltration in AGC, we
analyzed the immune infiltration level in samples with diverse
TMBs and found that the infiltration level was broadly decreased
in patients with higher copy number variation compared with
the diploid/normal group, which is consistent with other studies
(Hu H. et al., 2018; Chan et al., 2019). Interestingly, we observed
that patients with low infiltration had better survival outcomes.
We speculate that this may be related to the poor prognosis of
patients with AGC; the stage of patients diagnosed with AGC
and the available therapeutic strategies may also account for this
difference. More experiments are needed to clarify the association
between TMB and immune infiltration.

CONCLUSION

Our results indicate that immune-related genes generated from
TMB-related differential expression analysis are involved in
the progression of AGC. A prognostic model constructed with
SLC22A17 and APOD might have vital roles across multiple types
of cancers. Detection of TMB combined with immune infiltrating
cells in AGC patients could be an effective method in guiding
cancer therapy strategies, especially immunotherapy.
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Esophageal cancer (EC) is the seventh most common tumor in the world, ranking the
sixth leading cause of cancer death, with a 5-year survival rate of 15-25%. Therefore,
reliable prognostic biomarkers are needed to effectively predict the prognosis of EC. In
this study, the gene profile information of the EC cohort served as a training set, which
was derived from TCGA and Immport databases. GO and KEGG enrichment analysis
was performed on the differential genes in normal and tumor groups of EC. The immune
genes in differentially expressed genes (DEGs) were further obtained for univariate and
multivariate Cox and Lasso regression analysis, and 6 independent immune genes
(S100A3, STC2, HSPA6, CCL25, GPER1, and OSM) associated with prognosis were
obtained to establish an immune risk score signature (IRSS). The signature was validated
using head and neck cancers (HNSC) and gastric cancer (GC)in upper gastrointestinal
malignancies as validation sets. The Kaplan-Meier results showed that the prognosis of
the high-risk group was significantly favorable than that of the low-risk group in both
the training set (P < 0.001; HR = 3.68, 95% CI = 2.14−6.35) and the validation set
(P = 0.010; HR = 1.43, 95% CI = 1.09−1.88). A nomogram combining multiple clinical
information and IRSS was more effective than a single independent prognostic factor in
predicting outcome. This study explored the potential link between immunity and EC,
and established and validated prognostic biomarkers that can effectively predict the
prognosis of EC, HNSC and GC based on six immune genes.

Keywords: esophageal cancer, prognostic biomarker, head and neck cancers, gastric cancer, the upper
gastrointestinal tumors

INTRODUCTION

Esophageal cancer (EC) is the 7th most common tumor in the world (Global Burden of Disease
Cancer Collaboration et al., 2018), ranking the 6th leading cause of cancer death, which seriously
threatens human health (Bray et al., 2018). According to the data, it is estimated that 456,000 new
cases of EC were reported worldwide in 2012, half of which were in China (Zhu et al., 2016).

Frontiers in Genetics | www.frontiersin.org 1 July 2021 | Volume 12 | Article 707299163

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.707299
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.707299
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.707299&domain=pdf&date_stamp=2021-07-19
https://www.frontiersin.org/articles/10.3389/fgene.2021.707299/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-707299 July 13, 2021 Time: 17:17 # 2

Zhu et al. Biomarkers of Prognosis in Upper Gastrointestinal Tumors

EC mainly includes two histological subtypes, esophageal
squamous cell carcinoma (ESCC) and esophageal
adenocarcinoma (EA), accounting for more than 95% of
esophageal malignancies, of which ESCC is more common
(Enzinger and Mayer, 2003). Smoking, alcohol consumption,
chronic gastroesophageal reflux disease, obesity are critical risk
factors for the occurrence of the disease (Huang and Yu, 2018).
Unfortunately, most patients are already at an advanced stage at
diagnosis, therefore the curative ratio is low and the prognosis is
poor (Ferlay et al., 2015). In recent years, despite the application
of new diagnostic and therapeutic techniques that have improved
the survival rate of EC patients (Vendrely et al., 2018), the
5-year overall survival (OS) rate is still unsatisfactory, fluctuating
between 15 and 25% (Short et al., 2017). Therefore, it is urgent to
find robust biomarkers to predict the prognosis of EC patients
and provide potential therapeutic targets.

Inflammation has been well known to be a complex
biological response in which the human immune system
attempts to eliminate the stimulus of inflammation and
initiate repair and regeneration (Wallach et al., 2014;
Karin and Clevers, 2016). Inflammatory response plays a
pivotal role in tumorigenesis, development and metastasis
(Taniguchi and Karin, 2018). For instance, the expression of
immune-related genes such as interleukin (IL)-6 members,
including IL-11, IL-27, IL-31, leukemia inhibitory factor,
and oncostatin M (OSM), affect tumor cell proliferation,
survival, inflammation, and metabolism (Taniguchi and
Karin, 2014). The occurrence of EC is closely correlated to
inflammation. It is well known that EA is inflammation-related
cancer (O’Sullivan et al., 2014). Chronic inflammation has
also been proved to be a crucial factor in the development
of ESCC. On the one hand, oxidative and genotoxic
stresses caused by smoking, drinking and carcinogens
trigger inflammation, on the other hand, oral microbiota
disorders, human papillomavirus (HPV) infection, and
improper diet can also cause inflammation. EC cells
can inhibit the body’s anti-tumor immunity through
inflammation-related mechanisms such as immune checkpoints,
secretory factors and negatively regulated immune cells
(Diakowska and Krzystek-Korpacka, 2020).

Since immune inflammation is a vital process in triggering
tumorigenesis, identifying whether immunity affects the
prognosis of patients remains an active area of research. Several
studies have reported that tumor prognosis-related models
have been established to predict patient survival (Huang
et al., 2019; Shen et al., 2019; Qu et al., 2020). However,
there are few studies on the establishment of prognostic
models for EC, let alone immune-related ones. In the present
study, we used the Cancer Genome Atlas (TCGA) database
to explore the correlation between immune mechanisms
and the occurrence of EC and established a novel risk score
signature based on immune genes to effectively predict the
outcome of EC patients as well as provide a potential clinical
combination therapy. Taken together, our findings highlight the
functional role of immune-related signatures and reveal potential
prognostic biomarkers for ECs to predict the prognosis of upper
gastrointestinal tumors.

MATERIALS AND METHODS

Data Collection and Processing
The datasets of esophageal cancer (TCGA-ESCA) and head and
neck cancer (TCGA-HNSC), including their gene expression
profiles, clinic information and survival information, were
downloaded from the UCSC database1. EC samples with
prognostic information were collected as a training set, consisting
of 162 tumor samples and 11 normal samples. And a total of
500 patients with HNSC containing prognostic information were
collected as a validation set. Patients with an OS of fewer than
60 days were removed because their cause of death may not be
attributable to tumors.

From the Gene List module of the Immunology Database
and Analysis Portal (ImmPort) database2, we downloaded
complete gene names directly, totaling 2483 immune-related
genes (Supplementary Table 1).

Differential Expression Analysis
Based on the expression of genes in EC, we first performed
a differential expression analysis to identify genes differentially
expressed in normal and tumor groups. Briefly, differentially
expressed genes (DEGs) were obtained using the “limma”
software package in R. Among them, Log2| FC| > 1 and false
discovery rate (FDR) < 0.25 were the criteria. “ggplot2,” “Cairo,”
and “ggrepel” packages in the R were used to plot volcanoes to
visualize the DEGs.

Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes
(KEGG) Analysis
To identify potential biological processes and enrichment
pathways of DEGs, GO, and KEGG was performed using
the cluster Profilter R package. KEGG is a type of gene
annotation, a database that integrates genomic, chemical
and systematic functional information. Go database mainly
describes gene characteristics in different dimensions and levels,
involving cell composition, biological process and molecular
function. The adjusted P-value less than 0.05 was considered
statistically significant.

Establishment of Immune Risk Scoring
Signature (IRSS) for Prognosis
A total of 1734 immune genes were expressed in EC and
intersected with DEGs to obtain differentially expressed immune
genes (DEIGs). Subsequently, DEIGs were used in univariate
Cox regression analysis to identify significant prognosis-
related immune genes, followed by Least absolute shrinkage
and selection operator (LASSO) regression analysis to obtain
independent prognostic genes. LASSO regression can improve
the accuracy and interpretability of the model and also exclude
the problem of collinearity between independent variables
(Alhamzawi and Ali, 2018). Multivariate Cox regression analysis

1https://tcga.xenahubs.net
2https://immport.niaid.nih.gov/
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was conducted to obtain regression coefficients for independent
prognostic factors. Finally, an immune risk score signature
(IRSS) was established based on the multivariate Cox regression
coefficient beta value, and the formula is as follows: an immune
risk score signature (IRSS) = EXPgene1∗ β1 + EXPgene2
∗β2 + EXPgene3∗β3 + . . . + EXPgenen∗βn, where EXP means
expression level and β represents the regression coefficient from
the multivariate Cox (Zeng et al., 2017).

By calculating the risk score for each sample of TCGA-ESCA,
patients were divided into low- and high-risk groups using the
median as the cut-off value. Furthermore, visualization of the
Kaplan-Meier (KM) curve was utilized to compare OS between
the two groups by the log-rank test. The area under the receiver
operating characteristic (ROC) curve (AUC) was adopted for
analyzing the prognostic predictive value of IRSS in patients
with EC. The ROC curves are all referred to as the receiver
operating characteristic curves, with sensitivity as the ordinate
and 1-specificity as the abscissa (DeLong et al., 1988). The AUC
is the probability value, which ranges from 0.5 to -1, used to
evaluate the accuracy of the model prediction, and a larger area
means higher accuracy. In the present study, the larger its value,
the higher the degree to which the predicted overall survival
agreed with the actual overall survival.

Immune Risk Score Signature Combined
With Clinicopathological Information
We screened for prognostic predictive factors, including clinical
characteristics and established IRSS. Specifically, the univariate
Cox proportional hazard model was employed to analyze the
correlation between IRSS and OS, and the multivariate Cox
regression analysis was used to evaluate whether the established
IRSS could serve as an independent prognostic predictor. Further,
to comprehensively assess patient survival, we constructed a
nomogram integrating distinct clinicopathological information,
including age, sex, disease type, stage, smoking, alcohol, BMI and
IRSS, using the “rms” package. Additionally, the concordance
index (C-index) was used to evaluate the predictive accuracy of
the nomogram. Similarly, the decision curve analysis (DCA) of
2, 3, and 5 years was calculated to evaluate whether the synthetic
nomogram established by us is suitable for clinical application.
The x-axis represents the percentage of the threshold probability,
and the y-axis represents the net income.

Validation of IRSS
To assess the general applicability of the signature, Considering
the anatomical and histological similarities, we selected the
TCGA-HNSC (n = 500) to further validate the established model.
The risk scores of each patient in the HNSC cohort were
calculated and ranked using the formula of the IRSS established
in TCGA-ESCA. HNSC samples that had been sorted by scores
were divided into high- and low-risk groups according to the cut-
off values obtained in the TCGA-ESCA cohort. KM curves were
used for comparison of the survival differences between the two
groups, and ROC curves were used to assess the accuracy of the
signature prediction.

Similarly, the nomogram was used to comprehensively assess
the survival probability of patients with HNSC, incorporating
clinical information including age, gender, stage, smoking,
alcohol, lymph nodes, and IRSS. Calibration curves (2-, 3-, and
5-year) were drawn to assess whether the predictive effect of the
nomogram was accurate, and its 45◦ line represented the best
predictive effect. In addition, the C-index was used to compare
the accuracy of traditional TNM-stage, IRSS, and nomogram
prediction. DCA was performed to evaluate the clinical value of
the comprehensive nomogram for HNSC.

Further, to evaluate the prognostic value of the IRSS in gastric
cancer (GC), which is an upper gastrointestinal tumor, we utilized
the KM plotter online analysis website to validate the model3.
This website contains multiple GEO databases of GC involving
GSE62245, GSE14210, GSE15459, GSE22377, GSE29272, and
GSE51105. We combined these databases to provide a prognostic
assessment of overall survival based on genes in the IRSS in 631
patients with GC, respectively (Szasz et al., 2016).

Statistical Analysis
Simple mathematical analysis and processing were completed
by Excel software. Multivariate Cox regression analysis was
performed by SPSS 20.0, with a probability of stepwise entry of
0.05 and removal of 0.1. Further data analysis and visualization
are mainly accomplished by R (v3.6.1). Survival ROC curves
were drawn by the “survival ROC” package in R. “Survival”
packages were used to plot KM curves, C-index, as well as clinical
univariate and multivariate regression analyses in R. Besides,
visualization of DEGs, was accomplished by volcanoes drawn by
the “ggplot2,” “Cairo,” and “ggrepel” packages. The P-value less
than 0.05 was considered a statistically significant criterion.

RESULTS

Differential Analysis
A total of 156 EC patients with prognostic and gene expression
data and survival longer than 60 days were included in the
training set, as well as 11 matched normal samples. To investigate
a biomarker that can effectively predict the prognosis of EC, we
established a risk score model based on immune genes to evaluate
the outcomes of patients with EC. Specifically, we performed
a differential analysis between normal and tumor groups and
obtained genes significantly associated with EC. And a total of
1479 DEGs were identified, as shown in Supplementary Table 2,
and visualized with volcano maps (Figure 1A).

GO and KEGG Analysis
To explore the potential association between gene expression
and immunity in normal and tumor groups in the TCGA-
ESCA cohort, we performed GO and KEGG enrichment
pathway analysis. The DEGs in normal and tumor groups
were enriched in a variety of processes, most of which were
in immune-related pathways. Specifically, Figure 2 shows
the cytokine-cytokine receptor interaction and IL-17 signaling

3http://kmplot.com/analysis/
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FIGURE 1 | Establishment of IRSS Signature. (A) Volcano plot of 1479 differentially expressed genes. (B) Venn diagram of the intersection of DEGs and immune
genes. (C) Ten-time cross-validation for tuning parameter selection in the LASSO model. (D) LASSO coefficient profiles. (E) The risk score, survival status, and heat
map of six immune genes in patients with EC.

pathway in KEGG enrichment analysis and the molecular
functional modules involved in chemokine activity, cytokine
activity, chemokine and receptor binding in GO enrichment
analysis. Therefore, these findings revealed that the occurrence
of EC was related to the expression level of immune genes.
Detailed enrichment analysis results are presented in the
Supplementary Tables 3, 4.

Construction and Prognostic Value of
IRSS
To explore whether immune genes could be used as effective
biomarkers to indicate the prognosis of EC, we selected immune-
related genes from the DEGs for further analysis. The Venn
diagram (Figure 1B and Supplementary Table 5) showed
that 176 DEIGs were screened from the overlap of immune
genes and DEGs. Subsequent univariate Cox regression analysis
yielded 8 immune genes significantly associated with prognosis
(Supplementary Table 6), followed by LASSO regression

analysis. Combining the results of Figures 1C,D, it was
considered that the model fit the best when the penalty coefficient
was 6, and the corresponding six immune genes were selected
into the model, which was S100A3, STC2,HSPA6,CCL25,GPER1,
and OSM (Figure 1E and Supplementary Table 7). moreover,
multivariate Cox regression analysis was performed on the six
immune genes, which were still able to enter the equation
as a prognostic predictor (Supplementary Table 8). Moreover,
the corresponding regression coefficients were obtained, β1-
β6, which were −0.400, 0.246, 0.177, 0.127, −0.349, and
0.442, respectively. According to the formula mentioned above,
combined with the beta value of multivariate Cox regression, the
IRSS was finally established:

IRSS = EXP S100A3 ∗ − 0.400 + EXP STC2 ∗ 0.246

+ EXP HSPA6 ∗ 0.177 + EXP CCL25∗ 0.127

+ EXP GPER1 ∗ − 0.349 + EXP OSM ∗ 0.442
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FIGURE 2 | Differential genes expressed in normal and tumor groups of esophageal cancer are involved in immune-related pathways. (A) GO, Gene Ontology,
immune related pathways marked by red boxes; (B) KEGG, Kyoto Encyclopedia of Genes and Genomes, immune related pathways marked by red boxes.

FIGURE 3 | Evaluation of IRSS signatures and establishment and evaluation of nomograms. (A) Kaplan-Meier curves show that OS was significantly different
between the high- and low-risk groups in TCGA-ESCA. (B) The signature is shown by the time-dependent ROC curve for predicting 2, 3, and 5-year survival. (C) 2-,
3-, and 5-year nomogram for predicting OS of EC. There are nine components in this nomogram: cancer status, smoking, age, gender, stage, histological type,
alcohol, BMI, and IRSS. (D) Decision curve analysis for the evaluation of the net benefits of IRSS and nomogram at 2, 3, and 5 years.

Furthermore, according to the above formula, the risk
score of each EC patient was directly calculated. And
then, the samples were divided into high- and low-risk
groups, which were grouped according to the median and
interquartile range [M(IRQ) = 0.040 (−0.321, 0.588)]. The
results of the KM curve showed that the prognosis of
the high-risk group was worse than that of the low-risk

groups (Figure 3A, log-rank P < 0.001; HR = 3.68, 95%
CI = 2.14−6.35). ROC curves were employed to assess the
accuracy of established models for predicting OS in patients
with EC. As shown in Figure 3B, the AUC values of 2, 3, and
5 years were 0.779, 0.729, and 0.683, respectively, indicating
the robustness and accuracy of the model in predicting
patient prognosis.
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The Value of IRSS in Clinical
Characteristics
To determine whether the established IRSS has prognostic
significance, we further performed univariate and multivariate
Cox regression analysis. Univariate Cox regression analysis
showed that risk score, cancer status and stage were prognostic
predictors in TGGA-ECSA, but not smoking, alcohol, age, sex,
disease type, BMI, and radiation therapy. More importantly, the
risk score was also observed to be the only independent predictor
in multivariate Cox regression analysis (Table 1). The above
results show that our established IRSS could serve as a robust and
novel biomarker for predicting prognosis.

Nomograms, which simplify statistical prediction models
to single numerical estimates of event probabilities tailored
to individual patient profiles, are widely used for prognostic
assessment of tumors (Iasonos et al., 2008). A variety of clinical
features have prognostic value in clinical practice. Therefore,
in order to accurately evaluate the prognosis of patients, we
established a nomogram containing multiple clinicopathological
characteristics as well as IRSS. As shown in Figure 3C,
scores for each variable could be calculated and combined to
comprehensively predict the prognosis of patients with EC.

The C-index of the established nomogram, risk signature, and
TNM-stage was 0.881, 0.721, and 0.693 (Table 2), respectively. In

TABLE 2 | The C-index values of the nomogram, TNM-stage, and IRSS.

Cohorts Variables C-index (95%CI)

EC TNM-stage 0.693 (0.657,0.731)

IRSS 0.721(0.688,0.754)

nomogram 0.881 (0.822,0.940)

HNSC TNM-stage 0.512 (0.493,0.531)

IRSS 0.558 (0.534,0.582)

nomogram 0.781 (0.759,0.803)

summary, the predictive ability of our IRSS was stronger than that
of the traditional TNM-stage, however, the predictive accuracy
of the nomogram integrating multiple clinical information was
the most robust. Consistent with this result, the DCA figure
(Figure 3D) also proved that the nomogram combined with
various clinical features has better clinical application value.

Validation of Other Cancer Species
It is well known that HNSC and EC belong to malignant
epithelial tumors of the upper gastrointestinal tract, which are
characterized by early dissemination and poor prognosis (Sproll
et al., 2018). To verify the general applicability of the IRSS,
the data of the TCGA-HNSC cohort with similar tissue and

TABLE 1 | Univariate/multivariate Cox regression analysis of clinicopathological features of EC associated with OS.

Variables Patient N (156) Univariate analysis Multivariate analysis

HRa [95% CI] P HR [95% CIb] P

Age <65 93 1

≥65 63 0.896 [0.536,1.497] 0.675

BMI Normal 8 1

Lean 57 2.322 [0.894,6.035] 0.084

Overweight 82 1.355 [0.734,2.503] 0.332

Stage Stage i 15 1 1

Stage ii 67 2.859 [0.661,12.360] 0.16

Stage iii 47 7.483 [1.699,32.966] 0.008

Stage iv 8 22.130 [4.493,109.001] <0.0001* 1.286 [0.438,3.778] 0.647

Cancer status Tumor free 60 1 1

With tumor 35 3.673 [1.394,9.676] 0.008* 2.164 [1.182,3.964] 0.516

Histological type EA 79 1

ESCC 77 0.812 [0.482,1.366] 0.433

Gender Male 23 1

Female 133 2.236 [0.892,5.603] 0.381

Smoking Non-smoker 45 1

Current-smoker 32 1.677 [0.736,3.819] 0.218

Reformed-smoker 61 1.615 [0.785,3.319] 0.193

Alcohol No 44 1 0.181

Yes 110 0.703 [0.419,1.178]

Radiation therapy No 61 1

Yes 21 1.489 0.439

IRSS 156 2.149 [1.666,2.772] <0.0001* 2.319[1.615,3.330] 0.012*

aHR, hazard ratio.
bCI, confidence interval.
*P < 0.05.
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anatomical characteristics was downloaded as the validation
cohort. First, according to the IRSS formula obtained in the
TCGA-ESCA cohort, the risk score was calculated for each
patient in the HNSC cohort. Further, HNSC samples were
divided into high and low-risk groups according to the median
IRSS of the EC cohort.

The results of KM analysis (Figure 4A) could confirm that
the low-risk group was associated with a better prognosis, while
the high-risk group predicted a worse prognosis (P = 0.010;
HR = 1.43, 95% CI = 1.09−1.88), which was consistent with
the results of EC. The AUC of survival ROC curve shows that
the model had good consistency in predicting OS and actual
OS (Figure 4B, 0.535, 0.561, and 0.613 at 2, 3, and 5 years,
respectively). Clinical characteristics and IRSS were used to
establish a predictive nomogram for predicting the prognostic
survival probability of HNSC patients at 2, 3, and 5 years
(Figure 4C). The calibration curve results confirm that there is
good consistency between the actual survival probability and the
predicted probability (Figure 4D). The results of the C-index and
DCA showed that IRSS had a better prognostic predictive ability
for HNSC than traditional TNM-stage, but the comprehensive
nomogram was the best (Figures 4E,F and Table 2).

To investigate the prognostic predictive value of the model
in GC with upper gastrointestinal tumors, the IRSS model
was further validated in gastric cancer. Combining multiple
GEO databases of gastric cancer, KM-plot results indicated
that 6 immune genes in IRSS were highly associated with the
prognosis of GC, and each independent gene could likewise
serve as a biomarker for predicting the outcome of GC
(Supplementary Figure 1).

Taken together, the established IRSS had good applicability
and could not only predict the prognosis of EC but also
serve as a prognostic predictive biomarker for the upper
gastrointestinal tumors.

DISCUSSION

Esophageal cancer remains one of the most lethal malignancies
in the world with a poor prognosis (Ferlay et al., 2015).
Over the past decades, the incidence of EC has increased
markedly in many countries (Simard et al., 2012), ranking fourth
among cancer deaths in China (Chen et al., 2016). Owing to
the lack of early-onset symptoms, EC is usually diagnosed at
an advanced stage. A variety of studies have found that the
carcinogenic process of EC is closely correlated with the immune-
inflammatory response (Lin et al., 2016). A major mechanism
of inflammation-induced esophageal carcinogenesis is through
structural activation of inflammatory signaling pathways (Abdel-
Latif et al., 2009). EC cells are rich in tumor antigens,
including tumor-associated antigens and neoantigens, and can
initiate dendritic cell-mediated cytotoxic T lymphocytes early in
tumorigenesis (Huang and Fu, 2019). Environmental exposure
can trigger chronic esophageal inflammation, further promoting
the activation of pro-inflammatory signaling pathways for
survival and proliferation (Lin et al., 2016). The induction of
these pathways leads to the activation of downstream gene

transcription and enzyme activity, which play a key role in tumor
growth and survival. Tumor immunotherapy is a promising new
method for the treatment of EC, and different studies on EC
immunotherapy have been carried out in recent years (Kelly,
2019). However, EC immunotherapy always results in mixed
outcomes, partly because of the lack of reliable markers to predict
treatment response (Huang and Fu, 2019). In the current study,
we aim to establish immune-related biomarkers to effectively
predict the outcome of EC.

To explore the relationship between EC and immune
mechanisms, we selected the TCGA-ECSA database as a training
set for analysis. To find the DEGs between the normal group
and tumor group of EC to obtain gene annotation information,
the differential analysis was carried out first. We then performed
GO and KEGG enrichment analysis on the DEGs and the results
showed that immune and tumor-related signaling pathways
were significantly enriched. This is consistent with previous
findings that immune inflammation induction is an important
mechanism of esophageal carcinogenesis (Abdel-Latif et al.,
2009). Therefore, we will further explore the potential role of
immunological biomarkers in tumor prognosis.

Next, we select the immune genes among the DEGs and obtain
6 independent immune genes related to prognosis according
to the Cox proportional hazard model and lasso regression
analysis. These six immune genes were integrated to construct
an IRRS that can effectively predict prognosis. Among these
genes, S100A3 belongs to the S100 family and is considered to
be associated with a good prognosis of ovarian cancer (Bai et al.,
2018), which is similar to our results. However, in gastric cancer,
the high expression of S100A3 is closely in relation to the poor
survival of patients (Wang et al., 2019). STC2 (stanniocalcin 2),
whose expression in ESCA was higher than that in corresponding
normal tissues, was significantly associated with lymph node
metastasis, lymphatic invasion and distant metastasis (Kita et al.,
2011; Kashyap et al., 2012), and has been reported as a prognostic
glycolysis-related gene in HNSCC (Ferreira do Carmo et al., 2020;
Liu and Yin, 2020). HSPA6, a heat shock protein, was considered
to be associated with the recurrence of human hepatocellular
carcinoma in the study of Yang et al. (2015). Zhang et al. (2016)
have reported that CCL25 (C-C chemokine receptor ligand
25) may promote the migration and invasion of cancer cells
by affecting several Epithelial-mesenchymal transition (EMT)
markers and providing the chemotactic ability for hepatocytes
and breast cancer cells through the CCL25/CCR9 signaling
pathway. GPER1 (G-protein-coupled estrogen receptor 1) is
recognized as a key regulator of immune-mediated events in
breast, pancreatic, prostate and hepatocellular carcinomas, as well
as melanoma (Notas et al., 2020). OSM has been reported to have
diagnostic, prognostic, and therapeutic capabilities in a variety of
diseases (Verstockt et al., 2019). For example, Tawara et al. (2018)
argue that early therapeutic inhibition of OSM in breast cancer
patients is thought to prevent breast cancer metastasis.

In this study, the results of KM analysis showed that IRSS
was an effective biomarker for predicting the prognosis of
EC. Significant differences in OS were observed between the
high- and the low-risk group, implying that the high-risk
group was associated with adverse outcomes. Furthermore,
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FIGURE 4 | Validation of IRSS signature with TCGA-HNSC. (A) Kaplan-Meier curves show that OS in the low-risk was significantly higher than in the high-risk group.
(B) Time-dependent ROC curve analysis of the IRSS at 2, 3, and 5 years. (C) 2-, 3-, and 5-year nomogram for predicting OS of HNSC. (D) The Calibration curve of
the nomogram for predicting OS rate at 2, 3, and 5 years. (E,F) Decision curve analysis for the evaluation of the net benefits of TNM-stage, IRSS and nomogram at
2, 3, and 5 years.

the survival ROC results showed that the predictive effect
of our model on prognosis was in good agreement with
the actual results. Additionally, survival analysis with multiple
clinicopathological information, age, sex, tissue type, stage,
smoking, alcohol consumption, BMI and radiation therapy as
covariates, demonstrated that the established model remained a

robust independent prognostic predictor. In order to evaluate
the prognosis comprehensively, we combined a variety of clinical
information and established a nomogram to score the survival
probability of each patient. The results of the DCA and C-index
showed that the prediction accuracy of IRSS was higher than
that of the traditional TNM-stage, however, the nomogram
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integrating multiple clinical information could predict the
prognosis of EC patients more accurately.

Head and neck cancers, mainly including two histological
subtypes of head and neck adenocarcinoma (HNA) and head
and neck squamous cell carcinoma (HNSCC) (Andreasen et al.,
2019). HNSCC is not only close to EC in histological classification
and anatomical location but also has many similar carcinogenic
factors. Chronic inflammation and microbial dysbiosis, including
HPV infection (de Villiers et al., 2004), Porphyromonas
gingivalis infection, and their synergistic effects with alcohol
and tobacco (Olsen and Yilmaz, 2019), are closely associated
with the occurrence of oral and digestive cancers, including
(larynx, throat, lip, mouth, and salivary glands) and ESCA.
Additionally, overexpression of the Dek oncogene in SCC
(squamous cell carcinoma)-derived human keratinocytes can
promote the development of ESCA and HNSC in vivo (Matrka
et al., 2018). Considering the similarity of histological type,
anatomical location and pathogenic factors, we utilized TCGA-
HNSC as a validation cohort to evaluate the prognostic predictive
value of the established model for these two tumors. Interestingly,
the IRSS we constructed can not only be used as a prognostic
biomarker for EC but also be used to predict the outcome of
HNSC, which shows that the signature has wide robustness and
applicability. Moreover, this may provide a new idea for the
treatment of EC.

Currently, potential biomarkers for predicting prognosis
have been widely used in EC and other cancers (Li et al.,
2019; Lu et al., 2020). For instance, Qu et al. (2020).
comprehensively analyzed the tumor microenvironment of
cutaneous melanoma by using ESTIMATE and identified genes
associated with the tumor microenvironment as biomarkers
and their correlation with the immune system (Pan et al.,
2019). As we prepared this paper, a study on the immune
risk model of EC has been established and published (Guo
et al., 2020). However, compared with this literature, our
differential analysis screening criteria are more stringent. The
number of prognosis-related immune genes obtained was
different due to different screening criteria, but the overlapping
two genes, OSM and HSPA6, confirmed the reliability of
our established model. In addition, the clinicopathological
factors considered in our nomogram, including smoking,
alcohol consumption, disease type, BMI, and tumor status,
enable a comprehensive assessment of the prognostic survival
probability of patients with esophageal cancer. Besides, the
dataset TCGA-HNSC was used as a validation set to confirm
the applicability, robustness, and prognostic value of the model
in upper gastrointestinal malignancies. Therefore, compared

with the former, our study has further research progress and
clinical significance.

In this study, the potential relationship between immunity
and EC was explored. Based on six immune genes, a novel
and robust biomarker for predicting the prognosis of EC and
HNSC was established and validated. The signature proved to
be an independent prognostic biomarker, which may provide a
potential therapeutic target for the clinical treatment of upper
gastrointestinal cancers such as EC, GC and HNSC, as well as
ideas for the study of their correlation.
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Skin cutaneous melanoma (SKCM) is a highly aggressive tumor. The mortality and
drug resistance among it are high. Thus, exploring predictive biomarkers for prognosis
has become a priority. We aimed to find immune cell-based biomarkers for survival
prediction. Here 321 genes were differentially expressed in immune-related groups
after ESTIMATE analysis and differential analysis. Two hundred nineteen of them were
associated with the metastasis of SKCM via weighted gene co-expression network
analysis. Twenty-six genes in this module were hub genes. Twelve of the 26 genes
were related to overall survival in SKCM patients. After a multivariable Cox regression
analysis, we obtained six of these genes (PLA2G2D, IKZF3, MS4A1, ZC3H12D, FCRL3,
and P2RY10) that were independent prognostic signatures, and a survival model of
them performed excellent predictive efficacy. The results revealed several essential
genes that may act as significant prognostic factors of SKCM, which could deepen
our understanding of the metastatic mechanisms and improve cancer treatment.

Keywords: skin cutaneous melanoma, immune microenvironment, WGCNA, metastasis, prognostic biomarkers

INTRODUCTION

Skin cutaneous melanoma (SKCM) is a high-mortality-rate malignant tumor caused by abnormal
melanocyte proliferation in neural crest cells (Bray et al., 2018; Siegel et al., 2020). According to
the GLOBOCAN database (gco.iarc.fr), there were more than 200,000 new cases of SKCM over
the world, and a quarter of them died in 2018 (Bray et al., 2018). The leading cause of death
from this cancer is the metastasis of multiple organs (Zhu et al., 2016). The mortality rate of
SKCM patients was significantly higher than that of other malignant tumors (Ekwueme et al.,
2011). Therefore, SKCM seriously threatens public health and has become one of the evilest
tumors worldwide (Gershenwald et al., 2017). The risk factors of SKCM included atypical mole
or dysplastic nevus patterns and increased mole count (Chen et al., 2013). The treatment of
the tumor microenvironment (TME) as a new treatment strategy has attracted public attention
(Yang et al., 2018). It is composed of numerous cell types and is involved in the occurrence and
invasion of tumors (Hanahan and Weinberg, 2000). With the development of tumor cytology and
molecular biology, a deeper understanding of TME is essential to reveal improved immunotherapy

Frontiers in Genetics | www.frontiersin.org 1 July 2021 | Volume 12 | Article 687979174

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.687979
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.687979
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.687979&domain=pdf&date_stamp=2021-07-21
https://www.frontiersin.org/articles/10.3389/fgene.2021.687979/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-687979 July 20, 2021 Time: 11:26 # 2

Li et al. Crucial Prognostic Genes in SKCM

(Li et al., 2017; Qian et al., 2018). An algorithm called ESTIMATE
could estimate the abundance of immune cells according to
the gene expression level of tissues (Yoshihara et al., 2013;

Li et al., 2016). Research shows that targeting stromal cells and
connective tissue cells can be a new way to overcome drug
resistance effectively (Hemminki et al., 2020).

FIGURE 1 | Overview of the integration analysis. (A) Workflow of the analysis. (B) Volcano plot showing the differentially expressed genes (DEGs) between high- and
low-immune-score samples. (C) Volcano plot showing the DEGs in high and low stromal score groups. The red color indicates the up-regulated genes, while blue
represents the down-regulated ones. The horizontal dotted line represents a false discovery rate equal to 0.05, and the vertical dotted line represents a fold change
equal to 2 or 0.5.
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Weighted gene co-expression network analysis (WGCNA) is
a computational method often used to explore the relationship
between genes and clinical characteristics (Langfelder and
Horvath, 2008; Yuan et al., 2020). The significant dominance
of WGCNA is to combine genes into co-expression modules
and build the relationship between clinical traits and genes (Luo
et al., 2019). WGCNA could analyze a mass of genes and identify
expression modules related to clinical features and critical genes
for further verification (Luo et al., 2019; Radulescu et al., 2020).

This study obtained several modules and hub genes with
significant differences in tumor microenvironment based on
WGCNA and identified potential biomarkers that can predict
SKCM prognosis (Figure 1A).

MATERIALS AND METHODS

Data Sources
Any ethical issue did not involve this study because it used
public data which has already been published. We extracted
the expression matrix of 473 SKCM patients and their
clinical information from TGGA. Only 429 SKCM patients
with complete overall survival information were selected.
The clinical information of these patients (including gender,
weight, pathologic stage, and so on) are shown in Table 1
and Supplementary Table 1. The gene expression profiles
were quantified by fragments per kilobase of transcript per
million mapped reads and normalized through log2-based
transformation. Besides that, the immune and stromal scores
of each sample were calculated by the ESTIMATE analysis.
The high-immune-score group represented the high proportion
of immune cells in the tumor microenvironment, and the
low-immune-score group represented conversely. The stromal
score plays the same role but represents the stromal cell. An
independent test dataset that contains 54 SKCM patients was
downloaded from the Gene Expression Omnibus database.

Differential Analysis
The patients were classified into high- or low-immune-score
groups and stromal score groups based on the median score of
the ESTIMATE analysis. Then, differential analyses were used
to filter the differentially expressed genes (DEGs) between the
high and low groups. Finally, the raw P-value was corrected
by false discovery rate (FDR). The differential analysis was
performed through the “limma” R package, and the threshold was
FDR < 0.05 and | log2 FC| ≥ 1 (Supplementary Table 2).

Constructed WGCNA Network and
Identified Modules
We performed WGCNA analysis on the immune-related DEGs
by the “WGCNA” R package. First, the pickSoftThreshold function
was used to select the soft threshold (power) to construct the non-
scale network. In this study, the power was set at 10. Second,
modules were detected by the hierarchical clustering function
“blockwiseModules.” Then, the modules were associated with
clinical characteristics by calculating gene significance (GS) and

TABLE 1 | Clinicopathological characteristics of 429 skin cutaneous melanoma
patients in The Cancer Genome Atlas dataset.

Clinical and pathological indices Case no. OS (%) P-valuea

Specimens 429

Mean age 58

Age (years) <0.001

≤58 216 52.8

>58 213 54.5

Gender 0.135

Male 266 49.2

Female 163 60.7

pTNM stage <0.001

I 114 47.4

II 127 55.9

III 166 56.0

IV 22 54.5

Sample type <0.001

Metastatic 349 48.9

Primary 80 73.8

aLog-rank test using the Kaplan–Meier method. P < 0.05 was considered
significant.
OS, overall survival.

module membership (MM). Although a correlation between
traits and modules has been found and the most relevant modules
can be selected for analysis, the modules themselves still contain
a large number of genes, so it is necessary to further search for
the most important genes. All modules can be correlated with
genes, and all continuous traits can also be correlated with gene
expression levels. If genes significantly associated with traits are
also significantly associated with a particular module, then those
genes are likely to be crucial. Finally, the crucial genes in the
candidate modules were filtered for further analysis. The cutoff
for screening important genes was GS > 0.25 and MM > 0.8
(Liang et al., 2020).

Enrichment Analysis
All the DEGs and candidate genes were subjected to an
enrichment analysis using the “clusterProfile” R package (Yu
et al., 2012). The functional background datasets contained
the Gene Ontology (GO) terms (Dennis et al., 2003) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
(Kanehisa et al., 2017). Functions with a FDR < 0.05 were selected
for further discussion.

Validation of Candidate Genes
GEPIA1 was used to validate the immune-related DEGs. The web
server collected the expression data of 9,736 tumor patients and
8,587 normal samples from The Cancer Genome Atlas (TCGA)
and the GTEx projects. For the transcriptional level validation
in SKCM, we set the criteria of significant results to | log2 FC|
≥ 0.585 and P < 0.05. We used the TIMER web server to verify
whether the crucial genes are associated with the immune cell
infiltrate levels.

1http://gepia.cancerpku.cn/
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FIGURE 2 | Analysis of immune-associated differentially expressed genes (DEGs) and stromal-associated DEGs. (A) Heat map of immune-associated DEGs in skin
cutaneous melanoma (SKCM) samples. (B) Heat map of stromal-associated DEG genes in SKCM samples. It shows that only immune-associated DEGs could
nicely separate the low- vs. high-immune-score samples. (C,D) Enrichment analysis of the immune-associated DEGs. (E,F) Enrichment analysis of the
stromal-associated DEGs.

Survival Analysis
Survival analysis was used to filter vital prognostic biomarkers
through the “survival” R package. The signature was filtered as

independent of other clinical features through multivariable Cox
regression analysis. Then, the independent clinical genes were
used to combine a new survival signature by the Cox regression
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FIGURE 3 | Weighted gene co-expression network analysis (WGCNA) of immune-associated DEGs. (A) Cluster plot of genes based on the topological analysis of
WGCNA. It shows that these immune-associated DEGs had two expression patterns. (B) Relationships between the module and clinical traits. Each cell described
the relationship coefficients and P-values. (C) The gene significance and module membership of the blue module associated with metastasis. Hub genes are shown
in red front. (D) Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analysis of metastasis-associated hub genes.

model. The risk score was calculated by the expression of selected
crucial genes, and correlation was estimated by Cox regression
coefficients through the following formula:

Risk score

= (exp gene1 ∗ coef gene1) + (exp gene2 ∗ coef gene2)

+ . . . + (exp geneN ∗ coef geneN)

Then, we performed an area under the receiver operating
characteristics (ROC) curve index to explore the prognostic
efficiency of this signature using the “pROC” R package. The
OSskcm Tool, which combined the survival information of more

than 1,000 SKCM patients, was used to test the prognostic ability
of the candidate genes (Zhang et al., 2020). An independent test
dataset that contains 54 SKCM patients was used to verify the
prognostic efficacy of the survival model (GSE22153).

RESULTS

Identification of Immune- and
Stromal-Associated DEGs
After excluding the patients with no survival information, 429
qualified patients of the TCGA SKCM dataset were selected.
Corresponding clinical traits that include overall survival
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information were also downloaded. Based on the ESTIMATE
analysis results, we divided the SKCM patients into high-
and low-immune-score or high- and low-stromal-score groups.
Then, we identified DEGs between these high- and low-
score groups. According to the immune scores, 321 genes
were differentially expressed, including 316 up-regulated genes
and five down-regulated genes (Figure 1B). Similarly, there
were 205 DEGs based on stromal scores; interestingly, all of
them are up-regulated (Figure 1C). We found no intersection
between these immune-related DEGs and the stromal-related
DEGs. It suggested that the two types of DEGs performed
different functions in SKCM. Then, the heat maps hinted
at the gene expression patterns of DEGs (Figures 2A,B),
and it was found that the immune-related DEGs had better
classification efficiency. Then, the enrichment results showed
that the immune-related DEGs were mainly enriched in
the chemokine signaling pathway, cytokine–cytokine receptor
interaction, primary immunodeficiency (KEGG) (Figure 2C),
lymphocyte-mediated immunity, T cell activation, and regulation
of immune effector processes (GO terms) (Figure 2D). It
showed that the results of the ESTIMATE analysis are credible.
The stromal DEGs were mainly enriched in cytokine–cytokine
receptor interactions, antigen processing and presentation,
natural killer cell-mediated cytotoxicity (KEGG) (Figure 2E),
regulation of inflammatory response, and cellular response to
chemokine (GO terms) (Figure 2F). These results indicate that
the DEGs we screened are closely related to the immune response
in SKCM patients, which may be used as new biomarkers
for SKCM. Because the immune-related DEGs had a better
classification efficiency by the cluster analysis, we use the 321
immune-related DEGs for further analysis.

Identification of Gene Co-expression
Modules That Associated With Clinical
Traits
After differential analyses, we selected the 321 immune-related
DEGs to build the gene co-expression network by WGCNA.

The cutoff of soft power was set at 10 because it could make
the scale-free topology model fit R2 reach 0.85, and the mean
connectivity is less than 20. This indicates that we have built
a scale-free network (Supplementary Figures 1A–D). Then,
we set the minimum module size at 30 to filter the co-
expression modules. Finally, turquoise and gray co-expression
modules were built (Figure 3A). The heat map described the
topological overlap matrix (TOM) of input genes and showed
the relationship between the two modules (Supplementary
Figure 1E). The results showed that the 321 immune-related
DEGs were expressed in two patterns.

Identification of Crucial Modules
We calculated the relationship between the two modules and
clinical traits (Supplementary Figures 1E,F) and then selected
the essential genes. The results showed that the turquoise module,
which contains 219 genes, was significantly associated with
sample type (Figure 3B). Sample type stands for the primary
tumor or the metastatic one. Based on the cutoff (GS > 0.25
and MM > 0.8), we identified 26 crucial genes out of the
219 turquoise module genes (Figure 3C). The enrichment
result of the 26 genes showed that they were enriched in the
primary immunodeficiency pathway and immune cell-associated
signaling pathways. It suggested that these genes may play a
crucial role in the metastasis of SKCM (Figure 3D).

Validation of the Crucial Candidate
Genes
We used the GEPIA (see text footnote 1) database to screen the
26 candidate DEGs that were not only immune-related DEGs
but also differentially expressed between SKCM patients and
normal samples. This screening procedure can help us obtain
the biomarkers with more potential for clinical application.
Finally, we obtained 12 crucial genes that are differentially
expressed in cancer patients compared with normal samples and
correlated with the tumor immune microenvironment (Figure 4
and Table 2).

TABLE 2 | Basic information of the 12 crucial genes.

Gene symbol Full title Module membership
in turquoise module

Gene significance P-value of differential analysis

High immune score vs. Low
immune score

SKCM vs. normal

PLA2G2D Phospholipase A2 group IID 0.896203345 0.320391963 2.74E–51 9.16E–64

CD19 CD19 molecule 0.842601708 0.305343554 5.57E–35 5.81E–40

IKZF3 IKAROS family zinc finger 3 0.862856409 0.300451054 6.19E–44 9.03E–52

MS4A1 Membrane Spanning 4-Domains A1 0.857009326 0.294092449 3.77E–36 3.12E–32

TMEM156 Transmembrane Protein 156 0.920464075 0.290862446 5.28E–55 7.99E–40

PLAC8 Placenta associated 8 0.853632449 0.286478015 3.81E–45 2.47E–43

ZC3H12D Zinc finger CCCH-type containing 12D 0.926001735 0.283865057 2.74E–58 0.0151

FCRL3 Fc receptor like 3 0.934510176 0.272729855 2.08E–51 5.46E–46

TNFRSF13B TNF receptor superfamily member 13B 0.867106521 0.268605275 1.70E–43 7.14E–32

P2RY10 P2Y receptor family member 10 0.950493884 0.258242908 5.55E–55 2.55E–36

PNOC Prepronociceptin 0.845668597 0.253861151 2.65E–38 2.06E–48

FCRL5 Fc receptor like 5 0.846566936 0.250761762 1.12E–37 3.66E–47
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FIGURE 4 | Validation of the expression pattern of hub genes in melanoma. The red color represents the melanoma samples, while black indicates normal samples.
*P < 0.05.
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FIGURE 5 | Survival analysis of 12 candidate metastasis-associated key genes.

The Crucial Genes are Potential
Prognostic Biomarkers
Then, all the 12 essential genes (PLA2G2D, IKZF3, FCRL3,
FCRL5, PNOC, PLAC8, P2RY10, TMEM156, ZC3H12D, MS4A1,
CD19, and TNFRSF13B) were tested by survival analysis. We
divided the patients into high- or low-expression groups based on
the median expression level of the genes and performed a survival
test. It found that all of them have a good prognostic efficacy

in SKCM (survival P < 0.05). Interestingly, all the 12 genes
are protective factors (Figure 5). A test dataset including 1,085
SKCM patients in the OSskcm Tool also testified the prognostic
ability of these candidate genes (Supplementary Figure 2A).
Then, we performed a multivariable Cox regression analysis
and found that six of these genes (PLA2G2D, IKZF3, MS4A1,
ZC3H12D, FCRL3, and P2RY10) were independent prognostic
signatures (Figure 6A). Next, we combined these genes into
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FIGURE 6 | Multivariable Cox regression analysis of crucial genes. (A) Forest plot showing the six hub genes (PLA2G2D, IKZF3, MS4A1, ZC3H12D, FCRL3, and
P2RY10) that were independent prognostic factors in skin cutaneous melanoma. (B) The survival model (Signature-1) constructed by the six genes and the
Kaplan–Meier curve which showed that it was survival-associated. (C) Receiver operating characteristic analysis showing that Signature-1 performed a better
prognostic efficacy than the TNM stage.
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a Cox proportional hazard model to construct a survival
signature (Signature-1). We explored the survival efficiency of
Signature-1 (p < 0.05, Figure 6B). Then, an ROC analysis
was used to compare the prognostic value between Signature-
1 and TNM stage, and we found that Signature-1 had a
better prognostic efficacy than the TNM stage (Figure 6C).
Next, the test dataset that contained 54 SKCM patients was
used to verify the efficacy of the signature, and the result
showed that Signature-1 kept its prognostic value in the test
dataset (Supplementary Figure 2B). All the results hinted that
the six genes had an excellent prognostic efficacy in SKCM,
and we developed a survival model associated with tumor
microenvironment and metastasis which may be applied to
the clinic.

DISCUSSION

Thousands of people worldwide suffer melanoma every year,
and the number of SKCM is growing faster than any other
type of malignancy. The numbers of research demonstrate the
role of the immune cells on tumor cells, and the immune
components in melanoma tissue can be used to evaluate the
therapeutic and prognostic efficacy in melanoma (Ladanyi, 2015).
Patients with primary tumors usually have higher than a 5-
year survival rate (Balch et al., 2009). Bioinformatics analysis is
widely used in the discovery of various biomarkers (Chen et al.,
2020). Thus, obtaining predictive biomarkers for prognosis has
become a priority.

WGCNA is an algorithm used to find crucial modules from
a gene expression (Luo et al., 2019). Candidate therapeutic
biomarkers are identified based on the relationship between
the modules and the phenotype. Here we constructed the co-
expression modules via WGCNA using the DEGs in high-
immune-score SKCM patients compared with low-immune-
score SKCM patients. Then, we obtained 12 crucial genes
associated with the metastasis of SKCM, and six of them
were independent prognostic biomarkers. The survival model
of the six genes had a good predictive efficacy. We also
used the TIMER web to verify the association between the
six genes and immune cells (Supplementary Figure 3); all
of them are associated with immune cell infiltrate levels. In
addition, FCRL3 can promote IL-10 expression in B cells
through the SHP-1 and p38 MAPK signaling pathways and
is highly expressed on CD4 + CD26- T cells (Wysocka
et al., 2014; Cui et al., 2020). IKZF3 is a predictor for
survival in multiple myeloma stage III patients (Awwad
et al., 2018). MS4A1 is associated with apoptosis of B-cell
lymphoma Ramos cells (Kawabata et al., 2013). P2RY10 has
been reported to be a tumor microenvironment-associated gene
and a potential diagnostic biomarker of metastatic melanoma
(Wang et al., 2018, 2020). PLA2G2D has been reported to
moderate inflammation and could be a potential biomarker for
treating inflammatory disorders (Miki et al., 2013). ZC3H12D
is associated with inflammation (Huang et al., 2018). In
SKCM, we first found that these crucial genes are involved
in metastasis and perform similar functions in our WGCNA

network. At the same time, they have a good prognostic efficacy.
All of these genes have potential clinical applications as key
prognostic biomarkers.

All in all, our findings may improve our fundamental
knowledge of the molecular mechanisms of SKCM, and these
prognostic biomarkers may improve the treatment of this cancer.

CONCLUSION

Firstly, we filtered the immune-associated DEGs by the
ESTIMATE analysis and got a metastasis-associated module
through WGCNA. We then obtained overlapping DEGs in
SKCM patients compared with normal samples and in the
immune microenvironment, and 12 genes were screened. Next,
we used survival analysis to obtain crucial prognostic biomarkers,
and six genes with independent prognostic efficacy were filtered.
The results may be helpful for future studies concerning SKCM
to find potential prognostic targets.
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Supplementary Figure 1 | Weighted gene co-expression network analysis
(WGCNA) in the study. (A,B) Topology of the co-expression network. (C,D)
Scale-free topology based on the cutoff of power (power = 10). (E) Visualization of
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clinical trait information of 429 skin cutaneous melanoma patients.

Supplementary Figure 2 | Test datasets were used to present the prognostic
efficacy of six crucial genes. (A) Survival analysis of six crucial genes in a dataset
of 1,085 SKCM patients. (B) A test dataset used to show the prognostic
efficacy of Signature-1.

Supplementary Figure 3 | Correlation of six hub genes with immune
infiltration in melanoma.
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Detection of cellular changes in tissue biopsies has been the basis for cancer
diagnostics. However, tissue biopsies are invasive and limited by inaccuracies due to
sampling locations, restricted sampling frequency, and poor representation of tissue
heterogeneity. Liquid biopsies are emerging as a complementary approach to traditional
tissue biopsies to detect dynamic changes in specific cell populations. Cell-free DNA
(cfDNA) fragments released into the circulation from dying cells can be traced back to
the tissues and cell types they originated from using DNA methylation, an epigenetic
regulatory mechanism that is highly cell-type specific. Decoding changes in the cellular
origins of cfDNA over time can reveal altered host tissue homeostasis due to local cancer
invasion and metastatic spread to distant organs as well as treatment responses. In
addition to host-derived cfDNA, changes in cancer cells can be detected from cell-
free, circulating tumor DNA (ctDNA) by monitoring DNA mutations carried by cancer
cells. Here, we will discuss computational approaches to identify and validate robust
biomarkers of changed tissue homeostasis using cell-free, methylated DNA in the
circulation. We highlight studies performing genome-wide profiling of cfDNA methylation
and those that combine genetic and epigenetic markers to further identify cell-type
specific signatures. Finally, we discuss opportunities and current limitations of these
approaches for implementation in clinical oncology.

Keywords: Cell-free DNA (cfDNA), cellular damage, circulating tumor DNA (ctDNA), deconvolution, liquid biopsy,
tissue-of-origin, tumor microenvironment

LIQUID BIOPSIES AND CELL-FREE DNA (CFDNA) IN
ONCOLOGY

Liquid biopsies are emerging as a minimally invasive approach to complement and potentially
advance the traditional standards of care in oncology (Bronkhorst et al., 2019). Tissue biopsies
are taken as part of routine clinical care for most solid cancers and used to identify the molecular
determinants of disease that can inform both diagnosis and prognosis. However, tissue biopsies are
invasive and limited by inaccuracies due to sampling locations, restricted sampling frequency, and
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poor representation of local tumor heterogeneity as well as
dispersed cancerous lesions. To address these limitations, liquid
biopsy technologies are rapidly advancing to provide analysis
of tumors using circulating biomarkers in fluids such as the
blood. One of the main advantages of liquid biopsies is its
capacity for serial sampling by simple blood draws. The increased
sampling frequency is helpful to monitor clonal evolution
of tumor subpopulations as well as to assess evolutionary
dynamics influencing treatment response and resistance as well
as disease recurrence (Corcoran and Chabner, 2018). Also, liquid
biopsies are capable of capturing systemic changes to provide
an organism-wide picture of disease progression including the
local primary tumor as well as distant metastatic sites and
treatment responses across different sites. Finally, liquid biopsies
are uniquely able to capture tumor heterogeneity over time, and
thus complement traditional tissue biopsies that can only sample
locally and at accessible sites (Figure 1).

Similar to tissue biopsies, the major purpose of liquid biopsies
in oncology is to identify circulating analytes that provide
molecular information about the cancer. In this context, there
are a multitude of molecules that may be isolated from biological
fluids and targeted for analysis. Until recently, the main focus
has been on circulating molecules that can be directly tied back
to the primary tumor, including circulating tumor cells (CTCs),
cell-free tumor DNA (ctDNA), tumor-educated platelets (TEPs),
and tumor secreted vesicles (exosomes, oncosomes, apoptotic
bodies) (Best et al., 2015; Rapisuwon et al., 2016). However,
as comprehensive approaches gain traction, there has been an
expansion to include molecules reflective of dynamic changes
to the host, tumor microenvironment and distant metastatic
sites as well. Both tumor cells and normal host-derived cells
release cell-free DNA (cfDNA) into the circulation as a result
of physiological processes. cfDNA is thought to originate from
the genomes of dying cells, including cells within tumors, and is
reflective of cell turnover rates at steady state as well as altered
homeostasis throughout the body with disease (Kustanovich
et al., 2019; Heitzer et al., 2020; Rostami et al., 2020). Thus,
circulating tumor DNA (ctDNA) is a subset of cfDNA that has
different biological characteristics (Table 1). There is still much
to be learned about the biology of cfDNA release, distribution,
and elimination mechanisms leading to differential stability and
circulation half-life in healthy compared to diseased states (Jiang
and Lo, 2016; Heitzer and Speicher, 2018; Sanchez et al., 2018;
Serpas et al., 2018; Han et al., 2020; Barefoot et al., 2021). The
focus of this review will be on methylated cell-free DNA and its
utility and applications in cancer diagnosis and management.

INCREASED SIGNAL ABUNDANCE
FROM LEVERAGING EPIGENETIC
CHANGES IN BOTH TUMOR AND
NON-TUMOR CELLS

There are still many challenges to overcome before liquid biopsies
may be routinely implemented in the clinic. Signal abundance
(fraction of target cfDNA relative to total cfDNA), sequencing

depth, and breadth of genomic regions assayed by sequencing
are factors that must be considered to detect signals in the
circulation of cancer patients relevant to inform care (Figure 2B;
Im et al., 2020). Strategies aimed at increasing any of these
factors will improve the odds that informative signals can be
detected. Signal abundance is largely a byproduct of the biology
of the disease in question and therefore little can be done to
modify this variable (Heitzer et al., 2019). For instance, ctDNA
is highly correlated with tumor burden, with larger amounts
of ctDNA found in the circulation of individuals at advanced
stages of tumor progression. For this reason, mutation analysis
of ctDNA is limited in its capacity to detect cancer-related
signals, especially with low-volume tumors at early stage and
relapse (Im et al., 2020). However, signal abundance can be
increased by leveraging signals from all cfDNA molecules rather
than the smaller subset of fragments containing specific tumor-
related mutations (Figures 2A,C). This can be accomplished by
targeting tumor-specific epigenetic changes that occur early on
during carcinogenesis and thus are found at higher abundance
in early stage cancers than tumor-related mutations (Snyder
et al., 2016; Ulz et al., 2016; Wong et al., 2016; Leygo et al.,
2017; Jiang et al., 2018, 2019; Cristiano et al., 2019; Gai and
Sun, 2019; Ivanov et al., 2019; Panagopoulou et al., 2019; Sun
et al., 2019; Van der pol and Mouliere, 2019; Sadeh et al.,
2021). Further, combining tumor-cell derived signals with those
from the surrounding host microenvironment can increase signal
abundance (Hoadley et al., 2018; Liu et al., 2018; Haigis et al.,
2019; Lam et al., 2019). Tumor DNA identified by genetic or
epigenetic markers circulates admixed with non-tumor DNA.
The same DNA sequence is found in all non-tumor cells and
simple sequence analysis cannot be used to distinguish its cell-
type origin. However, covalent and non-covalent epigenetic
marks are pivotal to cell-type identity and can be used to
distinguish tumor as well as non-tumor DNA, expanding the
reach of molecules targeted to reflect disease-pertinent changes
(Barefoot et al., 2021).

TOWARD “THIRD-GENERATION” LIQUID
BIOPSIES: FROM TARGETED TO
COMPREHENSIVE APPROACHES

Despite its highly fragmented nature, advances in sequencing
technologies have made comprehensive profiling of low integrity
cfDNA possible. At a fixed target abundance and coverage,
detection probabilities can be increased by broader sequencing,
increasing the number of potential markers assayed (Im et al.,
2020). Genomic analysis of ctDNA has decreased sensitivity
relative to epigenetic approaches because of lower abundance
at any one given marker (Leygo et al., 2017). Increasing the
number of potential mutations assayed with whole-genome Next-
Generation-Sequencing (NGS) applications has been shown to
increase sensitivity, but there can still be a lack of sufficient
markers when limited to tumor-specific mutations alone (Im
et al., 2020). Comprehensive epigenetic profiling of tumor
and non-tumor cfDNA has led to advances in detection of
brain cancers, including gliomas, which “hide” behind the
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FIGURE 1 | Complementary role of tissue and liquid biopsies in oncology. Localized solid tissue biopsies are invasive and provide a snapshot of limited
representational heterogeneity based on the small piece of tissue that is excised. In comparison, liquid biopsies are minimally invasive and allow for serial sampling to
provide systemic information about the primary tumor as well as distant metastatic sites indicated in different colors. Thus, liquid biopsies complement tissue
biopsies and increase representation of heterogeneity supporting the tracking of clonal evolution over time.

TABLE 1 | Analytes in solid vs. liquid biopsies.

A. Solid tissue biopsy Liquid biopsy

Invasive Minimally invasive

Localized Systemic

Limited sampling frequency Serial sampling

Limited representation of heterogeneity Representation of heterogeneity

B. Cell-free DNA (cf-DNA) Circuating tumor DNA (ct-DNA)

Higher abundance Lower abundance-subset of cfDNA (often < 1%)

Tumor-derived and signals derived from the surrounding
microenvironment (normal cell-types)

Tumor-derived (tumor-specific genetic mutations and
epigenetic abnormalities)

Majority hematopoietic origin Host tissue somatic mutations are major confounder

Relevant to physiology and pathology Relevant to pathology

(A) Comparison of solid and liquid biopsy samples. (B) Comparison of cell-free DNA (cfDNA) and circulating tumor DNA (ctDNA), two circulating analytes found in liquid
biopsies.

blood-brain barrier and have restricted access to release ctDNA
into the circulation (Li et al., 2020; Nassiri et al., 2020). In
these cases, integration across multiple markers allows for
unparalleled sensitivity that cannot be achieved from low
numbers of select targeted loci, despite high specificity and
deep sequencing. Detection methods trending toward broader
sequencing have been termed “third-generation” liquid biopsies
and are emerging to allow for more comprehensive assessment of
a multitude of signals.

Comprehensive sequencing approaches have unleashed the
potential of liquid biopsies to achieve optimal sensitivity;
however, there is still a need to improve the specificity
and biological relevance of these assays. With the transition
from targeted to comprehensive approaches come decreasing
signal-to-noise ratios and new challenges to separate true

biological signals from background sources of error (Ko
et al., 2018). Physiological flux due to clonal hematopoiesis,
inflammation, exercise, and other biological factors may dilute
out relevant signals and calls for an increased understanding
of the mechanisms of cell-free DNA release into the circulation
and the distinct processing (Kustanovich et al., 2019; Barefoot
et al., 2021). The predominating hematopoietic origins of cfDNA
in healthy individuals makes it essential to identify markers
separating cell-types of interest from peripheral immune cells
(Barefoot et al., 2021). Machine-learning algorithms and data-
science-driven approaches are being developed in tandem to
reduce dimensionality and make sense of the data available to
identify applicable information that may better inform clinical
courses of action (Ko et al., 2018). As these approaches become
increasingly complex, prior knowledge about the relevance of
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FIGURE 2 | Factors contributing to probability of signal detection. (A) Tumors release mutant genomic and epigenomic cfDNA into the circulation. Normal cell types
from the surrounding microenvironment and other somatic cells also release cfDNA into the circulation that can be identified through cell-type specific epigenetic
markers. Combining tumor cell- and normal host cell-derived signals can increase target abundance in the circulation to increase sensitivity, while maintaining
specificity. (B) Target abundance, sequencing depth, and breadth of genomic regions assayed are factors that determine signal detection probability in the
circulation of cancer patients. (C) Relative abundance of cfDNA populations and associated specificity.

the features selected will be imperative to maintain biological
interpretability.

BIOLOGICAL RELEVANCE OF
CELL-FREE DNA METHYLATION
PATTERNS

DNA methylation functions as an epigenetic regulatory
mechanism and involves covalent addition of a methyl-group
to the 5-carbon of cytosine (5mc). DNA methylation occurs
most commonly in the context of CpG dinucleotides (Greenberg
and Bourc’his, 2019). One of the main benefits to harnessing
cell-free methylated DNA for liquid biopsy applications in cancer
is the potential to exploit prior knowledge about the biological
relevance of these marks. DNA methylation is an intrinsic mark
of cell identity and pathologic alterations of DNA methylation
are hallmarks of cancer (Greenberg and Bourc’his, 2019). The
DNA methylation landscape changes in a highly regulated
manner throughout development. Before embryo implantation,
there is a global erasure of DNA methylation that is reset in
multiple stages leading to the creation of cell-type specific

methylation patterns, paralleling ongoing cell differentiation and
organogenesis (Dor and Cedar, 2018). Once established, this
pattern of DNA methylation is highly stable and conserved across
DNA replication, making DNA methylation the predominant
mechanism for inherited cellular memory during cell growth
(Daniūnaitė et al., 2019). DNA methylation patterns may be
selected as features that are relatively hyper- or hypo-methylated
in specific cell types or in the context of specific cancers.
Therefore, while there has been extensive characterization
of DNA methylation changes that occur with disease and
physiological aging, these changes occur only at specific locations
throughout the epigenome allowing methylation states at
regions critical to cell-type identity to remain constant over time
(Michalak et al., 2019). This stability allows methylated cfDNA to
serve as a robust biomarker in the face of patient heterogeneity,
capable of being generalized across diverse patient populations
(Dor and Cedar, 2018). There are many areas where liquid
biopsies can be applied in clinical oncology. These include, but
are not limited to, efforts aimed at early detection, assessment
of prognosis, detection of minimal residual disease, metastasis,
targeted-therapy selection, and treatment response monitoring
(Sina et al., 2019; Luo et al., 2021). Both cancer and cell-type

Frontiers in Genetics | www.frontiersin.org 4 July 2021 | Volume 12 | Article 671057188

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-671057 July 24, 2021 Time: 18:39 # 5

Barefoot et al. Cell-Type Detection by cmeDNA

FIGURE 3 | Applications for detection and localization of metastasis and Cancer of Unknown Primary (CUP). (A) CfDNA in healthy individuals is mostly of
hematopoietic origin. (B) The composition of cell-free DNA changes with disease. In this example, primary lung cancer results in increased levels of ctDNA identified
by tumor-specific genomic and epigenomic markers, as well as increased levels of cfDNA from the surrounding lung microenvironment identified by normal
cell-specific epigenetic markers. (C) Genomic mutations occur independently in primary and metastatic tumor sites. Liquid biopsies are capable of capturing this
heterogeneity; however, mutations alone cannot localize these clonal populations to their tissue origins at the primary tumor site and distant metastatic site. As a
complementary approach, normal tissue- and cell-type epigenetic markers can be used for detection and localization of metastasis and Cancers of Unknown
Primary (CUP).

specific cell-free DNA methylation markers have been employed
in each of these applications; however, there are important
distinctions based on using disease-specific or normal cell-type
specific markers that are worth noting. Specifically, cell-type
specific DNA methylation markers have unique applications
to localize cancers of unknown primary (CUP) as well as to
detect metastases (Figure 3; Gai et al., 2018; Moss et al., 2018).
In addition, systemic therapy-related adverse event monitoring
remains one of the most promising applications.

CELL-FREE DNA METHYLATION
TECHNOLOGIES

There are many techniques that can be used to study DNA
methylation as well as different strategies that can be applied
to classify and quantify methylation status (Olkhov-Mitsel
and Bapat, 2012; Kurdyukov and Bullock, 2016; Galardi et al.,
2020; Zhao et al., 2020). These methodologies must be able to
distinguish between methylated and unmethylated cytosines.
This review mainly focuses on 5mc as it is the most commonly
characterized epigenetic mark in cancer. However, other DNA
modifications, including 5-hydroxymethylcytosine (5hmc), are
thought to be more dynamic, reflecting active demethylation

events, and may be complementary to characterize as well
(Song et al., 2017). The different DNA methylation detection
technologies and platforms are categorized in Figure 4. The main
methods are restriction enzyme digestion, affinity enrichment,
bisulfite-conversion, and enzymatic modification approaches.
To date, several of these approaches have been successfully
implemented to study genome-wide cfDNA methylation,
highlighted in Table 2. Restriction enzyme-based methods
cleave DNA at enzyme specific CpG sites. However, the highly
fragmented nature of cfDNA and limited frequency of CpG-
containing recognition sites make this approach challenging for
comprehensive profiling of cfDNA (Huang and Wang, 2019).
cfMeDIP-seq is an affinity-based approach that enriches for
methylated DNA using 5mc-specific antibodies (Shen et al.,
2018). As such, it is capable of characterizing overall methylation
levels across a region, but not at single CpG sites. In addition, the
majority of cell-type specific methylation markers in the human
body are hypomethylated as a result of methylation resetting that
takes place throughout tissue differentiation and development.
These methods that specifically enrich for hypermethylated DNA
may have limited detection potential at these regions of interest.

Bisulfite conversion chemically modifies DNA so that
unmethylated cytosines (C) are deaminated to uracil (U) to
be later replaced by thymine (T) via PCR, while unmethylated
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FIGURE 4 | DNA methylation technologies and platforms for signal detection. (A) Scale representation of DNA methylation technologies from targeted First- and
Second-Generation toward comprehensive Third-Generation applications in liquid biopsies. (B) Methods for detection of DNA methylation. The same DNA sequence
is found in all non-tumor cells, and simple sequence analysis cannot be used to distinguish its cell-type identity. However, these methods can be used to detect DNA
methylation (5mc) and DNA hydroxymethylation (5hmc) levels in tumor and non-tumor cells. MeDIP-seq, Methylated DNA immunoprecipitation sequencing; MBD,
methyl-CpG-binding domain sequencing; WGBS, Whole Genome Bisulfite Sequencing; BSAS, Bisulfite Amplicon Sequencing; RRBS, Reduced Representation
Bisulfite Sequencing; MCTA-seq, methylated CpG tandem amplification and sequencing; MSP, Methylation Specific PCR; MRE-seq, methylation-sensitive restriction
enzyme sequencing; HELP, Hpall-tiny fragment enrichment by ligation-mediated PCR; MSCC, Methyl-sensitive Cut Counting; EM-seq, Enzymatic
Methyl-Sequencing; TAPS, TET-assisted pyridine borane sequencing; TAB-seq, TET-assisted bisulfite sequencing; ACE-seq, APOBEC-coupled epigenetic
sequencing; hmc-CATCH, chemical-assistant C-to-T conversion of 5hmC sequencing; oxBS-seq, oxidative bisulfite sequencing.

cytosines are protected and remain cytosine (C) (Olova et al.,
2018). The majority of comprehensive cfDNA methylation
profiling has been done using bisulfite conversion methods,
including Whole Genome Bisulfite Sequencing (WGBS),
Reduced Representation Bisulfite Sequencing (RRBS),

Methylated CpG Tandem Amplification and Sequencing
(MCTA-seq), and Methylation Arrays. WGBS and RRBS are
capable of detecting DNA methylation at single-base resolution.
More importantly, these methods are capable of detecting
read-specific DNA methylation patterns (Scott et al., 2020).
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WGBS is the most comprehensive approach, but it can be
costly to sequence the whole genome to an informative depth.
However, sequencing costs are decreasing, making this approach
more attractive. RRBS has been optimized in a few instances for
accommodating highly fragmented cfDNA molecules (Guo et al.,
2017; De Koker et al., 2019). Despite these modifications, the
use of restriction enzymes in this sequencing approach give rise
to the same limitations as restriction-enzyme based methods.
MCTA-seq uses primers to preferentially amplify methylated
CpG islands (CpG tandem regions) and, while being more
targeted, this approach is also biased toward hypermethylated
regions (Liu X. et al., 2019). Methylation hybridization arrays
allow for single-base resolution but do not allow for pattern
analysis of multiple CpG sites from the same molecule and have
reduced genome-wide coverage of CpG sites compared to NGS
approaches (Moss et al., 2018).

While bisulfite conversion has long been considered the gold
standard of methylation detection, there are major limitations
that recent advances in enzymatic approaches show promise
in overcoming (Schutsky et al., 2018; Liu Y. et al., 2019). For
instance, sodium bisulfite is a harsh chemical treatment that
causes unwanted DNA degradation and fragmentation, resulting
in uneven genome coverage. Enzymatic Methyl-seq (EM-seq)
uses the enzyme APOBEC to deaminate unmethylated cytosines
and protects methylated cytosines from conversion by utilizing
TET2 as an oxidative enhancer (Vaisvila et al., 2019). This results
in the same base conversions as bisulfite sequencing, but this
method has been shown to cause less DNA damage and as a
result is more sensitive, requiring smaller amounts of input DNA.
This method is used in a recent publication to profile cytosine
methylation and nucleosome occupancy at the same time, a feat
made possible from retention of the original cfDNA structure
without fragmentation or degradation (Erger et al., 2020).

The nuances of these different methodologies to detect DNA
methylation make choosing the right method and accounting
for its limitations essential toward accurate interpretation of
results. Methylation detection technologies are rapidly evolving,
leading to expanded potential applications. For instance, one
such advancement involves the direct detection of methylation
without treatment of DNA, possible with nanopore-sequencing
from Oxford Nanopore Technologies (ONT) and single molecule
real-time (SMRT) sequencing from Pacific Biosciences (PacBio)
(Flusberg et al., 2010; Liu Q. et al., 2019; Ewing et al., 2020;
Yuen et al., 2020; Tse et al., 2021). Although direct detection of
methylation is not currently possible with cfDNA inputs, these
advances point toward new possibilities in the future.

TISSUE-OF-ORIGIN (TOO)
DECONVOLUTION ANALYSIS: USING
HEALTHY CELL-TYPE SIGNALS TO
INFORM ABOUT DISEASE

Tissue-of-origin (TOO) analysis takes each individual cell-free
DNA molecule in the circulation and routes it back to its tissue
and cellular origins as a non-invasive monitoring tool for tissue

damages (Figure 5). At steady state, cfDNA is released into the
circulation reflective of cellular turnover happening throughout
the human body, resulting in a complex mixture of fragments
(Barefoot et al., 2021). On average, the plasma from healthy
individuals has 1,500 genome equivalents or roughly 10 ng/mL
cfDNA concentration (Moss et al., 2018). With cancer, cfDNA
levels are thought to increase in parallel with disease progression
as a result of increased proliferation and death rates of tumor cells
(Kustanovich et al., 2019). However, relying on concentration
of cfDNA alone to diagnose disease is too simplistic of an
approach, as concentration is not an absolute indicator of disease
and changes can result from a plethora of factors, including
exercise, inflammation, and induction of cellular senescence.
Detection of changing cell-type proportions from alterations
in cfDNA composition is a more reliable approach. Shifting
cfDNA makeup has been used for monitoring altered death rates
of cells in different tissues, applicable to a broad spectrum of
physiological and pathological conditions as well as therapeutic
interventions. These include non-invasive prenatal testing, solid
organ transplant, cancer, neurodegenerative and autoimmune
pathologies, among many others (Sun et al., 2015; Zemmour
et al., 2018; Chatterton et al., 2019; Cheng A. P. et al., 2019).
To demonstrate feasibility, DNA methylation patterns specific
to a variety of epithelial, endothelial, nervous, stromal, muscle,
fat, and immune cell-types have been discovered and successfully
applied using TOO analysis of cfDNA (Lehmann-Werman et al.,
2016, 2018; Moss et al., 2018). In addition to tumor-derived DNA,
changes to the host microenvironment can contribute to altered
cell-type proportions of cfDNA in the circulation through cancer-
related changes to normal tissue architecture. Although normal
cell-specific DNA methylation markers are used, relevance to
disease is inferred through abnormal detection in the circulation
as a result of aberrant cell death and tissue damages (Heitzer
et al., 2020). Thus, the changing proportion of normal cell types
found in the circulation can be used to inform about disease states
(Houseman et al., 2012; Teschendorff et al., 2017; Zheng et al.,
2018; Huang et al., 2019; Barefoot et al., 2021). Recent studies
demonstrating the feasibility of using cell-type specific cfDNA
methylation marks for TOO analysis in cancer are described
below (Table 2). This methodology is useful to detect damage to
specific cell types in tissues and has many applications to inform
diagnostics in the clinic as well as to reveal complexities of cancer
pathophysiology at the cellular level.

COMPUTATIONAL METHODS FOR
CELL-MIXTURE DECONVOLUTION IN
LIQUID BIOPSY

Advances in liquid biopsy technology have led to the generation
of massive amounts of methylation sequencing data that can
be difficult to analyze due to the extensive number of possible
features in the human methylome. Computational methods,
including many machine learning techniques, have been
developed to better handle such data by isolating specific signals
and discriminative features, thereby reducing the dimensions of
the data so that it is easier to interpret (Ko et al., 2018). In
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TABLE 2 | Feasibility of tissue-of-origin analysis in oncology using cell-free DNA methylation markers.

Disease Methylation data type Marker type Deconvolution method Publication

HCC, NIPT, Transplant WGBS Tissue-specific QP Sun et al., 2015

PDAC, CRC, Diabetes, Transplant, MS, TBI, IBD BSAS Tissue-specific Read-specific binary classification Lehmann-Werman et al., 2016, 2018

Transplant WGBS Tissue-specific QP Cheng et al., 2017

CRC, LCP RRBS, WGBS Both Multi-class prediction, RF, feature extraction “haplotype blocks” Guo et al., 2017

MI, sepsis BSAS Tissue-specific Read-specific binary classification Zemmour et al., 2018

CRC, BRCA, PDAC, CUP, Transplant, Sepsis 450K array Tissue-specific NNLS regression Moss et al., 2018

Transplant, infection WGBS Tissue-specific QP Cheng A. P. et al., 2019

Neurotrauma + neurodegenerative disease tNGBS (multiplex 35 amplicons) Tissue-specific Read-specific binary classification (k-mer analysis) Chatterton et al., 2019

HCT, GVHD, transplant WGBS Tissue-specific QP Cheng et al., 2020

HCC, cirrhosis, cholelithiasis, acute pancreatitis MCTA-seq Tissue-specific PSO Liu Y. et al., 2019

BRCA BSAS Tissue-specific Read-specific binary classification Moss et al., 2020

mCRPC Cpature-seq/WGBS Both PCA Wu et al., 2020

12 cancer types Cpature-seq/WGBS Both Ensemble logistic regression Liu et al., 2020

ALS, pregnancy WGBS Tissue-specific Bayesian EM algorithm (CelFiE) likelihood-based Caggiano et al., 2020

Transplant, AKI cfNOME-seq Tissue-specific LSM (QP) Erger et al., 2020

COVID-19 WGBS Tissue-specific NNLS regression Cheng et al., 2021

HCC, CRC, LCP WGBS Cancer-specific Read-specific, likelihood-based Kang et al., 2017; Li et al., 2018

LCP, HCC. PDAC, GBM, CRC, BRCA hMe-Seal (5hmc) Cancer-specific RF, Mclust Song et al., 2017

PDAC, AML, BRCA, CRC, RCC, PLC MeDIP-seq Cancer-specific Limma, binomial GLM Shen et al., 2018

Pediatric MB WGBS/CMS-IP-seq Cancer-specific Multivariate Cox regression linear model Li et al., 2020

Glioma, intracranial tumors MeDIP-seq Cancer-specific Binomial RF Nassiri et al., 2020

HCC, Hepatocellular Cancer; NIPT, Non-Invasive Prenatal Testing; PDAC, Pancreatic Cancer; CRC, Colorectal Cancer; MS, Multiple Sclerosis; TBI, Traumatic Brain Injury; IBD, Inflammatory Bowel Disease; LCP, Lung
Cancer Primary; MI, Myocardial Infarction; BRCA, Breast Cancer; CUP, Cancer Unknown Primary; GBM, Glioblastoma Multiforme; AML, Acute Myeloid Leukemia; RCC, Renal Cell Carcinoma; HBC, Hepatobiliary Cancer;
NSCLC, Non-Small Cell Lung Cancer; HCT, Hematopoietic Cell Transplant; GVHD, Graft-vs.-Host Disease; AKI, Acute Kidney Injury; ALS, Amyotrophic Lateral Sclerosis; MB, Medulloblastoma; WGBS, Whole Genome
Bisulfite Sequencing; BSAS, Bisulfite Amplicon Sequencing; RRBS, Reduced Representation Bisulfite Sequencing; ddPCR, Droplet Digital PCR; tNGBS, targeted Next Generation Bisulfite Sequencing; MeDIP-seq,
Methylated DNA immunoprecipitation Sequencing; CMS-IP-seq, Cytosine 5-methyenesulphonate-immunoprecipitation sequencing; MCTA-seq, Methylated CpG Tandems Amplification Sequencing; cfNOME-seq, cell-
free Nucleosome Occupancy and Methylation Sequencing; RF, random forest; GLM, generalized linear model; NNLS, Non-Negative Least Squares; LSM, Linear Least Squares Minimization; QP, Quadratic Programming;
PSO, Particle Swarm Optimization; EM, Expectation-Maximization. Some of the materials are based on Barefoot et al. (2021).
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FIGURE 5 | Tissue-of-origin deconvolution analysis. CfDNA is a mixture of fragments released from healthy and diseased cells in different tissue types throughout
the human body into the circulation. DNA methylation is highly cell-type specific and can be used to identify the cellular origins of cfDNA at specific markers.
Tissue-of-origin (TOO) analysis traces cfDNA molecules back to the tissues and cell types they originated from and use changing tissue proportions to reveal altered
tissue homeostasis in diseased states or during therapy.

this dimension reduction approach, the data is projected into
lower-dimensional spaces, ultimately with the aim to improve
prediction accuracy through increasing the signal-to-noise ratio.
As previously described, the total makeup of cfDNA can be
modeled as a complex mixture with TOO deconvolution analysis
aiming to trace each individual cfDNA molecule back to its
cellular origins as a non-invasive measure of tissue damage.

There are many computational methods that have been
successfully applied to facilitate TOO deconvolution of cfDNA
(Table 2). These include reference-based supervised learning
models, which utilize labeled training and test datasets for
classification tasks (Teschendorff et al., 2017). Commonly used
methods include linear or logistic regression and random
forests. In addition, one study uses Particle Swarm Optimization
as a supervised global optimization method. While global
optimization methods may be supervised, semi-supervised, or
unsupervised, in this case the method is applied as a supervised
learning model (Liu Y. et al., 2019). There are also several
unsupervised learning models, including clustering and density
estimation methods, in which the goal is to learn the inherent
structure and relations of unlabeled data (Houseman et al., 2016).
One advantage of unsupervised, reference-free algorithms is the
ability to estimate contributions from unknown cell types, or
cell types for which reference methylation data is not available.
However, the biological meaning of the features selected in these
models is often lost or difficult to interpret, making it more
challenging to explain the relevance of results. Recently, deep
learning has also been applied as a powerful modeling technique
for deconvolution of DNA methylation data as these methods
perform simultaneous feature extraction and classification (Levy
et al., 2020; Menden et al., 2020). As a high-level overview, the
computational methods for cell-mixture deconvolution can be
generalized as adhering to the following format that is consistent
across liquid biopsy applications. Initially, features are selected
or extracted that can characterize variation among cell-type
contributors in the circulation. Then, statistical models are built
to estimate the mixing proportions of each cell type based on
the reduced number of discriminative DNA methylation features

selected. Typically, these models are trained using reference data
where the mixing proportions are already known and then tested
on datasets where the mixing proportions are unknown for
evaluation (Feng et al., 2019). As a final step, predictive models
can be developed after deconvolution, using the inferred cell-
mixture proportions as predictors to estimate disease phenotypes.

Despite demonstrated success applying these computational
models to cfDNA methylation deconvolution, these algorithms
were originally designed to be learned from very large training
datasets (Ko et al., 2018). In order to maintain predictive
capabilities, modifications are necessary to optimize these models
for working with smaller and often more diverse datasets, typical
to the field of liquid biopsy. With this in mind, there are
important biological properties of cell-free DNA methylation
that can be leveraged toward this goal. First, in comparison
to DNA in tissues that is artificially sheared for introduction
to standard library preparation methods, the fragmentation
patterns of cfDNA are biologically derived (Lo et al., 2021).
The majority of cfDNA fragments are ∼167 bp, representing
the length of DNA wrapped around a nucleosome and reflective
of degradation by nucleases as a by-product of cell death. This
fragmented nature of cfDNA lends itself to methods developed
for characterizing cfDNA at the level of single molecules as
opposed to population-level averages at single CpG sites (Li
et al., 2018). Read-specific analysis allows for each read-pair to be
modeled as an independent sample reflective of each individual
cfDNA molecule. This allows the depth of sequencing to be
utilized toward increasing sample size (Scott et al., 2020). In
addition, the density of neighboring CpG sites varies across
the human genome with highly dense organization defined as
CpG islands. Methylation status at adjacent CpG sites is co-
regulated in CpG islands due to the expanse of methylating
and demethylating enzymes acting in the area (Marzese and
Hoon, 2015). This co-dependency can be leveraged to increase
specificity through modeling the methylation features selected
with pattern analysis. DNA methylation detection technologies
and computational approaches that take advantage of pattern
analysis of individual cfDNA molecules have demonstrated to
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be more robust and to increase the sensitivity and specificity of
cell-type proportion estimations (Lehmann-Werman et al., 2016;
Guo et al., 2017; Li et al., 2018; Zemmour et al., 2018; Chatterton
et al., 2019). Overall, the biological relevance of selected DNA
methylation markers and derived tissue proportions to disease
can be utilized to inform analysis and model optimization.

COMBINING GENETIC AND EPIGENETIC
MARKERS TO NON-INVASIVELY
MONITOR TREATMENT RESPONSE AND
THERAPY-RELATED ADVERSE EVENTS

There is a need to identify predictive biomarkers for real-
time monitoring of therapy-related adverse events relative to
therapeutic efficacy. Combining changes to mutant ctDNA
with altered proportions of cell-type specific cfDNA can reflect
intervention-based changes (Figure 6; Erger et al., 2020; Guo
et al., 2020; Wu et al., 2020). Therapy regimens for many
cancers involve surgery, chemotherapy, radiotherapy, targeted
therapy, and immunotherapy (Hofman et al., 2019). Each of these

interventions can have a different systemic effect, and the ability
to distinguish different cell types participating and potentially
contributing to toxicities with cfDNA in serially drawn blood
samples could significantly impact therapeutic decision making.
Although imaging modalities can be used as an indirect way
to gauge therapeutic efficacy, these results are often unreliable
and difficult to interpret. Imaging results can be clouded by
depictions of pseudoprogression, making them ineffective or
crude instruments to monitor for concurrent changes necessary
to guide therapy decisions (Maia et al., 2020). In contrast, the
half-life of cfDNA is between 15 min and 2 h (Khier and Lohan,
2018). The rapid clearance allows for serial analysis of disease
evolution over time, especially under selective pressures from
ongoing therapy (O’Leary et al., 2018; Oellerich et al., 2019; Nabet
et al., 2020; Peter et al., 2020). This technology allows for serial
sampling to include a baseline comparison from which therapy-
related relative changes may be assessed, taking into account
patient specific co-morbidities at an individualized level.

Combining genetic and epigenetic analyses of cell-free
DNA has many unique advantages when applied to precision
therapeutics in cancer (Cheng T. H. et al., 2019; Zhang et al.,
2019). Liquid biopsies have been shown to accurately characterize

FIGURE 6 | Predicting treatment response and therapy-related toxicities from combined genetic and epigenetic analyses of cfDNA. The minimally invasive nature of
liquid biopsies allows for serial sampling to monitor changes over time, especially under selective pressures from ongoing therapy. CtDNA can be used to track
clonal heterogeneity over time to assess treatment response and detect treatment-resistant clones. Normal cell-specific cfDNA methylation patterns can be used in
combination with ctDNA to assess the impact of treatment to the surrounding tumor microenvironment and to monitor for therapy-related toxicities in somatic
cell-types. Acronyms: ctDNA, (circulating tumor DNA); cme-DNA, (circulating methylated cell-free DNA).
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tumor genotypes and allow for molecular subtype classification
to provide a comprehensive view of intratumor heterogeneity
(Cohen et al., 2018; Christensen et al., 2019; Heitzer et al., 2019).
High sampling frequency allows for modeling of evolutionary
dynamics of tumor progression. Also, molecular changes
identified after initiation of therapy can provide insight into
therapy response as well as track tumor subclones that may lead
to emergence of therapy resistance (Ahronian and Corcoran,
2017; Zhou et al., 2020). The systemic view provided by serial
liquid biopsies is ideal to monitor widespread changes that may
better inform clinical decision making in the face of uncertainty.
For example, in the case of surgical removal of the tumor or
therapeutic success, liquid biopsies can be used to monitor for
minimal residual disease and recurrence. While ctDNA can be
used to track molecular changes in the circulation, there is a
benefit to monitoring the cancer-related changes to the host
microenvironment in tandem requiring a combined genetic and
epigenetic analysis. Cell-specific cfDNA methylation patterns
of normal cells can be used in combination with ctDNA to
assess the impact of treatment also on the surrounding tumor
microenvironment. This is particularly useful to surveil for
metastatic disease in distant tissue types from the primary tumor
as well as to monitor for therapy-related toxicities in somatic
cell types (Zhang et al., 2019). Further, liquid biopsies can help
delineate factors that underlie clinical outcomes, providing a basis
for recommending different treatments based on anticipated
benefit to the patient. Liquid biopsies can identify predictive
biomarkers to guide selection of treatment, recognize off-target
effects, and develop individualized treatment plans for patients
(Hofman et al., 2019). These applications provide a more
complete picture of therapeutic response as well as tissue-specific
cellular toxicity to better inform clinical care and management
throughout the treatment process.

FUTURE DIRECTIONS AND
CONCLUSION

Liquid biopsies are rapidly emerging as an alternative and
complementary approach to traditional solid tissue biopsies and
have high utility for many applications in clinical oncology.
Technology advances have made genome-wide profiling of
circulating analytes possible and allow for transition from
targeted to comprehensive approaches. With transition to “third-
generation” liquid biopsies, DNA methylation patterns can be

used to leverage signals from both tumor and non-tumor cells to
increase signal abundance and discern biological relevance (Im
et al., 2020). Despite great potential, comprehensive applications
of liquid biopsy in oncology are still in their infancy. Additional
large-scale, stratified, and randomized longitudinal studies are
needed to begin to understand the complex interactions and
biological significance of the comprehensive data identified from
NGS technologies. Future work aimed at elucidating the biology
of cell-free DNA release is needed to begin to control for
co-morbidities and other confounding variables. Efforts aimed
at assessing the effect of therapy regimens (chemo, radiation,
immunotherapy, etc.) on tumor and non-tumor signals will
become essential to determine what signals can be derived
from the circulation. Tissue-of-origin analysis can be used to
localize signals and generation of cell-type specific reference
methylomes can improve specificity of features selected for
application of TOO analysis in cancer (Moss et al., 2018;
Barefoot et al., 2021). In addition, combining genetic and
epigenetic markers may improve targeted-therapy selection and
treatment response monitoring. These approaches are potentially
synergistic, and future integration of signals across multiple
genetic and epigenetic omics levels could fine-tune these
applications for optimal use in precision oncology.
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Biomarker discovery is at the heart of personalized treatment planning and cancer
precision therapeutics, encompassing disease classification and prognosis, prediction
of treatment response, and therapeutic targeting. However, many biomarkers represent
passenger rather than driver alterations, limiting their utilization as functional units
for therapeutic targeting. We suggest that identification of driver biomarkers through
mechanism-centric approaches, which take into account upstream and downstream
regulatory mechanisms, is fundamental to the discovery of functionally meaningful
markers. Here, we examine computational approaches that identify mechanism-centric
biomarkers elucidated from gene co-expression networks, regulatory networks (e.g.,
transcriptional regulation), protein–protein interaction (PPI) networks, and molecular
pathways. We discuss their objectives, advantages over gene-centric approaches,
and known limitations. Future directions highlight the importance of input and model
interpretability, method and data integration, and the role of recently introduced
technological advantages, such as single-cell sequencing, which are central for effective
biomarker discovery and time-cautious precision therapeutics.

Keywords: biomarkers, treatment response, precision medicine, predictive models, mechanism-centric
approaches

INTRODUCTION

In the past two decades, the advancement of high-throughput technologies has led to the discovery
of genomic, transcriptomic, and epigenomic modalities involved in cancer initiation, progression,
and treatment response. Multiple groups have started to effectively utilize molecular data produced
by high-throughput oncology experiments to identify biomarkers of progression and therapeutic
response in cancer patients (Sorlie et al., 2001; Zhang et al., 2001; van’t Veer et al., 2002; Zhan
et al., 2002, 2006; Sotiriou et al., 2003; Ayers et al., 2004; Allen et al., 2006; Jain et al., 2009; Lim
et al., 2009; Petty et al., 2009; Zhao et al., 2009; Carro et al., 2010; Lefebvre et al., 2010; Shaughnessy
et al., 2011; Bae et al., 2013; Aytes et al., 2014, 2018; Mitrofanova et al., 2015; Robinson et al., 2015;
Wang et al., 2016; Giulietti et al., 2017; Heng et al., 2017; Hoadley et al., 2018; Abida et al., 2019;
Epsi et al., 2019; Arriaga et al., 2020; Panja et al., 2020; Rahem et al., 2020). Yet, our understanding
of the mechanisms involving these modalities, their upstream regulation, and effective therapeutic
targeting remains incomplete.

Frontiers in Genetics | www.frontiersin.org 1 August 2021 | Volume 12 | Article 687813199

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.687813
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.687813
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.687813&domain=pdf&date_stamp=2021-08-02
https://www.frontiersin.org/articles/10.3389/fgene.2021.687813/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-687813 July 27, 2021 Time: 12:43 # 2

Yu and Mitrofanova Mechanism-Centric Approaches for Biomarker Detection

A biomarker is an objective measure (e.g., classically a
genomic/transcriptomic/epigenomic alteration, gene, protein,
metabolite, or their groups), typically used to predict the
incidence of disease, its progression, or treatment outcome
(Strimbu and Tavel, 2010; McDermott et al., 2013). In the context
of oncology, biomarkers are classically used for cancer risk
assessment and screening, tumor staging, disease recurrence,
selection of initial therapy, alternative therapy choices, and
monitoring for therapeutic toxicities (Ludwig and Weinstein,
2005). While employed in clinical use, the existing biomarkers
are still sparse and suffer from issues of reproducibility and
heterogeneity, alongside a lack of understanding of their
underlying regulatory mechanisms (Ludwig and Weinstein, 2005;
Boutros, 2015).

One of the reasons for such a knowledge gap is the fact
that the majority of biomarkers are identified from gene-centric
approaches (we will refer to gene/protein/metabolite etc.,-centric
approaches as gene-centric approaches for simplicity), where
either a specific gene is investigated (based on previous biological
assumptions) or a gene(s) is selected based on differential
behavior without connection to the upstream and downstream
molecular mechanisms. Gene-centric findings are often limited in
mechanistic interpretability and connectivity to other molecular
processes, positioning such biomarkers as passengers, rather than
drivers, of the biological process and thus are often dataset
specific (Michiels et al., 2005; Chng et al., 2016).

In classical gene-centric approaches, genes (without their
connections to one another or underlying mechanisms) are
utilized as inputs into white- and black-box statistical and
machine learning models, which have been successfully applied to
identify gene-centric markers in breast cancer (van’t Veer et al.,
2002; Wang et al., 2005; Zhang et al., 2013), lung cancer (Beer
et al., 2002), multiple myeloma (Shaughnessy et al., 2007; Kuiper
et al., 2012), colon cancer (Zhang et al., 2001; Yan et al., 2012),
and prostate cancer (Garzotto et al., 2005; Erho et al., 2013),
among many others. It is important to note that in white-box
models (e.g., linear regression and decision trees) the relationship
between input variables (i.e., genes) and output variables (i.e.,
disease outcomes) is understandable/explainable as they often
identify linear or monotonic relationships (Zhang et al., 2001;
Garzotto et al., 2005; Rosenfeld et al., 2008; Huo et al., 2017;
Panja et al., 2018). On the other hand, black-box models (e.g.,
neural networks, gradient boosting, or ensemble models such as
random forest) are able to capture non-linear/non-monotonic
relationships, yet often suffer from model interpretability and
subsequent limited clinical adoption (Wang et al., 2009; Ayer
et al., 2010; Zhang et al., 2013). Even though both white- and
black-box learning are excellent tools for predictive modeling,
they mostly capture associative relationships when applied as
gene-centric approaches and often miss the complexity of
mechanisms inherent in biological systems, especially in the
context of cancer.

Several groups have addressed this problem by developing
biomarker discovery methods based on mechanism-centric
approaches, which are not focused on single genes and take into
account complex mechanisms implicated in cancer initiation,
progression, and treatment response. In this review, we will

discuss the mechanism-centric approaches based on construction
and mining of co-expression networks (Freeman, 1977; Zhang
and Horvath, 2005; Zhang and Huang, 2014; Han et al.,
2016), regulatory networks (Basso et al., 2005; Lefebvre et al.,
2010; Alvarez et al., 2016; Dhingra et al., 2017), protein–
protein interaction (PPI) networks (Chuang et al., 2007), and
molecular pathways (Epsi et al., 2019; Rahem et al., 2020;
Figure 1). Through an in-depth understanding of upstream and
downstream molecular mechanisms, such techniques open a
door for the discovery of functionally interpretable molecular
drivers (rather than passengers) and potential targets for
precision therapeutics.

MECHANISM-CENTRIC
COMPUTATIONAL APPROACHES FOR
BIOMARKER DISCOVERY

Gene Co-expression Network Analysis
Gene co-expression networks define groups of genes that show
similar/related expression patterns across an entire dataset.
Highly associated genes are clustered together into modules,
with the underlying rationale that co-expressed genes are
likely to be co-regulated. We depict two methods, weighted
gene co-expression network analysis (WGCNA) (Langfelder
and Horvath, 2008) and local maximal Quasi-Clique Merger
(lmQCM) (Zhang and Huang, 2014), for network construction
and module detection. Identified modules are defined as tightly
connected groups of genes (potentially protein/gene complexes),
which are then associated with clinical features to determine
functionally relevant molecular structures. We also describe
methods to mine such co-expression networks that include
condition-specific network mining (Han et al., 2016), eigengene
association (Alter et al., 2000; Zhang and Horvath, 2005), and
network connectivity/hub analysis (Freeman, 1977).

Network Construction: WGCNA and lmQCM
In general, co-expression network construction is based on
a similarity matrix that describes the measure of association
between a gene to all other genes (the simplest of similarity
measures being correlation) (Figure 2A). An undirected network
is constructed from the similarity matrix and is comprised of
nodes denoting genes and edges denoting the associations (e.g.,
correlation) between genes.

One of the most well-known methods for gene co-expression
network reconstruction is WGCNA, which was one of the earliest
methods that proposed using weighted networks (Figure 2B;
Zhang and Horvath, 2005). The advantage of weighted, compared
to unweighted, network construction is the ability to assign
meaningful weights to relationships/edges, which eliminates a
need for threshold assignment and prevents information loss.
WGCNA calculates correlation between pairs of genes and
transforms the correlation measure into a topological overlap
measure in order to minimize effects of noise and spurious
associations. The resulting matrix is subjected to hierarchical
clustering to determine groups of co-expressed genes, also
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FIGURE 1 | Mechanism-centric approaches in biomarker discovery and precision therapeutics. A variety of data, including single- and multi-omic sources,
knowledge bases, and phenotype/clinical information, can be used as inputs to mechanism-centric approaches to identify functional biomarkers of disease and
therapeutic response. We describe mechanism-centric methods that are based on co-expression networks, regulatory networks, PPI networks, and molecular
pathways.

referred to as gene modules. An R package for WGCNA is freely
available (Langfelder and Horvath, 2008).

Because WGCNA module identification is based on
hierarchical clustering, genes cannot be assigned to multiple
modules, exposing WGCNA’s limitation since many genes
participate in multiple biological processes and often perform
multiple functions. An alternative weighted co-expression
method which allows genes to have multiple co-memberships
in different modules is lmQCM (Figure 2C; Zhang and Huang,
2014). The lmQCM algorithm identifies densely connected
subnetworks (i.e., quasi-cliques) using a greedy search algorithm
which allows module overlaps (Ou and Zhang, 2007). In addition
to allowing genes to be assigned to multiple modules, lmQCM
can also identify smaller modules, which can highlight more
specific and interpretable biological connections as compared to
much larger modules of WGCNA that frequently contain over a
thousand genes (Zhang and Huang, 2014; Yu et al., 2019). This
algorithm is freely available as an R package1 and a web-tool
(Huang et al., 2021).

Network Mining: Centered Concordance Index,
Eigengenes, and Hubs
Co-expression networks can be mined to determine the
functional significance of their modules or identify functionally
relevant genes. Here, we discuss two techniques for module
mining [Centered Concordance Index (CCI) (Han et al.,
2016) and eigengenes (Alter et al., 2000; Horvath and Dong,
2008)] and two techniques to identify hub genes [intramodular
connectivity (Zhang and Horvath, 2005) and betweenness
centrality (Freeman, 1977)].

Centered Concordance Index has been developed to identify
modules specific to each condition/phenotype. In particular,

1https://cran.r-project.org/package=lmQCM

the CCI evaluates the concordance of gene expression profiles
within a module based on singular value decomposition and
is used to identify modules that are highly co-expressed in
one condition over another (Han et al., 2016). Han et al.
(2016) and Yu et al. (2019), respectively, identified several gene
modules specific to lung adenocarcinoma and multiple myeloma
precursors compared to non-cancer controls. The CCI is useful
in identifying modules specific to phenotype conditions but has
yet to be used to associate modules with continuous outcomes.

The eigengene approach transforms modules into weighted
vectors, which mathematically correspond to their contribution
to the first principal component in principal component analysis
(Alter et al., 2000; Horvath and Dong, 2008). Eigengenes are
then able to be associated with clinical features (including
continuous outcomes) using correlation/association measures.
For instance, Liu et al. (2015a) used the eigengene approach to
identify two modules significantly associated with poor outcome
in ER + breast cancer patients treated with tamoxifen. Liu et al.
(2015b) and Zhang J. et al. (2020) associated module eigengenes
derived from breast cancer patient data with clinical features
such as survival status, tumor metastasis, and chemotherapy
response. Han et al. (2019) identified module eigengenes strongly
associated with patient survival in neuroblastoma.

The translational applicability of modules can be hampered by
their relatively large size and might benefit from identification of
hub genes within modules. Several measures have been developed
to identify hubs, including intramodular connectivity and
betweenness centrality. In particular, intramodular connectivity
for gene i is defined as the sum of edge weights between gene
i and the other genes in the module (Zhang and Horvath,
2005). Genes with the highest connectivity are considered hub
genes and have been shown to play key roles in maintaining
essential cellular functions (Jeong et al., 2001) and significantly
associated with patient survival in breast cancer (Liu et al., 2015a;
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FIGURE 2 | Co-expression network methods: WGNCA and lmQCM. (A) Pairwise gene correlations are calculated from gene expression (microarray or RNA-seq)
data. (B) The co-expression matrix is transformed into a topological overlap matrix and subjected to hierarchical clustering for module identification. A cluster
dendrogram is shown, with different gene modules identified by the color bar on the bottom. (C) The co-expression matrix is used to construct a network, with
genes as nodes and the correlation co-efficient between any two genes as the edge weight. Module identification is achieved through a greedy search for highly
correlated subnetworks.

Tang et al., 2018; Jia et al., 2020; Tian et al., 2020; Zhang J.
et al., 2020), glioblastoma (Horvath et al., 2006; Yang et al.,
2018; Tang et al., 2019), hepatocellular carcinoma (Hu et al.,
2020; Song et al., 2020), and pancreatic ductal adenocarcinoma
(Giulietti et al., 2016), among others. Some of these findings have
been experimentally validated, such as the ASPM hub gene in
glioblastoma (Horvath et al., 2006) and FAM171A1, NDFIP1,
SKP1, and REEP5 hub genes in breast cancer (Tian et al., 2020).

An alternative measure to identify hub genes is betweenness
centrality, which is a network topology metric used to identify

central nodes in a graph based on a shortest paths algorithm
(Freeman, 1977). The betweenness centrality of gene i is a
measure of the number of shortest paths connecting any two
genes which pass through i. Genes with the highest betweenness
scores are considered hubs and are believed to play an important
role in information transfer within the network. For instance,
Wang et al. analyzed modules with the betweenness centrality
measure to identify eight hub genes that were significantly
associated with overall survival in breast cancer patients (Wang
C. C. N. et al., 2019).
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Regulatory Network Analysis
In recent years, molecular regulatory networks have received
much attention from the scientific community due to their
ability to capture complexity of molecular interactions present
in cancer context-specific tissues (Butte and Kohane, 2000;
Butte et al., 2000; Friedman et al., 2000; Basso et al., 2005;
Margolin et al., 2006a,b; Werhli and Husmeier, 2007; Huynh-Thu
et al., 2010; Lefebvre et al., 2010; Aytes et al., 2014). Regulatory
networks define regulatory relationships between regulators (e.g.,
transcriptional regulators, splicing regulators, post-translational
regulators, etc.), and their potential targets (e.g., genes, proteins,
etc.). Such regulatory relationships provide key information
about upstream and downstream regulations to infer cellular
mechanisms for creating potential causal models of disease and
outperform co-expression networks in their interpretability and
functionally relevant determinants. Several methods have tackled
reconstruction of regulatory networks using mutual information
(Butte and Kohane, 2000; Basso et al., 2005; Margolin et al.,
2006a), Bayesian networks (Friedman et al., 2000; Werhli and
Husmeier, 2007), and regression trees (Huynh-Thu et al.,
2010), to name a few. Readers are encouraged to consult the
following reviews for a comprehensive overview of the different
computational underpinnings employed in regulatory network
analysis (Markowetz and Spang, 2007; Karlebach and Shamir,
2008; Hecker et al., 2009; Lee and Tzou, 2009; Emmert-Streib
et al., 2014). Here, we focus on transcriptional [Algorithm for
the Reconstruction of Gene Regulatory Networks (ARACNe)
(Margolin et al., 2006a)] and multi-omic [RegNetDriver (Dhingra
et al., 2017)] regulatory networks and their mining [i.e., Master
Regulator Inference Algorithm (MARINa) (Lefebvre et al.,
2010), Virtual Inference of Protein-activity by Enriched Regulon
analysis (VIPER) (Alvarez et al., 2016), etc.] in the context of
cancer biomarker studies.

Transcriptional Regulatory Networks
The role of transcriptional regulation has been widely studied in
cancer, including discovery of MYC (Gabay et al., 2014), Sox2
(Boumahdi et al., 2014), and the FOXO family (Jiramongkol
and Lam, 2020) as important players in cancer initiation
and progression. Transcriptional regulatory networks depict
interactions between transcription factors (TFs)/co-factors (co-
TFs) and their transcriptional targets, allowing the study of
differential behavior in transcriptional machinery that govern
oncogenic process.

Network construction: ARACNe
One of the most known and widely experimentally validated
methods for transcriptional network reconstruction is ARACNe
(Margolin et al., 2006a,b). This information-theoretic algorithm
utilizes tissue-specific gene expression profiles to estimate
pairwise mutual information between expression levels of
TFs/co-TFs and expression levels of their potential (activated or
repressed) targets. The advantage of using mutual information
to measure such relationships lies in its ability to measure
not only linear (which would be captured for example by the
Pearson correlation) or monotonic (which would be captured for

example by Spearman correlation) relationships, but also non-
linear associations. Another novelty in transcriptional network
reconstruction is introduced by the data processing inequality,
which eliminates any “indirect” regulatory relationship through
the principle that mutual information on the indirect path cannot
exceed mutual information on any part of the direct path. Data
processing inequality results in a regulatory network that includes
primarily direct TF/co-TF-target interactions. ARACNe has been
widely applied to several normal physiological and pathological
conditions, including B-cell interactome (Basso et al., 2005),
breast cancer (Lim et al., 2009; Remo et al., 2015; Walsh et al.,
2017), prostate cancer (Aytes et al., 2014), colorectal cancer (Bae
et al., 2013; Cordero et al., 2014; Sanz-Pamplona et al., 2014;
Eskandari et al., 2018), glioma (Carro et al., 2010), T-cell acute
lymphoblastic leukemia (Palomero et al., 2006), and multiple
myeloma (Agnelli et al., 2011), among others. Software for
ARACNe is freely available for download.2

Network mining: MARINa and VIPER
The ARACNe network can be effectively interrogated (i.e.,
mined) using MARINa (Lefebvre et al., 2010) and VIPER
(Alvarez et al., 2016), two algorithms that identify TFs/co-
TFs as driver biomarkers associated with specific phenotypes
(e.g., cancer initiation, cancer progression, metastasis, treatment
response, etc.). Specifically, MARINa (Lim et al., 2009; Lefebvre
et al., 2010) requires a differentially expressed signature, defined
as a ranked list of genes between any two phenotypes of interest.
Then, the activated and repressed targets for each TF/co-TF
(as inferred by ARACNe) are assessed for their enrichment in
the over- and under-expressed parts of this signature (Lefebvre
et al., 2010; Figure 3). Such enrichment is referred to as TF/co-
TF transcriptional activity, and if it is statistically significant,
the TF/co-TF is referred to as a Master Regulator (MR). As a
result of this analysis, a TF/co-TF is considered an “activated”
MR if its activated targets are significantly enriched in the
over-expressed part of the signature and/or its repressed targets
are significantly enriched in the under-expressed part of the
signature. Conversely, a “repressed” MR exhibits the opposite
behavior. It is important to note that TF/co-TF transcriptional
activity is not defined based on the differential expression of
TFs/co-TFs themselves but instead on the differential expression
of their transcriptional targets. This allows the identification of
TFs/co-TFs that are not necessarily differentially expressed but
are modified on the post-translational level and would otherwise
be missed by traditional association methods.

Master Regulator Inference Algorithm has successfully
identified MRs in various cancers, including prostate cancer
(Aytes et al., 2014, 2018; Mitrofanova et al., 2015; Talos et al.,
2017), breast cancer (Lim et al., 2009; Fletcher et al., 2013; Remo
et al., 2015), pancreatic cancer (Sartor et al., 2014), ovarian
cancer (Zhang et al., 2015), glioma (Carro et al., 2010; Sonabend
et al., 2014), T cell acute lymphoblastic leukemia (Della Gatta
et al., 2012), and diffuse large B cell lymphoma (Ying et al.,
2013; Bisikirska et al., 2016). These biomarkers also serve as
valuable therapeutic targets and their silencing could potentially

2http://califano.c2b2.columbia.edu/aracne
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FIGURE 3 | Interrogation of transcriptional regulatory networks: Master Regulator Inference Algorithm (MARINa) and Virtual Inference of Protein-activity by Enriched
Regulon analysis (VIPER). (A) A differential signature is defined between two phenotypes of interest (left) as input to MARINa; or on a single-sample level (right) as
input to VIPER. (B) The transcriptional regulon is identified from Algorithm for the Reconstruction of Gene Regulatory Networks (ARACNe) tissue-specific
transcriptional regulatory network, which includes a transcriptional regulator (TR) and its activated and repressed targets. (C) The activated and repressed targets of
the regulon are mapped onto the corresponding signature and used to determine the TR’s transcriptional activity.

have a significant effect on inhibition of malignant phenotype.
To this extent, Mitrofanova et al. developed a computational
algorithm to predict drug combinations that inhibit activity levels
of FOXM1 and CENPF (MRs in malignant prostate cancer)
and demonstrated that their therapeutic inhibition significantly
improved cancer course (Mitrofanova et al., 2015). MARINa is
freely available for download.3

At the same time, VIPER estimates TF/co-TF transcriptional
activity on an individual sample-based level, as opposed to
a two-phenotype signature-based level required by MARINa
(Alvarez et al., 2016; Figure 3). In fact, while MARINa requires
carefully selected multiple samples of the same phenotype to
construct a differential expression signature, VIPER is able
to utilize single-sample analysis by scaling the overall patient
cohort (to its average expression for each gene). Furthermore,
several advantages of VIPER include estimation of TF/co-
TF activity through a so-called mode of regulation (taking
into account whether targets are activated, repressed, or their
direction cannot be determined), inference of regulator-target
interaction confidence, and accounting for target overlap between
different regulators (Alvarez et al., 2016). VIPER was shown to
accurately infer aberrant oncoprotein activity induced by somatic
mutations, across multiple cancer types (Alvarez et al., 2016). An
R package is freely available.4

3http://califano.c2b2.columbia.edu/marina
4http://doi.org/10.18129/B9.bioc.viper

Multi-Omic Regulatory Network
Multi-omic data integration is another avenue to improve
interpretability and discovery of functionally relevant
biomarkers. Integration of different data modalities can increase
the confidence of the overall findings since gene regulation is
a complex process affected by multiple factors, such as gene
mutations, structural variants, epigenomics, and more.

Network construction: RegNetDriver, step I
RegNetDriver is an algorithm for multi-omic tissue-specific
regulatory network construction and analysis (Dhingra et al.,
2017; Figure 4). The regulatory network reconstructed by
RegNetDriver represents a two-layered relationship: (i)
connecting TFs to promoter/enhancer regions; and (ii)
further connecting promoter/enhancer regions to their
corresponding target genes. To reconstruct relationships
between TFs and promoters/enhancers of potential targets,
Dhingra et al. utilize tissue-specific (i.e., prostate epithelium)
DNase I hypersensitive sites to define accessible regulatory DNA
regions and integrate this information with promoter/enhancer
annotations from ENCODE (Encode Project Consortium,
2012) and GENCODE (Harrow et al., 2012). TFs are then
connected to promoters/enhancers based on the enrichment
of their binding motifs. Promoters/enhancers are further
connected to their target genes through significant correlation
of promoter/enhancer region activity signals (estimated using
bisulfite sequencing and ChIP-seq data) with target gene
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FIGURE 4 | RegNetDriver. (A) DNase-seq of DNase I hypermutation sites from a specific tissue type, information to identify TFs from binding motifs, and information
of known regulatory gene pairs as used as input to reconstruct (B) a tissue-specific regulatory network. TF hubs are determined from nodes with the top 25%
out-degree centrality. (C) Significantly perturbed TF hubs are identified using SNV, SV, and DNA methylation data.

expression profiles (estimated using RNA-seq data). Note
that this is a directed two-layered network that estimates
relationships between TFs and their transcriptional targets
through their corresponding promoter/enhancer associations.

Network mining: RegNetDriver, step II
This network is then utilized to identify TF hubs with genomic
and epigenomic alterations that can potentially cause large
perturbations in this tissue-specific network. Specifically, TFs
are first mined on degree centrality, such that the top 25% of
TFs with the greatest number of outgoing edges are defined as
hubs. Next, to identify TF hubs significantly affected on genomic
and epigenomic levels in prostate cancer, they are evaluated
for the presence of prostate-cancer specific genomic alterations
(single nucleotide variants and structural variants) and DNA
methylation changes in their coding and non-coding regulatory
regions. In Dhingra et al., RegNetDriver nominated three TFs as
regulatory drivers in prostate cancer, with functional validation
conducted on ERF (Dhingra et al., 2017). RegNetDriver is freely
available for download.5

Protein–Protein Interaction
Network-Based Analysis
Another important avenue in mechanism-centric biomarker
discovery is PPIs. Such interactions elucidate putative protein
complexes, which are known to perform critical functions within
the cell and include for example the pre-initiation complex for
RNA transcription (Greber and Nogales, 2019), the spliceosome
for pre-mRNA splicing (Chen et al., 2007), and the ribosome
for translation of mRNA to protein (Wilson and Doudna Cate,
2012), among others. Cancer cells in particular have been shown
to deregulate protein complexes for their sustained proliferation,
survival, and metastasis (Robichaud et al., 2019). In recent years,

5https://khuranalab.med.cornell.edu/RegNetDriver.html

numerous public databases have cataloged networks of known
and predicted PPIs, such as STRING (Szklarczyk et al., 2019),
IntAct (Orchard et al., 2014), CellCircuits (Mak et al., 2007),
and PINA (Cowley et al., 2012) [more comprehensive lists are
described by Huang et al. (2018) and Miryala et al. (2018)].
Here, we describe the method from Chuang et al. (2007), which
effectively combines PPI networks with gene expression data
and evaluates these hybrid subnetworks as mechanism-centric
biomarkers of breast cancer metastasis (Figure 5).

Network Construction: Chuang et al., Step I
Chuang et al. introduce a hybrid approach to combine a PPI
network with tissue-specific gene expression profiles across
patient samples. The PPI network is comprised of nodes
representing proteins and edges representing a characterized
PPI, utilizing subnetworks from CellCircuits. Tissue-specific gene
expression data are then overlaid onto all PPI subnetworks. For
each subnetwork, its activity in each sample/patient is defined as
a combination of z-scores for the subnetwork genes. This defines
patient-specific vectors of subnetwork activities, which are then
mined for phenotype associations.

Network Mining: Chuang et al., Step II
Activities of subnetworks are evaluated for their association
with specific phenotypes (e.g., metastatic and non-metastatic),
where associations can be calculated by mutual information,
t-score, or Wilcoxon score and is referred to as the subnetwork
discriminative potential/score. Next, the method selects
subnetworks with a locally maximal discriminative score and
performs significance testing to ensure subnetworks are non-
random and robust. In classification performance on a test
cohort, the authors found that the subnetwork markers identified
using this PPI network-based approach showed higher AUC in
classifying metastatic versus non-metastatic samples compared
to single-gene markers, random subnetworks, and gene sets
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FIGURE 5 | Illustration of the PPI network-based approach by Chuang et al. Gene expression microarray data with phenotype information is overlaid onto a PPI
network that is constructed from existing knowledge. Subnetwork activities are calculated per sample based on z-transformed gene expression values, with
subnetworks defined by the PPI network. Discriminative potential for each subnetwork is determined by mutual information (or alternatively, t-score or Wilcoxon
score) that measures the association between sample activities and phenotypes. Subnetworks with discriminative potential between phenotypes are identified by a
greedy search for locally maximal discriminative potential scores. Discriminative subnetworks are further assessed in significance testing to identify statistically
significant discriminative subnetworks.

from other annotation databases such as GO and MSigDB.
Importantly, the method by Chuang et al. showed better
biomarker reproducibility (i.e., higher overlap between markers)
between two different breast cancer studies, outperforming
gene-centric methods (Chuang et al., 2007).

Pathway-Based Analysis: pathCHEMO
and pathER
Recently, pathway-based biomarker algorithms, such as
pathCHEMO (Epsi et al., 2019) and pathER (Rahem et al.,
2020), have demonstrated that discovery approaches that
encompass information from biological pathways significantly
outperform gene-centric methods which do not take into account
pathway membership.

Pathways represent a group of biochemical entities (e.g.,
genes, proteins, etc.), connected by interactions, relations, and
reactions (including physical interactions, complex formation,
transcriptional regulation, etc.), that lead to a certain product
or changes in a cell. Molecular pathways have long been
known to play a crucial role in cancer initiation, progression,
dissemination, and therapeutic response. Some notable examples
are: the role of RAS and PI3K pathways in prostate and
breast cancers and their therapeutic responses (Yue et al.,
2002; Haagenson and Wu, 2010), the Wnt signaling pathway
in colorectal and other cancers (Zhan et al., 2017), the Hippo

pathway in melanoma (Zhang X. et al., 2020), and the MYC
pathway in prostate cancer progression and treatment response
(Arriaga et al., 2020).

Both pathCHEMO and pathER assume that interrogation
of molecular pathways, such as those present in Biocarta
(Nishimura, 2001), KEGG (Kanehisa et al., 2021), and Reactome
(Jassal et al., 2020), can reveal functional, biologically meaningful
biomarkers that govern carcinogenesis and therapeutic response.
pathCHEMO was specifically developed to compare poor versus
good therapeutic response (as categorical outcomes) in cancer. In
general, it evaluates differential behavior of biological pathways
on both transcriptomic (RNA expression) and epigenomic
(DNA methylation) levels between any two phenotypes of
interest (Epsi et al., 2019). First, an RNA expression treatment
response signature is defined as a list of genes ranked by
their differential expression between poor and good treatment
response. Then, genes in each pathway are evaluated for
their enrichment in either over-expressed, under-expressed, or
differentially expressed (which includes both over- and under-
expressed) part of this signature. Enrichment in the over-
and under-expressed parts separately allows identification of
pathways where the majority of genes exhibit a similar behavior
(i.e., are either over- or under-expressed), while enrichment in the
differentially expressed part of the signature allows identification
of pathways where some genes are over-expressed and some are
under-expressed (which depicts a complex interplay of activation
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and repression relationships inside a molecular pathway). This
enrichment is referred to as the RNA expression-based activity
level of a molecular pathway. DNA methylation-based activity
for each pathway is estimated in the same manner using a
DNA methylation treatment response signature. Pathways that
are enriched in the RNA expression treatment response signature
and the DNA methylation treatment response signature are then
integrated to select those that are significantly affected on both
expression and methylation levels (Figure 6). Activity levels
of the candidate pathways are further evaluated as biomarkers
of therapeutic response in independent patient cohorts. Epsi
et al. showed that pathCHEMO could successfully identify
molecular pathways as biomarkers of response to commonly
used chemotherapy in lung adenocarcinoma, lung squamous
carcinoma, and colorectal adenocarcinoma (Epsi et al., 2019).
Yet, a large number of genes that participate in these pathways
could potentially preclude their adoption to clinic. To overcome
this limitation, “read-out” genes for each pathway were identified
for which expression levels (i) correlate with pathway activity
and (ii) are associated with therapeutic response. Such read-out
genes were shown to produce the same predictive accuracy as
the pathways themselves and constitute feasible biomarkers for
clinical use (Epsi et al., 2019). pathCHEMO is freely available at
http://license.rutgers.edu/technologies/2019-121_pathchemo.

As opposed to pathCHEMO, pathER applies a pathway-
based approach on a single-patient level, which allows the
association of pathway activity across a patient cohort to a
wide range of therapeutic responses (Rahem et al., 2020).
Specifically, this approach utilizes a multivariable regression
Cox proportional hazards model to associate pathway activity
levels with time-to-therapeutic failure, thus capturing poor, good,
and medium therapeutic responses. Rahem et al. successfully
applied this approach to identify both pathways and their
read-out genes for tamoxifen resistance in ER-positive breast
cancer (Rahem et al., 2020). pathCHEMO and pathER were
compared to other approaches, including black-box machine
learning techniques (such as random forest and support vector
machines) and differential gene expression alone, and were
shown to outperform these approaches in identifying more
accurate biomarkers of therapeutic response (Epsi et al., 2019;
Rahem et al., 2020).

CHALLENGES AND LIMITATIONS OF
MECHANISM-CENTRIC APPROACHES

Mechanism-centric approaches provide a powerful solution for
informed biomarker discovery, yet common challenges that these
methods need to account for include sufficient cohort sizes, data
variability and scaling, comprehension of existing knowledge
bases, and tissue-specificity (Table 1).

As many of these methods utilize association-based analyses
(i.e., correlation, mutual information, regression, etc.), a sufficient
cohort size is required to be able to accurately estimate
relationships between variables. One of the direct solutions to
this problem includes combining analyses in multiple datasets;
however, batch effects among different acquisition methods,

profiling platforms, and even institutions where datasets were
collected might hamper such implementation.

In addition to a sufficient cohort size, substantial variability of
expression profiles is also required to be able to accurately predict
associations between variables. This task is feasible, yet it requires
careful consideration, meticulous initial experimental design,
and in-depth investigation of the amount of final variability
necessary for successful analysis. Another challenge is the need
for well-defined phenotypes, as they often require a substantially
large number of samples inside each phenotype group while
also demanding intra-sample homogeneity, as in the eigengene
approach, MARINa, PPI network-based method by Chuang
et al., pathCHEMO, etc.

At the same time, methods that rely on single-patient/sample
mining (e.g., VIPER, the PPI network-based method by Chuang
et al., and pathER) rely on dataset scaling to define its single-
sample signatures (defined by comparing each gene to the average
of its expression in the dataset of interest) making interpretation
of any findings from such analyses dataset-specific.

Another known challenge is tissue-specificity, commonly
faced in PPI network-based and pathway-based approaches,
though some tissue- and cell-specific interaction databases are
now available such as TissueNet (Basha et al., 2017), the
Integrated Interactions Database (Kotlyar et al., 2019), and
HumanBase (Greene et al., 2015). Tissue-specificity in these
methods is usually achieved by overlaying gene expression data
onto the PPI networks or molecular pathways, such as in Chuang
et al., pathCHEMO, and pathER.

Furthermore, limitations of mechanism-centric approaches
that utilize knowledge bases (e.g., RegNetDriver, PPI network-
based approach, pathCHEMO, and pathER) lie in their
reliance on known biological relationships among groups
of genes/proteins/other functional units contained within a
database. Various annotation, pathway, and PPI databases
depend on existing information and do not include functional
units that have not been previously studied, thus limiting de
novo discoveries.

DISCUSSION

The wide availability of large-scale data produced by high-
throughput technologies has created a wealth of information
for biomarker discovery. A vast majority of these biomarkers
have been identified using gene-centric methods, yet their
interpretability and clinical utility have been limited as they
do not account for the relationships among genes. Utilizing
methods that consider biological underpinnings of the data (i.e.,
mechanism-centric methods) can vastly improve interpretable
biomarker discovery, clinical applicability and targeting, and
reproducibility of results.

In particular, advantages of mechanism-centric over gene-
centric approaches can be illustrated through their ability to (i)
identify a tightly connected, cooperative group of genes unified
by the same function, as opposed to individual genes (which
might not be related); (ii) provide a mechanism-level view,
which enhances the understanding of the biological mechanisms
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FIGURE 6 | Pathway-based modeling: pathCHEMO and pathER. (A) Therapeutic response distribution is defined based on time to therapeutic failure. Tails of this
distribution are utilized in pathCHEMO and a full spectrum of therapeutic responses is utilized in pathER. (B) Molecular pathways are utilized as a knowledge base in
pathway-based modeling. Genes in such pathways can be affected on multiple levels, such as differential expression (i.e., orange square) and DNA methylation (i.e.,
green satellite). (C) Molecular pathways are assessed for their integrated enrichment and association with therapeutic response.

implicated in a phenotype (e.g., therapeutic resistance, cancer
metastasis); (iii) look at alterations in biological structures,
which enhances the likelihood of identifying functionally relevant
targets; (iv) identify driver as opposed to passenger markers,
which allows for their effective therapeutic targeting; (v) focus
on molecular structures, rather than individual genes, which
decreases the chance of detecting results due to experimental
noise present in biological experiments (i.e., robustness of
results); and finally (vi) identify biomarkers that are more
accurate and more reproducible between different cohorts.

From a computational point of view, mechanism-centric
approaches can be used for interpretable feature engineering and
selection (i.e., reduction), subsequently reducing the number of
hypotheses to be tested. This is clearly demonstrated by gene
co-expression networks, regulatory networks, PPI networks, and
pathway-based methods, where cooperative groups of genes,
instead of a long list of singular genes, are assessed for their
association with clinical outcomes.

Mechanism-centric methods can both (i) provide
interpretable inputs to white- or black-box approaches or
(ii) contribute to inner model interpretability (i.e., such as in
visible machine learning). First, results from mechanism-centric

methods can be utilized as inputs into learning models to
significantly improve predictive performance (over gene-centric
inputs). One such example was demonstrated in Rahem et al.,
where pathway-based markers were utilized as inputs into Cox
proportional hazards regression modeling and outperformed
gene-centric markers for tamoxifen resistance in ER-positive
breast cancer (Rahem et al., 2020). Similarly, Chuang et al.
showed that markers identified by their PPI network-based
method could be effectively used as inputs into a regression
model and outperformed gene-centric markers in classification
of metastatic breast cancer (Chuang et al., 2007). Though not in
cancer, several methods have also suggested utilizing hierarchical
structures (such as those inherent in Gene Ontology) as inputs
for predictive models (Carvunis and Ideker, 2014; Yu et al.,
2016). Second, mechanism-centric methods can potentially be
incorporated into model building, such as in “visible learning,”
where the relationships between inputs and outputs can be
interpreted (Yu et al., 2018). One such (outside of cancer) neural
network method, DCell, was proposed by Ma et al., where the
hierarchy of molecular relationships determined from prior
knowledge (Gene Ontology and CliXO) was built into the
model itself (i.e., hierarchies were utilized by nodes of the neural
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TABLE 1 | Summary of mechanism-centric methods discussed in this review.

Method Data modality Utilize knowledge base?

Gene co-expression network-based Identify modules of highly correlated genes
+Increased interpretability at the mechanistic level
+Associate genes with previously uncharacterized biological functions
–Directionality of gene-gene interactions is unknown

Centered Concordance Index (CCI)
(Han et al., 2016)

Condition-specific module identification

Single-omic No

Eigengenes (Alter et al., 2000; Zhang
and Horvath, 2005)

Identify modules associated with clinical features of interest

Single-omic No

Hubs (Freeman, 1977; Horvath and
Dong, 2008)

Hub gene identification
+Identify potential mechanism-centric target

Single-omic No

Regulatory network-based Identify regulatory relationships between a TF/co-TF and its target genes
+Increased interpretability at the mechanistic level
+Identify potential drivers of disease
+Can identify non-linear relationships
+Tissue specific network

MARINa (Lefebvre et al., 2010) Identify MRs from a set of samples containing two phenotypes
-Need phenotype signature

Single-omic No

VIPER (Alvarez et al., 2016) Single-sample MR identification from a cohort
–Dataset scaling

Single-omic No

RegNetDriver (Dhingra et al., 2017) Identify TF hubs that are significantly affected by single nucleotide variants, structural
variants, or DNA methylation
+Increase interpretability of TF hub activity through multi-omic integration
–Limited by information in knowledge base

Multi-omic Yes

PPI network-based Use PPI subnetworks as a functional unit
+Increased interpretability at the mechanistic level
+Connect results to the protein complex level
–Limited by information in knowledge base

Chuang et al., 2007 Identify subnetworks with differential activity in metastatic breast cancer
+Tissue-specificity from overlaying gene expression data
+Improved biomarker classification accuracy and reproducibility
–Dataset scaling

Multi-omic Yes

Pathway-based Use molecular pathways as a functional unit
+Increased interpretability at the mechanistic level
–Limited by information in knowledge base

pathCHEMO (Epsi et al., 2019) Identify significantly altered pathways (at transcript and DNA methylation levels) in response
to chemotherapy in lung and colorectal cancer
+Improved biomarker classification accuracy and reproducibility
–Need phenotype signature

Multi-omic Yes

pathER (Rahem et al., 2020) Identify pathways as markers of tamoxifen resistance in ER + breast cancer
+Improved biomarker classification accuracy and reproducibility
–Dataset scaling

Single-omic Yes

The objective of each method is detailed in italics, followed by their respective pros (+) and cons (–). Overall pros and cons for each method type are listed in a
non-redundant manner. Information on data modality and if a method utilized a knowledge base is detailed as well.

network) (Ma et al., 2018). Recently, Kuenzi et al. developed
an extension of DCell, called DrugCell, which utilized chemical
drug structures as a part of the neural network learning model
to predict drug response in cancer cells (Kuenzi et al., 2020).
This interpretable deep learning model was shown to be able to

predict cell sensitivity/resistance to specific drugs, synergistic
drug mechanisms, and effective drug combinations for treatment.

Further improvements in the interpretability of biological
processes that inform discovery of mechanism-centric
biomarkers can be made through multi-level data and method

Frontiers in Genetics | www.frontiersin.org 11 August 2021 | Volume 12 | Article 687813209

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-687813 July 27, 2021 Time: 12:43 # 12

Yu and Mitrofanova Mechanism-Centric Approaches for Biomarker Detection

integration. For example, several groups have combined co-
expression WGCNA modules with PPI networks to uncover hubs
with functional connections as biomarkers in endometrial cancer
(Liu et al., 2019) and bladder cancer (Wang Y. et al., 2019).
Wang et al. constructed an Active Protein-Gene network model
using transcriptional regulatory and PPI networks to quantify TF
activity and elucidate both upstream and downstream regulations
(Wang et al., 2013). Even though this study was done in diabetes,
it could be applicable to mechanism-centric biomarker discovery
in cancer. Ahsen et al. embedded VIPER within a new framework
(NeTFactor) to identify TFs that most likely regulate a gene-
centric biomarker signature (Ahsen et al., 2019). While this
method was applied to asthma and peanut allergy, it could
easily be extended to cancer studies. At the same time, multi-
omic integration in RegNetDriver improved the interpretability
of the proposed model to explain the impact of mutations,
structural variants, and DNA methylation on TF activity in
prostate cancer (Dhingra et al., 2017). A recent study by Broyde
et al. constructed a multi-omic lung adenocarcinoma tissue-
specific oncoprotein interaction network using information
obtained from ARACNe, CINDy (an algorithm identifying post-
translational modulators), VIPER, and PPI predictions (Broyde
et al., 2021), which depicted a complex network of interactions
for KRAS and could potentially be utilized for mechanism-centric
biomarker discovery. Such multi-level approaches in conjunction
with mechanism-centric methods promise to uncover a deeper
understanding of mechanisms involved in gene regulation and
post-translational modifications in biomarker discovery.

Finally, recent technological advances, such as those seen
in single-cell studies, promise to improve our understanding
of intra-tumor heterogeneity, clonal evolution, and the role
of microenvironment in cancer progression and therapeutic
response. Single-cell gene expression offers a granular view of
active pathways in a cell type-specific manner and potentially
allows for the construction of cell type-specific networks. In
fact, the rapid advances of single-cell sequencing technology
have already allowed network analysis methods to be applied
directly to data from single-cell RNA-sequencing (scRNA-
seq) (Crow et al., 2016; Aibar et al., 2017; Chan et al.,
2017; Fiers et al., 2018; Papili Gao et al., 2018; van Dijk
et al., 2018; Lamere and Li, 2019; Jackson et al., 2020;

Sekula et al., 2020; Ye et al., 2020) with integration of
other data modalities for improved network inference (Aibar
et al., 2017; Chan et al., 2017; Papili Gao et al., 2018; van
Dijk et al., 2018; Jackson et al., 2020; Pratapa et al., 2020).
Furthermore, matching single-cell and bulk patient samples
could provide an invaluable resource for single-cell driven
network investigations that can be compared to and related
back to bulk tissues. As more single-cell data become available
(e.g., RNA sequencing, targeted DNA sequencing, ATAC-
seq, etc.), we foresee advances in single-cell technologies and
data analysis to be central to understanding precise, clone-
specific biomarkers, unveiling trajectories of tumor evolution
and providing accurate ground for informed time-cautious
precision therapeutics.

In summary, mechanism-centric approaches (based on gene
co-expression networks, regulatory networks, PPI networks, and
molecular pathways) identify biomarkers that are biologically
meaningful, interpretable, reproducible, have higher translational
potential, and provide greater predictive power over biomarkers
identified by gene-centric methods. Thus, mechanism-centric
approaches are the future of clinically relevant rational biomarker
discovery, personalized treatment planning, and precision
therapeutics in cancer.
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Colorectal cancer (CRC) has the characteristics of high morbidity and mortality. LncRNA
not only participates in the progression of CRC through genes and transcription levels,
but also regulates the tumor microenvironment and leads to the malignant phenotype of
tumors. Therefore, we identified immune-related LncRNAs for the construction of clinical
prognostic model. We searched The Cancer Genome Atlas (TCGA) database for original
data. Then we identified differentially expressed irlncRNA (DEirlncRNA), which was
paired and verified subsequently. Next, univariate analysis, Lasso and Cox regression
analysis were performed on the DEirlncRNA pair. The ROC curve of the signature was
drawn, and the optimal cut-off value was found. Then the cohort was divided into
a high-risk and a low-risk group. Finally, we re-evaluated the signature from different
perspectives. A total of 16 pairs of DEirlncRNA were included in the construction of
the model. After regrouping according to the cut-off value of 1.275, the high-risk group
showed adverse survival outcomes, progressive clinicopathological features, specific
immune cell infiltration status, and high sensitivity to some chemotherapy drugs. In
conclusion, we constructed a signature composed of immune-related LncRNA pair with
no requirement of the specific expression level of genes, which shows promising clinical
predictive value in CRC patients.

Keywords: colorectal cancer, immune-related lncRNA, immunotherapy, signature, TCGA

INTRODUCTION

According to global cancer statistics in 2020, colorectal cancer ranks third in cancer incidence
and becomes the second leading cause of cancer deaths (Sung et al., 2021). And its incidence
has been steadily increasing in many countries in Eastern Europe, Southeast Asia, Central-south
Asia, and South America (Arnold et al., 2017, 2020). Although the diagnosis and treatment of

Abbreviations: CRC, Colorectal cancer; TCGA, The Cancer Genome Atlas; irlncRNA, Immune-related LncRNA;
DEirlncRNA, Differentially expressed irlncRNA; AIC, Akaike information criterion; mabs, Monoclonal antibodies; FPKM,
Fragments per kilobase million; GTF, Gene transfer format; ir-genes, Immune-related genes; FC, Fold change; FDR, False
discovery rate; ROC, Receiver operating characteristic; IC50, Half-inhibitory concentrations; AUC, Area under curve; OS,
overall survival; GEO, Gene Expression Ominibus.
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colorectal cancer continue to make progress, the prognosis of
advanced patients is poor, mainly due to recurrence, metastasis,
and drug resistance (Nishihara et al., 2013). Moreover, the
prognosis of patients in the same disease stage is different,
accompanied by different gene mutations (Sinicrope et al.,
2017). Genetic and molecular changes play an essential role
in these events and provide potential targets for treatment
(Sadanandam et al., 2013).

Immunotherapy accelerates the development of oncology and
shows encouraging anti-tumor efficacy in many types of solid
cancers (Farkona et al., 2016). Among various immunotherapy
methods, immunomodulatory monoclonal antibodies (mabs)
that target immune checkpoints have produced promising and
long-lasting therapeutic results in multiple cancers. However,
in colorectal cancer, the tumor has a high proportion of
resistance and ineffectiveness to these monoclonal antibodies,
such as anti-PD-1 mabs (Guo et al., 2020). Therefore,
more alternative therapies and biomarkers used to predict
the prognosis and treatment response of CRC need to
be further investigated to allow more patients to benefit
from immunotherapy.

Long noncoding RNAs, defined as RNA that transcriptional
length is more than 200 nucleotides, do not encode proteins
(Chan and Tay, 2018). LncRNAs interact with DNA, mRNAs,
ncRNAs, and proteins to regulate gene expression at different
levels, and play an essential role in both normal development
and tumor progression (Ørom et al., 2010; Wang and Chang,
2011). LncRNAs are frequently involved in different stages of
CRC from precancerous polyps to distant metastasis, and are
considered potentially effective diagnostic biomarkers (Ye et al.,
2015; Saus et al., 2016). Studies have shown that lncRNAs can
also lead to cancer’s malignant progression by changing the tumor
microenvironment (Atianand et al., 2017). LncRNAs regulate the
gene-coded products involved in the immune response and affect
the activation of immune cells, thus leading to the infiltration of
immune cells in tumor (Chen et al., 2017).

Clinical predictive signatures focusing on immune-related
markers have shown favorable diagnostic and predictive
performance in various tumors. Shen et al. (2020) identified 11
lncRNAs associated with immune cell infiltration to construct
the predictive signature of breast cancer. Wu et al. (2020)
identified 8 immune-related LncRNAs and demonstrated their
value in predicting the prognosis and immunotherapy response
of bladder cancer. Hong et al. (2020) incorporated 12 pairs
of immune-related LncRNAs into the model, which has good
clinical predictive value in hepatocellular carcinoma.

As far as the accuracy of the cancer diagnosis signature is
concerned, the combination of two markers is better than a
simple single gene (Lv et al., 2020). For the simplicity and
practicality of the signature, we tried to construct a reasonable
model based on 2-lncRNA combinations (Hong et al., 2020;
Chen et al., 2021; Ping et al., 2021). Compared with the single
gene model that needs to detect the specific expression level of
each marker, our model only needs to compare the expression
level of each lncRNA pair and substitute 0 or 1 into the
model. This will effectively avoid data correction during model
application. We evaluated this signature’s predictive value in CRC

patients, including survival rate, clinical progression, immune
cell infiltration, and chemotherapy effects.

MATERIALS AND METHODS

Retrieval and Preparation of
Transcriptome and Clinical Data
The transcriptome data of colorectal cancer were downloaded
from The Cancer Genome Atlas (TCGA, RRID:SCR_003193)
database,1 and the data type was FPKM (fragments per kilobase
million). The dataset includes 44 normal tissues and 568 tumor
tissues. We downloaded the GTF (gene transfer format) file from
Ensembl2 to distinguish mRNA and lncRNA. Clinical data of
CRC patients were retrieved from the TCGA database. To extract
valid data, duplicate data and data with a follow-up time fewer
than 31 days were eliminated.

Identification of Differentially Expressed
Immune-Related LncRNAs
(DEirlncRNAs)
The list of immune-related genes (ir-genes) was obtained from
the Immport database,3 and the co-expression analysis was
performed to screen immune-related LncRNAs. We analyzed the
expression correlation between ir-genes and all lncRNAs. The
screening criteria for irlncRNAs were immune gene correlation
coefficient > 0.4 and p-value < 0.001. To identify DEirlncRNAs
between normal and cancer tissues, R package limma was
used to analyze the differential expression of irlncRNAs. We
set thresholds as log2 |fold change| > 1 and false discovery
rate (FDR) < 0.05.

Pairing of DEirlncRNA
DEirLncRNAs were periodically paired to construct a 0-or-1
matrix. Suppose that C is equivalent to a pair of DEirncRNA, such
as LncRNAA and LncRNAB. If the expression level of LncRNAA
is lower than that of LncRNAB, then C is defined as 0; otherwise,
C is defined as 1. Next, the matrix was screened further. If the
expression of the DEirLncRNA pair is counted as 0 or 1 in most
samples, this pair will not be used for subsequent prognostic
analysis since gene pairs without a certain level of difference
cannot accurately predict patients’ survival. When the number
of DEirncRNA pairs of which expression quantity was 0 or 1
accounted for more than 20% and less than 80% of the total
samples, the pair was considered to be an effective match.

Construction of Risk Signature to
Evaluate Risk Score
The DEirlncRNA pair was analyzed by univariate analysis,
followed by lasso regression with 10 fold cross-validation, and
the p-value was set to 0.05. Lasso regression ran 1,000 cycles
to obtain the DEirlncRNA pair combination with the smallest

1https://tcga-data.nci.nih.gov/tcga/
2http://asia.ensembl.org
3http://www.immport.org
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cross-validation error, and then Cox proportional hazards
regression analysis and model construction were carried out.
We determined the optimal model according to the Akaike
information criterion (AIC) value. When the AIC value was
minimum, the calculation process was terminated, and the model
was regarded as the optimal candidate. The receiver operating
characteristic (ROC) curves of 1-, 3-, and 5-year were drawn
afterward. The following formula can calculate the risk score of
all cases: RiskScore =

∑N
i=1 Expi ∗Wi, where exp is the expression

value of every DEirlncRNA pair, and W is the multivariate cox
regression analysis coefficient of each DEirlncRNA pair in the
signature. The sum of sensitivity and specificity of each point
in the 5-year ROC curve was calculated, and the risk score
corresponding to the maximum point was taken as the cut-off
value to distinguish the risk level.

The R packages used in the above steps were survival,
surviviner, survivalroc, and glmnet.

Verification of the Constructed Risk
Signature
We first used the LncAR database to verify the differential
expression of the irlncRNA contained in the signature. To verify
the cut-off value, Kaplan-Meier analysis was performed to show
the survival difference between the high-risk and low-risk groups
by using the survival curve. Using R tool, we also visualized the
specific risk score of each sample in the signature.

For the sake of verifying the clinical application value
of the signature, the chi-square test was used to analyze
the relationship between the signature and clinicopathological
characteristics. Afterward a band diagram was drawn for
visualization (∗∗∗P < 0.001; ∗∗P < 0.01; ∗P < 0.05). Wilcoxon
signed rank sum test was applied to calculate the difference
of risk score among groups with different clinicopathological
characteristics. The analysis results were shown by box diagram.
Univariate and multivariate Cox regression analyses were
performed to evaluate the correlation between risk score, clinical
variables, and prognosis of patients, so as to clarify whether the
risk model can be used as an independent prognostic indicator of
colorectal cancer. P< 0.05 was considered statistically significant.
The results were demonstrated by forest map.

The R packages used for the above analysis steps are survival,
surviviner, survivalroc, limma, ggpubr and complex Heatmap.

Analysis of Tumor-Infiltrating Immune
Cells
To explore the relationship between the risk score and the tumor-
Infiltrating immune cells, we used various currently recognized
methods to evaluate the immune cell infiltration status of
colorectal cancer, including XCELL, TIMER, QUANTISEQ,
MCPCOUNTER, EPIC, CIBERSORT-ABS, and CIBERSORT.
The Wilcoxon signed rank sum test was implemented to compare
the content of infiltrating immune cells between the high-risk
and low-risk groups. Through Spearman correlation analysis, the
relationship between the risk score and infiltrating immune cells
was analyzed. The threshold was P < 0.05, and the results were

displayed in the lollipop graph. The R packages limma, scales,
ggplot2, and ggtext were used for the analysis.

Evaluation of the Model’s Role in Clinical
Treatment
To evaluate whether the model has a certain application value
in the clinical treatment of colorectal cancer, we calculated
the half-inhibitory concentrations (IC50) of commonly
used chemotherapy drugs in the TCGA data set. The anti-
tumor medications used in the analysis included gemcitabine,
Rapamycin, Imatinib, Lenalidomide, and Shikonin. Wilcoxon
signed rank sum test was performed to compare the difference
in IC50 of drugs between the high-risk and low-risk groups. The
results were displayed in the form of the box plot.

The R packages used in this part include limma, ggpubr,
pRRophetic and ggplot2.

RESULTS

Recognition of Differentially Expressed
Immune-Related LncRNAs
(DEirlncRNAs)
First, we downloaded the transcriptome data of colorectal cancer
from the TCGA database. Then, the data were annotated based
on the GTF file. Co-expression analysis between immune-related
genes and lncRNA was performed. A total of 1017 immune-
related lncRNAs were identified. Through differential expression
analysis, 383 were classified as DEirlncRNAs, of which 339 were
highly expressed and 44 were low expressed (Figure 1B). The
expression of the DEirlncRNAs ranked in the top 200 based on
fold change was displayed in the heat map (Figure 1A). The
complete list of differentially expressed immune-related lncRNAs
was shown in Supplementary Table 1.

Construction of DEirlncRNA Pair and
Risk Assessment Signature
Through the iterative loop and the construction and screening
of a 0-or-1 matrix, 39528 valid DEirlncRNA pairs were obtained
from 383 DEirlncRNAs. By univariate analysis, 4197 lncRNA
pairs related to prognosis were identified. Subsequently, 26
DEirlncRNA pairs were extracted by LASSO regression analysis
to prevent the model from over-fitting, of which 16 pairs were
incorporated into the COX proportional hazard model by a
stepwise method (Figure 1C).

The value of the area under curve (AUC) of the signature was
0.904 (Figure 2A), indicating an ideal predictive performance
of the model. To verify the signature’s superiority, we plotted
the 1-, 3-, and 5-year ROC curves, and the results showed that
the AUC values of all three curves were over 0.80 (Figure 2B).
We also compared 5-year ROC curve with other clinical
characteristics, and the risk score had the most considerable AUC
value (Figure 2C).

By calculating the sum of sensitivity and specificity of each
point of the ROC curve for 5 years, the risk score of 1.275 at
the maximum end was taken as the cut-off value to distinguish
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FIGURE 1 | Identification of differentially expressed immune-related LncRNA (DEirlncRNA) and the construction of a signature. The expression information of
DEirlncRNA was displayed in the heatmap (A) and volcano plot (B). (C) A forest map showed 16 DEirlncRNA pairs included in the signature.

the high and low risk of samples (Figure 2D). The signature was
applied to 500 colorectal cancer samples available from the TCGA
database, and the risk score of these patients was calculated.
Whereafter, these samples were divided into a high-risk group
and a low-risk group by the cut-off point identified above for
further validation.

Validation of Risk Assessment Model
and Its Application in Clinical Evaluation
The external data validation of the expression of irlncRNA in
the model was shown in Supplementary Figures 1, 2, and the

detailed data sources were shown in Supplementary Table 2.
Based on the cut-off value, 209 samples were classified into
the high-risk group and 291 cases into the low-risk group.
The risk scores and survival time of each case were shown in
Figures 3A,B. The results showed that the survival rate and
survival time decreased with the increase of the risk score.
Survival analysis demonstrated that the survival time of the high-
risk group was significantly shorter than that of the low-risk
group (p < 0.001) (Figure 3C).

Subsequently, we applied the chi-square test to explore
the relationship between the risk score and clinicopathological
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FIGURE 2 | Establishment of the signature based on DEirlncRNA pairs. (A) The 5-year ROC of the optimal signature. (B) The AUC values of the 1-year, 3-year, and
5-year ROC curves of the model. (C) The comparation of 5-year ROC curve with other clinical characteristics. (D) The risk score of 1.275 at the maximum end was
taken as the cut-off value to distinguish the high and low risk of samples.

characteristics. The band diagram (Figure 4A) and scatter plots
showed that clinical stage (Figure 4B), T stage (Figure 4C), M
stage (Figure 4D), and N stage (Figure 4E) were significantly
associated with risk score. In general, groups with advance
stage were accompanied by higher risk scores. Univariate COX
regression analysis showed that age (p = 0.002, HR = 1.032, 95%
CI [1.011–1.053]), clinical stage (p < 0.001, HR = 2.501, 95% CI
[1.951–3.206]), T stage (p < 0.001, HR = 3.245, 95% CI [2.119–
4.969]), M stage (p < 0.001, HR = 5.070, 95% CI [3.269–7.862]),
N stage (p < 0.001, HR = 2.241, 95% CI [1.739–2.888]), and
RiskScore (p < 0.001, HR = 1.070, 95% CI [1.057–1.084]) were
considered statistically significant (Figure 4F). Multivariate Cox
regression analysis showed age (p < 0.001, HR = 1.047, 95% CI
[1.026–1.069]), T stage (p = 0.008, HR = 1.940, 95% CI [1.186–
3.171]), and RiskScore (p < 0.001, HR = 1.075, 95% CI [1.057–
1.093]) were independent prognostic predictors (Figure 4G).
The detailed information of univariate and multivariate Cox
regression analysis was shown in Supplementary Table 3.

Analysis of Immune Cell Infiltration
Based on the Risk Score
Since the lncRNA identified by the co-expression method was
related to immune genes, we explored whether the model was
linked to the tumor microenvironment. The results showed
that patients’ high risk was positively correlated with tumor-
infiltrating immune cells such as CD4+ T cells, macrophage,
and cancer-associated fibroblast, whereas negatively correlated
with neutrophil (Figures 5B–G). Through Spearman correlation
analysis, the relationship between risk score and immune
infiltrating cells in multiple databases was displayed in Figure 5A.

Correlation Between the Risk Model and
Chemotherapy Drugs
We attempted to explore the relationship between the risk score
and efficacy of common chemotherapy drugs for CRC in the
TCGA dataset. The results showed that a high-risk score was
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FIGURE 3 | Risk assessment model for survival prediction. The risk scores (A) and survival time (B) of each case were shown. (C) The survival time of the high-risk
group was significantly shorter than that of the low-risk group.

related to lower IC50 of chemotherapeutics such as Rapamycin
(P = 0.00017), Imatinib (P = 0.016), Lenalidomide (P = 5.3e-
07), and Shikonin (P = 0.00075), suggesting that the model
could be regarded as a potential predictor of chemotherapy
sensitivity (Figure 6).

DISCUSSION

Recently, an increasing number of studies showed that infiltrating
immune cells play an essential role in tumor management
and become an effective prognostic factor for colorectal cancer
(Picard et al., 2020). There were data disclosed that there seem
to be subtle differences in the composition of immune cells
infiltrated in colorectal cancer, which may be a key determinant
of treatment and prognosis (Xiong et al., 2018). Besides, Pagès
et al. (2018) have proposed that immune scores based on
tumor-infiltrating immune cells can reliably estimate the risk of
recurrence of colorectal cancer patients. These results support
the view that the immune score could work as a new part
of tumor TNM-immune classification. In recent years, many
studies have focused on establishing immune-related coding
genes and non-coding RNA signatures to assess the prognosis
of colorectal cancer. However, most of the prognostic models
are based on the quantified expression level of the sample. In
this study, inspired by the gene pairing strategy, we tried for the
first time in colorectal cancer to construct a reasonable model

composed of paired lncRNA, which does not require the exact
expression of lncRNA.

First, we obtained the original transcriptome data of
colorectal cancer from the TCGA database, performed co-
expression analysis and differential expression analysis to identify
DEirlncRNA, and verified the effective DEirlncRNA pair by loop
pairing and a matrix of 0 or 1. Second, we performed univariate
analysis, LASSO regression analysis, and COX regression analysis
to determine the DEirlncRNA pair for inclusion in the signature.
Third, we determined the optimal signature by calculating the
AIC value, and calculated the sum of sensitivity and specificity
of each point on the 5-year ROC curve to find the best cut-
off value. Finally, we evaluated the model from several aspects,
including survival time, clinicopathological progress, distribution
of tumor-infiltrating immune cells, and chemosensitivity.

At present, a number of studies have identified predictive
biomarkers for colorectal cancer and have shown good clinical
utility, which also provides ideas for the construction of more
clinical models (Clarke et al., 2017; Martinez-Romero et al., 2018;
Ahluwalia et al., 2019). Many studies suggested that lncRNA
plays a non-negligible role in the development of colorectal
cancer, and may participate in the remodeling of the tumor
microenvironment and affect the infiltration of immune cells
in the tumor. Qin et al. (2021) constructed an independent
model based on 7 immune-related lncRNAs, which may promote
the accurate assessment of the prognosis of CRC patients. Lin
et al. (2020) identified a model containing 9 immune-related
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FIGURE 4 | Application of the signature in the clinical evaluation. The band diagram (A) and scatter plots showed that clinical stage (B), T stage (C), M stage (D),
and N stage (E) were significantly associated with risk score. Univariate COX regression analysis showed that age, clinical stage, T stage, M stage, N stage, and
RiskScore were considered statistically significant (F). (G) Multivariate Cox regression analysis showed age, T stage, and RiskScore were independent prognostic
predictors. ∗∗∗P < 0.001; ∗∗P < 0.01; ∗P < 0.05.
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FIGURE 5 | Association between immune cell infiltration and the risk score. (A) The relationship between risk score and immune infiltrating cells in multiple
databases. (B–G) High risk was positively correlated with tumor-infiltrating immune cells such as CD4+ T cells, macrophage, and cancer-associated fibroblast,
whereas negatively correlated with neutrophil.

lncRNAs, which may help to improve the prediction results
of colon cancer patients and guide individualized treatment.
Li et al. (2020) constructed a seven immune-related lncRNA

signature, which showed promising clinical significance in colon
adenocarcinoma. Our algorithm showed that we could identify
DEirlncRNAs and construct the most important irlncRNA pair
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FIGURE 6 | Correlation between the risk model and chemotherapeutics. A high-risk score was associated with lower IC50 for chemotherapeutics such as
Rapamycin (A), Imatinib (B), Lenalidomide (C), and Shikonin (D).

for the first time in colorectal cancer. The model showed
good predictive performance. The AUC values of the 1-, 3-,
and 5-year ROC curves of the model were all above 0.80.
What’s more, the most significant difference between our
signature and the above-mentioned prognostic model is that
the signature does not require each marker’s exact expression,
but only needs to compare the expression level in each pair
of DEirlncRNA. This dramatically improves the model’s clinical
utility and largely avoids the error caused by differences in marker
expression detection.

The DEirlncRNAs used to construct the signature in this
study play critical roles in a variety of tumors. Dysregulation of
FENDRR expression is associated with tumorigenesis, resistance
to chemotherapy, fibrosis, and inflammatory diseases (Szafranski
and Stankiewicz, 2021). In colorectal cancer, Yin et al. (2019)
revealed that FENDRR could inhibit tumor aggressiveness by
regulating the miR-18a-5p/ING4 axis. Data from Cheng et al.
(2020) indicated that FENDRR could inhibit cell proliferation,
migration, and invasion in CRC by targeting miR-424-5p. Liu
and Du (2019) proved that FENDRR might work as a tumor

suppressor gene in colon cancer by inhibiting SOX4. Also,
FENDRR is closely related to immune regulation (Munteanu
et al., 2020; Shen et al., 2021). Moreover, FENDRR takes
effect in different cancers, such as hepatocellular carcinoma,
cholangiocarcinoma, gastric cancer, cervical cancer, breast
cancer, prostate cancer, endometrial cancer, and non-small cell
lung cancer (He et al., 2018; Li et al., 2018; Qin et al., 2019;
Yu et al., 2019; Zhang G. et al., 2019; Zhang Y.Q. et al.,
2019; Zhu et al., 2020). It can be seen that FENDRR is closely
involved in the process of tumors related to the digestive
system and reproductive system. Lv et al. (2019) reported
that LINC00114 promotes colorectal cancer by regulating the
EZH2/DNMT1/miR-133bz axis, and Han et al. (2020) found
that LINC00114 promotes the progression and radioresistance of
nasopharyngeal carcinoma by targeting miR-203 to regulate the
ERK/JNK signaling pathway. Jafarzadeh et al. (2020) indicated
that LINC02381 might inhibit colorectal cancer tumorigenesis
partly by regulating the PI3K signaling pathway. Besides,
Jafarzadeh and Soltani (2020) also revealed that LINC02381
inhibits gastric cancer progression through the Wnt signaling
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pathway. In addition, LINC02381 plays a cancer-promoting role
in cervical cancer and osteosarcoma (Chen et al., 2020; Bian et al.,
2021). Some identified DEirlncRNAs were also included in the
signatures of other colorectal cancer studies, such as LINC02381,
LINC00114, and AL590483.1 (Wang et al., 2018; Li et al., 2020;
Liu et al., 2020; Sun et al., 2020; Zhou et al., 2020), which verified
the effectiveness of our algorithm. Another part of the selected
DEirlncRNAs was reported for the first time. Therefore, the novel
biomarkers need to be further explored.

We improved the modeling process, calculated the AIC
value in Cox regression analysis to determine the best
model, and compared the model with other clinicopathological
characteristics. Instead of using the median value of risk score
to distinguish the high and low risk of patients, we calculated
the sum of sensitivity and specificity of each point on the ROC
curve to find the optimal cut-off value. Then we re-evaluated
the signature, and the results showed that its application effect
was pretty good.

The occurrence and development of colorectal cancer involve
many aspects of immunodeficiency. Tumor-infiltrating immune
cells may affect the therapeutic effect of immune checkpoint
inhibitors (Guo et al., 2020). To explore the relationship
between risk score and tumor-infiltrating immune cells, we
performed various methods to estimate infiltrating immune
cells in colorectal cancer. Our signature was closely related to
CD4+ T cells, CD8+ T cells, macrophages, cancer-associated
fibroblast, and neutrophil through a comprehensive analysis.
According to our signature, the high risk was associated with the
sensitivity of chemotherapy drugs such as Rapamycin, Imatinib,
Lenalidomide, and Shikonin. Given the limited drug data in the
database, the sensitivity of more first-line chemotherapy drugs
for colorectal cancer needs to be analyzed to further improve the
signature’s practicality.

Our research also has shortcomings and limitations. First
of all, we only obtained the original CRC data from the
TCGA database, thus the number of samples may be relatively
insufficient. We have not retrieved a useful dataset containing
lncRNA expression levels and clinical information of CRC
in other commonly used databases such as Gene Expression
Ominibus (GEO). Since there were no data available, our model
has not been externally verified. When a model based on the
marker’s expression is validated with an external data set, due
to the possible differences in sequencing on different platforms,

the model’s effect may be affected. We constructed a 0-or-
1 matrix to screen markers to minimize the errors caused
by expression variations. Besides, we optimized the process of
model construction and utilized various methods to verify the
effectiveness of the signature. Based on the results, we believe
that the signature we constructed is acceptable. However, the
verification of the signature in a larger number of samples is still
necessary. We will continue to collect samples in future clinical
work and expand the verification scope for further evaluation.
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Background: Colorectal cancer (CRC) ranks as the third most common malignancy
worldwide but a reliable prognostic biomarker of CRC is still lack. Thus, the purpose of our
study was to explore whether ferroptosis - related lncRNAs could predict the prognosis
of CRC.

Methods: The mRNA expression profiling of colon adenocarcinoma (COAD) and rectum
adenocarcinoma (READ) patients in The Cancer Genome Atlas (TCGA) database were
downloaded. Univariate Cox and multivariate Cox regression analyses was used to obtain
prognostic differently expressed ferroptosis-related lncRNAs (DE-FLs) and a risk signature
was developed. Quantitative polymerase chain reaction (q-PCR) was used to validated the
different expressions of DE-FLs. The calibration curves, C-index and the receiver operating
characteristic (ROC) curves were applied to evaluate the accuracy of nomogram. Gene set
enrichment analyses (GSEA) were carried out to explore the biological mechanism
between high- and low-risk group and the potential regulated pathway of prognostic
DE-FLs in CRC.

Results: Forty-nine DE-FLs were identified between CRC and normal tissue. Then, a 4-
DE-FLs (AC016027.1, AC099850.3, ELFN1-AS1, and VPS9D1-AS1) prognostic
signature model was generated. AC016027.1 was downregulated in CRC tissue;
VPS9D1-AS1 and ELFN1-AS1 were upregulated by q-PCR. The model had a better
accuracy presenting by 1-, 3-, and 5-years ROC curve (AUC ≥0.6), and identified survival
probability (p < 0.05) well. Moreover, the risk signature could play as an independent factor
of CRC (p < 0.05). Further, a nomogram including age, pathologic stage, T stage, and risk
score with good prognostic capability (C-index � 0.789) was constructed. In addition, we
found biological pathways mainly related to metabolism and apoptosis were down-
regulated in high-risk group who with poor outcome. Finally, the functional enrichment
showed prognostic DE-FLs may significantly impact bile secretion in CRC.

Conclusion: A risk model and nomogram based on ferroptosis-related lncRNAs were
created to predict 1-, 3-, and 5-years survival probability of CRC patients. Our data
suggested that the prognostic lncRNAs could serve as valuable prognostic marker.

Keywords: ferroptosis, lncRNAs, colorectal cancer, prognosis, risk signature, nomogram
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INTRODUCTION

CRC is the third major cause of cancer mortality in industrialized
countries, which seriously endangers human health (Siegel et al.,
2018). The relevant data of the World Health Organization
(WHO) shows that the incidence of CRC has begun to decline
in some developed countries, but it still remains increase in the
developing world (Zeuner et al., 2014). In new CRC diagnoses,
20% of patients have metastases at presentation and another 25%
with localized disease will later develop metastases (Biller and
Schrag, 2021), therefore early disease diagnosis is especially
critical. Despite the encouraging amelioration in CRC
diagnostic and therapeutic methods, a relatively high
proportion of CRC patients suffering from poor survival
outcomes still exists because of late disease detection and
lacking availability of adequate risk-assessment biomarkers
(Yang et al., 2021). Thus, it is urgently to identify novel and
reliable biomarkers for the individualized diagnosis of CRC,
which may potentially improve overall outcome of this disease.

Ferroptosis is considered a nonapoptotic, iron-dependent
form of cell death with three hallmarks including oxidation of
polyunsaturated fatty acid, redox active iron and lipid peroxide
repair loss (Dixon et al., 2012; Jiang X. et al., 2021). Cancer cells
are more vulnerable to ferroptosis due to their high demand of
iron to support fast proliferation (Hassannia et al., 2019).
Recently, evidence is emerging that ferroptosis has a tumor-
suppressor effect that could be employed for tumor treatment
(Stockwell et al., 2017). For example, BAP1 restrains tumor
progression partly through SLC7A11 and ferroptosis (Zhang
et al., 2018). Ferroptosis also has great potential to eliminate
malignant cells which are resistant to conventional therapy. Shin
et al. (2018) reported that inhibition of GPX4 made
chemoresistance cancer cells more vulnerable to ferroptosis.

Long non-coding RNAs (lncRNAs) are transcripts with more
than 200 nucleotides in length, but being not translated into
proteins (Mercer et al., 2009). LncRNA possesses variously
functional activity including RNA decay, gene expression and
control, RNA splicing, miRNA regulation, protein folding (Chen
et al., 2017). Some lncRNAs can also prevent oxidation and thus
inhibit ferroptosis as rival endogenous RNAs (Jiang N. et al.,
2021). A study found that LINC00336 acted as an oncogene,
which bound ELAVL1 using nucleotides 1901-2107 of
LINC00336 and the RRM interaction domain and key amino
acids of ELAVL1 (aa 101-213), inhibiting ferroptosis (Wang M.
et al., 2019). Moreover, recent evidences indicated that
identification of lncRNAs could help early disease detection
and advance therapy outcomes in CRC patients (Yang et al.,
2021). Given their roles in malignant development and disorder
of expression in CRC patients, lncRNA is undoubtedly potential
to be a reliable diagnostic and prognostic biomarker for CRC.

In this study, we hypothesized that ferroptosis-related
lncRNAs might be promising prognostic biomarkers for CRC
patients. We analyzed the correlation between the expression of
ferroptosis-related lncRNAs with survival and the
clinicopathological parameter of CRC patients from TCGA
database. Moreover, we constructed a prognostic signature
based on four ferroptosis-related lncRNAs and assessed its

ability to independently and accurately predict the prognosis
of CRC patients. The work flow of this study is illustrated in
Figure 1.

MATERIAL AND METHODS

Acquisition of CRC Data
The level 3 RNA-Sequencing (RNA-Seq) dataset and
corresponding clinical information of COAD and READ
cancer patients were downloaded from TCGA data portal
(https://portal.gdc.cancer.gov/) which was updated at
November 9, 2020. There were 673 samples in the dataset,
including 622 CRC and 51 normal ones. After excluding the
samples without survival information, a total of 582 samples were
enrolled in our study and randomly assigned into training and
validation set at a ratio of 7:3. In addition, 382 ferroptosis-related
genes (FRGs) were obtained from the FerrDb database (http://
www.zhounan.org/ferrdb/). GENCODE v22 was used for gene
annotation (https://www.gencodegenes.org/human/release_22.
html).

Identification of Differently Expressed
Ferroptosis-Related lncRNAs in CRC.
Differently expressed genes (DEGs) and lncRNAs (DLRs)
between CRC and normal samples were identified by “limma”
package in R language. DEGs and DLRs meeting |log2FC| > 1 and
p_value <0.05 were considered as significantly expressed. The
“ggplot2” package were used to construct volcano plot of these
DEGs and DLRs. Then we extracted differently expressed
ferroptosis-related genes (DE-FGs) from the overlap of FRGs
and DEGs, which analyzed by Venn diagram (http://
bioinformatics.psb.ugent.be/webtools/Venn/). Pearson analysis
were performed to screen the DE-FLs with criterion of |cor| >
0.3 and p < 0.05.

Construction of Prognostic DE-FLs
Signature
DE-FLs which significantly associated with CRC prognosis were
identified by univariate Cox regression model (cut off <0.2). Then
the candidate DE-FLs were entered into a stepwise multivariate
Cox regression analysis and constructed a prognostic signature
model according to Akaike Information Criterion (AIC). The
expression levels of prognostic DE-FLs in normal and CRC tumor
samples in TCGA database were checked by Wilcoxon test. And
the survival curve of CRC patients based on DE-FLs expression
were draw. Further, the risk score of individual patients was
established based on the summation of coefficients and
expression level of each prognostic DE-FLs according to the
following formula:

Risk score � ∑(Coefi X Expi)

Thus, the CRC patients in each set were classified into high- and
low-risk group reference the median risk score.
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FIGURE 1 | Work flow for the construction of a risk signature in colorectal cancer.
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Evaluation of the Prognostic Signature
To evaluate the valuable of prognostic signature in each set, the
differences in patients’ survival between high- and low-risk group
were evaluated by Kaplan-Meier curve analyses and log-rank test
(p < 0.05). Then, the 1-, 3-, and 5-years ROC curves were
employed to compare the specificity and sensitivity of the
survival prediction based on the prognostic signature via
“pROC” package. Moreover, the relationship between risk
score and clinical characteristics were analyzed by t-test.

Establishment of Nomogram for CRC
Prognostic Prediction
To identify independent prognostic factors of CRC, the univariate
and multivariate Cox regression analyses were performed to
evaluate the risk score and other clinical variables such as age,

gender, grade, M stage, T stage, and N stage. The factor with p <
0.05 was considered statistically significant. Then, we integrated
all of the independent prognostic factors to build a nomogram by
“rms” package for inspecting the probability of 1-, 3-, and 5-years
overall survival (OS) of the CRC patients. The discrimination and
predictive ability of the nomogram in CRC were assessed with
calibration curve and a C-index indicate. We also plotted ROC
curve and calculated the area under the ROC curve (AUC) values
based on total points of nomogram.

Functional Annotation
Functional enrichment analyses were performed to explore the
underlying mechanism of prognostic signature. Firstly, the GSEA
software was conducted for Gene Ontology (GO) term and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways analyses
in high- and low-risk group in CRC. Then, the co-expression of

FIGURE 2 | Identification of differentially expressed ferroptosis-related lncRNAs in CRC patients. (A) Volcano plot of the DEGs in CRC patients. (B) Venn diagram
showed the intersection of 40 differentially expressed ferroptosis-related genes. (C) Volcano plot of the differentially expressed lncRNAs in CRC patients.

FIGURE 3 | Construction of ferroptosis-related lncRNA prognostic signature in CRC patients. (A) Forest plots showed 4 DE-FLs selected by the univariate Cox
regression. (B) Forest plots showed four prognostic DE-FLs identified by the multivariate Cox regression.
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the signature DE-FLs and mRNA was assessed with Pearson
correlation analyses. The mRNAs in co-expression pairs whose
correlation coefficient >0.7 and p < 0.0.5 were selected for
functional annotation by “clusterProfiler” package. Biological
processes were collected from the GSEA (https://www.gsea-
msigdb.org/gsea/index.jsp). The p. adjust-value below 0.05 was
considered significant.

Quantitative Polymerase Chain Reaction
Thirty pairs of CRC tumor and adjacent tissues were collected
from clinical patients at The First Affiliated Hospital of Wenzhou
Medical University and preserved in -80 C refrigerator. All
patients gave the written informed consent. All assay regimens
gained the approval of the Ethics Committees in Clinical
Research of the First Affiliated Hospital of Wenzhou Medical
University and the corresponding ethical approval code was
KY2021-R005. Total RNA was isolated from tissue samples
using TRIzol reagent (Invitrogen, Carlsbad, CA). Then
PrimeScript™ RT Master Mix kit (TaKaRa, Japan) kit was
used to synthesize cDNA according to the instruction manual.
q-PCR for cDNA amplification was performed with Green™

Premix Ex Taq™ II (TaKaRa) kit. GAPDH was used as endogenous
control and primers were shown in Supplementary Table S1. The
expression of signature DE-FLs were normalized using the relative
quantification method of 2-ΔΔCt.

Statistical Analysis
Statistical procedures were applied using R v.4.0.3 and Prism
v.8.0.0. The Student’s t-test or the Wilcoxon test was utilized for
differences analysis. p < 0.05 was statistically significant.

RESULTS

Screening of DE-FLs in CRC
A total of 1737 DEGs, including 780 up-regulated and 957 down-
regulated genes, between CRC and normal samples were obtained
from TCGA (Figure 2A). And 382 FRGs were downloaded from
the FerrDb database. Then 40 DE-FGs were identified by Venn
diagram (Figure 2B) and the correlation among them was shown
in Supplementary Figure S1. In addition, there were 51 DLRs
selected in CRC, including 33 up-regulated and 18 down-regulated

FIGURE 4 | Evaluation and validation of the DE-FLs prognostic signature in CRC patients. (A, B) Distribution and Survival status of CRC patients with different risk
scores in training set and validation set. (C) Kaplan–Meier survival curve of high- and low-risk group in training set. (D) The 1-, 3-, and 5-years ROC curve for risk model in
training set. (E) Kaplan–Meier survival curve of high- and low-risk group in testing set. (F) The 1-, 3-, and 5-years ROC curve for risk model in testing set.
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lncRNAs (Figure 2C). Finally, we performed Pearson correlation
analysis to calculate the correlation between the DLRs and DE-FGs,
and used |cor| > 0.3 and p < 0.05 as the selection criteria. As shown in
Supplementary Data S1, 49 lncRNAs were acquired and termed as
DE-FLs for further research.

Construction of Ferroptosis-Related
lncRNA Prognostic Signature in CRC
Univariate Cox regression analysis showed that 4 DE-FLs
(AC016027.1, AC099850.3, ELFN1-AS1, and VPS9D1-AS1) were
associated with OS in CRC, except VPS9D1-AS1 played a risk
factor with HR > 1, the others acted as protectors with HR < 1
(Figure 3A). Multivariate Cox regression analysis further ascertained
these 4 DE-FLs with prognostic significance (Figure 3B). Thus, they
were employed to construct a prognostic signature model.
Supplementary Figure S2 showed the survival probability of CRC
patients in high- and low-expression DE-FLs respectively.

Evaluation and Validation of the
Ferroptosis-Related lncRNA Prognostic
Signature
CRC patients in the TCGA dataset were classified into high-risk
(training set n � 205; validation set n � 87; total n � 292) and

low-risk (training set n � 203; validation set n � 87; total n �
290) groups using the median risk-score as the cutoff point
(Figures 4A,B). Kaplan-Meier survival curve analysis showed
that the OS of high-risk group patients were significantly poorer
than low-risk group in the training set (n � 408) (Figure 4C).
The 5-years survival rates were approximately 40 and 75% of the
high-risk and low-risk group respectively. Time-dependent ROC
curve analysis showed an appropriate accuracy of the prognostic
signature in predicting OS in CRC, and AUC values were 0.662 at
1 year, 0.635 at 3 years, and 0.657 at 5 years (Figure 4D). For further
validation, we confirmed that the results in the validation set coincided
with the outcomes in the training set. In the validation set (n � 174),
the significant prognostic value was p � 0.02 (Figure 4E) and AUC
values for 1-, three- and 5- year OS were 0.631, 0.592, and 0.738,
respectively (Figure 4F).

Then, we conducted the correlation analysis between the risk scores
and the clinical characteristics of the CRC patients in TCGA database.
We found that none of the clinical feature associated with risk scores in
training set (Table 1 and Figure 5) and in validation set
(Supplementary Table S2, Supplementary Figure S3).

The Risk Score Is an Independent
Prognostic Factor in CRC
In order to determine if the ferroptosis-related lncRNA
prognostic signature was an independent prognostic factor for

TABLE 1 | The relationship of CRC patients clinical feature and the DE-FLs model.

ExpressionTotal (n = 408)

High (n = 205) Low (n = 203)

p_value

Gender
female 192 (47.1%) 99 (48.3%) 93 (45.8%) 0.687
male 216 (52.9%) 106 (51.7%) 110 (54.2%)

Age (years) 0.138
≥ 60 290 (71.1%) 153 (74.6%) 137 (67.5%)
<60 118 (28.9%) 52 (25.4%) 66 (32.5%)

Pathologic stage 0.592
stage_Ⅰ 67 (16.4%) 32 (15.6%) 35 (17.2%)
stage_Ⅱ 152 (37.3%) 74 (36.1%) 78 (38.4%)
stage_Ⅲ 122 (29.9%) 61 (29.8%) 61 (30.0%)
stage_Ⅳ 53 (13.0%) 32 (15.6%) 21 (10.3%)
unknown 14 (3.4%) 6 (2.9%) 8 (3.8%)

T stage
T1 9 (2.2%) 6 (2.9%) 3 (1.5%) 0.568
T2 71 (17.4%) 32 (15.6%) 39 (19.2%)
T3 290 (71.1%) 146 (71.2%) 144 (70.9%)
T4 37 (9.1%) 20 (9.8%) 17 (8.4%)
unknown 1 (0.2%) 1 (0.5%) 0 (0%)

M stage 0.174
M0 302 (74.0%) 148 (72.2%) 154 (75.9%)
M1 52 (12.7%) 32 (15.6%) 20 (9.9%)
MX 45 (11.0%) 19 (9.3%) 26 (12.8%)
unknown 9 (2.2%) 6 (2.9%) 3 (1.5%)

N stage 0.285
N0 231 (56.6%) 112 (54.6%) 119 (58.6%)
N1 92 (22.5%) 42 (20.5%) 50 (24.6%)
N2 82 (20.1%) 49 (23.9%) 33 (16.3%)
NX 2 (0.5%) 1 (0.5%) 1 (0.5%)
unknown 1 (0.2%) 1 (0.5%) 0 (0%)
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CRC patients, we performed univariate and multivariate Cox
regression analyses. Univariate analyses showed that age, MNT
(p < 0.001), stage (p < 0.001) and the risk score were significantly
associated with OS (Figure 6A). Multivariate analyses showed
that pathologic stage (p < 0.001), age, T stage and risk score could
act as independent prognostic factor (Figure 6B).

Subsequently, we developed a nomogram to predict 1-, 3-, and
5-years OS of CRC using the all of the independent prognostic
factors (Figure 6C). The C-index for the nomogram was 0.789.
The 1-year, 3-years and 5-years calibration curves showed the
nomogram with an accurate prediction in CRC (Figure 6D).
Finally, the AUC values at 1-year, 3-years and 5-years were 0.736,
0.710, 0.746, respectively (Figure 6E), also indicated the
predictive capacity of the nomogram was reliable.

Functional Analysis of Ferropotosis-Related
lncRNA Signature
GSEA analyses were conducted to further explore the difference
biological mechanism between low- and high-risk groups. In high-
risk group, the biological process mainly related to chromosome
(Figure 7A). And the pathways such as OLFACTORY_
TRANSDUCTION, OOCYTE_MEIOSIS, ASCORBATE_AND_
ALDARATE_METABOLISM, O_GLYCAN_BIOSYNTHESIS,
STARCH_AND_ SUCROSE_METABOLISM, UBIQUITIN_

MEDIATED_PROTEOLYSIS, APOPTOSIS and PROTEIN_
EXPORT were significantly enriched in the high-risk group
(Figure 7B). Except RIBOSOME, all of the others were down-
regulated.

Construction of Co-expression Network
We used Pearson correlation analyses and Cytoscape to construct
lncRNA-mRNA co-expression network. When threshold parameter |
cor| > 0.7 was set, 132 mRNA which significantly related to two
prognostic DE-FLs (AC016027.1, AC099850.3) were involved in the
network (Figure 8, Supplementary Data S2). Pearson correlation
analysis also showed all the mRNAs (|cor| > 0.5) associated with these
4 DE-FLs (Supplementary Data S3). PEX26, SLC51B, TMEM236,
CA4, and SLC26A3 ranked as top five genes high correlated with
AC016027.1. PRR11, BRCA1, KPNA2, TOP2A and NCAPH were
top five high correlated with AC099850.3.

Functional Enrichment Analysis
To investigate the biological pathways regulated by the prognostic
lncRNAs, we performed GO and KEGG enrichment analysis on the
network-genes. Five KEGG pathways and 84 GO functional items were
enriched. The top tenGO items weremainly relatedwith smallmolecule
catabolic process, lipid catabolic process, fatty acid metabolism process
(Figure 9A). KEGG pathway analysis confirmed that bile secretion was
the most significantly enriched pathway (Figure 9B).

FIGURE 5 | Relationship between the risk score and clinical significance in training set.
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FIGURE 6 | Identification of independent risk factors and construction of a nomogram. (A) The univariate and (B)multivariate Cox regression analysis of risk score
and clinical feature prognostic value. (C) A nomogram was constructed to predict 1-, 3-, and 5-years OS using risk score, stage, T and age. (D) Calibration curves of
nomogram. (E) 1-, 3-, and 5-years ROC curve based on nomogram.

FIGURE 7 | Functional enrichment analysis. (A) GO items enriched by GSEA analysis in high risk group. (B) KEGG pathways enriched by GSEA analysis in high
risk group.
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Validation of the Ferrptosis-Related
Signature in Clinical CRC Tissues
The expression levels of prognostic DE-FLs were detected by
q-PCR in thirty pairs of CRC tissues and adjacent tissues. As
shown in Figures 10A–D, AC016027.1 was down-regulated in
CRC from TCGA database whereas VPS9D1-AS1, ELFN1-AS1
and AC099850.3 were up-regulated. Q-PCR analyses showed that
expression level of AC016027.1 was down-regulated in CRC
tissues compared with paired normal tissues; VPS9D1-AS1
and ELFN1-AS1 were up-regulated (Figures 10E–G) which
were consistent with the results from TCGA. There was no
significant difference in the expression level of AC099850.3
between CRC and normal tissues (Figure 10H).

DISCUSSION

A growing body of researches showed that aberrant expression of
lncRNAs were associated with risk for CRC (Ni et al., 2019; Wang Y.
et al., 2019; Yuan et al., 2021). Their results indicated the clinic
potential of lncRNAs as stratification markers, diagnostic indicators,
therapeutic targets for CRC (Lin and Yang, 2018). Ferroptosis,

dependent on iron and reactive oxygen species (ROS) and
characterized by lipid peroxidation, is a non-apoptotic regulated
cell death (Kajarabille and Latunde-Dada, 2019). Much evidence
has indicated that ferroptosis participated in multiple pathways
and was critical for eradicating the carcinogenic cells (Dixon, 2017;
Mou et al., 2019). Xu et al. (2020) demonstrated that knockout of
SLC7A11 induced ferroptosis, thereby suppressed the progression of
CRC stem cells. Previous studies which investigated the function of
ferroptosis in CRChave largely concentrated onTP53 (Murphy, 2016;
Xie et al., 2017). Xie et al. (2017) reported that TP53 suppressed
ferroptosis triggered by erastin through the inhibition of dipeptidyl-
peptidase-4 (DPP4) in a transcription-independent manner in CRC.
Emerging evidences indicated that lncRNAs have been involved in
tumorigenesis and tumor progression by targeting ferroptosis-related
genes, such as p53RRA which restrains ferroptosis-modulated genes
in a p53-dependent manner by interacting with G3BP1 (Mao et al.,
2018). Mao C et al. validated a novel mechanism that p53RRA
regulates apoptosis and ferroptosis in cancer. Also, p53RRA can be
used as a prognostic marker in lung adenocarcinoma patients.
Therefore, particular emphasis should be placed on ferroptosis-
related lncRNAs for individualized diagnosis and treatment in
CRC patients. In present study, we screened four
ferroptosis-related lncRNAs and constructed a ferroptosis-

FIGURE 8 | Co-expression network of DE-FLs and mRNA.
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related risk model which might be a potential diagnostic
biomarker, using bioinformatics and statistical tools.

Firstly, we examined 49 DE-FLs in CRC by analyzing TCGA-
COADREAD data set (Smyth, 2004), then 4 DE-FLs (AC016027.1,
AC099850.3, ELFN1-AS1, and VPS9D1-AS1) that significantly correlated

withOSwere foundtoconstruct therisksignatureaccording totheunivariate
and multivariate Cox regression analysis. CRC patients in high-risk groups
showed shorter OS compared to those in low-risk groups. Kaplan-Meier
survival curve and ROC curve evaluated the predictive accuracy of the
ferroptosis-related signature in CRC patients (Robin et al., 2011).

FIGURE 9 | Functional annotation of mRNA. (A) GO items enriched by GSEA analysis on the network-genes. (B) KEGG pathways enriched by GSEA analysis on
the network-genes.

FIGURE 10 | Different expressions of prognostic DE-FLs in CRC tissues and TCGA. (A–D) The different expression levels of 4 DE-FLs in TCGA. (E–G) Q-PCR
results demonstrated the down-regulated expression level of AC016027.1 and up-regulated level of VPS9D1-AS1 and ELFN1-AS1 in CRC tissues compared with
paired normal tissues. (H) Q-PCR result of expression level of AC099850.3 in CRC tissues compared with paired normal tissues. *, p < 0.05. **, p < 0.01. ***, p < 0.001.
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Previous research reported that AC099850.3 and ELFN1-AS1
participated in prognostic autophagy-related lncRNAs signature in
HCG patients (Jia et al., 2020). Jiang Q. et al. (2021) reported
AC099850.3 was selected by a prognostic autophagy-related
lncRNAs signature in oral and oropharyngeal squamous cell
carcinoma. The above results appeared to support an existing
viewpoint that ferroptosis is a type of autophagy-dependent cell
death because a lot of autophagy-related signal pathways
contributed to ferroptosis, including BECN1-mediated system xc-
inhibition and NCOA4-facilitated ferritinophagy (Song et al., 2018;
Quiles Del Rey andMancias, 2019; Zhou et al., 2020). ELFN1-AS1 was
validatedwith high expression in colon cancer tissues and cells andwas
reported to promote proliferation and invasion of colon cancer cells by
adjusting themiR-191-5p/SATB1 axis (Du et al., 2020). Liu et al. (2020)
suggested that VPS9D1-AS1 was a competing endogenous RNA in
CRC cells and increased the expression ofHMGA1, thereby influenced
CRC progression. However, to our knowledge, AC016027.1 and
AC099850.3 have not been reported in CRC, which means our
findings indicated further research is necessary.

In addition, the ferroptosis-related lncRNA signature is an
independent prognostic factor. We constructed a robust nomogram
integrating risk score and prognostic clinical features including age,
pathological staging and T stage for predicting patient outcomes. ROC
curve further demonstrated that this nomogramprovided a personalized
and accurate survival prediction. Collectively, in our study, there are
plenty of evidences suggested that the ferroptosis-related lncRNA
signature made accurately predictive prognosis of CRC patients and
showed great potential for clinical individualized prognosis and therapy.

Ferroptosis-related GO terms and KEGG signaling pathways
were enriched, in order to illustrate the specificmechanism behind the
predictive signature. We identified APOPTOSIS pathway reported to
be closely associatedwith ferroptosis and the expression levels of genes
involved in the pathwaywere significantly upregulated in the high-risk
group. Previous study revealed an existing cross talk between
ferroptosis and apoptosis through ferroptosis-induced endoplasmic
reticulum stress (Lee et al., 2018). C/EBP homologous protein
(CHOP) signaling pathway-mediated p53 upregulated modulator
of apoptosis (PUMA) expression participated in the cooperative
interaction between ferroptosis and apoptosis, indicating
combination of ferroptotic and apoptotic agent treatment could be
considered as a new therapeutic strategy for cancer. Meanwhile, the
interaction network between prognostic lncRNAs and DE-FGs was
also constructed. The correlation analysis gave us clues about the
regulatory relationship between these lncRNAs andmRNA, as well as
the molecular mechanism of their role in colorectal cancer. Through
the above analysis, we preliminarily inferred that these four
ferroptosis-related lncRNAs may directly or indirectly regulate DE-
FGs or genes participated in the pathways which were closely related
to CRC and thus caused the difference in patient survival.

Nie et al. (2021) comprehensively reported construction of a
ferroptosis related genes prognosis model in colon cancer, which
aimed to predict survival probability of patients. Our study further
screened for differently expressed lncRNAs in CRC which were
associated with ferroptosis-related genes, and then constructed a
ferroptosis-related lncRNA prognosis model of CRC by Cox
regression analyses. There are some advantages in our study that not
only did we conduct themining and exploration of public databases, but

also developed the biochemical experiment such as q-PCR to verify our
findings in clinical CRC patient samples. However, the shortcoming is
that the specific biological molecular mechanisms of these ferroptosis-
related prognostic lncRNAs have not been studied in depth. Therefore,
future studies are required to explore its exact molecular functions of
these ferroptosis-related prognostic genes in CRC.

In conclusion, our study constructed and validated a
ferroptosis-related lncRNA prognosis signature in CRC, which
consist of AC016027.1, AC099850.3, ELFN1-AS1 and VPS9D1-
AS1. The novel ferroptosis-related lncRNA prognosis signature
accurately predicts the survival of CRC patients and differentiates
them into high- and low-risk groups. Furthermore, the prediction
model was independent of clinical features and a reliable nomogram
was constructed. Our results might shed lights on promising
biomarkers and targets for the individualized therapy of CRC.
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Prognostic Implications and Immune
Infiltration Analysis of ALDOA in Lung
Adenocarcinoma
Guojun Lu, Wen Shi and Yu Zhang*

Department of Respiratory Medicine, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University,
Nanjing, China

Background: aldolase A (ALDOA) has been reported to be involved in kinds of cancers.
However, the role of ALDOA in lung adenocarcinoma has not been fully elucidated. In this
study, we explored the prognostic value and correlation with immune infiltration of ALDOA
in lung adenocarcinoma.

Methods: The expression of ALDOA was analyzed with the Oncomine database, the
Cancer Genome Atlas (TCGA), and the Human Protein Atlas (HPA). Mann-Whitney U test was
performed to examine the relationship between clinicopathological characteristics and ALDOA
expression. The receiver operating characteristic (ROC) curve and Kaplan-Meier method were
conducted to describe the diagnostic and prognostic importance ofALDOA. The Search Tool for
the Retrieval of InteractingGenes (STRING) andCytoscapewere used to construct PPI networks
and identify hub genes. Functional annotations and immune infiltration were conducted.

Results: The mRNA and protein expression of ALDOA were higher in lung adenocarcinoma
than those in normal tissues. The overexpression of ALDOA was significantly correlated with
the high T stage, N stage, M stage, and TNM stage. Kaplan-Meier showed that high
expression of ALDOA was correlated with short overall survival (38.9 vs 72.5 months, p <
0.001). Multivariate analysis revealed that ALDOA (HR 1.435, 95%CI, 1.013–2.032, p � 0.042)
was an independent poor prognostic factor for overall survival. Functional enrichment analysis
showed that positively co-expressed genes of ALDOAwere involved in the biological progress
of mitochondrial translation, mitochondrial translational elongation, and negative regulation of
cell cycle progression. KEGG pathway analysis showed enrichment function in carbon
metabolism, the HIF-1 signaling pathway, and glycolysis/gluconeogenesis. The “SCNA”
module analysis indicated that the copy number alterations of ALDOA were correlated
with three immune cell infiltration levels, including B cells, CD8+ T cells, and CD4+ T cells.
The “Gene”module analysis indicated that ALDOA gene expression was negatively correlated
with infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, and macrophages.

Conclusion: Our study suggested that upregulated ALDOA was significantly correlated
with tumor progression, poor survival, and immune infiltrations in lung adenocarcinoma.
These results suggest that ALDOA is a potential prognostic biomarker and therapeutic
target in lung adenocarcinoma.
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INTRODUCTION

According to the latest data from global cancer statistics, lung
cancer is the most commonly diagnosed cancer and the leading
cause of cancer-related death around the whole world (Bray et al.,
2018). Lung adenocarcinoma is the most common pathological
type and accounts for more than 40% of all lung cancers (Travis
et al., 2015; Denisenko et al., 2018). Despite advances that have
been made in early diagnosis and treatment for lung
adenocarcinoma in the past years, including targeted therapy
and immunotherapy (Zhou and Yao, 2016; Hanna et al., 2017; Xu
et al., 2018), the prognosis of lung adenocarcinoma patients
remains bleak (Zhang et al., 2019). Therefore, it is imperative
to search for novel prognostic markers and therapeutic targets for
lung adenocarcinoma.

Aldolase A (ALDOA), also called muscle-type aldolase, is mainly
expressed in muscle tissues (Tochio et al., 2010). ALDOA encodes a
glycolytic enzyme that catalyzes the reversible conversion of
fructose-1,6-bisphosphate to glyceraldehyde 3-phosphate and
dihydroxyacetone phosphate. Ectopic expression of ALDOA is
important in the development of cardiac hypertrophy, heart
failure, and many cardio-cerebrovascular diseases (Hu et al.,
2013). Furthermore, ALDOA has been reported to be involved in
gluconeogenesis and glycolysis (Zeng et al., 2016). Based on both
gluconeogenesis and glycolysis can provide energy for tumor
proliferation, accumulating evidence has indicated that ALDOA
plays an important role in the pathological progress of several
cancers. A paper from Saito et al. indicated that upregulated
ALDOA in cervical adenocarcinoma can increase the metastasis
and invasion of cervical adenocarcinoma cells via promoting
epithelial-mesenchymal transition (EMT) (Saito et al., 2020).
Concerning non-small cell lung cancer, Fu et al. reported that
ALDOA can activate the EGFR/MAPK pathway to promote
cyclin D1 expression, enhance proliferation and G1/G transition,
and facilitate aerobic glycolysis (Fu et al., 2018). These findings
indicate that ALDOA plays an important role in tumor progression.

In the present study, we conducted bioinformatics analyses on
ALDOA in lung adenocarcinoma patients, including
transcriptional expression and mutation analysis, survival
analysis, functional enrichment analysis. We also performed
co-expression analysis, constructed the predicted protein-
protein interaction (PPI) networks, and identified hub genes of
co-expressed genes with ALDOA. Moreover, we determined the
relationship between ALDOA expression and immune cell
infiltration in lung adenocarcinoma. Our results link the
expression of ALDOA with a poor prognosis and provide a
potential therapeutic target for lung adenocarcinoma.

MATERIALS AND METHODS

Oncomine Database
Oncomine (https://www.oncomine.org/) is an online platform
that provides solutions to compute gene expression signatures,
clusters, and gene-set modules, automatically extracting
biological insights (Rhodes et al., 2007). In this study, we
conducted Oncomine to evaluate the mRNA expression of

ALDOA in lung adenocarcinoma. The results drew from a
series of lung adenocarcinoma studies, including Selamat lung,
Landi lung, Hou lung, Okayama lung, Stearman lung, Su lung,
and Garber lung (Garber et al., 2001; Stearman et al., 2005; Su
et al., 2007; Landi et al., 2008; Hou et al., 2010; Okayama et al.,
2012; Selamat et al., 2012).

The Cancer Genome Atlas (TCGA)
TCGA (https://portal.gdc.cancer.gov/) is a genomics data
resource that characterized, and analyzed cancer samples
(Tomczak et al., 2015). In this study, we analyzed the
transcription level of ALDOA in multiple cancers from TCGA.
The mRNA expression and associated clinical data of ALDOA in
lung adenocarcinoma were also downloaded from TCGA. The
mRNA data of FPKM format has been converted into TPM.

Tumor Immune Estimation Resource
(TIMER)
TIMER (http://timer.cistrome.org/) is an online database and
allows users to analyze the differential expression between tumor
and normal tissues across all TCGA tumors, and study the
correlation between gene expression and immune infiltration
level (Li et al., 2020). In the present study, we conducted
TIMER to determine the expression of ALDOA in diverse
cancer types. Moreover, we applied TIMER to explore the
correlation between ALDOA expression and the abundance of
tumor-infiltrating immune cells (B cells, CD4+ T cells, CD8+

T cells, neutrophils, macrophages, and dendritic cells). In
addition, TIMER was used to study the correlation between
ALDOA expression and gene markers of tumor-infiltrating
immune cells.

UALCAN
The UALCAN (http://ualcan.path.uab.edu/) is a comprehensive
online web resource that provides easy access to analyze publicly
available cancer omics data (Chandrashekar et al., 2017). In this
study, we performed UALCAN to compare the mRNA and
protein expression of ALDOA from TCGA and Clinical
Proteomic Tumor Analysis Consortium (CPTAC, https://
proteomics.cancer.gov/programs/cptac) (Edwards et al., 2015).

The Human Protein Atlas (HPA)
The HPA database (https://proteinatlas.org/) is aimed to map all
the human proteins with an integration of various omics
technologies (Uhlén et al., 2015; Uhlen et al., 2017). All the
data of human proteins includes expression profiles in cells,
tumor tissues, and normal tissues. In this study, we performed
HPA to confirm the protein expression of ALDOA in lung
adenocarcinoma.

Gene Expression Profiling Interactive
Analysis (GEPIA2)
GEPIA 2 (http://gepia2.cancer-pku.cn/) is a web-based tool to
provide interactive and customizable functions, including gene
expression analysis, correlation analysis, survival analysis, similar
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genes detection, and dimensionality reduction analysis (Tang
et al., 2019). In this study, we conducted GEPIA2 to examine the
correlation between ALDOA expression and overall survival. In
addition, GEPIA2 was used to assess the correlation between
ALDOA expression and gene markers of tumor-infiltrating
immune cells.

The Kaplan Meier Plotter
The Kaplan Meier plotter (http://www.kmplot.com/analysis/) is
an online tool to assess the effect of 54k genes on survival across
cancers including breast, ovarian, lung, and gastric cancer (Nagy
et al., 2021). Gene expression data and information of relapse-free
and overall survival are downloaded from Gene Expression

Omnibus (GEO), European Genome-phenome Archive (EGA),
and TCGA. In this study, we performed a Kaplan Meier plotter to
validate the prognostic value of ALDOA in lung adenocarcinoma.

c-BioPortal Database
The c-Bio Cancer Genomics Portal (https://www.cbioportal.org/)
is an open-access online resource for interactive exploration of
many cancer genomics databases (Cerami et al., 2012). The
cancer research community can utilize genomic data easily
and directly with c-BioPortal. In this study, we performed
c-BioPortal databases to explore mutation data of ALDOA in
lung adenocarcinoma, obtain its prognostic value in altered lung
adenocarcinoma patients, acquire co-expressed genes of ALDOA,

FIGURE 1 | Expression of ALDOA from Oncomine (A) ALDOA expression in different types of cancers. Red means up-regulated and blue means down-regulated
(B-H)BOX plot showing themRNA expression levels ofALDOA in Selamat lung, Landi lung, Hou lung, Okayama lung, Stearman lung, Su lung, and Garber lung datasets,
respectively.
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and determine the correlation between ALDOA and mRNA
expression of 10 hub genes.

STRING Database and Cytoscape Platform
The Search Tool for the Retrieval of Interacting Genes (STRING,
http://string-db.org, Version 11.0) is an online database to
analyze functional enrichment and PPI networks (Szklarczyk
et al., 2019). Cytoscape (Version 3.6.1) is an open-source
software platform for integrating and visualizing complex
networks (Shannon et al., 2003). In this study, to construct
PPI networks of co-expressed genes and identify hub genes,
we imported the co-expressed genes into STRING and then
explored the degree scores with cytoHubba tool kits in Cytoscape.

Statistical Analyses
Statistical analyses and visualization of expression differences
were performed with R (V 3.6.3, https://www.r-project.org/) and

R package ggplot2. Mann-Whitney U test was conducted to
observe the differences between lung adenocarcinoma tissues
and adjacent normal tissues. R package pROC (Robin et al.,
2011) and clusterProfiler (Yu et al., 2012) were conducted to
explore the diagnostic importance and functional enrichment
analysis of co-expressed genes in lung adenocarcinoma.

RESULTS

Expression of ALDOA in Lung
Adenocarcinoma From Oncomine
To evaluate the transcription level of ALDOA in multiple lung
adenocarcinoma studies, we performed an analysis on Oncomine.
As shown in Figures 1A–H, the transcription level of ALDOA
was upregulated in lung adenocarcinoma tissues than in normal
tissues. The fold change of ALDOA differed from 1.697 to 2.154,

FIGURE 2 | Expression of ALDOA from TCGA, CPTAC, and HPA (A) ALDOA was upregulated in 14 cancer types, including BLCA, BRCA, CESC, CHOL, ESCA,
HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC, PCPG, and UCEC. ALDOA was downregulated in GBM and PRAD (B) The mRNA expression of ALDOA in 59 normal
tissues and 515 lung adenocarcinoma tissues (C) The protein expression of ALDOA in 111 lung normal tissues and 111 lung adenocarcinoma tissues (D) The protein
expression of ALDOA in normal tissue. Staining was not detected, intensity was negative, and quantity was none (E) The protein expression of ALDOA in lung
adenocarcinoma tissue. Staining was high, intensity was strong, and quantity >75%. HPA normal: https://www.proteinatlas.org/ENSG00000149925-ALDOA/tissue/
lung#img,HPA tumor: https://www.proteinatlas.org/ENSG00000149925-ALDOA/pathology/lung+cancer#img (*, p < 0.05; **, p < 0.01, ***, p < 0.001).
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and mRNA expression was up to the top 14%. These data
indicated transcription level of ALDOA is increased in lung
adenocarcinoma tissues.

Expression of ALDOA in Pan-Cancer
Perspective and Lung Adenocarcinoma
From TCGA, UALCAN, and HPA
To further evaluate the expression of ALDOA in multiple cancers,
we performed an analysis on TCGA with TIMER. As shown in
Figure 2A, the mRNA expression of ALDOA was upregulated in
14 cancer types, including lung adenocarcinoma and lung
squamous cell carcinoma. ALDOA was downregulated in two
cancer types, including GBM and PRAD. The result from
UALCAN indicated that both mRNA and protein expression
of ALDOA in lung adenocarcinoma tissues were significantly
higher than that in normal tissues (p � 1.62E-12, p � 7.75E-31,
respectively) (Figures 2B,C). Consistent with the results of
UALCAN, HPA showed protein expression of ALDOA in lung
adenocarcinoma tissue was higher than that in normal lung tissue
(Figures 2D,E). All these results indicate that ALDOA is
upregulated in lung adenocarcinoma tissues.

The Relationship Between
Clinicopathological Characteristics and
ALDOA Expression in Lung
Adenocarcinoma Patients From TCGA
We downloaded the mRNA expression and associated clinical
data of ALDOA in lung adenocarcinoma from TCGA. The
clinicopathological characteristics of lung adenocarcinoma
patients were shown in Table 1. To examine the relationship
between clinicopathological characteristics and ALDOA
expression in TCGA cohorts, we conducted the Mann-
Whitney U test. As shown in Figure 3, ALDOA mRNA
expression in lung adenocarcinoma patients was significantly
increased with high T stage (p � 0.025), N stage (p � 0.013),
M stage (p � 0.002), and TNM stage (p < 0.001). However, no
significantly differences were found between ALDOA mRNA
expression and other characteristics, such as gender (p �
0.329), age (p � 0.594), smoke condition (p � 0.754), and
anatomic subdivision (right vs left, p � 0.456; central vs
peripheral, p � 0.682). To sum up, these data suggest that
ALDOA might play an important role in tumorigenesis and
metastasis of lung adenocarcinoma.

TABLE 1 | The clinicopathological characteristics of lung adenocarcinoma patients.

Characteristics Total Low expression High expression p-value

N (%) N (%) N (%)

T stage — — — 0.041*
T1 175 (32.9) 101 (19.0) 74 (13.9) —

T2 289 (54.3) 136 (25.6) 153 (28.8) —

T3 49 (9.2) 22 (4.1) 27 (5.1) —

T4 19 (3.6) 6 (1.1) 13 (2.4) —

N stage — — — <0.001***
N0 348 (67.0) 194 (37.4) 154 (29.7) —

N1 95 (18.3) 31 (6.0) 64 (12.3) —

N2 74 (14.3) 30 (5.8) 44 (8.5) —

N3 2 (0.4) 0 (0) 2 (0.4) —

M stage — — — 0.003**
M0 361 (93.5) 175 (45.3) 186 (48.2) —

M1 25 (6.5) 4 (1.0) 21 (5.4) —

Pathologic stage — — — <0.001***
Stage I 294 (55.8) 172 (32.6) 122 (23.1) —

Stage II 123 (23.3) 50 (9.5) 73 (13.9) —

Stage III 84 (16.0) 33 (6.3) 51 (9.7) —

Stage IV 26 (4.9) 5 (0.9) 21 (4.0) —

Gender — — — 0.178
Female 286 (53.5) 151 (28.2) 135 (25.2) —

Male 249 (46.5) 116 (21.7) 133 (24.9) —

Age — — — 0.860
≤65 255 (49.4) 126 (24.4) 129 (25) —

>65 261 (50.6) 132 (25.6) 129 (25) —

Smoker — — — 1.000
No 75 (14.4) 37 (7.1) 38 (7.3) —

Yes 446 (85.6) 223 (42.8) 223 (42.8) —

Anatomic neoplasm subdivision — — — 0.282
Left 205 (39.4) 109 (21) 96 (18.5) —

Right 315 (60.6) 151 (29) 164 (31.5) —

Anatomic neoplasm subdivision2 — — — 0.816
Central Lung 62 (32.8) 25 (13.2) 37 (19.6) —

Peripheral Lung 127 (67.2) 55 (29.1) 72 (38.1) —

*p < 0.05; **p < 0.01; *** p < 0.001.
CI, confidence interval.
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Diagnostic Value of ALDOA for
Distinguishing Lung Adenocarcinoma
Tissues From Normal Tissues
To study the diagnostic value of ALDOA for distinguishing
adenocarcinoma tissues from normal tissues, we performed ROC
curve analysis with R package pROC. As shown in Figure 4.ALDOA
had an AUC value of 0.909 (95% CI: 0.883–0.935). With a cutoff of
8.598, ALDOA had a sensitivity, specificity, and accuracy of 84.7,

93.2, and 85.5%, respectively. This result indicates that ALDOA
might be used as a diagnostic biomarker for distinguishing lung
adenocarcinoma tissues from normal tissues.

Correlation Between ALDOA Expression
and Overall Survival
To explore the correlation between ALDOA expression and
overall survival and disease-free survival in lung

FIGURE 3 | The relationship between clinicopathological characteristics and ALDOA expression in lung adenocarcinoma patients from TCGA (A-D) ALDOAmRNA
expression was significantly increased with high T stage, N stage, M stage, and TNM stage (E-I) No significant differences were found in gender, age, smoke condition,
and anatomic subdivision (right vs left, central vs peripheral) (ns, no significant; *, p < 0.05; **, p < 0.01, ***, p < 0.001).
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adenocarcinoma patients, the GEPIA2 server and Kaplan Meier
plotter were performed. As shown in Figures 5A,B, the GEPIA2
server indicated that the overall survival rate of lung
adenocarcinoma patients with high ALDOA expression was
significantly lower than that of patients with low ALDOA
expression (p � 0.00021). However, the correlation of ALDOA
expression with disease-free survival rate was not statistically
significant (Figure 5B). Consistently, the Kaplan Meier plotter
showed that lung adenocarcinoma patients with high ALDOA
were correlated with short overall survival (41.0 vs 55.1 months,
p � 0.0022) compared to low ALDOA mRNA expression
(Figure 5C). There was no statistically significant between
high/low expression of ALDOA for recurrence-free survival
(68.2 vs 101.5 months, p � 0.38) (Figure 5D). These data
indicated that high mRNA expression of ALDOA is correlated
with short overall survival in lung adenocarcinoma.

Prognostic Importance of ALDOA mRNA in
Lung Adenocarcinoma Patients
To further determine the prognostic importance of ALDOA
mRNA, we conducted univariate and multivariate analyses
with R package survival. Univariate analysis in Table 2
showed that the overall survival of lung adenocarcinoma
patients was correlated with T stage, N stage, M stage, TNM
stage, as well as the mRNA expression of ALDOA ((HR 1.799,
95%CI, 1.342–2.413, p � 0.011). Furthermore, we performed a
multivariate analysis of five prognostic factors with the Cox
proportional hazards model. As shown in Table 2,

multivariate analysis revealed that T stage (HR 1.652, 95%CI,
1.020–2.673, p � 0.041), and mRNA expression of ALDOA (HR
1.435, 95%CI, 1.013–2.032, p � 0.042) were independent poor
prognostic factors for overall survival. Moreover, a nomogram
was constructed to predict the 1-, 3-, and 5-years survival
probability of lung adenocarcinoma patients by combining the
mRNA expression of ALDOA and clinical characteristics
(Figure 6). Our data reveal that ALDOA is an independent
poor prognostic factor for lung adenocarcinoma.

Genetic Mutation of ALDOA and Its
Correlation With Poor Survival
To determine the mutation characteristics of ALDOA and its
correlation with survival in lung adenocarcinoma, we performed
an analysis on c-BioPortal databases. As shown in Figure 7A,
ALDOA had a high mutation frequency of 10% in lung
adenocarcinoma (TCGA, PanCancer Atlas). The main genetic
mutations ofALDOAwere DNA copy number amplifications and
mRNA upregulation (Figure 7B). Furthermore, compared with
the unaltered group (n � 449), survival analysis revealed that the
altered group (n � 56) was associated with poor overall survival
(Figure 7C).

Functional Enrichment Analysis of
Positively Co-expressed Genes of ALDOA
The top 300 co-expressed genes of ALDOA were downloaded
from the c-BioPortal. As shown in Supplementary Table S1,
ALDOA had 165 positively co-expressed genes. To further
demonstrate the enrichment function of these positively co-
expressed genes, we conducted the analyses of Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway with R package clusterProfiler. GO analysis showed that
positively co-expressed genes of ALDOA were involved in the
biological progress of mitochondrial translation, mitochondrial
translational elongation, and negative regulation of cell cycle
progress (Figure 8A). They acted as structural constituents in
the mitochondrial inner membrane, mitochondrial matrix, and
protein complex (Figure 8B), and played an important part in the
structural constituent of ribosome, isomerase activity, and
monosaccharide binding (Figure 8C). KEGG pathway analysis
in Figure 8D showed enrichment function in carbon metabolism,
HIF-1 signaling pathway, and glycolysis/gluconeogenesis.

Construction of PPI Networks,
Identification, and Enrichment Function of
Hub Genes Among Co-expressed Genes of
ALDOA
To construct PPI networks and identify hub genes of ALDOA, we
imported the 165 positively co-expressed genes into STRING and
then explored the degree scores with cytoHubba tool kits in
Cytoscape. The PPI networks of co-expressed genes were shown
in Figure 9A. As shown in Figure 9B, GADD45GIP1, MRPL22,
MRPL28, MRPL21, MRPL12, MRPS12, MRPL52, MRPL17,
TUFM, and MRPL53 were the top 10 hub genes of ALDOA.

FIGURE 4 | ROC curve for distinguishing lung adenocarcinoma tissues
from normal tissues. With a cutoff of 8.598, ALDOA had a sensitivity,
specificity, and accuracy of 84.7, 93.2, and 85.5%, respectively.
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To further evaluate their prognostic values and correlation with
ALDOA in lung adenocarcinoma, we performed analyses on
GEPIA and c-BioPortal. As shown in Figure 9C, upregulation
of MRPL22 (HR � 1.5, p � 0.0048), MRPL28 (HR � 1.5, p �
0.0098), MRPL21 (HR � 1.7, p � 0.001), MRPL12 (HR � 1.7, p �
0.00059),MRPS12 (HR � 1.6, p � 0.002), andMRPL17 (HR � 1.5,
p � 0.0051) were correlated with poor overall survival in lung
adenocarcinoma. Based on the R-value of Spearman correlation
were all more than 0.4, the genes were considered as the most
potential hub genes of ALDOA (Figure 9C). We also conducted
enrichment function of these top 10 hub genes with R package

clusterProfiler. As shown in Figure 10, GO analysis showed they
were involved in the biological progress of mitochondrial
translational elongation, translational elongation, and
mitochondrial translation. They may be associated with a
molecular function of the structural constituent of the
ribosome and acted as structural constituents in the organellar
ribosome, mitochondrial ribosome, and mitochondrial matrix.
KEGG pathway analysis showed enrichment function in the
ribosome. Taken together, all these data suggest that these hub
genes may play an important role in lung adenocarcinoma by
cooperating with ALDOA.

FIGURE 5 | Kaplan-Meier curves for ALDOA in lung adenocarcinoma (A) Higher ALDOA led to shorter overall survival from GEPIA2 (B) ALDOA had no correlation
with disease-free survival from GEPIA2 (C) High ALDOA was correlated with short overall survival from the Kaplan Meier plotter (D) ALDOA had no correlated with
recurrence-free survival from the Kaplan Meier plotter.
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Relationship Between ALDOA Expression
and Immune Infiltration in Lung
Adenocarcinoma
To determine the potential relationship between ALDOA
expression and immune infiltration levels in lung
adenocarcinoma, we conducted a series of analyses by using
TIMER. First, as shown in Figure 11A, the “SCNA” module
analysis indicated that the copy number alterations of ALDOA
were correlated with three immune cell infiltration levels,
including B cells, CD8+ T cells, and CD4+ T cells in lung
adenocarcinoma. Second, as shown in Figure 11B, the “Gene”
module analysis indicated that there was no correlation between
ALDOA expression and tumor purity. However, ALDOA
expression was negatively correlated with infiltrating levels of
B cells, CD8+ T cells, CD4+ T cells, and macrophages in lung
adenocarcinoma. Third, to evaluate the impact of immune
infiltration and ALDOA on the survival differences of lung
adenocarcinoma patients, we used TIMER to draw Kaplan-
Meier plots for immune infiltration and ALDOA. The results
in Figure 11C showed that low levels of B cells, CD4+ T cells,
macrophages, neutrophils, and dendritic cells were associated
with poor prognosis of lung adenocarcinoma patients. On the
contrary, high levels of ALDOA were correlated with the poor
prognosis of lung adenocarcinoma patients. Taken together, these
results suggest that ALDOA may regulate the expression level of

tumor-infiltrating immune cells to affect lung adenocarcinoma
and clinical prognosis.

Correlation Between ALDOA Expression
and Gene Markers of Tumor-Infiltrating
Immune Cells
To further evaluate the relationship between ALDOA and
tumor-infiltrating immune cells, we next explored the
correlation between ALDOA expression and immunological
markers in lung adenocarcinoma using the TIMER database.
We determined ALDOA expression and immunological
markers of various immune cells, including B cell, CD8+

T cell, T cell (general), M1 and M2 macrophage, neutrophils,
and dendritic cell. After adjusting the correlation by tumor
purity, these results revealed that there was a correlation
between ALDOA expression and most immune marker sets
(Table 3). In particular, ALDOA was significantly correlated
with T cell markers (CD3E, CD2), neutrophils markers (CD66b,
CCR7), and dendritic cell markers (HLA-DPB1, BDCA-1). We
also assessed the correlation between ALDOA and these markers
in lung adenocarcinoma using the GEPIA2 database, and the
results were similar to those in TIMER (Supplementary
Table S1).

DISCUSSION

Many studies about the dysregulation of the ALDOA gene have
emerged in recent years, including colorectal cancer (Dai et al.,
2018), gastric cancer (Jiang et al., 2018), and renal cell
carcinoma (Huang et al., 2018). Previous bioinformatics
results also indicated that ALDOA expression was correlated
with prognosis in bladder cancer (Li et al., 2019),
hepatocellular cancer (Tang et al., 2021). In lung cancer,
overexpression of ALDOA is reported to promote lung
cancer cell proliferation and metastasis (Chang et al., 2019).
Moreover, Zhang et al. reported that upregulated
transcriptional levels of ALDOA were correlated with cell
cycle-related genes and could regulate progress in non-small
cell lung cancer (Zhang et al., 2017). However, the relationship
between the expression level of ALDOA and prognostic value

TABLE 2 | Univariate and multivariate analyses of prognostic variables for overall survival.

Characteristics Total(N) Univariate analysis Multivariate analysis

Hazard
ratio (95% CI)

p Value Hazard
ratio (95% CI)

p Value

T stage (T3-4 vs T1-2) 523 2.317 (1.591–3.375) <0.001*** 1.652 (1.020–2.673) 0.041*
N stage (N2-3 vs N0-1) 510 2.321 (1.631–3.303) <0.001*** 1.476 (0.725–3.003) 0.283
M stage (M1 vs M0) 377 2.136 (1.248–3.653) 0.006** 1.158 (0.531–2.526) 0.712
Pathologic stage (Stage III- IV vs Stage I- II) 518 2.664 (1.960–3.621) <0.001*** 1.651 (0.771–3.534) 0.197
Gender (Male vs Female) 526 1.070 (0.803–1.426) 0.642 — —

Age (>65 vs ≤65) 516 1.223 (0.916–1.635) 0.172 — —

Smoker (Yes vs No) 512 0.894 (0.592–1.348) 0.591 — —

ALDOA (High vs Low) 526 1.799 (1.342–2.413) <0.001*** 1.435 (1.013–2.032) 0.042*

p < 0.05; p < 0.01; p < 0.001.

FIGURE 6 | The nomogram to predict 1-, 3- and 5-years overall survival
probability.
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and immune infiltration of lung adenocarcinoma has not been
studied. To the best of our knowledge, for the first time, our
study explored the prognostic value and correlation with
immune infiltration of ALDOA in lung adenocarcinoma.

In this study, based on the data from Oncomine, TCGA,
UALCAN, and HPA, we revealed that the mRNA and protein
expression of ALDOA is upregulated in lung adenocarcinoma
tissues. Given that there are significant differences between
lung adenocarcinoma and normal tissues grouped by T stage,
N stage, M stage, and TNM stage, we conclude that ALDOA
might promote tumorigenesis and metastasis in lung
adenocarcinoma. A paper from Marcišauskas et al.
reported that ALDOA in cyst fluids and serum can be used
as a diagnostic biomarker to separate stage I type 1 and type 2
ovarian cancers from benign serous adenoma (Marcišauskas
et al., 2019). ROC curve can be used to examine the diagnostic
value of biomarkers (Do and Le, 2021; Le et al., 2021). In the
current study, ROC curve analysis suggested that ALDOA can
act as a prospective non-invasive diagnostic biomarker to
differentiate lung adenocarcinoma tissues from adjacent
normal tissues. Previous studies reported that upregulation

of ALDOA is correlated with poor prognosis in colorectal
cancer (Dai et al., 2018), gastric cancer (Jiang et al., 2018),
and hepatocellular carcinoma (Tang et al., 2021). Our data on
survival analysis with GEPIA2 and the Kaplan Meier plotter
indicated that lung adenocarcinoma patients with high
ALDOA expression or genetic alteration have a poor
overall survival prognosis. Univariate and multivariate
analysis revealed that ALDOA is an independent poor
prognostic factor for overall survival in lung
adenocarcinoma. The major strength of this study is our
findings raise the possibility that the upregulation of ALDOA
could be a potential prognostic marker in lung
adenocarcinoma.

Functional enrichment analysis was carried out to further
explore the role of these positively co-expressed genes with
ALDOA in lung adenocarcinoma. GO enrichment analysis
showed that these positively co-expressed genes of ALDOA
were involved in the biological progress of mitochondrial
translation and negative regulation of cell cycle progression.
KEGG pathway enrichment analysis showed enrichment
function in carbon metabolism, HIF-1 signaling pathway,

FIGURE 7 |Genomic mutation of ALDOA in lung adenocarcinoma (A)OncoPrint of c-BioPortal showed the different mutation types and proportions of ALDOA (B)
Cancer types summary showed the genomic alteration types in lung adenocarcinoma (C) Genomic mutation of ALDOA was correlated with poor overall survival in lung
adenocarcinoma.
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and glycolysis/gluconeogenesis. It is well known that the HIF-
1 signaling pathway and glycolysis/gluconeogenesis play an
important role in tumor invasion and metastasis (Chen et al.,
2011; Rankin and Giaccia, 2016; Peng et al., 2020). Based on our
results, we speculate that ALDOA may be involved in the
progress of invasion and metastasis in lung adenocarcinoma.
However, this should be tested in other experiments. Moreover,
we also imported the positively co-expressed genes of ALDOA
into the STRING database and Cytoscape to obtain the PPI
network and identify hub genes. In light of STRING database
analysis, we conducted a PPI network and interactions among
these positively co-expressed genes. The Cytoscape with

cytoHubba tool kits, GEPIA, and c-BioPortal analysis
suggested that upregulated hub genes of MRPL22, MRPL28,
MRPL21, MRPL12, MRPS12, and MRPL17 are correlated with
poor overall survival and may play a key role by cooperating
with ALDOA in lung adenocarcinoma.

Many studies about the possible role of immune infiltration
have emerged in recent years. It is reported that immune
infiltration is correlated with prognosis in human tumors
(Pagès et al., 2010; Lei et al., 2020). However, the
relationship between ALDOA expression and immune
infiltration has not been investigated. In the present study,
we reported that ALDOA copy number alterations were

FIGURE 8 | Functional enrichment analysis of positively co-expressed genes of ALDOA. (A) Biological progress of mitochondrial translation, mitochondrial
translational elongation, and negative regulation of cell cycle progress (B) Cellular component of the mitochondrial inner membrane, mitochondrial matrix, and protein
complex (C) Molecule function of the structural constituent of ribosome, isomerase activity, and monosaccharide binding (D) KEGG pathway analysis showed
enrichment function in carbon metabolism, HIF-1 signaling pathway, and glycolysis/gluconeogenesis.

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 72102111

Lu et al. ALDOA in Lung Adenocarcinoma

249

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 9 |Construction of PPI networks and identification of hub genes among co-expressed genes of ALDOA (A)Construction of PPI networks by STRING with
165 positively co-expressed genes of ALDOA (B) Identification of ten hub genes of ALDOAwith cytoHubba tool in Cytoscape (C) Prognostic importance analyses of 10
hub genes with GEPIA (D) Correlation between ALDOA and mRNA expression of 10 hub genes determined with c-BioPortal.
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correlated with immune infiltration levels of B cells, CD8+ T cells,
and CD4+ T cells in lung adenocarcinoma by TIMER. We also
confirmed that ALDOA gene expression was inversely correlated

with infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, and
macrophages in lung adenocarcinoma. Moreover, previous
studies showed that there was a correlation between tumor-
infiltrating immune cell expression and the prognosis of lung
cancer patients (Liu et al., 2017; Wang et al., 2019; Pan et al.,
2020). In this study, our results showed low levels of B cells, CD4+

T cells, macrophages, neutrophils, and dendritic cells were
associated with poor prognosis of lung adenocarcinoma
patients, while high ALDOA expression was correlated with
poor prognosis in lung adenocarcinoma patients. Based on our
data, we conclude for the first time that ALDOA is correlated with
immune infiltration in lung adenocarcinoma. We further
speculate that ALDOA can regulate the expression level of
tumor-infiltrating immune cells to affect the clinical prognosis
of lung adenocarcinoma patients.

In conclusion, our research suggests that the upregulation of
ALDOA is correlated with tumorigenesis and metastasis in lung
adenocarcinoma. Our results show high expression of ALDOA
predicts poor prognosis and ALDOA is an independent poor
prognostic factor for overall survival. ALDOA may regulate
tumor-infiltrating immune cells to affect the clinical prognosis
of lung adenocarcinoma patients. Our data provide a potential
prognostic biomarker and therapeutic target for lung
adenocarcinoma.

FIGURE 10 | Functional enrichment analysis of the top 10 hub genes.

FIGURE 11 | Immune cell infiltration of ALDOA in lung adenocarcinoma (A) The “SCNA” module analysis indicated that the copy number alterations of
ALDOA were correlated with three immune cell infiltration levels (B) The “Gene” module analysis indicated that there was no correlation between ALDOA
expression and tumor purity. However, ALDOA expression was negatively correlated with infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, and
macrophages (C) Low levels of B cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells were associated with poor prognosis of lung
adenocarcinoma patients.
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Development and Validation of a
Tumor Mutation Burden-Related
Immune Prognostic Signature for
Ovarian Cancers
Mengjing Cui1†, Qianqian Xia1†, Xing Zhang1, Wenjing Yan1, Dan Meng1, Shuqian Xie1,
Siyuan Shen1, Hua Jin2* and Shizhi Wang1*

1Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University,
Nanjing, China, 2Clinical Laboratory, Affiliated Tumor Hospital of Nantong University (Nantong Tumor Hospital), Nantong, China

Ovarian cancer (OC), one of the most common malignancies of the female reproductive
system, is characterized by high incidence and poor prognosis. Tumor mutation burden
(TMB), as an important biomarker that can represent the degree of tumor mutation, is
emerging as a key indicator for predicting the efficacy of tumor immunotherapy. In our
study, the gene expression profiles of OC were downloaded from TCGA and GEO
databases. Subsequently, we analyzed the prognostic value of TMB in OC and found
that a higher TMB score was significantly associated with a better prognosis (p � 0.004).
According to the median score of TMB, 9 key TMB related immune prognostic genes were
selected by LASSO regression for constructing a TMB associated immune risk score
(TMB-IRS) signature, which can effectively predict the prognosis of OC patients (HR �
2.32, 95% CI � 1.68–3.32; AUC � 0.754). Interestingly, TMB-IRS is also closely related to
the level of immune cell infiltration and immune checkpoint molecules (PD1, PD-L1,
CTLA4, PD-L2) in OC. Furthermore, the nomogram combined with TMB-IRS and a
variety of clinicopathological features can more comprehensively evaluate the
prognosis of patients. In conclusion, we explored the relationship between TMB and
prognosis and validated the TMB-IRS signature based on TMB score in an independent
database (HR � 1.60, 95% CI � 1.13–2.27; AUC � 0.639), which may serve as a novel
biomarker for predicting OC prognosis as well as possible therapeutic targets.

Keywords: ovarian cancer, tumor mutation burden, immune risk score, prognostic biomarkers, immune checkpoint

INTRODUCTION

Ovarian cancer (OC) is one of the most common malignancies of the female reproductive
system, with worldwide incidence second only to cervical cancer, ranking first in the number of
deaths from female reproductive system-related tumors (Webb and Jordan, 2017). The low
efficiency of early diagnosis and screening of OC is due to the location of ovaries deep in the
pelvic cavity, nonpalpable body surface, and lack of typical symptoms at onset (Stewart et al.,
2019). In addition, the tumor grows rapidly, and most patients already have disseminated
lesions at the time of diagnosis (Orr and Edwards, 2018). First-line conventional treatments for
OC are mainly surgery and chemotherapy (Wang et al., 2016; Wang et al., 2019). Since many
OC patients exhibit primary or secondary resistance to chemotherapeutic agents, new

Edited by:
Rosalba Giugno,

University of Verona, Italy

Reviewed by:
Jinhui Liu,

Nanjing Medical University, China
Marco Beccuti,

University of Turin, Italy

*Correspondence:
Shizhi Wang

shizhiwang2009@seu.edu.cn
Hua Jin

ntmgjh@163.com

†These authors have contributed
equally to this work and share first

authorship

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal
Frontiers in Genetics

Received: 30 March 2021
Accepted: 22 December 2021
Published: 11 January 2022

Citation:
Cui M, Xia Q, Zhang X, YanW,Meng D,

Xie S, Shen S, Jin H and Wang S
(2022) Development and Validation of

a Tumor Mutation Burden-Related
Immune Prognostic Signature for

Ovarian Cancers.
Front. Genet. 12:688207.

doi: 10.3389/fgene.2021.688207

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 6882071

ORIGINAL RESEARCH
published: 11 January 2022

doi: 10.3389/fgene.2021.688207

255

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.688207&domain=pdf&date_stamp=2022-01-11
https://www.frontiersin.org/articles/10.3389/fgene.2021.688207/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.688207/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.688207/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.688207/full
http://creativecommons.org/licenses/by/4.0/
mailto:shizhiwang2009@seu.edu.cn
mailto:ntmgjh@163.com
https://doi.org/10.3389/fgene.2021.688207
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.688207


therapeutic approaches need to be discovered to improve the
prognosis of OC patients (Valmiki et al., 2021).

The tumor microenvironment (TME) plays an important role
in tumor growth and therapy. As a critical part of the TME,
immune cell infiltration can orchestrate innate and adaptive
immune responses (Hinshaw and Shevde, 2019). With a
deeper understanding of the tumor microenvironment,
immunotherapy has been approved for the treatment of
various types of advanced or recurrent cancers due to its long-
term anti-tumor effects (Kruger et al., 2019). OC expresses highly
immunogenic tissue-specific antigens, and immune infiltration is
the main prognostic factor (Le Saux et al., 2020). Therefore, there
is a strong biological basis for the development of
immunotherapy for OC (Hao et al., 2018). Currently,
checkpoint blockade is the most promising immunotherapy in
OC (Ghisoni et al., 2019). However, the objective response rate of
immunotherapy alone is not optimal (Wang et al., 2019). The
combination of PD(L)-1 antibody and poly (ATP-ribose)
polymerases (PARP) inhibitors or conventional chemotherapy
has obtained a good response in clinical trials (Wang et al., 2019).
Therefore, it is urgent to find molecular markers that can
effectively predict the efficacy of OC immunotherapy and
screen the appropriate immunotherapy population.

Tumor mutation burden (TMB) is defined as the total number
of gene somatic mutations, base substitutions, gene insertion or
deletion detected per million bases (Huo et al., 2020). TMB, as an
important biomarker that can represent the degree of tumor
mutation(Bi et al., 2020), is becoming an emerging biomarker
that predicts prognosis and is sensitive to immune checkpoint
inhibitors (ICIs) (Merino et al., 2020). Data from retrospective
studies indicate that cancers with higher TMB are more likely to
respond to ICIs(Snyder et al., 2014; Rizvi et al., 2015). For
instance, Killock et al. found that higher TMB was
significantly associated with improved survival in melanoma
treated with programmed cell death protein 1 (PD-1) immune
checkpoint blockade (Killock, 2020). Chalmers et al. reported that
TMB could be accurately assessed using comprehensive genomic
profiling (CGP) analysis, by which a large proportion of patients
with high TMB across tumor types can benefit from
immunotherapy (Chalmers et al., 2017).

However, the role of TMB associated immune genes in OC
prognosis and the relationship between TMB associated
immune genes and OC immune cell infiltration need
further investigation. In the present study, somatic
mutations and RNA-seq data of OC patients were obtained
from TCGA. Subsequently, we analyzed the TMB prognostic
value in OC and found that the higher TMB score group had a
significantly better prognosis. According to the TMB
grouping, 9 key TMB-related immune prognostic genes
were selected out and used to construct a TMB-related
immune risk score (TMB-IRS) signature that could
effectively predict the outcome of ovarian cancer patients
Finally, we explored the relationship between TMB and
prognosis and validated the TMB-IRS signature based on
TMB score in an independent database, which may serve
as a novel biomarker and potential therapeutic target for
predicting OC prognosis.

MATERIALS AND METHODS

Data Collection and Preprocessing
A total of 436 patients with OC were collected from The
Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.
gov/) database, including somatic mutation, clinical
information, survival information and gene-expression data
(FPKM normalized). Based on the following inclusion criteria:
1) The patient’s pathological diagnosis is OC; 2) Complete
mRNA expression profile; 3) Complete clinical information.
Exclusion criteria: 1) Non-primary OC; 2) patients with
missing mutation information and survival information; 3)
patients who Relapsed OC. In all, we selected 271 OC samples
as a training set, including corresponding clinical
characteristics, such as age, cancer status, grade, stage, and
race (Supplementary Table S1).

The gene names of all immune genes were downloaded
directly from the website. From the Immunology database and
Analysis Portal (ImmPort) database (https://immport.niaid.
nih.gov) we downloaded the complete list of immune-related
genes, including a total of 2483 immune-related genes
(Supplementary Table S2).

Calculation of TMB Scores and Prognostic
Analysis
To evaluate the prognostic differences between different TMBs in
OC patients, we performed the following analysis. In our study,
the TMB score of each individual was calculated by, the number
of mutations divided by exon length (30 MB). Then, OC samples
were divided into high and low-TMB groups according to the
median number. And further, Kaplan-Meier analysis was
implemented for the comparison of differences in overall
survival (OS) between the two groups. Visualization of the
somatic mutation landscape of OC patients was done by using
the “maptools” package in R. The version number of the R
software used in this study is v 3.6.1.

Differential Analysis
Based on TMB grouping, we first performed differential
analysis to identify genes differentially expressed in the
high- and low-TMB groups. Specifically, differentially
expressed genes (DEGs) were obtained using the “limma”
package in R. Among them, log2 | FC | > 0.58 (FC, fold
change) and p < 0.05 are criteria. Visualization of DEGs
was implemented by plotting volcano plots via the
“ggplot2”, “Cairo” and “ggrepel” software packages in R.

Construction and Validation of
TMB-Related Immune Risk Score
(TMB-IRS) Signature
TMB related immune prognostic genes in OC were screened
out by stepwise analysis, as a way to construct a TMB-IRS
signature that could effectively predict the prognosis of OC.
Differential expression analysis was first performed to obtain
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TMB-associated genes. The above gene and immune gene sets
were intersected so that differentially expressed immune genes
were obtained. Further, genes with an expression level of 0 in
more than 50% of the samples were removed from
differentially expressed immune genes. Subsequently, Cox
regression and LASSO regression were performed to obtain
independent immune genes related to prognosis using the
“glmnet” R package. Based on the corresponding regression
coefficient β value, the risk score value of each sample was
calculated by, TMB-IRS � Σ Cox coefficient of gene Xi × scale
expression value of gene Xi.

Each sample was ranked according to the risk score and
grouped by the median, and patients were therefore divided
into low- and high-risk groups. The prognostic value of the
signature was assessed by performing Kaplan-Meier (KM)
analysis with a log-rank test, using the “survminer” R package.
Using the “survival” ROC R software package, we plotted the
receiver operating characteristic (ROC) curve over time to
evaluate the accuracy of the signature.

Search the GEO database for OC cohorts with gene expression
and prognostic information, and finally select the GSE26712
cohort as a reasonable validation set, n � 148. For
comparability of data from different sources, gene expression
from geo data were further log transformed.

Relationship Between Clinicopathological
Factors and TMB-IRS Signature
To evaluate whether the TMB-IRS could serve as an independent
predictor of prognosis, we first employed univariate Cox
regression analysis to look for clinical features associated with
prognosis and then performed multivariate Cox regression
analysis to look for independent factors. Besides, in order to
comprehensively evaluate the prognosis of OC patients, we plan
to establish a comprehensive assessment model that combines
clinical information with the TMB-IRS signature. In brief, using
the “rms” package in R, we constructed a nomogram that could
predict 2-, 3-, and 5-years patient survival. To compare the
consistency of the actual OS of OC with the predicted effect,
calibration curves (2-, 3-, and 5-years survival prediction) were
plotted, and the curve at 45 represented the nomogram with
better prediction accuracy.

Further, we used the R survival package to calculate the
concordance index (C-index) of TNM stage, TMB-IRS and
nomogram for comparing the predictive ability of the three
for the prognosis of OC patients. Meanwhile, decision curve
analysis (DCA) at 2, 3 and 5 years were calculated to measure the
clinical utility of our established nomogram. The x-axis
represents the percentage of threshold probability, and the
y-axis represents net income.

Cibersort Database Analysis
In order to estimate the infiltration of immune cells, we used
CIBERSORT online immune cell infiltration estimation analysis
tool (http://cibersort.stanford.edu/). It is a tool to deconvolute
immune cell subtype expression matrices based on linear support
vector regression principles. In the present study, the tool was

suitably employed to compare the proportions of 22 immune cells
in the high- and low-TMB-IRS groups. The 22 types of immune
cells included: 7 types of T cells (CD8+ T cells, naive CD4+ T cells,
resting memory CD4+ T cells, activated memory CD4+ T cells,
follicle-assisted T cells, regulatory T cells, and γδT cells), 3 types
of B cells (naive B cells, memory B cells, and plasma cells) NK cells
(resting NK cells and activated NK cells), and various myeloid
cells (monocytes, M0 macrophages, M1 macrophages, M2
macrophages, resting dendritic cells, activated dendritic cells,
resting mast cells, activated mast cells, eosinophils, and
neutrophils). p less than 0.05 was set as the criterion for
statistical significance.

Statistical Analysis
The SPSS 20.0 was adopted for multivariate Cox regression
analysis, with a probability of a stepwise entry of 0.05 and
removal of 0.1. And the simple mathematical operation
processes and all table making were completed by the software
Excel. Univariate and multivariate Cox regression was carried out
to analyze the relationship among gene expression, clinical
features and prognosis. Additionally, the “survival ROC”
package was used to plot the survival ROC in R (v 3.6.1). All
analyses associated with prognosis were performed with the
“survival” package. The probability threshold with a significant
difference was set as p < 0.05.

RESULTS

Landscape of the OC Mutation Profiles
In total, we analyzed the somatic mutation profiles of 271
patients. As shown in Figure 1A, there were 263 samples with
somatic mutation data, accounting for 97.05%. TP53, TTN, and
CSMD3 mutations are the top three mutated genes in OC
samples, and TP53 mutations are found in more than 92% of
OC samples. Moreover, missense mutations were the most
common mutation classification, single nucleotide
polymorphisms (SNPs) showed a higher fraction in the variant
type than insertion or deletion, and C > T was the most common
single nucleotide variant (SNV) in OC (Figure 1B). Furthermore,
the number of variants in each sample was calculated, and the
mutation types were also shown in Figure 1B with different
colors for OC. The co-occurrence and exclusive associations
between mutated genes are shown in Figure 1C.

After calculating the TMB value of each sample
(Supplementary Table S3), all patients were divided into
high- and low-TMB groups according to the median and
interquartile range [M(IRQ) � 1.947 (1.316, 2.684)].
Interestingly, patients in the low-TMB group have an
obviously shorter OS than those in the high-TMB group with
p � 0.004 (Figure 1D).

Establishment and Evaluation of TMB-IRS
Signature
To establish a TMB-IRS signature in the TCGA-OV cohort,
multivariate Cox and LASSO analyses were employed to screen
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out independent immune genes related to prognosis. Specifically, a
total of 892 differentially expressed genes were first differentially
analyzed between the high- and low-TMB groups (Figure 2A,
Supplementary Table S3). The DEGs above intersected with 1793
immune genes to obtain 99 differentially expressed immune genes
(Figure 2B). Further, univariate Cox regression analysis obtained
12 immune genes related to disease prognosis (Supplementary
Table S5). After eliminating two genes with 0 expressions in more
than 50% samples, LASSO regression analysis was performed,
resulting in 9 independent prognostic immune genes (Figures
2C,D), namely CSPG5, CXCL10, CXCL11, DKK1, PI3, TNFRSF17,
DUOX1, TNFRSF13B and PAEP. Finally, based on the regression

coefficients and gene expression of the above 9 genes, and
TMB-IRS was calculated for each patient with the following
formula:

TMB − IRS � 0.417p expDKK1 + 0.091p expPI3
+ 0.166p expDUOX1 + 0.013p expPAEP
+ 0.184p expCXCL10 − 0.254p expCSPG5
− 0.392p expCXCL11 − 0.219p expTNFRSF17
− 0.428p expTNFRSF13B

Then, the risk score of each individual was calculated and
ranked among OC patients, and then divided into high- and

FIGURE 1 | Landscape of the OC mutation profiles. (A) Waterfall plots present the landscape of the top 30 genes somatically mutated in 271 OC patients. (B)
Various bar graphs show somaticmutations data. Variant classification reveal that missensemutations are themost; Variant type show the highest number of SNP (single
nucleotide polymorphism); SNV(single nucleotide variants) class show the highest number of C > T; Variant per sample, with a median of 49; Summary of variant type;
Top 10mutated genes (C)Correlation Heatmap of the top 20mutated genes (D)Kaplan-Meier curves show that OS in the high-TMBwas significantly higher than in
the low TMB group.
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low-risk groups according to the median [M(IRQ) � 1.173
(0.798, 1.718)]. KM analysis indicated that patients in the
high-risk group (n � 135) tended to have a worse prognosis
compared to those in the low-risk group (n � 136) (Figure 2E,
HR � 2.32, 95% CI � 1.68–3.32; p < 0.001). In addition, the
survival ROC curve results showed that the TMB-IRS
signature had relative accuracy in predicting the prognosis

of OC (Figure 2F, 5-years AUC � 0.754). The risk curve and
heatmap (Figure 2G) showed the patient risk score for each
individual as well as the expression levels of the 9 genes.

Validation of the TMB-IRS Signature
In order to verify the universal applicability of the TMB-IRS
signature, the OC cohort downloaded in the GEO database was

FIGURE 2 | Establishment and validation of TMB-IRS signature. (A) Identification of 892 DEGs based on TMB score. (B) DEGs intersected with immune genes in a
Venn diagramwith 99 genes available. (C) Ten-time cross-validation for tuning parameter selection in the LASSOmodel. (D) LASSO coefficient profiles. (E) Kaplan-Meier
curves show that OS was significantly different between the high- and low-risk groups in TCGA-OC. (F) The TMB-IRS signature is shown by the time-dependent ROC
curve for predicting 2, 3, 5-years survival. (G) Risk score, survival status, and heatmap of 9 immune genes in patients with OC. (H) Kaplan-Meier curves show that
OS in the low-risk was significantly higher than in the high-risk group in GSE26712. (I) Time-dependent ROC curve analysis of the TMB-IRS signature at 2, 3, 5 years in
GSE26712.
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used as a validation set, and patients with missing mutation
information and survival time less than 30 days were excluded. A
total of 148 patients were analyzed for prognosis. According to
the TMB-IRS formula established by the OC cohort in the TCGA
database, the risk score of each patient in the validation set was
calculated. According to the median TMB-IRS calculated by the
TCGA database cohort, the validation set was divided into low-
risk group and high-risk group. The results of KM analysis
showed that TMB-IRS was significantly related to the
prognosis (Figure 2H, HR � 1.46, 95% CI � 1.03–2.08; p �
0.033). The low-risk group had a better prognosis, while the high-
risk group had a worse prognosis, which was consistent with the
results of the TCGA database cohort. The ROC curve shows that
the model has a good agreement between the predicted
probability of OS and the actual probability (Figure 2I; 5-
years AUC � 0.641).

Correlations Between TMB-IRS and Clinical
Variables
To investigate the correlation between clinical variables and the
TMB-IRS, boxplots were drawn to visualize the immune risk
profile across clinical subgroups. As shown in Figure 3, the
immune risk score was significantly positively correlated with
cancer status but negatively correlated with TMB. The risk score
was significantly higher in the with-tumor group compared with
the tumor-free group. In contrast, among the TMB subgroups,
low-TMB tended to have a lower risk score. However, risk scores

did not differ significantly between subgroups in other clinical
characteristics (age, grade, stage, and race).

To demonstrate the prognostic predictive independence of the
TMB-IRS signature in multiple clinical features, we employed
univariate and multivariate Cox proportional hazards regression
for analysis. As shown in Table 1, univariate Cox analysis results
showed that age, cancer status, TMB and OS were significantly
associated with OC patients. Furthermore, multivariate
regression analysis demonstrated that the TMB-IRS signature
could serve as an independent predictor for evaluating the
prognosis of OC patients.

DEVELOPMENT AND EVALUATION OF THE
NOMOGRAM

To systematically predict the prognosis of OC, we constructed a
nomogram model based on the risk score and clinical
information in the TCGA dataset (Figure 4A). The calibration
curve results showed that the prediction of prognostic survival
probability of OC patients by the nomogram had good agreement
with the actual probability (Figure 4B). Meanwhile, the C-index
(95% confidence interval) of the nomogram, TNM stage, and
TMB-IRS was 0.739 (0.717, 0.716), 0.643 (0.618, 0.668), and 0.537
(0.517, 0.557), respectively, and this result also demonstrated that
the nomogram had better predictive accuracy. Consistent with
this result, DCA plots (Figures 4C,D) also proved that TMB-IRS
performed better than traditional TNM-stage for prediction,

FIGURE 3 | Boxplot of the relationship between clinicopathological factors and TMB-IRS. (A–F) Relationship between age, tumor status, grade, race, stage, TMB
and TMB-IRS, respectively.
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TABLE 1 | Univariate/multivariate Cox regression analysis of OC clinicopathological characteristics associated with OS.

Variables Patient N (271) Univariate analysis Multivariate analysis

HRa (95% CIb) p HR (95% CI) p

Age <65 95 1 (reference) — 1 (reference) —

≥65 176 0.715(0.521,0.982) 0.038c 0.656(0.465,0.926) 0.016c

Stage Stage I 18 1 (reference) — — —

Stage Stage I-II 18 1 (reference) 0.504 — —

Stage III 204 1.429(0.628,3.251) 0.395 — —

Stage IV 46 1.647(0.687,3.950) 0.263 — —

Grade G2 32 1 (reference) — — —

G3 229 1.001(0.636,1.574) 0.997 — —

Cancer_status Tumor free 71 1 (reference) — 1 (reference) —

With tumor 165 8.343(4.228,16.464) <0.001c 6.609(3.318,13.165) <0.001c
TMB low TMB 135 1 (reference) — 1 (reference) —

high TMB 136 0.654(0.479,0.892) 0.007c 0.816(0.578,1.151) 0.258
TMB-IRS — 271 1.944(1.638,2.307) <0.001c 1.758(1.425,2.168) <0.001c

aHR, hazard ratio.
bCI, confidence interval.
cp < 0.05.

FIGURE 4 | Establishment of the OS nomogram for OC patients. (A) Nomogram for predicting OS of OC. There are eight components in this nomogram: age,
stage, grade, cancer status, and risk score. (B) The Calibration curve of the nomogram for predicting OS rate at 2, 3, 5 years (C,D) Decision curve analysis for the
evaluation of the net benefits of TNM-stage, IRS and nomogram at 2, 3, 5 years.
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however, nomograms combining multiple clinical features had
the best clinical application value.

TUMOR IMMUNE INFILTRATION IN OC

To explore the potential relationship between our risk score
system and the immune infiltration microenvironment, we
analyzed the correlation between the TMB-IRS and
infiltrating immune cells using the “CIBERSORT” tool. The
landscape of 22 immune cell infiltrates from each OC sample

in TCGA was shown in Figure 5A. Figure 5B showed that
Plasma cells, T cells CD4 memory activated, T cells follicular
helper, Monocytes, Macrophages M1, and Mast cells resting
were higher infiltrating in low-risk groups, while T cells CD4
memory resting, T cells gamma delta and Mast cells activated
was higher infiltrating in high-risk groups. Supplementary
Figure S1 showed that CD4 memory resting, NK cells resting,
Macrophages M0, Mast cells activated and Neutrophils were
positively correlated with the risk score, while Plasma cells,
CD4 memory activated, T cells follicular helper, T cells
gamma delta, Macrophages M1, Mast cells resting were

FIGURE 5 | Immune infiltration in OC. (A) Bar plot of the proportion of 22 immune cells in the TCGA-OC patients (B) Comparison of 22 immune cell infiltration
between the two groups in the high-risk and low-risk groups (red means the high-risk group; green means the low-risk group).
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negatively correlated with the risk score. Patients in the low-
risk group had higher proportions of immune cell infiltration,
with a p < 0.05.

RELATIONSHIP BETWEEN IMMUNE
CHECKPOINTS AND TMB-IRS

In recent years, cancer immunotherapy utilizing ICIs has
shown promising efficacy in a proportion of cancer patients
(O’Donnell et al., 2019). To explore the application value of
our established TMB based model in immunotherapy, we
plotted boxplots for the comparison between the expression
levels of immune checkpoint molecules (PD1, PD-L1, PD-L2,
CTLA4) between high-IRS and low-IRS. The results (Figures
6A–D) showed a significant negative correlation between the
expression of PD-L1 (p < 0.001), PD-L2 (p � 0.001) as well as
CTLA4 (p < 0.001) and the TMB-IRS. Specifically, the high-
IRS group, with relatively lower expression of immune
checkpoint genes, whereas in the low-IRS, gene expression
was higher. Interestingly, there was no statistical difference in
the expression of the PD-1 gene between the two groups (p �
0.120).

DISCUSSION

OC is one of the common gynecological malignancies, with
14,070 patients dying of OC in 2018 in the United States alone,
and most patients are already at an advanced stage at the time
of diagnosis with a poor prognosis (Torre et al., 2018).
Immunotherapy has become a promising personalized
therapy for OC, but there is still a lack of reliable molecular
biomarkers to distinguish patients with potential sensitivity to
immunotherapy (Finkelmeier et al., 2018). Therefore, it is
particularly important to identify more immune-related
prognostic biomarkers, which can be used as potential
therapeutic targets or can be used to screen patients
sensitive to immunotherapy (Odunsi, 2017). TMB is a new
type of biomarker that predicts the response of cancer
immunotherapy. The findings of Wang et al. indicated that
high TMB could promote antigen expression and
inflammatory response of testicular tumors, and patients
with high TMB might achieve a better prognosis if treated
with immunotherapy (Wang and Li, 2019; Yan et al., 2020).
However, few studies have focused on the prognostic role of
TMB and the association between TMB and OC immune cell
infiltration. Therefore, in this study, we aimed to explore the

FIGURE 6 | Correlation of immune checkpoint molecules with risk score (A–D) boxplots of PD1, PDL1, CTLA4, PD-L2 expression of OC patients in high
and low-risk groups.
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prognostic role of TMB-related immune genes and their
potential association with immune infiltration.

It is well known that cancer is a genetic disease and that
neoplastic transformation results from the accumulation of
somatic mutations in the DNA of diseased cells (Chan et al.,
2019). In our study, missense mutations are the most common
type of mutation in OC, and TP53 mutations are the most
frequently mutated gene, which can be identified in more than
90% of OC samples. The tumor suppressor gene TP53 encodes
the tumor suppressor protein p53, and its mutations are
abundantly reported to be associated with poor prognosis in a
variety of cancers (Luo et al., 2018; Li et al., 2019). In the current
study, the high-TMB group has a more favorable prognosis, and
conversely, the low-TMB group has a significantly poorer
outcome. Yin et al.(Yin et al., 2020) suggested that high TMB
could induce immune responses in humans, resulting in
inhibition of tumor growth, followed by a relatively high
survival rate of patients.

To screen out immune genes related to the prognosis of OC,
immune-related genes were selected from the DEGs for
univariate Cox and LASSO regression analysis. Nine
independent prognostic immune genes associated with TMB
were screened out and established a prognostic TMB-IRS
signature. Among them, DKK1, PI3, DUOX1, PAEP and
CXCL10 genes are positively correlated with OS, while
CSPG5, CXCL11, TNFRSF17 and TNFRSF13B genes are
negatively correlated with OS. Chondroitin sulfate
proteoglycan 5 (CSPG5) encodes human chondroitin
GSPG5, which is related to immune-related genes that are
prognostic indicators of breast cancer and liver cancer patients
(Shi et al., 2020). CXCL10 and CXCL11 are ligands of
chemokine CXCR3, which can regulate the migration,
differentiation and activation of immune cells, and are
related to the selective migration and linear development of
CD4 + and CD8 + T cells (Karin and Razon, 2018), thereby
affecting the therapeutic effect of cancer (Tokunaga et al.,
2018). DKK1, a regulator of Wnt signaling, is found to
affect the tumor microenvironment by suppressing tumor
immunity and can be used as an immunotherapeutic target
for OC (Betella et al., 2020), which is consistent with our
research results. TNFRSF17 and TNFRSF13B, members of the
tumor necrosis factor receptor superfamily, are primarily
involved in the maturation of B lymphocytes and are
associated with tumor growth and invasiveness and may
serve as therapeutic targets in breast cancer (Pelekanou
et al., 2018). Previous studies have shown that dual
oxidase 1 (DUOX1) is commonly downregulated in lung,
liver, and breast cancers, suggesting that it may have a
tumor suppressor role (Little et al., 2016; Fortunato et al.,
2018). Progesterone-associated endometrial protein (PAEP)
can be used as a non-invasive biomarker to break
down endometriosis (Irungu et al., 2019). Studies have
reported its utility as a biomarker and immune system
modulator in non-small cell lung cancer (Weber et al.,
2019) and its association with prognosis in bladder cancer
(Liu L et al., 2020). However, the prognostic relevance of PI3
in cancer has been less frequently reported, which may

shed light on the mechanistic investigation of a novel
immune gene in cancer.

In our study, KM analysis and ROC curve results confirm the
favorable prognostic predictive value and accuracy of our
established TMB-IRS signature. Specifically, the TMB-IRS
signature can stratify patients into high- and low-risk groups
with different outcomes and immunophenotypes, and the high-
risk group is significantly associated with poor prognosis. Further,
we have determined the relationship between the established
model and multiple clinicopathological factors (age, cancer
status, grade, stage, and ethnicity). TMB-IRS is significantly
positively correlated with cancer status but negatively
correlated with TMB, which is consistent with previous studies
(Chan et al., 2019). Univariate and multivariate Cox regression
results indicate that TMB-IRS, tumor status and age are
independent prognostic predictors for the prognosis of OC
patients. To comprehensively evaluate the prognosis of
patients, we also establish a novel comprehensive nomogram
risk assessment model based on clinical information. DCA and
C-index results show that the predictive accuracy of TMB-IRS is
higher than traditional TNM staging, while the nomogram
containing multiple clinical information has the best
prognostic predictive accuracy.

Accumulating evidence suggests that the immune component
of the TME may be highly involved in tumor progression, as an
immunosuppressive TME is associated with a worse patient
prognosis (Tsogas et al., 2021). Immune cell infiltration in the
tumor microenvironment can affect the treatment response and
outcome of OC (Chalmers et al., 2017). Our research results show
that Plasma cells, T cells CD4 memory activated, T cells follicular
helper (Tfh), Monocytes, MacrophagesM1, andMast cells resting
are higher infiltrating in low-risk groups, while T cells CD4
memory resting, T cells gamma delta and Mast cells activated
is higher infiltrating in high-risk groups. This indirectly proves
that the high immune response can inhibit the growth of OC
tumors and improve the prognosis. Hollern et al. found that
immune checkpoint therapy could induce the activation of Tfh of
B cells, thereby promoting the anti-tumor response in a mouse
model of triple-negative breast cancer (Hollern et al., 2019). In
this study, 12 cells out of 22 immune cells were significantly
correlated with TMB-IRS, and three of these cells (macrophage
M1 T cell follicular helper plasma cells) were highly correlated
with TMB-IRS (R > 0.3). High-affinity antibodies secreted by
B cells and plasma cells are essential for the organism to fight and
clear pathogen infections, whereas germinal center formation,
B cell differentiation, and antibody affinity maturation are all
independent of follicular helper T cell help, and macrophage M1,
a macrophage that can produce proinflammatory cytokines, has
strong microbial killing properties (He et al., 2018). In our study,
the lower these three cell levels were when TMB-IRS was higher,
which explained the potentially threatening and poor prognosis
of tumors to some extent.

Currently, to effectively predict the prognosis of tumor
patients, a large number of models matching the prognosis of
tumor patients have been established and validated. For example,
Shen et al. developed a promising biomarker based on immune
genes that could predict overall survival in OC through the
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Immport database (Shen et al., 2019). Using a TMB-associated
signature to predict OS in OC, Bi et al. concluded that TMBB
plays a critical role in the prognosis of OC and guides
immunotherapy (Bi et al., 2020). In the study of fan et al.(Fan
et al., 2020), the TMB-related genes were obtained by
constructing the WGCNA network, and we were the DEGs
obtained by differential analysis. Liu et al.’s (Liu J et al., 2020)
study constructed a prognostic risk score for EOC (epithelial
ovarian cancer) by obtaining all genes associated with TMB, while
our study focused on the prognostic predictive role played by
immune genes in OC. However, in our study, based on TMB high
and low grouping, a signature constituted by 9 immune genes was
established, which could more accurately predict the prognosis of
OC, suggesting the level of immune cell infiltration, and thus
guide immunotherapy.

ICIs with blocking antibodies targeting cytotoxic T
lymphocyte antigen-4 (CTLA-4) as well as the programmed
cell death protein 1 (PD-1) pathway and programmed death-
1/programmed death-ligand 1 (PD-L1) has shown promising
results in a variety of malignancies including OC (Odunsi, 2017;
Memon and Patel, 2019). In our study, the expression of these
immune checkpoint molecules was inversely correlated with that
of TMB-IRS, suggesting a potential predictive role of our model
for individual response to immunotherapy.

In the current study, we first explore the correlation between
TMB and the prognosis of OC, and the results show that higher
TMB levels are significantly associatedwith a better prognosis of OC.
Based on the TMB score, nine TMB associated immune genes are
identified, fromwhich a biomarker TMB-IRS is constructed that can
also effectively predict the prognosis of OC. We find that the TMB-
IRS signature is negatively correlated with infiltrating immune cells,
a new robust TMB-IRS signature, to help clinicians determine the
most likely benefit from immunotherapy. The TMB-IRS signature,
based on its strong prognostic predictive value and its association
with immunotherapy, may serve as a novel biomarker and potential
therapeutic target for predicting OC prognosis. The present study is
a retrospective study, which is a limitation, so further prospective
studies and clinical validation of its analytical accuracy and testing its
clinical utility are warranted.
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