About this Research Topic
Computational approaches have long been an essential pathway to understanding defect properties. Notably, different methods have been successfully employed to shed light on defect creation, defect diffusion, and defect evolution mechanisms in various materials. In recent years, the witnessed tremendous advancement of computational capabilities has enabled the rapid development of computational methodologies for studying all kinds of defect properties under equilibrium and non-equilibrium conditions. These methods span multiple scales from high-throughput first-principles calculations and atomistic simulations to cluster dynamics and rate theory models. Separately and synergistically, these methods significantly advance our understanding of defect properties and their influences on materials performance.
The aim of this Research Topic is to explore defect properties in materials through different computational methods. The materials under consideration include traditional metals and alloys, functional ceramics, nuclear fuels, structural materials, and emerging novel materials such as low-dimensional materials and high-entropy materials.
This Research Topic is focused on the defect properties at thermal equilibrium conditions and non-equilibrium states under mechanical deformation or ion irradiation. Different defect types are considered, from point defects to defect clusters, dislocations, interfaces, grain boundaries. All kinds of computational methods that are applicable to studying defect properties are welcome. We also welcome original research and review papers related to defect properties. Potential topics include, but are not limited to the following:
• Defect thermodynamics
• Defect interactions
• Defect evolution
• Defect engineering
• Influence of defects on material properties
Keywords: Defect properties, Defect engineering, Computational methodology, Multiscale modelling, Defect-related applications
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.