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Editorial on the Research Topic

Applications of Next Generation Sequencing (NGS) Technologies to Decipher the Oral
Microbiome in Systemic Health and Disease

Advances in next generation sequencing (NGS) technologies have revolutionised microbiology in
the past few decades enabling researchers to elucidate the composition of the human microbiome.
Recently, more effort is being directed at capturing both structural and functional aspects of the
microbiome through gathering information on genes, transcripts, proteins and metabolites (Oresic
et al., 2004; Muller et al., 2021). Combining several omics approaches with patient information is set
to become the norm in future studies and will provide invaluable information to bring our
understanding of symbiotic and dysbiotic processes to the next level. In this special issue
“Applications of next generation sequencing (NGS) technologies to decipher the oral
microbiome in systemic health and disease”, we have compiled 17 papers including mostly
original research articles, but also systematic/scoping reviews and a brief research report, that
give focus to the oral microbiome and its impact on our systemic health.

The oral cavity harbours a rich and diverse microbial population, which varies greatly within and
between individuals. However, it remains relatively stable throughout adulthood (Kilian et al.,
2016), despite regular disruptions through diet, oral hygiene, and occasional medication including
antibiotics and polypharmacy, if any.

Changes in systemic conditions and associated treatments may influence the oral microbiota, for
example hypertension, hyperglycaemia and dysbiosis occurring at other body sites like the gut via
the oral-gut axis. Several studies in this e-book provide such evidence. Significant alterations in the
oral and gut microbial profiles were determined by Shi et al. and were correlated with the severity of
gy | www.frontiersin.org December 2021 | Volume 11 | Article 80112215
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rheumatic heart disease. In the study by Kageyama et al., tongue
cancer patients undergoing surgical resection were found to have
a significantly different salivary microbiota. The mechanisms
that underpin the oral-gut microbiome axis and other cross-talks
with distant organs such as the lungs, liver, brain, skin and
genital tract remain unclear and deserve full investigations (Zhao
et al.) (Martinez et al., 2021; Park et al., 2021).

There is also growing evidence that the oral microbiota can
influence systemic health (Jia et al., 2018). Specifically, the oral
microbiota has been associated with a wide array of conditions
such as dementia, depression, obesity, cancer, arthritis, diabetes,
gut and skin diseases (Frid et al.) (Maitre et al., 2020; Sedghi et al.,
2021; Wingfield et al., 2021). However, from the evidence
presented, it is not clear whether changes in microbial profiles
associated with oral dysbiosis are a manifestation of disease, or
whether they drive the disease process in the oral cavity
and elsewhere.

Deeper insights into how the microbiome can influence our
wellbeing will help design tailored strategies for disease prevention
and treatment. The paper by Zhou et al. is a good example of the
use of oral microbiota data to help diagnose carcinomas through a
non-invasive and low-cost approach. The acquisition of
increasingly large NGS data coupled with biological and medical
information is paving the way to the design of more accurate
predictive models of health and disease which will enable a
comprehensive and personalised medicine approach in our near
future. Xie et al. described the use of elastic net models on supra-
gingival microbiome data to accurately predict the presence of
metabolites. More work is needed to make sense of the complex,
multi-dimensional interactions occurring between the host and
the microbiome. Computational methods linking microbes with
metabolites (either produced or degraded) will be invaluable to
learn patterns specific to homeostasis and pathogenesis, with
therapeutic implications. Moreover, the ease of access to the oral
cavity makes health checks convenient. Attempts at manipulating
and controlling the oral microbiota through modulation strategies
to reduce local and systemic inflammation, microbial load and
maintain oral homeostasis will hopefully lead to similar
repercussions systemically and promote overall health.

High throughput sequencing has helped generate large,
publicly available datasets of descriptive microbiome profiles
which are increasingly combined with functional microbial
analyses. Investigations using NGS data combined with
proteomics as the one described in Bao et al. are harbinger of
future conventional methodologies. Re-analyses and meta-
analyses of large datasets are important work which advance
the robustness of our analysis methods and our overall
knowledge of microbes and their interactions (Cai et al.;
de Cena et al.; Jiang et al.; Kang et al.). The inclusion of
patients’ clinical data (medical history, systemic health or
disease parameters) would also be helpful in deciphering the
mechanisms of actions through which the oral microbiome
exerts its impact on human health. Most journals impose
requirements for NGS studies to provide sequencing data via
links to repositories. While dealing with manuscripts in this
e-book, we have come across two important issues: 1)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 26
Incomplete information within presented datasets are
common. Kang et al. stated that only 57% of publicly available
datasets with accession numbers provided both sequencing and
metadata. 2) Clinical data are not always specified in the
provided metadata. Within the datasets that provided both
sequencing and metadata, we noticed that many manuscripts
did not specify patients’ clinical data, for example diagnosis
criteria, clinical parameters or medical history. This makes future
rigorous re-analyses and meta-analyses difficult for the scientific
community, if possible, at all. As we are entering a personalized
medicine era, it is crucial that all available data are optimally
utilized for comparative analyses of larger and varied patient
populations (Garcia et al., 2013; Berg et al., 2020).

Furthermore, taking in account clinical parameters as potential
confounding factors forhealthordiseasewill beuseful inpreventing
bias when examining omics data. For example, when comparing
oral microbial communities in individuals with and without caries,
other oral and systemic conditions, e.g. hyposalivation,
periodontitis, candidiasis (Lyu et al.) and any sign of
inflammation should be taken into consideration (Dame-Teixeira
et al., 2021). The study by Bostanci et al. clearly showed how oral
dysbiosis fluctuates during the menstrual cycle and detailed the
impact of smoking and dietary sugar as risk factors. Inflammatory
and immunological impairments also shape the oral microbiome.
Lettieri et al. correlated the salivary microbiome with a significant
inflammophylic profile in the oral phenotype of syndromic
individuals with ineffective cathepsin C and impairment of
neutrophils, where traditional periodontal therapy is not efficient.

The field of microbiome research has grown rapidly and has
covered many disciplines in the past decade. There is still a lack
of consensus in the terminology used to describe some of the
methods and microbial communities (Marchesi and Ravel,
2015). We noticed that while most of the papers in our
collection used the term ‘16S rRNA gene sequencing’, some
refer to the incorrect term ‘16S rDNA sequencing’. Hence, we
recommend the standardization of the vocabulary used in
microbiome studies (Berg et al., 2020).

In our e-book, we have collected papers on the current trends
in oral microbiome research. The studies described integration of
meta-omics data with complex biological context of health and
disease. Future collaborative efforts are expected to carry out
more accurate, rigorous computational methods using
increasingly larger, and detailed datasets, which will enable us
to predict treatment outcomes and make personalised medicine
achievable and accessible.
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Gulnur Emingil 5, Jonas Grossmann 3, Patricia I. Diaz 6, George Hajishengallis 2,

Nagihan Bostanci 1 and Georgios N. Belibasakis 1*

1Division of Oral Diseases, Department of Dental Medicine, Karolinska Insitutet, Huddinge, Sweden, 2Department of Basic

and Translational Sciences, School of Dental Medicine, Philadelphia, PA, United States, 3 Functional Genomic Centre, ETH

Zurich and University of Zurich, Zürich, Switzerland, 4 Swiss Integrative Center for Human Health, Fribourg, Switzerland,
5Department of Periodontology, School of Dentistry, Ege University, Izmir, Turkey, 6Department of Oral Biology, University at
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Efforts to map gingival tissue proteomes and microbiomes have been hampered by

lack of sufficient tissue extraction methods. The pressure cycling technology (PCT) is

an emerging platform for reproducible tissue homogenisation and improved sequence

retrieval coverage. Therefore, we employed PCT to characterise the proteome and

microbiome profiles in healthy and diseased gingival tissue. Healthy and diseased

contralateral gingival tissue samples (total n = 10) were collected from five systemically

healthy individuals (51.6 ± 4.3 years) with generalised chronic periodontitis. The

tissues were then lysed and digested using a Barocycler, proteins were prepared

and submitted for mass spectrometric analysis and microbiome DNA for 16S rRNA

profiling analysis. Overall, 1,366 human proteins were quantified (false discovery rate

0.22%), of which 69 proteins were differentially expressed (≥2 peptides and p < 0.05,

62 up, 7 down) in periodontally diseased sites, compared to healthy sites. These

were primarily extracellular or vesicle-associated proteins, with functions in molecular

transport. On the microbiome level, 362 species-level operational taxonomic units

were identified. Of those, 14 predominant species accounted for >80% of the total

relative abundance, whereas 11 proved to be significantly different between healthy and

diseased sites. Among them, Treponema sp. HMT253 and Fusobacterium naviforme

and were associated with disease sites and strongly interacted (r > 0.7) with 30 and

6 up-regulated proteins, respectively. Healthy-site associated strains Streptococcus

vestibularis, Veillonella dispar, Selenomonas sp. HMT478 and Leptotrichia sp. HMT417

showed strong negative interactions (r < −0.7) with 31, 21, 9, and 18 up-regulated

proteins, respectively. In contrast the down-regulated proteins did not show strong

interactions with the regulated bacteria. The present study identified the proteomic

and intra-tissue microbiome profile of human gingiva by employing a PCT-assisted

workflow. This is the first report demonstrating the feasibility to analyse full proteome

profiles of gingival tissues in both healthy and disease sites, while deciphering the tissue

site-specific microbiome signatures.

Keywords: tissue proteomic analysis, biofilm, gingiva, periodontitis, microbiome
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INTRODUCTION

As a consequence of the microbial challenge, periodontitis causes
destruction of underline connecting tissue, including gingival
epithelial layer, which builds a barrier to the external challenge.
Thus, microbial invasion of the periodontal tissues may take
place during the respective pathological processes (Colombo
et al., 2007). In earlier transmission electron microscopy studies,
invasion of spirochetes and other microorganisms were evident
in the gingival epithelium and connective tissues, especially
in patients with acute necrotising gingivitis (Listgarten, 1965;
Courtois et al., 1983). This tissue invasive feature is different from
that of endocytosis by non-phagocytic host cells, through which
bacteria evade phagocytic elimination by the immune system.
However, bacterial invasion has traditionally been considered
to take place at relatively late stages. Based on this rationale,
most periodontal microbiome studies have been focused on
the characterisation of biofilms. It is plausible that, at least
in part, bacterial invasion is involved in the pathogenesis of
periodontitis. Interestingly, one study showed that bacteria could
form a biofilm-like structure within the gingival tissue (Baek
et al., 2018). Further, 16s rRNA profiling analysis has shown that
Fusobacterium nucleatum and Porphyromonas gingivalis were
highly enriched within the tissue compared with the plaque
(Baek et al., 2018). Although most available microbiome studies
were mainly focused on the bacterial plaque (biofilm), an overall
microbiome map directly derived from human gingival tissues
is necessary to draw the whole picture for understanding this
virulence aspect of periodontal disease.

With the help of mass spectrometry, researchers can identify
thousands of proteins for a given sample in a single run (Bostanci
and Bao, 2017), which is ideal for delivering a snapshot of
protein regulations within the gingival tissue. However, attempts
to map gingival tissue proteomes have been hampered by
lacking sufficient protein extraction workflows. Bertoldi et al.
(2013) reported 13 gingival proteins differentially regulated in
diseased sites, compared with their neighboring inter-proximal
healthy sites. This included the upregulation of annexin A2,
actin cytoplasmic 1, carbonic anhydrase 1 and 2; Ig kappa
chain C region and flavinreductase as well as downregulation
of 4-3-3 protein sigma and zeta/delta, heat-shock protein beta-
1, triosephosphateisomerase, peroxiredoxin-1, fatty acid-binding
protein-epidermal, and galectin-7 in pathological tissues. Monari
et al. identified 32 different protein spots and elevation of
S100A9, 14-3-3 protein zeta/delta, Heat shock protein beta-
1 and Galectin-7 in gingival tissues from periodontal patients
compared with those from healthy individuals (Monari et al.,
2015). Whereas, Yaprak et al. (2018) identified 47 proteins from
healthy gingival tissue, including 14-3-3 protein sigma, S100A9
andGalectin-7, which also identified in the works of Bertoldi et al.
and Monari et al. Yet, although transcriptomic and proteomic
patterns are rarely similar (Wang et al., 2017), transcriptomic
analysis of gingival tissues has identified as many as 12,744
expressing genes (Demmer et al., 2008), indicating that there is
plenty of space for the improvement for proteomic identification.

A sensitive pressure cycling technology (PCT)-assistant
workflow with proven efficiency in gingival tissue disruption

(Bao et al., 2019) was used in this study. The present study
aimed to concomitantly characterise the gingival tissue proteome
and microbiome of systematically healthy individuals with
periodontitis, by comparing healthy and diseased sites. Label-
free quantitative proteomics and 16SrRNA gene sequencing
platforms were applied to dissect the relationship between
bacterial abundance and protein regulation among these
gingival tissues.

RESULTS

Proteome Profiles of Gingival Tissue
Samples Cluster Based on Clinical State
The gingival tissue proteome charted in this study derived
from 10 gingival tissues (one healthy and one diseased site
per individual) obtained from 5 individuals with stage III
periodontitis. Prevalence of teeth with one or more sites with
probing pocket depth (PPD) > 5mm and PPD > 5mm were
% 44 ± 5.3 and % 35.6 ± 6.3. Approximately 82% of sites with
PPD > 5mm had bleeding on probing (BOP). The mean PPD
and clinical attachment loss (CAL) scores of the sampled diseased
sites were significantly higher than the healthy ones [p < 0.05,
PPD (mm): 2.2 ± 0.8 vs. 7.0 ± 0.7, p < 0.001, CAL (mm): O vs.
8.0± 0.7, p < 0.0001].

Following a PCT-assisted label-free quantification work-flow,
we obtained an overview of the gingiva proteome of 1,369
proteins (including 2 contaminant and 3 decoy proteins), with
a protein false discovery rate (FDR) of 0.22%. Each quantified
protein consisted of at least two unique peptides identified
and quantified (Appendix Table 1). Although unsupervised
hierarchical clustering analysis of the tissue proteomes could not
distinguish healthy from diseased sites based on their normalised
abundances (Figure 1A), this became possible by the utilisation
of sPLS-DA (Figure 1B). Considering that protein regulation
among individuals may vary, we assessed the differentially
expressed protein levels by comparing intra-individually healthy
and diseased sites, using paired t-test. Of all quantified proteins,
62 qualified as higher [log2 (FC) ≥ 0, P ≤ 0.05], whereas only
7 qualified as lower [log2 (FC) ≤ 0, P ≤ 0.05] in diseased
sites compared to the respective healthy sites (Figure 1C,
Appendix Table 2).

Gene Ontology (GO) Analysis of the
Regulated Proteins in the Gingival Tissue
The GO functions of differentially expressed proteins were
annotated using the METACORE online software (https://
portal.genego.com, Thomson Reuters). The top enriched GO
terms for localisations, processes and molecular functions of
all 69 regulated proteins were recognised and ranked according
to their statistical significance (Table 1, Appendix Table 3).
The major cellular localisation of the regulated proteins was
“extracellular”-or “vesicle”-related (Table 1A). For instance,
“extracellular exosome,” “extracellular vesicle,” and “extracellular
organelle” were the top three enriched terms (Table 1A).
Many of these proteins were linked to “localisation” or
“transport” processes (e.g., “cellular localisation,” intracellular
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FIGURE 1 | Proteome of gingival tissues from healthy and diseased sites. (A) The heatmap of normalised abundance for identified and quantified proteins in gingival

tissue. Samples isolated from healthy sites were highlighted in blue colour, while samples isolated from diseased sites were highlighted in red. (B) The sPLS-DA plots

represented the normalised abundance of all the 1,366 proteins from healthy (blue triangles) or diseased sites (red triangles). (C) 62 proteins were upregulated [log2

(FC) ≥ 0, P ≤ 0.05] in the disease compared with healthy sites (red dots), and 7 were downregulated [log2 (FC) ≤ 0, P ≤ 0.05]. (D) String analysis for the interaction

between regulated proteins. Network established using STRING with interaction confident scores more than 0.9. The upregulated proteins were labelled in black,

while the downregulated proteins were labelled in blue. The methods for acquiring the different protein-protein interactions were illustrated by different lines. The

interaction confirmed by the curated database and experimental results were shown in blue and purple line, respectively. The interaction predicated by gene

neighborhood, gene fusions, and gene co-occurrence were shown in green, red, and dark blue lines, respectively. While interaction was determined by text-mining,

co-expression and protein homology were shown in yellow, black, and light blue lines, respectively. Healthy sites: H. Diseased sites: D.
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TABLE 1 | Enriched GO terms of regulated proteins.

A: Top 10 enriched GO localisation of regulated proteins

# GO terms (Localisations) Regulated P-value

1 Extracellular exosome 47/2,932 2.8778E-25

2 Extracellular vesicle 47/2,951 3.807E-25

3 Extracellular organelle 47/2,963 4.5382E-25

4 Extracellular space 49/4,428 1.7958E-19

5 Extracellular region part 50/4,693 2.8805E-19

6 Vesicle 50/4,975 3.6834E-18

7 Extracellular region 52/5,860 1.0373E-16

8 Intracellular organelle part 62/10,709 7.1559E-12

9 Organelle part 63/11,087 8.3233E-12

10 Cytoplasmic part 64/11,535 1.2786E-11

B: Top 10 enriched GO processes of regulated proteins

# GO terms (Processes) Regulated P-value

1 Establishment of localisation in the

cell

40/2,418 5.532E-19

2 Cellular component organisation or

biogenesis

63/7,803 2.3678E-16

3 Cellular localisation 41/3,189 1.3431E-15

4 Intracellular protein transport 27/1,234 2.5142E-15

5 Cellular protein localisation 33/2,036 4.6355E-15

6 Cellular component biogenesis 44/3,862 5.2894E-15

7 Cellular macromolecule localisation 33/2,048 5.4923E-15

8 Intracellular transport 33/2,068 7.2675E-15

9 Supramolecular fiber organisation 20/636 2.7295E-14

10 Establishment of protein localisation 32/2,036 3.3676E-14

C: Top 10 enriched GO molecular functions of regulated proteins

# GO terms (Molecular functions) Regulated P-value

1 Structural constituent of ribosome 9/202 1.4028E-08

2 Structural molecule activity 17/1,044 1.6659E-08

3 Cytoskeletal protein binding 16/1,100 2.2308E-07

4 Cadherin binding 9/335 1.0296E-06

5 Protein binding 62/14,119 1.3072E-06

6 RNA binding 19/1,919 4.6905E-06

7 Heterocyclic compound binding 40/6,982 6.5837E-06

8 Cell adhesion molecule binding 10/558 9.2596E-06

9 Organic cyclic compound binding 40/7,084 9.7525E-06

10 Actin binding 9/483 1.9857E-05

protein transport) (Table 1B), whereas their top molecular
functions belonged to the “structural constituent of ribosome”
and “structural molecule activity” (Table 1C).

To further understand their inter-relationships, the protein-
protein interactions were analysed using STRING (https://

string-db.org/) (Appendix Table 4). When applying the
highest confidence score (0.9), 40 among the 69 regulated
proteins, formed 73 pairs of known such interactions, as
illustrated by string networks (Figure 1D). The largest
cluster of protein interactions consisted of 10 different
proteins, which were mainly ribosomal ones. The second-
largest cluster identified consisted of 8 proteins with
assigned macromolecular transport properties (e.g., Ras-
related proteins, general vesicular transport factor p115). In
addition, among the interactions illustrated in the network,
some were identified between actin and other intracellular-
structural proteins, or between five dehydrogenases and
aminotransferases, as well as more sparse interactions of only
two or three proteins.

Microbiome Profiles of Gingival Tissue
Samples Cluster Based on Clinical State
Our next approach was to examine microorganisms present
in the gingival tissues by establishing a microbial catalogue
from 450,668 sequences that binned within 97% sequence
identity from all ten-tissue samples (Appendix Table 5). On
average, more than 119609.8 reads were identified from each
sample, with a standard deviation of 77658.61. To analyse
the alpha diversity, rarefaction curves were plotted based on
the observed OTUs (Figure 2A), with calculated coverages for
disease and health of 99.32 and 99.50%, respectively (Figure 2B),
while the inverse Simpson diversity for disease and health
were 7.18 and 5.05, respectively (Figure 2C). Furthermore, 362
non-rare OTUs were discovered among all ten-samples (data
are available via ENA), with no significant differences in the
number of detected OTUs between disease and health (P =

0.277, 77, and 74 average OTUs for diseased and healthy
sites, respectively) using paired t-test (Figure 2D). To visualise
differences in community structure between the groups, an
NMDS plot of the thetayc distance was generated (Figure 2E),
yielding sample clustering based on sites (healthy tissue vs.
diseased tissue), not by sample pairing. Such sample clustering
indicated the presence of different OTUs between diseased
and healthy tissues. In addition, unsupervised hierarchical
clustering analysis of OTU abundance also pointed to global
microbiome differences between the two types of gingival tissues,
where samples were also clustered according to tissue type
(Figure 2F).

Only 14 species comprised more than 80% of 16S rRNA
gene reads (Figure 2G). In healthy sites, Streptococcus vestibularis
was the most abundant species, followed by Haemophilus
parahaemolyticus and Veillonella dispar (Appendix Table 6).
For diseased sites, the most abundant species was an as-yet-
uncultured species Treponema sp. Human Microbial Taxon
(HMT) 253, whereas the abundance of S. vestibularis declined
from more than 20% in health sites, to <10% in diseased sites
(Figure 2H). Eleven OTUs were significantly different (P < 0.05)
between healthy and diseased sites, including five from the 14
most abundant species (i.e., S. vestibularis, Treponema sp. HMT
253, V. dispar, Fusobacterium naviforme, and Selenomonas sp.
HMT 478) (Figure 2G).
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FIGURE 2 | Microbiome of gingival tissues from healthy and diseased sites. (A) Rarefaction curve for the number of OTUs as a function of sampling effort. (B) Sample

coverage. (C) Inverse Simpson diversity. (D) Observed OTU per group. (E) Non-metric multidimensional scaling (NMDS) for distance matrix of between disease and

healthy samples. (F) OTU abundance across samples_ Abundant OTUs only (after removing rare OTUs). The bacterial relative abundance of the gingival tissue in (G)

all healthy and disease tissues, or in (H) individual gingival tissues. The abundance that significant shift (P < 0.05) between two sites were highlighted in “*”. Healthy

sites: H. Diseased sites: D.

Gingival Tissue Interactome: Correlations
Between Proteomes and Microbiomes of
Gingival Tissues
To adequately address the interactome of the gingival tissues,
potential correlations between the 69 regulated proteins
and 11 regulated species were further analysed using the
mixOmics package (Figure 3, Appendix Table 7). We
found S. vestibularis, V. dispar, Leptotrichia sp. HMT_417,
and Selenomonas sp. HMT_478 were clustered with all
7 downregulated proteins (i.e., Nucleobindin-1, Delta-
1-pyrroline-5-carboxylate dehydrogenase, ATP synthase
subunit f, Aldehyde dehydrogenase class 2, Keratin, type II
cytoskeletal 1, Vacuolar protein sorting-associated protein
29, and Cytokeratin-2e), and negatively correlated with the 62
upregulated proteins (Figure 3A). On the contrary, five regulated
species (more abundant in diseased sites), namely Treponema
sp. HMT_253, Streprococcus salivarius, Peptostreptococcaceae
[XI][G-6] [Eubacterium] nodatum, Variovorax paradoxus and

F. naviforme, were strongly associated (r > 0.7) with 28, 29,
20, 1, and 4 upregulated proteins, respectively (Figure 3B,
Appendix Table 7).

DISCUSSION

Different proteome and microbiome studies have been
performed to understand periodontal diseases, yet few have
focused on gingival tissues. Earlier studies indicated that the
microbial content of the periodontal pocket in non-human
primates or human determines the gene expression patterns in
the gingival tissues (Papapanou et al., 2009; Ebersole et al., 2020).
In the present study, we successfully applied a contemporary
PCT-assisted workflow to dissect the gingival proteome and
microbiome of both diseased and healthy sites from patients with
periodontitis. The tissue recipient sites included both maxilla and
mandible, which may exhibit different degrees of keratinisation.
It should also be acknowledged that the stringent requirement
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FIGURE 3 | Correlations between regulated proteins and microbiotas. (A) The colour-coded clustered image map that present correlation between regulated proteins

and microbiotas following pair-wise variable associations for canonical correlation analysis. (B) The Circos Plot showed variable correlations among regulated proteins

and microbiotas (Appendix Table 7). Positive correlations were indicated with red lines, while negative correlations were indicated with blue lines. Only correlations

more than 0.7 were showed. The levels of expression in healthy sites were indicated in green line, while the levels of expression in inflammatory sites were indicated in

red. Healthy sites: H. Diseased sites: D.

FIGURE 4 | Illustration of the sample sits for gingival tissue. Both pocket epithelium and underlying connective tissue were included in the gingival specimen taken

from the approximal sites of the selected teeth (grey; tooth, pink; gingival connective tissue, purple-red; gingival epithelium, brown-beige; alveolar bone).

of obtaining both a healthy and a diseased tissue specimen from
the same donor prohibited us from limiting further the sampling
criteria to either jaw, else it would have been more cumbersome
to identify suitable patients.

The study also presents the most comprehensive quantitative
proteome map of human gingival tissue to date, by quantifying
1,366 proteins, while earlier proteome analyses quantified <50
proteins at a time. Interestingly, only 69 of over 1,300 quantified
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proteins were significantly differentially expressed, whereasmany
of the inflammation-related proteins, such as Ig gamma-1 chain
C region and Protein S100-A9, were abundantly expressed
at both sites. The fact that the global proteomic profiles
were similar between healthy and diseased sites denotes that
protein composition of clinically healthy gingival tissue in the
periodontal patient may have already been altered, even in the
absence of evident clinical signs of inflammation at those sites.
Of note, we used a data-dependent acquisition (DDA) strategy in
this study. DDA only samples a subset of the most abundant ions
detected during the first MS scan for the further fragmentation
and sequential MS scans, while discards the rest. Hence, many
proteins with demonstrated roles in periodontitis, including
various cytokines, might have been masked due to their lower
abundance. The high biological variabilities among patients
may also contribute to low number of differentially expressed
proteins. Nevertheless, this observation on overall protein
regulations is consistent with transcriptomic changes observed in
gingival tissue in periodontitis (Kebschull and Papapanou, 2011).
Furthermore, the prediction of the protein functions shows that
most of the regulated proteins were localised in the extracellular
space. Similarly, increased numbers of secreted proteins were
previously identified in human experimental gingivitis (Bostanci
et al., 2013) and murine ligature-induced periodontitis (Bao
et al., 2019). Hence, it is not surprising to find that many
of the regulated proteins had transport-related functions. We
also observed increases in the ribosome-related proteins (e.g.,
60S ribosomal protein L37a, 40S ribosomal protein S25, 40S
ribosomal protein S8, etc.), indicating ribosomal biosynthetic
activity in the inflamed sites (Zhou et al., 2015).

Under homeostatic conditions, the host is in a balanced
relationship with commensal oral species or potential
pathobionts (Hajishengallis and Lamont, 2014). Hence, the
concomitant study of the proteome and the microbiome is high
relevant. One the microbiome aspect, 14 species accounted
for 80% of the abundances, only 11 significantly differentiated
between health and disease, six of which belonging to the rarely
abundant group. This denotes that both high and low abundance
species are to be considered in the future for defining signatures
of target organisms capable of distinguishing between clinical
health and disease. The oral microbiome data obtained in this
study from gingival tissues identified potentially invasive species
of the periodontium. Nevertheless, it cannot be definitively
confirmed that the detected bacteria were all actual tissue
invaders, and not superficial persisters after the washing steps.
Yet, only a limited portion of the tissue interface has been in
direct contact with the biofilm, which is dispersed during the
homogenisation process of the specimen, thus down-playing
the representation of the non-invaded species. Although their
precise effects on the tissue may currently be unclear, different
species were earlier found to co-exist within the gingival tissue
(Baek et al., 2018). The relative abundances of different taxa
may denote their potential roles in health and disease, or their
invasive capacity. Treponema sp. HMT 253 and F. naviforme
were significantly increased in diseased compared to healthy
sites. For Treponema sp. HMT253, the only information
currently available on this as-yet-uncultured species is its 16S
rRNA gene clone library, derived from dental plaque of subjects

with periodontitis and acute necrotising ulcerative gingivitis
(Dewhirst et al., 2000). It is closely related to Treponema
denticola, a potential pathogen implicated in periodontal disease
(Dewhirst et al., 2010). Different models have shown that
T. denticola is able to invade the epithelium and basement
membrane (Grenier et al., 1990; Lux et al., 2001; Chi et al.,
2003), as well as to secrete a chymotrypsin-like protease that
can digest host components including type IV collagen, laminin
and fibronectin (Grenier et al., 1990). T. denticola dentilisin was
also reported to disrupt the epithelial cell monolayer (Chi et al.,
2003). Fusobacterium naviforme (formerly F. nucleatum ssp.
naviforme) has been identified and isolated from subgingival
plaque samples (Colombo et al., 2009). Based on phylogenetic
analysis (Dewhirst et al., 2010), it is expected to display functional
similarities F. nucleatum. Although Treponema sp. HMT 253 and
F. naviforme were not usually found as an abundant constituent
of the subgingival biofilm in patients with periodontitis, their
abundance within the tissue documented in this study suggests a
greater invasion potential than their cultivated and characterised
relatives. Of further note, other species that were elevated in
diseased compared to healthy tissue, but did not reach statistical
significance, are worth mentioning. Such were F. alocis and
Fretibacterium sp. HMT 358, suggesting that they are potentially
invasive of the gingival tissues. Both F. alocis and Fretibacterium
sp. have been increasingly associated with periodontal disease.
Fretibacterium sp. belongs to the phylum Synergistetes and is
shown to be increased in the saliva of patients with periodontitis
(Belibasakis et al., 2013) and in dental biofilms of patients
with ANUG (Baumgartner et al., 2012), an invasive form of
periodontal disease.

Some potentially invasive but generally less pathogenic
species, including S. vestibularis, V. dispar, and Selenomonas sp.
HMT 478, were enriched in healthy sites. Even though originally
identified in the oral cavity (Whiley and Hardie, 1988), the
presence of S. vestibularis has not been reported in periodontitis,
but in other infectious diseases (Duan et al., 2017; Yilmaz et al.,
2017). V. dispar is found in subgingival plaque from chronic
periodontitis patients (Moon et al., 2015) and plays an import
role when saliva is the main nutritional source of oral biofilm
(Kolenbrander, 2011). The presence of Selenomonas spp. are
reported in the salivary (Duan et al., 2017) or dental plaque
microbiome (Paster et al., 2001; Faveri et al., 2008) of periodontal
patients, but at a lower prevalence compared with other putative
pathogens (Goncalves et al., 2012). Previous studies have shown
that Streptococcus (Teles et al., 2012), Veillonella (Kolenbrander,
2011) and Selenomonas (Goncalves et al., 2012) contribute to the
structural organisation of oral biofilm. Streptococcus spp. have
the potential to colonise or invade the gingival tissue, but with
no known association to gingival inflammation, which is well in
line with our findings. It should be noted that, although diseased
sites showed higher abundances of Treponema sp. HTM 253,
most healthy sites fostered a fairly high proportion of this species.
Perhaps this species allows other less invasive microorganisms
like Veillonella spp. and Streptococcus spp. to penetrate the
tissue barrier.

Thus far there has been inconsistent evidence to support
or exclude the invasive properties of oral species in the
pathogenesis of periodontal disease (Mendes et al., 2015). From
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an epidemiological perspective, there is sufficient evidence on the
role of specific species as etiological agents of periodontitis, but
the disease may be better understood as dysbiotic inflammation
resulting from the concerted interaction of correlations (Lopez
et al., 2015; Hajishengallis and Lamont, 2016). The interactome
analysis of the present study indicates that groups of significantly
elevated species and proteins tend to correlate with one another
in health or disease. Information derived from such studies may
decipher biological signatures in periodontal disease, which will
help us understand its etiopathogenesis on the tissue level and
may confer future diagnostic and prognostic value (Belibasakis
and Mylonakis, 2015).

MATERIALS AND METHODS

Study Population and Design
Gingival tissues (n = 10) were collected from two sites (one
healthy and one diseased) of each five systematically healthy
individuals with stage III periodontitis (age range from 45 to
56 years with a mean age 51.6 ± 4.5 years, F:M: 2:3). The
study was approved by the Ethics Committee of Ege University
(number 17–11.1/34) and conducted following the guidelines of
the World Medical Association Declaration of Helsinki. Patients
first attended the Department of Oral Diagnosis and Radiology
for the completion of clinical and radiological examination
procedures and were then directed to the specialised within the
University Dental Clinics, for further assessment and treatment.
Exclusion criteria were the use of tobacco products, presence
of cardiovascular and respiratory diseases, diabetes mellitus,
HIV infection, systemic inflammatory conditions or non-plaque-
induced oral inflammatory conditions, immunosuppressive
chemotherapy, and current pregnancy or lactation. None of
the patients had a history of periodontal therapy or had taken
medication such as antibiotics or anti-inflammatory drugs that
could affect their periodontal status for at least 6 months prior to
the study. Informed consent was obtained from all participants.
Full-mouth and site-specific periodontal parameters including
PPD, CAL, dichotomous presence of BOP, and plaque for each
patient were recorded. The full-mouth means PPD (mm) and
CAL (mm) were 5.1 ± 0.4, 5.7 ± 0.4, respectively. The full-
mouth mean plaque and BOP scores were 72.0 ± 6.7 and
75.0± 5.0, respectively.

Collection of Gingival Tissue Samples
Gingival tissue samples, including both pocket epithelium and
underlying connective tissue, were taken from the approximal
sites of the selected teeth prior to non-surgical periodontal
therapy (Figure 4). The “healthy sites” had no clinical signs of
gingival inflammation (no BOP), exhibited a PPD of ≤ 3mm
and had no radiographic evidence of alveolar bone loss and no
CAL. These healthy tissues were sampled when the premolars
were scheduled to have periodontal crown lengthening surgery.
The “diseased sites” showed BOP, had an interproximal PPD of
≥6mm, and a concomitant CAL of ≥6mm. Two gingival tissue
samples from each participant were obtained and washed with
sterile normal saline solution to remove any blood or detached
biofilms on the tissue surface. Tissues were then placed in a sterile

tube containing a tissue protectant solution (RNAlater, Sigma-
Aldrich) and stored at+4◦C overnight, before long-term storage
at−70◦C until later usage.

Protein Extraction and Digestion
Gingival tissues were washed three times, each for 5min in
PBS to remove any residues prior to lysis. The tissues were
then lysed and digested using a Barocycler NEP2320 (Pressure
BioSciences) at 33◦C as described previously (Bao et al., 2019).
In brief, 2.5 to 3mg of samples (n = 10) were placed in
MicroTubes (Pressure BioSciences) and lysed with a 60–cycle
barocyling process. The exacted proteins were then reduced
and alkylated using tris (2-carboxyethyl) phosphine (Sigma) and
iodoacetamide (Sigma). Later, extracted proteins were digested
using Lys-C (Wako) at an enzyme-to-protein (estimated to be
10% of the wet sample weight) ratio of a 1:45 with a 45–cycle
barocyling process. These resultant solutions were further diluted
and then digested again using trypsin (Promega) at an enzyme-
to-protein ratio of 1:50 with a 90-cycle process. Each barocyling-
cycle mentioned above consisted of a 50 s ultra-high pressure
phase (45, 20, 20 thousand pounds per square inch (KPSI) for 60-,
45-, 90-cycle process, respectively) followed with a 10 s ambient
pressure phase in each cycle. Resultant solutions were acidified
by trifluoroacetic acid (TFA) (Sigma) to a final concentration of
0.8% w/v, desalted using reverse-phase cartridges Finisterre SPE
C18 (Wicom International AG), dried with vacuum centrifuged,
and kept in−20◦C freezer until further use.

Mass Spectrometry (MS) and Data Analysis
All frozen peptides were reconstituted in 3% acetonitrile ACN in
0.1% formic acid and adjusted to 0.5µg/µl using NanoDrop 1000
spectrophotometer (WITEC AG). One microlitre of desalted
peptide was analysed on an Orbitrap Fusion mass spectrometer
(Thermo Fisher Scientific) for proteomic analysis as described
previously (Bao et al., 2017).

Label-free quantification was performed by Progenesis QI
for proteomics (Non-linear Dynamics) as described previously
(Bao et al., 2017). In brief, .raw files of individual samples
were aligned with a pooled sample to create a Mascot files
(.mgf). This .mgf files was searched with Mascot (version
2.4.1, Matrix Science) using the following search parameters:
precursor tolerance: ± 10 ppm; fragment ion tolerance:
± 0.6 Da; enzyme: trypsin; maximum missed cleavages: 2;
fixed medication: carbamidomethylation of cysteine; variable
modification: deamidated (NQ), oxidation (M) and acetylation
on protein N-termini. Data were searched against a FASTA file
(40,510 sequences and 22,667,481 residues), consisting of the
human proteome from UniProt (isoforms included, retrieved
December 9th 2016), contaminant database from the FGCZ,
the resulting.dat file was imported into Scaffold v4.0 (Proteome
Software) to generate spectrum report, with protein false
discovery rate (FDR) of 10%, minimal one peptide and peptide
FDR of 5%. Finally, the spectrum report was imported back
into Progenesis QI for identifying the quantified proteins. The
“within-subject” option was used for experiment design set up.
Proteins with a minimum of two unique quantified peptides and
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a significant ANOVA p-value smaller than 0.05 were considered
as differentially regulated ones.

Data Clustering and Heat Maps for
Regulated Proteins
Unsupervised clustering analysis and heat maps of regulated
proteins were generated using the R software (R: A Language
and Environment for Statistical Computing, R Development
Core Team) in particular the Quantable packages (https://cran.
r-project.org/web/packages/quantable/index.html) to obtain a
global visualisation and regulation trends of protein profiles.
Apparent outliers were excluded from the quantification. Sparse
Partial Least Squares Discriminant Analysis (sPLS-DA) was used
to visualise the similarity between healthy and inflammation sites
using the SPLS package (Chun and Keles, 2010).

Functional Analysis of the Regulated
Proteins
The regulated proteins were subjected to Metacore online
database (29th May 2019) for “gene ontology (GO) enrichment
analysis.” Enriched GO terms were recognised and ranked
according to their statistical significance (–log2P value), using a
hypergeometric distribution.

Sample Disruption and DNA Extraction
Other gingival tissues (approximal 2.5 to 3mg, n = 10) were
lysed using a Barocycler NEP2320 (Pressure BioSciences) with
only a 60–cycle barocyling process (each consisting 50 s at 45
KPSI followed by 10 s at ambient pressure) at 33◦C for DNA
extraction. The genomic DNA from lysates was extracted using
the GenEluteTM Bacterial Genomic DNA Kit (Sigma) and stored
at−20◦C until further use.

Sample Preparation for 16S rRNA Gene
Sequencing
The hypervariable regions 7 to 9 (V7-9) of the 16S rRNA gene
were amplified in the first round of PCR from isolated genomic
DNA using universal bacterial primers that also contained
the Illumina Truseq primer binding site (Appendix Table 8).
Amplification reactions were performed in a total volume of
25 µl containing 5X KAPA HiFi Buffer, 10mM KAPA dNTP
Mix, 0.5U KAPA HiFi DNA Polymerase (KAPA Biosystems),
4µM of primers ordered from Microsynth (Balgach), and 22.4
ng DNA diluted in DNA-free water. The PCR amplification was
performed on a Verity thermocycler (Thermo Fisher Scientific)
with the following cycling conditions: 95◦C for 5min, 25 cycles
at 98◦C each for 20 s, 70◦C for 30 s, 72◦C for 30 s and a final
extension at 72◦C for 10min. The PCR reactions were run on
a 2% agarose gel, the amplicon band was cut and extracted
using MinElute Gel Extraction Kit (Qiagen) and eluted in 50 µl
DNase-free water.

In the second round of PCR, the remaining Illumina
Truseq adaptors together with dual indexing Truseq barcodes
were incorporated into the previously amplified material
(Appendix Table 9). Amplification reactions were performed in
a total volume of 50 µl containing 5X KAPA HiFi Buffer, 10mM
KAPA dNTP Mix, 1U KAPA HiFi DNA Polymerase (KAPA

Biosystems), 4µM of the primers ordered from Microsynth
(Balgach) and 22.5 ng of the previously amplified material
diluted in DNA-free water. PCR amplification was performed
on a Verity thermocycler (Thermo Fisher Scientific) with the
following cycling conditions: 98◦C for 5min, five cycles at 98◦C
each for 30 s, 54◦C for 30 s, 72◦C for 30 s and a final extension
at 72◦C for 5min. PCR products were gel-purified and eluted
in 50 µl DNase-free water. The quality and quantity of resulting
amplicon libraries were validated using Qubit R© (1.0, Invitrogen)
Fluorometer and the Tapestation (Agilent). The amplicons from
the different samples were normalised to 4 nM in Tris-Cl 10mM,
pH8.5 with 0.1% Tween 20 and as they contain dual indexes, they
were equimolarly pooled and paired-end sequenced in a Miseq
Illumina Instrument (Illumina CA) using a 600cycle V3 kit.

Processing and Taxonomic Classification
of 16S rRNA Gene Reads
MiSeq paired-end (PE) reads were first filtered based on
average quality (>= Q20) using Trimmomatic (version 0.36)
(Bolger et al., 2014). Quality checked PE reads were processed
using mothur (version 1.38.1) (Schloss et al., 2009), following
the MiSeq SOP (Standard Operation Protocol) (https://www.
mothur.org/wiki/MiSeq_SOP). In detail, the quality-filtered PE
reads were joined into contig sequences. Identical sequences
were merged and the counts of all unique sequences were
recorded. Unique sequences were aligned guided by the Silva
bacterial 16S reference alignment (Release 102) (Quast et al.,
2013). After alignment, the bulk of the sequences started at
position 34,476 and ended at position 43,116 of the reference
alignment. Sequences aligned at the different start and/or stop
sites, as well as sequences with homopolymers longer than 8
nt were filtered out. Sites containing only gap characters were
also removed. Sequences were pre-clustered allowing for up to
three base differences. Chimaera sequences were removed using
the UCHIME algorithm (Edgar et al., 2011). Sequences were
initially classified by comparing them to the mothur-formatted
RDP training set (v.9), with cutoff values set at genus level (Cole
et al., 2014). This taxonomic information was used to remove
undesired contaminants (Chloroplast, Mitochondria, unknown
Archaea and Eukaryota) and to split the sequences into 16S genus
bins (taxlevel=6) and one un-classified bin. Each of the 166
bins was then clustered into operational taxonomic units (OTUs)
using the single-linkage clustering algorithm implemented in
hpc-clust (Matias Rodrigues and von Mering, 2014), with 97%
sequence similarity as the cutoff. The mothur-compatible OTU
list was prepared using the utility script “makeotus_mothur”
in the same software and imported into mothur for OTU-
based analysis. To taxonomically classify OTUs, representative
sequences (the most abundant) were compared against the
Human Oral Microbiome Database (HOMD) (Dewhirst et al.,
2010) using BLASTN in ncbi-blast-2.6.0+ (Altschul et al., 1990).
The taxonomy of the best match (with >96.99% homology)
was assigned to the corresponding OTU. If the representative
sequence had <97% homology to the HOMD reference, the
genus name was used to taxonomically designate the OTU.
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Microbiome Data Analysis
In all analysis where normalisation was applied, standardised
datasets were generated by randomly selecting 3,597 sequences
1,000 times from each sample. To analyse the alpha diversity
of the samples, rarefaction curves describing the number of
OTUs observed as a function of sampling effort were plotted.
The numbers of sequences, the sample coverage, the number
of observed OTUs, and the Inverse Simpson diversity were
calculated. To compare the membership and structure of the
samples between groups, distance matrices for the classical
Jaccard (1908) and Yue and Clayton theta values (Yue and
Clayton, 2005) were calculated. The distance matrices were
also visualised using NMDS (non-metric multidimensional
scaling) (Clarke, 1993). The R software, in particular, the
packages “gplots” and “stats,” were used to generate unsupervised
clustering analysis and heatmaps of non-rare OTUs (abundance
≥ 50 across all samples). Differentially represented OTUs
were evaluated via paired Student’s t-test using their relative
abundances p < 0.05. Benjamini-Hochberg corrected P-values
and power calculations were provided for each OTUs.

Correlations Between Microbiome and
Protein Datasets
To visualise the correlation between differentially presented
OTUs and proteins, Circos plots and cluster-imagine maps
were generated for r values (Pair-wise variable associations
for canonical correlation analysis correlation between variables,
defined by a generalisation of the cosine angle between the center
of the circle and each variable point; Gonzalez et al., 2012) using
the mixOmics package in R (Rohart et al., 2017).
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Nils Thomas Songstad6, Annika Rosèn7,8, Johanna Rykke Berstad9, Berit Flatø10,11,
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Clinical Dentistry, University of Bergen, Bergen, Norway, 8 Department of Oral and Maxillofacial Surgery, Haukeland University
Hospital, Bergen, Norway, 9 Department of ENT, Division of Oral and Maxillofacial Surgery, Oslo University Hospital, Oslo,
Norway, 10 Department of Rheumatology and Infectious Diseases, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,
11 Department of Rheumatology, Oslo University Hospital, Oslo, Norway, 12 Department of Computational Medicine and
Bioinformatics, University Michigan, Ann Arbor, MI, United States, 13 Center of Oral Health Services and Research (TkMidt),
Trondheim, Norway, 14 Department of Microbiology, Forsyth Institute, Cambridge, MA, United States

Background: The oral microbiota has been connected to the pathogenesis of
rheumatoid arthritis through activation of mucosal immunity. The objective of this study
was to characterize the salivary oral microbiome associated with juvenile idiopathic
arthritis (JIA), and correlate it with the disease activity including gingival inflammation.

Methods: Fifty-nine patients with JIA (mean age, 12.6 ± 2.7 years) and 34 healthy
controls (HC; mean age 12.3 ± 3.0 years) were consecutively recruited in this Norwegian
cross-sectional study. Information about demographics, disease activity, medication
history, frequency of tooth brushing and a modified version of the gingival bleeding
index (GBI) and the simplified oral hygiene index (OHI-S) was obtained. Microbiome
profiling of saliva samples was performed by sequencing of the V1-V3 region of the 16S
rRNA gene, coupled with a species-level taxonomy assignment algorithm; QIIME, LEfSe
and R-package for Spearman correlation matrix were used for downstream analysis.

Results: There were no significant differences between JIA and HC in alpha- and beta-
diversity. However, differential abundance analysis revealed several taxa to be associated
with JIA: TM7-G1, Solobacterium andMogibacterium at the genus level; and Leptotrichia
oral taxon 417, TM7-G1 oral taxon 352 and Capnocytophaga oral taxon 864 among
others, at the species level. Haemophilus species, Leptotrichia oral taxon 223, and
Bacillus subtilis, were associated with healthy controls. Gemella morbillorum, Leptotrichia
sp. oral taxon 498 and Alloprevotella oral taxon 914 correlated positively with the
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composite juvenile arthritis 10-joint disease activity score (JADAS10), while
Campylobacter oral taxon 44 among others, correlated with the number of active joints.
Of all microbial markers identified, only Bacillus subtilis and Campylobacter oral taxon 44
maintained false discovery rate (FDR) < 0.1.

Conclusions: In this exploratory study of salivary oral microbiome we found similar alpha-
and beta-diversity among children with JIA and healthy. Several taxa associated with
chronic inflammation were found to be associated with JIA and disease activity, which
warrants further investigation.
Keywords: juvenile idiopathic arthritis, salivary microbiome, next generation sequencing (NGS), oral health,
16S rRNA
INTRODUCTION

Juvenile idiopathic arthritis (JIA) is the most common chronic
rheumatic disease in children, with an annual incidence of 1 to 2
per 1000 children (Moe and Rygg, 1998; Berntson et al., 2003).
The pathogenesis of JIA remains unknown, although
environmental triggers of disease in genetically predisposed
individuals have been suggested (Cho and Blaser, 2012).
Infectious agents are suspected to be environmental triggers
for JIA and one of several possible mechanisms is molecular
mimicry between bacterial molecules and self-antigens. It is
well-known that host-microbe interaction is important for
recognition and development of the immune system (Rossi
et al., 2013). The human microbiome includes the collective
genomes of the microbiota, which is the term for all microbes in
the body (Cho and Blaser, 2012). A dysbiotic imbalance in the
host microbiota might contribute as a potential trigger in the
development of immune-mediated diseases, including JIA
(Scher and Abramson, 2011). The gut microbiota in children
with JIA is reported to differ from healthy individuals (Stoll
et al., 2014; Di Paola et al., 2016; Stoll et al., 2016; Tejesvi et al.,
2016; Aggarwal et al., 2017; Stoll et al., 2018; De Filippo et al.,
2019; Dong et al., 2019; Van Dijkhuizen et al., 2019), where a
lower abundance of Firmicutes and a higher abundance of
Bacteroidetes were found in the gut microbiota of patients
with oligoarticular and polyarticular rheumatoid factor (RF)
negative new-onset JIA (Tejesvi et al., 2016). Higher abundance
of Bacteroides is also seen in enthesitis-related-arthritis
(Aggarwal et al., 2017). In all studies on the gut microbiome
in JIA, however, no single species has been identified and
different studies show changes in different taxa (Stoll et al.,
2014; Di Paola et al., 2016; Stoll et al., 2016; Tejesvi et al., 2016;
Aggarwal et al., 2017; Stoll et al., 2018; Dong et al., 2019; Van
Dijkhuizen et al., 2019). These studies suggest that dysbiosis in
the microbiota with overabundance in pathogenic microbes,
may result in dysregulation of the immune system through
disruption of the integrity of mucosal barrier and altered
interaction with gut immune cells (Majumder and Aggarwal,
2020). Aberrations in mucosal homeostasis may be associated
with the increased bacterial urease activity, reportedly found in
fecal samples of JIA patients as compared to healthy controls.
The increase of urease activity is hypothesized to be the result of
gy | www.frontiersin.org 221
alterations in the anaerobic bacterial environment (Malin et al.,
1996). It is still an open question whether the observed
microbial dysbiosis is a cause or an effect of the disease.

The oral microbiome has been proposed to play a role in
rheumatoid arthritis by contributing to systemic inflammation
(Lorenzo et al., 2019), and may also play a similar role in JIA.
Furthermore, dysbiosis and periodontitis have been found to be
associated to increased severity of rheumatoid arthritis (Scher
et al., 2012). Gingivitis, i.e. gingival bleeding, which is a reversible
inflammation of the gingiva caused by dental biofilm
accumulation is a prerequisite for progression to periodontitis
(Murakami et al., 2018). Gingival inflammation is in some
studies found to be higher in individuals with JIA compared to
healthy (Welbury et al., 2003; Ahmed et al., 2004) It has been
suggested that bacteria found in the saliva are representative for
the oral bacteria associated with the different oral mucosal
surfaces. So far, there have been no attempts to characterize
the salivary oral microbiome associated with JIA with the next
generation sequencing method (NGS). The aim of this study was
therefore to investigate the oral microbiome in saliva of children
with JIA and relate it to the disease activity including
gingival inflammation.
MATERIALS AND METHODS

Study Design and Subject Recruitment
The present cross-sectional study is a project within NorJIA
(Norwegian JIA Study – Imaging, oral health and quality of life
in children with juvenile idiopathic arthritis (JIA)), a larger
Norwegian prospective multicenter cohort study on JIA
registered in Clinical Trials.gov (NCT03904459). The clinical
and demographic data was collected between November 2015
and December 2018 at the Department of Pediatrics and
Adolescence Medicine, University Hospital North Norway
(UNN), Public Dental Service Competence Centre of North
Norway (PCNN), Tromso, Haukeland University Hospital
Bergen, and Oslo University Hospital, Rikshospitalet, Oslo.
Informed consent was collected from all study participants and
the study was approved by the Institutional Medical Research
Ethics Committee (2015/318). Ninety-three children in total
were recruited; Fifty-nine patients with JIA: patients with JIA
November 2020 | Volume 10 | Article 602239
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and newly diagnosed temporomandibular joint (TMJ) arthritis
(n = 15) at the departments above, consecutive patients with
JIA without TMJ arthritis (n = 44) from the outpatient clinic at
UNN, and healthy controls (HC; n = 34) at PCNN matched for
age and gender to 34 of the patients with JIA (Table 1). HC
were recruited from the larger multicenter study NorJIA, and
consisted of children attending the regular Norwegian
community dental care. The clinical characteristics of the two
groups are presented in Table 1. Inclusion criteria for patients
with JIA were fulfillment of the JIA classification criteria
defined by the International League of Associations for
Rheumatology (ILAR) (Petty et al., 2004), and age at the
study visit <18 years, with or without arthritis activity in one
or both TMJs. TMJ arthritis was defined as clinical symptoms
and findings in addition to signs of arthritis in magnetic
resonance imaging (MRI). Patients on antibiotics prior to
sampling were excluded.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 322
Demographics and Assessment of JIA
Disease Activity
Patient demographics, subtype of JIA, duration and onset of JIA,
medication, general clinical examination, measures of disease
activity and severity were collected by three experienced pediatric
rheumatologists calibrated through regular meetings in the study
period with clinical variables thoroughly discussed and defined
in a common study protocol based on the Temporomandibular
joint Juvenile Arthritis Working group (TMJaw) recommendations
(Stoustrup et al., 2019). Number of active joints was defined
according to the general definition of arthritis: swelling within a
joint or limitation in the range of joint movement with joint pain or
tenderness (Filocamo et al., 2011), while TMJ arthritis was based on
both clinical signs and symptoms, and MRI imaging. Patient-
reported global assessment of overall well-being (PRgloVAS) and
patient-reported pain (PRpainVAS) within the last week on a 10-cm
visual analogue scale (VAS) were collected. On this scale, 0 indicates
TABLE 1 | Demographic and disease activity characteristics among children with juvenile idiopathic arthritis (JIA) and healthy controls (HC).

JIA (n = 59) HC (n = 34) Cut-off P-value*

Demographic characteristics
Female, number (%) 43 (73) 27 (79) 0.48a

Age at sampling, years 12.6 ± 2.7 12.3± 3.0 0.65b

Age at onset 6.0 (2.0–10.0) –

Geographics, number (%)
Troms county 34 (58) 34 (100) –

Finnmark county 17 (29) –

Nordland county 5 (9) –

Eastcoast county 2 (3) –

Westcoast county 1 (2) –

Disease duration, years 5.0 (3.0–10.0) –

JIA category, number (%)
Persistent oligoarthritis 11 (19) –

Extended oligoarthritis 13 (22) –

Polyarthrtitis RF positive 3 (5) –

Polyarthrtitis RF negative 15 (25) –

Systemic arthritis 0 (0) –

Psoriatic arthritis 3 (5) –

Enthesitis related arthritis 7 (12) –

Undifferentiated arthritis 7 (12) –

GBI, % (IQR) 22 (6–44) (n = 44) 6 (0–11) (n = 25) >10 0.00b

OHI-S (IQR) 0.5 (0.3–0.8) (n = 43) 0.3 (0.0–0.4) (n = 25) 0.00b

DI-S (IQR) 0.5 (0.3–0.8) (n = 43) 0.3 (0.0–0.3) n = 25) 0.00b

Disease activity variables**
JADAS10 12.8 (7.6–18.0) n = 48
Patients with active disease, number (%) 44 (74) –

Patients with active joints, number (%) 23 (39) –

Patients with TMJ arthritis, number (%) 15 (25) –

Patients with IACs to the TMJ, number (%) 8 (13) –

Numberof active joints 0.0 (0.0–1.0)
MDgloVAS 2.5 (1.0–5.0) (n = 58)
PRgloVAS 2.5 (0.5–4.0) (n = 49)
HLA-B27 positive, number (%) 20 (36.4) (n = 55) –

Rheumatoid factor positive, number (%) 1 (2.0) (n = 51) –

Type of Medication
No DMARDs, number (%)*** 15 (25)
Methotrexate, number (%) 20 (34) –

Biologics combination, number (%)**** 24 (41) –
November 20
20 | Volume 10 | Artic
Values are the median (IQR) unless indicated otherwise. aChi-square test. bWilcoxon-Mann-Whitney test. *P <0.05 for statistical significance. **Remission status according to the ACR
provisional remission criteria (Wallace et al., 2011); ***NSAIDs and/or IACs; ****Current or previous use alone or in combination with other DMARDs; JIA, juvenile idiopathic arthritis; GBI,
gingival bleeding index; OHI-S, simplified oral hygiene index; DI-S, simplified debris index; JADAS10, the composite juvenile arthritis10-joint disease activity score; TMJ,
temporomandibular joint; MDgloVAS, medical doctor global evaluation of overall disease activity on a 10-cm visual analogue scale; IACs, intraarticular corticosteroid injections;
DMARDs, disease modifying antirheumatic drugs.
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no activity/no pain/best global health, and 10 indicate themaximum
activity/worst pain/poorest global health, respectively. A routine
complete blood cell count, including rheumatoid factor (RF) and
human leukocyte antigen B27 (HLA-B27) was registered. The
composite juvenile arthritis disease activity score (JADAS10, range
from 0 to 40) was calculated as the simple sum of themedical doctor
global evaluation of overall disease activity on a 10-cm visual
analogue scale (VAS), MDgloVAS (range 0–10), PRgloVAS
(range 0–10), active joint count (up to maximum 10 joints), and
the erythrocyte sedimentation rate (ESR) (normalized to 0–10)
(Consolaro et al., 2009; Consolaro et al., 2011). Inactive disease
was defined according to the ACR provisional criteria requiring all
the following: 1) no active joints; 2) no fever, rash, serositis,
splenomegaly or generalized lymphadenopathy attributable to JIA;
3) no active uveitis; 4) normal ESR or C-reactive protein (CRP); 5)
MDgloVAS = 0; and 6) duration of morning stiffness of ≤15
minutes (Wallace et al., 2011).

Intraoral Examination and Collection
of Saliva
A modified version of the Gingival bleeding index (GBI)
(Ainamo and Bay, 1975) and the Simplified Oral Hygiene
Index (OHI-S) (Greene and Vermillion, 1964) were used with
6 index teeth for two reasons: 1) The youngest children had
transitional dentitions with premolars and canines not yet
erupted. Central incisors and first molars being the first
permanent teeth to be erupted were therefore chosen as index
teeth. 2) For the youngest children it was considered too
exhausting and time consuming to investigate the complete
dental set during the oral examination. For GBI, a dental probe
was carefully applied without any pain, in the upper part of the
gingival sulcus, and then removed without doing a horizontal
movement along the tooth surface. Bleeding on probing within
10 seconds was registered. Angulation of the dental probe of 60
degrees to the vertical axis of the tooth was applied if possible.
The mesial, distal and central site of the buccal surface of the
index teeth 16, 26, 11, and 31 were chosen together with the
lingual surface of the index teeth 36 and 46. The number of
bleeding tooth sites were divided to the total number of tooth
sites examined and finally presented as the mean percentage
(%), range 0% to 100% where a higher percentage represents a
worse score in bleeding. Gingival inflammation was diagnosed
according to a gingival bleeding index cut-off score ≥ 10%
(Trombelli et al., 2018).

OHI-S is a sum score of simplified-debris index (DI-S) and
simplified-calculus index (CI-S) and is presented as a mean score
index, where a higher index represents a worse score in OHI-S.
DI-S and CI-S are the buccal scores + the lingual scores divided
by the total number of examined surfaces. OHI-S was not
calculated in children with fixed orthodontic appliances and
subgingival status was not evaluated. All children ≥12 years filled
out an oral health related questionnaire and the parents/proxies
filled out for children <12 years. One of the questions was; how
often do you brush your teeth: 1) Never 2) Most days 3) Once
daily 4) Twice daily or more.
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Two calibrated specialists in oral and maxillofacial surgery
and pediatric dentistry (PF, JH) collected before oral
examination, unstimulated whole saliva for 6 minutes and
paraffin chewing stimulated whole saliva for 3 minutes,
according to a standardized protocol (i.e. restrictions to food
and drinks 2 h prior to sampling). Furthermore, medications
taken the same day or the day before sampling was recorded.
Only SWS were used for microbial analyses. After collection,
each saliva sample was aliquoted and placed in a −80°C freezer
until further analyses.

DNA Extraction
Seven hundred and fifty microliters from each SWS sample was
mixed with an equal amount of phosphate buffer saline (PBS)
and spun down at 9600 g for 5 minutes, before the supernatant
was carefully removed. The pellet was resuspended in 155 mL
PBS and 25 mL MetaPolyzyme multilytic enzyme mix (Zigma-
Aldrich, USA) and incubated on a 37°C heat block for 4 h, for
digestion of the bacterial cell wall. The digests were then
transferred to a QIAcube (Qiagen, Hilden, Germany) for DNA
extraction using preprogramed protocol using the QIAamp
DNA Mini Kit (Qiagen, Germany) with 100 mL elution
volume. The quality of the isolated DNA (high molecular
weight and non-fragmented DNA) was assessed by running
extracted DNA samples on agarose gel (1%) with 1 kb ladder
(Termo Fisher Scientific, Invirtogen, USA). The amount of yield
DNA was then measured using Invitrogen Qubit 3.0
Fluorometer (Termo Fisher Scientific, Invirtogen, USA)
according to the manufacturer’s instructions.

16S rRNA Sequencing and
Bioinformatic Analysis
16S rRNA gene library preparation and sequencing were done at
the Australian Center for Ecogenomics (Brisbane, Australia) as
detailed previously (Al-Hebshi et al., 2017a). Briefly, the V1-3
region was amplified using the degenerate primers 27FYM (Frank
et al., 2008) and 519R (Lane et al., 1985) in standard PCR
conditions. The amplicons (~ 520 bp) were purified and indexed
with unique 8-base barcodes in a second PCR. The tagged libraries
were then pooled together in equimolar concentrations and
sequenced using MiSeq v3 2 × 300 bp chemistry (Illumina,
USA). Preprocessing of data (merging of reads, primer
trimming, quality-filtration, alignment and chimera removal)
was performed as detailed elsewhere (Al-Hebshi et al., 2017b).
The high quality, merged reads were assigned species-level
taxonomies using our BLASTn-based algorithm (Al-Hebshi
et al., 2015; Al-Hebshi et al., 2017b). The resultant microbial
profiles were used as input to QIIME (Quantitative Insights Into
Microbial Ecology) software package version 1.9.1 (Caporaso et al.,
2010) for downstream analysis including subsampling, generation
of taxonomy plots/tables and rarefaction curves, and calculation of
species richness, coverage, alpha diversity indices and beta
diversity distance matrices. Principal component analysis
(PCoA) was used for clustering samples based on overall
microbial similarity, while Linear discriminant analysis (LDA)
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effect size (LEfSe) (Segata et al., 2011) was used to detect
differentially abundant taxa between the groups.

Statistical and Bioinformatic Analyses
For description of clinical and demographic data, median (IQR),
mean (standard deviation) and frequencies (percentage) were
used. Different disease characteristics and associations between
patients with JIA and HC were analyzed by chi-square test or
Fisher’s exact test for categorical variables and Student’s t-test for
continuous variables if reasonably normally distributed,
otherwise Man-Whitney U test was used. A multivariable
logistic regression analysis was performed to adjust for OHI-S,
age and gender in the association between JIA and GBI. A P-
value ≤0.05 was considered statistically significant for clinical
parameters. For testing correlation between species and
measures of disease activity (JADAS10, number of active
joints), p-values were adjusted for multiplicity with Benjamini-
Hockberg method (FDR ≤0.1). To assess the association between
the bacterial profiles and disease activity (JADAS10 and number
of active joints) a Spearman correlation matrix was computed
with R package. Correlations with P-value ≤ 0.01 were
considered significant.
RESULTS

Demographic and Disease Activity
Parameters
Demographics and disease activity parameters for the group with
JIA, and HC are given in Table 1. There was a female
predominance in both groups, and RF negative polyarthritis
was the most common category among children with JIA (25%).
The simplified oral hygiene index (OHI-S) was significantly
higher among children with JIA with median 0.5 (IQR 0.3–0.7)
compared to median 0.3 (IQR 0.0–0.4) in HC. Also, the
simplified debris-index (DI-S) was higher in JIA (Table 1).
There was also significantly higher modified gingival bleeding
index (GBI) in the group with JIA with median 22 (Interquartile
range (IQR)) 6–40) % compared to HC with median 6.0 (IQR 0–
11) % but no association was found between JIA and GBI when
adjusting for OHI-S (Supplementary Table 1). Within the JIA
group no significant differences in GBI were found between
patients without DMARDs, on methotrexate or on biologics,
with GBI median 10 (IQR 10–30) %, median 20 (IQR 10–40) %,
and median 30 (IQR 20–40) %, respectively. There were no
difference in frequency of tooth brushing between children with
JIA and HC, in JIA 37 of 47 (79%) and in HC 23 of 32 (72%)
brushed their teeth twice or more daily. No differences were seen
in toothbrush frequency, OHI-S, DI-S, or GBI between children
with and without TMJ-arthritis. Restrictions according to food
and drinks 2 h prior to saliva sampling were taken in 41 of 93
patients (44%). In 10 of 93 (11%) no restrictions were taken, and
in 42 of 93 (45%) information on restrictions were not available.
Among the 93 participants 16 reported intake of oral
medications other than disease modifying antirheumatic drugs
(DMARDs) such as non-steroidal anti-inflammatory drugs
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 524
(NSAIDs) and/or other medications. Three participants
reported intake of oral or parenteral methotrexate, and 6
parenteral biologic agents, while the remaining 68 participants
reported no intake of medication the same day or the day before
saliva sampling.

Sequencing and Data Processing Statistics
The raw data has been deposited and is publicly available from
SRA (# PRJNA605805). A total of ~8.2 million sequences were
obtained (range of 30,113–526,987 reads per sample), of
which about 85% were successfully merged; however, only
35% were retained after quality filters and 20% after chimera
removal. Of the high-quality, non-chimeric reads, 88% could
be assigned species-level taxonomy (mean of 15 360± 18 368
reads per sample). Details of the reads statistics before and
after each quality control step are provided in Supplementary
dataset 1.

Overall Microbial Profile
Using a minimum count of 100 reads per species as cutoff, a total
of 216 bacterial species belonging to 58 genera and 8 phyla were
identified across all samples; the relative abundances and
detection frequencies of these taxa in each sample is provided
in Supplementary dataset 2, 3 and 4 respectively. On average,
134 species (range, 90–186) and 45 genera (range, 32–58) were
detected per subject. Fifty-seven species and 29 genera were
identified in more than 90% of the samples and can be defined as
core salivary taxa. The average relative abundances of all phyla,
top genera and species (those present at an average abundance of
≥ 1% in the control group) in each of the study groups are shown
in Figure 1. Firmicutes, Bacteroidetes, Actinobacteria,
Proteobacteria, and Fusobacteria were the major phyla in order
accounting for more than 98% of the reads. Thirteen genera
accounted for 90% of the average microbiome, with Prevotella,
Streptococcus, Haemophilus, Actinomyces, Porphyromonas and
Rothia alone making up ~ 70%. At the species level, Prevotella
melaninogenica, Haemophilus parainfluenzae, Rothia
mucilaginosa, Porphyromonas sp. oral taxon 279, Prevotella
histicola, Actinomyces odontolyticus were the most abundant
species, constituting around 40% of the microbiome on average.

Bacterial Diversity and Differentially
Abundant Species
There were no significant differences between children with
JIA and the healthy group in the number of species (i.e.
alpha diversity, species richness), or in PCoA (i.e. beta diversity,
the ratio between the two groups) as shown in Figure 2.
Differential abundance analysis revealed significant differences
(Figure 3). At the phylum level, JIA was associated with
enrichment of Spirochaetes and Saccharibacteria and
depletion of Proteobacteria. Genera TM7-G1, Solobacterium and
Mogibacterium were associated with JIA, while Haemophilus
and Bacillus were associated with healthy subjects (Figure 3B).
Haemophilus parainfluenzae, Leptotrichia species oral taxon 223,
Haemophilus pittmanae, Prevotella denticola and Bacillus subtilis
were key bacterial species associated with the healthy group,
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whereas the JIA group showed higher abundance of 11 bacterial
species of which Leptotrichia species oral taxon 417, TM7 G1,
Capnocytophaga species oral taxon 864, Veilonella atypica and
Mogibacterium diversum were most enriched (Figure 3C).

The relative abundances of the top six differentially
abundant taxa (based on LDA score) are shown for individual
samples in Figure 4. These microbial associations between the
JIA and the healthy group were independent of the differences
between the two groups in GBI. The microbial associations with
the GBI are shown in Supplementary Figure 1. Notably, after
adjustment of p-values for multiple comparisons with
Benjamini-Hochberg method only genus Bacillus and B.
subtilis maintained a false discovery rate (FDR) of ≤ 0.1 and
the per sample relative abundance plot for B. subtilis is shown in
Supplementary Figure 2.
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Microbial Association With Disease
Activity
Correlation analysis revealed significant association between a
group of bacteria species and disease activity (Figure 5). Gemella
morbillorum, Leptotrichia sp. oral taxon 498 and Alloprevotella
oral taxon 914 correlated positively with the composite juvenile
arthritis 10-joint disease activity score (JADAS10), primarily
through their association with the medical doctor global
evaluation of disease activity (MDgloVAS). G. morbillorum
also correlated with patient reported global assessment of well-
being (PRgloVAS). Several species correlated positively with the
number of active joints but Campylobacter oral taxon 44 showed
the strongest association and was the only species that
maintained FDR ≤ 0.1 when P-values were adjusted for
multiplicity with the Benjamini-Hockberg method.
FIGURE 2 | Species richness and diversity. Taxonomic profiles were rarified and used to calculate observed richness, expected richness (alpha diversity index;
Chao index), evenness measure (alpha diversity index; Shannon’s and Simpson’s) and distance matrices employing standard QIIME scripts. Left: Box and whisker
plots of species richness and aloha diversity in each group. Differences were not significant by Mann–Whitney U test. Right: Clustering of samples with PCoA based
on abundance Jaccard distance matrix. Plots were generated with QIIME and R Package.
FIGURE 1 | Microbiological profiles. DNA extracted from saliva was sequenced for the V1-V3 region of the 16S rRNA gene using paired-end chemistry. The
generated reads were merged, quality-filtered and classified to the species level using a BLASTn-based algorithm. The stacked bars show the average relative
abundances of all phyla and top genera and species (those with relative abundance ≥ 1%) identified in the study groups. OT, oral taxon.
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Children with JIA and TMJ arthritis showed different
microbial associations compared to JIA subjects without TMJ
arthritis (Figure 6). Haemophilus parainfluenzae, Prevotella
pallens, actinomyces species oral taxon 180 were the top species
differentially enriched in JIA with TMJ subjects. Campylobacter
oral taxon 44 also showed an association with TMJ arthritis
(Supplementary Figure 3), although opposed to its association
with the number of active joints, it did not maintain FDR ≤ 0.1.
Rothia mucilaginosa, Atopobium parvulum and Oribacterium
sinus were significantly more abundant in children with JIA
without TMJ arthritis.
DISCUSSION

This study is to our knowledge, the first to examine the salivary
oral microbiome in JIA patients with the NGS method. Different
methods are suggested for collecting saliva samples which might
alter the NGS sequencing results but it seems that the overall
microbial composition of saliva is not significantly affected (Lim
et al., 2017; Mascitti et al., 2019). Salivary microbiome is a
good representative of bacteria found in many oral mucosal
sites such as cheeks, tongue, gingiva, especially when studying
inflammatory diseases rather than subgingival plaque, which is
rather a site-specific medium for the bacteria associated with
the periodontium.

The oral environment is a complex environment that contains
distinct microbial niches each with its distinct microbial inhabitant
in mucosal membranes and subgingival plaque. Sampling of saliva
has been used when studying dysbiosis of salivary microbiota in
inflammatory bowel disease (Said et al., 2014), and sampling by
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 726
tongue and buccal mucosal brushings have been used in ulcerative
colitis (Docktor et al., 2012).

In our study, saliva samples were directly aliquoted and
immediately frozen before further processing. Other collection
methods for sampling of oral microbiota are available and appear
to be stable concerning bacterial diversity at ambient temperature
after 4 to 7 days, such as mouthwash sampling methods
(Vogtmann et al., 2019). Some distinct differences in relative
abundance of specific microbial taxa are seen between these
methods compared to samples that are frozen immediately
(Vogtmann et al., 2019), indicating that direct freezing of
samples may still be the best choice.

A majority of the children with JIA were females diagnosed
with either oligoarthritis persistent or RF negative polyarthritis
in accordance with most population-based studies, pointing to
representability of our study case (Nordal et al., 2011). Another
strength of this study was that a majority of the participants had
no intake of systemic medication the same day or the day before
saliva sampling.

A limitation of the study is that information is available only
in 41 of 93 children regarding food and drinks restrictions prior
to sampling. Additionally, our findings must be evaluated in the
context of a limited sample size and being a cross-sectional
exploratory study.

Microbial Profile, Bacterial Diversity and
Differentially Abundant Species
In our study between 90 and 186 different species were found in
the salivary microbiome of the study subjects with fifty-seven
species shared in more than 90% of the subjects. The core
salivary microbiome in the study subjects comprised 22 species
A

B

C

FIGURE 3 | Differentially abundant taxa. (A) Phyla, (B) Genera and (C) species that showed significant differences in relative abundance between the two study groups
as identified by linear discriminant analysis (LDA) effect size analysis (LEfSe) – 2.5 LDA score cutoff. OT, oral taxon. **FDR ≤ 0.1 (Benjamini-Hochberg method).
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detected in all individuals. In other studies the core microbiome
was found to be similar or even in a lower number (Hall et al.,
2017; Hansen et al., 2018). We found no significant differences
between children with JIA and HC in species richness or in
PCoA, i.e. alpha or beta diversity. Differential abundance
analysis, however, revealed that JIA was significantly associated
with taxa associated with chronic inflammation, and that several
of these species including Campylobacter oral taxon 44 correlated
with disease activity in terms of increased number of active
joints. The predominant bacterial genera found in the salivary
microbiome in both JIA and healthy saliva in our study consisted
of Prevotella, Streptococcus, Haemophilus, Actinomyces,
Porphyromonas and Rothia, which is similar to other studies in
both children with JIA and healthy (De Filippo et al., 2019). The
microbial diversity and richness of the salivary oral microbiome
between the JIA and healthy controls were comparable. This is in
line with other studies that investigated the oral microbial
diversity between patients with chronic inflammatory diseases,
i.e. rheumatoid arthritis, and healthy controls (Scher et al., 2012;
Tong et al., 2019). Differential abundance analysis revealed
several taxa to be associated with or depleted in JIA. At
phylum level, we found an overabundance of Spirochaetes and
Saccharibacteria and depletion of Proteobacteria. This is in line
with Xu et al. showing Proteobacteria (Neisseria) and Firmicutes
(Selenomonas) as a healthy core salivary microbiome, together
with the phyla Bacteroidetes (Porphyromonas). They also showed
that the salivary microbial composition shifts with aging in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 928
children, and a strength of our study is age-matching between
children with JIA and healthy controls (Xu et al., 2018).

At the genus level, Haemophilus, Bacillius and Olsenella were
depleted from JIA patients while there were significant
overabundance of bacteria known to be associated with
chronic inflammation, such as TM7-G1, Solobacterium and
Mogibacterium (Moore et al., 1985; Casarin et al., 2012;
Hiranmayi et al., 2017). The higher abundance of Haemophilus
parainfluenzae, Leptotrichia species oral taxon 223, Haemophilus
pittmanae, Prevotella denticola and Bacillus subtilis in the healthy
group in our study could highlight the importance for health of
sustaining a high proportion of these species in the oral
microbiome. Bacillus subtilis species has been reported to have
a role in limiting inflammatory response by down-regulation of
the pro-inflammatory interleukin-8 production and up
regulation of inducible nitric oxide synthase (iNOS) protein
levels (Rhayat et al., 2019). The depletion of Haemophilus
species in salivary microbiome has also been reported in
patients with rheumatoid arthritis (Zhang et al., 2015). On the
other hand Leptotrichia species oral taxon 417, TM7 G1,
Capnocytophaga species oral taxon 864, Veilonella atypica,
and Mogibacterium diversum were found to be highly
abundant in children with JIA. The oral taxon TM7 has been
associated with chronic inflammation (Demmer et al., 2017). In
line with our study, Grevich et al. found depletion of genera
Prevotella (phylum Bacteroidetes) in JIA, but they report an
overabundance of the genera Haemophilus and Kingella
(phylum proteobacteria) in JIA, which was not found in our
study (Grevich et al., 2019).

In children with JIA the saliva in those with TMJ arthritis was
enriched with certain bacteria compared to those without TMJ
arthritis. This finding was not explained by differences in
toothbrush frequency or differences in oral hygiene indices (i.e.
DI-S, OHI-S, GBI), which was similar in both groups.

The role of oral and gut microbiota in many inflammatory
diseases has been suggested, and there is evidence for the role of
molecular mimicry in such diseases. It has for example, been
reported that a molecular mimicry between a peptide from the von
Willebrand factor type A from the oral microbe Capnocytophaga
ochracea can be attributed to the activation of the Sjögrens
syndrome antigen A/Ro60-Reactive T cells (Szymula et al., 2014).

Microbial Association to Disease Activity
Interestingly, in our study Campylobacter oral taxon 44
(proteobacteria at the phyla level) showed a moderate
correlation with the number of joints affected in patients with
JIA. Campylobacter has a well-known association with reactive
arthritis and other inflammatory diseases in both children and
adults (Lackner et al., 2019). Dong et al. found a negative
correlation between disease activity and Proteobacteria,
Ruminococcaceae, Faecalibacterium, or Enterobacteriaceae
(Dong et al., 2019), in the gut microbiota in 32 patients with
JIA. In line with our study, the same authors found a positive
correlation between disease activity and increased abundance of
phyla Firmicutes (our study: G.morbillorum), Bacteroidetes (our
study: Alloprevotella, prevotella pallens), and Bacteroidaceae at
the phyla level (Dong et al., 2019).
FIGURE 5 | Heatmap of the microbial association with disease activity. A
Spearman correlation matrix was computed using R package. Correlations
with P-value ≤ 0.01 were considered significant. The r-value for nonsignificant
correlations was set to zero (blue on the heatmap). OT, oral taxon. **FDR ≤

0.1 (Benjamini-Hochberg method). PRgloVAS; patient reported global
assessment of well-being; ESR, erythrocyte sedimentation rate; JADAS10,
the composite juvenile idiopathic arthritis 10-joint disease activity score;
MDgloVAS, the medical doctor global evaluation of disease activity.
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The species found enriched in our study on the salivary oral
microbiome in JIA are not the same as found in studies on the
gut microbiome in JIA (Stoll et al., 2014; Di Paola et al., 2016;
Stoll et al., 2016; Tejesvi et al., 2016; Aggarwal et al., 2017; Stoll
et al., 2018; Dong et al., 2019; Van Dijkhuizen et al., 2019).
However, in all studies disruption of microbial ecology was
found with overabundance of taxa associated to chronic
inflammation in JIA, and this dysbiosis may have community
effects on the host more powerful than the actions of just one
single microbe (Chriswell and Kuhn, 2020). Dijkhuizen et al.
report dysbiosis in gut microbiota in children newly
diagnosed with JIA compared to healthy controls. They also
found that age and geographic origin were connected to
microbiota profiles (Van Dijkhuizen et al., 2019). In
rheumatoid arthritis both oral and gut dysbiosis are well
described and no consistent single bacterial species appears to
be the causing agent (Bergot et al., 2020). Interestingly,
periodonto-pathogenic bacteria such as Porphyromonas
gingivalis have been suggested to contribute to generation of
anti-citrullinated protein antibodies (ACPAs) in rheumatoid
arthritis (Moen et al., 2006; Wegner et al., 2010a; Wegner
et al., 2010b). Dysbiosis and periodontitis were also found to
be associated to increased severity of rheumatoid arthritis (Scher
et al., 2012). Other factors reported to be associated with
dysbiosis are diet, lifestyle and drug use, especially the use of
antibiotics (Turnbaugh et al., 2009; Arvonen et al., 2015). Early
life antibiotic use is shown to increase the risk of developing JIA
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 1029
later in life, and may predispose due to a shift in microbiota
composition (Arvonen et al., 2015; Horton et al., 2015). In our
study none of the participants were on any antibiotics on the day
of sampling, but previous history of antibiotic use were
not recorded.

Gingival Inflammation and the Oral
Microbiome
The significantly higher gingival inflammation found in patients
with JIA compared to healthy controls is in line with many studies
investigating JIA and oral health (Welbury et al., 2003; Ahmed
et al., 2004; Leksell et al., 2008; Santos et al., 2015; Grevich et al.,
2019). Other studies find no significant difference between JIA and
healthy controls (Miranda et al., 2003; Savioli et al., 2004; Reichert
et al., 2006; Feres De Melo et al., 2014; Pugliese et al., 2016; Kobus
et al., 2017; Maspero et al., 2017), probably depending on different
study design and measurement indices of gingival inflammation
(Skeie et al., 2019). Despite higher GBI, no difference in frequency
of tooth brushing was found between JIA and healthy controls in
our study. However, we do not know how effective the tooth
brushing was performed, some of the children with JIA have
restricted wrist, finger or jaw movements that may reduce the
quality of the tooth brushing. After adjusting for dental plaque and
calculus (OHI-S), JIA was not found to be a predictor for gingival
inflammation in terms of higher GBI. In line with other studies
(Reichert et al., 2006) we found dental plaque (OHI-S) to be
associated to gingival inflammation. There were no overlap
A
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FIGURE 6 | Differentially abundant taxa by TMJ arthritis. (A) Phyla, (B) Genera and (C) species that showed significant differences in relative abundance between
the JIA subjects with and without TMJ involvement, as identified by linear discriminant analysis (LDA) effect size analysis (LEfSe). 2.5 LDA score cutoff. OT, oral taxon.
**FDR ≤ 0.1 (Benjamini-Hochberg method).
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between overabundant bacteria associated with GBI and those
associated with JIA. Overabundance of bacteria associated with
chronic inflammation in JIA could be explained by a disruption of
microbial hemostasis in JIA and not by gingival inflammation
in JIA.

There are some indications that the biologic agent etanercept
might reduce periodontal inflammation in children with JIA
(Maspero et al., 2017). In our study children with JIA had more
gingival bleeding compared to healthy controls, despite immune-
modulating medication. Altogether 40% were on biologic
treatment either alone or in combination with methotrexate,
but we found no significant differences in GBI between the
different medication groups.
CONCLUSION

Several taxa, including genera Solobacterium, Mogibacterium,
and TM7-G1 known to be associated with chronic inflammation,
were found enriched in the saliva of children with JIA and were
associated with disease activity in our study. No significant
difference was found in alpha- and beta-diversity compared to
healthy. Prospective cohort-studies with treatment-naïve
patients with new onset JIA are warranted to further elucidate
the role of the oral microbiome in disease etiology and severity.
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Compositional Shift of Oral
Microbiota Following Surgical
Resection of Tongue Cancer
Shinya Kageyama1†, Yuka Nagao2†, Jiale Ma1, Mikari Asakawa1, Ryoji Yoshida2,
Toru Takeshita1,3*, Akiyuki Hirosue2*, Yoshihisa Yamashita1 and Hideki Nakayama2

1 Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental
Science, Kyushu University, Fukuoka, Japan, 2 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences,
Kumamoto University, Kumamoto, Japan, 3 OBT Research Center, Faculty of Dental Science, Kyushu University,
Fukuoka, Japan

Salivary microbiota is considered a source of microorganisms for the respiratory and
digestive tracts, and a trigger for diseases in these distant organs. Meanwhile, the
microbiota on the tongue surface is thought to be a major source of salivary
microbiota. Therefore, surgical resection of the tongue for definitive treatment of oral
cancer could drastically change the salivary bacterial balance and virulence. Here, we
investigated the shift of the salivary microbiota following surgical resection in patients with
tongue cancer. The stimulated saliva samples were collected from 25 tongue cancer
patients pre- and post-resection of the tongue, and bacterial density and composition
was determined using quantitative PCR analysis and 16S ribosomal RNA (rRNA) gene
sequencing, respectively. Although no significant difference in the total bacterial density in
saliva pre- and post-surgery was observed, the bacterial composition significantly differed
according to the analysis of similarity. Among predominant operational taxonomic units
(OTUs) with ≥1% of relative abundance, the proportions of OTUs corresponding to
Streptococcus salivarius, Prevotella melaninogenica, and Prevotella histicola were
significantly decreased following the tongue resection. On the other hand, the
proportions of OTUs corresponding to Lautropia mirabil is, Neisseria flava,
Streptococcus sanguinis, and Fusobacterium nucleatum, known to be inhabitants of
dental plaque, were significantly increased. These results suggest that surgical resection
of the tongue causes a compositional shift of the salivary microbiota, characterized by an
increase in bacterial species derived from dental plaque, including periodontal pathogens.
These results suggest the necessity of more careful and frequent postoperative oral care
after surgical resection of tongue cancer.

Keywords: saliva, microbiome, 16S ribosomal RNA, next-generation sequencing, quantitative real-time PCR,
tongue neoplasms, oral surgery, glossectomy
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INTRODUCTION

Saliva is secreted from the salivary glands into the oral cavity and
contains various oral debris including desquamated epithelial
cells, food residue, and dense oral bacteria. Since, saliva is
swallowed constantly, the salivary microbiota is considered as a
source of microorganisms to respiratory and digestive tracts and
a trigger of diseases in these distant organs. Recent studies
suggested the association of oral bacteria with diseases
occurring in organs far from oral cavity such as pneumonia,
colorectal cancer, and inflammatory bowel disease (Gevers et al.,
2014; Segal et al., 2016; Huffnagle et al., 2017; Kageyama
et al., 2018; Kageyama et al., 2019; Schmidt et al., 2019;
Yachida et al., 2019). The salivary microbiota is a mixture of
bacteria shed from various oral niches, such as tongue dorsum,
tooth surface, gingival crevice, and buccal mucosa. Among them,
tongue microbiota is thought of a major source of salivary
microbiota as the bacterial composition in saliva resembles that
on tongue dorsum (Mager et al., 2003; Segata et al., 2012;
Kageyama et al., 2017).

Cancer is a serious global health problem with a high
mortality risk (Siegel et al., 2019). In Japan, the cancer-related
deaths account for a quarter of all causes and are the leading
causes of mortality for both sexes (Ministry of Health, Labour
and Welfare, 2019). Oral cancer, predominantly oral squamous
cell carcinoma, generally appears on the tongue, gingiva, floor of
the mouth, and palate. Approximately 10,000 Japanese are
diagnosed with oral cancer annually (Cancer Information
Service, National Cancer Center Japan, 2020). Among them,
tongue cancer is the most common malignancy and accounts for
approximately 50% of the cases (Cancer Information Service,
National Cancer Center Japan, 2020). A large number of
epidemiological studies have demonstrated that lifestyle factors,
such as smoking, alcohol intake, underweight, and low
consumption of vegetables and fruits, are associated with oral
cancer (Bosetti et al., 2000; Huang et al., 2003; Varela-Lema et al.,
2010; Radoï et al., 2015). Regarding treatment, although internal
radiotherapy is performed for T1–2 or superficial T3 cancers or
concurrent chemoradiotherapy for advanced cancer, surgical
resection of tumors is the most well-established definitive
approach to oral cancer (Shah and Gil, 2009; Nibu et al., 2017;
Colevas et al., 2018). Surgery reduces the area of the tongue
surface with complex papillary structures, and the defect is
reconstructed by foreign tissue in some cases. Therefore, the
salivary bacterial balance and virulence could drastically change
following surgical resection of tongue cancer.

In this study, we examined the salivary microbiota collected
from patients with tongue cancer pre- and post-definitive
surgery. We compared their bacterial density and composition
using quantitative PCR analysis and 16S ribosomal RNA (16S
rRNA) gene amplicon sequencing and confirmed how bacterial
density and composition of salivary microbiota changed
following tongue resection. This study aimed to characterize
the bacterial shift before and after surgery and identify bacterial
species that show drastic changes.
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MATERIALS AND METHODS

Study Subjects and Sample Collection
Study subjects of this study were patients with tongue cancer who
visited Kumamoto University Hospital, Japan. A total of 53 tongue
cancer patients were enrolled at the preoperative hospitalization
fromNovember 2017 toApril 2019. Theywere diagnosed based on
the histological and radiological findings, including computed
tomography (CT), magnetic resonance imaging, ultrasonography,
and positron emission tomography-computed tomography (PET-
CT) findings. The staging of their tumors was performed according
to TNM classification of the AJCC eighth edition (Amin et al.,
2017). During the preoperative hospitalization, stimulated saliva
samples were collected from the subjects (8.3 ± 9.4 days before
cancer treatment). We instructed the subjects to chew gums and
spew the whole saliva into sterile plastic tubes. After finishing the
postoperative nasogastric tube feeding and starting to consume a
diet orally, a similar procedure was followed to collect stimulated
saliva (21.2 ± 10.9 days after cancer treatment). All post-treatment
samples were collected prior to postoperative radiotherapy and
chemotherapy. The samples were stored at −80°C until further
analysis. After excluding 28 subjects who did not receive surgical
resection (n=3), did not have both pre- and post-treatment samples
(n=22), andhad less than 7 teeth (n=3), 50 samples from25 subjects
were finally examined. Written informed consent was obtained
from all participants. The ethics committee of Kumamoto
University approved this study with the informed consent
procedure (approval number 1427, 1928, and 2389).

Quantitative PCR Analysis of Total
Bacterial Density in Saliva
The collected saliva samples were subjected to quantitative PCR
analysis of total bacterial density. DNA was extracted from each
sample using the bead-beating method (Yamanaka et al., 2012),
and quantitative PCR was performed using a QuantiFast SYBR
Green PCR Kit (QIAGEN, Hilden, Germany) in QuantStudio 3
(Thermo Fisher Scientific, MA, USA) according to the
manufacturer’s instructions. The primers 806F (5’-TTA GAT
ACC CYG GTA GTC C-3’) and 926R (5’-CCG TCA ATT YCT
TTG AGT TT-3’), with target V5 regions of the 16S ribosomal
RNA (rRNA) gene, were used for the quantification of the total
bacterial density (Asakawa et al., 2018).

16S Ribosomal RNA Gene Amplicon
Sequencing of Saliva
The V1–V2 regions of 16S rRNA gene were amplified using the
following primers: 8F (5′-AGAGTTTGATYMTGGCTCAG-3′)
with the Ion Torrent adapter A and the sample-specific 8-base tag
sequence and338R (5′-TGCTGCCTCCCGTAGGAGT-3′) with
the Ion Torrent trP1 adapter sequence. PCR amplification,
purification, and quantification of each PCR amplicon was
performed as described previously (Takeshita et al., 2016). The
purified PCR amplicons were pooled, and gel-purification was
performed using Wizard SV Gel and PCR Clean-Up System
(Promega, WI, USA). The DNA concentration was determined
November 2020 | Volume 10 | Article 600884
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using a KAPA Library Quantification Kit (KAPA Biosystems, MA,
USA) and the DNA was diluted for use as the template DNA in
emulsionPCR.EmulsionPCRandenrichment of template-positive
particleswereperformedusing IonPGMTemplateHi-QViewOT2
Kit (ThermoFisher Scientific) in IonOneTouch 2 System (Thermo
Fisher Scientific). The enriched particle was loaded onto an Ion 318
v2 chip (Thermo Fisher Scientific) and sequencing was performed
on the Ion PGM (Thermo Fisher Scientific) using Ion PGM Hi-Q
View Sequencing Kit (Thermo Fisher Scientific).

Data Analysis and Taxonomy Assignment
The quality filtering of raw sequence reads using a script written
in R (version 3.6.2) was carried out. The reads were excluded
from the analysis when they exhibited ≤200 bases, or had an
average quality score ≤25, or did not include the correct forward,
or the correct reverse primer sequence (one mismatch was
allowed) or had a homopolymer of >6 nucleotides. The
quality-checked reads were demultiplexed by examining the
eight-base tag sequence, and then forward and reverse primer
sequences were trimmed. Operational taxonomic units (OTUs)
were constructed by clustering quality-checked reads, excluding
singleton reads, with a minimum pairwise identity of 97% using
UPARSE (Edgar, 2013) as described previously (Takeshita et al.,
2016). All quality-checked reads were mapped to each OTU with
≥97% identity using UPARSE (Takeshita et al., 2016). Chimeras
were identified using ChimeraSlayer and removed from analysis
(Haas et al., 2011). The taxonomy of representative sequences
was determined using BLAST against 889 oral bacterial 16S
rRNA gene sequences (HOMD 16S rRNA RefSeq version 14.51)
in the Human Oral Microbiome Database (Chen et al., 2010).
Nearest-neighbor species with ≥98.5% identity was selected as
candidates for each representative OTU. The taxonomy of
sequences without hits were further determined using RDP
classifier with a minimum support threshold of 80% (Wang
et al., 2007). The number of OTUs and UniFrac distance were
calculated following rarefaction to 5000 reads/sample using R.
The sequence data have been deposited in DDBJ Sequence Read
Archive under accession number DRA010919.

Statistical Analysis
The bacterial characteristics of subjects pre- and post-tongue
resection were compared. The total bacterial densities and
diversities were compared using Wilcoxon signed-rank test for
comparison of paired samples. The UniFrac metric was used to
determine the dissimilarity between bacterial compositions
(Lozupone and Knight, 2005). The dissimilarity between
groups was evaluated using the analysis of similarities
(ANOSIM) with 999 permutations based on the weighted
UniFrac distance. Relative abundances of predominant genera
were compared using Wilcoxon signed-rank test and obtained P-
values were adjusted using a Benjamini-Hochberg false discovery
rate (FDR) correction for multiple testing. The detection of
discriminant bacterial species was also performed using
Wilcoxon signed-rank test and FDR correction. Two-sided P <
0.05 indicated statistical significance. All statistical analyses were
performed using R.
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RESULTS

The Characteristics of Subjects
and Salivary Microbiota Sequence
A total of 25 patients with tongue cancer (16 males and 9
females, age 24–93 years old) were enrolled in the present
study. The detailed characteristics of study subjects are
presented in Table 1. Histologically, all their cancers were
squamous cell carcinoma. Most of their clinical tumor (cT)
stages were cT1–2 (84%) and clinical nodal (cN) stages were
cN0 (92%). Distant metastasis was clinically not observed. Of
the 25 subjects, 21 were administered antibiotics for biopsy
(mainly amoxicillin, a beta-lactam antibiotic, n=19), and all
subjects were administered antibiotics for surgery (mainly
cefmetazole, a second-generation cephalosporin, n=23). Pre-
and post-treatment sampling was performed on an average of
26.5 ± 9.9 and 18.6 ± 9.3 days after antibiotics exposure,
respectively. Analysis of 50 stimulated saliva samples by
16S rRNA gene amplicon analysis was carried out, and
461,830 high-quality reads (9,237 ± 1,651 reads per sample)
were obtained to determine their bacterial diversity
and composition.
Shift of Total Bacterial Density in Saliva
Following the Surgical Resection
A quantitative PCR analysis was performed to evaluate the effect
of the surgical resection on the total bacterial density of salivary
microbiota. As shown in Table 2, there was no significant
difference in pre- and post-treatment samples (P = 0.35).
TABLE 1 | The clinical characteristics of study subjects.

Clinical characteristics

Age (years), mean ± SD 64.6 ± 18.2
Sex, n (%) Male 16 (64.0)

Female 9 (36.0)
Number of teeth, mean ± SD 20.6 ± 7.2
Smoking habit, n (%) Current 8 (32.0)

Non-current 17 (68.0)
Alcohol consumption, n (%) Everyday 10 (40.0)

Non-everyday 15 (60.0)
cT-stage, n (%) 1 11 (44.0)

2 10 (40.0)
3 4 (16.0)

cN-stage, n (%) 0 23 (92.0)
2b 2 (8.0)

Antibiotics for biopsy, n (%) None 3 (12.0)
AMPC 19 (76.0)
CDTR-PI 1 (4.0)
CFPN-PI 1 (4.0)

Antibiotics for surgery, n (%) CMZ 23 (92.0)
CEZ and CTRX 1 (4.0)
CMZ and SBT/ABPC 1 (4.0)

Reconstructive surgery, n (%) Yes 6 (24.0)
No 19 (76.0)
November 2020 | Volume 10 | Ar
AMPC, amoxicillin; CDTR-PI, cefditoren pivoxil; CFPN-PI, cefcapene pivoxil; CMZ,
cefmetazole; CEZ, cefazolin; CTRX, ceftriaxone; SBT/ABPC, sulbactam/ampicillin;
cT-stage, clinical tumor stage; cN-stage, clinical nodal stage; SD, standard deviation.
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Shift of Bacterial Diversity and Bacterial
Composition in Saliva Following the
Surgical Resection
The collected saliva samples were examined using 16S rRNA gene
sequencing to evaluate the effect of the surgical resection on the
bacterial balance of salivary microbiota. The post-treatment saliva
exhibited significantly lower bacterial diversity than the pre-
treatment saliva according to observed number of OTUs (P =
0.01, Table 2). Figure 1 presents a principal coordinate analysis
(PCoA) plot based on the weighted UniFrac distances. According to
ANOSIM, there was a significant difference in bacterial composition
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 436
of salivary microbiota pre- and post-surgery (P = 0.001). On
confirmation of the bacterial composition of their salivary
microbiota at genus level, 18 predominant genera with ≥1% of
the relative abundance accounted for 93.4 ± 4.4 and 93.3 ± 5.3% in
pre- and post-treatment samples, respectively. Among them, post-
surgical resection, Streptococcus, Prevotella, Gemella, and
Leptotrichia were significantly decreased while, Neisseria,
Fusobacterium, and Lautropia were significantly increased.
Bacterial Species Showing Drastic
Compositional Shift Following the
Surgical Resection
To find bacterial species that were drastically increased or decreased
following the tongue resection, discriminant OTUs in pre- and post-
treatment samples were identified using the Wilcoxon signed-rank
test. Among predominant OTUs with ≥1% of the relative
abundance, the analysis revealed nine OTUs were differentially
abundant in pre- and post-treatment samples (Figure 2). Following
the surgical resection, OTUs corresponding to Streptococcus
salivarius HOT-755, Prevotella melaninogenica HOT-469,
Prevotella histicola HOT-298, Gemella morbillorum HOT-046,
and Actinomyces species HOT172 were significantly decreased,
TABLE 2 | Bacterial density and diversity in pre- and post-treatment samples.

Pre-treatment
(n=25)

Post-treatment
(n=25)

P
value

Bacterial density (log copies/ml),
mean ± SD

9.85 ± 0.41 9.96 ± 0.33 0.35

Bacterial diversity
Number of OTU, mean ± SD 147.5 ± 31.1 132.6 ± 22.9 0.015
Shannon index, mean ± SD 3.4 ± 0.35 3.4 ± 0.30 0.58
SD, standard deviation.
FIGURE 1 | A principal coordinate analysis (PCoA) based on weighted UniFrac distance. The bacterial composition of pre- and post-treatment samples are depicted
using different colors. These two components explain the 61.5% variance. The intersection of the broken lines indicates the center of gravity for each group. The
ellipse covers 67% of the samples belonging to each group.
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whereas OTUs corresponding to Lautropia mirabilis HOT-022,
Neisseria flava HOT-609, Streptococcus sanguinis HOT-758, and
Fusobacterium nucleatum HOT-200 were significantly increased.
DISCUSSION

The present study demonstrated that following surgical resection
of tongue cancer, the bacterial diversity decreased, and the
bacterial balance of predominant bacteria in salivary
microbiota shifted. In post-treatment samples, L. mirabilis, N.
flava, S. sanguinis, and F. nucleatum were significantly increased
compared to that in the pretreatment samples, and they were all
oral indigenous bacteria. This result suggests that surgical
resection causes a balance shift of salivary microbiota, but not
drastic and terrible oral dysbiosis, such as overgrowth of non-
indigenous pathogenic bacteria. On the other hand, F.
nucleatum, a periodontal pathogen, increased in salivary
microbiota following tongue resection. F. nucleatum generally
inhabits subgingival plaque and has periodontopathogenic
properties, such as activation of inflammatory cytokines that
lead to periodontal attachment and tissue damage (Baqui et al.,
1998). In addition, F. nucleatum is considered an opportunistic
pathogen implicated in the carcinogenesis of oral cancer, not
only periodontitis (Gholizadeh et al., 2016). Interestingly,
although it generally inhabits the oral cavity, several studies
suggest its association with gastrointestinal diseases, such as
inflammatory bowel disease and colorectal cancer by inducing
inflammation and downregulating host immunity (Strauss et al.,
2011; Mima et al., 2015; Nosho et al., 2016; Wu et al., 2019). In
fact, F. nucleatum is frequently and abundantly detected in
colorectal tissue from patients with these diseases (Strauss
et al., 2011; Mima et al., 2015; Nosho et al., 2016; Yachida
et al., 2019). As swallowing function often declines after tongue
resection, assessment of salivary microbiota in postoperative
patients might help in preventing the development of
associated gastrointestinal diseases as well as oral diseases.
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In the discriminant analysis, the bacterial species,L.mirabilis,N.
flava, S. sanguinis, and F. nucleatum, which mainly inhabit dental
plaque,were increased after resectionof the tongue (Takeshita et al.,
2015;Kageyama et al., 2017; Ihara et al., 2019).On the otherhand, S.
salivarius, P. melaninogenica, P. histicola, and Actinomyces species,
knownaspredominant species in tongue dorsum,were identifiedas
decreasing species (Kageyama et al., 2017; Asakawa et al., 2018).
Although the preferred habitat ofG. morbillorum remains unclear,
all other discriminant bacteria demonstrated a common tendency:
an increase in dental plaque bacteria and a decrease in tongue
bacteria. These results suggest that oral environment post-surgical
resection alters by reduction in surface area of tongue, and dental
plaque-derived bacteria become dominant in salivary microbiota.
These findings are in accordance to the previously proposed concept
of tongue microbiota being a major source of salivary microbiota.

Of the 25 subjects who underwent surgical resection of tongue
cancer, reconstructive surgery was performed in six subjects (4
men and 2 women), and their surgical defects were reconstructed
using a cervical island skin flap (n=3), pectoralis major
myocutaneous flap (n=2), and skin graft (n=1). The tongue
dorsum is lined by stratified squamous epithelium with
numerous tongue papillae, which provide an anaerobic
environment for harboring diverse anaerobic bacteria. The
complex papillary structure also retains blood serum
components, infusion from the gingival crevice, epithelial cells,
and food residue on the tongue surface as tongue coating and
provide a nutrient-rich environment for tongue bacteria. On the
other hand, the skin graft and flap are lined by the stratified
squamous epithelium with thick keratinized layer, and the
surface structure is relatively smooth. Thus, it is reasonable to
assume that this difference changes the bacterial species on the
tongue surface and consequently changes the bacterial
composition of the salivary microbiota. However, there was no
significant difference in the bacterial composition of post-
treatment saliva with or without reconstructive surgery (data not
shown). In this study, saliva samples were collected at 21.5 ± 10.5
days post-surgery to identify the effect of tongue resection. The
FIGURE 2 | Bacterial species corresponding to the differentially abundant operational taxonomic units (OTUs) between pre- and post-treatment samples. Bar plots
show mean relative abundances of differentially abundant OTUs. Only nine OTUs with ≥1% of the relative abundance and significant difference were shown. The bar
plots of pre- and post-treatment samples are depicted using different colors. Error bars indicate 95% confidence intervals. Oral taxon IDs are given in parentheses
following bacterial names. **P < 0.01. *P < 0.05.
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formation of tongue coating and tongue microbiota in the long
term may differ on the original tongue surface or the grafted
surface, and the results would be fundamental for the development
of a novel approach to control the virulence of oral microbiota.
Further studies are required to elucidate the long-term effects of
the skin graft and flap on salivary and tongue microbiota.

This study has several potential limitations. Firstly, most
subjects of the present study were administered antibiotics for
biopsy and surgery prior to pre-treatment and post-treatment
sampling, respectively. Of the 25 subjects, 21 subjects were
administered antibiotics for biopsy and all subjects were
administered antibiotics for surgery. However, previous report
indicated that bacterial composition of the salivary microbiota was
stable against antibiotic treatment compared to feces microbiota,
and impacts of antibiotics including ciprofloxacin, amoxicillin,
and minocycline on the salivary microbiota composition were lost
by 1 week to 1 month post-exposure (Zaura et al., 2015). Another
report also suggested the impact of amoxicillin on salivary bacteria
peaked out 4 h after exposure (Larsson Wexell et al., 2016). In this
study, the pre- and post-treatment sampling were performed on
an average of 26.5 ± 9.9 and 18.6 ± 9.3 days after antibiotics
exposure, respectively. Although most samples were collected
within a month after administration of antibiotics, it was
unlikely that the effect of antibiotics remained robust, especially
for a selective increase of dental plaque-derived bacteria. Secondly,
although oral conditions such as number of teeth, periodontal
conditions, and dental caries status affect the bacterial diversity
and composition of salivary microbiota, however, the data about
dental examination including periodontal pocket depth, bleeding
on probing, decayed teeth, and oral hygiene status was not
collected, except number of teeth from panoramic radiographs.
This limited the thorough understanding of the effect of tongue
resection on the salivary microbiota. However, considering dental
caries and periodontitis gradually progress, there was probably no
drastic change in periodontal pocket depth and dental caries status
between samplings. It is also speculated that oral hygiene status
was unchanged because of the stable bacterial density in saliva
before and after the surgery (Table 2). Lastly, the sample size of the
present study, especially those who underwent reconstructive
surgery, was small. Although smoking is known as a lifestyle
factor affecting the oral microbiota (Takeshita et al., 2016), a
significant difference by smoking was not observed in the bacterial
composition of pretreatment samples, post-treatment samples,
and a bacterial composition shift following the surgery. Similar
results were obtained for alcohol consumption. In addition,
although F. nucleatum increased in the salivary microbiota
following tongue resection, the shift in the overall virulence of
salivary microbiota remains unclear. Further studies with larger
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 638
sample sizes are required to identify the effects of surgical resection
and reconstructive surgery on the bacterial composition and the
virulence of oral microbiota as well as the effects of lifestyle factors
on oral microbiota in the perioperative period.

In conclusion, surgical resection of tongue cancer causes a
shift in the bacterial diversity and composition of salivary
microbiota characterized by an increase in bacterial species
derived from dental plaque. In particular, F. nucleatum is a
periodontal pathogen and is suspected to be associated with oral
and gastrointestinal diseases. These results might suggest the
necessity of more careful and frequent postoperative oral care
after surgical resection of tongue cancer.
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Metabolic-associated fatty liver disease (MAFLD), also known as the hepatic manifestation
of metabolic disorders, has become one of the most common chronic liver diseases
worldwide. The associations between some oral resident microbes and MAFLD have
been described. However, changes to the oral microbial community in patients with
MAFLD remain unknown. In this study, variations to the supragingival microbiota of
MAFLD patients were identified. The microbial genetic profile of supragingival plaque
samples from 24 MAFLD patients and 22 healthy participants were analyzed by 16S rDNA
sequencing and bioinformatics analysis. Clinical variables, including indicators of insulin
resistance, obesity, blood lipids, and hepatocellular damage, were evaluated with
laboratory tests and physical examinations. The results showed that the diversity of the
supragingival microbiota in MAFLD patients was significantly higher than that in healthy
individuals. Weighted UniFrac principal coordinates analysis and partial least squares
discriminant analysis showed that the samples from the MAFLD and control groups
formed separate clusters (Adonis, P = 0.0120). There were 27 taxa with differential
distributions (linear discriminant analysis, LDA>2.0) between two groups, among which
Actinomyces spp. and Prevotella 2 spp. were over-represented in the MAFLD group with
highest LDA score, while Neisseria spp. and Bergeyella spp. were more abundant in the
control group. Co-occurrence networks of the top 50 abundant genera in the two groups
suggested that the inter-genera relationships were also altered in the supragingival plaque
of MAFLD patients. In addition, in genus level, as risk factors for the development of
MAFLD, insulin resistance was positively correlated with the abundances ofGranulicatella,
Veillonella, Streptococcus, and Scardovia, while obesity was positively correlated to the
abundances of Streptococcus, Oslenella, Scardovia, and Selenomonas. Metagenomic
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predictions based on Phylogenetic Investigation of Communities by Reconstruction of
Unobserved States revealed that pathways related to sugar (mainly free sugar)
metabolism were enriched in the supragingival plaque of the MAFLD group. In
conclusion, as compared to healthy individuals, component and interactional dysbioses
were observed in the supragingival microbiota of the MAFLD group.
Keywords: metabolic-associated fatty liver disease, 16S rDNA sequencing, microbial community dysbiosis, insulin
resistance, obesity, supragingival plaque
INTRODUCTION

Metabolic-associated fatty liver disease (MAFLD), formerly
known as non-alcoholic fatty liver disease (NAFLD), refers to a
wide spectrum of liver diseases characterized by the presence of
hepatic steatosis in the absence of secondary causes, which
include simple hepatic steatosis and steatohepatitis (Eslam
et al., 2020). Progressive hepatic fibrosis is a hallmark of
advanced steatohepatitis and can lead to cirrhosis, liver failure,
and hepatocellular carcinoma (Sheka et al., 2020). MAFLD is an
emerging public health concern worldwide, with a global pooled
prevalence, by imaging, of 25.24% (Chalasani et al., 2018). The
etiology of MAFLD is described as a complex hepatic
manifestation of metabolic disorders, and the “multiple-hit”
theory has been widely accepted as a potential mechanism
involving insulin resistance (IR), obesity, chronic low grade
inflammation, a sedentary lifestyle, regular consumption of a
high fat diet, adipose tissue dysfunction, genetic factors, and gut
microbial dysbiosis (Tiniakos et al., 2010; Buzzetti et al., 2016).
With the increasing acknowledgement of the oral microbiome as
a source of systemic inflammation, dysbiosis in the oral
microbiome had been closely associated with metabolic
diseases, including MAFLD (Acharya et al., 2017). A previous
study found that the frequency of Porphyromonas gingivalis in
the oral cavity is significantly higher in MAFLD patients as
compared with health subjects (Yoneda et al., 2012). In another
study, intravenous injection of sonicated P. gingivalis caused
impaired glucose tolerance, IR, and liver steatosis in C57BL/6J
mice fed a high-fat diet (Sasaki et al., 2018). However, because
relatively few oral resident microbes have been the focus of
previous studies, changes to the oral microbial community in
patients with MAFLD remain unknown.

As a common site of oral sampling, the microbial profile of
supragingival plaque is thought to reflect the health status of the
host, such as gestation (Lin et al., 2018), type 2 diabetes (Artese
et al., 2015), and other conditions (Espinoza et al., 2018). As
compared with subgingival plaque, the supragingival microbiota
can be acquired more easily and with less discomfort to the host
(Lin et al., 2018). Therefore, sampling of the supragingival
microbiota presents a promising method to assess oral and
systematic health, especially for a large-scale health census. To
the best of our knowledge, the present study is the first to assess
the association between supragingival microbiota and MAFLD.

In the present study, supragingival plaques were obtained
from 24 patients with MAFLD and 22 healthy controls. Illumina
gy | www.frontiersin.org 241
MiSeq PE300 sequencing and bioinformatics analysis were
employed to identify changes to the microbial profiles and
inter-taxa relationships of the supragingival plaque of MAFLD
patients. Specific microbial genera correlated with MAFLD and
related clinical indexes were also identified. Furthermore, potential
functional alterations to the supragingival microbiome were
predicted based on the sequencing results. These findings would
provide a deeper understanding of the oral ecological dysbiosis
associated with MAFLD.
MATERIALS AND METHODS

Study Population
The study protocol was approved by the Ethics Committee of
Shanghai Ninth People’s Hospital affiliated with Shanghai Jiao
Tong University, School of Medicine (Shanghai, China)
(approval no. SH9H-2019-T295-1) and conducted in
accordance with the tenets of the Declaration of Helsinki.
Written informed consent was obtained from all participants
prior to enrollment.

The study participants were recruited from a health census
and assigned to one of two groups: the MAFLD group, consisting
of 24 persons diagnosed with MAFLD via upper abdomen
ultrasonography and other clinical examinations (Eslam et al.,
2020), or a control group, consisting of 22 persons with normal
findings by upper abdomen ultrasonography. Age and sex in the
participants of the two groups were matched. For each
participant, upper abdomen ultrasonography was performed
successively by two experienced sonographers and those with
the same diagnosis were enrolled.

The exclusion criteria were as follows: (i) the presence of
other liver diseases (e.g., viral hepatitis, autoimmune hepatitis,
and hepatolenticular degeneration); (ii) drug-induced hepatic
steatosis (e.g., tamoxifen, amiodarone, valproate, methotrexate,
and glucocorticoids); (iii) other factors that may cause hepatic
steatosis (e.g., long-term total parenteral nutrition, inflammatory
bowel disease, celiac disease, hypothyroidism, Cushing’s
syndrome, lipoprotein deficiency, lipid-atrophic diabetes, etc.);
(iv) use of lipid-lowering drugs within the past 6 months; (v) type
1 or type 2 diabetes; (vi) current oral disease (e.g., untreated oral
abscess, precancerous lesions, oral cancer, oral fungal infection,
missing more than eight teeth, etc.); and (vii) other conditions
(e.g., pregnant or lactating women, long-term heavy smoking,
use of antibiotics for more than 5 days within the past 6 months,
December 2020 | Volume 10 | Article 581888
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severe acute episode of a systematic disease, abnormal thyroid
function, familial hyperlipidermia, etc.).

Acquisition of Clinical Variables
All participant demographics were retrieved from self-reported
questionnaires and fasting blood samples were collected to detect
clinical levels of total cholesterol (TC), total triglycerides (TG),
low-density lipoprotein cholesterol (LDL-C), high-density
lipoprotein cholesterol (HDL-C), alanine aminotransferase
(ALT), aspartate aminotransferase (AST), gamma glutamyl
transpeptidase (GGT), fasting plasma glucose (FPG), and
fasting serum insulin (FSI). As an approximation of IR, the
Homeostatic Model Assessment for Insulin Resistance (HOMA-
IR) equation was calculated as HOMA-IR = FPG (mmol/L) × FSI
(mU/L)/22.5 (Matthews et al., 1985). The waist circumference,
weight, height, and body mass index (BMI) of each participant
were acquired via physical examination. The unpaired Student’s
t-test was applied for analysis of all clinical variables with an
exception of “sex,” which was analyzed using the Yates’
continuity corrected chi-squared test.

Dental Examination and Supragingival
Plaque Collection
An abbreviated dental exam was performed on all the
participants by the same dentist using a periodontal probe. At
least 9 teeth present and >30% of the probed sites with
attachment loss ≥1 mm were diagnosed as periodontitis
(Armitage, 1999). The prevalence of periodontitis between the
two groups was analyzed using the Yates’ continuity corrected
chi-squared test. Supragingival plaque was collected before
eating in the morning in accordance with the methods
described in the Manual of Procedures for the Human
Microbiome Project (https://www.hmpdacc.org/hmp/doc/
HMP_MOP_ Vers ion12_0_072910.pdf) with minor
modifications. The index teeth (#3, #9, #12, #19, #25, and #28)
were isolated with cotton rolls and dried under a gentle stream of
air. A sterile sickle scaler was used to collect the supragingival
plaque from the buccal surfaces of the index teeth. Then, the
scaler tips were immersed in 300 µl of sterile normal saline
contained in a sterile Eppendorf tube for 5–10 s with slight
shaking and the surface of the scaler was wiped off on the inside
edge of the tube. When the supragingival plaques of all index
teeth were obtained, the Eppendorf tubes were sealed, marked,
and kept frozen in liquid nitrogen until DNA extraction.

DNA Extraction, Amplification, and
High-Throughput Sequencing
Total bacterial genomic DNA was extracted from the collected
supragingival samples using the QIAamp DNAMini Kit (Qiagen,
Valencia, CA, USA) in accordance with manufacturer’s protocols.
The concentration and purification of the extracted DNA were
determined using a NanoDrop 2000 UV-vis spectrophotometer
(ThermoScientific,Wilmington,DE,USA),whileDNAqualitywas
checked by 1% agarose gel electrophoresis.

The 16S rDNA hypervariable V3–V4 region was PCR-
amplified with the forward primer 338F (5′-ACTCCTAC
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GGGAGGCAGCAG-3′) and the reverse primer 806R (5′-
GGACTACHVGGGTWTCT AAT-3′) using a GeneAmp™

PCR System 9700 (Applied Biosystems, Carlsbad, CA, USA).
The parameters of the PCR reactions have been described in a
previous study (Tong et al., 2019). Each PCR reaction was
performed in triplicate and all resulting PCR products were
extracted from 2% agarose gels and then further purified using
the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences,
Union City, CA, USA) and quantified using a QuantiFluor®

Single-Tube Fluorometer (Promega Corporation, Madison, WI,
USA) in accordance with the manufacturer’s instructions.
Purified amplicons from different samples were pooled in
equimolar concentrations and paired-end sequenced on an
Illumina MiSeq PE300 sequencing platform (Illumina, Inc.,
San Diego, CA, USA).

Data Processing and Bioinformatics
Analysis
Raw fastq files were quality-filtered using the Trimmomatic read
trimming tool (https://kbase.us/) and merged using FLASH
software (version 1.2.11; https://ccb.jhu.edu/software/FLASH/
index.shtml) in accordance with the criteria described in a
previous report (Tong et al., 2019). After trimming,
operational taxonomic units (OTUs) were clustered at a
similarity cutoff value of 97% using the UPARSE algorithm
(version 7.1; http://drive5.com/uparse/). The taxonomy of each
16S rRNA gene sequence was analyzed with RDP Classifier
algorithm (http://rdp.cme.msu.edu/) against the Silva 16S
rRNA database (Release132 http://www.arb-silva.de), the
confidence threshold was set to 70%.

Alpha diversity indexes were calculated using MOTHUR
software for describing and comparing microbial communities
(version 1.30.2; https://www.mothur.org/wiki/Download_
mothur) and rarefaction curves were constructed at an inter-
sequence similarity value of 97% using the QIIME bioinformatics
pipeline (version 1.9.1; http://qiime.org/install/index.html). Bar
plots were generated to visualize the species composition of all
samples at the phylum and genus levels, and heat maps at the
genus level were constructed using the R platform (version 3.6.1).
Weighted UniFrac principal coordinates analysis (PCoA),
nonparametric multivariate analysis of variance (Adonis), and
partial least squares discriminant analysis (PLS-DA) were
performed to identify differences in species composition
between the MAFLD and control groups using QIIME. The
linear discriminant analysis (LDA) effect size (LEfSe; http://
huttenhower.sph.harvard.edu/galaxy) was applied to identify
the most discriminatory taxa between the groups at the
phylum to genus levels. Taxa with logarithmic LDA scores of
>2.0 were regarded as discriminative species. Co-occurrence
networks of the 50 most abundant genera of each group were
demonstrated using NetworkX (version 1.9.1). Spearman’s
correlation coefficients were calculated and those with a ∣r∣
value of >0.5 and a probability (P) value of < 0.05 were
visualized. Spearman’s correlation coefficients among the
clinical variables and the top 50 abundant genera of the
supragingival microbiome were calculated, and the results were
December 2020 | Volume 10 | Article 581888
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visualized as heat maps via the R platform. Furthermore, the
bioinformatics software package Phylogenetic Investigation of
Communities by Reconstruction of Unobserved States
(PICRUSt2, version 1.1.0; http://picrust.github.io/picrust/) was
used to predict the functional pathways of each group according
to the Kyoto Encyclopedia of Genes and Genomes (KEGG).
Statistical differences in top 30 abundant KEGG level 2 pathways
and top 50 abundant KEGG level 3 pathways between two
groups were determined by Wilcoxon rank-sum test with a
Benjamini-Hochberg false discovery rate (FDR) correction to
adjust P values for multiple testing.
RESULTS

Subject Characteristics
The demographic and clinical characteristics of the participants
are summarized in Table 1. There were no significant differences
in age, sex, blood pressure, heart rate and prevalence of
periodontitis between the two groups. Subjects in the MAFLD
group had relatively higher TG levels and lower HDL-C levels, and
thus had higher TG/HDL-C ratios than the control group.
Moreover, ALT and GGT levels were relatively higher in the
MAFLD group than the control group. Because subjects with
diabetes were excluded, there was no significant difference in FPG
levels between the two groups, but FSI and HOMA-IR were
significantly increased in the MAFLD group. Waist circumference
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was significantly higher in the MAFLD group, illustrating visceral
adiposity was ubiquitous in MAFLD patients.

Bacterial Diversity and Community
Structure of Supragingival Microbiota
The concentration and purification of the extracted DNA met
the requirements for further experiments (Table S1), results of
2% agarose gel electrophoresis revealed that the PCR products of
the extracted DNA was qualified to further sequencing and
analysis (Figure S1). A total of 2,318,404 high quality
sequences were produced, with an average of 50,507 ± 11,212
sequences per sample. In total, 23 phyla, 37 classes, 92 orders,
163 families, 339 genera, 628 species, and 1,021 OTUs were
identified after taxonomic assignment of the sequences. All 16S
rRNA gene sequences were submitted to the NCBI Sequence
Read Archive (SRA) under bioproject accession PRJNA645880
(http://www.ncbi.nlm.nih.gov/sra).

As shown in Table 2, the MAFLD group had a higher
Shannon index and lower Simpson index, suggesting the
diversity of supragingival microbiota was higher in the
MAFLD group than the control group (Table 2). Good’s
coverage indexes, which were close to 1 (Table 2), and
rarefaction curves based on OTU levels (Figure S2) reached
saturation plateaus, indicating that the sequencing depths were
sufficient to represent the majority of the microbiota in
both groups.

The taxa abundance of the supragingival microbiome from
the two groups at the phylum and genus levels are depicted in
Figures 1A, B, respectively. In general, the dominant taxa of
the two communities were similar and consistent with the
core species of the supragingival microbiome. The core phyla
of all samples from both groups consisted of Bacteroidetes,
Proteobacteria, Actinobacteria, Firmicutes, Fusobacteria,
Patescibacteria, Epsilonbacteraeota, and Spirochaetes. Of the
top 10 abundant genera, the MAFLD group had higher
proportions of Capnocytophaga, Leptotrichia, Corynebacterium,
Actinomyces, Streptococcus, Fusobacterium, Prevotella, and
Veillonella; while Neisseria and Comamonas were more
prevalent in the control group. The abundances of the top 50
abundant genera in each sample are displayed in the heat map
presented in Figure S3.

Weighted UniFrac PCoA at the OTU level was employed to
evaluate the similarity of the bacterial communities between the
two groups. The results indicated that although samples from
the two groups partly overlapped, there was a tendency of
separation along the PC1 axis (Figure 1C). The results of
TABLE 1 | Demographic and clinical characteristics of the study participants.

Parameter Health(n=22) MAFLD(n=24) P

Age (years) 52.91 ± 4.25 52.75 ± 4.39 0.9013
Sex (M: F) 11: 11 13: 11 0.9898
TC (mmol/L) 5.77± 0.78 5.47 ± 0.88 0.2254
TG (mmol/L) 1.55 ± 1.04 2.51 ± 1.28 0.0083*
LDL-C (mmol/L) 3.41± 0.52 3.28± 0.66 0.4735
HDL-C (mmol/L) 1.40 ± 0.36 1.10± 0.21 0.0011*
ALT (U/L) 22.68 ± 12.99 40.25 ± 27.55 0.0092*
AST (U/L) 31.5 ± 18.13 38.21 ± 19.09 0.2292
AST/ALT 1.52 ± 0.66 1.11 ± 0.43 0.0142*
GGT (U/L) 24.50 ± 21.16 57.42 ± 52.11 0.0084*
FPG (mmol/L) 5.01 ± 0.46 5.18+0.56 0.3196
FSI(mU/L) 4.02 ± 2.68 6.84 ± 2.68 0.0015*
HOMA-IR 0.94 ± 0.59 1.58 ± 0.66 0.0013*
Weight (kg) 62.20 ± 11.75 68.23 ± 9.64 0.0631
BMI 24.13 ± 3.00 25.79 ± 2.61 0.0502
WC(cm) 81.84 ± 9.45 89.79 ± 6.88 0.0020*
SBP (mm Hg) 139.00 ± 26.88 136.46 ± 19.65 0.7144
DBP (mm Hg) 82.77 ± 14.93 82.79 ± 12.17 0.9962
HR
Periodontitis (%)

76.09 ± 8.38
81.82

73.71 ± 10.25
79.17

0.3954
0.8843
Data are presented as the mean ± standard deviation. *P < 0.05. All clinical and
demographic data were analyzed using the unpaired t-test with an exception of “sex”
and “periodontitis”, which were analyzed with the Yates’ continuity corrected c2 test.
Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI,
body mass index; DBP, diastolic blood pressure; FPG, fasting plasma glucose; FSI,
fasting serum insulin; GGT, gamma glutamyl trans-peptidase; HDL-C, high-density
lipoprotein cholesterol; HOMA-IR, homeostatic model assessment of insulin resistance
[HOMA-IR = FPG (mmol/L) × FSI (mU/L)/22.5]; HR, heart rate; LDL-C, low-density
lipoprotein cholesterol; SBP, systolic blood pressure; TC, total cholesterol; TG, total
triglycerides; WC, waist circumference.
TABLE 2 | a-diversity of supragingival microbiota in the MAFLD and Control groups.

MAFLD Health P

Ace 318.96 ± 76.36 285.74 ± 82.16 0.1561
Chao 1 324.99 ± 81.69 287.67 ± 77.17 0.0969
Shannon 4.02 ± 0.27 3.80 ± 0.39 0.0303*
Simpson 0.04 ± 0.01 0.05 ± 0.02 0.0192*
Coverage 0.9983 ± 0.0006 0.9987 ± 0.0006 0.1319
December 2
020 | Volume 10 | Article
Results are presented as the mean ± standard deviation. *P < 0.05. All a-diversity
estimators were analyzed using the Wilcoxon rank-sum test.
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ups. (A) Community structures at the phylum level. (B) Community structures
least squares discriminant analysis (PLS-DA) at the OTU level.
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Adonis (P = 0.0120) based on weighted UniFrac distances further
verified the existence of significant differences in the overall
structures of the supragingival microbiota of the two groups.
PLS-DA, a supervised analysis suitable for high dimensional
data, showed separate clustering of the samples from the
MAFLD and control groups (Figure 1D), further demonstrating
remarkable differences in the supragingival microbiota between the
two groups.

Alterations of the Supragingival Microbial
Phylotypes/Inter-Genera Relationship
Associated With MAFLD
A circular cladogram based on the LEfSe results demonstrated
differentially abundant taxa between the two groups (Figure 2A).
Genera with logarithmic LDA scores of >2.0 (P < 0.05) are
plotted in Figure 2B and the selected taxa in other taxonomic
level (from phylum to family) were shown in Figure S4. Briefly,
there were 27 taxa with differential distributions between the two
groups. At the genus level, Actinomyces, Prevotella 2, Scardovia,
Megasphaera, and Alysiella were more abundant in the MAFLD
group, while Neisseria, Bergeyella, Sphingomonas, and H1 were
over-represented in the control group. Co-occurrence networks
of the top 50 abundant genera of the two groups were depicted in
Figures 3A, B. In general, the taxa within the main bacterial
cluster (>5 nodes and connected with intense lines) had stronger
and more complex interrelationships in the MAFLD group.

Correlations Between Clinical Variables
and Supragingival Microbiota
The heat map presented in Figure 4 depicts the correlations
between the 50 most abundant bacterial genera and single
clinical variables based on the Spearman’s correlation
coefficients. Of the top 50 abundant genera, HOMA-IR
showed positive correlations with Streptococcus, Scardovia,
Granulicatella, and Veillonella, but a negative correlation with
Neisseria. Alloprevotella, and Peptostreptococcus were extremely
significantly negatively correlated with TC and LDL-C levels.
Aggregatibacter was negatively correlated with TG levels, but
positively correlated with HDL-C levels. Streptococcus, Oslenella,
Scardovia, and Selenomonas were significantly positively
correlated with BMI and waist circumference. AST/ALT and
GGT, two indicators of hepatocellular damage, were negatively
correlated with Capnocytophaga.

Predictive Metagenome Functional
Profiling of the Supragingival Microbiomes
of the MAFLD and Control Groups
To detect functional differences in the supragingival
microbiomes of the MAFLD and control groups, PICRUSt 2
was employed to predict the metagenome functional contents
based on the 16S rRNA datasets. Statistically significant
differences (P < 0.05) in KEGG pathways were calculated with
the Wilcoxon rank-sum test with FDR correction. As shown in
Figure 5A, among the top 30 abundant KEGG level 2 pathways,
Carbohydrate metabolism, Translation, Cellular community–
prokaryotes and Membrane transport were significantly
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 645
increased in the MAFLD group. At KEGG pathway level 3,
starch and sucrose metabolism, fructose and mannose
metabolism, and galactose metabolism were enriched in the
MAFLD group. Meanwhile, a total of 9 pathways among the
top 50 abundant KEGG level 3 pathways, including carbon
metabolism, pyruvate metabolism, and the citrate cycle, were
significantly decreased in the MAFLD group (Figure 5B).
DISCUSSION

The oral microbiota is attracting increased attention because of
probable associations with metabolic disorders (Si et al., 2017;
Chen et al., 2020; Wei et al., 2020). The associations between the
oral microbiota and metabolic disorders can be explained in
the following two aspects. On the one hand, microbial dysbiosis
in the oral cavity is a source of systemic inflammation, which
could lead to chronic low-grade inflammation and adversely
affects the metabolic health of the host (Acharya et al., 2017).
On the other hand, the oral microbiota can influence the
composition of the gut microbiome, which plays important roles
in metabolic health (Segata et al., 2012; Tremaroli and Bäckhed,
2012; Arimatsu et al., 2014; Li et al., 2019). Due to the anatomical
position, about 1011 bacteria are swallowed from the oral cavity to
the stomach every day (Segata et al., 2012), cultivation and
sequencing techniques have also substantiated the association
between the oral and gut microbiomes: Arimatsu et al. reported
that oral administration of P. gingivalis significantly altered the
Firmicutes/Bacteroidetes ratio, a significant index to evaluate the
health status of the gut microbiome (Arimatsu et al., 2014); Li et al.
found that the oral microbiota could overcome physical barriers
and colonize the gut in gnotobiotic mice (Li et al., 2019). These
findings acknowledged that the oral microbiota plays an
important role in the development of metabolic diseases via
“oral-gut axis”. For MAFLD, although some oral resident
microbes have been associated with the development of it
(Yoneda et al., 2012; Sasaki et al., 2018), there has been no
microbiome-wide association study of the association between
the development of MAFLD and oral microbial ecology. Shaped
by the health status of the host, supragingival plaque has been
related to various metabolic disorders. For example, Hintao et al.
reported significant differences in the microbial profiles of
supragingival plaque between subjects with and without diabetes
(Hintao et al., 2007); La Monte et al. found that metabolic
syndrome was significantly associated with supragingival plaque
(odds ratio = 1.74; 95% confidence interval = 1.22–2.50) (LaMonte
et al., 2014). Considering supragingival plaque can be obtained
withminimal discomfort and risk (Lin et al., 2018), it was collected
in this study to explore the ecological shifts of oral microbiota in
MAFLD patients. By screening with strict inclusion/exclusion
criteria and matching of confounding factors, the differences
among the participants were minimized as much as possible in
order to focus on compositional and structural differences of the
supragingival microbiota in MAFLD patients.

The diversity of the supragingival microbiota of each group was
determined using alpha diversity estimators. It is generally
December 2020 | Volume 10 | Article 581888
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on LEfSe. Red indicates enrichment in samples from MAFLD patients and
ores were calculated for the selected genera (logarithmic LDA>2.0, P<0.05).
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FIGURE 2 | Bacterial phylotypes with altered abundances associated with MAFLD. (A) A cladogram of taxonomic representation based
blue indicates the taxa enriched in samples from healthy controls. (B) A histogram of the logarithmic linear discriminant analysis (LDA) sc
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acknowledged that microbial diversity reflects the health status of
the host. For example, decreased diversity of gut microbiota
indicates functional or metabolic disorders in the host (Kelly
et al., 2016), while increased diversity of oral microbiota is
reported to imply poor oral (Camelo-Castillo et al., 2015;
Takeshita et al., 2016) and holistic health (Armingohar et al.,
2014; Si et al., 2017), because in a state of poor oral health, gingival
bleeding provides a richer nutrient source (Segata et al., 2012). In
the present study, increased diversity (lower Simpson index and
higher Shannon index) of the supragingival microbiota in the
MAFLD group was observed, suggesting possible alterations to the
nutritional status of supragingival plaque in MAFLD patients.
Consistent with previous studies (Utter et al., 2016; Lin et al.,
2018), the core phyla identified in the present study included
Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 847
Fusobacteria, which accounted for 93.83% and 92.37% of the
supragingival microbiomes of the control and MAFLD groups
(Figure 1A), respectively. Similarly, although the proportions
differed, the majority of the observed genera (including
Capnocytophaga, Leptotrichia, Corynebacterium, Actinomyces,
Streptococcus, Fusobacterium, Prevotella, Veillonella, Neisseria,
and Comamonas) existed in both groups, thereby also
supporting the core genera of the supragingival microbiota (Lin
et al., 2018). A lower Firmicutes/Bacteroidetes ratio is considered as
a healthy trait in both the oral cavity and gut (Chen et al., 2020). In
the present study, the Firmicutes/Bacteroidetes ratio was lower in
the supragingival plaque of the control group as compared to the
MAFLD group (61.41% vs. 72.38%, calculated from Figure 1A
respectively), indicating dysbiosis of the supragingival microbiota
of the MAFLD group.
A

B

FIGURE 3 | Co-occurrence networks of the top 50 abundant genera in supragingival microbiota. The MAFLD group is shown in (A) and Health group in (B). The
size of the node indicates the mean relative abundance of the corresponding genus. The same color represents genera belonging to the same phylum. The
thickness of the connecting lines corresponds to the coefficient values (P < 0.05). The red and green lines indicate positive and negative correlations, respectively.
December 2020 | Volume 10 | Article 581888
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The PCoA and PLS-DA results demonstrated differences in the
community compositions between the two groups (Adonis, P =
0.0120). The discriminatory taxa between two groups were
identified using LEfSe. At the genus level, Actinomyces and
Prevotella 2 had the highest LDA scores in the MAFLD group.
Actinomyces spp. is a normal resident bacteria of the oral cavity,
which exerts important roles in biofilm formation (Polak et al.,
2019). Actinomyces spp. has been associated with the severity of
chronic periodontitis (Cao et al., 2018). Prevotella 2 is a genus of
Gram-negative, anaerobic bacteria that exists in the gut and are
relevant to multiple disease states, including an increased lifetime
risk of cardiovascular disease (Kelly et al., 2016), ankylosing
spondylitis (Chen et al., 2019), and increased levels of C-reactive
protein (Sun et al., 2019). Considering the consistency between the
oral and gut microbiotas (Segata et al., 2012; Arimatsu et al., 2014;
Li et al., 2019), the prevalence of Prevotella 2 in the oral cavity is
proposed as a potential marker of systematic diseases including
MAFLD. In healthy participants, the genera Neisseria and
Bergeyella had the highest LDA scores. Neisseria spp. is among
the most abundant taxa in the oral cavity (Dong et al., 2018). A
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 948
predominance of Neisseria spp. in the oral cavity indicates healthy
conditions of the oral cavity (Meuric et al., 2017; Yamashita and
Takeshita, 2017; Perez-Chaparro et al., 2018). Bergeyella spp. is a
Gram-negative, aerobic bacteria (Muramatsu et al., 2019). In
the present study, Bergeyella spp. was more prevalent in the
control group, suggesting a negative correlation to MAFLD.
Co-occurrence networks were used to predict inter-genera
correlations of supragingival plaque between the two groups. As
shown in Figure 3, there were significant differences in the
interaction patterns of the two groups. In the MAFLD group,
there were stronger and more complex interactions within the
main cluster, but weaker correlations among the genera outside of
the main cluster. Reportedly, an increase in interaction strength
among taxa not only excludes other taxa, but decreases the
stability of the microbial community (Ratzke et al., 2020).
Therefore, it could be speculated that the supragingival
microbial community of the MAFLD group was more unstable.

Inhibition of hepatic glucose production, increased
accumulation of lipids in the liver, and IR are vital to the
development of MAFLD (Bessone et al., 2019). It is currently
FIGURE 4 | A heat map of Spearman’s correlation analysis of the top 50 abundant supragingival microbiota and clinical variables. The right side of the legend
shows the color range of different R values. Species clustering trees are presented on the left side of the heat map. *P < 0.05; ***P < 0.001.
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believed that IR is an independent risk factor for the severity of
MAFLD (Bessone et al., 2019). As first proposed by Matthews et al.
in 1985, HOMA-IR is both practical and highly efficient for the
evaluation of IR in both clinical and scientific studies (Matthews
et al., 1985; Tang et al., 2015). In the present study, HOMA-IR was
beyond the normal range (normal range ≤1) in the MAFLD group
and significantly higher than that in the control group (P = 0.0013)
suggesting that IR is prevalent in patients with MAFLD. It was
believed that chronic low-grade inflammation resulting from
dysbiosis of the oral microbiota can reportedly aggravate IR (Bui
et al., 2019). In this study, Spearman’s correlation analysis revealed
that the presence of Granulicatella spp., Veillonella spp.,
Streptococcus spp., and Scardovia spp. was positively correlated
with HOMA-IR. It was reported that Granulicatella spp. has been
positively correlated to periodontitis (Belstrøm et al., 2014), as well
as infections outside of the oral cavity, such as infective endocarditis
(Sasaki et al., 2020). Veillonella is a genus of Gram-negative
anaerobic bacteria mainly found in the oral and gastrointestinal
tracts. The presence of Veillonella spp. in the oral cavity has been
correlated to increased production of pro-inflammatory cytokines
(Bui et al., 2019; Li et al., 2020) and periodontal infections
(Yamashita and Takeshita, 2017). Streptococcus spp. and
Scardovia spp. are resident bacteria of the oral cavity that are
closely related to caries formation (Kressirer et al., 2017). Although
relatively few studies have investigated the relationship between
caries-related bacteria and IR, patients with IR tend to have more
decayed teeth (Loyola-Rodriguez et al., 2011).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 1049
In a state of chronic low-grade inflammation (Mervish et al.,
2019), obesity is a contributor to various metabolic dysfunctions,
such as MAFLD and type 2 diabetes (Canfora et al., 2019). As
compared to BMI, visceral adiposity, as measured by waist
circumference, has been closely linked to the severity of lipid
deposition in the liver (Mervish et al., 2019), which is consistent
with the results of the present study, which found an increase in
waist circumference in MAFLD patients (P = 0.0020). In addition,
multiple studieshaveverified the influenceofobesityon themicrobial
profile of theoral cavity (Tametal., 2018;Chattopadhyay et al., 2019).
In this study, genera positively correlated with obesity mainly
included Streptococcus, Oslenella, Scardovia, and Selenomonas.
Streptococcus spp. and Scardovia spp. were also positively
correlated to IR, supporting the positive association between
obesity and IR (Mervish et al., 2019). The involvement of Oslenella
spp. in endodontic infections (Vieira Colombo et al., 2016) and
periodontal inflammation (Chen et al., 2020) have been well
documented. In the Veillonellaceae family, Selenomonas is a genus
of Gram-negative anaerobic bacteria. Members of Veillonellaceae
family are considered to act as pro-inflammatorymediators (Tanner,
2015)andputativeperiodontalpathogens (RocasandSiqueira,2005).
These results support the presumption that obesity is positively
correlated to the abundance of bacteria associated with infectious
diseases of the oral cavity (Maciel et al., 2016).

Dyslipidemia is a common clinical manifestation of MAFLD,
especially hypertriglyceridemia and low serum HDL-C
(Pacifico et al., 2014; Fukuda et al., 2016; Fan et al., 2019), which
A

B

FIGURE 5 | Predictive metagenome functional profiling of supragingival microbiome of the MAFLD and control groups. (A) Relative abundance of predictive
metagenome functional profiling of the top 20 abundant KEGG level 2 pathways (pathways with P(FDR)<0.05 are shown). (B) Relative abundance of predictive
metagenome functional profiling of the top 50 abundant KEGG level 3 pathways (pathways with P(FDR)<0.05 are shown).
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were also verified in this study (P = 0.0083 for TG; P = 0.0011 for
HDL-C). Reportedly, oral infectious diseases and dyslipidemia
could have a two-way relationship without a clear cause-and-
effect relationship (Jaramillo et al., 2013). Actinomyces spp. has
been positively correlated to TG levels as a potential indicator of
MAFLD-related metabolic dysfunction. A surprising result was
that the presence of Aggregatibacter spp. was negatively correlated
with TG levels, but positively correlated with HDL-C levels, which
might indicate good health, challenging the mainstream concept
that the presence of Aggregatibacter spp. (especially A.
actinomycetemcomitans) is related to dyslipidemia and other
metabolic diseases (Jaramillo et al., 2013). Sampling sites may
explain this discrepancy because Aggregatibacter spp. is a
anaerobic bacteria with growth behaviors that may change in
response to aerobic conditions (supragingival habitats). However,
the exact reasons for this paradox remain unclear.

Known as indicators of hepatocellular damage, elevated serum
levels of transaminases and transpeptidases are also main clinical
manifestations of MAFLD (Sheka et al., 2020). Moreover, a
decreased AST/ALT ratio is regarded as biomarker of
progressive MAFLD (Sheka et al., 2020). In this study, a
decreased AST/ALT ratio (P = 0.0142) as well as elevated GGT
(P = 0.0084) were prevalent in MAFLD patients, suggesting the
enrolled MAFLD patients had different degrees of hepatocellular
damage. Capnocytophaga is a genus of Gram-negative anaerobic
bacteria reportedly associated with periodontitis (Cao et al., 2018)
and hyperglycemia (Graves et al., 2019). In this study, an
abundance of Capnocytophaga spp. was negatively correlated to
the AST/ALT ratio, suggesting it could be a potential biomarker of
MAFLD progression.

Metagenomic predictions based on PICRUSt2 revealed that
functional changes between the control and MAFLD groups
mainly involved metabolism (Figure 5B). Among the KEGG
pathways level 3, metabolism of sugars (mainly free sugars,
including starch and sucrose, fructose and mannose, and
galactose) were more prevalent in subjects with MAFLD,
revealing that supragingival plaque in MAFLD patients can easily
obtain nutrients, which could explain the increased microbial
diversity observed in the supragingival plaque of the MAFLD
group (Table 2). Pathways related to aerobic respiration
(including pyruvate metabolism, and the citrate cycle) were more
abundant in the supragingival plaque of the control group,
suggesting that the proportion of aerobic bacteria in the
supragingival plaque is higher in healthy people. However, a
deficiency of predicting functions based on taxa composition is
that bacterial functions can change with the health status of the host
(Ikeda et al., 2020). Consequently, metatranscriptomics and
metabolomics of the microbiota may provide more realistic
functional profiles.

As this is a pilot study with matching of confounding factors,
some intriguing findings surfaced, but still need to be verified in
future studies with larger sample sizes. In addition, with the
increasing attention to the functions of the oral microbial
community, it is essential to identify changes to the actual
functional profiles of the supragingival microbiota in MAFLD
by metatranscriptomics and metabolomics.
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CONCLUSIONS

In the present study, dysbiosis of supragingival microbiota
associated with MAFLD was characterized. Briefly, the results
revealed increases in the abundances of bacteria associated with
oral infections, decreases in the abundances of potential
beneficial aerobic bacteria, and changes in the interactions of
the core microflora with the supragingival microbiota in patients
with MAFLD. Moreover, as risk factors for the development of
MAFLD, IR was positively correlated to the abundances of
Granulicatella spp., Veillonella spp., Streptococcus spp., and
Scardovia spp., while obesity was positively correlated with the
abundances of Streptococcus spp., Oslenella spp., Scardovia spp.,
and Selenomonas spp. The increased free sugar metabolic
pathways suggested that supragingival bacteria related to the
metabolism of free sugars were associated with MAFLD. These
findings provide a deeper understanding of the association
between the oral microbiome and MAFLD, although further
studies are needed to explore potential causal relationships.
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Ljubljana, Slovenia

Kalpana Manthiram,
National Institutes of Health (NIH),

United States

*Correspondence:
Mysore V. Tejesvi

mysore.tejesvi@oulu.fi;
mvtejesvi@gmail.com

Specialty section:
This article was submitted to

Microbiome in Health and Disease,
a section of the journal
Frontiers in Cellular and
Infection Microbiology

Received: 13 October 2020
Accepted: 08 December 2020
Published: 27 January 2021

Citation:
Tejesvi MV, Tapiainen T, Vänni P,

Uhari M, Suokas M, Lantto U,
Koivunen P and Renko M (2021)

Tonsil Mycobiome in PFAPA (Periodic
Fever, Aphthous Stomatitis,

Pharyngitis, Adenitis) Syndrome:
A Case-Control Study.

Front. Cell. Infect. Microbiol. 10:616814.
doi: 10.3389/fcimb.2020.616814

ORIGINAL RESEARCH
published: 27 January 2021

doi: 10.3389/fcimb.2020.616814
Tonsil Mycobiome in PFAPA
(Periodic Fever, Aphthous Stomatitis,
Pharyngitis, Adenitis) Syndrome:
A Case-Control Study
Mysore V. Tejesvi1,2,3*, Terhi Tapiainen2,4,5, Petri Vänni3,4, Matti Uhari2,4, Marko Suokas1,
Ulla Lantto4,6, Petri Koivunen4,6 and Marjo Renko4,7

1 Ecology and Genetics, Faculty of Science, University of Oulu, Oulu, Finland, 2 Biocenter Oulu, University of Oulu, Oulu, Finland,
3 Genobiomics LLC, Oulu, Finland, 4 PEDEGO Research Unit, University of Oulu, Oulu, Finland, 5 Department of Paediatrics and
Adolescent Medicine, Oulu University Hospital, Oulu, Finland, 6 Department of Otorhinolaryngology, Oulu University Hospital,
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Periodic fever, aphthous stomatitis, pharyngitis and adenitis syndrome (PFAPA) is the
most common periodic fever syndrome in children with unknown etiology, effectively
treated with tonsillectomy. Earlier we have shown that tonsil microbiome is different in
patients with PFAPA as compared to that in controls. Recently, fungal microbiome,
mycobiome, has been linked to the pathogenesis of inflammatory diseases. We now
investigated the role of mycobiome of tonsils in PFAPA. Random forest classification, a
machine learning approach, was used for the analysis of mycobiome data. We examined
tonsils from 30 children with PFAPA and 22 control children undergoing tonsillectomy for
non-infectious reasons. We identified 103 amplicon sequence variants, mainly from two
fungal phyla, Ascomycota and Basidiomycota. The mean relative abundance of Candida
albicans in the tonsil mycobiome was 11% (95% CI: 19 to 27%) in cases and 3.4 % (95%
CI: -0.8% to 8%) in controls, p =0.104. Mycobiome data showed no statistical difference
in differentiating between PFAPA cases and controls compared to a random chance
classifier (area under the curve (AUC) = 0.47, SD = 0.05, p = 0.809). In conclusion, in this
controlled study, tonsillar mycobiome in children with PFAPA syndrome did not differ from
that of the controls.

Keywords: mycobiome, tonsil, PFAPA, machine learining, next generation sequencing
INTRODUCTION

Periodic fever, aphthous stomatitis, pharyngitis and adenitis (PFAPA) is a childhood febrile
syndrome of unknown origin in which fever flares occur in regular 3- to 5-week cycles. Between
febrile episodes, patients are asymptomatic (Marshall et al., 1989; Thomas et al., 1999). Although
PFAPA syndrome has been suggested to be an autoinflammatory disorder due to dysregulated
cytokine production in inflammasomes (Brown et al., 2011; Stojanov et al., 2011; Kolly et al., 2013),
its etiology remains unknown. PFAPA is likely a polygenic or complex genetic disease and more
gy | www.frontiersin.org January 2021 | Volume 10 | Article 616814153
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recognized in adult patients (Cantarini et al., 2012; Adrovic et al.,
2019; Manthiram et al., 2020). Even though randomized
controlled studies have shown that tonsillectomy (TE) is a
curative treatment for PFAPA syndrome (Renko et al., 2007;
Garavello et al., 2011), the mechanism of this effect remains
unclear. Earlier we have shown that tonsil microbiome is
different in patients with PFAPA as compared to that in
controls (Tejesvi et al., 2016).

In healthy hosts, the host and commensal microbiomes are
characterized by interaction and homeostasis (Levy et al., 2015).
Earlier, microbiome research has mostly focused on the impact
of the bacterial microbiome, referred to as bacteriome, on health
(Iliev et al., 2012; Tejesvi et al., 2016; Sokol et al., 2017). However,
recent research has drawn attention to the importance of host-
associated fungi, the mycobiome, in the inflammatory processes
of the human body (Ward et al., 2017). Changes in the
mycobiome have been associated with the modulation of
autoinflammatory immune responses and disease progression,
for example, in Crohn’s disease (El Mouzan et al., 2018).
Furthermore, the mycobiome may be involved in the host
immune response and const i tute a risk factor for
immunological disorders (Kumamoto, 2016). Finally, it may
function as a reservoir of opportunistic pathogens, such as
Candida albicans, in immunocompromised patients (Polvi
et al., 2015; Huseyin et al., 2017).

The human gut mycobiome has been associated with chronic
inflammatory diseases of the gut, with studies focusing on
intestinal fungi (Iliev et al., 2012; Sokol et al., 2017). However,
data on oral mycobiome is scarce. In this controlled study, our
main objective was to investigate the role of the mycobiome in
tonsils as a potential trigger of inflammatory responses in
PFAPA syndrome using next-generation fungal microbiome
sequencing technology. Furthermore, random forest
classification, a machine learning approach, was used for
mycobiome data in classifying PFAPA cases and controls.
MATERIALS AND METHODS

Recruitment of the Patients and Controls
Between March 2006 and April 2010, we recruited 30
consecutive patients (median age: 3.4 years; Table 1) who
underwent TE due to PFAPA. The diagnostic criteria; i.e. at
least five episodes of high fever of unknown origin recurring with
a typical, regular pattern and asymptomatic intervals of 2 to 5
weeks, were the same as in our previous randomized controlled
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 254
study on TE in PFAPA (Renko et al., 2007). During the same
period, 22 children (median age: 5.6 years) undergoing TE due to
hypertrophied tonsils were recruited as controls.

Demographics of the Patients and
Controls
Data on the patients’ symptoms were collected before surgery
using a questionnaire. The median age of the PFAPA patients at
the onset of the fever periods was 2.3 years. The average duration
of PFAPA symptoms before TE was 12 months. The mean
maximum fever was 39.7°C, and the mean duration of the
febrile episodes was 3.9 days. The mean time interval between
two subsequent febrile episodes (start to start) was 26 days. None
of the patients received steroids for PFAPA prior to TE: The
median age at the time of surgery was 3.4 years in the PFAPA
group and 5.6 years in the control group. In all PFAPA patients,
the symptoms were resolved after TE.

We obtained data on the children’s use of antimicrobials in
the 12 months before tonsillectomy from the Finnish National
Drug Purchase Register, maintained by the Social Insurance
Institution of Finland (Kela). Exposure to antimicrobials in the
12 months before tonsillectomy was greater in the PFAPA group
(mean number of antimicrobial courses: 2.5) than in the control
group (1.3). However, the difference was not statistically
significant (95% confidence interval: −0.1, 2.4; p = 0.07; Table 2).

The parents of all patients provided written informed
consent. This study’s protocol was approved by the Ethics
Committee of the Northern Ostrobothnia Hospital District,
Oulu, Finland. All methods were carried out following relevant
guidelines and regulations.

The Samples and DNA Extraction
A total of 30 tonsil samples from PFAPA patients and 22 control
samples were stored at −80°C and later used for mycobiome and
machine learning analyses. The microbiology of these samples, as
well as the details of the patients and the operations, have been
described previously (Lantto et al., 2015; Tejesvi et al., 2016). All
microbiological analyses were performed blinded to indications
for TE.

For the mycobiome analyses, we isolated DNA from the 54
tonsil samples, from 30 cases and 24 controls. DNA was
extracted from the tonsil samples using a Quick-DNA Fungal/
Bacterial Miniprep Kit (Zymo Research, USA) according to the
manufacturer’s protocol. The quantity and quality of DNA were
determined using a NanoDrop 1000 spectrophotometer
(Thermo Scientific, Waltham, MA, USA).
TABLE 1 | Demographic characteristics of pharyngitis and adenitis syndrome (PFAPA) cases and controls.

PFAPA (N = 30) Controls (N = 22)

Age when symptoms began, median (range), years 2.3 (0.1–16.5)
Age at the time of surgery,
median (range), years

3.4 (1.7–18.2) 5.6 (2.7–15.2)

Gender, boys, N (%) 18 (60%) 8 (36%)
Antimicrobial courses mean (SD)
Within 12 months prior to TE 2.5 (2.6) 1.3 (1.6)
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Amplification of the Fungal Internal
Transcribed Region
The fungal internal transcribed spacer 2 (ITS2) region was
amplified using ITS7b and ITS4 primers including an Ion
Torrent pyrosequencing adapter with a 10-bp barcode
sequence to the ITS4 primer. Polymerase chain reactions
(PCR) were performed in three replicates, each containing a 1x
Phusion HF buffer, 0.4 µM of forward and reverse primers, 200
µM of dNTPs, 0.5 U of Phusion enzyme (Thermo Scientific,
Finland) and 20 ng of genomic community DNA as the template
and molecular-grade water in a total reaction volume of 20 µl.
After an initial denaturation at 98°C for 3 min, the following
cycling conditions were used: 38 cycles of 98°C, 10 s; 56°C, 10 s;
and 72°C, 20 s. After PCR amplification, the pooled triplicate
reactions were purified using an AMPure XP PCR cleanup kit
(Agencourt Bioscience, CA, USA) and assessed for DNA size,
molarity and quality using an Agilent Bioanalyzer 2100 (Agilent
Technologies, CA, USA). Finally, the samples were diluted to
equimolar concentrations and sequenced using an Ion 316 Chip
Kit v2 with the Ion Torrent PGM platform (Thermo Fisher, Life
Technologies, USA).

Mycobiome Analysis
Denoising and amplicon sequence variants (ASV) picking were
performed using the default settings of the DADA2 algorithm
in QIIME2 (Callahan et al., 2016). Chimeric sequences were
removed from the data with the q2-vsearch plugin
implementing VSEARCH in QIIME2. Sequences in the data
that were not classified into the kingdoms of fungi were
removed using a custom Python script. ASVs found only in
one sample and had lower than 100 reads across the table were
excluded using a feature-table plugin in QIIME2. Two samples
had a low number of reads and were excluded from further
analysis. Taxonomic classification of fungal sequences was
performed using Naive Bayes classifiers with the q2-feature-
classifier plugin, trained on an ITS silva database for fungi.
Phylogenetic trees were created using the q2-phylogeny plugin,
which utilizes MAFFT and FastTree (Katoh and Standley,
2013). Alpha and beta diversity analyses were performed
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 355
using a rarefying depth of 650 for fungi with the q2-diversity
plugin and visualized with custom scripts using the Matplotlib
package for Python (Hunter, 2007). Statistical comparisons
between groups were performed with custom scripts using
the SciPy package for Python (Oliphant, 2007). The observed
ASVs, Pielou’s evenness, Shannon’s diversity index and Faith’s
phylogenetic diversity were chosen as alpha diversity metrics.
Principal coordinate analyses were performed for Bray-Curtis,
Jaccard and weighted and unweighted UniFrac distances and
visualized in two dimensions. A Venn diagram was drawn using
an online tool at Euler Venn Applet using differential
abundance data between controls and PFAFA cases (http://
bioinformatics.psb.ugent.be/webtools/Venn/). Pie charts of
fungal taxonomy were created using Krona (Ondov
et al., 2011).

Machine Learning Analysis
Random forest (Breiman, 2001) classifiers were trained on
relative abundance tables collapsed to the genus level to
differentiate between control and PFAFA case samples based
on fungal data. The classifiers’ performance was assessed with
out-of-bag accuracy and receiver operating characteristic (ROC)
curves averaged over stratified tenfold cross-validation on the
whole dataset. For the averaged ROC curve, 95% confidence
intervals were calculated using a Bayesian method in the Scipy
package (Oliphant, 2007). The feature importance of different
ASVs was assessed using mean decrease impurity (MDI), where
Gini is the impurity metric, averaged for each cross-validation.
The classifiers were used to predict the same test set with real and
shuffled labels in each fold. The averaged area under the curve
(AUC) from each cross-validation for real and shuffled labels was
tested with an independent t-test. The entire process was
repeated 100 times, the values were averaged, and the resulting
100 p-values were combined using Fisher’s method. Samples that
had zero relative abundance for every variable were excluded.
The machine learning analysis was performed with custom
Python scripts using the scikit-learn package (Pedregosa et al.,
2011), and figures were plotted with Matplotlib 3.2.1
(Hunter, 2007).
TABLE 2 | The mean relative abundances of most abundant fungal species in pharyngitis and adenitis syndrome (PFAPA) children and controls.

Fungi PFAPA (%) Control (%) p-valuea

(N = 30) (N = 22)

Malassezia spp 11.38 14.37 0.789
Candida_albicans 10.90 3.43 0.190
Malassezia_restricta 9.78 4.16 0.411
Helotiales 6.08 1.66 0.319
Rhexocercosporidium_panacis 3.24 4.43 0.768
Herpotrichiellaceae 2.82 3.20 0.122
Malassezia_globosa 2.07 6.67 0.792
Tomentella_sublilacina 1.69 5.12 0.105
Cladosporium 1.03 1.79 0.871
Suillus_bovinus 0.09 3.10 0.347
Dermateaceae 0.04 4.15 0.076
Masticobasidum 0.00 0.90 0.039
January 2021 | Volume 10 | Articl
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Statistical Analyses
For sample size calculation we anticipated to find out a 40%
difference in the presence of C. albicans in the tonsils between the
groups. With an alfa error of 5% and power of 80%, we calculated
a sample size of 24 patients per group to be needed.

We used Student’s t-test for independent samples to
compare the mean number of observed ASVs and the means
of the indices describing the diversity of the mycobiome
between PFAFA patients and controls. We calculated the
means (or medians) with their standard deviations (SDs) (or
ranges) of the relative abundances of fungal phyla, the most
abundant genera and selected genera in each group. The
statistical significances of the differences were tested using the
nonparametric method with the Mann-Whitney U test. The
analyses were performed using IBM SPSS Statistics 25 (IBM,
Armonk, NY, USA).
RESULTS

General Description of the Mycobiome
in Tonsil Samples
Across all samples, we identified 103 amplicon sequence variants
(ASVs) from two major fungal phyla, Ascomycota and
Basidiomycota, and some unclassified reads. Sequence reads
belonging to the phyla Basidiomycota and Ascomycota were
present in all samples. The number of ASVs per sample ranged
from 2 to 18. The most abundant genera belonging to the
phylum Ascomycota were Candida, Gyoerffyella, Meliniomyces
and Rhexocercosporidium, while those belonging to the phylum
Basidiomycota were Malassezia, Telephora, Suillus and
Rhodotorula (Figure 1 and Supplementary Figure 1). The
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 456
relative abundance of representative genera, class and family of
control and cases are presented in Table 2.
COMPARISONS BETWEEN THE TONSIL
MYCOBIOMES OF PERIODIC FEVER,
APHTHOUS STOMATITIS, PHARYNGITIS,
AND ADENITIS SYNDROME CASES AND
CONTROLS

There were no significant differences in the number of ASVs or
the alpha diversity indices between tonsil samples from PFAPA
cases and controls (Figure 2). Both groups shared 68 unique
taxa, while 25 ASVs were present only in the cases and 10 only
in the controls (Figure 3). The most abundant phyla in both
groups were Basidiomycota and Ascomycota. Basidiomycota
were more prevalent in cases and Ascomycota in controls;
however, the differences were not statistically significant
(Figure 1). The Bray-Curtis dissimilarity, Jaccard distance
and weighted and unweighted UniFrac distances showed
slight clustering in the top two respective principal
coordinates. However, they did not differentiate between
PFAPA and controls (Figure 4).
Microbial Diversity and Comparison
of Candida albicans Abundance
At the species level, C. albicans was present in 43% of the cases
and 27% of the controls (p = 0.235). The mean relative
abundance of Candida albicans was 11% (95% CI: 19 to 27%)
in cases and 3.4 % (95% CI: -0.8% to 8%) in controls, p =0.104.
There were no statistically significant differences in the mean
FIGURE 1 | The relative abundance of fungal mycobiome community in 52 tonsil tissue samples [30 pharyngitis and adenitis syndrome (PFAPA) and 22 controls].
Less abundant (<0.5 %) genera are not shown or are combined.
January 2021 | Volume 10 | Article 616814
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abundance of other fungal species between the cases and
controls. The indices describing alpha diversity and the
relative abundance of the phyla did not differ significantly in
subjects with or without antibiotic courses during the year
before tonsillectomy.

Machine Learning Analysis of the
Mycobiome
A classifier was trained to differentiate cases from controls according
to the mycobiome data collapsed to the genus level using the silva
database. The random classifier Random forest differentiation
between PFAPA cases and controls showed no statistical
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 557
difference in performance compared to a random chance classifier
(area under the curve (AUC) = 0.47, SD = 0.05; p = 0.809; Figure 5).
DISCUSSION

We have earlier shown that tonsil bacterial microbiome
composition is associated with PFAPA syndrome (Tejesvi
et al., 2016). In the previous study, only bacterial microbiome
was investigated. We hypothesized that mycobiome may
associate with the pathogenesis of PFAPA as well. In this
controlled study, we showed tonsil mycobiome and its
composition in PFAPA and controls. However, we could not
confirm the association of mycobiome with the pathogenesis of
PFAPA syndrome. Machine learning analysis performed on
mycobiome data did not classify PFAPA cases and controls.

PFAPA has been suggested to be an autoinflammatory
disease, a condition characterized by abnormally high or
uncontrolled inflammation (Wekell et al., 2016). Candida
albicans is one of the strongest and best verified triggers of
inflammasome activity (Joly et al., 2009; Rehaume et al., 2010). It
can stimulate inflammasomes, especially in hyphenal forms (Joly
et al., 2009). It has also been suggested to play a role in the
pathogenesis of inflammatory gut diseases (Sokol et al., 2017).
Using culture-based methods and electron microscopy, we
previously reported more culture-positive C. albicans findings
and biofilm formation in tonsillar tissue of PFAPA patients than
in tissue of controls (Lantto et al., 2015). In another case-control
study, we found that PFAPA patients report clinical oral thrush,
an oral fungal infection, in their medical histories more
frequently than healthy controls (Lantto et al., 2018). In this
study, we hypothesized that the excessive presence of C. albicans
observed in our previous culture-based study would be even
FIGURE 3 | Venn diagram illustrating overlap and number of unique taxa
between controls and PFcases. The red and green circles represent PFcases and
controls respectively.
A B

DC

FIGURE 2 | Alpha diversity boxplots of PFcase and control samples. Metrics used are (A) Faith’s phylogenetic distance, (B) Shannon index, (C) Observed amplicon
sequence variant’s (ASV’s) and (D) Pielou’s evenness. Outlier samples are shown as dots.
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more evident with modern sequencing and machine learning
techniques (Rehaume et al., 2010; Wekell et al., 2016; Kocheturov
et al., 2019). Candida albicans was indeed more abundant in the
tonsil mycobiome of PFAPA patients than of controls, but the
difference was not statistically significant. Thus, we could not
confirm the hypothesis with our sample size; however, the
observed difference warrants further studies. Notably, a
fluctuation in the inflammatory response might result in a
fluctuation in the abundance of microbial triggers as well.

Using traditional statistical models, it is difficult to identify
the fungal populations associated with a disease. There is
moreover significant variation in microbiome structures
between individuals (Walters et al., 2014). To overcome these
challenges, machine learning analysis is now being widely used
(Johnson et al., 2016; Ai et al., 2017). In our earlier studies on the
pathogenesis of PFAPA, we used conventional microbiology of
tonsils (Lantto et al., 2015) and then microbiome analysis with
conventional statistics (Tejesvi et al., 2016). In this study, we used
a machine learning approach and our results does not show a
significant difference in discerning PFAPA cases between
machine learning analysis and random chance.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 658
Before the next-generation sequencing era, mycobiome was
traditionally investigated by in vitro culturing. Significant
discrepancies in culture-dependent and independent methods
are likely, as most fungi are not cultivable in laboratory media
(Chen et al., 2011; Browne et al., 2016). Recent studies using
next-generation sequencing technology have overcome the bias
of culture-dependent methods but have mostly focused on the
bacteriome. Recent studies have investigated the role of the
human mycobiome in the pathogenesis of gastrointestinal
diseases in immunocompromised hosts, diabetes and obesity,
revealing the functional diversity of fungi associated with
different human body sites (Mukherjee et al. , 2014;
Kowalewska et al., 2016).

The mycobiome may vary in different parts of the tonsillar
tissue, namely, in the superficial layers and the crypts. However,
we were unable to determine whether samples for DNA
extraction had been taken from superficial layers or crypts.

Fungal dysbiosis and homeostasis are dynamic processes that
are probably more common than actual fungal infections and
therefore continually shape the immune response (Iliev and
Leonardi, 2017). Diversity in the oral mycobiota is lower than
A B

DC

FIGURE 4 | Principal coordinate analysis results plotted for two of the most variance explaining components. Red and green dots represent PFcases and controls,
respectively. In (A) Bray-Curtis dissimilarity, (B) Jaccard distance, (C) unweighted Unifrac distance and (D) weighted Unifrac distance are shown.
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in the bacteriome. In healthy adults, the oral mycobiota is
dominated by members of the Ascomycota phylum, mainly
Candida species (Ghannoum et al., 2010; Bandara et al., 2019).
These phyla are also dominant in other parts of the human body
(Nash et al., 2017). In a culture-based study, about 12% of infants
were found to be oral carriers of Candida species (Stecksen-
Blicks et al., 2015). However, the oral mycobiome of small
children has not been studied with modern techniques.
Candida albicans is more prevalent in oral samples of patients
with rheumatoid arthritis (Bishu et al., 2014) and periodontal
disease than in control samples (Peters et al., 2017).

Th17 cells are known to participate in host defense against
fungi and extracellular bacteria, and their role in maintaining
homeostasis between commensal microorganisms and the host
has also been studied (Zielinski, 2014). In a study on the
differentiation of Th17 cells in vivo, C. albicans induced pro-
inflammatory Th17 cells that produced IL-1b. However, these
cells were incapable of self-regulatory IL-10 production. In our
previous culture-based study, tonsil samples from PFAPA
patients yielded C. albicans more often than those from
controls. These results may indicate an important role of the
tonsil microbiota in the pathogenesis of PFAPA syndrome.

The role of the mycobiome in various diseases is still largely
unknown. This was the first study to examine the mycobiome
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 759
of children’s tonsils. The strength of this study was its
controlled design. One limitation was that it was not
possible to collect control samples from healthy children.
Thus, we chose to use children with hypertrophic tonsils as
controls. Another limitation was that the mean age of the
control group was older than that of the patient group.
Moreover, the sample size was not large enough to perform
analyses stratified by age. Furthermore, exposure to different
antimicrobials before tonsillectomy may have affected our
microbiological findings. In our series, the cases had
more often received antimicrobial courses 12 months
before tonsillectomy; however, the difference was not
statistically significant.

In conclusion, the tonsil mycobiome of PFAPA children did
not statistically differ from that of controls in this study. Thus,
we could not confirm that Candida, earlier associated with
PFAPA in epidemiological and conventional microbiological
studies, is a trigger of excessive, fluctuating inflammatory
response to the mycobiome in the tonsils in PFAPA. The
tonsil mycobiome is less diverse and candida is the major
genera present in the tonsils. Machine learning performed on
mycobiome data did not classify PFAPA cases. However, future
studies with a larger sample size may classify and accurately
predict PFAPA cases.
FIGURE 5 | Averaged receiver operating characteristic curves of fungal classifiers trained to differentiate positives (PFcase samples) from negatives (control
samples). Solid and dashed lines represent real and shuffled labels. Transparent areas around each line represent the 95% confidence intervals of the curve.
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Rheumatic heart disease refers to the long-term damage of heart valves and results from
an autoimmune response to group A Streptococcus infection. This study aimed to analyze
the microbiota composition of patients with rheumatic heart disease and explore potential
function of microbiota in this disease. First, we revealed significant alterations of
microbiota in feces, subgingival plaques, and saliva of the patients compared to control
subjects using 16S rRNA gene sequencing. Significantly different microbial diversity was
observed in all three types of samples between the patients and control subjects. In the
gut, the patients possessed higher levels of genera including Bifidobacterium and
Eubacterium, and lower levels of genera including Lachnospira, Bacteroides, and
Faecalibacterium. Coprococcus was identified as a super-generalist in fecal samples of
the patients. Significant alterations were also observed in microbiota of subgingival
plaques and saliva of the patients compared to control subjects. Second, we analyzed
microbiota in mitral valves of the patients and identified microbes that could potentially
transmit from the gut or oral cavity to heart valves, including Streptococcus. Third, we
further analyzed the data using random forest model and demonstrated that microbiota in
the gut, subgingival plaque or saliva could distinguish the patients from control subjects.
Finally, we identified gut/oral microbes that significantly correlated with clinical indices of
rheumatic heart disease. In conclusion, patients with rheumatic heart disease manifested
important alterations in microbiota that might distinguish the patients from control subjects
and correlated with severity of this disease.
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INTRODUCTION

Rheumatic heart disease (RHD) is a cardiovascular disease
characterized by damages to heart valves, triggered by an
autoimmune response to group A Streptococcus (GAS)
infection (Woldu and Bloomfield, 2016). RHD causes an
estimated 300,000 death annually with 30–40 million current
cases globally and imposes significant disease burden on low-
income countries and some indigenous populations (Watkins
et al., 2017). The backbone of RHD therapy is penicillin-based
treatment for acute rheumatic fever and replacement of severely
damaged heart valves, without an effective vaccine (Tompkins
et al., 1972; Nishimura et al., 2014; Woldu and Bloomfield, 2016).
There has not been any significant advance in recent history of
this field (Watkins et al., 2018). Thus, it is imperative to consider
novel strategies for better control of RHD.

Humanmicrobiota has been proven to play essential roles in a
wide range of diseases including cardiovascular diseases (Tang
et al., 2019). Colon harbors the vast majority of commensal
bacteria (Belkaid and Hand, 2014), which can influence immune
homeostasis, trigger inflammation, and invade extra-intestinal
tissues (Hooper et al., 2012; Anhe et al., 2020). Many studies have
focused on revealing the role of gut microbial dysbiosis in the
development of cardiovascular diseases such as pulmonary
arterial hypertension (Kim et al., 2020), unruptured
intracranial aneurysms (Li et al., 2020), chronic heart failure
(Kummen et al., 2018), and atherosclerosis (Koren et al., 2010).
However, the role of the gut microbiota in RHD has not
been studied.

The second most complex population of microbes of human
body resides in the oral cavity and influences both oral and
systemic health (Zhang et al., 2018; Bui et al., 2019). Periodontal
pathogens can alter subgingival microbial composition and host–
microorganism interactions, leading to local inflammation and
subsequent destruction of periodontal tissues (Hajishengallis
et al., 2012). The presence of periodontal bacteria DNA in
cardiac tissues and atherosclerotic plaques has suggested
connections between oral infections and cardiovascular
diseases (Koren et al., 2010; Ziebolz et al., 2018). Periodontitis,
a common inflammatory oral disease, increases the risk of
adverse pregnancy outcomes, atherosclerosis, stroke,
rheumatoid arthritis, diabetes, and other systemic diseases
(Pihlstrom et al., 2005). However, there is a paucity of
information related the potential role of oral microbiota in RHD.

Here, we aimed to investigate the microbiota composition
and structure of RHD patients and explore potential function of
microbiota in RHD. We first analyzed microbiota of fecal
samples, subgingival plaques and saliva by 16S rRNA gene
sequencing to detect alterations between RHD patients and
control subjects. We then analyzed microbiota of mitral valves
and compared the results with gut and oral microbiota in RHD
patients to determine microbial connections between mitral
valves and gut/oral cavity. Finally, we explored the possibility
using microbiota to discriminate RHD patients from control
subjects and analyzed correlations between gut/oral microbiota
and severity of RHD.
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MATERIALS AND METHODS

Study Cohort
A total of 20 RHD patients and 20 age- and sex-matched control
subjects were enrolled in this study. RHD patients with
symptomatic severe mitral valvular disease and with a history
of acute rheumatic fever were enrolled (Reményi et al., 2012;
Nishimura et al., 2017). The exclusion criteria were:
inflammatory bowel diseases, irritable bowel syndrome,
autoimmune diseases, diarrhea, liver diseases, renal diseases,
acute infection, smoking, and use of antibiotics or probiotics 3
months before sample collection.

The study protocol was reviewed and approved by the
Human Ethics Committee, Shanghai Chest Hospital, Shanghai
Jiaotong University and conducted in accordance with the
Principles of Good Clinical Practice and the Declaration of
Helsinki. Written informed consent was obtained from all the
subjects who participated in the study.

Sample Collection and DNA Extraction
Fecal samples, subgingival plaques, and saliva were collected
from RHD patients and control subjects. Fecal samples were
collected in falcon tubes within 24 h of patients’ admission to the
hospital and immediately frozen in −80°C. All subjects were
instructed to avoid eating, drinking, and use of a toothbrush or
mouth rinse 1 hour before sampling of subgingival plaques and
saliva. Subgingival plaques were collected using a dental explorer.
Saliva was collected and mixed with 2× lysis buffer at a ratio of
1:1. A total of 16 mitral valves were collected during valve
replacement surgeries and were immediately frozen in liquid
nitrogen under sterile conditions. Samples were kept in sterile
containers and stored at −80°C. Bacterial DNA was extracted
using Tiangen kits according to the manufacturer ’s
recommendations and stored at −80°C until further analyses.

High-Throughput Sequencing and
Processing
The V3/V4 regions of 16S rRNA genes were amplified with
specific primers of 338F-806R. The PCR products were
quantified with PicoGreen dsDNA Assay Kit (Invitrogen,
Carlsbad, USA) and sequenced on Illumina Novaseq PE250
platform to generate paired-end reads (2 × 480 bp).

Procession of the sequencing data was performed on QIIME2
platform. Analysis of sequencing data was based on amplicon
sequence variants (ASVs) (Bokulich et al., 2018). After chimera
detection, high-quality sequences with 97% similarity were
clustered into the same ASV. Classification of ASVs was
performed based on the Greengenes Database.

Data Analysis
Richness and a-diversity were measured by Chao1 and Shannon
index based on the genus profiles. b-diversity was visualized
using principal coordinate analysis (PCoA) based on the Bray–
Curtis distances. ZP-plot was used to identify of key module
members (Deng et al., 2012). Within-module connectivity (Zi)
and among-module connectivity (Pi) were calculated as
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previously described (Deng et al., 2012). Microbes were classified
into four categories: peripherals (Zi ≤ 2.5, Pi ≤ 0.62), connectors
(Zi ≤ 2.5, Pi > 0.62), module hubs (Zi > 2.5, Pi ≤ 0.62), and
network hubs (Zi > 2.5, Pi > 0.62) according to the criteria
previously set (Deng et al., 2012). Network hubs were considered
as super-generalists, which were highly connected within their
own modules and among modules (Deng et al., 2012). Raw data
of relative abundances of genera were transformed to “log10” and
Log100 was shown as “−8” in figures.

Linear discriminant analysis effect size (LEfSe) was used to
identify features that differed between groups. The threshold of
the logarithmic LDA score for discriminative features was set to
3.0. Identified taxa were plotted in cladograms. A random forest
classifier was trained to distinguish the two groups based on the
genera abundance profile of RHD patients and control subjects.
The important genera of the classifier were ranked by Gini index.
The performance of the classifier model was evaluated by 10-fold
cross-validations and further applied to construct receiver
operating characteristic (ROC) curve. The cross-validation
accuracy was measured as the area under the ROC curve
(AUC). Heatmaps were hierarchically clustered to represent
the microbe-clinical indices associations based on the
Spearman correlation coefficients.

Statistics
a-diversity was compared using non-parametric Kruskal–Wallis
tests and post hoc Dunn’s test with FDR correction. b-diversity was
tested by the ANOSIM method. Raw data of relative abundances of
genera were compared using non-parametric Mann–Whitney tests.
Correlation analysis was performed using Spearman’s correlation.
Post hoc power analysis was used to calculate power with
significance level set to 0.05 and effect size based on Chao1. The
power was 0.88, 0.18 and 0.93 for gut, subgingival plaques and
saliva, respectively. Statistical analyses were performed using SPSS
23.0, QIIME2, R package (V3.5.1), or GPower (V3.1.9.4).
RESULTS

Alterations of Gut Microbiota in Rheumatic
Heart Disease Patients
The demographic data for the enrolled RHD patients and control
subjects were summarized in Supplemental Table 1. To detect gut
microbial alterations, we analyzed the microbiota in fecal samples of
control subjects and RHD patients using 16S rRNA gene
sequencing. Gut microbiota of RHD patients showed significantly
lower richness illustrated by Chao1 and a-diversity (within-sample
diversity) illustrated by Shannon index compared to those of control
subjects (Figures 1A, B). Principal coordinate analysis (PCoA)
based on Bray–Curtis distance was performed to determine
b-diversity (between-sample diversity) of gut microbiota, which
demonstrated significant difference between RHD patients and
control subjects (Figure 1C). To understand interactions among
different microbes in gut microbiota of RHD patients, ZP-plot was
used to analyze topological roles, and Coprococcus was identified as
a super-generalist (shown as network hubs) (Figure 1D). Among
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 364
the 15 most abundant genera, relative abundance of
Faecalibacterium and Bacteroides significantly decreased, while
that of Shigella, Gemmiger, Bifidobacterium, Ruminococcus,
Streptococcus and Dorea significantly increased in gut microbiota
of RHD patients compared to control subjects (Figure 1E). In
addition, relative abundance of Blauita showed a trend of increase
without statistical significance in gut microbiota of RHD patients
(Figure 1E). We next employed linear discriminant analysis effect
size (LEfSe) to identify taxa that discriminate microbial composition
between disease states. LEfSe identified higher levels of taxa
including Arthrobacter, Bifidobacterium, Porphyromonas,
Melissococccus, Eubacterium, Ruminococcus, Dorea, Gemmiger,
etc., as well as lower levels of taxa such as Staphylococcus,
Lachnospira, Faecalibacterium, and Oxalobacter in fecal samples
of RHD patients (Figure 1F). These results demonstrated
considerable changes of the gut microbiota in RHD patients
compared to control subjects.

Alterations of Subgingival Plaque
Microbiota in Rheumatic Heart Disease
Patients
Next we analyzed the microbiota in subgingival plaque samples
of control subjects and RHD patients using 16S rRNA gene
sequencing. Subgingival plaque microbiota showed no
differences of richssness and a-diversity between the two groups
illustrated by Chao1 and Shannon index (Figures 2A, B). Results
of PCoA based on Bray–Curtis distance demonstrated moderate
difference in b-diversity between RHD patients and control
subjects (Figure 2C). There was no super-generalist based on
modular topological roles in subgingival plaque microbiota of
RHD patients (Figure 2D). Among the 15 most abundant genera,
relative abundance of Corynebacterium and Selenomonas
significantly decreased, while that of Streptococcus and Blautia
significantly increased in subgingival plaque microbiota of RHD
patients compared to control subjects (Figure 2E). LEfSe
identified higher levels of taxa including Streptococcus,
Ruminococcus, Blautia, Dorea, Lachnoanaerobaculum, Roseburia,
Gemmiger, as well as lower levels of taxa such as Corynebacterium,
Staphylococcus, Lactobacillus and Selenomonas in subgingival
plaque samples of RHD patients (Figure 2F).

Alterations of Salivary Microbiota in
Rheumatic Heart Disease Patients
We further analyzed microbiota in saliva of control subjects and
RHDpatients using 16S rRNA gene sequencing. Salivarymicrobiota
of RHD patients showed significantly higher richness illustrated by
Chao1 and similar a-diversity illustrated by Shannon index
compared to those of control subjects (Figures 3A, B). Results of
PCoA based on Bray–Curtis distance demonstrated significantly
different b-diversity between RHD patients and control subjects
(Figure 3C). There was no super-generalist based on modular
topological roles in salivary microbiota of RHD patients (Figure
3D). Among the 15 most abundant genera, relative abundance of
Prevotella, Haemophilus, Veillonella, Campylobacter, and
Actinomyces significantly decreased, while that of Streptococcus
and Rothia significantly increased in salivary microbiota of RHD
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patients compared to control subjects (Figure 3E). LEfSe identified
higher levels of taxa including Piscicoccus, Rothia, Abiotrophia,
Melissococcus, Streptococcus, Parvimonas, Clostridium,
Lachnoanaerobaculum, etc., as well as lower levels of taxa such as
Actinomyces, Rhodococcus, Prevotella, Staphylococcus, Veillonella,
Afipia, Sphingomonas, etc. (Figure 3F).

Comparisons of Microbiota Composition
Between Mitral Valves and Other Body
Sites in Rheumatic Heart Disease Patients
Subsequently, we analyzed the microbiota in mitral valves of RHD
patients (n = 16) using 16S rRNA gene sequencing. The 15 most
abundant genera in mitral valves of RHD patients were Ralstonia,
Pelomonas, Acinetobacter, Neisseria, Sphingomonas, Streptococcus,
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Agrobacterium, Thermus, Shigella, Rothia, Fusobacterium,
Prevotella, Afipia, Caulobacter, and Burkholderia (Supplemental
Figure 1A). There was no super-generalist based on modular
topological roles in microbiota of mitral valves of RHD patients
(Supplemental Figure 2). We next compared microbiota in mitral
valves with gut and oral microbiota in these 16 RHD patients. PCoA
based on Bray–Curtis distance demonstrated distinct b-diversity
among microbiota of mitral valves, gut, and oral cavity, although
microbiota of mitral valves in some RHD patients had similar
b-diversity with oral microbiota (Figure 4A). As expected,
b-diversity of subgingival plaque microbiota and salivary
microbiota are similar (Figure 4A). Taxonomic composition plots
at phylum level showed that mitral valves contained significantly
more Proteobacteria and less Firmicutes compared to gut,
A B D

E

F

C

FIGURE 1 | Alterations of gut microbiota in patients with rheumatic heart disease. Microbiota of fecal samples from patients with rheumatic heart disease (RHD) and
control subjects (Ctrl) were analyzed using 16S rRNA gene sequencing. (A) Richness of fecal microbiota assessed by Chao1. (B) a-diversity of fecal microbiota
assessed by Shannon index. (C) b-diversity analyzed by principal coordinate analysis (PCoA) based on Bray–Curtis distance of fecal microbiota at genus level.
(D) Determination of module-based topological roles (peripherals, connectors, module hubs, or network hubs) of fecal microbiota in RHD patients using ZP-plot at
genus level. The size of dots represents abundance of each genus. (E) Relative abundances of the fifteen most abundant genera in fecal microbiota. (F) Taxonomic
cladogram of fecal microbiota based on LEfSe. Red color indicates increase and blue indicates decrease of taxa in RHD compared to Ctrl. LDA = 3. Mann–Whitney
test was used. n = 20: 20. *P < 0.05; **P < 0.01; ****P < 0.0001.
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subgingival plaques, and saliva (Figure 4B), similar to the results of
a previous study in atherosclerotic plaques (Koren et al., 2010). We
further searched for microbes shared by mitral valves and other
body sites using three criteria: (1) detected in mitral valve and at
least another body site of an individual RHD patient; (2) detected in
mitral valves and another body site of more than eight RHD
patients (50%) simultaneously; (3) relative abundance ranked
among top 35 (Supplemental Figure 1). Mitral valves and fecal
samples shared Streptococcus, Shigella, Lactobacillus, and
Bacteroides in all 16 patients, Oscillospira in 15 patients, Blautia in
11 patients, and Prevotella in nine patients (Figure 4C). Mitral
valves and subgingival plaques shared Streptococcus and
Fusobacterium in all 16 patients, Neisseria and Shigella in 15
patients, Prevotella in 13 patients, Bacteroides in 12 patients,
Campylobacter in 10 patients, and Veillonella in nine patients
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 566
(Figure 4D). Mitral valves and saliva shared Streptococcus and
Fusobacterium in all 16 patients, Neisseria in 15 patients, Prevotella
in 13 patients, Campylobacter in 10 patients, as well as Rothia and
Veillonella in nine patients (Figure 4E).

Microbiota Discriminates Rheumatic Heart
Disease Patients From Control Subjects
To explore the diagnostic value of microbiota in discriminating
RHD patients from healthy controls, we constructed random
forest classifiers. According to random forest classifier based on
gut microbiota, the top 15 important gut genera were
Ruminococcus, Dorea, Arthrobacter, Lachnospira, Shigella,
Gemmiger, Bifidobacterium, Ralstonia, Faecalibacterium,
Subdoligranulum, Burkholderia, Blautia , Turicibacter,
Streptococcus, and Selenomonas (Supplemental Figure 3A).
A B D

E

F

C

FIGURE 2 | Alterations of subgingival plaque microbiota in patients with rheumatic heart disease. Microbiota of subgingival plaques (SP) from patients with
rheumatic heart disease (RHD) and control subjects (Ctrl) were analyzed using 16S rRNA gene sequencing. (A) Richness of SP microbiota assessed by Chao1.
(B) a-diversity of SP microbiota assessed by Shannon index. (C) b-diversity analyzed by principal coordinate analysis (PCoA) based on Bray–Curtis distance of SP
microbiota at genus level. (D) Determination of module-based topological roles (peripherals, connectors, module hubs, or network hubs) of SP microbiota in RHD
patients using ZP-plot at genus level. The size of dots represents abundance of each genus. (E) Relative abundances of the fifteen most abundant genera in SP
microbiota. (F) Taxonomic cladogram of SP microbiota based on LEfSe. Red color indicates increase and blue indicates decrease of taxa in RHD compared to Ctrl.
LDA = 3. Mann–Whitney test was used. n = 20: 20. *P < 0.05.
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Area under the curve (AUC) of the gut microbiota was 0.74
(Figure 5A). As for subgingival plaque microbiota, the top 15
important subgingival plaque genera were Roseburia ,
Acinetobacter, Turicibacter, Bifidobacterium, Lactobacillus,
Leptotrichia, Faecalibacterium , Lachnoanaerobaculum ,
Clostridium, Streptococcus, Atopobium, Blautia, Gemmiger,
Filifactor, and Granulicatella (Supplemental Figure 3B). AUC
of subgingival plaque microbiota was 0.89 (Figure 5B). In saliva,
the top 15 important salivary genera were Streptococcus, Shigella,
Rothia, Pelomonas, Lachnoanaerobaculum, Parvimonas,
Arthrobacter, Clostridium, Abiotrophia, Afipia, Streptobacillus,
Ralstonia, Turicibacter, Cardiobacterium, and Haemophilus
(Supplemental Figure 3C). AUC of salivary microbiota was
1.00 (Figure 5C).
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Microbial Taxa Correlate With Clinical
Indices in Rheumatic Heart Disease
Patients
Mitral valves are the most common heart valves affected by RHD
(Russell et al., 2017). Mitral stenosis and regurgitation cause
depressed left atrial compliance and elevated left atrial pressure,
leading to atrial remodelling and increased left atrial diameter
(LAD). Furthermore, pulmonary hypertension is one of the most
frequent medical complications in RHD (Watkins et al., 2018). We
explored the relationship between these clinical indices and
microbial taxa differentially enriched or important to discriminate
RHD patients from healthy controls. The results showed that
Bacteroides and Eubacterium in the gut negatively correlated
with LAD; Roseburia and Lachnoanaerobaculum in subgingival
A B D

E
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FIGURE 3 | Alterations of salivary microbiota in patients with rheumatic heart disease. Microbiota of saliva from patients with rheumatic heart disease (RHD) and
control subjects (Ctrl) were analyzed using 16S rRNA gene sequencing. (A) Richness of salivary microbiota assessed by Chao1. (B) a-diversity of salivary microbiota
assessed by Shannon index. (C) b-diversity analyzed by principal coordinate analysis (PCoA) based on Bray–Curtis distance of salivary microbiota at genus level.
(D) Determination of module-based topological roles (peripherals, connectors, module hubs, or network hubs) of salivary microbiota in RHD patients using ZP-plot at
genus level. The size of dots represents abundance of each genus. (E) Relative abundances of the fifteen most abundant genera in salivary microbiota.
(F) Taxonomic cladogram of salivary microbiota based on LEfSe. Red color indicates increase and blue indicates decrease of taxa in RHD compared to Ctrl. LDA = 3.
Mann–Whitney test was used. n = 20: 20. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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plaques, on the other hand, positively correlated with LAD (Figure
6A). Blautia in the gut negatively correlated with pulmonary artery
systolic pressure (PASP); Corynebacterium and Roseburia in
subgingival plaques, on the other hand, positively correlated with
PASP (Figure 6B).
DISCUSSION

To our knowledge, this work is the first one to present
comprehensive characterization of the microbiota in RHD
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 768
patients. Our study demonstrated that RHD patients had
altered gut and oral microbiota, which was likely to translocate
to mitral valves and correlate with severity of the disease. These
results provided new insights on etiology, diagnosis, prevention,
and treatment of RHD.

We identified significant alterations in the microbial profile
of gut in RHD patients. We observed that relative abundances of
Bifidobacterium and Eubacterium increased and those of
Faecalibacterum and Bacteroides decreased in RHD patients.
Moreover, Coprococcus served as a super-generalist in gut
microbiota of RHD patients. Bifidobacterium has been
A B
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FIGURE 4 | Comparisons of microbiota composition between mitral valves and other body sites of patients with rheumatic heart disease. Microbiota of mitral valves
from patients with rheumatic heart disease (RHD) were analyzed using 16S rRNA gene sequencing. (A) Comparison of microbial b-diversity (PCoA) among gut,
subgingival plaques (SP), saliva, and mitral valves (valve) of RHD patients. (B)Taxonomic composition of microbiota at different body sites of RHD patients at phylum
level. (C) Illustration of genera detected in both fecal sample (f) and mitral valve (v) of each RHD patient. The numbers (1–16) denote RHD patients. The column on
right indicates the number of patients who possess the corresponding genus in both sites. (D) Illustration of genera detected in both subgingival plaque (sp) and
mitral valve (v) of each RHD patient. (E) Illustration of genera detected in both saliva (s) and mitral valve (v) of each RHD patient. n = 16.
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considered a probiotic that can alter host microbiota in favor of
a “healthier” composition (Toscano et al., 2017). Eubacterium,
Faecalibacterum, Bacteroides, Coprococcus, and Blautia are
important propionate- or butyrate-producing bacteria (Hoyles
and Swann, 2019; Blaak et al., 2020). Propionate can enhance
generation of macrophage and dendritic cell precursors in
the bone marrow (Trompette et al., 2014) and butyrate
can facilitate extrathymic generation of T-reg cells (Arpaia
et al., 2013). Butyrate also helps to maintain the integrity of
the intestinal epithelium and reduce injury in distant organs
such as lungs (Haak et al., 2018; Hoyles and Swann, 2019).
Therefore, it seemed counterintuitive that Bifidobacterium and
Eubacterium increased in the gut microbiota of RHD patients.
We postulated that during the progression of RHD the decrease
of some beneficial genera such as Faecalibacterum and
Bacteroides contributed to disruption of immune homeostasis,
resulting in passive increase of some other beneficial genera
such as Bifidobacterium and Eubacterium in response to
lasting immune dysbiosis. Similarly, previous studies have
demonstrated an increase of Bifidobacterium or Eubacterium in
patients with inflammatory bowel disease (Wang et al., 2013) or
systemic lupus erythematosus (He et al., 2016). We also observed
that Bacteroides, Eubacterium, and Blautia in the gut negatively
correlated with severity of RHD, suggesting beneficial roles of
these three genera in RHD. However, neither Bifidobacterium nor
Faecalibacterum significantly correlated with any clinical indices
of RHD (Data not shown). The detailed functions and
mechanisms of these individual microbes in RHD remain to be
further delineated.

The gut microbiota of RHD patients manifested some
similarities but more differences comparing to that of patients
with other diseases. We observed increases in most of the
abundant genera in the gut microbiota of RHD patients. The
reason may be that RHD patients were subjected to high levels of
stress and gut inflammation that reduced gastrointestinal motility
and clearance capacity, leading to bacterial overgrowth in turn.
This phenomenon has been previously observed in patients with
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 869
type 1 diabetes, chronic heart failure, or other critical illness
(Btaiche et al., 2010; Pasini et al., 2016; Malik et al., 2018). The
gut microbial profile of RHD patients differed significantly from
other cardiovascular diseases such as chronic heart failure and
pulmonary arterial hypertension (Kummen et al., 2018; Kim et al.,
2020). For example, gut microbiota of patients with chronic heart
failure had relatively low abundance in Bifidobacterium and high
in Prevotella (Kummen et al., 2018), whereas our results
demonstrated that the gut microbiota of RHD patients had
relatively high abundance in Bifidobacterium and no difference
in Prevotella. Some genera in RHD patients had similar alterations
as in patients with pulmonary arterial hypertension, including
decreased Bacteroides and increased Bifidobacterium (Kim et al.,
2020). However, alterations of some other genera were completely
different between RHD patients and patients with pulmonary
arterial hypertension. For example, the abundance of
Eubacterium increased in RHD patients, while it decreased in
patients with pulmonary arterial hypertension (Kim et al., 2020).
Thus, we propose that the same bacteria may respond to different
stimuli specifically and play different roles in various disease
conditions. Further animal experiments should be implemented
to confirm their specific functions. It is the unique microbial
profile that makes it possible to discriminate RHD patients from
healthy controls or even other diseases.

We also identified significant microbial alterations in oral
cavity of RHD patients. A large variety of microbiota resides in
different locations of the oral cavity (Avila et al., 2009). We
analyzed the microbiota of saliva and subgingival plaques in this
study. Salivary microbiota of RHD patients showed higher
richness than that of control subjects, likely because of poor
oral hygiene (Maharaj and Vayej, 2012; Belstrom et al., 2018).
The difference in b-diversity of salivary microbiota between
RHD and control subjects was more dramatic in comparison
with that of gut and subgingival plaque microbiota. In line with
this, the diagnostic value of salivary microbiota was the greatest
according to random forest analysis. The results underpinned
the theory that saliva represented a significant source of
A B C

FIGURE 5 | Gut and oral microbiota differentiate rheumatic heart disease patients from control subjects. (A) Receiver operating characteristic (ROC) curve according
to random forest model for fecal microbiota. A greater area under the ROC curve (AUC) indicates better performance. (B) ROC curve according to random forest
model for subgingival plaque microbiota. (C) ROC curve according to random forest model for salivary microbiota.
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discriminatory biomarkers for oral and systemic diseases
(Yoshizawa et al., 2013). For example, salivary microbes were
able to correlate with clinical indices and stratify active and
moderately active patients of rheumatoid arthritis (Zhang et al.,
2015). Similar results were obtained in Crohn’s disease, another
autoimmune disease (Zhang et al., 2020). Although microbes in
saliva had large potential to differentiate RHD from control
subjects, there was no correlation between any single salivary
microbe and RHD severity. The reason may be that salivary
microbes closely interacted with each other and functioned as a
whole (Jenkinson and Lamont, 2005). Our data showed that
genus such as Roseburia , Lachnoanaerobaculum , and
Corynebacterium in subgingival plaques correlated with RHD
severity, although the functions of these genera in periodontal
disease or RHD remain to be further explored.

Our results also showed that Streptococcus significantly
increased in saliva of RHD patients. There are 74 species under
the genus of Streptococcus (Wong and Yuen, 2012). GAS is
responsible for pharyngitis and the post-infection sequela,
including RHD (Soderholm et al., 2018). GAS can survive the
oral immune defense system and remain viable for long periods
(Walker et al., 2014). Not all Streptococcus spp. are harmful. For
instance, Streptococcus salivarius K12 is a probiotic intended for
use in the oral cavity and can antagonize the growth of GAS (Di
Pierro et al., 2016). Therefore, it needs to be further determined
which species of Streptococcus contributed to the changes we
observed in the oral microbiota of RHD patients. Streptococcus
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also increased in subgingival plaques of RHD patients, likely a
consequence of the increase of this genus in saliva (Avila
et al., 2009).

Our data suggested potential transmission of microbes from
the gut or oral cavity to heart valves of RHD patients. Some
genera were shared by mitral valves and gut or oral cavity in
RHD patients, indicating that microbes in the gut and/or oral
cavity might translocate to the mitral valves. In the context of
immunological cascade caused by GAS infection, gut microbial
dysbiosis may increase endotoxin production and weaken gut
barrier function, leading to increase of intestinal permeability
and subsequent bacterial translocation (Camilleri, 2019). Oral
cavity is another potential origin of the microbiota in mitral
valves. Transmission of oral microbes to other body sites can be
caused by invasive dental procedure or even normal daily
activities such as tooth brushing and food intake (Smith and
Nehring, 2020). Our results demonstrated that the microbiota in
mitral valves partially overlapped with that in oral cavity.
Intriguingly, Campylobacter was distributed in most mitral
valves and oral cavity but only presented in one fecal sample
of RHD patients, pointing to the possibility of oral-to-valve but
not gut-to-valve translocation of this microbe. Streptococcus was
abundantly distributed in mitral valves of every RHD patient.
This is consistent with the theory that GAS or its components
can enter the circulation and gain access to the subendothelial
collagen matrix (Tandon et al., 2013). Neisseria, Lactobacillus,
Campylobacter and Prevotella were detected in the mitral valves
of most RHD patients. It would be reasonable to speculate that
these microbes, together with Streptococcus, could translocate
from the gut and/or oral cavity to the mitral valves, creating
antigens that provoke autoimmune response against host cardiac
tissues over the progression of RHD.

Our data provided new insights on the etiology, diagnosis,
prevention, and treatment of RHD. First, unique microbial
profiles of RHD broadened the concept of genetic susceptibility
to RHD. Only a minority (1–2%) of populations living in GAS-
endemic areas develop RHD (Carapetis et al., 2000) and specific
genetic markers have been linked to RHD (Gray et al., 2017).
Microbiota, considered as the second genome of the human
body, may play a role in genetic predisposition to RHD (Grice
and Segre, 2012). Second, unique microbial profiles may serve as
a supplemental diagnostic tool for RHD patients. Our results
illustrated that it was feasible to differentiate RHD patients from
control subjects using microbiota. Third, our data suggested that
the microbiota played important roles in RHD treatment. Broad-
spectrum antibiotics may eliminate beneficial microbes and
sometimes cause secondary infections (Kelly and LaMont,
2008). Antibiotics designed with the narrowest spectra
targeting GAS or regular use of probiotics may reduce the
ecologically undesirable side effects of non-discriminative
antibiotic chemoprophylaxis (Lemon et al., 2012). At last,
the microbiota may serve as a viable therapeutic target for
halting progression to severe mitral stenosis and for post-
surgery management. The microbiota may influence immune
homeostasis, trigger inflammation, invade tissues, and
create antigens (Hooper et al., 2012; Tandon et al., 2013;
A

B

FIGURE 6 | Correlations between microbial genera and clinical indices in
patients with rheumatic heart disease. (A) Heatmap showing correlations
between different genera and LAD. (B) Heatmap showing correlations
between different genera and PASP. LAD indicates left atrial diameter; and
PASP, pulmonary artery systolic pressure. SP indicates subgingival plaque.
Spearman’s rank correlation coefficients are illustrated in squares. *P < 0.05;
**P < 0.01.
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Anhe et al., 2020). It is feasible to treat diseases through
manipulation of the microbiota. For example, fecal microbiota
transplantation has been safely performed in the treatment of
diarrhea and sepsis in critical care (Li et al., 2015). Moreover,
microbiota affects drug pharmacokinetics. The rate of absorption
and bioavailability of many oral drugs depends on their exposure
to bacterial enzymes before entering the circulation (Li and Jia,
2013). For RHD patients with prosthetic valves, the gut
microbiota has been implicated to affect anticoagulant therapy
that is mandatory after surgery (Wang et al., 2020). Our study is a
start point for potential microbiota-targeting therapies, although
more studies are required to establish causative links between the
microbiota and RHD.

In conclusion, we described important alterations in the
microbiota of RHD patients, provided evidence that microbiota
in gut and oral cavity might translocate to mitral valves,
demonstrated the possibility of distinguishing patients from
control subjects using microbiota, and identified gut/oral
microbes that correlated with severity of RHD. Our study
paved a promising path for using microbiota as a potential
diagnostic, prophylactic, and therapeutic tool for RHD.
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Denmark, 7 Ferring International Center SA, Saint-Prex, Switzerland, 8 Department of Obstetrics and Gynaecology, Hvidovre
Hospital, Copenhagen, Denmark, 9 Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark

Physiological hormonal fluctuations exert endogenous pressures on the structure and
function of the human microbiome. As such, the menstrual cycle may selectively disrupt
the homeostasis of the resident oral microbiome, thus compromising oral health. Hence,
the aim of the present study was to structurally and functionally profile the salivary
microbiome of 103 women in reproductive age with regular menstrual cycle, while
evaluating the modifying influences of hormonal contraceptives, sex hormones, diet,
and smoking. Whole saliva was sampled during the menstrual, follicular, and luteal phases
(n = 309) of the cycle, and the participants reported questionnaire-based data concerning
their life habits and oral or systemic health. No significant differences in alpha-diversity or
phase-specific clustering of the overall microbiome were observed. Nevertheless, the
salivary abundances of genera Campylobacter, Haemophilus, Prevotella, and
Oribacterium varied throughout the cycle, and a higher species-richness was observed
during the luteal phase. While the overall community structure maintained relatively intact,
its functional properties were drastically affected. In particular, 11 functional modules were
differentially abundant throughout the menstrual cycle, including pentose phosphate
metabolism, and biosynthesis of cobalamin and neurotransmitter gamma-aminobutyric
acid. The menstrual cycle phase, but not oral contraceptive usage, was accountable for
greater variations in the metabolic pathways of the salivary microbiome. Further co-risk
factor analysis demonstrated that Prevotella and Veillonella were increased in current
smokers, whereas high dietary sugar consumption modified the richness and diversity of
the microbiome during the cycle. This is the first large study to systematically address
dysbiotic variations of the oral microbiome during the course of menstrual cycle, and
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https://www.frontiersin.org/articles/10.3389/fcimb.2021.625229/full
https://www.frontiersin.org/articles/10.3389/fcimb.2021.625229/full
https://www.frontiersin.org/articles/10.3389/fcimb.2021.625229/full
https://www.frontiersin.org/articles/10.3389/fcimb.2021.625229/full
https://www.frontiersin.org/articles/10.3389/fcimb.2021.625229/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:henriette.svarre.nielsen@regionh.dk
https://doi.org/10.3389/fcimb.2021.625229
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2021.625229
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2021.625229&domain=pdf&date_stamp=2021-03-19


Bostanci et al. Oral Microbiome in Menstrual Cycle

Frontiers in Cellular and Infection Microbiolo
document the additive effect of smoking and sugar consumption as environmental risk
factors. It reveals the structural resilience and functional adaptability of the oral
microbiome to the endogenous hormonal pressures of the menstrual cycle, while
revealing its vulnerability to the exogenous exposures of diet and smoking.
Keywords: menstrual cycle, oral microbiome, saliva, hormonal contraceptives, sugar, diet, women’s health,
shotgun sequencing
INTRODUCTION

The oral cavity is a special ecological habitat composed of soft
and non-shedding hard tissues, colonized with a plethora of
microorganisms (Wade, 2013; Belibasakis et al., 2019). The oral
microbiota constitutes the second most diverse microbial
community of the human body, which under normal
circumstances remains mostly stable (Human Microbiome
Project, 2012; David et al., 2014; Rosier et al., 2018; Lif
Holgerson et al., 2020). The continuous presence of saliva, a
unique biological medium, has a crucial role in maintaining the
stability of the oral microbiota. Higher microbial diversity in
saliva, with altered pH and proteolytic enzyme activity was
proposed to indicate early dysbiosis towards inflammatory oral
diseases (Zaura et al., 2009). Salivary composition and flow rate
vary with age, sex, daily rhythm, dietary habits as well as female
hormones (Yeh et al., 1998; Lukacs and Largaespada, 2006;
Gumus et al., 2015). Female hormones, specifically estrogens,
may suppress the physiological salivary flow rate (Streckfus et al.,
1998; Lu et al., 1999). This results in reduction of the natural
antimicrobial capacity of saliva, thus disrupting the local
microbial homeostasis and increasing susceptibility to gingivitis
and dental caries in the affected women (Lukacs and
Largaespada, 2006; Gursoy et al., 2008; Silva de Araujo
Figueiredo et al., 2017).

The reproductive age of a woman’s lifetime, spanning from
puberty until menopause is characterized by major changes in
circulating female hormone levels and frequently accompanied
by emotional and physiological changes, including heightened
inflammatory status (Oertelt-Prigione, 2012; Clancy et al., 2013).
The salivary and plasma kinetics of sex steroids mirror one-
another across the menstrual cycle (Gandara et al., 2007). Of
note, salivary estradiol levels peak at the time of ovulation,
aligning with compositional changes of uterine endocervical
gland secretions (Saibaba et al., 2017). Among the most
common oral signs observed during menstruation are gingival
inflammation, reduced salivary flow, altered pH and oral ulcers
(Holm-Pedersen and Loe, 1967). Furthermore, the use of
hormonal contraceptives has been associated with poorer oral
health in young women, yet the mechanistic links between such
hormone supplementation and oral microbial dysbiosis is not
elucidated (Brusca et al., 2010). Long‐term use of oral
contraceptives can lead to accelerated progression of
periodontal disease, yet this may also be concentration-
dependent (Preshaw et al., 2001; Preshaw et al., 2013). Early
studies performed shortly after the introduction of oral
contraceptives, when hormone doses were very high, found
gy | www.frontiersin.org 275
evidence of increased gingival inflammation and possibly also
increased probing depths, often despite better oral hygiene in the
users of the oral contraceptives (Preshaw et al., 2001). Low doses
of estrogen and progesterone are now being widely used in
contraceptive pills, and these have little impact on the extent of
periodontal inflammation in response to plaque accumulation
(Preshaw et al., 2001). Most studies in the field are based on
clinical parameters of disease severity and do not take into
account direct measures of oral infection, such as qualitative
and quantitative microbiome changes in the oral milieu (Holm-
Pedersen and Loe, 1967). The few studies available on the
dynamic interplay between menstrual cycle hormones or
hormonal contraceptives and selected components of the oral
microbiota did not reach a clear consensus (Jensen et al., 1981;
Fischer et al., 2008; Kumar, 2013). Interestingly, ovulation also
has been linked to the increased levels of anaerobic bacterial
counts in saliva independent of flow rate (Prout and Hopps,
1970). Jensen et al. reported that women who are taking oral
contraceptives had up to sixteen times higher level of Bacteroides
species in their dental plaque than the control group (Jensen
et al., 1981).

Data regarding the dynamics of the salivary microbiome
during the regular menstrual cycle using high-throughput
sequencing technologies in young women is entirely missing.
Therefore, the aim of the present study was to examine the
structural and functional dynamics of the salivary microbiome
during one full menstrual cycle in women of reproductive age
under different contraceptive regimens.
MATERIALS AND METHODS

Study Design and Ethics Statement
Women were recruited by advertisements in student magazines,
university notice boards, and social media and included between
September 2017 and January 2018 at Rigshospitalet,
Copenhagen, Denmark. All data were collected and managed
using REDCap electronic data capture tools, hosted at the Capital
Region of Denmark. The study is approved by The Regional
Committee on Health Research Ethics (H-17017580) and the
Data Protection Agency in the Capital Region of Denmark
(2012-58-0004). All participants gave oral and written consent
to participate. All participants were asked to phone the clinic
when spotting/beginning of bleeding. They were then scheduled
for a hospital visit on cycle day 1–3. An ultrasound scan was
performed to confirm that the participant was not pregnant and
to confirm the menstruation with shedding of the endometrium.
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Additionally, hormone levels (plasma estradiol and
progesterone) were measured. The two following visits were
booked (day 8–12) and (day 18–22) every time with an
ultrasound scan to confirm cycle phase and absence of
pregnancy. One of the inclusion criteria was to have a regular
cycle (median 26 days). The subjects were divided into 3 groups:
group 1 (n = 43) that did not use any hormonal contraceptives,
group 2 (n = 41) that used combined oral contraception (COC:
estrogen + progestin) for at least half a year prior to the start of
the study and group 3 (n = 19) using levonegestrel intra-uterine
system (LNG-IUS). Women were excluded from the study if they
were pregnant or had an intention to become pregnant during
the course of the study or had oligomenorrhea or irregular
menstrual cycles or spotting. Subjects were also excluded if
they had any systemic disease or medical condition or been
treated by antibiotics in the past three months prior to the
beginning of the study or during its duration.

Variables Reported by the Subjects
Through Questionnaires
Participants reported data concerning their life habits and health
history. The food frequency questionnaire was based on four-week
recall, with frequencies given on a 9-point scale from “0 times in the
past four weeks” to “>3 times/day for the past four weeks”.
Frequency of free-sugar consumption was derived from the sum
of the frequencies for the following food items: chocolatemilk, juice,
soda with sugar, ice-cream, biscuits and cookies, sweet bread and
rolls, dry cake, cake with filling and candy (including chocolate,
licorice, jelly and other candy). On quantitative analyses, sugar
consumption was divided into low (up to and including the first
quartile), high (above the thirdquartile), or intermediate. In relation
to oral health, participants were asked whether they had been to a
dentist or dental hygienist during the 3 months prior to answering
the questionnaire. Smoking was coded as “daily smoker”,
“occasional smoker”, “former smoker”, and “never smoker”.

Blood and Saliva Collection and
Processing
Women were followed during a full menstrual cycle including
three hospital visits. The first hospital visit was at cycle day (CD)
1–3. The second visit was CD 8–12 and the third CD 18–22. The
patients were fasting 30 min before saliva collection, including
drinking, chewing gum or chewing tobacco, and smoking. Whole
saliva samples (2 ml) were collected using a SalivaGene Collector
(STRATEC Molecular GmbH, Germany) containing lyophilized
DNA stabilization buffer, according to the instructions of the
manufacturer, and were frozen at -80°C. Blood samples were
drawn at every hospital visit. Blood was collected in 9 ml EDTA
tubes, left until separated and spinned for 15 min at 3,000 rpm
and plasma was aliquoted and frozen at -80°C. Plasma estradiol
and progesterone were measured using the standard automated
system (Cobas® 8000 by Roche Diagnostics).

Extraction of Salivary DNA and Next-
Generation Sequencing
Saliva aliquots of 600 µl were shipped to CoreBiome (OraSure,
Bethlehem, PA, USA) where they were extracted with MO Bio
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 376
PowerFecal (Qiagen, Hilden, Germany) automated for high
throughput on QiaCube (Qiagen), with bead-beating in
0.1 mm glass bead plates. Three spaced negative controls and
one positive control were included in each extraction. All
negative extraction controls had undetectable amounts of
DNA, and all positive controls were also approved. DNA
concentration (for samples and controls) was quantified using
Quant-iT Picogreen dsDNA Assay (Invitrogen, ThermoFisher
Scientific, Carlsbad, CA, USA). Libraries were prepared using an
adapted Nextera (Illumina Inc, San Diego, CA, USA) procedure
and sequenced on an Illumina NextSeq using single-end 150 bp
reads with a NextSeq 500/550 High Output v2 kit. Reads were
processed with CoreBiome’s BoosterShot shallow shotgun
sequencing technology. The raw sequencing reads are available
from the European Nucleotide Archive under project
PRJEB37731, samples SAMEA6662389-SAMEA6662857.

Bioinformatics Analysis
Human reads were removed by mapping to the hg19 release of
the human genome using BBTools (available at https://
sourceforge.net/projects/bbmap/). Because BoosterShot
technology is optimized for fecal samples, taxonomy was
reannotated the reads using Kraken2 (26) with confidence set
to 0.5 and Bracken, based on the Human Oral Microbiome
Database v9.0.3 (27). Functional annotation based on KEGG
modules was used as provided by CoreBiome.

Statistical Analyses
All statistical analyses were performed in R v. 3.5.2. Alpha-diversity
was calculated as the observed number of species as well as
Simpson’s inverted index. Comparisons for the same individual
across time were calculated as paired t-tests, while comparisons
between individuals were calculated using Welch’s t-test.
Differences between the three contraception groups were
calculated with Pearson’s chi-square test or Fishers Exact test for
count data andKruskal-Wallis test for continuous data. Differences
in variation were quantified using Levene’s test of equality of
variance, using the Brown-Forsythe variant with R package lawsat
(v3.2). Correlations were calculated with Pearson’s product
moment. All tests were performed with a 95% confidence interval
and a significance cutoff of 0.05. Multiple testing correction was
conducted with the Benjamini-Hochberg procedure where
applicable. Beta-diversity was calculated on Bray-Curtis distances
and clustered on complete linkage. The relative impact ofmetadata
factors on beta-diversity dispersion assessed through Permanova.
Alpha- and Beta-diversity analyses were calculated with package
Vegan (v2.5-3) and graphs were generated with packages
RColorBrewer (v1.1-2) and Vioplot (v0.2). Associations between
specific taxa and themetadata were calculated inMaaslin2, treating
the contraceptive and phase of the cycle as fixed effects and
individual’s identities, smoking, and sugar intake as random
effects. A minimum abundance of 0.1% in at least six samples was
required to keep a taxon in the analysis. Furthermore, clustering of
species was done according to the “color complex” classification of
Socransky et al., (1998). (i.e., six-color cluster-lists of bacteria
according to their frequency of detection and levels in
periodontitis and health) and according to the core microbiome
March 2021 | Volume 11 | Article 625229
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classification data from Abusleme et al. (health-associated core
species and periodontitis-associated core species in the subgingival
microbiome) (Abusleme et al., 2013). Correlations between color
groups and metadata were calculated initially as multivariate
ANOVA, and where differences were found, investigated as beta-
regressions treating contraceptive, phase of the cycle, smoking and
sugar intake as fixed effects and individual’s identities as random
effects, using R package glmmTMB (v0.2.2.0).
RESULTS

Demographic and Clinical Characteristics
of the Study Participants
Demographic and clinical characteristics of the 103 study
participants are categorized based on contraceptive use and
summarized in Table 1. The participants reported normal
menstrual cycles of approximately 26 days (range, 23 to 34 days).
There were no significant differences (p > 0.05) in the age, BMI or
frequency of tobacco or cannabis usage between thewomen in each
contraceptive group (Table 1). For participantsusingCOC, 25 of 41
reported a daily dosage of 150 µg levonorgestrel and 30 µg
ethinylestradiol. The other participants had several different
progestins, combined with a daily dosage of ethinylestradiol of
20–35 µg. A single participantwas on amultiphasic pill, while three
could not give the name of their pill. For participants with an IUS,
three brand names were reported (Jaydess, Kyleena andMirena, all
produced by Bayer AB, Leverkusen, Germany), with four
participants unable to name the brand of their device.

A few of the participants had been to a dental health
professional during the three months prior to the beginning of
the study, with no difference between groups (Supplementary
Table 1). Self-rated health was overall high and not significantly
different between groups (Supplementary Table 1). Sugar
consumption did not vary throughout the menstrual cycle or
between the contraceptive groups (Supplementary Table 1).

Microbial Community Structure and
Composition
The total number of annotated sequence reads for the overall
cohort of 103 women was 102,605,212 (median 242,834 reads per
sample, IQR 106,839–482,885). There were 209 microbial taxa
identified in the saliva samples. The taxonomic classification is
presented in Supplementary Table 2. In brief, the OTUs were
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 477
collectively represented by eight bacterial phyla, namely
Actinobacteria (0–70%, median 4%), Bacteroidetes (0–66%,
median 37%), Firmicutes (0–77%, median 31%), Proteobacteria
(0–65%, median 20%), Fusobacteria (0–8.6%), Spirochaetes (0–
1.4%), and candidate divisions SR1 (0–0.4%) and TM7 (0–14%).
Fifty genera were identified, of which the most abundant genera
across all samples were Haemophilus (0–48%, median 7%,
specially H. parainfluenzae, 0–23%), Neisseria (0–53%, median
8%, specially N. flavescens, 0–21% and N. subflava, 0–23%),
Prevotella (0–65%, median 34%, specially P. histicola, 0–24%, P.
melaninogenica, 0–26%, P. pallens, 0–20% and oral taxon 313, 0–
25%), Streptococcus (0–60%, median 13%, specially S. mitis, 0–
60% and S. parasanguinis, 0–27%) and Veillonella (0–42%,
median 11%, specially V. atypica, 0–29%) (Figure 1). In
addition to these genera, a few samples presented with high
levels of Rothia mucilaginosa (0–70%, median 1%) and R.
dentocariosa (0–26%, median 0.2%).

To assess the relative effects of several metadata parameters
on the structure of the microbiome, we ran a permutational
analysis of variance (Permanova) including contraceptive usage,
phase of the menstrual cycle, smoking status, free-sugar
consumption, and individual identity. All factors are partially
explanatory of the distance between samples (Table 2). While
unspecific individual factors are dominating, contraception and
cycle phase play a comparable role to well-known determinants
of oral health, such as free-sugar consumption and smoking
(Table 2). Therefore, the remaining analyses were adjusted for
these factors when possible.

To assess whether any specific taxa differed in abundance
according to female hormonal cycles and contraception, we ran
Maaslin2 using contraceptive and cycle phase as fixed effects and
individual identity, smoking and sugar intake as random effects
(see the methods section for details). We found that Prevotella
and Veillonella were increased in current smokers (daily and
occasional). Additionally, four genera were found to differ in
abundance throughout the menstrual cycle, namely
Campylobacter, Haemophilus, Prevotella, and Oribacterium, the
latter of which was over-represented by the species O. sinus
(Figure 2). In addition, the genus Atopobium was found to be
more abundant in IUS users (r = 0.0017, p = 0.047).

Oral Microbiome Richness and Diversity
No significant differences in alpha-diversity (within-sample
diversity) were observed as a result of smoking, although daily
TABLE 1 | Demographic and clinical characteristics of the study participants.

Non-hormonal contraception n = 43 Combined oral contraception n = 41 Levonorgestrel intra-uterine system n = 19 p-value

Age, years
(median, IQR)

23.0 (22.0–28.0) 23.0 (22.0–24.0) 24.0 (22.0–25.0) 0.4521

BMI, kg/m2

(median, IQR)
21.8 (20.8–24.6) 22.5 (20.7–24.3) 21.6 (21.6–23.1) 0.7251

Tobacco smoking (n) 16 8 7 0.1632

Tobacco, Snus* (n) 4 5 0 0.3163

Cannabis smoking (n) 5 0 3 0.0253
March 2021 | Volume 11 | Article
IQR, interquartile range; BMI, Body Mass Index.
1Kruskall-Wallis test 2Chi-square test 3Fisher’s Exact test.
*Snus is a form of moist powder smokeless tobacco product.
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smokers had slightly higher richness (number of species) than
never smokers (means 36 vs. 34, p = 0.06). Participants in the
middle and high ranges of sugar consumption had higher
richness and diversity than those with low sugar consumption,
but this different was only significant for the middle range (mean
richness: low 32.8, mid 39.5, high 38.0; mean diversity: low =
14.7, mid = 16.6, high = 15.7. p-values: richness 0.003, diversity
0.005). We next evaluated alpha-diversity (within-sample
diversity) according to menstrual phases or contraceptive
categories. No significant differences in alpha-diversity were
observed across menstrual phases or between contraceptive
methods. Higher richness (number of species) was observed in
the luteal phase than in the menstrual phase (Figure 3A), but this
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 578
did not prove to be significant by a narrow margin (p = 0.06),
neither for the entire cohort nor for any of the contraceptive
groups separately. There were no significant differences in
diversity (Simpson’s inverted index; Figure 3B). Total DNA
amounts in the samples did not correlate with either richness or
diversity (Supplementary Table 3). While both contraceptive
method and phase of the menstrual cycle were statistically
correlated to beta-diversity (between samples; Table 2), there
was no distinct pattern of clustering by either of these factors
(Figure 4; Supplementary Figure 1 ).

The separation between samples was mainly driven by
gradients in the abundances of a few species. A gradient was
evident with high levels of N. subflava, N. mucosa, N. flavescens,
R. mucilagniosa and H. parainfluenzae on one side, and high
levels P. histicola, V. atypica and Prevotella taxon 313 marked the
other side. A second gradient displayed P. pallens and P.
melaninogenica on one extreme, and chiefly S. mitis on the
other. Interestingly, P. pallens and P. melaninogenica are not
related to smoking status. No linear combination of taxa covered
a large amount of the variation, with the first two principal
components covering only 16% of total variance. Only when
including the first 12 principal components was 50% of the total
variance covered (Supplementary Figure 1).
FIGURE 1 | Bar plot displaying the taxonomic composition of samples, sorted by phase of the menstrual cycle and contraceptive method.
TABLE 2 | Result of permutational analysis of variance shows the relative effect
of important factors on differentiating the microbiome between samples.

Factor Degrees of freedom R² p-value

Smoking 3 0.083 0.001
Sugar consumption 2 0.024 0.001
Contraception 2 0.019 0.001
Cycle phase 2 0.012 0.001
Residuals 290 0.862 NA
March 2021 | Volume 11 | Article 625229
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Specific Taxa Clustering
Furthermore, clustering of species was done according to the “color
complex” classification (6 “color complex”—blue, green, yellow,
purple, orange, and red—based on their frequency of detection) and
according to the core subgingival microbiome classification (health-
associated core species and periodontitis-associated core species in
the subgingival microbiome) (28, 29). The blue, yellow, green, and
purple complexes are associated with periodontal health, whereas
the orange and red complexes are correlated with periodontitis
(Socransky et al., 1998). The bacteria in the metagenomic dataset
were grouped into the color complexes. The percentages of each of
these complexes per sample were analyzed. The most prevalent and
abundant groups in this cohort were the yellow (present in 298/300
women, median abundance 9.5%), orange (297/300, 10.7%), and
purple complexes (287/300, 3.7%) (Figure 5).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 679
Multivariate analysis of variance (MANOVA) revealed the
yellow group to be associated to contraception and sugar intake,
while the purple group was associated to smoking and sugar
consumption. These two groups were analyzed further with a
beta-regression, adjusting for subject as a random factor. This
analysis found the yellow group to be increased in high and
intermediate sugar consumption (high: r = 0.31, p = 0.039;
intermediate: r = 0.25, p = 0.05). The purple group was found
to be decreased in the IUS group (r = -0.43, p = 0.016) and vary
across smoking groups, being decreased among daily smokers
(r = -0.57, p = 0.0055), increased among former smokers
(r = 0.43, p = 0.0052) and not changed for occasional
smokers (r = -0.06, p = 0.71). Furthermore, in relation to the
menstrual cycle, we observed: a) a higher abundance of the
yellow complex during the menstrual phase, b) a tendency for
March 2021 | Volume 11 | Article 625229
FIGURE 2 | Violin plots representing the distribution in relative abundance for each phase of the menstrual cycle for the four genera found to vary across the cycle.
Pink: menstrual. Yellow: follicular. Green: luteal.
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higher abundance of the red and green complexes during the
follicular phase, and c) a lower abundance of the blue complex
during the follicular phase (Figure 5). The interplay between
each metadata factor and each of the colored groups is depicted
as a heatmap in Supplementary Figure 2.

When classified according to the two core microbiome
groupings (health- or disease-associated), there were also no
notable differences in abundances between phases of the
menstrual cycle (Figure 6) , or between groups of
contraceptives (Supplementary Figure 3). The variance in the
abundance of health-associated bacteria within the COC group
was more than twice greater than that of the other two groups
(Figure 6; Supplementary Figure 3; COC, 0.012; NHC, 0.005;
IUS 0.004; Levene’s test, p = 10-4). This difference was mostly
driven by the dominance of the yellow complex, typically
associated with periodontal health (Figure 5). Bacteria
associated with caries were only found in low abundances
(median 0, IQR 0–0.13%) and did not vary across the cycle
(Supplementary Table 4). Supplementary Table 4 lists all
observed bacterial species and their association with health
and disease.

Shifts of Functional Gene Composition
To examine the differential representation of particular microbial
metabolic and biosynthetic pathways during the menstrual cycle
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or with different contraceptive use, the functional potential of
each sample was assessed based on KEGG modules. These were
submitted to Maaslin2 with sugar intake, smoking, cycle phase,
and contraceptive as fixed effects and the individual as a random
effect, as was done for the taxonomic annotation. A single
module, pyrimidine deoxyribonucleotide biosynthesis, was
increased for dai ly smokers, and a single module,
Phosphatidylethanolamine biosynthesis, decreased with sugar
consumption. 11 modules were found to be differentially
abundant over the menstrual cycle (Figure 7; Supplementary
Table 5). Amongst these are pathways involving co-factors, such
as cobalamin biosynthesis and ascorbate degradation, as well as
the biosynthesis of the neurotransmitter gamma-aminobutyric
acid (GABA). Another 3 modules varied with contraceptive
usage, namely the glyoxylate cycle, guanine biosynthesis and
the NADH:quinone oxidoreductase step of oxidative
phosphorylation (Figure 7). Overall, functional analysis
indicated that more variation is attributed to the phase of
menstrual cycle rather than contraceptive usage.

Hormonal Effects
Because standard hormonal measurements only measure
endogenous estradiol and progesterone, not the ethinylestradiol,
progestin and levonorgestrel used in COC and IUS, respectively,
direct associations between female reproductive hormones and the
A

B

FIGURE 3 | (A) Richness (observed species) and (B) Diversity (inverted Simpson's index) in each contraceptive group and phase of the menstrual cycle. Pink:
menstrual. Yellow: follicular. Green: luteal.
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oral microbiome were only conducted for women not using
hormonal contraception (Stanczyk and Clarke, 2010). The
estradiol levels were higher in the follicular and luteal phase
compared to the menstrual phase (Mean ± STDEV: 0.51 ± 0.24,
0.41 ± 0.31, 0.14 ± 0.05 nmol/L, respectively) (Supplementary
Table 3). The progesterone concentrations were increased by 19-
fold in the luteal phase compared to follicular and menstrual phases
(Mean ± SDEV: 32.10 ± 20.45, 1.53 ± 1.21, 1.67 ± 2.78 nmol/L).

The MANOVA indicates that the red group is dependent on
estradiol levels. The beta-regression adjusted for sugar intake and
smoking did not converge, but visual inspection of the scatter
plot between the red group and estradiol levels reveals that, for
subjects where red group bacteria are present, they increase with
increasing estradiol (Supplementary Figure 4). Adjusting for
smoking and sugar intake, 24 species were correlated to estradiol
and another 30 to progesterone, but only a single bacterial
species was found to be significantly correlated to estradiol
after correction for multiple testing, namely, Porphyromonas
endodontalis (r = 0.0018, adj. p = 0.039)
DISCUSSION

In the present study, we longitudinally characterized the salivary
microbiome of 103 regularly menstruating women in
reproductive age during the course of one full menstrual cycle,
using whole genome (shotgun) sequencing, and evaluated its
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potential deviations caused by the use of oral contraceptives and
changes during the menstrual cycle. Such fluctuations may
render the oral microbiome more dysbiotic, able to drive more
aberrant inflammatory responses by the gingival tissues, a well
recognizable clinical feature at phases of the menstrual cycle. To
the best of our knowledge, this is the first large study to
systematically address dysbiotic variations of the oral
microbiome during the course of menstrual cycle, and
document the additive effect of smoking and sugar
consumption as exogenous risk factors. The analysis of this
cohort cumulatively identified 50 bacterial genera belonging to
eight phyla, all well represented in the human oral microbiome
database and previously identified as members of the human
salivary microbiome (Dewhirst et al., 2010; Segata et al., 2012;
Hasan et al., 2014).This diversity may be considered much lower
compared to most salivary microbiome studies that have been
using 16S rRNA gene sequencing instead, a method which may
nevertheless overestimate diversity. Conversely, high species-
specificity was notable here, with 209 species being detectable
in the studied cohort. An earlier metagenomic survey of saliva
reports that the salivary microbiome typically contains 175
bacterial species (Hasan et al., 2014). It estimated that the
number of species-level phylotypes may vary from 500 to
10,000 and each oral niche may harbor on average 266 species
level phylotypes (Zaura et al., 2009; Bik et al., 2010; Hasan et al.,
2014). The lack of significant differences in taxa diversities across
phases of the menstrual cycle, or use of contraceptives, denote
FIGURE 4 | Principal Coordinates Analysis (PCoA) of each sample, based on Bray-Curtis distance. The left panel depicts PC1 and PC2, while the right panel
depicts PC1 and PC5. Other principal components are depicted in Supplementary Figure 3. The species with highest impact on the depicted principal
components are overlaid as grey arrows. Red: menstrual phase. Yellow: follicular phase. Blue: luteal phase. Circle: non-hormonal contraceptives. Square: combined
oral contraceptives. Triangle: intra-uterine levonegestrel system. H. parainfluenzae, Haemophilus parainfluenzae; N. flavescens, Neisseria flavescens; N. mucosa, Neisseria
mucosa; N. subflava, Neisseria subflava; oral taxon 306, Prevotella sp. oral taxon 306; oral taxon 313, Prevotella sp. oral taxon 313; P. histicola, Prevotella histicola; P.
melaninogenica, Prevotella melaninogenica; P. pallens, Prevotella pallens; R. dentocariosa, Rothia dentocariosa; R. mucilaginosa, Rothia mucilaginosa; S. mitis,
Streptococcus mitis; S. parasanguinis, Streptococcus parasanguinis; S. salivarius, Streptococcus salivarius; V. atypica, Veillonella atypica; V. dispar, Veillonella dispar.
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the less susceptibility of the oral cavity to inherent biological or
external pharmacological pressures, respectively (Zaura et al.,
2014; Zaura et al., 2017). Dietary habits, including sugar intake,
appeared to influence the composition of the salivary
microbiome during the menstrual cycle, as evaluated by weekly
dietary records. The finding that diet did influence the
community composition of the salivary microbiome may not
come as a surprise, as it has been shown that the influence of diet
occurs also at the metabolome level (De Filippis et al., 2014;
Tanner et al., 2018). Specific dietary habits i.e., high frequency of
carbohydrate exposure can select for more acid-tolerant and
acidogenic bacteria such as Streptococci, Lactobacilli or
Bifidobacteria, which may in turn disturb the enamel mineral
equilibrium, leading to irreversible demineralization and dental
caries. Still, pairing metagenomic data with conventional
nutrient profiles may not be sufficient to infer microbiome
variations to diet (Johnson et al., 2019).

Despite the overall relative stabilities in diversity and overall
abundance of the microbiome profiles in saliva, some taxon-
function specific and significant changes were observed. In
particular, four genera were found to differ in abundance
throughout the menstrual cycle, namely Campylobacter,
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Haemophilus, Prevotella, and Oribacterium. Higher abundance of
Prevotella species in saliva may increase pH and stimulate the flow
of gingival crevicular fluid (Raber-Durlacher et al., 1994). These
changes may favor acid-intolerant, proteolytic species associated
with gingival inflammation. P. intermedia growth and biosynthetic
activity appear to be regulated by progesterone and estradiol, two
cycle hormones, as demonstrated in experimental models
(Kornman and Loesche, 1982).

The salivary and plasma dynamics of sex steroids seems to
mirror one-another across the menstrual cycle, with
progesterone levels peaking during the luteal phase and
estradiol levels during the follicular phase (Gandara et al.,
2007). Further, the estradiol levels in plasma positively
correlated with the total number of the bacteria from the red
complex bacteria (P. gingivalis, T. denticola, T. forsythia) in
women not taking exogenous sex steroid hormones (those
found in hormonal contraceptives) (Clark and Soory, 2006).
The presence of P gingivalis has been associated with gingival
inflammation during menstruation and pregnancy and positively
correlated with the increase in sex hormones in saliva
(Muramatsu and Takaesu, 1994; Carrillo-de-Albornoz et al.,
2010). In addition to the red complex bacteria, the closely
FIGURE 5 | Violin plot representing the distribution in relative abundance for each phase of the menstrual cycle method for species of the Socransky complexes. The
blue, yellow, green, and purple complexes are associated with periodontal health, whereas the orange and red complexes are correlated with periodontal disease.
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related P. endodontalis also proved to be significantly correlated
with increasing estradiol (Lombardo Bedran et al., 2012).
Although estradiol has been reported to exert both pro- or
anti- inflammatory responses in oral mucosa or modify growth
of specific oral species at a dose dependent manner, yet the
mechanisms by which this occurs have not been explored in
depth. We also observed that the abundancies of Prevotella and
Veillonella were increased in current smokers, as also
demonstrated earlier (Kumar, 2013; Paropkari et al., 2016).
These changes may not be surprising as smoking leads to a
diverse, pathogen-rich anaerobic oral microbiome and depletion
of commensals, hence creating an at-risk-for-harm environment
for the development of oral diseases (Shchipkova et al., 2010).
This additive risk could may well apply to the female population,
where hormonal regulations are concurrent with the transient
establishment of a dysbiotic microbiota (Paropkari et al., 2016).

While there is a circumstantial body of evidence linking the
menstrual cycle to changes in the microbiome of the dental
plaque, there is no clear consensus and the sample size of the
cohorts were rather limited. An association between ovulation
and the increased levels of anaerobic bacterial counts in saliva
has been supported (Prout and Hopps, 1970) whereas others did
not conclude on a cyclical pattern of subgingival bacterial
colonization of any of the 74 species studied (Fischer et al.,
2008). Yet, the study has described that Aggregatibacter
actinomycetemcomitans, a species closely related to the
Haemophilus genus, was commonly detected at the beginning
of the menstruation and peaked during the following 2 weeks.
While A. actinomycetemcomitans itself was not frequently
identified in the present study, Haemophilus was among the
four differentially abundant genera through the cycle,
represented by species other than A. actinomycetemcomitans.
Campylobacter rectus (C. rectus) is a gram‐negative motile rod
associated with periodontal diseases, whose growth can be
enhanced by estradiol (Yokoyama et al., 2005; Bostanci et al.,
2007; Yokoyama et al., 2008). Young pregnant or postpartum
women carry high levels of C. rectus in subgingival plaques or
saliva (Mitchell-Lewis et al., 2001; Yokoyama et al., 2005). A
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sharp rise in salivary estradiol levels is shown to occur
immediately at the ovulation phase (Lu et al., 1999), and such
hormonal peaks may indeed explain the significant fluctuation in
the abundances of Campylobacter and Prevotella genera during
the progression of the menstrual cycle observed in the present
study. While there are at present no reports linking the presence
or growth of Oribacterium to progesterone and estradiol, it is
interesting to note that the occurrence of this genus has been
associated with oral malodor, or halitosis (Sizova et al., 2014;
Seerangaiyan et al., 2017). The menstrual cycle has also been
pointed out as a factor influencing halitosis. Distinct cyclic
variations in volatile sulphur compound concentrations occur
during the menstrual cycle, which seem to coincide with the mid-
cycle surge of the luteinizing hormone and the mid-luteal phase,
corresponding to a peak of progesterone and estrogens,
respectively (Tonzetich et al., 1978; Kawamoto et al., 2010).

The present study did not identify any major influences of the
intake of oral contraceptives in the composition of the salivary
microbiome composition. This is further supported by earlier
studies demonstrating that the magnitude of gingival
inflammation is not affected by various oral contraceptive
formulations (Preshaw et al., 2001). Yet, improved oral hygiene
may compensate for the potential hormonal influence on the oral
microbiome due to oral contraceptive intake (Preshaw et al.,
2001; Preshaw and Bissett, 2013). Rothia, Haemophilus, and
Neisseria were highly abundant among the samples. These
genera are known to be associated with good oral health, a
finding that is aligned with the data obtained from the
questionnaires (Palmer et al., 2017). A few early studies
attempted to shed light on potential relationships between oral
contraceptives and the oral microbiota, demonstrating a higher
percentage of Bacteroides spp., such as Prevotella intermedia
(previously B. intermedius), in women under a hormonal
contraception regimen (Jensen et al., 1981).

It is becoming increasingly apparent that determining the
structural composition of the oral microbiome delivers a finite
amount of information, and that evaluating its function is crucial
to understanding its totality (Espinoza et al., 2018). The present
study identified selective functional variations of the salivary
microbiome during menstrual phases, revealing its adaptability
to hormonal fluctuations, while the overall community remains
structurally intact. The most prevalent microbial functional
modules were highly consistent within and across subjects. Yet,
a subset of functions significantly differed between cycle phases,
but also between contraceptives users. Interestingly, we found
that the capacity for the biosynthesis of GABA was decreased
during the menstrual phase. GABA is a neurotransmitter of
major importance to inhibit functionality in the brain.
GABAergic deficits are suggested to contribute to poor mental
health and reduced GABA levels have been found in depressed
patients, both centrally and in the periphery. Premenstrual
dysphoric disorder has been linked to alterations in systems
related to GABA (AC et al., 2006; Hofmeister and Bodden, 2016),
however most significantly shown in the luteal phase. Notably,
there are also previous reports on elevated inflammation as well
as subjective health symptoms to be present in a higher level
FIGURE 6 | Violin plot representing the distribution in relative abundance for each
phase of the menstrual cycle according to the subgingival core microbiome
classification (green: health-associated; red: periodontitis-associated).
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during the menstrual phase, also in women with no premenstrual
syndrome (Puder et al., 2006). Smoking and sugar consumption
seem to associated with differences in metabolic profile of the
salivary microbiome. Most significantly associated with smoking
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 1184
was the pyrimidine deoxyribonucleotide biosynthesis, which was
evidently higher in smokers, and high sugar consumption, which
was associated with reduced phosphatidylethanolamine
biosynthesis. It is interesting to note that pentose phosphate
FIGURE 7 | Shifts of functional gene composition. Boxplots presenting pathways that are differentially abundant during the menstrual cycle or according to
contraceptive usage. Detailed results are presented in Supplementary Table 5.
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metabolism is frequently increased in Gram-positive pathogens
such as Streptococcus and Actinomyces in response to
environmental stresses. In the present data set, gram positive
bacteria such as S. mitis and S. oralis were reduced in abundance
during the luteal phase that had low gene abundance in the
pentose phosphate pathway. On the contrary, genes related to
membrane transport including the phosphotransferase system,
RTX-toxin transport, RaxAB-RaxC type I secretion were over-
represented during the luteal phase, which may be related to
bacterial chemotaxis and increased toxin biosynthesis. Although
the differences in gene richness did not seem to correspond to
differences in bacterial species richness, this is in line with an
earlier study indicating that 50% of all genes in a metagenomic
sample are individual-specific and the functional differences
between individuals are larger than the taxonomic differences
(Tierney et al., 2019). A number of species within the oral
microbiome community can metabolically exploit hormones as
carbon and energy sources, processing them by degradation or
chemical modification (Takahashi et al., 2010; Garcia-Gomez
et al., 2013; Kumar, 2013).

In conclusion, we longitudinally characterized the ecological
shifts associated with hormonal fluctuations in the salivary
microbiome of regularly menstruating women, during the course
of one full menstrual cycle. This is the first large study to
systematically address dysbiotic variations of the oral microbiome
during the course of menstrual cycle, and document the additive
effect of smoking and sugar consumption as environmental risk
factors. It reveals the structural resilience and functional
adaptability of the oral microbiome to the endogenous hormonal
pressures of the menstrual cycle, while revealing its vulnerability to
the exogenous exposures of diet and smoking.
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The estimation of oral microbiome (OM) taxonomic composition in periodontally healthy
individuals can often be biased because the clinically periodontally healthy subjects for
evaluation can already experience dysbiosis. Usually, they are included just based on the
absence of clinical signs of periodontitis. Additionally, the age of subjects is used to be
higher to correspond well with tested groups of patients with chronic periodontitis, a
disorder typically associated with aging. However, the dysbiosis of the OM precedes the
clinical signs of the disease by many months or even years. The absence of periodontal
pockets thus does not necessarily mean also good periodontal health and the obtained
image of “healthy OM” can be distorted.To overcome this bias, we taxonomically
characterized the OM in almost a hundred young students of dentistry with precise oral
hygiene and no signs of periodontal disease. We compared the results with the OM
composition of older periodontally healthy individuals and also a group of patients with
severe periodontitis (aggressive periodontitis according to former classification system).
The clustering analysis revealed not only two compact clearly separated clusters
corresponding to each state of health, but also a group of samples forming an overlap
between both well-pronounced states. Additionally, in the cluster of periodontally healthy
samples, few outliers with atypical OM and two major stomatotypes could be
distinguished, differing in the prevalence and relative abundance of two main bacterial
genera: Streptococcus and Veillonella. We hypothesize that the two stomatotypes could
represent the microbial succession from periodontal health to starting dysbiosis. The old
and young periodontally healthy subjects do not cluster separately but a trend of the OM in
older subjects to periodontitis is visible. Several bacterial genera were identified to be
typically more abundant in older periodontally healthy subjects.

Keywords: oral microbiome, periodontal health, periodontitis, core microbiome, stomatotype, taxonomic
composition, aging
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INTRODUCTION

Periodontitis is the sixth most common disease worldwide
(Frencken et al., 2017). The major forms of periodontal disease
are gingivitis, chronic periodontitis (which can be the result of
untreated gingivitis) and according to former classification also
aggressive periodontitis, which differs from the chronic variant
by faster and more extensive disease progression, lower age of
patients, and obvious familial aggregation (Armitage and
Cullinan, 2010; Van der Velden, 2017). Periodontal disease
poses a set of inflammatory conditions affecting the tissues
surrounding the teeth. It spreads from the gingiva into the
deeper, supportive components of the periodontium: the gum,
connective tissue, and the alveolar bone surrounding and
supporting a tooth (Hernández et al., 2011), and in more
severe cases it can lead to a tooth loss (Kirst et al., 2015). It is
a complex infectious disease, where specific pathogenic bacteria
growing in biofilms play a key role. It is thus the result of the
interplay between subgingival biofilm and host immune response
and is further affected by other local, environmental, and genetic
factors (Griffen et al., 2012).

The oral cavity has, after the gut, the second largest and
diverse microbiota harboring over 700 species of bacteria (Deo
and Deshmukh, 2019). In health, the oral microbiome (OM)
represents a well-balanced dynamic ecosystem that generally
tends to keep within its typical values (Najmanova et al.,
2021). The dysbiosis then leads to gingivitis and finally
periodontitis (Hajishengallis, 2015). The microbial composition
shift precedes the clinical signs of the disease (Liu et al.,
2012). The relationship between specific groups of taxa
and periodontitis has been thoroughly studied: The
OM undoubtedly associated with severe periodontitis is
characterized by the presence of the so-called “red complex”
bacteria: Porphyromonas gingivalis, Tannerella forsythia, and
Treponema denticola (Socransky et al., 1998). Other bacteria
highly abundant in periodontal disease belong to the phyla
Synergistetes, Firmicutes, Bacteroidetes, Chloroflexi (Griffen
et al., 2012; Abusleme et al., 2013; Pérez-Chaparro et al., 2014;
Kirst et al., 2015). On the other hand, only a few taxa have been
unambiguously associated with periodontal health - mainly some
members of genera Actinomyces and Streptococcus (Griffen et al.,
2012; Abusleme et al., 2013; Kirst et al., 2015; Meuric et al., 2017).
In addition, little is known about the succession of steps leading
from periodontal health to disease. For many taxa, the
unambiguous assignment to periodontal health or periodontitis
has proven difficult because they often exhibited equal prevalence
and relative abundance in both states of health. These include the
highly abundant Fusobacterium nucleatum, Veillonella parvula
and some members of Streptococcus sp., but also the less frequent
Lautropia mirabilis, Campylobacter gracilis, or Granulicatella
adjacens, (Abusleme et al., 2013; Tsai et al., 2018). The reason
could be that in the studies the “periodontal health” is often
characterized rather as opposite to periodontitis, i.e. the absence
of clinical signs of the disease. Mainly the older cohort of healthy
controls, however, could already experience the dysbiosis even
though yet without clinical symptoms. Another substantial
problem is posed by inconsistent criteria for the diagnosis of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 289
patients (variable depth and a number of periodontal pockets
required for assignment to periodontitis group, individual
experience of examining periodontologist) (Pérez-Chaparro
et al., 2014; Deo and Deshmukh, 2019). Previously we tried to
solve the problem by assignment of the taxa to the health state
using a selection of the most diseased patients from a wider
cohort, and, as the opposite a selection of healthy individuals
with taxonomically most distant OM (Najmanova et al., 2021).
A panel of thirty oral taxa undoubtedly associated with
periodontitis corresponded well to previously published data
but the list of taxa unambiguously assigned to periodontal
health was surprisingly poor containing only seventeen species
or so-called “combined taxa” (groups of taxa that could not be
distinguished from each other by the used sequencing method).
The assignment of dozens of other species frequently identified
in the oral cavity thus remains questionable.

In this work, we aimed to describe a typical periodontally
healthy oral microbiome and to extend the panel of oral taxa
unambiguously associated with periodontal health. It is generally
known, that changes in the OM composition naturally occur
with aging (Feres et al., 2016; Belibasakis, 2018) which is likely
related to the fact, that chronic periodontitis manifests mainly in
older people (Eke et al., 2016; Feres et al., 2016; López et al.,
2017). To avoid a possible age bias, we employed in our study a
cohort of 91 periodontally healthy students of dentistry, i.e.
young subjects (average age 23 years) having a very high
standard of oral hygiene and thus with lower risk of dysbiosis
(HY; healthy young). To verify the impact of age on the
taxonomic OM composition, we also analyzed a group of 17
samples from periodontally healthy subjects older than 40 years
(HO; healthy old), and for comparison, we also included a group
of 45 patients with severe (former aggressive) periodontitis (AP).
Two distinct health-associated microbial communities were
identified and the dysbiotic changes that could lead to
periodontitis onset were described.
MATERIALS AND METHODS

Characteristics of Human Subjects and
Sample Collection
Samples from 153 subjects were included and analyzed in this
study (Supplementary Table 1): 91 periodontally healthy
students of dentistry from the 1st faculty of medicine, Charles
University in Prague (average age 23 years, marked HY), 17
periodontally healthy people older than 40 years (average age 46
years, marked HO), and 45 patients with severe (former
aggressive) periodontitis (average age 33, marked AP). All
subjects live in Czech Republic, but besides being students of
the same university in HY group, they have no other general
relation among each other in terms of living area, employment or
any similar parameter. All subjects were examined by a single
experienced periodontologist. To be included in the HY or HO
group the subjects were required to have no periodontal pocket
on probing depth >3 mm, in AP group the subjects had at least
two periodontal pockets on probing depth >5mm. The subjects
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had not received any antibiotic treatment or periodontal therapy
in the three months before the beginning of the study. The HO
and AP subjects were obtained within the study approved by the
Ethics Committee of the First Faculty of Medicine of Charles
University and General University Hospital in Prague as a part of
project No. 17-30753A of the Czech Health Research Council
and besides periodontitis in the AP group, they were of good
general health, the sampling of HY subjects was approved within
a project No. 486417 from the Grant Agency of Charles
University. All subjects involved in the study signed the
informed written consent.

The healthy subjects were sampled from the vestibular side of
sulcus gingivalis, the samples from patients with severe
periodontitis (AP) were taken from the deepest periodontal
pocket. The healthy subjects fulfilled the criteria of periodontal
health, as defined by Caton et al., (Caton et al., 2018), i.e. no
positive bleeding on probing index (BOP), and no signs of
inflammation (erythema and edema), the PPD (periodontal
pocket depth) was < 2 mm, as well as the CAL (clinical
attachment loss) index. The probands included in the AP
group have never been treated for periodontitis prior to
inclusion in our study and according to their clinical
examination, their severe periodontitis diagnosis was
confirmed. The clinical examination contained PPD, BOP,
CAL (Supplementary Table 1), evaluation of the plaque and
tartar amount (low for all probands), number of teeth after
preservation treatment (low number of teeth with dental filling
for all probands), rtg examination (prevailing vertical character
of bone resorption) and family anamnesis with predominated
preterm teeth loss in parents of our probands before the age
of forty.

Additional information on the tooth sampled (identification
of sampled tooth, CAL, BOP, PPD) and other relevant
conditions including health state, smoking status, pregnancy,
nationality or specific diet are listed in the Supplementary Table 1.
The descriptive statistics on demographics and clinical data related
to tested subjects is given at list “descriptive statistics” of this
Supplementary Table 1. Each sample was obtained using two
sterile paper points (BECHT, Germany). The paper points were
left in the gingival sulcus or periodontal pockets for 10s to soak the
fluid. Both paper points from one sampling were stored together in
-20°C prior to further processing.

DNA Isolation, 16S rDNA Gene Library
Preparation, and Sequencing
The DNA was extracted using DNeasy Blood&Tissue kit
(Qiagen, Germany) according to the modified manufacturer’s
instructions (decreased final elution volume of AE buffer from
200 to 120 µl) and stored in -20°C. Isolated DNA was used as a
template for PCR 16S rDNA amplification. The universal
primers 530f (GTGCCAGCMGCNGCGG) (Dowd et al., 2008)
and 907R (CCGTCAATTCMTTTGAGTTT) (Lane et al., 1985)
were used to amplify the V4-V5 region of bacterial 16S rDNA in
primary PCR. Primers for secondary PCR amplification
contained additionally five to seven nucleotide long sample
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 390
tags, separated from primers by two nucleotide long spacers
(Supplementary Table 2). PCR reactions were performed in two
steps according to Baldrian et al. (Baldrian et al., 2012). First PCR
amplification was performed in 3 independent reactions for each
sample in 12,5 µl Plain Combi PP Master Mix (Top-Bio, Czech
Republic) containing 0,4% Phusion polymerase (New England
Biolabs, USA) with 2 µl of template, 2 µl of each primer (0.25
mM) and 6,5 µl H2O. Cycling conditions were 94°C for 5 min; 35
cycles of 94°C for 1 min, 58°C for 50 s, 72°C for 30 s, followed by
72°C for 10 min. Pooled PCR products were purified after the
electrophoretic separation from the agarose gel using the Wizard
SV Gel and PCR Clean-Up System (Promega, USA). 3 µl of
isolated DNA were used as a template in the second PCR in
reaction containing 2 µl of each tagged primer and 25 µl of Plain
Combi PP Master Mix enriched by Phusion DNA polymerase
and 18 µl of H2O. Cycling conditions were the same except that
cycle number was 10 and number of independent reactions per
sample was two. PCR products were separated by electrophoresis
and purified using theWizard SV Gel and PCR Clean-Up System
and then concentrated into the volume of 16 µl using the
MinElute PCR Purification Kit (QIAGEN, Germany). The
concentration of DNA was measured by Qubit 2.0 Fluorometer
using dsDNA BR Assay Kit (both Thermo Fisher Scientific,
USA). The purified solutions of tagged amplicons from
different samples were mixed in equimolar concentrations, the
amplicon library was constructed using TruSeq DNA Library
Preparation Kit v2 (Illumina, USA) and sequenced by Illumina
MiSeq platform (paired-end reads, 2×250 bp).

Analysis of the Sequencing Data
The amplicon raw sequencing data were processed using the
pipeline SEED 2.0.3 (Větrovský et al., 2018). The pair-end reads
were joined using fastq-join program as a part of ea-utils package
(Aronesty, 2013). All sequences were trimmed to 365 nt starting
from the first nucleotide after the end of the forward primer
sequence. The trimmed sequences were further clustered to
98.5% sequence identity by USEARCH (Edgar, 2010)
implemented in SEED and the chimeric sequences were
removed (chimera check is a part of the clustering method
using Uparse algorithm). The quality-filtration to the mean
quality Phred score treshold 30 was applied. Consensus
sequences were constructed for each cluster and then
compared to HOMD database (Chen et al., 2010) using the
Blastn tool. Because not the whole length, but only a 365 nt long
portion of the 16S rDNA sequence was analyzed, more human
oral taxa (HMTs) often cluster to each consensus at the 98.5%
level of identity resulting in the ambiguous taxonomic
assignment. To overcome this problem, we defined the
“combined taxa” (CTs) in cases when the precise assignment
to a single HMT was not possible. The CTs were defined as
follows: 889 sequences from HOMD version 14.51 were trimmed
to 365 nt equally to our testing sequences and clustered at 98.5%
identity resulting in 293 single HMTs and 106 clusters
containing from 2 to 15 HMTs. These clusters were named
CT1 – CT106 (Supplementary Table 3). The identified numbers
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of reads per each taxon were further normalized to taxon relative
abundance value with respect to a 16S rDNA copy number per
genome. This procedure was demonstrated to result in a more
realistic estimate of the relative abundances of the bacterial taxa,
as it takes into account the variation of 16S rDNA copy numbers
among taxa (ranging from 1 to 15). The bacterial genome count
estimates were calculated based on the 16S rDNA copy numbers
in the closest available sequenced genome as described
previously by Vetrovsky and Baldrian (Větrovský and Baldrian,
2013). For the purposes of this publication, the published table of
the 16S rDNA copy numbers was extended using rrnDB database
(Stoddard et al., 2015) (Supplementary Table 4). The
sequencing statistics including diversity indices and rarefaction
curves is summarized in Supplementary Table 7). The raw
sequences are deposited in the NCBI Short Read Archive
(BioProject accession no. PRJNA670573).
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Bioinformatic Analysis
The Weighted Jaccard Similarity clustering analysis (Figure 1)
was performed using the Python programming language
(Rossum and Drake, 2010), specifically the NetworkX library
(Hagberg et al., 2008). The network graph was generated based
on Supplementary Table 5, which displays the relative per-
sample abundances of all taxa, with abundances below 0.05%
rounded down to zero as insignificant. To reduce the
dimensionality of the data, a similarity matrix was calculated
between all samples using an abundance-weighted Jaccard
similarity index. This highlighted the similarities in the overall
composition of the biofilm, rather than taxonomic diversity. In
other words, the impact of low-abundance taxa on the similarity
metric was reduced. For visualization, the aforementioned
NetworkX library was used to create a network graph. The
generated graph is unweighted, meaning a shorter distance
FIGURE 1 | Weighted Jaccard Similarity clustering analysis of all OM samples. Weighted Jaccard similarity index 0.3. The red-colored spots correspond to patients
with AP, HY samples are green and HO samples are yellow. The transient area is delimited with the gray dashed line.
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between nodes does not always reflect greater similarity. Links
were displayed only between nodes with a similarity index of 0.3
or greater.

The PCA (Figure 3) and multivariate clustering analysis
(Figure 4) were performed in the free statistical software PAST
3.25 (Hammer et al., 2001) using the processed sequencing data
summarized in Supplementary Table 5. The paired group
(UPGMA) algorithm and the Bray-Curtis similarity index were
employed to obtain Figure 4. The statistical significance of
identified group characteristics was further analyzed using one-
way PERMANOVA test of CLR (central log ratio) transformed
data in PAST 3.25. A SIMPER (Similarity Percentage) test within
PAST 3.25 software was used for assessing which taxa are
primarily responsible for observed differences between groups
of samples and One-way ANOVA with Dunn´s post hoc test was
employed to assess the statistical significance of individual taxa
relative abundance difference among groups identified by
multivariate clustering analysis (Supplementary Table 6).
RESULTS

The sequencing statistics is summarized in the Supplementary
Table 7. In average we obtained 11334 reads/sample for HY
group, 16709 for HO group, and 11974 for AP group with
minimum 1006 reads/sample. The rarefaction curves were
calculated for a random selection of 1000 sequences to reflect
the minimum sample size, set up to cover the expected relevant
taxonomic diversity of oral microbiome samples (the
sequencing was repeated when the number of reeds per
sample was < 1000 to ensure identification of all taxa
exceeding average relative abundance 0.5%). The diversity,
evenness, and species richness parameters were estimated for
each sample (Supplementary Table 7) and were compared also
between HY HO and AP groups using one-way ANOVA with
Dunn´s post hoc test. No statistically significant difference was
identified for any parameter except for the Chao-1 richness,
statistically significantly higher in HY group when compared
to AP (p = 0.002); for HY/HO and HO/HP p was > 0.05.

Healthy and Diseased Samples Cluster
Mostly Separately but Few of Them Are
Always Misclassified
All 153 samples were clustered usingWeighted Jaccard Similarity
analysis, index value 0.3 (Figure 1). For each sample, all taxa
with relative abundance value >0.05% were included in the
analysis. Two major distinct clusters were observed: the
periodontitis-associated cluster containing mainly samples of
AP patients (red spots in Figure 1) and the health-associated
cluster covering mainly subjects without clinical signs of the
disease (green and yellow spots in Figure 1) with several samples
from all three cohorts localized in the area in between. The
periodontitis-associated cluster contains 39 samples (35 AP and
4 HO), the health-associated cluster includes 86 samples (72 HY,
11 HO, and 3 AP). Twenty-seven samples are localized in the
area connecting both the above-mentioned clusters (transient
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area, dashed line in Figure 1) and one sample (AP30) was an
outlier, not included in further analysis. The transient area
contains 6 AP and 21 H samples (19 HY + 2 HO). The one-
way PERMANOVA test confirmed the difference among the
healthy, periodontitis and transient groups with p=0.0001 for all
mutual comparisons.

In the health-associated cluster, the most abundant and
prevalent taxa are CT2 Streptococcus mitis/S. oralis, CT43
Streptococcus gordonii/S. sanguinis, CT6 Veillonella dispar/V.
parvula, CT25 Neisseria flava/N. mucosa, CT27 Neisseria
subflava, HMT14 Neisseria oralis, HMT718 Haemophilus
parainfluenzae, CT23 Haemophilus haemolyticus, CT24
Haemophilus sputorum, CT10 Prevotella histicola, CT37
Gemella morbillorum, CT48 Rothia dentocariosa, HMT22
Lautropia mirabilis, HMT37 Stenotrophomonas nitritireducens,
and CT13 Aggregatibacter aphrophilus (Table 1). The relative
abundance and in most cases also the prevalence of these taxa
remarkably decreases toward the transient area and periodontitis-
associated cluster. On the other hand, the relative abundance and
prevalence of taxa typical for periodontitis do not reach high values
in periodontal health and transient area, but the increasing trend
from the health, through the transient area to the periodontitis-
associated cluster is noticeable. Several taxa exhibit the highest
abundance and prevalence in subjects from the transient area,
namely CT3 Fusobacterium nucleatum, CT8 Porphyromonas
pasteri/P. catoniae, HMT775 Capnocytophaga sputigena, HMT329
Capnocytophaga leadbetteri and CT51 Capnocytophaga granulosa,
HMT311 Prevotella oris, CT53 Tannerella sp. and HMT623
Campylobacter gracilis.

Even though no obvious age-dependent clustering pattern
was observed, still 35% of samples from HO group (6 out of 17),
clustered together with AP or in close proximity (yellow spots in
Figure 1), but no HY sample clustered together with AP. We
compared the OM taxonomic composition of these 6 HO
samples (HO3, 7, 12-14, and 16; highlighted in Supplementary
Table 5) with a group of remaining 102 samples from healthy
individuals (HY and HO) and also a group of 45 AP samples.
The OM of these 6 HO samples resembles the diseased one, just
the relative abundance and prevalence values of main
periodontitis-associated taxa (red-complex taxa, Fretibacteria
CT12, and HMT 363, and Filifactor alocis HMT 539) are
slightly lower when compared to the AP group. On the other
hand, the average relative abundance of Fusobacterium
nucleatum is higher in these six samples. The taxa typical for
periodontal health (CT2 Streptococcus mitis/S. oralis, CT6
Veillonella dispar/V. parvula, CT25 Neisseria flava/N. mucosa)
are almost absent exhibiting the average relative abundance
values comparable to the AP group. Even though the 6 HO
individuals did not exhibit any clinical signs of the disease, their
OM taxonomic composition indicates a high risk of periodontitis
development in the future.

The OM Taxonomical Composition in Aging
The relative abundance values of selected taxa in relation to the
age and state of health are compared in Figure 2 and
summarized including the prevalence data in Table 2. Three
groups of samples were compared: HY (average age 23), HO
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(average age 46), and patients with AP (average age 33). The one-
way PERMANOVA test revealed clear difference between groups.
When Bray-Curtis was used as a similarity index, the HY and HO
were found close to each other (0.0059) but clearly different from
AP (0.94 and 0.86, resp.). Twelve taxa were identified to be the
most abundant in HY: CT6 Veillonella dispar/V. parvula, CT8
Porphyromonas pasteri; P. catoniae, CT25 Neisseria flava/N.
mucosa , HMT718 Haemophilus parainfluenzae , CT43
Streptococcus gordonii/S. sanguinis, CT10 Prevotella histicola,
CT27 Neisseria subflava, CT37 Gemella morbillorum, HMT14
Neisseria oralis, HMT22 Lautropia mirabilis, CT48 Rothia
dentocariosa, and CT23 Haemophilus haemolyticus. A nicely
visible gradual trend of diminution can be seen in the
abundance and in most cases also in prevalence of these taxa
toward to group of HO and patients with AP. On the other hand,
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in the AP group the highest abundance of periodontitis-
associated taxa CT3 Fusobacterium nucleatum, CT7 Treponema
vincentii, CT11 Treponema socranskii, CT50 Treponema
denticola, CT12 Fretibacterium sp., CT22 Porphyromonas
endodontalis, HMT619 Porphyromonas gingivalis, CT56
Campylobacter rectus, HMT274 Bacteroidales [G-2] sp.,
HMT363 Fretibacterium fastidiosum, HMT539 Filifactor alocis,
HMT613 Tannerella forsythia, and HMT643 Prevotella
intermedia was identified with an opposite trend of subsequent
decreasing of the abundance and prevalence of these taxa toward
to HO and then to HY subjects. Only a few bacterial taxa were
found to prevail in the group of HO samples: CT2 Streptococcus
mitis/S. oralis, CT51 Capnocytophaga granulosa, HMT329
Capnocytophaga leadbetteri, HMT775 Capnocytophaga
sputigena, and HMT322 Bergeyella sp.
TABLE 1 | The average relative abundance and representation of selected taxa in the health-associated cluster, transient area, and periodontitis-associated cluster.

HMT/CT health-associated cluster transient area periodontitis-associated cluster

average abundance
[%]

prevalence
[%]

average abundance
[%]

prevalence
[%]

average abundance
[%]

prevalence
[%]

CT2 Streptococcus mitis; S. oralis 20.87 100.00 4.37 96.30 0.52 48.72
CT6 Veillonella dispar; V. parvula 15.19 100.00 5.15 100.00 0.51 53.85
CT25 Neisseria flava; N. mucosa 6.54 88.37 2.37 74.07 0.89 28.21
CT43 Streptococcus gordonii; S.
sanguinis

4.97 100.00 0.65 74.07 0.12 33.33

HMT718 Haemophilus parainfluenzae 4.83 96.51 0.60 70.37 0.05 20.51
CT10 Prevotella histicola 2.48 84.88 0.71 77.78 0.17 38.46
CT27 Neisseria subflava 2.45 87.21 0.61 77.78 0.24 38.46
HMT14 Neisseria oralis 2.43 53.49 1.50 62.96 0.12 23.08
CT37 Gemella morbillorum 2.18 89.53 1.09 85.19 0.10 33.33
CT48 Rothia dentocariosa 1.95 74.42 0.31 37.04 0.17 17.95
HMT22 Lautropia mirabilis 1.93 80.23 0.40 62.96 0.09 25.64
CT23 Haemophilus haemolyticus 1.44 80.23 0.27 62.96 0.02 5.13
HMT37 Stenotrophomonas
nitritireducens

1.13 69.77 0.05 22.22 0.09 10.26

CT24 Haemophilus sputorum 1.07 66.28 0.17 44.44 0.00 5.13
CT13 Aggregatibacter aphrophilus 1.00 56.98 0.43 59.26 0.14 17.95
CT3 Fusobacterium nucleatum 4.76 97.67 31.30 100.00 23.32 100.00
CT8 Porphyromonas pasteri; P.
catoniae

2.15 82.56 13.05 92.59 0.37 41.03

HMT775 Capnocytophaga sputigena 1.37 63.95 2.63 77.78 0.09 23.08
HMT329 Capnocytophaga leadbetteri 0.56 44.19 1.91 62.96 0.12 25.64
HMT311 Prevotella oris 0.26 34.88 1.20 55.56 0.68 20.51
CT51 Capnocytophaga granulosa 0.97 34.88 1.15 66.67 0.32 43.59
CT53 Tannerella sp. 0.23 32.56 1.06 59.26 0.23 33.33
HMT623 Campylobacter gracilis 0.38 43.02 1.02 88.89 0.35 64.10
HMT619 Porphyromonas gingivalis 0.02 6.98 0.13 14.81 12.15 74.36
HMT613 Tannerella forsythia 0.01 5.81 0.21 25.93 7.29 100.00
CT12 Fretibacterium sp. 0.00 2.33 0.13 37.04 6.55 97.44
CT50 Treponema denticola 0.02 8.14 0.30 25.93 5.91 94.87
CT22 Porphyromonas endodontalis 0.20 13.95 1.34 37.04 4.17 94.87
CT7 Treponema vincentii 0.02 9.30 0.78 44.44 3.59 92.31
CT11 Treponema socranskii 0.04 13.95 0.90 48.15 3.25 100.00
HMT643 Prevotella intermedia 0.20 5.81 2.04 25.93 2.70 74.36
HMT274 Bacteroidales [G-2] sp. 0.13 11.63 0.29 37.04 2.38 69.23
HMT539 Filifactor alocis 0.05 6.98 0.03 18.52 1.57 89.74
CT56 Campylobacter rectus 0.17 36.05 0.99 70.37 1.49 87.18
HMT363 Fretibacterium fastidiosum 0.01 2.33 0.04 14.81 1.46 97.44
CT42 Treponema maltophilum 0.00 3.49 0.05 18.52 1.17 94.87
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The oral taxa predominantly abundant and prevalent in the health-associated cluster are marked green. Taxa with the highest abundance and representation in the transient area are gray
and the taxa with the highest average relative abundance and prevalence in the periodontitis-associated cluster are red. The table includes only the taxa with minimal average relative
abundance >1% and minimal prevalence >50% in at least one cluster. CT stands for combined taxon (See Supplementary Table 3).
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FIGURE 2 | The distribution of the relative abundances of selected taxa in relation to the age of probands and their state of health. (A) Taxa prevailing in
periodontitis, (B) Taxa prevailing in HY, (C) Taxon prevailing in HO. The area of box plots with oral taxa dominant in patients with AP is highlighted in red, HY in green
and one boxplot related to taxon most abundant in the HO group is highlighted in yellow. CT stands for combined taxon (See Supplementary Table 3).
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The Stomatotypes in Oral Health and
Disease
All 153 samples were analyzed using principal component
analysis (PCA; Figure 3) and hierarchical clustering analysis
based on the Bray-Curtis similarity indexes (Figure 4). All
identified taxa in each sample were taken into account in the
calculation of sample distance. In addition, in this case, the
majority of AP samples form a compact cluster (red triangles in
Figure 3) apart from a much more diffuse group of health-
associated spots (green dots and yellow squares in Figure 3). The
inner panel in Figure 3 shows the contribution of individual taxa
to the distribution of samples.

The clustering analysis based on Bray-Curtis similarity
indexes revealed two superclusters (Figure 4), one associated
mainly with periodontal health and the second with
periodontitis. The health-associated supercluster comprises two
main clusters of equal size (Cluster 1 and Cluster 2) and two
small clusters (Cluster 3a and 3b) corresponding to outliers from
Figure 1. The periodontitis-associated supercluster comprises
also two main clusters: Cluster 4 corresponding to the transient
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state, and Cluster 5 corresponding to periodontitis (compare to
Figure 1). Using one-way PERMANOVA test, the Clusters 3a
and 3b were not found to differ significantly from each other
(p = 0.33), however, when considering the Clusters 1 and 2
(health-associated), 4 (transient) and 5 (periodontits-associated),
they all mutually differ significantly (p = 0.0001). The
determining taxa for each cluster are listed in Figure 4 and in
more detail in Supplementary Table 6. For twenty most
discriminating taxa according to Simper test also One-way
ANOVA with Dunn´s post hoc test was employed to compare
the clusters (Supplementary Table 6; individual lists; statistically
significant results are highlighted in red).

Predictably, the periodontitis associated cluster Cluster 5 is
characterized by the high relative abundance of CT3 F.
nucleatum, CT12 Fretibacterium spp., and red complex taxa
HMT619 P. gingivalis, HMT613 T. forsythia, and CT50 T.
denticola. Also, the transient state-associated cluster Cluster 4
is characterized by the high relative abundance of CT3 F.
nucleatum , but in this case , accompanied by CT8
Porphyromonas pasteri/catoniae and no red-complex taxa. Two
TABLE 2 | The comparison of the relative abundance and prevalence of significant oral taxa according to the age (HY vs HO) and state of health (HY, HO and AP).

HMT/CT HY HO AP

average abundance
[%]

prevalence
[%]

average abundance
[%]

prevalence
[%]

average abundance
[%]

prevalence
[%]

CT6 Veillonella dispar; V. parvula 13.37 100.00 10.87 100.00 1.46 60.00
CT8 Porphyromonas pasteri; P.
catoniae

5.19 85.71 1.59 88.24 1.19 44.44

CT25 Neisseria flava; N. mucosa 5.44 83.52 3.03 94.12 2.66 35.56
HMT718 Haemophilus parainfluenzae 4.02 92.31 2.47 88.24 0.56 26.67
CT43 Streptococcus gordonii; S.
sanguinis

3.98 96.70 2.35 82.35 1.27 40.00

CT10 Prevotella histicola 2.37 84.62 0.77 82.35 0.25 42.22
CT27 Neisseria subflava 2.31 86.81 1.09 76.47 0.38 44.44
CT37 Gemella morbillorum 2.27 89.01 0.43 94.12 0.16 37.78
HMT14 Neisseria oralis 2.17 54.95 0.77 64.71 1.09 26.67
HMT22 Lautropia mirabilis 1.82 82.42 0.23 47.06 0.25 31.11
CT48 Rothia dentocariosa 1.64 68.13 1.05 52.94 0.43 24.44
CT23 Haemophilus haemolyticus 1.37 81.32 0.38 64.71 0.01 6.67
CT2 Streptococcus mitis; S. oralis 16.94 100.00 18.38 100.00 1.95 53.33
CT51 Capnocytophaga granulosa 1.04 40.66 1.24 58.82 0.24 20.00
HMT322 Bergeyella sp. 0.60 70.33 1.73 70.59 0.04 13.33
HMT329 Capnocytophaga leadbetteri 0.68 48.35 1.63 58.82 0.32 24.44
HMT775 Capnocytophaga sputigena 1.74 64.84 1.39 82.35 0.23 26.67
CT3 Fusobacterium nucleatum 9.48 98.90 17.23 100.00 22.44 97.78
CT7 Treponema vincentii 0.05 12.09 0.71 35.29 3.25 88.89
CT11 Treponema socranskii 0.17 17.58 0.75 47.06 2.80 88.89
CT12 Fretibacterium sp. 0.01 5.49 1.03 35.29 5.36 88.89
CT22 Porphyromonas endodontalis 0.40 9.89 1.45 58.82 3.46 91.11
CT50 Treponema denticola 0.02 4.40 1.11 47.06 4.90 86.67
CT56 Campylobacter rectus 0.38 40.66 0.63 64.71 1.21 82.22
HMT274 Bacteroidales [G-2] sp. 0.16 13.19 0.98 47.06 1.79 60.00
HMT363 Fretibacterium fastidiosum 0.01 3.30 0.38 35.29 1.14 77.78
HMT539 Filifactor alocis 0.05 5.49 0.16 41.18 1.32 75.56
HMT613 Tannerella forsythia 0.04 3.30 1.07 52.94 5.99 88.89
HMT619 Porphyromonas gingivalis 0.03 3.30 1.44 29.41 10.04 68.89
HMT643 Prevotella intermedia 0.10 2.20 1.97 47.06 3.00 71.11
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The taxa prevailing in each group are highlighted in respective color: green for HY, peach for HO, and red for AP. The table includes only taxa with minimal average relative abundance >1%
and minimal prevalence >50% in at least one group. CT stands for combined taxon (See Supplementary Table 3).
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main health-associated clusters are Cluster 1 (characterized by
CT2 Streptococcus mitis/oralis and Haemophilus spp. HMT718,
CT23, and CT24) and Cluster 2 (characterized by CT6
Veillonella rogosae/dispar, Neisseria spp. CT25, CT27, and
CT37 Gemella morbillorum). This distribution corresponds
well also with the main taxa driving the PCA distribution (the
inner panel in Figure 3). In contrast to the periodontitis-
associated cluster, the two health-associated stomatotypes are
not conclusively distinguished. They rather form a diffuse group
covering all possible combinations of health-associated taxa.
DISCUSSION

Misclassification of Samples
The Weighted Jaccard Similarity analysis (Figure 1), as well as
the PCA analysis (Figure 3), expectedly distinguished a compact
cluster of AP samples from a bigger and more diffuse cluster of
samples of healthy individuals. A similar trend was observed
earlier (Kirst et al., 2015) and it was explained as a result of
microbial succession during the onset of periodontal disease.
Kirst et al. revealed that shallow sampling sites in patients with
chronic periodontitis exhibited the highest species richness and
diversity (containing both, the health-associated taxa as well as
the taxa typical for periodontitis), while the deep periodontal
pockets contained only a limited number of species that were,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 996
moreover, quite uniform among the tested individuals. The
healthy sites were also less diverse, but the individuals differed
more, which could result from an ambiguous diagnosis of some
healthy probands, in whom the early stages of dysbiosis can
occur without any clinical signs. In our study, in order to
characterize a periodontally healthy oral microbiome, we
included the HY group, selected on purpose from young
people with precise oral hygiene, i.e. with a very low
probability of dysbiosis that could otherwise bias the results.
To contrast with the former, we also included a group of severe
periodontitis (AP) patients who are typically characterized by
unambiguous diagnosis, deep periodontal pockets, and a rapid
progression of the disease. Nevertheless, even with such a well-
distinguished set of individuals, still, several HY samples cluster
close to the AP group. From the HO group, in which the
dysbiosis preceding the periodontitis development could
already be expected, four samples cluster directly within the
AP group (Figure 1), and few AP samples, on the other hand,
cluster together with the healthy ones. The PCA analysis shows
an even bigger overlap (Figure 3).

A similar discrepancy between the microbial profile and
clinical status in some percentage of samples was already
shown previously (Kirst et al., 2015; Park et al., 2015;
Szafranski et al., 2015). PCA or PCoA analysis frequently
revealed a compact cluster of samples from periodontitis
patients, a bigger and more diffuse cluster of samples from
periodontally healthy individuals, and several outliers or
FIGURE 3 | PCA analysis of all OM samples. Red triangles represent AP samples, green spots HY, and yellow squares represent the HO samples. The inner panel
shows the contribution of selected oral taxa to the distribution. The determining taxa for each quadrant are highlighted in colors (green for periodontal health and red for
periodontitis), CT8 P. pasteri/catoniae determining the transient state is highlighted by a bigger font. CT stands for combined taxon (See Supplementary Table 3).
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FIGURE 4 | Hierarchical clustering of all OM samples based on the Bray-Curtis similarity indexes. AP samples are marked red, HO black, and HY green. The upper
measure indicates the Bray-curtis value. The determining taxa for each cluster are listed. CT stands for combined taxon (See Supplementary Table 3).
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samples assigned to an improper group. In our study, ~18% of
samples did not belong to any of the identified AP or healthy
cluster but form a connection between them (Figure 1). We
suppose that these samples represent a transient state. The
clinically healthy subjects (HY and HO) from the transient
area and the four HO samples clustering with AP would thus
probably experience dysbiosis and consequently would be at a
higher risk of periodontitis onset, while the AP samples from the
transient area could correspond to a milder course of the disease
or patients with better prognosis. Nevertheless, we must consider
also the possibility of altered functional activity of the OM as
discussed for example by Duran-Pinedo (Duran-Pinedo and
Frias-Lopez, 2015) and/or an unusual host immune response,
more tolerogenic in case of healthy subjects with unhealthy OM
and more proinflammatory in AP subjects with transient OM
(Sultan et al., 2018).

Four AP samples from our set were misclassified: One outlier
(AP30), and three samples localized within the health-associated
cluster in Figure 1 (AP26, AP35, and AP44). The outlier AP30
exhibited very high relative abundance (44%) of CT98
Propionibacterium propionicum (Supplementary Table 5; list
AP). The high relative abundance of P. propionicum is by some
authors correlated with apical periodontitis and endodontal
lesions, however, this finding has not been corroborated by
others, and there is no consensus concerning the role of P.
propionicum in the pathogenesis of the periodontal disease
(Dioguardi et al., 2020). The three remaining samples
represented typical health-associated OMs and similarly to the
AP30 they did not contain any of the above-mentioned “true
periopathogens”. Some authors explain this phenomenon with
other causes of periodontal pocket formation then periodontitis,
for example, anatomical abnormalities in labial frena (Monnet-
Corti et al., 2018). This, however, is not the case of our patients.
Two of them (AP26 and AP35) suffer from a localized form of
the disease with 5 affected teeth, and two other (AP30 and AP44)
have generalized AP with even 25 and 20 periodontal pockets,
respectively. Such an extent of the disease cannot be caused by
labial frena abnormalities. The severe periodontitis in these
individuals thus probably originated from an unusual interplay
between their OM and immune system. It is important to note,
that the 16S rDNA sequencing-based taxonomic characterization
of the OM provides a valuable, but still incomplete picture of the
oral ecosystem. The bacteria are major and very important
members of the OM, but fungi and archaea species also can
play their role, and additionally, the metabolic activity of
individual species can differ in relation to interactions with
their surroundings (Sultan et al., 2018). Consequently, more
complex diagnostic tools including proteomic or metabolomic
studies will be required to reveal the cause of inflammation and
periodontitis development in these nonstandard cases.

The most abundant and prevalent taxa in health and
periodontitis-associated cluster are consistent with previously
published data (Griffen et al., 2012; Abusleme et al., 2013; Pérez-
Chaparro et al., 2014; Kirst et al., 2015). Slightly surprising could be
very low prevalence of Aggregatibacter actinomycetemcomitans in
our AP group (the taxon was identified only in three samples;
0.11% in AP24, 3.6% in AP12, and 15.8% in AP37), because for a
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long time, this taxon has been typically associated with
periodontitis, mainly with its severe (aggressive, according to
former classification) form (Schacher et al., 2007; Henderson
et al., 2010). Nevertheless, Henderson et al., also document,
that the proportion of the population that harbors A.
actinomycetemcomitans varies dramatically between various
geographical areas and different clinical presentations of
periodontitis. For example within Europe, 23% of Dutch subjects
harbored A. actinomycetemcomitans compared to only 3% of
Spanish subjects, on the other hand in Asia it was detected in
78% of healthy Vietnamese subjects. There is no general study
concerning the prevalence of A. actinomycetemcomitans in
periodontitis patients in the Czech Republic, however, with
respect to the published geographical and ethnical variability, the
low A. actinomycetemcomitans prevalence in our cohort does not
put our diagnosis of severe (aggressive) periodontitis in question.

The OM of individuals in the transient area is characterized by
the decreased relative abundance of typical health-associated taxa
and increased relative abundance of anaerobic or facultative
anaerobic taxa (genera Fusobacterium, Porphyromonas or
Capnocytophaga), which are supposed to act as later colonizers,
facilitating further colonization by “true periopathogens” of red
complex (Socransky et al., 1998), and/or species of periodontitis-
associated genera like Treponema, Fretibacterium, or Filifactor. The
role of F. nucleatum in the subgingival biofilm formation probably
lies in the bridging amongmicroorganisms, allowing attachment of
periodontitis-specific bacteria (Kolenbrander et al., 2006;
Kolenbrander et al., 2010). The presence of F. nucleatum on its
own does not cause periodontal disease, however, its increased
abundance is undoubtedly associated with the disease (He et al.,
2012; Yang et al., 2014). The second most abundant bacteria in
samples from the transient area is CT8 Porphyromonas pasteri/
catoniae (13.05%). The genus Porphyromonas is quite unique
because some Porphyromonas species are frequently associated
with oral health (De Lillo et al., 2004; Camelo-Castillo et al.,
2015; Takeshita et al., 2016; Yasunaga et al., 2017; Rusthen et al.,
2019) while another member of the genus, Porphyromonas
gingivalis, belongs to the red-complex and it is unequivocally
disease-associated. Our results show that representatives of CT8
P. pasteri and/or P. catoniae do not form the core microbiome in
oral health but rather indicate the transient state with an increased
risk of periodontitis development. The genus Capnocytophaga is
represented in samples from the transient state by three species:
HMT 775 Capnocytophaga sputigena (2.63%), HMT329
Capnocytophaga leadbetteri (1.91%), and CT51 Capnocytophaga
granulosa (1.15%). It is not a highly abundant genus but its
relative abundance in healthy samples is remarkably lower and in
periodontitis, it almost disappears. This finding is in good
agreement with Pudakalkatt i et al . , who described
Capnocytophaga species to be the most prevalent in gingivitis (a
transient state from a clinical point of view) rather than in healthy
periodontium and periodontitis (Pudakalkatti et al., 2016). They
also claimed that Capnocytophaga has the potential to cause
periodontal disease, but as it is less competitive in the
periodontal pocket, it is usually overgrown by other rapidly
growing bacteria. The role of Capnocytophaga is also supported
by experiments published by Okuda et al., who proved that biofilm
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formation by F. nucleatum is enhanced by a soluble factor
produced by Capnocytophaga cells (Okuda et al., 2012). Another
taxon exhibiting the highest average relative abundance and
prevalence in the transient group is HMT311 Prevotella oris
(1.20%), a taxon previously proved to co-aggregate with P.
gingivalis and thus to promote the colonization of the gingiva by
P. gingivalis in early stage of biofilm formation (Sato and
Nakazawa, 2014). Finally, CT53 Tannerella sp. and HMT623
Campylobacter gracilis were also associated with the transient
state. CT53 is comprised of three Tannerella species, two of them
(HMT808, and HMT916) associated with periodontitis (Griffen
et al., 2012; Beall et al., 2018), while HMT286 having a relationship
to oral health (Leys et al., 2002). The 16S rDNA region sequenced
in this study does not allow us to differentiate these three species,
thus preventing the meaningful discussion of their role in the
development of periodontitis. The average relative abundance of
HMT623 C. gracilis in periodontal health and periodontitis is
comparable and almost negligible (<0.4%). In transient state, it
increased above 1% and also the prevalence was remarkably higher
(89% compared to 43% and 64% in both border states). This
finding corresponds well with previous association of C. gracilis
with shallow periodontal pockets rather than the deeper ones
(Macuch and Tanner, 2000). As a microaerophilic organism,
which requires an environment that contains a reduced
concentration of oxygen (Guillermo et al., 1996), C. gracilis could
be, together with the above mentioned transient state-associated
taxa, another supporting indicator of the initiating dysbiosis and
increased risk of periodontitis development.

OM Changes in Aging
Belibasakis in his recent review summarized the knowledge
concerning the OM composition changes in relation to the
aging (Belibasakis, 2018) showing that relatively simple OM in
early childhood is enriched by the acquisition of new taxa at an
early predentate imprinting period and later during the eruption
of primary teeth. During adult life, the OM composition of
healthy individuals tends to keep a dynamically balanced state
called “microbial homeostasis” comprising both natural and
repeated colonization of the oral cavity by novel taxa without a
remarkable effect on oral health. However, aging does result in
changes to the host immune system, which in turn shifts the
tolerance against microbial inhabitants of the oral cavity and
which could consequently cause dysbiosis and periodontal
disease. Besides the increasing prevalence of Actinomyces spp.
in samples from older individuals (in spite of the increased
prevalence of exposed root surfaces in higher age), no
considerable differences in the OM composition were noted
with regards to dental caries or periodontitis, between younger
and elderly healthy populations (Belibasakis, 2018).

Our analysis, nevertheless, revealed several oral taxa clearly
more abundant and/or prevalent in HO group when compared
to the HY and opposite, even though the age difference between
both groups of healthy individuals is not big (40-53 years with
average 46 in HO group vs. 19-39 years with average 23 in HY).
Generally, these changes could be summarized as an aging-
related gradual decrease of relative abundance of health-
associated taxa and an increase of taxa associated with the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 1299
transient state. The most remarkable is the increasing relative
abundance of CT3 F. nucleatum and Capnocytophaga species
and decreasing relative abundance of health-associated Neisseria
species, Lautropia mirabilis, Prevotella histicola or Gemella
morbillorum (Table 2). Quite specific is a case of CT8 P.
pasteri/P. catoniae, which average relative abundance clearly
decreases with growing age (5.19% in HY vs. 1.59% in HO),
but according to the Table 1 it is a typical taxon for the transient
state (2.15% in health vs. 13.05% in a transient state and only
0.37% in periodontitis). When considering solely the HY group,
the average relative abundance of CT8 in 19 transient samples is
15.9% while in 72 remaining samples it is only 2.35%. Similarly,
in 6 AP samples in the transient area, the average relative
abundance of CT8 is 6.49% while in the remaining 39 AP
samples it is only 0.37%. Members of CT8 P. pasteri/P.
catoniae belong to the so-called POTG (Porphyromonas other
than gingivalis) group of microorganisms (Guilloux et al., 2020).
Typically, they colonize lungs and lower airways and in some
diseases like cystic fibrosis, the relative abundance of P. catoniae
can serve as a marker to discriminate between various states of
health (Cuthbertson et al., 2016). POTG and mainly CT8 taxa
were also frequently identified in the oral cavity, but in contrast
to P. gingivalis, they were associated with periodontal health
(Abusleme et al., 2013; Camelo-Castillo et al., 2015). Our data,
however, indicate, that the increased relative abundance of CT8
is rather a marker of the transient state directing to periodontitis
(see small panel in Figure 3).

The increased average relative abundance of periodontitis
associated taxa in HO samples corresponds well with frequently
reported higher prevalence and severity of periodontal disease
among older adults (Eke et al., 2012; Baelum and López, 2013;
Eke et al., 2015; Feres et al., 2016; Ebersole et al., 2018).
Generally, the aging comes with risk factors like a higher
predisposition to other systemic diseases which can indirectly
modulate the periodontal condition (Persson, 2018), the excessive
immune response of the host to oral microbiota (Ebersole et al.,
2016) resulting in aging-related moderate loss of periodontal
attachment and alveolar bone (Burt, 1994) or higher incidence of
the exposed root surfaces, facilitating overgrowth of opportunistic
pathogens. The age was described to be a significant factor driving
the OM composition dynamics (Belibasakis, 2018; Deshpande
et al., 2018), however, the causality still remains unclear (Feres
et al., 2016; LaMonte et al., 2019).

The Stomatotypes in Periodontal Health
and Microbial Succession
The OM compositional patterns representing various global
optimal equilibria of the microbial community have recently
been referred to as “stomatotypes” (Willis et al., 2018; Willis and
Gabaldón, 2020). The yet identified stomatotypes from
systematically healthy individuals (De Filippis et al., 2014;
Takeshita et al., 2016; Zaura et al., 2017; Willis et al., 2018) are
summarized in Table 3 together with stomatotypes identified in
this study.

The comparability of the data is slightly limited by
inconsistent or even missing subject characterization and
examination of periodontal health before sampling.
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TABLE 3 | OM stomatotypes in periodontal health.
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Additionally, all the other OM samples were isolated from saliva,
which differs in microbial composition from subgingival plaque.
Certain variability in the taxonomic composition of the identified
stomatotypes can also be given by demographic differences such
as the drinking water source (Willis et al., 2018) or the prevailing
diet (Lassalle et al., 2018). Nevertheless, the separate clustering of
Streptococcus and Veillonella based OMs was generally observed
in other studies as well (Takeshita et al., 2016; Zaura et al., 2017).

Considering the current knowledge of the microbial succession
in the oral cavity during the onset of periodontal disease, and the
characteristics of identified genera, we could hypothesize, that only
the Streptococcus-based Cluster 1 represents healthy OM, while the
Cluster 2 could already represent the initial dysbiotic state. The
Cluster 1 stomatotype, and also the outliers Cluster 3a and Cluster
3b, are characterized by the predominant presence of early
colonizers like Streptococcus, Neisseria (Mahajan et al., 2013),
Haemophilus (Kolenbrander et al., 1993), and Rothia (Sulyanto
et al., 2019) involved in the initial plaque formation. Samples from
the stomatotype Cluster 2 also contain early colonizers of genera
Neisseria and Gemella (Mahajan et al., 2013), but most remarkably
they are exceptionally rich in Veillonella species. The genus
Veillonella is considered to be a pioneer colonizer as well
(Sulyanto et al., 2019), but among others, it is the only highly
abundant anaerobic taxon assigned generally to periodontal health.
Veillonella species possess two characteristics that rank them
among the most important bridging taxa in the oral biofilm
community. They can utilize the lactate generated mainly by
streptococci as their primary energy and carbon source, and they
produce catalase protecting F. nucleatum and othermore fastidious
anaerobes against hydrogen peroxide (Rogosa and Bishop, 1964).
Veillonella also produces nutrients for the survival and growth of
periodontal pathogens (Zhou et al., 2017). Therefore, we
hypothesize, that the stomatotype Cluster 2 still represents
clinically healthy individuals but already with an increased risk
of periodontitis development. A further stage in the disease onset
and progression could be represented by Cluster 4 (the transient
state) with the increased relative abundance of anaerobic CT3 F.
nucleatum and CT8 Porphyromonas pasteri/catoniae but still no or
a negligible amount of true periopathogens and mostly no clinical
signs of the disease. F. nucleatum forms a coaggregation bridge
between early aerobic colonizers and other bacteria including
anaerobic members of the red complex (P. gingivalis, T.
forsythia, and T. denticola) (Bradshaw et al., 1998; Mahajan
et al., 2013). This ability of F. nucleatum to coaggregate with a
wide variety of partner strains is highly unusual (Kolenbrander
et al., 2002; Kolenbrander et al., 2006). It has been shown that
fusobacteria play a role in protecting against atmospheric oxygen
and hydrogen peroxide in the oral biofilm and even support the
growth of anaerobes, such as Porphyromonas gingivalis, under
aerated conditions (Diaz et al., 2002). The presence of F. nucleatum
in a higher amount thus would enable the periodontitis-associated
bacteria to overgrowth the first colonizers.

Nevertheless, it is not only the taxonomic composition of the
OM but the overall metabolic activity in the oral habitat
including the host response to microbial production, which are
the critical factors distinguishing between oral health and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 14101
dysbiosis resulting in any type of oral pathogenesis. In the
majority (~ 90%) of samples, the OM taxonomic composition
corresponds well to the state of health and can serve as a fast
diagnostic tool, however, still, there are individuals with atypical
OM taxonomic composition, the atypical metabolic activity of
typical OM or unusual immune reaction toward usual OM – in
all these cases, the evaluation of proteome and/or metabolome
could provide a more accurate image.
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Research on the human microbiome has mainly been restricted to the identification of
most abundant microbiota associated with health or disease. Their abundance may reflect
their capacity to exploit their niche, however, metabolic functions exerted by low-
abundant microrganisms can impact the dysbiotic signature of local microbial habitats.
This scoping review aims to map the literature regarding the management of low-
abundant microorganisms in studies investigating human microbiome samples. A
systematic literature search was performed in 5 electronic databases, as well as grey
literature. We selected clinical microbiome studies targeting human participants of any
age, from any body site. We also included studies with secondary data which originated
from human biofilm samples. All of the papers used next-generation sequencing (NGS)
techniques in their methodology. A total of 826 manuscripts were retrieved, of which 42
were included in this review and 22 reported low-abundant bacteria (LB) in samples taken
from 7 body sites (breast, gut, oral cavity, skin, stomach, upper respiratory tract (URT),
and vagina). Four studies reported microbes at abundance levels between 5 and 20%, 8
studies reported between 1 and 5%, and 18 studies reported below 1%. Fifteen papers
mentioned fungi and/or archaea, and from those only 4 (fungi) and 2 (archaea) produced
data regarding the abundance of these domains. While most studies were directed
towards describing the taxonomy, diversity and abundance of the highly abundant
species, low-abundant species have largely been overlooked. Indeed, most studies
select a cut-off value at <1% for low-abundant organisms to be excluded in their
analyses. This practice may compromise the true diversity and influence of all members
of the human microbiota. Despite their low abundance and signature in biofilms, they may
generate important markers contributing to dysbiosis, in a sort of ‘butterfly effect’. A
detailed snapshot of the physiological, biological mechanisms at play, including virulence
determinants in the context of a dysbiotic community, may help better understand the
health-disease transition.
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INTRODUCTION

Advances in high-throughput sequencing approaches have
revolutionised microbiology and enabled the characterization
of the complex ecological contents of microbial communities,
however, our understanding of the mechanisms impacting host-
microbial homeostasis remains limited (Hajishengallis et al.,
2012). Changes to the human gut microbial composition, for
example, can influence host health and diseases, and may affect
the microbiota at other body sites (Banerjee et al., 2018). A
concept of pathogenicity influenced by both microorganisms and
the host has been proposed in the damage-response framework
(Casadevall and Pirofski, 2003).

Research on the human microbiome has mainly been restricted
to comparisons of the most abundant organisms and the
identification of a “core” microbiota associated with health or
disease. Indeed, the core microbiome may reflect their capacity to
exploit their niche, being favoured by nutrients, O2 concentrations,
etc. to allow surface colonisation. However, opportunistic pathogens
may contribute to the compositional and or functional shift towards
dysbiosis and could be among the minority taxa. Key species could
therefore easily be overlooked in next generation sequencing (NGS)
analyses (Turnbaugh et al., 2007; Zerón, 2014).

Furthermore, studiesusinga16SrRNAmetagenomicapproachare
limited to the identification of bacteria and archaeae (arguably
accurately to the genus level), leaving the view of the richness and
diversity of the whole microbiome incomplete and underestimated
(Brooks et al., 2015). This is certainly true for Methanobrevibacter
smithii, a member of the Archaea domain in a relatively minor
constituent of the gut microbiome that contributes to bacterial
metabolism in ways that promote host dysbiosis (Hajishengallis
et al., 2012). This species and its methanogenic relatives, though in
low abundance, have been demonstrated to be capable of providing
conditions for the growth of pathogenic bacteria in periodontal sites,
driving to periodontitis (Lepp et al., 2004). The composition of the
microbial communities can be misinterpreted regarding the presence
ofvirus, archaea, andfungi,making it achallenge togainaholisticview.

Subsequently, low-abundant microrganisms could be considered
the “dark matter” of the human microbiome. Recent studies
(Hajishengallis and Lamont, 2016; Wang et al., 2017; Banerjee
et al., 2018; Stobernack, 2019; Berg et al., 2020; Xiao et al., 2020)
are paying more attention to these organisms, and increasingly taking
into account the “keystone species” concept, corresponding to
organisms which effect on the community is disproportionately
large compared to their relative abundance (Power et al., 1996). A
similar concept in macroecology suggests species in low abundance
have a major role in their respective community (Hajishengallis et al.,
2012). Abundance is the factor differentiating keystone
microorganisms from those that are dominant. A dominant species
might affect the environment exclusively by its sheer abundance,
while a keystone microorganism may influence metabolic functions
of the microbiome, despite its low abundance. Examples of keystone
pathogens are: Porphyromonas gingivalis associated with periodontitis
(Holt and Ebersole, 2005; Perez-Chaparro et al., 2014; Burmistrz et al.,
2015; Camelo-Castillo et al., 2015; Ai et al., 2017; Stobernack, 2019),
Klebsiella pneumonia, Proteus mirabilis (Garrett et al., 2010), and
Citrobacter rodentium (Bry et al., 2006) associated with intestinal
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2105
inflammatory diseases; and Fusobacterium nucleatum (Kostic et al.,
2013; Rubinstein et al., 2013) associated with colon cancer (Banerjee
et al., 2018). Furthermore, studies investigating Bacteroides fragilis, a
pro-oncogenic bacterium, have found it to be a minor constituent of
the colon microbiota in terms of relative abundance. Its unique
virulence characteristics, such as secretion of a zinc-dependent
metalloprotease toxin, alter colonic epithelial cells and mucosal
immune function to promote oncogenic mucosal events, in which
in addition to the intraluminal environment, enhance the oncogenic
process. This gave rise to the concept of “alpha-bugs”, due to its ability
to be directly pro-oncogenic but also to be capable of remodeling the
entire healthy microbiota (Sears and Pardoll, 2011; Hajishengallis
et al., 2012). Thus, the identification of low-abundant organisms
within amicrobial population associated with disease could be crucial.
Unless we have a more “complete” view of the microbiota, including
an accurate detection of low-abundant species, our understanding of
the microbiology remains limited, as well as our strategy to improve
therapy designs/interventions in diseases with polymicrobial cause.

Studies of the minority microrganisms may reveal unique
signatures, which could lead to diseases. Hence, a much deeper
characterization of their presence in the microbiome in which
they are involved is desirable. This scoping review aims to map
the literature regarding the management of low-abundant
organisms in studies investigating human samples. We aimed
to determine: 1) How researchers classify organisms as low-
abundant; 2) How they handled and processed NGS data of low-
abundant organisms bioinformatically and 3) The distibution of
low-abundant microorganisms among various body sites.

METHODS

Study Design
This is a scoping review to map the literature on low-abundant
organisms in the human microbiome, conducted using the
PRISMA Extension for Scoping Reviews (PRISMA-ScR)
checklist (Tricco et al., 2018).

Search Strategy
Systematic literature wide opened search was performed in
electronic databases, also including the grey literature (Figure
1). General controlled vocabulary (MeSH Terms) and keywords
were used and the searches had no language, year, or publication
type restriction. The main terms included “microbiota”,
“microbiome”, “human microbiota”, “low abundant”, “minority
species”, “keystone”. The search strategy and the results retrieved
in each electronic database are shown in Appendix 1. Duplicated
references were removed by the reference manager EndNoteWeb
(Clarivate Analytics, Mumbai) and then manually.

Eligibility Criteria
Studies were included if they satisfied all the following criteria: (1)
clinical studies where the target population consisted of humans of
any age who were donors of samples from any site; (2) the study
design was either a observational study, case series, or any other type
of clinical study or studies with secondary data originated from
humans; and (3) studies with any term related to low-abundant
organisms (e.g. keystones, minority species) in title or abstract.
May 2021 | Volume 11 | Article 689197
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Studies were excluded if: 1) Studies did not apply next-
generation sequencing (NGS) methods to evaluate the
microbiota; 2) They were designed as intervention studies; 3)
They were literature review, conference abstracts, in vitro or
animal studies, or any other kind of study carried out without
human samples in a primary or secondary analysis; and 4) They
were written in a non-Latin alphabet.

Selection of the Manuscripts
Two reviewers, JAC and JYZ, independently screened the eligibility of
all identified titles and abstracts for inclusion in the full-text review at
the Rayyan QCRI® (Qatar Computer Research Institute, Qatar). Any
conflict that arose were resolved by a third reviewer. The same
reviewers evaluated full-text articles for inclusion using the same
inclusion and exclusion criteria. The list of selected articles was
analysed to identify manuscripts that could have been lost during
searches in the electronic database.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3106
Data Extraction
Data extraction was performed by the two reviewers independently,
and included the following information: Author (year), country,
design of the study, range of age of patients, sampling site, type of
sample, the platform of sequencing; method of sequencing (16S
rRNA or metagenomics or metranscriptomics), method of data
analysis and bioinformatics; and abundance of species considered as
low-abundant/minority microrganisms. All extracted data was
checked by a third reviewer.

RESULTS AND DISCUSSION
Characteristics of the Selected Studies
The systematic literature search resulted in 826 manuscripts of
which 67 were considered for full-text review after removing
duplicates and applying the eligibility criteria. Following full text
reading, 42 studies remained (Figure 1; Table 1). Figure 2 shows
FIGURE 1 | Flow diagram for study selection according to PRISMA guidelines. *Some studies sampled multiple sites in one study.
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TABLE 1 | Qualitative Data Synthesis of the Included Studies (n = 42).

Low-abundant microbiota

Porphyromonas gingivalis, Haemophilus haemolyticus,
Prevotella melaninogenica, and Capnocytophaga
ochracea were considered potential keystones.
Atopobium vaginae, Streptococcus devriesei,
Lactobacillus acidophilus, Weissella viridescens.

Saccharibacteria (TM7) and SR1.

s Porphyromonas gingivalis (2.22%),
Treponema denticola (1.10%) and Fretibacterium sp.
OT 361
(0.67%) in supragingival plaque;
Prevotella_intermedia (0.56%) in the saliva;
Porphyromonas endodontalis (plaque 0.89%; saliva
0.91%).
H. pylori-infected children harboured significantly
reduced proportions of three bacterial classes
(Actinobacteria, Bacilli, and Gammaproteobacteria),
three orders (Pseudomonadales, Actinomycetales,
and Lactobacillales) and four families
(Streptococcaceae, Moraxellaceae,
Actinomycetaceae, and Carneobacteriaceae)
compared with fluids from non-infected children, but
all with proportion >1%.
Desulfobulbus (especially D. propionicus) and Filifactor
(F. alocis) with the periodontal inflammation severity,
and a negative association of Anaeroglobus
(especially A. geminatus) and TM7.
Corynebacterium, Neisseria, Actinomyces, or Rothia,
among others, accounting for 9% of the reads.

At phylum level: Chlorobi, Chloroflexi, Deferribacteres,
Deinococcus-Thermus, Gemmatimonadetes, OP10,
Planctomycetes, Thermodesulfobacteria, WS3.
Thaumarchaeota.

Phylum (Verrucomicrobia, Tenericutes and
Fusobacteria);
Class (Verrucomicrobia, Mollicutes and Fusobacteria);
Order (Verrucomicrobiales, Bifidobacteriales,
Desulfovibrionales, Anaeroplasmatales,
Fusobacteriales, Rhizobiales, and Caulobacterales).

t Low abundance of Bifidobacteria and butyrate-
producing species in children with b-cell
autoimmunity..
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low abundant

(Ai et al., 2017) Oral 43 Illumina
sequencing

Secondary data from
metagenomics (Duran-
Pinedo and Yost)

TagCleaner, PRINSEQ, Deconseq e
FLASH, MetaPhlAn, GRAMMy, Network
analysis

NA

(Albert et al., 2015) Vagina 310 454 GS Junior
pyrosequencer

cpn60 PCR amplicon Reads were mapped using Bowtie 2,
microbial Profiling

4 species represented
less than 0.3% of the
overall reads mapped.Using Metagenomic Assembly pipeline

(mPUMA)
(Al-hebshi et al., 2016) Oral 12 454 GS FLX

pyrosequencer
16S rRNA (V1-V3) Uchime, SILVA-HOMD database,

ChimeraSlayer, BLASTN identity ≥98%
Together making up
0.77%

(Balan et al., 2018) Oral 24 Illumina MiSeq 16s rRNA (V4) UPARSE (97%), Uchime, RDP Classifier
v.2.2 against the Greengenes database,
alignment at SILVA 108, Identification of
keystone species was done using the
CytoHubba plugin.

>0.5%<5.28% (keystone
identification)

(Brawner et al., 2017) Stomach 86 Illumina
platform

16S rRNA (V4) UCLUST (100%), filter >10 reads, RDB
classifier, Multiple sequence, alignment
with PyNAST.

OTUs <1% were not
analysed.

(Camelo-Castillo et al.,
2015)

Oral 60 454 GS FLX
pyrosequencer

16S rRNA MG-RAST, Monthur, RDB classifier,
BLASTN (>97%).

<1%

(Camelo-Castillo et al.,
2019)

URT 56 454 GS FLX
pyrosequencer

16S rRNA (V1-V4) Prinseq, RDP database (80%),
OUT>97% identify.

OTUs <0.1% were not
analysed;
Low abundance at <1%

(Claussen et al., 2017) Gut 822 454 GS FLX
pyrosequencer

16S rRNA (V1-V2) Entropy Shifts of Abundance Vectors
under Boolean Operations (ESABO).

0.1%-0.4%

(Dame-Teixeira et al.,
2020)

Oral Ion PGM 16S rRNA Prinseq, USEARCH, UCLUST (97%);
RDP, SILVA 132.

≤0.035%

(Das et al., 2018) Gut 84 454 GS FLX
pyrosequencer

16S rRNA (V1-V5) UCLUST (97%); RDP; SILVA. 0.01%-0.05% in at least
50% of the samples.

(de Goffau et al., 2013) Gut 18 454 GS FLX
pyrosequencer

16S rRNA (V1-V3) RDP classifier, SILVA OTUs <0.005% were no
analysed;
Low abundance at <12%
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TABLE 1 | Continued

Low-abundant microbiota

Low abundance of Lactobacillus sp. in Necrotizing
Enterocolitis (NEC);
4 day of life (without NEC) = Firmicutes (13.14%) and
Actinobacteria (2.47%);
5-7 day of life (without NEC) = Bacteroidetes
(13.47%) and Actinobacteria (0.54%);
Fungi (Saccharomyceta class) = 0.38%, no virus or
archaea detected.
Cyanothece, Bacillus, Streptococcus; Salmonella,
Pantoea, Cupriavidus; Rothia, Faecalibacterium,
Acinetobacter.
The WGS approach was better at identifying
microbes with a low abundance.
Bacteroides fragilis and Bacteroides stercosis act as
keystone species.

74 fungi genera detected (7 in high abundance);
Authors declare that low-abundance genera may
represent environmental fungi present in the oral
cavity and could simply be spores inhaled from the air
or material ingested with food.
20 minor bacterial species in one subject with
completely negative culture;
Low-abundance taxa were detected in 4.5% of
cultures.
Candida krusei and Candida parapsilosis.

Gemmiger formicilis, Oscillibacter ruminantium,
Roseburia faecis and Faecalibacterium prausnitzii
were significantly higher in the controls than in
cirrhotic patients, being classified as keystone
species.
Unclassified Clostridiales (associated with the group
with focal or intense FDG uptake in the intestine).

Butyrate-producing bacteria, including
Bifidobacterium (B. adolescentis), Roseburia (R.
faecis), Faecalibacterium (F. prausnitzii), Gemmiger (G.
formicilis), Ruminococcus (R. bromii) and
Veillonellaceae (Dialister).
Uncultured OTUs were of low abundance (<0.8%
relative abundance) in the culture-independent
sequencing;
12 OTUs with relative abundances >0.1% were not
cultured from the donor samples and included

(Continued)
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(Dobbler et al., 2017) Gut 132 PGM Ion
Torrent;

16s rRNA (V4); BMP Operating System (BMPOS),
UPARSE, UCLUST (97%) method
against the Greengenes 13.5 database

>0.5 (16S rRNA)

Oxford
Nanopore
MinION.

Metagenomics. >0.38% (metagenomics)

(Feng et al., 2015) Ascites 7 Illumina Miseq 16S rDNA (v3) BLAST NCBI (98.5% similarity); NA

Illumina Hiseq Whole Genome
Sequencing (WGS)

NCBI mega-blast (90% identity).

(Fisher and Mehta,
2014)

Gut NA NA Secondary data from
metagenomics (Caporaso
et al.)

Data were obtained from the MGRAST
database;

NA

Learning Interactions from MIcrobial
Time Series (LIMITS).

(Ghannoum et al.,
2010)

Oral 20 454 GS FLX
pyrosequencer

ITS1F-ITS4A (mycobiome) BLAST Genbank (98%), Fungal ITS
sequences were compared with the
Assembling Fungal Tree of Life
(AFTOL).

OTUs <1% were not
analysed.

(Hauser et al., 2015) URT 54 454 GS FLX
pyrosequencer

16S rRNA (V1-V3) Uchime, BLAST SILVA, 111NR (95%) OTUs <1% were not
analysed.

(Heisel et al., 2015) Gut 11 Illumina MiSeq ITS2 of the 18S rDNA
fungal locus

UCLUST, USEARCH, alignment using
MUSCLE, Mothur (hash.txt and
fungalITSdatabaseID)

Present at <1.5% mean
abundance across all
samples.Validation with qPCR

(Iebba et al., 2018) Gut, blood 60 Illumina MiSeq 16S rRNA (V3-V4) Python v.2.7.11, Mothur v.1.38.1,
SILVA v.1.1961

≥0.5%

(Kang et al., 2017) Gut 1463 Illumina MiSeq 16S rRNA (V3-V4) USERCH 6.1 within the QIIME (97%
similarity).

OTUs <0.005% were not
analysed;
Low abundance = 4.1%.

(Kowalska-Duplaga
et al., 2019)

Gut 82 Illumina MiSeq 16S rRNA (V3-V4) QIIME2, DADA2, Greengenes database
(99% similarity).

Low abundance in
Crohn’s disease: 0.67%,
0.27%, 0.49%, 3.89%,
0.62%, and 0.35%,
respectively.

(Lau et al., 2016) Gut 5 Illumina MiSeq 16S rRNA (v3) Cutadapt, PANDAseq, AbundantOTU,
QIIME, Greengenes database (97%
similarity).

OTUs <0.01% were not
analysed;

Low abundance = <1%.
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TABLE 1 | Continued

Low-abundant microbiota

Cyanobacteria, Clostridia, Mollicutes, and
Bacteroidetes.
Buccal mucosa (Coriobacteriaceae Atopobium,
Prevotellaceae unclassified, Bacilli unclassified,
Lachnospiraceae Catonella).
Hard palate (Clostridiales Family XIII. Mogibacterium,
Lachnospiraceae Catonella).
Keratinized gingiva (Bacilli unclassified).
Palatine tonsils (Clostridiales Family XIII.
Mogibacterium, Firmicutes unclassified).
Saliva (Actinomycetales unclassified,
Porphyromonadaceae Tannerella, Neisseriaceae
Kingella).
Subgingival plaque (Firmicutes unclassified).
Supragingival plaque (Betaproteobacteria
unclassified).
Throat (Clostridiales Family XIII. Mogibacterium,
Firmicutes unclassified). Tongue dorsum
(Actinomycetales unclassified, Bacilli unclassified,
Peptostreptococcaceae Peptostreptococcus).
Anterior nares (Pseudomonadaceae Pseudomonas).
Stool (Streptococcaceae Streptococcus).
Keystone fungal genera (Bovista, Erysiphe,
Psathyrella, etc.)

Chloroflexi, Tenericutes, Proteobacteria and candidate
division TM7;
Mobiluncus.in low abundance (not described the %).
Collinsella aerofaciens and P. copri is a possible
keystones for cardiac valve calcification and coronary
artery disease.
Prevotellaceae in one of the groups of children.

Mycobiome is relatively low abundant;
ITS2 sequencing provided greater resolution of the
relatively low abundance mycobiome constituents.

Corynebacterium, Staphylococcus in some sites.

Phylum level: Tenericutes, Synergistes

(Continued)
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(Li et al., 2013) Oral, skin,
distal gut,
and vaginal

200 454 GS FLX
pyrosequencer

16S rRNA Taxonomic Variance, Binomial
Distribution qualify Presence and
Absence, Ubiquity vs. Abundance (Ub-
Ab) Plots, Ubiquity-Ubiquity Plots (U-U
Plots), HMP Consortium.

OTUs <0.01%/90%
ubiquity were not
analysed;
Definition of low
abundance <1% (minor
core taxa).

(Li et al., 2019) Oral 35 Illumina MiSeq 16 rRNA and ITS2 UPARSE (>97% identity), RDB
classifier, UNITE database.

Core mycobiome: OTUs
<0.1% were not analysed;
Key oral fungal microbiota:
OTUs with frequencies of
at least 50% and relative
abundances of ≥0.5%
were analysed.

(Ling et al., 2010) Vaginal 100 454 GS FLX
pyrosequencer

16s rRNA (V3) MOTHUR (versão 1.5.0), RDP Classifier
(80%), MEGA.

0.1-1.0% of total
sequences.

(Liu et al., 2019) Gut 119 Illumina MiSeq 16S rRNA (V4-V5) BIPES pipeline, AUCHIME, QIIME
(1.9.1) USEARCH, PyNAST,
Greengenes database, RDP Classifier.

OTUs with median in any
group <0.3% were not
analysed.

(Nakayama et al.,
2017)

Gut 43 454 GS FLX
pyrosequencer

16S rRNA (V6-V8) QIIME, USEARCH (97% identity), RDP
classifier.

<1%.

(Nash et al., 2017) Gut 147 Illumina MiSeq 16S rRNA (V3-V5) USEARCH, UCHIME, NCBI GenBank
Plant (including fungi) and
Environmental databases, SILVA
(bacteria), UPARSE, DIAMOND
(metagenomics).

–

18S rRNA (ITS2)
Metagenomics(fungi)

(Ozkan et al., 2019) Skin ocular 104 Illumina MiSeq 16S rRNA (V4) UNOISE, USEARCH, Silva 128. OTUs <1% across all
samples were not
analysed.

(Rocas et al., 2016) Oral 10 Illumina MiSeq 16s rRNA (V4) Mothur v.1.36.1, Silva, UCHIME, RDP
classifier (80%)

<0.1% not shown
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TABLE 1 | Continued

Low-abundant microbiota

Genus level: Megasphaera, Hawardela, Slakia,
Filifactor, Parviromonas, Tannarella, Scardovia, others.
Bifidobacteria and lactobacilli in low abundance in few
samples.
Tannerella, Olsenella, Filifactor, and Treponema
(dentin carious lesions);
Streptococcus mutans (enamel and dentin carious
lesions);
Porphiromonas (enamel carious lesions).
Bacterioides;
Prevotella in the group >70 years-old.

Cyanobacterial, Chloroplast, Firmicutes,
Asteroleplasma, Proteobacterial, Thalassospira,
Burkholderia, Comanonadaceae, Bacteroidetes,
Prevolellaceae, Actinobacteria, Mobiluncus, Sutterella,
Bacteriodetes, Prevotella, Fusobacteria,
Fusobacteriales.

A high abundance of Proteobacteria and Fusobacteria
was observed in most septic shock patients, whereas
low abundance was observed in healthy subjects.

Haemophilus spp., Neisseria spp., Rothia sp. A.
aphrophilus, Bergeyella sp. clone oral AK152, and S.
rubneri were in low abundance in both the caries
group and the transitional group after the 6 month
follow-up.
Streptococcus and Rothia (0.68%) keep low
abundance in orofarynx microbiota of children ≤1 year
old;
Oropharynx: Atopobium, Moraxella (0.42, 0.51%).
A lower relative abundance for Faecalibacterium
(Faecalibacterium prausnitzii), Ruminococcus
(Ruminococcus sp_5_1_39BFAA), Corprococcus,
Eubacterium rectale, and Dorea was observed in the
centenarians;
Description of the Archaea domain;
Methanobrevibacter was enriched.

On family level (Ruminococcaceae and
Christensenellaceae abundance lower in ileal Crohn’s
disease group).
Low abundance of butyrate-producing bacteria
(Lachnospiraceae, Ruminococcaceae,
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(Sakwinska et al.,
2016)

Breast milk 90 Illumina MiSeq 16s rRNA (V4); Mothur, Silva, RDP classifier (80%). 0.03%-0.5%.
Confirmation by qPCR.

(Simón-Soro et al.,
2014)

Oral 13 454 GS FLX
pyrosequencer

16S rRNA Uchime, assigned to Ribosomal
Database Project with 97% identity;
RDP pyrosequencing pipeline;
BLASTN>99%

0.02%- 1%

(Singh and Manning,
2016)

Gut 200 454 GS FLX
pyrosequencer

16S rRNA (V3-V5) QUIIME, USEARCH, Greengenes
database,

No cuttoff defined in the
methods, but OTUs with
0.03% were described.

(Son et al., 2015) Gut 59 Illumina MiSeq 16S rRNA (V1-V2 and V1-
V3)

Uchime, Silva. OTUs with a maximal
relative abundance
<0.0001 and with a
prevalence <0.01 were
culled;
Low abundance (at the
genera level) threshold of
significance FDR<0.1

(Wan et al., 2018) Gut 30 Illumina MiSeq 16S rRNA (V3-V4) QIIME, Monthur. No cuttoff defined in the
methods, but OTUs with
0.12% were described;
Low abundance described
as 3.53%, 0.12%.

(Wang et al., 2017) Oral 41 PacBio RS II 16S rRNA (V1-V9) Pacbio circular consensus sequencing,
Mothur v.1.36.1, UCHIME, QIIME (97%
similarity).

OTUs with a median
relative abundance
<0.01% were not
analysed.

(Zhang et al., 2018) URT 98 Illumina MiSeq 16S rRNA QIIME. No cuttoff defined in the
methods, but OTUs with
0.42% were described.

(Wu et al., 2019) Gut 59 Illumina HiSeq Paired-end metagenomic
sequencing.

MetaPhlAn2. Relative abundance lower
than 5 in the centenarians;

Low-abundant genera
were summed into one
group to plot.

(Zakrzewski et al.,
2019)

Colon 73 Illumina MiSeq 16S rRNA (V3-V4) QUIIME, Greengenes database (97%
identity), UCLUST, UCHIME.

NA

(Zeng et al., 2019) Gut 141 Illumina HiSeq
2500

16S rRNA (V4) QIIME, Greengenes database (97%
identity), DADA2.

<0.1%
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the distribution of the papers by sampling site. Within them, the
gastrointestinal tract and the oral cavity were the most studied
ones. It may be due to the higher number of dysbiosis-related
diseases or higher bacterial diversity in those sites, since only 10
out of the 42 articles exclusively analyzed samples from healthy
individuals, and another 2 did not describe the status of health or
disease, as they involved analysis of secondary data. The other
sites included the vagina, respiratory system, skin, and blood.
According to Hamady et al. (Hamady and Knight, 2009), the
majority of microbiome studies describe the use of 16S rRNA
gene sequencing for archaea and bacteria, and 18S rRNA gene
sequencing for eukaryotes, which have limitations for the
accurate identification to the species level.

Figure 3 shows the distribution of sequencing platforms
used in the 42 selected articles. The most routinely used
sequencing platforms were Illumina, followed by 454/Roche.
Although these platforms are different in terms of biochemistry
and in the way the matrix is generated, their workflows are
conceptually similar (Shendure and Ji, 2008). A study of gut,
mouth and skin samples from two subjects found that the
composition of the gut and oral communities were not
significantly dissimilar when either 454/Roche or Illumina
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FIGURE 3 | Distribution of studies by platforms of sequencing.
FIGURE 2 | Distribution of the literature papers of low abundant organisms
by sample’s sites.
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(Figure 3) were used, albeit the communities of the skin were
significantly different. This difference was attributed to bias
associated with the primers (Caporaso et al., 2011).

Low-Abundant Bacteria (LB)
Out of 42 articles, 20 were excluded from the summary of sample
site-related low abundant bacterial species, because the data on
microbial abundance were unavailable or no information on low
abundance rate was provided. In the remaining 22 studies, low-
abundant bacteria (LB) have been reported in the biofilm samples
taken from 7 body sites (breast, gut, oral cavity, skin, stomach, upper
respiratory tract (URT), and vagina). LB were determined and
displayed as the relative abundance of a given operational
taxonomic unit (OTU), relative to the total sequencing reads. In
total, 4 studies reported LB at abundance levels between 5 and 20%,
6 studies reported between 1 and 5%, and 16 studies reported below
1%. Here we summarized the information of those LB detected at
abundance levels below 1%. The information on bacterial phyla can
be extracted from all 22 studies, hence it is possible to summarize
the major phyla of LB per sample site.

Table 2 summarizes how frequent a phylum was reported as
LB (<1%) per site in the 22 studies. The frequency is indicated by
the number of studies which have reported LB. In total, 6
different phyla have been reported as LB in more than 2
different studies or in more than 2 different body sites. Gut
and oral cavity are the most examined body sites. Out of 6
different phyla, 5 phyla were reported in gut and 6 were reported
in oral cavity. Actinobacteria and Firmicutes were the most
frequently reported LB among various body sites .
Actinobacteria has been found as LB in 6 different body sites.
Firmicutes and Proteobacteria were found as LB in 5 different
body sites. Compared to the gut, the oral cavity contains a site-
specific LB phyla, Spirochaetes.

Table 3 shows the bacterial taxa at the genus level within the
major LB phyla (Actinobacteria, Bacteroidetes, Firmicutes and
Proteobacteria) (<1% abundance). The oral cavity and gut were
the most studied body sites, where a low-abundant genus was
detected in more than two studies. The reported LB at the genus
level in gut was generally different from those of the oral cavity.
Only 3 LB genera have been found in both gut and oral cavity,
namely, Bifidobacterium, Prevotella and Streptococcus. No LB
genus can be reliably identified either in the gut or the oral cavity,
since the listed genera were only reported by 1 or 2 studies, which
may infer on the diversity of the LB in the human body, or could
be biased by sequencing/analysis methods employed.

Actinobacteria were most often reported as a low-abundant
phylum among all body sites. In the gut, Actinobacteria are
relatively scarce, but have a high degree of ecological connection
and are positively correlated with the diversity of the intestinal
microbiome, playing an important role in the biodegradation of
complex starch. It may be involved in the prevention of dysbiosis
in patients with inflammatory bowel disease (Trosvik and de
Muinck, 2015). When very abundant, Actinobacteria are
associated with obesity (White et al., 2009). In the oral cavity,
members of this phylum are part of the healthy microbiota and
their abundance varies at each oral sites, however in dental
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9112
plaque, for example, their abundance is less than 1% (Peterson
et al., 2013; Palmer, 2014).

Low-Abundance of Other Organisms
Archaea and fungi (eukaryotes) are usually reported in low
abundance, however, this detection should be viewed with
caution and further studies are always encouraged to validate
and confirm the data. From the 42 selected articles, only 15
mentioned fungi and/or archaea, and from those only 4 (fungi)
and 2 (archaea) showed data regarding the abundance of these
domains. Ghannoum et al. (2010) described that low-
abundance genera may be transient, and represent
environmental fungi present in the oral cavity and could
simply be spores inhaled from the air or material ingested
with food (Ghannoum et al., 2010). They have shown several
species not described before in the oral cavity. Heisel et al.
showed Candida krusei and Candida parapsilosis in >1.5%
mean abundance in all analysed faecal samples (Heisel et al.,
2015). Wu et al., 2019, using shotgun metagenomics, identified
methanogenic archaea within the core microbiota, enriched in
individuals aged >100 years old (Wu et al., 2019). This
technique may therefore be preferrable to 16S rRNA to
identify this domain of microrganisms.

The low abundance related to these domains in other studies
may be linked to the sample collection method, detection probe,
pair of primers used, sequencing technique, and low number of
sequences registered in current databases (Ghannoum et al., 2010;
Heisel et al., 2015; Dame-Teixeira et al., 2020). Furthermore, the
study of the microbial community through the use of 16S rRNA
sequencing and shotgun metagenomic methods allows analysis of
the composition and genetic capabilities of the microbiota, but not
the particularities of the role of low abundance in the microbial
community, and of microbial community interactions (Centanni
et al., 2018). Microbial communities are complex and constantly
changing in response to their environment, influenced by various
factors such as diet, use of antibiotics, exposure to transient
microorganisms. In this case, other OMICS techniques can be
used to understand how microbes react to the environment,
including metatranscriptomics, proteomics and metabolomics.
Those approaches give a holistic view of the sample content, and
a clearer idea of inter-domain interactions within the
human microbiome.

Bioinformatics and Data Analysis
on Low-Abundant Organisms
Since 1977, DNA-sequencing technology has evolved at a fast
pace, and is reshaping our understanding of biology (Srivastava,
2011). Next generation sequencing (NGS) was introduced for
the first time in 2005, extending the previous advantages
achieved by Sanger sequencing, and facilitated the increase in
generated data, while decreasing the cost of sequencing
(Buermans and Den Dunnen, 2014). NGS is marked by the
construction of libraries, enabling massively parallel sequencing,
which has been increasingly simplified, and a higher throughput
compared to Sanger sequencing (Ekblom and Galindo, 2011;
Muzzey et al., 2015).
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Nevertheless, NGS has some limitations including issues with
alignment of short read sequences, detection of artifacts and
microbial contaminants present in samples, in addition to the
presence of human nucleic acids in clinical samples, thus limiting
the analytical sensitivity of microbial detection (Davis et al.,
2018). One solution to this limitation was presented as the use of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10113
targeted sequencing of the 16S rRNA gene. This gene is now
considered as a reference in microbial ecology studies. However,
the use of 16S rRNA-based molecular methods do not allow for a
high resolution of microbiota identification, because there are
biases introduced into molecular community analysis by many
factors, such as sample handling, DNA extraction, PCR and
TABLE 2 | Number of studiesa reported low abundant taxa (relative abundance <1%) at the level of phylum.

Phylum Number of studies per site (n) Total
(n)

References

Breast Gut Oral
cavity

Skin Stomach URT Vagina

Actinobacteria 1 3 3 0 1 1 1 10 (Li et al., 2013; Simón-Soro et al., 2014; Albert et al., 2015; Son et al., 2015;
Rocas et al., 2016; Sakwinska et al., 2016; Brawner et al., 2017; Das et al., 2018;
Camelo-Castillo et al., 2019; Kowalska-Duplaga et al., 2019)

Bacteroidetes 0 2 4 0 0 0 0 6 (Li et al., 2013; Simón-Soro et al., 2014; Son et al., 2015; Rocas et al., 2016;
Nakayama et al., 2017; Balan et al., 2018)

Firmicutes 1 4 3 0 1 0 1 10 (Li et al., 2013; Simón-Soro et al., 2014; Albert et al., 2015; Son et al., 2015;
Rocas et al., 2016; Sakwinska et al., 2016; Brawner et al., 2017; Kowalska-
Duplaga et al., 2019; Zeng et al., 2019)

Fusobacteria 0 3 1 0 0 0 0 4 (Son et al., 2015; Rocas et al., 2016; Das et al., 2018; Wan et al., 2018)
Proteobacteria 0 2 2 1 1 1 0 7 (Li et al., 2013; Son et al., 2015; Rocas et al., 2016; Brawner et al., 2017; Das

et al., 2018; Wan et al., 2018; Camelo-Castillo et al., 2019)
Spirochaetes 0 0 2 0 0 0 0 2 (Simón-Soro et al., 2014; Rocas et al., 2016)
athe phylum reported by at least 2 different studies or found in at least 2 different body sites was included.
TABLE 3 | Number of studies which reported low abundant taxa (relative abundance <1%) collected from gut and oral cavity.

Taxa identified Number of studies per
site (n)

References

Phylum Genus Gut Oral cavity

Actinobacteria Actinomyces — 1 (Simón-Soro et al., 2014)
Atopobium — 1 (Li et al., 2013)
Bifidobacterium 1 2 (Simón-Soro et al., 2014; Rocas et al., 2016; Sakwinska et al., 2016; Kowalska-Duplaga et al., 2019)
Mobiluncus 1 — (Son et al., 2015)
Olsenella — 1 (Simón-Soro et al., 2014)
Unclassified 1 1 (Li et al., 2013; Das et al., 2018)

Bacteroidetes Prevotella 2 2 (Son et al., 2015; Rocas et al., 2016; Nakayama et al., 2017; Balan et al., 2018)
Tannerella — 2 (Li et al., 2013; Simón-Soro et al., 2014)
Unclassified 1 1 (Li et al., 2013; Son et al., 2015)

Firmicutes Catonella — 1 (Li et al., 2013)
Dialister 1 — (Kowalska-Duplaga et al., 2019)
Faecalibacterium 2 — (Kowalska-Duplaga et al., 2019; Zeng et al., 2019)
Filifactor — 1 (Simón-Soro et al., 2014)
Lachnospira 1 — (Zeng et al., 2019)
Oscillospira 1 — (Zeng et al., 2019)
Peptostreptococcus — 1 (Li et al., 2013)
Roseburia 2 — (Kowalska-Duplaga et al., 2019; Zeng et al., 2019)
Ruminococcus 1 — (Kowalska-Duplaga et al., 2019)
Staphylococcus — 1 (Rocas et al., 2016)
Streptococcus 1 1 (Li et al., 2013; Simón-Soro et al., 2014)
Unclassified 2 1 (Li et al., 2013; Son et al., 2015; Zeng et al., 2019)

Proteobacteria Burkholderia 1 — (Son et al., 2015)
Kingella — 1 (Li et al., 2013)
Ochrobactrum — 1 (Rocas et al., 2016)
Pseudomonas — 1 (Rocas et al., 2016)
Sutterella 1 — (Son et al., 2015)
Thalassospira 1 — (Son et al., 2015)
Unclassified 2 1 (Li et al., 2013; Son et al., 2015; Das et al., 2018)
—, indicates that the genus was not reported in this body site.
The genera in bold are those identified in both gut and oral sites.
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partial sequence of the 16S rRNA gene (ranging between the V1
and V4 regions) (Case et al., 2007). To reduce contamination
with sequence artifacts or low accuracy of read alignment, some
studies remove sequence reads attributed to low-abundance
operational taxonomic units (OTUs) obtained by amplicon
sequencing of the 16S rRNA gene. However, it is necessary to
perform the analyses with caution, because sequence data
associated with these low-abundant taxa may be biologically
significant. Therefore, it may not be recommended to exclude
these data even if the distinction between expected and
unexpected sequences is not always straightforward (Lazarevic
et al., 2016).

While microbiome studies generally describe the
taxonomy, diversity and abundance of the highly abundant
microbes, low-abundant species have been overlooked. Most
studies included in this scoping review select a cut-off value at
<1% for an organism to be considered low abundant, although
some studies have reported OTUs representing 0.003% of the
relative abundance (Table 3). The choice of such cut-off value
were attributed to low read count and or other considerations
such as technical artefacts, contaminations, and the presence
of transient species. However, by excluding these OTUs from
the analysis, the full richness and diversity of the microbiota is
underestimated. Camelo-Castillo et al. (2019) stated that only
the OTUs representing over 0.1% of the total sequences of each
sample were considered for their analysis, as low-frequency
reads, including singletons, are more likely to represent
sequencing errors, contaminants, or transient organisms
without a biological role at the niche under study. Although
artifacts and errors are expected, important signals from low-
abundant members of microbial community, including
keystone organisms, may be lost due to the current technical
limitations provided by this strategy. As affirmed before, low-
abundant species can be responsible for major functions on the
microbial community such as processing certain secondary
metabolites. An example comprises organisms from the
Archaea domain, that can be detected with 16S rRNA deep
sequencing but in very low abundance. Those microrganisms,
particularly the methanogens, play a unique role by using
hydrogen to produce methane, modulating the environment
and were previously described as keystone pathogens
associated with periodontal diseases (Camelo-Castillo
et al., 2019).

To overcome this limitation, an interesting approach was
applied by Li et al (2019), that defined a core microbiome based
on high ubiquity taxa in conjunction with a characteristic of
high abundance such that the significance of both
measurements can be made with a sufficient degree of
confidence across and within samples. Using this approach,
they were able to classify OTUs with low abundance (<1%) that
were highly prevalent across the samples. The authors proposed
that larger sample size and sequencing depth are necessary, so
that the detection of low abundant taxa may be considered non-
spurious across the donors (Li et al., 2019). We believe that
defining the ubiquity of the low-abundant microrganisms is a
good strategy that should be better explored. A clearer cut-off
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11114
point to confirm the presence and importance of such species
should urgently be defined (minimum values of the sample size,
as well as the ubiquity).

Another approach was recommended by Liu et al. (2013), and
based on single-read-based, instead of assembly-based
classification which has a higher resolution for the
characterization of the composition and structure of
microbiota, especially for species in low abundance. Their
composition and phylogeny-based algorithm uses the strategy
of composition comparison, and is capable of classifying millions
of very short reads relatively quickly (Liu et al., 2013). Zhang et al
(2019) also described two DNA extraction methods (using
prolonged lysis and homogenizing methods) which presented
marked differences specifically to the low abundance genera
(Zhang et al., 2019), and might represent an important
improvement in the field.

Metagenomic studies produce high-throughput sequence data
that attempt to classify the taxonomy and function of all
microbial communities and are greatly affected by the presence
of sequencing errors that may influence the estimation of
taxonomic diversity (Keegan et al., 2012). There are noise and
errors in the sequencing data that can be influenced by the type of
platform used. In the studies included in this review, the most
commonly used platform was Illumina. With this platform, when
errors occur, they are predominantly substitution-type and the
error percentage for most Illumina sequence reads is
approximately 0.5% (1 error in 200 bases) (Mardis, 2013). The
Ion Torrent PGM and 454 GS Junior platforms produced a higher
error rate associated with homopolymers around 1.5 and 0.38
errors per 100 bases, respectively (Loman et al., 2012). All
platforms are considered suitable for metagenomic sequencing,
but no instrument can generate completely accurate data sets,
each technology has advantages and disadvantages (Luo et al.,
2012). The length of reads generated, sequencing depth and error
rates may be taken into account when choosing the most
appropriate platform to use. For example, longer reads as those
provided by MiSeq (Illumina), Ion Torrent, PacBio and Oxford
Nanopore Technologies, are important to consider when carrying
out 16S rRNA metagenomics, or genome sequencing (Winand
et al., 2020).
CONCLUSION

There is currently no consensus in the literature on the
classification of low-abundant organisms. Some studies have
described such organisms being detected at less than 1%
relative abundance, however, most studies use the same cutoff
point (i.e. <1%) to exclude them, due to the risk of contamination
or artifacts. This practice may compromise the identification of
the true diversity of human microbiota. Domains other than
Bacteria are neglected due to the cut-off, excluding OTUs with
relative abundance lower than 0.1% or 1%. Representatives of
Archaea, Fungi or Viruses are little explored. There is growing
interest in developing new bioinformatics tools, such as single-
read-based, instead of assembly-based, classification to obtain a
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https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Cena et al. Low-Abundant Human Microbiota
higher resolution of the taxonomic analysis. Also, the ubiquity
classification associated with the abundance could be a good
strategy to identify the low-abundant microbiota. To achieve
this, higher sequencing depths should be used in future
microbiome investigations, as well as more holistic approaches
including shotgun metagenomics should be employed to have a
better view of the richness and diversity at play in health, disease
and dysbiotic stages.
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Objective: Microorganisms play a key role in the initiation and progression of periodontal
disease. Research studies have focused on seeking specific microorganisms for
diagnosing and monitoring the outcome of periodontitis treatment. Large samples may
help to discover novel potential biomarkers and capture the common characteristics
among different periodontitis patients. This study examines how to screen and merge
high-quality periodontitis-related sequence datasets from several similar projects to
analyze and mine the potential information comprehensively.

Methods: In all, 943 subgingival samples from nine publications were included based on
predetermined screening criteria. A uniform pipeline (QIIME2) was applied to clean the raw
sequence datasets and merge them together. Microbial structure, biomarkers, and
correlation network were explored between periodontitis and healthy individuals. The
microbiota patterns at different periodontal pocket depths were described. Additionally,
potential microbial functions and metabolic pathways were predicted using PICRUSt to
assess the differences between health and periodontitis.

Results: The subgingival microbial communities and functions in subjects with
periodontitis were significantly different from those in healthy subjects. Treponema,
TG5, Desulfobulbus, Catonella, Bacteroides, Aggregatibacter, Peptostreptococcus,
and Eikenella were periodontitis biomarkers, while Veillonella, Corynebacterium,
Neisseria, Rothia, Paludibacter, Capnocytophaga, and Kingella were signature of
healthy periodontium. With the variation of pocket depth from shallow to deep pocket,
the proportion of Spirochaetes, Bacteroidetes, TM7, and Fusobacteria increased,
whereas that of Proteobacteria and Actinobacteria decreased. Synergistic relationships
were observed among different pathobionts and negative relationships were noted
between periodontal pathobionts and healthy microbiota.

Conclusion: This study shows significant differences in the oral microbial community and
potential metabolic pathways between the periodontitis and healthy groups.
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Our integrated analysis provides potential biomarkers and directions for in-depth
research. Moreover, a new method for integrating similar sequence data is shown here
that can be applied to other microbial-related areas.
Keywords: 16S, periodontitis, bacteria, microbiome, metabolite, biomarker, high-throughput nucleotide sequencing
INTRODUCTION

Periodontitis is an inflammatory condition affecting periodontal
tissue and is the result of uncontrolled gingivitis (Chapple et al.,
2018). The pathogenesis of periodontitis remains unclear, and
the diagnosis of periodontitis heavily depends on the clinical
manifestation and periodontal detection indicators (periodontal
probing depth, clinical attachment loss, bleeding on probing, and
alveolar bone loss) (Kinane et al., 2017; Papapanou et al., 2018).
At present, it is widely acknowledged that dental plaque is the
key initiating factor. Destruction of the periodontium is
attributed to microbial dysbiosis as well as the excessive
immune response of the hosts (Kinane et al., 2017). The
transition from healthy gingiva to periodontitis occurs because
of the accumulation of pathogenic microorganisms and is
affected by multiple risk factors such as modifiable habits and
immutable genetic predisposition, eventually leading to oral
ecological disturbance (Genco and Borgnakke, 2013;
Papapanou et al., 2018). However, no specific pathobionts have
yet been identified. This may be because we have overlooked
specific pathobionts that are low in number, or that an
imbalanced microbiota is the underlying cause, rather than
specific pathobionts. For instance, the red complex in
subgingival plaque (Porphyromonas gingival, Treponema
denticola, and Tannerella forsythia) play an important role in
periodontal dysbiosis (Socransky et al., 1998).

Previous studies have analyzed the correlation between
microorganisms and periodontitis. Nevertheless, in vitro
bacterial cultures and polymerase chain reaction (PCR)-based
analysis alone limit the ability to observe the complex profiles of
subgingival microbiota. Next-generation sequencing technology
has been widely used in microecology, which has the ability to
present the whole appearance of microbiota and enable
researchers to explore multiple dimensions of microbial
communities (Gu et al., 2019). Combined with conserved 16S
ribosomal RNA targeted assays, the external interference by host
genes can be eliminated, and it can accurately identify and
quantify various microorganisms (Cummings et al., 2016). The
evolutionary and taxonomic relationships among microorganisms
can also be evaluated, in addition to predicting their characteristic
properties and metabolic pathways (Langille et al., 2013).

Several studies have been conducted on human oral microbiota
in subjects with healthy periodontal tissue, gingivitis, and different
states of periodontitis. Samples are collected from different sites
including the supragingival area (Galimanas et al., 2014),
subgingival plaque (Tsai et al., 2018), saliva (Chen et al., 2018),
and gingival crevicular fluid (Pei et al., 2020). The current trend is
to explore target samples to identify sensitive pathogenic
biomarkers by microbiology, metabolomics, or multiomics
gy | www.frontiersin.org 2119
(Su et al., 2020). However, studies in a small sample can be
disturbed by diversified confounders that may lead to biased
conclusions. Therefore, there should be a way to use existing
data to realize the hidden information mining, aimed at
identifying the common microbial characteristics of periodontitis.
To this end, we screened high-quality sequence datasets, merged,
and processed data under a unified standard. Finally, we analyzed
oral microbial communities to identify the common characteristic
microorganisms as well as the functions and potential metabolic
pathways in different periodontitis patients.
MATERIALS AND METHODS

Microbiome Data Source Collection and
Eligibility Criteria
All included microbial datasets were retrieved according to the
predetermined design. Relevant studies and data were collected
by December 30, 2020, through electronic databases: (1) The
National Library of Medicine (MEDLINE by PubMed) was
searched using the following keywords: ((((periodontitis) OR
(chronic periodontitis)) OR (aggressive periodontitis)) OR
(periodontal disease)) AND (16S) AND (subgingival). (2) The
Genomes of National Center for Biotechnology Information was
searched using the following search strategy: 16S [All Fields]
AND periodontitis [All Fields] AND subgingival [All Fields].
The search results yielded 919 publications. All abstracts were
browsed and selected by two authors (Z.W. Cai and S.L. Lin) to
remove duplicate and non-clinical original articles. Only
subgingival microbial sequencing-related studies were retained.
The full text of 38 studies was obtained. We searched for the
details including study design information, inclusion criteria of
participants, and the results of clinical periodontal indicators, to
assess whether the inclusion criteria and the results of clinical
periodontal indices were consistent with our predetermined
criteria, which were based on the latest classification of
periodontal disease (Chapple et al., 2018; Papapanou et al.,
2018). The inclusion criteria for the periodontitis group were
as follows: (1) periodontal probing depth (PPD) >4 mm,
(2) clinical attachment loss (CAL) >3 mm, and (3) bleeding on
probing (BOP) at >10% of sites. The inclusion criteria for healthy
individuals were as follows: (1) without PPD or PPD <4 mm,
(2) mean CAL <2 mm, and (3) mean BOP <10%. The exclusion
criteria for all subjects were (1) pregnancy or systemic disease,
(2) periodontal therapy sought within the past 3 months, and
(3) use of antibiotics in the past 3 months. Twenty-two studies
were eliminated because of unavailable sequence datasets or
June 2021 | Volume 11 | Article 663756
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because they did not meet our predetermined criteria
(Supplementary Material 1). Sixteen articles were included
and their datasets downloaded from NCBI or ENA.

Raw Sequence Processing and Re-Filter
The 16 raw sequence datasets were merged and processed with a
uniform standard via QIIME2 pipeline version 2020.8 using
default parameters (Bolyen et al., 2019). DADA2 (Wolf and
Evans, 2018) was used to denoise the data and assess the
sequence quality score (QS). The parameters for trimming and
truncation settings were 10 and 150, respectively. Samples with
overall quality <25 were eliminated. Then, the amplicon sequence
variants (ASVs, obtained from DADA2) sequence data were
clustered into operational taxonomic units (OTUs) at 97%
similarity in closed-reference of the Greengenes database gg-13-8
version (DeSantis et al., 2006), and the Feature Table was created.
Through this step, we matched the different short reads with the
representative sequence. The short reads without a matching
representative sequence in the library were eliminated, and the
representative sequence taxa were classified with a trained Naïve
Bayesian classifier for their annotations (Wang et al., 2007).
Next, we re-filtered the Feature Table to eliminate samples with
microbial features <4 or the frequency of microorganism <1000.
Finally, seven more publications were eliminated because they
were not suited for further analysis (Supplementary Material 1);
nine datasets were included in the final analysis (Table 1). The
risk of bias in the included studies was assessed according to the
Downs-Black checklist (Supplementary Material 2) (Downs and
Black, 1998). Two authors (Z.W. Cai and S.S. Hu) independently
assessed the risk of bias, and any disagreement was resolved
through consultation with the third author (L. Zhao). The quality
level of eight studies was fair, and one study was of good quality.
The average score of the nine articles was 16.25, and the equality
level was fair. Figure 1 shows the flow diagram of the process of
literature selection.

Datasets for Analysis
The datasets from nine publications (Griffen et al., 2012; Galimanas
et al., 2014; Bizzarro et al., 2016; Califf et al., 2017; Chen et al., 2018;
Pérez-Chaparro et al., 2018; Wei et al., 2019; Liu et al., 2020;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3120
Shi et al., 2020) were divided into two groups—periodontal disease
(PD) and healthy control (HC)—according to our predetermined
criteria. The mean age of the HC group was 34.4 ± 7.1 years, and
the mean age of the PD group was 43.7 ± 8.2 years. Some samples
collected from different sites (such as supragingival dental plaque,
tongue, and saliva) were excluded. Only subgingival samples were
included for the analysis, which could better demonstrate the
relationship between microorganisms and periodontitis. Other
irrelevant confounding factors were also eliminated as much as
possible: data of patients with periodontitis who were post-treated
with sodium hypochlorite in Califf’s study were deleted. The
patients treated with antibiotics in Bizzarro’s study or post-
treated with no-surgical periodontal treatment in Chen’s study
were removed. The healthy group in Griffen’s study was excluded
because some participants’ BOPwas >10%.Moreover, three studies
(Bizzarro et al., 2016; Califf et al., 2017; Pérez-Chaparro et al., 2018)
with definite parameters of periodontal pocket depth were selected
to explore the relationship between clinical periodontal pocket
depth and the variation of microbiota. The other six studies were
not included because there were no specific pocket depth
parameters supported in the original metadata. The subgingival
samples were divided into the following four groups based on the
periodontal pocket depth: 0–3 mm (healthy control); 3–4 mm; 5–6
mm; and 7–9 mm.

Statistics Analysis
The microbial structure was evaluated by alpha diversity (Shannon
diversity index, Observed features vector, Simpson diversity index,
and Chao1 index) and beta diversity (Jaccard distance, Bray-Curtis
distance, unweighted UniFrac distance, and weighted UniFrac
distance matrix) based on a rarifying sample depth of 1000 in
QIIME2 (Bolyen et al., 2019). Beta diversity was tested by
multivariate homogeneity of dispersions (PERMDISP)
(Anderson, 2006) and permutational multivariate analysis of
variance (PERMANOVA) (Anderson, 2001) to test the
homogenous dispersion and variance between groups. Microbial
composition analysis was carried out on the Microbiome-Analyst
platform (Chong et al., 2020). Default parameters were used to
preprocess the data, which included a count filter and a variance
filter. The count filter removed the samples in small number, and
the variance filter deleted the constant features in each group.
TABLE 1 | Summary of the studies included in pooled analysis.

Author Accession Sample-source Region Description (Number of participants)

HC PD

Califf et al. PRJEB19122 Sub, Supra V4V5 – 34
Galimanas et al. PRJEB6047 Sub, Supra V3 11 13
Bizzarro et al. PRJNA289294 Sub V5-V7 – 37
Griffen et al. SRP009299 Sub V1V2/V4 – 29
Wei et al. PRJNA509532 Sub, Buccal mucosa V4V5 9 23
Shi et al. SRP228020 Sub, GCF V4 10 24
Liu et al. SRP102224 Sub V3V4 – 12
Pérez et al. PRJNA324274 Sub V3 7 9
Chen et al. SRP075100 Sub, Saliva V4 21 48
June 2021 | Volume
PD, periodontal disease; HC, healthy control; Sub, subgingival plaque; Supra, supragingival plaque; GCF, gingival crevicular fluid.
Some samples in those sequence datasets were removed due to not meeting the inclusion criteria.
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Centered log ratio (CLR) transformation was performed for
normalization prior to data analysis. The Mann–Whitney U test
was selected as the default statistical test. Linear discriminant
analysis effect size (LEfSe) was adopted for the microbial
comparison analysis (significance level, p<0.05 and linear
discriminant analysis [LDA] score >2 were chosen to
characterize the phenotype) (Segata et al., 2011). Correlation
network analysis used Spearman’s rank correlation with the
threshold set to 0.3. Microbial community function was
predicted via PICRUSt (Langille et al., 2013) to explore the
potential interactions among host, environment, and microbial
community. The principle was to match the whole genome of the
corresponding homologous ancestor through 16S sequencing, and
then map it to metabolites as well as pathways to achieve
functional prediction. The enrichment pathway analysis of the
PD and HC groups was on level 2 and 3 functional dimensions
based on the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database (www.kegg.jp). RNA-seq methods (Algorithm: edgeR,
adjusted p-value cut-off: <0.05) were adopted to analyze the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4121
significant difference in microbial functions and microbiota at
different pocket depths (Robinson et al., 2010).
RESULTS

Oral Microbial Structure and Composition
The beta diversity (Jaccard distance matrix, p<0.001,
PERMANOVA) demonstrated the clusters of subgingival
microbial structure between the PD and HC groups
(Figure 2A). It also showed inhomogeneous dispersion
between both groups (Jaccard distance matrix, p<0.001,
PERMDISP), which means that both location effect and
dispersion effect existed. Other beta diversity analyses are
presented in Supplementary Figure 1A. The alpha diversity
Chao1 and observed index showed significant difference
(p<0.01), whereas the Simpson and Shannon index showed no
difference between HC and PD (Supplementary Figure 1B).
FIGURE 1 | Modified flow diagram of collecting and screening articles, processing, and re-filtering data.
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A taxonomic bar plot was used to compare the profile of HC and
PD groups at the phylum level (Figure 2B). It was observed that
the microbial community in PD was more complex than that in
HC, and the proportions of several phyla changed, which was
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5122
regarded as a state of dysbiosis. The pie chart shows differences in
microbial composition between HC and PD on the phylum level
(Figure 2C). The dominant phyla of PD were Firmicutes (27%),
Fusobacteria (17%), Proteobacteria (16%), Bacteroidetes (16%),
A B

D

C

FIGURE 2 | (A) The 3D-PCoA plot based on Jaccard distance matrix (p<0.001, PERMANOVA) illustrates the beta diversity of oral microbiota. PD (periodontitis, red
spots), HC (healthy control, blue spots). (B) The taxonomic bar plots on the phylum level. Each column represents a sample (HC left and PD right), and each small
fragment in different colors represents different phyla. (C) The pie charts demonstrate the difference of microbial composition between HC (left) and PD (right) on the
phylum level. Different colors correspond to the phyla on the list. (D) The subcategories composition of four phyla. Each pair of pie charts shows the comparison of
microbial abundance between HC and PD on the genus level (*p < 0.05; **p < 0.01; ***p < 0.001, tested by RNA-seq methods, algorithm: edgeR).
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Actinobacteria (15%), and Spirochaetes (6%). The dominant
phyla of HC were Firmicutes (25%), Proteobacteria (24%),
Fusobacteria (18%), Actinobacteria (16%), Bacteroidetes (13%),
and Spirochaetes (3%). To illustrate the subtle differences in the
composition of HC and PD, we compared the composition of
subcategories of some phyla between HC and PD separately:
Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria
(Figure 2D). In Firmicutes, the genus Veillonella (p<0.001)
increased in HC, whereas Selenomonas and Dialister (p<0.001)
were seen more abundantly in PD. In Proteobacteria, the genus
Neisseria (p<0.001) and Lautropia (p<0.001) were found
abundantly in HC, while Desulfobulbus (p<0.001) was rich in PD.
In Bacteroidetes, the proportion of Porphyromonas (p<0.01)
increased, whereas Capnocytophaga (p<0.001) and Paludibacter
(p<0.001) decreased in PD. In phylum Actinobacteria,
Corynebacterium (p<0.01) increased in HC. LEfSe was used
to identify significant differences in taxa. (1) On the class
level: the biomarkers of PD were Bacteroidia, Spirochaetes,
Synergistia, and Deltaproteobacteria, while Actinobacteria,
Betaproteobacteria, and Flavobacteria were the biomarkers of HC.
(2) On the genus level: Treponema, TG5, Desulfobulbus, Catonella,
Bacteroides, Aggregatibacter, Peptostreptococcus, and Eikenella were
biomarkers for periodontitis, while Veillonella, Corynebacterium,
Neisseria, Rothia, Paludibacter, Capnocytophaga, and Kingella were
biomarkers for the healthy group (Figure 3A).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6123
Microbial Correlation Network
Correlation network analysis among the microbial community is
shown in Table 2. The characteristic genera of PD, i.e.,
Treponema, Tannerella, TG5, Desulfobulbus, Porphyromonas,
Treponema, and Filifactor were positively correlated with each
other (Figure 3B). There were also positive correlations between
normal oral bacteria and healthy-related microbes (Kingella,
Capnocytophaga, Rothia, Veillonella, Streptococcus, and
Corynebacterium). Negative correlations were between oral
normal microbes and periodontal pathobionts. For example,
TG5, Treponema, Tannerella, and Desulfobulbus were
negatively correlated with Kingella as well as Veillonella. More
relationships among the microbial community are presented in
Supplementary Material 3.

Microbial Composition Changing With PPD
The taxa plot displayed the microbial abundance of different pocket
depths on the phylum level.With the variation of PPD from shallow
to deep pockets, the proportion of Spirochaetes, Bacteroidetes, TM7,
and Fusobacteria increased, whereas Proteobacteria and
Actinobacteria decreased (Figure 4A). The microbial composition
of HCs (PPD: 0–3 mm), shallow layer (PPD: 3–4 mm) group, and
deep layer (PPD: 7–9 mm) group are shown on the genus level in
Figure 4B. Healthy controls consisted of Neisseria, Streptococcus,
and some other bacteria. The shallow layer group consisted of
A B

FIGURE 3 | (A) The ordinate is the taxa with significant differences between the groups, and the abscissa is a bar graph to visually display the LDA analysis
logarithmic score value of each taxa. The longer the length, the more significant the difference in the taxon. Red bars indicate periodontitis and blue bars indicate
healthy control. (B) The network analysis shows the correlation between microorganisms on the genus level. Each genus is colored according to its phylum. The
edges show greater correlations and the node size reflects the abundance. Red and blue lines represent positive and negative correlations, respectively.
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Fusobacterium, Corynebacterium, Actinomyces, Streptococcus, and
some other bacteria. In the deep layer (PPD: 7–9 mm) group,
Fusobacterium, Porphyromonas, and Treponemawere the dominant
genera. The comparison of microorganisms in the deep layer and
the shallow layer are presented in Table 3. In the deep layer,
Desulfobulbus, TG5, SHD_231, Tannerella, Porphyromonas, and
some other pathobionts increased significantly, whereas
Pseudomonas, Haemophilus, Actinomyces, Capnocytophaga, and
some oral normal bacteria decreased significantly. A heatmap was
used to show the correlations among different taxa and PPD
(Figure 4C). The correlation coefficient between the pathobionts
(such as Mogibacterium, Tannerella, Filifactor, TG5, Treponema,
Desulfobulbus, and Peptostreptococcus) and the deep periodontal
pockets is higher than the correlation coefficient between these
pathobionts and the shallow pocket depth. These pathobionts
illustrated an increasing trend with the deepening of
pocket depth. In contrast, some microorganisms such as
Corynebacterium, Rothia, Kingella, Neisseria, and Haemophilus
had a higher correlation coefficient in the groups with healthy
(PPD: 0–3 mm) and shallow (PPD: 3–4 mm) pocket depths.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7124
These normal microbes displayed a decreasing trend with the
pocket depth.

Microbial Community Functions Analysis
The KEGG functional orthologs (KOs) were gathered to
comprehensively analyze the involved enrichment pathways.
The function and pathways of microbes between the PD and
HC groups were compared on different functional dimensions. At
level 2, cell motility, cellular processing and signaling, nucleotide
metabolism, metabolism of cofactors and vitamins, and nervous
system function were significantly different (p<0.05). At level 3,
bacterial motility proteins and flagellar assembly increased in the
PD group. There were some differences in amino acid metabolism
(e.g., tyrosine, histidine, D-arginine, D-ornithine, and glycine)
between the HC and PD groups. Synthesis and degradation of
ketone bodies, nitrogen metabolism, and sulfur metabolism were
also significantly different (p<0.05). Part of the significant
functions and pathways are shown in Table 4. More details
about the differential analysis on levels 2 and 3 are provided in
Supplementary Material 4 and 5. The random forest model
TABLE 2 | Correlation network analysis of the microbial community.

Taxon1 Taxon2 Correlation P.value Statistic

Treponema TG5 0.7191 <0.01 32561635.83
Desulfobulbus TG5 0.6455 <0.01 41094316.01
Tannerella Treponema 0.5774 <0.01 48986356.52
Desulfobulbus Treponema 0.5446 <0.01 52793791.74
Tannerella TG5 0.5364 <0.01 53736459.74
Capnocytophaga Kingella 0.5071 <0.01 57139373.92
Kingella Rothia 0.4634 <0.01 62197661.63
Corynebacterium Rothia 0.4582 <0.01 62806659.08
Streptococcus Veillonella 0.4462 <0.01 64198665.84
Rothia Streptococcus 0.4448 <0.01 64356577.13
Dialister Prevotella 0.4427 <0.01 64602407.19
Desulfobulbus Tannerella 0.4417 <0.01 64720393.22
Corynebacterium Lautropia 0.4357 <0.01 65409187.11
Filifactor Treponema 0.4325 <0.01 65785509.61
Peptococcus Treponema 0.429 <0.01 66187131.79
Actinomyces Rothia 0.4137 <0.01 67957682.15
Porphyromonas Tannerella 0.4076 <0.01 68666527.88
Paludibacter Treponema 0.4049 <0.01 68985946.96
Campylobacter Fusobacterium 0.4016 <0.01 69367430.26
Desulfobulbus Vestibaculum 0.3982 <0.01 69759006.29
Mogibacterium TG5 0.3982 <0.01 69763542.92
Porphyromonas TG5 0.393 <0.01 70363518.18
Paludibacter Tannerella 0.3885 <0.01 70882356.24
Mogibacterium Treponema 0.3855 <0.01 71235324.49
Fusobacterium Selenomonas 0.3812 <0.01 71724014.35
Bacteroides TG5 0.3793 <0.01 71948445.92
Porphyromonas Treponema 0.377 <0.01 72212475.12
Desulfobulbus Mogibacterium 0.3711 <0.01 72897777.71
Rothia TG5 -0.3042 <0.01 151183647.29
Capnocytophaga Desulfobulbus -0.3091 <0.01 151744548.94
Desulfobulbus Kingella -0.325 <0.01 153592374.07
TG5 Veillonella -0.3299 <0.01 154162465.49
Kingella Tannerella -0.3476 <0.01 156211678.52
Treponema Veillonella -0.3685 <0.01 158629770.93
Capnocytophaga Treponema -0.375 <0.01 159392440.50
Capnocytophaga TG5 -0.3865 <0.01 160722624.16
Kingella TG5 -0.4239 <0.01 165050919.50
Kingella Treponema -0.4479 <0.01 167842107.45
June 2021 | Volume 11 |
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C

ontal probing depth (0–3 mm, 3–4 mm, 5–6 mm, and 7–9 mm). (B) Three pie charts display the genera
genera whose abundance are less than 1%. (C) The heatmap shows the correlations between taxa and
ion coefficient between a taxon and PPD group (red lattice, positive correlation; green lattice, negative
bes decrease (blue box).
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FIGURE 4 | (A) The taxonomic bar plots on the genus level. Each bar represents a group of different period
(abundance >1%) in the sites of PPD 0–3 mm, 3–4 mm, and 7–9 mm. The taxonomy “others” is a cluster of
PPD. Each column represents a sample, each row represents a taxon, and each lattice represents a correlat
correlation). With the deepening of pocket depth, the pathobionts increase (red box) and some normal micro

125

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Cai et al. Microbiome in Health and Periodontitis
distinguished PD from HC almost without error (class
error<0.01), implying special functions and metabolic pathways
of periodontitis-related microbiota (Supplementary Figure 2).
DISCUSSION

Overall Review
Our study elucidated the subgingival microbial structure of
periodontitis patients via integrated datasets. Extensive
literature searches and rigorous screening criteria were
performed. Datasets were merged and processed using uniform
standards for eventual analysis. Subgingival microbial
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9126
community, periodontitis biomarkers, potential functions of
microbiota, and their collaborative network were also
evaluated. Furthermore, we described the variation of
microbial composition in different PPDs. Our results showed
that some pathobionts were consistent with those reported in
previous studies (Kirst et al., 2015; Liu et al., 2020) and supported
the finding that periodontal dysbiosis was not due to specific
microorganisms, rather due to the increasing level of
pathobionts. The two reasons for this are likely that
(1) microbial community dysbiosis leads to periodontal
disease, and (2) periodontitis is caused by some specific
pathogenic bacteria that have not yet been identified.
TABLE 3 | Comparison of microorganisms in the deep layer (PPD: 7–9 mm) and
the shallow layer (PPD: 3–4 mm).

Taxon log2FC LogCPM P values FDR

Desulfobulbus 3.7079 13.03 <0.001 <0.001
TG5 3.2558 14.706 <0.001 <0.001
Pseudomonas -7.4192 16.079 <0.001 <0.001
Haemophilus -6.0582 13.966 <0.001 <0.001
Eubacterium 2.983 10.262 <0.001 <0.001
SHD_231 3.1276 10.859 <0.001 <0.001
Filifactor 3.3358 14.779 <0.001 <0.001
Tannerella 2.5596 15.028 <0.001 <0.001
Treponema 2.4324 16.494 <0.001 <0.001
Lautropia -4.2751 15.045 <0.001 <0.001
Actinomyces -2.9909 16.941 <0.001 <0.001
Capnocytophaga -3.0637 13.944 <0.001 <0.001
Streptococcus -2.3346 16.191 <0.001 <0.001
Mogibacterium 2.1055 10.219 <0.001 <0.001
Abiotrophia -3.1646 10.654 <0.001 <0.001
Corynebacterium -3.0281 17.348 <0.001 <0.001
Peptococcus 2.045 11.502 <0.001 <0.001
Rothia -3.3356 16.289 <0.001 <0.001
Vestibaculum 2.9434 14.144 <0.001 <0.001
Neisseria -3.4407 14.256 <0.001 <0.001
Leptotrichia -2.344 14.919 <0.001 <0.001
Kingella -2.703 13.456 <0.001 <0.001
Peptostreptococcus 2.0265 10.73 <0.001 <0.001
Veillonella -2.2552 14.784 <0.001 <0.001
Oribacterium -2.1402 10.499 <0.001 <0.001
Aggregatibacter -2.5911 13.703 <0.001 <0.001
Porphyromonas 1.5748 15.452 <0.001 <0.001
Mycoplasma 1.4871 10.702 <0.01 <0.01
Bacteroides 1.4567 11.735 <0.01 <0.01
Cardiobacterium -1.702 12.594 <0.01 <0.01
Parvimonas 1.2651 13.251 <0.01 <0.01
Selenomonas -0.94956 15.082 <0.05 <0.05
Fusobacterium 0.54974 17.479 0.086998 0.11185
Butyrivibrio 0.71479 9.2838 0.098256 0.12282
Dialister -0.76662 13.014 0.11462 0.1394
Paludibacter 0.59143 13.375 0.16633 0.19697
Bulleidia -0.58357 10.01 0.21877 0.25243
Campylobacter 0.29517 14.966 0.38402 0.43202
Eikenella -0.26099 12.195 0.56464 0.61973
Schwartzia 0.20297 12.061 0.61726 0.64448
Staphylococcus -0.10987 9.9382 0.80758 0.80758
Log2FC (log2 fold change) represents the ratio of two groups (PPD 7–9 vs. PPD 3–4)
based log2. LogCPM (log counts per million) represents the expression level of variables.
FDR is the false discovery rate as correction of P value.
TABLE 4 | Significant functions and pathways on L2 and L3 compared with
periodontitis and healthy groups.

Variables (L2) log2FC LogCPM P
values

FDR

Cell Motility 0.3819 14.092 <0.001 <0.001
Environmental Adaptation 0.10176 10.496 <0.001 <0.01
Signal Transduction 0.087304 13.795 <0.001 <0.01
Metabolism of Terpenoids and
Polyketides

-0.02687 14.146 <0.001 <0.01

Metabolism of Cofactors and Vitamins -0.02879 15.525 <0.001 <0.01
Folding, Sorting and Degradation -0.02063 14.726 <0.001 <0.01
Cellular Processes and Signaling -0.0408 15.158 <0.01 <0.05
Nervous System -0.07875 9.5907 <0.01 <0.05
Variables (L2) log2FC LogCPM P

values
FDR

Bacterial motility proteins 0.40809 13.024 <0.001 <0.001
Bacterial chemotaxis 0.48527 11.742 <0.001 <0.001
Methane metabolism 0.088374 13.439 <0.001 <0.001
Flagellar assembly 0.58686 11.586 <0.001 <0.001
Ether lipid metabolism 0.56359 5.9541 <0.001 <0.001
Other ion-coupled transporters -0.060619 13.597 <0.001 <0.001
Xylene degradation 0.28929 8.4607 <0.001 <0.01
Pentose and glucuronate
interconversions

0.11254 11.654 <0.001 <0.01

Carotenoid biosynthesis -0.43936 6.6335 <0.001 <0.01
Ubiquitin system -0.40326 7.6626 <0.001 <0.01
Nitrogen metabolism -0.040959 12.795 <0.001 <0.01
Insulin signaling pathway 0.082719 9.7838 <0.001 <0.01
D-Arginine and D-ornithine
metabolism

-0.29459 5.8248 <0.001 <0.01

Base excision repair -0.046719 12.258 <0.001 <0.01
Sulfur metabolism -0.12471 11.39 <0.01 <0.05
Polycyclic aromatic hydrocarbon
degradation

-0.077289 10.401 <0.01 <0.05

Tyrosine metabolism -0.056456 11.869 <0.01 <0.05
Synthesis and degradation of ketone
bodies

0.20517 9.0478 <0.01 <0.05

Histidine metabolism 0.053466 12.395 <0.01 <0.05
Linoleic acid metabolism 0.16046 8.5719 <0.01 <0.05
Chloroalkane and chloroalkene
degradation

0.090688 10.423 <0.01 <0.05

Carbon fixation pathways in
prokaryotes

0.034009 13.338 <0.01 <0.05

Primary immunodeficiency -0.070153 9.19 <0.01 <0.05
Glycine, serine, and threonine
metabolism

0.0204 13.083 <0.01 <0.05

Type I diabetes mellitus -0.05003 9.2339 <0.01 <0.05
June 2021 |
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Log2FC (log2 fold change) represents the ratio of two groups (PD vs. HC) based log2.
LogCPM (log counts per million) represents the expression level of variables.
FDR is the false discovery rate as correction of P value.
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Microorganisms Associated
With Periodontitis
Compared with previous studies and the included subgroup studies,
our analysis yielded some consistent results and novel potential
periodontitis-related microbes. Porphyromonas, Treponema, and
Tannerella were found closely related to periodontitis. Moreover,
with the deepening of PPD, Porphyromonas and Treponema
occupied the main components of subgingival microbes, while the
healthy periodontium-related genera Neisseria and Lautropia
decreased. The abundance of Spirochaetes, Synergistes,
Desulfobulbus, and Bacteroides also increased in PD. These results
were consistent with those reported by (Galimanas et al., 2014; Califf
et al., 2017; Pérez-Chaparro et al., 2018). Healthy gingiva-associated
genera Rothia, Capnocytophaga, Veillonella, Corynebacterium, and
Neisseria were found in our results, which were also partly reported
by (Galimanas et al., 2014; Bizzarro et al., 2016; Chen et al., 2018).
Notably, Proteobacteria appeared to be a point of contention with
different reports in several articles. In Shi’s and Griffen’s studies,
Proteobacteria was higher in healthy controls than in periodontitis
patients. By contrast, Galimanas reported that Proteobacteria was
associated with periodontitis, although he later noted that
Proteobacteria was associated with the healthy population in
subgingival microbiota. Our findings showed that Proteobacteria
was more closely related to HC and the proportion of
Proteobacteria decreased with the deepening of the periodontal
pocket. Additionally, we identified some potential genera associated
with periodontitis, such as TG5 and Catonella, whose relationship
with periodontitis has been rarely reported; thus, more trials are
required to validate their pathogenic mechanisms in periodontitis.

LEfSe analysis showed that Corynebacterium and Rothia were
biomarkers for healthy periodontium. Rothia is among the normal
genera that colonize the oral cavity. Although it was detected in
some opportunistic infectious diseases (Ramanan et al., 2014), our
findings support its classification as a typical oral bacterium. This is
consistent with Meuric’s research (Meuric et al., 2017) that the ratio
of Porphyromonas, Treponema, and Tannerella to Rothia and
Corynebacterium is an excellent predictor of periodontitis, which
regards Corynebacterium and Rothia as non-pathogenic genera.
Veillonella, Kingella, and Neisseria were thought to be healthy
biomarkers. Veillonella can consume the lactic acid produced by
Streptococcus mutans to prevent caries (Sanz et al., 2017). In a
clinical trial of periodontal therapy, Kingella and Veillonella were
found to be more associated with therapeutic success (Colombo
et al., 2012). ForNeisseria, its abundance declined fromHCs and the
shallow layer to the deep layer in periodontal pocket, which showed
it was a biomarker for healthy periodontium.

Our results showed that Desulfobulbus, Treponema, and
Tannerella were periodontitis biomarkers. The correlation
between Desulfobulbus and periodontitis was discovered recently,
represented by Desulfobulbus oralis, which has not been valued
previously owing to limitations in culture and isolation (Cross et al.,
2018). It was found that D. oralis can directly induce the
inflammatory response in oral epithelial cells to promote the
occurrence of periodontitis. Treponema denticola, Porphyromonas
gingivalis, and Tannerella forsythia belong to the red complex,
which are considered to be the most periodontitis-related
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10127
microbial aggregation (Socransky et al., 1998). In our results,
Porphyromonas and Treponema both displayed significant
dominance in the PPD 7–9 mm group with a 11% abundance
ratio. Inversely, they were <2% in the PPD 0–3 mm group. Our
network correlation analysis also reflected the synergy among these
microbes. P. gingivalis is critically related to periodontitis. This black
anaerobic bacterium relies on its fimbriae, lipopolysaccharides,
proteases, and other virulence factors to colonize on teeth and
periodontal tissues, and it can co-aggregate a variety of other
potential pathogenic microorganisms (Mysak et al., 2014).
Additionally, it can interfere with host immune functions such as
cytokine secretion, degrade recruitment, and weaken leukocyte
defenses in periodontal tissues (Kobayashi-Sakamoto et al., 2003).
Several years ago, the subgingival concentration of Treponema
growth was considered significantly related to PPD and
attachment loss (Armitage et al., 1982). Tannerella is another
pathogenic genus implicated in periodontitis, which is associated
with subgingival bleeding and regarded as a risk marker of PD
(Suda et al., 2004). The abundance of Fusobacteria increased with
increasing PPD. On the genus level, the proportion of
Fusobacterium changed from 8% in the 0–3 mm PPD group to
16% in the 7–9 mm PPD group. The role of Fusobacteria in deep
periodontal pockets cannot be ignored. Its pathogenic ability is to
co-aggregate and help periodontal pathobionts to colonize, which
acts as a bridge for dental plaque biofilm formation (Rickard et al.,
2003). Moreover, F. nucleatum can invade epithelial cells to escape
host immunity and trigger inflammatory responses, and FadA was
recognized as the crucial virulence factor (Han et al., 2000).

TG5 and Catonella were identified as potential periodontitis-
related pathobionts in our study. Few studies have reported its
existence in patients with periodontitis. Only few research studies
have confirmed the virulence and pathogenic mechanisms of TG5
in periodontitis. Catonella is an oral pathobiont associated with oral
infections and oral cancer (Zhao et al., 2017). However, its role in
the development of periodontal disease remains to be investigated.

In network analysis, we can clearly observe positive
correlations among pathobionts, and positive correlations
among normal and healthy oral microorganisms. Our results
showed that the microbes associated with PD or HC can be
classified into two communities. The microorganisms cooperate
with others in the same community, but are negatively correlated
with the bacteria in the other community. This association was
consistent with the results reported by Liu (Liu et al., 2020) and
supported the antagonistic relationships between pathogenic and
non-pathogenic bacteria. It was worth emphasizing that
Mogibacterium, Parvimonas, and Filifactor were all positively
correlated with some known pathogenic microorganisms in the
correlation analysis, although they were not found in the LEfSe
analysis. This may indicate a new direction in the discovery of
pathobionts, although their abundance is not high.

Remarkable Microbial Metabolic Pathways
The differences in metabolic pathways and functions caused by
alteration of microbiota were obvious. The increasing levels of
bacterial motility proteins and flagellar assembly may imply that
the invasion ability of pathobionts plays an important role in
June 2021 | Volume 11 | Article 663756
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periodontitis. The metabolism of tyrosine was significantly different
in our results (p<0.01). Liebsch et al. (Liebsch et al., 2019) showed
that dental plaque and pocket depth were positively correlated with
the metabolites derived from phenylalanine and tyrosine
catabolism. For example, phenylacetate, a bacterial metabolite,
was significantly associated with periodontal disease and may be a
candidate marker for periodontal disease screening (Liebsch et al.,
2019). The metabolism level of ketone bodies increased in PD
(p<0.05). This was consistent with another study that reported
decreased pyruvate and pyruvic acid levels in the saliva of patients
with chronic periodontitis (Romano et al., 2018). Sulfur metabolism
was different between the PD and HC groups, which may be
associated with the production of volatile sulfur compounds
(VSCs). These VSCs are known to be produced by anaerobic
microbes and are toxic to periodontal tissue (Hampelska et al.,
2020). It is also the major reason for halitosis in patients with
periodontitis. A longitudinal study evaluated the correlation
between periodontitis progress and VSCs, and the results showed
a positive association between the two (Makino et al., 2012).

Limitations and Prospect
In this study, we determined the biomarkers of periodontitis based
on the abundance of microorganisms; however, our results are
inadequate and more extensive research, such as on virulence
factors, is needed to confirm their pathogenesis in periodontitis. At
the literature inclusion stage, we did not retrieve all the studies
related to subgingival microbiota of periodontitis patients.
However, it should be pointed out that the data acquisition and
analysis in our study are different from a systematic review and
meta-analysis. The biggest hurdle was to access complete and
high-quality datasets. Because many datasets are unavailable, it is
challenging to obtain all datasets to analyze. The short reads were
matched with the Greengenes database library (gg-13-8 version) in
Closed Reference way to annotate. However, it screened some
unidentified microorganisms in this method. A more complete
microbial gene database and powerful computers are needed to
improve this analysis. Heterogeneity across studies is a
confounding factor. For instance, 16SrRNA sequencing analysis
can be biased by PCR. This is inevitable at present, and we can
only reduce this heterogeneity through unified criteria and data
processing methods. We screened literature with predetermined
criteria and only included high-quality datasets for merging,
aiming to decrease the influence of multiple variables between
different researches as much as possible. Some variables remain
inevitably among the similar studies, but the variables from
different studies can be minimized, which has been described by
(Kirst et al., 2015). Some other studies confirmed that the idea of
merging datasets under strict screening criteria and unified
sequence data processing can be feasible (Sze and Schloss, 2016;
Meuric et al., 2017). Overall, this method could magnify the
pathogenic features of periodontitis and minimize variables from
different studies, such as individual differences, experimental
differences, and technical differences, helping to identify the
common pathobionts among different periodontitis patients.
Perhaps, a more unified protocol for high-throughput
sequencing studies can be designed, which will be conducive to
the realization of data aggregation. Additionally, the results of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11128
functional profiles predicted from 16S amplicons were not as
accurate as those of whole-genome sequencing, which should be
further validated (Jing et al., 2021).
CONCLUSION

We applied strict and unified standards to process sequence
datasets, and analyzed the microbial community structure and
functions in periodontitis. The results showed significant
differences in the structure of microorganisms and potential
functions and metabolic pathways between the PD and HC
groups. Furthermore, we revealed that the composition of the
subgingival microbiota changed at different PPD sites. Our
results identified some potential periodontitis biomarkers and
explored the functions of subgingival microbiota in periodontitis.
Besides, we described a feasible method to pool microbial
sequence data, which can be used in other related areas. With
the updates to microbial database and the improvement of
sequencing technology, the advantages of this method may be
greater, which can be used to identify more unknown and
unannotated pathobionts in the future.
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Oral microbiota is constantly changing with the host state, whereas the oral microbiome
of chronic erythematous candidiasis remains poorly understood. The aim of this study
was to compare oral microbial signatures and functional profiling between chronic
erythematous candidiasis and healthy subjects. Using shotgun metagenomic
sequencing, we analyzed the microbiome in 12 chronic erythematous candidiasis, 12
healthy subjects, and 2 chronic erythematous candidiasis cured by antifungal therapy.
We found that the salivary microbiota of chronic erythematous candidiasis was
significantly different from that of healthy subjects. Among them, Rothia mucilaginosa
and Streptococcus mitis were the most abundant disease-enriched species (Mann-
Whitney U-test, P < 0.05). In addition, co-occurrence network analysis showed that C.
albicans formed densely connected modules with oral bacterial species and was mainly
positive connected to Streptococcus species. Furthermore, we investigated the
functional potentials of the microbiome and identified a set of microbial marker genes
associated with chronic erythematous candidiasis. Some of these genes enriching in
chronic erythematous candidiasis are involved in eukaryotic ribosome, putative
glutamine transport system, and cytochrome bc1 complex respiratory unit.
Altogether, this study revealed the changes of oral microbial composition, the co-
occurrence between C. albicans and oral bacteria, as well as the changes of microbial
marker genes during chronic erythematous candidiasis, which provides evidence of
oral microbiome as a target for the treatment and prevention of chronic
erythematous candidiasis.
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INTRODUCTION

Oral microbiota is a reflection of the host state and plays an
important role in the development of various diseases. Previous
studies have shown us the profiling of human oral microbiota in
many oral diseases, such as periodontitis, dental caries, and oral
squamous cell carcinoma with the use of 16S rRNA sequence
analysis or shotgun whole-genome metagenomic methods (Li
et al., 2014; Baker et al., 2021; Sarkar et al., 2021). However, there
remains some diseases which are well worth exploring from the
perspective of oral microbiota.

Chronic erythematous candidiasis is the most common type
of Oral candidiasis (Oral candidosis, OC) (Hu et al., 2020), which
is the most common opportunistic fungal disease occurring in
oral cavity. It is estimated that 5% of newborns, 10% of elderly
patients, 30-94% of individuals with malignant tumors, and nearly
90% of HIV-infected patients can develop into OC (Davies et al.,
2008; Poncet et al., 2009). Candida albicans (C. albicans), a
symbiotic microorganism carried by about 80% of the general
population, is widely believed to be the main causative agent of
OC, and accounts for up to 95%of cases (Vila et al., 2020). A variety
of local and systemic factors can lead to the overgrowth of
C. albicans on oral mucosa, and make it from commensal to
pathogenic (Millsop and Fazel, 2016).

Increasing evidence indicates that C. albicans exhibits diverse
interactions with oral bacterial species, ranging from antagonistic to
synergistic (Montelongo-Jauregui and Lopez-Ribot, 2018; Abrantes
and Africa, 2020). On the one hand, C. albicans was shown to co-
aggregate with varieties of oral bacterial flora, such as Streptococci,
Fusobacterium nucleatum and Porphyromonas gingivalis (Wu et al.,
2015;Montelongo-Jauregui and Lopez-Ribot, 2018; Xiao et al., 2018;
Vila et al., 2020). On the other hand, some oral bacteria can affect
the colonization and activity of C. albicans. For example,
Streptococcus oralis and Porphyromonas gingivalis can enhance
the expression level of genes encoding cell surface adhesin in C.
albicans and the biofilm formation ability of C. albicans (Cavalcanti
et al., 2016; Bartnicka et al., 2019).

Although various studies have explored the relationship
between C. albicans and oral bacteria, few studies clarified the
whole oral microbiome during C. albicans infection, especially in
chronic erythematous candidiasis patients without the presence
of other factors that can affect the composition of microbiota. In
addition, mapping the complex nature of oral microbiota in chronic
erythematous candidiasis patients is of great significance in expanding
our understanding of oral microbiome and chronic erythematous
candidiasis itself. Therefore, this study aimed to compare the salivary
microbiota and its gene function between chronic erythematous
candidiasis and healthy subjects, in order to profile the microbial
communities in chronic erythematous candidiasis.
MATERIALS AND METHODS

Subject Recruitment
Study participants aged 45-65 years were recruited from the
Department of Oral Medicine, Peking University School and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2132
Hospital of Stomatology, China. Participants were excluded from
the research if they (1) had removable dentures, (2) suffered
hyposalivation (unstimulated salivary flow rate <1ml/10min)
(Lopez-Pintor et al., 2016), diabetes, cancer, anemia, HIV
positive, or other severe local or systemic infections, (3) used
steroid drugs, immunosuppressants, antibiotics or mouthwash in
the last 3 months, (4) had head or neck radiotherapy within the
3 previous months, (5) had smoking history. Participants with
clinical manifestations of chronic erythematous candidiasis
(Coronado-Castellote and Jimenez-Soriano, 2013) and a
positive result on a mycological examination (smear and
culture) were included in the disease group (DIS, n = 12).
Participants with no clinical manifestations of oral candidiasis,
no other oral mucosal disease and a negative result on a
mycological examination (smear and culture) were included in
the healthy control group (HC, n = 12). Besides, 2 participants
suffered from chronic erythematous candidiasis before, but now
had been cured by antifungal therapy were also included into our
research. The social demographics including age and gender
were collected. A comprehensive oral examination including
salivary pH, probing depth (PD), DMFT (decayed, missing and
filled teeth) was performed by an experienced dentist.

The study protocol was reviewed and approved by the Ethics
Committee of the Peking University Health Science Center
(PKUSSIRB-2013034). All participants received both written and
oral information before consenting to participate in our study.

Saliva Sample Collection
For DIS and HC group, their salivary samples were collected
after taking the questionnaire and completing the initial
screening. For the cured group, their salivary samples were
collected when the patients were cured and discontinued the
antifungal drugs for 1 week. Unstimulated mixed saliva was
collected by spitting into a 50-ml sterile collection tube, with at
least 2 ml of volume. All participants were asked to skip breakfast
and not to do tooth brushing 3 h before saliva collection. Saliva
was collected between 8 a.m. and 10 a.m. by a single dentist in a
quiet room. Samples were centrifuged at 10,000×g for 20 min at
4°C. Sediments were stored at -80°C until DNA extraction.

DNA Extraction, Library Preparation, and
Whole Genome Shotgun Sequencing
Genomic DNA extraction was performed using the FastDNA
SPIN kit for Soil (MP Biomedicals, USA). The DNA
concentration was determined with the Nanodrop 8000
(Thermo Scientific, USA), and DNA quality was estimated by
agarose gel electrophoresis. Genomic DNA was sheared by the
Biorupter ® Pico sonication device (Diagenode, Belgium). DNA
fragments of approximately 200 bp were selected with agarose gel
electrophoresis. DNA libraries were constructed using the
NEBNext Ultra DNA Library Prep Kit for Illumina (Illumina
Inc, USA) according to the instruction manual. The insert size of
the DNA libraries constructed from salivary samples varied from
155 to 266 bp (mean 210 ± 35.5 bp). All library sequencing was
performed with 2×125-bp paired-end on the Illumina HiSeq
2000 platform (Illumina Inc, USA).
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Bioinformatics Analysis of Sequence Data
Sequences with more than 3 ambiguous bases were removed. We
screened reads for the minimum percentage of high-quality bases
(Q30, >=50%) and trimmed low-quality bases (<Q30) on the
terminal end. Paired reads with at least 1 read mapped to the
human reference genome (GRCh37/hg19) were removed by
SOAP2 software (-m 100 -x 1000).

The filtered clean reads were mapped to a database of
predefined single-copy phylogenetic marker genes, with default
options embedded in the MOCAT pipeline (Sunagawa et al.,
2013). To estimate the C. albicans load, paired-end reads were
mapped to the C. albicans reference genome using BWA with
default settings. We simply defined the relative abundance of C.
albicans as the relative abundance of sequences mapped to the
reference genome.

Functional profiling of the microbial community was
performed based on the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database of gene families and modules. The
procedures were as follows: firstly, assembled the quality- and
human- filtered WGS sequences into contigs using Soap2; then,
detected the Open Reading Frames (ORFs) using Markergene
software; finally, mapped the ORFs against protein-coding
sequences from the KEGG Orthology using bowtie2.

Statistical Analysis
The data were presented as mean ± standard error unless otherwise
indicated. Univariate statistical analyses were performed using t-
test and Mann-Whitney U-test. A P value < 0.05 was considered
statistically significant.
RESULTS

Participants’ Characteristics and General
Sequence Information
We carried out shotgun metagenomic sequencing of 26 salivary
samples, including 12 from healthy subjects (HC group), 12 from
chronic erythematous candidiasis patients (DIS group), and 2
from chronic erythematous candidiasis patients cured by
antifungal therapy. No significant differences were found in
age, salivary pH, PD, DMFT between HC and DIS (Figure 1
and Table S1). It was worth mentioning that salivary pH value
showed a decreasing trend in DIS compared with HC, although
the difference was not statistically significant (independent t-test,
P = 0.074).

In total, 154.4 gigabases (Gb) of paired-end sequence data
were generated with an average of 27.6 million reads (5.5 Gb) per
sample. A total of 97.2 ± 0.9% of these reads remained after
filtering low-quality reads. Human DNA, which accounted for
48 ± 23.2% (range from 2.7% to 79.5%) of the high-quality reads,
was filtered for further processing (Figure S1).

Phylogenetic Analysis of Microbial
Community Composition
The alpha diversity of total microbiota in both DIS and HC was
calculated, showing no significant inter-group differentiation
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(data not shown). In the DIS group, 4.9×10-3 ± 12.1×10-3%
(range from 9.53×10-5% to 4.3×10-2%) of the metagenomic reads
were mapped to the C. albicans genome from the NCBI. In HC
and in treated samples, sequences homologous to C. albicans
were barely detected. The relative abundance of C. albicans was
significantly different between DIS and HC (or cured
participants) (Figure 2A; independent t-test, P < 0.001).

For taxonomic information from the short metagenomic
sequences, metagenomic operational taxonomic units
(mOTUs) were established based on single-copy phylogenetic
marker genes. A total of 443 bacterial species in all samples were
identified, which belonged to 9 different phyla (Figures 2B, C).
The top 20 most abundant species accounted for 65.8% of the
total taxa. The salivary community was dominated by Neisseria
spp., which accounted for 35.9% of the total microbiota. Thirteen
species of Neisseria were detected, including N. flavescens (8.6 ±
4.6%), N. mucosa (6.6 ± 3.1%), and N. meningitides (5.2 ± 2.4%).
Of the 20 most abundant species, 8 belonged to Neisseria spp., 4
belonged to Streptococcus, and the remaining species belonged to
Prevotella, Rothia, Haemophilus, Actinomyces, Veillonella,
Lautropia and Porphyromonas.

Differences in Salivary Microbiome
Between Chronic Erythematous
Candidiasis and Controls
Taxa at different taxonomic levels were presented as DIS versus
HC to describe oral microbial community changes (Figure 3A).
The microbial communities of HC and DIS were roughly
separated in a principal coordinate’s analysis based on
differentially present taxa using the Bray-Curtis distance
(Figure 3B), indicating the distinction between DIS and HC.
At the class level, Actinobacteria and Bacilli were more enriched
in DIS. At the genus level, Rothia, Gemella and Streptococcus were
more enriched in DIS, while Aggregatibacter, Campylobacter and
Simonsiella were more enriched in HC (Figure 3A). At the species
level, 15 species were disease-enriched (Rothia mucilaginosa and
Streptococcusmitiswere themost abundant species), and 10 species
were control-enriched (Prevotella pallens and Campylobacter
concisus were the most abundant species) (Mann-Whitney U-test,
P < 0.05) (Figures 3C, D). And it’s worth noting that 9/15 disease-
enriched species belonged to Streptococci.
C. albicans Showed Highly Correlated
With Streptococcus
To analyze the relationship between C. albicans and oral bacteria,
we constructed a salivary co-occurrence network based on
taxonomic datasets of DIS, HC and cured DIS (Figure S2).
The network consisted of 411 species (92% of the total) and 2625
correlations (edges); 97.2% of the species were positively
correlated. We found that C. albicans formed densely
connected modules with oral bacteria. Among them, 5 of the 8
species that directly correlated with C. albicans as well as 11 of
the 25 species that indirectly correlated with C. albicans were
members of Streptococcus respectively (Spearman correlation,
P < 0.05; Figure 4A).
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FIGURE 1 | Clinical, laboratory and demographic characteristics of the study participants. (A) A clinical picture of the normal dorsum of tongue from a healthy
individual. (B) A clinical picture of the dorsum of a tongue with chronic erythematous candidiasis from the disease group. Atrophy of the filiform papilla and erythema
of the tongue could be observed. (C) Many hyphae (arrow) were detected by a smear test using optical microscopy (original magnification ×400). (D) A positive
result of a salivary culture obtained from Sabouraud’s agar. Candida albicans colonies (arrow) could be detected. (E) Demographic, laboratory and clinical
information of the participants. *Independent t-test for age, salivary pH and PD; Mann-Whitney test for DMFT and missing tooth. The values are the means ±
standard deviations, the medians (Q25; Q75) and the numbers of participants (percentage). PD, Probing depth; DMFT, Decayed, missing and filled tooth.
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Then, correlations between C. albicans and Streptococcus spp.
were evaluated by a newly constructed co-occurrence network
(Spearman correlation, P < 0.05; Figure 4B). Of the 34
Streptococcus species detected in saliva to our extent of
sequencing, 33 were included in the network and were connected
with C. albicans. Streptococcus spp. and C. albicans formed a
network with densely connected nodes and formed 338 edges. All
correlations between Streptococcus spp. and C. albicans were
positive, indicating a potential mutually promotional relationship.

Differences in Functional Potentials
Between Chronic Erythematous
Candidiasis and Controls
To identify the functional role of salivary microbiota and its
changes during C. albicans infection, we analyzed functional
genes using the KEGG database. A total of 6495 KEGG
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orthologues (KOs) were identified, and the relative abundance
levels of KOs were estimated (Table S2). The most abundant
KOs identified from microbial communities in all samples
included genes encoding Bacterial secretion system, ABC
transport system, RNA polymerase, Genetic Information
Processing, and Aminoacyl-tRNA biosynthesis.

Under the criteria (Mann-Whitney U-test, P < 0.05), 688 KOs
(≈10% of the total we detected) showed significantly different
abundance levels in DIS compared to those in HC metagenomes,
with 202 enriched KOs and 486 depleted KOs in DIS (Table S2).
As shown in Figure 5, KOs representing lipopolysaccharide
biosynthesis system, reductive citrate cycle, bacterial ribosome
were enriched in HC, while KOs representing eukaryotic
ribosome, putative glutamine transport system, cytochrome
bc1 complex respiratory unit were enriched in DIS. The results
revealed that the genetic phenotypes of metabolism and other
A B

C

FIGURE 2 | Microbial compositions of salivary samples. (A) The relative abundance of C. albicans was significantly different between the HC and DIS groups.
***P <0.001. (B) The relative abundance levels of bacteria at the phylum levels. (C) The relative abundance levels of bacteria at the species levels. Sequence
annotation and relative abundance estimation were performed with MOCAT.
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important physiological functions had changed significantly in
oral microbiome of chronic erythematous candidiasis.
DISCUSSION

The Human Microbiome Project (HMP) has been carried out
over ten years, and it was found that the complex and common
host–microbiome interactions play an important role in the
health and various diseases of human (Proctor et al., 2019).
Oral microbiome is one of the most diverse microbiomes in
human body. Though its composition has been explored in many
oral diseases, there are still unexplored areas worth investigating
(Wade, 2013). In the present study, we profiled the salivary
microbiome of chronic erythematous candidiasis patients with
the use of shotgun metagenomic sequencing technique and
compared it with that of healthy participants. It was
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6136
demonstrated that the composition and gene function of
salivary microbiota had changed a lot during chronic
erythematous candidiasis. What’s more, a strong correlation
between C. albicans and Streptococcus could be found. This
project is a complement of the previous studies in oral
microbiomes under the disease state. More importantly, it may
provide some potential targets for the therapy and prognosis of
chronic erythematous candidiasis.

Great attention has been paid to the relationship between
Candida and oral microflora in different host states. Using 454
pyrosequencing, Kraneveld EA et al. revealed that oral Candida
load was correlated negatively with the diversity of the salivary
microbiome and positively with the relative abundance of
Streptococci in older Dutch adults (Kraneveld et al., 2012).
With 16s rRNA amplicon sequencing, Xiao J et al. found that
C. albicans influenced the composition and diversity of oral
bacterial community in the context of severe early childhood
A B

DC

FIGURE 3 | Taxa differentiations between the HC and DIS group. (A) Taxa with significant differences in relative abundance at the phylum, class, order, family and
genus levels are shown via taxonomic relationships. (B) Principal coordinates analysis based on the differentially present taxa using the Bray-Curtis distance.
(C) Species enriched in the DIS group are shown, the bar represents the mean±sem. Members of Streptococcus are marked with “*”. (D) Species enriched in the
HC group are shown, the bar represents the mean±sem.
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caries (Xiao et al., 2018). By the use of 16s rRNA gene
sequencing, Bertolini M et al. demonstrated that C. albicans
infection was associated with loss of mucosal bacterial diversity
in both oral and small intestinal mucosa in a mouse intravenous
chemotherapy model (Bertolini et al., 2019). However, few
studies explored the oral microbiome during chronic
erythematous candidiasis without the presence of other factors
that can affect the composition of microbiota.

Thus, in the present study, shotgun metagenomic sequencing
technique was used to depict the salivary microbiome of chronic
erythematous candidiasis patients. What’s more, by adopting
stringent inclusion criteria, many interference factors that can
influence oral microbiota, such as wearing removable dentures
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7137
and systemic diseases (O’Donnell et al., 2015), were eliminated.
As a result, we collected a more valuable and reliable data on the
interaction between C. albicans and oral microflora.

The composition of salivary microbiota showed significant
difference between chronic erythematous candidiasis and healthy
subjects. We found that Prevotella rallens was the most abundant
species in healthy participants and significantly decreased in
chronic erythematous candidiasis. It was reported that Prevotella
spp. in all oral sites of clinically healthy individuals are part of the
core microbiome (Ishaq et al., 2017). Therefore, changes in the
composition of Prevotella genus may serve as a signal of a
potential observational index for assessing or providing a
prognosis for C. albicans infection and other unhealthy states.
A

B

FIGURE 4 | Co-occurrence network of C. albicans and bacteria. (A) Co-occurrence network modules formed around C. albicans. Taxa that were directly correlated
with C. albicans and those directly corrected with them were used to construct the network. Each pair of nodes connected by an edge was significantly and highly
correlated (Spearman correlation test, P < 0.05, |r|≥0.6). Solid and dashed lines indicate positive and negative correlations. Taxa that were directly correlated with C.
albicans are in bold. Nodes that represent members of Streptococcus are highlighted in red. (B) Co-occurrence network of C. albicans and Streptococcus spp.
Each pair of nodes connected by an edge was significantly and highly correlated (Spearman correlation test, P < 0.05). Solid and dashed lines indicate positive and
negative correlations. Taxa that were directly correlated with C. albicans are in bold.
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On the contrary, Rothia mucilaginosa and Streptococcus mitis
were the most abundant disease-enriched species. Both bacteria
are normal inhabitant of the human oral cavity and their
abundance changed a lot in some abnormal status of oral
cavity. It has been reported that the abundance of Rothia
mucilaginosa was significantly increased in tongue leukoplakia
lesions (Amer et al., 2017) and smokeless tobacco users (Halboub
et al., 2020). And the abundance of oral Streptococcus mitis was
reported to have changed a lot in periodontitis patients
(Lundmark et al., 2019). In addition, the relative abundance of
Streptococcus, Rothia and Gemella was increased in chronic
erythematous candidiasis, but decreased after treatment (the
22nd and 32nd sample), which indicates that Candida
infection has affected the native oral microbiome. Among
them, the relative abundance of Gemella is also changed in an
unhealthy oral cavity and is reported to be higher in erosive oral
lichen planus (Yu et al., 2020). Hence, these microorganisms
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8138
changing during chronic erythematous candidiasis may play
potential significant roles in the disease process.

Therefore, we further analyzed the co-occurrence network
between C. albicans and oral bacteria, and demonstrated the
positive correlations between Streptococcus spp. and C. albicans.
Although previous studies investigated the interactions between
oral Streptococcus spp. and C. albicans, they had been focusing on
certain species of Streptococcus (Ellepola et al., 2019; Abrantes
and Africa, 2020). As what has been summarized in a review
(Montelongo-Jauregui and Lopez-Ribot, 2018), 7 Streptococcus
spp. associated with C. albicans were listed, all of them could be
found in our study showing the correlations between C. albicans
and 33 Streptococcus species. In addition, the results of this study
can well represent the in vivo and the clinical environment,
which is a supplement and extension to the previous studies in
the influence of C. albicans infection on bacterial dysbiosis in
mice model (Bertolini et al., 2019).
FIGURE 5 | Distribution of KEGG modules for HC-enriched and DIS-enriched KEGG orthologues (KOs). Each bar represents the number of KOs involved in each
module. Green bars represent KOs detected in salivary samples to the extent of our sequencing. Blue and red bars represent KOs that were differentially detected in
samples from healthy controls and patients with chronic erythematous candidiasis.
August 2021 | Volume 11 | Article 691092

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Lyu et al. Oral Microbiota in Oral Candidiasis
Some studies have also explored the underlying mechanisms of
the correlations between Streptococcus spp. and C. albicans. C.
albicans can positively influence the growth and biofilm formation
of Streptococcus spp., through different but connected factors and
mechanisms, such as fatty acids, carboxylic acids, farnesol and
glucans (Metwalli et al., 2013; Ellepola et al., 2019). In addition, C.
albicans can also induce the expression of virulence genes (e.g.,
gtfB, fabM) in Streptococcus mutans (Falsetta et al., 2014). On the
other hand, Streptococci are considered to play an important role
in establishing C. albicans colonization. Streptococcus gordonii,
Streptococcus oralis, Streptococcus sanguis and Streptococcus
mutans had been found to be structurally associated and co-
aggregate with C. albicans, facilitated its yeast-to-hypha transition,
and promoted its morphogenesis progress, adherence,
colonization and biofilm formation through different
mechanisms, such GlcNAc, lactate, H2O2, peptidoglycan, and
Al-2 (Diaz et al., 2012; Metwalli et al., 2013; Dutton et al., 2016).

In our study, 9 of the 15 species enriched in DIS belonged to
Streptococcus spp., and the co-occurrence network analysis
revealed positive correlations between Streptococcus spp. and
C. albicans. In order to support this result, we carried out an in
vivo mice experiment. The mice were infected on their tongue
with C. albicans only or co-infected with C. albicans and
Streptococcus mutans for 5 days. We found that co-infection
with C. albicans and Streptococcus mutans triggered significantly
greater weight loss than infection with C. albicans only, and
Streptococcus mutans enhanced the colonization of C. albicans
on mice tongues (Figure S3). The above results indicated the
interactions between Streptococcus spp. and C. albicans may
serve as an important role in the occurrence and development
of chronic erythematous candidiasis. However, more detailed
animal or in vitro experiments about the relationships between
C. albicans and key bacteria changed in chronic erythematous
candidiasis should be carried out in the future.

In addition, the gene function of salivary microbiome was
different between chronic erythematous candidiasis and healthy
subjects. It was obvious that the putative glutamine transport
system and cytochrome bc1 complex respiratory unit were
enriched in DIS. Glutamine transport system is an important
part of the nitrogen assimilation metabolism of microorganism.
Nitrogen and nicotinate/nicotinamide metabolic pathways had
been confirmed to be involved in C. albicans morphogenesis,
such as filament formation which plays an important role in
penetrating endothelial tissue (Han et al., 2019). Cytochrome bc1
(Complex III) is an important part of the electron respiratory
transport chain in organisms. The disruption of electron
transport chain function increased intracellular levels of
reactive oxygen species in yeast. And, the inhibition of
cytochrome bc1 could significantly increase the sensitivity of C.
albicans to photodynamic therapy (Chabrier-Rosello et al.,
2010). Basing on the changes in energy metabolism,
respiratory transport chain and other biological functions of
oral microbiome, we might find some new drug targets for
treating chronic erythematous candidiasis.

In conclusion, our study revealed the oral microbial changes
occurring in chronic erythematous candidiasis. Close
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9139
relationships were seen between C. albicans and oral bacteria,
especially Streptococcus. In addition, functional potentials of oral
microbiome also changed during chronic erythematous
candidiasis, which may provide us with some new insights into
the role of oral microecology in pathological and clinical
manifestations of chronic erythematous candidiasis.
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Introduction: The oral squamous cell carcinoma (OSCC) is detrimental to patients’
physical and mental health. The prognosis of OSCC depends on the early diagnosis of
OSCC in large populations.

Objectives: Here, the present study aimed to develop an early diagnostic model based
on the relationship between OSCC and oral microbiota.

Methods: Overall, 164 samples were collected from 47 OSCC patients and 48 healthy
individuals as controls, including saliva, subgingival plaque, the tumor surface, the control
side (healthy mucosa), and tumor tissue. Based on 16S rDNA sequencing, data from all
the five sites, and salivary samples only, two machine learning models were developed to
diagnose OSCC.

Results: The average diagnostic accuracy rates of five sites and saliva were 98.17% and
95.70%, respectively. Cross-validations showed estimated external prediction accuracies
of 96.67% and 93.58%, respectively. The false-negative rate was 0%. Besides, it was
shown that OSCC could be diagnosed on any one of the five sites. In this model,
Actinobacteria, Fusobacterium, Moraxella, Bacillus, and Veillonella species exhibited
strong correlations with OSCC.

Conclusion: This study provided a noninvasive and inexpensive way to diagnose
malignancy based on oral microbiota without radiation. Applying machine learning
methods in microbiota data to diagnose OSCC constitutes an example of a microbial
assistant diagnostic model for other malignancies.

Keywords: oral microbiota, OSCC, machine learning methods, diagnose, sequencing
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INTRODUCTION

Oral cancer is a significant threat to patients’ physical and mental
health. According to the Global Cancer Statistics (Bray et al., 2018),
an estimated 350,000 new cases and 170,000 deaths from oral cavity
cancers occurred in 2018. Most global oral squamous cell carcinoma
(OSCC) cases are diagnosed in Asia. In developing countries, in
particular, oral cancers rank the eighth most common cancers in
males. Worryingly, the incidence of the oral cavity cancers appears
to be increasing in many parts of the world (Simard et al., 2014).
The most common oral cancer is OSCC, with a 95% rate. The
prognosis for oral cancers is notably poor, with a mean all-stage,
5-year survival rate of <50% (Kujan et al., 2005).

Therefore, it is essential to diagnose OSCC at an early stage,
especially in large populations, and the prognosis of the
treatment could benefit from the early detection of OSCC. In
the diagnosis of OSCC and many other tumors, pathologic
diagnosis is the gold standard, and radiologic examinations
provide useful supplementary data. However, it is difficult to
apply these traditional methods as primary diagnostic methods
for OSCC in large populations due to their invasive, radioactive,
and expensive nature. Therefore, an effective, convenient, and
noninvasive method is necessary as a screening tool for OSCC in
large populations.

In recent years, many investigations have explored the association
between oral bacteria and OSCC (Ahn et al., 2012; Pushalkar et al.,
2012; Schmidt et al., 2014). Therefore, oral bacteria might be a
potential biomarker to develop a promising early diagnostic method
for OSCC. However, we still face considerable challenges in
developing a novel diagnostic model based on oral bacteria. First,
efforts are underway to find out the core microbiome or species for
OSCC diagnosis. Previous studies have investigated the relationship
between some single species and OSCC, including Porphyromonas
gingivalis (Chang et al., 2019; Park et al., 2019; de Mendoza et al.,
2020) and Staphylococcus aureus (Wang et al., 2019). Investigators
have also indicated the differences in the oral microbiome between
OSCC patients and healthy individuals via bioinformatics analysis.
Some other previous studies have indicated significant losses in the
richness and diversity of oral microbiota in OSCC patients compared
with healthy subjects. The relative frequencies of Streptococcus,
Dialister, and Veillonella species differentiate the tumor from a
healthy state (Guerrero-Preston et al., 2016). Other studies (Krogh
et al., 1987) found significantly higher frequencies of Porphyromonas,
Actinomycetes,Haemophilus, and Enterobacter species on the surface
of OSCC tissues. Hooper et al. demonstrated that microbial diversity
increased in tumor tissues by using 16S rDNA sequencing
technology (Hooper et al., 2007). However, the exact core
microbiome remains unclear, and thus, diagnostic models were
not established to detect OSCC based on the microbiome.

Second, the oral cavity is a complicated environment, and the
microbiome is different in different sites, including the tongue,
teeth, mucous membranes, palate, and gums (Aas et al., 2005;
Avila et al., 2009; Zarco et al., 2012). Segata et al. reported that
the composition of microbial communities varies in seven oral
cavity surfaces, demonstrating that the buccal mucosa,
keratinized gingiva, hard palate, saliva, tongue, tonsils, throat,
and subgingival and supragingival plaques were distinct more or
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2142
less (Segata et al., 2012). Therefore, it is necessary and vital to
determine which site should be selected to analyze the
microbiome for OSCC diagnosis.

This study showed that OSCC could be diagnosed based on
oral microbiota, and a diagnostic model could be developed with
the help of machine learning methods. Moreover, the microbiota
in the saliva, subgingival plaque, tumor surface, the control side
(normal mucosa), and intratumoral tissue were useful for OSCC
diagnosis. What is more, this diagnostic model can effectively
avoid missed diagnoses; therefore, it is a potential early OSCC
diagnostic method for large populations.
MATERIALS AND METHODS

Study Design
This study consisted of three stages. In stage I, the demographic
data and microbiome were characterized using descriptive
methods to provide a clear profile of both internal and external
samples and the whole study data. Also, the microbiome and
demographic data were analyzed using exploratory methods to
test the study assumption, i.e., whether OSCC patients have
microbiome patterns different from those of healthy people. In
stage II, random forests were developed to determine the
different patterns and further analyze the specified operational
taxonomic unit (OTU) role in the differences between
microbiome patterns of healthy and OSCC individuals. In
stage III, post hoc analyses were carried out to evaluate the
different aspects of the performance of the diagnostic model
developed in stage II, i.e., external discrimination capacity and its
reliability on the sample size of the random forest prediction
model based on the oral microbiome.

Participant Information
The institutional review board of the West China Hospital
Stomatology of Sichuan University approved the study (approval
number: WCHSIRB-D-2013-047). All the patients provided
written informed consent forms before sample collection.

The sample collection protocol conformed to the Manual of
Procedure for Human Microbiome Project Core Microbiome
Sampling Protocol A HMP Protocol #07-001 (McInnes and
Cutting, 2010; Segata et al., 2012; Sturød et al., 2020). There
were 47 OSCC patients, all from China, who met the inclusion
criteria, which required the use of no alcohol, no tobacco, no
antibiotics, no cortisone, no cytokines (which could provoke the
immune system like interleukin), and no immunosuppressant
drugs like methotrexate six months before the sampling
procedure. The age of the patients ranged from 34 to 78 years.
The patients with DMF >4, calculus index ≥2, and oral fungal or
mucosal diseases were excluded (Kalogirou and Sklavounou-
Andrikopoulou, 2017; Xun et al., 2018). The control group
followed the same criteria.

All patients were sampled before treatment to ensure that the
microbiome was not affected by chemotherapy, radiotherapy,
and oral prophylaxis. Of the 47 OSCC patients, 47 salivary
samples (the saliva group), 18 subgingival plaque samples (the
August 2021 | Volume 11 | Article 728933
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pla group), 21 surfaces of tumor samples (the tum–muc group),
16 control side of healthy mucosa samples (the con–muc group),
and 16 tumor tissue samples (the tum group) were collected
(Table 1). OTU composition is a whole community structure
that reflects various conditions of the microenvironment, and it
is affected by factors such as diet, nutrition, and living habits.
Therefore, the OTU composition of samples from different
regions might be significantly different. Therefore, if this factor
is not eliminated and only local or single-source samples are
selected for the construction of the model, regional differences
might cover it when applied to the population in other regions,
resulting in unsatisfactory prediction performance. Forty-six
healthy individuals were included as a control, consisting of 21
salivary samples from the same region as patients in Sichuan
Province, and 25 salivary samples from another center, Peking
University Hospital of Stomatology (Xun et al., 2018), in Beijing,
to avoid this error (Table 1).

Sample Collection
The participants were asked not to take in any food and not brush
or floss for at least 12 h before the sample collection session. The
protocol for sample collection in each site followed the Manual of
Procedure for Human Microbiome Project: Core Microbiome
Sampling Protocol A (HMP Protocol #07-001) (McInnes and
Cutting, 2010; Segata et al., 2012; Sturød et al., 2020). The
participants were taught to stop swallowing for 1 min and
collect 5 ml of saliva in 50-ml Falcon tubes for saliva collection.
For plaque collection, buccal swabs were used to take plaque
samples from the participants, which were stored in 2-ml EP tubes.
For the bacterial flora on the oral mucosa, swabs were used to wipe
the lesion and the other side of the oral mucosa for 10 s,
respectively, avoiding the tooth and internal tumor. All the
samples were then transferred into phosphate-buffered saline
(PBS) solution and stored at −80°C immediately. For the
internal tumor, dental instruments were disinfected to cut the
internal tumor into 1 × 1 × 1-cm3 cubes on a sterile platform;
the tumor samples were then steeped in sterile povidone-iodine for
3 min and vortexed several times using 500 µl of PBS. The tumor
samples were divided into two parts, with one being steeped in
Tris-EDTA buffer (pH = 7.4) stored at −80°C and with the other
one being used for cultivation (McInnes and Cutting, 2010).

DNA Extraction and PCR Amplification
Microbial DNA was extracted from all the samples using the
E.Z.N.A.® soil DNA Kit (Omega Bio-Tek, Norcross, GA, USA)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3143
according to the manufacturer’s protocols (Zhu et al., 2015; Wang
et al., 2016; Li et al., 2019). The V4–V5 region of the bacterial 16S
ribosomal RNA gene was amplified by PCR (95°C for 2 min,
followed by 25 cycles at 95°C for 30 s, 55°C for 30 s, and 72°C for
30 s, and a final extension at 72°C for 5 min) using primers 515F
5′-barcode-GTGCCAGCMGCCGCGG)-3′ and 907R 5′-
CCGTCAATTCMTTTRAGTTT-3′ (Li et al., 2018; Xie et al.,
2018; Zhou et al., 2018), where the barcode is an eight-base
sequence unique to each sample. PCRs were performed in
triplicate in a 20-ml mixture containing 4 ml of 5× FastPfu
buffer, 2 ml of 2.5 mM of dNTPs, 0.8 ml of each primer (5 mM),
0.4 ml of FastPfu polymerase, and 10 ng of template DNA.
Illumina MiSeq Sequencing
Amplicons were extracted from 2% agarose gels, purified using
the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences,
Union City, CA, USA) according to the manufacturer’s
instructions, and quantified using QuantiFluor™-ST (Promega,
USA) (Xie et al., 2018). According to the standard protocols,
purified amplicons were pooled in equimolar and paired-end
sequenced (2 × 300) on an Illumina MiSeq platform. The
Sequencing Depth of all samples was enough for analysis. The
rarefaction analysis and read count statistics of all samples are
shown in the Supplementary Material (Figure S2 and Table S4).
The raw reads were deposited in the National Center for
Biotechnology Information (NCBI) Sequence Read Archive
(SRA) database (Accession Number: SRP119028) (Zhu et al.,
2015; Wang et al., 2016; Yin et al., 2016; Xie et al., 2018).
Processing of Sequencing Data
Raw FASTQ files were demultiplexed and quality-filtered using
QIIME (Version 1.9.1) with the following criteria (Caporaso
et al., 2010): i) the 300-bp reads were truncated at any site with
an average quality score of <20 over a 50-bp sliding window,
discarding the truncated reads that were shorter than 50 bp.
ii) Exact barcode matching, two nucleotide mismatches in
primer matching, and reads containing ambiguous characters
were removed. iii) Only sequences that overlapped longer than
10 bp were assembled according to their overlap sequence. Reads
that could not be assembled were discarded.

OTUs were clustered with 97% similarity cutoff using
UPARSE Version 7.1 (http://drive5.com/uparse/), and chimeric
sequences were identified and removed using UCHIME. The
taxonomy of each 16S rRNA gene sequence was analyzed by
RDP Classifier (Cole et al., 2005) (http://rdp.cme.msu.edu/)
against the silva (SSU123) 16S rRNA database using a
confidence threshold of 70% (Dewhirst et al., 2010).
Statistical Analysis
In stage I, the demographic and microbiome characteristics of
the subjects were presented. An exploratory analysis was carried
out to explore the potential capacity of pattern differences
between samples from healthy and OSCC individuals. The
Shannon index, Chao index, Simpson diversity index
TABLE 1 | Samples in different groups.

OSCC Healthy control External set Total
(n = 47) (n = 21) (n = 25) (n = 93)

con_muc 16 16
Pla 18 18
Saliva 47 21 25 93
Tum 16 16
Tum_muc 21 21
Overall 118 21 25 164
OSCC, oral squamous cell carcinoma.
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(Chao et al., 1992; Chao and Shen, 2003), beta diversity index,
network analysis, and functional analysis were used to explore
whether the microbiome profiles in samples differed between
OSCC and healthy individuals.

In stage II, since exploratory analysis showed that
microbiome patterns differed between OSCC and healthy
individuals, random forests were developed to show that such
a pattern of the total microbiome in healthy subjects was
different from that in OSCC individuals. The proper
discriminations of this algorithm in high-dimensional datasets
have been shown in various fields. Based on the model, the OTUs
with great importance in distinguishing OSCC patients from
healthy individuals were also extracted to provide clues for
further studies on the mechanism of interaction of microbiome
and cancer incidence.

In stage III, further analyses were carried out on the
prediction model based on the random forests to evaluate the
external prediction capacity and the dependence on
the sample size.

To evaluate external prediction capacity, although the
algorithms based on CART, bagging, and bootstrap have
strong resistance against the overfitting, still in practice in
some cases, such prediction models cannot perform well in
external datasets. Therefore, a batch of cross-validations was
carried out. In each cross-validation, a fixed proportion of
samples was first randomly selected as the training set to build
random forests. The rest of the samples used to test the forests’
prediction capacity were used to predict whether the forests
could correctly discriminate the OSCC patients from healthy
individuals in the external population. Given that all the samples
in the test set would not be used to train the forests, each time,
the forests were tested using an external validation set. This
process was repeated for large numbers to ensure that each
sample would be in training and test sets for at least once. The
average performance over the tests would be used to evaluate the
expected external discrimination capacity of OSCC patients
using random forests based on the microbiome.

As in cross-validation, not all the samples would be used to
train the model, and the prediction capacity would decrease due
to the loss of sample size. Therefore, it is of interest how many
samples can build a reliable prediction model and whether the
prediction capacity can be improved by introducing more
samples. Therefore, different batches of cross-validations with
different sample sizes of the training set were carried out to
evaluate how the prediction capacity changes in terms of the
sample size.
RESULTS

Characteristics and Exploratory Analysis
The diversity indexes, i.e., Shannon, Chao, and Simpson indexes,
showed that the diversities of oral microbiome increased
significantly in OSCC patients compared with healthy
individuals (Figure 1A).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4144
A Venn graph (Figure 1B) was used to determine the number
of common and distinguished OTUs between OSCC patients
and healthy controls. Samples with similar levels of 97% OTU
were used for the analysis. OSCC patients and the healthy group
exhibited significant differences in the OTU level, with only 428
out of 1,747 OTUs in common; 311 of 1,747 OTUs were unique
for OSCC patients.

The Bray–Curtis principal coordinate analysis (PCoA)
showed that healthy individuals’ microbial community was
concentrated, while the microbial community of patients was
relatively discrete. Besides, the microbiome in samples from both
OSCC and healthy individuals from the same center (West
China College of Stomatology), i.e., OSCC and healthy control
group, was similar. In contrast, those from the external center
(Peking University Hospital of Stomatology) exhibited a different
pattern (Figure 1C). This result supported our suspicion that
microbiome profiles might differ significantly between different
populations from different regions rather than those between
OSCC and healthy individuals. Therefore, if the prediction
model were built only with samples from a local or internal set
of samples, its generalizability would be significantly limited, and
the application of such a prediction model to external
populations might be inappropriate. This is also evaluated by
external prediction evaluation in stage III.

The key OTU phylotypes in OSCC patients and the healthy
group were analyzed, which showed different phyla in the two
groups. Five locations (saliva, subgingival plaque, tumor surface,
normal mucosa in the control side, and intratumoral tissue) were
sampled to investigate the frequencies of oral microbial
communities in OSCC patients. All the results are presented in
the Supplementary Material. This raised the interesting
question of whether different sampling sites affected the
model diagnosis.

These exploratory results implied that the microbiome pattern
between the healthy and OSCC subjects was significantly
different. The significant differences suggested that the oral
microbiome does have the potential capacity to discriminate the
OSCC patients from all the individuals.
Phylogenetic Profiles of Oral Microbial
Communities in Oral Squamous Cell
Carcinoma Patients
We examined the similarities and differences of genera present in
the healthy group and as depicted in Figures 2A, B. Phylotypes
with a median relative abundance larger than 0.01% of total
abundance were included for comparison. To identify key OTU
phylotypes in OSCC patients and healthy group, abundances of
OTUs were analyzed by Wilcoxon’s rank-sum test with the
Benjamini–Hochberg method.

The OTUs representing different phyla were not similar
between the two groups. The healthy group was observed to
contain Streptococcus (22.73%), followed by Neisseria (18.23%),
Prevotella (14.56%), Porphyromonas (7.33%), Haemophilus
(6.72%), and Veillonella (4.05%). The OSCC group was found
to contain Streptococcus (11.09%), followed by Neisseria
August 2021 | Volume 11 | Article 728933
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(12.88%), Prevotella (12.03%), Porphyromonas (4.18%),
Haemophilus (3.35%), and Veillonella (6.01%).

The stacked column plots also showed the differences
between the two groups in terms of phylum (Figure 3A),
class (Figure 3B), order (Figure 3C), family (Figure 3D),
genus (Figure 3E), and species (Figure 3F). Overall, the
abundance of the OSCC group was higher than that of the
healthy group. On the phylum level, there were less
Bacteroidetes and Proteobacteria and more Firmicutes and
Fusobacteria in the OSCC group. On the class level, there
were less Bacilli, Bacteroidia, and Betaproteobacteria and
more Negativicutes in the OSCC group. On the order level,
there were less Bacteroidales, Lactobacillales, and Neisseriales
and more Selenomonadales in the OSCC group. On the family
level, there were less Streptococcaceae, Prevotellaceae, and
Neisseriaceae and more Veillonellaceae in the OSCC group.
On the genus level, there were less Streptococcus, Neisseria, and
Prevotella and more Veillonella and Fusobacterium in the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5145
OSCC group. On the species level , there were less
Haemophilus and more Veillonella in the OSCC group.

In the co-occurrence network deduced from bacteria enriched
in the OSCC group and healthy group, the node in the network
represented the sample node or the genus node, and the line
between the sample node and the species node represented that
the sample contains the genus. Figure 4 shows the genus with
abundance greater than 50. Both groups contained Veillonella,
Alloprevotella, Capnocytophaga, Neisseria, Gemella, etc. Only the
healthy group contained Rothia, and only the OSCC group
contained Lactococcus, Aggregatibacter, Peptostreptococcus, etc.

Analysis of similarities (ANOSIM) (Table 2) was significant
for the overall model (R2 = 0.13291, p = 0.05), and pairwise
comparisons revealed a significant difference between control
subjects who remained healthy and those with OSCC. Although
the coefficient of determination is very low, there is a difference
between the two groups. On the one hand, it is suggested that
there can be a clear difference between the two, which can be
A

B C

FIGURE 1 | The diversities of oral microbiome in OSCC patients and healthy individuals. (A) Shannon, Chao and Simpson Indexes of all OTUs with relative
importance greater than 0. 01 between OSCC patients and healthy control. (B) Venn graph between OSCC patients and healthy control. (C) PCoA of
bray_curtis between OSCC and healthy individuals. O represented OSCC patients, H represented healthy people, and H(HX) means people from West China
College of Stomatology, H(BJ) means people from Peking University Hospital of Stomatology (* means 0.01 < P ≤ 0.05, ** means 0.001 < P ≤ 0.01,
*** means P ≤ 0.001).
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used as an auxiliary diagnosis of OSCC; on the other hand, this
mode difference may not be large and may lack discrimination in
particular cases. Meanwhile, considering the number of OTUs,
the samples size is relatively small, so a special method is needed
to identify such slight differences. This is the machine learning
diagnostic model mentioned later.
Abundance of Oral Microbial Communities
in Oral Squamous Cell Carcinoma
To illustrate that the location in the oral cavity has an effect on
the microbiota of the particular niche (saliva, subgingival plaque,
surface of tumor, normal mucosa in the control side, and
intratumoral tissue), we sampled microbiota in these
five locations.

The Simpson index and Shannon index reflected the diversity
of microorganisms in saliva, subgingival plaque, surface of
tumor, normal mucosa, and intratumoral tissue. According to
Figure 5, there were significant differences in the Simpson index
and Shannon index of these five locations, which indicated that
the diversity in different parts of the oral cavity was different.
Among them, the Simpson index and Shannon index in
intratumoral tissue were the highest, indicating that the
diversity in intratumoral tissue was relatively high.

It can be seen from the Venn diagram (Figure 6) that the
number of OTU that did not overlap on normal mucosa,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6146
subgingival plaque, saliva, intratumoral tissue, and surface of
tumor was 34, 24, 42, 99, and 14, respectively, while the number
of OTU that completely overlapped on the five sites was as high
as 340, accounting for 55%~74% of the total number of each site.
In other words, the composition of bacteria in saliva, subgingival
plaque, surface of tumor, normal mucosa, and intratumoral
tissue was very similar.

The size of nodes in Figure 7 represents the abundance of
genus, and different colors represent different genera. The
colors of the lines indicate positive and negative correlations,
red indicates positive correlation, and green indicates
negative correlation. The thickness of the line indicates the
correlation coefficient. The thicker the line, the higher the
correlation between genera. The more lines, the more close
the correlation.

It showed that the tumor site has the highest correlation between
genera, and saliva site genus correlation is the lowest. In the tumor
tissue, Dialister, Johnsonella, Peptostreptococcus, Parvimonas, and
other bacteria were closely related to other bacteria. On the tumor
surface, Peptostreptococcus, Filifactor, Selenomonas, and other
bacteria were closely related to other bacteria. In the subgingival
plaque, Selenomonas, Peptostreptococcus, Prevotella, and other
bacteria were closely related to other bacteria, and the correlation
was mostly positive. On the healthy mucosa, Prevotella was
negatively associated with most microbes. In saliva, however,
most of the microbes had a low microbiological correlation.
A

B

FIGURE 2 | OTUs phylotypes in healthy group (A) and OSCC patients (B), analysed by Wilcoxon rank-sum test with Benjamini-Hochberg method.
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Evaluation of Oral Squamous Cell
Carcinoma Prediction Random Forest
Models Based on Saliva Microbiome
Given the noninvasive collection process of salivary samples and
the high sensitivity in OSCC sample identification, using the
microbiome in salivary samples to identify potential OSCC
patients would be a more appropriate choice of screening the
OSCC patients. An additional random forest model was then
built only using the 93 salivary samples, in which 47 were from
the OSCC patients while the remaining 46 were from healthy
controls (Table 3). The result showed that the model’s accuracy
was 95.70%, and its sensitivity was 100%; i.e., four samples from
healthy controls were misclassified as from OSCC patients. In
addition to the model using only salivary samples, we wondered
whether using samples of other sites could lead to the same
performance. And the result is in the Supplementary Material.

Overfitting is a common concern in that a predictionmodel with
high internal performance does not work well in other populations,
especially in machine learning models. However, to evaluate such
uncertainty, we carried out a batch of cross-validations. For each
model, a training set containing 80% randomly selected samples was
used to build a random forest model, and the rest of the samples
were not used to build the model as the external test sets. Then, the
average external accuracy of all the random forests provides an
estimation of the model applied in external populations.

For the model built with OTUs in salivary samples, cross-
validation showed an estimated external accuracy of 93.58%; i.e.,
97 out of 1512 external test samples were misclassified in 84
external test sets containing 18 samples each. Still, no OSCC
would be missed using the oral microbiome in salivary
samples (Table 4).

The cross-validations of OSCC sample prediction random
forests, i.e., using only salivary samples, with all the samples
collected in five sites, suggested that the distinguished
microbiome pattern in samples from OSCC individuals can
also be used in external populations. Also, the sensitivity of
external test samples still at 100% proves its high capacity in
screening OSCC patients. Considering the noninvasive collection
model, using random forests based on the microbiome in salivary
samples would be strongly recommended to test whether the
individuals are possible OSCC patients.

Another common concern is that given the well-known
significant dependence on sample size, how many samples are
required to build a model with favorable performance? Another
batch of cross-validations, each with different sizes of training
sets and test sets, was carried out to evaluate the dependence on
sample size in OSCC identification using oral microbiome in
salivary samples.

The sample sizes of training sets were set as 60% (56), 70%
(65), 80% (75), and 90% (83) of all the 93 salivary samples. For
each sample size, the random forest model was tested different
times of a test sample size of 10,000 to obtain accuracy with
comparable variations. The average accuracies of the tests with
different sample sizes provided the association of the training
sample sizes and the performance of OSCC identification models
using the salivary microbiome.
A

B

D

E

F

C

FIGURE 3 | Stacked column plots representing comparison of relative
abundance of bacterial taxa between healthy and oral squamous cell
carcinoma (OSCC) groups at phylum (A), class (B), order (C), family (D),
genus (E), and species (F).
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Cross-validations showed that as the training sample size
increased, the random forests based on salivary samples became
more accurate. Seventy-five samples could supply significantly
high performance, while more training samples could give rise to
even greater accuracy; i.e., with all the 93 samples in training set
at 95.70% accuracy, another 1.20% improvement could be
obtained over 94.50% with 83 samples in the training set
(Figure 8). Also, the larger training sample size decreased the
variance of the prediction accuracy, suggesting that higher
accuracy can be obtained by a model with a large training set.

Further insight into >40,000 prediction results provided a good
sample of this point. In the cross-validations, all the random forests
with training sample sizes >80% (75) exhibited sensitivities of 100%;
therefore, no OSCCwould bemisclassified. However, as the training
sample size decreased, false-negative predictions were found, i.e., 15
patients in 5,130 OSCC patients with a training sample size of 56
and three patients in 4,998 OSCC patients with a training sample
size of 65. An interesting finding is that all the 18 false-negative
predictions happened in one same sample. This sample was found
from an OSCC patient having early invasive carcinoma on the oral
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8148
cavity floor. At the early stages of cancer development, the
characteristics of the oral microbiome were close to those of
healthy individuals compared with other OSCC patients. Such
samples from early cancer development stages might be
misclassified as from healthy individuals due to the partly
changed microbial profiles, which would be identified correctly by
the models with larger training sets.

This suggested the strategy of screening model development;
the prediction random forest can first be built based on small
sample sizes, such as those >50, and then the accuracy can be
improved as the new samples are added to the training set to
renew the basic model.

Also, the difference between groups of healthy individuals
from different centers suggested that a continuous and dynamic
renewal of the prediction model using new samples would be of
necessity for a potential change in population applied. It is
recommended for each center to address the differences
between microbial profiles in different populations when
building its own prediction random forest.
DISCUSSION

The human microbiome, a dynamic, interconnected ecosystem
reflecting the locating environments, plays a central role in the
process of development, health, and disease (Bracci, 2017; Cong
and Zhang, 2018; Verma et al., 2018). Although the differences
between microbiome in groups having different disorder statues
FIGURE 4 | The co-occurrence network deduced from bacteria enriched in oral squamous cell carcinoma (OSCC) group and healthy group.
TABLE 2 | ANOSIM in healthy group and OSCC patients.

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

Group 1 6.864 6.8643 24.832 0.13291 0.001
Residuals 162 44.782 0.2764 0.86709
Total 163 51.646 1
ANOSIM, analysis of similarities; OSCC, oral squamous cell carcinoma.
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might provide potential biomarkers, traditional analyses have
low test power in identifying such differences due to the adverse
effect of dimensionality. Although there is a deluge of data on the
human microbiome, converting them into clinically meaningful
insights remains challenging (Quince et al., 2009; Hu et al.,
2013). Machine learning methods constitute proper tools for
analyzing such high-dimensional datasets with a small sample
size. For instance, Teng et al. (2015) developed a predictive
model for early childhood caries (ECC) using oral microbiota by
random forests machine learning algorithm innovatively, which
became an asset for clinical work. The algorithm was also used in
this study, indicating that OSCC can be diagnosed based on oral
microbiota. Moreover, microbiota on any one of the five sites
were useful for the diagnosis of OSCC. Thus, oral microbiota on
any one of the five sites could be collected to diagnose OSCC in
clinical practice.

Salivary samples would be an optimal choice for the OSCC
preliminary diagnosis due to their advantages in the sample
collection process. Early diagnosis plays a critical role in the
treatment of OSCC, and many methods have been used in the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9149
diagnosis of OSCC. Compared with the traditional methods (CT,
MRI, and PET), our novel model, based on oral microbiota,
exhibited apparent advantages. First, compared with CT and
PET, no radiation is involved during sample collection and
examination. Second, the cost of 16S rRNA gene sequences is
20%–50% of CT/MRI for every patient and <20% of PET. Third,
the examination is more convenient for patients than CT, MRI,
and PET. This method only requires the collection of saliva and
sequencing, without the need for professionals to purchase or
learn other examination equipment, and can be easily
implemented in oral medical clinics or hospitals. Fourth, the
diagnosis of histopathological analysis usually takes about 3–5
days, because the preparation of tissue samples and the
interpretation by the diagnostic physician are quite complex and
rigorous. This method only requires sequencing and machine data
processing, which will provide quick help for diagnosis. Besides,
some studies have indicated that oral microbiota could provide a
potential risk assessment for several other diseases, like dental
caries (Stuckensen et al., 2000; Ng et al., 2005; Liao et al., 2011).
Our investigations explored a novel method to detect OSCC at an
early stage, expanding the application of oral microbiota in
diagnosing oral diseases. Therefore, in the future, the analysis of
oral microbiota might be included in annual physical
examinations for large populations to detect the risk of different
diseases. The selected people with a high risk of specific diseases
could be referred to specialists for further confirmatory diagnosis.
On the one hand, patients could benefit from the early diagnosis of
the diseases; on the other hand, it could help reduce the social and
public health expenses.

In the study, the accuracy of the diagnostic model was more
favorable than that of the traditional methods. The accuracy of
CT/MRI ranges from 66% to 86.4%. In recent years, 18F-FDG
PET has been recommended in the diagnosis of OSCC patients
(Kitajima et al., 2015). The accuracy of 18F-FDG PET ranges
from 66.8% to 89.4%. In the present study, the accuracy of the
novel model was 95%. Interestingly, there was no false-negative
result in our diagnostic model. But there are still some false-
positive individuals, and further confirmatory diagnosis could
help exclude such cases.

In recent years, some studies indicated that oral microbial
composition differed significantly from a healthy state to OSCC
patients and non-tumoral to tumoral sites (Ahn et al., 2012;
Pushalkar et al., 2012; Schmidt et al., 2014). Therefore,
researchers tried to isolate some particular species and show
their relationship with OSCC. In the present study, the results
also provided evidence for some oral bacteria as potential
research objects. As shown in Table S2, the top 10 features of
oral microbiome in random forests were consistent with
previously reported studies in which close relationships were
detected between OSCC and the following bacterial species:
Porphyromonas, Fusobacterium, Prevotella, Leptotrichia,
Moraxella, Bacillus, and Actinobacteria (Sato et al., 2010; Al-
Hebshi et al., 2015). Particularly, as pathogenic bacteria of
periodontal disease, P. gingivalis and Fusobacterium nucleatum
could promote oral carcinogenesis (Groeger et al., 2011;
Gallimidi et al., 2015; Ha et al., 2015). P. gingivalis could
FIGURE 5 | Simpson index and Shannon index of microorganisms in subgingival
plaque, normal mucosa, surface of tumor, saliva and intratumor tissue (* means
0.01 < P ≤ 0.05, ** means 0.001 < P ≤ 0.01, *** means P ≤ 0.001).
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promote immunoevasion of oral cancer by protecting cancer
from macrophage attack and could facilitate cell migration,
which was slightly enhanced by co-infection with F. nucleatum
(Liu et al., 2020). Prevotella was found to have a close
relationship with digestive tract cancers (Yang et al., 2009).
Although other bacteria in the present study lacked in
mechanism evidence, they provided clues for future studies to
reveal the relationship between microorganisms and oral cancer.

In the present study, in one sample, the oral microbiome’s
characteristics were close to those of healthy individuals. Further
analysis indicated that it might be because the sample was
collected from a patient in the early stages of OSCC, confirming
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10150
previous research (Chocolatewala et al., 2010; Perera et al., 2016;
Mukherjee et al., 2017), in which the microbiome changes
continued with cancer development. The microbiome will
change with the pathological environment during carcinogenesis.

In conclusion, using random forests and cross-validations,
this study provided a method to build a diagnostic model based
on oral microbiota, which could be applied to the diagnosis of
OSCC in large populations accurately and conveniently without
radiation before invasive procedures. Furthermore, this study
provided an application sample to develop diagnostic models as
an auxiliary diagnostic tool not only for OSCC but also for
various tumors.
FIGURE 6 | Venn diagram of the number of operational taxonomic unit (OTU) among normal mucosa, subgingival plaque, saliva, intratumoral tissue, and surface of tumor.
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FIGURE 7 | Interconnection of the oral squamous cell carcinoma (OSCC)
and salivary and other sites bacteria. Tumor tissue (A), the tumor surface (B),
subgingival plaque (C), healthy mucosa (D), and saliva (E).
TABLE 3 | Prediction and observation of OSCC in saliva samples.

Observed Predicted Total

Healthy controls OSCC patients

Healthy controls 42 4 46
OSCC patients 0 47 47
August 2021 | Volume 11 | Article 7
OSCC, oral squamous cell carcinoma.
TABLE 4 | Prediction and observation of OSCC in saliva samples.

Observed Predicted Total

Healthy controls OSCC patients (n = 1,512)

Healthy controls 659 97 756
OSCC patients 0 756 756
OSCC, oral squamous cell carcinoma.
FIGURE 8 | The average external prediction accuracies of random forests
with different training sample sizes. The bottom part of the figure is truncated
to present the differences in the error bar.
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Papillon–Lefèvre syndrome (PLS) is an autosomal recessive rare disease, main
characteristics of which include palmoplantar hyperkeratosis and premature edentulism
due to advanced periodontitis (formerly aggressive periodontitis). This study aimed to
characterize the oral phenotype, including salivary parameters, and the salivary
microbiome of three PLS sisters, comparatively. Two sisters were toothless (PLSTL1
and PLSTL2), and one sister had most of the teeth in the oral cavity (PLST). Total DNA was
extracted from the unstimulated saliva, and the amplicon sequencing of the 16S rRNA
gene fragment was performed in an Ion PGM platform. The amplicon sequence variants
(ASVs) were obtained using the DADA2 pipeline, and the taxonomy was assigned using
the SILVA v.138. The main phenotypic characteristics of PLS were bone loss and
premature loss of primary and permanent dentition. The PLST sister presented
advanced periodontitis with gingival bleeding and suppuration, corresponding to the
advanced periodontitis as a manifestation of systemic disease, stage IV, grade C. All three
PLS sisters presented hyposalivation as a possible secondary outcome of the syndrome.
Interestingly, PLST salivary microbiota was dominated by the uncultured bacteria
Bacterioidales (F0058), Fusobacterium, Treponema, and Sulfophobococcus (Archaea
domain). Streptococcus, Haemophilus, and Caldivirga (Archaea) dominated the
microbiome of the PLSTL1 sister, while the PLSTL2 had higher abundances of
Lactobacillus and Porphyromonas. This study was the first to show a high abundance
of organisms belonging to the Archaea domain comprising a core microbiome in human
saliva. In conclusion, a PLST individual does have a microbiota different from that of the
periodontitis’ aggressiveness previously recognized. Due to an ineffective cathepsin C, the
impairment of neutrophils probably provided a favorable environment for the PLS
microbiome. The interact ions of Bactero idales F0058, Cald iv i rga , and
Sulfophobococcus with the microbial consortium of PLS deserves future investigation.
Traditional periodontal therapy is not efficient in PLS patients. Unraveling the PLS
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microbiome is essential in searching for appropriate treatment and avoiding early
tooth loss.
Keywords: Papillon–Lefèvre disease, cathepsin C, periodontal infection, saliva, microbiology, periodontitis
INTRODUCTION

Papillon and Lefèvre first described the Papillon–Lefèvre
syndrome (PLS) in 1924 (Papillon and Lefevre, 1924). PLS is a
hereditary autosomal recessive and rare condition that affects one
to four people per million (Hart and Shapira, 1994). Generally,
consanguineous marriages are PLS individuals’ origin (Bhavsar
et al., 2013; Bullón et al., 2018). It was estimated that over one
billion people live in countries where consanguineous marriages
are customary (Hamamy et al., 2011). Among them, one in every
three marriages is between cousins. The main impact of
consanguinity is the increased expression of multiple mutations
encoding rare autosomal recessive genetic disorders, with an
increased risk for first cousin couples to bear affected children.
The PLS’s main phenotypic characteristics are palmoplantar
hyperkeratosis and the premature loss of deciduous and
permanent teeth. The edentulism process in PLS starts with
aggressive periodontitis (AIBarrak et al., 2016). In the period of
dental exfoliation, the gingival tissue of PLS patients becomes
hyperplastic and hemorrhagic, and there is an extended significant
bone loss of the maxilla andmandible, cement exposure, and tooth
mobility that culminates in loss of teeth (Robertson et al., 2001;
Jordan, 2004; Tumen et al., 2015). Therefore, poor quality of life is
expected in childhood, as it corresponds with the most destructive
period of the disease. The periodontal condition and tooth loss
generate high sensitivity in patients with PLS and poor diet quality
(Hattab, 2019). These subjects present an increased incidence of
skin and oral infections, which led to a substantial immunological
disorder hypothesis at the first line of cellular defense. The immune
system impairment may explain the predisposition to oral infection
and periodontitis in PLS as a primary etiological component.

The PLS results from mutations in the cathepsin C gene
(CTSC), also known as dipeptidyl peptidase 1 (DPPI), located on
chromosome 11q14. The CTSC mutations produce an inactive
cysteine protease or reduce its function (Fischer et al., 1997;
Hart et al., 1999; Toomes et al., 1999). Currently, 113 CTSC
variants have been reported in ethnically various populations,
including a novel missense variant in exon 6 of the cathepsin C
gene of a PLS Chinese individual (Yu et al., 2021). Over 90% of
the variants were missense variants, nonsense variants, or
frameshift variants, and most of them were in exons 5–7 of
CTSC. Cathepsin C is an essential lysosomal enzyme in the
cascade of activation of immune and inflammatory cell serine
proteases and other cell lineages. The majority of proteins that
demand cathepsin C processing are essential for the innate
immune system’s proper function. Neutrophil elastase,
proteinase-3, and granzymes A, B, and C are examples of
proteins that depend on cathepsin C-mediated cleavage for
activation (Kaplan and Radic, 2012). Bullón et al. (2018)
showed autophagosome accumulation in mutant fibroblasts
gy | www.frontiersin.org 2155
from a PLS patient’s skin. The autophagosome accumulation
was associated with alterations in oxidative/antioxidative status,
reduced oxygen consumption, and a marked autophagic
dysfunction. Immune and inflammatory cells also showed
dysfunctional behavior in PLS. For instance, neutrophils
demonstrated hyperactivity with increased oxidative stress and
reduced capacity to form neutrophils’ extracellular trap
structures (NETs) (Sørensen et al., 2014; Roberts et al., 2016).
NETs are important defensive structures composed of DNA,
chromatin, and bactericidal proteins (Kaplan and Radic, 2012).
Sørensen et al. (2014) showed that PLS patients neutrophils lack
or had significantly reduced amounts of neutrophils elastase
(NE), cathepsin G (CTSG), proteinase 3 (PR3), and azurocidin
(CAP37). Azurocidin is a member of the neutrophil serine
proteases, with intense chemotactic activity toward monocytes,
and the formation of NETs depends on the presence of NE.
Excessive or diminished NET production may lead to
autoimmune and inflammatory disorders, like inflammasome
activation, interfering significantly in PLS patients’ defensive
mechanisms. Scientific reports of CTSC−/− mice show that
neutrophil granulocyte is altered in the absence of CTSC (John
et al., 2019). Moreover, the neutrophil serine protease elastase
(NE) activity was markedly reduced by approximately 50% in the
knockout granulocytes. Other neutrophil serine proteases,
cathepsin G (CTSG) and proteinase 3 (PR3), were strongly
reduced as well. The cleavage of the cell–cell contact molecule
E-cadherin was also impaired in the absence of CTSC, suggesting
that the impaired tissue infiltration of CTSC−/− neutrophils are
caused by reduced E-cadherin cleavage at adherens junctions
rather than by reduced motility of neutrophils (John et al., 2019).
Taken together, the mutations in the cathepsin-C gene and the
immune/inflammatory cell dysfunction may explain PLS
patients being more prone to oral dysbiosis and proliferation
of periodontal biofilms. More critical, PLS individuals may
present a diverse biofilm challenging to control with the
conventional treatment.

The oral microbiota in dysbiosis is a relevant factor in several
oral conditions such as dental caries, periodontitis (PD), apical
lesions, alveolar osteitis, and tonsillitis. It also plays a role in
certain systemic diseases such as cardiovascular disease, diabetes
mellitus, pneumonia, and premature births (Dewhirst et al.,
2010). Nonetheless, the knowledge of the microbial community
is essential to evaluate the effects of these microorganisms in the
host and might help the evolution of treatments for oral
disorders (Socransky and Haffajee, 2005). However, the oral
microbiome in PLS is not fully described or related to the
phenotype of the syndrome. This knowledge gap might explain
why the periodontitis (PD) treatment is not efficient in those
patients (Albandar et al., 2012). The hypothesis for the
unsuccessful PD therapy in PLS is the combination of the
August 2021 | Volume 11 | Article 720790

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Lettieri et al. Oral Phenotype and Salivary Microbiome
existence of pathogenic species, the onset inflammation (Kilian
et al., 2016; Hoare et al., 2018), and the immune disturbance
caused by cathepsin C mutation that is not well understood
(Albandar et al., 2012; Kilian et al., 2016). Therefore,
understanding the triad “oral microbiota, immune/inflammatory
response, and cathepsin-C mutation” is mandatory to search for a
successful periodontal and systemic treatment of PLS, currently
unavailable. This study aimed to characterize the oral phenotype,
including salivary parameters, and the salivary microbiome of
three PLS sisters, comparatively. Two of them were already
edentulous, while the younger one had 15 teeth in the oral
cavity. To achieve our purpose, we chose a combination of
universal primer pairs for the 16S rRNA gene with suitable
putative coverage for archaea and the analysis of the amplicon
sequence variants (ASVs) followed by taxonomy assignment using
the SILVA v.138. Sequence variations in 16S and other
metagenomic loci contain phylogenetic information that can be
used to infer the taxonomic relationships of the microbial hosts
(Fricker et al., 2019). Analysis of ASVs provides improved
sensitivity and specificity and reduces the problem of inflated
microbiota datasets due to falsely identified distinct operational
taxonomic units (OTUs) originating from misclustered sequences
(Callahan et al., 2017). According to the authors, the ultimate
reference-free statistical denoising methods such as Dada2
overcome the non-reproducibility of OTU clustering results with
modified or expanded datasets by recovering independent
biological sequences as ASVs, promoting reproducibility and
comparability of amplicon-based microbiome analysis.
MATERIALS AND METHODS

Participants and Clinical and
Radiographic Examination
This research was approved by the Research Ethics Committee of
the School of Health Sciences of the University of Brasıĺia (FS-
UnB; no. 2.974.167) and performed under the World Medical
Association (WMA) Declaration of Helsinki. Individuals were
informed verbally about the study’s objective and signed a
consent form. Three sisters from a consanguineous marriage of
first cousin couples and diagnosed with PLS were selected for this
study. Characteristics preintervention included advanced
periodontitis, palmoplantar hyperkeratosis, and a long story of
failed dental treatment. The sisters were submitted to clinical,
photographic, and radiographic examinations. Two PLS sisters
had lost all their teeth approximately 2 years before the study
enrolment, except for the impacted third molars: Papillon–
Lefèvre syndrome toothless 1 (PLSTL1) and Papillon–Lefèvre
syndrome, toothless 2 (PLSTL2). One sister had 15 teeth in her
mouth [Papillon–Lefèvre syndrome toothed (PLST)]. The sisters
were 14, 16, and 18 years old at the baseline on August 3, 2018,
non-smokers, and had no other systemic diseases apart from
PLS. After the saliva samples collection, the PLST patient was
submitted to oral hygiene instruction and motivation. An
experienced periodontist treated the PLST patient with subgingival
scaling and root planning under local anesthesia. The probing depth
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3156
technique consisted of 4 points measurements to detect the most
profound penetration areas. The disease classification was
established following the 2017 World Workshop of Periodontal
and Peri-implant Disease and Conditions (Caton et al., 2018).
Re-evaluations were carried out 1 month later and every 3 months
after the study enrolment.
Salivary Characteristics
Salivary Flow and Reliability Assays
Saliva samples were collected in the morning on of August 3,
2018. Patients were asked to refrain from eating and drinking for
2 h before the sampling. None of the sisters were using systemic
antibiotics or local antimicrobials or submitted to periodontal
treatment for nine months previously to the saliva collection.
The unstimulated salivary flowrate was performed by passive
drooling, with patients seated. The collection was carried out for
5 min. The volume of saliva was measured (mL/min). The saliva
reliability was analyzed during the transfer of saliva to a
microtube. The stimulated salivary flow was performed by 1
min chewing a rubber dam (Madeitex, São José dos Campos, SP,
Brazil). The saliva during the stimulation was discarded, and
then, the flow was measured by 5 min (Navazesh and Kumar,
2008). For the phenotypic analysis, the PLS salivary samples
were collected in three different sessions, with intervals of
approximately 1 year. No medication or periodontal treatment
was taking place 3 months before or during the saliva collection
period. The classifications regarding resting salivary flow were
assialia (0.00 mL/min), hyposialia (0.1–0.29 mL/min), and ideal
(0.3–0.4 mL/min). Regarding stimulated salivary flow, the
classifications were asialia (0.00 mL/min), severe hyposalivation
(0.1–0.4mL/min), moderate hyposalivation (0.5–0.9mL/min), mild
hyposalivation (1.0–1.4 mL/min), ideal salivation (1.5–2.5 mL/min),
and sialorrhea (>2.5 mL/min). Regarding the reliability, the
classifications were serous (does not form a string), fluid (a string
of 2 cm), or viscous (a string of ≥5 cm).
Salivary pH and Buffering Capacity
A volume of 1 mL of stimulated saliva was transferred to 1.5 mL
tubes, and the pH was measured using the tape method (pH-Fix 0-
14, Macherey-Nagel, Düren, NRW, Germany) by 30 s. Another
1 mL of stimulated saliva was added to 3ml of hydrochloric acid PA
37% (0.005M) (Dinâmica, Indaiatuba, Brazil) to evaluate the buffer
capacity and the pH measured again after 2 min (mColorpHast
MilliporeSigma, Burlington, MA, USA).
Salivary Glucose
The salivary glucose was analyzed using the Glucose Liquiform
kit (Labtest Diagnóstica, Lagoa Santa, MG, Brazil). The glucose
stabilizer Glistab (Labtest Diagnóstica, Lagoa Santa, MG, Brazil)
was added to the unstimulated saliva in the proportion of 30 µL
for each 3 mL of saliva. After that, the samples were centrifuged
for 1 min, and 150 mL of the supernatant was mixed to 500 mL of
the reagent 1 (phosphate buffer, 30 mmol/L, pH 7.5; phenol, ≥1
mmoL/L; glucose oxidase, ≥12,500 U/L; peroxidases, ≥800 U/L;
4-aminoanthypyrine, ≥290 mmol/L; sodium azide, 7.5 mmol/L;
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and surfactants). The samples were incubated at 37°C for 10 min,
and the absorbance was measured at 505 nm using the
spectrophotometer Spectramax (Molecular Devices LCC, San
Jose, CA, USA). The capillary glucose (mg/dL) was evaluated
for comparative purposes with Accu-Check and test strips
(Roche, Basel, BS, Swiss).
Salivary Amylase
This assay was performed using an adapted protocol of amylase
test (Labtest Diagnóstica, Lagoa Santa, MG, Brazil). The saliva
samples were centrifuged for 1 min to 20,000 rpm, and the
supernatant diluted 300 times with 0.85% NaCl. After this, 2 µl of
the prepared saliva samples was added into 50 µl of substrate 1
(0.4 g/L starch, pH 7.0; phosphate buffer; and stabilizer), previously
incubated at 37°C for 2 min, and incubated for additional 7 min and
30 s at 37°C. Then, 50 µL of the color reagent (potassium iodate, 16.7
mmol/L; potassium iodide, 271 mmol/L; and hydrochloric acid, 112
mmol/L) and 400 µL of distilled water were added, and after 5 min at
room temperature, the absorbance was measured at 660 nm using
the spectrophotometer Spectramax (Molecular Devices LCC, San
Jose, CA, USA).
Salivary DNA Extraction, Amplicon
Sequencing, and Bioinformatics
The DNA was extracted using phenyl-chloroform as successfully
described by Smalla et al. (1993) for prokaryotes cells. After DNA
extraction, PCR was performed for partial amplification of 16S
rRNA gene using universal primers 515F (5′-GTGCCAGCMGC
CGCGGTAA-3 ′) and 806R (5 ′-GGACTACVSGGGT
ATCTAAT-3′) (Bates et al., 2011). The PCR conditions were
as follows: 50 mL mixture, consisting of 1.5 mMMgCl2, 0.2 mMof
each primer, 0.2 mM of each dNTP, 1 U Platinum Taq DNA
polymerase, 1× PCR reaction buffer, and approximately 10 ng of
genomic DNA. The PCR cycles were one initial denaturation
step at 95°C/3 min, 25 cycles including denaturation at 95°C/30s,
annealing at 52°C/1 min, and extension at 72°C/1min plus one
final extension step at 72°C/7min. The PCR amplicons were
purified using Agencount AMPure Beads (Beckman Coulter,
Indianapolis, IN, USA). Library preparation was performed as
described in the Ion Plus Fragment Library from an initial
amount of 100 ng of DNA and sequenced at Ion PGM System
(Thermo Fisher, Waltham, MA, USA) using an Ion 316 chip,
following the manufacturer’s instructions. The raw dataset is
deposited at the National Biotechnology Information Center
(NCBI) under the BioProject PRJNA558499. The 16S rRNA
gene reads were submitted to the DADA2 version 1.18 (Callahan
et al., 2016) in R version 3.6.3 (R Core Team, 2021) to obtain the
amplicon sequence variants (ASVs). Reads were filtered,
retrieving reads longer than 100 bp and allowing a maximum
of two errors per read. The error rates were estimated, and reads
were dereplicated to remove redundancy. Chimeras were
removed, and taxonomy was assigned using the Silva v.138
databases (Quast et al., 2013). ASVs assigned to eukaryote,
chloroplast, or mitochondria were removed using phyloseq
(McMurdie and Holmes, 2013) before further analysis.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4157
RESULTS

Oral Phenotype
In general, the phenotypic characteristics observed in the three
patients were bone loss and the early loss of primary and
permanent dentition, particularly for the PLSTL sisters
(PLSTL1 and PLSTL2). The clinical examination of the patient
who still had teeth (PLST) revealed severe gingival inflammation
and hyperplasia (enlargement), spontaneous bleeding, tooth
mobility, heavy dental calculus accumulation, and deep
periodontal pockets (Figures 1A–C). The mean of PLST
probing pocket depth was 8.82 mm ( ± 3.46), which did not
regress with previous regular periodontal treatment (Table 1).
The panoramic X-ray of the PLST sister showed loss of the
permanent incisors and first molars. The remaining teeth had
normal anatomy; however, they presented a “floating”
appearance because of periodontal ligament and bone loss
(Figure 2). The parents reported that the first symptoms for all
sisters started in the primary dentition with teeth mobility and
gingival bleeding. According to the new classification, the PLST
condition was periodontitis as a manifestation of systemic
disease (ICD-10 Q82.8), stage IV, generalized, and grade C.

Salivary Characteristics
Table 1 shows the systemic and the salivary characteristics of the
three PLS sisters: pH, buffering capacity, amylase activity, and
glucose. The patients with PLS presented hyposialia at an
unstimulated salivary flow. The stimulated salivary flow
resulted in severe or moderate hyposalivation. The pH was
6.97 ± 0.21 for PLST, 7.1 ± 0.17 for PLSTL1, and 6.7 ± 0.57
for PLSTL2. The PLST salivary glycemia was 1.79 ± 2.50 mg/dL,
that of PLSTL1 was 10.11 ± 2.36 mg/dL, and that of PLSTL2 was
1.26 ± 1.99 mg/dL. The PLST amylase was 11,278.19 ± 2,040.13
U/dL, while that of PLSTL1 was 114,008.15 ± 2,422 U/dL and
PLSTL2 was 16,016.74 ± 2,399.40U/dL (Table 1).

Salivary Microbiome
Both domains, Bacteria (90.16%) and Archaea (9.84%), were
present in the samples. PLS salivary microbiome presented
different profiles at the phyla level, with higher proportions of
Fusobacteria at the PLST sister and Firmicutes and
Proteobacteria at the PLSTL1 sister and Bacteroidetes and
Firmicutes at the PLSTL2, as shown in Figure 3. The heatmap
(Figure 4) shows the genera relative abundances of prokaryotic
taxa. Bacteroidales F0058 (25.88%) and Fusobacterium (34.64%)
dominated the microbiome of the PLST sister. The PLST
microbiome also presented high abundances of Tannarella
(1.12%), Treponema (14%), Campylobacter (5.53%), and
Aggregatibacter (4.61%). Streptococcus dominated the
microbiome of the PLSTL1 sister, comprising 32% of the total
microbiome, with Haemophilus and Caldivirga in a relative
abundance higher than 10%, while the PLSTL2 had higher
abundances of Lactobacillus (8%) and Porphyromonas (3%).
The Archaea domain corresponded to 10 genus-level taxa, all
from the phyla Crenoarchaeota and Halobacteriota. The genus
Caldivirga (family Thermoproteaceae) and Sulfophobococcus
(family Desulfurococcaceae) comprised the core microbiome of
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Archaea among PLS sisters. Caldivirga’s relative abundance was
0.8% in PLST, 13.27% in PLSTL1, and 6.15% in PLSTL2.
Sulfophobococcus’ relative abundance was 4.45% in PLST,
0.95% in PLSTL1, and 0.15% in PLSTL2. The Venn diagram
(Figure 5) shows that the PLSTL microbiomes shared higher
ASVs than the PLST. A core microbiome could be identified,
including the organisms Prevotella, Fusobacterium (high
abundance in all samples, and dominant in the toothed sister),
Caldivirga (family Thermoproteaceae, belonging to the Archaea
domain, high abundance in PLSTL), Streptococcus (low
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5158
abundance in PLST, 0.7%), Oribacterium, Aggregatibacter,
Dehalococcoidia 1226B1H1-22-FL, Haemophilus, Actinomyces,
Campylobacter , Gemella , Sulfophobococcus (Archaea),
Capnocytophaga (ubiquity, but in low abundance),
and Peptococcus.
DISCUSSION

The oral phenotype of the PLS individuals in this study followed
the syndrome profile with bone loss and early edentulism for the
oldest sisters (PLSTL1 and PLSTL2). All of them had
palmoplantar hyperkeratosis as well. The PLST (younger sister)
presented tooth mobility, bone loss, deep probing depth,
inflamed gum, and feeding difficulty. The evaluation of the
probing depth was complex in the PLST individual because of
the spontaneous gingival bleeding, gingival hyperplasia, intense
tooth mobility, and the young age of the patient. The attempts to
treat periodontitis in PLS by conventional methods are frustrated
in most cases, which was the case of these sisters. This study
shows differences in the salivary microbiome between PLST and
PLSTL (PLSTL1 and PLSTL2). For the first time, the high relative
abundance of uncultivated bacteria Bacteroidales F0058,
Caldivirga, and Sulfobococcus (the last two from the Archaea
domain) were detected in PLS, which was possible due to the
next-generation sequencing method.

The salivary characterization of the patients showed that the
PLS patients have normal pH, buffering capacity, and reliability.
The three PLS patients presented severe or moderate
hyposalivation, and hyposialia was found in PLSTL1 and
PLSTL2. This finding suggests hyposalivation as a possible
characteristic of the syndrome and corroborates the study of
Lundgren et al. (1996). More studies are necessary to confirm
this hypothesis, as hyposalivation is associated with a higher risk
of oral infections (Pedersen et al., 2018; Shimomura-Kuroki
et al., 2020). Salivary hypofunction may also play a role in the
diet change, resulting in malnutrition and or weight loss,
affecting life quality (Pedersen et al., 2018). It is essential to
highlight that saliva plays an essential role in maintaining a
balanced microbiota (Pedersen et al., 2018) and promoting oral
health (Kilian et al., 2016). Curiously, the level of salivary glucose
was high in PLSTL1. The salivary microbiome was altered in the
presence of high salivary glucose concentration, showing a
decrease in bacterial load (Goodson et al., 2017). In the study
of Goodson et al., the order of the microbiome reduction was in
the direction of aciduric strength of bacterial species, with
Prevotella spp. being more sensitive and Streptococcus mutans
among the most resistant. The relative abundance of
Streptococcus, and Prevotella in salivary samples of PLSTL1
and PLSTL2 followed a similar profile in our study.
Streptococcus dominated the PLSTL1 microbiome (salivary
glucose >10mg/dl) and Prevotella dominated the microbiome in
PLSTL2 (salivary glucose, <2 mg/dl). A high abundance of
Streptococcus, Treponema, and Campylobacter in dental biofilms
of PLS individuals was described by Albandar et al. (2012), using
16S ribosomal DNA cloning and the Human Oral Microbe
FIGURE 1 | Intraoral photos of patient Papillon–Lefèvre syndrome toothed
(PLST). The white arrows indicate the periodontal pockets. It is possible to
notice a significant loss of dental elements. (A) Occlusion photo of the
patient. (B) Upper arch photo. (C) Lower arch photo.
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Identification Microarray (HOMIM). However, our results
showed fewer Streptococcus in the PLST sample using an next-
generation sequencing (NGS) method. Albandar et al. (2012) used
a cloning method, which leads to loss of diversity, particularly for
uncultured microorganisms. Due to the methodological
differences, we could better describe the abundance of other
genera that should be involved in the dysbiosis of PLS.

Despite the high relative abundance of acidogenic Firmicutes,
the PLST1 and PLST2 saliva pH was neutral. The mean salivary
amylase concentration in PLSTL2 samples was 16,016.74 ±
2,399.40 U/dl, while PLSTL1 and PLST amylase concentrations
were approximately 11,000 U/dl. An interesting study
demonstrated that the copy number of the salivary amylase
gene AMY was correlated with oral and gut microbiome
composition and function (Poole et al., 2019). Amylase is a
crucial salivary enzyme that hydrolyzes alpha bonds of starch
and glycogen, beginning starch degradation in the mouth.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6159
According to the authors, the microbiomes of AMY1 low-copy
individuals (AMY1 L) had enhanced capacity to break down
complex carbohydrates. AMY1 high-copy subjects (AMY1 H)
had a higher abundance of salivary Porphyromonas. Their gut
microbiota had an increased abundance of resistant starch-
degrading microbes. The OTUs that significantly discriminated
the AMY1 H and AMY1 L groups belonged to the genera
Prevotella (AMY1 H), Haemophilus (AMY1 L), Neisseria
(AMY1 L), and Porphyromonas (AMY1 H). In this study,
PLSTL2 had a higher abundance of Prevotella (23.56%) and
Porphyromonas (2.68%) than the other PLS sisters, which
corroborates the AMY H hypothesis of Poole et al. (2019).
Neisseria was found only in PLSTL1 samples (3.28%), and
Haemophilus had a higher relative abundance in PLSTL1
(17.12%) than in the saliva of the other PLS sisters. The
amylase activity and concentration do not seem to be affected
by cathepsin C deletion in mice (CTSC−/−), neither cathepsin-C
TABLE 1 | Baseline characteristics of the PLS individuals and salivary parameters, pH, buffering capacity, reliability, salivary flow, amylase activity, and glucose in
Papillon–Lefèvre syndrome.

Individual PLST PLSTL1 PLSTL2

Gender Female Female Female
Age (years) 14 18 16
Number of erupted teeth 15 Edentulous Edentulous
Probing Depth (mm) 8.82 ( ± 3.46) – –

Gingival Index 2.76 ( ± 0.30) – –

Unstimulated Saliva (mL/min) 0.35 ( ± 0.17) 0.21 ( ± 0.05) 0.26 ( ± 0.06)
Classification Ideal Hypossialia Hypossialia
Stimulated Saliva (mL/min) 0.73 ( ± 0.34) 0.51 ( ± 0.36) 0.26 ( ± 0.06)
Classification Moderate Hyposalivation Moderate Hyposalivation Severe Hyposalivation
pH 6.97 ( ± 0.21) 7.1 ( ± 0.17) 6.7 ( ± 0.57)
Buffering Capacity 4.67 ( ± 1.15) 4.0 ( ± 1.0) 4.67 ( ± 1.15)
Reliability Serous Fluid Fluid
Glucose (mg/dL) 1.79 ( ± 2.50) 10.11 ( ± 2.35) 1.26 ( ± 1.99)
Amylase (U/dL) 11,278.19 ( ± 2,040.13) 114,008.15 ( ± 2,422.31) 16,016.74 ( ± 2,399.40)
Capillary Glucose (mg/dL) 96 106 92
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colocalized in the zymogen secretory compartments (John et al.,
2019). Therefore, the high amylase concentration in PLSTL2 is
probably an isolated observation with no relationship with a
cathepsin C mutation in PLS but deserved analysis as it can affect
the microbiome. It is essential to highlight the high abundance of
Granulicatella and Veillonella at the PLSTL sisters. Those genera
are part of the oral mucosa specialized microbiome. Comparing
PLSTL sisters with PLST, we must consider that the difference
observed in the microbiome of PLST saliva is strongly related to
the presence of teeth surfaces as physical supports for supra and
subgingival plaques attachment.

The salivary microbial changes after PLS patients losing their
teeth are expected since, it represents a loss in bacteria adherence
surface (Aas et al., 2005; Socransky and Haffajee, 2005; Gazdeck
et al., 2019). According to Zaura et al. (2009), the communities
obtained in saliva samples are closer to mucosa communities
than dental sites. The teeth loss cause changes in the oral cavity
that result in the loss of bacterial taxa in soft tissues (Gazdeck
et al., 2019). The biofilm that formed on teeth develops quickly
and has a more significant proportion of species than edentulous
individuals (O’Donnell et al., 2015). The literature suggests the
demand for hard surfaces for the colonization of some species
and the gingival crevice fluid from gingival sulci or periodontal
pockets for the colonization of others, which can explain the
main differences found in the microbiome of the partially
edentulous and edentulous PLS sisters. However, the
edentulous subjects (PLSTL1 and PLSTL2) that wore full
dentures at the baseline of this study (for almost 2 years and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7160
6 months, respectively) also showed striking differences in their
microbiome. Socransky and Haffajee (2005) showed that, in
general, the microbial profile was more similar between healthy
and periodontitis subjects than edentulous subjects. The data of
Socransky and Haffajee study (2005) supported the concept that
the nature of the hard tissue surface in the oral cavity impacts the
nature of colonizing species on hard tissue surfaces and soft
tissue surfaces. Individuals who were fully edentulous and had
been wearing dentures for at least 1 year showed differences in
their microbiome compared with those present in samples of
supragingival plaque from subjects who were periodontally
healthy or had chronic periodontitis. They corroborated the
denture surfaces as support for recolonization by the abundance
of S. mutans and lactobacilli in themouths of edentulous individuals
wearing dentures. Their data indicated that Porphyromonas
gingivalis, Aggregatibacter actinomycetemcomitans, and Tannerella
forsythia could be detected in edentulous subjects 1 year or longer
after all teeth have been extracted. The environmental
characteristics as a consequence of the high salivary glucose of
PLSTL1, the severe hyposalivation and high amylase level of
PLSTL2, and other factors like the time of dentures usage and
oral hygiene profiles can be responsible for the differences found in
PLSTL sisters microbiome.

The PLS individuals of this study had a genetic predisposition
of ineffective cathepsin C that led to inflammation and stage IV
periodontitis, which suits the inflammation-mediated
plymicrobial-emergence and dysbiotic exacerbation (IMPEDE)
model (Van Dyke et al., 2020). The periodontitis inflammation
FIGURE 3 | Distribution of phyla in the salivary microbiome of the sisters with Papillon–Lefèvre syndrome. Papillon–Lefèvre syndrome toothed (PLST), Papillon–
Lefèvre syndrome toothless 1 (PLSTL1), and Papillon–Lefèvre syndrome toothless 2 (PLSTL2).
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process can trigger dysbiosis, and the own dysbiosis enhances the
inflammatory response (Van Dyke et al., 2020). The dysbiosis
theory in periodontitis is related to the microbiological community’s
transition from Gram-positive commensal to Gram-negative-
enriched “inflammatogenic” community (Kirst et al., 2015).
Interestingly, Bacteroidales F0058 (clone AU126, OT274, or
HOT274), presumptively a Gram-negative bacterium, massively
dominated the microbiome of the PLST sister as an exclusive ASV
related to the presence of teeth, with no reads in PLSTLmicrobiomes.
In the Human Microbiome Project (HMP) cohort of 210 adults,
Bacteroidales F0058 [provisionally assigned Bacteroidales
Neisseriaceae (G-1) bacterium HMT-274] was common in adult
nostrils (Escapa et al., 2018). The investigation of Kumar et al. (2003)
on potential periodontal pathogens in 66 individuals showed that
Bacteroidales bacterium HMT-274 were among the most strongly
associated with the formerly chronic periodontitis, comparable or
more significant than species P. gingivalis and T. forsythia. The
prevalence of B. bacterium HMT-274 was significantly high in the
study population with periodontitis (82%). Li et al. (2006) also found
a significantly high prevalence of B. bacterium HMT-274 in
subgingival plaque in formerly chronic periodontitis (77.1%) and
plaque-induced gingivitis (61.5%). Bacteroidales bacteriumHMT-274
(F0058), as-yet-uncultivated bacterium, has no potential described
growth partners. Escapa et al. (2018), in their ANCOM analysis,
detected only the group-specific taxon and no other species with
differential relative abundance related to B. bacterium HMT-274.
However, according to Oliveira et al. (2016), the new species
B. bacterium HMT-274 is not a consequence of periodontitis but
is likely to play a crucial role in initiating the disease.

Another striking result of our study was the presence of the
Archaea domain, corresponding to 24 ASVs and 10 genus-level
taxons, all from the phylum Crenoarchaeota and Halobacteriota.
The Haloarcula was recently found to be part of the
gastrointestinal tract microbiome (Kim et al., 2020). Our study
is the first report on the presence of high abundance of Archaea in
the human salivary microbiome. Although mostly methanogen
Archaea has been detected at the oral cavity so far (Belmok et al.,
2020), and other signs of archaeal presence in oral samples were
associated with samples contamination, the high abundance of
Caldivirga and Sulfophobococcus represents evidence of the
importance of those organisms (or their taxonomic-related),
possibly associated with dysbiotic sites. Crenarchaeota was
already detected in human fecal samples, suggesting their
presence in the microbiota of the human digestive ecosystem
(Rieu-Lesme et al., 2005). In the salivary samples of the PLS sisters,
both genus Caldivirga (family Thermoproteaceae) and
Sulfophobococcus (family Desulfurococcaceae) comprised the
core microbiome, ranging from 0.8% to 13% of relative
abundance. Some studies explained part of the indirect/direct
role of archaea in inflammation in specific sites and the
proinflammatory potential of some species (Borrel et al., 2020).
When there is a dysbiosis or infection, various body sites are
known to have a higher prevalence of archaea, especially skin and
oral cavity. In severe periodontitis, it was shown that the shift to
anaerobic fermentative bacteria is accompanied by an increase in
Archaea (Dabdoub et al., 2016). The PLST individual presented
FIGURE 4 | Heatmap comparing taxa composition of saliva of PLST
patients. Papillon–Lefèvre syndrome toothed (PLST), Papillon–Lefèvre
syndrome toothless 1 (PLSTL1), and Papillon–Lefèvre syndrome
toothless 2 (PLSTL2).
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over 5% relative abundance of Crenarchaeota (4.45%
Sulfophobococcus and 0.8% Caldivirga). PLSTL1 and PLSTL2
presented 0.95% and 0.15% of Sulfophobococcus, while
Caldivirga abundance was 13.27% and 6.15%, respectively. This
result also suggests an archaeome-related dysbiosis in PLS that
changes with edentulism. Pausan et al. (2019) discussed the
importance of archaea-specific procedures, as universal
approaches fail to picture the diversity of archaeal signatures in
the previous analysis. Although their combination of universal
primers 515F-806R showed coverage of 94.6% of archaea in silico
(95.90% of Euryarchaeota, 94.60% of Thaumarchaeota, and
89.10% of Nanoarchaeota), the authors did not find similar
detection levels experimentally. In their study, a nested PCR
approach based on a first PCR with primer pair 344F-1041R,
followed by a second PCR with 519F-806R, was superior for
analyzing the archaeome of the gastrointestinal tract, oral cavity,
and skin. In our study, the combination of universal primers 515F-
806R showed a good coverage for the Archaea domain in the
salivary samples of the PLS individuals, corroborating the in silico
findings of Pausan et al. (2019). The high levels of archaea
detection in our study may reflect a specific feature of the
syndrome, probably revealed due to the advances in the archaeal
sequences in databases. We believe that the oral archaeome will be
easily characterized following technological advances in the future.

Dissimilatory and assimilatory sulfate reduction taxons
dominated the Bacteria and Archaea core microbiome in PLS,
and they were massively abundant in PLST (Kanehisa and Goto,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9162
2000). Desulfurococcales and Sulfophobococcus are anaerobes
acidophilic that ferment sugars and peptides, using organic
compounds to reduce sulfur and generate hydrogen sulfide
(H2S), organic acids, and alcohols (DasSarma et al., 2009). The
H2S from Archaea metabolism may serve as an electron donor
for a diversity of aerobic chemotrophic and anoxygenic
microorganisms, forming microbiological communities in
sulfidic habitats (Blohs et al., 2019). The sulfate-reducing
bacteria tended to prevail in pockets with bleeding on probing,
and their presence significantly correlated with pocket depth
(Langendijk et al., 2000 and Dabdoub et al., 2016). Possibly,
Sulfophobococcus and Caldivirga have a similar correlation in
PLS and developed an essential role in coaggregation to form an
aggressive subgingival plaque. Archaeamay indirectly participate
in periodontal disease by serving as a hydrogen sink, thereby
facilitating the proliferation of pathogenic secondary fermenters
to levels beyond the one in its absence (Dabdoub et al., 2016).
Therefore,Archaeamay have contributed to a favorable environment
for the sulfate-reducing bacteria in PLST. Staphylococcus aureus,
Prevotella intermedia, and Fusobacterium nucleatum are organic
sulfate-reducing bacteria (Kushkevych et al., 2020). Fusobacterium
dominated the PLSTmicrobiome (34.64%), consistent with a sulfidic
habitat and with the crucial role of this bacterium in oral biofilm
structure and ecology. Fusobacterium nucleatum, for example, was
found to act as a bridge between early and late periodontal biofilms
colonizers (Thurnheer et al., 2019). Moreover, F. nucleatum triggers
the production of matrix metalloproteinases by the host and has
FIGURE 5 | Venn diagram showing the shared microbial genus in Papillon–Lefèvre syndrome toothed patient (PLST) and toothless (PLSTL1 and PLSTL2) sisters.
Asterisk indicates high abundance in PLST sister (>20%). Number symbol indicates the highest abundance of Archaea domain in PLST.
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enhanced hemolytic activity, and the production of H2S is a key
virulence trait of this bacteria in periodontitis (Thurnheer et al.,
2019). Members of the genus Treponema are also capable of
homoacetogenesis (hydrogen-consuming process), including the
periodontitis pathogen, Treponema denticola. PLST presented high
abundances of Treponema (14%), Tannarella (1.12%), and
Campylobacter (5.53%), frequently enriched in the periodontitis-
associated microbiome (Socransky and Haffajee, 2005,
Hajishengallis et al., 2012). Those results support the hypothesis of
possible syntrophic interactions between Archaea, Treponema, and
other members of the red complex (Dabdoub et al., 2016), in a highly
“inflammatogenic” subgingival community.

Over the years, the microbiota and host response interactions as
the initial causal agent of periodontitis became more evident.
However, the pathological shift from localized and contained to
progressive and destructive periodontitis has not been clarified yet
(Bartold and Van Dyke, 2019; Van Dyke et al., 2020). The
development of aggressive periodontium destruction in PLS
individuals may be a model to understand how genetics, cytokines,
immunological factors, andmicrobiome interact for the periodontitis
outcomes. In PLS, the genetic disorder of cathepsin C (CTSC) came
first and led to dysbiosis in the individuals of this study. Taken
together the previous literature and our findings, we hypothesized a
subgingival microbiome biogeography in PLST that begins with the
teeth eruption (Figure 6). As soon as the teeth begin to erupt in the
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dental arch of PLST individual, the salivary pellicle covers them
providing attachment support and substrate for the ubiquitous
commensal microorganisms. Thereafter, some microorganisms
comprise the biofilm’s biogeography on a micrometer scale, as
proposed by Mark Welch et al. (2016); Streptococcus,
Haemophilus, Actinomyces, Capnocytophaga, and Fusobacterium
can colonize the tooth surface (Figure 6). The impaired immune
system cannot provide the first line of cellular defense due to an
ineffective cathepsin C. Neutrophils elastase (NE) is not active or
reduced, making the infiltration of neutrophils to the adjacent tissues
impossible, impairing phagocytosis, cytonemes, andNETs formation
(John et al., 2019). The lack of neutrophil’s defense can reduce the
control of the microbial load, allowing a massive biofilm
accumulation (Figure 6). The first colonizers proliferate,
decreasing the level of O2. The environment is highly favorable to
other microorganisms coadhere or coaggregate, shifting fromGram-
positive to Gram-negative anaerobes (Kirst et al., 2015). For instance,
Fusobacterium, which abundantly dominates the microbiome of
PLST, creates an anoxic lay and dictates the biofilm structure and
ecology (Mark Welch et al., 2016). Fusobacterium nucleatum, for
example, overgrew in a sulfidic environment and showed to be a
high producer of hydrogen sulfide (H2S) (Thurnheer et al., 2019).
The same characteristic applies to another producer of H2S, the
archaea Sulfophobococcus (Blohs et al., 2019). Anaerobes that use
sulfate as a terminal electron acceptor for anaerobiosis in the
FIGURE 6 | Hypothetical subgingival microbiome biogeography of PLST. The just erupted teeth serve as attachment support for ubiquitous commensals that form
an initial pellicle (Streptococcus and Actinomyces). The neutrophils infiltration and first line of defense are impaired due to an ineffective cathepsin C. The attached
aerobic microbes then serve as a substrate for further colonizers. Fusobacterium, also a ubiquitous bacterium, plays a crucial role as a bridge between the first and
late colonizers. Fusobacterium produces hydrogen sulfate (H2S), overgrows, and creates a sulfidic habitat ideal for anaerobic such as Treponema, Porphyromonas,
Prevotella, Tannerella, Sulfophobococcus, Caldivirga, and Bacteroidales F0058. The schematic image represents a hypothesis for PLST and was inspired by Mark
Welch et al. (2016).
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dissimilatory reduction process of sulfur (DRS) and organic
compounds as source of energy find a perfect sulfidic habitat
(Thurnheer et al., 2019; Kushkevych et al., 2020). The
environment conditions, the synergy and microbial competition
together, can favor the proliferation of other Gram-negative and
anaerobic microorganisms such as Archaea, Treponema,
Bacteroidales F0058, Tannerella, and Porphyromonas mimicking
a formal aggressive periodontitis consortium in PLST (Figure 6).

This study suggests that host response and the resident
microbiome are linked to a bidirectional imbalance between health
and disease in PLS. The PLST individual does have a microbiota
different from that of the periodontitis’s aggressiveness previously
recognized. A microbiome possibly favored by a sulfidic habitat,
capable of resisting conventional periodontal treatment and
antibiotic therapy. For instance, archaea are recognized as resistant
to antimicrobial agents that interfere with peptidoglycan biosynthesis
since their cell wall lacks peptidoglycan. The three PLS sisters were
provided with intensive periodontal treatment, mechanical therapy,
and oral hygiene instructions, including methods for denture
cleaning before and after the study. The attempts of treatment
prior to the study were unsuccessful, even conventional antibiotic
therapy. All consequences of an environment where neutrophils and
their frontline defensive mechanisms are inexistent or substantially
reduced. The phenotype of Papillon–Lefèvre Syndrome highlights
the microbiome dysbiosis and the fundamental role that neutrophils
play in maintaining oral and skin health. Considering the high
relative abundance in PLST, the genus Fusobacterium, Treponema,
Tannerella, and Sulfophobococcus are possible candidates to form a
consortium with Bacteroidales F0058; this is a hypothesis that
deserves future investigation. Undeniable, the archaeome is
ubiquitous in the salivary microbiome and more complex than
previously thought. The knowledge about the PLS microbiome is
exceptionally relevant in the search for specific successful treatments.
New broad-spectrum antimicrobial agents and second-generation
retinoid acitretin (vitamin A derivative) are potential alternatives to
provide a better prognosis for the outcomes of PLS.
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(2020). Recent Advances in Metabolic Pathways of Sulfate Reduction in
Intestinal Bacteria. Cells 9, 698. doi: 10.3390/cells9030698

Langendijk, P. S., Hanssen, J. T., and van der Hoeven, J. S. (2000). Sulfate-
Reducing Bacteria in Association With Human Periodontitis. J. Clin.
Periodontol. 27, 943–950. doi: 10.1034/j.1600-051z.2000.027012943.x

Li, C., Liang, J., and Jiang, Y. (2006). Association of Uncultivated Oral Phylotypes
AU126 and X112 With Periodontitis. Oral. Dis. 12 (4), 371–374. doi: 10.1111/
j.1601-0825.2005.01205.x

Lundgren, T., Twetman, S., Johansson, I., Crossner, C.-G., and Birkhed, D. (1996).
Saliva Composition in Children and Young Adults With Papillon-Lefèvre
Syndrome. J. Clin. Periodontol. 23, 1068–1072. doi: 10.1111/j.1600-
051X.1996.tb01805.x

Mark Welch, J. L., Rossetti, B. J., Rieken, C. W., Dewhirst, F. E., and Borisy, G. G.
(2016). Biogeography of a Human Oral Microbiome at the Micron Scale. Proc.
Natl. Acad. Sci. 113, E791. doi: 10.1073/pnas.1522149113

McMurdie, P. J., and Holmes, S. (2013). Phyloseq: An R Package for Reproducible
Interactive Analysis and Graphics of Microbiome Census Data. PloS One 8 (4),
e61217. doi: 10.1371/journal.pone.0061217.Print2013

Navazesh, M., and Kumar, S. K. (2008). Measuring Salivary Flow: Challenges and
Opportunities. J. Am. Dent. Assoc. 139, 35S–40S. doi: 10.14219/
jada.archive.2008.0353

O’Donnell, L. E., Robertson, D., Nile, C. J., Cross, L. J., Riggio, M., Sherriff, A., et al.
(2015). The Oral Microbiome of Denture Wearers is Influenced by Levels
of Natural Dentition. PloS One 10 (9), e0137717. doi: 10.1371/journal.
pone.0137717

Oliveira, R., Fermiano, D., Feres, M., Figueiredo, L., Teles, F., Soares, G., et al.
(2016). Levels of Candidate Periodontal Pathogens in Subgingival Biofilm.
J. Dent. Res. 95 (6), 711–718. doi: 10.1177/0022034516634619

Papillon, M., and Lefevre, P. (1924). Two Cases of Symmetrically Familial Palmar
and Plantar Hyperkeratosis (Meleda Disease) Within Brother and Sister
Combined With Severe Dental Alterations in Both Cases. Bull. Soc. Fr.
Dermatol. Syphiligr. 31 (2), 82–87.

Pausan, M. R., Csorba, C., Singer, G., Till, H., Schöpf, V., Santigli, E., et al. (2019).
Exploring the Archaeome: Detection of Archaeal Signatures in the Human
Body. Front. Microbiol. 10, 2796. doi: 10.3389/fmicb.2019.02796

Pedersen, A. M. L., Sørensen, C. E., Proctor, G., Carpenter, G., and Ekström, J.
(2018). Salivary Secretion in Health and Disease. J. Oral. Rehabil. 45 (9), 730–
746. doi: 10.1111/joor.12664

Poole, A. C., Goodrich, J. K., Youngblut, N. D., Luque, G. G., Ruaud, A., Sutter, J.
L., et al. (2019). Human Salivary Amylase Gene Copy Number Impacts Oral
and Gut Microbiomes. Cell Host Microbe 25 (4), 553–564. e557. doi: 10.1016/
j.chom.2019.03.001

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013).
The SILVA Ribosomal RNA Gene Database Project: Improved Data
Processing and Web-Based Tools. Nucleic Acids Res. 41 (Database issue),
D590–D596. doi: 10.1093/nar/gks1219
August 2021 | Volume 11 | Article 720790

https://doi.org/10.1038/s41579-020-0407
https://doi.org/10.1016/j.jaci.2018.01.018
https://doi.org/10.1016/j.jaci.2018.01.018
https://doi.org/10.1038/ismej.2017.119
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1111/jcpe.12935
https://doi.org/10.1038/srep38993
https://doi.org/10.1128/JB.00542-10
https://doi.org/10.1128/mSystems.00187-18
https://doi.org/10.1159/000484751
https://doi.org/10.1159/000484751
https://doi.org/10.1016/j.jare.2019.03.006
https://doi.org/10.1111/odi.13039
https://doi.org/10.1371/journal.pone.0170437
https://doi.org/10.1371/journal.pone.0170437
https://doi.org/10.1038/nrmicro2973
https://doi.org/10.1038/nrmicro2973
https://doi.org/10.1097/GIM.0b013e318217477f
https://doi.org/10.1111/j.1600-0757.1994.tb00029.x
https://doi.org/10.20517/2573-0002.2018.22
https://doi.org/10.1128/microbiolspec.BAD-0006-2016
https://doi.org/10.1074/jbc.RA118.004376
https://doi.org/10.1046/j0906-6713.2002.003433.x
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.4049/jimmunol.1201719
https://doi.org/10.1038/sj.bdj.2016.865
https://doi.org/10.1186/s40168-020-00894-x
https://doi.org/10.1186/s40168-020-00894-x
https://doi.org/10.1128/AEM.02712-14
https://doi.org/10.1177/154405910308200503
https://doi.org/10.3390/cells9030698
https://doi.org/10.1034/j.1600-051z.2000.027012943.x
https://doi.org/10.1111/j.1601-0825.2005.01205.x
https://doi.org/10.1111/j.1601-0825.2005.01205.x
https://doi.org/10.1111/j.1600-051X.1996.tb01805.x
https://doi.org/10.1111/j.1600-051X.1996.tb01805.x
https://doi.org/10.1073/pnas.1522149113
https://doi.org/10.1371/journal.pone.0061217.Print2013
https://doi.org/10.14219/jada.archive.2008.0353
https://doi.org/10.14219/jada.archive.2008.0353
https://doi.org/10.1371/journal.pone.0137717
https://doi.org/10.1371/journal.pone.0137717
https://doi.org/10.1177/0022034516634619
https://doi.org/10.3389/fmicb.2019.02796
https://doi.org/10.1111/joor.12664
https://doi.org/10.1016/j.chom.2019.03.001
https://doi.org/10.1016/j.chom.2019.03.001
https://doi.org/10.1093/nar/gks1219
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Lettieri et al. Oral Phenotype and Salivary Microbiome
R Core Team (2021) R: A Language and Environment for Statistical Computing
(Vienna, Austria: R Foundation for Statistical Computing). Available at:
https://www.R-project.org/ (Accessed Accessed: April 05, 2021).

Rieu-Lesme, F., Delbès, C., and Sollelis, L. (2005). Recovery of Partial 16s rDNA
Sequences Suggests the Presence of Crenarchaeota in the Human Digestive
Ecosystem. Curr. Microbiol. 51, 317–321. doi: 10.1007/s00284-005-0036-8

Robertson, K., Drucker, D., James, J., Blinkhorn, A., Hamlet, S., and Bird, P.
(2001). A Microbiological Study of Papillon-Lefevre Syndrome in Two
Patients. J. Clin. Pathol. 54 (5), 371–376. doi: 10.1136/jcp.54.5.371

Roberts, H., White, P., Dias, I., McKaig, S., Veeramachaneni, R., Thakker, N., et al.
(2016). Characterization of Neutrophil Function in Papillon-Lefèvre
Syndrome. J. Leukoc. Biol. 100 (2), 433–444. doi: 10.1189/jlb.5A1015-489R

Sørensen, O. E., Clemmensen, S. N., Dahl, S. L., Østergaard, O., Heegaard, N. H.,
Glenthøj, A., et al. (2014). Papillon-Lefevre Syndrome Patient Reveals Species-
Dependent Requirements for Neutrophil Defenses. J. Clin. Investig. 124 (10),
4539–4548. doi: 10.1172/JCI76009

Shimomura-Kuroki, J., Nashida, T., Miyagawa, Y., Morita, T., and Hayashi-Sakai,
S. (2020). Analysis of Salivary Factors Related to the Oral Health Status in
Children. J. Oral. Sci. 62 (2), 226–230. doi: 10.2334/josnusd.18-0293

Smalla, K., Cresswell, N., Mendonca-Hagler, L. C., Wolters, A., and Elsas, J. V.
(1993). Rapid DNA Extraction Protocol From Soil for Polymerase Chain
Reaction-Mediated Amplification. J. Appl. Bacteriol. 74 (1), 78–85.
doi: 10.1111/j.1365-2672.1993.tb02999.x

Socransky, S. S., and Haffajee, A. D. (2005). Periodontal Microbial Ecology.
Periodontol 38 (1), 135–187. doi: 10.1111/j.1600-0757.2005.00107.x

Thurnheer, T., Karygianni, L., Flury, M., and Belibasakis, G. N. (2019).
Fusobacterium Species and Subspecies Differentially Affect the Composition
and Architecture of Supra- and Subgingival Biofilms Models. Front. Microbiol.
10:1716. doi: 10.3389/fmicb.2019.01716

Toomes, C., James, J., Wood, A. J., Wu, C. L., McCormick, D., Lench, N., et al. (1999).
Loss-Of-Function Mutations in the Cathepsin C Gene Result in Periodontitis and
Palmoplantar Keratosis. Nat. Genet. 23 (4), 421–424. doi: 10.1038/70525
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13166
Tumen, D. S., Tumen, E. C., Gunay, A., Lacin, N., and Cetin, S. G. (2015). The
Typical Appearance and CBCT Images of the Patient With Papillon-Lefevre
Syndrome: A Case Report. J. Int. Dent. Med. Res. 8 (3), 128.

Van Dyke, T. E., Bartold, P. M., and Reynolds, E. C. (2020). The Nexus Between
Periodontal Inflammation and Dysbiosis. Front. Immunol. 11, 511.
doi: 10.3389/fimmu.2020.00511

Yu, H., He, X., Liu, X., Zhang, H., Shen, Z., Shi, Y., et al. (2021). A Novel Missense
Variant in Cathepsin C Gene Leads to PLS in a Chinese Patient: A Case Report
and Literature Review. Mol. Genet. Genomic 9 (7), e1686. doi: 10.1002/
mgg3.1686

Zaura, E., Keijser, B. J., Huse, S. M., and Crielaard, W. (2009). Defining the
Healthy Core Microbiome” of Oral Microbial Communities. BMCMicrobiol. 9
(1), 1–12. doi: 10.1186/1471-2180-9-259
Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Lettieri, Santiago, Lettieri, Borges, Marconatto, de Oliveira, Dame-́
Teixeira and Salles. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
August 2021 | Volume 11 | Article 720790

https://www.R-project.org/
https://doi.org/10.1007/s00284-005-0036-8
https://doi.org/10.1136/jcp.54.5.371
https://doi.org/10.1189/jlb.5A1015-489R
https://doi.org/10.1172/JCI76009
https://doi.org/10.2334/josnusd.18-0293
https://doi.org/10.1111/j.1365-2672.1993.tb02999.x
https://doi.org/10.1111/j.1600-0757.2005.00107.x
https://doi.org/10.3389/fmicb.2019.01716
https://doi.org/10.1038/70525
https://doi.org/10.3389/fimmu.2020.00511
https://doi.org/10.1002/mgg3.1686
https://doi.org/10.1002/mgg3.1686
https://doi.org/10.1186/1471-2180-9-259
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Frontiers in Cellular and Infection Microbiolo

Edited by:
Ulvi Kahraman Gürsoy,

University of Turku, Finland

Reviewed by:
Chen Li,

China Medical University, China
Nursen Topcuoglu,

Istanbul University, Turkey

*Correspondence:
Lei Cheng

chenglei@scu.edu.cn
Dong Mei Deng
d.deng@acta.nl

Specialty section:
This article was submitted to

Microbiome in Health and Disease,
a section of the journal
Frontiers in Cellular and
Infection Microbiology

Received: 19 June 2021
Accepted: 14 September 2021

Published: 08 October 2021

Citation:
Jiang Y, Song B, Brandt BW,

Cheng L, Zhou X, Exterkate RAM,
Crielaard W and Deng DM (2021)

Comparison of Red-Complex Bacteria
Between Saliva and Subgingival

Plaque of Periodontitis Patients: A
Systematic Review and Meta-Analysis.
Front. Cell. Infect. Microbiol. 11:727732.

doi: 10.3389/fcimb.2021.727732

ORIGINAL RESEARCH
published: 08 October 2021

doi: 10.3389/fcimb.2021.727732
Comparison of Red-Complex
Bacteria Between Saliva and
Subgingival Plaque of Periodontitis
Patients: A Systematic Review and
Meta-Analysis
Yaling Jiang1,2, Bingqing Song1, Bernd W. Brandt2, Lei Cheng1*, Xuedong Zhou1,
Rob A. M. Exterkate2, Wim Crielaard2 and Dong Mei Deng2*

1 State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology
and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China, 2 Department of Preventive
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The development of periodontitis is associated with an imbalanced subgingival microbial
community enriched with species such as the traditionally classified red-complex bacteria
(Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola). Saliva has
been suggested as an alternative to subgingival plaque for the microbial analysis due to its
easy and non-invasive collection. This systematic review aims to determine whether the
levels of red-complex bacteria assessed using saliva reflect those in subgingival plaque
from periodontitis patients. The MEDLINE, EMBASE, and Cochrane Library databases
were searched up to April 30, 2021. Studies were considered eligible if microbial data of at
least one of the red-complex species were reported in both saliva and subgingival plaque
from periodontitis patients, based on DNA-based methods. Of the 17 included studies, 4
studies used 16S rRNA gene sequencing techniques, and the rest used PCR-based
approaches. The detection frequency of each red-complex species in periodontitis
patients was reported to be > 60% in most studies, irrespective of samples types.
Meta-analyses revealed that both detection frequencies and relative abundances of red-
complex bacteria in saliva were significantly lower than those in subgingival plaque.
Moreover, the relative abundances of all 3 bacterial species in saliva showed significantly
positive correlation with those in subgingival plaque. In conclusion, current evidence
suggests that one-time saliva sampling cannot replace subgingival plaque for microbial
analysis of the red-complex bacteria in periodontitis patients. Given the positive microbial
associations between saliva and subgingival plaque, a thorough review of longitudinal
clinical studies is needed to further assess the role of saliva.

Keywords: periodontitis, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, 16S rRNA gene
amplicon sequencing, real-time PCR
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1 INTRODUCTION

Periodontitis is one of the most prevalent oral infectious diseases,
affecting over 740 million people worldwide (Kassebaum et al.,
2014). It is a chronic inflammation, associated with dysbiotic
subgingival biofilms, resulting in progressive and irreversible
destruction of tooth supporting tissues (Vieira Colombo et al.,
2016; Tonetti et al., 2017). Although it is not clear whether
dysbiotic biofilms initiate the disease or are a consequence of the
disease, it is well established that at diseased status, the
subgingival microbiota is enriched with gram-negative,
proteolytic bacteria, while in healthy situation, the microbiota
is mainly composed of gram-positive bacteria (Curtis et al., 2020;
Van Dyke et al., 2020). A recent review collected existing
evidence and proposed an “Inflammation-Mediated
Polymicrobial-Emergence and Dysbiotic-Exacerbation”
(IMPEDE) model, which included the microbial element and
complemented the current clinical classification of periodontitis
(Van Dyke et al., 2020). According to this model, local
inflammation drives an initial shift in microbial composition
and the formation of periodontal pocket exacerbates this
microbial shift by further enriching disease-associated species.

To determine the compositional shift of periodontitis-related
microbiota, subgingival plaque obtained from diseased pockets
has been considered as the most representative sample. However,
collecting subgingival plaque is invasive and requires specialized
training for proper sampling. Moreover, reports have shown that
the quality and quantity of collected plaque samples may be
greatly influenced by the collection methods (Renvert et al., 1992;
van der Horst et al., 2013). Compared to subgingival plaque,
saliva is much better accessible and can be collected
noninvasively in larger quantity. Since the collection of saliva
does not require special sampling tools, sample quality could be
less influenced by sampling methods or operators. Saliva has
been proposed as an alternative to subgingival plaque for
studying the association between oral microbes and
periodontal disease since 1998 (Umeda et al., 1998). It was
hypothesized that microbes residing in a periodontal pocket
could be spread, washed out or spilt over into saliva (Haririan
et al., 2014; Li et al., 2015). Multiple clinical studies have
compared the levels of important periodontal microbes using
samples collected from subgingival pockets and saliva, but the
results were inconsistent. For example, Umeda et al. (1998)
reported that Porphyromonas gingivalis and Treponema
denticola were detected more often in saliva than in
subgingival plaque samples, whereas Nickles et al. (2017)
reported the opposite. Moreover, the open-ended DNA
sequencing techniques developed in the past decades have
revealed that different niches in the oral cavity harbor
considerably different microbial communities with distinct
microbial composition (Huttenhower et al., 2012; Mark Welch
et al., 2019). Differential microbial profiles of saliva and
subgingival plaque have been demonstrated by several studies
(Segata et al., 2012; Simón-Soro et al., 2013). Therefore, a
systematic review that includes recent studies using sequencing
techniques is needed to objectively assess microbial compositions
of saliva and subgingival plaque.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2168
So far, the most frequently examined microbes in clinical
samples obtained from periodontitis patients are P. gingivalis,
Tannerella forsythia and T. denticola. These 3 species were
grouped as red-complex bacteria in 1998 (Socransky et al.,
1998) based on the evidence that they were frequently isolated
together and were strongly associated with periodontitis.
Members of the red-complex group have been the main target
in many clinical studies which performed the comparison
between saliva and subgingival plaque samples. In the past,
techniques employed to examine the levels of these bacteria
were mainly targeted approaches, such as bacterial culture,
immunological assays, PCR and quantitative real-time PCR
(qPCR) (Suchett-Kaye et al., 2001). Among them, PCR and
qPCR were used most frequently, since these techniques have
better sensitivity and specificity as compared to other methods
(Loesche, 1992; Boutaga et al., 2003). In addition, the
abovementioned 16S rRNA gene sequencing techniques have
been increasingly applied in clinical studies (Li et al., 2015;
Belstrøm et al., 2017), since they offer the possibility to profile
the entire microbiota besides specific bacterial species of interest.

This systematic review aimed to evaluate clinical evidence on
the levels of red-complex bacteria in saliva and subgingival
plaque samples collected from patients with periodontitis. We
focused on studies which used DNA-based (targeted and open-
ended) methods for microbial identification.
2 MATERIALS AND METHODS

This systematic review was performed following the Preferred
Reporting Items for Systematic Reviews and Meta-analysis
(PRISMA) statement (Moher et al., 2009), and was registered
at the National Institute for Health Research PROSPERO,
International Prospective Register of Systematic Reviews
(registration number: CRD42020219510).

2.1 Search Strategy
The MEDLINE (via PubMed), EMBASE, and Cochrane Library
databases were searched up to April 30, 2021 by two independent
researchers (YJ and BS), using the search strategy described in
Supplementary Table S1. In addition, a manual search of the
reference list of the included studies was conducted.

2.2 Study Selection
Studies that met the following criteria were included: 1)
population: humans with periodontitis; 2) exposure: saliva
samples; 3) comparison: subgingival plaque samples; 4)
outcome: microbial data of at least one of the red-complex
bacteria that was obtained using a DNA-based method; 5)
study design: clinical studies of any design, except case report
and case series.

Exclusion criteria were: 1) studies without periodontal
diagnosis of the participants; 2) studies including participants
who had an explicit diagnosis of any systemic disease or systemic
condition, such as pregnancy; 3) studies including participants
who used medication (e.g., antibiotics) or the medication status
October 2021 | Volume 11 | Article 727732
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of participants was not mentioned; 4) studies with no baseline
data in case of a prospective or interventional design; 5) not full-
text publications (e.g., conference abstracts); 6) studies published
in languages other than English. In addition, publications with
overlapped data were identified at the phase of full-text
screening. These studies were conducted by the same group of
authors, and the data (a part or all) reported in different
publications were obtained from the same group of subjects. In
order to avoid duplicate data extraction, only the publication on
a larger number of subjects was included.

The selection of studies was performed in two steps based on
the above inclusion and exclusion criteria. In the first step,
articles were screened on the basis of title and abstract, using a
Web platform (rayyan.qcri.org) (Ouzzani et al., 2016). In the
second step, the selected studies underwent full-text evaluation.

2.3 Data Extraction and Methodological
Quality Assessment
A customized data extraction form was used to collect the
following information from each included study: 1)
characteristics of the study (e.g., author, year of publication,
and study location); 2) characteristics of the participants (e.g.,
number, periodontal diagnosis, and clinical parameters); 3)
methodological features of the study (e.g., method of saliva and
subgingival plaque sample collection, method to evaluate red-
complex bacteria); 4) microbial outcomes. For prospective and
interventional studies, only data from the baseline measurement
were extracted for analysis. When needed, the corresponding
author(s) were contacted for the missing data.

The methodological qualities of all included studies were
assessed using the 8-item “Critical Appraisal Checklist for
Analytical Cross-Sectional Studies” by the Joanna Briggs
Institute (JBI) (Moola et al., 2020). The answer to each
question was “Yes”, “No”, or “Unclear”, and an overall rating
score was given to each study which equals to the total number of
“Yes” answers given, ranging from 0 to 8. The scores of 0–3, 4–5,
and 6–8 were classified as low, medium, and high quality of
studies, respectively (Yazdanian et al., 2020).

The steps mentioned above, including study selection, data
extraction and methodological quality assessment were
conducted independently by two researchers (YJ and BS), and
any disagreement was resolved through discussion. If
disagreement persisted, another researcher (DD) was consulted
to achieve consensus.

2.4 Summary Outcome Measures and
Statistical Analysis
Based on the results of included studies, we summarized 3 types
of microbial outcomes: detection frequency, bacterial count and/
or relative abundance of each red-complex bacteria.

Detection frequency refers to the percentage of subjects
positive for a specific microorganism. It was reported in
studies using either targeted PCR-based approaches or 16S
rRNA gene sequencing techniques. Bacterial count provides
the (semi-) quantity of a specific microorganism in a sample.
This outcome parameter was reported in the studies using qPCR
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3169
techniques. For studies using 16S rRNA gene sequencing
techniques, two types of data were extracted: detection
frequency and relative abundance.

Meta-analyses were performed to assess the statistical
differences in the detection frequency and relative abundance of
each red-complex species between saliva and subgingival plaque
samples, using RevMan software version 5.4 (The Cochrane
Collaboration; Copenhagen, Denmark). Heterogeneity among
studies was assessed by chi-squared test and inconsistency index
I2. Values of I2 < 30%, 30%–60%, and > 60% were considered as
low, moderate and large heterogeneity, respectively (Higgins et al.,
2003). When the heterogeneity was significant (p < 0.1), a
random-effects model (DerSimonian-Laird method) was applied
to examine the overall effect; otherwise, a fixed-effects model
(Mantel-Haenszel method) was used. The odds ratio (OR) for
detection frequency and mean difference (MD) for relative
abundance were calculated at 95% confidence intervals (CI).
Differences were considered statistically significant if p < 0.05.
3 RESULTS

3.1 Results of Search and Study Selection
The literature search of three electronic databases identified 2520
records in total (Figure 1). After removing duplicates, 1680
articles were retained for title and abstract screening, from which
1634 articles were excluded and the remaining 46 were assessed
further in full-text reading. Of these 46 studies, 30 were excluded
based on the eligibility criteria (Supplementary Table S2).
One study (Umeda et al., 1998) was identified additionally
from the manual search of the reference lists of the selected
studies. Therefore, 17 studies were finally included in this
systematic review.

3.2 Quality Assessment
Figure 2 shows the methodological quality assessment of the
included studies, which presented the answer to each appraisal
criteria as well as an overall rating of each study. Nine out of 17
studies had high quality, 8 studies had medium quality and no
study had low quality.

3.3 Characteristics of the Included Studies
The main characteristics of the included studies are presented in
Table 1. Most studies had a cross-sectional design (n = 14); the
rest had a prospective (n = 2) or interventional (n = 1) design.

Out of the 17 studies, 14 studies reported the classification of
periodontitis: 7 studies included patients with chronic periodontitis
(CP) only, 1 study with aggressive periodontitis (AgP) only, and
5 studies with both CP and AgP. Different from the other
13 studies, Choi et al. (2020) classified the disease as moderate
and severe periodontitis. Among these 14 studies, only 10 studies
specified their diagnostic criteria: 5 studies (Takeuchi et al., 2001;
Feng et al., 2014; Haririan et al., 2014; Li et al., 2015; Yang et al.,
2016) followed the criteria of the 1999 International Classification
of Periodontal Diseases and Conditions (Armitage, 1999),
2 studies (Belstrøm et al., 2017; Belstrøm et al., 2018) used the
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task force report by the American Academy of Periodontology
(Geurs, 2015), 1 study (Choi et al., 2020) used a criteria modified
from the case definition by the US Centers for Disease Control
and Prevention and the American Academy of Periodontology
(Page and Eke, 2007), and 2 studies (He et al., 2012; Nickles et al.,
2017) used self-defined criteria. Three studies (Amano et al.,
1999; Boutaga et al., 2007; Chen et al., 2015) did not specify the
type of periodontitis and the diagnostic criteria.

For sample collection, saliva was collected as unstimulated (10
studies), stimulated (3 studies) or oral rinse sample (4 studies);
subgingival plaque was collected by paper point in 11 studies and
by curette in 6 studies. Most studies (n = 14) analyzed
subgingival plaque samples pooled from multiple periodontal
pockets (2 to full mouth). Only 2 studies analyzed plaque
samples from individual pocket (Takeuchi et al., 2001;
O’Brien-Simpson et al., 2017) and 1 study analyzed both
pooled and individual plaque samples (Belstrøm et al., 2017).

With regard to the methods used for microbial identification,
4 studies used open-ended 16S rRNA gene sequencing
techniques (Chen et al., 2015; Li et al., 2015; Belstrøm et al., 2017;
Belstrøm et al., 2018), and the remaining 13 studies used
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4170
targeted PCR-based approaches, including PCR, qPCR, and
microarray techniques.

3.4 Clinical Data
The most frequently reported clinical data in the included
studies, mean probing pocket depth (PPD), clinical attachment
loss (CAL) and bleeding on probing (BOP) of full mouth and/or
the sampled sites, are summarized in Table 2. Two studies did
not report any clinical data (Amano et al., 1999; Estrela et al.,
2010). Overall, there were no big variations among the reported
mean PPD and/or CAL, except that 2 studies reported a mean
PPD less than 3 mm (He et al., 2012; Choi et al., 2020). The mean
PPD of the sampled sites generally ranged from 4 to 8 mm.

3.5 Microbial Data
3.5.1 Detection Frequency of the Red-Complex
Bacteria
The detection frequency of at least one of the red-complex bacteria
could be extracted from 16 out of the 17 included studies. One study
(Yang et al., 2016) did not report detection frequency, but bacterial
counts only. Figure 3 presents an overview of bacterial detection
FIGURE 1 | Flow diagram of the literature search and study selection.
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frequencies in saliva and subgingival plaque samples. Most studies
reported the detection frequencies of the red-complex bacteria were
more than 60% in both saliva and subgingival samples of
periodontitis patients. The only study which reported detection
frequencies of less than 60% for all 3 species combined the data of
healthy subjects and periodontitis patients (Umeda et al., 1998).
Four studies also included healthy subjects, which showed varied
detection frequencies of the red-complex bacteria, ranging from 2%
to 45%. However, in each study, the detection frequencies of the
red-complex bacteria in healthy group were much lower than those
in the corresponding periodontitis group, irrespective of the sample
types (Takeuchi et al., 2001; He et al., 2012; Feng et al., 2014;
O’Brien-Simpson et al., 2017). Generally, most studies reported that
the detection frequency of a specific red-complex species in
periodontitis patients was lower in saliva than in subgingival
plaque. But a few studies reported opposite trends. These studies
are Boutaga et al. (2007) and Choi et al. (2020) for P. gingivalis,
Boutaga et al. (2007), Choi et al. (2020) and Belstrøm et al. (2017)
for T. forsythia, and Choi et al. (2020) for T. denticola.

Next, meta-analyses were performed by summarizing the
results from different studies, in order to assess the differences
between saliva and subgingival plaque samples statistically. In
total, 10 out of 16 studies were included in the meta-analyses. Six
studies were excluded due to the following reasons: 1. Umeda et al.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5171
(1998) did not report data per healthy, gingivitis and periodontitis
group. Only the average data of 3 groups were given; 2. O’Brien-
Simpson et al. (2017) analyzed subgingival plaque samples from 6
periodontal pockets individually while other studies used pooled
subgingival plaque samples; 3. Since the pocket depth was believed
to affect the profile of subgingival microbiota (Van Dyke et al.,
2020), studieswhichdidnot report PPD(Amanoet al., 1999; Estrela
et al., 2010) and reported PPD < 3 mm (He et al., 2012; Choi et al.,
2020) were excluded. As shown inFigure 4, meta-analyses revealed
that the heterogeneity among studies was low for all 3 red-complex
bacteria, with I2 ranging from6% to 17%.The detection frequencies
ofP. gingivalis [Figure4A;OR=0.64, 95%CI: (0.43, 0.93), p=0.02],
T. forsythia [Figure 4B; OR = 0.53, 95% CI: (0.30, 0.95), p = 0.03],
and T. denticola [Figure 4C; OR = 0.45, 95% CI: (0.28, 0.72), p =
0.001] were all significantly higher in subgingival plaque samples
than that in saliva samples.

3.5.2 Bacterial Counts
Six out of the 17 studies reported bacterial counts of at least one of
the red-complex species. Meta-analyses could not be performed on
the data of bacteria counts due to the varied data format reported
among studies (e.g., bacterial cell numbers and bacterial DNA copy
numbers). Therefore, only a descriptive summary of the data is
presented. As shown in Table 3, 4 studies (Boutaga et al., 2007;
FIGURE 2 | Quality assessment of the included studies according to the JBI Critical Appraisal Checklist for Analytical Cross-Sectional Studies.
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TABLE 1 | Main characteristics of all included studies.

Author
(Country,
Year)

Design Patients Diagnostic criteria Saliva Subgingival plaque Method Red
complex
reportedType Sample site Sample

method

Umeda et al.
(USA, 1998)

Cross-
sectional

CP
(130);
AgP (3)

NA Unstimulated Pooled Deepest
pockets

Paper point PCR Pg; Tf; Td
(4 sites)

Amano et al.
(Japan, 1999)

Cross-
sectional

P (93) NA Unstimulated Pooled Deepest
pockets

Curette PCR Pg
(2 sites)

Takeuchi
et al. (Japan,
2001)

Cross-
sectional

CP (65);
AgP (38)

International classification 1999a Unstimulated Individual Deepest
pockets

Paper point PCR Pg; Td
(4 sites)

Boutaga
et al.
(Netherlands,
2007)

Cross-
sectional

P (21) NA Oral rinse Pooled Deepest
pockets

Paper point qPCR Pg; Tf
(4 sites)

Cavalca
Cortelli et al.
(Brazil, 2009)

RCT CP (20) NA Unstimulated Pooled Two sites of
PPD ≥ 5 mm
with BOP and
CAL per
quadrant

Paper point PCR Pg; Tf
(8 sites)

Estrela et al.
(Brazil, 2010)

Cross-
sectional

CP (30) NA Unstimulated Pooled NA Paper point Multiplex
PCR

Pg
(2 sites)

He et al.
(China, 2012)

Cross-
sectional

CP (60) ≥ 4 teeth with BOP, CAL and
radiographic alveolar bone loss,
and PPD ≥ 4 mm in ≥ 4 sites not
on the same tooth

Unstimulated Pooled Deepest
pockets

Paper point qPCR Pg
(4 sites)

Feng et al.
(China, 2014)

Cross-
sectional

AgP (81) International classification 1999a Unstimulated Pooled Site of PPD ≥

4 mm and
CAL ≥ 2 mm
of the first
molars

Curette PCR Pg; Tf; Td
(4 sites)

Haririan et al.
(Austria, 2014)

Cross-
sectional

CP (43);
AgP (33)

International classification 1999a Oral rinse Pooled Deepest
pockets

Paper point microarray
technique

Pg; Tf; Td
(4 sites)

Chen et al.
(China, 2015)

Cross-
sectional

P (30) NA Unstimulated Pooled Deepest
pockets

Curette 16S rRNA
gene
sequencing

Pg; Tf

(4 sites) (454 GS
FLX)

Li et al.
(China, 2015)

Cross-
sectional

CP (10);
AgP (10)

International classification 1999a Unstimulated Pooled Site of PPD ≥

4mm and
CAL ≥ 2mm
of the first
molars

Curette 16S rRNA
gene
sequencing

Pg; Tf; Td

(4 sites) (454 GS
FLX)

Yang et al.
(China, 2016)

Prospective CP (45) International classification 1999a Unstimulated Pooled All teeth Paper point qPCR Pg; Tf; Td

Nickles et al.
(Germany,
2017)

Cross-
sectional

CP (27);
AgP (23)

Vertical CAL ≥ 5 mm at > 30%
sites and age > 35 y (CP); clinically
healthy, radiographic bone loss ≥

50% on ≥ 2 different teeth and age
< 35 y (AgP)

Oral rinse Pooled Deepest
pockets

Paper point qPCR Pg; Tf; Td
(4 sites)

O’Brien-
Simpson
et al.
(Australia,
2017)

Cross-
sectional

CP (50) NA Stimulated Individual Deepest
pockets

Curette qPCR Pg
(6 sites)

Belstrøm
et al.
(Denmark,
2017)

Cross-
sectional

CP (18) Task force report by the AAPb Stimulated Pooled;
individual

Deepest
pockets

Paper point 16S rRNA
gene
sequencing

Pg; Tf; Td

(3 sites)c (Illumin a
MiSeq)

(Continued)
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Yang et al., 2016; Nickles et al., 2017; O’Brien-Simpson et al., 2017)
reported higher red-complex counts in subgingival plaque than in
saliva, while the other 2 studies reported the opposite results (He
et al., 2012; Choi et al., 2020). Only 1 study (Nickles et al., 2017)
performed statistical analysis to confirm the reported higher counts
in subgingival plaque.
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3.5.3 Relative Abundance of the Red-Complex
Bacteria
The relative abundance data were extracted from 4 sequencing
studies in the following ways: from the published data (Belstrøm
et al., 2017), from the data provided by the authors upon request
(Li et al., 2015; Belstrøm et al., 2018), and from the raw sequence
TABLE 1 | Continued

Author
(Country,
Year)

Design Patients Diagnostic criteria Saliva Subgingival plaque Method Red
complex
reportedType Sample site Sample

method

Belstrøm
et al.
(Denmark,
2018)

Prospective CP (24) Task force report by the AAPb Stimulated Pooled Deepest
pockets

Curette 16S rRNA
gene
sequencing

Pg; Tf; Td

(4 sites) (Illumina
MiSeq)

Choi et al.
(Korea, 2020)

Cross-
sectional

MP (38);
SP (38)d

Modification of CDC-AAP case
definitionsd

Oral rinse Pooled Deepest
pockets

Paper point qPCR Pg; Tf; Td
(3 sites)
October 2021 | Vo
lume 11 | A
NA, not available.
RCT, randomized clinical trial; CP, chronic periodontitis; AgP, aggressive periodontitis; P, periodontitis unclassified; SP, severe periodontitis; MP, moderate periodontitis; PPD, probing pocket depth; CAL,
clinical attachment loss; BOP, bleeding on probing; PCR, polymerase chain reaction; qPCR, quantitative real-time PCR; Pg, Porphyromonas gingivalis; Tf, Tannerella forsythia; Td, Treponema denticola.
a1999 International Classification of Periodontal Diseases and Conditions.
bAmerican Academy of Periodontology (AAP) Task Force Report on the Update to the 1999 Classification of Periodontal Diseases and Conditions.
cOnly data from pooled subgingival plaque samples were used for analysis in this systematic review, in order to be comparable with data from other studies.
dCase definition introduced by the US Centers for Disease Control and Prevention and the American Academy of Periodontology (CDC-AAP). MP, moderate periodontitis; SP, severe periodontitis.
TABLE 2 | Clinical parameters (PPD, CAL and BOP) of periodontitis patients in the included studies.

Study Classification of Periodontitis Full mouth Sampled sites

Mean PPD Mean CAL Mean BOP Mean PPD Mean CAL Mean BOP
(mm) (mm) (% sites) (mm) (mm) (% sites)

Umeda et al., 1998 CP – – – 5.10 ± 1.50 – –

AgP – – – 5.60 ± 0.70 – –

Amano et al., 1999 P – – – – – –

Takeuchi et al., 2001 CP – – – 5.82 ± 2.21 6.66 ± 2.51 57.30
AgP – – – 5.84 ± 2.40 6.20 ± 2.70 77.60

Boutaga et al., 2007 P – – – 6.48 ± 1.04 4.45 ± 3.68 –

Cavalca Cortelli et al., 2009 CP 4.96 ± 0.48 – – – – –

Estrela et al., 2010 CP – – – – – –

He et al., 2012 CP 2.70 ± 0.70 2.40 ± 1.80 41.00 ± 18.70 3.90 ± 1.30 3.90 ± 2.70 –

Feng et al., 2014 AgP 5.02 ± 1.08 4.67 ± 1.53 – 6.85 ± 1.47 6.03 ± 1.86 –

Haririan et al., 2014 CP 4.01 ± 0.93 4.54 ± 1.21 40.82 ± 23.64 7.19 ± 1.12 – –

AgP 3.87 ± 0.91 4.39 ± 0.95 46.22 ± 24.82 7.52 ± 1.13 – –

Chen et al., 2015 P 4.80 ± 0.96 4.30 ± 1.43 – – – –

Li et al., 2015 CP 4.50 ± 1.24 4.40 ± 1.05 100 5.47 ± 1.24 5.85 ± 2.47 –

AgP 4.84 ± 0.91 4.28 ± 1.33 100 6.95 ± 0.74 5.92 ± 0.91 –

Yang et al., 2016 CP 3.21 ± 0.86 2.09 ± 1.32 – – – –

Nickles et al., 2017 CP – – – 8.61 ± 1.32 8.99 ± 1.28 –

AgP – – – 7.96 ± 1.97 8.15 ± 2.40 –

O’Brien-Simpson et al., 2017 CP 3.60 ± 1.00 7.00 ± 2.10 60.80 ± 25.30 – – –

Belstrøm et al., 2017 CP – – – 7.00 8.00 –

Belstrøm et al., 2018 CP 3.40 4.10 56.00 6.40 7.00 –

Choi et al., 2020 MP 2.49 2.65 47.13 – – –

SP 2.89 3.82 53.91 – – –
r

Data are presented as mean or mean ± SD of full mouth and/or sampled sites where the subgingival plaque samples were collected.
PPD, probing pocket depth; CAL, clinical attachment loss; BOP, bleeding on probing; CP, chronic periodontitis; AgP, aggressive periodontitis; P, periodontitis unclassified; MP, moderate
periodontitis; SP, severe periodontitis.
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data that have been uploaded to the Sequence Read Archive
(Chen et al., 2015).

As shown in Figure 5, meta-analyses revealed that the relative
abundances of P. gingivalis [Figure 5A; MD = -10.27, 95% CI:
(-18.15, -2.38), p < 0.00001], T. forsythia [Figure 5B; MD = -1.85,
95% CI: (-2.57, -1.12), p < 0.00001] and T. denticola [Figure 5C;
MD = -1.20, 95% CI: (-1.74, -0.66), p < 0.0001] in subgingival
plaque were all significantly higher than in saliva. However,
considerably high heterogeneities among 4 studies were observed
for the data of all 3 bacteria. Taking P. gingivalis as an example,
the reported mean relative abundance ranged from 2.5 to 25% in
subgingival plaque and from 0.1% to 5% in saliva, with an I2

index of 93%.
Since the relative abundance data of each patient were

available from all 4 sequencing studies, we conducted
Spearman’s rank correlation analysis in SPSS version 25 (SPSS
Inc., Chicago, IL, USA) using the paired data obtained from
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8174
saliva and subgingival plaque per patient. Figure 6 shows that
positive correlations in relative abundance between saliva and
subgingival plaque samples were observed for all 3 red-complex
species, with a correlation coefficient of 0.73 for P. gingivalis (p <
0.0001), 0.28 for T. forsythia (p = 0.006) and 0.27 for T. denticola
(p = 0.01).
3.5.4 Predominant Bacterial Genera in Saliva and
Plaque Samples
The open-ended sequencing techniques allow the detection of
more bacterial species than the targeted approach. Hence, the
microbial compositions were summarized from 4 sequencing
studies. The top 5 most abundant bacterial genera of each study
are shown in Figure 7. Within each study, the top 5 most
abundant bacterial genera in saliva were generally different
from those in subgingival plaque, suggesting a major
FIGURE 3 | Overview of the detection frequency of P. gingivalis (Pg), T. forsythia (Tf) and T. denticola (Td) in saliva and subgingival plaque samples reported in each
study. H: healthy subjects; D: periodontitis patients. Pooled subgingival plaque samples were used for analysis unless specified otherwise. aThis study mentioned 3
groups of subjects (health, gingivitis and periodontitis), but the data of different subject groups were reported together. bThis study analyzed the subgingival plaque
samples from 6 periodontal pockets individually.
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compositional difference between these two sample types.
Among the most abundant genera, 4 bacterial genera were
shared by all 4 studies: Streptococcus and Prevotella in saliva
samples and Porphyromonas and Fusobacterium in subgingival
plaque samples.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9175
4 DISCUSSION

It has been widely accepted that periodontitis is an inflammatory
disease caused by a dysbiotic microbial community
(Hajishengallis, 2015). Representative microbial sampling is
A

B

C

FIGURE 4 | Forest plots of meta-analyses comparing the detection frequency of: (A) P. gingivalis; (B) T. forsythia; (C) T. denticola between saliva and subgingival
plaque samples from patients with periodontitis.
TABLE 3 | Comparisons of bacterial counts of the red complex species between saliva and subgingival plaque samples from periodontitis patients.

Study P. gingivalis T. forsythia T. denticola

saliva vs plaque saliva vs plaque saliva vs plaque

He et al., 2012 ↑ – – – –

O’Brien-Simpson et al., 2017 ↑ – – – –

Boutaga et al., 2007 ↑ ↑ – –

Yang et al., 2016 ↑ ↑ ↑
Nickles et al., 2017 ↑* ↑* ↑*
Choi et al., 2020 ↑ ↑ ↑
October 2021
 | Volume 11 | Article
↑Higher in the corresponding sample.
*Data presented in the study were evaluated statistically.
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A

B

C

FIGURE 5 | Forest plots of meta-analyses comparing the relative abundances (%) of: (A) P. gingivalis; (B) T. forsythia; (C) T. denticola between saliva and
subgingival plaque samples from patients with periodontitis, as determined in studies using 16S rRNA gene sequencing techniques.
A

B C

FIGURE 6 | Scatter plots showing the distributions of the relative abundance of: (A) P. gingivalis; (B) T. forsythia; (C) T. denticola in saliva and subgingival plaque
samples per patient, as determined in studies using 16S rRNA gene sequencing techniques. Each dot represents one patient, and patients from different studies are
indicated by different colors of the dots. Spearman’s rank correlation coefficient (rs) and p value are shown in each plot.
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crucial for disease prevention, diagnosis and treatment.
Subgingival plaque in periodontal pockets represents the onset
and development of periodontitis the best. However, due to its
complicated sampling process, the use of saliva as an alternative
has been an interest in many clinical studies. This systematic
review identified 17 studies that reported the levels of red-
complex bacteria in both saliva and subgingival plaque in
periodontitis patients. Three types of outcome parameters,
detection frequency, bacterial count and relative abundance,
were examined. The meta-analyses on both detection
frequency and relative abundance revealed that the levels of
the red-complex bacteria in saliva were significantly lower than
those in subgingival plaque.

Previously various researchers have claimed, based on their
own data, that saliva could be a potential alternative to
subgingival plaque for microbiologic analysis in periodontitis
patients (Boutaga et al., 2007; Haririan et al., 2014; Belstrøm
et al., 2017). Our meta-analysis summarized the results based on
the samples obtained from 443 periodontitis patients in 10
studies (Figure 4). We found that saliva samples cannot
represent the levels (i.e., detection frequency and relative
abundance) of red-complex bacteria in subgingival plaque
accurately in these patients. Since all the data analyzed in this
review were obtained from samples taken at one time point, our
finding indicates that one-time saliva sampling cannot be used to
screen patients for the red-complex bacteria. We also examined
other factors which might influence the comparison between
saliva and subgingival plaque samples. Interestingly, the
subgroup analysis (Supplementary Material; Figure S1) based
on the collection methods of subgingival plaque, paper point or
curette, showed that the results of studies using curette were in
line with the finding mentioned above. However, in the studies
using paper point, the detection frequencies of P. gingivalis and
T. forsythia in saliva and subgingival plaque samples were
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11177
similar. Possibly, a paper point collects unattached microbes in
the periodontal pocket, which are likely spilt over to saliva;
whereas a curette collects firmly attached biofilms (Jervøe-
Storm et al., 2007). Clinical findings on the collection methods
of subgingival plaque are inconsistent: one study (Renvert et al.,
1992) stated that paper point sampling presented different
microbial information as compared to curette sampling;
whereas another study claimed a good agreement for the
results of two sampling methods. Moreover, the open-ended
sequencing method revealed DNA contamination in paper
points, making this collection method unsuitable for
sequencing analysis (van der Horst et al., 2013). Taken
together, the methods used for collecting subgingival plaque
may potentially influence microbial composition comparisons
between saliva and subgingival plaque.

It is worth noting that our data analyses demonstrated
positive associations between saliva and subgingival plaque in
terms of red-complex levels despite limited data. Among the 17
included studies, 4 studies not only examined samples from
periodontitis groups, but also from periodontal healthy groups.
Although the reported detection frequencies in the healthy
subjects varied considerably among studies (2% to 45%), all 4
studies showed that within one study, the detection frequency of
each red-complex bacteria was much higher in periodontitis
group than that in healthy group, irrespective of the sample type.
Moreover, the relative abundances of the red-complex bacteria in
saliva were also significantly correlated to that in subgingival
plaque (Figure 6). Hence, it is possible that once the red-complex
bacteria are enriched in subgingival plaque at diseased state, they
could be spilt over or washed out into saliva, which consequently
increase their levels in saliva. To this end, sampling saliva at
multiple time points might help to trace the compositional shift
of subgingival microbiota towards a disease provoking state. The
study of Belstrøm et al. (2018) showed the correlation of the
FIGURE 7 | Approximate relative abundance of the top 5 most abundant genera identified in saliva and subgingival plaque from patients with periodontitis, as
determined in studies using 16S rRNA gene sequencing techniques. CP, chronic periodontitis; AgP, aggressive periodontitis; P, periodontitis unclassified.
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levels of salivary red-complex bacteria to that of subgingival
plaque before and after treatment, indicating the possibility of
such application of saliva sample. However, a thorough review
on longitudinal clinical studies is needed to confirm this.

The magnitude and presence of statistical heterogeneity in a
meta-analysis are usually explained by heterogeneity of
methodological and/or clinical sources (Deeks et al., 2021). In
our results, high heterogeneities of the relative abundance data
among the 4 sequencing studies were observed, irrespective of
the targeted bacterial species (I2: 61%–93%). Since the
sequencing method-related heterogeneity in the meta-analysis
of microbiome data has been reported before (Lozupone et al.,
2013; Duvallet, 2018), the source of high heterogeneity here is
likely related to the sequencing techniques. All 4 studies varied in
many steps in sample processing as well as analysis, such as the
DNA extraction methods, targeted 16S rRNA gene region for
sequencing, sequencing platform used and sequencing depth.
Lozupone et al. (2013) conducted meta-analysis on human
microbiome data extracted from 12 different studies, and
revealed that the technical variations in different studies could
obscure biologically meaningful compositional differences.
However, when the studied parameter had a large effect size
(e.g., the body sites), the bias caused by variation in sequencing
methodology could be outweighed by the real difference. In our
case, despite the high heterogeneity, the relative abundance of
red-complex bacteria in saliva was consistently lower than that in
subgingival plaque.

During data analysis, we identified a clinical parameter,
periodontal pocket depth, which potentially contributed to the
high heterogeneity in a meta-analysis. In addition to the results
on the basis of 10 studies reported in Figure 4, we also performed
a meta-analysis on the detection frequencies reported in 14
studies, where an additional 4 studies with unknown or low
periodontal pocket depth were included (Supplementary
Material; Figure S2). From these meta-analyses, we observed
substantially high heterogeneities (I2: 49%–73%) as compared to
those in the 10-study based meta-analyses (I2: 6%–17%). The 14-
study based meta-analyses showed no significant difference in
the detection frequency of all 3 red-complex bacteria between
saliva and subgingival plaque. We suspected that the high
heterogeneity of the 14-study based meta-analyses was, at least
partly, caused by variations in pocket depths. Van Dyke et al.
(2020) stated that the depth of periodontal pocket was one of the
crucial elements which determined the dysbiosis of subgingival
microbiota, as differentiate microbial profiles were observed in
pockets with different depths. For example, the abundance of
Bacteriodetes significantly increased as the pocket deepened
(Kirst et al., 2015). Our observation showed that the
periodontal pocket depth might be an important confounding
factor for microbial analysis. Interestingly, in the summary of
bacterial count data, the 2 studies that reported a low pocket
depth were also the only 2 studies which showed higher salivary
red-complex bacterial counts in saliva as compared to
subgingival plaque (He et al., 2012; Choi et al., 2020). Likely,
the differential levels of red-complex bacteria in saliva and
subgingival plaque are associated with the depth of periodontal
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12178
pockets. Unfortunately, most studies included this review
obtained samples from deep pockets, and we could not further
illustrate the potential influence of this confounding factor.

In conclusion, this systematic review shows that the levels of
red-complex bacteria in saliva were significantly lower than those
in subgingival plaque in patients with periodontitis, in terms of
the detection frequency and relative abundance. This finding is
based on the meta-analyses on the data obtained from 443
patients at one sampling time point. In addition, our analyses
reveal positive associations in the levels of red-complex bacteria
between saliva and subgingival plaque despite limited data.
Therefore, we recommend a thorough review of longitudinal
clinical studies to further assess the role of saliva in detecting
periodontitis-related microorganisms.
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Background: Microbial dysbiosis and microbiome-induced inflammation have emerged
as important factors in oral squamous cell carcinoma (OSCC) tumorigenesis during the
last two decades. However, the “rare biosphere” of the oral microbiome, including fungi,
has been sparsely investigated. This study aimed to characterize the salivary mycobiome
in a prospective Sudanese cohort of OSCC patients and to explore patterns of diversities
associated with overall survival (OS).

Materials and Methods: Unstimulated saliva samples (n = 72) were collected from
patients diagnosed with OSCC (n = 59) and from non-OSCC control volunteers (n = 13).
DNA was extracted using a combined enzymatic–mechanical extraction protocol. The
salivary mycobiome was assessed using a next-generation sequencing (NGS)-based
methodology by amplifying the ITS2 region. The impact of the abundance of different
fungal genera on the survival of OSCC patients was analyzed using Kaplan–Meier and Cox
regression survival analyses (SPPS).

Results: Sixteen genera were identified exclusively in the saliva of OSCC patients.
Candida, Malassezia, Saccharomyces, Aspergillus, and Cyberlindnera were the most
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relatively abundant fungal genera in both groups and showed higher abundance in OSCC
patients. Kaplan–Meier survival analysis showed higher salivary carriage of the Candida
genus significantly associated with poor OS of OSCC patients (Breslow test: p = 0.043). In
contrast, the higher salivary carriage of Malassezia showed a significant association with
favorable OS in OSCC patients (Breslow test: p = 0.039). The Cox proportional hazards
multiple regression model was applied to adjust the salivary carriage of both Candida and
Malassezia according to age (p = 0.029) and identified the genus Malassezia as an
independent predictor of OS (hazard ratio = 0.383, 95% CI = 0.16–0.93, p = 0.03).

Conclusion: The fungal compositional patterns in saliva from OSCC patients were
different from those of individuals without OSCC. The fungal genus Malassezia was
identified as a putative prognostic biomarker and therapeutic target for OSCC.
Keywords: oral squamous cell carcinoma (OSCC), mycobiome, toombak, biomarker, overall survival (OS),
Malassezia, Candida
INTRODUCTION

The oral cavity is a habitat for a diverse and fluctuating collection
of microorganisms (Aas et al., 2005; Nasidze et al., 2009; Yang
et al., 2016). The oral microbiome, which includes, in addition to
complex bacterial communities, oral fungi, viruses, and phages
(Baker et al., 2017), is one of the most diverse microbial
communities in the human body (Dewhirst et al., 2010;
Huttenhower et al., 2012), and this is related to its multiple
ecosystems (Arweiler et al., 2016). The oral microbiota
represents a critical component of health and diseases
(Jenkinson and Lamont, 2005; Avila et al., 2009), and balance
is maintained by a continuous interplay with the host (Vasquez
et al., 2018). Dysbiosis of the oral microbiome has been proposed
as a marker, initiator, or modifier of oral diseases (Ghannoum
et al., 2010; Hooks and O’Malley, 2017; Iliev and Leonardi, 2017;
Rosier et al., 2018).

Recent advances in microbial detection techniques allowed
the transition from culture-dependent studies of a single species
to complex in vitro multispecies community detection and
characterization studies (Baker et al., 2017). Large next-
generation sequencing (NGS)-based projects, such as the
Human Microbiome (Huttenhower et al., 2012), the Integrative
Human Microbiome Project with a focus on the mechanisms of
host–microbiome interactions (Proctor et al., 2019), and the
Human Oral Microbiome Database (Proctor et al., 2019), give
deeper insights into the human microbiome. Despite advances in
the understanding of the microbiome, majority of the studies
have focused on the bacterial part of the microbiome. Little is
known about the fungal part of the human microbiome, recently
defined as the mycobiome (Ghannoum et al., 2010; Cui et al.,
2013; Chandra et al., 2016).

The few existing studies have revealed that the diversity of the
oral mycobiota is lower when compared to that of the oral
bacteriome (Iliev and Leonardi, 2017), and it is dominated by
members of the phylum Ascomycota, mainly Candida spp., with
Candida albicans as the dominant species. The other commonly
identified fungi in the oral mycobiome are Cladosporium,
gy | www.frontiersin.org 2182
Aureobasidium, Saccharomycetales, Aspergillus, Fusarium,
Cryptococcus, and Malassezia (Ghannoum et al., 2010; Dupuy
et al., 2014).

Evidence is accumulating on the role of fungi in neoplasia
(Rindum et al., 1994; McCullough et al., 2002; Barrett et al., 2008;
Hebbar et al., 2013; Berkovits et al., 2016; Zhu et al., 2017;
Conche and Greten, 2018; Al-Hebshi et al., 2019; Aykut et al.,
2019). Some earlier studies have suggested a possible role of
Candida in the initiation of carcinogenesis (Field et al., 1989;
Krogh, 1990). Candida may have a causal role in oral precancer
and cancer, albeit an indirect one, implying that Candida, along
with other cofactors, e.g., tobacco consumption, is involved in
the initiation and promotion of carcinogenesis (Bakri et al., 2010;
Sanjaya et al., 2011). Some C. albicans strains may contribute to
oral carcinogenesis by producing endogenous nitrosamine
(Krogh et al., 1987). An immune-mediated role in the
acceleration of pancreatic ductal adenocarcinoma has also been
suggested recently for another genus, namely,Malassezia (Aykut
et al., 2019).

There are only sparse reports in the literature on the
mycobiome in oral squamous cell carcinoma (OSCC). Perera
et al. revealed a dysbiotic mycobiome characterized by lower
species diversity and increased relative abundance of C. albicans
in tissue biopsies of OSCC in a cohort of patients from Sri Lanka
(Perera et al., 2017). Berkovits et al. (2016) used cultivation
techniques coupled with matrix-assisted laser desorption/
ionization time-of-flight mass spectrometry (MALDI-TOF MS)
and identified a more diverse mycobiome associated with OSCC,
mainly consisting of Candida species in addition to Rhodotorula,
Saccharomyces, and Kloeckera.

The oral microbiota is dynamic and responsive to
environmental and biological changes, so discoverable shifts in
its composition and/or functionmight offer new biomarkers useful
for the diagnosis of oral cancers (OCs) and oropharyngeal cancers
(OPCs) (Aas et al., 2005). While host biomarkers are subject to
individual biological variations (Lim et al., 2017), there are
indications that the core oral microbiome is consistently
conserved among unrelated subjects (Lim et al., 2017; Shaw
October 2021 | Volume 11 | Article 673465
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et al., 2017). The incorporation of the oral microbiome panel in
other tumor biomarkers may therefore help reduce human
biological variations, which prevented, so far, the utilization of
molecular diagnosis and stratification in OCs and OPCs (Zaura
et al., 2014; Lim et al., 2017). Moreover, salivary diagnostics is a
rapidly developing field, and combined with biomarker
identification and validation, it may provide a platform for the
development of a noninvasive, salivary-based tool for the
stratification of OSCC patients and for individualized treatments.

This study aimed to investigate the salivary mycobiome in a
cohort of OSCC patients and in non-OSCC controls from Sudan
and its possible impact on clinical variables, including overall
survival (OS). We employed the NGS methodology to explore
fungal diversities and communities in saliva and describe the
salivary fungal compositional patterns in OSCC patients
compared to individuals without OSCC. The fungal genus
Malassezia was identified as an independent prognostic
biomarker for OS of OSCC patients.
MATERIALS AND METHODS

Ethical Considerations
This is a prospective study involving OSCC patients (n = 59) and
healthy non-cancer controls (n = 13) recruited between 2012 and
2015 at KhartoumDental Teaching Hospital, Sudan. The National
Health Research Ethics Committee, Federal Ministry of Health,
Sudan, approved the research in Sudan (fmoh/rd/SEC/09).
Written informed consent was obtained from both patients and
controls. The Regional Ethical Committee in Norway approved
the project (REKVest 3.2006.2620 REKVest 3.2006.1341).

Study Participants
The inclusion criteria were as follows: age older than 18 years,
with histologically confirmed primary OSCC, did not receive any
previous surgical and chemo- or radiotherapy, and consented to
participate in the study. Critically ill patients, patients under
medication, and those positive for human immunodeficiency
virus (HIV) and hepatitis B surface antigen (HBs Ag) were
excluded from the study. Human papilloma virus (HPV)-
positive cases were also excluded from the study. Detailed
clinical information (age, gender, tobacco habits, and alcohol
use) was obtained through interviews. A routine dental
examination was performed on participating individuals, which
included registration of the periodontal status, plaque, gingival
index, community periodontal index (CPI), simplified oral
hygiene, fillings and missing teeth, and carious teeth by a team
of trained and calibrated dentists specifically for this project.
Non-cancer controls were included after informed consent and
consecutively recruited from patients attending the outpatient
clinic for trauma and benign conditions. The tumor localization,
tumor size, TNM stage, comorbid conditions, last date of follow-
up, and survival data were obtained from patients’ hospital
records. TNM stage was noted according to the guidelines of
the American Joint Committee on Cancer, version 7.0.
Information on current smoking habits and history of smoking
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3183
was reported in pack-years (PY) (Masters, 2018), with
calculations for consumption of the smokeless tobacco
“toombak” adjusted according to the average of manually
prepared portions in Sudan (Idris et al., 1995).

Saliva Sample Collection
Unstimulated saliva samples were collected. Briefly, the donor
was asked not to eat and not to use oral hygiene products 1 h
before saliva collection. At least 2 ml of unstimulated saliva was
collected on ice and then kept in a portable liquid nitrogen
container until further storage at −80°C at the end of the
collection day. The sample collection time did not exceed 20 min.

Fungal DNA Extraction and Control
Sample Setting
The recommendation for standardized DNA extraction for
microbiome studies was followed (Leigh Greathouse et al.,
2019). A combined enzymatic–mechanical extraction method
was chosen and modified, when needed, for fungi (Huseyin et al.,
2017; Rosenbaum et al., 2019). Of the saliva, 300 µl was used for
DNA extraction. Sputasol® (300 µl, Oxoid Ltd., Basingstoke, UK)
was added and incubated, with shaking, at 37°C for 15 min.
Following centrifugation, pellets were reconstituted in 250 µl of
phosphate-buffered saline (PBS). For enzymatic digestion, an
enzyme cocktail of lysostaphin (4,000 U/ml), mutanolysin
(25,000 U/ml), and lysozyme (10 mg/ml) was diluted in TE5
buffer (10 mM Tris-HCl and 5 mM EDTA, pH 8.0) (all from
Sigma-Aldrich, Saint-Louis, MO, USA). Fifty microliters of the
enzyme cocktail was added to each reconstituted pellet and
mixed well, then incubated at 37°C with slight shaking at 350
rpm for 1 h. The FastDNA™ Kit (MP Biomedicals, Irvine, CA,
USA) was used after enzymatic digestion. The samples were
centrifuged and the pellets were lysed with 800 µl CLS-Y buffer
(FastDNA™ Kit, MP Biomedicals, Irvine, CA, USA). The bead-
based protocol for isolation was followed according to the
manufacturer’s instructions.

Two biological fungal mock communities (M1 and M2) were
included in the study. Both were constituted from environmental
fungi: M1 was composed of wood-decomposing polypore fungi
(Mycena galopus, Mycena galericulata, Mycena leptocephala,
Mycena epipterygia , Serpula lacrymans , and Amanita
muscaria), and M2 was constructed from eight fungi isolated
from air (Boeremia exigua var. exigua, Cladosporium, Penicillium
chloroleucon, Aspergillus fumigatus, Discostroma fuscellum,
Paraphaeosphaer ia michot i i , Mucor hiemal i s , and
Leptosphaerulina chartarum).

Three single-species positive controls were also prepared
from three Candida reference strains (C. albicans ATCC
10231, Candida parapsilosis ATCC 22019, and Candida
glabrata ATCC MYA-2955).

Serially diluted samples of fungal species isolated from a
healthy volunteer and grown on Sabouraud dextrose agar
(SDA; Sigma-Aldrich, St. Louis, MO, USA) at 37°C for 48 h
were also included as controls. Dilutions (from 1:10 up to 1:106)
were done in both artificial saliva (Saliva Orthana®, NycoDent,
Asker, Norway) and human saliva from a volunteer that did not
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grow fungi when cultured on SDA. The experimental setup also
included three negative controls, two of which were negative
extraction controls and the third one just nuclease-free water
added before library normalization.

ITS Amplicon PCR
PCR amplification was performed in a 25-µl reaction volume
using 12.5 µl of KAPA HiFi HotStart® ReadyMix PCR Master
Mix (Kappa Biosystems, Sigma-Aldrich) and 1 µl of the DNA
template, in addition to 0.5 µl of each reverse and forward
primers and nuclease-free water. The internal transcribed
spacer 2 (ITS2) subregion was targeted for amplification, as
recommended (Knot et al., 2009; Nilsson et al., 2019a). ITS2
universal primer 5, 8S ITS2-F GTGAATCATCGARTCT
TTGAA, and 28S1 ITS2-R TATGCTTAAGTTCAGCGGGTA
(TIB, MOLBIOL, Berlin, Germany) were used to amplify the
region of interest. The Veriti Thermal Cycler® (Applied
Biosystems, Foster City, CA, USA) was used for amplification.
Thermal cycling was done as follows: 3 min at 95°C, initial
denaturation followed by 45 cycles of 30 s at 95°C: denaturation,
60 s at 58°C as annealing, 30 s at 72°C for the extension, and a
final extension at 72°C for 5 min. The PCR products were
examined by electrophoresis in a 1% (w/v) agarose gel in 1×
TAE buffer.

PCR Clean-up and Library Preparation
Two rounds of clean-up, one after amplicon PCR and the other
after index PCR, were performed using a bead-based method
(Agencourt AMPure XP, Beckman Coulter, Brea, CA, USA).
After the first round, 5 µl from each cleaned up sample was
transferred to a 96-well PCR plate for indexing. The indices were
arranged according to the manufacturer’s protocols.

Index PCR and Library Normalization and
Denaturation
Nextera XT index primers (Illumina, San Diego, CA, USA) were
used for indexing. Index PCR was carried out on the Veriti
Thermal Cycler® (Applied Biosystems) with parameters
recommended by Illumina (San Diego, CA, USA).

One microliter of a 1:50 dilution of each sample was used for
library validation using a Bioanalyzer® DNA 1000 Chip (DNA
LabChip® using 2100 Bioanalyzer, Agilent Technologies, Santa
Clara, CA, USA). The DNA concentrations of the index PCR
products were measured with the Qubit 3.0 Fluorometer®

(Invitrogen, Carlsbad, CA, USA), and the DNA concentration
was calculated in nanomolars based on the size of the DNA
amplicons determined using Bioanalyzer®. The normalized
library was combined with HT1 and PhiX, as recommended
by Illumina.

The MiSeq Reagent Kit v.3 (600 cycles; Illumina, San Diego,
CA, USA) was used for library denaturation and MiSeq sample
loading. Sequencing was performed on the Illumina MiSeq
platform using a 2 × 300-bp paired-end protocol.

Bioinformatics Processing
Demultiplexed Illumina-generated paired-end sequences were
processed using QIIME 2 (version QIIME2-2020.8) (Bolyen
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4184
et al., 2019). The ITSxpress QIIME 2 plugin (v.1.3) (Rivers et al.,
2018) was used to extract the ITS2 region. The sequences were
then passed through the DADA2 pipeline (Callahan et al., 2016)
for filtration, dereplication, chimera detection, and the merging of
paired-end reads to create the so-called amplicon sequence
variants (ASVs). The resultant ASVs were included for further
analysis. The UNITE database (version 8) (Nilsson et al., 2019b)
was trained to create a naive Bayes classifier in order to classify the
sequences obtained from the DADA2-generated ASV table. Post-
clustering curation using LULU (Frøslev et al., 2017) was
performed to avoid diversity overestimation. Unidentified ASVs
in the UNITE database were blasted to NCBI and the taxonomy
for each was reassigned (considering an e-value and similarity or
coverage ≥99% of the best hit). Various taxonomic levels were
used to classify the sequence data. Species with low abundance (20
reads in less than five samples) were discarded. Three OSCC saliva
samples and one non-OSCC control were excluded due to the
exclusion criteria for low-abundance samples.
Statistical Analyses
Differences in the composition of the mycobiome between the
OSCC and healthy control groups, and within samples, were
tested for significance using relevant statistical tests in
MicrobiomeR (Lahti et al., 2017), Phyloseq (McMurdie and
Holmes, 2013), and MicrobiomeAnalystR (Dhariwal et al.,
2017). Alpha diversity was calculated and plotted in Phyloseq,
R version 4.0.3. QIIME2 ANCOM parameters (Bandara et al.,
2019) and ALDEx2 (Fernandes et al., 2013) plugins were used for
the analysis of the composition of microbiomes. The Kaplan–
Meier survival estimator and Cox proportional hazards models
(with “enter”method) were used for survival analysis, with OS of
2 years after diagnosis as the end point; all patients who were
alive or lost to follow-up at the end of data collection were
censored. Survival analysis was performed using Statistical
Package for Social Sciences (SPSS), version 25 (IBM, Armonk,
NY, USA). For all analyses, p-values ≤0.05 were considered to
be significant.
RESULTS

Cohort Description
The prospective cohort included 59 patients (age range = 25–87
years, mean = 50.6 years, median = 60 years) with histologically
proven OSCC and 13 non-OSCC controls (age range = 30–70
years, mean = 46.5 years, median = 45 years). Patients in the
OSCC group presented more tobacco consumption (expressed in
pack-years for both smoking and smokeless tobacco taken
together) than did the controls, although the difference was not
statistically significant (p = 0.06) (Table 1). The average number
of decayed teeth (DT) was similar to the general Sudanese
population, as previously evaluated (Khalifa et al., 2012),
except for the age groups 25–44 and >65 years in our cohort,
which showed a higher number of decayed teeth compared to the
general Sudanese population. The same was found for missing
teeth (MT) (Table 1). The mean plaque index of OSCC patients
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was comparable to that of the control group (p = 0.59), while the
gingival index (mean ± SD = 1.67 ± 0.56) was significantly higher
for the OSCC group (p = 0.014) than that for the control group
(mean ± SD = 1.19 ± 0.31).

The localization of OSCC lesions was predominantly lower
buccal or labial (40.4%); only five cases (6.9%) were localized on
the tongue. Of all OSCC patients, 47 (79.6%) presented with
locoregional lymph node metastases at the time of diagnosis.
Nearly all OSCC patients (96.8%) presented at a late
stage (Table 1).

Method Performance
A total of 21,698,808 Illumina-generated demultiplexed fungal
ITS raw paired-end sequences were imported into QIIME2.
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The extracted ITS2 region was merged and temporarily
clustered into 6,699,920 amplicon reads. After DADA2
filtration, dereplication, chimera detection, and merging of
paired-end reads, a total of 3,514,250 reads were retained for
further analysis. The quality-filtered, denoised, chimera-removed
sequence reads were clustered into 514 ASVs. Post-clustering
curation using LULU (Frøslev et al., 2017) and removal of
contaminants using the Decontam algorithm (Davis et al.,
2018) retained 340 ASVs. The rarefaction curves curves are
presented in Supplementary Figure 1.

The positive and negative controls showed the expected
reference strains (for positive ones) and negative outputs
(negative ones). The M2 mock community showed good
distribution, while M1 showed a generally quite good coverage,
TABLE 1 | Demographics, oral health findings, and clinicopathological findings of the cohort.

Cohort demographics

Non-OSCC controls Patients
No. of individuals 13 (7 males, 6 females) 59 (42 males, 17 females)
Age (years), mean Males 45.4 (30–60) 60 (25–87)

Females 47.7 (39–70) 60.5 (40–80)
No. of users 2 (15%, all males) 33 (56%, all males)
Pack-years (PY), mean (p = 0.06**) 4.5 51.1

Oral findings

Non-OSCC controls OSCC patients
DT (p = 0.630) 2.3 3.9
MT (p = 0.287) 6.9 8.8
Community periodontal index, mean ± SD (CPI: p = 0.013*) 1.59 ± 0.67 1.79 ± 0.64
Gingival index, mean ± SD (p = 0.014*) 1.19 ± 0.31 1.67 ± 0.56

Missing teeth and decayed teeth in the OSCC cohorta

Age groups (years) DT MT
Non-OSCC OSCC General population* Non-OSCC OSCC General population*

25–34 0 10 3.3 0 0 1.9
35–44 1.4 4.8 4.1 3.8 3.6 4.2
45–54 3.2 3 4 3.8 6.3 5.5
55–64 5 3.1 3.9 20 8.2 8
65–74 – 4.7 3 32 9.2 11.3
75+ – 3.5 3.3 – 14 11.8

Tobacco and alcohol consumption

History Toombak, N (%) Smoking, N (%) Alcohol, N (%)
Patients Non-OSCC controls Patients Non-OSCC controls Patients Non-OSCC controls

Yes—current user 5 (8.5) 0 (0) 7 (11.9) 2 (15.4) 1 (1.7) 0 (0)
No 30 (50.8) 11 (84.6) 38 10 (77) 39 (66.1) 11 (86.6)
Past user 22 (37.3) 1 (7.7) 12 0 (0) 13 (22) 1 (1.7)
Unknown 2 (3.4) 1 (7.7) 2 (3.4) 1 (7.7) 6 (10.2) 1 (1.7)

OSCC patients: clinical findings

Tumor location N (%) Tumor stage T stage N stage M stage
Buccolabial–sulcus 32 (54.2) N (%) N (%) N (%) N (%)

T1 2 (3.4) N0 4 (6.8) M0 39 (66.1)
Tongue 5 (8.5) I 0 (0) T2 11 (18. 6) N1 19 (32.2) M1 1 (1.7)
Retromolar–palatal–alveolar 15 (25.4) II 2 (3.4) T3 15 (25.4) N2 27 (45.8) Mx 12 (20.3)

III 13 (22) T4 20 (33.9) N3 1 (1.7)
IV 37 (62.7) Tx 4 (6.8) Nx 1 (1.7)

Missing, N (%) 7 (11.9)
October
 2021 | Volume
 11 | Ar
OSCC, oral squamous cell carcinoma; DT, mean number of decayed teeth; MT, mean number of missing teeth.
Significantly different at p < 0.05 (*Kruskal–Wallis and **Mann–Whitney U test).
aBased on Khalifa et al. (2012).
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although taxonomic assignment was obtained correctly only to
the class level (Amanita andMycena in M1 were identified at the
order level, i.e., Agaricomycetes). The composition of our mock
communities is reflected in the analysis results, indicating
minimal cross-contamination and tag switching. The
distribution pattern of the total reads followed the serial
dilutions we made (Supplementary Figure 2).

Abundance analysis of the serially diluted samples showed a
pattern corresponding with the inputs of the diluted samples
(Supplementary Figure 3).

Candida, Saccharomyces, Malassezia,
Aspergillus, and Cyberlindnera Were
Identified to Be the Most Common Fungi
Present in the Salivary Mycobiome
Processed, quality-filtered ASVs were assigned to 36 different
fungal genera. Relative abundance analysis showed that the
salivary mycobiome was dominated by five genera, namely,
Candida , Saccharomyces , Malassezia , Aspergillus , and
Cyberlindnera (Figure 1A and Supplementary Figure 4).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6186
Agaricus, Alternaria, Cladosporium, Clavispora, Naganishia,
Nakaseomyces, Penicillium, Rhizopus, Vishniacozyma, and
Sarocladium were the second most commonly identified fungal
genera (Figure 1B). Candida was found to have a higher relative
abundance in the saliva of females than that of males and
accounted for more than half of the genera present in females
(Figure 2A). There was no difference in the diversity of the
salivary mycobiome between females and males (Figure 2B).

Eight genera were detected exclusively in the saliva of tobacco
users (when analyzing together toombak dippers and smokers),
of which seven were shared by smokers and users of toombak
(Figures 2C–E): Macrophomina, Schizophyllum, Cinereomyces,
Leucosporidium, Rhodosporidiobolus, Cutaneotrichosporon, and
an unidentified one belonging to the family Ustilaginaceae.
Lodderomyces was detected only in the saliva of smokers.
Phlebiopsis and Filobasidium were detected only in the saliva
of non-tobacco users. No statistically significant differences in
the overall oral mycobiome diversity were observed between
non-tobacco users and smokers or toombak users, even when
considering only the OSCC cases (Figures 2F–H), although a
A

B

FIGURE 1 | (A) Relative abundance of the top five genera in the saliva of the individuals investigated in our cohort. (B) Heat map showing the relative abundance of
the top 20 genera (X-axis sorted non-OSCC controls to the left and OSCC to the right) in each of the investigated sample. OSCC, oral squamous cell carcinoma.
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trend toward somehow restricted diversities in smokers or
toombak users was observed (Supplementary Figure 6).

Individuals aged 55–64 years showed the least relative
abundance of Candida and the highest abundance of
Aspergillus in their saliva (Supplementary Figure 5A).
Individuals with severe gingivitis showed a predominance of
species other than the identified top five genera in their saliva
(Supplementary Figure 7A), along with a gradually reduced
diversity, compared to the other two groups. Individuals who
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7187
needed complex periodontal treatments such as root planing or
periodontal surgical procedures (CPI higher than 3) showed a
higher relative abundance of Aspergillus and a lower relative
abundance of Malassezia than did those in the other two groups
(Supplementary Figure 7B). Individuals with intermediate CPI
(1.1–3), who needed to undergo plaque control procedures,
showed the lowest diversity of fungi compared to other
subjects with clinically higher or lower CPIs. Individuals with
poor oral hygiene, quantified by the use of a simplified oral
A B

C D E

F G H

FIGURE 2 | (A, B) Relative abundance of the top five genera (A) and diversity of the salivary mycobiome (B) of the individuals investigated in our cohort grouped by
gender. (C) Relative abundance of the top five genera in tobacco users versus non-smokers. (D) Relative abundance of the top five genera in smokers, toombak
users, and non-smokers. (E) Venn diagram showing the distribution of genera in smokers, toombak users, and non-smokers. (F) Relative abundance of the top five
genera in tobacco users versus non-smokers in the oral squamous cell carcinoma (OSCC) group. (G) Relative abundance of the top five genera in smokers,
toombak users, and non-smokers in the OSCC group. (H) Venn diagram showing the distribution of genera in smokers, toombak users, and non-smokers in the
OSCC group.
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hygiene index, showed higher relative abundance of Candida,
Aspergillus, and Saccharomyces and a trend toward a lower
diversity of fungi (Supplementary Figure 7C).

Individuals with the number of decayed teeth higher than that
of the mean value for the Sudanese population had a lower
relative abundance of Candida but a higher relative abundance of
Saccharomyces than the rest of the participants (Supplementary
Figure 7D). The opposite was observed for individuals with the
number of missing teeth higher than that of the mean value for
the Sudanese population (Supplementary Figure 7E). The alpha
diversity median was also higher, although statistically not
significant, for the salivary mycobiome of individuals with
more decayed and missing teeth.

Sixteen Genera Were Identified
Exclusively in the Salivary Mycobiome
of OSCC Patients
The extracted DNA content in the samples from OSCC patients
was significantly higher than that in the samples from non-
OSCC controls, as evaluated using two different approaches
(Qubit® and Bioanalyzer®) (p < 0.05). Twenty genera were
found in the saliva of both the OSCC and non-OSCC groups.
Sixteen genera were found exclusively in the saliva of OSCC
patients (Figure 3A). Univariate statistical comparison of the
relative abundance of the top five genera showed no statistically
significant differences between the two groups; the same top five
most abundant genera were found in both groups (Figures 3B
and 4). Alpha diversity analysis, considering richness and
evenness, did not show statistically significant differences
between OSCC patients and non-OSCC controls (Figure 3C).
Non-metric multidimensional scaling (NMDS) and analysis of
similarities (ANOSIM)/permutational multivariate analysis of
variance (PERMANOVA) were applied in order to test for
dissimilarities in the mycobiome composition between OSCC
patients and non-OSCC controls. There was no shift observed
between the study groups (NMDS stress > 0.2); statistical
significance was marginal with ANOSIM (pANOSIM = 0.056)
and non-significant with PERMANOVA (p = 0.265).
Differential abundance analysis using ANCOM and ALDex2
did not show any differentially abundant genera when
comparing the OSCC group and the non-OSCC control group.

Although not statistically significant, the salivary carriage of
Candida was higher in the saliva of OSCC cases than that in non-
OSCC controls (relative abundance and log-transformed count
in each case shown in Figures 3B and 4A, respectively). The
Candida species identified in the saliva of those in the OSCC
group were C. albicans (78.8% of all OSCC cases), Candida
tropicalis (32.1%), C. parapsilosis (37.5%), C. glabrata (16.1%),
Candida orthopsilosis (3.6%), and Candida sake (9%). C.
orthopsilosis and C. sake were among the fungi identified
exclusively in the saliva of OSCC patients.

In the saliva of OSCC cases, Saccharomyces also had a higher
abundance than that in the saliva of non-OSCC controls (relative
abundance and log-transformed count in each case shown in
Figures 3B and 4C, respectively). Saccharomyces cerevisiae was
second to C. albicans in the saliva of OSCC cases (76.8% of OSCC
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8188
cases), while Malassezia arunalokei was the second most
predominant species in the saliva of non-OSCC controls
(66.70% of controls, n = 12; 64.3% of OSCC patients, n = 56).
Additionally, different species of Malassezia were identified in
the saliva of OSCC patients and non-OSCC controls. Malassezia
globosa (64.3%), Malassezia restricta (16%), Malassezia dermatis
(5.4%), Malassezia furfur (3.5%), and Malassezia slooffiae (1.8%)
were identified in the saliva of OSCC patients. In the saliva of
non-OSCC controls, only M. restricta (33.3%) and M. globosa
(58.3%) were identified.

Cyberlindnera had lower abundance in the saliva of OSCC
cases than that of non-OSCC controls (relative abundance and
log-transformed count in each case shown in Figures 3B and 4E,
respectively). Cyberlindnera jadinii (synonym: Pichia jadinii)
was detected in the saliva of 50% of the OSCC patients, while
it was present in 58.3% of the non-OSCC controls, showing an
inverse relation to C. albicans in more than half of the whole
group (56% of the whole cohort), although the bivariate
correlation was statistically not significant (correlation =
−0.257, p = 0.1).

Malassezia Was Identified as an
Independent Predictor of OS for OSCC
Patients
The saliva of OSCC patients with tumors located in labial, buccal,
or alveolar areas (toombak dipping areas) showed a lower relative
abundance of Candida but a higher relative abundance of
Cyberlindnera compared to patients with OSCC located in
other sites (Supplementary Figure 5B). OSCC patients with
locoregional lymph node involvement showed higher relative
abundance of Candida and Aspergillus and a lower relative
abundance of Malassezia compared to the group with no
lymph node involvement (Supplementary Figure 5C). The
same trend was observed for the OSCC patients who died
during the follow-up period compared to those still alive at the
end of the study (relative abundance in and log-transformed
count in each case shown in Figures 3D and 4F–J, respectively).
Alpha diversity analysis revealed that lower diversity index
values were more commonly found in OSCC patients with
locoregional lymph node involvement and those with poorer
survival (Figure 3E), although not statistically significant. A
trend toward a lower relative abundance of Saccharomyces and
a higher relative abundance of Aspergillus with stage has also
been observed (Supplementary Figure 5D). Alpha diversity
analysis showed no statistically significant differences
between stages.

Kaplan–Meier analysis revealed that a high relative
abundance of Candida was associated with poor OS in OSCC
patients (Breslow test: p = 0.043) (Figure 5A). On the contrary, a
high relative abundance of Malassezia showed association with
favorable survival in OSCC patients (Breslow test: p = 0.039)
(Figure 5B). The Cox proportional hazards multiple regression
model was applied to adjust the salivary carriage of both Candida
and Malassezia for age (p = 0.029) and identified Malassezia as
an independent predictor of OS (hazard ratio = 0.383, 95% CI =
0.16–0.89, p = 0.03).
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DISCUSSION AND CONCLUSION

Although the baseline mycobiome profiles utilizing NGS have
been established for some time (Ghannoum et al., 2010;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9189
Mukherjee et al., 2014; Chandra et al., 2016), studies on the
mycobiome in disease and health are scarce, and the actual
contribution of the mycobiota in carcinogenesis has only recently
been explored (Perera et al., 2017; Al-Hebshi et al., 2019;
A B
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FIGURE 3 | (A) Venn diagram showing the number of genera identified in the oral squamous cell carcinoma (OSCC) and non-OSCC groups. Those that were found
exclusively in the OSCC group were: Macrophomina, Ramularia, Aureobasidium, Alternaria, Ulocladium, Lodderomyces, Meyerozyma, Schizophyllum, Cinereomyces,
Phlebiopsis, Rhodosporidiobolus, Rhodotorula glutinis, Filobasidium, Cutaneotrichosporon, unidentified1, and unidentified2. (B) Relative abundance in the OSCC and
non-OSCC groups showing the top five most predominant genera. (C) Alpha rarefaction curve showing the observed features (richness) at different sequencing
depths. (D) Relative abundance of individuals (alive and dead) in the OSCC groups showing the top five most predominant genera. (E) Alpha rarefaction curve
showing the observed features (richness) at different sequencing depths for OSCC patients stratified by overall survival (OS).
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Aykut et al., 2019). This study is one of the first characterizing
the salivary mycobiome in OSCC and provides significant
information despite the fact that it has been run on a relatively
smaller number of cases, particularly of non-OSCC controls.
Another limitation of this study is that data on antibiotic use
were missing. In Sudan, despite instructions, the misuse of
antibiotics is a common problem, and the use of antibiotics is
known to affect the results of mycobiome analysis (Awad et al.,
2007; Oleim et al., 2019).

Most mycobiome studies focused on either the ITS1 or the
ITS2 subregion of typically 250–400 bases. Targeting the ITS2
subregion has the additional advantage of including lower length
variations and more universal primer sites, resulting in less
taxonomic bias than when targeting ITS1 (Nilsson et al.,
2019a). In our study, by utilizing 2 × 300-bp sequencing and
by merging paired reads, we obtained better taxonomic
resolution since the full ITS2 length was covered. We used a
relative abundance cutoff of 1%, as used by other studies
(Ghannoum et al., 2010; Perera et al., 2017).

The inclusion of negative controls (no saliva sample), positive
controls (known species most likely to be found in the samples),
and of mock communities was done as a standard for proper
assessment and quantification of tag switching, chimera
formation, ASV inference stringency, and abundance shifts
(Bakker, 2018; Nilsson et al., 2019a). After evaluating the
controls, the overall methods used here for DNA extraction,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10190
sequencing, and bioinformatics analysis were considered to be
sensitive for salivary mycobiome identification, under the
conditions and aims of our study.

Although the concept of a healthy core oral mycobiome
(Ghannoum et al., 2010) was redefined (Dupuy et al., 2014), with
14 core genera detected in healthy individuals, the overall
abundance and diversity of fungal taxa may also be somewhat
individualized (Witherden et al., 2017). It is considered that the vast
majority of themycobiome consists of a fewgenera, withC.albicans
and C. parapsilosis as the major species of the human oral
mycobiome (Naglik et al., 2013). The most abundant genera
found in our study are in line with these previous baseline
findings and with other OSCC-associated salivary mycobiomes
reported in previous studies (Ghannoum et al., 2010; Dupuy et al.,
2014; Mukherjee et al., 2017; Perera et al., 2017).

Previous studies on the dynamics of the oral bacterial
community showed enrichment in both abundance and function
with OSCC staging (Yang et al., 2018). We found an enriched but
somehowless diverse fungalmycobiome in themost advancedstage
group. This might be related to the limited number of cases in the
early stages in our cohort. Late tumor stage presentation is typical
for OSCC in Sudan (Osman et al., 2010), and as mentioned, this is
limiting the conclusions we could draw on the differences between
stages in the salivary mycobiome of this cohort.

The salivary microbiome was previously found to be related
to dental findings. Gazdeck et al. found a lower bacterial diversity
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FIGURE 4 | (A–E) Box plots for the abundance of the top five genera in the the oral squamous cell carcinoma (OSCC) group versus non-OSCC controls. (F–J) Box
plots for the relative abundance of the top five genera in OSCC patients who were dead or alive at the end of the study period. Classical univariate statistical
comparison of the relative abundance showed no statistically significant differences.
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in edentulous patients (Gazdeck et al., 2019). We report here
higher diversity median values associated with more missing and
decayed teeth. This might indicate relevant fungal–bacterial
interactions (Deveau et al., 2018) that need further longitudinal
studies for final elucidation. For a long time, our understanding
of periodontal disease has been based on its bacterial origin
(Hajishengallis and Lamont, 2012). However, the crosstalk
between fungi and bacteria seems to result in different
outcomes for the host. This relationship ranges from
synergism to antagonism for different specific microbial
interactions (Krüger et al., 2019). Peters et al. showed Candida
species to be more represented in subjects with periodontal
disease and more missing teeth count (Peters et al., 2017), and,
in accordance with this, C. albicans was shown to enhance
Porphyromonas gingivalis invasion in vitro (Tamai et al., 2011).
We observed the same trend for individuals with higher number
of missing teeth.

When it comes to its role in carcinogenesis, in addition to the
direct role of Candida by producing nitrosamines, it was shown
that it also affects the metabolism of procarcinogens and
influences other bacteria, which may play a role in
carcinogenesis (Hooper et al., 2009). The combinatorial effect
of carcinogens and C. albicans was shown to promote OC in a
murine model (Dwivedi et al., 2009). C. albicans was also shown
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to enhance the invasion of OSCC cells by producing specific
proteinases capable of degrading the basement membrane and
the extracellular matrix (Bakri et al., 2010). The inflammatory
response to C. albicans is mediated by NF-kB (Müller et al.,
2007), which is frequently involved in carcinogenesis where
cancer-related inflammation is a feature (Mantovani et al.,
2008). Taking this into consideration, our finding of the
association between Candida and poor prognosis might rely on
a biological explanation.

On the other hand, we found the salivary carriage ofMalassezia
as an independent predictor of better prognosis. Malassezia has a
unique pattern of interaction with pattern recognition receptors
compared to C. albicans (Goyal et al., 2018). Additionally,
Malassezia has large intraspecies diversity. The exact composition
of different Malassezia species at a time point may contribute to
different outcomes in the interaction between the fungus and the
host (Sparber and LeibundGut-Landmann, 2017). Malassezia
might have been overrepresented in our study, although it was
described as part of the redefined core oral mycobiome in humans
(Dupuy et al., 2014). SinceMalassezia is a normal skin commensal
withpopulationdensities peakingbetween20 and45 years (Ashbee,
2007), the sample collection method we used might have included
some contamination from the lips, in addition to the age-related
differences in Malassezia enrichment. However, the interest in
discovering microbiome profiles associated with survival is
growing (Plantinga et al., 2017; Koh et al., 2018). Different
methods are used to associate the microbiota at the community
level and censored survival time, such as MiRKAT-S (Plantinga
et al., 2017) and its follower OMiSA (Koh et al., 2018).We chose to
test the categorization of microbial proportions into high and low
andrunconventional survival analysis. This seemsanattractiveway
to incorporate microbiome signatures in clinically applicable
diagnostic tools.

Of interest is that we did not identify Hannaella and
Gibberella, which were found enriched in a cohort of OSCC
patients in a recent study and considered to be contaminants
(Perera et al., 2017). This might be an indication of the effects of
dietary habits, among others, and population-related differences
in the mycobiome profiles. These two species are known plant
fungi. Nevertheless, the contribution of environment-related
fungi to the carcinogenic process cannot be ignored.

The sample type, the method of collection, and, very
importantly, the methods for DNA extraction and bioinformatics
processing could explain the observed differences between species
reported in different studies (Brooks et al., 2015). Curation of the
databases used for taxonomical assignment could also affect the
findings (Seed, 2015), in addition to the more classical factors such
as ethnic differences and diet (Deschasaux et al., 2018). Ethnic
differences could be related to different single nucleotide
polymorphisms associated with susceptibility to fungi (Romani,
2011). The role of genetic host susceptibility should not be ignored
when considering the diversity changes or the associations of the
mycobiota with diseases. In any case, a further, more thorough
investigation of mycobiome meta-transcriptomes and
metaproteomes is needed to answer such questions related to the
epidemiological patterns of mycobiomes (Huttenhower
et al., 2012).
A

B

FIGURE 5 | Kaplan–Meier survival curves showing the impact of salivary
Candida (A) and Malassezia (B) on the overall survival of oral squamous cell
carcinoma (OSCC) patients.
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Alsoworthmentioning is the fact that the cohort analyzed in this
study included patients consuming a special type of smokeless
tobacco, the “toombak” (the local formof smokeless tobacco used in
Sudan). Regarding our findings on tobacco consumption (both
smoking and the smokeless tobacco toombak), it is worth noting
that there may be bias related to self-reporting. However, the
predominant site for tumor localization in our OSCC cohort was
lower buccal or labial and sulcular, consistent with a toombak-
related OSCC etiology, and this also correlated with the self-
reported habit of packing toombak in the mouth in our cohort.
Self-reporting of alcohol consumption should be considered with
caution as well since it is illegal in Sudan and may carry a social
stigma (Gadelkarim Ahmed and Ahmed, 2013). Previous studies
have shown that tobacco exposure was associated with a shift of the
oral bacteriome at the population level (Beghini et al., 2019). Our
study showed the same trend for the oral mycobiome. Some of the
genera were identified exclusively in tobacco users, including
toombak users, since many consume toombak besides smoking,
and some of the genera, such as Schizophyllum, are known plant
pathogens; thus, they may be related to the processed
tobacco product.

In conclusion, the present study reveals that Candida,
Malassezia, Saccharomyces, Aspergillus, and Cyberlindnera are
the most relatively abundant fungal genera in the salivary
microbiome of this cohort of Sudanese individuals. Candida
and Malassezia were shown to have an impact on the survival of
OSCC patients: a higher salivary carriage of the genus Candida
was found to be associated with poor prognosis, whileMalassezia
was enriched in patients with favorable prognosis, although only
the salivary carriage of Malassezia emerged as an independent
prognostic biomarker for the survival of OSCC patients. This can
serve as groundwork for performing mycobiome-based
biomarker studies in larger cohorts of OSCC patients.
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(C) Distribution and differences in abundance of 5 topmost salivary fungi according
to Oral Hygiene Index (Simplified). (D) Distribution and differences in abundance of 5
topmost salivary fungi according to mean number of decayed teeth. (E) Distribution
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and differences in abundance of 5 topmost salivary fungi according to mean
number of missing teeth. (F) Distribution and differences in abundance of 5 topmost
salivary fungi according to diabetes status.
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High-throughput sequencing technology provides an efficient method for evaluating
microbial ecology. Different bioinformatics pipelines can be used to convert 16S
ribosomal RNA gene amplicon sequencing data into an operational taxonomic unit
(OTU) table that is used to analyze microbial communities. It is important to assess the
robustness of these pipelines, each with specific algorithms and/or parameters, and their
influence on the outcome of statistical tests. Articles with publicly available datasets on the
oral microbiome were searched for, and five datasets were retrieved. These were from
studies on changes in microbiota related to smoking, oral cancer, caries, diabetes, or
periodontitis. Next, the data was processed with four pipelines based on VSEARCH,
USEARCH, mothur, and UNOISE3. OTU tables were rarefied, and differences in a-
diversity and b-diversity were tested for different groups in a dataset. Finally, these results
were checked for consistency among these example pipelines. Of articles that deposited
data, only 57% made all sequencing and metadata available. When processing the
datasets, issues were encountered, caused by read characteristics and differences
between tools and their defaults in combination with a lack of detail in the methodology
of the articles. In general, the four mainstream pipelines provided similar results, but
importantly, P-values sometimes differed between pipelines beyond the significance
threshold. Our results indicated that for published articles, the description of
bioinformatics methods and data deposition should be improved, and regarding
reproducibility, that analysis of multiple subsamples is required when using rarefying as
library-size normalization method.
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INTRODUCTION

The development of massively parallel sequencing technologies
made rapid sequencing of hundreds of samples at unprecedented
depth possible (Schuster, 2008; Caporaso et al., 2011). This
enabled researchers to apply 16S rRNA gene amplicon
sequencing to analyze the composition and dynamics of
complex microbial communities in depth (Woo et al., 2008).
In the past decade, this has provided insights into diverse
microbial communities, ranging from the ocean microbiome
(Moran, 2015; Sunagawa et al., 2015; Mestre et al., 2018) or the
soil microbiome (Fierer, 2017; Bahram et al., 2018; Delgado-
Baquerizo et al., 2021; Xun et al., 2021) to the human
microbiome (Turnbaugh et al., 2007; NIH HMP Working
Group et al., 2009; Crielaard et al., 2011; Cho and Blaser, 2012;
Gilbert et al., 2018).

To date, multiple approaches have been developed to process
16S rRNA gene amplicon sequencing data (Lemos et al., 2017).
The most widely used software tools are USEARCH (Edgar,
2010), VSEARCH (Rognes et al., 2016), QIIME (Caporaso et al.,
2010) [succeeded by QIIME 2 (Bolyen et al., 2019)], and mothur
(Schloss et al., 2009). In addition, interest has grown in high-
resolution clustering and error-correction of the sequences
provided by tools, such as DADA2 (Callahan et al., 2016) and
UNOISE (Edgar, 2016b). During the last years, many other
pipelines combining different tools have been developed, such
as OCToPUS (Mysara et al., 2017), FROGS (Escudié et al., 2018),
PEMA (Zafeiropoulos et al., 2020), AmpliconTagger (Tremblay
and Yergeau, 2019), Natrix (Welzel et al., 2020), and the
MicrobiomeAnalyst platform (Chong et al . , 2020).
Conceptually, the processing pipelines are similar and can be
divided into several steps: (1) paired-read merging; (2) quality
filtering; (3) chimera removal; (4) clustering into operational
taxonomic units (OTUs); and (5) taxonomic classification. After
construction of the OTU table, researchers proceed to analyze
the microbial composition and diversity of the microbial
communities and to further interpret biological phenomena,
for example, the relationship between obesity and gut
microbiota (Komaroff, 2017).

However, algorithms and/or parameters in different
processing pipelines often differ. So far, there is no single gold-
standard pipeline to produce an OTU table (or higher-resolution
count table), which means that both different tools and different
parameters for the same step are being used in different pipelines.

Many existing processing steps have been evaluated, such as
the influence of chimera checking methods (Edgar, 2016a;
Mysara et al., 2017), denoising methods (Bonder et al., 2012;
May et al., 2014), and clustering methods on the OTU table
(Bonder et al., 2012; May et al., 2014; Westcott and Schloss, 2015;
Mysara et al., 2017; Westcott and Schloss, 2017). Another study
has assessed robustness and reproducibility of clustering
methods on OTUs, while varying clustering thresholds
(Schmidt et al., 2015). In addition, entire clustering or
denoising pipelines have also been compared (Westcott and
Schloss, 2015; Mysara et al., 2017; Nearing et al., 2018;
Tremblay and Yergeau, 2019; Prodan et al., 2020). Several of
these studies have shown in detail that both the number and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2197
composition of OTUs, from the same dataset, depend on the
selected methods.

Here, we focused on the robustness of “final” results, which
means a conclusion drawn from the same sequencing data is
concordant among different processing pipelines [cf. (Schloss,
2018)]. We aimed to evaluate this using several published 16S
rRNA gene amplicon studies and different mainstream pipelines.
We are specifically not evaluating differences in the OTU tables
themselves. We, and several others, have done that in the past
and refer the reader interested in that to the articles cited above.
While different pipelines likely result in different OTU tables due
to their distinct algorithms and parameters, (biological)
conclusions should rather not change. For example, if
microbial profiles differ (significantly) between cases and
controls, this should rather not depend on the pipeline. Thus,
the aim is to look into statistical conclusions based on the
analyses of the microbial profiles originating from several
pipelines run on the same dataset.

To this end, four different pipelines based on VSEARCH,
USEARCH, mothur, and UNOISE3, which are extensively used
for 16S rRNA gene sequence data processing, were implemented;
and publicly available datasets were retrieved and processed with
these pipelines. Our aim is not to perform an exhaustive
comparison of available pipelines. VSEARCH (Rognes et al.,
2016) can be seen as an open-source reimplementation of
USEARCH (Edgar, 2010). Since VSEARCH is used as a
replacement for USEARCH, both tools were included as to see
how their differences affect the final outcome. In addition,
mothur (Schloss et al., 2009) was chosen as an often-used
pipeline with an excellent SOP. Finally, UNOISE3 was selected
as an example of a denoising method. It was found that
UNOISE3 “showed the best balance between resolution and
specificity” (Prodan et al., 2020).

Using the resulting OTU tables, differences in microbial a-
diversity and b-diversity between groups within a study were
evaluated and the results (P-values) compared among the
pipelines, using exactly the same dataset. Since random
subsampling is often used, we also evaluated reproducibility of
results: a collection of subsampled OTU tables was generated as
to compare the distribution of P-values within and between the
pipelines. P-values are used here to illustrate differences among
pipelines and should not be (mis)used to conclude about
scientific importance (Baker, 2016; Wasserstein et al., 2019).
MATERIALS AND METHODS

Dataset Search
Articles on the oral microbiome were searched for, and their
respective datasets were retrieved. To limit the influence of the
16S rRNA region, this study only searched for datasets using the
V4 16S rRNA region, published during the past 5 years (Illumina
MiSeq sequencing). Both sequencing and metadata had to be
publicly available. Initially, articles with deposited datasets were
searched for using the NCBI website as this hosts both PubMed
and the Sequence Read Archive (SRA). PubMed search results
October 2021 | Volume 11 | Article 720637
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were linked to SRA using LinkOut (not possible anymore in the
new PubMed). However, many articles that deposited data in the
SRA, with article title and DOI, were lost in this process due to
incomplete linking between these databases. Therefore, studies
were searched for using Google Scholar with the following query
(February 9, 2019): intitle:oral 16S “V4 region” OR “V4 variable
region” OR “V4 hypervariable region” “accession OR SRA.” The
final papers were screened on reported P-values for comparisons:
at least one test on the microbiome data had to report a P-value
between 0.0001 and 0.05. Finally, sequencing data and metadata
were downloaded from the NCBI.

Pipelines
Four different processing pipelines were built to produce OTUs
tables: a mothur pipeline [version 1.41.3], a VSEARCH [version
2.11.0-linux-x86_64], a USEARCH [version 11.0.667_
i86linux32], and a UNOISE3 [version 11.0.667_i86linux32]
pipeline. Figure 1 presents an overview of the four pipelines,
and Supplementary Table 1 lists their details. In general, each
pipeline used the standard commands with either default or
otherwise well-accepted parameters. For mothur, we followed
the MiSeq Standard Operation Procedure (https://www.mothur.
org/wiki/MiSeq_SOP, d.d. 2019-01-24). We only changed the
value of maxlength in screen.seqs from 275 to 258 as the V4
region has a small length variation and as to use the same value
in all four pipelines. In the VSEARCH, USEARCH, and
UNOISE3 pipelines, the reads were merged and quality-filtered
per sample and then combined into one file. In the (32-bit)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3198
USEARCH/UNOISE3 pipelines, (64-bit) VSEARCH was used to
dereplicate these quality-filtered sequences. Since the read
lengths in the different studies differed (250 nt, but 150 nt in
dataset 4 only), during merging a maximum of 10% mismatches
in the overlap region was used.

Analysis of OTU Tables
Statistical analyses were conducted with R [version 3.5.1, (R Core
Team, 2018)] and the R packages microbiome [version 1.4.2,
(Lahti and Shetty, 2017)], phyloseq [version 1.26.0, (McMurdie
and Holmes, 2013)], and vegan [version 2.5-4, (Oksanen et al.,
2019)]. The Mann-Whitney test was applied to test for
differences in a-diversity (Shannon diversity index) between
two different sample types, while differences in b-diversity were
assessed using PERMANOVA (adonis, Bray-Curtis distance,
9999 permutations). Spearman’s rank correlation coefficient
was used to correlate the Shannon diversity index between
different pipelines. To evaluate the similarity between OTU
tables (mothur only), a Procrustes Analysis and Mantel test
were conducted with QIIME v1.9.1 (Caporaso et al., 2010)
using the Bray-Curtis distance and 999 permutations.

Random subsampling was used to normalize unequal sample
depth (library size). The subsampling depth for each dataset was
determined such that most samples remained in the analysis,
while adhering to minimum of around 2,000 reads/sample. In
addition, as sample depths depend slightly on the pipeline, the
subsampling depth was chosen such that the OTU tables from
the different pipelines contained the same samples. To assess the
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FIGURE 1 | Overview of the four pipelines compared in this study. See Supplementary Table 1 for details.
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reproducibility of statistical tests, 1,000 random subsamples of
the same OTU table were analyzed.
RESULTS

Different publicly available datasets on the oral niche were
searched for and processed with the VSEARCH, USEARCH,
mothur, and UNOISE3 pipelines. During processing, different
issues were encountered with specific datasets and pipelines that
had to be addressed first. Next, the influence of the pipelines
on diversity comparisons and reproducibility of results
were evaluated.

Dataset Search
The literature search returned 60 articles of which, upon
inspection, many did not satisfy our criteria (see Dataset
Search in Materials and Methods). Out of 53 articles that
included an accession number to, for example, NCBI’s SRA or
the European Nucleotide Archive, 45 studies actually deposited
the raw data, while only 30 included the metadata in the database
or in the article. Finally, 11 studies remained that used the V4 16S
rRNA region and were related to the oral niche (19 studies were
excluded: 14 studies used the V3-V4 region, 1 study used the V1-
V2 region, 1 study the V1-V3 region, 3 studies on gut only).
Based on screening with the P-value criterion, five oral
microbiome studies were selected from these 11 studies. This
criterion was used to restrict our analyses, since results would
unlikely differ for more extreme P-values.

These datasets passing all criteria were the following. Dataset
1 (Stewart et al., 2018) was a study on the effects of tobacco
smoke and electronic cigarette vapor exposure on the oral and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4199
gut microbiota. Dataset 2 (Schmidt et al., 2014) was on the
relation between oral cancer and oral microbiota, and dataset 3
(Gomez et al., 2017) on the influence of host genetics on caries
using monozygotic and dizygotic twins. Dataset 4 (Xiao et al.,
2017) studied the impact of diabetes on the oral microbiota using
mice, while dataset 5 (Chen et al., 2018) investigated the effects of
periodontitis and its treatment on oral microbiota. Table 1
shows an overview of these datasets. The raw read lengths
were 250 nt, and, for dataset 4 only, 150 nt.

Data Processing
Although it seemed straightforward to process the retrieved
sequence data with one of the pipelines, several unexpected
issues were encountered that were related to the sequence data
in combination with a specific pipeline. The read pairs of dataset
2 could not be merged by VSEARCH and dataset 4 lost 57%
sequences in the mothur pipeline. In addition, mothur could not
cluster the sequences of datasets 3 and 4 into OTUs on our
compute nodes (64 Gb RAM, 16 core CPU: E5-2650 v2 2.60
GHz) within the imposed time limit of 120 h. Finally, the
deposited data of dataset 5 consisted of already merged
read pairs.

Therefore, the processing of these datasets was slightly altered
to address these issues. In dataset 2, the tail of the reverse reads
contained approximately 100 bp low-quality bases (Q <= 2)
preventing the read pairs to be merged by VSEARCH. However,
USEARCH merged these reads, because the used version
automatically trims these low-quality tails (Q <= 2) before
merging (Q <= 2, min. length 64 nt). Therefore, we pre-filtered
dataset 2 using Trimmomatic v.0.38 (Bolger et al., 2014) with
“TAIL:3 MINLEN:64” and used this filtered data as input for
all pipelines.
TABLE 1 | Overview of the five used datasets.

Dataset Accession Study
size

Selected
depth

Species Sample type Sample types

Dataset 1
(Stewart et al.,
2018)

PRJNA413706 90 9,500 Human Saliva, buccal swabs,
feces

Electronic cigarette users, tobacco smokers, and matched
controls

Dataset 2
(Schmidt et al.,
2014)

PRJEB4953 83 22,000 Human Buccal swabs Oral cancer, precancer, and healthy controls

Dataset 3
(Gomez et al.,
2017)

PRJNA383868* 484 2,800 Human Plaque Twins, healthy or with enamel or dentin caries

Dataset 4
(Xiao et al., 2017)

SRP108800 81 1,900 Mouse Saliva, feces Normoglycemic, diabetic, and diabetic IL-17A antibody-
treated mice

Dataset 5
(Chen et al., 2018)

SRP075100 238 7,900 Human Saliva, plaque Chronic periodontitis patients and periodontally healthy adults
Dataset 1 consisted of 90 samples from 30 participants: 10 tobacco smokers (TS), 10 electronic cigarette (EC) users, and 10 non-smoking controls. Fecal, saliva, and buccal swab
samples were collected from each individual. Dataset 2 contained 83 samples divided over three groups: oral cancer (Cancer, n=21; Contralateral normal, n=19), precancer (Precancer,
n=13; Contralateral normal, n=11), and healthy (lateral tongue, n=9; Floor of mouth, n=10) persons. For dataset 3, metadata included 485 dental plaque samples (484 twins and 1
singleton; dizygotic n=280; monozygotic n=205), while this singleton (1061.1_RD1) was not present in the SRA (*accessions: SRR5467515–SRR5467785 and SRR5467788–
SRR5468062). In addition, eight samples did not include zygotic information. Finally, 271 dizygotic (DZ) and 205 monozygotic (MZ) samples remain. Samples from MZ/DZ twins were
compared according to caries status: without dental caries (Health) or enamel/dentin caries, or treated caries. Dataset 4 contained 81 samples (45 oral swab samples and 36 fecal
samples, which should be oral swab samples). Normoglycemic (Pre−Diab NG) and diabetes-prone mice (Pre−Diab DB) before and after (Diab NG; Diab DB) the development of
hyperglycemia were sampled. In the oral swab samples, Normal refers to mice that received oral bacterial from normoglycemic mice, Diabetic to mice that received oral bacterial from
diabetic mice, and Diabetic + IL17 to the mice treated with IL-17A antibodies and oral bacterial from diabetic mice. Dataset 5 comprised 238 samples collected from periodontal healthy
individuals and chronic periodontitis patients: D1P (diseased/pre-treatment plaque n=96), D2P (diseased/post-treatment plaque n=19), HP (healthy plaque n=42), D1S (diseased/pre-
treatment saliva n=45), D2S (diseased/post-treatment saliva n=18), and HS (healthy saliva n=18).
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From dataset 4, many sequences were removed after the
mothur screen.seqs command on the aligned sequences, in
which the sequences are required to span at least the V4
region (from 1968 to 11550) in the alignment. Manual
inspection showed that many sequences ended one position
early and that the first base call after the V4 (806R) reverse
primer was absent. Therefore, for dataset 4 only, the value of the
end parameter in this screen.seqs command was changed from
11,550 to 11,549 to avoid losing 57% of the sequence data.

In addition, both datasets 3 and 4 contained many singletons.
This caused the OTU clustering to fail in mothur. Therefore,
singletons were removed from datasets 3 and 4 in the mothur
pipeline (split.abund, cutoff=1). For dataset 3, it was also possible
to generate an OTU table with cluster.split (taxlevel=2,
cutoff=0.03). To evaluate the difference between these two
OTU tables (i.e., from cluster.split or singletons removed), they
were compared. Spearman’s correlation of the Shannon
diversities (R = 0.9895, P-value < 2.2e-16), Procrustes Analysis
(M^2 = 0.01; p < 0.001), and the Mantel test (r = 0.98837, P-
value = 0.001) showed that the OTU tables were very similar.
Since dataset 4 could not be processed with cluster.split within
the wall-time limit of 120 h, no comparison could be made and
the dataset with singletons removed was used.

After the modifications described above, all five datasets were
processed with all four pipelines. The total numbers of raw,
merged, quality-filtered reads, and reads mapped to the OTU
table are summarized in Supplementary Table 2. For dataset 4,
the OTU table from mothur contained only 69% of sequences of
the table from the other pipelines. This turned out to be caused
by the removal of non-bacterial sequences (chloroplast,
mitochondria, unknown, archaea, eukaryota) in the SOP
mothur pipeline. Since only dataset 4 contained many non-
bacterial sequences, for all pipelines applied to dataset 4, OTUs
classified as non-bacterial were removed as to make a
fair comparison.

Robustness of Results
For each of the datasets, OTU tables were generated by the
different pipelines. The fraction of quality-filtered mapped reads
represented in the OTU table was similar (datasets 1, 2, 3, 5
combined: average 0.95, standard deviation 0.023; dataset 4:
average 0.60, standard deviation 0.0018; Supplementary
Table 2). However, within a dataset, the number of OTUs
depended on the pipeline, where the mothur pipeline
generated most OTUs. Next, OTU tables were rarefied to avoid
the influence of sample depth differences within one dataset
(Table 1), and the general similarity among these tables from the
pipelines was compared using Spearman’s rank correlation of the
Shannon diversity index. All correlations were high, ranging
from 0.94 to 1.0 (P-values < 2.2e-16).

To evaluate the robustness of a-diversity results, the Shannon
diversity indices of two different sample types present in the
dataset (the original study) were compared for the different
pipelines (Mann-Whitney test; single subsampled OTU table).
A heatmap (Supplementary Figure 1A) shows the resulting P-
values, most of which were similar to the original results. Since
conclusions, thus biological inferences, are more likely to depend
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5200
on data processing details when P-values are closer to the
significance threshold, we zoomed in on the eight comparisons
that had a P-value below 0.05.

Using the significance threshold of 0.05, five comparisons
resulted in identical biological conclusions, while there were
three conflicts between the four pipelines (Figure 2A).
Recently, studies proposed to lower the significance threshold
to 0.005, which would “immediately improve the reproducibility
of scientific research” (Benjamin et al., 2018; Ioannidis, 2018).
When the significance threshold was lowered to 0.005, one
conflict remained.

Similarly, as to assess the robustness of between-group
differences, the microbial profiles of the two groups of sample
types were subjected to PERMANOVA (Bray-Curtis distance;
Supplementary Figure 1B). In most cases, the P-values were
similar among the different pipelines and to the original results.
Of the 28 comparisons (Supplementary Figure 1B), 17 groups
had P-values below 0.05 (Figure 2B). Similar to the a-diversity
tests, lowering the significance threshold improved robustness.
However, at any significance threshold, differences between
pipelines, here on the same data, can appear (Figure 3).

In some cases, published results differed from ours, which can
also be related to a different distance metric used (datasets 1 and
2 did not use Bray-Curtis). As an example, we take dataset 1,
which was processed by the authors using USEARCH (Stewart
et al., 2018). In our study, the P-values for the fecal microbiota of
controls (Con) versus electronic cigarettes (EC) users slightly
depended on the pipeline (P-value range: 0.03–0.07). However,
the much higher P-value reported by the authors was related to
the weighted UniFrac distance metric. Indeed, when using the
OTU table provided by authors, all PERMANOVA (Bray-Curtis)
results became very similar (Supplementary Figure 1B).

Reproducibility of Results
This study also evaluated the reproducibility, defined here as “re-
analysis with exactly the same pipeline and same dataset
supports an identical conclusion.” To this end, each OTU table
was subsampled 1,000 times, and statistical tests were done as
above, for each of the 1,000 tables, thus providing 1,000 P-values
(boxplots in Figure 3). Since the P-value ranges for a given
pipeline can cross a significance threshold (e.g., Figure 3-1B) or
can be large (Figure 3-2D), care should be taken with reporting
results (publication bias).

Subsampling datasets with a large standard deviation in
sample depths can lead to a larger variation in test results. For
example, within dataset 4, the P-value distribution for UNOISE
of the first comparison (Figure 3-2D; Diab NG vs DB; range:
0.0001–0.0012) differed from other three (e.g., Oral swab normal
vs Diabetic+IL17: 0.001–0.004). In the first comparison, the
median depths of the groups differed a lot (7,666 vs 52,512); in
the latter, they were much closer (11,387 vs 11,572). Thus, when
subsampling, results can show more variation since random
subsamples vary more when subsample depth is low compared
to the sample depth and/or when there is a bias in sample depth
between groups. However, this argument does not hold for, for
example, dataset 5: D2P vs HP and D1P vs HP. Here, all three
sample groups have very similar medians. However, variability
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can also be caused by biological differences as well as sample size
differences (D2P: 19, D1P: 96, HP: 42 samples). As to exclude
biological and other differences between samples, dataset 1 was
subsampled at a lower depth to illustrate the increased variability
using the same data (Supplementary Figure 2). Not surprisingly,
a lower subsampling depth results in higher variability of
test results.
DISCUSSION

It is difficult to make research sufficiently transparent and
reproducible, especially in interdisciplinary fields such as
microbiome studies (Schloss, 2018). In this study, we evaluated
the robustness and reproducibility of 16S rRNA gene amplicon
studies using four mainstream pipelines.

It was not straightforward to reprocess or reproduce results of
these studies. During our literature search, we encountered many
articles with no or incomplete data availability, even though an
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6201
accession number was provided: only 57% provided sequencing
data and metadata. In addition, while correct and complete
descriptions of methods and metadata are crucial, they are
often not provided in sufficient detail. Although unclear
descriptions of processing methods were not such an issue in
this work, since we used our own pipelines, phrases like “reads
were quality-filtered” or “clustered using UCLUST” are much
too imprecise.

Due to (implicit) differences between tools used for the
pipelines, we sometimes had to adapt a pipeline to the data at
hand (see Data Processing in Results). For example, in dataset 4,
about 35% of the sequences was taxonomically classified as
chloroplast (40% as non-bacterial). However, in the
corresponding article (QIIME 1 was used), we did not
explicitly find that these sequences were removed, although
that seemed to be the case (Supplementary Figure 3). Clearly,
each dataset requires specific steps, also with respect to quality
filtering, and it is important to be aware of differences among
tools (even related ones as USEARCH and VSEARCH, or
different versions of the same tool).
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FIGURE 2 | Overview of P-values of the five datasets sorted on decreasing average P-value. The first number before the colon indicates the dataset. Cluster.split is
an alternative mothur pipeline used only for dataset 3. (A) P-values of Mann-Whitney tests on the Shannon diversity index (a-diversity) and (B) P-values of PERMANOVA
(Bray-Curtis distance, b-diversity) tests between two sample types. In (A), at a threshold of 0.05, once VSEARCH differed from the other pipelines, once USEARCH, and
once mothur and USEARCH differed from VSEARCH and UNOISE3. At a threshold of 0.005, there was one conflict (USEARCH). In (B) at 0.05, there were four conflicts:
once mothur and UNOISE3 were the same, but differed from USEARCH and VSEARCH, once UNOISE3, once USEARCH, once VSEARCH.
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The pipelines resulted in a different number of OTUs, which
is not surprising. Nearing et al. (2018) reported that several
denoising pipelines largely influenced a-diversity (observed
OTUs) and possibly impact results based on a-diversity, while
the weighted b-diversity metrics (Bray-Curtis, weighted
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7202
UniFrac) were very similar among different pipelines. When
comparing the results of tests on diversity, i.e., the distribution of
P-values between pipelines and within a pipeline (Figures 2, 3),
tests on a-diversity (Shannon) seem to show a larger variation
than on b-diversity (Bray-Curtis, PERMANOVA).
A

A

B

B

D E

C

C

FIGURE 3 | Panel 1 shows the distribution of P-values of Mann-Whitney tests on the Shannon diversity index between the indicated two sample types for 1,000
random subsamples in (A) dataset 1, (B) dataset 4, and (C) dataset 5. Panel 2 shows the distribution of P-values of PERMANOVA (Bray-Curtis distance) tests for
1,000 random subsamples in datasets 1 to 5 (A–E). Cluster.split is an alternative mothur pipeline used only for dataset 3 (C).
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Irrespective of the above, some differences related to tests on
a-diversity were initially unexpected, such as between
USEARCH and VSEARCH (e.g., Shannon diversity in
Figure 2A, datasets 1 and 5). Since VSEARCH can be seen as
an open-source USEARCH, it was hypothesized that this
difference was caused mainly by the different method of
chimera checking in these pipelines: USEARCH performs this
during clustering, while with VSEARCH this was done before
clustering (uchime_denovo). To analyze this, dataset 1 was
processed with a VSEARCH pipeline in which the chimera-
checking method was replaced by USEARCH (cluster_otus).
Indeed, now the test results were more similar to those of
USEARCH (Supplementary Figure 4). Thus, in this case, the
results for Shannon diversity seem to be sensitive to chimera-
detection methods. According to a previous study, different
chimera-detection methods influenced the accuracy of
clustering (May et al., 2014). The result of this study further
demonstrated that differences in chimera-checking methods also
affected robustness. For these datasets, DADA2, which has a
different chimera-checking method, can also show differences
due to false positive chimeras (Edgar, 2016b).

The ranges of P-values, based on the 1,000 subsampled OTU
tables, sometimes exceeded a significance threshold. This showed
that when OTU tables are rarefied, reproducibility can be
affected. A P-value of 0.06 does not really differ from 0.04 [cf.
(Halsey et al., 2015)], and larger differences occur using exactly
the same data (Figure 3). At lower subsampling depth, with
respect to the median sample depth of a group, and/or when
depths have large standard deviation, reproducibility can
decrease. Especially in such cases, given rarefying is the chosen
normalization method, multiple randomly subsampled OTU
tables should be evaluated, and the median P-value be used.

Here, rarefying, which is still very often used, was applied to
normalize library size. The comparison of normalization
methods was beyond the scope of this study, but we note that
different methods are available [proportion, CSS, log-ratio,
TMM, cf. Weiss et al. (2017)]. While McMurdie and Holmes
(2014) stated rarefying should not be used to detect differentially
abundant species and better be generally avoided, Weiss et al.
(2017) later reported that rarefying itself seemed not to increase
false discovery rates of many differential abundance-testing
methods, and even lowered the false discovery rate when the
average library size for groups differed a lot (~10×). While it is
not straightforward which normalization method should best be
used, even though data normalization methods now receive
ample attention, we should not forget “subsampling” occurs
several times during experimental procedures, ranging from
biological sampling, dilution of DNA for amplicon PCR, to
generating the equimolar mix for sequencing.

Irrespective of the normalization technique, care should be
taken with PERMANOVA. As stated with its introduction
(Anderson, 2001), calculating all possible permutations usually
is unrealistic, considering computational time. However,
increasing the number of permutations improves the precision
of the P-value (Anderson, 2001). With a lower number of
permutations (e.g., 999 instead of 9,999), the range of P-values
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8203
(using same OTU table) increases, which can affect
reproducibility. This then shows that the permutation space is
too undersampled and the number of permutations should be
increased (cf. page 37 in Anderson, 2001). Thus, PERMANOVA
should be repeated as to check the P-value varies little.

This study did not evaluate the differences caused by the use
of different diversity indices (e.g., species richness, Chao1
richness, Shannon index) or distance metrics [(weighted)
UniFrac, Bray-Curtis, Jaccard], since these are different
downstream choices. When evaluating results from published
studies, we should remember that different a-diversity indices or
b-diversity metrics can lead to different conclusions. However,
here, the focus was on whether different conclusions would result
from different amplicon processing pipelines.

Although QIIME 1 also was often used, it has not been
supported since 2018, and we did not include it as to keep
comparisons concise. In addition, based on previous studies, the
default QIIME 1 pipeline has higher error rates due to chimeras
and higher amount of spurious OTUs comparing with others
(Mysara et al., 2017; Prodan et al., 2020). We, therefore, only
compared VSEARCH, USEARCH, mothur, and UNOISE3 in
this article as example pipelines, to limit variations and maintain
focus, but note that QIIME 2 also supports a VSEARCH pipeline.

In general, results of the four pipelines were robust and
reproducible, with some conflicts around the 0.05 threshold
(Figure 2). The choice of 0.05 as P-value threshold was
arbitrary, and it was proposed to lower the P-value threshold
to 0.005 to “improve reproducibility of scientific research”
among studies (Benjamin et al., 2018; Ioannidis, 2018).
However, a different, sometimes related, pipeline for the same
dataset (study) resulted in different P-values. Although we
cannot conclude that a lower threshold should be used, we
should keep in mind that P-values just below 0.05 may not be
very robust or reproducible, and a lower threshold also comes at
a cost (Di Leo and Sardanelli, 2020). Irrespective of the used
thresholds, we recommend that real P-values are always reported
(not as: “P<0.05”).

In our limited exploratory analysis, we did not find that
clustering methods consistently differed to the denoising
method. With the introduction of UNOISE, Robert Edgar
stated, “I suggest you try both. If a biological conclusion is
different, then you should worry that neither result is
trustworthy” (Edgar, 2019). Yet, it is important to realize that
using the same sequencing data, (1) results among pipelines can
differ; (2) it will often not be straightforward to uncover why
specific differences occur; (3) generally a single pipeline is used,
so differences will remain unnoticed. In addition, other measures
than P-values can be considered as these show large sample-to-
sample variability and have other issues (Halsey et al., 2015;
Wasserstein et al., 2019). Nevertheless, a discussion on the use P-
values is beyond the scope of this article, and there is no
consensus this subject (Halsey et al., 2015; Ioannidis, 2018;
Ioannidis, 2019; Wasserstein et al., 2019; Di Leo and
Sardanelli, 2020).

In summary, we conclude the following: Sequencing data and
metadata should be properly deposited and journals should
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check if data have actually been made publicly available. Not
surprisingly, different pipelines can lead to different statistical
conclusions; thus, methods should be described in detail and
include software versions, algorithms, and parameters used.
While “the only direct protection [to the threat of selection
bias] must come from standards for reproducible research
(Ioannidis, 2019)”, microbiome research and its data processing
highly depend on wet- and dry-lab technology, and even if
standards would exist, they would repeatedly (need to) change
(Amaral and Neves, 2021). This means that more care should be
taken to share methods and (raw) data.
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Microbiome data are becoming increasingly available in large health cohorts, yet
metabolomics data are still scant. While many studies generate microbiome data, they
lack matched metabolomics data or have considerable missing proportions of
metabolites. Since metabolomics is key to understanding microbial and general
biological activities, the possibility of imputing individual metabolites or inferring
metabolomics pathways from microbial taxonomy or metagenomics is intriguing.
Importantly, current metabolomics profiling methods such as the HMP Unified
Metabolic Analysis Network (HUMAnN) have unknown accuracy and are limited in their
ability to predict individual metabolites. To address this gap, we developed a novel
metabolite prediction method, and we present its application and evaluation in an oral
microbiome study. The new method for predicting metabolites using microbiome data
(ENVIM) is based on the elastic net model (ENM). ENVIM introduces an extra step to ENM
to consider variable importance (VI) scores, and thus, achieves better prediction power.
We investigate the metabolite prediction performance of ENVIM using metagenomic and
metatranscriptomic data in a supragingival biofilm multi-omics dataset of 289 children
ages 3–5 who were participants of a community-based study of early childhood oral
health (ZOE 2.0) in North Carolina, United States. We further validate ENVIM in two
additional publicly available multi-omics datasets generated from studies of gut health. We
select gene family sets based on variable importance scores and modify the existing ENM
strategy used in the MelonnPan prediction software to accommodate the unique features
of microbiome and metabolome data. We evaluate metagenomic and metatranscriptomic
predictors and compare the prediction performance of ENVIM to the standard ENM
employed in MelonnPan. The newly developed ENVIM method showed superior
metabolite predictive accuracy than MelonnPan when trained with metatranscriptomics
data only, metagenomics data only, or both. Better metabolite prediction is achieved in the
gut microbiome compared with the oral microbiome setting. We report the best-
predictable compounds in all these three datasets from two different body sites.
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For example, the metabolites trehalose, maltose, stachyose, and ribose are all well
predicted by the supragingival microbiome.
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INTRODUCTION

The importance of the human microbiome in health and disease
is undeniable; site-specific microbial communities interact both
with the environment and the host and influence numerous
biological processes (Wilkinson et al., 2021). Aside from the
logical interest in understanding the composition of the
microbiome (Tsilimigras and Fodor, 2016) (i.e., relative
abundance of identified taxa), measuring and understanding its
associated metabolic activities are arguably of utmost biological
relevance. Recent studies have linked the metabolome with
several important health conditions including inflammatory
bowel disease (IBD) (Lloyd-Price et al., 2019), obesity and type
II diabetes (Canfora et al., 2019), cholesterol levels (Kenny et al.,
2020), and early childhood dental caries (ECC) (Heimisdottir
et al., 2021). Despite the rapidly increasing availability of
microbiome data in large health cohorts, metabolomics data
are still scant. This is an important limitation because the lack of,
or considerable missingness of, metabolite information in
microbiome studies can diminish their potential in inferring
functions and important biological targets.

It follows that methods that help fill in the functional
information gaps in microbiome studies are valuable and
necessary. Because “matched” microbiome and metabolome
datasets are extremely scant, most current methods rely on
metabolic pathway inferences from taxonomic and
metagenomic data, such as in the HMP Unified Metabolic
Analysis Network (HUMAnN) (Franzosa et al., 2018). While
the value of this approach is well-documented for the analysis of
some microbial consortia (e.g., the human gut) (Lloyd-Price
et al., 2019; Thomas et al., 2019), HUMAnN cannot make
predictions for individual metabolites. Moreover, its accuracy
has not been benchmarked and its performance in other
microbial communities with distinct ecology and function (e.g.,
the oral cavity) remains unknown. This is important because
metabolomes measured at different body sites may include,
besides the products of microbial metabolism, biochemical
contributions from the host and the environment [e.g., dietary
sugars in the study of dental biofilm (Heimisdottir et al., 2021)].
Although an accurate determination of metabolite sources may
not always be possible, predictions of these biofilm metabolites
using microbiome information are highly desirable.

Along these lines, in 2016, Noecker and colleagues (Noecker
et al., 2016) added to the available analytical toolbox by
leveraging 16S rRNA data. Their method enabled model-based
integration of metabolite observations and species abundances
using taxonomy and paired metabolomics data from ~70 vaginal
samples. More recently, MelonnPan (Mallick et al., 2019) was
developed to obtain metabolomic profiling of microbial
communities using amplicon or metagenomic sequences.
gy | www.frontiersin.org 2207
This new method was motivated by and applied in the context
of paired microbiome and metabolome data in the context of an
IBD cohort. The motivation for the present new method
development is to improve existing analytical approaches
available for metabolite prediction and functions using
microbiome data (Sanna et al., 2019). To this end, we leverage
existing microbiome and metabolome data from a study of early
childhood oral health (ECC study) and two IBD studies of the
human gut microbiome. The elastic net model (ENM, used in
MelonnPan), compared to LASSO or ridge regression, benefits
from keeping both the singularities at the vertices, which is
necessary to accommodate data sparsity, and the strict convex
edges for grouping among correlated variables.

Inspired by MelonnPan and MIMOSA, we propose an
improved prediction method for individual metabolites using
microbiome information in the same (i.e., matched or paired)
biological samples, called “elastic net variable importance model
(ENVIM)”. ENVIM improves upon ENM algorithms by
weighting microbial gene family features using random forest
variable importance (VI) to enhance the contribution of most
prediction-informative genes. ENVIM outputs predicted
metabolites from matched microbiome samples, as well as gene
families and their weights informing metabolite prediction.

In this paper, we present the development, application, and
evaluation of ENVIM.We compare it against MelonnPan in three
datasets generated from oral and gut samples, so that we can also
compare metabolite predictive performance between different
body sites. The predictors can be three different gene family
data types: metagenome only, metatranscriptome only, and the
combination of both metagenome and metatranscriptome data.
The top predictable compounds have been reported in these three
datasets from two different body sites. To quantify the taxonomic
and functional relationship of the most prediction-contributing
microbial gene families in ENVIM, an enrichment analysis is
performed and several predictive gene families are detected in
species of the oral biofilm.
MATERIAL AND METHODS

Cohorts and Data Description
In the following section, we describe the microbiome and
metabolome data used for the new method development and
application, alongside the three contributing studies.

ZOE 2.0 Study Data
ZOE 2.0 is a community-based molecular epidemiologic study of
early childhood oral health in North Carolina (Divaris et al., 2020;
Divaris and Joshi, 2020). The study collected clinical information on
preschool-age children’s (ages 3–5) dental cavities (referred to as
October 2021 | Volume 11 | Article 734416
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early childhood caries or ECC) (Ginnis et al., 2019) and
supragingival biofilm samples from a sample of over 6,000
children (Divaris et al., 2019). A subset of participants’ biofilm
samples underwent metagenomics, metatranscriptomics, and
metabolomics analyses, under the umbrella Trans-Omics for
Precision Dentistry and Early Childhood Caries or TOPDECC
(accession: phs002232.v1.p1) (Divaris et al., 2020). As such,
metagenomics (i.e., shotgun whole-genome sequencing or WGS),
metatranscriptomics (i.e., RNA-seq), and global metabolomics data
(i.e., ultra-performance liquid chromatography-tandem mass
spectrometry) (Evans et al., 2009; Evans et al., 2014; Heimisdottir
et al., 2021) from supragingival biofilm samples of ~300 children,
paired with clinical information on ECC, are available. After
exclusions due to phenotype and metabolite missingness
described in a previous publication (Heimisdottir et al., 2021), the
joint microbiome–metabolome data include 289 participants. There
are 503 known metabolites included in the ZOE 2.0 dataset.
Metagenomics and metatranscriptomics data in reads per kilobase
(RPK) were generated using HUMAnN 2.0. Here, we use species-
level (205 species), gene family (403k gene families), pathway (397
pathways), and metabolome (503 metabolites) data.

Lloyd-Price Study Data
The Lloyd-Price dataset (Lloyd-Price et al., 2019) was obtained
from the IBD multi-omics database (https://ibdmdb.org). It is
derived from a longitudinal study that sought to generate profiles
of multiple types of omics data among 132 participants for 1 year
and up to 24 time points. Several different types of omics data of
the study include WGS shotgun metagenomics, RNA-seq
metatranscriptomics, and metabolomics. The corresponding
metadata include demographic information such as
occupation, education level, and age. These gut microbiome
data are in counts per million (CPM) and were derived using
functional profiles 3.0 in HUMAnN 3.0. For this study, we
merged data of individual gene families for 1,638 samples for
130 subjects and individual metatranscriptomics gene families
for 817 samples for 109 subjects, respectively. The merged
metagenomics gene family data include about 2,741k gene
families and 1,580 samples. Merged metatranscriptomics gene
family data include about 1,079k gene families and 795 samples.
The metabolomics data were generated using four liquid
chromatography tandem mass spectrometry (LC-MS) methods
including polar compounds in the positive and negative ion
modes, lipids, and free fatty acids and bile acids and include
81,867 metabolites in 546 samples for 106 subjects. Most
metabolites have not been annotated into known biochemicals
and, thus, were excluded from prediction. After limiting the
dataset to known metabolites and removing “redundant ions” in
“HMDB” ID, there remained 526 metabolites to be predicted.

Mallick Study Data
The Mallick data comprised the main real-life dataset used in the
development of theMelonnPanmethod (Mallick et al., 2019). These
gut microbial data (WGS shotgun sequencing and metabolomics)
were collected from two cross-sectional IBD cohort studies, namely,
the Prospective Registry cohort for IBD Studies at theMassachusetts
General Hospital (PRISM, with 155 subjects) and the Netherlands
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IBD cohort (NLIBD, with 65 subjects). Therefore, they comprise
two independent cohorts of subjects. The raw data were obtained
through a combination of shotgun metagenomic sequencing and
the same four LC-MS methods (Franzosa et al., 2019) as in the
Lloyd-Price study. Gene family data in RPK units were derived
using HUMAnN 2.0 and normalized to reads per kilobase per
million sample reads (RPKM). The raw metagenomics gene family
dataset includes one million gene families. The investigators
(Mallick et al., 2019) filtered out genes with low abundance and
prevalence resulting in a processed dataset of 811 gene families
available in the R package MelonnPan (melonnpan.training.data
and melonnpan.test.data) for 222 total subjects. The microbiome
data have been preprocessed and normalized into relative
abundance. The metabolite abundance data (8,848 metabolites
and 220 subjects) have been made available by Franzosa et al.
(2019). Those authors used 466 metabolites for analyses, a subset
that was confirmed experimentally against laboratory standards
prior to application in MelonnPan. In the present study, we use
information from these 466 metabolites to compare the power of
the new ENVIM method against MelonnPan. To accomplish this,
we normalized the metabolite abundance data for all 8,848
metabolites into relative abundance (compositional format,
obtained via dividing the normalized abundance by the sample-
level total normalized abundance). Among them, we used the same
466 metabolites with laboratory standards as selected in the paper of
MelonnPan (Mallick et al., 2019). Datamissingness is not an issue in
the Mallick metabolome data.

Metabolomics Data Preprocessing
and Normalization
An overview of the approach for metabolome data is presented in
Figure 1 and elaborated in detail below.

Metabolomics Missing Data Imputation: ZOE 2.0 and
Lloyd-Price Studies
In ZOE 2.0, 87% of metabolites have some missing data, whereas
58% have missing values in Lloyd-Price. To address missingness
in these two cohorts, we applied a rigorous feature-wise quantile
regression imputation of left-censored data (QRILC) (Wei et al.,
2018) to impute missing metabolite values and avoid
underestimated metabolite-level variance, as in a previous
publication (Heimisdottir et al., 2021). Each of the 289
included participants has <90% missing data across the 503
metabolites in ZOE 2.0. We applied a similar preprocessing
filter for the Lloyd-Price data (i.e., removing outlier subjects,
Supplemental Figure 1), resulting in the exclusion of 15 outlier
subjects with the largest numbers of missing metabolite values, as
well as outlier metabolites with >90% missing values.
Consequently, we proceeded to analyze 522 metabolites in 531
samples from the Lloyd-Price data.

The QRILC imputation method was applied after a natural
log data transformation, and the imputed data were
exponentiated to back transform the data to RPK (in ZOE 2.0)
or CPM (in Lloyd-Price) scales. Because MelonnPan requires
metabolite data to be inputted as compositional, we converted
RPK and CPM imputed data to a compositional format before
predictive modeling.
October 2021 | Volume 11 | Article 734416

https://ibdmdb.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Xie et al. ENVIM Predicts Metabolites Using Microbiome
Metabolites Filtered by Metabolic Pathways
(ZOE 2.0, Lloyd-Price, and Mallick)
We used the MetaCyc database to retain only “reactive”
metabolites (Caspi et al., 2014). To achieve this, we considered
the membership of the metabolites in any MetaCyc metabolic
pathway, reflecting reactions between bacteria and metabolites,
and carried out the following steps:

1. In the MetaCyc database, we identify metabolites in each of
the pathways predicted by both metagenomics and
metatranscriptomics data in Functional Profile 2.0
generated by HUMAnN 2.0 (ZOE 2.0) and Functional
Profile 3.0 generated by HUMAnN 3.0 (Lloyd-Price data).
Of note, no pathway information exists in the available
Mallick metagenomics and metatranscriptomics data.

2. We used metabolite labels (KEGG ID, HMDB, PubChem,
and metabolite name, provided in Metabolome data
annotation, provided by the manufacturer) in each of the
three datasets, as the mapping IDs for each metabolite.

3. In MetaCyc, regardless of the metabolite label, only one unique
MetaCyc “weblink” or universal mapping id is returned if the
metabolite is in the database. This way, reactive metabolites
identified in step 1 can bematched withmetabolites identified in
step 2. 3) Therefore, we identify metabolites that are in the
observed pathways. Finally, we filter out metabolites with low
abundance (metabolites with mean relative abundance <10−4)
and low prevalence (metabolites with percentage of zeros in
>90% of the samples). Consequently, there were 149 metabolites
in pathways in ZOE 2.0, 125 in Lloyd-Price, and 251 in the
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Mallick data. Metabolites in Mallick data only have been filtered
by the abundance, without being filtered by metabolic pathways.
To compare the prediction of metabolites in pathways with the
prediction of all metabolites, we considered both sets of
metabolites in our analyses.
Microbiome Data Preprocessing
and Normalization
An overview of the approach for microbiome data is presented in
Figure 1 and elaborated in detail below. First, we matched gene
family-level microbiome data with metabolome data by participant
or sample unique identifier. Then, the scaled (RPK, RPKM, or
CPM) gene family abundances were converted to compositional
data, relative to the total scaled gene family abundances within a
sample. Then, we filtered out gene family features with low relative
abundance (mean relative abundance <5 × 10−5) and low prevalence
(percentage of zeros in >90% of the samples) and thus kept 0.5%–
5% of gene family features. The same procedures were performed
for both metatranscriptomics (briefly referred to as “RNA”
thereafter) and metagenomics data (briefly referred to as “DNA”
hereafter). When both DNA and RNA data (briefly as “Both”
hereafter) are considered predictors, a gene name may correspond
to two “gene features,” one for each data type. The same data
preprocessing and normalization procedures were followed for the
three cohorts, with sample sizes and feature numbers presented in
Table 1. To prevent overfitting when evaluating ENM and ENVIM,
we divided samples into training (75% of subjects) and testing
datasets (25% of subjects).
TABLE 1 | Sample size and number of selected gene family features.

Training genes Testing genes Genes in both Subjects Metabolites Metabolites (in pathways)

ZOE 2.0 DNA (total 403k genes) 1,355 1,276 1,214 289 503 149
RNA (total 403k genes) 1,805 1,826 1,667 287 503 149
Both (total 806k genes) 3,158 3,183 2,948 287 503 149

Lloyd-Price DNA (total 2,741k genes) 726 712 633 359 522 125
RNA (total 1,079k genes) 726 704 600 282 522 125
Both (total 3,820k genes) 1,424 1,508 1,211 269 522 125

Mallick DNA (total 1,000k genes) 811 811 811 220 466 251 (filter only)
October 2021 |
Testing genes: genes that can be used in the testing set. Training genes: genes that can be used in the training set. Genes in both: genes that are in both training and testing sets.
FIGURE 1 | Flowchart of data preprocessing in microbiome and metabolome. QRILC was not used for the Mallick data, but was used for the ZOE 2.0 and Llloyd-
Price data. Metabolites that have percentage of NA > 90% will also be removed before handling missing data.
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The Existing ENM Method for Microbiome
Data-Based Metabolite Prediction
As mentioned previously, the existing method available for
predicting metabolite abundance using metagenomics data is
MelonnPan (Mallick et al., 2019) (Model-based Genomically
Informed High-dimensional Predictor of Microbial Community
Metabolic Profiles). In this study, in MelonnPan, we used all
filtered metagenomic gene family features in the 10-fold cross-
validated elastic net model (ENM) (Zou and Hastie, 2005) to
predict metabolite abundance (Equation 1).

However, using all filtered metagenomic gene family features in
the model may dilute the effect of some important gene family
features contributing to the prediction of metabolite abundance.
This limitation can be improved upon, and therefore, in this paper,
we set out to improve the ENM and develop a new algorithm.

The MelonnPan software was downloaded from GitHub (https://
github.com/biobakery/melonnpan) or in MelonnPan package in R,
and the CSV output files “Predicted_Metabolites.txt” (Train) and
“MelonnPan_Predicted_Metabolites.txt” (Test) are used as the
prediction results of MelonnPan.

The ENM assumes the model,

yi = x
0
i  b + ei,

where b = (b0, b1, … , bp)' and b̂ , the ENM estimator of b, is
found by minimizing the objective function of ENM,

LENM =
1
2No

N

i=1
(yi − x

0
ib)

2 + lo
p

j=1

1 − a
2

b2
j + a bj

�� ��� �
: Equation 1

Evaluation Methods
Following Cohen’s criterion (Cohen, 1988), by which a
correlation coefficient of 0.3 is considered to be the median
size, we define well-predicted (WP) metabolites as those with

Equation 1
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Spearman correlation ≥0.3, and those with correlation <0.3 as
poorly predicted. This criterion has also been used in the
development of MelonnPan (Noecker et al., 2016). We
evaluated the predictive performance of the new method
ENVIM by comparing it against MelonnPan. Additionally, we
compared Spearman correlations and mean square error (MSE)
between the predicted and observed metabolites in both the
training stage and the testing stage for all three datasets and
both methods.
RESULTS

The Improved ENM Based on Variable
Importance Score (ENVIM)
Algorithm and Procedure in ENVIM
The new algorithm ENVIM (Equation 2) was developed by
extending the existing ENM with the random forest-derived
variable importance to enhance the weights of important features
in the prediction. ENM was previously used in the MelonnPan
framework for microbiome-based metabolome prediction. The
procedure in ENVIM and the comparison between ENM and
ENVIM are shown in Figure 2. Because ENM assumes the
normality of the error term, and there are typically excess
zeros, skewness, and extreme values in metagenomics and
metatranscriptomics data, we rank-transform gene family
features in each sample to a normal distribution by using the
rntransform (Aulchenko et al., 2007) function in the R package
GENABEL for training data and testing data separately. The
training metabolite abundance data are transformed to a normal
distribution using a Box–Cox transformation. After fitting the
model in the training data, predicted metabolite abundances are
transformed back to relative abundances with g determined by
the training metabolite abundance data.
FIGURE 2 | Flowchart of MelonnPan and the elastic net variable importance model (ENVIM). The three differences between them include (red text) 1) transformation
of metabolite data, 2) gene family weights, and 3) penalty score. The predictable metabolites are defined as the metabolites that have a significant Spearman
correlation with the adjusted q-value (testing whether the correlation is zero) below the default threshold in the training set.
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Including all gene families into the model could make the
cross-validated MSE larger, whereas including only a small part
could make the error larger. Therefore, to identify a model with
minimum cross-validated error, one needs to iterate different
numbers of gene families. Because we prioritize gene families
with high importance relative to metabolites, we use a non-linear
regression model to determine the importance of gene families
for each metabolite. We train a cross-validated random forest
model (Breiman, 2001) by using the training data and use the
varImp function in the caret package (Kuhn, 2008) in R to find
the scaled importance score (0–100) between each independent
feature and the metabolite abundance. We introduce a unique
step that uses the scaled variable importance scores to define sets
of the top gene families according to a predefined set of
thresholds, for example, 90, 80, 70, etc. We use the glmnet
(Friedman et al., 2010) package in R to run cross-validated
ENM and choose penalty parameters for each model.

In the training stage, we assign the importance score from 0 to
100 in 10 cumulative intervals (90–100, 80–100,…, 10–100, 0–
100) and remove the intervals without gene families. In the
ENM, we consider gene families as the independent variables and
metabolite abundances as the dependent variables. We consider
different sets of gene families with different importance scores.
For each set of gene families, we conduct a 10-fold cross-
validated ENM and build 10 models with different values of
the tuning parameter g, ranging from 0 to 1. For each model, we
measure the MSE between the measured metabolite abundance
and the predicted values to determine the best model (i.e., the
model with the lowest MSE). To maintain reproducibility, we
maintain the same random seed and permute the same fold
index number in the ENM. The matrix of regression coefficients
of gene families from the best model identified in the training set
will be output as a weight matrix.

In the testing stage, for the prediction of each metabolite, we
use the weight matrix output from the training stage for
prediction, if the gene families are also detected in the testing
set. Because we have transformed the compositional metabolite
abundance to a normal distribution using a Box–Cox
transformation in the training stage, we transform the
predicted metabolite abundance data back to the original
compositional scale based on g calculated in the training step.

ENVIM assumes the following model:

yi = x
0
i  b + ei,

where b = (b0, b1,… , bp)', and b̂ ENVIM = argminb min
k∈K

LENVIM(k),
the ENVIM estimator ofb, is found byminimizing over k and b the
objective function,

LENVIM(k) =
1
2No

N

i=1
(yi − x
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iMkb)
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: Equation 2

Here we define VIj as the variable importance score for the jth
variable given by a random forest; Sk = fSk,jgpj = IfVIj ≥ kgpj=1 is
the variable selection indicator vector, which is 1 if the importance
score for the jth variable is larger than the threshold k; Mk =
diagf(1, S0

k)g is the corresponding diagonal variable selection

Equation 2
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matrix that includes the intercept term; and K is a set of the
candidate k values. K is defined adaptively so that it covers the
range of the variable importance scores reasonably. In our analysis,
we set K = {0, 10, 20,…, 90}.

Three Key Differences Between MelonnPan and ENVIM
for Predicting Individual Metabolites

1. Transformation of metabolite abundance data into a normal
distribution

MelonnPan transforms relative metabolite abundances with
the arcsine square root operator, whereas we use a Box–Cox
transformation in ENVIM. To test the normality of the
transformed data, we compare the p-values of the Shapiro–
Wilk test statistics for both the Box–Cox (Equation 3) and the
arcsine square root transformations of metabolite relative
abundances. The Shapiro–Wilk test is typically used for
examining distribution normality for a continuous variable.
The smaller the p-values, equivalently, the larger the −log10(p-
values) are, the more evidence the data are not normally
distributed. Overall, the −log10(p-values) from the Box–Cox
transformation in ENVIM are smaller than those from the
arcsine square root transformation (Figure 3A), which
indicates that the Box–Cox-transformed data are more
normally distributed. In addition, the Box–Cox transformation
yields better normal approximation than the arcsine square root
transformation for most of the metabolites (Figure 3B).

Box–Cox transformation

y0 =
yw−1
w ,w ≠ 0

log (y),w = 0
,

(

where y is the relative abundance, and y′ is the transformed abundance.

2. Different sets of gene families are carried forward to the
prediction model

MelonnPan uses all gene families in the training data in the
ENM and ultimately predicts metabolites in the testing stage
using the same features. However, regressing against all gene
families may dilute the effect of important gene families. Thus,
unlike MelonnPan, we use a variable importance criterion to
select different sets of gene families and include them in the
prediction models.

3. The range of a values in ENM

Alpha (a) is the weight between the L1 and L2 penalty terms
in the ENM, and in combination with g values, the set of values
that minimizes the 10-fold cross-validated MSE (Equation 1) is
chosen. When a is 0, the model reduces to a Ridge regression
model which has the advantage of dealing with highly correlated
independent variables; when a is 1, the model becomes a Lasso
regression model which has a variable selection capacity; when a
is between 0 and 1, the model includes the advantages of both
Ridge regression and Lasso regression. In MelonnPan, the range
of a values does not include 0 and 1, which excludes either the

Equation 3
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Ridge or Lasso regression models, and it may not consider
variables with high importance. The range of a in our ENVIM
includes 0 and 1. By allowing a larger range of a, we can include
the Ridge regression model as the potential final model, which
does not unduly exclude variables with high importance.

The ENVIM software written in R statistical language is
available in GitHub (https://github.com/jialiux22/ENVIM). The
ENVIM_predict function is for metabolite prediction only, and
the ENVIM function for both the metabolite prediction and the
evaluation of the observed metabolomics dataset in the testing set
is also available. Both R functions will output the weight matrix
between gene families and metabolites. The weight matrix in
testing has the same values as in training if they have the same
number of gene families. Some contributing gene families in the
weight matrix of the training set may not be measured in the
testing set, so the weight matrix used by the testing set includes
only the gene families that are shared by both the training and
the testing sets.
Method Comparison for Prediction
of Individual Metabolites in the
Three Datasets
Correlation-Based Method Comparison
for All Metabolites
We used microbial gene family data to predict individual
metabolites in the matched samples (that are from the same
biological sample in that one proportion is for microbiome and
the other is for metabolome). We compared the prediction results
between ENVIM and MelonnPan, in terms of Spearman
correlation and MSE between predicted and observed values of
each of the metabolites, in three datasets (ZOE 2.0, Mallick data,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7212
and Lloyd-Price data) at each of the three data modalities of
microbial gene families, i.e., DNA-seq, RNA-seq, and Both (RNA
and DNA). The MSE in the testing set is used for comparison
between the methods (Supplemental Figure 2).

We have summarized the prediction results (Table 2 and
Figure 4A) for all metabolites in terms of Spearman correlation
(r = 0.3) according to three aspects: method comparison, data
modality comparison, and microbial community (i.e., body site)
comparison. Overall, in method comparison, ENVIM produces
higher percentages of well-predicted metabolites than
MelonnPan in all three datasets, in both testing and training
sets, and for DNA, RNA, and Both when available (Table 2).

Generally, in data modality comparison, RNA gene family
data produce higher percentages of well-predicted metabolites
than DNA data. In the Lloyd-Price study, RNA-only data
typically give higher percentages of well-predicted metabolites.
In the ZOE 2.0 and Lloyd-Price data, both DNA and RNA
predictors produce similar percentages but are not always
superior to the DNA-only or RNA-only data-based predictors.
However, results from both DNA and RNA predictors are never
the worst. Unsurprisingly, the well-predicted percentage of
metabolites in testing sets is lower than in the training set
(Table 2). The boxplots of Spearman correlations between the
predicted and observed metabolites for all metabolites
(Figure 4A) suggest that the correlations between the ENVIM-
predicted and the observed metabolites are higher in RNA than
in DNA, but are comparable to correlations in both DNA and
RNA. We are aware that in the testing sets, MelonnPan only
outputs the predictable metabolites (defined as well-predicted
metabolites in the training set, the last columns in Table 2), so it
is not as appropriate for MelonnPan, as compared with ENVIM,
to calculate the Spearman correlation distribution for all
A B

FIGURE 3 | (A) Boxplot of −log10 of Shapiro–Wilk test p-values to test the normality of transformed relative metabolite abundances in all three data applied with
Box–Cox transformation (ENVIM used) and arcsine square root transformation (MelonnPan used). (B) Scatter plot for comparing −log10 of p-values from the
Shapiro–Wilk test (normality) between Box–Cox transformation (x-axis) and arcsine sqrt (y-axis) transformation. Almost all of the points are above the y = x line, which
indicates that the −log10 of p-value after Box–Cox transformation is smaller than after arcsine sqrt transformation and normality after Box–Cox transformation is
better. Each point is one metabolite.
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metabolites in Figure 4A. It must also be noted that the highest
proportion of well-predicted metabolites is found in the two gut
microbiome studies (Lloyd-Price study and Mallick study), and
the lowest is in the supragingival dental biofilm (ZOE 2.0 study)
(Table 2). Since Spearman correlation in both the Lloyd-Price
andMallick datasets is higher than that in ZOE 2.0 (Figure 4A), it is
reasonable to suggest that metabolite prediction is better in gut
microbial communities than in the oral microbial communities.

Besides comparing MelonnPan and ENVIM in terms of
percentages of well-predicted metabolites, one can directly
compare the Spearman correlations of each predictable
metabolite that is predicted by both methods (Figures 5, 6).
In the training set (Figure 5), for all three gene family data
modalities and in all three datasets, we find that the majority of
these metabolites have higher correlations in ENVIM compared
withMelonnPan. The same holds in the testing set (Figure 6). We
also observe that most points are along but slightly above the
diagonal line in the testing sets (Figure 6). This suggests that the
metabolites predicted by ENVIM have higher correlations with
the observed ones compared with those predicted by MelonnPan.
We also find that there are more metabolites in the “ENVIM
≥0.3” category (blue) than in the “MelonnPan ≥0.3” category
(red). This is a reflection of more well-predicted metabolites
found using ENVIM than using MelonnPan prediction.

To give a more realistic view of the improvement of the
ENVIM over MelonnPan, as a tool to predict metabolites in
practice, we use one of the two independent cross-sectional
cohorts in Mallick data as training to predict the other. The
PRISM cohort has 155 subjects and the NLIBD cohort has 65
subjects. For both ENVIM and MelonnPan, we use the
microbiome and metabolome data in PRISM as the training set
to predict the metabolites in NLIBD (Table 3). Among the 466
metabolites, ENVIM has 34% (160/466) in the testing set, while
MelonnPan only has 26% (123/466) in the testing set. These
percentages are very similar to 37% and 28%, respectively, in
ENVIM and MelonnPan from random split of samples in the
Mallick study, so that the same conclusion was drawn that better
prediction power is in ENVIM than in MelonnPan.
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To investigate the sample size effects, we further cut the
sample size of the training set by half, or from 155 PRISM
subjects to 77 or 78 subjects randomly for 10 times and find that
with even half of the samples, ENVIM nearly maintains the well-
predicted rates (Table 4). ENVIM is less sensitive to the
decreased sample size than MelonnPan.

Correlation-Based Method Comparison for
Metabolites Within Metabolic Pathways
Metabolites may be associated with the microbiome in the
context of metabolic pathways that involve interactions
between the host, microbiome, and environment. We further
investigate the predictive capability of the two methods for
metabolites in MetaCyc metabolic pathways. HUMAnN 2.0 or
3.0 software provides information whether a MetaCyc metabolic
pathway has been associated with microbiome data. In the
MetaCyc database, we identify metabolites in each of these
microbiome-associated pathways. All conclusions regarding
method comparison, modality comparison, and body site
comparison in the prediction of all metabolites still hold in the
context of predicting metabolic-pathway-only metabolites.
Additionally, when comparing the percentages of well-
predicted metabolites among all metabolites (first four columns
of Table 2) and those in the metabolic pathways (Table 5), we
find higher predicted percentages for the latter.

MSE-Based Method Comparison
We use boxplots to compare MSE between measured and
predicted metabolite abundances between ENVIM and
MelonnPan both for training and testing models, with
application to training and testing data for all three studies.
We only compare well-predicted metabolites identified by
MelonnPan in training, since MelonnPan only generates
results for these metabolites. The boxplot demonstrates that
the distribution of MSE in the MelonnPan model is
approximately the same as the distribution of MSE in ENVIM
(Supplemental Figure 2). We find no significant difference in
MSE between ENVIM and MelonnPan, which suggests that both
TABLE 2 | Prediction results (first four columns of numbers) in terms of Spearman correlation for all metabolites to be predicted.

Training
(ENVIM)

Training
(MelonnPan)

Testing
(ENVIM)

Testing
(MelonnPan)

Predictable metabolites
(defined by MelonnPan)

ZOE 2.0 (NM = 503)
DNA only 356 (71%) 63 (13%) 124 (25%) 47 (9%) 70
RNA only 409 (81%) 157 (31%) 106 (21%) 68 (14%) 163
Both DNA and RNA 423 (84%) 146 (29%) 110 (22%) 73 (15%) 154

Mallick cohort (NM = 466)
DNA only 408 (88%) 239 (51%) 225 (48%) 178 (38%) 249

Lloyd-Price cohort (NM = 522)
DNA only 501 (96%) 271 (52%) 322 (62%) 193 (37%) 305
RNA only 521 (100%) 298 (57%) 393 (75%) 236 (45%) 318
Both DNA and RNA 518 (99%) 306 (59%) 381 (73%) 232 (44%) 323
October 2021
Based on the “well-prediction” criterion, defined as Spearman correlation ≥0.3 between the observed and the predicted metabolites, the numbers of well-predicted metabolites with different
prediction methods, datasets, and modality levels (DNA, RNA, and Both) are presented for comparing MelonnPan and ENVIM. NM is the number of metabolites to be predicted.
Percentages in parentheses (%) represent the number of well-predicted metabolites divided by the total number of metabolites (NM) to be predicted in each study. The Mallick cohort has
only metagenomics data available. The last column presents numbers of “predictable metabolites,” defined by MelonnPan, also seen in the Figure 2 legend. Bold in the column of in testing
results represents the highest number of well-predicted metabolites among the three modalities (DNA, RNA, both DNA and RNA) in the ZOE2.0 cohort and the Lloyd-Price cohort.
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methods predict these metabolites well in terms of MSE. The
advantage of ENVIM is that we can predict substantially more
well-predicted metabolites than MelonnPan—a consequence of
MelonnPan’s inability to build a well-performing model in the
training step. When using PRISM as the training set and NLIBD
as the testing set in the Mallick study, the above conclusion about
MSE remains the same (Supplemental Figure 3).

ENVIM Outputs Including Predicted
Individual Metabolites and Contributing
Gene Family Weights
Top Well-Predicted Metabolite Compounds From
ENVIM
For simplicity, we present one modality from each of the three
studies. For Lloyd-Price and ZOE 2.0, we choose one of the gene
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family data modalities that has the best ENVIM prediction power to
show their top predicted metabolites, that is, the DNA gene family
data (124 metabolites as 25% among NM, Table 2) in ZOE 2.0 and
the RNA gene family data (393 metabolites as 75% among NM,
Table 2) in Lloyd-Price. Since the Mallick study only has DNA data
available, the DNA gene family data are used. To note, both the
Lloyd-Price study and the Mallick study have measured metabolites
in four metabolome LC-MS platforms (see the Cohorts and Data
Description section) so that one metabolite may appear multiple
times in the top list (for example, urobilin). The top 50 best
predicted metabolites for each study are presented in Figure 7.

The summarized prediction results are presented in
Supplemental Table 1. To interpret the results, we take the
carbohydrate pathway as an example of a pathway that may
provide bacteria with nutrition, which includes a few compounds
A

B

FIGURE 4 | (A) Evaluation using Spearman correlation r in training stage and testing stage between predicted values and the observed values by using DNA-seq
data only, RNA-seq data only, and both for ZOE 2.0 data, Lloyd-Price data, and Mallick data. (B) R-square in the training stage, as the percentage of variance
explained by prediction models to demonstrate the lack of overfitting.
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that have been well-predicted by the RNA gene family data. We are
aware that the prediction in this paper is not about longitudinal
causal relation, but rather, for mathematical prediction. Here, we
also show four examples (trehalose, maltose, ribose, and stachyose)
that have high Spearman correlation on the log10 scale of the
compositional data (Figure 8A).

Comparison of Gene Family Lists (With Weight
Matrix) Across Three Datasets in ENVIM
We extract gene family names that have non-zero entries in the
weight matrix for each metabolite, dataset, and gene family
modality (Supplemental Table 2) in ZOE 2.0. We compare
the contributing gene family names across the ZOE 2.0 and
Lloyd-Price to find the number of common contributing genes
the different body sites share for predicting metabolites. We find
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10215
that there are not many overlapping genes (n < 10) between ZOE
2.0 data and Lloyd-Price data (data not shown).

Gene Set Enrichment Analysis of Contributing Genes
Within Species in ZOE 2.0
We perform gene set enrichment analysis to find the over-
represented species of the contributing gene families to predict
metabolites in ZOE 2.0. To test that, we start with the weight
matrix of gene families and metabolites in the testing set. We
identify the contributing gene families that have non-zero values
with any well-predicted metabolites.

We obtain the rank of each gene family in the weight matrix
based on the absolute value of the regression coefficients (“weights”)
for each gene family. We use the information of correspondence
between gene families and the species level (generated in HUMAnN
FIGURE 5 | For DNA, RNA, and both in each study and the training set, this shows the scatter plot of Spearman correlation in ENVIM (y-axis) and MelonnPan (x-
axis). Spearman correlation is based on observed metabolite abundance and predicted values. If our calculated correlation is NA, the metabolites will be not included
in this figure.
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2.0.) to identify the species corresponding to those contributing gene
families. For each species, we compare the difference in the
cumulative distributions of gene family rank scores between the
species and the background species using the Kolmogorov–Smirnov
(KS) test that was also used in the original gene set enrichment
analysis (GSEA) paper (Subramanian et al., 2005). We use the
Benjamini–Hochberg false discovery rate (FDR) approach to
correct the KS p-values and get q-values. There are 36 species in
ZOE 2.0 DNA data and 73 species in ZOE 2.0 RNA data found to be
significantly (q < 0.05) over-represented in the gene set enrichment
analysis (Figure 9).
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Here, we used a different procedure for the gene set enrichment
tests compared to what was used in the MelonnPan (Mallick et al.,
2019) paper, in that the gene families in genera instead of species
were summarized as a gene set, due to the small number of gene
families in each species in their prediction procedure. In fact,
ENVIM keeps many more genes than MelonnPan (because
ENVIM allows larger range of a) so that ENVIM can address the
ranks of all contributing gene families instead of the binary
prediction power of genes (i.e., whether a gene is used for
prediction or not) used in MelonnPan and, furthermore, can
perform GSEA at the species level for higher resolution of
FIGURE 6 | For DNA, RNA, and both in each study and the testing set, this shows the scatter plot of Spearman correlation in ENVIM (y-axis) and MelonnPan (x-
axis). Spearman correlation is based on observed metabolite abundance and predicted values. Here, “Both ≥0.3” refers to the category of metabolites that have
Spearman correlation ≥0.3 in both ENVIM- and MelonnPan-predicted results. “ENVIM ≥0.3” refers to the category of metabolites that have Spearman correlation
≥0.3 only between ENVIM-predicted and observed values.
TABLE 3 | Prediction results in Mallick data, when using all samples in the PRISM study as the training set and the data in NLIBD study as the testing set.

Mallick cohort (NM = 466)
PRISM (training, n = 155)
NLIBD (testing, n = 65)

Training (ENVIM) Training (MelonnPan) Testing (ENVIM) Testing (MelonnPan)

DNA only 387 (83%) 205 (44%) 160 (34%) 123 (26%)
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contributing species. Our GSEA strategy also can help avoid the bias
of selecting for species that have larger numbers of genes.

Computational Speed
ENVIMwas implemented in R statistical language. It can accurately
predict metabolites using matched microbiome gene family data.
The mean running time in ENVIM of each metabolite using DNA
gene family data is 5.2 min for ZOE 2.0 data (6.1 min for Lloyd-
Price data, 2 min for Mallick data). The mean running time in
ENVIM using RNA gene family data is 4.2 min for ZOE 2.0 data
(3.7 min for Lloyd-Price data); the mean running time in ENVIM
for both DNA and RNA gene family data is 4.5 min for ZOE 2.0
data (3.6 min for Lloyd-Price data) with MacOS Big Sur Version
11.4 and the desktop iMac Pro 2020.
DISCUSSION

We propose a new computational method for metabolite prediction
using microbiome data-based improved elastic net models. We
chose different gene family sets based on random-forest-based
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12217
variable importance scores and modified the existing ENM to
accommodate the unique features of microbiome and
metabolome data. The newly developed method ENVIM predicts
metabolites using metagenomics, metatranscriptomics, or both data
types. We apply the algorithm in three datasets, i.e., the ZOE 2.0,
Mallick, and Lloyd-Price studies. These three studies have both
microbiome and metabolome data in the same matched samples,
with reasonably large sample sizes. We are the first to use
microbiome data to predict metabolites in more than one study
and different body sites. In addition, the ZOE 2.0 and Lloyd-Price
studies have both metagenomics and metatranscriptomics, so that
we can, for the first time, compare prediction performance using the
different gene family modalities (or called data types).

We evaluated metagenomic and metatranscriptomic predictors
and compared the prediction performance between the previously
developed MelonnPan and ENVIM, among DNA, RNA, and both
DNA and RNA gene family data using 1) the proportion of “well-
predicted” metabolites defined as those with Spearman correlation
between measured and predicted metabolite values ≥0.3, 2)
distribution of Spearman correlation, and 3) MSE. The correlation
suggests that Both (of DNA and RNA) provides robust prediction
TABLE 4 | Prediction results in Mallick data, when using half of the sample size in the PRISM study as the training set for 10 times and the data in NLIBD study as the
testing set.

Mallick cohort (NM = 466)
PRISM (training, n = 77 or 78)
NLIBD (testing, n = 65)

Training
(ENVIM)

Training
(MelonnPan)

Testing
(ENVIM)

Testing
(MelonnPan)

Seed1 429 (92%) 161 (35%) 147 (32%) 96 (21%)
Seed2 402 (86%) 202 (43%) 162 (35%) 104 (22%)
Seed3 427 (92%) 164 (35%) 140 (30%) 92 (20%)
Seed4 428 (92%) 199 (43%) 148 (32%) 97 (21%)
Seed5 439 (94%) 211 (45%) 160 (34%) 111 (24%)
Seed6 427 (92%) 180 (39%) 157 (34%) 113 (24%)
Seed7 424 (91%) 178 (38%) 143 (31%) 98 (21%)
Seed8 424 (91%) 150 (32%) 142 (30%) 98 (21%)
Seed9 425 (91%) 159 (34%) 150 (32%) 101 (22%)
Seed10 419 (90%) 181 (39%) 152 (33%) 105 (23%)
Mean 424 (91%) 179 (38%) 150 (32%) 102 (22%)
October 2021 | Volume 11 |
TABLE 5 | Prediction results via Spearman correlation for metabolites that are found in metabolic pathways.

Training
(ENVIM)

Training
(MelonnPan)

Testing
(ENVIM)

Testing
(MelonnPan)

ZOE 2.0 (NM = 149)
DNA only 129 (87%) 35 (23%) 57 (38%) 28 (19%)
RNA only 139 (93%) 73 (49%) 57 (38%) 40 (27%)
Both DNA and RNA 142 (95%) 73 (50%) 60 (40%) 46 (31%)

Mallick cohort (NM = 251)
DNA only 231 (92%) 132 (53%) 94 (37%) 71 (28%)

Lloyd-Price cohort (NM = 125)
DNA only 121 (97%) 71 (57%) 70 (56%) 40 (32%)
RNA only 125 (100%) 86 (69%) 103 (82%) 68 (54%)
Both DNA and RNA 124 (99%) 92 (74%) 105 (84%) 79 (63%)
Based on the criterion of Spearman correlation ≥0.3 between observed and predicted metabolites, we present the numbers of well-predicted metabolites with different prediction
methods, datasets, and modality levels (DNA, RNA, and Both) and made a comparison between MelonnPan and ENVIM. NM is the number of metabolites to be predicted. Percentages in
parentheses (%) represent the numbers of well-predicted metabolites divided by the total number of metabolites (NM) to be predicted in each study. The Mallick cohort has only
metagenomics (DNA) data available and no pathway RNA data. The results from the Mallick cohort here are only based on filters (filtering out metabolites with mean relative abundance
<10−4) and low prevalence (metabolites with >10% non-zero). In ZOE 2.0 and Lloyd-Price, metabolite data presented in this table have been selected according to membership in
pathways and also satisfy the abovementioned filtering criteria.
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results that are never the worst among the three data types. Whether
DNA or RNA has better prediction performance depends on the
study. The percentage of well-predicted metabolites is higher for
metabolites that are in a metabolic pathway observed in the
microbiome data. Such enrichment of well-predicted metabolites
in metabolic pathways supports the strong interaction between
microbiome and metabolome. Across all datasets and data types,
with or without the pathway filter, we find that ENVIM always
outperforms MelonnPan. We also find that prediction performance
is better in Lloyd-Price andMallick than in ZOE 2.0, which suggests
that the association betweenmicrobiome andmetabolites is stronger
in the gut than in the oral cavity, since oral metabolites may bemore
affected by environmental factors like food intake. More microbial
omics studies are needed to compare the prediction power across
different body sites and to understand how themicrobiome interacts
with the metabolome differently at different body sites.
Acknowledging that the reported findings are not to infer
causality but are demonstrative of mathematical prediction, we
show four well-predicted metabolites in ZOE 2.0 (Figure 8), as
examples of compounds thatmay play roles in bacterial metabolism.

As a result, the numbers of the measured metabolites and the
numbers of the to-be predicted metabolites in each of the three
studies are very different due to differences in technology platforms,
data processing steps, and available data at different body sites.
Besides body sites, the data collection and processing stepsmay have
large effects on the prediction performance. The distributional
assumption, normalization, transformation, outlier filtering, and
missing data handling are important considerations before training
themodel.We have touched on that, but further explorationmay be
needed. According to what we observed, the ideal usage of these
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13218
types of prediction methods is in studies that contain paired
microbiome and metabolome data in one batch of samples but
lack metabolome data in other batches of samples. In that case, all
microbiome samples are sequenced, aligned, and processed
comparably, and the uncollected metabolome samples are also
assumed to be from the same technical metabolome platform and
similar data processing steps (for example, as what we demonstrated
in Tables 2, 5). However, the usage of these methods is not limited
only to this ideal case. The suitable usage scope has the assumptions
of 1) the same population distribution of microbiome data in the
training model and in the cohort to be predicted, 2) the same
population distributions between the metabolome data in the
training model and in the cohort to be predicted, and 3) similar
connection between microbiome and metabolome due to, for
example, similar ethnicities, clinical characteristics, age groups,
and body sites (as shown in Table 3). Usage of the IBD Lloyd
data to predict metabolites in the IBD Mallick study via ENVIM
and MelonnPan has been considered. Although these two studies
have been generated from the same body sites and similar LC-MS
metabolome techniques, their microbiome data have been
processed in different versions of HUMAnN software (3.0 vs. 2.0),
and in different data scales (CPM vs. RPKM), their metabolome
data have been processed using different algorithms in different
software, and different filtering criteria have been used in the two
studies. These differences suggest that the first and the second
assumptions are not held well, and the prediction results are not
encouraging (data not shown). Furthermore, the assumptions of
similar population distributions depend on the measuring technical
platforms, the data processing steps, and proper normalization
methods. The questions of what the best normalization method is
FIGURE 7 | The best predicted 50 metabolite compounds (x-axis) in the three studies by ENVIM in the testing set. For Lloyd-Price and ZOE 2.0, we choose the
gene family data types that have the best ENVIM prediction power to show their top predicted metabolites, based on Table 2.
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A B

FIGURE 8 | (A) Scatter plots of examples of four well-predicted metabolites in ZOE 2.0 by ENVIM, in the testing set. r is for Spearman correlation for method
evaluation. (B) Scatter plots of the same four well-predicted metabolites in ZOE 2.0 by ENVIM, in the training set, where R-square (Pearson Correlation) was shown
for the percentage of variance explained by prediction models to demonstrate that overfitting is not a big concern. The x-axis is the observed metabolites; the y-axis
is the predicted metabolites. Both x and y are in log10 scale of the compositional data for normality. ECC stands for early childhood caries, ECC = 0 (about 50% of
total samples in ZOE 2.0) is for the healthy group, and ECC = 1 (about 50% of total samples in ZOE 2.0) is for the ECC case group.
FIGURE 9 | Taxonomic enrichment of metabolite predictive species for the most contributing species to metabolite prediction, based on ZOE 2.0 DNA or RNA by
ENVIM. The top 20 significant over-represented bacteria with the smallest Q-values (Q < 0.05) for ZOE 2.0 data. The Q-value is based on the Kolmogorov–Smirnov
(KS) test p-values after FDR correction. Upper, DNA data; Lower, RNA data.
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and which integration procedure best allows assumptions of similar
population distributions to overcome the difference across cohorts/
technique/data processing are out of the scope of this paper but are
very important for further data harmonization of microbiome-
related large datasets.

Because higher well-predicted metabolite rates were observe in
the training compared to the testing datasets, overfitting of the
machine learning model can be a concern; however, overfitting is
not a great concern around ENVIM for the following reasons: 1)
similar observed mean square error in the training set and the
testing set (Supplemental Figures 2–4) and 2) small squared
Spearman correlation (R-square) between fitted and observed
metabolites in the training sets (Figure 4B). Four well-predicted
metabolites in ZOE 2.0 have no large R-square in the training set,
and similar patterns in the scatter plots between measured and
predicted metabolites are observed in both the training set and
testing set (Figure 8B), and 3) the penalty terms in ENM, cross-
validation in tuning the penalty terms, and the use of
bootstrapping in random forest relax the potential overfitting
problem. Although the overfitting concern is reasonably
mitigated, it should be acknowledged that it may not be
perfectly avoided. With that in mind, the method performance
in the testing set is the most important. We observe that ENVIM
has a higher well-predicted metabolite percentage (Tables 2, 3, 5)
and comparable MSE (Supplemental Figures 2, 3) when
compared with MelonnPan.

A limitation in the framework for ENVIM, as well as in the
framework for MelonnPan, is that the experimental design in
studies, including time course or disease statuses, has yet to be
considered. However, since the purpose of ENVIM is prediction,
the prediction does not need to be conditional on the
experimental design. Instead, different disease statuses may
have different microbiome profiles and, correspondingly, have
different metabolome profiles. Therefore, the non-inclusion of a
design matrix in ENVIM is a limitation but not a drawback of the
prediction performance.

In summary, we illustrate that the newly developed ENVIM
method for microbiome-based metabolite prediction provides
good prediction performance and can be used to predict
individual metabolites when only microbiome data are
available if the same technical microbiome/metabolome
platform, similar data processing steps, and the same body site
and covariate values can be assumed, or when a proportion of
samples in a study have no metabolome data.
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Supplementary Figure 1 | Diagnosis for outlier samples in metabolome data.
The x-axis is the cumulative proportion of samples, and the y-axis is number of non-
missing values. The left lower tail dots that are far from the rest may be considered
as sample outliers. For ZOE 2.0 data and Lloyd-Price data, we need to remove the
10 outliers subjects from ZOE 2.0 data and 15 outliers from Lloyd-Price data to
ensure the distribution of non-missing values is continuous.

Supplementary Figure 2 | Boxplot of -log10 of MSE for DNA, RNA, and BOTH in
each of the three studies to compare ENVIM and MelonnPan.

Supplementary Figure 3 | Boxplot of -log10 of MSE for DNA, RNA, and BOTH in
Mallick study when PRISM data was used as training to predict metabolites in
NLIBD data. This is to compare ENVIM and MelonnPan.

Supplementary Figure 4 | Boxplot of -log10 of MSE for DNA, RNA, and BOTH in
each of the three studies, for all metabolites predicted by ENVIM.

Supplementary Table 1 | Overall prediction results, for all gene family data types,
all three datasets, and both methods, in Spearman correlation and MSE.
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Supplementary Table 2 | The gene lists in DNA or RNA, based on the highest
rank or the average rank among metabolites, that contribute to prediction of well-
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predicted metabolites in ZOE 2.0 by ENVIM. Rank is based on the weight matrix in
ENVIM. A larger number of ranks suggests more important gene families.
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